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Preface

The remarks in the Preface to the new edition of Continuous Uniuariate
Distributions-1 apply to the present volume also. This second edition differs
from the first in the following respects:

+ The chapter on Extreme Value Distributions, which was the final chapter
of the original Continuous Uniuariate Distributions-1 now appears as the
first chapter of the present volume.

- The chapter on Quadratic Forms has been postponed to a projected
volume dealing with Continuous Multivariate Distributions.

- The final chapter on Miscellaneous Distributions has been drastically
revamped and restricted, and some topics have been given more, and
some markedly less emphasis.

» The length of each chapter has been substantially increased (about

doubled, on average) and the number of references increased almost
threefold.

» In order to mirror recent developments, the authors have, somewhat
reluctantly, included descriptions of numerous results relating to approx-
imations. Although these are often computationally ingenious, their
practical relevance in an age of high speed computers has been substan-
tially diminished.

- On the other hand, we were happy to include many examples of
applications of distributions (such as logistic, Laplace, beta, F, ¢+ and
noncentral chi-square, F and ¢) in various new fields of science, business
and technology. We welcome this trend towards penetration of more
sophisticated models into wider areas of human endeavour.

Since the publication of the new edition of Continuous Uniuariate Distribu-
tions, the sixth edition of Kendall’s Advanced Theory of Statistics, Volume
I-Distribution Theory by A. Stuart and J. K. Ord has come out, providing a
lot of details on univariate aswell as multivariate distribution theory. Though
it was late for Volume 1, we have tried to coordinate in this Volume (at some

Xiii
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AV PREFACE

places) with results presented in Stuart and Ord. Our sincere thanks go to
Professor Keith Ord for providing us with a copy of page proofs in order to
achieve this goal. We record with gratitude a large number of comments
received from our colleagues in statistical and engineering communities
concerning misprints in and omissions from the first edition of this volume.
These were very valuable to us in preparation of this new edition.

We acknowledge with thanks the invaluable assistance of Mrs. Lisa Brooks
(University of North Carolina) and Mrs. Debbie Iscoe (Hamilton, Canada) in
their skillful typing of the manuscript. We aso thank the Librarians of the
University of North Carolina, University of Maryland, and McMaster Univer-
sity for their help in library research.

Specia thanks are also due to Mrs. Kate Roach and Mrs. Shirley Thomas
at John Wiley & Sons in New York for their sincere efforts in the fine
production of thisvolume. We also thank Ms. Dana Andrus for all the efforts
in copy-editing the long manuscript.

Thanks are offered to the Institute of Mathematical Statistics, the Ameri-
can Statistical Association, the Biometrika Trustees, the Institute of Electri-
cal and Electronics Engineering, Marcel Dekker, Inc., the Roya Statistical
Society, the Australian Statistical Society, the Statistical Society of Canada,
the Biometric Society, North Holland, Gordon and Breach Science Publish-
ers, and the editors of Naval Research Logistics Quarterly, Water Resources
Research, Soochow Journal of Mathematics, Journal of the Operational Re
search Society, Sankhya, Decision Sciences, Mathematical and Computer Mod-
elling, Intermational Statistical Review, and Oxford Bulletin of Economicsand

Statistics, for their kind permission to reproduce previously published tables
and figures.

NorMaN L. JoHNSON
SamueL Kotz
N. BALAKRISHNAN

Chapel Hill, North Carolina
College Park, Maryland
Hamilton, Ontario, Canada
February, 1995
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CHAPTER 22

Extreme Value Distributions

1 GENESIS

The development of extreme value distributions proceeded to some extent
outside the mainstream of statistical distribution theory, with its early stage
dominated by work on curve fitting and the later stage by problems encoun-
tered in statistical inference. The extreme value theory is a blend of an
enormous variety of applications involving natural phenomena such as rain-
fall, floods, wind gusts, air pollution, and corrosion, and delicate mathemati-
cal results on point processes and regularly varying functions. This area of
research thus attracted initially the interests of theoretical probabilists as well
as engineers and hydrologists, and only recently of the mainstream statisti-
cians. Historically work on extreme value problems may be dated back to as
early as 1709 when Nicolas Bernoulli discussed the mean largest distance
from the origin when n pointslie at random on astraight line of length t [see
Gumbel (1958)].

Extreme value theory seems to have originated mainly from the needs of
astronomers in utilizing or rejecting outlying observations. The early papers
by Fuller (1914) and Griffith (1920) on the subject were highly specialized
both in fields of applications and in methods of mathematical anaysis. A
systematic development of the general theory may, however, be regarded as
having started with a paper by Bortkiewicz (1922) that dealt with the
distribution of range in random samples from a normal distribution. This has
already been pointed out in Chapter 13 and as can be seen in that chapter,
subsequent development of this particular topic was quite rapid. From our
present point of view, it suffices to say that the importance of the paper by
Bortkiewicz (1922) resides in the fact that the concept of distribution of
largest value was clearly introduced in it. In the very next year von Mises
(1923) evaluated the expected value of this distribution, and Dodd (1923)
calculated its median and also discussed some nonnormal parent distribu-
tions. Of more direct relevance to this chapter is a paper by Fréchet (1927)in
which asymptotic distributions of largest values are considered. In the follow-
ing year Fisher and Tippett (1928) published results of an independent

1




2 EXTREME VALUE DISTRIBUTIONS

inquiry into the same problem. While Fréchet (1927) had identified one
possible limit distribution for the largest order statistic, Fisher and Tippett
(1928) showed that extreme limit distributions can only be one of three types.
Tippett (1925) had earlier studied the exact cumulative distribution function
and moments of the largest order statistic and of the sample range arising
from samples from a normal population. von Mises (1936) presented some
simple and useful sufficient conditions for the weak convergence of the
largest order statistic to each of the three types of limit distributions given
earlier by Fisher and Tippett (1928). Seven years later, it was Gnedenko
(1943) who presented a rigorous foundation for the extreme value theory and
provided necessary and sufficient conditions for the weak convergence of the
extreme order statistics. de Haan (1970) refined the work of Gnedenko.
Gnedenko's (1943) classical paper has been reproduced in the first volume of
Breakthroughs in Statistics and supplemented by a perceptive introduction
written by R. L. Smith in which the influence of the paper and subsequent
developments in the extreme value theory have been analyzed.

The theoretical developments of the 1920s and mid 1930s were followed in
the late 1930s and 1940s by a number of papers dealing with practical
applications of extreme value statistics in distributions of human lifetimes,
radioactive emissions [Gumbel (1937a,b)], strength of materials [Weibull
(1939)}, flood analysis [Gumbel (1941, 1944, 1945, 1949a), Rantz and Riggs
(1949)], seismic analysis [Nordquist (1945)], and rainfall analysis [Potter
(1949)]. From the application point of view, Gumbel made several significant
contributions to the extreme value analysis, most of them are detailed in his
book-length account of statistics of extremes [Gumbel (1958)] which is an
extension of his earlier brochure [Gumbel (1954)]. Many more applications
are listed in Section 14.

The bibliography at the end of this chapter contains about 350 references.
This impressive number is, however, only a small part of publications pertain-
ing to this subject. The bibliography in Gumbel's (1958) book, not including
the developments during the last 35 years, is even more extensive. While this
extensive literature serves as a testimony to the vitality and applicability of
the extreme value distributions and processes, it also reflects to some extent
on the lack of coordination between researches and the inevitable duplica-
tion (or even triplication) of results appearing in awide range of publications.

2 INTRODUCTION

Extreme value distributions are generally considered to comprise the three
following families:

Type 1.

Pr[X <x] = exp{ —e "7/}, (22.1)
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Type 2.
0, x < &,
_ -k
Pr{X <x] = exp{_(xof) } =L (22.2)
Type 3.
£-x\*
Pr{X <x] = °"p{"( o )} ¥=é (22.3)
1, x> &,

where £, (> 0), and k(> 0) are parameters. The corresponding distribu-
tions of (—X) are also called extreme value distributions.

Of these families of distributions type 1 is by far the one most commonly
referred to in discussions of extreme value distributions. Indeed some au-
thors call (22.1) the extreme value distribution. In view of this, and the fact
that distributions (22.2) and (22.3) can be transformed to type 1 distributions
by the simple transformations

Z=log(X —-¢), Z= —log(¢(—-X),

respectively, we will, for the greater part of this chapter, confine ourselves to
discussion of type 1 distributions. We may aso note that the type 3 distribu-
tion of (—-X) is a Welbull distribution. These distributions have been dis-
cussed in Chapter 21, and so there is no need to discuss them in detail here.

Of course, types 1 and 2 are aso closely related to the Weibull distribu-
tion, by the simple formulas relating Z and X, just quoted. Type 1 is
sometimes called the log-Weibull distribution [see White (1964, 1969)].

Type 1 distributions are also sometimes called doubly exponential distribu-
tions, on account of the functional form of (22.1). We do not use this term to
avoid confusion with Laplace distributions (Chapter 24), which are also called
double exponential.

The term "extreme value" is attached to such distributions because they
can be obtained as limiting distributions (as n — =) of the greatest value
among n independent random variables each having the same continuous
distribution (see Section 3). By replacing X by —X, limiting distributions of
least values are obtained. As already mentioned, these are also extreme value
distributions, so they do not need separate treatment.

Although the distributions are known as extreme value, it isto be borne in
mind (1) that they do not represent distributions of all kinds of extreme
values (e.g., in samples of finite size), and (2) they can be used empiricaly
(i.e., without an extreme value model) in the same way as other distributions.




4 EXTREME VALUE DISTRIBUTIONS

In this last connection we note that the type 1 distribution may be
regarded as an approximation to a Weibull distribution with large value of c.
Also if X hasa type 1 distribution, Z = exp[ - (X — £)/6} has an exponen-
tial distribution with probability density function:

pz(z) =e7?, 0<z.

The type 2 distribution is also referred to as the Fréchet-type distribution;
the type 3 distribution iscalled as the Weibull-type distribution; and the type 1
distribution as the Gumbel-type distribution. We may note that the Fréchet
and Weibull distributions are also related by a simple change of sign. The
Gompertz digtribution of lifetimes introduced in 1825, and already in use for
about a century before Fisher and Tippett's results appeared is a type 1
distribution even though it is not generally regarded to be of this group (see
Section 8 for details).

Although the three types of the distributionsin (22.1)-(22.3) appear to be
unrelated, they may al be represented as members of a single family of
generalized distributions with cumulative distribution function

e 1(x—¢
Pr{ X < x] = e~ {1 *lx=6/01/a)™ 14+ — ) >0,
«a 0

—n<a<», 0> 0. (22.4)

For a > 0 the distribution (22.4) isof the same form as(22.2). For a < 0 the
distribution (22.4) becomes of the same form as (22.3). Finally, when a — «
or —, the distribution (22.4) becomes the same form as the type 1 extreme
value distribution in (22.1). For this reason the distribution function in (22.4)
is known as the generalized extreme value distribution and is also sometimes
referred to as the von Mises type extreme value digtribution or the von
Mises—Jenkinson-type distribution. More details on this distribution will be
presented in Section 15.

Mann and Singpurwalla (1982) have provided a brief review of the extreme
value distributions. A similar review of the Gumbel distribution has been
made by Tiago de Oliveira (1983).

3 LIMITING DISTRIBUTIONS OF EXTREMES

Extreme value distributions were obtained as limiting distributions of great-
est (or least) values in random samples of increasing size. To obtain a
nondegenerate limiting distribution, it is necessary to "reduce” the actual
greatest value by applying a linear transformation with coefficients which
depend on the sample size. This process is analogous to standardization (as
in central limit theorems; see Chapter 13, Section 2) though not restricted to
this particular sequence of linear transformations.
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If X,, X,,.-, X,, are independent random variables with common proba-
bility density function

px(x) =f(x), Jj=12,....n,
then the cumulative distribution function of X, = max(X,, X,,*.-, X,) is
Fy,(x) = [F(0)]", (22.5)

where
F(x) = fjmf(x) dt.

As n tends to infinity, it is clear that for any fixed value of x

im F 1 if F(x) =1,
ok x,(x) = 0 if F(x) <1

Even if it is proper, this limiting distribution would be "trivia" and of no
specia interest. If there is a limiting distribution of interest, we must find it
as the limiting distribution of some sequence of transformed *reduced”
values, such as(a, X, + b,), where a,, b, may depend on n but not on x.

To distinguish the limiting cumulative distribution of the " reduced™ great-
est value from F(x), we will denote it by G(x). Then since the greatest of
Nn values X, X,,..., Xy, iSalso the greatest of the N values

max( X pasts XGovme2:" "5 Xjn),s J=12,...,N,
it follows that G(x) must satisfy the equation
[G(x)]" = G(ayx + by). (22.6)

This eguation was obtained by Fréchet (1927) and also by Fisher and
Tippett (1928). It is sometimes called the stability postulate.

Type 1 distributions are obtained by taking a, = 1; types 2 and 3 by
taking a, # 1. In this latter case

x=ayx+by ifx=by(1-ay) "

and from (22.6) it follows that G(by(1 — a,)~!) must equal 1 or 0. Type 2
corresponds to 1, and type 3to 0.

We now consider the case a, = 1 (type 1) in some detail. Equation (22.6)
is now

[G()]Y = G(x + by). (22.7)
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Since G(x t b)) must also satisfy (22.6),
[G()]™ = [G(x tby)]" =G(xtbytby).  (228)
But, also from (22.6),
[G()]™ = G(x + byy) (22.9)
and from (22.8) and (22.9) we have
by + by = byy,
whence

by =6IlogN, # aconstant. (22.10)

Taking logarithms of (22.7) twice and inserting the value of b, from
(22.10), we have (noting that G < 1)

log N * log{ —log G(x)} = log{ —~log G(x + 68log N)}. (22.11)
In other words, when the argument of
h(x) = log{ —log G(x)}
increases by 6log N, h(x) decreases by log N. Hence

h(x) = h(0) — % (22.12)

Since A(x) decreases as x increases, 6 > 0. From (22.12),

x - 6h(0)
-log G(x) = exp[— —0———-’

=)
= exp| — P

where ¢ = 6 log( - log G(0)). Hence
G(x) = expl —e~=9/7],

which isin agreement with (22.1). We will not enter into details of derivation
for types 2 and 3, and interested readers may refer to Galambos (1978,1987).
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Gnedenko (1943) established certain correspondences between the parent
distribution [ F(x) in the above analysis] and the type to which the limiting
distribution belongs. It should be noted that the conditions relate essentially
to the behavior of F(x) for high (low) values of x if the limiting distribution
of greatest (least) values is to be considered. It is quite possible for greatest

and least values, corresponding to the same parent distribution, to have
different limiting distributions.

We now summarize Gnedenko's results:

For type I distribution: Defining X, by the equation
F( Xa) = a,

the condition is

tim n{(1 = F(X, -1 + ¥(X, ey = Xi_,-1))] =77, (22.13)

n—w

For type 2 distribution:

fim ) 0,k>0 22.14
—— = > > 0. .
falir F(cx) 7 ( )

For type 3 distribution:
1 - F(ex tw)

lim

_CE® Tk e>0.k>0,  (22.15
ro0- 1-F(xtw) © (22.15)

where F(w) = 1, F(x) < 1 for X < w.

Gnedenko also showed that these conditions are necessary, as well as
sufficient, and that there are no other distributions satisfying the stability
postulate. An alternative interpretation of these conditions was given by
Clough and Kotz (1965) who also illustrated a specia queueing model
application for the extreme value distributions. Among distributions satisfy-
ing the type 1 condition (22.13) are normal, exponential, and logistic; the type
2 condition (22.14) is satisfied by Cauchy; the type 3 condition is satisfied by
nondegenerate distributionswith range of variation bounded above.

Gnedenko's (1943) results have been generalized by several authors.
Results for order statistics of fixed and increasing rank were obtained by
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Smirnov (1952) who completely characterized the limiting types and their
domains of attraction. Generalizations for the maximum term have been
made by Juncosa (1949) who dropped the assumption of a common distribu-
tion, Watson (1954) who proved that under mild restrictions the limiting
distribution of the maximum term of a stationary sequence of m-dependent
random variables is the same as in the independent case, Berman (1962) who
studied exchangeable random variables and samples of random size, and
Harris (1970) who extended the classical theory by introducing a model from
reliability theory (essentially a series system with replaceable components).
Weinstein (1973) generalized the basic result of Gnedenko dealing with the
asymptotic distribution of the exponential case with the initial distribution
V(x)=1-e* (x = 0). He showed that

n

u 1/t
lim V"{(x:,' + — } =e ", 0v>0,
n—o d

if and only if

u 1/¢
it {("* 7 }

where

Vix,)=1-—,
1 1
Vi, +—|=1-—,
C, ne
Cn
n lenlr—-l 4
x" = |x|"sgn(x).

[Gnedenko's (1943) result is for v = 1.} See aso Jeruchim (1976) who has
warned that the additional parameter o must be treated cautiously in
applications.

The necessary and sufficient conditions in (22.13)-(22.15) are often diffi-
cult to verify. In such instances the following sufficient conditions established
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by von Mises (1936) may be useful (though they are applicable only for
absolutely continuous parent distributions):

For type 1 distribution. For r(x) = f(x)/[1 — F(x)] nonzero and differen-
tiable for x close to F~'(1) [or for large x if F~'(1) = =], the condition
is

d 1
ki —_ =0, 22.16
x—»rl?'](n- dx{r(x)> ( )

For type 2 distribution. For r(x) > 0 for large x and for some a > 0, the
condition is

limxr(x) =a. (22.17)

X~

For type 3distribution. For F~'(1) < » and for some a > 0, the condition
is

lim {F'(1) - x}r(x) = a (22.18)
x—=F ')~

de Haan (1976) has provided a simple proof of this result. The function
r(x) = f(x)/{1 — F(x)} appearing in conditions (22.16)-(22.18) is the failure
rate or the hazard function (see Chapter 1, Section B2).

The choice of the normalizing constants a, and b, > 0 (which are not
unique) depends on the type of the three limiting distributions. In general,
convenient choices for a, and b, are as follows:

For type 1 distribution.

bN=F“(1———)—F"(1~—II\7). (22.19)

bN=F“‘(1 —i). (22.20)
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For type 3 distribution.

ay = F—l(l),

by = F7\(1) —F“'(l “115) (22.21)

Analogous results for the limiting distributions of the sample minimum can
be stated in a straightforward manner. There are several excellent books that
deal with the asymptotic theory of extremes and statistical applications of
extremes. David (1981) and Arnold, Balakrishnan, and Nagargja (1992)
provide a compact account of the asymptotic theory of extremes, and
Galambos (1978,1987), Resnick (1987), and Leadbetter, Lindgren, and
Rootzén (1983) present elaborate treatments of this topic. Reiss (1989)
discusses various convergence concepts and rates of convergence associated
with the extremes (and also with the order statistics). Castillo (1988) has
updated Gumbel (1958) and presented many statistical applications of the
extreme value theory. Harter (1978) prepared an authoritative bibliography
of the extreme value theory.

With F,(x; &, 8) denoting the extreme value distribution for the sample
minimum with cdf given by

e I

Fo(x;¢6,0)=1—e , 08>0, (€R,

and G,(x;a,b,c) denoting the three-parameter Weibull distribution with
cdf (see Chapter 21)

0 if x <c,
GX(x;a’b,c)::{l_e*[(x—c)/h]a ifx?_c,
for a,b > 0 and ¢ = R, Davidovich (1992) established some bounds for the
difference between the two adf's  Specifically he showed that

fe " if x <c,

2e 2
ifc<x <ct2b,

b
FX(x; b+ c,;) — Gy(x;a,b,c) <

e’ ifx>c+2b.

Thus, if a = o, b — ®, and ¢ = — such that b+ ¢ — d (Id| < ©) and
b/a —»f (0 <f < «), then the Weibull distribution above uniformly ap-
proaches the extreme value distribution for the minimum with ¢ =d and

="
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It is easily proved that if Y, Y,,--+, are independent variables, each
having the exponential distribution (see Chapter 19, Section 1),

Prf[Y<y]=1-¢, y>0, (22.22)
and if L is the zero-truncated Poisson variable (see Chapter 4, Section 10)

(e = 1)"'X

Pr[L=l]= 1' ’

1=1,2,..., (22.23)

the random variable defined by
X =max(Y,, - -,Y,)

has the extreme value distribution with cdf

Pr(X <x) = (e = 1) '[exp{A(1 — e7*)}] = cexp[—re *]. (22.24)

In a similar manner the Fréchet distribution can be generated from the
Pareto distribution (see Chapter 20) and the Weibull from the power func-
tion distribution (see Chapter 20). In fact Sibuya (1967) has suggested a
method of generating pseudorandom numbers from the extreme value distri-
bution by using the method described above, based on the exponential
distribution.

4 DISTRIBUTION FUNCTION AND MOMENTS

In this section we will consider type 1 distributions (22.1) exclusively. Corre-
sponding to (22.1) is the probability density function

Px(x) =87 e U8/ 8 exp[ g~ (x-6/0], (22.25)

If £=0and @ =1, or equivalently, the distribution of Y = (X — ¢)/8, we
have the standard f orm

py(y) =exp(—y —e™). (22.26)

Since, as we pointed out in Section 1, the variable Z = expl - (X — £)/0] =
e~Y has the exponential distribution

pz(z) =e” %, z2>0,




12 EXTREME VALUE DISTRIBUTIONS

it follows that
E[e"X~9/8) = E[Z7'}) =T(1 - 1)

for t < 1. Replacing t by 68¢, we see that the moment generating function of
X is

E[e'*] =e"“T'(1 — 6t), 0lt] <1, (22.27)
and the cumulant generating function is
W(t) =&t logT(1 - 6r). (22.28)
The cumulants of X are
k(X)) =E[X])=&—0y(1) = &+ y0 = £ + 0577220, (22.29)

where v is Euler's constant, and

k(X)=(-0)y¢" D), r=2 (22.30)

In particular
var(X) = +w20? = 1.6449302, (22.31)
Std. dev. ( X ) = 1.282559, (22.31)'

and the moment ratios are

a2(X) =B (X) =1.29857, a,(X)=p,(X)=54. (2232)
Note that £ and 9 are purely location and scale parameters, respectively. All
distributions (22.25) have the same shape.

Thedistribution isunimodal. Itsmodeisat X = ¢, and there are points of
inflection at

X =¢1+0log[i(3+V5)] = ¢ £ 0.962420. (22.33)

For 0 < p < 1the pth quantile defined by F(X,) = p readily becomes from
(22.1)

X, =¢— 6log(—log p). (22.34)
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From (22.34) we immediately obtain the lower quartile, median, and upper
guartile to be

Xozs = ¢ — 0log(log4) = £ — 0.326630, (22.35)
Xos0 = &€ — 8log(log2) = ¢ + 0.366118, (22.36)
Xo15 = € — 0log(—10g0.75) = ¢ + 1.245900, (22.37)

respectively.

Quantiles of the distribution are easy to compute from (22.34), even with a
pocket calculator. Most of the standard distribution (22.26) is contained in
the interval (-2,7). Asa matter of fact, for the distribution function in (22.1)
we find the probability between ¢ — 28 and ¢ + 78 to be 0.998. That is,
99.8% of the distribution lies between Mean — 2.0094 - (Standard deviation)
and Mean * 5.0078 - (Standard deviation). More details on properties of the
distribution are presented by Lehman (1963).

The standard probability density function (22.26) is shown in Figure 22.1.
Its shape is very closely mimicked by a lognormal distribution with e’ =
1.1325 (in the notation of Chapter 14). (The B,, B, values of this lognormal
distribution are 1.300,5.398, respectively; (22.32) ¢f.) In Table 221 the
standard cumulative distribution functions are compared.

Table 22.2 gives standardized percentile points (i.e., for a type 1 extreme
value distribution with expected value zero and standard deviation 1, corre-
sponding to 6 = V6 /m = 0.77970; ¢ = —y8 = —0.45006). The positive
skewness of the distribution is clearly indicated by these values. The useful-
ness of thisdistribution to model time-to-failure data in reliability studies has
been discussed by Canfield (1975) and Canfield and Borgman (1975).

)
0.4+

Il ) 1 Il 4
T 1 T T
£y

-2 -1 0 i 2 3 4 H y

Figure22.1 Standard type 1 probability density function, py(y) = e > exp(—e™")
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Table22.1 Standard cumulativedistribution functions

F(x)

X Type 1 Extreme Val distribution?® Lognormal Distribution®
- 2.0 0.00068 0.00022
-15 0.02140 0.01959
-1.0 0.1321 0.1342
-0.5 0.3443 0.3471

0.0 0.5704 0.5700

05 0.7440 0.7423

1.0 0.8558 0.8546

1.5 0.92237 0.92096

20 0.95774 0.95792

2.5 0.97752 0.97730

3.0 0.98810 0.98837

35 0.99371 0.99389

4.0 0.99668 0.99677

"Where F(x) = expl —exp{—1.28254x — 0.57722}];

PWhere F(x) = (V27 )~ /¥ exp(—u2/2) du With u(x) = 6.52771 log,o(x + 2.74721) -
2.68853.

Table22.2 Standardized percentilesfor Type 1 extreme
valuedistribution

a Percentile
0.0005 -2.0325
0.0001 —1.9569
0.0025 —1.8460
0.005 —-1.7501
0.01 —1.6408
0.025 ~1.4678
0.05 —1.3055
0.1 —1.1004
0.25 —0.7047
0.5 -0.1643
0.75 0.5214
0.9 1.3046
0.95 1.8658
0.975 2.4163
0.99 3.1367
0.995 3.6791
0.9975 4.2205
0.999 4.9355

0.9995 5.4761
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5 ORDER STATISTICS

If Y/1Y,m ... <Y, arethe order statistics corresponding to n indepen-
dent random variables each having the standard type 1 extreme value
distribution (22.26), then the probability density function of ¥/ (1 <r < n)is

n!
r-—1i(n-r)!
n! n-r

ifn—r —y—{f+rle™”
=(r—1)!(n—r)!j=0(—1)( j )e e

N

(e ) '(1—e") Teve”

py(y) = (

- <y <o (22.38)
From (22.38), the kth moment of ¥, can be written as[Lieblein (1953)]

n| n—-r
E[Yr'k] = (r=DYn—-r1)! '=o(_1 r)gk("'*‘j): (22.39)

where
gi(c) =/ yke ¥ ¢ dy
— (-0*f (ogw)* e~ du  (withu = e™).

For nonnegative integers k, g,(c) may be written

dk

8() = (=) 7 [ W™t e dul,.,
—_ k dk -1
= (=1 ZF{re Yoy (22.40)

The functions g,(-) and g,(-) needed for the expressions of the first two
moments of order statistics are obtained from (22.40)to be

() . ra
gic) = - i, a ﬁ|0@|C = Cl(y t log ¢) (22.41)
and
11,2
gx(c) = ;{? + (v + log c)z}; (22.42)

here v is Euler's constant.
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Proceeding similarly, the product moment of ¥, and ¥, (1 <r <s<n)
can be shown to be

n!
(r=DYs-r-1DYn-19)!

T T

i=0 j=0 y J

E[Y'Y/] =

X¢(r+i,s—r—1i+]), (22.43)

where the function ¢ is the double integral
s(tu) = [ [ e e dndy,  tu>0.  (22.44)

Lieblein (1953) derived an explicit expression for the ¢ function in (22.44) in
terms of Spence's function which has been tabulated quite extensively by
Newman (1892) and Abramowitz and Stegun (1965).

Means and variances of order statistics for sample sizes up to 20 have been
provided by White (1969); see also Lieblein and Salzer (1957) and McCord
(1964). Covariances of order statistics for sample sizes up to 6 have been
tabulated by Lieblein (1953,1962) and Lieblein and Zelen (1956). It is of
interest to mention that the variance of the largest order statistic is 72/6,
irrespective of the value of n. Kimball (1946a, 1949) presented an alternative
expression for the expected valueof Y, _,,, as

r—1

E[Y, . al=v* Z(—l)"('?)mogn, (22.45)
j=1 J

where A' represents forward difference of the ith order (see Chapter 1,
Section A3). Balakrishnan and Chan (1992a) presented tables of means,
variances, and covariances of all order statistics for sample sizes n =
1(1)15(5)30. [Although their tables are for order statistics of the distri-
bution of -Y, the tables for order statistics of Y are easily obtained
from their tables, since E[Y/] = —E{(-Y),_;,,] and cow(Y/,Y/) =
cov((= YD, _; 4y, (=Y),_,~,)] Complete tables for al sample sizes up to 30
have also been prepared by Balakrishnan and Chan (1992c). Mahmoud and
Ragab (1975) and Provasi (1987) have provided further discussions on order
statistics from the extreme value distribution and their moments. The last
author has also discussed some approximations to the means, variances, and
covariances of order statistics.

In Table 22.3 the means and variances of order statistics are presented for
sample sizes up to 10. The covariances of order statistics for sample sizes up
to 10 are presented in Table 22.4.
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Table22.3 Meansand variances of order statistics from extreme value distribution

n r Mean Variance n r Mean Variance
1 1 0.57722 1.64493 7 7 2.52313 1.64493
2 1 —0.11593 0.68403 8 1 -0.90212 0.19956
2 2 1.27036 1.64493 8 2 —0.45279 0.18355
3 1 —0.40361 0.44850 8 3 -0.10288 0.19837
3 2 0.45943 0.65852 8 4 0.23121 0.23166
3 3 1.67583 1.64493 8 5 0.58818 0.29005
4 1 ~0.57351 0.34402 8 6 1.01107 0.39840
4 2 0.10608 0.41553 8 7 1.58841 0.64642
4 3 0.81278 0.65180 8 8 2.65666 1.64493
4 4 1.96351 1.64493 9 1 —0.94934 0.18395
5 1 -0.69017 0.28486 9 2 —0.52438 0.16390
5 2 —0.10689 0.30850 9 3 ~0.20220 0.17158
5 3 0.42555 0.40598 9 4 0.09575 0.19275
5 4 1.07094 0.64907 9 5 0.40053 0.22869
5 5 2.18665 1.64493 9 6 0.73829 0.28844
6 1 -0.77729 0.24658 9 7 1.14745 0.39758
6 2 —0.25453 0.24855 9 8 1.71439 0.64609
6 3 0.18839 0.29762 9 9 2.77444 1.64493
6 4 0.66272 0.40186 10 1 ~0.98987 0.17143
6 5 1.27505 0.64770 10 2 —0.58456 0.14879
6 6 2.36898 1.64493 10 3 —0.28369 0.15192
7 1 ~0.84596 0.21964 10 4 —0.01204 0.16581
7 2 —0.36531 0.21021 10 5 0.25745 0.18958
7 3 0.02240 0.23701 10 6 0.54361 0.22686
7 4 0.40969 0.29271 10 7 0.86808 0.28739
7 5 0.85248 0.39969 10 8 1.26718 0.39702
7 6 1.44407 0.64691 10 9 1.82620 0.64586
10 10 2.87980 1.64493

6 RECORD VALUES

Suppose that Y,,Y,, .. isasequence of i.i.d. standard type 1 extreme value
random variables with density (22.26) and that Y,y = Y, Y, .-. are the
corresponding lower record values. That is, with L{1) =1 and L(n) =
min{j:j> L(n - 1),Y, <Y, _,)forn=2,3,...,{Y,, )5 _, formsthe lower
record value sequence. Then the density function of Y, n = 1 isgiven by

1 _
Py, (V) = m{—log Fy(»))" 'py(y)

1

(n-1)¢

—~y

et -0 <y < o, (22.46)
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Table224 Covariancesof order statistics from extreme valuedistribution

n r s Covariance | n r s Covariance | n r s Covariance
2 1 2 0.48045 6 2 6 0.13619 8 1 2 0.12233
3 1 2 0.30137 6 3 4 0.25617 8 1 3 0.09447
3 1 3 0.24376 6 3 5 0.22888 8 1 4 0.07953
3 2 3 0.54629 6 3 6 0.20925 8 1 5 0.07001
4 1 2 0.22455 6 4 5 0.36146 8 1 6 0.06332
4 1 3 0.17903 6 4 6 0.33205 8 1 7 0.05832
4 1 4 0.15389 6 5 6 0.59986 8 1 8 0.05440
4 2 3 0.33721 7 1 2 0.13618 8 2 3 0.14306
4 2 4 0.29271 7 1 3 0.10578 8 2 4 0.12103
4 3 4 0.57432 7 1 4 0.08941 8 2 5 0.10686
5 1 2 0.18203 7 1 5 0.07893 8 2 6 0.09685
5 1 3 0.14359 7 1 6 0.07155 8 2 7 0.08931
5 1 4 0.12258 7 1 7 0.06601 8 2 8 0.08340
5 1 5 0.10901 7 2 3 0.16497 8 3 4 0.16868
5 2 3 0.24677 7 2 4 0.14020 8 3 5 0.14941
5 2 4 0.21227 7 2 5 0.12419 8 3 6 0.13570
5 2 5 0.18967 7 2 6 0.11283 8 3 7 0.12534
5 3 4 0.35267 7 2 7 0.10427 8 3 8 0.11719
5 3 5 0.31716 7 3 4 0.20262 8 4 5 0.20599
5 4 5 0.58992 7 3 5 0.18017 8 4 6 0.18759
6 1 2 0.15497 7 3 6 0.16412 8 4 7 0.17362
6 1 3 0.12122 7 3 7 0.15195 8 4 8 0.16256
6 1 4 0.10292 7 4 5 0.26155 8 5 6 0.26509
6 1 5 0.09116 7 4 6 0.23906 8 5 7 0.24600
6 1 6 0.08285 7 4 7 0.22190 8 5 8 0.23081
6 2 3 0.19671 7 5 6 0.36717 8 6 7 0.37119
6 2 4 0.16806 7 5 7 0.34211 8 6 8 0.34937
6 2 5 0.14945 7 6 7 0.60675 8 7 8 0.61182

This is the density function of a log-gamma population when the shape
parameter « = n (see Section 16 or Chapter 17, Section 8.7). Thus, for
n=12,...,

n-11 7T2 n—1 1

E[Yym] =7~ X 5, var(Yy,) = e Zl - (2247)
i=1 i=

i
The joint density function of Y, and Y,,,, 1 <m <n, isgiven by
pYL(:n)‘ YL("l( yl ’ y2)
1 m-1Py(¥1)

TR CET T ARGk A o
lPY()’z)

n—m-—

X {—log Fy(y,) + log Fy(y,)}
1
(m-1)Yn-m-— 1)!e

‘mYI(e'_YZ —_ e_yl)"n'"‘l e")'z e—"“'uy2

’

—w <y, <y, <m (22.48)
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Table224 (Continued)

19

n r s Covariance! n r s Covariance | n r s Covariance
9 1 2 0.11167 9 5 7 0.19267 10 3 5

9 1 3 0.08580 9 5 8 0.18033 10 3 6

9 1 4 0.07199 9 5 9 0.17027 10 3 7

9 1 5 0.06322 9 6 7 0.26763 10 3 8

9 1 6 0.05706 9 6 8 0.25105 10 3 9

9 1 7 0.05246 9 6 9 0.23745 10 3 10

9 1 8 0.04887 9 7 8 0.37418 10 4 5

9 1 9 0.04597 9 7 9 0.35488 10 4 6

9 2 3 0.12700 9 8 9 0.61569 0 4 7

9 2 4 0.10703 10 1 2 0.10319 10 4 8

9 2 5 0.09424 10 1 3 0.07893 10 4 9

9 2 6 0.08522 10 1 4 0.06603 10 4

9 2 7 0.07846 10 1 5 0.05785 0 5 6

9 2 8 0.07315 10 1 6 0.05213 0 5 7

9 2 9 0.06886 10 1 7 0.04786 100 5 8

9 3 4 0.14525 10 1 8 0.04453 10 5

9 3 5 0.12825 100 1 9 0.04184 10 5

9 3 6 0.11620 10 1 10 0.03962 10 6 7

9 3 7 0.10712 10 2 3 0.11471 100 6 8

9 3 8 0.09998 10 2 4 0.09635 10 6 9 0.18536
9 3 9 0.09419 10 2 5 0.08463 10 6 10 0.17615
9 4 5 0.17074 10 2 6 0.07639 10 7 8 0.26954
9 4 6 0.15503 10 2 7 0.07021 10 7 9 0.25489
9 4 7 0.14315 100 2 8 0.06538 10 7 10 0.24260
9 4 8 0.13377 10 2 9 0.06148 10 8 9 0.37650
9 4 9 0.12615 10 2 10 0.05824 10 8 10 0.35919
9 5 6 0.20823 10 3 4 0.12812 100 9 10 0.61876

Upon writing the joint density of Y, ,,, and Y,,,, 1 <m <n, in (22.48) as

P Vel Y15 Y2)

(n—1)!

= i

><(n—l)!

—rn(yryz)(l — e~ —yz))”_'"_'

Di(n-—m-1)!

1 -
e e 2 —wo <y, <y, <o, (22.49)

we readily observe that Y, ,, — Y., and Y., (for 1 <m < n) are statisti-

cally independent. As a result we immediately get

0.11282
0.10200
0.09387
0.08749
0.08232
0.07803
0.14641
0.13262
0.12221
0.11403
0.10738

10 0.10185
0.17211
0.15888
0.14842

9 0.13991
10 0.13282
0.20986
0.19637

w2 —11
COV( Yo mys Yiim) = var(Yy,) = e 2 = (22.50)
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These properties are similar to those of order statistics arising from standard
exponential random variables (Chapter 19, Section 6). It follows from (22.49)
that Y, — Y., is distributed as the (n — m)th order statistic in a
sample of) size n -1 from the standard exponential distribution, say
Z,, mn—te For the special case when m = 1, we then have Y, — Y;(,, =

= Zn-1:n—1 Which, when used with the known results that (see
Chapter 139 Section 6)

1
i

E[Zn—l:n—l] i ’ var(zn—l:n——l) i -13 (2251)

gives easily the expressions for the mean and variance of Y, ,, in (22.47).
Ahsanullah (1990,1991) has used these expressions to develop inference
procedures for the location and scale parameters, ¢ and 6, of the type 1
extreme value distribution (22.25) based on the first n lower record values
Xiay X2y ..., Xy Observed.
For the standard type 1 distribution in (22.26), we may note the relation-
ship

py(y) = Fy(y){-log Fy(y)}, —o<y<wm. (22.52)
By making use of this relationship, Balakrishnan, Ahsanullah, and Chan
(1992) established several recurrence relations for single as well as product
moments of lower record valuesfrom this distribution. For example, consider
forn=1land r=0,1,2,...,

1
E[ (")] = (n 1)|f y{ lOng(y)} py()’) dy

1 e )
= Gy s B0 Fr () dy

upon using (22.52). Integration by parts yields

1
(n-DYr+1)

E[Y ] = [nf:y’“[—log Fy(0))' 'py(y) dy

= [y -tog By py(3) dy

— (E[YQ;; E[Y’(T,Ll)}.
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The equation above, when simply rewritten, yields the recurrence relation
r+l r+l r+1 Y/’ fi
E[v;isy) = E[vis] - " —E[Y/,)] orn=1,r=0,1,....
(22.53)

By repeated application of the recurrence relation in (22.53), Balakrishnan,
Ahsanullah, and Chan (1992) established the relation

E[YLF(:L—I) [ r(T)I —(r+1) Z [ L(’)]
forn=1,2,..., r=0,1,2,.... (22.54)
From (22.54) one may also easily derive the expressions for the mean and
variance of Y;,, in (22.47).

Proceeding similarly, Balakrishnan, Ahsanullah, and Chan (1992) also
established the following recurrence relations for the product moments:

+
E[ YL’(tn’)Ylf(m + l)] = E[ Yl_.r(-:nsrll)] + E[ YL(m)YL(m + l)]

>1;r,5=0,1,2,.... (2255
E[YL’(‘,‘"‘)Y[(,,)] E[YL(mH)YL(n)] + E[YL(M)YL(n)]
l<m<n-2r,5=012,.... (22.56)

E¥igYi] = E[¥iis"] + 0+ D T YY)

l<m<n-1;r,s=0,1,2,.... (22.57)
BV o] = B (v 0 D ] Elrimed ],
mz=1;r,s=0,1,2,.... (2258)
and
Bl Vit = % (- + 1y K]
i=0

l<m<n-2r,5=0,1,2,.... (22.59)
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In the equations above

kD = 1 ifi=0,
T\k(k-1) - (k—i+ 1) ifix1.

Suppose that X;.; isthe ith order statistic in a random sample of size j
from a distribution F(-). If the distribution function of (X;.; — a;)/b; con-
verges weakly to a nondegenerate distribution function G( ) as j—, = for
sequences of constants a, and positive b, then Nagaraja (1982) showed that
the joint distribution function of (X;_;,,.y = a;)/b;, 1 <i < n, converges to
that of X, 1 <i <n. Aswe have already seen in Section 3, G(+) must be
one of the three types of extreme value distributions. Hence, as pointed out
by Nagaraja (1988), some inference procedures based on asymptotic theory of
extreme order statistics are equivalent to those based on record values from
the extreme value distributions. Consequently the asymptotic linear predic-
tion of extreme order statistics discussed by Nagaraja (1984) is the same as
predicting a future record value from the distribution F(-). It is aso
apparent from this discussion that the estimation of parameters of F(-)
based on k largest observations discussed by Weissman (1978) is effectively
the same as the estimation of parameters based on record values from one of
the three extreme value distributions G(-). Smith (1988) has provided a
detailed discussion on forecasting records by the maximum likelihood method.

Ballerini and Resnick (1985, 1987a) have discussed upper records arising
from the simple linear regression model

Z, =X, +cn, n=12,...,¢c>0,

where {X,} is ii.d. type 1 extreme value random variables with density
(22.25). They referred to this model as the linear-drift Gumbel record model.
Then, for this model, Balerini and Resnick (1987b) established that the
random variables

M, t max(Z,,---,Z,} and

1, = Indicator whether record occursat time n = Iz . 4, (22.60)

are statistically independent for each n (see Section 8 for some additional
comments).

Balakrishnan, Balasubramanian, and Panchapakesan (1995) have dis-
cussed properties of 6-exceedance records arising from the type 1 extreme
value distribution. In this model a new variable will be declared a record only
if it issmaller than the previous lower record by at least 6.
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7 GENERATION, TABLES, AND PROBABILITY PAPER
The following tables are included in Gumbel (1953):

1 Values of the standard cumulative distribution function, exp(—e™),
and probability density function, exp(—y — e™), to seven decimal
places for y = —3(0.1) — 2.4(0.05)0.00(0.1)4.0(0.2)8.0(0.5)17.0

2 The inverse of the cumulative distribution function (i.e., percentiles),
y = —log(—log F) to five decimal places for

F = 0.0001(0.0001)0.0050(0.001)0.988(0.0001)0.9994(0.00001)0.99999.

In Owen's tables (1962) there is a similar table, to four decimal places for

F = 0.0001(0.0001)0.0010(0.0010)0.0100(0.005)0.100(0.010)0.90(0.005)
0.990(0.001)0.999(0.0001)1 — 10~ %7, 1 — L. 10=4V7,

[The specia interest in very high values of F, by both Gumbel (1953) and
Owen (1962), may be associated with the genesis of the distribution, though it
seems rather risky to rely on practical applicability so far out in the tailsof a
distribution.]

Gumbel (1953) contains others tables. In particular there are two
relating to asymptotic distribution of range (see Section 16), and a table
giving the probability density function in terms of the cumulative
distribution function (p = —Flog F) to five decima places for F =
0.0001(0.0001)0.0100(0.001)0.999.

Lieblein and Salzer (1957) have published a table of the expected value (to
seven decimal places) of the mth largest among n independent random
variables having the standard type 1 extreme value distribution (22.26), for

m = 1(1)min(26, n), n = 1(1)10(5)60(10)100.

Lieblein and Zelen (1956) gave the variances and covariances (also to seven
decimal places) for sets of 2, 3, 4, 5, and 6 independent type 1 variables.
[These values are also given by Lieblein (1962).] Mann (1968b) gave similar
tables for the type 1 smallest value distribution for up to 25 variables.

These tables have been extended by White (1969), who gives (up to seven
decimal places) expected values and variances of al order statistics for
sample sizes 1(1)50(5)100. Extended tables of means, variances, and covari-
ances Of order statistics for sample sizes up to 30 have been provided by
Balakrishnan and Chan (1992a, c).

Tables of coefficients for the best linear unbiased estimators of ¢ and 4
and the values of variances and covariance of these estimators have been
presented by Balakrishnan and Chan (1992b, d) for the case of complete as
wdl as Type-1I censored samples for sample sizes up to 30. Mann
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(1967, 1968a, b), and Mann, Schafer, and Singpurwalla (1974) have presented
similar tables for the best linear invariant estimates of ¢ and o.
From (22.1) it follows that

x—¢
—log( —logPr[ X <Xx]) = o (22.61)

Hence, if the cumulative observed relative frequency F,—equal to (number of
observations less than or equal to x)/(total number of observations)—is
calculated, and —log(—log F,) is plotted against X, an approximately
straight-line relation should be obtained, with slope 8! and intersecting the
horizontal (x) axisat x = £. In using graph paper with a vertical scale that
gives —log(—log F,) directly, it is not necessary to refer to tables of loga
rithms. Such graph paper is sometimes called extreme value probability paper.
It is also quite common to use such paper with the x-axis vertical, and for
practical purposes it is sometimes convenient to have the —log(—-log F,)
marked not with F, but with the "return period” (1 — F,)™!; see Gumbel
(1949a) and Kimball (1960). Such a paper iscalled extreme probability paper.

Tables of 500 random numbers (to three decimal places) representing
values chosen at random from the standard type 1 distribution, and 500 each
from three standard distributions of each of types2and 3 («~' = 0.2,0.5,0.8
in Egs. (22.14) and (22.15)] have been given by Goldstein (1963).

Of course pseudorandom numbers from the standard type 1 distribution
may be generated easily either through the inverse cdf method along with an
efficient uniform random generator (see Chapter 26) or through the relation-
ship with the exponential distribution (explained in Section 3) along with an
efficient exponential random generator (see Chapter 19). Sibuya (1967) has
discussed the latter. Landwehr, Matalas, and Wallis (1979) have advocated
the use of the Lewis-Goodman-Miller algorithm for generating pseudoran-
dom numbers from the uniform distribution for this specific purpose. These
authors have also discussed a simulational algorithm for generating serially
correlated Gumbel data. Let

z;=p,2; + Y1 - 028

represent a Markov process, where p, denotes the first-order serial correla-
tion of the z's and 6, is a standard normal variable independent of z;_,.
With 8;’s generated by the Box-Muller algorithm and z,;’s determined by the
equation above, the serially correlated Gumbel values X;’s may then be
obtained as

X, = ¢ — 0log{—log ®(z,)}

where @ is the standard normal cumulative distribution function.
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8 CHARACTERIZATIONS

As mentioned earlier in Section 2, X hasa type 1 extreme value distribution
if and only if e¥ has a Weibull distribution, and e*/? has an exponential
distribution, and exp{(X — £)/6} has a standard exponential distribution. It
is clear that some characterization theorems for exponential distributions
may also be used for type 1 extreme value distributions, simply by applying
them to e¥/%, or exp{(X — ¢)/6). Dubey (1966) characterizes this distribu-
tion by the property that Y, = min(X,, X,,".-, X,) is a type 1 random
variable if and only if X,, X,,*.-, X, are independent identically distributed
type 1 random variables.

Sethuraman (1965) has obtained characterizations of all three types of
extreme value distributions, in terms of ** complete confounding™ of random
variables. If X and Y are independent and the distributions of Z, Z given
Z=X, and Z given Z=Y are the same [e.g., Z might be equal to
min(X,Y) as in the cases described in Sethuraman (1965)], they are said to
completely confound each other with respect to the third. Sethuraman showed
that if al pairs from the variables X, Y, and Z completely confound each
other with respect to the third and if Y,Z have the same distributions as
a,X t b, a,X * b,, respectively [with (a, b,) # (a,, b,)], then the distribu-
tion of X isone of the three extreme value (minimum) distributions (pro-
vided we limit ourselves to the cases when PHX > Y] > 0;Pr[lY > X] > 0,
etc.). The type of distribution depends on the valuesd a,,a,, b,,b,.

Gompertz (1825) derived a probability model for human mortality. He
assumed the average exhaustion of a man's power to avoid death to be such
that at the end of equal infinitely small intervalsof time he lost equal portionsof
his remaining power to oppose destruction which he had at the commencement
of theseintervals. From this hypothesis Gompertz (1825) deduced the force of
mortality or the hazard function as

r(x) = Bc”*, x>0,B>0,c>1,

which, when solved as a differential equation, readily yields the surviva
function as

1 — F(x) =e 8C"=b/logc x50, (22.62)
It may be readily seen that (22.62) is a truncated form of the type 1
distribution, and it includes the exponential distribution as a special case
when ¢ = 1. Then, just as the memoryless property

PriX=zx+ylX2x] =Pr[X > y] forall x,y 20 (22.63)

characterizes the exponential distribution (see Chapter 19, Section 8),
Kaminsky (1982) has characterized the Gompertz distribution in (22.62)




26 EXTREME VALUE DISTRIBUTIONS

through the condition

Pr(X=x+ylX2x) = (Pr(X 2}, x,y20, (22.64)

and the requirement that the function A(-) must take the form A(x) = ¢* for
somec > 1.

Asonewould expect, there are a number of characterizations of the type 1
distribution in the framework of extreme value theory. The most celebrated
one is that the type 1 distribution is the only max-stable probability distribu-
tion function with the entire real line as its support; for example, see
Theorem 1.4.1 in Leadbetter, Lindgren, and Rootzén (1983). In addition to
the characterizations of the type 1 distribution itself, there are severa
characterization results available for the maximal domain of attraction of the
type 1 distribution; de Haan (1970) will serve asa good source of information
on this aswell as characterizations for type 2 and type 3 distributions.

In Section 6 we have discussed the linear-drift Gumbel record model. We
mentioned that under this model the random variables M, and |,, are
statistically independent for each n. Ballerini (1987) has proved this to be a
characterization of the type 1 extreme value distribution; that is, M, and 1,
are independent for each n and for every ¢ > @ if and only if the X,’s are
type 1 extreme value random variables.

Tikhov (1991) has characterized the extreme value distributions by the
limiting information quantity associated with the maximum likelihood estima-
tor based on a multiply censored sample.

9 METHODS OF INFERENCE

Let X, X5, .., X,, be arandom sample of size n from the type 1 extreme
value distribution in (22.25). Then, as Downton (1966) has shown, the
Cramér-Rao lower bounds of variances of unbiased estimators of ¢ and 6 are

given by
{1+6(1-v)°m2}6%n~" = 1.108676%n ",
67 20°n"" = 0.607930%n"", (22.65)
respectively.
As has already been mentioned on several occasions in this chapter, as

well asin Chapter 21, if Z hasa Weibull distribution with probability density
function

pz(z)=c(z~§°

c—1
5 ) e le—80/BY 7> £ (22.66)

w |
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then log(Z — £,) has a type 1 extreme value distribution. Consequently, if &,
is known, the methods of estimation discussed in this section for the type 1
extreme value distribution can also be used for estimating the parameters g
and c of the Weibull distribution (22.66). Conversely, as discussed in Section
4, some methods of estimating g and c of the Weibull distribution, when &,
is known, can also be used for estimating the parameters ¢ and @ of the type
1 extreme value distribution.

9.1 Moment Estimation

Let X and S denote the sample mean and the sample standard deviation.
Then, using Egs. (22.29) and (22.31), we simply obtain the moment estimates
of 8 and £ as

S and £=X - 6. (22.67)

Tiago de Oliveira (1963) has shown that

. 02 2 2
var(£) = — % + %(Bz -1 - %NB—,} (22.68)
and that
2

- 6
var(9) = Z;(B2 - 1), (22.69)

where B, and B, are the coefficients of skewness and kurtosis as given in
(22.32). Upon substituting for their values, we get

_ 1.167862 - 1.192
var(g) = ‘*—I:]'— and Var(()) =

(22.70)

Tiago de Oliveira (1963) has also discussed the joint distribution of X and S.

A comparison of the variance formulas in (22.70) with the Cramér-Rao
lower bounds in (22.65) readily reveas that the moment estimator £ has
about 95% efficiency while the moment estimator 6 has only about 55%
efficiency. The estimators £ and 6 are both V::-consstent; that is, va (£ — &)
and vn (6 — 6) are bounded in probability.

Tiago de Oliveira (1963) has shown that the joint asymptotic distribution
of £ and 6 is bivariate normal with mean vector (¢, 8Y, variances as given in




28 EXTREME VALUE DISTRIBUTIONS

(22.70), and the correlation coefficient as

pis = m?[VB. - 3v(B, — 1) /2] /6
- [{‘”2/6 +y3(By— 1) /4 - W(Y\/BT)/\/E}(ﬂZ - l)ll/2

= 0.123. (22.71)

By making use of this asymptotic result, asymptotic confidence regions for
(¢, 8) can be constructed.

Christopeit (1994) recently showed that the method of moments provides
consistent estimates of the parameters of extreme value distributions, and
used the estimation of the distribution of earthquake magnitudes in the
middle Rhein region for illustration.

92 Simple Linear Estimation

Upon noting that the likelihood equationsfor ¢ and 8 do not admit explicit
solutions and hence need to be solved by numerical iterative methods,
Kimball (1956) suggested a simple modification to the equation for 8 (based
on the equation for ¢) that makes it easier to solve the resulting equation.
The equation for 8 given by

A = )::"'=|Xie—xi/é
=X — e (22.72)
i=1
used in conjunction with the equation for ¢ given by
A~ -~ n -
E=-6lo { E -Xi/">, (22.73)
can be rewritten as
R 12 L
0 =X_ - ZXie"(X,-"f)/o
ni-
-, 12 n
=Xt n Z :log Fe( X)), (22.74)

where FX(X ) is the estimated cumulative distribution function. By replacing
log £, (X?) in (22.74) with the expected vaue of log Fy(X;), Kimball (1956)
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derived a simplified linear estimator for 8 as

- 12 no1
0*=X+—-ZX,’(Z—.) (22.75)
i<y j=i
which may be further approximated as
. 1
n - n i—3
*= X+ ) X/ . 22.76
e Exal ) @

The estimator in (22.75) or in (22.76) is a linear function of the order
statistics, and hence its bias and mean square error can be determined easily
from means, variances and covariances of order statistics in Tables 22.3 and
22.4. Since the linear estimator in (22.76) is biased, Kimball (1956) presented
a table of corrective multipliers to make it unbiased; from the table it
appears that for n > 10 the estimator

é*

—_— 22.77
1+23n! ( )

isvery nearly unbiased. Further a ssimplified linear estimator of ¢ may then
be obtained as

Estimator of ¢ = X — y x (Estimator of ). (22.78)

Dueto the linearity of the estimator of 8, it isonly natural to compare it with
the best linear unbiased estimator of 8 and with its approximations proposed
by Blom (1958) and Weiss (1961).

Downton (1966) carried out a number of comparisons of this nature. He
actually discussed the type 1 distribution appropriate to minima, with cumu-
lative distribution function 1 — e~ ™”°, but his results also apply to the type
1 distribution in (22.1) (with some simple changes). His results are al in
terms of efficiencies, that is, ratios of the values given by (22.65) to corre-
sponding variances for the estimators in question. For each estimator of 8,
the parameter ¢ was estimated from (22.78). Tables 225 and 22.6, taken
from Downton (1966), give efficienciesfor various estimators of ¢ and 8.

For the small values of n considered, the asymptotic formulas used in the
calculations may not be accurate, yet the tables probably give a good idea of
relative efficiency and the performance of different estimators considered. It
can be seen from Table 22,5 that the location parameter ¢ can be estimated
with quite good accuracy using simple linear functions of order statistics;
however, it may also be noted from Table 22.6 that the situation is rather
unsatisfactory should one use such simple linear functions of order statistics
to estimate the scale parameter 8.
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Table225 Efficienciesof linear unbiased estimatorsof & for theextreme
valuedistribution

n 2 3 4 5 6 o

Best linear 84.05 91.73 94.45 95.82 96.65 100.00
Blom's

approximation 84.05 91.72 94.37 95.68 96.45 100.00 ]
Weisss

approximation 84.05 91.73 94.41 95.74 96.53 —
Kimball's

approximation 84.05 91.71 94.45 95.82 96.63

Note: Efficiencies are expressed in percentages.

For the case of a Type-11 right-censored sample Xj, X3, -, X, _, from
the type 1 extreme value distribution for minima W|th cdf FX(x) =1-
e~ Bain(1972) suggested a simple unbiased linear estimator for the
scale parameter 8. This estimator was subsequently modified by Engelhardt

and Bain (1973) to the form

6 = X, - X]| 2.79
nk" -5, n l;} l (2 )
where
n-s
knosn=— L EIY] =Y, (22.80)

i=1

Y/ = (X! - £)/0 being the order statisticsfrom the standard type 1 extreme

Table22.6 Efficienciesof linear unbiased estimatorsof 8 for theextreme
valuedigtribution

n 2 3 4 5 6 0

Best linear 42.70 58.79 67.46 72.96 76.78 100.00
Blom's

approximation 42.70 57.47 65.39 7047 74.07 100.00
Weisss

approximation 42.70 58.00 66.09 71.04 74.47 —
Kimball's

approximation 42,70 57.32 65.04 69.88 73.25 —

Note: Efficiencies are expressed in percentages.
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value distribution for minima, and

r=n-s forn-s <09n,
r=n forn-s=n,n <15,
r=n-1 forn —s=n,16 < n < 24,

r=[0892n]*t1 forn—s=n,n225

By making use of the tables of meansof order statistics referred to in Section
5, Bain (1972) determined exact values of k,_, , for n =5, 15, 20, 30, 60,
and 100 and n infinite and (n — s)/n = 0.1(0.1)0.9 for integer n - s.
Engelhardt and Bain (1973) gave exact values of k, , for n = 2(1)35(5)100,
n =39, 49, and 59 and infinite n. Mann and Fertig (1975) also presented
exact values of k,_, , for n = 25(5)60 and (n — s)/n = 0.1(0.1)1.0 for inte-
ger n — s. [It needs to be mentioned that the values of &, , given by Mann
and Fertig (1975) are dlightly different from those given by Engelhardt and
Bain (1973) for n > 40 as the choice of r_used by the former is different.]

Since 8 is a scale parameter and 8 is an unbiased estimator of 8,
improvement is possible in terms of minimum mean-square-error estimator
(see Section 9.3 for more details). The improvement in efficiency becomes
considerable when the censoring is heavy in the sample. As Bain (1972) noted
that for (n — s)/n about at most 0.5, var(6) = 8%/(nk,_,,) and conse-
guently

-5 hn

A
A

0 1 nis X’ X’ 2281
L+1/(nk,_,,) 1+nk (X, —X7)  (2281)

n—s,n j=1

has a smaller mean square error than é when (n - 5)/n < 0.5. On these
grounds, an estimator that has been used in general is

5 1 n—s
= X, - X] .
1+1,_, nk, _; (1 +1 Ny g /| (22.82)

n-s,n) i=|1

which has mean square error 8%, _, /(1 +1,_, ), here, I,_. . = var(8/6).
Values of {,_, , have been tabulated by Engelhardt and Bain (1973) and
Mann and Fertig (1975). From the tables of Bain (1972) and Engelhardt and
Bain (1973), it is clear that the estimator 8 in (22.79) is highly efficient;
for example, when (2 — 5)/n < 0.7, the asymptotic efficiency of 4 relative to
the Cramér-Rao lgwer bound is at least 97.7%.

The estimator 8 in (22.79) may also be used to produce a simple linear
unbiased estimator for £, through the moment equation

X, =E[X]] =¢+ 6E[Y/], (22.83)
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as
£=x - E[Y]6. (22.84)

Using the estimators 6 and 2— in Egs. (22.79) and (22.84), respectively, a
simple linear unbiased estimator for the pth quantile £, can be derived as

A

£, =€+ 6log(~log(1 ~p)), O0<p<l. (22.85)

Confidence intervals for the parameters £ and @ based on the linear
unbiased estimators £ and 8 have also beeq discussed. Bain (1972) suggested
approximating the distribution of 2nk, _ ,8/6 by a central chi-square distri-
bution with 2nk,, _, , degrees of freedom when (n — 5)/n isat most 0.5 and
n at least 20. But Mann and Fertig (1975) have shown that for n > 20,

2(0/8)/1,,_5,, is approximately distributed as chi-square with 2/, _; , de-
grees of freedom. Interestingly this approximate result holds for all values of
(n - s)/n in (0, 1]. This approximation arose from an observation of van
Montfort (1970) that the statistics

X:+l_'X7
T {ElY.\) - E[Y/ ]}

all have approximately an exponential distribution with mean exactly 1,
variance approximately 1, and covariance almost zero [see also Pyke (1965)].
As aptly pointed out by Mann and Fertig (1975), since for n — s < 0.90n,

1 n-s X'~ X/
Z: n—s i

n—s,n =1 0

| @

nk

1 n—s-1
=5 E} (E[Y/,,] - E[V/])2Z

n—s,.n

is approximately a sum of weighted independent chi-square variables, various
approximations discussed in Chapter 18 for this distribution are useful in
developing approximate inference for 8.

9.3 Best Linear Unbiased (Invariant) Estimation

Let X/, <X/, " < X, _, be the available doubly Type-II censored
sample+from a sample of size n where the smallest r and the largest s
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observations have been censored. Let us denote
! ! ’ T
X = (Xr+l’ Xr+2’. ) Xn—-s) ’
T
1 = (17 11' Y l)lx(n—r-s),

p = (E[Y.\ ), ELY L)L ELYLL D),
and

2= ((cov(Y),y)), rtis<iiisn-s,

where E[Y;] and cov(Y;, ;') are as derived in Section 5. Then, by minimizing
the generalized variance

(X - £1—-0p) 27/ (X ~ £1 - 6p),

we derive the best linear unbiased estimators (BLUEs) of ¢ and 6 as|[see
Balakrishnan and Cohen (1991, pp. 80-81)]

f* B uTz-lulTE-—l —- p.TE“'lp.TE"
(WEW)ITE'D) - (W72 ')

Y X (22.86)

i=r+1

and

o S "MW E ' - 172 1’z !
(W2 ')(ITE1) - (W21

n-s
Y bX|. (22.87)

i=r+1

Further, the variances and covariance of these estimators are given by

02 Te -1
var(¢*) = w2 ) 2
(W2 )(E7) - (0271
= 9%y, (22.88)
2¢¢Typ -1
var(6%) = 92(172'1)

(WETR)(ITET') - (WTENY
= 6%V, (22.89)
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and
6*(n'X7'1)
("‘Tz-—lu)(sz—-ll) _ ('LTE_II)Z
= 9%V;. (22.90)

Lieblein (1962) presented tables of coefficients a; and b; in (22.86) and
(22.87), and the variances and covariancein (22.88)-(22.901, for samplessizes
up to 6. These tables were extended by White (1964) for sample sizes up to
20, by Mann (1967) for sample sizes up to 25, and by Balakrishnan and Chan
(1992b, d) for sample sizes up to 30 (for the case of complete as wel as
censored samples).

In Table 22.7, for example, the coefficients ¢, and b; are presented for
n = 2(1)10 for the case of complete samples (i.e., r =s = 0). The corre-

sponding values of the variance and covariance factors (V,, V,, and V;) are
presented in Table 22.8.

cov(£*,0%) =

Table22.7 Coefficientsfor the BLUEs of & and 6 for completesamples

n 1 a; b; n 1 a, b;

2 1 0.91637 -0.72135 8 1 0.27354 —-0.39419
2 2 0.08363 0.72135 8 2 0.18943 - 007577
3 1 0.65632 —0.63054 8 3 0.15020 0.01112
3 2 0.25571 0.25582 8 4 0.12117 0.05893
3 3 0.08797 0.37473 8 5 0.09714 0.08716
4 1 0.51100 —0.55862 8 6 0.07590 0.10273
4 2 0.26394 0.08590 8 7 0.05613 0.10807
4 3 0.15368 0.22392 8 8 0.03649 0.10194
4 4 0.07138 0.24880 9 1 0.24554 -0.36924
5 1 0.41893 -0.50313 9 2 0.17488 —0.08520
5 2 0.24628 0.00653 9 3 0.14179 —0.00649
5 3 0.16761 0.13045 9 4 0.11736 0.03798
5 4 0.10882 0.18166 9 5 0.09722 0.06557
5 5 0.05835 0.18448 9 6 0.07957 0.08265
6 1 0.35545 —0.45927 9 7 0.06340 0.09197
6 2 0.22549 —0.03599 9 8 0.04796 0.09437
6 3 0.16562 0.07320 9 9 0.03229 0.08839
6 4 0.12105 0.12672 10 1 0.22287 -0.34783
6 5 0.08352 0.14953 10 2 0.16231 -0.09116
6 6 0.04887 0.14581 10 3 0.13385 -0.01921
7 1 0.30901 —-0.42370 10 4 0.11287 0.02218
7 2 0.20626 -0.06070 10 5 0.09564 0.04867
7 3 0.15859 0.03619 10 6 0.08062 0.06606
7 4 0.12322 0.08734 10 7 0.06699 0.07702
7 5 0.09375 0.11487 10 8 0.05419 0.08277
7 6 0.06733 0.12586 10 9 0.04175 0.08355
7 7 0.04184 0.12014 10 10 0.02893 0.0779%4
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Table22.8 Valuesdf V,,V,, and V; for the BLUEs of &
and 6 for completesamples

n Vi V) Vs
2 0.65955 0.71186 —0.06432
3 0.40286 0.34471 0.02477
4 0.29346 0.22528 0.03469
5 0.23140 0.16665 0.03399
6 0.19117 0.13196 0.03137
7 0.16293 0.10910 0.02860
8 0.14198 0.09292 0.02608
9 0.12582 0.08088 0.02388

10 0.11297 0.07157 0.02198

Hassanein (1964) discussed the use of nearly best linear unbiased estima-
tors and presented tables of coefficients of order statistics from censored
samples for n = 2(1)10(5)25.

Observing that these estimators are minimum variance estimators in the
class of al linear unbiased estimators, Mann (1969) considered the larger
class of al linear estimators and derived improved estimators by minimizing
the mean square error. Specificaly, by considering the best linear unbiased
estimators 8* and n* = c,£* t c,8* of the parameters 8 and n = ¢,¢é * ¢,8
and their respective variances 6%V, and 6%V, (where V, = ¢V, T civ, +
2¢,¢,V3) and covariance 6%V (where Vs = ¢,V; + ¢,V,), Mann (1969)showed
that the unique minimum-mean-square-error linear estimators of # and »
are given by

o = —0 and ¥t =gt - s\ ge (22.91)
1+, 1+V,] '
The mean square errors for these estimators are
(2 ) wa olv, - 2 22.92
1+ 1, CTTen (22.92)

r'espectively. These estimators are termed the best linear invariant estimators
(BLIEs) by Mann (1969). They become particularly useful when either the
sample size is very small or there is a great deal of censoring in the sample.
Of course the best linear invariant estimator of ¢ may be derived from
(22.91) by setting c, =1 and ¢, = 0; similarly the best linear invariant
estimator of the pth quantile £, may be derived from (22.91) by setting
c,=1land ¢, = —log(—log p).




36 EXTREME VALUE DISTRIBUTIONS

Dencting the best linear invariant estimators of £ and 8 by

n—s n-s
¢ - L arx; and 8= T brx, (22.93)
i=r+1 i=r+1

and their respective mean square errors by
MSE(£**) = 62W, and MSE(8**) = 02W,, (22.94)

Mann (1967a, b) and Mann, Schafer, and Singpurwalla (1974) have presented
tables for various sample sizes and different levels of censoring.

In Table 22.9, for example, the coefficients a¥ and bF are presented for
n = 2(1)10 for the case of complete samples (i.e., r =s = 0). The corre-
sponding valuesof the mean square error factors (W, and W,) are presented
in Table 22.10. A comparison of the entries in Tables 22.8 and 22.10 readily

Table22.9 Coefficientsfor the BLIEs of & and @ for completesamples

n i ar b n i a¥ b}

2 1 0.88927 -0.42138 8 1 0.28294 —0.36068
2 2 0.11073 042138 8 2 0.19124 —0.06933
3 1 0.66794 —0.46890 8 3 0.14993 0.01018
3 2 0.25100 0.19024 8 4 0.11977 0.05392
3 3 0.08106 0.27867 8 5 0.09506 0.07975
4 1 0.52681 —0.45591 8 6 0.07345 0.09399
4 2 0.26151 0.07011 8 7 0.05355 0.09889
4 3 0.14734 0.18275 8 8 0.03405 0.09327
4 4 0.06434 0.20305 9 1 0.25370 —-0.34161
5 1 0.43359 —0.43126 9 2 0.17676 —-0.07883
5 2 0.24609 0.00560 9 3 0.14193 —0.00600
5 3 0.16381 0.11182 9 4 0.11652 0.03514
5 4 0.10353 0.15571 9 5 0.09577 0.06067
5 5 0.05298 0.15813 9 6 0.07774 0.07647
6 1 0.36818 —0.40573 9 7 0.06137 0.08508
6 2 0.22649 —0.03180 9 8 0.04587 0.08731
6 3 0.16359 0.06467 9 9 0.03034 0.08178
6 4 0.11754 0.11195 10 1 0.23000 —0.32460
6 5 0.07938 0.13210 10 2 0.16418 —0.08507
6 6 0.04483 0.12881 10 3 0.13424 —-0.01793
7 1 0.31993 —0.38202 10 4 0.11241 0.02070
7 2 0.20783 —0.05472 10 5 0.09464 0.04542
7 3 0.15766 0.03263 10 6 0.07926 0.06165
7 4 0.12097 0.07875 10 7 0.06541 0.07188
7 5 0.09079 0.10357 10 8 0.05250 0.07724
7 6 0.06409 0.11348 10 9 0.04003 0.07797
7 7 0.03874 0.10832 10 10 0.02733 0.07273
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Table22.10 Valuesof W, and W, for the BLIEsOf &
and 6 for complete samples

n W, w,
2 0.65713 0.41584
3 0.40241 0.25635
4 0.29248 0.18386
5 0.23040 0.14284
6 0.19030 0.11658
7 0.16219 0.09836
8 0.14136 0.08502
9 0.12530 0.07482

10 0.11252 0.06679

reveals that while there is only a slight improvement in the estimation of ¢,
thereisasignificant gain in using the BLIE of 6 particularly when n issmall.
McCool (1965) discussed the construction of good linear unbiased estimates
from the best linear estimates in the case of small sample sizes.

94 Asymptotic Best Linear Unbiased Estimation

Johns and Lieberman (1966) tabulated approximate weights for obtaining
BLIEs of the parameters ¢ and @ based on the first n — s order statistics of
samples of size n for n = 10, 15, 20, 30, 50, and 100 and four values of s for
each n. Johns and Lieberman (1966) also presented formulasfor determining
weights for the asymptotic optimal linear estimates in the case of Type-l1
censored samples. Of course, as mentioned earlier in Section 9.3, exact tables
of weightsfor the BLIEs have been presented by Mann (1967a, b) for sample
sizesupto25and s = 0(1)n - 2

Optimal linear estimation of the parameters ¢ and 6 based on k selected
order statistics, using the theory of Ogawa (1951, 1952), has also been
discussed by a number of authors. Supposethat 0 < A, <A, < --. <A <1
is the spacing that needs to be determined optimally, and let A, = ¢ and
Ay =1 X, ., istermed the sample quantile of order A, where n; = [nA,]
+ 1. Then |t 'can be shown that the asymptotic variances and covarlance of
the BLUEs, £* and 6*, based on the k selected sample quantiles are given by

2
_ K,
var(é*) = — + —————+, 22.95)
( ) n KnKzz"Klzz (
2
- K
var(9*) = — - ————-—l———z—, (22.96)
n  K,Ky-Kj
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and
I 6? K,
cov(£*,6*) = - — ——2 (22.97
( ) n K, Ky-K} )
In the equations above
k+1 2
p (G:) . G,'_
K“= 2: { Y - —/\Y( l)} , (2298)
i=1 i T Ay
k+1
py(Gi) = py(G,_)NGipy(G)) - G,_ G-
Kp=Y {py(G) r( 1){\(_;( ) 1Py ( 1)}’ (22.99)
i=1 i i—1
and
*1{Gipy(G) = Gioypy(Gi)))’
Kp=Y (Gupr(G) LIACEI o (22.100)

)‘i~ '\i-l

i=1
where G; = Fy (o) and

Py(Go) = Gopy(Gy) =py(Gyyy) = Gy Py(Gryy) = 0.

Appropriate functions involving X,,, K,,, and K,, need to be optimized,
subject to the constraint 0 < A, <A, < .. <A < 1linorder todetermine
the k optimal quantilesfor the asymptotic best linear unbiased estimation of
the parameters ¢ and 8. Numerical results for this problem have been
provided by Hassanein (1965,1968,1969,1972) and Chan and Kabir (1969),
while optimal t-tests based on these estimators have been discussed by Chan
and Mead (1971a,b), and Chan, Cheng, and Mead (1972). Similar estimation
of the ath quantile of the distribution, given by X, = £ — 6 log(—log a) for
0 < a < 1, based on k optimally selected order statistics has been discussed
in great detail by Hassanein, Saleh, and Brown (1984,1986) and Hassanein
and Saleh (1992).

For example, the optimal spacing (A ,, A, - .-, A,) that maximizes K,; in
(22.98) is presented in Table 22.11 for k = 1(1)10. These values then give the
optimal sample quantiles to be used in a sample of size n for the asymptotic
best linear unbiased estimator of ¢ (when @ is known) since its variance in
this case is given by

2

nkK,

var(£*) = (22.101)

More elaborate tables may be found in the papers mentioned above. Tests
of hypotheses concerning the eguality of ¢,’s from / extreme value popula-
tions, based on these asymptotic best linear unbiased estimators, have been
discussed by Hassanein and Saleh (1992).
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Table22.11 Optimal spacing for the asymptotic best linear unbiased estimator
of & (when 6 isknown) for k = 1(1)10

k| A A, As A, As Ag A Ag Ag A
10.2032

2100734 03615

3100345 0.1701 0.4705

4100190 0.0933 0.2581 0.5486

5100115 00566 0.1566 0.3329 0.6069

6]0.0075 0.0369 0.1021 0.2171 0.3958 0.6521

7100052 00254 0.0703 0.1494 02723 0.4487 0.6880

810.0037 0.0182 0.0504 0.1071 0.1953 03218 04935 0.7173

9100027 00135 00374 00794 0.1448 02386 0.3659 0.5319 0.7415

10 | 0.0021 0.0103 0.0285 0.0605 0.1103 0.1818 0.2788 0.4052 0.5650 0.7619

9.5 Linear Estimation with Polynomial Coefficients

Based on a complete ordered sample Xi, Xj,--:, X, from the type 1

n

extreme value distribution (22.25), Downton (1966) considered estimators of

the form
P n (l _ 1)(k)Xir
bo= L (k+t Dy ¥ —grp— (22.102)
k=0 i=1 n
and
p no(i - 1)(k)Xi;
0, = L (k+ DB Y —75— (22.103)
k=0 i=1 n
where
m =1 ifr=0

=m(m—-1)---(m-r+1) ifr=1,2,....
Let us denote
T
a= (ao,a,,-“,ap) ,
T
B = (ﬂﬂvBl"'.aﬂp) ’
1= (1,1, ) Txpens

p= (E[Yl':l]’E[YZ,:Z]’“ ',E[)’;+,:p+1])T,
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and

= ((Ek.l))(p+l)x(p+l)’

where

1 (i - )Py no(i - .
Ek‘,=cov (k+1)z——(ﬁ-l—)——,(l+1)z——‘7l—+-n——

0<k,l<p. (22.104)

Then, by using least-sguares theory, Downton (1966) derived the coefficients
for the best linear unbiased estimators with polynomial coefficients ¢, and
8, in (22.102) and (22.103) as

[a Bl =271 p] :;]2—‘[1 u]] (22.105)

and the variance-covariance matrix of ¢, and @, as

var(é,) cov(€,,0.) | L .
var(8,) ]=62[[MT]2 [t e)

~1

;. (22.106)

for details, see Balakrishnan and Cohen (1991, pp. 109-113).

Downton (1966) examined the efficiency of these estimators, and com-
pared their performance with many other estimators. For example, the
efficiencies of the linear coefficients estimator and the quadratic coefficients
estimator for £ and 8 are presented in Tables 22.12 and 22.13 (which may be
compared with the entries in Tables 22.5 and 22.6).

Furthermore, as with other methods of estimation, the linear estimators
¢, and 6, may be used to estimate the parameter ¢,¢ t ¢,0 by ¢ £, * c,0,,
which may be shown to be the best linear unbiased estimator with polynomial
coefficients of the parameter of interest. Of special interest in this case isthe
pth percentile or quantile of type 1 extreme value distribution in (22.25), and
it isgiven by Eq. (22.34). Naturally then, the best linear unbiased estimator

Table22.12 Efficienciesof linear unbiased estimatorsof & with linear coefficients
and quadr atic coefficients (%)

n 2 3 4 5 6 ©

Linear coefficient 84.05 91.18 93.83 95.21 96.07 99.63
Quadratic coefficient 84.05 91.73 A.42 95.79 96.60 90.87
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Table22.13 Efficiencies of linear unbiased estimator sof 9 with linear coefficients
and quadraticcoefficients (%)

n 2 3 4 5 6 o

Linear coeflicient 42.70 54.56 60. 13 63. 37 65. 48 7.5
Quadratic coefficient 42.70 58.78 67.14 2.2 .71 9364

with polynomia coefficientsdf the pth percentile of the distribution is given
by

£, =& - 8, log( —log p), 0<p<l. (22.107)

The relative efficienciesof the estimator (22.107) to the Cramér-Rao lower
bound were determined by Downton (1966).

9.6 Maximum Likelihood Estimation

Baseg on aArandom sample X,, X,,- .-, X,;, the maximum likelihood estima-
tors ¢ and 8 satisfy the equations

Y e Ximbrh -y (22.108)

i=1
and

n

L (X - E){1 — e~ Xm8/8) =y, (22.109)

i=1

The asymptotic variances of ¢ and & are given by the Cramér-Rao lower
bounds in (22.65). The asymptotic correlation coefficient between ¢ and @ is

2 -1,2
{1 + ———2} =0.313 (22.110)
6(1 - v)

Equation (22.108) can be rewritten as

A n | S 5
= —Glog(; Ze"""’/"); (22.111)

i=1

this, when used in Eq. (22.109), yields the following equation for 6:

Ll X e %78

b=X- S

(22.112)
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It is necessary to solve (22.112) by an iterative method for 6; Eq. (22.111)
then will give & If & is large compared to X;’s, then the rhs of (22.112) is
approximately

_ n-1 §?
x{1- L (22.113)
h ‘. ¢

Thiswill provide an approximate solution to (22.112) which can sometimes be
used as an initial guess for the iterative method used to solve Eg. (22.112).
The asymptotic confidence interval at significance level « is given by

E-¢\ ¢ b0\ (m? )\ (6-6Y
S R iy e Rt G

2

< ——loga;
n

that is,

(5] o )5

These are ellipses in the (£, 8) plane. For the estimator

2
2

6-6
+ 1.82367(—) < — ~—log a.
0 n

£, =¢ - log(—log p)b

of the pth percentile of the distribution, the asymptotic variance is given by
02

6
- [1 + —{1 — v — log(~log p)} ]

Tiago de Oliveira (1972) has shown that the best asymptotic point predictor
of the maximum of (the next) m observations is

+ (vt logm)é

and its asymptotic variance is

02

6
1+ ——{1 + log m} ]
If the scale parameter 8 is known, then the maximum likelihood estimator
of ¢ isobtained from (22.108) to be

A 1 2
€ = —Glog{— Ze"""/"} (22.114)
i=1

B
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This estimator is not unbiased for ¢ Kimball (1956) has in fact shown that
(when 8 is known)

A 1
E[fm]=§+0{7+103"‘“1‘"5_"'“n_1} (22.115)
and
(‘ = 62 ﬁ_lz L. ! 2
var §19) = 6 - ‘i‘z' - -(-;-:*1)—2 . ( 2.116)

While fw is a biased estimator of ¢, e~ /¢ is an unbiased estimator of

e /% Thisisso because e ~*/? has an exponential distribution with expected
value e~ ¢/% Consequently confidence intervals for this quantity and also for
¢ (when 8 is known) can be constructed using methods discussed in Chapter
19, Section 7.

Suppose that the available sample is a doubly Type-II censored sample
X, 0 X127 Xs_s. Then the log-likelihood function based on this cen-
sored sample is

logL =logn!—logr!l—logs!— Y Y/ — Y eV
i=r+1 i=r+1
—(n—r—s)logd +rlogF,(Y;,,) +slog{l — F,(Y,_)},
(22.117)
where Y/ = (X] — £)/6 are the order statistics from the standard type 1

extreme value distribution with density (22.26) and F,(y) its corresponding
cdf. From (22.117) we obtain the likelihood equationsfor ¢ and 8 to be

dlog L _ l{(n Cros) - ”z':‘ eVl PY( Y1) s py(Y,_,)
43 6 i=r+1 FY( +|) 1 —FY(Yn’—s)
=0 (22.118)
and
dlog L 1| n=s n-s
= — T 1 oY) _ —_p -
a6 B[i}r:ﬂx i=¥+1Yl ¢ (n=r=s

—rY, + sY,

pY( r+l) pY( n-— s)
rHFY( +|) "sl_FY(Y' s)

-0 (22.119)
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Harter and Moore (1968a) and Harter (1970) have discussed the numerical
solution of the above likelihood equations. The maximum likelihood estima-
tion of ¢, when 6 is known, based on right-censored data had been discussed
earlier by Harter and Moore (1967). The asymptotic variance-covariance
matrix of the maximum likelihood estimates, £ and 0, determined from
Egs. (22.118) and (22.119) is given by [Harter (1970, pp. 127-128)]

82

n

(22.120)

Vl 1 Vl 2
Vl 2 VZZ ’

where (V) is the inverse of the matrix (V")) with

y''=1-q, -4q,%qlogq, - (1 —a,)log(l - 4;),

V2= -(1-gq,~q)-2"(1;~ logq,) ~ T'(1;~ log(1 — 4;))}
—I"(2;— log q,) — I'"(2;— log(1 - q,)) + 2{I"(2;— log q,)
~T'(2;— log(1 - tIz))} —~ g, log q, log( —log g,)

x {2 + log(—log g,)} + (1 — g;)log(1 — gq,)log{ ~log(1 — 4,)}

log{ —log(1 ~ g
x |2 + log{ - log(1 — g,)} + log(1 — g,) { q( ) ,
2

and

VlZ = VZI
= —I"(2;~- log q,) + I'(2;— log(1 — 4;)) + q, log(q,)log( -log g,)

—(1 - g;)log(1 — g,)log{ —log(1 ~ g,)}

1
_(_ - 1)1og2(1 ~ g,)log{ —log(1 - gq,)}.

q>

In the equations above gq, =r/n, q, =s/n, T(p;a) = [§ e 't*"'dt,
I'(p;a) = (d/dwT(u; a)l,_,, and T"(p;a) = (d*/du’)T(u; a)l, .,. Harter
(1970), for example, has tabulated the values of V,, V,,, and V5, for
g, = 0.0(0.10.9 and g, = 0.0(0.1X0.9 — q,).

Phien (1991) has discussed further the maximum likelihood estimation of
the parameters ¢ and 6 based on censored samples. Escobar and Meeker
(1986) have discussed the determination of the elements of the Fisher
information matrix (V’s) based on censored data. Phien carried out an
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extensive simulation study and observed the following concerning the effects
of Type-l censoring on the estimation of parameters and quantiles of the
Gumbel distribution using the maximum likelihood method: (1) light censor-
ing on the right may be useful in reducing the bias in estimating the
parameters, while left and double censoring are useful for a wider range of
censoring levels; (2} the bias in estimating the parameters and quantiles is
very small; (3) for complete samples the MLE of ¢ overestimates ¢, while the
MLE of 6 underestimates 6 dlightly; and (4) censoring introduces an increase
in the variances of the estimates.

Phien (1991) has also discussed the maximum likelihood estimation of the
parameters based on doubly Type-l censored data. Specifically, for the
distribution

(x—§)/8

Fy(x) =e" ¢

with X, and X, asthe left- and right-censoring time points and with r lowest
and s largest observations censored, the likelihood function is proportional
to

(Fe (X)) TT px(X){1 - Fx(X,)}.

i=r+1

Note in this case that r and s are random variables while X, and X, are
fixed. The log-likelihood function is

n—s
log L = const.—(n —r —s)logf — Y (Y,+e ™} —rd+slogg,

i=r+1

where

d=e™ N,

g=1-e"",
X ¢

Y, = —,
(/]
X'_

y =X E’
6
X, -

Y, = ¢
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The maximum likelihood estimators of ¢ and 8 satisfy the equations

alog L G alog L H
=——=0 ————— - e mm— s
a0 0 9¢ 0
where
G=P+P+P and H=Q+Q,+0,
with

n—s n—s n-s
P=n-r—-s— L Y+ L Ye"Q=-(n~-r-s)+ L e,

i=r+1 i=r+1 i=r+1

PI = rdY,,
Ql = rd,

se'(1 - q)Y,
r q s

se”"(1 - q)
Qr= _—

q

Phien (1991) recommended solving these equations using Newton's proce-
dure.

Posner (1965), when applying the extreme value theory to error-free
communication, estimated the parameters &£ and 8 for the complete sample
case by the maximum likelihood theory and justified it on the basis of its
asymptotic properties. By pointing out that the asymptotic theory need not be
valid for Posner's sample size (n = 30), Gumbel and Mustafi (1966) showed
that in fact a modified method of moments gives better results for Posner's
data.

An alternative approach was taken by Balakrishnan and Varadan (1991),
who approximated the likelihood equations by using appropriate linear
functions and derived approximate maximum likelihood estimators of ¢ and
0. They derived these estimators for the type 1 extreme value distribution for
the minimum and we present their estimators in the same form for conve-
nience. [The estimators for the type 1 extreme value distribution for the
maximum in (22.25) can be obtained simply by interchanging r and s and
replacing £ by —¢ and X/ by — X, _;.,.] Thelikelihood equationsfor ¢ and
6 in this case are

dlogL  1f py(¥i)  p(N) e py(E)
9¢ 6| Fy(Y.,) 1 - Fy (Y, ) izre1 Py (YY)
=0 (22.121)
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and
6logL 1 4
nor—s+ry, et v(Y0)
® Fy(Y.)
py(Y,_,) "< L, Py (YY)
—sY) T T ) =0, (22122)
1 - Fy(Y,_)) i=r+1i py(Y))

where Y/ = (X - £)/8, py(y) =€’ e, and F,(y)=1-¢™*. Upon ex-
panding the three functions in (22.121)and (22.122)in a Taylor series around
the point F~'(p,) = log(=log g¢,) (with p; = 1 = q, = i/(n + 1)), we get the
approximate expressions

D pl Y;-’
) e D
Fy(Y, +1) py(Y/)
py(Y, ;)
L sy, 48, Y, 2123
= Fo(Y,.,) (22.123)
where
qr+l
y= log g, {1 — log(—logq,,,)}

r+1

r+1
" (log g,,,) log( ~log g, ,,),

r+1

qr+l

log q,H{l + log qm},

Pri1 r+l

a; =1+ log g,{1 — log( —log g;)},

B, = —loggq,.

By making use of the above approximate expressions in (22.121)and (22.122)
and solving the resulting equations, Balakrishnan and Varadan (1991) de-
rived the approximate maximum likelihood estimators of ¢ and 6 to be

_ —C+VYC*+44D

2(n =1 -35)

D

1 1
§=A-6B and

, (22.124)
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where
r6X;+l + SBI)_SXI’I—S + Z?—-—_rs+lBiXi,

s

m

B = ry—s(l - a, )+ il

m
n—s
C=ryX,,—-s(l—a,_)X,_,+ Y a;X —mAB,

i=r+1

n—s
D= raXr/il + sﬁn—er:z—s + Z ﬁiA/i’z_ mAZ’

i=r+1

n-—s
m=ré+sB,_;+ Y B;.
i=r+1
Through a simulation study Balakrishnan and Varadan (1991) have displayed
that the above estimators are as efficient as the maximum likelihood estima-
tors, best linear unbiased estimators, and best linear invariant estimators
even for samples of size assmall as 10. For example, values of bias and mean
square error for various estimators of ¢ and 6 are presented in Table 22.14
for n = 10 and 20, r = 0, and some choices of s. Estimators of thisform have
been seen earlier in Chapters 13 and 14.
Estimators of this form based on multiply Type-II censored samples have
been discussed by Balakrishnan, Gupta, and Panchapakesan (1992) and Fei,
Kong, and Tang (1994).

Table22.14 Comparison of biasand mean squareerror of various estimator sof
and 6 for n = 10and 20 and right censoring (r = 0)

n=10 n=20
s= 0 1 2 3 0 1 2 3 4

Bias(£),/ ~0085 -0089 —-0.103 -0.125 -0042 -0042 -0043 -—0046 —0.049
MSE(¢£)/6? 0123 0129 0.143 0171 0058 0059 0061 0063  0.066
Bias(£)/6 -004 ~-005 -008 -011 -002 - -002 —  -004
MSE(£)/62 0114 0122 0137 0166 0056 — 0060 — 0.066
var(¢*)/6? 0113 0120 0134 0162 0056 — 0059 — 0.065
MSE(¢**)/6% 0113 0120 0134 0161 0056 — 0059 — 0.065
Bias(6)/6 -0.066 —-0073 —-0.085 -0.100 -0033 —-0033 -0035 -0038 -0.041
MSE(68) /62 0067 0082 0098 0116 0032 003 0040 0044 0048
Bias(d)/6 -007 -008 -010 -012 -004 —  -004 —  —005
MSE(8) /6> 0063 0077 0094 0113 0033 — 0042 — 0.050
var(6*) /6> 0072 0088 0107 0132 0033 — 0041 — 0.050
MSE(6**)/62 0067 0081 0097 0117 0032 — 0039 — 0.047

Note: (¢*,6*) are the best linear unbiased estimators, (£**,6**) are the best linear invariant estimators,

(£,6) are the maximum likelihood estimators, (£, 8) are the approximate maximum likelihood est

imators.
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9.7 Conditional Method

The conditional method of inference for location and scale parameters, first
suggested by Fisher (1934) and discussed in detail by Lawless (1982), has
been used effectively for the type 1 extreme value distribution by Lawless
(1973,1978) and Viveros and Balakrishnan (1994). These developments are
described for the type 1 extreme value distribution for minimum with
cumulative distribution function 1 — e-<""*"*

Suppose that X| < X; < ... <X,_, is the available Type-II right-
censored sample. Then the joint density function of X = (X7, X3,-"., X._,)
is

o (xi— € x;i— €\
px(x;€,0) = RYIE I_Ip,,( ){1 —FY(_O_)} , (22.125)
where F,(-}and p,(-) are the cdf and pdf of the standard form of the type 1
extreme value distribution for minimum given by

Fy(y)=1-e" and py(y)=¢€e " (22.126)

Then the joint density in (22.125) preserves the location-scale structure that
may be seen easily by noting from (22.125) that the standardized variables,
(X) - £€)/6,-..,(X;_, — £)/6, have a joint distribution functionally inde-
pendent of § and 8. Suppose that £ and @ are the maximum likelihood
estimates of ¢ and @ (or some equivariant estimators like BLUEs or BLIEs)
which jointly maximize the likelihood of (¢, 8) that is proportional to (22.125).
Then, Z, = (£ = £)/6 and Z, = 6/6 are pivotal quantities in the sense that
their joint density involves nelther £ nor 8. With A, = (X! - £)/6 (i =
,2,-.,n—-5),A=(A, A, ., 4,.,) formsan anciIIary statistic, and in-
ferences for [ and 8 may be based on the joint distribution of Z, and Z,
conditional on the observed value a of A.

Noting that (x| - £)/6 = a,z, * z,z,, the joint density of Z, and Z,,
conditionally on the observed value a, can be obtained from (22.125)as

n—s
p(z;, Zz|a) =C(a)z5—"! I—[lpy(aizz + 2122){1 = Fy(a;z; + zlzz)}s
i=

= C(a)z;—s-l e(n—x)z,zz+s,,zz

— P e%if2t 1T s en—sT2 4102
X e i ,

—o <z, <®,0<2z, <o, (22.127)

where C(a) is the normalizing constant, and s, = L/'7fa,. Using (22.1271,
Lawless (1973,1978) used algebraic manlpulatlons and numerical integration
techniques to determine the marginal conditional densities p(z,la) and
p(z,la) that can be utilized to make individual inferences on the parameters
¢ and 6.




50 EXTREME VALUE DISTRIBUTIONS

Conditional inferences for other parameters such as the pth quantile (X,)
of the distribution can also be developed from Eq. (22.127). For example
with the maximum likelihood estimates of X, being X = £t 6F; '(p),
one can use the pivotal quantity Z, = (X, - g)/o F; |(p)/Z2 Z, to
develop inference for X,. Upon transformatlon one may obtain the joint
conditional density function of Z, and Z; from (22.127) from which the
marginal conditional density function of Z, may be obtained by integration
which then will enable one to make inference regarding the pth quantile X,,.
Lawless (1973,1978) has noted that tolerance limits, confidence limits for
reliability, and prediction intervals can al be similarly handled using the
conditional method.

Viveros and Balakrishnan (1994) have developed a similar conditional
method of inference based on a Type-1I progressively censored data under
which scheme one or more surviving items may be removed from the life-test
(or, progressively censored) at the time of each failure occurring prior to the
termination of the experiment. The familiar complete sample case or the
Type-11 right-censored sample case (discussed earlier) are specia cases of
this general scheme.

9.8 Method of Probability-Weighted Moments

Landwehr, Matalas, and Wallis (1979) proposed a simple method of estima-

tion of the parameters ¢ and 8 based on the probability-weighted moments
My, = E[X{1 - F(X)}'], k=0,1,2,....

An unbiased estimator of M,,, isgiven by

(k)

")
1 n
-2 X/ k=0,1,2,..
n ; ! (n -1
k
Then, by making use of the explicit expressions of My, and M, and
equating them to the sample estimators MO) and M )y and solving for the

parameters ¢ and 6, Landwehr, Matalas, and Wallls (1979) derived the
probability-weighted moments estimators to be

i

L Mg —2M,, .o .
sz——Tg—E— and £ =My, — v

They then compared the performance of these estimators with the moment
estimators (Section 9.1) and the maximum likelihood estimators (Section 9.6),
in terms of bias and mean square error. Their extensive simulation study
indicated that this method of estimation is simple and also highly efficient (in
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Table22.15 Bias, mean squareerror, and relative efficiency of the moment estimators,
PWM estimators, and ML estimatorsof 8 and & based on a complete sample of size n

e ¢
Rdative Rdative

Method n Bias ME Efficency Bies MSE Efficency
M 5 0.18 0.37 0.83 -0.10 0.49 0.97
PMWM 0.15 0.34 1 —-0.08 0.49 1
ML 0.00 0.44 0.74 0.01 0.48 1.05
M 9 0.1 0.30 0.74 -0.06 0.36 0.96
RPAM 0.09 0.26 1 -0.04 0.36 1
ML 0.00 0.21 0.76 0.00 0.36 1.03
M 19 0.05 0.22 0.66 -0.03 0.25 0.97
PMM 0.04 0.18 1 -0.02 0.24 1
ML 0.00 0.21 0.76 0.00 0.24 1.02
M 29 0.04 0.18 0.63 -0.02 0.20 0.96
RPAM 0.03 0.15 1 -0.01 0.20 1
ML 0.00 0.17 0.77 0.00 0.20 1.00
M 49 0.02 0.14 0.60 —-0.01 0.15 0.96
PAMVI 0.02 0.11 1 0.00 0.15 1
ML 0.00 0.13 0.77 0.00 0.15 1.00
M 99 0.01 0.10 0.57 -0.01 0.11 0.96
PAM 0.01 0.08 1 0.00 0.11 i
ML 0.00 0.09 0.76 0.00 0.1t 1.00

terms of efficiency relative to the maximum likelihood estimates). Values of
bias, mean square error, and relative efficiency, taken from Landwehr,
Matalas, and Wallis (1979), are presented in Table 22.15 for some sdlected
valuesd n.

These authors also compared (through simulations) the performance of
the three methods of estimation of pth quantile (at p = 0.001,0.01, 0.02,
0.05,0.10, 0.25,0.50, 0.75, 0.90, 0.95, 0.98,0.99,0.999) based on samples of
sizesn = 5,9,19,29, 49, 99, 999.

9.9 " Block-Type" Estimation

Weissman (1978), Huesler and Schuepbach (1986), and Huesler and Tiago
de Oliveira (1988), among others, studied the following " block-type" estima
tion procedure. Suppose that the given observationsare X;; fori = 1,2,-.-,n
and j = 1,2,...,k (k may beviewed asthe number of yearsor blocksand n
is the number of observations made per year or block). Let Y, = max{X,,
i < n}. Assume that X,’s are such that for sufficiently large n, v;’s have
approximately the Gumbel distribution

(y—£,)/0

Pr{Y, <y] =e™
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For the case when 8 is known (e.g., # = 1, without loss of any generality),
that is, when X;/’s areiid. with

PriX; <x] = e~
and
Pr[Y; <y| = gme T
where ¢, = ¢ *+ log n. Huesler and Tiago de Oliveira (1988) estimate ¢ from
Y, Y, -, Y, by using the MLE:

s s 1k
£, =& —logn= —log{; Ze”’i} - logn
i=1

with
. 1
E[£,)=¢+ TRRTTERE 4L
and
. 1 1
MSE(¢4) = 7+ + 75 + 5 Ok,

Further the distribution of »/I?(fA — ¢) tends to the standard normal as
kK — o,

Weissman (1978) proposes estimation based on the k largest observations
of al N=nk valuesof X;;. Let them be denoted by

ZynzZynz o 22,y
Then Weissman's estimator of ¢ is

~

1( &
&g = —log{z{ ; e %in+ (N —k) e‘Z’"N}]

which is just the MLE for the extreme value parameter ¢ based on a
censored sample. Yet another estimator suggested by Weissman (1978) is

fc =Z,.y — logn

based on asymptotic properties (as n — «). Huesler and Tiago de Oliveira
(1988) have noted that al three estimators have the same asymptotic distribu-
tion (as n — «) and also that n(&; — €c) = O,(1).

In the two-parameter case we have correspondingly

A A a

£,=£ —6logn and 8,6,
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where £, and @ are the MLEs of ¢, and 8. Here

PI'[X —e—¥=6/08

U_x] =é

and

—e~y—€=0logn)/8

Pr[Yjsy] =e

e —En)/8

=€

with £, = ¢ T 6 log n. The correlation between EA and 9,, approaches —1 as
n — oo,

Estimation based on the k largest values Z,. 5 2 *.. 2 Z;., for fixed n
and k, corresponds to the maximum likelihood estimators §B and BB based
on a left-censored sample, Asymptotically

n — log n
()B=Z,<—Z,“N+Op( ,

n

A

o 1
Eg=Z,. n—Oglogn + OP(;),

where Z, = (1/k)Z¥_,Z;.,. The correlation between £, and 6, also con-
vergesdowly to —1 asn — «.

Huesler and Tiago de Oliveira (1988) have shown that the Cramér-Rao
efficiency of (€5, 8,) with respect to (£, 6,,) defined by

det(3,)

eff(B, A) = FRTEIE

where 3, and 5, are the asymptotic variance-covariance matrices of (£, 6,)
and (£, 8,), respectively, is given by

6
eff( B, A) » — = 0.6079 as k — o,
ks

More delicate comparisons have revealed that method A is not always more
efficient than method B. Huesler and Tiago de Oliveira (1988) have pre-
sented a data set for which method B has higher efficiency. These authors
have concluded that for the estimation of the pth quantile of the annual
maximum, method A is better than method B for p > 0.9 and that method A
is definitely superior when k = 15

9.10 A Survey of Other Developments

The details on various methods of inference presented in the last nine
subsections are by no means complete. Numerous other papers have ap-
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peared dealing with different aspects of inference relating to the extreme
value distribution such as proposing new and simplified methods, making
finer improvements over the existing methods, dealing with numerical algo-
rithms for the estimation, discussing accelerated life-tests and extreme vaue
regression, and so on. These results are equally important, and they are listed
and described briefly below.

Engelhardt (1975) and Engelhardt and Bain (1977) have provided further
discussions on the simplified estimators of the parameters and associated
inferential procedures. Singh (1975) has discussed admissibility of some
estimators. Meeker and Nelson (1975) have proposed and examined optimum
accelerated life-tests; see also Nelson and Meeker (1978). Lawless and Mann
(1976) considered tests for the homogeneity of scale parameters (6,’s) in k
samples from extreme value populations. While Smith (1977) discussed the
interval estimation of parameters, Durrant (1978) constructed a nomogram
for confidence limits on quantiles of the normal distribution and discussed its
usefulness for the extreme value distribution. A preliminary test of signifi-
cance was considered by Tsujitani, Ohta, and Kase (1979). Ashour and
El-Adl (1980) examined the Bayesian estimation of the parameters.

Cheng and Iles (1983,1988) discussed confidence bands for the cumulative
distribution functions. Schuepbach and Huesler (1983) proposed some simple
estimators for the parameters ¢ and 8 based on censored samples. Bootstrap
confidence intervals for the parameters when the available sample is progres-
sively censored have been discussed by Robinson (1983). Some graphical
methods of estimating the parameters were put forward by Stone and Rosen
(1984). Keating (1984) has commented on the estimation of percentiles and
the reliability function. In an interesting article Smith and Weissman (1985)
discussed the maximum likelihood estimation of the lower tail of the distribu-
tion. A comparison of confidence intervals derived by different methods was
carried out by Chao and Hwang (1986). Welsh's (1986) discussion on the use
of the empirical distribution and characteristic function to estimate the
parameters includes the extreme value distribution as one of the cases. Singh
(1987) estimated the parameters of the type 1 extreme value distribution
from the joint distribution of m extremes. A weighted least-squares meth-
od of estimation was considered by Oztiirk (1987). While Schneider and
Weissfeld (1989) discussed the interval estimation of parameters based on
censored data, Ahmed (1989) considered the problem of selecting the ex-
treme value population with the smallest ¢,.

Achcar (1991) presented another reparametrization for the extreme value
distribution. Hooda, Singh, and Singh (1991) discussed the estimation of the
Gumbel distribution parametersfrom doubly censored samples. Comparisons
of approximate confidence intervals for the extreme value simple linear
regression model under time censoring (or Type-l censoring) were made by
Doganoksoy and Schmee (1991). Abdelhafez and Thomas (1991) discussed
bootstrap confidence bands for the extreme value regression models with
randomly censored data.
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10 TOLERANCE LIMITS AND INTERVALS

Based on a complete sample or Type-11 censored sample observed from the
distribution, the lower a tolerance limit for proportion 1 — y is é + k, é

satisfying the equation
Pr[Pr[X 2 £+ k8] 21— 9] - a; (22.128)
similarly the upper a tolerance limit for proportion 1 —y is &+ k 8
satisfying the equation
PrlPr[X < £+ kyb] 21~ y] =a. (22.129)
The constants &, and k, are referred to as the lower and upper tolerance
factors, respectively.
In the case of the type 1 extreme value distribution for the minima with

cumulative distribution function
—elx=61/0

Fy(x)=1-c¢ ,

equations (22.128) and (22.129) become

E-¢ 6
Pr + kLE < log[ —log(1 — y)]| = (22.130)
and
E-¢ 6
Pr + kU; > log(-logy)| = (22.131)
respectively. Upon rewriting Egs. (22.130) and (22.131)
£-¢ _

Pr Alog[ log(1 - y)] - 5 >k |=a (22.132)
and
- (22.133)

6
Pr| =log( —lo ~ = <ky|=a,
[9 g( —log y) F ul

we observe that k, and k, are the upper and lower 100a% points of the
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distributions of the pivotal quantities

log[ —log(1 - v)] - %ﬁ

v
]

£E-¢
6

- FYRE- "S- SY Y

log(—log y) — , (22.134)

respectively. As the distributions of these two pivotal quantities are not
derivable explicitly, their percentage points need to be determined either
through Monte Carlo simulations or by some approximations.

Mann and Fertig (1973) used the best linear invariant estimators to
prepare tables of tolerance factors for Type-II right-censored samples when
n = 3(1)25 and n — s = 3(1)n, where s is the number of largest observations
censored in the sample; see also Mann, Schafer, and Singpurwalla (1974).
While Thoman, Bain, and Antle (1970) presented tables that can be used to
determine tolerance bounds for complete samples up to size n = 120,
Billman, Antle, and Bain (1972) gave tables which can be used to determine
tolerance bounds for samples of sizes n = 40(20)120 with 50% or 75% of the
largest observations censored. Johns and Lieberman (1966) presented exten-
sive tables that can be used to get tolerance bounds for sample sizes n = 10,
15, 20, 30, 50, and 100 with Type-Il right censoring at four values of s
(number of observations censored) for each n. By making use of the efficient
simplified linear estimator presented by Bain (1972) (described in Section
9.2), Mann, Schafer, and Singpurwalla (1974) derived approximate tolerance
bounds based on a F-approximation. This F-approximation is quite effective
and hence deserves a special mention.

By usmg Bain’s simplified linear estimators 0 of 8 and the related linear
estimator § of ¢, Mann, Schafer, and Singpurwalla (1974, p. 249) have shown
that an approximate lower 100a% confidence bound on the quantile X, is

‘ﬁ‘& »
D»

CH—S n
{ —1——'—(1 —F,_,) +F _,log(—logy)}, (22.135)

n—-s.n

where B, ., C,_,, and I, _, , are constants depending on s and n, and

F,_, isthe upper 1 — o percentage point of an F distribution with degrees
of freedom

2{iog( —108 ¥) + Cpy n/lns.n)’
L {Bn—s.n - C:—s,n/ln—s.n} ’

d, = . (22.136)
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As demonstrated by Mann, Schafer, and Singpurwalla (1974, p. 250), this
F-approximation can also be used with the best linear unbiased estimators ¢*
and 8* (see Section 9.3); in fact they have indicated that the approximation
turns out to be good even in the case of moderate sample sizes with heavy
censoring. Values of the constants B, _, ,, C,_; ,,, and I, __ ,, which depend
on the means, variances, and covariances of order statistics from the type 1
extreme value distribution for the minimum, have been tabulated by Mann,
Schafer, and Singpurwalla (1974) for some choices of n and s.

An alternate F-approximation was proposed by Lawless (1975) for the
lower a confidence bound on the quntile X.,. His approximation is based on
the fact that, at least when the censoring in the sample is fairly heavy, the
estimators § and 6 are almost the same as the maximum likelihood estima-
tors £ and 8; specificaly, we have

n—s.n

D»

b 5 o C
=f and £- ——"
l+ln—:.n 1+'n—s.n

=5, (22.137)

e

These are exactly the same linear transformations, described in Section 9.3,
that transform the BLUEs to BLIEs. Using Eq. (22.137) and the maximum
likelihood estimates € and 8, Lawless (1975) derived an approximate lower
confidence bound on the quantile X, as

E+6{(C,_,,+(1+1I

n-—.\'.n(

Fl—a)

n—:.n)
n-s.n

+F, _, log(—log y)]}. (22.138)

This F-approximation is quite accurate over a wide range of situations.
Lawless noted that the quantity

—{o log(—log y) — (£ - ¢)} (22.139)

>

is a pivotal quantity, since Z, = {log(-logy)/Z,} - Z, where Z, =
(£-¢)/6and Z,=6/0 are p|votal quantities, discussed earller that can be
used to construct tolerance bounds. For example,

Pr[Z,22,,]=a= Pr[zy

D>

ey
IA

nmad
]

a,  (22.140)
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Table22.16 Comparison of exact and Fapproximation tolerancebounds

y = 0.95 y = 0.90
n n-s 2, 095 F-Approximation Z, 095 F-Approximation
60 54 -3.76 -379 -288 -291
60 42 - 385 -3.88 -293 - 296
60 30 -3.99 -401 -3.00 -3.03
60 18 -4.19 -4.23 -3.08 -3.13
60 6 -4.69 -483 -309 -338
40 36 -401 - 402 -3.09 -306
40 28 -4.12 -4.16 -3.13 -3.17
40 2 -434 -435 - 326 -328
40 12 -4.68 —-4.72 -340 - 346
40 8 -502 -511 -3.49 -3.60
40 4 -5.96 -599 -353 -374
25 20 -450 -452 -34 -347
o) 10 ~-5.22 -5.28 -383 -389
25 5 -6.54 -6.62 -433 -4.47

and hence zmé +£ becomes a lower a confidence bound on X, The
percentage points of the distribution of Z, in (22.139) therefore yield upper
tolerance limits [see the pivotal quantity P, in Eq. (22.134)}. In Table 22.16,
taken from Lawless (1975), a comparison of the exact tolerance bounds
determined from the distribution of Z, in (22.139) with « = 0.95 and the
corresponding F-approximations are presented.

Mann and Fertig (1977) discussed the correction for small-sample bias in
Hassanein's (1972) asymptotic best linear unbiased estimators of ¢ and 8
based on k optimally selected quantiles (see Section 9.4). They presented
tables of these bias-correction factors for complete samples of sizes n =
20(1)40. These tableswill not only allow one to obtain estimates based on the
specified sets of order statistics that are best linear unbiased estimatesor best
linear invariant estimates, but can also be utilized to determine approximate
confidence bounds on X, and the related tolerance limits using approxima-
tion ideas discussed above.

Through the conditional method of inference discussed in detail in Section
9.7, Lawless (1975) has shown that the conditional tail probability of the
distribution of Z_ in (22.139) is given by

Pr[Z, 2 zla] = (n —s - 1)!C,_,(a)

" tn—s-zer):f':fa,r , n-—s
x [ e, o ),,-sdt, (22.141)
o I'(n —s){Zr5 e + se™')
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where T,( p) is the incomplete gamma function

Iy(p) = fbe"‘x"" dt, 0<b<om,
0

n—s
h(t,z) = ~logy - e‘”{ Y et + se""ﬂ’}. (22.142)

i=1

The integral in (22.141) needs to be evaluated numerically. The normalizing
constant C,_.(a) is determined numerically by using the condition that
Pr{Z, > —wla] = 1 in which case h(t, z) = « and consequently T}, ,(n -
s) =T(n —s) =T(n - s). Thus we get

ns—2 elZ,”_._,"a,-

cn_,(a)=[(n-s—1)!jo°° }"_,dz] . (22.183)

(Erzs et + s

Once the percentage pointsof Z, are determined from (22.141) by numerical
methods, tolerance limits can be obtained as explained earlier.

Gerisch, Struck, and Wilke (1991) took a completely different direction
and discussed the determination of one-sided tolerance limit factors for the
exact extreme value distributions from a normal parent distribution. They
justified the need for these factors based on the grounds that one-sided
tolerance limits for the asymptotic extreme value distributions cannot be
regarded as sufficient approximations of one-sided tolerance limits for the
corresponding exact extreme value distributions.

11 PREDICTION LIMITS AND INTERVALS

Suppose that ¢ and 6 are the maximum likelihood estimators of ¢ and 6
based on a sample of size n from the type 1 extreme value distribution for
the maximum (discussed in Section 9.6). Suppose that Z is an independent
observation, to be made from the same distribution. Then, as Antle and
Rademaker (1972) showed, the construction of prediction intervals for Z is
based on the pivotal quantity

Z —

Urey

T, = (22.144)

Q)’

Antle and Rademaker presented a table of percentage points, ¢, ., of the
distribution of T, for selected values of n and y, and they determined these
values, appearing in Table 22.17, by Monte Carlo simulations.

The irregular progression of values in Table 22.17 (especialy for n = 100) is
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Table 22.17 Percentage points ¢, . of the distribution of 7, in (22.144)

y
n 0.90 0.95 0.975 0.98 0.99 0.995

10 2.64 3.59 4.51 4.88 6.00
20 241 3.24 4.04 4.26 5.12 6.18
30 2.33 3.06 3.89 4.14 4.90 5.86
40 2.30 3.00 3.81 4.04 4.79 5.68
50 2.29 2.98 3.79 3.99 4.69 5.56
60 2.26 297 3.74 3.99 4.70 5.53
70 2.26 2.98 372 3.94 4.66 5.46
100 2.24 2.96 3.66 3.90 4.68 5.38
® 225 2.97 3.68 3.90 4.60 5.30

presumably due to sampling variation. Using the values of ¢, , presented
above, an upper 100y % prediction limit far Z can be determined s £+ 8:,

Engelhardt and Bain (1979), on the other hand, used ther smpllfled
linear etimatorsd ¢ and @ described in Section 22.9.2 to construct predic-
tion intervals for Z; in a future sample o size m from the type 1 extreme
value digtribution fcr the minimum, based on a Type-Il right-censored
sampled Szen = s. With f and § denoting the smplified linear estimators
of £ and 6 based on the right-censored sample o size n — s, Engelhardt and
Bain (1979) consi dered the pivotal quantity

(22.145)

With £, , being the yth quantile o the distribution of Tz, it isreadily seen
that § 9 becomes a lower 1007% prediction limit for Zj. Engelhardt
and Bain also developed an efficient approximation far ¢, ., asfollows Upon
writing

Z, - ¢
- ] (22.146)

Pr[T, <t] = Pr[W(r) <

where W(f) = (é - £)y/8 — ttzi/ﬂ, they used the approximation [see
Engelhardt and Bain (1977))

2
W(t) - Iog{ kxl(” } (22.147)

where &(¢) and #¢) are chosen 90 that both Sdesaof (22.147) have the same
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mean and variance. With
w 2| 422 é — 2t cov é_gé
v = var(W(t)) = var . var| - e ol
they derived convenient approximations for / and k as
I= (8 t12)/(v?2 + 6v)  (notdependingon ¢t)  (22.148)
and
1512+ 51+ 6
S — (22.149)

k=exp| -t
150 + 6l

Since (Z! - ¢)/6 — log(x*(2)/2m) independently of W(t), we get the ap-

proximation [using (22.146) and (22.147)]
Pr(T, < t) = Pr[mk < F(2,1)] (22.150)

where F(2, 1) denotes a central F-distribution with (2, /) degrees of freedom;
(22.150), when used with the exact expression F,_(2,1) = (I/2Xy~ %' - 1),
yields a smple approximation for ¢, , as the value of ¢ such that
2mk \~'/?
y = (1 + —l——) . (22.151)
Prediction intervals/limits for Z; (2 < j < m) have been developed by
Engelhardt and Bain (1979), based on the pivotal quantity

2 7z
_i74 ) (22.152)

Ty

»

Since
x7(2)
(22.153)

Z - ¢ j
e"p( 0 )"’E,z(m—in)

(independently of W(t)), where x{(2),-.-, x*(2) are independent, the distri-
bution of the linear combination of chi-square variables can be closely

approximated by the form (see Patnaik's approximation in Chapter 18)
2
ex’(v) (22.154)

b

( Z,, - f ) approx.
expl———| —
14
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where

J 1
== —_— o~ + . — -— .
igl - log(m + 0.5) — log(m —j + 0.5),

{Z{,,l/(m —i+ 1)}
al/(m =i+ 1)

{log(m + 0.5) — log(m —j + 0.5))°
= 1 1
m—j+05 m+05

Then a lower 100y% prediction limit for Z; is given by € - 5,8, where ¢;
is approximated by the value ¢ such that F,_ (v,!) = k/c.

Fertig, Meyer, and Mann (1980) used the best linear invariant estimates
&** and 6**, described in Section 22.9.3, for the prediction of Z| in afuture
sample of size m based on the pivotal quantity

£ -2,
T (22.155)

With s, ., denoting the 100yth percentile of the distribution of §, in(22.155),
the 100y% lower prediction bound for Zi is given by ¢** — s, 8**. A
100y % upper prediction bound for Z| may also be obtained by replacmg sy,
by s,,_,. Using Monte Carlo S|mulat|ons Fertig, Meyer, and Mann (19805
determined the values of 5., for different choices of n,n —s, and y when
m = 1. Selected values from their table are presented in Table 22.18.

Mann, Schafer, and Singpurwalla (1974)suggested an F-approximation for
the distribution of the statistic S, in (22.155)to be used only for large future
sample sizes and moderate levels of confidence. Mann (1976) discussed
conditions under which this approximation is sufficiently precise for use.
Mann and Saunders (1969) presented solutions to two special cases when the
given samples are of sizes two and three. Fertig, Meyer, and Mann (1980), by
employing a procedure that is an extension of the one used by Fertig and
Mann (1978) to approximate the distribution of the studentized extreme
value statistics, have suggested an alternate F-approximation and examined
its accuracy.

Engelhardt and Bain (1982) provided further discussions on the prediction
problem and derived in particular two simpler approximations for the per-
centage pointsof the statistic 7, in (22.145).The approximation for t,, from
Eqg. (22.151) needs to be determined by numerical iterative methods. For this
reason Engelhardt and Bain (1982) presented the following two simpler
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Table22.18 Distribution percentilesof S, = (§** — Z}) / 8** for Typel 1right-censored
samplesof sizen = s from asampleof sizen

n n-—s 0.02 005 010 02 04 050 060 0.7 090 095 098

5 3 -9.67 —-520 -304 -097 —-0.09 037 0.85 1.85 437 6.74 11.68
S -268 -177 -117 -039 014 051 092 1.74 339 478 6.99

10 3 -—-1594 -887 -527 -191 -056 0.02 055 143 322 525 889
5 -441 -291 -188 —-0.68 —-004 035 0.74 152 3.03 430 6.38

10 -1.76 —-132 -096 -036 012 043 079 148 2.69 3.68 5.02

15 3 -2117 -1136 -680 -260 -097 -0.26 033 120 281 443 759
5 -572 -362 -236 ~092 -0.17 024 064 135 2.76 400 596

10 —-2.16 -156 -110 -041 006 039 073 1.39 263 359 5.00

15 -162 —-125 -092 -034 010 042 0.73 137 252 341 453

approximations:

Pr[T, < t] = eme™ ™", (22.156)
where
5+ ilogm
g= 1 + z—g,
n- s
Pr[T, <t]=e """ (22.157)

In fact the approximations(22.150) and (22.156) both converge to (22.157) as
n - o with (n —s)/n - p > 0. The advantage of the approximations
(22.156) and (22.157) is that they can be solved explicitly for quantiles ¢, .
For example, upon equating the right-hand side of (22.156) to y and solvmg
the resulting quadratic equation

-t + o _ |09(——1-' |09)),
2g m

we obtain an explicit approximation for ¢, as

1/2
t Y:(A+B)_{(A+B)2_C+2Alog(—%logy)} , (22.158)
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where
8
A= —5—r7r,
var(é/B)
cov(g/O,g/G)
var(g/())

3

var(g/O)
var(é/()) '

The limiting approximation (22.157) also readily yields an explicit approxima-
tion for ¢, , as

1
t, = —log(—;log y) (22.159)

Engelhardt and Bain (1982) have examined the accuracy of dl these approxi-
mations.

Pandey and Upadhyay (1986) discussed approximate prediction limits for
the Weibull distribution, which may be transformed to the type 1 extreme
value model for the minimum through the usual logarithmic transformation,
based on preliminary test estimator. Abdelhafez and Thomas (1990) derived
approximate prediction limits for the Weibull and extreme value regression
models.

12 OUTLIERSAND ROBUSTNESS

For the type 1 extreme value distribution for minimum, Mann (1982) pro-
posed three statistics to test for k upper outliers in the sample. These three
test statistics are given by

0**
V= F (22.160)
n—k
X, — X,
en—k
and
X! _ - X! _
W= 2" k_;L.__* ok (22.162)
n—k
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where 6* and 6;*,, are the best linear invariant estimators of 8 (see Section
9.3 for details) based on the complete sample of size » and on the smallest
n — k order statistics, respectively. Since the exact null distributions of these
test statistics are intractable, Mann (1982) determined the critical values by
Monte Carlo simulations and presented some tables. Further, through an
empirical power study, Mann demonstrated that her statistic W in (22.162)
provides a powerful test in detecting upper outliers from a labeled slippage
location-shift model.

Fung and Paul (1985) carried out an extensive empirical study to examine
the performance of several outlier detection procedures. In addition to the
preceding three test statistics, these authors also considered the following five
test statistics:

G =S2_,/82, (22.163)

where §2_, is the sum of squared deviations of the smallest n — k order
statistics and S?2 is the sum of squared deviations of all n observations,

X, — Xk
Ri=—Y5—7—, 22.164
X, = Xak
Ry=—-+—, 22.16
2 X,’, _ X’ ( 5)
X, = Xk
Ry=———+, 22.166
3 X,’, _ X’ ( )

and

Lo - Xl — X)) /(ELY ] - E[Y])
LiSN(X — X)) /(ELY) - E[Y])

L= (22.167)

Fung and Paul (1985) have also considered the counterparts of these five
tests (obtained by changing X; to X _,+,)for testing for k lower outliersin
the sample. Fung and Paul have also presented critical values for al these
tests determined through Monte Carlo simulations. They then compared the
performance of the test statistics in terms of their sizes and powers in
detecting k = 1, 2, and 3 outliers. For the upper outliers they used all eight
test statistics, while only the last five test statistics were used for the lower
outliers.

In their empirical power study Fung and Paul {1985) used a contamination
outlier model with location shift as well as with location and scale shift
[instead of the labeled slippage model considered by Mann (1982)]. Under
this contamination outlier model, Mann's W test performed very poorly as
compared to the other tests. The test procedure based on the L statistic in
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(22.167) performed the best for the contamination model, while the counter-
part of G in (22.163) performed well for testing the lower outliers. The test
statistic R, in (22.164) and its counterpart also provide useful tests in
general.

By using joint distributions of order statistics, Paul and Fung (1986)
presented explicit formulas for the calculation of critical values of the test
statistics R,, R,, and R, (and their counterparts for testing for lower
outliers) for testing for k = 1 and 2 outliers.

13 PROBABILITY PLOTS, MODIFICATIONS, AND MODEL VALIDITY

Due to the prominence and significance of the extreme value distributions,
considerable work has been done with regard to testing whether an extreme
value distribution is appropriate for the data at hand. In this section a brief
description of these investigationsis presented. The book by D’Agostino and
Stephens (1986) provides an elaborate account of various goodness-of-fit tests
developed for the extreme value distributions.

One of the easiest goodness-of-fit tests is the ' correlation coefficient™ test
for the type 1 extreme value distribution. This test is based on the product-
moment correlation between the sample order statistics and their expected
values. Since E[X/]=¢ + 6E[Y/], one may as well use the correlation
between the sample order statistics X! and the expected values of standard
order statistics E[Y;'] for the type 1 extreme value distribution. Naturally
large values (close to 1) of this correlation will support the assumption of the
type 1 extreme value distribution for the data at hand. Smith and Bain (1976)
discussed this test and presented tables of critical points; tables were aso
provided by these authors for the case when the available sample is Type-11
censored. A more extensive table of points for n(1 — R?), where R is the
sample correlation coefficient, has been provided by Stephens (1986).
Stephens's choice of the statistic n(1 — R?) permits easy interpolation in the
tables. Further his tables also facilitate the test even in case of doubly
Type-I1 censored samples. Kinnison (1989) discussed the same correlation
test for the type 1 extreme value distribution and presented tables of
smoothed values of the percentage points of r (in the case of complete
samples) when » = 5(5)30(10)100, 200. Kinnison used the approximation

E[Y/] = —log{ —log(i/(n + 1))}

in the plot and the resulting calculation of the correlation coefficient. As
pointed out by Lockhart and Spinelli (1990), use of the exact values of E[Y/]
or even Blom's approximation E[Y/] = —log{—logl(i — 0.25)/(rn + 0.25)}}
may result in an increase in the power of the test. However, as aptly
mentioned by Lockhart and Spinelli, even though the correlation test is
simple to use and has an intuitive appeal, its power properties are undesir-



PROBABILITY PLOTS, MODIFICATIONS, AND MODEL VALIDITY 67

able. As a matter of fact McLaren and Lockhart (1987) have shown that the
correlation test has asymptotic efficiency equal to 0 relative to standard tests
such as Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling
tests.

Stephens (1977) presented goodness-of-fit tests based on empirical distri-
bution function statistics ¥ 2, U2, and 42 given by

WZ

!

Fo(X! 20-1) 1 22.168
D{R -5 ) g (26

UZ

]

2
w? - n{i Y Fo(X]) - 1} , (22.169)
n 5 2

and
A= - —'11— L (2i - 1log Fy(X;) + log{t = Fx(X, ., )}] - n. (22.170)

Stephens discussed the asymptotic percentage points of these three statistics
for the three cases when one or both of the parameters ¢ and 8 need to be
estimated from the data (using the MLEs). Stephens (1977) also suggested
dlight modifications of these statistics in order to enable the usage of the
asymptotic percentage points in case of small sample sizes; these are pre-
sented in Table 22.19.

Table22.19 Percentage pointsfor modified statistics W2, U?, and A'

Upper Tail Percentage Points, a

Statitic Case” Modification 075 090 09 0975 099
w2 0 (W?-04/nt06/n>X1.0+1.0/n) — 0347 0461 0581 0.743

1 w1 t0.16/n) 0116 0175 0222 0271 0.338

2 None 0186 0320 0431 0547 0.705

3 W21 + 0.2/Vn) 0.073 0102 0124 0146 0.175

U 0 W?-01/nt01/n*X1.0+08/m) — 0152 0187 0221 0267
1 U1 +0.16/n) 0.090 0129 0.159 0189 0.230
: 2 UX1+0.15/y2n) 0086 0.123 0152 0181 0.220
= 3 U1 +02/vn) 0.070 0.097 0117 0138 0165
A 0 None — 1933 2492 3070 3857
b 1 A%(1+03/n) 0736 1062 1321 1591 1959
. 2 None 1060 1725 2277 2854 3640
3 A2t 02/vn) 0474 0637 0757 0877 1038
¢ “Incase 0, both £ and @ are known; in case 1, £ is unknown, while 6 is known; in case 2, ¢ is known, while g

s unknown; in case 3, both ¢ and é are unknown.
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Along similar lines Chandra, Singpurwalla, and Stephens (1981) consid-
ered the Kolmogorov-Smirnov statistics D*, D~, and D and the Kuiper

statistic V given by

i
D*= miax{;l— - X(X{)},

D_=

max {FX(X,-’) -

i—1

n

D = max(D*, D7),

and

V=D"+D".

(22.171)

(22.172)

(22.173)

(22.174)

They determined some percentage points of these statistics for the three
cases when one or both of the parameters ¢ and 8 need to be estimated from
the data (using the MLEs). Percentage points of the four statistics in the case
when both ¢ and 6 are unknown, taken from Chandra, Singpurwalla, and
Stephens (1981), are presented in Table 22.20 for n = 10, 20, 50, and .

Table22.20 Percentagepointsof the statisticsyn D *, vn D ~, vn D, and yn ¥ when

both & and 8 are unknown

Upper Tail SignificanceLevel «

Statigtics n 010 005 0.025 0.01
VynD* 10 0.685 0.755 0.842 0.897
20 0.710 0.780 0.859 0.926

50 0.727 0.796 0.870 0.940

® 0.733 0.808 0.877 0.957

Vn D~ 10 0.700 0.766 0.814 0.892
20 0.715 0.785 0.843 0.926

50 0.724 0.796 0.860 0.944

® 0.733 0.808 0.877 0.957

Vn D 10 0.760 0.819 0.880 0.944
20 0.779 0.843 0.907 0.973

50 0.790 0.856 0.922 0.988

® 0.803 0.874 0.939 1.007

Vn v 10 1.287 1.381 1.459 1.535
20 1.323 1.428 1.509 1.600

50 1.344 1.453 1.538 1.639

® 1372 1.477 1.557 1.671
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Probability plots are often used to aid assessment of the validity of a
statistical distribution; in fact the correlation test is based on such a plot.
Unfortunately, owing to the unequal variances of the plotted points, interpre-
tation of the plots is difficult. The stabilized probability plot proposed by
Michael (1983)isto plot

2 Xi’ - § 1/2
S, = —sin“{FX( P )} (22.175)
w
with respect to
2 _l(i -0.5 )‘/2
r; = —sin .
m n

In thisway the unequal variance problem can be avoided, since §; in (22.175)
have approximately equal variance, as the asymptotic variance of vn'S; is
(1/m2) independent of ¢ when n -« and i/n - qg. A goodness-of-fit
statistic that arises naturally from the stabilized probability plot is

Dsp = maxlr, — S,1. (22.176)

Kimber (1985) presented critical values for the statistic D, in (22.176) for
some selected choices of n, and these are presented in Table 22.21.

By starting with a doubly Type-1I censored sample X, ., X/, ,," -, X, _,
from the type 1 extreme value distribution for the minimum, Lockhart,

Table22.21 Critical valuesfor thestatistic Dy,

a

n 0.50 0.25 0.10 0.05 0.01
3 0.085 0.109 0.137 0.154 0.167
4 0.096 0.119 0.144 0.167 0.209
5 0.097 0.122 0.148 0.167 0.201
6 0.098 0.124 0.148 0.165 0.201
8 0.096 0.119 0.142 0.157 0.186
10 0.094 0.115 0.136 0.150 0.176
14 0.088 0.107 0.127 0.139 0.163
20 0.082 0.098 0.116 0.127 0.149
30 0.073 0.087 0.103 0.113 0.134
40 0.066 0.079 0.093 0.103 0.122
60 0.059 0.069 0.081 0.089 0.107
80 0.052 0.062 0.072 0.080 0.096

100 0.047 0.056 0.066 0.073 0.089
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O'Reilly, and Stephens (1986b) considered three tests based on the normal-
ized spacings
z, - )'f.-'ﬂ - X _
E[Y;, ] - E[Y]]

i=r+1,r+2,...,n-s5-1, (22.177)

where Y, denotes the order statistic from the standard distribution. One may
use the exact values of E[Y/,,] — E[Y/] tabulated by Mann, Scheuer, and
Fertig (1973) for n = 3(1)25 and Blom’s approximation for larger sample
sizes. With

i
Z* _ j==r+IZj
i i+l 7

j=r+ 1§

i=r+1,...,n-5-2, (22.178)

Lockhart, O’'Reilly, and Stephens (1986b) focused on the Anderson-Darling
statistic
A= —(n-r-s5-2)

1 n—s—2
———————| L (2i- {log Z} + log(1 - Z¥_,_,_)}|

n-r-—s-=2 i=r+1
(22.179)
and compared its performance with the S-statistic introduced by Mann,

Scheuer, and Fertig (1973) [see also Mann, Fertig, and Scheuer (1971)] and
Z* statistic introduced by Tiku and Singh (1981); here

T=1-2Z
where
n-r-s
r+T if n —r —siseven
t = (22.180)
n—-r—-s—-1 )
rt ———  ifn-r-sisodd,
2
and
_ 1 n—s—2
Z¥= —————— Y ZF. (22.181)

n—r—=s-2,.0

Through their comparative study Lockhart, O’Reilly, and Stephens (1986b)
recommend overall the 4? test, and they also mentioned that while the Z*
test gives good power in many situations, it may also be inconsistent [also see
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Lockhart, O'Reilly, and Stephens (1986a) for a general discussion on tests
based on normalized spacings].

Tsujitani, Ohta, and Kase (1980) proposed a test based on the sample
entropy, presented its critical points for some sample sizes determined
through Monte Carlo simulations, and showed that it has desirable power
properties compared with some of the tests mentioned above. Oztiirk (1986)
considered the Shapiro-Wilk W test and presented some percentage points
determined through Monte Carlo simulations. A major difficulty of using the
W test is the requirement of the variance-covariance matrix of order statis-
tics. To overcome this difficulty, Oztiirk (1986) used an approximation for it
obtained from the generalized lambda distribution. A modification of the W
statistic has been considered by Oztiirk and Korukoglu (1988) in which the
test statistic has been obtained as the ratio of two linear estimators of the
parameter 8. These authors have determined percentage points of this
statistic through Monte Carlo simulations and have also displayed by means
of an empirical comparative study that this test possesses good power
properties. .

By using Kimball’s smplified linear estimators £ and 8 of ¢ and 8 (see
Section 9.2), Aly and Shayib (1992) proposed the statistic

n ((X - § i
M = — L 2]~ log|-logl1 -
" E,{( F ) Og[ Og( n+1)

i i
x(l - — l)log(l - 1) (22.182)

for testing the vaidity of the type 1 extreme value distribution for the
minimum. They determined the critical points of M, for some selected
sample sizes through Monte Carlo simulations. These values are presented in
Table 22.22. Aly and Shayib (1992) also compared the power of this test with
some other tests including the A2 test in (22.179) discussed by Lockhart,
O'Reilly, and Stephens (1986b). From this brief power study it seems that the
M, test outperforms the A% test for skewed alternatives (like log-Weibull
and log-chi-square); however, in the case of symmetric alternatives (like
normal and logistic), the A? test seems to be considerably better than the M,
test.

Tiago de Oliveira (1981) discussed the statistical choice among the differ-
ent extreme value models. Vogel (1986) discussed further on the probability
plot and the associated correlation coefficient test. Cohen (1986,1988) pre-
sented detailed discussions on the large-sample theory for fitting extreme
value distributions to maxima. Mann and Fertig (1975) proposed a goodness-
of-fit test for the two-parameter Weibull (or the type 1 extreme value
distribution for the maximum) against a three-parameter Weibull alternative
(see Chapter 21). Aitkin and Clayton (1980) discussed the fitting of extreme
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Table22.22 Critical valuesfor thestatistic M,

a a

0.10 0.05 0.01 0.10 0.05 0.01

6 1.857 2.803 7.814 19 0.892 1.081 1.499
7 1.577 2.108 4.513 20 0.851 1.011 1.388
8 1.418 1.827 2.991 25 0.803 0.944 1.273
9 1.282 1.586 2.436 30 0.763 0.902 1.251
10 1.176 1.419 2.166 35 0.743 0.866 1.189
11 1.109 1.350 1.953 40 0.723 0.855 1.186
12 1.053 1.260 1.810 45 0.698 0.832 1.098
13 1.002 1.194 1.675 50 0.681 0.806 1.085
14 0.969 1.162 1.666 60 0.648 0.769 1.071
15 0.956 1.142 1.571 70 0.627 0.745 1.038
16 0.935 1.108 1.528 80 0.619 0.722 1.030
17 0.912 1.065 1.514 90 0.588 0.7117 1.031
18 0.869 1.044 1.453 | 100 0.599 0.716 0.998

value distributions to complex censored surviva data using the GLIM soft-
ware.

14 APPLICATIONS

From the very definition of the extreme value distributions, it is clear that
these distributions will play a vital role in numerous applied problems. As
mentioned earlier in Sections 1 and 2, Gumbel played a pioneering role
during the 1940s and 1950sin bringing out several interesting applications for
the extreme value data and developing sound statistical methodology to
analyze such data. To give a good idea about the variety of applications that
have emerged over the years and the order in which these applications have
developed, we describe below these applied papers in a chronological order.

The first paper that described an application of the extreme values in
flood flows was by Fuller (1914). Griffith (1920) brought out an application
while discussing the phenomena of rupture and flow in solids. Next Gumbel
(1937a, b) used the extreme value distribution to model radioactive emissions
and human lifetimes. The use of the distribution to model the phenomenon
of rupture in solids was discussed by Weibull (1939). In this area Weibull
effectively advocated the use of reversed type 3 distributions which have now
become well-known as Weibull distributions and have been discussed in great
length in Chapter 21.

Gumbel (1941) applied the distribution to analyzing data on.flood flows,
and in subsequent work he continued his discussion on the plotting of flood
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discharges, estimation of flood levels, and forecast of floods [Gumbel
(1944, 1945, 1949a)]. Frenkel and Kontorova (1943) used the distribution to
study the brittle strength of crystals. The application to study earthquake
magnitudes was pointed out by Nordquist (1945). While discussing factors
influencing self-purification and their relation to pollution abatement, Velz
(1947) used the distribution to model the microorganism survival times.
Epstein (1948) applied the theory of extreme values to problems involving
fracture data. The role of the extreme value theory in the study of the
dielectric strength of paper capacitors was highlighted by Epstein and Brooks
(1948). Rantz and Riggs(1949) illustrated an application while analyzing the
magnitude and frequency of floods in the Columbia River Basin measured
during a U.S. Geological Survey. An interesting new application of the
extreme value theory to gust-load problems was brought out by Press (1949).
The extreme value distribution was used by Potter (1949) to study rainfall
data and to develop normalcy tests of precipitation and facilitate frequency
studies of runoff on small watersheds. Weibull (1949) stressed the role of
extreme value distributionsto represent fatigue failures in solids but, in doing
so, advocated once again the use of the Weibull distribution in place of the
type 1 extreme value distribution.

The so-called Gumbel method has been applied successfully to both
regular-type events (e.g., temperature and vapor pressure) and irregular-type
events (e.g., rainfall and wind) but with some deficiencies arising from the
asymptotic approximation, as noted by Jenkinson (1955). Thom emphasized
how the sparse sampling in time of extreme events obscured much of the
information in a rainfall process. He showed how the parameters of a Poisson
process could be identified with the annual recurrence rates of hourly
rainfalls above certain selected base values. Methods of analysis of extreme
hydrological events have changed little since the publication of Gumbel
(1941) on asymptotic theory dealing with flood discharges by streams. As
sumptions of the theory are that the frequency distribution of extremes
within successive intervals remains constant and that observed extremes may
be taken as being independent samples from a homogeneous population.

Gumbel (1954,1958) presented consolidated accounts of the statistical
theory of extreme values and several practical applications. These works may
be studied in conjunction with his later works [Gumbel (1962a, b)] to gain a
deeper and better knowledge of extreme value distributions. Thom (1954)
applied the distribution while discussing the frequency of maximum wind
speeds. In an interesting paper Aziz (1955) applied the extreme value theory
to an analysis of maximum pit depth data for aluminum. Kimball (1955) ably
explained several practical applications of the theory of extreme values and
also described some aspects of the statistical problems associated with them.
Jenkinson (1955) applied the extreme value distribution to model the annual
maximum or minimum values of some meteorological elements. Lieblein and
Zelen (1956) carried out an extensive study relating to inference based on the
extreme vaue distribution and applied their methods to investigate the
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fatiguelifeof deep-grove ball bearings. Eldredge (1957) discussed an analysis
of corrosion pitting by extreme value statistics and applied it to oil well
tubing caliper surveys. King (1959) summarized developments on extreme
value theory and explained their implications to reliability analysis. Canfield
(1975) and Canfield and Borgman (1975), while discussing various possible
statistical distributions as models of time to failure for reliability applications,
recommended highly the usage of the type 1 extreme value distribution.

As mentioned earlier in Section 3, Clough and Kotz (1965) gave interest-
ing interpretations for the conditions (22.13)-(22.15) and as a result pre-
sented some specia queueing model applications for the extreme value
distributions. Posner (1965) detailed an application of the extreme value
theory to communication engineering; see also the comments by Gumbel and
Mustafi (1966) on the paper by Posner. In a series of reports Simiu and
Filliben (1975,1976) and Simiu, Bietry, and Filliben (1978) used the extreme
value distributions extensively in the statistical analysis of extreme winds.

Shen, Bryson, and Ochoa (1980) applied the distributions for predictions
of flood. Watabe and Kitagawa (1980) demonstrated an application while
discussing the expectancy of maximum earthquake motions in Japan. While
Okubo and Narita (1980) followed the lines of Simiu and Filliben (1975,1976)
and used the extreme value distribution to model the data on extreme winds
in Japan, Wantz and Sinclair (1981) carried out a similar analysis on the
distribution of extreme winds in the Bonneville power administration service
area. Metcalfe and Mawdsey (1981) applied extreme value distribution to
estimate extreme low flows for pumped storage reservoir designs. The use of
the distribution in regional flood frequency estimation and network design
was demonstrated by Greis and Wood (1981). Roldan-Canas, Garcia-
Guzman, and Losada-Villasante (1982) constructed a stochastic extreme
value model for wind occurrence. An application of the extreme value
distribution in rainfall analysis was illustrated by Rasheed, Aldabagh, and
Ramamoorthy (1983). Henery (1984) presented an interesting application of
the extreme value model in predicting the results of horse races. While
Pericchi and Rodriguez-1turbe (1985) used the extreme value distribution in
a statistical analysis of floods, Burton and Makropoulos (1985) applied it in
an anaysis of seismic risk of circum-Pacific earthquakes. The last authors
specificaly used the extreme values from the type 1 extreme value distribu-
tion and their relationship with strain energy release.

A two-component extreme value distribution was proposed by Ross,
Fiorentino, and Versace (1986) for flood frequency analysis;, also see the
comments on this paper by Beran, Hosking, and Arnell (1986) and Rossi's
(1986) subsequent reply. Smith (1987), Jain and Singh (1987), and Ahmad,
Sinclair, and Spurr (1988), all provided further discussions on the application
of the type 1 extreme value distribution for flood frequency anaysis. Achcar,
Bolfarine, and Pericchi (1987) discussed the advantages of transforming a
surviva data to a type 1 extreme value distribution form and then analyzing
it. Nissan (1988) demonstrated an interesting application of the type 1



GENERALIZED EXTREME VALUE DISTRIBUTIONS 75

distribution in estimating insurance premiums. The role of statistics of
extremes in climatological problems was discussed in great detail by
Buishand (1989).

Cockrum, Larson, and Taylor (1990) and Taylor (1991) applied the ex-
treme value distributions in modeling and simulation studies involving prod-
uct flammability testing. Wiggins (1991) displayed an application in stock
markets. A mixture of extreme value distributions was used by Fahmi and
Abbasi (1991) to study earthquake magnitudes in Irag and conterminous
regions. Tawn (1992) discussed the estimation of probabilities of extreme sea
levels, while Hall (1992) discussed further on flood frequency anaysis. Bai,
Jakeman, and McAleer (1992) demonstrated an interesting application of the
extreme value distribution in predicting the upper percentiles that are of
great interest in environmental quality data.

Hopke and Paatero (1993) discussed the extreme value estimation in the
study of airborne particles and specifically in the estimation of the size
distribution of the aerosol and some related environmental problems. Kanda
(1993) considered an empirical extreme value distribution to model maximum
load intensities of the earthquake ground motion, the wind speed, and the
live load in supermarkets. Goka (1993) applied the extreme value distribution
to model accelerated life-test data to tantalum capacitors for space use and
to on-orbit data of single event phenomenon of memory integrated circuits in
the space radiation environment. Rajan (1993) stressed on the importance of
the extreme value theory by providing experimental examples where signifi-
cant deviations from the average microstructure exist in pertinent materials
physics. Some of these examples include the deviations from classica
Mullins—-von Neumann law for two-dimensional grain growth, the changes
occurring in the extreme values of grain size distributions associated with
significant changes in materials properties, and the role of extreme values of
pore size distributions in synthetic membranes. Scarf and Laycock (1993) and
Shibata (1993) have demonstrated some applications of extreme value theory
in corrosion engineering. Applications of extreme values in insurance have
been illustrated by Teugels and Beirlant (1993).

In addition many more problems and data sets for which the extreme
value distributions have been used for the analysis may be seen in the applied
books and volumes listed among the References.

15. GENERALIZED EXTREME VALUE DISTRIBUTIONS

The cumulative distribution function of the generalized extreme value distri-
butions is given by

o _ 1y
e Ty o <x <&t 6/y wheny >0,

Fy(x) = Et0/y<x<x when y < 0,

e lx-EV/8

, —o <x <o wheny = 0.
(22.183)
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As mentioned already in Section 2, the distribution above includes the type 2
distribution in Eq. (22.2) when y > 0, the type 3 distribution in Eq. (22.3)
when y <0, and the type 1 distribution in Eq. (22.1) when y =0. The
distribution is referred to as the uon Mises type extreme value distribution or
the uon Mises-Jenkinson type distribution. Senkinson (1955) used this general-
ized distribution to analyze annual maximum or minimum values of certain
meteorological elements. The density function corresponding to (22.183) is

1 x — &Y Usy-1
e~ 1=z =6)/00 /7, g 11—y

)
8
—w<x <&+ — when y > 0,
Y
px(x) = 8
§+;5x<°o when ¥ <0,
4 1 —(x—-£)/8
e - —e R
0
-0 <x < ® when y = 0.

(22.184)

The standard form of the generalized extreme value distributions has cdf

e~~~ ®<y<1l/y wheny?>0,
Fy(y) = 1/y<y<eo  wheny<0, (22.185)
e, —® <y <o wheny =0,
and pdf
e—(l—w)l/v(l _ _yy)(l/v)—l’ —o<y< 1/7 when y > 0,
py(y) = B 1/y<y<w wheny <0,
e~ees ~w<y<om wheny = 0.

(22.186)

Maritz and Munro (1967) studied order statistics from this generaized
extreme value distribution, and presented tables of means of order statistics
from sample sizes 5 to 10 for the choices of the shape parameter y =
—0.10(0.05)0.40. These authors have also discussed the estimation of all
three parameters ¢, 6, and y by the use of order statistics.
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From Egs. (22.185) and (22.186), we observe the characterizing differential
eguation

(1 = yy)py(y) = —Fy(y)log Fy(y). (22.187)

Balakrishnan, Chan, and Ahsanullah (1993) have exploited the differential
equation (22.187) in order to establish several recurrence relations satisfied
by the single and the product moments of lower record values. Specificaly,

let Y, = Y, Y2, .. bethelower record values arising from the sequence
{Y}) of 'i.i.d. random variables with generalized extreme value distribution

(22.185). Then, by proceeding on lines similar to those explained in,Section 6
and using the differential equation in (22.187), Balakrishnan, Chan, and
Ahsanullah (1993) established the following relationships:

, y(r+1) , r+1
v - {1+ 22DV ey - v
n=12,...,r=0,1,.... (22.188)

E[YLr(Tnl)Ylf(m+l)] = {(r + UE[YLr(m)YIf(mH)] + mE[YLr(TnS:ll) },

m+ y(r+1)
m=12,...,r,s=0,1,.... (22.189)
E[YE5Yim] =

m+ y(r + 1) {(r + 1)E[YL’(m)Ylf(n)] + ’"E[YLr(Tan)YLS(n)]}v

lsms<n-2,r,s=0,1,.... (22.190)
E[Y mYiinen] = (1 +v(s + DYE[YmYidtin] + (s + DE[Y (0 ¥iimen)
+ m{E[YLr(Tns:ll) - E[YLr(m+l)YIf(Tn‘+2)] }’
m = 1,2,...,r,s=0,1,.... (22.191)
1

n—m

E[Y/mYitiy] = {{n —m 4+ y(s + DIE[ Y/, Yits]
_(S + 1)E[Yl,r(m)ylf(n)]

+m{E[YLr(m+|)YIf+I(n)] - E[Yl:(m+|)ylf+l(n+l)] }},

lsm<n-2,r,5=0,1,... (22.192)

From these recurrence relations Balakrishnan, Chan, and Ahsanullah (1993)
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also deduced the results

Y 1
E[Y niny) = (1 + -n-)E[YL(,,,] - = forn =1,
m
COV(Yeimy Yigmen)) = p— Yvar(YL(,,,+,)) formz=1,
(n _ 1)(n—m)
coV(Yy(mys Yiim) = var(¥,,,) forlsmsn-2,

where

o [1 ifi=0,
r(r=1)-(r—i+1) ifi=12,....

Recurrence relations for product moments involving more than two record
values have also been established by these authors. When the shape parame-
ter y — 0, the relations in (22.188)-(22.192) reduce to the corresponding
results for the type 1 extreme value distribution presented in Section 6.
Ahsanullah and Holland (1994) have discussed the estimation of the location
and scale parameters of the generalized extreme value distribution (when y
is known) based on the record values.

The maximum likelihood estimation of the parameters £, 8, and y have
been discussed by a number of authors including Jenkinson (1969), Prescott
and Walden (1980, 1983), Hosking (1985), and Macleod (1989). Based on a
complete sample of size n from the generalized extreme value distribution
(22.183), the Fisher expected information matrix is given by [Prescott and
Walden (1980)]

E 8% log L | n
T T | T e?
gl ZlosL]  n 1 - 2r(2
_ EYY __oz,yz{ - ( —7)+p},
[ %logL] n (w2 1\> 29 p
E|- =—{— +{1-057T2157 - = | + == + =},
| ey | | 6 ( 7) Y 72}
Ef 8% log L | n 2
E| - -3¢0y | 8y y)
a%log L | n 1_TI(2_ p
_ologb | [ osrrors7 - =T =) —q-=|,
30 dy | 0y | Y \4
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where

- 1=
=(l—y)21‘(1 -2y) and q:F(Z_y){ Y) y)’}

The regularity conditions are satisfied when y < 3, and in this case the
asymptotic variances and covariances of the maximum likelihood estimators
are given by the elements of the inverse of the Fisher information matrix
whose elements are as given above.

Hosking (1985) has presented a FORTRAN subroutine MLEGEV that
facilitates the calculation of the maximum likelihood estimates of the param-
eters ¢, 8, and y (by the Newton-Raphson method) and the variance-covari-
ance matrix of the estimated parameters (by the expressions given above).
Macleod (1989) has noted that if the initial estimate for the shape parameter
y is 0, then Hosking's algorithm will attempt to calculate 1.0,/0.0, which will
cause a failure on many compilers. Macleod has therefore suggested an
adjustment that should be applied to Hosking's algorithm.

Hosking, Wallis, and Wood (1985) have discussed the method of probabil-
ity-weighted moments (PWM) for the estimation of the parameters ¢, 8, and
y. In this approach one considers the moments

:

=E[X{F(x))], r=0,1,2,..., (22.193)

and sets up the necessary number of moment equations by using the sample
statistics

1 n _ 1)(")
=—-Yy ——=x, =0,1,2,..., .
- § mETORE r=0,1,2 (22.194)

which are unbiased estimators of the moments 8, (see Section 9.8). One may
instead use the simplified estimates

1 n
AT ~ L piaXi, (22.195)

where p; ,, is a plotting position [a distribution-free estimate of F(X;)] that
may be taken as

or

Pin= "1 ——<ac< -
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For the generalized extreme value distribution, Hosking, Wallis, and Wood
(1985) derived

1
r+1

B, =

o (1 +
§+;{1 (i ;)H y> =1,y #0. (22.196)

They used (22.196) to show that
A 6
Bo=By=¢&+ ;{1—1“(1+7)}, (22.197)

A ]
2B, = Bo=2B; — By = —y—l“(l +y)(1 —277), (22.198)
and

38, - By 3B, -By  1-37
B Bo - 2B — By T 1= (22.199)

Since the exact solution for y from Eq. (22.199) requires iterative methods,
Hosking, Wallis, and Wood (1985) suggested the approximate estimator

3 = 7.8590c + 2.9554¢?, (22.200)
where
_2Bi- B _ log2
36, - P log3

Using the estimator ¥ in (22.2001, we readily obtain from Egs. (22.198) and
(22.197) the estimators of ¢ and ¢ to be

(ZBI - éo)i’

o= T(1+9)(1-27)

(22.201)

and

~

g
E=Bo+ 5(ra++)-1). (22.202)

Using standard arguments, Hosking, Wallis, and Wood (1985) have shown
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Table22.23 Elementsof the asymptotic variance-covariancematrix of the PWM
estimator sof the parameter sof the generalized extreme valuedistribution

Y LT} Wiz Wis Wy W3 Wi
- 0.4 1.6637 1.3355 1.1405 1.8461 1.1628 2.9092
-03 1.4153 0.8912 0.5640 1.2574 0.4442 1.4090
-02 1.3322 0.6727 0.3926 1.0013 0.2697 0.9139
-0.1 1.2915 0.5104 0.3245 0.8440 0.2240 0.6815
0.0 1.2686 0.3704 0.2992 0.7390 0.2247 0.5633
0.1 1.2551 0.2411 0.2966 0.6708 0.2447 0.5103
0.2 1.2474 0.1177 0.3081 0.6330 0.2728 0.5021
03 1.2438 -0.0023 0.3297 0.6223 0.3033 0.52%94
0.4 1.2433 —-0.1205 0.3592 0.6368 0.3329 0.5880

that the asymptotic variance-covariance matrix of (¢ & y*)' is given by

1 8%w,, 0°w,, 6w,
- 0w,  Ow,, (22.203)
Wi

where the w's depend only on y. Values of these elements for different
choices of the shape parameter y, taken from Hosking, Wallis, and Wood
(1985), are presented in Table 22.23. The asymptotic efficiency of the individ-
ual PWM estimators and the overall efficiency (determined by determinants
of the variance-covariance matrices) are presented in Figure 22.2 [taken from
Hosking, Wallis, and Wood (1985)].

In defining partial probability-weighted moments, Wang (1990) discussed
the estimation of the parameters of the generalized extreme value distribu-
tion based on censored samples. Prescott and Walden (1983) have discussed
the maximum likelihood estimation of the parameters £, 8, and y a doubly
Type-11 censored sample X/,,,- .-, X, _. (where the smallest r and the
largest s observations are censored in a sample of size n) from the general-
ized extreme value distribution (22.183). They have also presented expres-
sions for the asymptotic variance-covariance matrix of these MLEs.

Smith (1984) has discussed a choice probability characterization of gener-
alized extreme value models. Testing whether the shape parameter y is zero
in the generalized extreme value distributions for the data at hand has been
discussed by Hosking (1984). Some goodness-of-fit tests for the generalized
extreme value distributions have been examined by Chowdhury, Stedinger,
and Lu (1991). An excellent discussion on the models for exceedances over
high thresholds by Davison and Smith (199) provides further insight into
issues relating to these distributions. By giving a predictive likelihood that
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approximates both Bayes and maximum likelihood predictive inference,
Davison (1986) has applied it to the prediction of extremes using the
generalized extreme value distribution.

As has already been pointed out in Section 2, the Gompertz (1825)
distribution of lifetimes is a reparametrization of the type 1 extreme value
distribution. This distribution gives good fit to data from clinical trials on
older subjects and is also useful in the construction of life tables [Stephens
(1977)]. The cdf has been given by various authors in different forms. Garg,
Raja Rao, and Redmond (1970) have defined it in terms of the hazard rate
(or the force of mortality) as

r(t) =Ke*, t=20
yielding the survival function
1 - F(t) =e Ke"=D/a 159 (22.204)
and the probability density function

p(r) = KeX e K"=D/e 1> 0.
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Actually Gompertz (1825) defined a function (or transformation) y(t) =
K(e* — 1)/a which transforms the random variable T into y(7") which is
exponentialy distributed with mean 1.

Ahuja (1971) provided the classical definition in terms of the distribution
function

F(f)y=e*", —o<t<om, (22.205)

which was earlier generalized by Ahuja and Nash (1967), by introducing an
additional shape parameter 4, with the density function

p(t;p, 1) = (pe= /")l eee™™  —w <t <o (22.206)

1
ul'(é)
The cumulants of the distribution (22.205) are
7r2p.2

6

kK, =u(y +logp), «,= . Ky = 2.404°,

ignoring the terms e ~# [Revfeim (1984b)].

Garg, Raja Rao, and Redmond (1970) observed the following property of
the Gompertz distribution (22.204). If the origin is shifted to the point (i.e.,
by writing ¢’ =t — ¢, so that ¢ > 0), the density remains in the form

p(t') - Krear'e—K'(e“"—l)/a, t'>0

with K' = Ke*" = r(t,), the hazard rate at t,. Thus, truncating a Gompertz
distribution at time t, and setting the origin at t, leaves the distribution
unchanged except that the constant K changesto K.

Garg, Rgja Rao, and Redmond (1970) have also discussed the maximum
likelihood estimation of the parameters based on censored samples and
grouped data. For example, consider the time interval [0, ¢,,) subdivided into
m subintervals [0, £,), (¢, 130, . ", [t~ 1) Let

n = number of individuals in the sample,

d; = observable number of individuals faling (dying) within the time
interval [¢;_,, t,),

s, = observable number of individuals surviving upto time ¢; and lost or
withdrawn from the followup

for i =1,2,...,m. Then the log-likelihood function is given by

K
logL = const.+ DlogK + aT — ;Q(a),
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where

O(a) = ¥ {s(e* = 1) + di(e*" - 1)}

i=1

yielding the maximum likelihood estimator of K as

g- 28 22.207
0@’ (22
and the solution of the equation
D Q'(a)
T+ —~-D =0 22.208
= "o (22:208)

as the maximum likelihood estimator of a. An iterative solution to(22. 208)
can be achieved by Newton's method; the initial estimate a, may be selected
as the least-squares estimate of a obtained by calculating the numerical
value of the force of mortality, r(¢), for each ¢ for the data and minimizing

Y {logr(t) —logK — a)'. (22. 209)

The maximum likelihood estimate of K may then be obtained from(22. 207).
Numerical data based on an experiment to determine the effects of pro-
longed oral conception on mortality of mice conducted by Garg, Raja Rao,
and Redmond (1970) showed that this distribution described quite well the
mortality of the micein each d the five treatment groups. Furthermore the
fit was observed to improve substantially by the use of the maximum likeli-
hood estimators as compared to the least-squares estimators.

Ahuja (1972) concentrated on the generalized Gompertz density(22. 206)
and showed that, given two independent random variables X and Y with
respective generalized Gompertz densities

px(tispn,d) and py(ty;p0,,4,8), (22.210)
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then the conditional density function of X given Z = X — Y = z isa general-
ized Gompertz density

p(t;p) +p e  u, ¢ +0).

This property may be compared with damage models involving binomia and
Poisson distributions, and also with normal distributions (see Chapters 4 and
13). Moreover the characteristic function corresponding to the generalized
Gompertz density (22.206) is given by

T(d —ipu)

y(usp, i, ) =e* )

(22.211)

hence the characteristic function corresponding to the difference of two

independent Gompertz variables with parameters (p,, i, @) and (p,, u, 8) is

given by

iwe (¢ - ipu)l(6 tipu)
I'(4)I(6)

ba(u) = (f’—)

P2

(22.212)

The characteristic function of Z in (22.212) readily shows that Z is a
generalized logistic random variable (see Chapter 23) with density function

(pem/)”
M,B(d),ﬂ) (1 +pe—z/y,)¢‘+a’

pz(Z;P,[L,¢,9) -0 <z <o,

(22.213)

Scarf (1992) has considered a four-parameter generalized extreme value
distribution, and discussed the maximum likelihood estimation and the
probability-weighted moment estimation of the parameters. Scarf has noted
that in certain applications, data on extremes arise as paired observations
(X,t),i=12,...,n, where X, isobserved at time ¢,, independently of X,
at time t,. One such application arises in metallic corrosion where X, is the
depth of the largest pit penetration over a standard area of metal surface
exposed to a corrosive environment for time ¢;. In this situation Scarf (1992)
has proposed a four-parameter form of the generalized extreme value distri-
bution as

Fy (x) =e Uxfoeyal =B < gy +0, 6,8>0. (22.214)

Scarf has then discussed methods of estimation of the four parameters ¢, 8,
v, and S,
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16 OTHER RELATED DISTRIBUTIONS

There is clearly a close connection between the three types of extremal
distributions. As seen in the last section, the standard type 1 extreme
value distribution is a transitional limiting form between type 2 and type 3
(Weibull) distributions. Furthermore, as mentioned in Section 9 (and also in
Chapter 21), a logarithmic transformation of a Welbull random variable
results in a type 1 extreme value random variable. Also, if Y is a standard
type 1 extreme value random variable with density (22.26), then e~" has a
standard exponential distribution (as noted earlier in Section 4).

A rather unexpected relation holds between the logistic and type 1
distributions. If two independent random variables each have the same type 1
distribution, their difference has a logistic distribution [Gumbel (1961)].
Gumbel (1962c¢, d) has also studied the distribution of products and ratios of
independent variables having extreme value distributions. Tables of the
distribution of the "'extremal quotient™ [(greatest) /(- least), i.e., X, /(-X}]
have been published by Gumbel and Pickands (1967).

Limiting distributions of second, third, and so forth, greatest (or least)
values may also be regarded as being related to extreme value distributions.
Gumbel (1958) has shown that under the same conditions as those leading to
the type 1 extreme value distribution, the limiting distribution of the rth
greatest value Y, _,,, = (X, _,,, — £€)/6 hasthe standard form of probabil-
ity density function

Py, () =rl(r=D "exp[—-ry —re].  (22.215)

100a% points of this distribution are given by Gumbel (1958) to 5 decimal
places for

r = 1(1)15(5)50,
a =0.005,0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.995.

The moment-generating function of distribution (22.215) is
r'T(r —1)
I'(r)
The cumulant-generating function is
tlogr +log T(r - t) — logI'(r)
so the cumulants are

k, =logr — y(r)
K, = (-~ 1)’¢(S—l)(r), s> 2. (22.216)
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The limiting distribution (22.215), which corresponds to a fixed value of r,
should be distinguished from distributions obtained by alowing r to vary
with n (usualy in such a way that r/n is nearly constant) or by keeping r
constant but varying the argument value. Borgman (1961), for example, has
shown that if x, be defined by F,(x,) =1 — w/n, for given fixed w[where
F,(x) is the cumulative distribution function of the population distribution],
then

limPe[X!_,,,ax,,] =1 [(r- 1)!]_lfwt"'e"‘dt. (22.217)
0

n-—oc0

The right-hand side of (22.217) can also be written in terms of a y?
distribution, as Pr{ 3, > 2w].

The asymptotic distribution of range is naturally closely connected with
extreme value distributions. If both the greatest and least values have limiting
distributions of type 1, then [Gumbel (1947)] the limiting distribution of the
range, R, isof form

Pr{R <r] =2e "?K,(2¢7"/?), r>0, (22.218)
with probability density function
pr(r) = 2e "Ky(2e777%), r>0,

where K, K, are modified Bessel functions of the second kind of orders
zero, one, respectively. Gumbel gives the values
E[R] = 2y = 1.15443,
Median R = 0.92860,
Modal R = 0.50637.
Also

r4

m

3

var(R) = = 3.2899.

In Gumbel (1949b) there are tables of Pr{ R < r] and pg(r) to seven decimal
places for

r= —4.6(0.1) - 3.3(0.05)11.00(0.5)20.0,
and of percentile points R, to four decimal placesfor

a = 0.0002(0.0001)0.0010(0.001)0.010(0.01)0.95(0.001)0.998
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and to three decimal places for
a = 0.001,0.999(0.0001)0.9999.

Some forms of generalized and compound type 1 extreme value distribu-
tions have been constructed by Dubey (1969). He generalizes the distribution
by introducing an extra parameter r, defining the cumulative distribution
function by the equation

PrlX <x] = exp[—fﬂ exp{— z ; §>] (22.219)

However, since

oew(- 555 - ow{ - 255
70 exp{ — = exp{ —
o (7]

with ¢' = ¢ + #log 78, it can be seen that X still has an ordinary type 1
distribution. This generalized distribution is, however, introduced only as an
intermediate step in the construction of a compound type 1 extreme vaue
distribution, which can be denoted formally as

" Generalized" type 1 extreme value (¢, 8,7) A Gamma( p,8)

7

Here 7 issupposed to have probability density function

I'(p)

The resulting compound distribution has cumulative distribution function

Pr{X <x]= [F[(};) ][:t"“ cxp[—-t{B + Bexp(——x—;——g)}]dt

_ -p
1+ OB*'exp{—fTé}] )

p.(t) = tPle B t>0,p>0,8>0.

We may note that this distribution, different from the generalized logistic
distribution introduced by Ahuja and Nash (1967), can also be regarded as a
generalized logidtic distribution. [ See Hald (1952) and Chapter 23, Section 101
In fact thisistermed a type | generalized logigtic distribution in Chapter 23. By
considering a cumulative distribution function

PriX <x]=1- exp[-rﬂ exp{f—;—g}] (22.221)
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and using a similar gamma compounding, Balakrishnan and Leung (1988a)
derived the cumulative distribution function

. -pP
PrX<x]=1- e*ﬂ”—ﬂ/f'[ag-' + exp{— x_g_ﬁ_}] . (22222)

This distribution has been termed a Type-|l generalized logistic distribution in
Chapter 23. As mentioned there, the type | and Type-11 generalized logistic
distributions are related by a simple negation of the random variables.

Proceeding similarly, Balakrishnan and Leung (1988a) started with the
exponential-gamma density function

x— & k(x = &) T~
e
—o<x<ow,k>0,0>0, (22.223)

and compounded it with a gamma density function for r to derive the density
function

foce—le_”_-ﬂ/ae—x(x—§)/6 L B? tP-Ve~Bt gy
0 6T (x) T(p)

__B"

8T (p)I'(x)
1 [B~'exp{—(x — £)/8}]"

0B(x,p) 1+ B "exp{—(x — £)/6}]

px(x)

~kl(x~£)/0 j'me—r[gw‘“‘f’/”]txw—l dt
0

K+p

—e<x<w,k>0,p>0,08>0. (22224)

The density function in (22.224) has been termed a type IV generalized logistic
density in Chapter 23. For the specia case when p=«k, the type IV
generalized logistic density function in (22.224) becomes symmetric about
x = ¢ and has been referred to as a Type-Ill generalized logistic density in
Chapter 23.

The standard log-gamma density function

py(y) = —o <y <omw k>0 (22.225)

can be considered as a generalization of the standard type 1 extreme value
density. Specificdly, if Y has the density function in (22.225), for the case
when « = 1 the variable ~Y is distributed simply as a standard type 1
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extreme value random variable. We may note that for integral values of «,
(22.225) is related to the density (22.215). The cumulative distribution func-
tion corresponding to the density (22.225) is

Fy(y) =IL,(x), —o<y <o, k>0, (22.226)
where 1,(x) is the incomplete gamma function ratio

1
t
1,(K):/(;F(K)e‘zz""dz, 0<t<oo,k>0.

For integral values of « therefore we have (see Chapter 17)

iy

e
L=Fy(y)=e@ L —, -w<y<wx=12... (22)
i=0 b

The moment-generating function corresponding to the density (22.225) is

L F(K'+t).
Ele") =~
in particular, we have
E[Y]=4¢(x) and var(Y) =¢'(k). (22.228)

Since ¢(x) ~ logk and ¢'(x) ~ 1/« for large k, Prentice (1974) suggested a
reparametrized log-gamma density function

KK—-I/Z

I'(«)

which tends to the standard normal density function as k — . By introduc-
ing a location parameter £ and a scale parameter 6 in the density (22.225),
we obtain a three-parameter log-gamma density function as

pE(Y) = efrke N p gy <w k>0 (22.229)

py(x) = exxmE/ 0= 50,0 > 0. (22.230)

(k)

This is clearly a generalization of the type 1 extreme value density function
(22.25). Lawless (1980,1982) has illustrated the usefulness of the three-
parameter log-gamma density (22.230) as a life-test model and the maximum
likelihood estimation of the parameters; also see Prentice (1974). Balakrish-
nan and Chan (1994a, b, c, d) have discussed order statistics from this distri-
bution and also the best linear unbiased estimation, the asymptotic best
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linear unbiased estimation, and the maximum likelihood estimation of the
parameters based on complete as well as Type-11 censored samples. Y oung
and Bakir (1987) have discussed the log-gamma regression model. Lawless
(1980) and DiCiccio (1987) have discussed inferential procedures for a
related generalized gamma distribution (see Chapter 17 for details). Mihram
(1975) referred to this distribution as a generalized extreme value distribution
and discussed some basic properties of the distribution (like the closure
under linear transformation, shapes, etc.) and inferential methods for the
parameters (like sufficiency, efficiency, etc.).

A two-component mixture of extreme value distributions with density func-
tion
L ae_(’_f')/o' gt T

0* ’

—o<x <0, 0<a<l,6>0, 6*>0, (22.231)

a
Px(x) = ;e—(x*f)/ﬂe—e

and cumulative distribution function

_e-tx-b)/8 i

Fy(x) =ae + (1 —-a)e , - < x <o, (22.232)

has also been used in some applied problems. The moment-generating

function of this distribution is

My(t) =ae“T(1-Bt) T (1-a)e'T(1-6*), |tlmax(6,6*) < 1.
(22.233)

In particular, the mean and variance are

E[X]={a(¢e-¢*) T &) + y{a(6 - 0*) T 0*) (22.234)

and

var(X) = %[002 + (1 - a)8*?) +a(l - a){(£ - £*) + v(0 — 6*))".
(22.235)

Rossi, Fiorentino, and Versace (1986) have made use of this two-component
extreme value distribution for flood frequency analysis, aso see Beran,
Hosking, and Arnell (1986) and Rossi (1986) for additional comments in this
regard.

Revfeim (1984a) discussed an alternative parametric form of the type 1
extreme value distribution for the maximum and used it to derive an
extended family of type 1 extreme value distributions. To be specific, let us
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suppose that events occur in a Poisson process of rate p. If the sizes of the
events are distributed independently of occurrence and of each other with
cdf G(x), then the maximum sizes within unit time intervals have cdf

e PU-G)} _ o-p

F(x) = (22.236)

1—-e7*
If pislarge, then e~ is negligible. For the exponential distribution with
G(x) =1 - e */*, (22.236) then gives(for large p)

F(x) =ere", (22.237)

which is just a reparametrized form of the type 1 extreme value distribution
for the maximum in (22.1) [Revfeim (1984b)); see also Revfeim (1984c) and
Revfeim and Hessell (1984). Next, choosing G(x) to be the gamma distribu-
tion of integer order p with cdf

p—1 i
G(x) =1-em y L8

i=0

b

i!

Revfeim (1984a) derived from (22.236) an extended family of type 1 extreme
value distributions with cdf

p=l (x/p)

F(x) =exp{ —pe */* -
i

. (22.238)
i=0

For p = 1, (22.238) reduces to the type 1 distribution in (22.237). Moment
properties of the distribution (22.238) for integral p > 1 have been discussed
by Revfeim (1984a). Revfeim and Hessell (1984) have applied the distribution
(22.238) to model extreme wind gusts. The distribution (22.238) was aso
derived by Zelenhasic (1970) in connection with river flow exceedances. The
mean of this distribution is approximated by

E[X] = pa(logp + b)

where a and b are functions of the gamma shape parameter p. For the value
of p =8 (the most likely value for maximum wind gusts), a and b are 1.58
and 6.00, respectively. Similarly a and b are 1.31 and 3.55 when p = 4, and
1.13 and 1.82 when p = 2. (Note that forp=1,a=1and b =y.)
Maximum likelihood estimators of 1 and p, when p isknown, are given by

X
P

S, 1
A= 1+ | and p= I (22.239)
0 0
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where
r-1 z
So= L =,
0 =i
Z
Si =,
D
V4
S2 - p+1
p!
with

n R
Z, = l Z e-&/#(f.’.) .
n;5 m

4 can be obtained iteratively by dividing the current value of . by 1+ D,
where

- So + S, "Xso/(lm)
S, + )?[(So/ﬂ) - Sl]/ﬂ .

The general formula for the kth raw moment of the distribution (22.228)
is

P 1 — -1 :
E[ XK1 = 4% ~lo ptk 'e—py):,”=()(—|ogy)‘/'! dy,
[X*] = u F(p)fo( g ) y

with y = e™*/#. (22.240)

Thisis difficult to evaluate even numerically, due to the singularity at y = O,
and especialy for large p and k.
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CHAPTER 23

Logistic Distribution

1 HISTORICAL REMARKS AND GENESIS

An early reference to the use of the logistic function as a growth curve is by
Verhulst (1838,1845). The use of the curve for economic demographic
purposes has been very popular since the end of the nineteenth century.
Many other applications of the logistic curve have also been found over the
years. Pearl and Reed (1920, 1924), Pearl, Reed, and Kish (1940), and Schultz
(1930) all applied the logistic model as a growth model in human populations
aswell asin some biological organisms. Schultz (1930) and Oliver (1964) used
the logistic function to model agricultural production data. A number of
authors including Pearl (1940), Berkson (1944,1951,1953), and Finney
(1947,1952) discussed applications of the logistic function in bioassay prob-
lems. A few more interesting uses of the logistic function are in the analysis
of survival data [Plackett (1959)), in the study of income distributions [Fisk
(1961)], and in the modeling of the spread of an innovation [Oliver (1969)].
The logistic function and the logistic distribution have found several impor-
tant applications in many different fields. A book length account of these is
due to Balakrishnan (1992). In view of the encyclopedic nature of the
treatment given in that book, we refrain from discussing this distribution in
great detail and focus mainly on some significant developments concerning
the distribution. Interested readers may refer to the volume by Balakrishnan
(1992) for more details and relevant references.

The use of logistic function as a growth curve can be based on the
differential equation

dF
E=c[F(x)—A][B—F(x)] (23.1)

where ¢, A, and B are constants with ¢ > 0, B >A. In verba form (23.1)
can be interpreted as rate of growth = [excess over initial (asymptotic) value
A] X [deficiency compared with final (asymptotic) value B].
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Solution of (23.1) leads to

BDe*’c + A

PO = Dersi

(232)

where D is a constant. As X —» —o, F(x) - A; as x - », F(x) - B (if
D # 0). Thefunction F{x) represents' growth" from a lower asymptote A to
an upper asymptote B. To make F(x) a proper cumulative distribution
function, we put A = 0, B = 1; equation (23.2) then becomes

ex/c -
=[1+D e /] (23.3)

which is of the logistic distribution form given in the next section with ¢ = 8
and D = e /5,

Equation (23.1) has been used as a model of autocatalysis. This is the
name applied to a chemica reaction in which a catalyst M transforms a
compound G into two compounds Jand K, and J itself acts as a catalyst for
the same reaction. If M,, G, = original concentrations of M, G, respectively,
and y = common value of concentration of Jand K at time ¢, then the law
of mass action in this case is

dy
;17=CIM0(G()—'Y) + 6, y(Gy—y) (23.4)

(c; and ¢, are "catalytic constants" for the actions of E, J, respectively).
The right-hand side of (23.4) can be rearranged to read

Cy C, C
cz(y + —MO)[(G(, + —Mn) - (y + ——MO)] (23.5)
cy Cy (%)
which is the same form as (23.1) with F(x), x replaced by (y + ¢,M,/c,), t,
respectively, and with c=¢,, A =0;B =G, + ¢,M,/c,.

Thelogistic distribution arises in a purely statistical manner as the limiting
distribution (as n — @) of the standardized midrange (average of largest and
smallest sample values) of random samples of size n. This result was given by
Gumbel (1944). Gumbel and Keeney (1950) [see also Gumbel and Pickands
(1967)] showed that a logistic distribution is obtained as the limiting distribu-
tion of an appropriate multiple of the "extremal quotient,” that is, (largest
value) /(smallest value). (See Chapter 22.)

Talacko (1956) has shown that the logistic is the limiting distribution (as
r — o) of the standardized variable corresponding to Xj_,j~'X,, where the
X;’s are independent random variables each having a type 1 extreme vaue
distribution (see Chapter 22).
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Dubey (1969) has shown that the logistic distribution can be obtained as a
mixture of extreme value distributions

B

[obtained by putting 6 =at Blog(nB8) in Eq. (22.1)], with n having an
exponential distribution with density function

X -«
Pr[szIn]=l—exp[—nBexp{— }] 7,8>0

p(y)=Be ™, y>0.

Then

© X —«
Pri{X <x]=1 —B/ exp[—ﬂy{l +exp(— }]dy
0 B

feresf-57)]

which is identical to the logistic distribution given in the next section. More
historical details of the distribution may be found in Balakrishnan (1992).

2 DEFINITION

The distribution is most simply defined in terms of its cumulative distribution
function
. {x —«a }] -1
+ exp
B

ool 5%

é[lhanh{%(x;a)}], with 8> 0. (23.6)

Fy(x)=1-

It can be seen that (23.6) defines a proper cumulative distribution function
with

lim Fy(x) =0,
X— —oc

lim Fy(x) = 1.
X — o
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The corresponding probability density function is
Px(x) B“[ (%= Ml {X‘a}‘_z
X) = exp exXpy ——
¥ B ara

ol o552

= (4B) ' sech? l(x_a) (23.7)
= A . .
The distribution is sometimes called the sech-square(d) distribution.

The function on the right-hand side of (23.6) has been used extensively to
represent growth functions (with x representing time). We will be primarily
concerned with its use as a distribution function (which can of course include
situations in which the random variable represents time). It is worth noting
that methods developed for fitting the logistic as a growth curve [e.g.,
Erkelens (1968) and Balakrishnan (1992, ch. 13)] can also be applied tofit the
cumulative logistic distribution.

3 GENERATING FUNCTIONS AND MOMENTS

Making the transformation Y = (X — a)/8, we obtain, from (23.7), the
probability density function of Y

py(y) =e (1 +e?) % = Lsech®ly. (23.8)
The cumulative distribution function of Y is
Fy(y) =(1+e™)"". (23.9)

Equations (23.8) and (23.9) are standard forms for the logistic distribution.
[They are not the only standard forms. Equations (23.13) and (23.14), which
express the distribution in terms of mean and standard deviation, can also be
regarded as standard.]

The moment-generating function of the random variable Y with probabil-
ity density function (23.8) is

E[e"] =My (8) = [ e 0" (1+e7) 2y

= j(')lf_a(l - f)adg’ [With &= (ey + 1)—11

=B(1-6,1+86)
= 76 COSeC 0. (23.10)
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The characteristic function E(e”Y) is at cosech =¢. The moments of Y

may be determined from (23.10), or by direct integration from (23.8). Using
the latter method (with r > 0),

E[IYI"] = 2fmy’e“y(1 +e™) Zdy
0

=2[ VT (-1) e dy
0 j=1

m

=2 +1 (=17 (forr>0)

j=1
=2I(r+ 1)1 = 27U"M¢(r)  (forr>1), (23.11)

where {(r) = £7_,j " is the Riemann zeta function (see Chapter 1).

The cumulants are (for r even) «,(Y) = 6(2" — 1)B,, where B, isthe rth
Bernoulli number (see Chapter 1). If r isodd, «,(Y) = 0. The distribution of
Y issymmetrical about y = 0. Putting r = 2,4 in (23.11)

‘ITZ 77'2
var(Y) = E(Y?) =2 2(1 — 2—')(—6-) =3

(ry=2-24(1 - 29[| = Lo
Hal B )= Neo| =37
The first two moment-ratios of the distribution are

VBl =a3;=0;8;=a,=42.

The mean deviation is 2L5_(-1Y~'~' = 2log, 2. Hence for the logistic
distribution

Mean deviation 2V3log, 2 _ 0.764.
Standard deviation r

Returning to the original form of the distribution (23.6), and recalling that
X =a*t BY, we see that

E[X])=a
var( X) = B*n%/3. (23.12)

The coefficient of variation is, therefore, Bm/(av3). The moment-ratios (and
the ratio of mean deviation to standard deviation), are. of course. the same
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for X asfor Y. The cumulative distribution function of X can be expressed
in terms of E[X]= ¢ and var(X) = ¢? in the standard form

-1
Fy(x) = |1+ exp - T8 (23.13)
X P 0\/5 . .
The corresponding probability density function is

() = Jexpl - TEZON [ 4 o[- TEZ O]
Dx 0-‘/3 €Xp a"/3— cXp 0_‘/3— .
(23.14)

The information-generating function {(« — 1)-th frequency moment] cor-
responding to the probability density function (23.8) is

Ty(u) = [ e™(1-e™) ™ dy

— @

0 er
- f_m(l + e’

- flema- o ae
= B(u,u)

[T(u)]
r2u) -~

u

(1+e) “dy

(23.15)

The entropy is
—2r()r(y - 2[r))’r(e)
r2) | TQ)

=2(¢(2) — ¥(1))
= 2.

~Ty(1) =

4 PROPERTIES

Gumbel (1961) noted the properties
py(y) = Fy(y)[1 - Fy(»)]. (23.16)

Fy(y)
y = log(,[—————1 — F,,(y)] (23.17)
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for p,(y), with F,(y) defined asin (23.8) and (23.9). In general, the inverse
distribution function or the quantile function (of probability y) is

a+Blog( U ),
1 -y

and the inverse surviva function (of probability y) is

1_
a+Blog( y)'
Y

As a result we readily note that the logistic (a, 8) distribution arises as the
distribution of

| U eV

a+p Og(l—U) or a+Blog(1 _V),

where U is a standard uniform (0, 1) random variable and V is a standard
exponential random variable.

The simple explicit relationships between y, p,(y) and F,(y) render
much of the analysis of the logistic distribution attractively simple. The
further fact that the logistic distribution has a shape similar to that of the
normal distribution makes it profitable, on suitable occasions, to replace the
normal by the logistic to simplify the analysis without too great discrepancies
in the theory. Such substitution must be done with care and understanding of
the similarities between the two distributions.

If the cumulative distribution functions G (x) = (1/V2m)[* e~ /2du
and G,(x) = [1 T exp(—mx/ y3)]"" of the standardized normal and logistic
distributions are compared, the differences G,(x) — G (x) vary in the way
shown in Figure 23.1. Since both G (x) and G,(x) are symmetric about
x = 0, only the values for x = 0 are given. It can be seen that the maximum
value of G(x) — G,(x) is about 0.0228, attained when x = 0.7. This maxi-
mum may be reduced to a value less than 0.01 by changing the scale of x in
G, and using G,(16x/15) as an approximation to G,(x). This also is
presented graphically in Figure 23.1. Volodin (1994) has determined that the
constant 7/ v3.41 [instead of (15w)/16v3)] gives a better approximation
with a maximum absolute difference of 0.0094825 [instead of 0.00953211. He
has also indicated that the value of 1.7017456 will provide the best approxi-
mation with a maximum absolute difference of 0.0094573.

It should be noted that although there is a close similarity in shape
between the normal and logistic distributions, the value of g, for logistic is
4.2, considerably different from the value (3, = 3) for the normal distribu-
tion. The difference may be attributed largely to the relatively longer tails of
the logistic distribution. These can have a considerable effect on the fourth
central moment, but a much smaller relative effect on the cumulative dis-
tribution function. [We may also note that whereas the standard normal
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[l +exp(—wx/¥3 )]—I-J-ZLT-E; u¥zy,

Veais
—— — = [14exp(—rx/V3 -1__’./ - u?r2
[1+exp(—=x/¥3)] m_em du

Figure23.1 Comparison of Logistic and Normal Cumulative Distribution Functions.

curve has points of inflexion at x = + 1, those of the logistic are x =
+(/3 /mog, 2 T V3) = +0.53]

The logistic density function is more peaked in the center than the norma
density function; see Chew (1968). It is also easily observed that the hazard
function is simply proportional to the cumulative distribution function. In
fact it isthis particular characterizing property of thelogistic distribution that
makes it useful as a growth curve model.

Noting the fact that 8, = 4.2 for the logistic, Mudholkar and George
(1978) observed that the logistic distribution very closely approximates
Student's t-distribution with nine degreesd freedom. A similar rationale has
been applied by George and Ojo (1980) and George, El-Saidi, and Singh
(1986) in order to propose some close approximations for Student's ¢-distri-
bution with v degrees of freedom using generalized logistic distributions (see
Section 10).

With e(x) denoting the mean residua life function or remaining life
expectancy function at age x given by

e(x) = E[X —xIX > x] = [ {1 = Fx(t)} dt/{1 = Fx(x))

for x = 0, Ahmed and Abdul-Rahman (1993) have shown that

e(x) = B{1 + e* " */P}log{1 + e~ *~ 2/ F}
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characterizes the logistic distribution in (23.6). They have also presented a
number of equivalent conditions in terms of conditional expectations.

An expression for the distribution function of the sum of n i.i.d. logistic
variables was obtained by Goel (1975) by using the Laplace transform inverse
method for convolutions of Pélya-type functions, a technique developed by
Schoenberg (1953) and Hirschman and Widder (1955). Goel (1975) also
provided a table of the cdf of the sum of » i.i.d. standard logistic variablesfor
n = 2112, x = 0(0.01)3.99, and for n = 13(1)15, X = 1.20(0.01)3.99; he
adso presented a table of the quantiles for n = 2(1)15 and a =
0.90,0.95,0.975,0.99,0.995. George and Mudholkar (1983), on the other
hand, derived an expression for the distribution of a convolution of the i.i.d.
standard logistic variables by directly inverting the characteristic function.
Both these expressions, however, contain aterm (1 — e*)™*, k = 1,2,...,n,
which pose a problem in precision of the computation at the values of X near
zero when n islarge.

George and Mudholkar (1983) also displayed that a standardized Student's
t-distribution provides a very good approximation for the distribution of a
convolution of n i.i.d. logistic variables. These authors then compared three
approximations: (1) standard normal approximation, (2) Edgeworth series
approximation correct to order n~', and (3) Student's ¢ approximation with
v =>5n*1 4 degrees of freedom (obtained by equating the coefficient of
kurtosis). Of these three the third provides a very good approximation.

Gupta and Han (1992) considered the Edgeworth and Cornish-Fisher
series expansions (see Chapter 12 for details) up to order n~?* for the
distribution of the standardized sample mean

‘/'7()7—45),

T, = —
g

when X;’s are i.i.d. logistic variables with cdf and pdf as in (23.13) and
(23.14). They are given by

111 6
FTN(')=¢(’)—¢>(1){;{;‘—!'§H3(1)}

1 ({1 48 35(6\°

+?{a . —7‘H5(1) + a(g) H-](l)}

+1 1 432H +210 48 6H 5775 [ 6\°
2\er 5 ) Far 7 gH() 5 (3) Hu()

+0(n"77?),
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and

T (U U . 6U3 3
n( a)_" a+n{ 1 g(u— Ua)}

—

1 48 s 5
+F ET . -7—(Ua - IOUa + 15Ua)

35 (62
5(3) (-9U; + 12U - 87U,)
1(1 432
+ g e (U~ 2107 + 10507 - 105U,)
210 &8 6 7 5 3
cTor 5 (15U + 255U - 1035U; ~ 855U,
5775 (6
T (5) (243U — 3537U5 + 121770 ~ 8667U,)
+ O(fl—7/2),

where ¢(-) and ®(-) are the standard normal pdf and cdf, U, is the ath
quantile of the standard normal distribution, and H(¢) is the Hermite
polynomial deAned in Chapter 1.

Table 23.1 A comparison of four approximations for the cdf of the standardized mean
T; of samples o size 3 from o logistic population

¢ Fr() Fr(0=®0)  Fr(n) - A)  Fr() - A1) Fr(t) — A1)

0.05 0.5209 0.0010 0.0000 0.000T 0.0000
0.15 0.5625 0.0029 0.0000 0.0003 0.0000
Ozs 0.6033 0.0046 0.0008 (00005 0.0000
Ods 0.6809 0.0073 —0.0017 0.0007 0.000T
0.65 0.7506 0.0084 —0.0007 0.0007 0.0000
0.85 0.8706 0.008% — 0.0006 0.0007 0.0000
1.00 0.8486 oooH —0.0008 0.0004 0.0000
1.20 0.8907F 0.0054 —0.0007 0.0002 0.0000
1.45 0.9291 0.0026 —0.0004 0.0000 0.0000
1.75 0.9598 —0.000T 0.000T - 0.0002 0.0000
2.50 09918 —-0.0020 0.0004 0.0002 0.0000
3.00 0.9975 -0.0012 0.000T 0.000T 0.0000

Note F(t) = exact cdf of the standardized mean taken from Goel (1975), ®(1) = standard normal
cdf, A(¢) = Edgeworth series expansion up to order n~', 4,(t) = cdf of the standardized Student’s
[ with 19 degrees of freedom, A4(t) = Edgeworth series expansion up to order n .
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Gupta and Han (1992) compared this approximation with the approxima-
tions mentioned earlier, and they showed the approximation to be far better
than even the Student's t-approximation suggested by George and
Mudholkar (1983). A comparison of these four approximations is presented
in Table 23.1 for the sample size n = 3 [taken from Gupta and Han (1992)1.

From Table 23.1 it is clear that the approximation using the Edgeworth
expansion up to order »n ~*, given by Gupta and Han (1992), is superior to the
other three approximations, since its maximum error is about 0.0001 for the
range of ¢ considered.

5 ORDER STATISTICS

Llet Y1 Y;< - 1 Y, be the order statistics obtained from a sample of

size n from the standard logistic distribution (23.8) and (23.9). Then from the
density function of ¥’ (1 <r < ») given by

! r—1 n—r
P = R O = B ey (00, (23.8)

—o <y <,
we obtain the moment-generating function of Y, as

n' ~{(n—r+1)y+8y

w e
(r—1)(n~r)! f_m(l n e—y)mdy

E[e] = My(0) =

B(r+8,n-r+1-20)
B(r,n—-r+1)

_I(r+6)I(n—-r+1-0)
- r(r(n—-r+1)

(23.19)

An alternative expression for this moment-generating function of ¥ in terms
of Bernoulli numbers and Stirling numbers of the first kind has been given by
Gupta and Shah (1965). From (23.19) we obtain

E[Y1=4(r) —$(n -1 +1) (23.20)
and
var(Y)) =¢'(r) T ¢'(n —r + 1), (23.21)

where ¢(-) and ¢'(-) are the digamma and trigamma functions, respectively
(see Chapter 1).
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From (23.19) we obtain the cumulant-generating function of Y, as
Ky;(B) = lOg My',(B)
=logT'(r*+8) *logl'(n -r+1-28)
—log(r) ~logl'(n—r+1) (23.22)

from which we get the kth cumulant of Y, as

K(Y)) = 6400y + (=) g*D(n—-r+1),  (2323)
kie(Y)) = (=D ) (Yoo 1) (23.23)

where y*=1(@) = (d*/d8*)log T'(8) is the polygamma function. The expres-
sions for the first four cumulants were given by Plackett (1958); see also
Gumbel (1958).

By starting from the joint density function of X! and X; (1 <r <s <n)
and proceeding similarly, an expression for the joint moment-generating
function of X! and X and the product moment E{X;X,] can be derived;
see, for example, Gupta, Qureishi, and Shah (1967) and Gupta and Balakr-
ishnan (1992).

George and Mudholkar (1981a, b, 1982) provided joint characterizations of
the logistic and the exponential based on order statistics. They observed that
the characteristic function of Y, is

r-1

- & n-r fﬂ
by:(0) = E[e®})=T1 (1 + ) )kl] (1 iy )d),,(B),

j=1

where ¢,(8) is the characteristic function of the logistic density in (23.8).
From this form they observed that ¥, + Zi2] E — Zj2| E,; is distributed
as astandard logistic variable with density in (23.8), where E;;’s are indepen-
dent exponential random variables with density

pe(x) =je™,  x20,j=12...,i=12

Further characterization results of this nature relating the logistic, exponen-
tia and Laplace distributions may be found in the works of George and
Mudholkar (1981a, b, 1982), George and Rousseau (1987), and Voorn (1987);
see George and Devidas (1992) for a review of ail these results.

By making use of the characterizing differential equation (23.16), Shah
(1966,1970) derived the following recurrence relations for single and product
moments of the order statistics Y, (denoted by Y,., for obvious notational
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convenience):
. . i+1 .
E[Y{3 1= E[Y5] - n E[v,], n=21 (23.24)

E[Yrifll:n—l] = E[Yr'tr‘-ﬂ] +

E[Yr:n+IYr+]:n+l] = E[Yr2:n+l] +

(i+1)n+1)

S s+ D EVa

l<r<sn. (23.25)
n+1
n—r+1

1
X{E[Yr:nyr+|:n] - E[errl] - n_—_TE[an]>’

l<r<sn-—1. (23.26)

E[Yr+l:n+lyr+2:n+l] = E[Yra21n+I]

E[Yr:n+lY

n+1 ) 1
+ r+ 1 {E[Yr:nyr+l:n] ——E[Yr+l:n] + 7E[Yr+1:n]}a

l<r<n-1. (23.27)

s:n+l] = E[Yr:n+lys—l:n+l]

n+1
n—s+2 {E[Y’:"Y’:"] - E[Yr:an—l:n]
——1 ElY,
—n__s+1 [ ’:’l]}’

l<r<ss<snys—-r>2 (23.28)

E[Yr+1:n+lys+|:n+1] = E[Yr+2:n+|Ys+|:n+|]

+1
+1

n
+

{E[Yr:an:n] - E[Yr+l:ny5:n] + ;E[st]}’

l<r<s<n;s-r2=2 (23.29)

Shah (1966,1970) showed that these recurrence relations are complete in the

sense that, by starting with the values of moments of Y, these relations will

enable one to determine the single and the product moments of order

statistics for all sample sizes in a simple recursive manner.

Birnbaum and Dudman (1963) devoted considerable attention to compari-

son of distributions of order statistics from normal and logistic distributions.

Gupta and Shah (1965) derived the distribution of the sample range from the
logistic distribution, and compared it with the distribution of the sample
range from the normal distribution for sample sizes 2 and 3. Mdik (1980)
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derived the distribution of the rth quasi-range, Y,_,., = Y,.y.., fOr r =
0,1,2,...,[(n = 1)/2]. Tarter and Clark (1965) discussed properties of the
median. Plackett (1958) used the expression of the cumulants of Y., in
(23.23) to develop some series approximations for the moments of order
statistics from an arbitrary continuous distribution.

Kamps (1991), by considering a general class of distributions satisfying

—d—F“'(u) = ~1-u”(1 —u)* " "on(0,1)
du d T

has presented some characterization results through relations for moments of
order statistics. The logistic distribution is, of course, a special case of this
class (case p =g = - 1). Reference may also be made to Kamps and
Mattner (1993) for some further results in this direction.

The expression for the density function of the sample range, W =Y, - Y7,
is

\/;I‘(n) wy —(n—01,/2)
-7 1+ —
pw(w) 2‘5{,(” +%) {1 coshz}
1 1. 1' ) hw )
XF(E,E,n+5’( — COS ‘2“) s

w>0, (23.30)

where F(a,b;c;x) = 1% (ab/cXx/11) T [a(a + Db(b + 1) /{c(c +
DI(x2/21) + - .. isthe hypergeometric function.

Shah (1965) derived the joint density function of W and the midrange,
M = (Y, tY.)/2, tobe

n(n = 1){sinh (w/2)}""*
4{Coshm+sinh(w/2)}"’ w>0, —0<m <o,
(23.31)

pyu.w(m,w) —

By considering the symmetricaly truncated logistic distribution with den-

sity function
! ¢’ ! (I_Q)< <log(1—Q)
° y -~ 10, = - ’
py(») ={1-20 (1+e) o 7 Y 0

0, otherwise,

(23.32)
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and cumulative distribution function

1 1 1-9 o172
1—2Q{1+e*y'Q}’ _log( Q )Sysog( Q )
(23.33)

Fy(y) =

where Q is the proportion of truncation on the left and the right of the
standard logistic density function in (23.8), Balakrishnan and Joshi (1983a)
derived several recurrence relations for single and product moments of order
statistics. These generalize Shah's results presented in Egs. (23.24)-(23.29).

Balakrishnan and Kocherlakota (1986) generalized the results of
Balakrishnan and Joshi (1983a) by considering the doubly truncated logistic
distribution with density function

1 . e Y | Q | P
() ={P=0 (1+e) °g(1~Q)Sys°g(1—P)

0, otherwise,
(23.34)

where Q and 1 — P are the proportions of truncation on the left and the
right of the standard logistic density function in (23.8). For this case Tarter
(1966) derived explicit expressions for the single and the product moments of
order statistics. Braswell and Mandors (1970a,b) and Braswell and Pewitt
(1973) considered the doubly truncated logistic distribution (but referred to it
as the FRPDF, finite range probability distribution function) and discussed
severa inferential issues concerning the location and scale parameters of this
distribution.

For a more detailed discussion on order statistics from the logistic distri-
bution, one may refer to Gupta and Balakrishnan (1992).

6 METHODS OF INFERENCE
The maximum likelihood estimators, £, & of the parameters ¢, o in (23.14)

‘ based on a mutually independent set of random variables X,, X,, .., X,,,
each having this distribution, satisfy the equations

" iz::l [1 ¥ exp{f—(%i‘/%—ﬂ}] - % (23.35)
(X 3 1—-exp<7r(Xi—f)/((;‘/§)} _[?_
i;] ( G ) 1+ exp{-:r(X,. - é)/(c;‘/'j)} T a (23.36)
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For large n
n 9
nvar(¢) = (—1_;—2-)02 = 0.91189¢°* (23.37)

nvar(d) = ( )02 = 0.6993242. (23.38)

3+ 72

Equations (23.35) and (23.36) must be solved by trial and error.
Taking advantage of the similarity in shape between the logistic and

normal distributions, initial values of £ and & might be taken as the
maximum likelihood estimators

n n
=n~' X, and q/n”" Z(X,-—/?)Z,
i=1

i=1

respectively, appropriate to the latter distribution. Improvements could then
be made, using (23.35) and (23.36), by applying, for example, the Newton-
Raphson method.

Similarly, if the available sample is Type-l1 censored, say X/,,
X2, X, _, with r smallest and s largest observations censored, then the
maximum likelihood estimators, £ and &, of the parameters £ and o in
(23.14) satisfy the equations

e Xl =663 1
(n—r—s)—r + s{ }

1 + e Xiw1=8/63 1 + e~ XioimB/GYD

_22

i=r+1

1 + e~mXi=5H/6Vd (23.39)

{ e~ X =D /(63 }
= 3

3 (x;+.—g){ SR }

—(n~r—s)——r -
( ) ™ 1 + e~ ™ Xini=H/6V3

s X, _, —¢& 1 .\ nZ—:s X - £
G 1 4 e~ ™ Xno—E1/GV3 =\

n-s X" — é e—V(Xf—E)/(é\/;;
-2 X ( ){ }=0 (23.40)

A
g

i+ e-ﬂ'(*’f*f)/(é\/s;

For the case where r = s = 0, Egs. (23.39) and (23.40) reduce to (23.35)and
(23.36). Here again (23.39) and (23.40) have to be solved by numerica
methods.
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By using Monte Carlo simulations and solving the likelihood equations by
regula fals method, Harter and Moore (1967) determined the bias, variances,
covariance, and conditional variancesof ¢ and ¢ for sasmple sizesn = 10 and
20 and various choices of censoring. A table of asymptotic variances and
covariance of £ and 6, for various choices of proportions of censoring
p,=r/n and p, = s/n, was presented by Harter and Moore (1967);see also
Harter (1970)and Balakrishnan (1992).

Bain et al. (1992) considered the interval estimation of the parameters ¢
and a based on Type-II censored samples. For this purpose they presented
some simulated percentage points of the pivotal quantities vn (£ — £)/é and
Vn(é/e - 1). These authors have also presented some tables of lower y
tolerance factors for proportion B, ¢, where the lower y tolerance limit for
proportion B is given by

L(X)=£¢-1.,6, (23.41)
and it issuch that
Pr{l —