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Preface 

The remarks in the Preface to the new edition of Continuous Uniuariate 
Distributions-1 apply to the present volume also. This second edition differs 
from the first in the following respects: 

The chapter on Extrepe Value Distributions, which was the final chapter 
of the original Continuous Uniuariate Distributions-1 now appears as the 
first chapter of the present volume. 

= The chapter on Quadratic Forms has been postponed to a projected 
volume dealing with Continuous Multivariate Distributions. 
The final chapter on Miscellaneous Distributions has been drastically 
revamped and restricted, and some topics have been given more, and 
some markedly less emphasis. 
The length of each chapter has been substantially increased (about 
doubled, on average) and the number of references increased almost 
threefold. 
In order to mirror recent developments, the authors have, somewhat 
reluctantly, included descriptions of numerous results relating to approx- 
imations. Although these are often computationally ingenious, their 
practical relevance in an age of high speed computers has been substan- 
tially diminished. 
On the other hand, we were happy to include many examples of 
applications of distributions (such as logistic, Laplace, beta, F, t and 
noncentral chi-square, F and t )  in various new fields of science, business 
and technology. We welcome this trend towards penetration of more 
sophisticated models into wider areas of human endeavour. 

Since the publication of the new edition of Continuous Uniuariate Distribu- 
tions-I, the sixth edition of Kendall's Advanced Theory of Statktics, Volume 
I-Distribution Theory by A. Stuart and J. K. Ord has come out, providing a 
lot of details on univariate as well as multivariate distribution theory. Though 
it was late for Volume 1, we have tried to coordinate in this Volume (at some 

xiii 



XIV PREFACE 

places) with results presented in Stuart and Ord. Our sincere thanks go to 
Professor Keith Ord for providing us with a copy of page proofs in order to 
achieve this goal. We record with gratitude a large number of comments 
received from our colleagues in statistical and engineering communities 
concerning misprints in and omissions from the first edition of this volume. 
These were very valuable to us in preparation of this new edition. 

We acknowledge with thanks the invaluable assistance of Mrs. Lisa Brooks 
(University of North Carolina) and Mrs. Debbie Iscoe (Hamilton, Canada) in 
their skillful typing of the manuscript. We also thank the Librarians of the 
University of North Carolina, University of Maryland, and McMaster Univer- 
sity for their help in library research. 

Special thanks are also due to Mrs. Kate Roach and Mrs. Shirley Thomas 
at John Wiley & Sons in New York for their sincere efforts in the fine 
production of this volume. We also thank Ms. Dana Andrus for all the efforts 
in copy-editing the long manuscript. 

Thanks are offered to the Institute of Mathematical Statistics, the Arneri- 
can Statistical Association, the Biometrika Trustees, the Institute of Electri- 
cal and Electronics Engineering, Marcel Dekker, Inc., the Royal Statistical 
Society, the Australian Statistical Society, the Statistical Society of Canada, 
the Biometric Society, North Holland, Gordon and Breach Science Publish- 
ers, and the editors of Naval Research Logistics Quarterly, Water Resources 
Research, Soochow Journal of Mathematics, Journal of the Operational Re- 
search Society, Sankhyii, Decision Sciences, Mathematical and Computer Mod- 
elling, International Statistical Review, and Oxford Bulletin of Economics and 
Statistics, for their kind permission to reproduce previously published tables 
and figures. 

Chapel Hill, North Carolina 
College Park, Maryland 
Hamilton, Ontario, Canada 
February, I995 
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C H A P T E R  2 2  

Extreme Value Distributions 

1 GENESIS 

The development of extreme value distributions proceeded to some extent 
outside the mainstream of statistical distribution theory, with its early stage 
dominated by work on curve fitting and the later stage by problems encoun- 
tered in statistical inference. The extreme value theory is a blend of an 
enormous variety of applications involving natural phenomena such as rain- 
fall, floods, wind gusts, air pollution, and corrosion, and delicate mathemati- 
cal results on point processes and regularly varying functions. This area of 
research thus attracted initially the interests of theoretical probabilists as well 
as engineers and hydrologists, and only recently of the mainstream statisti- 
cians. Historically work on extreme value problems may be dated back to as 
early as 1709 when Nicolas Bernoulli discussed the mean largest distance 
from the origin when n points lie at random on a straight line of length t [see 
Gumbel (1958)l. 

Extreme value theory seems to have originated mainly from the needs of 
astronomers in utilizing or rejecting outlying observations. The early papers 
by Fuller (1914) and Griffith (1920) on the subject were highly specialized 
both in fields of applications and in methods of mathematical analysis. A 
systematic development of the general theory may, however, be regarded as 
having started with a paper by Bortkiewicz (1922) that dealt with the 
distribution of range in random samples from a normal distribution. This has 
already been pointed out in Chapter 13 and as can be seen in that chapter, 
subsequent development of this particular topic was quite rapid. From our 
present point of view, it suffices to say that the importance of the paper by 
Bortkiewicz (1922) resides in the fact that the concept of distribution of 
largest value was clearly introduced in it. In the very next year von Mises 
(1923) evaluated the expected value of this distribution, and Dodd (1923) 
calculated its median and also discussed some nonnormal parent distribu- 
tions. Of more direct relevance to this chapter is a paper by FrCchet (1927) in 
which asymptotic distributions of largest values are considered. In the follow- 
ing year Fisher and Tippett (1928) published results of an independent 
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inquiry into the same problem. While Frtchet (1927) had identified one 
possible limit distribution for the largest order statistic, Fisher and Tippett 
(1928) showed that extreme limit distributions can only be one of three types. 
Tippett (1925) had earlier studied the exact cumulative distribution function 
and moments of the largest order statistic and of the sample range arising 
from samples from a normal population. von Mises (1936) presented some 
simple and useful sufficient conditions for the weak convergence of the 
largest order statistic to each of the three types of limit distributions given 
earlier by Fisher and Tippett (1928). Seven years later, it was Gnedenko 
(1943) who presented a rigorous foundation for the extreme value theory and 
provided necessary and sufficient conditions for the weak convergence of the 
extreme order statistics. de Haan (1970) refined the work of Gnedenko. 
Gnedenko7s (1943) classical paper has been reproduced in the first volume of 
Breakthroughs in Statistics and supplemented by a perceptive introduction 
written by R. L. Smith in which the influence of the paper and subsequent 
developments in the extreme value theory have been analyzed. 

The theoretical developments of the 1920s and mid 1930s were followed in 
the late 1930s and 1940s by a number of papers dealing with practical 
applications of extreme value statistics in distributions of human lifetimes, 
radioactive emissions [Gumbel (1937a, b)], strength of materials [Weibull 
(1939)], flood analysis [Gumbel (l941,1944,1945,1949a), Rantz and Riggs 
(1949)], seismic analysis [Nordquist (1945)], and rainfall analysis [Potter 
(1949)l. From the application point of view, Gumbel made several significant 
contributions to the extreme value analysis; most of them are detailed in his 
book-length account of statistics of extremes [Gumbel (1958)l which is an 
extension of his earlier brochure [Gumbel (1954)l. Many more applications 
are listed in Section 14. 

The bibliography at the end of this chapter contains about 350 references. 
This impressive number is, however, only a small part of publications pertain- 
ing to this subject. The bibliography in Gumbel's (1958) book, not including 
the developments during the last 35 years, is even more extensive. While this 
extensive literature serves as a testimony to the vitality and applicability of 
the extreme value distributions and processes, it abo  reflects to some extent 
on the lack of coordination between researches and the inevitable duplica- 
tion (or even triplication) of results appearing in a wide range of publications. 

Extreme value distributions are generally considered to comprise the three 
following families: 

Type 1: 
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Type 2: 

Type 3: 

where 5, 8( > O), and k( > 0) are parameters. The corresponding distribu- 
tions of ( - X )  are also called extreme ~lalue distributions. 

Of these families of distributions type 1 is by far the one most commonly 
referred to in discussions of extreme value distributions. Indeed some au- 
thors call (22.1) the extreme value distribution. In view of this, and the fact 
that distributions (22.2) and (22.3) can be transformed to type 1 distributions 
by the simple transformations 

respectively, we will, for the greater part of this chapter, confine ourselves to 
discussion of type 1 distributions. We may also note that the type 3 distribu- 
tion of ( -X)  is a Weibull distribution. These distributions have been dis- 
cussed in Chapter 21, and so there is no need to discuss them in detail here. 

Of course, types 1 and 2 are also closely related to the Weibull distribu- 
tion, by the simple formulas relating Z and X, just quoted. Type 1 is 
sometimes called the log-Weibull distribution [see White (1964,1969)l. 

Type 1 distributions are also sometimes called doubly exponential distribu- 
tions, on account of the functional form of (22.1). We do not use this term to 
avoid confusion with Laplace distributions (Chapter 24), which are also called 
double exponential. 

The term "extreme value" is attached to such distributions because they 
can be obtained as limiting distributions (as n -+ m) of the greatest value 
among n independent random variables each having the same continuous 
distribution (see Section 3). By replacing X by -X, limiting distributions of 
least values are obtained. As already mentioned, these are also extreme value 
distributions, so they do not need separate treatment. 

Although the distributions are known as extreme value, it is to be borne in 
mind (1) that they do not represent distributions of all kinds of extreme 
values (e.g., in samples of finite size), and (2) they can be used empirically 
(i.e., without an extreme value model) in the same way as other distributions. 
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In this last connection we note that the type 1 distribution may be 
regarded as an approximation to a Weibull distribution with large value of c.  
Also if X has a type 1 distribution, Z = exp[-(X - c ) / O ]  has an exponen- 
tial distribution with probability density function: 

The type 2 distribution is also referred to as the Frkchet-type distribution; 
the type 3 distribution is called as the Weibull-type distribution; and the type 1 
distribution as the Gumbel-type distribution. We may note that the FrCchet 
and Weibull distributions are also related by a simple change of sign. The 
Gompertz distribution of lifetimes introduced in 1825, and already in use for 
about a century before Fisher and Tippett's results appeared is a type 1 
distribution even though it is not generally regarded to be of this group (see 
Section 8 for details). 

Although the three types of the distributions in (22.1M22.3) appear to be 
unrelated, they may all be represented as members of a single family of 
generalized distributions with cumulative distribution function 

For a > 0 the distribution (22.4) is of the same form as (22.2). For a < 0 the 
distribution (22.4) becomes of the same form as (22.3). Finally, when a -, 03 

or -w,  the distribution (22.4) becomes the same form as the type 1 extreme 
value distribution in (22.1). For this reason the distribution function in (22.4) 
is known as the generalized extreme value distribution and is also sometimes 
referred to as the von Mises type extreme value distribution or the won 
Mises-Jenkinson-type distribution. More details on this distribution will be 
presented in Section 15. 

Mann and Singpurwalla (1982) have provided a brief review of the extreme 
value distributions. A similar review of the Gumbel distribution has been 
made by Tiago de Oliveira (1983). 

3 LIMITING DISTRIBUTIONS OF EXTREMES 

Extreme value distributions were obtained as limiting distributions of great- 
est (or least) values in random samples of increasing size. To obtain a 
nondegenerate limiting distribution, it is necessary to "reduce" the actual 
greatest value by applying a linear transformation with coefficients which 
depend on the sample size. This process is analogous to standardization (as 
in central limit theorems; see Chapter 13, Section 2) though not restricted to 
this particular sequence of linear transformations. 
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If X,,  X,; . ., X, are independent random variables with common proba- 
bility density function 

then the cumulative distribution function of Xi  = max(X,, X,; . a ,  X,) is 

where 

As n tends to infinity, it is clear that for any fixed value of x 

1 if F ( x )  = 1, 
lim Fx;,(x) = 
n -+m 0 if F ( x )  < 1. 

Even if it is proper, this limiting distribution would be "trivial" and of no 
special interest. If there is a limiting distribution of interest, we must find it 
as the limiting distribution of some sequence of transformed "reduced" 
values, such as (a, Xi  + b,), where a,, b, may depend on n but not on x .  

To distinguish the limiting cumulative distribution of the "reduced" great- 
est value from F(x), we will denote it by G(x). Then since the greatest of 
Nn values XI ,  X,, . . . , X,, is also the greatest of the N values 

it follows that G(x)  must satisfy the equation 

This equation was obtained by Frtchet (1927) and also by Fisher and 
Tippett (1928). It is sometimes called the stability postulate. 

Type 1 distributions are obtained by taking a, = 1; types 2 and 3 by 
taking a, # 1. In this latter case 

and from (22.6) it follows that G(b,(l - a,)-') must equal 1 or 0. Type 2 
corresponds to 1, and type 3 to 0. 

We now consider the case a, = 1 (type 1) in some detail. Equation (22.6) 
is now 



6 EXTREME VALUE DISTRIBUTIONS 

Since G(x + b,) must also satisfy (22.61, 

[ ~ ( x ) ]  NM = [G(x  + b,)] = G ( x  + bN + b,). (22.8) 

But, also from (22.6), 

[ G ( x ) ] , ,  = G ( x  + bNM) 

and from (22.8) and (22.9) we have 

b, + b, = b,,, 

whence 

6 ,  = 6 log N,  6 a constant. (22.10) 

Taking logarithms of (22.7) twice and inserting the value of b, from 
(22.10), we have (noting that G I 1) 

log N + log( -log G ( x ) )  = log( -log G ( x  + 6 log N)). (22.11) 

In other words, when the argument of 

h ( x )  = log{ -log G ( x ) )  

increases by 6 log N, h(x) decreases by log N. Hence 

Since h(x) decreases as x increases, 6 > 0. From (22.121, 

-log G ( x )  = exp - [ - :(O) I 
where 5 = 6 log( - log G(0)). Hence 

which is in agreement with (22.1). We will not enter into details of derivation 
for types 2 and 3, and interested readers may refer to Galambos (1978,1987). 
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Gnedenko (1943) established certain correspondences between the parent 
distribution [ F ( x )  in the above analysis] and the type to which the limiting 
distribution belongs. It should be noted that the conditions relate essentially 
to the behavior of F ( x )  for high (low) values of x if the limiting distribution 
of greatest (least) values is to be considered. It is quite possible for greatest 
and least values, corresponding to the same parent distribution, to have 
different limiting distributions. 

We now summarize Gnedenko's results: 

For type 1 distribution: Defining Xa by the equation 

the condition is 

For type 2 distribution: 

1 - F ( x )  
lim = c k ,  c > O , k > O .  

X + P  1 - F ( c x )  
(22 .14)  

For type 3 distribution: 

1 - F(cx + w )  
lim = c k ,  c > 0, k > 0, (22 .15)  

x - O -  1 - F ( x  + w )  

where F ( w )  = 1 ,  F ( x )  < 1 for x < w .  

Gnedenko also showed that these conditions are necessary, as well as 
sufficient, and that there are no other distributions satisfying the stability 
postulate. An alternative interpretati.on of these conditions was given by 
Clough and Kotz (1965) who also illustrated a special queueing model 
application for the extreme value distributions. Among distributions satisfy- 
ing the type 1 condition (22.13) are normal, exponential, and logistic; the type 
2 condition (22.14) is satisfied by Cauchy; the type 3 condition is satisfied by 
nondegenerate distributions with range of variation bounded above. 

Gnedenko's (1943) results have been generalized by several authors. 
Results for order statistics of fixed and increasing rank were obtained by 
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Smirnov (1952) who completely characterized the limiting types and their 
domains of attraction. Generalizations for the maximum term have been 
made by Juncosa (1949) who dropped the assumption of a common distribu- 
tion, Watson (1954) who proved that under mild restrictions the limiting 
distribution of the maximum term of a stationary sequence of m-dependent 
random variables is the same as in the independent case, Berman (1962) who 
studied exchangeable random variables and samples of random size, and 
Harris (1970) who extended the classical theory by introducing a model from 
reliability theory (essentially a series system with replaceable components). 
Weinstein (1973) generalized the basic result of Gnedenko dealing with the 
asymptotic distribution of the exponential case with the initial distribution 
V(x) = 1 - ePx' (x  1 0). He showed that 

if and only if 

[ {( ;)"')]=e-'4, l imn 1 - V  x L + -  
n - m  

where 

[Gnedenko's (1943) result is for u = 1.1 See also Jeruchim (1976) who has 
warned that the additional parameter o must be treated cautiously in 
applications. 

The necessary and sufficient conditions in (22.13)-(22.15) are often diffi- 
cult to verify. In such instances the following sufficient conditions established 
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by von Mises (1936) may be useful (though they are applicable only for 
absolutely continuous parent distributions): 

For type 1 distribution. For r (x)  = f(x)/[l  - F(x)] nonzero and differen- 
tiable for x close to F-'(1) [or for large x if F-'(1) = m], the condition 
is 

For type 2 distribution. For r(x)  > 0 for large x and for some a > 0, the 
condition is 

lim x r (x )  = a. 
x-+m 

For type 3 distribution. For F-'(1) < m and for some a > 0, the condition 
is 

lim (F- ' (1)  - x}r(x)  = a. 
x - + F - ' ( I ) -  

de Haan (1976) has provided a simple proof of this result. The function 
r(x) = f(x)/( l  - F(x)) appearing in conditions (22.16)-(22.18) is the failure 
rate or the hazard function (see Chapter 1, Section B2). 

The choice of the normalizing constants a, and b, > 0 (which are not 
unique) depends on the type of the three limiting distributions. In general, 
convenient choices for a, and b, are as follows: 

For type 1 distribution. 

For type 2 distribution. 
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For type 3 distribution. 

EXTREME VALUE DISTRIBUTIONS 

Analogous results for the limiting distributions of the sample minimum can 
be stated in a straightforward manner. There are several excellent books that 
deal with the asymptotic theory of extremes and statistical applications of 
extremes. David (1981) and Arnold, Balakrishnan, and Nagaraja (1992) 
provide a compact account of the asymptotic theory of extremes, and 
Galambos (1978,1987), Resnick (1987), and Leadbetter, Lindgren, and 
RootzCn (1983) present elaborate treatments of this topic. Reiss (1989) 
discusses various convergence concepts and rates of convergence associated 
with the extremes (and also with the order statistics). Castillo (1988) has 
updated Gumbel (1958) and presented many statistical applications of the 
extreme value theory. Harter (1978) prepared an authoritative bibliography 
of the extreme value theory. 

With Fx(x; 6,O) denoting the extreme value distribution for the sample 
minimum with cdf given by 

and Gx(x; a ,  b, c )  denoting the three-parameter Weibull distribution with 
cdf (see Chapter 21) 

for a ,  b > 0 and c E R, Davidovich (1992) established some bounds for the 
difference between the two cdf's. Specifically he showed that 

Fx(x ;  b + c,:) - G x ( x ; a ,  b ,  c )  < 1 i f c  s x s c  + 2b, 

Thus, if a -+ a, b -, m, and c -+ -w such that b + c -+ d (Id1 < w) and 
b/a -+ f (0 < f < a), then the Weibull distribution above uniformly ap- 
proaches the extreme value distribution for the minimum with 5 = d and 
e = f. 
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It is easily proved that if Y,, Y,; ., are independent variables, each 
having the exponential distribution (see Chapter 19, Section I), 

and if L is the zero-truncated Poisson variable (see Chapter 4, Section 10) 

the random variable defined by 

has the extreme value distribution with cdf 

Pr(X s x )  = ( e A  - 1)-'[exp{A(l - e -X) ) ]  = cexp[-he-"]. (22.24) 

In a similar manner the FrCchet distribution can be generated from the 
Pareto distribution (see Chapter 20) and the Weibull from the power func- 
tion distribution (see Chapter 20). In fact Sibuya (1967) has suggested a 
method of generating pseudorandom numbers from the extreme value distri- 
bution by using the method described above, based on the exponential 
distribution. 

4 DISTRIBUTION FUNCTION AND MOMENTS 

In this section we will consider type 1 distributions (22.1) exclusively. Corre- 
sponding to (22.1) is the probability density function 

If 5 = 0 and 8 = 1, or equivalently, the distribution of Y = ( X  - 5)/8, we 
have the standard form 

Since, as we pointed out in Section 1, the variable Z = exp[ - ( X  - 5)/81 = 
e-' has the exponential distribution 
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it follows that 

EXTREME VALUE DISTRIBUTIONS 

for t  < 1. Replacing t by 9 t ,  we see that the moment generating function of 
X  is 

and the cumulant generating function is 

9 ( t )  = St + log r ( l  - 9 t ) .  (22.28) 

The cumulants of X are 

where y is Euler's constant, and 

In particular 

Std. dev. ( X )  = 1.282559, (22.31)' 

and the moment ratios are 

Note that 5 and 9 are purely location and scale parameters, respectively. All 
distributions (22.25) have the same shape. 

The distribution is unimodal. Its mode is at X = 6 ,  and there are points of 
inflection at 

For 0 < p < 1 the pth quantile defined by F ( X p )  = p readily becomes from 
(22.1)  
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From (22.34) we immediately obtain the lower quartile, median, and upper 
quartile to be 

respectively. 
Quantiles of the distribution are easy to compute from (22.34), even with a 

pocket calculator. Most of the standard distribution (22.26) is contained in 
the interval (-  2,7). As a matter of fact, for the distribution function in (22.1) 
we find the probability between 8 - 28 and 6 + 78 to be 0.998. That is, 
99.8% of the distribution lies between Mean - 2.0094 (Standard deviation) 
and Mean + 5.0078 (Standard deviation). More details on properties of the 
distribution are presented by Lehman (1963). 

The standard probability density function (22.26) is shown in Figure 22.1. 
Its shape is very closely mimicked by a lognormal distribution with euZ = 

1.1325 (in the notation of Chapter 14). (The P , ,  P, values of this lognormal 
distribution are 1.300,5.398, respectively; (22.32) cf.) In Table 22.1 the 
standard cumulative distribution functions are compared. 

Table 22.2 gives standardized percentile points (i.e., for a type 1 extreme 
value distribution with expected value zero and standard deviation 1, corre- 
sponding to 8 = &/T = 0.77970; 6 = - y8 = -0.45006). The positive 
skewness of the distribution is clearly indicated by these values. The useful- 
ness of this distribution to model time-to-failure data in reliability studies has 
been discussed by Canfield (1975) and Canfield and Borgman (1975). 

Figure 22.1 Standard type 1 probability density function, p , ( y )  = e-"exp(-e-") 
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Table 22.1 Standard cumulative distribution functions 

x Type 1 Extreme Value Distribution" Lognormal ~ i s t r i b u t i o n ~  

"Where F ( x )  = exp[-exp(- 1 .28254~ - 0.57722)l; 
h ~ h e r e  F ( x )  = ( 6 ) - ' / ? : ' e x p ( - u 2 / 2 ) d u  with u(x) = 6.52771 log,,(x + 2.74721) - 
2.68853. 

Table 22.2 Standardized percentiles for Type 1 extreme 
value distribution 

a Percentile 
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5 ORDER STATISTICS 

If Y; I Y; I . . . r Y,' are the order statistics corresponding to n  indepen- 
dent random variables each having the standard type 1 extreme value 
distribution (22.261, then the probability density function of Y: (1 s r  r n )  is 

n !  n - r  
= 

( r  - l ) ! ( n  - r ) !  ,=" 
-m < y < m. (22.38) 

From (22.38), the kth moment of Y: can be written as [Lieblein (195311 

n !  n - r  

E [ T ~ ]  = ( - 1 ) (  + j ) ,  (22 .39)  ( r  - l ) ! ( n  - r ) !  j = o  

where 

m 

= ( - I ) * /  (log u )  * e-'I4 du (with u  = e - ' ) .  
- m 

For nonnegative integers k, g k ( c )  may be written 

The functions g , ( . )  and g 2 ( - )  needed for the expressions of the first two 
moments of order statistics are obtained from (22.40) to be 

r ' ( 1 )  r ( l )  1 
g , ( c )  = - + - log c  = - ( y  + logc)  

C C 
(22 .41)  

and 

here y  is Euler's constant. 
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Proceeding similarly, the product moment of Y: and Y,' (1 I r < s I n) 
can be shown to be 

n! 
E [ Y : y ' ]  = 

( r  - l ) !(s  - r - l ) ! (n  - s ) !  

s- r -  1 P I - s  

i=o  j = o  

where the function 4 is the double integral 

Lieblein (1953) derived an explicit expression for the c$ function in (22.44) in 
terms of Spence's function which has been tabulated quite extensively by 
Newman (1892) and Abramowitz and Stegun (1965). 

Means and variances of order statistics for sample sizes up to 20 have been 
provided by White (1969); see also Lieblein and Salzer (1957) and McCord 
(1964). Covariances of order statistics for sample sizes up to 6 have been 
tabulated by Lieblein (1953,1962) and Lieblein and Zelen (1956). It is of 
interest to mention that the variance of the largest order statistic is r2 /6 ,  
irrespective of the value of n. Kimball (1946a, 1949) presented an alternative 
expression for the expected value of Ynt-,+ , as 

r -  1 

E[Ynf-.+,I = 7 + x ( -  *)'(:)AJ log (22.45) 
j=  1 

where A' represents forward difference of the ith order (see Chapter 1, 
Section A3). Balakrishnan and Chan (1992a) presented tables of means, 
variances, and covariances of all order statistics for sample sizes n = 

1(1)15(5)30. [Although their tables are for order statistics of the distri- 
bution of -Y, the tables for order statistics of Y are easily obtained 
from their tables, since E[y . ' ]  = - E[( - YY,-,+ , I  and cov(Y;', Y , )  = 

cod( - Y Yn -,+ , , ( - Y Yn -, + , 1.1 Complete tables for all sample sizes up to 30 
have also been prepared by Balakrishnan and Chan (1992~). Mahmoud and 
Ragab (1975) and Provasi (1987) have provided further discussions on order 
statistics from the extreme value distribution and their moments. The last 
author has also discussed some approximations to the means, variances, and 
covariances of order statistics. 

In Table 22.3 the means and variances of order statistics are presented for 
sample sizes up to 10. The covariances of order statistics for sample sizes up 
to 10 are presented in Table 22.4. 
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Table 22.3 Means and variances of order statistics from extreme value distribution 

Mean Variance Mean Variance 

6 RECORD VALUES 

Suppose that Y,, Y2, . . is a sequence of i.i.d. standard type 1 extreme value 
random variables with density (22.26) and that YL(, , = Y,, YLo,, . . are the 
corresponding lower record values. That is, with L(1)  = 1 and L ( n )  = 

min(j: j > L(n  - I ) ,  5 < YL,,- ,J for n = 2 , 3 , .  . . , {YL,,,l~=, forms the lower 
record value sequence. Then the density function of Y,,,,, n 2 1, is given by 
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Table 22.4 Covariances of order statistics from extreme value distribution 

This is the density function of a log-gamma population when the shape 
parameter K = n (see Section 16 or Chapter 17, Section 8.7). Thus, for 
n = l ,2 ,  ..., 

n r s Covariance 

2 1 2 0.48045 
3 1 2 0.30137 
3 1 3 0.24376 
3 2 3 0.54629 
4 1 2 0.22455 
4 1 3 0.17903 
4 1 4 0.15389 
4 2 3 0.33721 
4 2 4 0.29271 
4 3 4 0.57432 
5 1 2 0.18203 
5 1 3  0.14359 
5 1 4 0.12258 
5 1 5  0.10901 
5 2 3 0.24677 
5 2 4 0.21227 
5 2 5 0.18967 
5 3 4 0.35267 
5 3 5 0.31716 
5 4 5 0.58992 
6 1 2  0.15497 
6 1 3 0.12122 
6 1 4 0.10292 
6 1 5 0.09116 
6 1 6 0.08285 
6 2 3 0.19671 
6 2 4 0.16806 
6 2 5 0.14945 

The joint density function of Y,,,, and Y,,,,, 1 s m < n, is given by 

n r s Covariance 

6 2 6 0.13619 
6 3 4 0.25617 
6 3 5 0.22888 
6 3 6 0.20925 
6 4 5 0.36146 
6 4 6 0.33205 
6 5 6 0.59986 
7 1 2 0.13618 
7 1 3 0.10578 
7 1 4 0.08941 
7 1 5 0.07893 
7 1 6 0.07155 
7 1 7 0.06601 
7 2 3 0.16497 
7 2 4 0.14020 
7 2 5 0.12419 
7 2 6 0.11283 
7 2 7 0.10427 
7 3 4 0.20262 
7 3 5 0.18017 
7 3 6 0.16412 
7 3 7 0.15195 
7 4 5 0.26155 
7 4 6 0.23906 
7 4 7 0.22190 
7 5 6 0.36717 
7 5 7 0.34211 
7 6 7 0.60675 

n r s Covariance 

8 1 2 0.12233 
8 1 3 0.09447 
8 1 4 0.07953 
8 1 5 0.07001 
8 1 6 0.06332 
8 1 7 0.05832 
8 1 8 0.05440 
8 2 3 0.14306 
8 2 4 0.12103 
8 2 5 0.10686 
8 2 6 0.09685 
8 2 7 0.08931 
8 2 8 0.08340 
8 3 4 0.16868 
8 3 5 0.14941 
8 3 6 0.13570 
8 3 7 0.12534 
8 3 8 0.11719 
8 4 5 0.20599 
8 4 6 0.18759 
8 4 7 0.17362 
8 4 8 0.16256 
8 5 6 0.26509 
8 5 7 0.24600 
8 5 8 0.23081 
8 6 7 0.37119 
8 6 8 0.34937 
8 7 8 0.61182 
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Table 22.4 (Continued) 

n r s Covariance n r s Covariance n r s Covariance 

9 1 2  0.11167 9 5 7 0.19267 10 3 5 0.11282 
9 1 3 0.08580 9 5 8 0.18033 10 3 6 0.10200 
9 1 4 0.07199 9 5 9 0.17027 10 3 7 0.09387 
9 1 5 0.06322 9 6 7 0.26763 10 3 8 0.08749 
9 1 6 0.05706 9 6 8 0.25105 10 3 9 0.08232 
9 1 7 0.05246 9 6 9 0.23745 10 3 10 0.07803 
9 1 8 0.04887 9 7 8 0.37418 10 4 5 0.14641 
9 1 9 0.04597 9 7 9 0.35488 10 4 6 0.13262 
9 2 3 0.12700 9 8 9 0.61569 10 4 7 0.12221 
9 2 4 0.10703 10 1 2 0.10319 10 4 8 0.11403 
9 2 5 0.09424 10 1 3 0.07893 10 4 9 0.10738 
9 2 6 0.08522 10 1 4 0.06603 10 4 10 0.10185 
9 2 7 0.07846 10 1 5 0.05785 10 5 6 0.17211 
9 2 8 0.07315 10 1 6 0.05213 10 5 7 0.15888 
9 2 9 0.06886 10 1 7 0.04786 10 5 8 0.14842 
9 3 4 0.14525 10 1 8 0.04453 10 5 9 0.13991 
9 3 5 0.12825 10 1 9 0.04184 10 5 10 0.13282 
9 3 6 0.11620 10 1 10 0.03962 10 6 7 0.20986 
9 3 7 0.10712 10 2 3 0.11471 10 6 8 0.19637 
9 3 8 0.09998 10 2 4 0.09635 10 6 9 0.18536 
9 3 9 0.09419 10 2 5 0.08463 10 6 10 0.17615 
9 4 5 0.17074 10 2 6 0.07639 10 7 8 0.26954 
9 4 6 0.15503 10 2 7 0.07021 10 7 9 0.25489 
9 4 7 0.14315 10 2 8 0.06538 10 7 10 0.24260 
9 4 8 0.13377 10 2 9 0.06148 10 8 9 0.37650 
9 4 9 0.12615 10 2 10 0.05824 10 8 10 0.35919 
9 5 6 0.20823 10 3 4 0.12812 10 9 10 0.61876 

Upon writing the joint density of Y,,,,, and YL(,,, 1 2 m < n,  in (22.48) as 

we readily observe that YL(,, - Y,,,, and YL(,, (for 1 I m < n )  are statisti- 
cally independent. As a result we immediately get 
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These properties are similar to those of order statistics arising from standard 
exponential random variables (Chapter 19, Section 6). It follows from (22.49) 
that YL(,, - YL(,, is distributed as the (n - m)th order statistic in a 
sample of size n - 1 from the standard exponential distribution, say 
Zn-,:, - ,. For the special case when m = 1, we then have YLo, - YLcn) = 

d 
Y, - YL(,, = Z which, when used with the known results that (see 
Chapter 19, Section 6) 

gives easily the expressions for the mean and variance of YL,,, in (22.47). 
Ahsanullah (1990,1991) has used these expressions to develop inference 

procedures for the location and scale parameters, 6 and 8, of the type 1 
extreme value distribution (22.25) based on the first n lower record values 
XL(I), XL(Z), . . . , XL(n) observed. 

For the standard type 1 distribution in (22.261, we may note the relation- 
ship 

By making use of this relationship, Balakrishnan, Ahsanullah, and Chan 
(1992) established several recurrence relations for single as well as product 
moments of lower record values from this distribution. For example, consider 
for n 1 1  and r = 0 , 1 , 2  ,..., 

upon using (22.52). Integration by parts yields 
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The equation above, when simply rewritten, yields the recurrence relation 

By repeated application of the recurrence relation in (22.53), Balakrishnan, 
Ahsanullah, and Chan (1992) established the relation 

for n = 1 ,2  ,..., r = 0 ,1 ,2  ,... . (22.54) 

From (22.54) one may also easily derive the expressions for the mean and 
variance of Y,,,! in (22.47). 

Proceeding s~milarly, Balakrishnan, Ahsanullah, and Chan (1992) also 
established the following recurrence relations for the product moments: 

r +  lys r + s +  1 
r + l  

' [ ~ L ( r n )  ~ ( r n + ~ ) ]  = E [ Y L ( ~ + I ) ]  + TE[Y.rn)YL(rn+ I)] 9 

m 2 1; r , s  = 0 ,1 ,2  ,... . (22.55) 

m 2 1; r ,  s = 0 ,1 ,2 , .  . . . (22.58) 

and 
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In the equations above 

Suppose that X& is the ith order statistic in a random sample of size j 
from a distribution F(.).  If the distribution function of (Xi:, - aj)/bj con- 
verges weakly to a nondegenerate distribution function G(.)  as j -, oc for 
sequences of constants a, and positive b,, then Nagaraja (1982) showed that 
the joint distribution function of (X,!- i+,:  , - a,)/b,, 1 I i r n, converges to 
that of X,(;,, 1 r i I n. As we have already seen in Section 3, G ( . )  must be 
one of the three types of extreme value distributions. Hence, as pointed out 
by Nagaraja (1988), some inference procedures based on asymptotic theory of 
extreme order statistics are equivalent to those based on record values from 
the extreme value distributions. Consequently the asymptotic linear predic- 
tion of extreme order statistics discussed by Nagaraja (1984) is the same as 
predicting a future record value from the distribution F ( . ) .  It is also 
apparent from this discussion that the estimation of parameters of F ( - )  
based on k largest observations discussed by Weissman (1978) is effectively 
the same as the estimation of parameters based on record values from one of 
the three extreme value distributions G(.). Smith (1988) has provided a 
detailed discussion on forecasting records by the maximum likelihood method. 

Ballerini and Resnick (1985,1987a) have discussed upper records arising 
from the simple linear regression model 

where {X,) is i.i.d. type 1 extreme value random variables with density 
(22.25). They referred to this model as the linear-drift Gumbel record model. 
Then, for this model, Ballerini and Resnick (1987b) established that the 
random variables 

Mn + max(Z, , . . . ,Z,]  and 

In = Indicator whether record occurs at time n = I[ ,",  M n - , l  (22.60) 

are statistically independent for each n (see Section 8 for some additional 
comments). 

Balakrishnan, Balasubramanian, and Panchapakesan (1995) have dis- 
cussed properties of 6-exceedance records arising from the type 1 extreme 
value distribution. In this model a new variable will be declared a record only 
if it is smaller than the previous lower record by at least 6. 
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7 GENERATION, TABLES, AND PROBABILITY PAPER 

The following tables are included in Gumbel (1953): 

1. Values of the standard cumulative distribution function, e ~ p ( - e - ~ ) ,  
and probability density function, exp(-y - e-y), to seven decimal 
places for y = -3(0.1) - 2.4(0.05)0.00(0.1)4.0(0.2)8.0(0.5)17.0 

2. The inverse of the cumulative distribution function (i.e., percentiles), 
y = - log( - log F )  to five decimal places for 

In Owen's tables (1962) there is a similar table, to four decimal places for 

[The special interest in very high values of F,  by both Gumbel (1953) and 
Owen (1962), may be associated with the genesis of the distribution, though it 
seems rather risky to rely on practical applicability so far out in the tails of a 
distribution.] 

Gumbel (1953) contains others tables. In particular there are two 
relating to asymptotic distribution of range (see Section 16), and a table 
giving the probability density function in terms of the cumulative 
distribution function ( p  = -F log F )  to five decimal places for F = 

0.0001(0.0001)0.0100(0.001)0.999. 
Lieblein and Salzer (1957) have published a table of the expected value (to 

seven decimal places) of the mth largest among n independent random 
variables having the standard type 1 extreme value distribution (22.261, for 

m = l(l)min(26, n ) ,  n = 1(1)10(5)60(10)100. 

Lieblein and Zelen (1956) gave the variances and covariances (also to seven 
decimal places) for sets of 2, 3, 4, 5, and 6 independent type 1 variables. 
[These values are also given by Lieblein (19621.1 Mann (1968b) gave similar 
tables for the type 1 smallest value distribution for up to 25 variables. 

These tables have been extended by White (1969), who gives (up to seven 
decimal places) expected values and variances of all order statistics for 
sample sizes 1(1)50(5)100. Extended tables of means, variances, and covari- 
ances of order statistics for sample sizes up to 30 have been provided by 
Balakrishnan and Chan (1992a, c). 

Tables of coefficients for the best linear unbiased estimators of 6 and 0 
and the values of variances and covariance of these estimators have been 
presented by Balakrishnan and Chan (1992b, d) for the case of complete as 
well as Type-I1 censored samples for sample sizes up to 30. Mann 
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(1967,1968a, b), and Mann, Schafer, and Singpurwalla (1974) have presented 
similar tables for the best linear invariant estimates of 5 and a. 

From (22.1) it follows that 

x - 5  
-log( -log Pr[X < x])  = - . 

8 

Hence, if the cumulative observed relative frequency Fx-equal to (number of 
observations less than or equal to x)/(total number of observations)-is 
calculated, and -log( - log Fx) is plotted against x, an approximately 
straight-line relation should be obtained, with slope 8- '  and intersecting the 
horizontal (x)  axis at x = 5. In using graph paper with a vertical scale that 
gives -log( - log Fx) directly, it is not necessary to refer to tables of loga- 
rithms. Such graph paper is sometimes called extreme value probability paper. 
It is also quite common to use such paper with the x-axis vertical, and for 
practical purposes it is sometimes convenient to have the - log( - log F,) 
marked not with Fx but with the "return period" (1 - Fx)-I; see Gumbel 
(1949a) and Kimball (1960). Such a paper is called extreme probability paper. 

Tables of 500 random numbers (to three decimal places) representing 
values chosen at random from the standard type 1 distribution, and 500 each 
from three standard distributions of each of types 2 and 3 [k-' = 0.2,0.5,0.8 
in Eqs. (22.14) and (22.1511 have been given by Goldstein (1963). 

Of course pseudorandom numbers from the standard type 1 distribution 
may be generated easily either through the inverse cdf method along with an 
efficient uniform random generator (see Chapter 26) or through the relation- 
ship with the exponential distribution (explained in Section 3) along with an 
efficient exponential random generator (see Chapter 19). Sibuya (1967) has 
discussed the latter. Landwehr, Matalas, and Wallis (1979) have advocated 
the use of the Lewis-Goodman-Miller algorithm for generating pseudoran- 
dom numbers from the uniform distribution for this specific purpose. These 
authors have also discussed a simulational algorithm for generating serially 
correlated Gumbel data. Let 

represent a Markov process, where p, denotes the first-order serial correla- 
tion of the z's and 6, is a standard normal variable independent of 2,-,. 

With 6,'s generated by the Box-Muller algorithm and 2,'s determined by the 
equation above, the serially correlated Gumbel values Xi's may then be 
obtained as 

where @ is the standard normal cumulative distribution function. 
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As mentioned earlier in Section 2, X has a type 1 extreme value distribution 
if and only if e x  has a Weibull distribution, and ex/' has an exponential 
distribution, and exp{(X - ()/8) has a standard exponential distribution. It 
is clear that some characterization theorems for exponential distributions 
may also be used for type 1 extreme value distributions, simply by applying 
them to e x / @ ,  or exp{(X - [)/8). Dubey (1966) characterizes this distribu- 
tion by the property that Y, = min(X,, X,,. . a ,  X,) is a type 1 random 
variable if and only if XI ,  X,; . ., X, are independent identically distributed 
type 1 random variables. 

Sethuraman (1965) has obtained characterizations of all three types of 
extreme value distributions, in terms of "complete confounding" of random 
variables. If X and Y are independent and the distributions of Z, Z given 
Z = X, and Z given Z = Y are the same [e.g., Z might be equal to 
min(X, Y) as in the cases described in Sethuraman (196511, they are said to 
completely confound each other with respect to the third. Sethuraman showed 
that if all pairs from the variables X, Y, and Z completely confound each 
other with respect to the third and if Y, Z have the same distributions as 
a , X  + b,, a 2 X  + b,, respectively [with ( a , ,  b,)  $ ( a , ,  b,)], then the distribu- 
tion of X is one of the three extreme value (minimum) distributions (pro- 
vided we limit ourselves to the cases when Pr[X > Y] > 0; Pr[Y > X I  > 0, 
etc.). The type of distribution depends on the values of a , ,  a,, b, ,  b,. 

Gompertz (1825) derived a probability model for human mortality. He 
assumed the average exhaustion of a man's power to avoid death to be such 
that at the end of equal infinitely small intervals of time he lost equal portions of 
his remaining power to oppose destruction which he had at the commencement 
of these itzteruals. From this hypothesis Gompertz (1825) deduced the force of 
mortality or the hazard function as 

which, when solved as a differential equation, readily yields the survival 
function as 

It may be readily seen that (22.62) is a truncated form of the type 1 
distribution, and it includes the exponential distribution as a special case 
when c = 1. Then, just as the memoryless property 

characterizes the exponential distribution (see Chapter 19, Section 8), 
Kaminsky (1982) has characterized the Gompertz distribution in (22.62) 
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through the condition 

and the requirement that the function h ( . )  must take the form h ( x )  = c x  for 
some c  r 1 .  

As one would expect, there are a number of characterizations of the type 1 
distribution in the framework of extreme value theory. The most celebrated 
one is that the type 1 distribution is the only max-stable probability distribu- 
tion function with the entire real line as its support; for example, see 
Theorem 1.4.1 in Leadbetter, Lindgren, and Rootztn (1983). In addition to 
the characterizations of the type 1 distribution itself, there are several 
characterization results available for the maximal domain of attraction of the 
type 1 distribution; de Haan (1970) will serve as a good source of information 
on this as well as characterizations for type 2 and type 3 distributions. 

In Section 6 we have discussed the linear-drift Gumbel record model. We 
mentioned that under this model the random variables M,, and I,, are 
statistically independent for each n. Ballerini (1987) has proved this to be a 
characterization of the type 1 extreme value distribution; that is, M,, and I,, 
are independent for each n and for every c > 0 if and only if the Xi's are 
type 1 extreme value random variables. 

Tikhov (1991) has characterized the extreme value distributions by the 
limiting information quantity associated with the maximum likelihood estima- 
tor based on a multiply censored sample. 

9 METHODS OF INFERENCE 

Let XI, X,; . . , X,, be a random sample of size n from the type 1 extreme 
value distribution in (22.25). Then, as Downton (1966) has shown, the 
CramCr-Rao lower bounds of variances of unbiased estimators of 6 and 19 are 
given by 

respectively. 
As has already been mentioned on several occasions in this chapter, as 

well as in Chapter 21, if Z has a Weibull distribution with probability density 
function 
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then log(Z - 6,) has a type 1 extreme value distribution. Consequently, if 5, 
is known, the methods of estimation discussed in this section for the type 1 
extreme value distribution can also be used for estimating the parameters p 
and c of the Weibull distribution (22.66). Conversely, as discussed in Section 
4, some methods of estimating /3 and c of the Weibull distribution, when 4, 
is known, can also be used for estimating the parameters 6 and 8 of the type 
1 extreme value distribution. 

9.1 Moment Estimation 

Let and S denote the sample mean and the sample standard deviation. 
Then, using Eqs. (22.29) and (22.311, we simply obtain the moment estimates 
of 8 and 6 as 

- 6 
8 = -S and 5 = x - ?6. 

?l 

Tiago de Oliveira (1963) has shown that 

and that 

where p,  and p2 are the coefficients of skewness and kurtosis as given in 
(22.32). Upon substituting for their values, we get 

1 .1678e2 - l . l e 2  
var(5) = and Var(8) = - . 

n n 

Tiago de Oliveira (1963) has also discussed the joint distribution of and S. 
A comparison of the variance formulas in (22.70) with the CramCr-Rao 

lower bounds in (22.65) readily reveals that the moment estimator has 
about 95% efficiency while the moment estimator has only about 55% 
efficiency. The estimators i and 8 are both \/;;-consistent; that is, \/;;(i - 6 )  
and h ( 6  - 8) are bounded in probability. 

Tiago de Oliveira (1963) has shown that the joint asymptotic distribution 
of and 6 is bivariate normal with mean vector (6, 8Y, variances as given in 
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(22.701, and the correlation coefficient as 

By making use of this asymptotic result, asymptotic confidence regions for 
([,el can be constructed. 

Christopeit (1994) recently showed that the method of moments provides 
consistent estimates of the parameters of extreme value distributions, and 
used the estimation of the distribution of earthquake magnitudes in the 
middle Rhein region for illustration. 

9.2 Simple Linear Estimation 

Upon noting that the likelihood equations for 6 and 8 do not admit explicit 
solutions and hence need to be solved by numerical iterative methods, 
Kimball (1956) suggested a simple modification to the equation for 8 (based 
on the equation for 6) that makes it easier to solve the resulting equation. 
The equation for 8 given by 

used in conjunction with the equation for 6 given by 

can be rewritten as 

1 " 
= z + - z xi log & ( x i ) ,  (22.74) 

n , = I  

where FX(x,) is the estimated cumulative distrib~tion~function. By replacing 
Iog F,(X,!) in (22.74) with the expected value of log Fx(X,'), Kimball (1956) 
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derived a simplified linear estimator for 8 as 

which may be further approximated as 

The estimator in (22.75) or in (22.76) is a linear function of the order 
statistics, and hence its bias and mean square error can be determined easily 
from means, variances and covariances of order statistics in Tables 22.3 and 
22.4. Since the linear estimator in (22.76) is biased, Kimball (1956) presented 
a table of corrective multipliers to make it unbiased; from the table it 
appears that for n 2 10 the estimator 

is very nearly unbiased. Further a simplified linear estimator of 5 may then 
be obtained as 

Estimator of 5 = X - 7 x (Estimator of 8) .  (22.78) I 
Due to the linearity of the estimator of 8, it is only natural to compare it with 
the best linear unbiased estimator of 8 and with its approximations proposed 
by Blom (1958) and Weiss (1961). 

Downton (1966) carried out a number of comparisons of this nature. He 
actually discussed the type 1 distribution appropriate to minima, with cumu- 

-eir-C)/fJ 
lative distribution function 1 - e , but his results also apply to the type 
1 distribution in (22.1) (with some simple changes). His results are all in 
terms of efficiencies, that is, ratios of the values given by (22.65) to corre- 
sponding variances for the estimators in question. For each estimator of 8, 
the parameter 5 was estimated from (22.78). Tables 22.5 and 22.6, taken 
from Downton (19661, give efficiencies for various estimators of 6 and 8. 

For the small values of n considered, the asymptotic formulas used in the 
calculations may not be accurate, yet the tables probably give a good idea of 
relative efficiency and the performance of different estimators considered. It 
can be seen from Table 22.5 that the location parameter 6 can be estimated 
with quite good accuracy using simple linear functions of order statistics; 
however, it may also be noted from Table 22.6 that the situation is rather 
unsatisfactory should one use such simple linear functions of order statistics 
to estimate the scale parameter 8. 
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Table 22.5 Efficiencies of linear unbiased estimators of 4 for the extreme 
value distribution 

- - 

Best linear 84.05 91.73 94.45 95.82 96.65 100.00 
Blom's 

approximation 84.05 91.72 94.37 95.68 96.45 100.00 I 

Weiss's 
approximation 84.05 91.73 94.41 95.74 96.53 - 

Kimball's 
approximation 84.05 91.71 94.45 95.82 96.63 - 

Note: Efficiencies are expressed in percentages. 

For the case of a Type-I1 right-censored sample Xi, X;; ., Xi-, from 
the ty e 1 extreme value distribution for minima with cdf FX(x) = 1 - 

,cx-tP/e 
e - , Bain (1972) suggested a simple unbiased linear estimator for the 
scale parameter 8. This estimator was subsequently modified by Engelhardt 
and Bain (1973) to the form 

where 

1 n- s  

= (X,! - 5 ) / 8  being the order statistics from the standard type 1 extreme 

Table 22.6 Efficiencies of linear unbiased estimators of 8 for the extreme 
value distribution 

- - - - -  - - -  -- 

Best linear 42.70 58.79 67.46 72.96 76.78 100.00 
Blom's 

approximation 42.70 57.47 65.39 70.47 74.07 100.00 
Weiss's 

approximation 42.70 58.00 66.09 71.04 74.47 
Kimball's 

approximation 42.70 57.32 65.04 69.88 73.25 

Note: Etticiencies are expressed in percentages. 
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value distribution for minima, and 

r = n - s  for n - s 1 0.9n, 

r = n  for n - s = n,  n I 15, 

r = n - 1  for n - s = n,  16 s n  5 24, 

r = [0.892n] + 1 f o r n  - s  = n ,  n 2 25. 

By making use of the tables of means of order statistics referred to in Section 
5, Bain (1972) determined exact values of k , - , ,  for n = 5, 15, 20, 30, 60, 
and 100 and n infinite and (n - s)/n = 0.1(0.1)0.9 for integer n - s. 
Engelhardt and Bain (1973) gave exact values of k,,, for n = 2(1)35(5)100, 
n = 39, 49, and 59 and infinite n. Mann and Fertig (1975) also presented 
exact values of k,- , ,  for n = 25(5)60 and (n - s)/n = O.l(O.1)l.O for inte- 
ger n - s. [It needs to be mentioned that the values of k,,, given by Mann 
and Fertig (1975) are slightly different from those given by Engelhardt and 
Bain (1973) for n > 40 as the choice of r* used by the former is different.] 

Since 8 is a scale parameter and 6 is an unbiased estimator of 0, 
improvement is possible in terms of minimum mean-square-error estimator 
(see Section 9.3 for more details). The improvement in efficiency becomes 
considerable when the censoring is heavy in the sample. As Bain (1972) noted 

2 
that for (n - s)/n about at most 0.5, var(6) = e2/(nkn -,, ,) and conse- 
quently 

* 

has a smaller mean square error than 6 when (n - s)/n 10 .5 .  On these 
grounds, an estimator that has been used in general is 

i which has mean square error e21n-s, ,/(l + I,-, .); here, = vadQ/e). 
Values of I,-,, have been tabulated by Engelhardt and Bain (1973) and 
Mann and Fertig (1975). From the tables of Bain (1972) and Engelhardt and 
Bain (19731, it is clear that the estimator in (22.79) is highly efficient; 
for example, when (n - s)/n I 0.7, the asymptotic efficiency of relative to 
the CramCr-Rao I ~ w e r  bound is at least 97.7%. 

The estimator 6 in (22.79) may also be used to produce a simple linear 
unbiased estimator for 5,  through the moment equation 
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Using the estimators Q and ; in Eqs. (22.79) and (22.841, respectively, a 
simple linear unbiased estimator for the pth quantile 5, can be derived as 

Confidence intervals for the parameters 5 and 0  based on the linear 
unbiased estimators ; and t! have also beeq discussed. Bain (1972) suggested 
approximating the distribution of 2nk,-s , ,6 /8  by a central chi-square distri- 

bution with 2nk,-, ,  degrees of freedom when ( n  - s ) / n  is at most 0.5 and 
n at least 20. But Mann and Fertig (1975) have shown that for n 2 20, 
2(6/8) /1 ,  -,, , is approximately distributed as chi-square with 2/1, _,, , de- 
grees of freedom. Interestingly this approximate result holds for all values of 
( n  - s ) / n  in (O, l ] .  This approximation arose from an observation of van 
Montfort (1970) that the statistics 

xi'+, - xi' 
z. = i = 1,2 ,..., n - 1 ,  {ELK , ]  - E [ Y ; ' ] ) O  ' 

all have approximately an exponential distribution with mean exactly 1 ,  
variance approximately 1 ,  and covariance almost zero [see also Pyke (196511. 

As aptly pointed out by Mann and Fertig (1979,  since for n - s I 0.90n, 

is approximately a sum of weighted independent chi-square variables, various 
approximations discussed in Chapter 18 for this distribution are useful in 
developing approximate inference for 8.  

9.3 Best Linear Unbiased (Invariant) Estimation 

Let X:+, I X:+, I - . . I XL-, be the available doubly Type-I1 censored 
sample from a sample of size n where the smallest r and the largest s  
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observations have been censored. Let us denote 

T 
1 = (1, l , . . . ,  l ) ~ x ( ~ - ~ - s ) ,  

CL = (E[Y:+,I, E[Y:+,I,. . - 7  E[Y;-,I)~, 

and 

X = ( ( c o ( ,  ) )  r + 1 s i ,  j < n - s, 

where E[Y;'l and cov(Y,', );') are as derived in Section 5. Then, by minimizing 
the generalized variance 

we derive the best linear unbiased estimators (BLUES) of 6 and 8 as [see 
Balakrishnan and Cohen (1991, pp. 80-8111 

and 

n- s 

= C b;Xi'. 
i = r +  1 

Further, the variances and covariance of these estimators are given by 
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and 

Lieblein (1962) presented tables of coefficients ai and bi in (22.86) and 
(22.871, and the variances and covariance in (22.88)-(22.901, for samples sizes 
up to 6. These tables were extended by White (1964) for sample sizes up to 
20, by Mann (1967) for sample sizes up to 25, and by Balakrishnan and Chan 
(1992b, d) for sample sizes up to 30 (for the case of complete as well as 
censored samples). 

In Table 22.7, for example, the coefficients ai and bi are presented for 
n = 2(1)10 for the case of complete samples (i.e., r = s = 0). The corre- 
sponding values of the variance and covariance factors (V,, V2, and V3) are 
presented in Table 22.8. 

Table 22.7 Coefficients for the BLUES of and 0 for complete samples 

n 1 Oi bi n 1 
Q i bi 

2 1 0.91637 -0.72135 8 1 0.27354 -0.39419 
2 2 0.08363 0.72135 8 2 0.18943 - 0.07577 
3 1 0.65632 -0.63054 8 3 0.15020 0.01112 
3 2 0.25571 0.25582 8 4 0.12117 0.05893 
3 3 0.08797 0.37473 8 5 0.09714 0.08716 
4 1 0.51100 -0.55862 8 6 0.07590 0.10273 
4 2 0.26394 0.08590 8 7 0.05613 0.10807 
4 3 0.15368 0.22392 8 8 0.03649 0.10194 
4 4 0.07138 0.24880 9 1 0.24554 -0.36924 
5 1 0.41893 -0.50313 9 2 0.17488 -0.08520 
5 2 0.24628 0.00653 9 3 0.14179 -0.00649 
5 3 0.16761 0.13045 9 4 0.11736 0.03798 
5 4 0.10882 0.18166 9 5 0.09722 0.06557 
5 5 0.05835 0.18448 9 6 0.07957 0.08265 
6 1 0.35545 -0.45927 9 7 0.06340 0.09197 
6 2 0.22549 -0.03599 9 8 0.04796 0.09437 
6 3 0.16562 0.07320 9 9 0.03229 0.08839 
6 4 0.12105 0.12672 10 1 0.22287 - 0.34783 
6 5 0.08352 0.14953 10 2 0.16231 -0.09116 
6 6 0.04887 0.14581 10 3 0.13385 -0.01921 
7 1 0.30901 -0.42370 10 4 0.11287 0.02218 
7 2 0.20626 -0.06070 10 5 0.09564 0.04867 
7 3 0.15859 0.03619 10 6 0.08062 0.06606 
7 4 0.12322 0.08734 10 7 0.06699 0.07702 
7 5 0.09375 0.11487 10 8 0.05419 0.08277 
7 6 0.06733 0.12586 10 9 0.04175 0.08355 
7 7 0.04184 0.12014 10 10 0.02893 0.07794 
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Table 22.8 Values of V , ,  V,, and V3 for the BLUES of 5 
and 0 for complete samples 

n VI  "2 V3 

Hassanein (1964) discussed the use of nearly best linear unbiased estima- 
tors and presented tables of coefficients of order statistics from censored 
samples for n = 2(1)10(5)25. 

Observing that these estimators are minimum variance estimators in the 
class of all linear unbiased estimators, Mann (1969) considered the larger 
class of all linear estimators and derived improved estimators by minimizing 
the mean square error. Specifically, by considering the best linear unbiased 
estimators 8* and v*  = cI6*  + c2e* of the parameters 8 and 77 = c l t  + c28 
and their respective variances e2V2 and O'V, (where V, = c : ~ ,  + C ~ V ,  + 
2c,c2V3) and covariance e2V5 (where V5 = c,V3 + c2V2), Mann (1969) showed 
that the unique minimum-mean-square-error linear estimators of 0 and 7 
are given by 

e* e** = ___ and v** = v *  - 
1 + v2 (22.91) 

The mean square errors for these estimators are 

e2 (A) and e 2 { 4  - &} , 

r'espectively. These estimators are termed the best linear invariant estimators 
(BLIEs) by Mann (1969). They become particularly useful when either the 
sample size is very small or there is a great deal of censoring in the sample. 
Of course the best linear invariant estimator of 6 may be derived from 
(22.91) by setting c ,  = 1 and c2  = 0; similarly the best linear invariant 
estimator of the p th  quantile 5, may be derived from (22.91) by setting 
c ,  = 1 and c ,  = -log( -log p). 
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Denoting the best linear invariant estimators of 6 and 8 by 

n -s n - s  

k**  = arX: and 8** = bTX,!, 
i = r +  1 i = r +  1 

and their respective mean square errors by 

MSE(t**) = g2WI and MSE(8**) = e2w2,  (22.94) 

Mann (1967a, b) and Mann, Schafer, and Singpurwalla (1974) have presented 
tables for various sample sizes and different levels of censoring. 

In Table 22.9, for example, the coefficients a: and 6: are presented for 
n = 2(1)10 for the case of complete samples (i.e., r = s = 0). The corre- 
sponding values of the mean square error factors (W, and W2) are presented 
in Table 22.10. A comparison of the entries in Tables 22.8 and 22.10 readily 

Table 22.9 Coefficients for the BLIEs of 

n i a: bt 

2 1 0.88927 -0.42138 
2 2 0.11073 0.42138 
3 1 0.66794 -0.46890 
3 2 0.25100 0.19024 
3 3 0.08106 0.27867 
4 1 0.52681 -0.45591 
4 2 0.26151 0.0701 1 
4 3 0.14734 0.18275 
4 4 0.06434 0.20305 
5 1 0.43359 -0.43126 
5 2 0.24609 0.00560 
5 3 0.16381 0.11182 
5 4 0.10353 0.15571 
5 5 0.05298 0.15813 
6 1 0.36818 -0.40573 
6 2 0.22649 -0.03180 
6 3 0.16359 0.06467 
6 4 0.11754 0.11195 
6 5 0.07938 0.13210 
6 6 0.04483 0.12881 
7 1 0.31993 -0.38202 
7 2 0.20783 -0.05472 
7 3 0.15766 0.03263 
7 4 0.12097 0.07875 
7 5 0.09079 0.10357 
7 6 0.06409 0.11348 
7 7 0.03874 0.10832 

6 and 0 for complete samples 

n i a: br 

8 1 0.28294 -0.36068 
8 2 0.19124 -0.06933 
8 3 0.14993 0.01018 
8 4 0.11977 0.05392 
8 5 0.09506 0.07975 
8 6 0.07345 0.09399 
8 7 0.05355 0.09889 
8 8 0.03405 0.09327 
9 1 0.25370 -0.34161 
9 2 0.17676 -0.07883 
9 3 0.14193 -0.00600 
9 4 0.1 1652 0.03514 
9 5 0.09577 0.06067 
9 6 0.07774 0.07647 
9 7 0.06137 0.08508 
9 8 0.04587 0.0873 1 
9 9 0.03034 0.08178 

10 1 0.23000 -0.32460 
10 2 0.16418 -0.08507 
10 3 0.13424 -0.01793 
10 4 0.11241 0.02070 
10 5 0.09464 0.04542 
10 6 0.07926 0.06165 
10 7 0.06541 0.07188 
10 8 0.05250 0.07724 
10 9 0.04003 0.07797 
10 10 0.02733 0.07273 
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Table 22.10 Values of W, and W, for the BLIEs of 6 
and 8 for complete samples 

reveals that while there is only a slight improvement in the estimation of 6 ,  
there is a significant gain in using the BLIE of 8 particularly when n is small. 
McCool (1965) discussed the construction of good linear unbiased estimates 
from the best linear estimates in the case of small sample sizes. 

9.4 Asymptotic Best Linear Unbiased Estimation 

Johns and Lieberman (1966) tabulated approximate weights for obtaining 
BLIEs of the parameters 5 and 6 based on the first n - s order statistics of 
samples of size n for n = 10, 15, 20, 30, 50, and 100 and four values of s for 
each n. Johns and Lieberman (1966) also presented formulas for determining 
weights for the asymptotic optimal linear estimates in the case of Type-I1 
censored samples. Of course, as mentioned earlier in Section 9.3, exact tables 
of weights for the BLIEs have been presented by Mann (1967a, b) for sample 
sizes up to 25 and s = O(l)n - 2. 

Optimal linear estimation of the parameters 6 and 8 based on k selected 
order statistics, using the theory of Ogawa (1951,1952), has also been 
discussed by a number of authors. Suppose that 0 < A ,  < A, < . < A, < 1 
is the spacing that needs to be determined optimally, and let A, = 0 and 
A,,, = 1. XL,., is termed the sample quantile of order A,, where ni  = [nh,] 
+ 1. Then it can be shown that the asymptotic variances and covariance of 
the BLUES, [* and 8*, based on the k selected sample quantiles are given by 
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and 

In the equations above 

and 

where G, = F; '(A;) and 

Appropriate functions involving K,, ,  K2,, and K,, need to be optimized, 
subject to the constraint 0 < A ,  < A, < . . < A, < 1 in order to determine 
the k optimal quantiles for the asymptotic best linear unbiased estimation of 
the parameters 6 and 8. Numerical results for this problem have been 
provided by Hassanein (1965,1968,1969,1972) and Chan and Kabir (1969), 
while optimal t-tests based on these estimators have been discussed by Chan 
and Mead (1971a, b), and Chan, Cheng, and Mead (1972). Similar estimation 
of the a t h  quantile of the distribution, given by X, = .$ - 0 log( - log a )  for 
0 < a < 1, based on k optimally selected order statistics has been discussed 
in great detail by Hassanein, Saleh, and Brown (1984,1986) and Hassanein 
and Saleh (1992). 

For example, the optimal spacing ( A  , ,  A,, . - , A,) that maximizes K, ,  in 
(22.98) is presented in Table 22.11 for k = 1(1)10. These values then give the 
optimal sample quantiles to be used in a sample of size n for the asymptotic 
best linear unbiased estimator of 6 (when 0 is known) since its variance in 
this case is given by 

More elaborate tables may be found in the papers mentioned above. Tests 
of hypotheses concerning the equality of ti 's from I extreme value popula- 
tions, based on these asymptotic best linear unbiased estimators, have been 
discussed by Hassanein and Saleh (1992). 
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Table 22.11 Optimal spacing for the asymptotic best linear unbiased estimator 
of F, (when 0 is known) for k = 1(1)10 

9.5 Linear Estimation with Polynomial Coefficients 

Based on a complete ordered sample X i ,  X i , . .  ., XL from the type 1 
extreme value distribution (22.29,  Downton (1966) considered estimators of 
the form 

and 

where 

Let us denote 
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and 

where 

Then, by using least-squares theory, Downton (1966) derived the coefficients 
for the best linear unbiased estimators with polynomial coefficients 6, and 
8, in (22.102) and (22.103) as 

and the variance-covariance matrix of 6, and 8, as 

for details, see Balakrishnan and Cohen (1991, pp. 109-113). 
Downton (1966) examined the efficiency of these estimators, and com- 

pared their performance with many other estimators. For example, the 
efficiencies of the linear coefficients estimator and the quadratic coefficients 
estimator for 6 and 8 are presented in Tables 22.12 and 22.13 (which may be 
compared with the entries in Tables 22.5 and 22.6). 

Furthermore, as with other methods of estimation, the linear estimators 
(* and 8, may be used to estimate the parameter c , t  + c,8 by c16* + c2B,, 
which may be shown to be the best linear unbiased estimator with polynom~al 
coefficients of the parameter of interest. Of special interest in this case is the 
pth percentile or quantile of type 1 extreme value distribution in (22.251, and 
it is given by Eq. (22.34). Naturally then, the best linear unbiased estimator 

Table 22.12 Efficiencies of linear unbiased estimators of 6 with linear coefficients 
and quadratic coefficients (%) 

- 

Linear coefficient 84.05 91.18 93.83 95.21 96.07 99.63 
Quadratic coefficient 84.05 91.73 94.42 95.79 96.60 99.87 
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Table 22.13 EfRciencies of linear unbiased estimators of B with linear coefficients 
and quadratic coefficients (%) 

n 2 3 4 5 6 a 

Linear coefficient 42.70 54.56 60.13 63.37 65.48 75.55 
Quadratic coefficient 42.70 58.78 67.14 72.26 75.71 93.64 

with polynomial coefficients of the pth percentile of the distribution is given 
by 

The relative efficiencies of the estimator (22.107) to the Cramtr-Rao lower 
bound were determined by Downton (1966). 

9.6 Maximum Likelihood Estimation 

Based on a random sample XI,  X,,. . ., X,, the maximum likelihood estima- 
tors f and i satisfy the equations 

and 

The asymptotic variances of [ and i are given by the CramCr-Rao lower 
bounds in (22.65). The asymptotic correlation coefficient between [ and i is 

Equation (22.108) can be rewritten as 

this, when used in Eq. (22.109), yields the following equation for 5: 
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It is necessary to solve (22.112) by an iterative method for 6; Eq. (22.111) 
then will give 9. If 8 is large compared to X,'s, then the rhs of (22.112) is 
approximately 

This will provide an approximate solution to (22.112) which can sometimes be 
used as an initial guess for the iterative method used to solve Eq. (22.112). 

The asymptotic confidence interval at significance level a is given by 

that is, 

These are ellipses in the (5,8) plane. For the estimator 

j, = j - log( - log p )  6 

of the p th  percentile of the distribution, the asymptotic variance is given by 

Tiago de Oliveira (1972) has shown that the best asymptotic point predictor 
of the maximum of (the next) m observations is 

i +  ( y  + 1ogm)6 

and its asymptotic variance is 

If the scale parameter 8 is known, then the maximum likelihood estimator 
of 6 is obtained from (22.108) to be 
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This estimator is not unbiased for 5. Kimball (1956) has in fact shown that 
(when 8 is known) 

and 

While tie is a biased estimator of f,  e-il@'/' is an unbiased estimator of 
e-t/'. This is so because e-X/" has an exponential distribution with expected 
value e-6". Consequently confidence intervals for this quantity and also for 
f (when 8 is known) can be constructed using methods discussed in Chapter 
19, Section 7. 

Suppose that the available sample is a doubly Type-I1 censored sample 
X:+ ,, X;, ,, - . ., XA -,. Then the log-likelihood function based on this cen- 
sored sample is 

where = (XI - 5)/0 are the order statistics from the standard type 1 
extreme value distribution with density (22.26) and Fy(y)  its corresponding 
cdf. From (22.117) we obtain the likelihood equations for 5 and 0 to be 

and 
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Harter and Moore (1968a) and Harter (1970) have discussed the numerical 
solution of the above likelihood equations. The maximum likelihood estima- 
tion of 6, when 0 is known, based on right-censored data had been discussed 
earlier by Harter and Moore (1967). The asy~pto t ic  Avariance-covariance 
matrix of the maximum likelihood estimates, 5 and 0, determined from 
Eqs. (22.118) and (22.119) is given by [Harter (1970, pp. 127-12811 

where ((V,,)) is the inverse of the matrix ((V'')) with 

V" = 1 - q ,  - q2 + 4,  log q l  - (1  - qz)log(l - q2), 

and 

In the equations above q ,  = r/n, q2 = s/n, T(p; a )  = e-ItP-' dt, 
U p ;  a )  = (d/du)T(u; a)l,=,, and T"(p; a )  = (d2/du2)r(u; a)l,,,. Harter 
(1970), for example, has tabulated the values of V,,, V,,, and VZ2 for 
q, = 0.0(0.1)0.9 and q2 = O.O(O.lX0.9 - 4,). 

Phien (1991) has discussed further the maximum likelihood estimation of 
the parameters 6 and 0 based on censored samples. Escobar and Meeker 
(1986) have discussed the determination of the elements of the Fisher 
information matrix (~ ' 1 ' s )  based on censored data. Phien carried out an 



METHODS OF INFERENCE 45 

extensive simulation study and observed the following concerning the effects 
of Type-I censoring on the estimation of parameters and quantiles of the 
Gumbel distribution using the maximum likelihood method: (1) light censor- 
ing on the right may be useful in reducing the bias in estimating the 
parameters, while left and double censoring are useful for a wider range of 
censoring levels; (2) the bias in estimating the parameters and quantiles is 
very small; (3) for complete samples the MLE of 5 overestimates 5, while the 
MLE of 8 underestimates 8 slightly; and (4) censoring introduces an increase 
in the variances of the estimates. 

Phien (1991) has also discussed the maximum likelihood estimation of the 
parameters based on doubly Type-I censored data. Specifically, for the 
distribution 

with XI and X, as the left- and right-censoring time points and with r lowest 
and s largest observations censored, the likelihood function is proportional 
to 

Note in this case that r and s are random variables while X, and Xr are 
fixed. The log-likelihood function is 

1 where 

f 
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The maximum likelihood estimators of 5 and 8 satisfy the equations 

a log L G a log L 
-= - - =  

H _ -- - 0 and ------ - 
a8 8 a5 8 

- 0, 

where 

G = P + P , + P ,  and H = Q + Q , + Q r  

with 

n - s  n  -s n- s  

P = n - r - s -  z Y,+ z Y , . e - Y ~ , Q = - ( n - r - s ) +  eCYf, 

Phien (1991) recommended solving these equations using Newton's proce- 
dure. 

Posner (19651, when applying the extreme value theory to error-free 
communication, estimated the parameters 5 and 8 for the complete sample 
case by the maximum likelihood theory and justified it on the basis of its 
asymptotic properties. By pointing out that the asymptotic theory need not be 
valid for Posner's sample size (n = 30), Gumbel and Mustafi (1966) showed 
that in fact a modified method of moments gives better results for Posner's 
data. 

An alternative approach was taken by Balakrishnan and Varadan (1990, 
who approximated the likelihood equations by using appropriate linear 
functions and derived approximate maximum likelihood estimators of 8 and 
0. They derived these estimators for the type 1 extreme value distribution for 
the minimum and we present their estimators in the same form for conve- 
nience. [The estimators for the type 1 extreme value distribution for the 
maximum in (22.25) can be obtained simply by interchanging r and s and 
replacing 5 by - 8 and X,! by - XA - ;+ ,.I The likelihood equations for ,$ and 
8 in this case are 
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and 

n- s  

-sYies 

where Y,' = (X,I - 6 ) / 8 ,  p y ( y )  = e
y  

e-=", and F y ( y )  = 1 - e-". Upon ex- 
panding the three functions in (22.121) and (22.122) in a Taylor series around 
the point F - ' ( p i )  = log(-log q , )  (with pi = 1 - q ,  = i / ( n  + I ) ) ,  we get the 
approximate expressions 

where 

By making use of the above approximate expressions in (22.121) and (22.122) 
and solving the resulting equations, Balakrishnan and Varadan (1991) de- 
rived the approximate maximum likelihood estimators of 6 and 0 to be 

i. 

E 
1 1 9 - c + E T x G  
( = A - B B  and 8 =  

2 ( n  - r - s )  
9 (22.124) 
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where 

Through a simulation study Balakrishnan and Varadan (1991) have displayed 
that the above estimators are as efficient as the maximum likelihood estima- 
tors, best linear unbiased estimators, and best linear invariant estimators 
even for samples of size as small as 10. For example, values of bias and mean 
square error for various estimators of 5 and 8 are presented in Table 22.14 
for n = 10 and 20, r = 0, and some choices of s. Estimators of this form have 
been seen earlier in Chapters 13 and 14. 

Estimators of this form based on multiply Type-I1 censored samples have 
been discussed by Balakrishnan, Gupta, and Panchapakesan (1992) and Fei, 
Kong, and Tang (1994). 

Table 22.14 Comparison of bias and mean square error of various estimators of 5 
and 8 for n = 10 and 20 and right censoring ( r  = 0) 

Note: (t*, 0')  are the best linear unbiased estima!ors, ((**, 0") are the best linear invariant estimators, 
( ( , e )  are the maximum likelihood estimators, ( t ,  8) are the approximate maximum likelihood estimators. 
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9.7 Conditional Method 

The conditional method of inference for location and scale parameters, first 
suggested by Fisher (1934) and discussed in detail by Lawless (1982), has 
been used effectively for the type 1 extreme value distribution by Lawless 
(1973,1978) and Viveros and Balakrishnan (1994). These developments are 
described for the type 1 extreme value distribution for minimum with 

ecx-€l/s 
cumulative distribution function 1 - e- 

Suppose that Xi I X i  I . . . I x;-, is the available Type-I1 right- 
censored sample. Then the joint density function of X = ( X i ,  X i ;  - ., XA-,) 
is 

where F y ( .  ) and p y ( - )  are the cdf and pdf of the standard form of the type 1 
extreme value distribution for minimum given by 

F Y ( y )  = 1 - e-'" and p , ( y )  = e
y 

e -ev .  (22.126) 

Then the joint density in (22.125) preserves the location-scale structure that 
may be seen easily by noting from (22.125) that the standardized variables, 
( X i  - 5 ) / 8 , .  . . , (XA-, - 61/13, have a joint distribution functionally inde- 
pendent of 5 and 8 .  Suppose that i and 6 are the maximum likelihood 
estimates of 6 and 8 (or some equivariant estimators like BLUES or BLIEs) 
which jointly maximize the likelihood of ( 6 , e )  that is proportional to (22.125). 
Then, Z, = ( 6  - 0/6 and Z ,  = 6 / 8  are pivotal quantities in the sense that 
their joint density involves neither [ nor 8 .  With A ;  = (Xi' - i ) / 6  ( i  = 

1,2, .  . a ,  n - s ) ,  A = ( A , ,  A , ,  . , A n  -,) forms an ancillary statistic, and in- 
ferences for [ and 8 may be based on the joint distribution of Z ,  and Z ,  
conditional on the observed value a of A. 

Noting that ( x i  - &/6 = a i z 2  + z , z , ,  the joint density of 2, and Z, ,  
conditionally on the observed value a ,  can be obtained from (22.125) as 

where C ( a )  is the normalizing constant, and so = Ey:;ai. Using (22.1271, 
Lawless (1973,1978) used algebraic manipulations and numerical integration 
techniques to determine the marginal conditional densities p ( z , ) a )  and 
p(z , la)  that can be utilized to make individual inferences on the parameters 
[ and 0.  
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Conditional inferences for other parameters such as the pth quantile (X,) 
of the distribution can also be developed from Eq. (22.127). For example, 
with the maximum likelihood estimates of X p A  being kp = { + GF;'(~), 
one can use the pivotal quantity Z, = (X, - ()/i = F;'(p)/Z2 - 2, to 
develop inference for X,. Upon transformation, one may obtain the joint 
conditional density function of Z ,  and Z, from (22.127) from which the 
marginal conditional density function of Z ,  may be obtained by integration 
which then will enable one to make inference regarding the pth quantile X,. 
Lawless (1973,1978) has noted that tolerance limits, confidence limits for 
reliability, and prediction intervals can all be similarly handled using the 
conditional method. 

Viveros and Balakrishnan (1994) have developed a similar conditional 
method of inference based on a Type-I1 progressively censored data under 
which scheme one or more surviving items may be removed from the life-test 
(or, progressively censored) at the time of each failure occurring prior to the 
termination of the experiment. The familiar complete sample case or the 
Type-I1 right-censored sample case (discussed earlier) are special cases of 
this general scheme. 

9.8 Method of Probability-Weighted Moments 

Landwehr, Matalas, and Wallis (1979) proposed a simple method of estima- 
tion of the parameters and 8 based on the probability-weighted moments 

An unbiased estimator of Mo, is given by 

Then, by making use of the explicit expressions *of M,,, and M,,, and 
equating them to the sample estimators M,,, and M,!, and solving for the 
parameters 8 and 8 ,  Landwehr, Matalas, and Wallis (1979) derived the 
probability-weighted moments estimators to be 

8 = 
log 2 

They then compared the performance of these estimators with the moment 
estimators (Section 9.1) and the maximum likelihood estimators (Section 9.61, 
in terms of bias and mean square error. Their extensive simulation study 
indicated that this method of estimation is simple and also highly efficient (in 
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Table 22.15 Bias, mean square error, and relative efficiency of the moment estimators, 
PWM estimators, and ML estimators of 0 and 4 based on a complete sample of size n 

e 5 
Relative Relative 

Method n Bias MSE Efficiency Bias MSE Efficiency 

M 
PWM 
ML 
M 
PWM 
ML 
M 
PWM 
ML 
M 
PWM 
ML 
M 
PWM 
ML 
M 
PWM 
ML 

terms of efficiency relative to the maximum likelihood estimates). Values of 
bias, mean square error, and relative efficiency, taken from Landwehr, 
Matalas, and Wallis (1979), are presented in Table 22.15 for some selected 
values of n. 

These authors also compared (through simulations) the performance of 
the three methods of estimation of pth quantile (at p = 0.001,0.01,0.02, 
0.05,0.10,0.25,0.50,0.75,0.90,0.95,0.98,0.99,0.999) based on samples of 
sizes n = 5,9,19,29,49,99,999. 

9.9 "Block-Type" Estimation 

Weissman (19781, Huesler and Schuepbach (19861, and Huesler and Tiago 
de Oliveira (1988), among others, studied the following "block-type" estima- 
tion procedure. Suppose that the given observations are X,, for i = 1,2; . a ,  n 
and j = 1,2,. . . , k (k may be viewed as the number of years or blocks and n 
is the number of observations made per year or block). Let 2: = max{X,,, 
i s n).  Assume that Xij's are such that for sufficiently large n,  2:'s have 
approximately the Gumbel distribution 



52 EXTREME VALUE DISTRIBUTIONS 

For the case when 0 is known (e.g., 8 = 1, without loss of any generality), 
that is, when Xij's are i.i.d. with 

where 6, = 5 + log n. Huesler and Tiago de Oliveira (1988) estimate 5 from 
Y,, Y,; - -, Yk by using the MLE: 

k 

iA =in - logn = -log - z e - ' ~  - logn 
{'is, ) 

with 

and 

Further the distribution of &($, - 6 )  tends to the standard normal as 
k + m. 

Weissman (1978) proposes estimation based on the k largest observations 
of all N = nk values of Xi,. Let them be denoted by 

Then Weissman's estimator of 5 is 

which is just the MLE for the extreme value parameter 5 based on a 
censored sample. Yet another estimator suggested by Weissman (1978) is 

jc = Z , : ,  - logn 

based on asymptotic properties (as n -t m). Huesler and Tiago de Oliveira 
(1988) have noted that all three estimators have the same asymptotic distribu- 
tion (as n + 03) and also that n( iB - i,) = 0,(1). 

In the two-parameter case we have correspondingly 

,. ,. jA  = 5, - e l o g n  and iA = 6 ,  
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where in and 6 are the MLEs of 6, and 8. Here 

and 
- , - ( Y - l - B l o g n l / B  

p r ( k ; s y ]  = e  

- e - ( Y - c n ) / @  
= e 

with 6, = 6 + 8 log n. The correlation between iA and iA approaches - 1 as 
n --t m. 

Estimation based on the k largest values Z, : , r - . . 2 <, : ,, fo; fixed n 
and k, corresponds to the maximum likelihood estimators 8, and 8, based 
on a left-censored sample, Asymptotically 

where = ( l / k ) C f , , ~ ~ : , .  The correlation between iB and iB also con- 
verges slowly to - 1 as n 4 03. 

Huesler and Tiago de Oliveira (1988)-have shown that the CramCr-Rao 
efficiency of ( is ,  dB> with respect to ( i A ,  BA) defined by 

where ZA and C, are the asymptotic variance-covariance matrices of ( i A ,  i A )  

and (i,, i,), respectively, is given by 

More delicate comparisons have revealed that method A is not always more 
efficient than method B. Huesler and Tiago de Oliveira (1988) have pre- 
sented a data set for which method B has higher efficiency. These authors 
have concluded that for the estimation of the pth quantile of the annual 
maximum, method A is better than method B for p 2 0.9 and that method A 
is definitely superior when k r 15. 

9.10 A Survey of Other Developments 

The details on various methods of inference presented in the last nine 
subsections are by no means complete. Numerous other papers have ap- 
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peared dealing with different aspects of inference relating to the extreme 
value distribution such as proposing new and simplified methods, making 
finer improvements over the existing methods, dealing with numerical algo- 
rithms for the estimation, discussing accelerated life-tests and extreme value 
regression, and so on. These results are equally important, and they are listed 
and described briefly below. 

Engelhardt (1975) and Engelhardt and Bain (1977) have provided further 
discussions on the simplified estimators of the parameters and associated 
inferential procedures. Singh (1975) has discussed admissibility of some 
estimators. Meeker and Nelson (1975) have proposed and examined optimum 
accelerated life-tests; see also Nelson and Meeker (1978). Lawless and Mann 
(1976) considered tests for the homogeneity of scale parameters (8,'s) in k 
samples from extreme value populations. While Smith (1977) discussed the 
interval estimation of parameters, Durrant (1978) constructed a nomogram 
for confidence limits on quantiles of the normal distribution and discussed its 
usefulness for the extreme value distribution. A preliminary test of signifi- 
cance was considered by Tsujitani, Ohta, and Kase (1979). Ashour and 
El-Adl (1980) examined the Bayesian estimation of the parameters. 

Cheng and Iles (1983,1988) discussed confidence bands for the cumulative 
distribution functions. Schuepbach and Huesler (1983) proposed some simple 
estimators for the parameters 5 and 8 based on censored samples. Bootstrap 
confidence intervals for the parameters when the available sample is progres- 
sively censored have been discussed by Robinson (1983). Some graphical 
methods of estimating the parameters were put forward by Stone and Rosen 
(1984). Keating (1984) has commented on the estimation of percentiles and 
the reliability function. In an interesting article Smith and Weissman (1985) 
discussed the maximum likelihood estimation of the lower tail of the distribu- 
tion. A comparison of confidence intervals derived by different methods was 
carried out by Chao and Hwang (1986). Welsh's (1986) discussion on the use 
of the empirical distribution and characteristic function to estimate the 
parameters includes the extreme value distribution as one of the cases. Singh 
(1987) estimated the parameters of the type 1 extreme value distribution 
from the joint distribution of m extremes. A weighted least-squares meth- 
od of estimation was considered by 0ztiirk (1987). While Schneider and 
Weissfeld (1989) discussed the interval estimation of parameters based on 
censored data, Ahmed (1989) considered the problem of selecting the ex- 
treme value population with the smallest 6,. 

Achcar (1991) presented another reparametrization for the extreme value 
distribution. Hooda, Singh, and Singh (1991) discussed the estimation of the 
Gumbel distribution parameters from doubly censored samples. Comparisons 
of approximate confidence intervals for the extreme value simple linear 
regression model under time censoring (or Type-I censoring) were made by 
Doganoksoy and Schmee (1991). Abdelhafez and Thomas (1991) discussed 
bootstrap confidence bands for the extreme value regression models with 
randomly censored data. 
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10 TOLERANCE LIMITS AND INTERVALS 

Based on a complete sample or Type-I1 censored sample observed from the 
distribution, the lower a tolerance limit for proportion 1 - y is + kL6 
satisfying the equation 

similarly the upper a tolerance limit for proportion 1 - y is i + k,6 
satisfying the equation 

The constants k ,  and k, are referred to as the lower and upper tolerance 
factors, respectively. 

In the case of the type 1 extreme value distribution for the minima with 
cumulative distribution function 

equations (22.128) and (22.129) become 

and 

respectively. Upon rewriting Eqs. (22.130) and (22.131) as 

l - s  
- y ) ]  - L k L ]  = a  (22.132) 

and 

we observe that k ,  and k ,  are the upper and lower 100a% points of the 
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distributions of the pivotal quantities 

respectively. As the distributions of these two pivotal quantities are not 
derivable explicitly, their percentage points need to be determined either 
through Monte Carlo simulations or by some approximations. 

Mann and Fertig (1973) used the best linear invariant estimators to 
prepare tables of tolerance factors for Type-I1 right-censored samples when 
n = 3(1)25 and n - s = 3(l)n, where s is the number of largest observations 
censored in the sample; see also Mann, Schafer, and Singpurwalla (1974). 
While Thoman, Bain, and Antle (1970) presented tables that can be used to 
determine tolerance bounds for complete samples up to size n = 120, 
Billman, Antle, and Bain (1972) gave tables which can be used to determine 
tolerance bounds for samples of sizes n = 40(20)120 with 50% or 75% of the 
largest observations censored. Johns and Lieberman (1966) presented exten- 
sive tables that can be used to get tolerance bounds for sample sizes n = 10, 
15, 20, 30, 50, and 100 with Type-I1 right censoring at four values of s 
(number of observations censored) for each n.  By making use of the efficient 
simplified linear estimator presented by Bain (1972) (described in Section 
9.21, Mann, Schafer, and Singpurwalla (1974) derived approximate tolerance 
bounds based on a F-approximation. This F-approximation is quite effective 
and hence deserves a special mention. 

By using Bain7s simplified linear estimators 6 of 0 and the related linear 
estimator f of 5, Mann, Schafer, and Singpurwalla (1974, p. 249) have shown 
that an approximate lower 100a% confidence bound on the quantile X, is 

where B, -,, ,, C n - , ,  and 1, - ,  , are constants depending on s and n,  and 
F, -, is the upper 1 - a percentage point of an F distribution with degrees 
of freedom 
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As demonstrated by Mann, Schafer, and Singpurwalla (1974, p. 250), this 
F-approximation can also be used with the best linear unbiased estimators ,$* 
and 0* (see Section 9.3); in fact they have indicated that the approximation 
turns out to be good even in the case of moderate sample sizes with heavy 
censoring. Values of the constants B n - ,  ., Cn -,,,, and 1, - ,  ., which depend 
on the means, variances, and covariances of order statistics from the type 1 
extreme value distribution for the minimum, have been tabulated by Mann, 
Schafer, and Singpurwalla (1974) for some choices of n and s. 

An alternate F-approximation was proposed by Lawless (1975) for the 
lower a confidence bound on the quntile X,. His approximation is based on 
the fact that, at le,.ast when the censoring in the sample is fairly heavy, the 
estimators ( and 5 are almost the same as the maximum likelihood estima- 
tors 6 and 8; specifically, we have 

,. 
5 2 C n  2 A 

2: 6 and 5 - 0 = 5.  (22.137) 
1 + ' n - s . n  1 + ' n- s . n  

These are exactly the same linear transformations, described in Section 9.3, 
that transform the BLUES to BLIEs. Using Eq. (22.137) and the maximum 
likelihood estimates [ and 6, Lawless (1975) derived an approximate lower a 
confidence bound on the quantile X ,  as 

This F-approximation is quite accurate over a wide range of situations. 

E Lawless noted that the quantity 
i 

isA a piv~tal  quanti~y, since Z ,  = (log( - log Y)/Z,) - Z ,  where Z ,  = 

(6 - 6)/8 and Z ,  = 8/8 are pivotal quantities, discussed earlier, that can be 
used to construct tolerance bounds. For example, 
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Table 22.16 Comparison of exact and Fapproximation tolerance bounds 

y = 0.95 y = 0.90 

n n - s z,,~.,~ F-Approximation z,,,,,, F-Approximation 

60 54 - 3.76 - 3.79 - 2.88 - 2.91 
60 42 - 3.85 - 3.88 - 2.93 - 2.96 
60 30 - 3.99 - 4.01 - 3.00 - 3.03 
60 18 -4.19 - 4.23 - 3.08 -3.13 
60 6 - 4.69 - 4.83 - 3.09 - 3.38 
40 36 - 4.01 - 4.02 - 3.09 - 3.06 
40 28 -4.12 -4.16 -3.13 -3.17 
40 20 - 4.34 - 4.35 - 3.26 - 3.28 
40 12 - 4.68 - 4.72 - 3.40 - 3.46 
40 8 - 5.02 -5.11 - 3.49 - 3.60 
40 4 - 5.96 - 5.99 - 3.53 - 3.74 
25 20 - 4.50 - 4.52 - 3.44 - 3.47 
25 10 - 5.22 - 5.28 - 3.83 - 3.89 
25 5 - 6.54 - 6.62 - 4.33 - 4.47 

and hence z,,,i + becomes a lower a confidence bound on X,. The 
percentage points of the distribution of 2, in (22.139) therefore yield upper 
tolerance limits [see the pivotal quantity P2 in Eq. (22.134)l. In Table 22.16, 
taken from Lawless (1975), a comparison of the exact tolerance bounds 
determined from the distribution of Z, in (22.139) with a = 0.95 and the 
corresponding F-approximations are presented. 

Mann and Fertig (1977) discussed the correction for small-sample bias in 
Hassanein's (1972) asymptotic best linear unbiased estimators of 5 and 0 
based on k optimally selected quantiles (see Section 9.4). They presented 
tables of these bias-correction factors for complete samples of sizes n = 

20(1)40. These tables will not only allow one to obtain estimates based on the 
specified sets of order statistics that are best linear unbiased estimates or best 
linear invariant estimates, but can also be utilized to determine approximate 
confidence bounds on X, and the related tolerance limits using approxima- 
tion ideas discussed above. 

Through the conditional method of inference discussed in detail in Section 
9.7, Lawless (1975) has shown that the conditional tail probability of the 
distribution of 2, in (22.139) is given by 

m 

x dt, (22.141) 
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where I',(p) is the incomplete gamma function 

The integral in (22.141) needs to be evaluated numerically. The normalizing 
constant Cn-,(a) is determined numerically by using the condition that 
Pr[Z, 2 - m ( a ]  = 1 in which case h ( t ,  z) = a and consequently I',,,, ,,(n - 
S) = T,(n - s )  = T(n - s). Thus we get 

Once the percentage points of Z, are determined from (22.141) by numerical 
methods, tolerance limits can be obtained as explained earlier. 

Gerisch, Struck, and Wilke (1991) took a completely different direction 
and discussed the determination of one-sided tolerance limit factors for the 
exact extreme value distributions from a normal parent distribution. They 
justified the need for these factors based on the grounds that one-sided 
tolerance limits for the asymptotic extreme value distributions cannot be 
regarded as sufficient approximations of one-sided tolerance limits for the 
corresponding exact extreme value distributions. 

11 PREDICTION LIMITS AND INTERVALS 

Suppose that f and are the maximum likelihood estimators of 6 and 8 
based on a sample of size n from the type 1 extreme value distribution for 
the maximum (discussed in Section 9.6). Suppose that Z is an independent 
observation, to be made from the same distribution. Then, as Antle and 
Rademaker (1972) showed, the construction of prediction intervals for Z is 
based on the pivotal quantity 

Antle and Rademaker presented a table of percentage points, t , . , ,  of the 
distribution of T, for selected values of n and y, and they determined these 
values, appearing in Table 22.17, by Monte Carlo simulations. 
The irregular progression of values in Table 22.17 (especially for n = 100) is 
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presumably due to samplimg variation. Using the values of r ,,, qresented 
above, an upper 100y % prediction limit for Z can be determined as f + i t , ,  ,. 

Engelhardt and &in (19791, on the other hand, used their simplified 
linear estimators of 6' and 0 described in Section 22.9.2 to construct predic- 
tion intewais for 2; in a future sample of size tn from the type 1 extreme 
d u e  distribution for the minimfm, based on a m-I1 rightensored 

W 
sample of size n - s. With 4 and B denoting the simplified linear estimators 
of f and 0 based on the right-censored sample of size n - s, Engel hrrdt and 
Bain (1979) considered the pivotal quantity 

; i r  - . . ,  

With /,, , be i~g  the y th quantile of the distribution of T,, it is readily seen 
that 6 - t,,B h m e s  a lower 1007% prediction limit for 2;. Engelhardt 
and Bain also developed an efficient approximation for t , ,  as f o I l ~ .  Upon 
writing 

t 2 
where W(t) = ( f  - f ) / B  - t8/0, they used the approximation 
Engelhardt and Bain ( 197711 

where k ( t )  and l ( t )  are chosen so that both sides of (22.147) have the m e  
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mean and variance. With 

v = var( W(t))  = var 

they derived convenient approximations for 1 and k as 

1 = (8v + 12)/(v2 + 6v) (not dependingon t )  (22.148) 

and 

k = exp - t  + ( 1.51' + 61 

Since ( Z ;  - ( ) / 8  -, 1og(~~(2 ) /2m)  independently of W(t), we get the ap- 
proximation [using (22.146) and (22.14711 

Pr(T2 < t )  = ~ r [ m k  < F(2,1)] (22.150) 

where F(2,l) denotes a central F-distribution with (2,l) degrees of freedom; 
(22.150), when used with the exact expression F, -,(2,1) = (1/2X -y -2 / '  - 11, 
yields a simple approximation for t,,, as the value of t such that 

Prediction inte~als/limits for Zi (2 5 j s m) have been developed by 
Engelhardt and Bain (1979), based on the pivotal quantity 

Since 

(independently of W(t) ) ,  where X32),.  . ., ,132) are independent, the distri- 
bution of the linear combination of chi-square variables can be closely 
approximated by the form (see Patnaik's approximation in Chapter 18) 
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where 

* 
Then a lower 100y% prediction limit for ZJ is given by [ - t3,,9, where t , , ,  
is approximated by the value t such that F ,  -,(v, 1 )  = k / c .  

Fertig, Meyer, and Mann (1980) used the best linear invariant estimates 
.$** and 8** ,  described in Section 22.9.3, for the prediction of Z ;  in a future 
sample of size m based on the pivotal quantity 

With s,,, denoting the lOOyth percentile of the distribution of S, in (22.159, 
the 100y% lower prediction bound for Z ;  is given by t** - s,,, 9 * * .  A 
100y% upper prediction bound for Z ;  may also be obtained by replacing s,,, 
by s,, ,-,. Using Monte Carlo simulations, Fertig, Meyer, and Mann (1980) 
determined the values of s,,, for different choices of n, n - s, and y when 
m = 1 .  Selected values from their table are presented in Table 22.18. 

Mann, Schafer, and Singpurwalla (1974) suggested an F-approximation for 
the distribution of the statistic S, in (22.155) to be used only for large future 
sample sizes and moderate levels of confidence. Mann (1976) discussed 
conditions under which this approximation is sufficiently precise for use. 
Mann and Saunders (1969) presented solutions to two special cases when the 
given samples are of sizes two and three. Fertig, Meyer, and Mann (19801, by 
employing a procedure that is an extension of the one used by Fertig and 
Mann (1978) to approximate the distribution of the studentized extreme 
value statistics, have suggested an alternate F-approximation and examined 
its accuracy. 

Engelhardt and Bain (1982) provided further discussions on the prediction 
problem and derived in particular two simpler approximations for the per- 
centage points of the statistic T2 in (22.145). The approximation for t,,, from 
Eq. (22.151) needs to be determined by numerical iterative methods. For this 
reason Engelhardt and Bain (1982) presented the following two simpler 
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Table 22.18 Distribution percentiles of S, = (&** - Z;) / 0** for Type-I1 right-censored 
samples of size n - s from a sample of size n 

Y 

n n - s  0.02 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.900.95 0.98 

approximations: 

where 

5 + +log m 
g = l +  9 

n - s  

In fact the approximations (22.150) and (22.156) both converge to (22.157) as 
n -t with ( n  - s) /n  -t p > 0. The advantage of the approximations 
(22.156) and (22.157) is that they can be solved explicitly for quantiles t, , , .  
For example, upon equating the right-hand side of (22.156) to y and solving 
the resulting quadratic equation 

4 1 )  - t + - =  log -- logy , 
2g (:  1 

we obtain an explicit approximation for I,,, as 

t , , ,  = ( A  + B )  - ( A  + B ) ,  - C + 2 A  log 
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The limiting approximation (22.157) also readily yields an explicit approxima- 
tion for t , . ,  as 

Engelhardt and Bain (1982) have examined the accuracy of all these approxi- 
mations. 

Pandey and Upadhyay (1986) discussed approximate prediction limits for 
the Weibull distribution, which may be transformed to the type 1 extreme 
value model for the minimum through the usual logarithmic transformation, 
based on preliminary test estimator. Abdelhafez and Thomas (1990) derived 
approximate prediction limits for the Weibull and extreme value regression 
models. 

12 OUTLIERS AND ROBUSTNESS 

For the type 1 extreme value distribution for minimum, Mann (1982) pro- 
posed three statistics to test for k upper outliers in the sample. These three 
test statistics are given by 

and 
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where 8,** and 8,*_*,, are the best linear invariant estimators of 8 (see Section 
9.3 for details) based on the complete sample of size n and on the smallest 
n - k order statistics, respectively. Since the exact null distributions of these 
test statistics are intractable, Mann (1982) determined the critical values by 
Monte Carlo simulations and presented some tables. Further, through an 
empirical power study, Mann demonstrated that her statistic W in (22.162) 
provides a powerful test in detecting upper outliers from a labeled slippage 
location-shift model. 

Fung and Paul (1985) carried out an extensive empirical study to examine 
the performance of several outlier detection procedures. In addition to the 
preceding three test statistics, these authors also considered the following five 
test statistics: 

where Si-, is the sum of squared deviations of the smallest n - k order 
statistics and S: is the sum of squared deviations of all n observations, 

x; - 
R,  = x,: - x; ' 

x; - xi-, 
R, = x; - x; ' 

x; - x;-, 
R,  = x,: - x; ' 

and 

Fung and Paul (1985) have also considered the counterparts of these five 
tests (obtained by changing XI1 to Xi -, +,) for testing for k lower outliers in 
the sample. Fung and Paul have also presented critical values for all these 
tests determined through Monte Carlo simulations. They then compared the 
performance of the test statistics in terms of their sizes and powers in 
detecting k = 1, 2, and 3 outliers. For the upper outliers they used all eight 

f test statistics, while only the last five test statistics were used for the lower 
outliers. 

In their empirical power study Fung and Paul (1985) used a contamination 
f outlier model with location shift as well as with location and scale shift 
i 

[instead of the labeled slippage model considered by Mann (198211. Under 
this contamination outlier model, Mann's W test performed very poorly as 1 compared to the other tests. The test procedure based on the L statistic in 
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(22.167) performed the best for the contamination model, while the counter- 
part of G in (22.163) performed well for testing the lower outliers. The test 
statistic R ,  in (22.164) and its counterpart also provide useful tests in 
general. 

By using joint distributions of order statistics, Paul and Fung (1986) 
presented explicit formulas for the calculation of critical values of the test 
statistics R, ,  R,,  and R, (and their counterparts for testing for lower 
outliers) for testing for k = 1 and 2 outliers. 

13 PROBABILITY PLOTS, MODIFICATIONS, AND MODEL VALIDITY 

Due to the prominence and significance of the extreme value distributions, 
considerable work has been done with regard to testing whether an extreme 
value distribution is appropriate for the data at hand. In this section a brief 
description of these investigations is presented. The book by D'Agostino and 
Stephens (1986) provides an elaborate account of various goodness-of-fit tests 
developed for the extreme value distributions. 

One of the easiest goodness-of-fit tests is the "correlation coefficient" test 
for the type 1 extreme value distribution. This test is based on the product- 
moment correlation between the sample order statistics and their expected 
values. Since E[X,' ]  = 6 + OE[Y,'], one may as well use the correlation 
between the sample order statistics Xi' and the expected values of standard 
order statistics E[Y;.'] for the type 1 extreme value distribution. Naturally 
large values (close to 1) of this correlation will support the assumption of the 
type 1 extreme value distribution for the data at hand. Smith and Bain (1976) 
discussed this test and presented tables of critical points; tables were also 
provided by these authors for the case when the available sample is Type-I1 
censored. A more extensive table of points for n(l - R,), where R is the 
sample correlation coefficient, has been provided by Stephens (1986). 
Stephens's choice of the statistic n(l - R,) permits easy interpolation in the 
tables. Further his tables also facilitate the test even in case of doubly 
Type-I1 censored samples. Kinnison (1989) discussed the same correlation 
test for the type 1 extreme value distribution and presented tables of 
smoothed values of the percentage points of r (in the case of complete 
samples) when n = 5(5)30(10)100,200. Kinnison used the approximation 

in the plot and the resulting calculation of the correlation coefficient. As 
pointed out by Lockhart and Spinelli (19901, use of the exact values of E[y'l  
or even Blom's approximation E[Y,'] = - log{ -lo& - 0.25)/(n + 0.25)l) 
may result in an increase in the power of the test. However, as aptly 
mentioned by Lockhart and Spinelli, even though the correlation test is 
simple to use and has an intuitive appeal, its power properties are undesir- 
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able. As a matter of fact McLaren and Lockhart (1987) have shown that the 
correlation test has asymptotic efficiency equal to 0 relative to standard tests 
such as Kolmogorov-Smirnov, CramCr-von Mises, and Anderson-Darling 
tests. 

Stephens (1977) presented goodness-of-fit tests based on empirical distri- 
bution function statistics w2, u 2 ,  and given by 

and 

Stephens discussed the asymptotic percentage points of these three statistics 
for the three cases when one or both of the parameters .$ and 6 need to be 
estimated from the data (using the MLEs). Stephens (1977) also suggested 
slight modifications of these statistics in order to enable the usage of the 
asymptotic percentage points in case of small sample sizes; these are pre- 
sented in Table 22.19. 

E 
l 

Table 22.19 Percentage points for modified statistics w2, u', and A' 

Upper Tail Percentage Points, a 

Statistic Caseu Modification 0.75 0.90 0.95 0.975 0.99 

W 2  0 ( W 2  - 0.4/n + 0.6/n2)(1.0 + 1.0/n) - 0.347 0.461 0.581 0.743 
1 W 2 ( 1  + 0.16/n) 0.116 0.175 0.222 0.271 0.338 
2 None 0.186 0.320 0.431 0.547 0.705 
3 W 2 ( 1 + 0 . 2 / f i )  0.073 0.102 0.124 0.146 0.175 

V 2  0 ( U 2  - O.l/n + 0.l/n~H1.0 + 0.8/n) - 0.152 0.187 0.221 0.267 
1 U2(1  + 0.16/n) 0.090 0.129 0.159 0.189 0.230 

2 U2(1 + 0.15/&) 0.086 0.123 0.152 0.181 0.220 

3 U2(1 + 0 . 2 / 6 )  0.070 0.097 0.117 0.138 0.165 
A 0 None - 1.933 2.492 3.070 3.857 

1 A2(1 + 0.3/n) 0.736 1.062 1.321 1.591 1.959 
2 None 1.060 1.725 2.277 2.854 3.640 
3 A2(1 + 0 . 2 / 6 )  0.474 0.637 0.757 0.877 1.038 

'ln case 0, both 6 a n d  B a r e  known; in case  1, 5 is unknown, while B is known; in case  2, 6 is known, while B 
is unknown; in case 3, both 6 and  6 a r e  unknown. 
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Along similar lines Chandra, Singpurwalla, and Stephens (1981) consid- 
ered the Kolmogorov-Smirnov statistics D+,  D-, and D and the Kuiper 
statistic V given by 

and 

They determined some percentage points of these statistics for the three 
cases when one or both of the parameters 6 and 8 need to be estimated from 
the data (using the MLEs). Percentage points of the four statistics in the case 
when both 6 and 0 are unknown, taken from Chandra, Singpurwalla, and 
Stephens (19811, are presented in Table 22.20 for n = 10, 20, 50, and m. 

Table 22.20 Percentage points of the statistics &D +, &D -, &D, and &V when 
both 5 and 0 are unknown 

Upper Tail Significance Level a 

Statistics n 0.10 0.05 0.025 0.01 
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Probability plots are often used to aid assessment of the validity of a 
statistical distribution; in fact the correlation test is based on such a plot. 
Unfortunately, owing to the unequal variances of the plotted points, interpre- 
tation of the plots is difficult. The stabilized probability plot proposed by 
Michael (1983) is to plot 

with respect to 

In this way the unequal variance problem can be avoided, since Si in (22.175) 
have approximately equal variance, as the asymptotic variance of f i s j  is 
( l / r 2 )  independent of q when n -, and i / n  -+ q. A goodness-of-fit 
statistic that arises naturally from the stabilized probability plot is 

Dsp = max Irj - Sit . (22.176) 
I 

Kimber (1985) presented critical values for the statistic Dsp in (22.176) for 
some selected choices of n ,  and these are presented in Table 22.21. 

By starting with a doubly Type-I1 censored sample X:+ ,, Xi,,,. ., XA-, 
from the type 1 extreme value distribution for the minimum, Lockhart, 

Table 22.21 Critical values for the statistic D,, 
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O'Reilly, and Stephens (1986b) considered three tests based on the normal- 
ized spacings 

where y' denotes the order statistic from the standard distribution. One may 
use the exact values of E[x!+ , I  - E[q'] tabulated by Mann, Scheuer, and 
Fertig (1973) for n = 3(1)25 and Blom's approximation for larger sample 
sizes. With 

Lockhart, O'Reilly, and Stephens (1986b) focused on the Anderson-Darling 
statistic 

and compared its performance with the S-statistic introduced by Mann, 
Scheuer, and Fertig (1973) [see also Mann, Fertig, and Scheuer (1971)l and 
Z* statistic introduced by Tiku and Singh (1981); here 

where 

n - r - s  
r + 

2 
if n - r - s is even 

n - r - s - 1  (22.180) 
r + 

2 
if n - r - s is odd, 

and 

Through their comparative study Lockhart, OIReilly, and Stephens (1986b) 
recommend overall the A* test, and they also mentioned that while the Z* 
test gives good power in many situations, it may also be inconsistent [also see 
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Lockhart, O'Reilly, and Stephens (1986a) for a general discussion on tests 
based on normalized spacings]. 

Tsujitani, Ohta, and Kase (1980) proposed a test based on the sample 
entropy, presented its critical points for some sample sizes determined 
through Monte Carlo simulations, and showed that it has desirable power 
properties compared with some of the tests mentioned above. 0ztiirk (1986) 
considered the Shapiro-Wilk W test and presented some percentage points 
determined through Monte Carlo simulations. A major difficulty of using the 
W test is the requirement of the variance-covariance matrix of order statis- 
tics. To overcome this difficulty, 0zturk (1986) used an approximation for it 
obtained from the generalized lambda distribution. A modification of the W 
statistic has been considered by 0zturk and Korukoglu (1988) in which the 
test statistic has been obtained as the ratio of two linear estimators of the 
parameter 8. These authors have determined percentage points of this 
statistic through Monte Carlo simulations and have also displayed by means 
of an empirical comparative study that this test possesses good power 
properties. 

By using Kimball's simplified linear estimators and of 6 and 8 (see 
Section 9.21, Aly and Shayib (1992) proposed the statistic 

for testing the validity of the type 1 extreme value distribution for the 
minimum. They determined the critical points of Mn for some selected 
sample sizes through Monte Carlo simulations. These values are presented in 
Table 22.22. Aly and Shayib (1992) also compared the power of this test with 
some other tests including the test in (22.179) discussed by Lockhart, 
O'Reilly, and Stephens (1986b). From this brief power study it seems that the 
M, test outperforms the test for skewed alternatives (like log-Weibull 
and log-chi-square); however, in the case of symmetric alternatives (like 
normal and logistic), the A2 test seems to be considerably better than the Mn 
test. 

Tiago de Oliveira (1981) discussed the statistical choice among the differ- 
ent extreme value models. Vogel (1986) discussed further on the probability 
plot and the associated correlation coefficient test. Cohen (1986,1988) pre- 
sented detailed discussions on the large-sample theory for fitting extreme 
value distributions to maxima. Mann and Fertig (1975) proposed a goodness- 
of-fit test for the two-parameter Weibull (or the type 1 extreme value 

! distribution for the maximum) against a three-parameter Weibull alternative 
(see Chapter 21). Aitkin and Clayton (1980) discussed the fitting of extreme 
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Table 22.22 Critical values for the statistic M, 

value distributions to complex censored survival data using the GLIM soft- 
ware. 

14 APPLICATIONS 

From the very definition of the extreme value distributions, it is clear that 
these distributions will play a vital role in numerous applied problems. As 
mentioned earlier in Sections 1 and 2, Gumbel played a pioneering role 
during the 1940s and 1950s in bringing out several interesting applications for 
the extreme value data and developing sound statistical methodology to 
analyze such data. To give a good idea about the variety of applications that 
have emerged over the years and the order in which these applications have 
developed, we describe below these applied papers in a chronological order. 

The first paper that described an application of the extreme values in 
flood flows was by Fuller (1914). Griffith (1920) brought out an application 
while discussing the phenomena of rupture and flow in solids. Next Gumbel 
(1937a, b) used the extreme value distribution to model radioactive emissions 
and human lifetimes. The use of the distribution to model the phenomenon 
of rupture in solids was discussed by Weibull (1939). In this area Weibull 
effectively advocated the use of reversed type 3 distributions which have now 
become well-known as Weibull distributions and have been discussed in great 
length in Chapter 21. 

Gumbel (1941) applied the distribution to analyzing data on. flood flows, 
and in subsequent work he continued his discussion on the plotting of flood 
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discharges, estimation of flood levels, and forecast of floods [Gumbel 
(1944,1945,1949a)]. Frenkel and Kontorova (1943) used the distribution to 
study the brittle strength of crystals. The application to study earthquake 
magnitudes was pointed out by Nordquist (1945). While discussing factors 
influencing self-purification and their relation to pollution abatement, Velz 
(1947) used the distribution to model the microorganism survival times. 
Epstein (1948) applied the theory of extreme values to problems involving 
fracture data. The role of the extreme value theory in the study of the 
dielectric strength of paper capacitors was highlighted by Epstein and Brooks 
(1948). Rantz and Riggs (1949) illustrated an application while analyzing the 
magnitude and frequency of floods in the Columbia River Basin measured 
during a U.S. Geological Survey. An interesting new application of the 
extreme value theory to gust-load problems was brought out by Press (1949). 
The extreme value distribution was used by Potter (1949) to study rainfall 
data and to develop normalcy tests of precipitation and facilitate frequency 
studies of runoff on small watersheds. Weibull (1949) stressed the role of 
extreme value distributions to represent fatigue failures in solids but, in doing 
so, advocated once again the use of the Weibull distribution in place of the 
type 1 extreme value distribution. 

The so-called Gumbel method has been applied successfully to both 
regular-type events (e.g., temperature and vapor pressure) and irregular-type 
events (e.g., rainfall and wind) but with some deficiencies arising from the 
asymptotic approximation, as noted by Jenkinson (1955). Thom emphasized 
how the sparse sampling in time of extreme events obscured much of the 
information in a rainfall process. He showed how the parameters of a Poisson 
process could be identified with the annual recurrence rates of hourly 
rainfalls above certain selected base values. Methods of analysis of extreme 
hydrological events have changed little since the publication of Gumbel 
(1941) on asymptotic theory dealing with flood discharges by streams. As- 
sumptions of the theory are that the frequency distribution of extremes 
within successive intervals remains constant and that observed extremes may 
be taken as being independent samples from a homogeneous population. 

Gumbel (1954,1958) presented consolidated accounts of the statistical 
theory of extreme values and several practical applications. These works may 
be studied in conjunction with his later works [Gumbel (1962a, b)] to gain a 
deeper and better knowledge of extreme value distributions. Thom (1954) 
applied the distribution while discussing the frequency of maximum wind 
speeds. In an interesting paper Aziz (1955) applied the extreme value theory 
to an analysis of maximum pit depth data for aluminum. Kimball (1955) ably 
explained several practical applications of the theory of extreme values and 
also described some aspects of the statistical problems associated with them. 
Jenkinson (1955) applied the extreme value distribution to model the annual 
maximum or minimum values of some meteorological elements. Lieblein and 
Zelen (1956) carried out an extensive study relating to inference based on the 
extreme value distribution and applied their methods to investigate the 
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fatigue life of deep-grove ball bearings. Eldredge (1957) discussed an analysis 
of corrosion pitting by extreme value statistics and applied it to oil well 
tubing caliper surveys. King (1959) summarized developments on extreme 
value theory and explained their implications to reliability analysis. Canfield 
(1975) and Canfield and Borgman (1979, while discussing various possible 
statistical distributions as models of time to failure for reliability applications, 
recommended highly the usage of the type 1 extreme value distribution. 

As mentioned earlier in Section 3, Clough and Kotz (1965) gave interest- 
ing interpretations for the conditions (22.13H22.15) and as a result pre- 
sented some special queueing model applications for the extreme value 
distributions. Posner (1965) detailed an application of the extreme value 
theory to communication engineering; see also the comments by Gumbel and 
Mustafi (1966) on the paper by Posner. In a series of reports Simiu and 
Filliben (1975,1976) and Simiu, Bietry, and Filliben (1978) used the extreme 
value distributions extensively in the statistical analysis of extreme winds. 

Shen, Bryson, and Ochoa (1980) applied the distributions for predictions 
of flood. Watabe and Kitagawa (1980) demonstrated an application while 
discussing the expectancy of maximum earthquake motions in Japan. While 
Okubo and Narita (1980) followed the lines of Simiu and Filliben (1975,1976) 
and used the extreme value distribution to model the data on extreme winds 
in Japan, Wantz and Sinclair (1981) carried out a similar analysis on the 
distribution of extreme winds in the Bonneville power administration service 
area. Metcalfe and Mawdsley (1981) applied extreme value distribution to 
estimate extreme low flows for pumped storage reservoir designs. The use of 
the distribution in regional flood frequency estimation and network design 
was demonstrated by Greis and Wood (1981). Roldan-Canas, Garcia- 
Guzman, and Losada-Villasante (1982) constructed a stochastic extreme 
value model for wind occurrence. An application of the extreme value 
distribution in rainfall analysis was illustrated by Rasheed, Aldabagh, and 
Ramamoorthy (1983). Henery (1984) presented an interesting application of 
the extreme value model in predicting the results of horse races. While 
Pericchi and Rodriguez-Iturbe (1985) used the extreme value distribution in 
a statistical analysis of floods, Burton and Makropoulos (1985) applied it in 
an analysis of seismic risk of circum-Pacific earthquakes. The last authors 
specifically used the extreme values from the type 1 extreme value distribu- 
tion and their relationship with strain energy release. 

A two-component extreme value distribution was proposed by Rossi, 
Fiorentino, and Versace (1986) for flood frequency analysis; also see the 
comments on this paper by Beran, Hosking, and Arnell (1986) and Rossi's 
(1986) subsequent reply. Smith (19871, Jain and Singh (1987), and Ahmad, 
Sinclair, and Spurr (1988), all provided further discussions on the application 
of the type 1 extreme value distribution for flood frequency analysis. Achcar, 
Bolfarine, and Pericchi (1987) discussed the advantages of transforming a 
survival data to a type 1 extreme value distribution form and then analyzing 
it. Nissan (1988) demonstrated an interesting application of the type 1 
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distribution in estimating insurance premiums. The role of statistics of 
extremes in climatological problems was discussed in great detail by 
Buishand (1989). 

Cockrum, Larson, and Taylor (1990) and Taylor (1991) applied the ex- 
treme value distributions in modeling and simulation studies involving prod- 
uct flammability testing. Wiggins (1991) displayed an application in stock 
markets. A mixture of extreme value distributions was used by Fahmi and 
Abbasi (1991) to study earthquake magnitudes in Iraq and conterminous 
regions. Tawn (1992) discussed the estimation of probabilities of extreme sea 
levels, while Hall (1992) discussed further on flood frequency analysis. Bai, 
Jakeman, and McAleer (1992) demonstrated an interesting application of the 
extreme value distribution in predicting the upper percentiles that are of 
great interest in environmental quality data. 

Hopke and Paatero (1993) discussed the extreme value estimation in the 
study of airborne particles and specifically in the estimation of the size 
distribution of the aerosol and some related environmental problems. Kanda 
(1993) considered an empirical extreme value distribution to model maximum 
load intensities of the earthquake ground motion, the wind speed, and the 
live load in supermarkets. Goka (1993) applied the extreme value distribution 
to model accelerated life-test data to tantalum capacitors for space use and 
to on-orbit data of single event phenomenon of memory integrated circuits in 
the space radiation environment. Rajan (1993) stressed on the importance of 
the extreme value theory by providing experimental examples where signifi- 
cant deviations from the average microstructure exist in pertinent materials 
physics. Some of these examples include the deviations from classical 
Mullins-von Neumann law for two-dimensional grain growth, the changes 
occurring in the extreme values of grain size distributions associated with 
significant changes in materials properties, and the role of extreme values of 
pore size distributions in synthetic membranes. Scarf and Laycock (1993) and 
Shibata (1993) have demonstrated some applications of extreme value theory 
in corrosion engineering. Applications of extreme values in insurance have 
been illustrated by Teugels and Beirlant (1993). 

In addition many more problems and data sets for which the extreme 
value distributions have been used for the analysis may be seen in the applied 
books and volumes listed among the References. 

15 . GENERALIZED EXTREME VALUE DISTRIBUTIONS 

The cumulative distribution function of the generalized extreme value distri- 
butions is given by 

e x e " ,  - m < x < 6 + B / y  when y  > 0, 

F x ( x )  = 5 + O / y  I X  < m when y  < 0, 

e-e-'T-'"', - m  < x  < m when y = 0. 

(22.183) 
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As mentioned already in Section 2, the distribution above includes the type 2 
distribution in Eq. (22.2) when y > 0 ,  the type 3 distribution in Eq. (22.3) 
when y < 0 ,  and the type 1 distribution in Eq. (22.1) when y = 0 .  The 
distribution is referred to as the uon Mises type extreme value distribution or 
the uon Mises-Jenkinson type dhtribution. Senkinson (1955) used this general- 
ized distribution to analyze annual maximum or minimum values of certain 
meteorological elements. The density function corresponding to (22.183) is 

f ( l / y ) -  I 

e - ( l  - Y ( ( X - ~ ) / ~ ) I ~ / ~  . - l ( l - y ( q ) )  , 
8 

8 
- m < x 1 5 +  - when y > 0, 

Y 
8 

& +  - s x < c o  when y < 0 ,  
Y 

when y = 0. 

(22.184) 

The standard form of the generalized extreme value distributions has cdf 

e - ( ~ - ~ ~ ) ' / y ,  - m < y  5 l / y  when y > 0, 

F A Y )  = l / y  -< y < m when y < 0 ,  (22.185) 
e - e - " ,  - m  < y  < m when y = 0 ,  

and pdf 

e - ( l  -yy)l'V ( 1  - Y Y )  
( l / y ) -  I , - m < y 1 1 / y  w h e n y > O ,  

P A Y )  = l / y  s y < m when y < 0 ,  
e - e - Y  e - y ,  - m  < y  < m when y = 0 .  

(22.186) 

Maritz and Munro (1967) studied order statistics from this generalized 
extreme value distribution, and presented tables of means of order statistics 
from sample sizes 5 to 10 for the choices of the shape parameter y = 

-0.10(0.05)0.40. These authors have also discussed the estimation of all 
three parameters 5, 8, and y by the use of order statistics. 
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From Eqs. (22.185) and (22.186), we observe the characterizing differential 
equation 

Balakrishnan, Chan, and Ahsanullah (1993) have exploited the differential 
equation (22.187) in order to establish several recurrence relations satisfied 
by the single and the product moments of lower record values. Specifically, 
let YL(,, = Y,, YL(Z), . . be the lower record values arising from the sequence 
{Y;:) of i.i.d. random variables with generalized extreme value distribution 
(22.185). Then, by proceeding on lines similar to those explained in, Section 6 
and using the differential equation in (22.187), Balakrishnan, Chan, and 
Ahsanullah (1993) established the following relationships: 

From these recurrence relations Balakrishnan, Chan, and Ahsanullah (1993) 
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also deduced the results 

for n  2 1, 

m 
COV(YL(~) ,YL(~+I ) )  = - 'a'(&(m + I )) for m 2 1, 

m+-Y 

( n  - I)(.-) 
COV(YL(~), YL(~))  = (,, -rn) var(YL(,)) for 1 I m I n  - 2, 

( n  - 1 + Y )  

where 

Recurrence relations for product moments involving more than two record 
values have also been established by these authors. When the shape parame- 
ter y  -, 0, the relations in (22.188)-(22.192) reduce to the corresponding 
results for the type 1 extreme value distribution presented in Section 6. 
Ahsanullah and Holland (1994) have discussed the estimation of the location 
and scale parameters of the generalized extreme value distribution (when y  
is known) based on the record values. 

The maximum likelihood estimation of the parameters 6 ,  8, and y  have 
been discussed by a number of authors including Jenkinson (1969), Prescott 
and Walden (1980,1983), Hosking (19851, and Macleod (1989). Based on a 
complete sample of size n  from the generalized extreme value distribution 
(22.183), the Fisher expected information matrix is given by [Prescott and 
Walden (1980)l 

a2 log L 
E [ -- a i d y  ] =  t ( q +  -1, 

a2 log L 
1 - 0.5772157 - 

(1  - r ( 2  - Y ) )  
- 4 -  - , 

Y  "I Y  
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where 

= (1  - y ) 2 r ( l  - 2 ~ )  and q = r ( 2  - Y )  - 7 )  - 

The regularity conditions are satisfied when y < t, and in this case the 
asymptotic variances and covariances of the maximum likelihood estimators 
are given by the elements of the inverse of the Fisher information matrix 
whose elements are as given above. 

Hosking (1985) has presented a FORTRAN subroutine MLEGEV that 
facilitates the calculation of the maximum likelihood estimates of the param- 
eters 6, 0, and y  (by the Newton-Raphson method) and the variance-covari- 
ance matrix of the estimated parameters (by the expressions given above). 
Macleod (1989) has noted that if the initial estimate for the shape parameter 
y  is 0, then Hosking's algorithm will attempt to calculate 1.0/0.0, which will 
cause a failure on many compilers. Macleod has therefore suggested an 
adjustment that should be applied to Hosking's algorithm. 

Hosking, Wallis, and Wood (1985) have discussed the method of probabil- 
ity-weighted moments (PWM) for the estimation of the parameters 6, 8, and 
y .  In this approach one considers the moments 

and sets up the necessary number of moment equations by using the sample 
statistics 

which are unbiased estimators of the moments P, (see Section 9.8). One may 
instead use the simplified estimates 

where pi, ,  is a plotting position [a distribution-free estimate of F(X,')J that 
may be taken as 

i - a  
Pi," = - , O < a < l ,  n 

i - a  - 1 - - 1 
Pi,, - n + 1 - za  ' 2 

< a < - .  
2 
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For the generalized extreme value distribution, Hosking, Wallis, and Wood 
(1985) derived 

They used (22.196) to show that 

and 

Since the exact solution for y from Eq. (22.199) requires iterative methods, 
Hosking, Wallis, and Wood (1985) suggested the approximate estimator 

7 = 7.8590~ + 2.9554c2, (22.200) 

where 

26 ,  - Po log2 
C = --  

362 - PO log 3 ' 

Using the estimator + in (22.2001, we readily obtain from Eqs. (22.198) and 
(22.197) the estimators of 8 and 6 to be 

and 

i 
[ = S o +  x(r( l  + + )  - 1) .  (22.202) 

Y 

Using standard arguments, Hosking, Wallis, and Wood (1985) have shown 
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Table 22.23 Elements of the asymptotic variance-covariance matrix of the PWM 
estimators of the parameters of the generalized extreme value distribution 

that the asymptotic variance-covariance matrix of ( 8  B 9) '  is given by 

where the w's depend only on y. Values of these elements for different 
choices of the shape parameter y, taken from Hosking, Wallis, and Wood 
(1985), are presented in Table 22.23. The asymptotic efficiency of the individ- 
ual PWM estimators and the overall efficiency (determined by determinants 
of the variance-covariance matrices) are presented in Figure 22.2 [taken from 
Hosking, Wallis, and Wood (19831. 

In defining partial probability-weighted moments, Wang (1990) discussed 
the estimation of the parameters of the generalized extreme value distribu- 
tion based on censored samples. Prescott and Walden (1983) have discussed 
the maximum likelihood estimation of the parameters 5, 8, and y a doubly 
Type-I1 censored sample X:+ ,; . ., XA-, (where the smallest r and the 
largest s observations are censored in a sample of size n )  from the general- 
ized extreme value distribution (22.183). They have also presented expres- 
sions for the asymptotic variance-covariance matrix of these MLEs. 

Smith (1984) has discussed a choice probability characterization of gener- 
alized extreme value models. Testing whether the shape parameter y is zero 
in the generalized extreme value distributions for the data at hand has been 
discussed by Hosking (1984). Some goodness-of-fit tests for the generalized 
extreme value distributions have been examined by Chowdhury, Stedinger, 
and Lu (1991). An excellent discussion on the models for exceedances over 
high thresholds by Davison and Smith (199) provides further insight into 

I issues relating to these distributions. By giving a predictive likelihood that 
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Shape parameter y 

Figure 22.2 Asymptotic Efficiency of PWM Estimators of Parameters of the GEV Distribution: 
-5. ---9. ------ i .  . . . . . . overall efficiency (i.e., ratio of determinants of asymptotic covariance 
matrices of ML and PWM estimators). 

approximates both Bayes and maximum likelihood predictive inference, 
Davison (1986) has applied it to the prediction of extremes using the 
generalized extreme value distribution. 

As has already been pointed out in Section 2, the Gompertz (1825) 
distribution of lifetimes is a reparametrization of the type 1 extreme value 
distribution. This distribution gives good fit to data from clinical trials on 
older subjects and is also useful in the construction of life tables [Stephens 
(1977)l. The cdf has been given by various authors in different forms. Garg, 
Raja Rao, and Redmond (1970) have defined it in terms of the hazard rate 
(or the force of mortality) as 

yielding the survival function 

and the probability density function 
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Actually Gompertz (1825) defined a function (or transformation) y(t) = 

K(ea' - l)/ru which transforms the random variable T into y ( T )  which is 
exponentially distributed with mean 1. 

Ahuja (1971) provided the classical definition in terms of the distribution 
function 

which was earlier generalized by Ahuja and Nash (19671, by introducing an 
additional shape parameter 4 ,  with the density function 

The cumulants of the distribution (22.205) are 

ignoring the terms e-P [Revfeim (1984b)l. 
Garg, Raja Rao, and Redmond (1970) observed the following property of 

the Gompertz distribution (22.204). If the origin is shifted to the point (i.e., 
by writing t '  = t - t, so that t '  2 01, the density remains in the form 

with K' = Keaf" = r ( to ) ,  the hazard rate at t,. Thus, truncating a Gompertz 
distribution at time t, and setting the origin at t, leaves the distribution 
unchanged except that the constant K changes to K'. 

Garg, Raja Rao, and Redmond (1970) have also discussed the maximum 
likelihood estimation of the parameters based on censored samples and 
grouped data. For example, consider the time interval [O, I,) subdivided into 
m subintervals [0, t ,), [ t  ,, t , ) ,  . a ,  [t, - ,, t,). Let 

n = number of individuals in the sample, 
d ,  = observable number of individuals falling (dying) within the time 

interval [ti- ,, ti), 
s, = observable number of individuals surviving upto time ti and lost or 

withdrawn from the followup 

for i = 1,2, . . . , m. Then the log-likelihood function is given by 

K 
log L = const.+ D log K + aT - -Q( (Y) ,  

a 
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where 
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m 

D =  E d , ,  

yielding the maximum likelihood estimator of K as 

and the solution of the equation 

as the maximum likelihood estimator of a. An iterative solution to (22.208) 
can be achieved by Newton's method; the initial estimate a, may be selected 
as the least-squares estimate of a obtained by calculating the numerical 
value of the force of mortality, r(t), for each t for the data and minimizing 

C {log r(t) - log K - at)'. (22.209) 
t 

The maximum likelihood estimate of K may then be obtained from (22.207). 
Numerical data based on an experiment to determine the effects of pro- 
longed oral conception on mortality of mice conducted by Garg, Raja Rao, 
and Redmond (1970) showed that this distribution described quite well the 
mortality of the mice in each of the five treatment groups. Furthermore the 
fit was observed to improve substantially by the use of the maximum likeli- 
hood estimators as compared to the least-squares estimators. 

Ahuja (1972) concentrated on the generalized Gompertz density (22.206) 
and showed that, given two independent random variables X and Y with 
respective generalized Gompertz densities 
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then the conditional density function of X  given Z = X - Y = z is a general- 
ized Gompertz density 

This property may be compared with damage models involving binomial and 
Poisson distributions, and also with normal distributions (see Chapters 4 and 
13). Moreover the characteristic function corresponding to the generalized 
Gompertz density (22.206) is given by 

hence the characteristic function corresponding to the difference of two 
independent Gompertz variables with parameters (p , ,  p ,  4 )  and (p,, p, 8 )  is 
given by 

""" r(q5 - i pu ) I ' (B  + i p u )  

r ( 4 ) r ( e )  
(22.212) 

The characteristic function of Z in (22.212) readily shows that Z is a 
generalized logistic random variable (see Chapter 23) with density function 

Scarf (1992) has considered a four-parameter generalized extreme value 
distribution, and discussed the maximum likelihood estimation and the 
probability-weighted moment estimation of the parameters. Scarf has noted 
that in certain applications, data on extremes arise as paired observations 
( X i ,  t i ) ,  i = 1,2,.  . . , n, where Xi is observed at time t i ,  independently of X, 
at time t,. One such application arises in metallic corrosion where X, is the 
depth of the largest pit penetration over a standard area of metal surface 
exposed to a corrosive environment for time t i .  In this situation Scarf (1992) 
has proposed a four-parameter form of the generalized extreme value distri- 
bution as 

Scarf has then discussed methods of estimation of the four parameters 6, 8,  
Y ,  and P.  
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16 OTHER RELATED DISTRIBUTIONS 

There is clearly a close connection between the three types of extremal 
distributions. As seen in the last section, the standard type 1 extreme 
value distribution is a transitional limiting form between type 2 and type 3 
(Weibull) distributions. Furthermore, as mentioned in Section 9 (and also in 
Chapter 211, a logarithmic transformation of a Weibull random variable 
results in a type 1 extreme value random variable. Also, if Y is a standard 
type 1 extreme value random variable with density (22.26), then ecY has a 
standard exponential distribution (as noted earlier in Section 4). 

A rather unexpected relation holds between the logistic and type 1 
distributions. If two independent random variables each have the same type 1 
distribution, their difference has a logistic distribution [Gumbel (1961)l. 
Gumbel (1962c, d) has also studied the distribution of products and ratios of 
independent variables having extreme value distributions. Tables of the 
distribution of the "extremal quotient" [(greatest)/( - least), i.e., XA/( - Xi)] 
have been published by Gumbel and Pickands (1967). 

Limiting distributions of second, third, and so forth, greatest (or least) 
values may also be regarded as being related to extreme value distributions. 
Gumbel(1958) has shown that under the same conditions as those leading to 
the type 1 extreme value distribution, the limiting distribution of the r th  
greatest value Y,'-,+, = (X,!,-,+, - ( ) / 8  has the standard form of probabil- 
ity density function 

100a% points of this distribution are given by Gumbel (1958) to 5 decimal 
places for 

The moment-generating function of distribution (22.215) is 

The cumulant-generating function is 

t log r + log T ( r  - t )  - log T ( r )  

so the cumulants are 

K ,  = log r - $ ( r )  

K s  = ( - l)r,/,(s-l) ( r ) ,  s 2 2 .  (22.216) 
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The limiting distribution (22.2151, which corresponds to a fixed value of r ,  
should be distinguished from distributions obtained by allowing r to vary 
with n (usually in such a way that r / n  is nearly constant) or by keeping r 
constant but varying the argument value. Borgman (19611, for example, has 
shown that if x, be defined by FX(x,) = 1 - w/n, for given fixed w [where 
F,(x) is the cumulative distribution function of the population distribution], 
then 

lim Pr[X,t,-,+, ax , , ]  = 1 - [ ( r  - I)!]- '  iwtr-' e W ' d t .  (22.217) 
n - + m  

The right-hand side of (22.217) can also be written in terms of a X 2  

distribution, as Pr[Xir > 2w1. 
The asymptotic distribution of range is naturally closely connected with 

extreme value distributions. If both the greatest and least values have limiting 
distributions of type 1, then [Gumbel (194711 the limiting distribution of the 
range, R, is of form 

with probability density function 

where K O ,  K,  are modified Bessel functions of the second kind of orders 
zero, one, respectively. Gumbel gives the values 

E [ R ]  = 2y = 1.15443, 

Median R = 0.92860, 

Modal R = 0.50637. 

In Gumbel (1949b) there are tables of Pr[R I r ]  and p,(r)  to seven decimal 
places for 

r = -4.6(0.1) - 3.3(0.05)11.00(0.5)20.0, 

and of percentile points R ,  to four decimal places for 

a = 0.0002(0.0001)0.0010(0.001)0.010(0.01)0.95(0.001)0.998 
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and to three decimal places for 

Some forms of generalized and compound type 1 extreme value distribu- 
tions have been constructed by Dubey (1969). He generalizes the distribution 
by introducing an extra parameter T, defining the cumulative distribution 
function by the equation 

However, since 

with 5' = 5 + 8 log 78, it can be seen that X still has an ordinary type 1 
distribution. This generalized distribution is, however, introduced only as an 
intermediate step in the construction of a compound type 1 extreme value 
distribution, which can be denoted formally as 

"Generalized" type 1 extreme value ( [ , B ,  T )  /\ Gamma ( p ,  P )  
7 

Here T is supposed to have probability density function 

The resulting compound distribution has cumulative distribution function 

We may note that this distribution, different from the generalized logistic 
distribution introduced by Ahuja and Nash (1967), can also be regarded as a 
generalized logistic distribution. [See Hald (1952) and Chapter 23, Section 10.1 
In fact this is termed a type I generalized logistic distribution in Chapter 23. By 
considering a cumulative distribution function 

Pr[X r x ]  = 1 - exp -7Oexp - [ ( X ~ d l l  
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and using a similar gamma compounding, Balakrishnan and Leung (1988a) 
derived the cumulative distribution function 

P ~ [ X I X I  = 1 - e - ~ ( ~ - 6 ' / '  [ O P - '  + exp { - - i 6}] - p .  (22.222) 

This distribution has been termed a Type-II generalized logistic distribution in 
Chapter 23. As mentioned there, the type I and Type-I1 generalized logistic 
distributions are related by a simple negation of the random variables. 

Proceeding similarly, Balakrishnan and Leung (1988a) started with the 
exponential-gamma density function 

and compounded it with a gamma density function for 7 to derive the density 
function 

The density function in (22.224) has been termed a type IVgeneralized logistic 
density in Chapter 23. For the special case when p = K ,  the type IV 
generalized logistic density function in (22.224) becomes symmetric about 
x = 6 and has been referred to as a Type-III generalized logistic density in 
Chapter 23. 

The standard log-gamma density function 

can be considered as a generalization of the standard type 1 extreme value 
density. Specifically, if Y has the density function in (22.2251, for the case 
when K = 1 the variable - Y  is distributed simply as a standard type 1 
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extreme value random variable. We may note that for integral values of K, 
(22.225) is related to the density (22.215). The cumulative distribution func- 
tion corresponding to the density (22.225) is 

where I[(K) is the incomplete gamma function ratio 

1 
I,(.) = (me-zzK-l d z ,  ~ < t < w , K > o .  

For integral values of K therefore we have (see Chapter 17) 

The moment-generating function corresponding to the density (22.225) is 

in particular, we have 

E[Y] = $(K)  and var(Y) = $ ' ( K ) .  (22.228) 

Since $(K) - log K and $'(K) - I /K for large K, Prentice (1974) suggested a 
reparametrized log-gamma density function 

which tends to the standard normal density function as K - 03. By introduc- 
ing a location parameter ( and a scale parameter 0 in the density (22.2251, 
we obtain a three-parameter log-gamma density function as 

This is clearly a generalization of the type 1 extreme value density function 
(22.25). Lawless (1980,1982) has illustrated the usefulness of the three- 
parameter log-gamma density (22.230) as a life-test model and the maximum 
likelihood estimation of the parameters; also see Prentice (1974). Balakrish- 
nan and Chan (1994a, b, c, d) have discussed order statistics from this distri- 
bution and also the best linear unbiased estimation, the asymptotic best 
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linear unbiased estimation, and the maximum likelihood estimation of the 
parameters based on complete as well as Type-I1 censored samples. Young 
and Bakir (1987) have discussed the log-gamma regression model. Lawless 
(1980) and DiCiccio (1987) have discussed inferential procedures for a 
related generalized gamma distribution (see Chapter 17 for details). Mihram 
(1975) referred to this distribution as a generalized extreme value distribution 
and discussed some basic properties of the distribution (like the closure 
under linear transformation, shapes, etc.) and inferential methods for the 
parameters (like sufficiency, efficiency, etc.). 

A two-component mixture of extreme value distributions with density func- 
tion 

and cumulative distribution function 

has also been used in some applied problems. The moment-generating 
function of this distribution is 

Mx( t )  = a e t c T ( l  - Bt) + (1  - a )  etZ*T(l  - B*t), Itlmax(B,B*) < 1. 

(22.233) 

In particular, the mean and variance are 

E [ X ]  = { a ( &  - {*) + {*}  + y{a(O - B*) + B*) (22.234) 

and 

Rossi, Fiorentino, and Versace (1986) have made use of this two-component 
extreme value distribution for flood frequency analysis; also see Beran, 
Hosking, and Arne11 (1986) and Rossi (1986) for additional comments in this 
regard. 

Revfeim (1984a) discussed an alternative parametric form of the type 1 
extreme value distribution for the maximum and used it to derive an 
extended family of type 1 extreme value distributions. To be specific, let us 
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suppose that events occur in a Poisson process of rate p. If the sizes of the 
events are distributed independently of occurrence and of each other with 
cdf G(x), then the maximum sizes within unit time intervals have cdf 

If p is large, then e-P is negligible. For the exponential distribution with 
G(x) = 1 - e-" Ip ,  (22.236) then gives (for large p) 

which is just a reparametrized form of the type 1 extreme value distribution 
for the maximum in (22.1) [Revfeim (1984b)l; see also Revfeim (1984~) and 
Revfeim and Hessell (1984). Next, choosing G(x) to be the gamma distribu- 
tion of integer order p with cdf 

Revfeim (1984a) derived from (22.236) an extended family of type 1 extreme 
value distributions with cdf 

For p = 1, (22.238) reduces to the type 1 distribution in (22.237). Moment 
properties of the distribution (22.238) for integral p > 1 have been discussed 
by Revfeim (1984a). Revfeim and Hessell (1984) have applied the distribution 
(22.238) to model extreme wind gusts. The distribution (22.238) was also 
derived by Zelenhasic (1970) in connection with river flow exceedances. The 
mean of this distribution is approximated by 

where a and b are functions of the gamma shape parameter p. For the value 
of p = 8 (the most likely value for maximum wind gusts), a and b are 1.58 
and 6.00, respectively. Similarly a and b are 1.31 and 3.55 when p = 4, and 
1.13 and 1.82 when p = 2. (Note that for p = 1, a = 1 and b = y. )  

Maximum likelihood estimators of p and p, when p is known, are given by 

f i = -  I + -  
1 "[ ) and P = T ,  

P so 
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where 

with 

ii can be obtained iteratively by dividing the current value of p by 1 + D, 
where 

The general formula for the kth raw moment of the distribution (22.228) 
is 

with y = e-'Ip. (22.240) 

This is difficult to evaluate even numerically, due to the singularity at y = 0, 
and especially for large p and k. 
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Logistic Distribution 

1 HISTORICAL REMARKS AND GENESIS 

An early reference to the use of the logistic function as a growth curve is by 
Verhulst (1838,1845). The use of the curve for economic demographic 
purposes has been very popular since the end of the nineteenth century. 
Many other applications of the logistic curve have also been found over the 
years. Pearl and Reed (1920,1924), Pearl, Reed, and Kish (1940), and Schultz 
(1930) all applied the logistic model as a growth model in human populations 
as well as in some biological organisms. Schultz (1930) and Oliver (1964) used 
the logistic function to model agricultural production data. A number of 
authors including Pearl (19401, Berkson (1944,1951,1953), and Finney 
(1947,1952) discussed applications of the logistic function in bioassay prob- 
lems. A few more interesting uses of the logistic function are in the analysis 
of survival data [Plackett (1959)1, in the study of income distributions [Fisk 
(1961)], and in the modeling of the spread of an innovation [Oliver (1969)l. 
The logistic function and the logistic distribution have found several impor- 
tant applications in many different fields. A book length account of these is 
due to Balakrishnan (1992). In view of the encyclopedic nature of the 
treatment given in that book, we refrain from discussing this distribution in 
great detail and focus mainly on some significant developments concerning 
the distribution. Interested readers may refer to the volume by Balakrishnan 
(1992) for more details and relevant references. 

The use of logistic function as a growth curve can be based on the 
differential equation 

where c, A, and B are constants with c > 0, B > A .  In verbal form (23.1) 
can be interpreted as rate of growth = [excess over initial (asymptotic) value 
A ]  x [deficiency compared with final (asymptotic) value B]. 

113 
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Solution of (23.1) leads to 

where D is a constant. As x + -03, F(x)  + A ;  as x + m, F(x)  + B (if 
D st 0). The function F ( x )  represents "growth" from a lower asymptote A to 
an upper asymptote B. To make F(x)  a proper cumulative distribution 
function, we put A = 0, B = 1; equation (23.2) then becomes 

which is of the logistic distribution form given in the next section with c = /3 
and D = e--"/P. 

Equation (23.1) has been used as a model of autocatalysis. This is the 
name applied to a chemical reaction in which a catalyst M transforms a 
compound G into two compounds J and K, and J itself acts as a catalyst for 
the same reaction. If M,, G, = original concentrations of M, G, respectively, 
and y = common value of concentration of J and K at time 1 ,  then the law 
of mass action in this case is 

(c,  and c2 are "catalytic constants" for the actions of E, J, respectively). 
The right-hand side of (23.4) can be rearranged to read 

which is the same form as (23.1) with F(x), x replaced by ( y + c,  M,/c,), t, 
respectively, and with c = c,, A = 0; B = G, + c,M,,/c2. 

The logistic distribution arises in a purely statistical manner as the limiting 
distribution (as n + 03) of the standardized midrange (average of largest and 
smallest sample values) of random samples of size n. This result was given by 
Gumbel (1944). Gumbel and Keeney (1950) [see also Gumbel and Pickands 
(1967)l showed that a logistic distribution is obtained as the limiting distribu- 
tion of an appropriate multiple of the "extremal quotient," that is, (largest 
value)/(smallest value). (See Chapter 22.) 

Talacko (1956) has shown that the logistic is the limiting distribution (as 
r -+ co) of the standardized variable corresponding to CS=, j - ' x , ,  where the 
X,'s are independent random variables each having a type 1 extreme value 
distribution (see Chapter 22). 
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Dubey (1969) has shown that the logistic distribution can be obtained as a 
mixture of extreme value distributions 

[obtained by putting 8 = a + P log(qP) in Eq. (22.111, with q having an 
exponential distribution with density function 

Then 

= 1 + exp -- [ ( x ; a ) l - ' l  

which is identical to the logistic distribution given in the next section. More 
historical details of the distribution may be found in Balakrishnan (1992). 

2 DEFINITION 

The distribution is most simply defined in terms of its cumulative distribution 
function 

= 1 2 [I + tanh{ f (7 )}I, with p > 0. (23.6) 

It can be seen that (23.6) defines a proper cumulative distribution function 
with 

lim Fx(x )  = 0, 
X *  -- 

lim Fx(x )  = 1. 
X - m  
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The corresponding probability density function is 

- 2 
X - a  x - a  

1 x - a  
= (48)  - '  sech2 ( ?  (?)). 

The distribution is sometimes called the sech-square(d) distribution. 
The function on the right-hand side of (23.6) has been used extensively to 

represent growth functions (with x representing time). We will be primarily 
concerned with its use as a distribution function (which can of course include 
situations in which the random variable represents time). It is worth noting 
that methods developed for fitting the logistic as a growth curve [e.g., 
Erkelens (1968) and Balakrishnan (1992, ch. 1311 can also be applied to fit the 
cumulative logistic distribution. 

3 GENERATING FUNCTIONS AND MOMENTS 

Making the transformation Y = (X - a)/P, we obtain, from (23.7), the 
probability density function of Y 

The cumulative distribution function of Y is 

Equations (23.8) and (23.9) are standard forms for the logistic distribution. 
[They are not the only standard forms. Equations (23.13) and (23.14), which 
express the distribution in terms of mean and standard deviation, can also be 
regarded as standard.] 

The moment-generating function of the random variable Y with probabil- 
ity density function (23.8) is 

= TO cosec TO. 
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The characteristic function ~(e' ' ' )  is r t  cosech ~ t .  The moments of Y 
may be determined from (23.10), or by direct integration from (23.8). Using 
the latter method (with r > 0), 

m 

= 2 + 1 ( - l ) j r  (for r > 0) 
j =  1 

= 2 r ( r  + 1)(1 - 2-"-")5(r) (for r > I ) ,  (23.11) 

where 5(r) = Cy=, j-' is the Riemann zeta function (see Chapter 1). 
The cumulants are (for r even) K,(Y) = 6(2r - l)Br, where Br is the r th 

Bernoulli number (see Chapter 1). If r is odd, K,(Y) = 0. The distribution of 
Y is symmetrical about y = 0. Putting r = 2,4 in (23.11) 

The first two moment-ratios of the distribution are 

The mean deviation is 2C;=,(- l)'- 'j- '  = 210ge 2. Hence for the logistic 
distribution 

Mean deviation 2fi10ge 2 
- - = 0.764. 

Standard deviation '7 

Returning to the original form of the distribution (23.61, and recalling that 
X = a + PY, we see that 

The coefficient of variation is, therefore, p r / (cuf i ) .  The moment-ratios (and 
the ratio of mean deviation to standard deviation), are. of course. the same 
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for X as for Y. The cumulative distribution function of X can be expressed 
in terms of E [ X ]  = 6 and var(X) = u 2  in the standard form 

The corresponding probability density function is 

The information-generating function [(u - 1)-th frequency moment] cor- 
responding to the probability density function (23.8) is 

The entropy is 

4 PROPERTIES 

Gumbel (1961) noted the properties 

P Y ( Y )  = F Y ( Y ) [ ~  - F y ( y ) l ,  
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for p , ( ~ ) ,  with F,(y) defined as in (23.8) and (23.9). In general, the inverse 
distribution function or the quantile function (of probability Y )  is 

and the inverse survival function (of probability y )  is 

As a result we readily note that the logistic ( a ,  B) distribution arises as the 
distribution of 

where U is a standard uniform (O,1) random variable and V is a standard 
exponential random variable. 

The simple explicit relationships between y, p,(y) and Fy(y)  render 
much of the analysis of the logistic distribution attractively simple. The 
further fact that the logistic distribution has a shape similar to that of the 
normal distribution makes it profitable, on suitable occasions, to replace the 
normal by the logistic to simplify the analysis without too great discrepancies 
in the theory. Such substitution must be done with care and understanding of 
the similarities between the two distributions. 

If the cumulative distribution functions G , (x )  = ( I /  f i ) l"_ ee-"2/2 du 
and G2(x)  = [ l  + exp(-TX/ a ) ] - '  of the standardized normal and logistic 
distributions are compared, the differences G2(x) - G,(x)  vary in the way 
shown in Figure 23.1. Since both G , (x )  and G2(x)  are symmetric about 
x = 0, only the values for x 2 0 are given. It can be seen that the maximum 
value of G J x )  - G,(x) is about 0.0228, attained when x = 0.7. This maxi- 
mum may be reduced to a value less than 0.01 by changing the scale of x in 
G I  and using GI(16x/15) as an approximation to G2(x). This also is 
presented graphically in Figure 23.1. Volodin (1994) has determined that the 
constant T/ [instead of ( 1 5 ~ ) / 1 6 6 ) 1  gives a better approximation 
with a maximum absolute difference of 0.0094825 [instead of 0.00953211. He 
has also indicated that the value of 1.7017456 will provide the best approxi- 
mation with a maximum absolute difference of 0.0094573. 

It should be noted that although there is a close similarity in shape 
between the normal and logistic distributions, the value of p, for logistic is 
4.2, considerably different from the value ( P ,  = 3) for the normal distribu- 
tion. The difference may be attributed largely to the relatively longer tails of 
the logistic distribution. These can have a considerable effect on the fourth 
central moment, but a much smaller relative effect on the cumulative dis- 
tribution function. [We may also note that whereas the standard normal 
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Figure 23.1 Comparison of Logistic and Normal Cumulative Distribution Functions. 

curve has points of inflexion at x = f 1, those of the logistic are x = 

f (6/rr)log,(2 + 6 )  = * 0.53.1 
The logistic density function is more peaked in the center than the normal 

density function; see Chew (1968). It is also easily observed that the hazard 
function is simply proportional to the cumulative distribution function. In 
fact it is this particular characterizing property of the logistic distribution that 
makes it useful as a growth curve model. 

Noting the fact that P ,  = 4.2 for the logistic, Mudholkar and George 
(1978) observed that the logistic distribution very closely approximates 
Student's t-distribution with nine degrees of freedom. A similar rationale has 
been applied by George and Ojo (1980) and George, El-Saidi, and Singh 
(1986) in order to propose some close approximations for Student's t-distri- 
bution with u degrees of freedom using generalized logistic distributions (see 
Section 10). 

With e(x) denoting the mean residual life function or remaining life 
expectancy function at age x given by 

for x 1 0, Ahmed and Abdul-Rahman (1993) have shown that 
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characterizes the logistic distribution in (23.6). They have also presented a 
number of equivalent conditions in terms of conditional expectations. 

An expression for the distribution function of the sum of n i.i.d. logistic 
variables was obtained by Goel (1975) by using the Laplace transform inverse 
method for convolutions of P6lya-type functions, a technique developed by 
Schoenberg (1953) and Hirschman and Widder (1955). Goel (1975) also 
provided a table of the cdf of the sum of n i.i.d. standard logistic variables for 
n = 2(1)12, x = 0(0.01)3.99, and for n = 13(1)15, x = 1.20(0.01)3.99; he 
also presented a table of the quantiles for n = 2(1)15 and a = 

0.90,0.95,0.975,0.99,0.995. George and Mudholkar (19831, on the other 
hand, derived an expression for the distribution of a convolution of the i.i.d. 
standard logistic variables by directly inverting the characteristic function. 
Both these expressions, however, contain a term (1 - e x ) - k ,  k = 1,2,.  . . , n, 
which pose a problem in precision of the computation at the values of x near 
zero when n is large. 

George and Mudholkar (1983) also displayed that a standardized Student's 
t-distribution provides a very good approximation for the distribution of a 
convolution of n i.i.d. logistic variables. These authors then compared three 
approximations: (1) standard normal approximation, (2) Edgeworth series 
approximation correct to order n- ' ,  and (3) Student's t approximation with 
v = 5n + 4 degrees of freedom (obtained by equating the coefficient of 
kurtosis). Of these three the third provides a very good approximation. 

Gupta and Han (1992) considered the Edgeworth and Cornish-Fisher 
series expansions (see Chapter 12 for details) up to order n-"or the 
distribution of the standardized sample mean 

when Xi's are i.i.d. logistic variables with cdf and pdf as in (23.13) and 
(23.14). They are given by 



.,- u JapJo 01 dn uo!suedxa sapas qlio~alpa = (1)'~ 'wopaay JO saalsap 61 q]!M j 

s,luapnlg paz!piepue~s aql JO ~p3 = (I)~V ', - u iapio 01 dn uo!suedxa sapas qliomaapg = (1)'~ 'Jp3 
lewiou piepuels = (I)* '(~~61) laof) UOJJ uayel ueau paz!piepuets aq~ JO jp3 13exa = (rfi3( aioN 

0000'0 1000'0 1000'0 z100'0- 
0000'0 z000'0 P000'0 ozo0'0 - 
0000'0 zooo'o - 1000'0 1000'0 - 
0000'0 0000'0 POOO'O - 9ZOO'O 
0000'0 zooo'o LOOO'O - PS00'0 
0000'0 POOO'O 8000'0 - ELOO'O 
0000'0 L000'0 9000'0 - £800'0 
0000'0 L000'0 L000'0 - t800'0 
1000'0 L000.0 LIOO'O - ELOO'O 
0000'0 SOOO'O 8000'0 9POO'O 
0000'0 €000'0 0000'0 6200'0 
0000'0 1000'0 0000'0 OIOO'O 

v (J)~V-(I$~~ (1)'~-(1>"d (I)@-(1fJd 

SL66'0 OWE 
8166'0 OS'Z 
8626'0 SL'I 
1626'0 SP'I 
£068'0 OZ'I 
98P8'0 00'1 
9018'0 S8'0 
90SL'O 59'0 
6089'0 SP'O 
EE09.0 SZ'O 
SZ9S'O SI'O 
60ZS'O S0'0 

(tpd 1 

uo!jepdod a!]s!%ol e tuorj f az!s jo saldwes jo 
usaw paz!pJepuejs aq) jo jpa aq) JOJ suo!)ew!xo~dde rnoj jo uos~edwoa y 1-£2 alqel 

'1 laideq3 u! pauyap le!uroulClod 
ai!urlaH aql s! (1)'~ pue '~O!lnq!ll~!p ~eurlou prepueis aqi JO al!]uenb 
qin aqi s! "n 'jp~ pue jpd leurlou p~epueis aqi ale (.)@ pue (.)$ alaqM 

(')"+ (("n~998 - ,'nii~z~ + ;nits€ - Pn~tz) - 
9 SLLS 

S S iOI + 
("nsss - ,"nnor - Pnssz + Pnsr -)- - - . - 

9 8P OIZ 

S i8 ~u 
("nso~ - as01 + ;n~z - ;n)- . -) - + 

ZEP I 1 



ORDER STATISTICS 123 

Gupta and Han (1992) compared this approximation with the approxima- 
tions mentioned earlier, and they showed the approximation to be far better 
than even the Student's t-approximation suggested by George and 
Mudholkar (1983). A comparison of these four approximations is presented 
in Table 23.1 for the sample size n = 3 [taken from Gupta and Han (199211. 

From Table 23.1 it is clear that the approximation using the Edgeworth 
expansion up to order n-" given by Gupta and Han (19921, is superior to the 
other three approximations, since its maximum error is about 0.0001 for the 
range of t considered. 

5 ORDER STATISTICS 

Let Y,' I Y; I - .  . I Ynl be the order statistics obtained from a sample of 
size n from the standard logistic distribution (23.8) and (23.9). Then from the 
density function of Yrt (1 s r I n) given by 

we obtain the moment-generating function of Y: as 

An alternative expression for this moment-generating function of Y: in terms 
of Bernoulli numbers and Stirling numbers of the first kind has been given by 
Gupta and Shah (1965). From (23.19) we obtain 

E[Y, ' ]  = $ ( r )  - $ ( n  - r + 1 )  (23.20) 

and 

v a r ( y )  = $ ' ( r )  + + ' ( n  - r + I ) ,  (23.21) 

where and $'(.I are the digamma and trigamma functions, respectively 
(see Chapter 1). 
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From (23.19) we obtain the cumulant-generating function of Y: as 

= log T( r + 8) + log T(n - r + 1 - 8) 

from which we get the kth cumulant of Y,' as 

where 1+9(~-I)(t?) = (dk/dek)log r(B) is the polygamma function. The expres- 
sions for the first four cumulants were given by Plackett (1958); see also 
Gumbel (1958). 

By starting from the joint density function of X: and XJ (1 I r < s I n )  
and proceeding similarly, an expression for the joint moment-generating 
function of X: and X: and the product moment E[X:X,' ]  can be derived; 
see, for example, Gupta, Qureishi, and Shah (1967) and Gupta and Balakr- 
ishnan (1992). 

George and Mudholkar (1981a, b, 1982) provided joint characterizations of 
the logistic and the exponential based on order statistics. They observed that 
the characteristic function of Y: is 

r -  1 n - r  it3 
Oy:(e) = ~ [ e ' " ; ]  = n ( I  + -) n (1 - z)myce) l  

j =  1 J k = l  

where 4,(8) is the characteristic function of the logistic density in (23.8). 
From this form they observed that Y,' -t C;:; Elk - CSZ f E2, is distributed 
as a standard logistic variable with density in (23.81, where E,,'s are indepen- 
dent exponential random variables with density 

Further characterization results of this nature relating the logistic, exponen- 
tial and Laplace distributions may be found in the works of George and 
Mudholkar (1981a, b, 1982), George and Rousseau (19871, and Voorn (1987); 
see George and Devidas (1992) for a review of ail these results. 

i ' By making use of the characterizing differential equation (23.16), Shah 
(1966,1970) derived the following recurrence relations for single and product 

1 moments of the order statistics Y,' (denoted by Y , : ,  for obvious notational 
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convenience): 

1 1 s  r < s  r n ;  s - r 2 2. (23.29) 
B 

Shah (1966,1970) showed that these recurrence relations are complete in the 
sense that, by starting with the values of moments of Y, these relations will 
enable one to determine the single and the product moments of order 
statistics for all sample sizes in a simple recursive manner. 

Birnbaum and Dudman (1963) devoted considerable attention to compari- 
son of distributions of order statistics from normal and logistic distributions. 
Gupta and Shah (1965) derived the distribution of the sample range from the 
logistic distribution, and compared it with the distribution of the sample 
range from the normal distribution for sample sizes 2 and 3. Malik (1980) 



126 LOGISTIC DISTRIBUTION 

derived the distribution of the r t h  quasi-range, Y n - , : ,  - Y,, , : ,, for r = 

0 , 1 , 2 , .  . . , [ (n  - 1) /2 ] .  Tarter and Clark (1965) discussed properties of the 
median. Plackett (1958) used the expression of the cumulants of Y , : ,  in 
(23.23) to develop some series approximations for the moments of order 
statistics from an arbitrary continuous distribution. 

Kamps (1991), by considering a general class of distributions satisfying 

has presented some characterization results through relations for moments of 
order statistics. The logistic distribution is, of course, a special case of this 
class (case p = q = - 1 ) .  Reference may also be made to Kamps and 
Mattner (1993) for some further results in this direction. 

The expression for the density function of the sample range, W = Ynl - Y;,  
is 

- ( n - ( 1 1 2 ) )  

( )  {I + cosh- 
" w ( ~ )  = 2 f i ~ ( n  + i) 

where F ( a ,  b ;  c ;  x )  = 1 + ( a b / c ) ( x / l ! )  + [ a ( a  + l ) b ( b  + l ) / I c ( c  + 
1 ) } ] ( x 2 / 2 ! )  + - . . is the hypergeometric function. 

Shah (1965) derived the joint density function of W and the midrange, 
M = (Y,' + Y, ) ) /2 ,  to be 

n ( n  - l){sinh ( w / 2 ) j n - 2  
p l u , w ( m , w )  = w > O , - m < m < a ~ .  4(cosh m  + sinh ( w / 2 ) j n  ' 

(23.31) 

By considering the symmetrically truncated logistic distribution with den- 
sity function 

otherwise, 
(23.32) 
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and cumulative distribution function 

where Q is the proportion of truncation on the left and the right of the 
standard logistic density function in (23.81, Balakrishnan and Joshi (1983a) 
derived several recurrence relations for single and product moments of order 
statistics. These generalize Shah's results presented in Eqs. (23.24M23.29). 

Balakrishnan and Kocherlakota (1986) generalized the results of 
Balakrishnan and Joshi (1983a) by considering the doubly truncated logistic 
distribution with density function 

otherwise, 

(23.34) 

where Q and 1 - P are the proportions of truncation on the left and the 
right of the standard logistic density function in (23.8). For this case Tarter 
(1966) derived explicit expressions for the single and the product moments of 
order statistics. Braswell and Mandors (1970a, b) and Braswell and Pewitt 
(1973) considered the doubly truncated logistic distribution (but referred to it 
as the FRPDF, finite range probability distribution function) and discussed 
several inferential issues concerning the location and scale parameters of this 
distribution. 

For a more detailed discussion on order statistics from the logistic distri- 
bution, one may refer to Gupta and Balakrishnan (1992). 

6 METHODS OF INFERENCE 

The maximum likelihood estimators, i, & of the parameters 5, o in (23.14) 
I based on a mutually independent set of random variables X,, X,;  . . , X,, 
L 

I each having this distribution, satisfy the equations 
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For large n 
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Equations (23.35) and (23.36) must be solved by trial and error. 
Taking advantage of the similarity in shape between the logistic and 

normal distributions, initial values of and G might be taken as the 
maximum likelihood estimators 

n  

= n x,, and 
i =  1 i =  l 

respectively, appropriate to the latter distribution. Improvements could then 
be made, using (23.35) and (23.361, by applying, for example, the Newton- 
Raphson method. 

Similarly, if the available sample is Type-I1 censored, say X:+,, 
X:+,,. - ., XL-, with r smallest an! s largest observations censored, then the 
maximum likelihood estimators, 6 and 6, of the parameters 6 and u in 
(23.14) satisfy the equations 

n- s  X; - [ e - r ( ~ ; - i ) / ( d f i  

- 2  i = r +  I (?)I 1 + , - r r ( x ; - i ) / ( ~ f i  ) . =O. (23.40) 

For the case where r = s = 0, Eqs. (23.39) and (23.40) reduce to (23.35) and 
(23.36). Here again (23.39) and (23.40) have to be solved by numerical 
methods. 
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By using Monte Carlo simulations and solving the likelihood equations by 
regula falsi method, Harter and Moore (1967) determined the bias, variances, 
covariance, and conditional variances of S1 and c? for sample sizes n = 10 and 
20 and various choices of censoring. A table of asymptotic variances and 
covariance of i and 6 ,  for various choices of proportions of censoring 
p, = r / n  and p, = s / n ,  was presented by Harter and Moore (1967); see also 
Harter (1970) and Balakrishnan (1992). 

Bain et al. (1992) considered the interval estimation of the parameters 6 
and a based on Type-I1 censored samples. For this purpose they presented 
some simulated percentage points of the pivotal quantities fi(i - 5)/c? and 
fi(c?/a - 1). These authors have also presented some tables of lower y 
tolerance factors for proportion P,  t , ,  where the lower y tolerance limit for 
proportion P is given by 

and it is such that 

Their tables provide values of the factor t ,  for various values of y and P and 
for different sample sizes and choices of right censoring (i.e., r = 0). 

Due to the symmetry of the logistic distribution, these tolerance factors t ,  
may also be used to determine the upper y tolerance limit for proportion P 
given by 

Bain et al. (1992) also demonstrated how their tables of tolerance factors may 
be used to determine 100y% lower confidence limits for the reliability 
function R x ( t )  = 1 - Fx(t;  5 , ~ ) .  

Lawless (1972) discussed the conditional methods of inference for the 
location and scale parameters, 5 and a, in (23.14). Approximate linearization 
of the maximum likelihood equations (23.35) and (23.36) was effected by 
Plackett (1958). He gave coefficients in estimators j', 6 ' ,  that are quite 
similar to those of the best linear unbiased estimators for parameters of 
normal distributions, even when the sample size is no greater than 10. 
Another method of approximate linearization was proposed by Tiku (1968). 
Fisk (1961) described the maximum likelihood estimation method based on 
grouped or truncated data; also see Hassanein and Sebaugh (1973). 

The parameters 5 ,  a may also be estimated by the sample mean and 
standard deviation, mi, fi, respectively. The asymptotic efficiency of m', is 
91.2%; that of 6 is 87.4%. Gupta, Qureishi, and Shah (1967) show that 
the actual efficiency of m',, as an estimator of 5,  and of 6, as an estimator 
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of u, is greater than the asymptotic efficiency when the sample size is small. 
These estimators are, however, less efficient (about 10% less for m',, consid- 
erably more so for fi) than the appropriate best linear unbiased estima- 
tors. 

A number of methods of fitting parameters of logistic curves were devel- 
oped in connection with their use as growth curves. Descriptions of such 
methods can be found in Erkelens (19681, Oliver (1964), Pearl (19401, Rasor 
(1949), Silverstone (1957), Will (1936), D'Agostino and Massaro (19921, and 
Tsokos and DiCroce (1992). Many of these are of a heuristic nature and are 
not based directly on probabilistic considerations, but are nevertheless useful 
in obtaining quick estimators of the parameters. [The fitting of the distribu- 
tion is simpler than the fitting as a growth curve, since in the former case 
there is no need to fit values for A and B, see Eq. (23.11.1 

From (23.13) the expected value of 

Number of X's  I x 
fx = n 

is (1  + e x p I - d x  - ()/(ufi))]-'. One method of fitting consists of plotting 
log[ fx/(l  - f,)] against x and fitting (often by eye) a straight line 

to the data so obtained. Comparison of coefficients in (23.44) and 

leads to the estimators 

Although various refinements (e.g., in the fitting of the line and in reducing 
bias) can be introduced, this is quite effective as a quick method. Similar 
methods are not as effective when a growth curve is being fitted, and values 
of the upper, and possibly also the lower, asymptotes have to be estimated 
[Oliver (1964)l. When only quanta1 response data (i.e., proportions of obser- 
vations exceeding certain specified values) are available, special methods 
must be used. 

Despite the simple form of the joint probability density functions of the 
order statistics corresponding to a random sample from a logistic distribu- 
tion, the variance-covariance matrix does not have a simple analytic form, as 
in the cases of the exponential and uniform distributions. As a consequence 
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we are very nearly in the same position in regard to construction of best 
linear unbiased estimators of the parameters 6 and u, using order statistics, 
as for the normal distribution. It is again necessary to rely on numerical 
calculation, using tables rather than analytical formulas. 

Gupta, Qureishi, and Shah (1967) showed that the efficiency (relative to 
the CramCr-Rao lower bounds in (23.37) and (23.38)) of the best linear 
unbiased estimator of 6 increases from about 95% for n = 5 to about 98% 
for n = 25; for u the increase is from about 80% to about 90%. 

There are explicit approximate formulas available [Gupta and Gnanade- 
sikan (1966)] for best linear unbiased estimators based on k selected order 
statistics XL,, XLz; ., XAk (with 1 5 n l  < n2  < . . < n, I n) from n inde- 
pendent random variables x,, x,, . . ., x,, each having probability density 
function (23.14). These formulas should give useful results when n is large, 
while n, /n and n,/n are not "too near" to 0 or 1, respectively. This method 
is based on large-sample approximations to the expectations, variances and 
covariances of order statistics [see, e.g., Ogawa (1951)l. 

The first of these approximate formulas to be described here can be used 
to estimate 6, u being known. It is 

i where 

( X i , ,  and X i k + ,  are each defined to be zero). Note that the coefficients in 5* 
depend only on the ratios n , / n .  

The variance of 5* is approximately (u2n-')K;' .  For given k this last 
quantity is minimized if n , ,  n,, . . . , n, are chosen to maximize K,. This is 
achieved by taking ni = ni/(k + 1). (In practice of course the nearest 
suitable integer value would be taken.) With these values of the n:'s we have 
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the estimator 

with var(t**) = (9/r2Xa2/n)[k- '(k + 2)-'(k + I),]. 
The Cramir-Rao lower bound for an unbiased estimator of 6 is 

(9/r2Xa2/n). The relative efficiency of [** is approximately k- '(k + 
2)-'(k + 1)'. This increases with k,  from a minimum of 75% when k = 1 up 
to 100% as k increases. (When k = 1, [** = median (x, ,  x,,. - -, x,).) It may 
be noted that (23.47) is the estimator obtained by Blom's (1956) method. It is 
also the estimator obtained by multiplying Jung's (1956) estimator by a 
constant to make it unbiased. The formula for estimating a ,  [ being known, 
is 

where 

with approximate variance (a2/n)K;'. 
Gupta and Gnanadesikan (1966) gave a detailed comparison of the estima- 

tors of a ([ not being known) obtained by Blom's (1956,1958) and Jung's 
(1956) methods. They concluded that these estimators have high efficiencies. 
Table 23.2, taken from Gupta and Waknis (19651, gives the coefficients a, in 
Jung's formula Ca,(XA - i + l  - X;) modified to make it an unbiased estimator 
of a .  

The general problem of maximizing K,, and so minimizing var(u*), is 
rather complex. However, if only two order statistics are to be used then 



Table 23.2 Coefficients of the ( n  - i + 1)th-order statistic XL - +, in the linear estimator 
of u (by Jung's method) modified to make it unbiased 

1 Variance 

5 0.3538 0.2038 0 0.1706 
6 0.2907 0.2024 0.0715 0.1372 
8 0.2125 0.1767 0.1147 0.0396 0.0985 

10 0.1663 0.1503 0.1 170 0.0737 0.0251 0.0769 
15 0.1062 0.1048 0.0955 0.0813 0.0636 0.0436 0.0222 0 0.0496 
20 0.0774 0.0787 0.0758 0.0700 0.0622 0.0528 0.0422 0.0307 0.0187 0.0063 0.0366 
25 0.0605 0.0625 0.0618 0.0592 0.0553 0.0504 0.0445 0.0381 0.0310 0.0236 0.0159 0.0080 0 0.0293 

Note: Computed by using the same approximate covariance matrix as  used in Blom's method. 
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n ,  = 0.103n, and n2  = 0.897n gives approximately the minimum value 
1.0227u2/n for var(u*). The CramCr-Rao lower bound for the variance of an 
unbiased estimator is 9(3 + .rr2)-'u2/n, and so the estimator 

(with n,  and n, as given above) has approximate efficiency 68.38%. (It may 
be noted that to get an improved estimator of this form, four quantities are 
needed.) 

If neither 5 nor u are known, the approximate best linear estimators, 
obtained by similar methods, are 

where 

[ K , ,  K,, and K ,  and Y have been defined in (23.46) and (23.481.1 
Simpson (1967), Hassanein (1969,19741, Chan (1969), Chan, Chan, and 

Mead (1971,19731, Chan and Cheng (1972,1974), and Cheng (1975) have all 
discussed the problem of optimal linear estimation of parameters 6 and u 
for the logistic case. All these developments are reviewed by Cheng (1992) 
who also presents some of the relevant tables. Saleh, Hassanein, and Ali 
(1992) have discussed the optimal linear estimation of quantiles of the logistic 
distribution in (23.8) based on selected order statistics and have also pre- 
sented the required tables; similar work was carried out by Ali and Umbach 
(1989) for the symmetrically truncated logistic distribution. Linear estimators 
with polynomial coefficients are examined by Balakrishnan (1992) along the 
lines of Downton (1966). Raghunandanan and Srinivasan (1970) had pro- 
posed some simple linear estimators for ,$ and u based on quasi-midranges 
and quasi-ranges, respectively. 

Construction of confidence intervals for the parameters 5 and u was 
discussed by Antle, Klimko, and Harkness (1970) who determined the neces- 
sary percentage points of the pivotal quantities through Monte Carlo simula- 
tions. Schafer and Sheffield (1973) and Bain et al. (1992) have provided 
further discussions on this issue, with the last authors dealing with Type-I1 
censored samples. 

Howlader and Weiss (1989) have worked out Bayesian estimators of the 
reliability function R , ( t )  by employing the methods of Lindley and Tierney 
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and Kadane. Both squared-error and log-odds squared-error loss functions 
were used by these authors. Aguirre and Nikulin (1993) have recently 
discussed the chi-squared goodness-of-fit test for the logistic distribution. 
Iqbal (1993) has presented asymptotic expansions for confidence limits for 
the parameters of the logistic distribution. 

7 RECORD VALUES 

Let Y,,,,, Y,,,,, Y,,,,, denote the upper record values arising from a 
sequence {KI of i.i.d. random variables with standard logistic density function 
(23.8). Then the density function of the nth upper record value Y,(,, is given 
by 

and the joint density function of Y,(,, and Y,(,, (1 I m < n) is 

n - m - l  
~ ( - l o g ( l  - FY(Y2)) + log(l - FY(Y,))} PY(Y2) 

-a, < y, < y2 < 03. (23.51) 

For this case Balakrishnan, Ahsanullah, and Chan (1994) examined the 
moment properties of record values from (23.50) and (23.51). For example, 
from (23.50) we have for n = 1,2, .  . . , 

= n - S,, 
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By using the facts that S, = 1 and Sn+, - S, = 1 - l ( n  + I), where [(a) is 
the Riemann zeta function, Balakrishnan, Ahsanullah, and Chan (1994) 
established that 

Proceeding similarly, they have also derived expressions for the variances and 
covariances of the upper record values as 

and 

where S, is as defined in (23.53) and 

By making use of Eqs. (23.551, (23.561, and (23.571, Balakrishnan, Ahsanullah, 
and Chan (1994) tabulated the means, variances and covariances of the upper 
record values Yu(,, for n up to 10. Due to the symmetry of the logistic 
density function in (23.8), these tables also readily give the means (negative 
of the corresponding entries for upper records), variances, and covariances of 
the lower record values Y,(,,. 

These tables were utilized by Balakrishnan, Ahsanullah, and Chan (1994) 
to derive the best linear unbiased estimators of the location and scale 
parameters, a and p, in (23.6) based on the observed values of the first n 
upper record values. Tables of coefficients of these best linear unbiased 
estimators and the variances of the estimators were presented for n up to 10. 
The problems of constructing prediction intervals for a future record and of 
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testing for the spuriosity of the current record value were also addressed by 
these authors, and necessary tables were set up. 

8 TABLES 

Values of the standard density function p,(y) in (23.8) and the correspond- 
ing cumulative distribution function Fy(y)  in (23.9) are presented in the 
collection of tables by Owen (1962). Each function is tabulated to four 
decimal places for y = 0(0.01)1.00(0.05)3.00. Only positive values of y are 
needed due to the symmetry of the distribution. Inverse tables give, to four 
decimal places, values of y and py(y)  for which the distribution function 
Fy(y)  takes the values 0.5(0.1)0.90(0.005)0.99(0.001)0.999(0.0001)0.9999, and 
some selected higher values up to 0.999999999. 

Finney (1947,1952) has presented tables for use in logit analysis. These 
tables include the logit transformation, y = log(F/(l - F)). Berkson (1953) 
has also given short tables of the logit. There are similar tables (Tables XI 
and XI,) in Fisher and Yates (1957). 

Tables of 100a% points, for a = 0.50,0.75,0.90,0.95,0.975,0.99, for all 
order statistics for sample sizes up to 10 and for extreme and central order 
statistics for sample sizes from 11 to 25 have been presented by Gupta and 
Shah (1965). These authors have also presented a table of probability 
integrals of the sample range W, at w = 0.2(0.2)1.0(0.5)4.0, for sample sizes 2 
and 3. 

Tables of means and standard deviations of order statistics for sample 
sizes n = 1(1)10,15,20,25 (and some selected order statistics for n = 100) 
were given by Birnbaum and Dudman (1963). Tables of covariances of order 
statistics for sample sizes up to 10 have been presented by Shah (1966). 
These tables were extended by Gupta, Qureishi, and Shah (1967) for sample 
sizes up to 25, and by Balakrishnan and Malik (1994) for sample sizes up to 
50 (to ten decimal accuracy). For the symmetrically truncated logistic distri- 
bution in (23.321, Balakrishnan and Joshi (1983b) presented tables of means, 
variances, and covariances of order statistics for sample sizes up to 10 and for 
the proportion of truncation Q = 0.01,0.05(0.05)0.20. 

Tables of asymptotic variances and covariance of the maximum likelihood 
estimators of 6 and a in (23.14) were presented by Harter and Moore (1967) 
and Harter (1970) for various choices of proportions of censoring on the left 
and the right of the sample. Tables of coefficients of the best linear unbiased 
estimators of 6 and u and the variances and covariance of these estimators 
were tabulated by Gupta, Qureishi, and Shah (1967) for sample sizes n = 

2(1)5(5)25 and some selected choices of censoring. Balakrishnan (1991) 
presented more exhaustive tables covering sample sizes n = 2(1)25(5)40 and 
all possible choices of censoring. Cheng (1992) has given tables of optimal 
spacings, the corresponding coefficients, and the variances for the asymptotic 
best linear unbiased estimators of 6 and a based on k selected order 
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statistics. Similar tables for the asymptotic best linear unbiased estimators of 
logistic quantiles (based on k optimally selected order statistics) are pre- 
sented by Saleh, Hassanein, and Ali (1992). Bain et al. (1992) give tables of 
percentage points of pivotal quantities involving the maximum likelihood 
estimators of 6 and u from which one can construct confidence intervals for 
the parameters 6 and u based on complete or Type-11 censored samples. 
They also present tables of tolerance factors that are necessary in determin- 
ing lower and upper tolerance limits, as well as lower confidence limits for 
the reliability, based on given complete or Type-I1 censored samples. Similar 
tables of tolerance factors involving best linear unbiased estimators of 6 and 
u were constructed by Hall (1975). Balakrishnan and Fung (1992) extended 
the tables of Hall, giving one-sided tolerance factors for sample sizes up to 40 
and also presenting two-sided tolerance factors. D'Agostino and Massaro 
(1992) give tables of critical points of various goodness-of-fit tests useful for 
testing the validity of the assumption of the logistic distribution for the data 
at hand; also see D'Agostino and Stephens (1986). 

Balakrishnan et al. (1991) prepared tables of means, variances, and covari- 
ances of logistic order statistics in the presence of a single location or scale 
outlier. These tables are used by Balakrishnan (1992) in examining the 
robustness features of various linear estimators of the location and scale 
parameters, 6 and a, of the logistic population. 

9 APPLICATIONS 

Some important uses of the logistic curve or distribution have already been 
mentioned. These include use in describing growth and as a substitute for the 
normal distribution. Possibly [see Berkson (1944,1951,1955,1957)] included 
in the latter is its use in the analysis of quanta1 response data. This type of 
analysis has already been described (Chapter 13) in connection with the use 
of the normal distribution in probit analysis. If a logistic distribution is used, 
in place of a normal distribution, to represent the population tolerance 
distribution then the analysis is carried out in terms of logits instead of 
probits. 

The logit Y and the corresponding observed proportion P are connected 
by the equation 

that is, 

P 
Y = log - 

( 1 - P I .  
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Given observed proportions P, = D , / n ,  of "deaths" at "dosages" x ,  ( i  = 

1 , .  . . , k), the logits Y,  = l o $ c / ( l  - P,)] are calculated. The estimation of 
values of the constants a, /3 in the equation 

is to be based on the k independent binomial proportions Pi, or equivalently 
on the k independent logits Y;. The maximum likelihood estimators &, fi  of 
a, p, respectively, satisfy the equations 

C n, (P ,  - P, )  = O = C n , x , ( p ,  - P I ) ,  
i =  1 I =  1 

where 

An iterative method for solving these equations, linked with the idea of 
fitting a weighted regression of Y. on x i ,  can be constructed in an exactly 
similar way to that described for probit analysis. In one respect the calcula- 
tions are simpler, as the weight per unit observation corresponding to P, is 
P,(l - Pi), which is simpler than the corresponding formula for probit analy- 
sis. As is to be expected from the similarity in shape of the normal and 
logistic distributions, the results of probit and logit analysis of the same data 
are usually very similar. Agreement is particularly good in respect of esti- 
mates of the median of the tolerance distribution [Finney (194711. Systems of 
analysis, using an assumed logistic form for residual variation, were worked 
out for 2" factorial experiments by Dyke and Patterson (19521, and for the 
general linear hypothesis by Grizzle (1961). Multiple comparisons, using the 
logistic distribution, were discussed by ReiersB1 (1961). 

The logistic function was also used in studies concerning physiochemical 
phenomenon by Pearl and Reed (19291, psychological issues by Birnbaum 
and Dudman (19631, Lord (19651, Sanathanan (1974) and Formann (1982), 
and geological issues by Aitchison and Shen (1980). Vieira and Hoffmann 
(1977) applied the logistic function to weight-gain data of Holstein cows, 
while Glasbey (1979) applied to the weight-gain analysis of Ayrshire steer 
calves. Leach (1981) and Oliver (1982) used the logistic model for the growth 
of human population. 

The problem of medical diagnosis through the logistic discriminant func- 
tion was introduced first by Cox (1966) and Day and Kerridge (1967), and 
later extended by Anderson (1972,1973,1974). Wijesinha et al. (1983) and 
Begg and Gray (1984) applied the polychotomous logistic regression model to 
a large data set of patients where there were many distinct diagnostic 
categories. Breslow and Powers (1978) compared the prospective and the 
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retrospective models of the logistic regression analysis based on data from 
the Oxford Childhood Cancer Survey reported by Kneale (1971). Johnson 
(1985) applied the logistic regression to estimate the survival time of diag- 
nosed leukemia patients. 

McCullagh (1977) extended some simple odds ratio statistics and pre- 
sented an application concerning the degrees of pneumoconiosis in coal 
miners. Greenland (1985) discussed some extensions of logistic models to the 
modeling of probabilities of ordinal responses and illustrated an application 
in an analysis of the dependence of chronic obstructive respiratory disease 
prevalence on smoking and age. Bonney (1986) introduced the regressive 
logistic model to merge the goals and methodologies of both the epidemiolo- 
gist and geneticist in the study of familial disease and other binary traits. Kay 
and Little (1986) used the logistic regression model to analyze the hemolytic 
uremic syndrome data secured from a number of children. The logistic 
distribution, the logistic growth model, and the logistic regression model have 
found numerous other applications. Interested readers may refer to the 
volume by Balakrishnan (1992). 

10 GENERALIZATIONS 

Several different forms of generalizations of the logistic distribution have 
been proposed in the literature. The type I generalized logistic distribution 
has cumulative distribution function 

The standard logistic distribution function in (23.9) corresponds to the case 
a = 1 in (23.59). Dubey (1969) observed that if Y, given q ,  has an extreme 
value distribution with density function q e-Y e-qe-' (q  > 0) and q has a 
gamma distribution with density function e-qqa- ' / r (a )  (a > 01, then the 
unconditional distribution of Y is the type I generalized logistic distribution 
in (23.59). Zelterman (1987a, b) considered the three-parameter form of the 
type I distribution in (23.59) (by introducing location and scale parameters) 
and discussed methods of estimation of the parameters. Balakrishnan and 
Leung (1988a) and Zelterman (1989) studied order statistics from this distri- 
bution, while Balakrishnan and Leung (1988b) presented tables of means, 
variances and covariances of order statistics for various values of the shape 
parameter a. By making use of these tables, Balakrishnan and Leung (1988b) 
also derived the best linearunbiased estimators of the location and scale 
parameters (with a being assumed known) and presented the necessary 
tables. Gerstenkorn (1992) discussed the estimation of the parameter a. 
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The type I distribution in (23.59) is negatively skewed for 0 < a < 1 and 
positively skewed for a > 1. Ahuja and Nash (1967) showed that if Y has the 
type I generalized logistic distribution in (23.591, then -aY behaves like a 
standard exponential random variable when a is close to 0, and Y - In a 
behaves like an extreme value random variable with distribution function 
e-'-' (see Chapter 22) when a is large. 

The type I1 generalized logistic distribution has cumulative distribution 
function 

It is easy to observe that if Y has a type I generalized distribution in (23.591, 
then -Y has a type I1 generalized distribution in (23.60). Consequently the 
type I1 distribution in (23.60) is positively skewed for 0 < a < 1 and nega- 
tively skewed for a > 1. 

The type 111 generalized logistic distribution has density function 

The standard logistic density function in (23.8) corresponds to the case a = 1 
in (23.61). It is clear that the density in (23.61) is symmetric about 0 for every 
a. Davidson (1980) showed that the moment-generatine function for this 
distribution is 

From (23.62) we obtain the mean, variance, and the coefficients of skewness 
and kurtosis to be 

E [Y]  = 0, var(Y) = 2# ' (a ) ,  

* 'I1( a ~~ = 0, P2(Y) = 3 + ,., .,, , , 2 .  (23.63) 

Thus the type 111 distribution has thicker tails than the normal distribution. 
Further, for large values of a ,  W Y  behaves like a standard normal 
variable. 
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Gumbel (1944) characterized the type 111 distribution as the limiting 
distribution of the a t h  midrange, (Xu :, + X,-,+ , : ,)/2, from certain sym- 
metric distributions. Davidson (1980) established that the difference of two 
independent and identically distributed extreme value random variables is 
distributed as the type 111. Cutler (1992) has shown that the type 111 
distribution arises (asymptotically) in a natural way from statistics based on 
the kth nearest neighbor distance. George and Ojo (1980) and George, 
El-Saidi, and Singh (1986) developed an approximation to Student's t-distri- 
bution with v degrees of freedom based on the type 111 distribution in 
(23.61). Specifically, by matching the coefficient of kurtosis in (23.63) with 
that of the Student's t (see Chapter 281, they recommend the use of 
a = (v - 3.25)/5.5 as the appropriate type 111 shape parameter for the 
required approximation. 

The type IV generalized logistic distribution with density function 

was studied by Prentice (1976) and Kalbfleisch and Prentice (1980). It is 
readily observed that types I, 11, and 111 are all special cases of this 
distribution; further, the type IV density function in (23.64) is the density of 
-In Z when qZ/p has a central F-distribution with (2p,2q) degrees of 
freedom (see Chapter 27). If Y has a type IV density function as in (23.64), it 
is of interest to note that -Y also has a type IV distribution with shape 
parameters p and q interchanged. The moment-generating function of Y is 

from which we get 

From (23.66) we observe that the type IV distribution is positively skewed if 
p > q, negatively skewed if p < q, and symmetric if p = q (becomes type 111 
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in this case). George and Ojo (1980) and George and Singh (1987) presented 
infinite series expressions for the first four cumulants of Y. 

Prentice (1976) proposed the type IV distribution as an alternative for 
modeling binary response data to the usual logistic model. Kalbfleisch and 
Prentice (1980) considered the four-parameter form of (23.65) (by introduc- 
ing location and scale parameters) in survival analysis. They have also shown 
that the type IV distribution goes in limit to lognormal (when p + 03) and 
Weibull (when p = 1 and q -+ m); also see Farewell and Prentice (1977). 
The type IV distribution is referred to as the exponential generalized beta of 
the second type (denoted by EGB2) by McDonald (1991). 

All of these generalized logistic distributions can be regarded as special 
cases of a large class of distributions introduced by Perks (1932). Perks, a 
British actuary, was primarily interested in obtaining a general function for 
graduating life-table data, but his formulas are of general applicability. 

Perks proposed, as a general form for the probability density function of a 
random variable, Y, the ratio 

E c o a ,  e-'Oy 
P Y ( Y )  = b e-)ey ' 

1=0 J 

The quantities a,, b,, 8 are real parameters. There must be relationships 
among the values of these parameters to ensure that the conditions 

m 

P ~ Y )  2 0 and / P , ( Y ) ~ Y  = 1 - m 

are satisfied. I t  is always possible to take 6 = 1, by a suitable choice of scale, 
and evidently all a,'s and b,'s can be multiplied by the same (nonzero) 
constant, without affecting p,( y ). 

A particularly interesting subclass of symmetrical distributions is obtained 
by taking m = 1, m' = 2; a, = 0, b, = b,. Then (23.67) becomes 

a ,  ePY 
P A Y )  = b0 + b ,  e - Y  + bo e - 2 ~  

Taking c,  > 0, the condition p,(y) 2 0, for all y, requires that c2 2 -2. 
The condition j"_p,( y) dy = 1 excludes c2 = - 2, but, for all c, > - 2, 
(23.68) can represent a probability density function. The logistic distribution 
is obtained by putting c2 = 2, giving (23.8). 
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Another form of generalized logistic distribution has been considered by 
Hosking (1989,1991). The cumulative distribution function for this family is 
given by 

1 1 1 
FY(Y) = y I - when k > 0, y 2 - when k < 0, 

1 + (1 - ky)'Ik ' k k 

(23.69) 

and the probability density function is given by 

(1 - ky) 
(Ilk)- I 1 1 

PY(Y) = y I - when k > 0, y 2 - when k < 0. 
I/k ' 

{l+(l-ky) ) k 
k 

The density function above reduces to the standard logistic density function 
in (23.8) for the case when the shape parameter k + 0. It may be noted from 
(23.70) that if Y has the above generalized logistic distribution with k > 0, 
then - Y also has the generalized logistic distribution with shape parameter 
- k ( < 0). From (23.69). we obtain the r th raw moment of Y to be 

1 ' 
= - (-  l)'(;)B(l - ki, 1 + ki) 

k r  ; = o  

for r E ( -  l/k, l/k). By using the characterizing differential equation 

Balakrishnan and Sandhu (1994a) established several recurrence relations for 
the single and the product moments of order statistics. These authors proved 
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the following specific relationships: 

r  1 
- - E [ Y , ; I : ~ + I ]  n + l  - - E [ Y , : ~ I ] *  n - r  



- L ( ~ [ Y r + i : n + \ ~ + l : n + ~ l  S - T  - E [ K + \ : ~ + I K : ~ + I I I  

When k -, 0, these recurrence relations reduce to the results in Eqs. 
(23.24H23.29) due to Shah (1966,1970). Hosking (1989,1991) introduced 
location and scale parameters into the distribution in (23.69) and studied the 
probability-weighted moment estimation of the three parameters with rela- 
tion to maximum likelihood estimates; see Chen and Balakrishnan (1994) for 
some further remarks in this direction. Balakrishnan and Sandhu (1994a) 
have discussed the best linear unbiased estimation of parameters. 

In considering the truncated form of the generalized logistic distribution 
in (23.69) and its properties, Balakrishnan and Sandhu (1994b) established 
similar recurrence relations for the single and the product moments of order 
statistics. The cumulative distribution function of this truncated distribution 
is 

and the probability density function 

where Q l  = 1 - [(l - Q)/elk/k and PI = 1 - [(I - p)/pIk/k. Here Q 
(>  0) and 1 - P (> 0) are the proportions of truncation on the left and right 
of the generalized logistic distribution in (23.691, respectively. The character- 
izing differential equation for this distribution is given by 
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which has been exploited by Balakrishnan and Sandhu (1994b) in order to 
derive several recurrence relations for single and product moments of order 
statistics. 

11 RELATED DISTRIBUTIONS 

Talacko (1956) studied the hyperbolic secant distribution, obtained by putting 
c, = 0 in (23.681, giving 

C l  1 
= -c, sech y. PY(Y) = 

e y  + e-y 

The condition l"_py(y) dy = 1 requires that c ,  = 2 / a  so that 

p V ( y )  = a-' sech y 

and the cumulative distribution function is 

Fy(y)  = + a-' tanh-'(sinh y ) .  

Note that if Y has this distribution then eY has a half-Cauchy distribution 
(Chapter 16). The distribution of the sum of n independent random vari- 
ables, each having the same hyperbolic secant distribution, has been derived 
by Baten (1934). 

Returning for a moment to the more general form of distribution (23.68) 
the characteristic function ~ [ e " ' ]  is [Talacko (195611 

a sinh[t cos-'(c2/2)] 
for - 2 < c , < 0 , 0 < c 2 5 2 ,  

cos- '(c2/2) sinh t v  

a sin[? coshKi(c2/2)] 
for c ,  > 2. (23.77) 

cosh-'(c2/2) sinh t v 

The logistic distribution appears as a limiting case, letting c, + 2. The values 
of cos-'(c,/2) are taken in the range 0 to T. For the hyperbolic secant 
distribution, the characteristic function is sech(at/2), and the r th absolute 
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moment about zero is 

The expected value of Y equals zero; var(Y) = (4/n) . 2 . n3/32 = 
( 1 / 4 ) ~ ~ , ~ ~ ( Y )  = 5r4/15; P2(Y) = a4(Y) = 5. The mean deviation is 4 c / ~  
(where c = 0.916 is Catalan's constant). For this distribution 

Mean deviation 8 c 
= - = 0.742. 

Standard deviation .rr2 

Harkness and Harkness (1968) have investigated the properties of a class 
of distributions having characteristic functions 

which they term generalized hyperbolic secant distributions. For integer 
values of p the distributions are those of sums of independent identically 
distributed hyperbolic secant random variables. They have shown that for p 
even (= 2n) the density function is 

while for p odd (= 2n + 1) 

Fisk (1961) has shown that the Pareto distribution (Chapter 20) can be 
regarded as a form related to the logistic for certain extreme values of the 
variable. Making the substitution e Y = (T/tOln in (23.9) (with n > 0, to > O), 



RELATED DISTRIBUTIONS 

we have 

If t  be small compared with t o ,  then approximately 

Pr[T < t ]  a t n .  

If r be large compared with t,,, then 

and approximately 

Let {Dj)T=, be a sequence of independent double exponential random 
variables (see Chapter 24) with density function 

Then C"; =,Dj is distributed as a standard logistic random variable with 
density in (23.8). Since difference of two i.i.d. exponential random variables is 
distributed as double exponential, we have C;= , (E l ,  - E,,) to be distributed 
as standard logistic with density in (23.8), where E,,'s are independent 
exponential random variables with density function 

p,, l(x)  = j e - I x ,  x 2 0 , j =  1 , 2  , . . . ,  i =  1 , 2 .  

Incidentally these two representations prove that the logistic distribution is 
infinitely divisible. 

Galambos and Kotz (1979) provided an interesting ioint characterization I 
of the logistic and the exponential distribution as folli&: Suppose that X is 
a continuous random variable with distribution function G J x ) .  which is * - ' , - -- 

symmetric about 0. Then 

if and only if G , ( x )  = F y ( A x )  with F y ( . )  being the standard logistic 
distribution function in (23.9). 
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Baringhaus (1980) presented a characterization result that connects the 
geometric and the logistic distributions: Let Z,,  Z 2 ,  - - be i.i.d. random 
variables with nondegenerate distribution function G(z), and let N be a 
positive integer-valued random variable independent of Z's, with p the 
generating function of N. Let G(z) be symmetric about 0, and let y be a 
real-valued function of t9 E (0,l). Then 

if and only if G(z) = Fy(az), for some a > 0, where Fy(.)  is the standard 
logistic distribution function in (23.9) and p is the generating function of a 
geometric distribution. Voorn (1987) has generalized this result. 

Balakrishnan (1985) considered the folded form of the standard logistic 
distribution (23.8) and termed it the half logistic distribution. The density 
function of this distribution is given by 

and the cumulative distribution function is given by 

Use of this distribution as a possible life-time model has been suggested by 
Balakrishnan (1985) who has established several recurrence relations for 
the single and the product moments of order statistics. Balakrishnan and 
Puthenpura (1986) derived the best linear unbiased estimators of the location 
and scale parameters for the two-parameter half logistic distribution and 
presented the necessary tables. Balakrishnan and Wong (1991) derived ap- 
proximate maximum likelihood estimators for the two parameters based on 
Type-I1 censored samples. Balakrishnan and Chan (1992) considered the 
scaled half logistic distribution and discussed different methods of inference 
for the scale parameter of the distribution. Similar to the generalized logistic 
distribution in (23.69), Balakrishnan and Sandhu (1994~) defined a general- 
ized half logistic distribution with distribution function 
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and probably density function 

2(1 - b)"/k ' - '  1 
PAX) = O S X S - , k > O .  (23.84) 

{1 + (1  - h ) i / k ] 2  ' k 

This family includes the half logistic distribution in (23.82) as the shape 
parameter k -+ 0. Balakrishnan and Sandhu (1994~) have discussed various 
properties of this distribution and derived several recurrence relations for 
the single and the product moments of order statistics generalizing the re- 
sults of Balakrishnan (1985). These developments have been extended by 
Balakrishnan and Sandhu (1994d) to the truncated form of the generalized 
half logistic density function in (23.84) given by 

2(1 - h)( ' /k ) -  1 

P (X)  = O s x  s P , , k  > 0, 
P(I + ( 1  - kr)'"}* ' 

where 1 - P (0 < P I 1) is the proportion of truncation on the right of the 
generalized half logistic density in (23.841, and P, = (1 - [(I - P)/(l + 
P)lk)/k. 

Similar to the case of the normal distribution (see Chapter 12, 
Section 4.31, three translated families of logistic distributions were proposed 
by Tadikamalla and Johnson (1982a). These three systems of distributions are 
derived by ascribing the standard logistic distribution in (23.8) to 

Y = y + S log X, X > 0 (for L ,  system) 

Y =  y + S l o g  ( - _Xx), 0 < X < 1 (for LB system), (23.86) 

and 

Y = y + 6 sinh- X, - m < X < 03 (for LU system). (23.87) 

The family of distributions arising from (23.89, called as the log-logistic 
distributions, were first studied by Shah and Dave (1963). The probability 
density function is given by 

S eyxs-' 
P X ( X )  = X 2 0 , S > O .  

(1 + eyxs12 ' 

The distributions belong to Burr's type XI1 family of distributions (see 
Chapter 12, Section 4.5). Dubey (1966) called them Weibull-exponential distri- 
butions and fitted them to business failure data. The density in (23.88) is 

B 
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unimodal; when 6 2 1, the mode is at x = 0 (giving a reverse J-shaped 
curve), and when 6 < 1, the mode is at x = e-Y[(S - 1)/(6 + I)]. The 
cumulative distribution function is 

and the r th  raw moment of X is given by 

Johnson and Tadikamalla (1992) have discussed methods of fitting the 
four-parameter form of the log-logistic distributions. Shoukri, Mian, and 
Tracy (1988) examined probability-weighted moment estimators for the 
three-parameter form of the distributions and compared them with the 
maximum likelihood estimators. Best linear unbiased estimation of the loca- 
tion and scale parameters (with shape parameter 6 being assumed known) 
has been discussed by Balakrishnan, Malik, and Puthenpura (1987). Nearly 
best linear unbiased estimation of the location and scale parameters based on 
complete as well as singly and doubly Type-I1 censored samples has been 
discussed by Ragab and Green (1987). Ali and Khan (1987) and Balakrishnan 
and Malik (1987) have established some recurrence relations satisfied by the 
single and the product moments of order statistics from log-logistic and 
truncated log-logistic distributions. 

The density function of X corresponding to the L,-system transformation 
in (23.86) is given by 

There is a single mode if 6 > 1 or an antimode if 6 < 1 at the unique value 

1 of x E (0 , l )  satisfying the equation 
f 

8 - 1 + 2 x  1 - x  
eY = 

1 r 6 + 1 - 2 ~ ( ~ ) '  

If 6 > 1, the mode is at x >< 1/2 according as y 5 0. If 6 < 1, the density is 
1 
S U-shaped with the antimode being in ((1 - 6)/2,1/2) for y < 0 and in 

(1/2,(1 + 6)/2) for y > 0. The cumulative distribution is given by I 
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The r th raw moment given by 

-r  
E [X r]  = I 1 { l  + e y / ' ( l  - u ) " ~ u - ' / ~ )  d u  

0 

needs to be numerically computed. Johnson and Tadikamalla (1992) have 
discussed methods of fitting this family of distributions. 

The density function of X corresponding to the L,-system transformation 
in (23.87) is given by 

s eY { x  + d7TT]s 
P A X )  = p-- 

- a < x < m ,  (23.94) 
+ [ I  + e y { x  + \lxi+l}6]2' 

and the corresponding distribution function is 

1 
F x ( x )  = 1 + , - y - 8 s 1 n h - ' x  ' - w < x < m .  

The density in (23.94) is unimodal with mode at the unique value of x 
satisfying the equation 

X 
~ [ l  - e y ( x  + r/x'+l}] = n' 

The r th raw moment of X can be written 

provided that r < S. If r 2 6, E [Xr ]  is infinite. Tadikamalla and Johnson 
(1982b) have presented tables of 6 and y/6 corresponding to specified values 
of d m  and &(XI, along with mean and standard deviation of X. 
Bowman and Shenton (1981) presented formulas from which y and 6 can be 
determined from the given values of and P2(X). Reference may 
be made to Johnson and Tadikamalla (1992) for further details. The 
(P, ,  P2) region for the three transformed logistic distributions are shown in 

details on this and other related distributions, the reader may refer to 
Balakrishnan (1992). 
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Figure 23.2 P , ,  p2 region for LU-, L,-, L,-distributions. 
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C H A P T E R  2 4  

Laplace (Double ~xponential) 
Distributions 

1 DEFINITION, GENESIS, AND HISTORICAL REMARKS 

The double exponential distribution was discovered by Pierre Laplace (1774) 
as the distribution form for which the likelihood function is maximized by 
setting the location parameter equal to the median of the observed values of 
an odd number of independent and identically distributed random variables. 
This result appeared in Laplace's fundamental paper on symmetric distribu- 
tions for describing errors of measurement, and it is appropriately known as 
the first law of Laplace. 

The probability density function of the Laplace distribution is 

Another mode of genesis for this distribution is as the distribution of the 
difference of two independent and identically distributed exponential random 
variables. 

Incidentally Laplace (1774) proceeded further. He replaced the median by 
the arithmetic mean as the value maximizing the likelihood function and 
derived the corresponding distribution to be the normal distribution (see 
Chapter 13). This result is called as the second law of Laplace. Stigler (1975) 
has chronicled the many significant contributions made by Laplace and their 
impact on the subject. 

The Laplace distribution in (24.1) is known under different names. One of 
the most common ones is the double exponential. It should be mentioned, 
however, that this name has also been applied to the extreme value distribu- 
tion (see Chapter 22). A distinction can be made in terminology by calling the 
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Laplace distribution as double exponential and the extreme value distribu- 
tion as doubly exponential. In Greenwood, Olkin, and Savage (1962), the 
Laplace distribution is termed the two-tailed exponential; Feller (1966) re- 
ferred to it as the bilateral exponential, and Weida (1935) called it as 
Poisson's first law of error. 

Yellott (1977) has very nicely elucidated the relationship between Luce's 
choice axiom, Thurstone's theory of comparative judgment, and the double 
exponential distribution. Ord (1983) has presented a brief review of various 
significant developments relating to this distribution. 

2 MOMENTS, GENERATING FUNCTIONS, AND PROPERTIES 

A standard form of the probability density function (24.1) is obtained by 
putting 8 = 0,+ = 1, giving 

(This form is sometimes called Poisson'sfirst law of error.) The characteristic 
function corresponding to this probability density function is 

E[eUX] = f ( l  + i t ) - '  + f ( 1  - it)-' = ( 1  + t 2 ) ' .  (24.3) 

It is interesting to note that the Fourier transform pair, (24.2) and (24.3), 
occur in reverse order for the Cauchy distribution (see Chapter 16). The 
moment-generating function is (1 - t2 ) - ' .  The cumulant-generating function 

and the r t h  cumulant is 

The r th central moment is 

Takano (1988) has discussed the Livy representation of the characteristic 
function in the d-dimensional Euclidean case (including the case d = 1). 

The distribution is symmetrical about x = 0; the values of the first two 
moment ratios are 

6 = 0 ,  Pz = 6. 



p, of 6 reflects the slower rate of decay in the tails of the distribution 
compared to the normal. 

The mean deviation is 

V ,  = E[IXI]  = 1. (24.8) 

So for the Laplace distribution 

Mean deviation 1 
= - - - 0.707. (24.9) 

Standard deviation \/Z 
For the more general distribution (24.11, the ratios (24.7) and (24.9) have the 
same values as for the standard form (24.2). The expected value and standard 
deviation of (24.1) are 8 and 164, respectively. 

The information-generating function is 

The entropy is 1 + log(24). 
The probability density function has a maximum at x = 6, where there is a 

cusp. The form of the function is sketched in Figure 24.1. The cumulative 
distribution function is 

The lower and upper quartiles are 8 + 4 log 2 = 8 + 0.6934. 
The probability density function expressed in terms of the expected value, 

5, and the standard deviation, u, is 

Figure 24.1 Laplace density function. 
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The upper and lower quartiles are 6 f a - 2- ' I2 log 2 = 6 k 0.490~.  For the 
normal distribution the corresponding values are 6 _+ 0 .674~ .  This difference 
reflects the sharp peak in the Laplace distribution. For quantiles further in 
the tails the comparison is reversed because the Laplace probability density 
function decreases as exp[- a l x  - 61/a] while the normal decreases as 

For example the upper and lower 1% points of the Laplace distribution are 
6 f 2.7220, compared with 6 +_ 2.3260 for the normal distribution. 

It is also easily noted that the Laplace density in (24.1) with 8 = 0 is 
exactly the same as the distribution of V, - V, when V, and V2 are i.i.d. 
Exponential ( 4 )  random variables. Special tables are not needed for numeri- 
cal calculations connected with the Laplace distribution, as standard tables of 
the exponential function can be used. 

A kurtosis comparison of the Laplace and the Cauchy distributions was 
made by Balanda (1987). Although P2 is 6 for the Laplace and infinite for the 
Cauchy, Balanda pointed out that this moment-based comparison is inade- 
quate, since it does not recognize the dominant features of the two distribu- 
tions: the Laplace's dramatic peak and the Cauchy's long tail. Horn (1983), 
for example, identified the Laplace as being more peaked than the Cauchy, 
while Rosenberger and Gasko (19831 identified the Cauchy as having heavier 
tails than the Laplace. Since the moment-based orderings are not useful, as 
none of the Cauchy's moments are finite (see Chapter 161, Balanda (1987) 
carried out a kurtosis comparison using kurtosis orderings along the lines of 
van Zwet (1964). 

We note that if 8 = 0, the probability density function of the arithmetic 
mean (x) is 

n dn-I  
p d x )  = 4 n ( n  - I)! F{(;;;:;)n}l(=4-, 

Cases where the underlying variables are double exponential, in the distribu- 
tion of the arithmetic mean and the distributions of some other statistics, 
have been discussed by many authors including HausdorfT (19011, Craig 
(1932), Weida (1933, and Sassa (1968). The density function of in (24.13) 
has been used by Balakrishnan and Kocherlakota (1986) in studying the 
effects of nonnormality on x-charts as summarized by the true probabilities 
of false alarm ( a )  and of true alarm (1 - p). These authors have shown that 
no modification to the control charts is necessary in the case of the double 
exponential distribution, as both a and 1 - P attain values close to their 
normal counterparts. 



Sansing (1976) has discussed the t-statistic arising from a double exponen- 
tial distribution. Gallo (1979) has derived the sampling distributions of the 
sum of Laplace variables and the sum of absolute values of the variables, in 
addition to the distribution of the related t-statistic. Dobrogowski (1976) and 
Findeisen (1982) have discussed some additional properties of the Laplace 
distribution. 

3 ORDER STATISTICS 

The simple explicit form of F,(x), as given in (24.11) leads to simple explicit 
forms for the distributions of order statistics connected with the Laplace 
distribution. If Xi I Xi  I . . I XA denote the order statistics correspond- 
ing to n independent random variables XI ,  X,, . - . , X,, each having probabil- 
ity density function (24.1) (so that X: is the r th smallest of X,, X,, . . . , X,), 
then the probability density function of Xi is 

fnr v d f i  

. - - e - t x - u l / 9 )  1 ( r  - l ) ! ( n  - r ) !  2 

The sth moment of X: about 0 is 

n ! T ( s  + 1 )  
E[(x: - B ) ' ]  = 4' 

( r  - l ) ! ( n  - r ) !  

f o r x  r 0. 

(24.14) 

n - r  

( - 1 ) '  
( - 1 ) '  ( n  r ) 2 - ' r + j + ~ ( r  + j)-("" 

j = o  

In particular, if n is odd, the distribution of the median is obtained by 
putting r = ( n  + 1 ) / 2  in (24.14). This distribution is symmetrical about 0; 
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the expected value of the median is 8, and the variance is 

442n!  ( n -  ')/2 

C (-1) '  
[(n - 11/21! , = o  

For any value of n ,  the expected value of the largest of X, ,  X,; . a ,  Xn is 

The expected value of the smallest of X,, X,; . ., Xn is by symmetry 28 - 
E(X;), and the expected value of the range W (= XL - Xi) is 

Edwards (1948) gave the values a, = 2.7708, a, = 3.1771. Edwards also pre- 
sented the following formulas for the cumulative distribution function of 
range for n = 4 , s :  For n = 4, 

F w ( w )  = 1 + T e - w  - 3 e - 2 ~  + Le-3" -  we-^ 
N 4 (4 + e -w) ,  

An alternative interesting way of deriving moments of order statistics from 
the double exponential distribution was presented by Govindarajulu (1963). 
His method in fact applies to a general symmetric distribution and is as 
follows: Let Xi I X i  I - . I X; denote the order statistics obtained from 
a random sample of size n from a symmetric distribution (about zero, without 

the order statistics obtained from a random sample of size n from 
the corresponding folded distribution (folded at zero) with cdf G , ( y )  = 

2Fx(y) - 1, y 2 0. Then, as Govindarajulu (1963) showed, we have the 



relations 

and, for 1 s r < s I n, 

From (24.21) and (24.22) we take F X ( x )  to be the standard double exponen- 
tial distribution with pdf as in (24.2) and corresponding G , ( y )  to be the 
standard exponential distribution, and make use of the explicit expressions of 
the means, variances, and covariances of standard exponential order statistics 
(see Chapter 18) to obtain 
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In these formulas, for 1 _< r I n, 

" 1 
S , ( r ,  n )  = C T, 

c = n - r +  I 

1 
s,= r. p + ( ~ , ( r , n ) ) ~ .  

r = n - I +  1 

and for 1 r r < s I n, 

1 
S,(r ,  s ,  n )  = -p + S , ( r ,  n )  . S,(s ,  n) .  

r = n - r +  l 

Using Eqs. (24.23M24.25) Govindarajulu (1966) tabulated the means, vari- 
ances, and covariances of standard double exponential order statistics for 
sample sizes up to 20. 

Recently Balakrishnan, Govindarajulu, and Balasubramanian (1993) have 
given an elegant probabilistic interpretation for the results in (24.21) and 
(24.221, and used it to establish some generalizations. 

Govindarajulu's results in (24.21) and (24.22) were extended by Balakrish- 
nan (1988) to the case when the order statistics arise from a single-scale-out- 
lier model consisting of n - 1 symmetric variables and one single symmetric 
scale outlier. These results were used, along with explicit expressions for the 
single and the product moments of order statistics from a single-scale-outlier 
exponential model [Barnett and Lewis (1994)1, by Balakrishnan and Amba- 
gaspitiya (1988) to study the robustness features of various linear estimators 
of the parameters 8 and 4 of the Laplace distribution (24.1). Balakrishnan's 
(1988) results for the single-scale-outlier double exponential model have 
been extended in Balakrishnan (1989) to the case when the order statistics 
X;, Xi;. ., XL arise from n independent and nonidentically distributed 
Laplace random variables. Akahira and Takeuchi (1990) have discussed the 
loss of information associated with the order statistics from the double 
exponential distribution and related estimators of the parameters 8 and <b 
(see Section 4). 

Lien, Balakrishnan, and Balasubramanian (1992) discussed the moments 
of order statistics from a doubly truncated Laplace distribution with density 

, log(2Q) I x _< - log(2P), (24.26) 

where Q and P are the proportions of truncation on the left and right of the 
standard Laplace density (24.2). They used these moments of order statistics 
to derive best linear unbiased estimators of the location and scale parameters 
of a doubly truncated Laplace distribution. They also developed some results 



for order statistics from a general nonoverlapping mixture model from which 
the results for the doubly truncated Laplace distribution in (24.26) are 
deduced as special cases. Khan and Khan (1987) have also derived some 
recurrence relations for the moments of order statistics from the doubly 
truncated Laplace distribution (24.26). 

4 METHODS OF INFERENCE 

4.1 Maximum Likelihood Estimation 

Given observed values of n mutually independent random variables 
XI;. ., X,, each with probability density function (24.11, the likelihood 
function is 

Whether the value of 4 is known or not, any value 6 minimizing Z;=, IX, - 81 
with respect to 8 is a maximum likelihood estimator of 8. If n is odd, then 8 
is uniquely defined as the median of X I ,  X,; . -, X,. This result was obtained 
by Keynes (19111, who also conjectured that this is a characterization of the 
Laplace distribution (as, indeed, it effectively is). If n is even, then 6 can be 
any value between the +nth and ( i n  + 11th-order statistics from 
X I ,  X,; . ., X,. The arithmetic mean of these two values is convenient to use, 
and is an unbiased estimator of 8 (as is the median when n is odd). 

If 4 (as well as 8)  is unknown, a maximum likelihood estimator of 4 is 

where 6 is a maximum likelihood estimator of 8. If 8 is known, but 4 is 
unknown (most commonly, 8 = O) ,  then the maximum likelihood estimator of 
4 is 

The distribution of the median has been discussed in Section 24.3. Although 
the median is a maximum likelihood estimator of 8, and unbiased, it is not a 
minimum variance unbiased estimator of 8. Indeed for small values of n (the 
sample size) it is possible to construct unbiased estimators with smaller 
variance than the median (e.g., see Table 24.1). Norton (1984) and Hombas 
(1986) have described the use of calculus to find the maximum likelihood 
estimators. 
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Table 24.1 Coefficients and variances of best linear estimators of location (8) 
and scale ($) parameters 

Cc 

n r Xi XA-I n - L  -,, - , - n - 4  - -  . 

2 0 8 0.5000 1.0000 
0.6667 0.7778 

3 0 0 0.1481 0.7037 0.5895 
4 0.4444 0.0000 0.4321 

4 o e 0.0473 0.4527 0.4155 
4 0.3077 0.2145 0.2986 

4 1 8  0.5000 0.4201 
4 1.4545 0.85 12 

5 0 8 0.0166 0.2213 0.5241 0.3169 
4 0.2331 ( 

5 1 0  0.2378 0.5244 0.3 174 
0.8727 0.0000 

1 
4 

6 0 8 0.0063 0.1006 0.3931 0.2548 
0.1876 0.1943 0.1132 0.1858 

6 1 8  0.1069 0.3931 0.2548 
4 0.6135 0.1824 

6 2 8  0.5000 0.2609 
2.2857 

I 
d 0.8866 

7 0 0 0.0025 0.0455 0.2386 0.4267 0.2122 
4 0.1572 0.1631 0.1439 0.0000 0.1565 

7 1 0  0.0480 0.2386 0.4267 0.2122 
d 0.4677 0.2104 0.C 

7 2 8  0.2862 0.4276 0.2134 
4 1.3061 0.0000 0.4468 

8 0 0 0.0010 0.0208 0.1316 0.3465 0.1814 
4 0.1355 0.1391 0.1391 0.0718 0.1351 

8 1 0  0.0219 0.1316 0.3465 0.1814 
d 0.3767 0.191( 

8 2 6  0.1533 0.3467 0.1816 



! 
Balakrishnan and Cutler (1994) have recently derived explicitly the maxi- i 

mum likelihood estimators of the parameters 8 and 4 based on symmetri- I 

cally Type-I1 censored samples. To this end, let X i+ ,  I Xi+, I . . . I XA-, 
be the symmetrically Type-I1 censored sample available from a sample of size 
n ,  where the smallest r and the largest r observations have been censored. 
Then the likelihood function based on the given censored sample is 

where px(x) and Fx(x) are as in Eqs. (24.1) and (24.11). If 8 is in the 
interval [X:,,, XA-,I, the likelihood function in (24.30) becomes 

from which it is clear that the "restricted MLE" of 8 is 

when n = 2m + 1, 

a n y v a l u e i n [ X ~ , X ~ + , ]  w h e n n = 2 m .  
(24.32) 

If 13 < X:+ ,, the likelihood function in (24.30) becomes 

which can be shown to be a monotonic increasing function in 8. If 8 > XA-,, 
the likelihood function in (29.30) becomes 

which can be shown to be a monotonic decreasing function in 8. 
Consequently, the "restricted MLE" of 8 in (24.32) becomes tFe global 

MLE as well. Now, substituting 6 in (24.30) and maximizing L(8,+) with 
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resDect to d, we derive the MLE of d as, when n = 2m + 1, 

and, when n = 2m, 

1 [ Z m - r  m - - . -.. . 

Balakrishnan and Cutler (1994) have discussed the bias and the efficiencies of 
these estimators as compared to the best linear unbiased estimators pre- 
sented by Govindarajulu (1966) and described below. Balakrishnan and 
Cutler (1994) have also derived such explicit MLEs for 8 and 4 based on 
Type-I1 right-censored samples. 

4.2 Best Linear Unbiased Estimation 

Let X i , ,  I X i + ,  I . . - < X,!,-, be the doubly Type-I1 censored sample 
available from a sample of size n ,  where the smallest r and the largest s 
observations have been censored. From Eqs. (24.23)-(24.251, we can compute 
the means, variances, and covariances of order statistics from the standard 
Laplace distribution (24.2), and we denote them by p i ,  u,,, and uij. Further 
let us denote 

Then the best linear unbiased estimators of 8 and 4 ,  based on the given 
doubly Type-I1 censored sample, are given by [see David (1981), Balakrish- 
nan and Cohen (1991, pp. 80-82)] 
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n- s  

= C b;Xi'. 
i = r +  l 

The variances and covariance of these estimators are given by 

For the case where the available sample is symmetrically Type-I1 censored 
(i.e., r = s), code*, in (24.41) will equal 0, since $I;-'l = 0. Further in 
this case the coefficient of Xi' in 8* in (24.37) is the same as that of X;-,+l; 
the coefficient of Xi' in 4 *  in (24.38) is the same as that of X,#-i+,  in 
magnitude but is of opposite sign. Govindarajulu (1966) presented tables of 
the coefficients a i  and b, and the values of V,, V,, and V3 for sample sizes up 
to 20 and all possible choices of r = s. Balakrishnan, Chandramouleeswaran, 
and Ambagaspitiya (1994) presented similar tables for Type-I1 right-censored 
samples of sizes up to 20 with r = 0 and s = O(l)n - 2. 

Table 24.1 [from Govindarajulu (196611 gives the coefficients of O* and 4* 
in samples of sizes n = 2(1)10 and r = s = O(l)[(n - 21/21. The final column 
gives the values of var(O*)/4' and var(4*)/4,. 

Sarhan (1954) has compared the variances of the best linear estimator of 
8, the median (defined as the arithmetic mean of X;,, and X&+ ,,,, when n 
is even), the arithmetic mean (n- ' Iy= ,X,3, and the midrange [;(xi + X;)]. 
These are all unbiased estimators of 8. Table 24.2 presents the efficiencies 
(inverse ratio of variances, expressed as a percentage) of the last three 
estimators relative to the first. Figure 24.2~-c represent these values dia- 
grammatically. The irregular appearance of Figure 2 4 . 2 ~  is associated with 
the different definition of the median in samples of odd and even sizes. 

We note that the estimator n- 'EJX,  - 81 of C$ (with 8 known) is dis- 
tributed as (2n)- '4 x ( X 2  with 2n degrees of freedom). The distribution of 
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Table 24.2 Efficiency of various estimators of 8, relative 
to best linear unbiased estimator 

- - -  -- 

Estimator Sample Size n 
(%I 2 

Arithmetic mean 100.00 88.43 82.80 79.21 
Midrange 100.00 
Median 100.00 92.27 98.90 90.23 

Note: Chu and Hotelling (1955) showed that vadmedian) is less than vadarithmetic mean) for 
n t 7. 

n-'CIX, - 6 1 ,  where is a median value, has been studied by Karst and 
Polowy (1963). 

In Table 24.3 the coefficients for the best linear unbiased estimators of the 
mean 9 and the standard deviation u = and the values of var(9*)/u2 
and vada*)/u2 [taken from Sarhan (195411 are presented for n = 3, 4, and 5 
for the case of right censoring with r = 0 and s = l(l)n - 2. As we men- 
tioned earlier, Balakrishnan, Chandramouleeswaran, and Ambagaspitiya 
(1994) present an extended form of this table for samoles sizes UD to 20. . - - -  

If 4- is  known, confidence limits for 9 may be based on the distribution of 
the median, 6. If 8 is known, then confidence limits for 4 may be obtained by 
using the fact that the distribution of n- lCr=l IXj  - 81 is that of (2n)- '4 x 
(X2 with 2n degrees of freedom). The limits of a 10M1 - a)% confidence I 
- Rectangular 
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Figure 24.2 Percentage efficiencies of the sample mean, midrange. and median in different 
populations. 



Table 24.3 Coefficients of best linear unbiased estimators of expected value (0)  

and standard deviation (a = +a) for samples censored by omission 
of s largest observed values 

Estimator Coefficients of Variance Relative 

n s of xi x; X; X x u-' Efficiencya 

3 1 0 - 0.3300 1.3000 
u - 1.3578 1.3578 

4 1 0 0.0662 0.3333 0.6004 0.1860 (98.23) 
u -0.7332 -0.2129 0.9461 0.3339 (89.42) 

2 0 0.0000 1.0000 0.3335 (62.29) 
u - 1.2563 1.2563 0.9457 (31.58) 

5 1 0 0.01 14 0.2163 0.5243 0.2479 0.1586 (99.88) 
u - 0.4331 - 0.4191 0.0037 0.8484 0.3097 (73.88) 

2 0 - 0.6649 0.1666 0.8998 0.1724 (91.85) 
u - 0.6655 - 0.6233 1.2889 0.4634 (49.37) 

3 0 - 0.5641 1.5641 1.2743 (2.24) 
u - 1.3925 1.3925 2.8481 (8.03) 

"Relative efficiency (inverse ratio of variance to that of best linear unbiased estimator using the 
complete sample) is shown, as a percentage, in parentheses. 

interval for 4 are then 

IX , -01  
and 2 

j =  I X 2 n .  I - a / 2  j = 1  X 2 n . a / 2  

If neither 8 nor 4 is known it would be possible to construct confidence 
intervals for 8 and 4, respectively, using the distributions of 

i - e n 

A and 4-I IX, - G I ,  (24.43) 
E T = ~ ~ x ~  - 8 1  j =  I 

which are pivotal quantities for the parameters 8 and 4, respectively. Bain 
and Engelhardt (1973) have determined exact distributions for n = 3 and 
n = 5 and have provided approximate distributions for larger n.  These 
authors have also given the asymptotic distributions of the pivotal quantities 
and the powers of the associated tests of hypotheses. 

For the case of complete as well as Type-I1 censored samples, Balakrish- 
nan, Chandramouleeswaran, and Arnbagaspitiya (1994) considered three 
pivotal quantities by using the best linear unbiased estimators O* and (6* in 
Eqs. (24.37) and (24.38) and their variances in Eqs. (24.39) and (24.401, 

6 " - e  e * - e  - - and 
(+*I41 - 1 

4 f i  ' 4 * , K  ' J1/2 
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and making inferences on 8 when 4 is known, on 8 when 4 is unknown, and 
on 4 when O is unknown, respectively. These authors presented some 
percentage points of all three pivotal quantities for sample sizes up to 20 for 
various choices of censoring. Edgeworth approximations for the distributions 
of the pivotal quantities in (24.44) have been discussed by Balakrishnan, 
Chandramouleeswaran, and Govindarajulu (1994) who have also examined 
their accuracy. 

Referring to the tables of BLUES given by Govindarajulu (1966), Srini- 
vasan and Wharton (1982) discussed the derivation of one-sided and two-sided 
confidence bands on the entire cumulative distribution function F,(x). 
These bands are constructed using the Kolmogorov-Smirnov-type statistics. 
For example, the two-sided band on Fx(x; 8 , 4 )  is based on the statistic 

L ,  = SUP IFX(x ;8 ,4 )  - Fx(x;@*,4*)1 ,  
- m < x < m  

while the one-sided upper confidence contour for Fx(x; O,+) is based on the 
statistic 

L,+ = sup {F,(X; O,4)  - F , (x ;  B*, +*)I. 
x 2 O  

For a E (O,l), if 1 ,  is the a t h  quantile of L, (i.e., Pr[L, I I,] = a) ,  then a 
two-sided confidence band for Fx(x; 8 , 4 )  with confidence level a is given by 
the planar region bounded above by the function y = min(Fx(x; O*, 4*) + 
I,, 1) and bounded below by y = max{Fx(x; 0*, 4*) - I , ,  0). Srinivasan and 
Wharton (1982) have presented tables of simulated percentage points of L,  
and L: for n up to 20; these are presented in Tables 24.4 and 24.5. 
Srinivasan and Wharton (1982) have also discussed some large-sample ap- 
proximations for the percentage points of L, and L:. For example, by using 
the asymptotic result that 2, = &8* and Z 2  = G(4* - 1)  are indepen- 
dent standard normal variables (in the case of the standard Laplace distribu- 
tion), they have shown that the limiting distribution of AL, is the same as 
that of the random variable suplX,,(y)l, where 

X,(y) = $ e - I y ' ( ~  + V y ) ,  - 0 3  < y < m. 

This expression readily gives approximate quantiles for AL, when n is 
large. Srinivasan and Wharton (1982) have mentioned that this asymptotic 
approximation works quite effectively for n > 30. 

By considering just the location-Laplace model (with 4 = I), Sugiura and 
Naing (1989) derived improved estimators of 8 in the form of a weighted 
linear combination of the sample median and pairs of order statistics (with 
symmetric distance to both sides from the sample median) and by minimizing 
with respect to weights and distances. The resulting estimator has been 



Table 24.4 Simulated percentage points I ,  of the statistic L, 

a 

Table 24.5 Simulated percentage points 1; of the statistic L: 

a 
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shown to have smaller asymptotic variance in the second order; see also 
Akahira (1987,1990) and Akahira and Takeuchi (1993). 

4.3 Simplified Linear Estimation 

By considering the ith quasi-range, W, = XA-,+ , - XI1, and the ith quasi- 
midrange, I/, = (X ,P- ,+ ,  + XI1) /2 ,  Raghunandanan and Srinivasan (1971) 
proposed simplified linear estimators of the parameters 6, and 8. Their 
estimator of 0,8, is defined to be that with the smallest variance. The 
estimator 6 is presented in Table 24.6 for n up to 20, and the efficiency of 
this estimator relative to the best linear unbiased estimator of 8 based on the 
complete sample of size n (Table 24.1) is also presented in this table. The 
estimator 8 presented in the table is also applicable when the available 
sample is symmetrically Type-I1 censored with r I i - 1. We may note that 
for n = 3 and 5, the estimator in Table 24.6 is simply the sample median. 

Raghunandanan and Srinivasan's estimator of 4, which is based on a 
symmetrically Type-I1 censored sample with r smallest and r largest observa- 
tions censored, is defined to be the one with minimum variance among linear 
estimators of the form 

n / 2  

4 = D  C c , y ,  
t = r +  l 

Table 24.6 Estimator 0 and its efficiency 



Table 24.7 Estimator 4 and its efficiency 

n r 4 var(&)/d2 ~ f f ( 6 )  
4 0 0.289157 (W,  + W,) 0.300624 0.993 
5 0 0.231325 (W,  + W 2 )  0.229000 1.000 
6 0 0.183486(W, + W2 + W,) 0.186515 0.996 
6 1 0.666667 W,  0.304009 0.985 
7 0 0.157274(W, + W2 + W,) 0.156500 1.800 
7 1 0.390721 (W2 + W,) 0.234731 0.975 
8 0 0.134254 ( W ,  + W2 + W, + W4) 0.135438 0.997 
8 1 0.324571 ( W ,  + W,) 0.188570 0.984 
8 2 0.967133 W, 0.303726 0.994 
9 0 O.119337(Wl + W2 + W, + W,) 0.1 19000 1 .OOO 
9 1 0.282882 ( W, + W,) 0.158812 0.983 
9 2 0.790855 W, 0.233068 0.985 

10 0 0.108696(W1 + W2 + W, + W4) 0.106392 0.998 
10 1 0.238741 ( W2 + W, + W,) 0.137784 0.980 
10 2 0.681084 W,  0.190810 0.973 
10 3 1.267536 W, 0.305295 0.997 

where each ci takes the values 0 or 1 and D is the constant that would make 
the estimator unbiased; as a result D is given by 

In Table 24.7 the estimator cf; is presented for n = 4(1)10 for various choices 
of r. The efficiency of this estimator relative to the BLUE based on the 
symmetrically Type-11 censored sample (see Table 24.1) is also presented in 
this table. More elaborate tables have been provided by Raghunandanan and 
Srinivasan (1971). Similar simplified linear estimators for the normal case 
have been discussed in Chapter 13. 

Iliescu and Vodg (1973) have presented minimum mean-square-error 
estimator of the form 

for the parameter 4. These authors have also presented the appropriate 
values of b,, for n = 2(1)100. It may be noted that this estimator is essentially 
of the same form as Raghunandanan and Srinivasan's simplified linear 
estimator (24.47) (with all c;'s taken to be 1). 
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4.4 Asymptotic Best Linear Unbiased Estimation 

Chan and Chan (1969) discussed the estimation of the parameters 8 and C$ 
based on selected order statistics. Ahsanullah and Rahim (1973) discussed 
the simplified estimation of 8 and 4 based on optimally selected order 
statistics from a middle-censored sample. 

By using the theory of the asymptotic best linear unbiased estimation 
(ABLUEs) of parameters developed by Ogawa (1950, Cheng (1978) estab- 
lished the following: 

1. The optimal spacing (A,) for the ABLUE 8* is just a single-point 
spacing (:I, which is independent of the value of the number ( k )  of 
selected order statistics, and hence it is unique with ARE(@*) = 1; 

2. The optimal spacing (A;] for the ABLUE +* is not symmetric about the 
point 4 when k is odd. However, when k is even, the optimal spacing 
may be symmetric about the point i. 

Cheng (1978) presented the optimal spacing { A , }  and the corresponding 
coefficients (b,)  for the ABLUE +*, and the asymptotic efficiency of this 
estimator relative to the Rao-Cramer lower bound. In Table 24.8, these 
values are presented for k = 1(1)10 [taken from Cheng (1978)l. 

Ali, Umbach, and Hassanein (1981) discussed the ABLUE of quantiles x5 
of the Laplace distribution in (24.11) [i.e., FX(xt) = (1 based on two opti- 
mally chosen order statistics. They have provided the explicit form of this 
estimator of x, as 

x** z = 0.255Xi0.30~0h~n~+ I + 0.745X{1 .501346n] + I 

for 0.0352 r 6 r 0.3330 

- z Z  , - -- z5 
1.59362 X [ ( ) . ~ ( ~ ~ ~ n ] +  I + ( I  + =) x;,,/*]+ 1 

for 6 < 0.0352 and 0.3330 < 6 < 0.5 

= X;n/Zl+ I for 6 = 0.5 

zf  Z~ , 
= ( l  - - ) ~ ; n / 2 ] + 1  1.59362 + ---- 1.59362 x[0.89841 n] + 1 

for 0.5 < 5 < 0.6670 and 5 > 0.9648 

= 0'745X;(1 .50134f-0.5IlI34)n]+ I + 0~255X;(0.305365+O16~4Y4)n1+ I 

for 0.6670 I 5 I 0.9648, (24.49) 



Table 24.8 The optimal spacing {A~), the coefficients {bi), and the ARE(+**) 
of the ABLUE +** 

where zg  is the quantile of the standard Laplace distribution (24.2). They 
have reported some selected asymptotic efficiency values of this estimator 
relative to Xinflt ,. For example, for 6 = 0.1, 0.2, 0.4, and 0.5, the asymptotic 
relative efficiencies are 122%, 128%, 147%, and loo%, respectively. Further 
discussion on this problem has been provided by Saleh, Ali, and Umbach 
(1983). Umbach, Ali, and Saleh (1984) have discussed hypothesis testing 
using ABLUEs based on optimal spacings. 
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4.5 Conditional Inference 

Kappenman (1975) discussed conditional confidence intervals for the param- 
eters 9 and 4; see also the note by Edwards (1974). With t? = sample median 
and 4 as in (24.28) being the MLEs of 8 and 4, and with 

being the ancillary statistics (only n - 2 of which are independent), the joint 
conditional density function, given the ancillary statistics, is 

Defining U = (6 - 8)/& and V = &/q5 to be the pivotal quantities for B and 
4, respectively, the conditional joint density function of U and V, given the - 

ancillary statistics, a, is obtained from (24.51) to be 

1 n - I -1 &;!,/I/ +a,/ ~ ~ y ( 4 u / a )  =KO e 9 (2432) 

where the normalizing constant K' is 

- - \ ' I  

Here " 
c ( t )  = Z la, - r l  

i =  1 

if n is odd 

if n is even. 

(24.55) 
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Uthoff (1973) essentially calculated the constant K' in (24.53) while develop- 
ing the most powerful location and scale invariant test of the normal 
distribution against the double exponential distribution. 

From (24.52) the marginal conditional density function of U is obtained as 

from which the conditional 100(1 - a ) %  confidence interval for the parame- 
ter 9 can be produced as (6 - u,&, 6 - u,&) by finding two constants u ,  and 
u, such that 

Further the marginal conditional density function of V can be similarly 
obtained from (24.521, from which we get 

where T(n - 1; z )  = /,; e- ' tnP2 dt, 0 < z < m, is the incomplete gamma 
function. The conditional 100(1 - a )% confidence interval for the parameter 

Table 24.9 Comparison of expected lengths of 100(1 - a)% conditional and unconditional 
confidence intervals for 8 (with + = 1) 

1 - a  0.90 0.95 0.98 

n Conditional Unconditional Conditional Unconditional Conditional Unconditio~ 

3 3.352 3.641 4.740 4.975 7.495 7.649 
5 2.113 2.273 2.575 2.912 3.542 3.787 
9 1.375 1.498 1.698 1.949 2.119 2.316 

15 0.997 1.061 1.214 1.326 1.484 1.525 
33 0.631 0.682 0.761 0.830 0.917 0.942 
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4 can be produced as (d/u,, d /u , )  by finding the constants u ,  and c, such 
that Pr[v, < V < o,la] in (24.57) equals 1 - a. 

Grice, Bain, and Engelhardt (1978) compared the conditional confidence 
intervals for 8 resulting from (24.56) with the unconditional confidence 
intervals for 8 ,  based on MLEs, derived from (24.53). Through Monte Carlo 
simulations they observed that the conditional method gives slightly better 
results (narrower confidence intervals), although a close agreement develops 
as n gets larger. For example, the expected lengths of the conditional and 
unconditional confidence intervals are presented in Table 24.9 for some 
selected sample sizes and choices of 1 - a [taken from Grice, Bain, and 
Engelhardt (197811. 

4.6 Other Developments 

Asrabadi (1985) discussed the minimum variance unbiased estimator for 4 
and exact confidence intervals based on it. Harter, Moore, and Curry (1979) 
proposed some adaptive robust estimates of location and scale parameters of 
symmetric populations and examined their performance in the case of the 
Laplace distribution. Joshi (1984) discussed an expansion of the Bayes risk in 
the case of the double exponential family. Ramsey (1971) derived the 
small-sample power functions for some nonparametric tests of location when 
the sample is assumed to have come from the Laplace distribution; also see 
Schlittgen (1979). 

Awad and Fayoumi (1985) discussed the estimation of Pr[Y < XI when X 
and Y are distributed as Laplace. Patel (1986) considered the double expo- 
nential case while discussing in general the estimation of finite mixtures of 
distributions. Yen and Moore (1988) proposed a modified goodness-of-fit test 
for testing the validity of the Laplace distribution for a given sample. 
Damsleth and El-Shaarawi (1989) examined ARMA models with double 
exponentially distributed noise, while Shamma, Amin, and Shamma (1991) 
discussed a double exponentially weighted moving average control procedure 
with variable sampling intervals. Ulrich and Chen (1987) considered a bivari- 
ate form of the Laplace distribution and its generalizations. Efron (1986) 
discussed in detail the double exponential families and their use in general- 
ized linear regression. Hwang and Chen (1986) derived improved confidence 
sets for the coefficients of a linear model with spherically symmetric errors. 
Some other interesting issues relating to the Laplace distribution can be seen 
in the works of Brown and Resnick (1977), Hall and Joiner (19831, Loh 
(1984), Parker (1988), and Davis and Resnick (1988). 

5 TOLERANCE LIMITS AND PREDICTION INTERVALS 

Based on a complete sample of size n and making use of the MLEs of 8 and 
4 described in Section 24.4.1, Bain and Engelhardt (1973) discussed the 



determination of tolerance limits (approximately). A function L ( X ; , - .  ., Xi) 
is said to be a lower one-sided (P, y )  tolerance limit if 

I 

Taking L(X;,. .  ., X,!,) = 6 - b(, and with k, = log(2(1 - B)) and tP = 8 + 
ka4,  we have Fx(Q = 1 - /3 and 

1 

= Pr[U,(;) < k,] 

where P, = n(6 - 8)/+ and P, = n$/4 are pivotal quantities for 8 and 4 ,  
and U,(c)  = P, - cP2. Thus L(X;,.  ., XA) = 6 - b4 is the desired (P, y,) 
lower tolerance limit, and any desired probability can be obtained by the 
proper choice of b. For specified P and y, Bain and Engelhardt (1973) have 
used the approximation 

to get an approximate expression for the tolerance factor b as 

where z, denotes the standard normal yth quantile. 
Due to the symmetry of the Laplace distribution, U(X;,- . -, X,!,) = 6 + b( 

is an upper ( P ,  y)  tolerance limit. Hence an approximate upper ( P ,  y)  
tolerance limit can be determined by using the approximate expression of the 
tolerance factor b in Eq. (24.61). 

Kappenman (1977) followed the conditional method elaborated in Section 
2!.4.5 to derive conditional tolerance intervals. In this approach the interval 
(8 - b(,m) becomes a lower y probability (conditional) tolerance interval 
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for proportion P ( 2  0 3 ,  where 

c( a,, 1 b = -a ,  - - + - 
n - 2 h  n - 2 h  

where k p  = log(2(1 - PI ) ,  a,'s are the ancillary statistics in (24.50), c ( t )  is 
defined in (24.54), K' is the normalizing constant defined in (24.531, h  is the 
largest positive integer ( 2  2) such that 

and p is the difference between 1 - y and the value of the left-hand side of 
(24.63) so determined. One needs to find h  from (24.63) by successively 
setting h = 2,3, . . . or by trial and error. 

Due to the symmetry of the Laplace distribution, an upper y probability 
(conditional) tolerance interval for proportion P is obtained by simply 
replacing b by -b  in (24.621, replacing 1 - y by y in (24.631, and taking p 
as the difference between y and the value of the left-hand side of (24.63) so 
determined. Then the required upper tolerance interval will be ( - m, 4 - b4) .  

Shyu and Owen (1986a, b, 1987) provide further discussions on one-sided 
as well as two-sided tolerance intervals, and they also present some valuable 
tables of necessary tolerance factors. By noting that all the above mentioned 
works are based on complete samples, Balakrishnan and Chan- 
dramouleeswaran (1994a) used the BLUEs of 8 and C$ (elaborated in Section 
4.2) to develop lower and upper tolerance limits based on Type-I1 censored 
samples. They considered the lower (P, y )  tolerance limit to be of the form 
L(X;,. ., XA) = 8* - b 4 * ,  and presented extensive tables of the tolerance 
factor b for n = 5(1)10,12,15,20, level of right-censoring s = 0(1Xn/2], 
P = 0.500(0.025)0.975, and y = 0.75, 0.85, 0.90, 0.95, 0.98, 0.99 and 0.995. 
Once again, due to the symmetry of the Laplace distribution, these tables 
also enable the determination of the upper ( P ,  y )  tolerance limit, 
U(X;,.. ., XA) = 8* + b+*. 

Balakrishnan and Chandramouleeswaran (1994a) have also used the 
BLUEs, 8* and C$*, to propose a natural estimator for the reliability of X at 



time t as 

They have examined the bias and variance of this estimator for complete as 
well as Type-I1 right-censored samples at various choices of t.  They observed 
that the estimator in (24.64) is almost unbiased at all the levels of reliability 
examined even for sample sizes as small as 5. These authors have also 
explained how the tables of tolerance factors b could be used successfully to 
determine the lower 100y% confidence limit for the reliability R x ( t ) .  

Balakrishnan and Chandramouleeswaran (1994b) used the BLUES of 8 
and ,#,, based on Type-I1 right-censored samples, to develop prediction 
intervals. Specifically, by taking Xi I XS I . 0 .  I XL-, to be the available 
Type-I1 censored sample where the largest s observations have been cen- 
sored, they have discussed the prediction of XL-,+ , and XL through the 
pivotal quantities 

XL-s+l -Xi- r  XA - X:-$ 
QI = and Q, = 

,#,* ' 
(24.65) 

4* 

respectively. Balakrishnan and Chandramouleeswaran (1994b) have pre- 
sented necessary tables of percentage points of Q, and Q, (determined 
through Monte Carlo simulations) for various choices of n and s. They have 
in addition discussed the prediction of observations from a future sample of 
size m (particularly for Y,' and YL) based on the pivotal quantities 

y; - o* Y; - e* 
Q 3 =  7 and Q4 = ,#,* ' 

and presented some necessary tables of percentage points of Q, and Q4. 

Ling (1977) and Ling and Lim (1978) have discussed a Bayesian approach to 
these prediction problems. 

6 RELATED DISTRIBUTIONS 

If X has probability density function (24.11, then IX - 81 is distributed 
exponentially, in fact, as $4 X ( X 2  with two degrees of freedom). In particu- 
lar, if 0 = 0, then 1x1 is so distributed. For this reason, if XI ,  X,; . -, X,, are 
independent random variables, each having probability density function (24.1) 
with 8 = 0, then the distribution of any statistic depending only on the 
absolute values (XI  I ,  IX,I,. . ., IX,, I can be derived from an initial joint 
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distribution of independent multiples of X 2  variables. For example, 
IX, I / IX,I is distributed as F with 2,2 degrees of freedom (see Chapter 27). 

An interesting connection between the normal and Laplace distributions 
has been established by Nyquist, Rice, and Riordan (1954). They showed that 
if U , ,  U,,  U,, and U, are independent unit normal variables, then the 
probability density function of 

is of form (24.1) with 0 = O,4 = 2. It may be noted here that U,U4 - U2U3 
and U,U4 + U,U3 have the same distribution. [The case when the expected 
values of the U's are not equal to zero leads to a more complicated 
distribution, and it was considered by Nicholson (1958).] Missiakoulis and 
Darton (1985) and Mantel (1987) have made some additional remarks on this 

Mantel and Pasternack (1966) gave a heuristic demonstration that Y = 

UlU4 + U,U, follows the Laplace distribution; see also Mantel (1969). A 
simple proof of this result through the use of characteristic functions has 

E [ ~ " Y ]  = E [ ~ ~ ~ ( U I U J + U Z ~ ~ ) ]  = { E [ ~ " U I U J  

since UlU4 and U2U, are independently and identically distributed. Now 
E[e'fU~U4] can be evaluated in two stages. The conditional expectation 

since U ,  is N(0,l) (Chapter 13). Next, the unconditional expectation 

E [ ~ " U I U ~ ]  = E[e-u: '2 /2 ]  = 

since U t  is X :  (Chapter 18). Using (24.69) in (24.67), we get 

which agrees with the characteristic function in (24.3), thus proving that Y is 
distributed as Laplace. 
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The two reciprocal Fourier integrals 

and 

represent a formal connection between the Cauchy and Laplace distributions 
[see also (24.21, (24.3) and Chapter 161. 

Transformed forms of the Laplace distribution have been discussed by 
Johnson (1954). He considered (by analogy with the lognormal, S, and S, 
systems; see Chapters 14 and 12) distributions of a random variable Y when 
(with 6 > 0) 

f Y  + 6 l o g y  (SL system), 

and X has the standard Laplace distribution (24.2). 
The ( P I ,  P2)  points of the SL system lie on the line with parametric 

equations 

The (P , ,  P2 )  points of S; lie "below" this line (i.e., larger values of P2 for 
given P,); those of S; lie above it. All possible values of ( P , ,  P2)  are covered 
by these three systems combined. For both SL and S; the r th moment is 
infinite if r 2 6. 

The SL system of distributions is referred as the log-Laplace distributions 
(analogous to the lognormal and log-logistic distributions). Kotz, Johnson, 
and Read (1985) provide a brief review of this system of distributions, and 
Uppuluri (1981) discuss some of its properties. 
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Asymmetrical Laplace distributions, with probability density functions of 1 
form 

where 4, # 4, and +,, 4, > 0, are sometimes used [see McGill (196211. 
Lingappaiah (1988), terming this as two-piece double exponential distribution, 
has discussed some properties. 

Another form of asymmetrical Laplace distribution has probability density 
function 

with 0 < p < 1. Holla and Bhattacharya (1968) have used this distribution as 
the compounding distribution of the expected value of a normal distribution. 
The characteristic function of the resulting compound normal distribution is 

( 1  + t 2 4 2 ) - 1 ( l  + ( 2 p  - 1)it+)exp[ir6 - i t 2 0 2 ]  (24.74) 

where a2  is the variance of the compounded normal distribution. The 
probability density function (with argument y )  is 

where 

and M(.) is the confluent hypergeometric function (Chapter 1). 



For the particular case of p = f we have the distribution 
1 

Normal (6 ,  a )  Laplace (B,+). I i 

This distribution is symmetrical, with mean 8. The variance is ( a 2  + 242)  
and the moment ratio a, (= p2)  is 

Holla and Bhattacharya obtained an expression for the distribution of the 
sum of n independent random variables each having this distribution. They 
also obtained the following formula for the cumulative distribution function 
(argument y 1: 

Among compound Laplace distributions, we note, first, 

Laplace ( B , 4 )  A Normal (6 ,  a) .  
0 

The probability density function is 

where @(x) = ( 2 ~ ) - ' / ~ / " _  exp( - f t 2 )  dt. Second, 

Laplace ( B , 4 )  A Gamma ( a, P )  
& - I  

(The gamma distribution is as given in Chapter 17.) 
The probability density function is 
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The relation between distributions of form (24.78) and Laplace distributions 
is rather similar to that between Pearson Type VII and normal distributions 
(Chapter 28). We note, for example, that as P tends to zero and a  to infinity, 
with LIP = 1, pX(x) + iexp(- Ix - el). 

Distribution (24.78) is symmetrical about 0. Moments of order a  or 
greater do not exist. For r even and less than a 

In particular, the variance is 

and also 

The mean deviation is 

, P 
V I  = -. 

a - 1  
(24 32 )  

Thus 

Mean deviation 

Standard deviation a - 1  

The cumulative distribution function is of very simple form: 

Subbotin (1923), on the basis of certain broad requirements for "error 
distributions," obtained the class 



[See also FrCchet (1924), where Subbotin's arguments are criticized.] This 
class of distributions includes Laplace (6 = 2), normal (6 = I), and, as a 
limiting (6 -, 0) case, rectangular distributions. It is symmetrical about 8, 
and has finite moments of all positive orders. The r th  central moment is 

(0,  r odd, 
4 r 2 r s / 2 r ( ( r  + 1)6/2) 

, r even. 

The variance is 

and the mean deviation is 

Thus 

Mean deviation - - (24 37)  
Standard deviation [ r ( 6 / 2 ) r ( 3  8/2)] ' I2  ' 

Also 

Some values of p2 and the ratio (24.87) are given in Table 24.10. The 
cumulative distribution function corresponding to (24.83) can be expressed in 
terms of incomplete gamma functions. Maximum likelihood estimation of the 
parameters was discussed by Diananda (1949); see also Turner (1960). 

The classes of distributions (24.78) and (24.83) were used by Box and Tiao 
(1962) as prior distributions for certain Bayesian statistical analyses. Distribu- 
tion (24.83) provides a convenient set of alternatives to normality, if symme- 
try can be assumed, and hence has been used often in robustness studies. 
Tiao and Lund (19701, for example, discussed the use of linear minimum 
variance unbiased estimators in inference robustness studies of the location 
parameter of the distribution (24.83). Order statistics from this distribution 
and their properties have also been discussed by these authors. With 0 = 0 
and 6 assumed to known, Jakuszenkow (1979) discussed the estimation of 
variance of the distribution (24.83) which is a multiple of 4'. Sharma (1984) 
presented an improved estimator in this case. Zeckhauser and Thompson 
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Table 24.10 Ratio of mean deviation to standard deviation 1 
and p3: for Subbotin distributions 

Mean Deviation 
6 

Standard Deviation P r 

0 (uniform) 0.866 1.800 
0.25 0.858 1.923 
0.5 0.841 2.188 
0.75 0.815 2.548 
1 (normal) 0.798 3.000 
1.5 0.757 4.222 
2 (Laplace) 0.707 6.000 
3 0.623 12.257 
4 0.548 25.200 
5 0.481 51.951 I 

(1970) discussed linear regression with errors having the Subbotin density in 
(24.83). Specifically these authors investigated the model 

where the manifest observations are the ( x , ,  y , )  pairs, and the error random 
variables are i.i.d. with density (24.83) with 8 = 0. The parameters of the 
model are a, b,  4 ,  and 8. The likelihood function based on the entire sample 
is 

! L ( a ,  b , 4 , 6 )  = ce-S/42'6 ,  

where 

It is then clear that 4 has no effect on the maximum likelihood estimation of 
parameters of the regression line and that the maximum likelihood estimator 

Zeckhauser and Thompson (1970) then examined the maximum likelihood 
estimation of the parameters a ,  b,  and S .  Krysicki (1966) gave formulas for 

, estimating the parameters in a mixture of two Laplace distributions, each 
having 8 = 0. Srddka (1966) discussed the distributions obtained if 4- '  is 



supposed to have a generalized gamma distribution (as defined in Chapter 
17). Kanji (1985) and Jones and McLachlan (1990) have discussed the 
Laplace-normal mixture distribution with density function 

and applied the distribution to fit wind shear data. Maximum likelihood 
estimation of parameters of the distribution (24.89) has been discussed 
recently by Scallan (1992). 

The reflected gamma distribution with density function 

introduced by Borghi (1969, includes the Laplace distribution as a special 
case when the shape parameter a = 1. Kantam and Narasimham (1991), 
while studying the best linear unbiased estimator and some other linear 
estimators of 8, observed that the median (unlike in the Laplace case) 
becomes an inefficient estimator of 8 when a becomes large. Harvey (1967) 
introduced a more general form of the reflected gamma distribution in 
(24.90) which naturally becomes a four-parameter generalization of the 
Laplace distribution (24.1). Unlike in the case of (24.901, Harvey's general- 
ized density will not, in general, be zero at x = 8. 

The double Weibull distribution with density function 

introduced by Balakrishnan and Kocherlakota (1985), is a symmetric family 
of distributions which includes the Laplace distribution as a special case 
when the shape parameter c = 1. Balakrishnan and Kocherlakota (1985) and 
Dattatreya Rao and Narasimham (1989) derived the BLUES of 8 and 4, 
assuming c to be known, based on complete and Type-I1 censored samples, 
respectively. Assuming 8 to be known, Vasudeva Rao, Dattatreya Rao, and 
Narasimham (1991) discussed optimal linear estimators of 13 based on the 
values of IX,! - 81. [Observe that the MLE of C#J in the case of Laplace 
distribution in (24.29) is a linear form in )XI! - 81.1 An interesting relation- 
ship between the logistic and the Laplace distributions was brought out by 
George and Rousseau (1987) while discussing the distribution of the midrange 
in a sample from a logistic distribution (see Chapter 23). 
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Along the lines of skew-normal distributions (see Chapters 12 and 13) 
introduced by Azzalini (1989 ,  Balakrishnan and Arnbagaspitiya (1994) con- 
sidered the skew-Laplace distribution with density function 

2 p x ( x ) F x ( A x ) 9  

where p x ( x )  is the two-parameter Laplace density in (24.1) and F x ( . )  is the 
corresponding distribution function (24.11). Balakrishnan and Ambagaspitiya 
(1994) discussed various properties of this distribution, which becomes the 
Laplace distribution when A = 0 and the two-parameter exponential distri- 
bution with A -, m. These authors also studied order statistics from this 
distribution and derived BLUES of the parameters 0 and 4 ,  assuming that 
the shape parameter A is known. 

The distribution with characteristic function 

cbx( t )  = ( 1  + l t l a ) - ' ,  - m < t < ~ , O < a 1 2  (24.93) 

is called an a-Laplace distribution since a = 2 corresponds to the Laplace 
characteristic function (24.3). This has been shown to be a unimodal distribu- 
tion by Linnik and Laha; see, for example, Lukacs (1970). Pillai (1985) has 
introduced a larger class of distributions, termed semi-a-Laplace distributions, 
of which a-Laplace distribution is a special case. Let 4 ( t )  be a characteristic 
function, which is never zero, defined by 

4 ( t )  = ( 1  + f ( t ) ) - ' .  

Then, from the properties of 4 ( t ) ,  it is clear that f(O) = 0 and f ( t )  is 
continuous. A distribution function f is called semi-a-Laplace if f ( t )  in 
(24.94) has the property 

f ( t )  = a f ( b t )  for0  < b < 1, 

where a is the unique solution of the equation 

ab" = 1 ,  0 < a  I 2 .  

The numbers b and a are termed order and exponent of the semi-a-Laplace 
distribution, respectively. Pillai (1985) has also proved the following charac- 
terization of this distribution: 

" F ( x )  is semi-a-Laplace distribution of some variable X with order b iff 
F ( x )  satisfies the equation 

F ( x )  = p F , ( x )  + ( 1  - p ) F , ( x )  

for some p E ( 0 , l )  where F , ( x )  is the distribution of bX and F,(x)  = F * F,." 



More properties of this distribution have been discussed by Pillai (1985) 
and Divanji (1988). 

The distribution corresponding to the characteristic function (24.93) has 
also been referred to as Linnik's distribution [see Devroye (1990)l. By making 
use of the fact that for a s 1, +,( t )  in (24.93) is a P6lya characteristic 
function (convex on the positive halfline), Devroye (1986) presented a simple 
algorithm for generating pseudorandom observations from this distribution. 
Subsequently Devroye (1990) presented an algorithm for all values of a 
which is based on the following observation: Suppose that Sa is a symmetric 
stable random variable with characteristic function e-l'lo and that Vp is an 
independent random variable with density 

Then X = SaV;/" has characteristic function 

For the case p = 1 the characteristic function (24.98) is that of the Linnik 
distribution in (24.93). This result, in addition to showing that the character- 
istic function in (24.93) is the same as that of SaV,'/", where V ,  is exponen- 
tially distributed, provides a short proof of the validity of the Linnik's 
characteristic function (24.93). Lin (1994) has recently investigated some 
basic properties such as self-decomposability and also established two charac- 
terizations. 

Kotz and Ostrovskii (1994) have recently given a mixture representation of 
the Linnik distribution. Specifically, with Xa and Xp denoting two random 
variables possessing the Linnik distribution (24.93) with parameters a and P,  
respectively (0 < a < /3 I 2) and Yap a nonnegative random variable (inde- 
pendent of X p )  with density function 

Kotz and Ostrovskii (1994) have shown that 
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From this representation the infinite divisibility of mixtures of Linnik distri- 
butions with respect to the parameter a and a scale parameter follows easily. 

Kotz, Ostrovskii, and Hayfavi (1994) have presented convergent asymp- 
totic series expansions for the Linnik density function. The analytic structure 
of the density depends substantially on the arithmetic nature of the parame- 
ter a. For example, when a = 1, the density is given by 

1 1 1  
p , ( x )  = -(cos x)log- + -sin(xl 

n- 1x1 2 

7 APPLICATIONS 

As mentioned already in Section 2, the Laplace distribution (being heavier 
tailed than the normal) has been used quite commonly as an alternative to 
the normal distribution in robustness studies; for example, see Andrews et al. 
(1972) and Hoaglin, Mosteller, and Tukey (1985). 

In addition the Laplace distribution has found some interesting applica- 
tions on its own. Manly (1976) gave some examples of fitness functions based 
on the double exponential distribution. Easterling (1978) considered a model 
for steam generator inspection as exponential responses with double expo- 
nential measurement error. Hsu (1979), while discussing the use of long-tailed 
distributions for position errors in navigation, suggested the Laplace distribu- 
tion. Okubo and Narita (1980) used the double exponential for the distribu- 
tion of extreme winds expected in Japan. As mentioned in the last section, 
the Laplace-normal mixture distribution in (24.89) has been used to fit some 
wind shear data by Kanji (1985) and Jones and McLachlan (1990). Bagchi, 
Hayya, and Ord (1983) used the Laplace distribution while modeling demand 
during lead time for slow-moving items. Dadi and Marks (1987) discussed 
detector relative efficiencies in the presence of Laplace noise. A few more 
applications of the distribution were indicated in Sections 4 and 6. 
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C H A P T E R  2 5  

Beta Distributions 

1 DEFINITION 

The family of beta distributions is composed of all distributions with proba- 
bility density functions of form: 

with p > 0, q > 0. It is denoted beta ( p ,  q). This will be recognized as a 
Pearson Type I or I1 distribution (see Chapter 12, Section 4.1). If q = 1, the 
distribution is sometimes called a power-function distribution. 

If we make the transformation 

Y - a  x=- 
b - a '  

we obtain the probability density function 

This is the standard form of the beta distribution with parameters p, 4. It is 
the form that will be used in most of this chapter. The standard power-func- 
tion density is 

Harter (1978) introduced the family of symmetric ( p  = q)  standardized beta 

2 10 
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variables with the density function 

, . r V ~ P )  1 ,- .r. n - l  

Of course E[ XI = 0 and var( X )  = 1 .  For p = 1.5(0.5)4.0 he provides explicit 
formulas for the cdfs. The simplest, for p = 2, is 

The probability density function of a symmetric beta distribution with 
parameter p, mean w ,  and standard deviation u is 

The probability integral of the distribution (25.2) up to x is the incomplete 
beta function ratio, and it is denoted by I J p ,  q )  so that 

The word "ratio," which distinguishes (25.6) from the incomplete beta func- 1 

B x ( p , q )  = / x t p - ' ( l  - qq-' d t ,  (25.7a) 
0 

is often omitted. A description of the properties of I J p ,  q )  is contained in 
Chapter 1 (Section A51 and in Chapter 3 (Section 6) .  

Dutka (1981) provides a detailed account of the history of B J p ,  q )  and 
I J p ,  q ) ,  tracing it back to 1676, in a letter from Isaac Newton to Henry 
Oldenberg. The formula given is the special case of 

where ,F,(.) denotes the Gaussian hypergeometric function defined in 
- .  
Eq.  (1.104) of Chapter 1. 
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2 GENESIS AND RANDOM NUMBER GENERATION 

in "normal theory" the beta distribution arises naturally as the distribution 
of v2 = x:/(x: + x;), where x:, X; are independent random variables, 
and X; is distributed as X 2  with v, degrees of freedom ( j  = 1,2) (see 
Chapter 18). The distribution of v2 is then a standard beta distribution, as 

I in (25.21, with p = t v , ,  q = ?v2. Generally Y = W,/(Wl + W2) has a stan- 
dard beta distribution with parameters pl  and p2 if q. has the gamma 
density (see Chapter 17) with parameters ( p,, p) ( j  = 1,2) (for any p > 0). 

Notice that v2 and (X: + x:) are mutually independent. An extension of 
this result is that if X:, X i , .  - . , X: are mutually independent with X: 
distributed as X 2  with v, degrees of freedom ( j  = 1,2,.  . . , k )  (see Chapter 
181, then 

are mutually independent random variables, each with a beta distribution, 
the values of p ,  q for c2 being 4 C!,,vi, $v,+ , ,  respectively. Under these 
conditions the product of any consecutive set of c2 ' s  also has a beta 
distribution [see Jambunathan (1954) and Section 81. This property also holds 
when the v's are any positive numbers (not necessarily integers). Kotlarski 
(1962) has investigated general conditions under which products of indepen- 
dent variables have a beta distribution. 

The special standard beta distribution with p = q = 4 [known as the 
arc-sine distribution because Pr[X 5 x ]  = (2/rr)sin-'& for 0 I x 5 11 arises 
in an interesting way in the theory of "random walks." Suppose that a 
particle moves along the real line by steps of unit length, starting from zero, 
it being equally likely that a step will be to the left (decreasing) or right 
(increasing). Let the random variable T2, denote the number of times in the 
first 2n steps for which the point is in the interval 0 to 2n inclusive at the 
conclusion of a step. Then 

The ratio T2,/(2n) can be regarded as the fraction of time spent on the 



GENESIS AND RANDOM NUMBER GENERATION 

positive part of the real line. As n tends to infinity, the limiting distribution 
of T2,/(2n) is the arc-sine distribution: 

Standard beta distributions with p + q = 1, but p # 4, are sometimes called 
generalized arc-sine distributions. For more details on the arc-sine distribu- 
tion, see Section 7. 

A beta distribution can also be obtained as the limiting distribution of 
eigenvalues in a sequence of random matrices. Suppose that A, to be a 
symmetric n x n matrix whose elements a,, (i s j )  are independent random 
variables, all a,,'s with i f j having a common distribution, and all a,,'s 
another common distribution, both distributions being symmetrical about 
zero with variance u 2  and with all absolute moments finite. Under these 
conditions Wigner (1958) has shown that the proportion of eigenvalues of the 
"normalized" matrix (~u&)- 'A, ,  which are less than x, tends to the limit 

2 r - I  / ; , m d t  

as n + oo. This is of form (25.1) with a = - 1, b = 1, p = q = 3/2. Arnold 
(1967) has shown that this result holds under much weaker conditions on the 
distributions of the a,,'s. 

A class of distributions that includes the beta (i, 4) and beta (2,2) 
distributions, can be generated by the following procedure: Starting with the 
interval (0, I), observe the value of a random variable XI distributed uni- 
formly over (0, l )  [i.e., as beta (1,111. Then choose one of the two subintervals 
(0, X,), (X,,  I), with probabilities p, 1 - p of choosing the longer or shorter 
one, respectively. Denoting the chosen interval by ( L , ,  U,), then observe the 
value of a random variable X,, uniformly distributed over (L , ,  U,), and 
choose as (L,, U2), the longer or shorter of the intervals (L , ,  X,), (X,, U,) 
with probabilities p ,  1 - p,  respectively. Continue in this way, choosing 
( Ln+  ,, Un + ,) as the longer or shorter of (L,, X,,+ , ), ( X, + ,, U,) with probabil- 
ities p, 1 - p,  respectively. It is easy to see that as n + a, the interval length 
(U, - L,) tends to zero with probability one, and there is a limiting value Y,, 
say, to which L, and U, tend. 

The distribution of Y,,, is beta (4,;) [Chen, Lin, and Zame (1981)], and 
the distribution of Y, is beta (2,2) [Chen, Goodman, and Zame (198411. It is 
natural to conjecture that Y, has an approximate (but not exact) beta 
distribution for values of p other than 4 or 1. Johnson and Kotz (1994) show 
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and that 

If Yp had a beta ( a ,  a) distribution, the value of a giving the correct value 
for var(Y,) would be 2(7 - 6p)-I. This would result in a "nominal" value 

Table 25.1 compares values of p2 from (25.10) (actual) and (25.11) (nominal), 
for selected values of p. 

The agreement between actual and nominal values supports the conjec- 
ture that beta [2(7 - 6p)-', 2(7 - 6p)-'I would be a good approximation to 
the distribution of Y,. O'Connor, Hook, and O'Connor (1985) came to the 
same conclusion on the basis of simulations. 

Another procedure leading to limiting beta distributions has been de- 
scribed by Kennedy (1988). Values of k independent variables Z,,,. . a ,  Z,, 
each uniformly distributed over (L,, U,) are observed. The interval 
(L ,+ I ,Un+I )  is then chosen as(L,,max(Z,,,~~~,Z,,)), 

with probabilities p ,  q, r ,  respectively ( p  + q -t r = 1). Kennedy (1988) 
showed that if the initial interval is (0, I), the limit to which both L, and U, 
converge (with probability 1) is distributed as beta ( k ( p  + r), k(q + r)) over 
(0, 1). [Of course, if the initial interval is (A,  B), the limit distribution is beta 
( k ( p  + r) ,  k(q + r)) over (A,  B).] There is an alternative proof, based on 
moment calculations, in Johnson and Kotz (1993). 

Yet another way in which a beta distribution arises is as the distribution of 
an ordered variable from a rectangular distribution (Chapter 26). If 
Y,, Y,; . a ,  Y ,  are independent random variables each having the standard 

Table 25.1 Actual and Nominal Values of fl, 

P 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Actual P,  1.287 1.315 1.348 1.388 1.438 1.500 1.580 1.687 1.831 2.019 2.143 
Nominal p, 1.320 1.345 1.374 1.408 1.449 1.500 1.563 1.645 1.754 1.909 2.143 
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rectangular distribution so that 

p y , ( y ) = l ,  O l ~ l l ,  

and the corresponding order statistics are Y,' r Y; r . . I Ynt, the sth-order 
statistic Y: has the beta distribution 

pv:(y) = [ B ( s , n  - s + l ) ] ' y s l ( l  - y)n-S ,  0 4 y 5 1. (25.13) 

Fox (1963) suggested that this result may be used to generate beta-distributed 
random variables from standard rectangularly distributed variables. By this 
method only integer values can be obtained for n and n - s. A method 
applicable for fractional values of n and n - s was constructed by Johnk 
(1964). He showed that if X and Y are independent standard rectangular 
variables, then the conditional distribution of XI/", given that XI/" + Y'/' 
I 1 ,  is a standard beta distribution with parameters n, r + 1, and the 
conditional distribution of Y'/' is beta with parameters n + 1 and r.  

This process involves the calculation of XI/" and Y ' I r ,  which may be 
awkward. If n and/or r are large, then a large number of pairs of values 
(X, Y) is likely to be needed to ensure XI/" + Y I / '  s 1, as pointed out by 
Pekh and Marchenko (1992). [In fact ~4 XI/" + Y ' I r  r 11 < 1 - Pr[X '1" > 
; ]P~[Y'/ '  > f ]  < 2-" + 2-'. Hence, if min(n, r )  2 11, Pr[X1/" + Y'/'  I 11 
is less than 0.001.1 Binkiivi (1964) has suggested a method whereby these 
calculations may be avoided if n and r are both rational. This consists of 
selecting integers a , ,  a,; . ., a,, b, ,  b,,. . ., b, such that 

M N 

n = C a;', r = C b;'. 
I =  I ] = I  

Then using the fact that if XI, X,, . ., X,, Y,, . . , Y, are independ- 
ent standard rectangular variables, max(Xf1, X,"2;.., X p )  and 
max(~p1, Y , ~ z , .  . ., Y$") are distributed as XI'", Y I/', respectively. 

If n (or r )  is not a rational fraction, it may be approximated as closely as 
desired by such a fraction. Bgnkijvi has investigated the effects of such 
approximation on the desired beta variates. The GR method is based on the 
property that X = Y/(Y + Z )  has a beta ( p ,  q )  distribution if Y and Z are 
independent gamma variables with shape parameters p and q, respectively 
(see the beginning of this section). 

Generation of beta random variables based on acceptance/rejection algo- 
rithms was studied by Ahrens and Dieter (1974) and Atkinson and Pearce 
(19761, among others. The latter authors recommend the Forsythe (1972) 
method, which was originally applied to generate random normal deviates. 
Chen (1978) proposed a modified algorithm BA: ( p ,  q > 0). 
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Initialization: Set a = p + q. If min(p, q)  I 1, set p = max(p-I, q-  '1; 
otherwise set /3 = ,/{(a - 2)/(2pq - a)). Set Y = P + P-I. 

1. Generate uniform (0 , l )  random numbers U,, U,, and set V = 

j3 log(U,/(l - U,)), W = peV. 
2. If a log{a/(q + W)) + yV - 1.3862944 < IO~(U?U,), go to 1. 
3. Deliver X = W/(q + W). 

This algorithm is reasonably fast for values of p and q down to about 0.5. 
More complicated versions (BBXBC), also described by Chen (1978), cover 
all a, b > 0 and offer quicker variate generation speed. Here is 

Algorithm BB (mid p,, qo) > 1) 
Initialization: Set p = min(p,, q,), q = max(p,, qo), a = P + q, p = - 

2)/(2pq - all; y = p + p-I. 

1. Generate uniform (0,l)  random numbers U,, U,, and set V = 

p log{U,/(l - U,)), W = peV, Z = u ~ U , ,  R = y V  - 1.3862944, S = p  
+ R- W .  

2. If S + 2.609438 2 5Z, go to 5. 
3. Set T = log Z. If S 2 T, go to 5. 
4. If R + a log(a/(q + W)) < T, go to 1. 
5. If p = p,, deliver X = W/(q + W); otherwise deliver X = q/(q + W). 

Schmeiser and Shalaby (1980) developed three exact methods applicable 
for min(p, q)  > 1 (corresponding to Chen's BB algorithm). One of the 
methods is a minor modification of the Ahrens and Dieter (1974) algorithm: 
BNM. All the methods use the property that points of inflexion of the beta 
density are at 

if these values lie between zero and one, and are real. 
A detailed comparison of the various methods, carried out by Schmeiser 

and Shalaby (1980), shows that BB is the fastest for heavily skewed distribu- 
tions but yields to BNM for heavy-tailed symmetric distributions. No algo- 
rithm does better than BB for the following values of the parameters: 

p = 1.01 q = 1.01,1.50,2.00,5.00,10.00,100.00 

p = 1.50 q = 1.50,2.00,5.00,10.00,100.00 

p = 2.00 q = 2.00 

p = 5.00 q = 5.00 

p = 10.00 q = 10.00 

p = 100.00 q = 100.00 
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Devroye (1986) contains summaries of methods of generating random vari- 
ables with beta distributions. 

3 PROPERTIES 

If X has the standard beta distribution (25.2), its r th moment about zero is 

B ( p + r , q )  T ( p + r ) T ( p + q )  
P', = 

- - 
B( P, q )  T ( P ) ~ ( P  + 4 + r )  

- - (if r is an integer), 
( P + q)lrl 

where y[ r l  = y( y + 1) . . - ( y + r - 1) is the ascending factorial. In particular 

P 
E [ X ]  = - 

p + q '  

var(X) = p q ( p  + q ) - 2 ( ~  + q + I ) - ' ,  

f f3(X) = d r n ~  
= 2(q -p) , /p- '  + q - '  + (pq)- I  ( p  + q + 2)- ' ,  

f fq(X) = P 2 ( X )  = 3 ( p  + q  + 1 ) ( 2 ( ~ + q ) ~ + p q ( p  + q -  6)) 

x l p q ( ~ + q + 2 ) ( ~ + q + 3 ) 1 - ~ ~  

E[X-I]  = ( p  + q - l ) ( p  - 1)-I,  

"[(l - x ) - ' ]  = ( p  + q - l ) ( q  - 1)-I .  

Pham-Gia (1994) has recently established some simple bounds for var(X). 
Specifically, he has shown that var(X) < 1/4, and if the density of X is 
unimodal (i.e., p > 1 and q > 1) then var(X) < 1/12; further, if the density 
of X is U-shaped (i.e., p < 1 and q < I), then he has proved that var( X )  > 

Writing A = ( p  + q)- ' and 8 = p ( p  + q)-', we have the following recur- 
rence relation among the central moments of the standard beta distribution: 
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The moment-generating function can be expressed as a confluent hypergeo- 
metric function [Eq. (1.1211, Chapter 11: 

and, of course, the characteristic function is M(p;  p + q; it). 
The moment-generating function of (-log XI, where X is a standard 

beta, is 

B(P  - t , q )  
M ( t )  = ~ [ e x p ( -  t log x) ]  = (25.17)' 

B ( P , ~ )  ' 

and the corresponding cumulant-generating function is 

The cumulants are 

if q is an integer. In the general case 

,,.r = ( - ~ ) ~ [ + ( r -  I ) (  p)  - + ( r -  1 )  ( P  + dl1 (25.17)" 

where JI"-')(x) = (dr/dxr)log T(x) is the ( r  + 1)-gamma function (see 
Chapter 1, Section A2). 

The mean deviation of X is 

If p = q, the expression reduces to 

The authors thank Dr. T. Pham-Gia for pointing out an error in the 
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expression for S , ( X )  which appeared in the first edition of this volume. [See 
also Pham-Gia and Turkkan (1992).] 

For p and q large, using Stirling's approximation to the gamma function, 
the mean deviation is approximately 

and 

Mean deviation 7 1 1 

= , , F ( l  + 
+ q)- I  - -p-I - -q-l).  

Standard deviation 12 12 

The mean deviation about the median (m) is 

If p > 1 and q > 1, then px(x)  -, 0 as x -+ 0 or x -+ 1; if 0 < p < 1, 
px(x) -, oc as x -+ 0; and if 0 < q < 1, px(x) -+ as x -+ 1. If p = 1 
(q = 11, px(x) tends to a finite nonzero value as x -t 0 (1). 

If p > 1 and q > 1, the density function has a single mode at x = ( p  - 
l ) / (p  + q - 2). If p < 1 and q < 1, there is an antimode (minimum value) 
of px(x) at this value of x. Such distributions are called U-shaped beta (or 
Type I or 11) distributions. If ( p  - 1Xq - 1) is not positive, the probability 
density function does not have a mode or an antimode for 0 < x < 1. Such 
distributions are called J-shaped or reverse J-shaped beta (or Type I) distribu- 
tions. [Peleg and Normand (1986) advocate using the reparametrization 
am = p  - 1, m = q - 1 so that the mode is at a / (a  + 1) and does not 
depend on m. Although they call this a modijied beta distribution, it is in 
fact just a regular beta distribution that is differently parametrized.] If p = q, 
the distribution is symmetrical about x = t. 

For all positive values of p and q, there are points of inflexion at 

provided these values are real and lie between 0 and 1. Note that as for all 
Pearson curves, the points of inflexion are equidistant from the modes. 

The expected value p/(p + q )  depends on the ratio p/q. If this ratio is 
I kept constant, but p and q are both increased, the variance decreases, and 

the (standardized) distribution tends to the unit normal distribution. Some of 
the properties of beta distributions described in this section are shown in 
Figures 25.la, 6. Note that if the values of p and q are interchanged, the 
distribution is "reflected" about x = i. 
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Figure 2S.la Beta density functions 

The Lorenz curve [see Chapter 12, Eq. (12.1611 has coordinates 

and the Gini index [Chapter 12, Eq. (12.911 is 
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X 

Figure 25.lb Beta density functions 

4 ESTIMATION 

Discussion of parameter estimation for beta distributions goes back to 
Pearson's classical paper of 1895 where the method of moments was intro- 
duced. Direct algebraic solution of the ML equations cannot be obtained for 
beta distributions. Koshal (1933, 1935) tackled the ML estimation of four- 
parameter beta distributions, approximating the actual ML parameter esti- 
mates by an interactive method using estimates derived by the method of 
moments as initial values. 

Estimation of all four parameters in distribution (25.1) can be effected by 
equating sample and population values of the first four moments. Calculation 
of a, b, p, and q from the mean and central moments p2, p,, p4 uses the 
following formulas [Elderton and Johnson (196911. Putting 

r = 
6(P2 - Pl - 1) 

6 + 3/31 - 2/32 ' 



with p 5 q according as a, = \IPT 3 0. Also 

BETA DISTRIBUTIONS 

[where mode (Y) = a + ( b  - a x p  - l ) / (p  + 9 - 211 and 

If the values of a and b are known, then only the first and second 
moments need to be used, giving 

whence 

-- P dl - 0  

b - a  p + q '  

Thus 

The existence, consistency, and asymptotic normality and efficiency of a 
root of the likelihood equations are usually proved under conditions similar 
to those given by CramCr (1946) or Kulldorff (1957), which, among other 
things, allow Taylor expansion of the derivative of the log-likelihood function 
in a fixed neighborhood of the true parameter value. 

When it is necessary to estimate at least one of the end points (a  or b) of 
the four-parameter beta distribution, no such fixed neighborhood of Taylor 
expansion validity exists. But if the true shape parameters ( p  and q )  are 
large enough (> 2, regular case), Whitby (1971) has shown that the condi- 
tions can be weakened to allow Taylor expansion in a sequence of shrinking 
neighborhoods, and the usual asymptotic results, with n ' I 2  normalization, 
can be proved. 
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If a and b are known and Y,, Y,,. . ., Yn are independent random variables 
each having distribution (25.11, the maximum likelihood equations for estima- 
tors B, 'j of p,  q, respectively are 

b - 7  
1(8) - $(B + 4) = n- '  ,=, 5 log(-), b - a  (25.30b) 

where $(.) is the digamma function [Eq. (1.371, Chapter 11. The Cramtr and 
Kulldorfl'conditions cover this case and Eqs. (25.30a) and (25.30b) have to be 
solved by trial and error. If 5 and 'j are not too small, the approximation 

may be used. Then approximate values of (B - &I/($ + 'j - $1 and ('j 
I - ?)/(B + 4 - $1 can be obtained from (25.30a) and (25.30b), whence 

follow, as first approximations to p and q, 

p + 
1 - JIY=~((Y, - a) / (b  - a))"" - I l ~ = ~ ( ( b  - q ) / ( b  - a))"" 

1 T ( l  - I l y =  l ( ( y  - a) / (b  - a))'") 
'j c 

I /n 
1 - IIY=~((Y, - a) / (b  - a) )  - IIj'-l((b - q ) / ( b  - 

Starting from these values, solutions of (25.30a) and (25.30b) can be obtained 
by an iterative process. Gnanadesikan, Pinkham, and Hughes (1967) give - 

exact numerical solutions for a few cases. 
The asymptotic covariance matrix of 6 6  and 6'j (as n -, a) is 
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Introducing approximations for I,$'(-), we have for large values of p and q, 

Fielitz and Myers (1975, 1976) and Romesburg (1976), in brief communica- 
tions, discuss the comparative advantages and disadvantages of the method of 
moments versus the maximum likelihood method for estimating parameters 
p and q. The difficulties involved in the maximum likelihood method are 
related to employing efficient search procedures to maximize the likelihood 
function. The Newton-Raphson method is extremely sensitive to the initial 
values of 6 and q', and there is no guarantee that convergence will be 
achieved. Fielitz and Myers (1976) point out that for the sample problem 
considered by Gnanadesikan, Pinkham, and Hughes (19671, the method of 
moments yield more accurate estimates of p and q than does the method of 
maximum likelihood, possibly due to bias introduced by the computational 
method used in determining the ML estimators. 

Beckman and Tietjen (1978) have shown that the equations (25.30a) and 
(25.30b) can be reduced to a single equation for $ alone: 

i $ (4)  - $ { [ $ - l [ l ~ g ~ I  - log G ,  + $(4))] + 4) - log G2 = 0, (25.34a) i 
I 

where 

n y - a  
G I = ~ ( - )  , = ,  b - a  

Having solved (25.34a) for 4, the estimator, 6, of p is calculated from 

b = $- ' [ logGI - log G, + $ ( d ) ] -  (25.34b) 

Lau and Lau (1991) provide a detailed investigation of methods of calculating 
good initial estimators p,, q, of p and q, respectively. 

For G I  + G, = G, I 0.95 they recommend 

log pe = -3.929 + 10.523G2 - 3.0266; + 1.757 e x p ( G , m )  (25.35a) 
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log q, = - 3.895 + 1 . 2 2 2 m  - 6.90566: 

+ 39.057G:G: + 1.5318 exp(G,). 

But for 0.95 I GT s 0.999 they suggest 

log p, = 110706.79 + 3 . 0 8 4 2 m  + 110934.01 log GT 

+ 6.3908 exp(6 ,6 f )  - 233851 .3GT + 45300.7 exp(6,) (25.35~) 

log q, = 113753.4 - 2.16: + 113979.9410g 6, + 2.154GlG: 

- 240149.96, + 46500.7 exp(G,). 

They also study the sampling distribution of the ML estimators $ and 4 
and provide a table of the sample values of percentage bias d = 100 X (rn - 
p ) / ~ ,  where rn = Cp,/K [computed for K = 1000 values of n, p,  q (n = 

30,60,100, p(= q )  = 2,6,10,20, and 4011, skewness K - ' c ( ~ ,  - rnI3/s3 = a ,  
and kurtosis b, = K-'C(P, - where S2 = U p ,  - rnI2/K. 

For p = q = 10 representative values are 

The same authors also provide a procedure for estimating a confidence 
interval for p,, using Bowman and Shenton's (1979a, 1979b) method for 
calculating fractiles of distributions belonging to Pearson's system. 

If a and b are unknown, and maximum likelihood estimators of a,  b, p, 
and q are required, the procedure based on (25.31a) and (25.31b) can be 
repeated using a succession of trial values of a and b, until the pair (a, b), 
for which the maximized likelihood (given a and b) is as great as possible, is 

Carnahan (1989) investigated in detail maximum likelihood estimation for 
four-parameter beta distributions. He adds to (25.31a) and (25.31b) the 
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a 

additional ML equations 

and 

(Note that these are essentially "method of moments" expressions, relating 
the sample values of the harmonic means E[(Y - a)- ']- ' ,  E[(b - Y)-']-' 
to the corresponding theoretical values; see Section 2.) Unfortunately, the 
likelihood function for the distribution is unbounded and has a global 
maximum that is infinite, so values of a "near" to Y,', and of b "near" to Y,' 
must be excluded. There is also a possibility of local maxima, which may not 
be well defined for small sample sizes and which plague various numerical 
schemes for maximizing likelihood. The ML estimators are asymptotically 
normal and unbiased with variances asymptotically equal to the CramCr-Rao 
lower bounds provided that min(p, q )  > 2. However, a numerical study by 
Carnahan indicates that only for very large sample sizes (n 2 500) does the 
bias become small and the CramCr-Rao bound become a good approximation 
to the variance. The author recommends employing the least and greatest 
order statistics to improve the estimates of the end points. 

The information matrix, from which the asymptotic variances and covari- 
ances of ML estimates can be obtained, (in the regular case of p, q > 2) is 

I q ( p + q - l )  ( P + q - l )  4 1 -- 
( p  - 2 ) ( b  - a ) *  ( b  - a)' ( P  - l ) ( b  - a )  b - a  

I (I 1 - 
p -  a  b - a  

The diagonal elements of I- ' are the asymptotic variances of the parameter 
estimates. Explicit inversion has not been attempted. Carnahan (1989) pro- 
vides numerical results. 

AbouRizk, Halpin, and Wilson (1993) [see also AbouRizk, Halpin, and 
Wilson (1991)], using their program "Beta Fit," compare several methods for 
estimating the parameters of four-parameter beta distributions as in (25.1) 
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(which they term "generalized beta distributions"). Among these were the 
following: 

1. Moment methods. Equating first four sample and population moments; 
next taking a = Y,' and b = Y,' and using only the first two moments 
[e.g., as suggested by Riggs (198911. 

2. "Feasibility moment matching" method. Minimizing the (unweighted) 
sum of squares of differences between sample and population means, 
variances, skewness (6 and fi) and kurtosis (b, and P,), subject to 
a < Y,' and b > Y,', and possibly other restrictions (e.g., a > 0, b > 0). 

3. Maximium likelihood method. Maximizing with arbitrary values of a and 
b [as described formally in (25.3011; any variation of a and b is not 
considered. 

4. " Regression-based " methods [see Swain, Venkataraman, and Wilson 
(1988)l. Using order statistics and the relationships [see Chapter 12, Eq. 

j (n  - j + 1) 
var(Fy(Y1)) = 

( n  + l),(n + 2) ' 

! 
i 

, 
Two variants of a least-squares method are used in minimizing 

, Cy,I~,{Fy(Y,') - j/(n + I)), with respect to a, b, p, and q. 
I 

In each case minimization is subject to the restrictions a < Y,', b > Y,' 
(a > 0, b > O ) ,  as in the third method mentioned above. 

Dishon and Weiss (1980) provide small sample comparisons of maximum 
likelihood and moment estimators for standard beta distributions (25.2) 
(a = 0 and b = 1): The maximum likelihood estimators B and 6,  which in 
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this case are solutions of the equations, 

and 

1 
*(fi + 4 + 2) - *(G + 1)  = - C log 

n 

are compared with the moment estimators 

and 

where 3, and P2 are estimators of the first and second moments, respec- 
tively. 

The results are summarized in Table 25.2. The authors generated a 
number of beta variables with known values of p and q and calculated, for 
different values of sample size n with 100 replications, fi, 4, j ,  and 4 by 
means of the equations given above. (Both estimators tend to produce errors 
of the same sign.) They defined 

(with an analogous definition for R,), where B, is the ML estimator of p and 
j, is the moment estimator of p in the jth replication. [The authors also 
develop efficient procedures for computing $(z) using the expansion 

where y = 0.57722.. . is Euler's constant, as defined in Chapter 1, 
Eq. (1.191, and the Euler-Maclaurin summation formula.] The data in the 
table show that when n is low, the ML estimator is usually more accurate 
than the moment estimator (with notable exception when p = q).  



Table 25.2 Comparison of estimates obtained from ML and moment estimates 
for a univariate beta distribution. Each row is for 100 replications 

Parameter Sample 
Values Size Na 

P 9 n P 9 R ,  R, 
I I - - - - 
2 2 25 58 56 0.935 0.888 

50 58 64 0.91 1 0.799 
100 53 57 0.805 0.847 

I - - 
2 1 25 64 61 0.793 0.802 

50 70 57 0.765 0.953 
100 62 56 0.646 0.829 

1 1 25 42 44 1.020 1.020 
50 48 5 1 1.004 0.977 

100 5 1 50 0.962 0.975 
I - - 
2 5 25 75 66 0.663 0.778 

50 66 63 0.564 0.706 
100 6 1 59 0.728 0.758 

5 1 25 57 56 0.984 0.984 
50 57 59 0.932 0.9 12 

100 55 5 1 0.961 0.940 
5 5 25 44 46 1.007 1 .OOO 

50 4 1 42 1.017 1.021 
100 58 63 0.980 0.970 

10 5 25 54 58 1 .000 0.996 
50 57 58 0.996 0.989 

100 51 59 0.984 0.981 
I 

-1 100 25 64 67 0.806 0.852 
50 70 67 0.777 0.840 

100 76 68 0.693 0.801 
1 100 25 56 6 1 0.915 0.889 

50 70 70 0.837 0.833 
100 62 64 0.914 0.896 

50 100 25 53 54 0.996 0.996 
L 

50 55 56 0.992 0.993 

i 100 50 50 1 .OOO 1 .OOO 
100 100 25 57 55 0.999 0.999 

50 43 47 1 .OOO 1 .OOO 
100 57 57 1 .ooo 1 .ooo 

"N = number of cases in which the MLE is closer to the true value of p , q ,  than the 
moment estimator. 
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rnin (p,q) 

Figure 25.2 Comparison of the variances associated with MM and ML estimators 

As Figure 25.2 from Kottes and Lau (1978) indicates, when p and q are 
small or their difference is large, the (asymptotic) method of moments variance 
exceeds the (asymptotic) maximum likelihood variance by at least 25%. These 
are the situations when the need to fit beta distributions is the greatest. 
Fortunately, in many cases a and 6, or at least one of these parameters, can 
be assigned known values. 

If only the r smallest values Xi ,  X i ;  . -, X: are available, the maximum 
likelihood equations are 

and 

[Gnanadesikan, Pinkham, and Hughes (1967)l. 
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Fang and Yuan (1990) apply the sequential algorithm for optimization by 
number theoretic methods (SNTO) proposed by Fang and Wang (1989) to 
obtain ML estimators of parameters of standard beta distributions. The 
method is superior to the Newton-Raphson method. It does not require 
unimodality or existence of derivatives (only continuity of the likelihood) and 
is not sensitive to the initial values. For the data provided by Gnanadesikan, 
Pinkham, and Hughes (1967), this method yields more accurate values than 
those of moment estimators or Gnanadesikan, Pinkham, and Hughes's (1967) 
estimators. 

If one of the values p and q is known, the equations are much simpler to 
solve. In particular, for the standard power-function distribution ( q  = l), the 
maximum likelihood estimator of p is 

and we have 

A moment estimator of p in this case is 

for which 

Note that (vara)/(varb) = p ( p  + 2Hp + I ) - ~ .  The asymptotic relative ef- 
ficiency of 6 increases with p;  it is as high as 75% for p = 1, tends to 100% 
as p -+ w, but tends to zero as p + 0. There is further discussion of 
power-function distributions in Chapter 20, Section 8. 

Interestingly Guenther (1967) has shown that for the special case of the 
standard power-function distribution, with the pdf 

the minimum variance unbiased estimator of p is -(n - lXC;,, log Xi]-'. 
Its variance is p2(n - 2)-', while the CramCr-Rao lower bound (Chapter 1, 
Section B15) is p2n-I.  

In operations research applications (especially in connection with PERT) 
it is often assumed that the standard deviation must be one-sixth of the 



range of variation (!). Thus, for a standard beta (p,  q )  distribution (range 0 to 
1). it is assumed that 

while far the more general distribution (25.1), 

a ( X )  = i ( b  - a ) .  (25.46) 

This assumption is used in fitting a beta distribution on the basis of "least 
possible" (a*), "greatest possible" (b*), and "most likely" (m*) values as 
estimated from engineers' experience of a process. These are used as 
estimates of a ,  b and the modal value 

respectively [Hillier and Lieberman (1980)l. 
Values of estimates p*, q*  of p ,  q, respectively, can be obtained from the 

simultaneous equations 

p*q* 1 
= -  

36 
(cf. (25.46)) (25.48a) 

(P*  + 4*12(p* + q* + 1) 

and 

p* - 1 m* - a* - - 
p* + q* - 2 b* - a* 

. (cf. (25.47)) (25.48b) 

It would be, perhaps, more natural to use an estimated expected value, x, 
say, and equate that to the population value, leading to 

in place of (25.48b). In fact it appears to be customary to use an equation like 
(25.48~) but with X replaced by an estimate of the expected value 

1 4(m* - a*)  1 

a* + ;( b* - a *  
(b* - a * )  = a *  + -(4m* + b* - 5a*), 

6 



and 
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leading to 

From (25.48a), (25.48~1, or (25.48d1, ( P* + q*) can be expressed in terms 
of p*, a*, and b*. Inserting this expression for (p*  + q*) in (25.48a), we 
obtain an equation in p*. For example, using (28.48c), 

whence (25.48a) becomes 

X - a* X -  a* 

that is, 

X -  a* X - a* X - a* 
P* = - b* - a* ( 3 )  (1  - ) - 1 )  (25.49) 

Using (28.48d) would also lead to a simple explicit value for p*, but (28.48b) 
would lead to a cubic equation for p*. 

Farnum and Stanton (1987) carried out a critical investigation of the 
accuracy of the assumption that for a standard beta ( p ,  q )  variable 

Expected value = ;{4(mode) + 11, 

[presumably when (25.48a) is satisfied]. They found the approximation is 
correct to within 0.02 when the mode is between 0.13 and 0.87, and they 
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suggest using improved approximations 

2 
for mode < 0.13, (25.51a) 

2 + (mode) - ' 
and 

l ( 3  - 2(mode)) - ' for mode > 0.87. (25.51b) 
2 

Moitra (1990) suggested that some allowance should be made for "skew- 
ness" (which he measures by E[(X - E[x])~], rather than the shape factor 
fi, which would be ~&E[(x - E [ X J ) ~ ]  if a ( X )  = 1/6). ,Moitra noted 
that the "traditional" assumptions can be expressed as 

and 

a ( X )  = c - ' ( b  - a ) ,  (25.52b) 

with k = 4, c = 6. He found that c = 6 is not "optimal for values of k other 
than 4 or 5, and k = 4 is not optimal for values of c other than 6." 

Moitra made the following recommendations: "If the skewness is judged 
or known to be high, p would be between 2 and 3, and since we are 
estimating subjective distributions, we can set p = 2.5." But "if the skewness 
is judged to be moderate, then we can see from the graphs that p is very 
likely to be between 3 and 4, and so we can similarly set p = 3.5. Finally, if 
the skewness is considered to be only a little, we set p = 4.5." He also 
provided the "best" combinations of values for k and c, which are given in 
Table 25.3, and an analysis appropriate to triangular distributions (see 
Chapter 26, Section 9) for which 

E [ X ]  = + ( a  + b + m ) .  (25.53) 

Table 25.3 Best combinations of k and c ,  

k 

c 1 2 3 4 5 6 

3 Best 
4 Best Good 
5 Good Best 
6 Good Best 
7 Best 
8 Best 



APPLICATIONS 

In the case a = 0 ,  b = 1 ,  we have 

E [ X ]  = f ( l  + m ) ,  

[ u ( x ) I 2  = & ( I  - m + m 2 ) .  

The values of u ( X )  varies from 0.25 (for m = 0 or 1) to 0.22 for m = 0.5. 
These values are quite close to each other, and somewhat greater than the 
traditional value (used in connection with beta distributions) of 1/6. Setting 
k = 1 and c = 4 or 4.5, estimators can be approximated using a triangular 
distribution. "The advantage of this procedure is that by invoking the 
triangular distribution we do not have to make any further assumptions, nor 
do we need any additional information." However, as Table 25.3 indicates, 
the choice of k = 2 (rather than I), with c = 4 or 4.5, may be more 

5 APPLICATIONS 

Beta distributions are very versatile (see Figures 25. la ,  6 )  and a variety of 
uncertainties can be usefully modeled by them. This flexibility encourages its 
empirical use in a wide range of applications [see, e.g., Morgan and Henrion 

The beta distributions are among the most frequently employed to model 
theoretical distributions. Usually the range of variation (a ,  b )  of such distri- 
butions is known, and fitting is effected by equating the first and second 
moments of the theoretical and fitted curve. No random sample values enter 
into this calculation so that maximum likelihood methods are inapplicable, 
and a fortiori, arguments based on asymptotic efficiency are irrelevant. 

An example of some importance is the use of beta distributions to fit the 
distributions of certain criteria used in statistical likelihood ratio tests. 
Usually the range of variation of the likelihood ratio is known to be from 
zero to one, and that of any monotonic function of the likelihood ratio can be 
derived from this knowledge. If the likelihood ratio is based on n indepen- 
dent identically distributed random variables, it is often found that a usefully 
good fit can be obtained by supposing 

(likelihood 

to have a beta distribution with a = 0, b = 1. Use of the power 2 n - '  is 
suggested by Wilks's theorem that under certain fairly broad conditions, 
- 2 n - '  log (likelihood ratio) has an asymptotic ,y2 distribution (as n -, 03). 

(See also Chapter 29, Section 9 ,  where some additional cases are discussed.) 
Of course a general power c might be used, and c, as well as p and q, if 
fitted a substantially improved fit could be expected by using this method. 
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This would be equivalent to fitting a "generalized" beta distribution, to be 
described in Section 25.7. 

A standard Type I distribution has been found to give good approximation 
when fitted (by equation of first two moments) to relative frequencies of a 
Vinomia\ clistribution 1Benedetti (19561. If the Vinomial parameters are N, 
w ,  then the approximate value for the probability that the binomial variable is 
less than r is 

as compared with the exact value 

I , - u ( N  - r + 1, r ) .  (25.55b) 

[See also Eq. (3.34), Chapter 3.1 Numerical comparisons given in Benedetti 
(1956), and also in Johnson (1960), show that except in the "tails" (probabili- 
ties between 0.05 and 0.95) a good practical approximation is obtained for 
N r 50 and 0.1 5 w 5 0.9. 

For many years a fashionable use for beta distributions has been as 
"prior" distributions for binomial proportions (see Section 2.2, Chapter 6). 
While this leads to some conveniently simple mathematics, and beta distribu- 
tions are often referred to as "natural" prior distributions for the binomial 
parameter p (in that the posterior distribution obtained by its use is also of 
the same form), there seems to be little definite evidence in their favor. This 
was pointed out at an early date by Barnard (19571, in the course of 
discussion of Horsnell (1957). Much more recently a similar remark was 
made by Ganter (19901, commenting on Hart (1990). Shaw (1991) proposes 
use of beta priors to reduce the number of tests needed in routine checks on 
reliability, apparently without initial examination of validity of assumptions. 
There has been, however, some attention to the need for care in selection of 
prior distributions. For example, Chaloner and Duncan (1983) describe 
methods of "elicitation" of parameter values for beta priors, though the basis 
for using beta distributions in this context is not addressed. Pham-Gia (1994) 
has recently studied the information gain or loss by considering changes in 
the reciprocal of the expected posterior variance. Specifically, he has shown 
that the ratio of the expected values of the posterior variances of two beta 
distributions provides a convenient criterion that is consistent with many 
Bayesian results and, in addition, enables the determination of the least 
informative beta prior distribution. 

In recent years beta distributions have been used in modeling distributions 
of hydrologic variables [Janardan and Padmanabhan (198611, logarithm of 
aerosol sizes [Bunz et al. (1987); Van Dingenan, Raes, and Vanmarcke 
(1987)], activity time in PERT analysis [Golenko-Ginzburg (1988)], errors in 
forms [Yang, Li, and Li (1988)], isolation data in photovoltaic system analysis 
[Rahman, Khallat, and Salameh (198811, porosity/void ratio of soil [Harrop- 
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Williams (1989)], phase derivatives in communication theory [Andersen, 
Lauritzen, and Thommesen (1990); Lauritzen, Thommesen, and Andersen 
(1990)], conductance of catfish retinal zones [Haynes and Yau (1990)], vari- 
ables affecting reproductivity of cows [McNally (1990)1, size of progeny in 
Escherchia Coli [Koppes and Grover (1992)], ventilation from inert gas 
washout distributions [Meyer, Groebe, and Thews (1990)], dissipation rate in 
breakage models [Yamazaki (1990)], proportions in gas mixtures [Agrawal 
and Yang (1991)], sea-state reflectivity [Delignon, Garello, and Hillion (19901, 
atmospheric transmittance and related indices for solar radiation [Graham 
and Hollands (1990); Milyutin and Yaromenko (1991)], clutter and power of 
radar signals [Maffett and Wackerman (1991); Sopel'nik and Lerchenko 
(1991), respectively], acoustic emissions in evaluation of chip forms [Sukvit- 
tayawong and Inasaki (1991)], traffic flow [Ressel (1991)1, construction dura- 
tion [AbouRizk and Halpin (1992); AbouRizk, Halpin, and Wilson (1991)], 
particle size [Boss (1992a, b); Popplewell and Peleg (1992)], gas absorption 
[Karavias and Myers (199211, and tool wear [Wang and Dornfeld (1992)l. 

Wiley, Herschokoru, and Padiau (1989) developed a model to estimate the 
probability of transmission of HIV virus during a sexual contact between an 
infected and a susceptible individual. Let /3 be the per contact infectivity 
associated with sexual contact between an infected and a susceptible individ- 
ual. The authors model each sexual encounter as an independent event 
where HIV is transmitted with probability P.  Thus, if the couple has n sexual 
encounters, the probability of T, the infection of the seronegative partner, is 

To allow for heterogeneity of infectivity among couples, they consider P as a 
random variable with the beta density function 

The marginal distribution of T is then 

Using data on the number of contacts and seroconversion of couples, they fit 
this model by the maximum likelihood method. The estimates indicate that 
heterogeneity is indeed quite extreme. 

Thompson (1990) describes applications in the analysis of probabilistic 
informational retrieval in "expert systems." Treacy et al. (1991) use truncated 
beta distributions in automated tolerance analysis of assemblies. Beta distri- 
butions are widely used in many areas of operations research. Moitra (1990) 



238 BETA DISTRIBUTIONS 

provides a number of examples in risk analysis for strategic planning, finance 
and marketing, engineering systems simulation, and decision theory. 

Pham and Turkkan (1994) discussed recently the exact distribution of the 
sum of two independent beta variables and applied it to a standby system 
with beta-distributed component lives. They show that this enables the 
calculation of the exact reliability of such a system when the exact values of 
the parameters are known, and also greatly improves the available approxi- 
mate methods of computing the reliability. 

6 APPROXIMATIONS AND TABLES I 

6.1 Approximations 

Several approximations to the incomplete beta function ratio IJp, q )  have 
been described in Section 6.1 of Chapter 3. Relevant references, given at the 
end of this chapter for convenience, include Aroian (1941, 1950), Cadwell 
(19521, Hartley and Fitch (19511, Nair (19481, Pearson and Pearson (19351, 
Thomson (1947), and Wise (1950, 1960). Here we add only several further 
approximations which came to our attention subsequent to the completion of 
the first edition of Discrete Distributions. The first approximation is one of a 
number proposed in Peizer and Pratt (1968) and Pratt (1968). For the 
incomplete beta function ratio, their approximations are 

I , ( P , ~ )  = @ ( z ) ,  

where 

d 2 
z = 

s - 

with n = p + q - 1. The value of d is either 

1 - x  x - (1/2) 
( 1 - ~ ) + . -  - - -  + (case 2) 

5 q P P + 9  

Case 2 generally gives the more accurate results. Using this value of d, the 
error of I,(p, q )  is less than 0.001 for p, q 2 2 and less than 0.01 for 



where 
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p, q 2 1 .  Limits on the proportional error are 

R = 
( 4  - ( 1 / 2 ) ) x  

( P  - ( 1 / 2 ) ) ( 1  - x )  - 
Mudholkar and Chaubey (1976) provide Patnaik-type, Pearson-type, and 

Sankaran-type approximations to I x ( p ,  q )  based on the distribution of -log X 
when X has a standard beta ( p ,  q )  distribution. We have of course 

I x ( p ,  q )  = Pr[ -log X > -log x ] .  

The sth cumulant of --log X is 

K,( -log X )  = ( - l ) r ( ~ ' r - " ( p )  - $"-"(p  + q ) )  (25 .58)  

[see (25.17Y"I. 

I .  Patnaik-type approximation. Approximating -log X by cX;, where c 
and v are chosen to give the correct first two moments, 

1 * ' (PI  - *'( P + q )  c =  - 2(*( P + 4 )  - *( P ) l Z  
2 * ( P + Q )  - * ( P )  

' '= 
*'( P) - *'( P + q )  

' 
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2. Pearson-type approximation. Approximating -log X by (ctX;, + b) with 
c', ur ,  and b chosen to give the correct first three moments, we obtain 
(25.59a) with c, v  replaced by c', v r,  respectively, and - log x replaced 
by -(log x + b). 

3. Sankaran-type approximation. We determine h so that the leading term 
in the third cumulant of {(-log X)/K,)'I vanishes. This value of h is 
(1 - K , K ~ / ( ~ K ~ ) } .  Approximating {(-log x ) /K , ) )~  by a normal vari- 
able with 

hK3 
Expected value = 1 - - = CL 

6 ~ 1 ~ 2  

and 

h 2 ~ ,  
Variance = - = u 2 ,  

K: 

we obtain (25.59b) with 

The next approximation is of a more general nature. Consider a standard 
beta (kn, In) distribution. Keeping k and 1 fixed, let n -+ m. It is known that 
the standardized density function tends to a unit normal [ N(0,l)I density. 
Kr6likowska (1966) investigated the behavior of the leading term of the 
absolute difference between the standardized beta and the unit normal 
distribution as n -+ 03. She found that it is of order n- ' I2,  except when 
k = I, in which case it is of order n-I.  

Volodin (1970) obtained the approximate formula 

where ,F,(a, b; c; x )  is a hypergeometric function (see Chapter 1, Section 
A6). It is very accurate for small values of p and q. The approximation is 
based on the observation that the characteristic function of the random 
variable 
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where X has distribution (25.1), is 

This shows that W can be regarded as the sum of three independent 
variables, W , ,  W,, and W,, where W, and W ,  have exponential distributions 
(see Chapter 19) with parameters p / ( p  + q )  and q / ( p  + q),  respectively, 
and W3 has the standard beta ( p  + 1 ,  q  + 1) distribution. The approxima- 
tion (25.61) is obtained by replacing W, with a random variable having a 
uniform distribution over (0, 1). 

If W3 is neglected in this representation (as might be possible if q  is small 
compared with p), the following approximation is obtained: 

This approximation is also very good for small values of p  and q. In fact, if 
P + 4 < l ,  

Molina (1932) obtained the following approximation to the incomplete 
beta function: 

where 

N = p +  $ 4 -  4, z =  - N l o g x ,  

A , , = l ,  A , = A , = A , = O ,  

A , =  A ( 4  - I ) ,  A d 3 1  240(9 - 1) (5q  - 7 ) 9  

Ah = & ( q  - 1)(35q2 - 1124 + 93),  
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where I',(a) is an incomplete gamma function, as defined in Chapter 1, 
Section A5. [See also appendix in Gnanadesikan, Pinkham, and Hughes 
(1967), where more computational details are given.] 

Woods and Posten (1968), have constructed computer programs based on 
the Fourier expansion 

where 

They found that (for m sufficiently large) if the infinite series be terminated 
at the term containing b,, the error is less than 

1 
imlbml {min( P ,  q)} - '  if P # q ,  
1 
,mlb,lp- I if p = q ,  m iseven. 

In some special cases there are simple explicit formulas for the b's: 

Case 1. p = q: 

Case 2. q = 1/2: 

If both p and q have fractional part equal to one-half, then b, = 0 for 
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j 2 p + q. An attractive feature of this method is that 

can be evaluated without using trigonometric functions as 

where 

and u,  is obtained by application of the backward recurrence relation 

u, = bj + 2 ( 2 x  - 1)u j+ ,  - u , + ~  

f o r j  = N, N - 1 ,..., 1 withu,,, = u,+, = 0. 

Kalinin (1968) has obtained the expansion 

where 

y ~ + 2  ( ) I [ )  - if ) 1 / 2 + ]  
-- - 

i + 2  p + 4  
, for j odd, 
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Kalinin also gives similar (but rather more complicated) expansions for the 
density functions of gamma, F-, and t-distributions. Because of their com- 
plexity we have not reproduced these in the appropriate chapters. 

Frankl and Maehara (1990) obtain the following inequalities for the tail 
areas of a standard beta ( p ,  q )  distribution [ P  = E [ X ]  = p / ( p  + q) ] :  

where 

6.2 Tables 

The first edition (1934) of Pearson's tables included values of Ix(p ,  q )  to 
seven decimal places for 

p ,  q = 0.5(0.5)11.0(1)50 with p 2 q ,  

x = 0.00(0.01)1 .oo. 

The second edition (1968) also includes values of I J p ,  q )  to seven decimal 
places for 

p = 11.5(1.0)14.5 with q = 0.5, 

and to eight decimal places for p = 0.5(0.5)11.0(1)16; q = 0.5, x = 

0.988(0.0005)0.9985, 0.9988(0.0001)0.9999, and for q = 1.0(0.5)3.0, x = 

0.988(0.001)0.999. Values to seven decimal places are also given for x = 0.975, 
0.985. 

Further values have been calculated by Osborn and Madey (1968). These 
cover values of p, q in a region where interpolation using Pearson's tables is 
difficult. Values of Bx(p ,  q )  and Ix(p ,  q )  are to five significant figures for 

The formulas used for calculation were 
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for 0 < x I f ,  and 

1 - w4 ( 1  - p ) ( l  - w4+' )  
B x ( p . 4 )  = B, , , (p ,q )  + 02' + l ! ( q  + 1)24+' 

( 1  - p ) ( 2  - p ) ( l  - w"+*) 

with w = 2(1 - x )  for $ < x < 1.  
Percentage points of the beta distribution have been tabulated by Thomp- 

son (1941), Clark (19531, Harter (1964), and Vogler (1964). Thompson gave 
values of X( P;  p; q ) ,  where 

I x (~ .p ,q , (  P ?  q )  = p 

to five significant figures for 

p = 0.5(0.5)15.0,20,30,60, 

q = 0.5(0.5)5.0,6,7.5,10,12,15,20,30,60, 

P = 0.50,0.25,0.10,0.05,0.025,0.01,0.005. 

These tables are included in Pearson and Hartley (19541, the third edition 
(1966) of which contains also values for P = 0.0025 and 0.001, calculated by 
Amos (1963). Harter (1964) gives X ( P ;  p; q )  to seven significant figures for 
p , q  = 1(1)40; P = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.5. 
Vogler (1964) gives X ( P ;  p; q ) ,  and also B ( p ,  q ) ,  to six significant figures for 

p = 0.50(0.05)1.00,1.1,1.25(0.25)2.50(0.5)5.0,6,7.5,10,12,15,20,30,60, 

q = 0.5(0.5)5.0,6,7.5,10,12,15,20,30,60, 

P = 0.0001,0.001,0.005,0.01,0.025,0.05,0.1,0.25,0.5. 

Bouver and Bargmann (1975) used a continued fraction expression 

1 c ,  d ,  c2 d2 

C ,  = 
( P  + j  - l ) ( p  + q + j  - l ) x  

( p  + 2 j  - 2 ) ( p  + 2 j  - 1)  
' 

d ,  = 
j ( q  - j )  

( p + 2 j -  l ) ( p + 2 j ) '  

where 
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This formula was obtained earlier by Aroian (1941, 19501, and it is referred 
to in Abramowitz and Stegun (1964), Boardman (19751, Tretter and Walster 
(19791, and Kennedy and Gentle (1980). Bouver and Bargmann (1975) 
recommend this formula for use when p and q are both within the (very 
broad) range 1 0 - 5 0  70,000, and especially when either or both of p and q 
are less than 1. [See Posten (1986) for further details.] However, Kennedy 
and Gentle (1980) prefer the IMSL (1977) subroutine for calculation of 
Ix(p7 q) based on Bosten and Battiste (1974). 

Recurrence relations, such as Eq. (1.95) of Chapter 1, can be used in 
calculating Ix(p, q)  from available values for smaller p and/or q. Other 
useful relations are 

I,( P,  q + 1) = I,(P, q )  + {qB(p ,  q)}  - ' x p ( l  - x)'. (25.72b) 

Combining (25.72a) and (25.72b1, we obtain 

[Soper (1921); Gleissner (1984)l. Bosten and Battiste (1974) use (25.731, and 
give explicit details of application in a computer routine. [See also Lee (1989, 
1992a, b).] 

For the case where q is less than 1, we get by direct expansion of 
(1 - x)-('-') and term-by-term integration 
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where 

if q is an integer 

and a']) = a(a - 1) - - . ( a  - j + 1) was used by Ludwig (1963) and improved 
for computation purposes by Bosten and Battiste (1974). 

Majumder and Bhattacharjee (1973a, b) applied (25.72a) recursively, ob- 
taining the formula 

I X ( p  + j  + t , q  - 1) = I,( p , q )  - ( P B ( P , ~ ) ) - ' X P ( ~  - x ) ~ - '  

1 + -- 

Lee (1992a) carried out a comparison of computing time taken in applying 

Aroian's (1941, 1950) continued fraction (25.711, 
Bosten and Battiste's (1974) formula (25.79, 
Lee's (1989, 1992b) formula (25.73), 
Majumder and Bhattacharjee's formula (25.76). 

Lee found that the last of these occupied considerably less CPU time (from 
tests on an IBM 3090 VM/CMS system) than the other three formulas. He 
remarked, however, that the Bosten and Battiste formula (25.75) is more 
accessible in the form used in an IMSL (1985) package. 

7 RELATED DISTRIBUTIONS 

The distribution of -log X, when X has the standard beta (p,  q )  distribu- 
tion (25.2) has been discussed in Section 25.3. Goldfarb and Gentry (1979) 
[see also Barrett, Norrnand, and Peleg (19901 suggest the possible use of 
log-beta distributions in place of lognormal distributions when fitting data 
which come from parent distributions which may be positively or negatively 
skew. As the name indicates, Y has a log-beta distribution if log Y has a beta 
distribution (i.e.. Y is distributed as ex. where X has a beta distribution). 
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Clearly the support of Y must be over a finite positive interval, 0 I q ,  I 
Y I T ~ .  Then X = log Y has a beta ( p ,  q )  distribution over the interval 
( q , ,  q2), and (log Y - q1)/(q2 - 7 , )  = U has a standard beta ( p ,  q )  distri- 
bution. The moments can be expressed as 

[where ,F , ( . )  is a confluent hypergeometric function; see Chapter 1, 
Eq. (1.125)]. Further references include Bunz et al. (19871, Chang et al. 
(1988), Han et al. (1989), and Runyan et al. (1988). 

If X has the beta distribution (25.2), then by the transformation 

we obtain a distribution with probability density function 

This is a standard form of Pearson Type VI distribution, sometimes called a 
beta-prime distribution [Keeping (196211. 

It is also known as a beta distribution of the second kind (while the 
ordinary beta distributions discussed in this chapter are referred to as beta 
distributions of the first kind.) This distribution and its generalizations are 
discussed in Chapter 27, Section 6, dealing with the F-distribution. The 
relationship between the Type VI and beta distributions is exploited in 
Chapter 27 to express the probability integral of a central F-distribution in 
terms of an incomplete beta function ratio. 

Little work has been done on "Weibullized" beta distributions, obtained 
by supposing a random variable Z to be such that (for some c) ZC has a 
standard beta distribution. It is of course easy to write down the moments of 
such a distribution, since 

4 
and so Ci,(Z) is the (r/c)th moment of the corresponding beta distribution. 
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If X has a power-function distribution (Section 25.1), then X-I has a 
Pareto distribution (Chapter 20). Compound beta distributions may be formed 
by ascribing distributions to some or all of the parameters p, q, a and b of 
distribution (25.1). However, such distributions have not been used much in 
applied statistical work. Continuous distributions for p and q usually present 
analytical difficulties, owing to the presence of the beta function B ( p ,  q)  in 
(25.1) [or (25.211. As a matter of interest, we may note that if we suppose that 
p and q are positive integers and that for p + q = s ( 2  2) fixed, p is equally 
likely to take values 1,2,.  . . , ( s  - I), then the probability density function of 
X, given p + q = s ,  is 

that is, the distribution is rectangular (Chapter 26). 
It follows that whateuer the distribution of ( p  + q), the compound distribu- 

tion is rectangular if the conditional distribution of p, given ( p  + q), is 
discrete rectangular as described above. The length-biased distribution corre- 
sponding to standard beta ( p ,  q)  is standard beta ( p  - 1, q). [Lingappaiah 
(1988) contains a discussion.] 

Roy, Roy, and Ali (1993) have introduced the binomial mixture of beta 
distributions (of the first kind) with density function 

0 < x < 1. The k th moment about zero of X is given by 

from which, in particular, we obtain the mean and variance of X to be 

and 
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Similarly, these authors also introduced the binomial mixture of beta distri- 1 
butions (of the second kind) with density function I 

i 

The kth  moment about zero of X is given by 

the mean and variance are, in particular, given by 

and 

Johnson (1949) has considered the distribution of log[ X/(1 - X)] when X 
has distribution (25.2). The moment-generating function of log[X/(l - XI] is 

E [ x ' ( ~  - x ) - ' 1  = 
~ ( p + t , q - t )  - r ( ~ + t ) r ( q - t )  

- [cf. (25.63)], 
B( P7 q )  r ( p ) r ( q )  

whence the r th  cumulant is 

Compare with (25.17)'' and (25.17)''' in Section 25.3. 
Approximating the polygamma functions we obtain (for p ,  q large) 
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These may be compared with the approximations [derived from (25.1%) and 
(25.15d)I for the moment ratios of X: 

Ratnaparkhi and Mosimann (1990) provide tables of P ,  and P2 for all 
combinations of p, q = 0.1(0.2)0.5,1,3,5(5)20 with addition of q = 25. We 
have already remarked (Section 25.2) that beta distributions can be generated 
as the distributions of ratios X, / (X,  + X2) where X I ,  X, are independent 
random variables having chi-squared distributions. 

If one or both of X I ,  X, have noncentral X 2  distributions (Chapter 29), 
the distribution of the ratio is called a noncentral beta distribution [Hodges 
(1955); Seber (1963)l. These distributions are evidently related to singly or 
doubly noncentral F-distributions (and will be discussed in Chapter 30) in the 
same way as beta distributions are related to central F-distributions (see the 
earlier part of this section). 

Pham-Gia and Duong (1989) investigate the generalized three-parameter 
beta distribution [G3B(a,, a , ;  A)] with pdf, 

which is the distribution of the ratio X, / (X,  + X2) where Xi (i = 1,2) are 
independent two-parameter gamma (a , ,P , )  random variables (and A = 

p1/p2). It reduces to the standard beta distribution when A = 1. If Y - 
G3B(al, a,; A) then (1 - Y) - G3B(a2, a , ;  A-I), which is a property similar 
to the one enjoyed by standard beta distributions. Libby and Novick (1982) 
studied these distributions in a multivariate setting and used them for fitting 
utility functions. Chen and Novick (1984) used them as priors for binomial 

! sampling models. 
The presence of the parameter A allows G3B to take a wider variety of 

shapes than the standard beta distributions. For example, G3B(a, a ;  A) can 
be positively or negatively skewed depending on the value of A .  In general, 
for 0 < A < 1, the pdf of G3B(a,, a,; A) is below that of the corresponding 
standard beta near zero but crosses the latter to become the greater at 
yo = ( 1  - ~"1/'"1+"~'1-' - ( 1  - A ) - ' .  For A > 1 the reverse is true, with the 
same crossing point. 

Figure 25.3 shows density functions of G3B for some selected values of a , ,  
a, ,  and A .  It can be seen that G3B(a , ,a2 ;  A) and G3B(a2,a, ;  A-l) are 
symmetrical about y = 0.50. For a,  = a, = and A = 2.5, the G3B is 

2 U-shaped with antimode at y,, = 7 [ y,, = f for beta($, f )I. Also G3B(1,1; 2.5) 



Y 

Figure 25.3 Densities of generalized beta distributions py(ylaI, a2: A ) .  (cf. Figs. 25.la, b) 

is strictly decreasing while beta (1, l)  is the uniform distribution on (0,l). 
Finally G3B(3,0.5; 0.8) is J-shaped like beta(3,0.5) but crosses the latter from 
below near yo = 0.8704. 

Volodin (1994) has considered some generalized forms of the beta distri- 
bution. The generalized beta random variable X has its cumulative distribu- 
tion function to be 

and its probability density function as 

/ x ~ a - f ( ~  - z ) @ - ' ( l  - z)'-' dz. 
px(x) = B ( n ,  P + y)  u 

The kth moment of X (about 0) is 
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If we define Y = 1 - X, then we have 

F Y ( Y )  = 1 - / ' z y - ' ( 2  - y ) B ( l  - z).-' dz, 
B ( a  + P , Y )  Y 

B-'(l  - Z)a-l dz, 

and 

Note that in the particular case when = 0, the above distribution becomes 
a beta distribution. 

The following generalization of the beta distribution was suggested by 
Armero and Bayarri (1994) in connection with marginal prior/posterior 
distribution for parameter p (0 < p < 1) representing traffic intensity in a 
M/M/1 queue (or, equivalently, the parameter of a geometric distribution 
Pr[N = nlp] = (1 - p)pn, n = 0,1,2,.  . . ). A random variable X has a Gauss 
hypergeometric distribution with parameters a ,  0 ,  y and z ( a  > 0, P > 0) if it 
has a continuous distribution with probability density function 

where the normalizing constant C is given by 

Here, F represents the Gauss hypergeometric function (see Chapter 1) .  The 
kth moment (about zero) of X is 

The above given Gauss hypergeometric distribution becomes the beta(cy, P )  
distribution when either y or z equals zero. Some plots of the Gauss 
hypergeometric density are shown in Fig. 25.4. 

The arc-sine distribution [Eq. (25.811 has been studied by Norton (1975, 
19781, Shantaram (1981), and Arnold and Groeneveld (19801, among others. 
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Figure 25.4 Gauss hypergeometric density px(x12, k ,  3 , 2 )  for k = 1.2.3.5 

The central moments of the standard arc-sine density, 

are 

Also for the distribution with the pdf, 

we have [Norton (197511 

and these moments characterize the distribution. If U and V are i.i.d. 
uniform ( - T ,  P )  random variables, then sin U, sin 2U, - cos 2U, sin (U + V ) ,  
and sin (U - V )  all have arc-sine distributions. 
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The following characterizations of the arc-sine distribution are based on 
the fact that the moments characterize this distribution (because its support 
is finite): 

1. If X is a symmetric random variable, the random variables x 2  and 
(1 + X)/2 are identically distributed if and only if X has the arc-sine 
distribution (25.8). 

2. If X is a symmetric random variable and X* and 1 - X 2  are identi- 
cally distributed, then X and 2 ~ m  are identically distributed if 
and only if X has the arc-sine distribution (25.8). 

3. If X, and X2 are symmetric i.i.d. random variables and X: and 
1 - X: are identically distributed, then X: - X j  and X1X2 are identi- 
cally distributed if and only if Xi have the arc-sine distribution (25.8). 

Characterization (1) can be expressed in terms of the fraction of time, W, 
spent by a symmetric random walk on the positive side of zero as follows: 
From (25.81, X - 2W - 1 has density (25.1) Seller (1966) noted that W is 
more likely to be near 0 or 1 than to be near $. Indeed, since x2 and 
W = (1 + X)/2 are identically distributed, it follows that 4( W - f l2 and W 
are identically distributed. Thus we have for t E (0,1), 

For example, Pr[W 5 0.011 = Pr[W 2 0.991 = Pr[0.45 5 W I 0.551. 
Shantaram (1981) proved that if X and Y are i.i.d. random variables, then 
X + Y and XY are identically distributed if and only if X has an arc-sine 
distribution or is one of a certain class of discrete random variables, consist- 
ing of two degenerate random variables and for each K 2 2 a unique random 
variable whose support consists of K mass points. A similar result was 
obtained by Norton (1978). 

Patel and Khatri (1978) studied the Lagrangian-beta distribution with the 
cdf, 

r - l  

FT(tln, a, P ,  r )  = 1 - C --- a t ) ~ ( ~  - a t ) n + o ~ - ~  (25 3 9 )  

i 
; and the pdf, 
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For p = 1 we have 

a 
p,(tln, a ,  1, r )  = - ( ~ t t ) ~ - ~ ( l  - c ~ t ) ~ - I .  (25.91) 

B ( n ,  r )  

The motivation is as follows. The time between occurrences of a classical 
negative binomial process (see Chapter 5) follows a beta distribution. Sup- 
pose that the process is controlled by the generalized negative binomial 
(GNB) distribution 

n r ( n  + p x )  
Pr[X = xln, a ,  t ]  = - 

x !  T ( n + p x - x +  1) 
( a t ) " ( l  - a t )n+PX-X,  

[Jain and Consul (1971), Chapter 6, Section 11 where t 2 0 is the time 
between occurrences of the GNB process, 0 I a t  I 1. Then the cdf of the 
random variable T, which is the time until the r th  occurrence of the GNB 
process, is given by (25.89). 

Pate1 and Khatri (1978) calculated the moments of this distribution. In 
particular, 

and 

(E[Tl  decreases as P increases.) They also provide graphical representation 
of the distribution. 

Recently, Fosam and Sapatinas (1994) have presented some regression 
type characterization results for the Pareto and power-function distributions, 
basing them on beta random variables, thus relating these distributions. 

8 PRODUCTS, QUOTIENTS, AND DIFFERENCES 
OF INDEPENDENT BETA VARIABLES 

Early results on the distribution of products of independent beta variables 
were obtained by Kotlarski (1962). Since then a small 'cottage industry' has 
developed in statistical literature on these topics. A few examples are 
presented here. 
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Since the product of k independent random variables with standard beta 
(pi, q,) distributions (i = 1,2,.  . . , k) has finite range of variation (from 0 to 
l), its distribution is determined by its moments. With k = 2, Y = XlX2 has 
a beta distribution if and only if 

can be expressed in the form 

r (  P + r )F (  P + q )  
' I r =  

r ( p ) r ( p  + q  + r T  
for all r 

For the requirement of cancelling of terms in the numerator and denomi- 
nator of (25.94a) means that either p,  = p, + q, or p, = p, + q, .  In the first 
case we have p = p,, q = q , + q2 in (24.94b); in the second case p = p , , 
q = q ,  + q,. Generally the r th moment of Y = l"I,k,,X, is 

and Y has a standard beta ( p ,  q)  distribution if and only if (25.94b) is 
satisfied. This condition is satisfied if 

i -  l 0 

Pi = P + C q, with q, = 0.  
j =  l j =  I 

Then 

i 
L - - r ( p  + r ) r ( p  + q l  + - . .  +qk)  

(25.95b) 
F ( P ) ~ ( P  + 41 + +qk + r )  

t 
t 

so that Y has a standard beta ( p ,  C;k_ ,q,) distribution. [See, e.g., Fan (1991) 
for a different analysis leading to this result.] 
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Using the Mellin transform [Chapter 1, Eq. (1.166)1, Steece (1976) showed 
that the pdf of Y = X I  X2 is 

where ,F1(-)  is the (Gauss) hypergeometric function (defined in Chapter 1, 
Section A6). The cdf of Y is 

where I,(.) denotes the incomplete beta function ratio [defined in Chapter 1, 
Eq. (1.91)]. [Note that different formulas are obtained by interchanging 
( p l ,  q l )  with (p,,  q,). See also Fan (1991).1 

Exact formulas for the distributions of products and quotients of indepen- 
dent standard beta (p i ,  q,) random variables XI; . ., X, can be derived 
straightforwardly (though somewhat tediously) provided at least one parame- 
ter of each variable is an integer. Dennis (1994) has recently derived closed 
form expressions (involving infinite series) for the cumulative distribution 
function and probability density function of the product of k independent 
beta random variables when pi and q, ( i  = 1,2,.  . . , k )  are real-valued 
parameters. Through these expressions, he has also illustrated the computa- 
tion of the distribution of the product of three independent beta variables. 

The joint pdf of X I  and X2 is 
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If q ,  and q2 are integers, (25.97) can be rewritten as 

To  evaluate the cdfs of V = X I  X ,  and W = X 2 / X l ,  we need to integrate 
functions of form xf Ixzz over regions x , x2 5 v, x , / x ,  I w,  respectively. We 
have 

and 

J ; ( c I ,  c , )  = // x;lx;2 d r 2  d r ,  
x * / x l  5 w  

( c ,  + l ) ( c ,  + c2  + 1) ' 

(25.98b) 

Then 

~ J , ( P ,  + - 1, P ,  + r 2  - 1)  

and 
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Note that 
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if c, # c,, 
dl (e l ,  ~ 2 )  C I  - C2 

d L? 
(25.100a) 

L, -- logc i f c ,  = c ,  = c  
c + l  

and that 

For the case where p, and q ,  are both integers, for all i = 1, .  . . , k, the 
book by Springer (1978) presents the following formula for the pdf of 
Y = n;= ,xi: 

where d, is the number of different integers occurring with multiplicity g, in 
the collection of integers 

and m is the number of different multiplicities. (Note that there are q, 
members of the hth set, so C?, , g , d ,  = c:, ,q,,.) The constants K,, are 
determined by the recurrence relation 

with 
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For example, if we have k = 3 and p, = 9, q ,  = 3; p2 = 8, q,  = 3; 
p2 = 4,  q, = 2,  the collection of integers is 

The integers have the frequencies 

g ,  = 1 for 3 , 4 ,  7,  and 10, 

g2 = 2 for 8 and 9. 

Hence rn = 2, d l  = 4, d 2  = 2,  

The pdf is 

It is shown in Figure 25.5. 

Y 
Figure 25.5 Probability density function of product of three beta variables 
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Pederzoli (19851, using a factorial expansion of ratios of gamma functions, 
obtained 

where 

and = a(a + 1) . . (a  + rn - 1) (provided that pj + si # p, + s, for all 
i # j, where the st's are nonnegative integers). The pi's and q,'s need not be 
integers but must be positive. 

If all of the 9,'s are positive integers, (25.103b) becomes 

Tang and Gupta (1984) obtained 

where f (k )  = C:= ,q, and the a,,,'s satisfy the recursive relations 

with a,,, , = l/T(q,). For k = 2, we obtain Steece's formula (25.96a). 
Fan (1991) has provided an approximation to the distribution of Y in 

which Y has an approximate standard beta (p ,  q)  distribution with 
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where 

Pi 
S = n (-) and T = n P;( P; + 1) 

i = ~  P ; + q ;  ( P i  + c?; ) (P;  + 4; + 1) 

This approach ensures that the approximation has the correct expected value 
and variance. He compared the first ten (!) moments of the approximate with 
those of the exact distribution over a considerable range, with quite good 
results. For example, with k = 3 , ( p l ,  P , ,  p , )  = (778,43,23) and ( q , ,  q2 ,  4 , )  
= (567,57, 12), the approximate eighth moment is 0.10554 X lo-' ,  while the 
exact value is 0.103925 X 

Pham-Gia and Turkkan (1993) have derived the distribution of the differ- 
ence D = X ,  - X 2 .  The pdf of D is 

for0  s d  I 1 ,  
= I Fl(q271 - P ~ , P I  + P , + ~ I  + q 2 -  

r11+42- I 
p I  + q 2 ;  1 - d 2 ,  1 + 

B( P I *  q2)( - d l  
( l  + d ) P 1 f q 2 - 1  

A 
for - 1 I d I 0, 

(25.103e) 

Figure 25.6 Probability density functions of differences between independent beta variables 
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i 

is the first Appell hypergeometric function in two variables; here, = 

a ( a  + 1) . .  ( a  + b - 1). ( F l  is convergent for lxll < 1 and Ix2I < 1.) The 
distributions can have a great variety of shapes depending on the values of 
( p i ,  q,) ,  i = 1,2. Some cases are presented in Figures 25.6a, b [Pham-Gia and 
Turkkan (1993)l. 

Recently, Pham and Turkkan (1994) derived the distribution of sum of two 
independent beta random variables. Let X I  and X ,  be independently 
distributed as beta with parameters ( p , ,  q ,) and ( p, ,  q , ) ,  respectively. Then, 
they have shown that the density function of S = X ,  + X ,  is as follows: 

I , / { r ( q l ) r ( q 2 ) r ( p I  + p2)) .  where B * ( p , ,  q , ;  p,, q , )  = r ( p 1  + q , ) r ( p 2  + q  ) 
Compare this density with that of the difference D presented in Eq. (25.103e). 
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Figure 26.1 (a) Uniform density function; (b) Uniform distribution function. 

The linear transformation transforming the uniform (0,O) back to uniform 
( a  - h ,  a + h )  is Y = a - h + (2h/B)Z.  One may similarly define the uni- 
form distribution on the interval ( a ,  a + 8 )  with probability density function 

- a I x I a + e ,  

0 ,  otherwise. 

The standardized uniform distribution (having mean 0 and standard devia- 
tion 1 )  has the pdf 

We will refer to the uniform distribution over (0 ,  I ) ,  with the pdf 

p )  = 1 0 l r s 1, (26.4)  

as the standard uniform distribution. If R is uniformly distributed between 0 
and 1 ,  then 

has the standardized uniform distribution. 

2 GENESIS 

The uniform distribution (26.11, with a = 0 and h = x is often used 
to represent the distribution of roundoff errors in values tabulated to the 
nearest k decimal places. Of course, if the rounding were applied to figures 
expressed in a binary scale, we would have h = 2 - ( k + " .  



Nagaev and Mukhin (1966) have investigated conditions under which a 
rectangular distribution of roundoff errors is to be expected. In particular 
they have shown that if X I ,  X,, . are independent random variables with 
characteristic functions E [ ~ ' ' ~ J ]  = c$,(t), then for any positive integer a ,  a 
necessary and sufficient condition for 

lim Pr L x , - a  L; i x  =- ,  O r x < a ,  
n-m ( [,: ) .: 

is that 

In the expression above [E;, ,Xj/a] means "integral part of E;, ,X,/a," so 
C;= I X, - a[Z;= ,X,/a] is the roundoff error of Eyyl X, in units of a. The 
condition Il:= ,4,(2rrk/a) = 0 is certainly satisfied if all X's have the same 
distribution and if Ic$j(2rk/a)l < qk < 1 for infinitely many j and some 
qk < 1. Holewijn (1969) showed that if 

lim n-' 4 , ( 2 r k )  = 0, k = 1 ,2 , .  . . , 
n-m j =  1 

then the fractional part sequence is uniformly distributed "almost certainly" 
-that is, nearly all the variables {X, - [X,]) have unit uniform distributions. 

A rectangular distribution also arises as a result of the probability integral 
transformation [see Quesenberry (1986)l. If X is a continuous variable and 
Pr[X 2 x]  = F(x), then F ( X )  is distributed according to (26.1) with a = h = 

I or equivalently according to (26.4). This result [first employed by Fisher 
(1932)l has been applied in a number of ways [Durbin (1961), Pearson (1938), 
Stephens (1966)l in various techniques for combining results of statistical 
tests (see Section 9). 

3 HISTORICAL REMARKS 

The uniform distribution is so natural a conception that it has probably been 
in use far more than can be inferred from printed records. Among such 
records we may mention, in particular, descriptions of the use of the 
distribution by Bayes (1763) and Laplace (1812). 

Some particular historical interest attaches to the distribution of the sum 
of independent random variables, each having the same rectangular distribu- 
tion. Seal (1950) gives an extensive bibliography on this subject (see also 
Section 26.9). 
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4 GENERATING FUNCTIONS, MOMENTS, AND ORDER STATISTICS 

The expected value of a random variable Y with probability density function 
(26.1) is a. The distribution is symmetrical, and all odd central moments are 
zero. If r is even, the r th  central moment of Y is 

It follows that var(Y) = (1/3)h2 and that 6 = a, = 0 and P2 = a,  = 1.8. 
For the standard uniform distribution (26.4) the expected value is 1/2 and 
the variance is 1/12 (corresponding to h = 1/2). 

Formula (26.5) gives the values of the r th absolute central moment for all 
positive r. In particular, the mean deviation is h/2. Hence for this distribu- 
tion 

Mean deviation 6 
= -  = 0.866. 

Standard deviation 2 
(26.6) 

The characteristic function is E[eifY] = e""(sin(th)/th). The moment-gener- 
ating function is E[e f

Y]  = efa(sinh(th)/th) = f(th)-'(e'(a+h' - e""-") ). The 
cumulants are 

2'- 'hrBr 

\ K r  = r 
( r even) 

(Br is the r th  Bernoulli number; see Chapter 1, Section A9). 
The information-generating function [ (u - 1)th frequency moment] is 

The entropy is - T'(1) = log(2h). The characteristic function of the uniform 
(0, l )  variable can be written 

The moment-generating function of this variable is (ef - l)/t .  More gener- 
ally, the moment-generating function of uniform (0,8) random variable is 

- 1 ___ = e0r/2 
sinh (8t/2) 

8t 9t/2 . 

[Note that Haight (1961) gave an erroneous expression.] 



For the uniform distribution on the interval (a ,  a + 91, the Lorenz curve is 3 
given by 

and the Gini index is 8(3(8 + 2a)). 
The pdfs  of order statistics X; r X i  r - - - I XA of random samples of 

size n from the uniform distribution (26.1) can be computed from the general 
formula [Chapter 12, Eq. (12.14)], which gives: 

or, for the standard uniform distribution ( a  = h = i) 

Px;  ..... X; , (X~; - - ,X , )  = n!, 0 r x ,  r I X ,  I 1. (26. lob) 

The distribution of Xi' corresponding to (26.10b) is 

This is a standard beta ( j ,  n - j + 1) distribution (cf. Equation (25.2) in 
Chapter 25). 

The joint distribution of Xi' and Xi' is 

n! 
Px;, x;(xi, xi) = xi- , (xj  - xj)'-'-I(l - xi)"-', 

( i  - l)!(j - i - l)!(n - j)! 

0 I xi I xj I 1. (26.11b) 

We have 

with aLbl = a ( a  + I ) .  . . ( a  + b - I ) ,  (26.11~) 

whence 

E [ X , ! ]  = ( n  + 1)- ' i ,  

var(X,!) = ( n  + 1)-'(n + 2)- ' i (n  + 1 - i ) ,  

cov(X,', X i )  = ( n  + 1)-'(n + 2)- l i (n  + 1 - j ) .  



CHARACTERIZATIONS 281 

From the joint distribution of the least and greatest order statistics (Xi 
and XA) the distribution of range (W = XA - Xi) can be shown to have the 
pdf 

So W has a beta (n - 1,2) distribution. 
The distribution of the ratio yj = X,!/X,! ( i  < j )  corresponding to (26.11b) 

is just that of the ith order statistic in a sample of size j - 1 from a standard 
uniform distribution; this is given by (26.11a) with n replaced by j - 1 and j 
replaced by i, namely a standard beta (i, j - i )  distribution. The distribution 
of the product Y, ,  = X,!X,! (i < j )  based on a random sample of size n from 
the uniform (0 , l )  distribution, can be derived from (26.11b). The pdf is 

n !  . . n - j  
y ( ~ / 2 ) - 1 ( 1  - y ) J - '  

2 ( i  - l ) ! ( n  - j)!(j - i ) !  = k = O  

x2F , ( j  - i ,  : ( j  + k )  - i + 1; j - i + 1 ;  1 - y), O < y < l  

elsewhere 

(26.13a) 

For i = 1 and j = n we have 

I ( l - y ) n - ' , ~ , ( n - l , T n - l ; n ; l - y ) ,  O < y < l ,  P A Y )  = 
elsewhere, 

where the function ,F, is as defined in Chapter 1, Section A6. 

5 CHARACTERIZATIONS 

Characterizations of the uniform distribution often provide useful tools for 
constructing goodness-of-fit statistics, simulation of complex statistical proce- 
dures, and testing the quality of pseudorandom number generators. Many 
characterizations of the uniform distribution can be traced to the correspond- 
ing characterizations of the exponential distribution (Chapter 19) since the 
simple monotone transformation X = e-' of a standard exponential random 
variable Y yields a uniform (0 , l )  random variable. 



For example, Hamdan (1972) has shown that X is uniformly distributed 
over (0,l) if and only if 

Pusz (1988) provides alternative characterizations of the type 

where h( - )  and g ( . )  are certain known functions. 
A random variable X has the uniform distribution on (0 , l )  if and only if 

for any a E (0, l )  

1 
E[X-"Jx < y ]  = - Y - *  for y E ( 0 , l ) .  (26.14~) 

1 - a  

[Compare characterizations of the exponential distributions (Chapter 19, 
Section 8) by the properties of conditional expectations. Galambos and Kotz 
(1978) provide additional details.] Moreover there are several characteriza- 
tions of the uniform distributions on abstract spaces which would be more 
appropriately designated for spherical uniform distributions [see, e.g., Brown, 
Cartwright, and Eagleson (1986)l. Herer (1993) obtained the following char- 
acterization: A real random variable X, with finite support, has a (continuous 
or discrete) uniform distribution if and only if, for any a < b  in its support, 
E[Xla I X r b ]  = +(a + b )  when Pr[a r X I b ]  > 0. The same result fol- 
lows from the paper by Das Gupta, Goswami, and Rao (1993) to be discussed 
below. In fact, Ouyang (1993) (see below), Herer (1993), and Das Gupta, 
Goswami, and Rao (1993) all provide, independently, essentially the same 
characterization. Popular characterizations are based on correlations of order 
statistics. 

Terrell (1983) and Abdelhamid (19851, among others, provide the follow- 
ing characterization: Let Xi < X; be the order statistics of a sample of size 2 
from a continuous distribution with finite variance. Then the correlation 
between Xi and X; is less or equal to t, with equality if and only if F is a 
uniform distribution. Papathanasiou (1990) similarly established that, in a 
sample of size 2, cov(X;, X;) I fvar(X), with equality holding if and only if 
the population distribution is uniform; also see Ma (1992). Balakrishnan and 
Balasubramanian (1993) showed that this characterization is equivalent to the 
one based on the inequality E[X; - E(X)] I (f var( x ) ) ' /~  due to Hartley 
and David (1954) and Gumbel (1954). SzCkely and M6ri (1985) extended 
Terrell's result by showing that 
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with equality if and only if the population distribution is uniform. The proofs 
provided by Terrell, Abdelhamid, and SzCkely and Mori are all different, but 
all use the Cauchy-Schwarz inequality. These characterizations show that for 
the uniform distribution the order statistics are the most highly correlated. 

The structure of the expected spacings between consecutive order statis- 
tics was utilized for a characterization of the uniform distribution by Saleh 
(1976) [implicit in Cox and Lewis (1966)l. This states that under appropriate 
conditions on G(u) = inf,{x: F(x)  2 u) and finiteness of the mean ( t ) ,  
the property E [ v ]  = a / (n  + 11, i = 1,2, .  . . , n, where V,  = Xi - X,'-, 
(X; = 6 - a/2;  X;,, = 6 + a/2)  characterizes the uniform distribution on 
[& - $a ,  + $(TI. Applications of this characterization are plentiful in prob- 
lems related to queueing theory. 

Huang, Arnold, and Ghosh (1979) show that for a superadditive continu- 
ous cdf F ( - )  [satisfying F(x + y) 2 F ( x )  + F(y)  for all x, y and x + y in 
the support of F], identical distribution of V, and V, for some k = 2,. . . , n 
implies that F is uniform. If superadditivity is replaced by bounded support 
and absolute continuous and monotonic density then this modified condition 
also characterizes uniform distributions [Ahsanullah (1989)]. [Compare with 
corresponding characterizations of the exponential distribution (Chapter 19, 
Section 8) under somewhat more restrictive conditions.] Note that for a 
Bernoulli random variable with probability of success n/(n + 11, V, V2 
and so some smoothness condition on F is essential. 

Shimizu and Huang (1983) show that, in the class of absolutely continuous 
distributions, uniform (0,8) distributions are characterized by the property 

x; - x; a x;. 

Lin (1986) showed that for a sample of size 2 from any distribution with 
finite second moment, 

with equality if and only if F is degenerate at x = 0 or uniform on [O, c )  with 
c = ( ~ E [ x ~ ] ) ' / ~  > 0. [The proof involves the explicit expression of E [ X ; ]  in 
terms of F- '(  .I: 

and utilization of the Cauchy-Schwarz inequality.] 



Lukacs (1979) characterizes uniform distribution over [ -  1 , l l  by the prop- 
erty that the expected values of 

and 

do not depend on XI  + . . +X,. The proof involves solution of complicated 
differential equations for the characteristic functions. 

Das Gupta, Goswami, and Rao (1993) have discovered that the condi- 
tional expectation property, 

for some n 2 3, implies that the underlying distribution is either uniform 
over an interval or discrete uniform (see Chapter 6, Section 10.1) supported 
on a set of equispaced points. The main idea is that the above cited property, 
involving conditional expectation, determines the structure of the support of 
the underlying distribution. 

We now note some characterizations based on inequalities among the 
moments, and also the so-called Chernoff-type inequalities (which are vari- 
ants of the Chebyshev Type I inequalities) due to Sumitra and Kumar (1990). 
If X has an absolutely continuous distribution, with support [ -  1,11, and a 
symmetric density with its only mode at x = 0, then 

E [ x ~ ]  I SUP (E[ 'g(X)121 ] c ( 8 n - ' ) ~ [ I X l ]  (26.20) 
E [ [ ~ ' ( x ) I ' ]  

where the supremum is taken over all even convex functions on [ -  1,1] with 
g(0) = 0. The upper bound is achieved if and only if X has a uniform 
distribution on [ - 1,1]. As is the case for many characterizations based on 
inequalities, the final step in the proof of (26.20) is provided by the Cauchy- 
Schwarz inequality. 

A characterization useful for testing goodness-of-fit was introduced by 
Seshadri and Shuster (1971) in an unpublished manuscript. It asserts that 
under appropriate regularity conditions, a necessary and sufficient condition 
that i.i.d. random variables Y,, Y, possess a uniform [O, 81 distribution for 
some 8 > 0 is that T = min(Y,, Y,)/max(Y,, Y,) is uniformly distributed on 
(0, l )  [see, e.g., Kotz (1974) for more details]. 
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Some remarkable characterizations are related to the following property, 
noted by Feller (1966): If X I  and X, are mutually independent random 
variables assuming values in (0, l )  and X I  has a uniform (0, 1) distribution, 
then the fractional part of (XI + X,)-namely Z = X I  + X, - [XI + X,J, 
where [a ]  is an integer part of a-also has a uniform (0, l )  distribution if and 
only if X, has a uniform (0 , l )  distribution. [Stapleton (1963) discusses this 
problem in a more abstract setting.] Arnold and Meeden (1976) point out 
that these assumptions imply that X, and Z are mutually independent. 

Goldman (1968) showed that if XI and X2 are i.i.d. and Z [= (XI + 
X,)mod 11 and X I  have the same distribution, then X I  has a uniform 
distribution on (0 , l )  or a discrete rectangular distribution on a set of values 
(0, m - I ,  2m - ', . . . , (m - 1)m- '1 for some m. An alternative version of this 
result, useful in operations research, is that if X,  and X2 are independent 
random variables on (0, l )  with the same cdf F, the distribution of [(XI + 
X,)mod 11 is F if and only if XI (and X,) are uniform on (0 , l )  (discrete or 
continuous, depending on F). Arnold and Meeden (1976) obtained a similar 
result. Driscoll (1978) generalized the result to variables X I  and X,, which 
are mutually independent, each having a positive pdf over a finite interval 
[a,  61, and 

X I  + X, - a for 2a  < X I  + X, I a + 6 ,  z = (  
XI + X, - b for a + b < X I  + X, I 26 (26.21) 

[a = 0, b = 1 gives Z = (XI  + X,) mod 11. This result has been a source for 
examples of sets of three identically distributed variables that are pairwise 
but not jointly independent. 

For a continuous random variable X defined on the interval [a,  b], 
Ouyang (1993) shows that E[XIX > c]  = (6  + c)/2 for a < c < b iff X is 
uniform. Similarly, for a sample of size n, the condition E[ XL + , - Xl JX; = 

cl = (6 - c)/(n - k + 1) for any 1 s k < n and a < c < 6, has also been 
shown by Ouyang (1993) to be a characterization of the uniform distribution. 
There is considerable overlap among papers discussing this type of character- 
izations. Somewhat different results that are useful in random number 
generation were obtained by Deng and George (1992). These results are 
summarized below. 

Let U and V be independent random variables distributed over (0 , l )  with 
continuous pdfs. Then statements (26.22a)-(26.22d) are equivalent: 

u 1 - u  
W ,  = min(- , -) - U(0, 1) ,  and independent of V ,  (26.22b) v 1 

A 1 - A  
w2= lu -  VI(, + ,) - U(O,1), and independent of V, (26.22~) 



where A = I ( , ,  ,,, the indicator function of V > U, and 

W, = ( U  + V)mod 1 - U(0, I ) ,  and independent of V. (26.22d) 

These results provide a partial answer to the important problem of determin- 
ing the family of functions g for which the uniformity of U and V implies 
(and is implied by) uniformity of g(U, V )  if U and V are independent 
random variables having continuous pdfs with support (0,l). (This is relevant 
to construction of methods for improving pseudorandom number generators 
to make them give results closer to standard uniform distributions.) 

6 ESTIMATION OF PARAMETERS 

If observations in a random sample are represented by independent random 
variables Y,, Y,,. a ,  Y, each with distribution (26.1), the likelihood function is 
equal to (2h)-" for a - h I min(Y,;. a ,  Y,) I max(Y,;. -, Y,,) I a + h. This 
likelihood is maximized by making h as small as possible. In other words, the 
maximum likelihood estimator of h is 

The maximum likelihood estimator of a is therefore 

L? = $ [ m i n ( ~ ,  ; . . , Y,) + max( Y, , . . , Y,)] = midrange(Y,, . - . , Y,) . 
(26.24) 

In fact the best linear unbiased estimators of h and a are 

( n  + 1 - 1 and 6, (26.25a) 

respectively. The variances of these estimators are 

2h2(n - 1)- ' (n + 2)- '  and 2h 2(n  + 1)- ' (n  + 2)- ' ,  (26.25b) 

respectively. 
The estimators a  ̂ and h are uncorrelated but not independent. In fact 

their joint probability density function is 



ESTIMATION OF PARAMETERS 287 

The distribution of h alone is 

The distribution of â  alone is 

n -  l n - 2 ( f )  n ( i - l a 1 - a - f l )  , a - h < a l i a + h .  

Cumulative probabilities ~ r [ h  < HI,  Pr[B < A ]  are easily evaluated from 
these probability density functions. The arithmetic mean Y and the median f 
are also unbiased estimators of the parameter a .  

It was noted by Carlton (1946) that 

and that 

If n  is allowed to increase, var(il)/var(Y) tends to zero and var(f)/var(p) 
tends to 3. Consequently the "efficiency" of the mean is zero, and the median 
is only one-third as efficient as the mean. (However, since a  ̂ does not have a 
normal limiting distribution, the concept of efficiency cannot be strictly 
applied here.) 

It will be noted that these estimators are functions of order statistics (in 
fact of the smallest and greatest values). The theory of order statistics for 
random samples from rectangular distributions (see Section 26.4) is remark- 
ably simple. This has led to the proliferation of methods of estimation based 
on various combinations of order statistics. We will discuss some of these in 
the next section. 

I 
I The maximum likelihood estimator of the population standard deviation in 
1 the case of a uniform distribution is the sample range divided by 2 6  
1 (equivalently, sample semirange divided by 6): 
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I 

Table 26.1 Comparison of &' and &"' 
Mean Square 

n Error Ratio Closeness 

1 1.333 0.571 
2 1.029 0.530 
3 1.001 0.505 
4 1.002 0.509 
5 1.008 0.5 19 

10 1.036 0.542 

20 1.061 0.556 

m 1.094 0.571 

Source: Johnson (1950). 

! 

lower limit (a  - h) is known, and it is desired to estimate 2h. Such a case 
was achieved as a continuous approximation to a problem proposed by 
Schrodinger [referred to by Geary (1944)], who called for estimation of a 
number N (positive integer) given n independent integers, each equally likely 
to be 1,2,3, .  . . , N. Geary's (1944) model regards N as a parameter that can 
take any positive value and assumes the observed values Y,  to be uniformly 
distributed continuous variables: 

which is (26.1) with a = fN,  h = fN. 
Johnson (1950) discussed four estimators of N, each depending only on 

max(Y,, Y,; ., Yn) = Ynf: 

1. The maximum likelihood estimator Y,'. 
2. The minimum mean square error estimator 6' = (n + 2)Y,'/(n + 1). 
3. The unbiased estimator f i "  = (n + l)Y,'/n. 
4. The closest estimator k"' = 2'/"Y1 n '  

Table 26.1 shows how Johnson's met$od of :omparison affects the assess- 
ment of "relative merit" of estimators &N' and Nu'. The second column~hows 
the ratio of the mean square error of N"' to the mean square error of N'; the 
"closeness criterion" is expressed as 

Clearly, fi"' is always a closer estimator of N than f i t ,  but fi' has the 
smaller mean square error. 
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Gibbons (1974) investigated three estimators of the parameter 8 in a 
population uniformly distributed over (O,8): 

1. The maximum likelihood estimator 6 which is the largest sample 
observation XA with moments 

2. The unbiased estimator 8  = ( n  + l)XA/n with moments 

E [ 8 ]  = 8,  

3. The symmetric estimator O* = Xi + XL with moments 

She found that the probabilities of relative errors of the estimators and 
8*, given by 

O* - o 
p r [ l y i  < E ]  and Pr[/xl < 

respectively, are the same [=  1 - (1 - eln]  for 0 < E < 1. Gibbons and 
Litwin (1974) studied simultaneous estimation of the parameters a and P  in 
the uniform density (26.1)'-namely of ( a  - h) and ( a  + h) in (26,l). 

The simultaneous maximum likelihood estimators 6 = Y,' and P  = Ynl are 
jointly sufficient, consistent, and complete for a and P ,  but they are only 
asymptotically unbiased estimators. The marginal distributions of these esti- 
mators are quite skewed, with modes at the end points of the interval (a, P) ,  
respectively. Gibbons and Litwin suggest using the linear unbiased uniformly 
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minimum variance estimators given by 

and 

which are consistent and locally symmetric, that is, p,,(a + 6 )  = P&'((Y - 6) 
and p&3 + 6 )  = p@(P - 6 )  provided that 6 / ( p  - a )  -t 0 .  They concluded 
that the expected value of the maximum absol~te  error [where tke maxi- 
mum absolute error of a pair of estimators 6 , ,  8,  is defined as (0,. 6 , )  = 

max(l(8, - a ) / ( p  - a l l ,  1 (6 ,  - p ) / ( ~  - (Y)I)] for estimators 61, P' 1s con- 
siderably smaller for all n than the corresponding expected value for estima- 
tors Y,, Yn, due to unbiasedness and local symmetry. The limiting values as 
n -+ w are (0.5 + 4 e - , ) / ( n  + 1) = 1.04/(n + 1 )  and 1.5/(n + I ) ,  respec- 

, tively. 
A numerical example of simultaneous confidence regions for ( a ,  Q )  with 

confidence coefficient of at least 0.95, based on the (Y,', Ynl) and (2, / ? I )  sets 
of estimators, respectively, is presented in Figure 26.2, corresponding to 
n = 20, Y,' = 10, and Y; = 50. Note that the region includes the "impossible" 
sample values Y;  < a and Y,' > @ .  

Rukhin, Kuo, and Dey (1990) studied minimax estimation of the scale 
parameter h of the uniform distribution (26.1) on the interval where both h 
and a are unknown parameters. A version of the complete sufficient statistic 

Figure 26.2 Confidence regions for (a, P )  )IIIIIIIIII 
-1 0 2 4 6 8 10 12 14 16 18 

based on (2, $1 and on (Y; ,  Y,'). a 
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for this distribution is (Y, S)  with 

Y = i ( m a x q  + m i n x )  = f ( ~ i  + Y,'), 
i i 

S = max Y ,  - min Y ,  = Ynl - Y,', (26.32) 
i i 

and an estimator (under a quadratic loss function) of the form 6(Y, S)  = 

c,S[1 - g(Y/S)], where g is a symmetric nonnegative function (under a 
quadratic loss function). This is a minimax estimator provided I3 I g(z)  I 
D I 1 / ( 2 " + ~  - I), where D is a constant and subject to some additional, 
rather cumbersome, conditions on g(-) .  

Uniform distributions thus form a location-scale family admitting a two- 
dimensional sufficient statistic for their two parameters. However, the best 
equivariant estimator (of the form above) can be shown to be inadmissible. 
Rukhin, Kuo, and Dey (1990) provide an explicit expression for a g(z)  that 
yields a minimax estimator: 

D for -0.5 I z I 0.5, 
0 elsewhere. 

Fan (1991) notes that the statistics 

and 

are each unbiased estimators of the population mean ($9) for the uniform 
distribution over the interval (0, O) ,  and, for even n (= 2s), 

var(H,)  < var( H,) < - - . < var( H , )  < var( X )  < var(T,) < var(T,) 

M6ri (1983) [improving on an approach developed by Vincze (197911 
showed that for any unbiased estimator 6 of a based on random samples of 



size n from distribution (26.11, 

1 c 2h2 

lim inf - / var(d 1a)da 2 
c - r r ;  2c - =  ( n  + l ) ( n  + 2) ' 

In this way a lower bound is attained for "average variance" of a', using the 
i estimator 

t a* = +(Y,' + Y;) [cf. (26.24)]. (26.35a) 

6 Nikulin (1991) observed that a* and 
t ? 1.' 
I' 

i' h* = i ( n  - 1) - ' ( n  + l)(Y,' - Y,') (26.35b) 

are minimum variance unbiased estimators of a and h,  respectively. We have 

and 

cov(a*, h*) = 0. (26.36~) 

Jo6 and Szab6 (1992) present a discussion of the accuracy of a* for 
general symmetrical distributions. If a is known, we use the statistic 

Z = min((Y,' - a l ,  IY,' - a l ) ,  (26.37) 

which has the pdf 

The minimum variance unbiased estimator of h is 

h** = (1 + n - ' ) Z .  

Note that 

which is less than half of var(h*). 
Eltessi and Pal (1992) investigate estimation of the minimum and the 

maximum of the scale parameters 0, ,  8, of two uniform (0, 6,) ( j  = 1,2) 
distributions. Let X,,, . . ., X,, ( j  = 1,2) represent values from independent 
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random samples of size n from uniform (0, B,), and define 8( ,, = min(8,, 8,), 
- max(O,, 8,). The statistic X;, = max( X,,, . - , X,,) has the pdf Bcu, - 

Let Z,,, = min(X;,, X;,) and Z,,, = max(X;,, Xi,). There are no unbiased 
estimators of 8(,, and 4,) that are functions of only Z(,, and Z(, ,  [unless 
8, = 8, (= O,,, = 8,,,)]. The estimators 

with g(L) = 1, g(U) = 2, are "minimaxv-biased estimators of 8(4,, 8(,,, 
respectively, that minimize the maximum values of the proportional blas: 

0, L )  E [ $  - I ]  over 0 I - s 1, where as above 4 = ( L .  U) .  
f4u, 

Estimators minimizing the maximum risk are 

which appear to perform better than the other estimators for n 1 5 and 
OI/8, = 0.1(0.1)0.9. 

7 ESTIMATION USING ORDER STATISTICS-CENSORED SAMPLES 

The variances and covariances of ordered variables Y,' s Y; I . . - Ynl 
corresponding to a random sample of size n from (26.1) are given in (26.11~). 
These formulas make it possible to obtain best linear unbiased estimators of 
a and h. Such estimators were discussed by Lloyd (1952), Sarhan (1955), and 
Sarhan and Greenberg (1959). Some of their results are summarized below. 

If the smallest r ,  and largest r, values (out of a random sample of total 
size n) are omitted, the best linear unbiased estimator of a is 

â * = $[ (n  - 2r2 - 1) (Least observed value) 

+ ( n  - 2r1 - 1) (Greatest observed value)] 



-pau!eiqo 
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aqi Ile jo 1saleal8 pue lseal aql dluo asn u!e8e aM leql palou aq ~I!M 11 

S! .y pue *g UaaMlaq uo!jelallo3 aqL 

(~PP'~z) ',-(I - '1 - '1 - u),-(z + U)(Z + '1 + IJ)~~ = (*y)~e~ 

(e~9.92) 'l-(~ - '1 - '1 - ~)~-(z + u)'-(l + U)X 

[(I - 'JZ - u)(~ + '1) + (I - 'JZ - U)(I + II)]~Y = (*g)le~ 
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8 TABLES OF RANDOM NUMBERS 

A set of numbers 0 to 9 chosen independently of each other, with each 
number equally likely to be any one of the ten digits 0-9, is known as a table 
of random numbers. Although the distribution corresponding to the individ- 
ual recorded number is a discrete rectangular distribution (Chapter 6, Sec- 
tion 10.1), good approximations to samples from (continuous) rectangular 
distributions are obtainable by combining several integers together and 
applying an appropriate linear transformation. For example, taking groups of 
four numbers, adjoining a 5 at the right-hand end, and dividing by 100,000 
gives a good approximation to random samples from a standard uniform 
distribution (over the interval 0 to 1). The best-known published sets of 
random numbers are (in chronological order): 

Kendall and Babington Smith (1938, 1940) 
Rand Corporation (1955) 

At present, tables of random numbers have been largely supplanted by 
random number generators [see, e.g., Devroye (1986) and Section 111. 

By combining uniformly distributed random variables in various ways, a 
number of other distributions can be built up. For example, if Y has a 
standard rectangular distribution (over the interval 0 to 1) then - 2 log Y is 
distributed as X 2  with two degrees of freedom (see the beginning of Section 
26.9). Additional examples are given in Marsaglia (1961). 

Dharmadhikari [cited in Troutt (1991)l notes that given the Laplace 
density (Chapter 24) 

px (x )  = ;exp(- (XI) ,  -m < x  < m, 

the ordinate px(X), considered as a random variable (the so-called vertical 
density function) is uniform. The same is true for the standard exponential 
density px(x) = e-" (0 < x ) .  Similarly for the uncorrelated bivariate normal 
density [Troutt (1991)l 

the ordinate P ~ , . + ~ ( X , ,  X2), considered as a random variable, is uniform 
[O, 1/(27r)l provldlng an intuitive interpretation of the Box-Muller method 
for generating normal variables (Chapter 13, Section 9). (At the time of 
writing, extension to a general multivariate setting remains an unproven 



As we mentioned in Chapter 25, the rectangular distribution is a special form 
of beta distribution. If X is rectangularly distributed over (O,1), according to . 

! (26.41, then Z = - log X has the exponential distribution (Chapter 19) 

[and conversely, if Z* has a standard exponential distribution, X = exp(-Z*) 
has a standard uniform distribution]. That is, Z is distributed as X 2  with two 
degrees of freedom (Chapter 18). This relationship is used in the construc- 
tion of certain methods for the combination of tests. Fisher (1932) proposed 
that values of independent random variables Z , ,  Z,,. . ., Z ,  obtained from k 
independent tests be combined by checking the value of C,k_ lZi against a X 2  

distribution with 2k degrees of freedom. [See also Quesenberry (19861.1 The 
distribution of nf= ,Xi is easily derived from the fact that its logarithm is 
distributed as - $xik. 

I The distribution of S, = C:=,X,, where XI,  X,; . a ,  X, are independent I 

f U(0,l) random variables, can be derived successively using standard convolu- 
1 tion formulas. The result is the Irwin-Hall distribution [Hall (1932); Irwin 

( s - j ) "  k ~ s ~ k + l , O ~ k ~ n - 1 ,  
(26.48) 

elsewhere. 

E 
For the more general case of U(0, a )  the pdf of S, is 

r 
\ The rectangular mean distribution is the distribution of the sum (S,)  as in 

f (26.48), divided by the sample size n, namely the arithmetic mean T. It has 
I 
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the pdf 

nn [ m l  n - 1  

P T ( ~ ) =  ( n  - ( )  1 - 0  
, O i f < l . ( 2 6 . 5 0 )  

This is also known as Bates's distribution [Bates (1955)l. This distribution is 
sometimes confused with the Irwin-Hall distribution. The remarkable history 
of investigation of these distributions [as described by Seal (1950)l has been 
mentioned in Section 26.3. 

When n = 2, the distribution of x2 = iS2 is a symmetrical triangular 
distribution : 

or equivalently 

The standard triangular distribution [see Ayyangar (194111 is represented 
(possibly after linear transformation) by a probability density function of form 

The graph of p,(x) sketched in Figure 26.3 indicates why the name triangu- 
lar is given to these distributions. If H = f, the distribution is symmetrical. 



Symmetrical triangular distributions have been called tine distributions 
[Schmidt (193411. 

The r th  moment about H is 

The expected value is 

t H +,/Jl(X) = + H ) ,  (26.54) 
I 

and the variance is 

! The median is at 

The mean deviation is 

1 - 2 - H )  if H < $, 
(26.56) 

& ~ - ' ( 1  + H ) ~  i f H > + .  

The ratio (mean deviation)/(standard deviation) has the following values: 

H 0.5 0.6 0.7 0.8 0.9 

Ratio 0.816 0.820 0.827 0.833 0.837 

When each X, can have different values of a, and h,, the distribution of 
the sum Sn is much more complicated. Tach (1958) gives five decimal place 
tables of the cumulative distribution function of Sn for n = 2,3,4, with 
a, = 0 for all j, and various h, (subject to C l ,  ,hi = 1). 

Barrow and Smith (1979) provided a succinct formula for the cdf of a 
linear function of independent uniform (0 , l )  random variables. A detailed 
investigation of the probability distribution of roundoff errors (essentially a 
linear combination of independent uniform ( -  $, 4) random variables; see 
Section 26.2) was provided by Mitra and Banerjee (1971). Their derivation 
was based on the formula for the volume of the intersection of a "half-space" 
with a hypercube in Rn,  involving concepts related to the theory of splines. 
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Barrow and Smith's formula is based on the relation: 

where 

i f x  > 0 ,  
if x < 0, 

and w is a real number, leading to 

where C is the "cube" {x E Rn;  0 I xi I 1 for i = I , .  . . , n); the summation 
is over the 2" vertices of C and sgnv = ( -  l)m, where m = C:, pi. 

Mitra and Banerjee's (1971) formula [earlier results are due to Lowan and 
Laderman (1939)l for the cdf of 

where 

[note that the transformed variables T, = ( -  l)'Rs + 4 are U(0, I)] is 
b 

i 
1 ~ r [ ~ , ,  5 x 1  = / . .  t o t l  . . .  dtn (26.59a) 
i 
t D 

1 
! with the region D defined by 0 I t ,  I 1 and 



The integral is similar to the Dirichlet integral, for which the domain of 
integration is (0 I t s )  (s = 0, 1,.  . . , n) and to + t ,  + + r n  I 1. The au- 
thors utilize the Dirichlet integrals and obtain 

1 .. 1 ' -  

for -, z wi s x I , w,, (26.59b) 

where 

and the summation is over si = 0 , l  for all i. 
The even moments are 

where summation is over all even integral values of h,, h ,, . a ,  hn such that 
C;=,hi = 2v; all odd order moments vanish. The variance is C~= ,w~/12 ,  and 
the kurtosis is 

which is always negative, indicating that the distribution is always platykurtic. 
The density is more flattened than the corresponding normal distribution 
near the median. For small values of x the asymptotic pdf is 

[Mitra and Banerjee's formula is of course equivalent to that of Barrow and 
Smith (1979), derived at the request of H. 0. Hartley.] 
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The joint distribution of the differences of successive order statistics of 
standard uniform variables is a Dirichlet distribution (Chapter 40). If Y,' I 
Y; I . . . I Y,' are defined as at the beginning of Section 7, and I/; = Y;' - 
Y;', [i = I , .  . . , (n  + I)], Yi = a - h; Ynl+, = a + h, then 

Putting h = (corresponding to a range of 1) we have 

n 

pv ,;.., v,( v, ; - , u,) = n!, 0 I u i ,  ui 2 1 [cf. (26.10a) and (26.10b)l. 
i =  l 

(26.63) 

More insight into the nature of this joint distribution is gained by noting 
that the same distribution (26.63) would be obtained if 

wi v. = ------ i = 1 , 2  ,..., ( n  + I ) ,  ' Cl=','w, ' 

where W,, W,, . ., Wn+ , are mutually independent random variables each 
distributed as X 2  with two degrees of freedom. From this point of view it is 
clear that the ratio (Y,'-,+ , - Yi)/(Y,'-,+ , - Y:), with s > r ,  has a standard 
beta distribution with parameters (n - 2s + 1),2(s - r )  (Chapter 25, Sec- 
tion 2). Criteria of this kind were suggested by David and Johnson (1956) as 
tests for kurtosis when the probability integral transformation can be used. 
As another example demonstrating that the range (Ynl - Y,') is equal to 
Cy=2V,, it is clear that range has a beta distribution with parameters (n - I), 2, 
as can be confirmed from (26.22); see also (26.27). 

The distribution of the ratio (I/) of ranges calculated from independent 
random samples of sizes n', n" from distributions (26.1) with the same value 
of h has been studied by Rider (1951, 1963). The probability density function 
of this ratio (sample size n' in numerator) is 

with C = nl(n' - l)nV(n" - l)/[(nl + nUXn' + n" - 1Xn' + n" - 2)]. Tables 
of upper lo%, 5%, and 1% points are given in Rider (1951); more extensive 
tables are given in Rider (1963). 
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4 
The distribution of the ratio (V) of maximum values when both random { samples come from U(O,2h) distribution(s1 was studied by Murty (1955). He , 

found that 

n'n" u n l - ~  
fo r0  I u I 1,  

n' + n" 
(26.65) 

U-n"- I for u 2 1. 
n' + n" 

i 

I Murty gives tables of the upper 5% point of the distribution of max(V, V - ' )  
d 
i' for n', n" = 2(1)20, (n' = sample size with greater maximum value). 
I 
I These last two criteria might be used in testing for identity of two 

rectangular distributions with respect to changes in range of variation (in the 
second case, with known initial point). A criterion introduced by Hyrenius 
(1953) uses "cross-ranges." If we denote by L', L" the smallest observations 
in the two samples, and by U', U" the largest (with the samples chosen so 
that L' I L"), then the cross-ranges are U" - L', U' - L". For V = (U" - 
L1)/(U' - L"), Hyrenius obtained the probability density function 

(n' - 1)n" 
n" - I forO I L! 5 1,  

n' + n" - 1 
PV'"' - ',, ,66) 

-n' for u r 1. 

He also considered T = (L" - L')/(Ur - L') = V + (ratio of ranges of the 
two samples). 

9.1 Mixtures of two uniform distributions 

Mixtures of uniform distributions have some importance in data analysis. 
They provide a tool for constructing histograms from a data set without 
attempting to estimate the underlying distribution. Gupta and Miyawaki 
(1978) studied estimation problems in the mixture of two uniform distribu- 
tions with a pdf of the form 

where 

forO < y < p ,  

0 otherwise, 
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and 

\ 0 otherwise. 

The mixture is identifiable unless p = P.  The kth crude moment of distribu- 
tion (26.67) is 

Given observed values of Y,, - . , Yn-independent random variables dis- 
tributed with the pdf (26.67) with P known, one can use the moment 
estimator (ME) of p, 

where = n-'X;, ,Y;, which is unbiased, with variance 

while the maximum likelihood estimator is 

Number of Y's I P 3 = 
n 

which is UMVUE and consistent. 
If p is known, a consistent and unbiased moment estimator of p is 

The maximum likelihood estimator (MLE) of P is in the interval [Y,', Yrl+ ,I, 
where Y: < p < GI. In fact 

n- r  
1 - y :  

n -r  (26.73) 
1 - Yrl 

1 - Y + l  



where r is determined by the inequalities Y: s p I Yrl+ ,. No comparison of 
the properties of and 4 is available in the literature, as far as we know. 

In the general case where both p and P are unknown, there are moment 
estimators of the form 

where Mr = n-'C;=,Y,'. These estimators are asymptotically unbiased and 
consistent. Gupta and Miyawaki (1978) provide expressions for the asymp- 

totic variance-covariance matrix of the joint distribution of , which is (: 1 ,- , 
asymptotically normal. 

To calculate the maximum likelihood estimators b ,  fi, the following itera- 
tive procedure has been suggested. Calculate the ~ o m e n t  estimators 13 [= 
(1 - 411 and as indicated above. Next calculate P from (26.73). Then turn 
to b = (number pf Y's < fi)/n and go back to (26.731, repeating until the 
values of fi and p stabilize. Again, there are no comparative investigations of 
the MLE and ME for the general case in the literature, so far as we know. 

Roy, Roy, and Ali (1993) have introduced the binomial mixture of uniform 
(0, a )  distributions with density given by 

The k th moment about zero of X is given by 

9.2 Other Related Distributions 

Among other distributions derived (at least in part) from the rectangular 
distribution there may be mentioned five: 

1. The Student's t (Chapter 28) when the variables XI;. ., Xn from which 
the t is calculated are independent and have a common rectangular 
distribution. Rider (1929) showed that for samples of size n = 2, the 
probability density function is of the form t(l + It\)-*. Perlo (1933) 
derived the distribution for samples of size n = 3, and Siddiqui (1964) 
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obtained a general formal result for any size of sample and noted some 
inequalities for the cumulative distribution function. 

2. Various distributions arising from the construction of tests of adherence to 
a specified distribution, using the probability integral transformation. 
Pearson (1938) pointed out that if Y has distribution (26.1) with a = h, so 
do 2h - Y, 21 Y - h 1 ,  and so on. Durbin (1961) showed that if the 
differences V,, V2; - ., V'+, (1.;. = Y,' - y- ,, with Y,', = 0, Y,'+ , = 1) are 
arranged in ascending order of magnitude V,' i V; i . . . i Vnt+ ,, the 
joint probability density function of V,', . . . , V,' is (for h = 

Also, if 

G, = ( n  + 2 - j ) ( C . ; ' -  y',) 

i [Sukhatme's (1937) transformation], then 
i 

1 Hence the quantities 

have the same joint distribution as the original ordered variables Yr
t, so 

any function of the W"s has the same distribution as the corresponding 
function of the Y:'s. Durbin gave a considerable number of references to 
other work on "random division of an interval," namely on uniform 
distributions. More recent works on random division of an interval are 
due to Chen, Lin, and Zame (1981), Chen, Goodman, and Zame (1984), 
Van Assche (1987), and Johnson and Kotz (1990); see also Chapter 25 for 
further discussions. 

3. The distribution of the ratio of a rectangular variable Y to an independent 
normal variable Z was described by Broadbent (1954). Calculations are 
facilitated by noting that, for example, with a = 0 in (26.1), 



Figure 26.4 Connection between a uniform angular distribution around a semicircle and a 
Cauchy distribution 

4. There is a connection between a uniform angular distribution around a 
semicircle and a Cauchy distribution (Chapter 16) on a line. If, as shown in 
Figure 26.4, 0 has the uniform probability density 

then the probability density function of X = PQ (OP is perpendicular to 
P Q )  is 

Hence X has a Cauchy distribution with scale parameter IOPI. 
Cowan (1980) noted that if W and Z are independent random variables 

distributed as gamma (a ,  1) and beta (a ,  a - a), respectively, then WZ has 
a gamma (a, 1) distribution. Taking a = 2 and a = 1 (so that WZ has a 
standard exponential distribution, and Z has a standard uniform distribu- 
tion) and remembering that 

a. since W has a gamma (2,l) distribution, we have W = W, + W2, where 
W, and W2 are independent standard exponential variables, so that, 

b. Xi = exp( - 4.) ( i  = 1,2) are independent, each being a standard uni- 
form variable as is exp( - WZ) = exp{ -(W, + W,)Z) = ( X, X2IZ, we 
obtain the following remarkable result: If XI ,  X,, and Z are mutually 
independent standard uniform variables, then (x,x,)' also has a 
standard uniform distribution. 

Alternative proofs were given by Zhao-Guo and Hong-Zhi (1980) 
who use characteristic functions, Scott (1980) who uses moments, and 
Westcott (1980) who provides an interpretation using Poisson processes. 
Westcott also obtained the following generalization: If 
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where X I ,  X 2 ;  - a ,  X,, are mutually independent standard uniform ran- 
dom variables, then the pdf of Yn = - log Wn is 

where T,(n - l ) / r ( n  - 1) is the incomplete gamma function ratio (see 
Chapter 1 ,  Section A5). 

5 .  Proctor (1987) introduced "generalized uniform" distributions, with 
cdfs of 

F x ( x )  = 1 - ( 1  - k ( x - a ) ' ] ' ,  k , c . h > O ; a  r x r a  + k - l I c .  

(26.82) 

These distributions are a counterpart to Burr type XI1 distributions 
(Chapter 12, Section 4.5) which have cdfs of form 

They cover parts of the ( P , ,  P , )  plane not covered by the latter. 

10 APPLICATIONS 

A frequent use of uniform distributions is in an explanatory capacity to 
clarify difficult theory in the classroom and in the literature. Chu (1957) and 
Leone (1961) utilized uniform distributions in connection with sample quasi- 
ranges. Anderson (1942) provided an early example of their use in stratified 
sampling. Levene (1952) among many others applied them to determine 
power functions of tests of randomness. Naus (1966) applied uniform distri- 
butions in a power comparison of tests of nonrandom clustering. There are 
also numerous applications in nonparametric tests, such as the Kolmogorov- 
Smirnov type. 

Irwin-Hall and Bates distributions (see Section 26.9) have found applica- 
tions in accident proneness models [e.g., Haight (196511. Some applications in 
physics are presented in Feller (1966). 
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10.1 Corrections for Grouping 

The uses of uniform distributions to represent the distribution of roundoff 
errors, and in connection with the probability integral transformation, have 
already been mentioned in Sections 26.2 and 26.9. These distributions also 
play a central role in the derivation of Sheppard's corrections (1907), which 
adjust the values of sample moments to allow for (on the average) effects of 
grouping. 

Suppose that the probability density function of X is p,(x). If the 
observed value is not X but the nearest value (A?) to X in the set of values 
{a + jh}, where j can take any (positive, negative, or zero) integer value, then 

We now seek to find an "average" relation between the cumulants of X and 
those of J?. If we assume that (2 - X )  has a uniform distribution over 
( -  i h ,  ih),  then 

J ? = x + Y ,  

where Y has a uniform distribution with a probability density function 

P A Y )  = h - ' ,  -+h  r y 5 i h .  

Also X and Y are mutually independent, so 

K,(J?) = K,(X)  + K,(Y). 

Using (26.71, we find that 

K,(X) = K,(x ) ,  

K ~ ( X )  = K*(x) - Ah2, 

K3(X) = K3(J?), 

K ~ ( X )  = ~ ~ ( 2 )  + &h4. 

The last equation implies that p 4 ( X )  = p4(A?) - h2p,(A?)/2 f 7h4/240. 

10.2 Life Testing 

We give the distribution of a statistic based on the r smallest of n indepen- 
dent observations from a standard uniform distribution. In life-testing termi- 
nology, this statistic includes as special cases (1) the sum of the r earliest 
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failure times, ( 2 )  the total observed life up to the r th failure, and ( 3 )  the sum 
of all n failure times. 

The statistic is given by 

where t, is the ith smallest of n independent observations and m is greater 
than r - 1 but is not necessarily an integer. For the case where m = n,  this 
statistic can be interpreted as the total observed life in a life-testing experi- 
ment without replacement. The results presented below are due to Gupta 
and Sobel (1958). 

The density function and the distribution function of T:.': are given by 

and 
X 

respectively, where 0 r t r m and 

From these expressions we can get as special cases the densities and cumula- 
tive distribution functions of case 1 :  T,,:'; case 2: T:,",'; and case 3: TjSn,!. 

The mean and the variance of T:.';), are given by the formulas 

The distribution of the statistic T,I:j, is asymptotically normal for r = An, 
m = yn ( y  and A fixed with 0 < A I 1 and A r y < m), and n -, m. Other 
earlier applications for life testing are given in Epstein (1948). 



Figure 26.5 Representation of the distance from a vehicle A to the next vehicle B, ahead of it 

10.3 Traffic Flow Applications 

Allan (1966) applied the uniform distribution to form a model of the 
distribution of traffic along a straight road. The road is divided into intervals 
each of length h,  and it is supposed that for each interval there are 
probabilities p of one vehicle being in the interval, q  of no vehicles being 
there. (For the purpose of this model the possibility of two vehicles being in 
the same interval is neglected, and likewise are the lengths of the vehicles.) It 
is further supposed that given that a vehicle is in an interval, its position is 
uniformly distributed over the interval. From Figure 26.5 it can be seen that 
the distance from a vehicle A to the next vehicle B ahead of it is distributed 
as 

where Y represents the number of empty intervals between A and B and has 
the geometric distribution (Chapter 5, Section 2) 

and X I ,  X ,  are independent random variables (also independent of Y) each 
having the distribution 

The distribution of S = X ,  + X ,  has density function 

[cf. (26.51YI. The distribution of T = hY + S has density function 

ph- , t ,  O s t s h ,  

~ h - ~ { ~ ~ - ' [ ( k  + 1)h - t ]  + q k ( t  - k h ) )  

= Pqk- ih -2 ( (1  + kp)h  - p t ) ,  kh s t  I ( k  + l ) h ,  k~  1 

(26.90) 
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t 
Figure 26.6 Allan's Binomial-Uniform (Headway) Distribution 

Allan called this distribution a binomial-uniform distribution. It should not 
be confused with the binomial-beta distribution of Chapter 8 (Section 3.3). 
The graph of the density function (26.90) consists of a succession of straight 
lines. Figure 26.6, taken from Allan (19661, shows some examples. 

Since Y, XI, and X, are mutually independent, it is easy to find the 
moments of T. The r th  cumulant is 

whence we find 

Allan (1966) also obtained the distribution of the sum of an independent 
identically distributed binomial-uniform variables and provided tables of the 
cumulative distribution function to four decimal places for p = 0.4(0.1)0.9, 
t/h = 0.5(0.5)25, n = 1(1)20. Applications to queueing theory-with waiting 
time uniformly distributed-were provided by Haight (1958, 1960). 



10.4 Applications in Statistical Tests and Models 

We have already noted the probability integral transformation (at the end of 
Section 26.2) and its use in formulation of procedures for combining results 
of significance tests [see (26.77) and beginning of Section 26.91. The use of 
uniform distributions in constructing models of distributions of roundoff 
error has been described in Section 26.2. 

11 RANDOM NUMBER GENERATION 

Routines for generating uniform random numbers play an important role in 
many Monte Carlo or simulation studies. Uniform random generators facili- 
tate in principle simulation of pseudorandom numbers from any continuous 
distribution, using the inverse cumulative distribution function transforma- 
tion. 

There are many random number generators available in the literature. A 
common one is the "multiplicative congruential method" which has a genera- 
tor of the form 

The generator needs to be initialized (x,,) by selecting a "seed" or an initial 
value. Each x, is then scaled into the unit interval (0,l) .  If the multiplier c is 
a primitive root modulo z3' - 1 (which is a prime), then the generator in 
(26.92) will have maximal period of Z3' - 2. 

The lattice structure induced by the congruential generator above can be 
assessed by Marsaglia's (1972) lattice test or by Coveyou and MacPherson's 
(1967) spectral test. Fishman and Moore (1982) carried out an empirical 
study and observed that different values of the multiplier, all of which 
perform very well under both lattice and spectral tests, can yield quite 
different performances based on the criterion of similarity of samples gener- 
ated to actual samples from uniform distribution. 

The possible choices for c are 16807, 37204094, and 950706376. The first 
choice has been observed to result in the fastest execution time, while the last 
choice has been observed by Fishman and Moore to give the best perfor- 
mance. The method or routine described above is portable in the sense that 
given the same seed or initial value, it will produce the same sequence in all 
computer/compiler environments. 

One may also use a "shuffled" version of this generator. The shuffled 
generators use a scheme due to Learmonth and Lewis (1973) under which a 
table is filled with the first 128 standard uniform pseudorandom numbers 
resulting from the multiplicative congruential generator in (26.92). Then, for 
each x, obtained from the generator, the low-order bits of x i  are used to 
select a random integer I from 1 to 128. The ith entry in the table is then 
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delivered as the pseudorandom number, and xi  (after being scaled into the 
unit interval) is inserted into the Ith position in the table. Books by Kennedy 
and Gentle (1980) and Devroye (1986) provide elaborate discussions on other 
simulational methods for uniform as well as nonuniform populations. 

Order statistics from a uniform population play a key role in many 
statistical problems. Computer simulation of uniform order statistics is essen- 
tial, since it enables one to evaluate the performance of these statistical 
procedures through Monte Carlo simulations. A simple and direct way of 
simulating uniform order statistics is to generate a pseudorandom sample 
from the uniform distribution (by the routine described above) and then to 
sort the sample through an efficient algorithm like quick-sort. This direct 
method will naturally be time-consuming, slow, and expensive. A consider- 
able amount of work has been done to improve this general method and to 
provide efficient algorithms for generating uniform order statistics. 

Schucany (1972) suggested a method of simulating uniform order statistics 
by making use of the fact that X,! (in a sample of size n) is distributed as beta 
(i, n - i + 1) (see Section 26.4). For example, if the largest order statistic XA 
is required, it may be generated as u;In, where u, is a pseudorandom 
uniform (0, l )  observation. Then the second largest order statistic XA-, may 
be generated as ul/"u~/("-", where u,  is another independent (of U , )  
pseudorandom uniform (0 , l )  observation. Proceeding similarly, the order 
statistic XA-,+, may be generated as 

This method is called the descending method, and it avoids sorting altogether. 
Lurie and Hartley (1972) presented a similar method that generates the 

uniform order statistics in an ascending order starting from the smallest 
order statistic. This method is called the ascending method. By conducting an 
empirical comparison, Lurie and Mason (1973) observed the descending 
method to be slightly faster than the ascending method. 

Ramberg and Tadikamalla (1978) and Horn and Schlipf (1986) have 
presented algorithms for generating some central uniform order statistics. 
Lurie and Hartley (1972) provided another interesting algorithm for generat- 
ing uniform order statistics. This algorithm is based on the result that if 
Y,, Y,; . ,, Yn+ , are independent standard exponential random variables, 
then (with Z = Y, + Y2 + . . .  +Yn+,), 

Yl y* y n  - - ...  - 
z ' z '  ' z  

are distributed as Xi, X;  - Xi; . ., XA - XL- ,. Therefore the uniform order 



statistic XI! for a random sample of size n may be generated as 

or equivalently as 

Zj=, log q 
XI! = xi"=+,' log q 

where U,, U,, . . . , U,, + , are pseudorandom uniform (0 , l )  observations. This 
"exponential method" needs fewer steps to be performed, but one extra 
uniform observation is necessary than for the descending method. 

Recently Balakrishnan and Sandhu (1995) proposed a simple and efficient 
simulational algorithm for generating progressive Type-I1 censored samples 
from the uniform (0, l )  distribution. Under this censoring scheme, n units are 
placed on a life test; after the first failure, R ,  surviving items are removed at 
random from further observation; after the second failure, R2 surviving items 
are removed at random, and so on; finally, after the mth failure (last 
observed failure), R ,  remaining items are withdrawn so that n = m + 
(R ,  + R 2  + . . + R,). Denoting X,,,, Xo,,. ., X,,, to be the progressive 
censored sample from the uniform (0 , l )  distribution and 

Balakrishnan and Sandhu (1995) have established that 

are independent with a common uniform (0 , l )  distribution. Their simula- 
tional algorithm is based on this distributional result. All of these algorithms 
for generating uniform order statistics can be used to generate order statistics 
from any other continuous population through the inverse cdf method (since 
it is order preserving). [See also Gerontidis and Smith (1982).1 
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I 

1 INTRODUCTION 

If XI, X2 are independent random variables distributed as X:l, x:,, respec- 
tively, then the distribution of 

is the F-distribution with v,, v2 degrees of freedom. As a special case note that 
if Yl, Y2 are independent random variables with a common Laplace distribu- 
tion (see Chapter 24) centered at zero then IY,/Y21 has a F2., distribution. 
We will use the symbol F,l,,2~generically to denote a random variable having 
this distribution. The phrase Fv1,v2-distrib~tion" can be used as an abbrevia- 
tion for "F-distribution with v,, u2 degrees of freedom." 

Note that the order v,,  v2 is important. From the definition it is clear that 
the random variables Fvl, ,2 and F,;,',, have identical distributions. In particu- 
lar, using the suffix a! to denote "lower 100a% point," 

(since Pr[Fvl,y2 I K ]  = Pr[FU2,,, r K-'I). 
The importance of the F-distribution in statistical theory derives mainly 

from its applicability to the distribution of ratios of independent 'estimators 
of variance'. If {X,i) ( t  = 1,2; i = 1,2, . . . , n,; n ,  2 2) denote independent 
random variables each normally distributed, and the expected value and 
standard deviation of X,, are el, a,, respectively (not depending on i ) ,  then 

" I  n, 

S = ( n  - 1 x with XI ,=  n;' z x,, 

is distributed as ,u;(n, - I)- '  ( t  = 1,2). The ratio (S:/Si) is therefore 
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distributed as 

that is, as 

The statistic (Sl/S2)2 is used in testing the hypothesis of equality between 
u l  and u2. The hypothesis is rejected if either 

E 
1 with a, + a, < 1. The significance level of the test is ( a ,  + a,), and the 

power (with respect to a specified value of the ratio ul/u2) is t 

Since 

the values 
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enclose a confidence interval for ( u , / u ~ ) ~ ,  with confidence coefficient (1 - 
a, - a2). For a given value a ,  say of ( a ,  + a,), the length of this interval is 
minimized by choosing a,, a, (subject to a, + a2 = a )  to minimize 

This is achieved by making the ordinates of the probability density function 
I 

of Fn2- - I equal at the values Fn2- ,, , -a, and Fn2- , ,,,- if n, 2 3; 
if n2  < 3, then a ,  must be taken equal to a, and a, = 0, so that 

It must be noted that minimization of the length of confidence interval 
for (u,/u,)~ does not usually minimize the length of interval for (u,/u,)~ (or 
for u,/u, or u2/u1). It is more natural to minimize the length of interval for 
log(u,/u,)-this will minimize the length for log(u,/u,), or indeed for 
log[(u,/a2)'] for any r # 0. To do this, we need to choose a , ,  a, (subject to 
a,  + a2 = a) so that the probability density function of Fnl- I .n2-  , has the 
same value at f = Fnl- ,, , -a2 and at f = Fnl- Tables giving 
appropriate values for a = 0.01,0.05,0.10,0.25, and n,,  n2 = 6(1)31 (with 
n ,  L n,) have been constructed by Tiao and Lochner (1966). Further applica- 
tions for the F-distribution are described in Section 27.6. 

Figure 27.1 [reproduced from Hald (1952)J contains graphs of the proba- 
bility density function of F,I,,Z for v, = 10 and a number of values of v,. It 
can be seen that the graphs appear to approach a limiting form. This is, in 
fact the distribution of X ~ l / v ,  with v ,  = 10. 

Figure 27.1 F Density Functions 



PROPERTIES 325 

For a brief recent description of various properties of the F-distribution 
and information regarding available tables and approximations, interested 
readers may refer to Stuart and Ord (1994, pp. 549-555). 

2 PROPERTIES 

If X I ,  X, are distributed as described in Section 27.1, then the probability 
density function of GvI.V2 = X I / X 2  is 

This is a Pearson Type VI distribution (Chapter 12, Section 41, also known as 
a beta distribution of the second kind (see Chapter 25, Section 7). We will 
omit the subscripts v , ,  V ,  unless there might be confusion arising from the 
omission. 

The probability density function of F = v 2 G / v  I is 

As f tends to infinity, pF( f )  tends to zero; this is also the case as f tends to 
zero, provided that v l  > 2. In this case there is a single mode, at 

If V ,  = 2, there is a mode at f = 0; if v l  = 1, pF( f )  + m as f -+ 0. 
The r th moment of F about zero is 

v , ( v ,  + 2 )  . . . ( v ,  + 2 . T) 
= ($) ( v Z  - 2) (v2  - 4) . . -  ( v ,  - 2 r )  ' 



'pu!q puo3as aqi jo uo!pun~ 3!iiawoa%iadAq iuanguo3 aql sauyap qqm 

(f f3'v)~(v)~ = 1P I-n-J 

0 < (v)ax pue 0 < (-?)a8 ieqi q3ns 3 pue o siaiarueied xaldwo3 
pue z alqe!ieh xaldruo3 aqi 10j ley1 Su!lou 'pua s!q1 o& .pu!y puo~as aqi jo 
uo!punj 3!~iawoa%iadAq luanguo3 aqi %u!yo~u! woj iaqioue u! uo!inq!iis!p 
Zn'ln 

.q aqi jo uo!iDunj 3!is!iai3eieq3 aqi paiuasaid seq (3361) sd!ll!qd 
'(~~61) eueisad os~e aas 

zn '1 n (E'LZ) 
u! 9 JO Uo!lnq!lis!p aqi jo uo!i3un~ 3!is!iapeieq3 aqi paiuasaid (0861) 
peMV  awnlo lo^ s!qi JO uo!l!pa ~siy aqi u! osle pue) (0~61) weqI Aq uaq8 
uo!i3unj 3!is!iai3eieq:, aqi JO wioj aqi u! ioiia aqi ino %u!iu!od iaijy 

'[(9P61) i-leqs!MI 
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Phillips (1982) has shown that the characteristic function of F,l,,2 is given by 

From (27.3) it can be seen that G(l + GI-' = v ,  F(v, + vlF)-' has a 
standard beta distribution (as defined in Chapter 25) with parameters 
iv,, fw2. It follows that 

where 

This identity can be used for computer evaluation, using the methodology 
described in Chapter 25, Section 6.2, for the beta distribution. Note also that 
the relation [Chapter 1, Eq. (3.37)1 connecting binomial distributions and 
incomplete beta function ratios means that cdfs of F-distributions can be 
expressed in terms of sums of binomial probabilities, and vice versa. Exact 
series expansions of the distribution function of an F,,, ,2 variable are given 
by 

if v ,  = v 2  = 1 ,  

if v ,  = 1 ,  v 2  > 1 odd, 

if v ,  even, 

if v, even, 
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where 

A(v2) = - 6 + sin 6 cos 6 
7T 1 

( : 2 4 . . .  ( v2  - 3) 
x 1 + -c0s2f3 + + cOsu2-36)], v ~ > I ,  

3 5 . . . ( v 2 -  2) 

2 ( ( ~ 2  - 1)/2)! 
c (v1 ,  v2) = - sin 6 cosvZ 6 G ((v2  - 2)/2)! 

x I +-  ( "3+' 
sin2 6 + . . . 

(v2  + 1)(v2 + 3) . . ( v l  + V 2  - 4) + sinvl -3 6 1 , v 2 > 1 .  
3 5 . . . ( v 1  - 2) 

For fractional a ,  a ! =  l'(a + 1). These formulas were presented in 
Abramowitz and Stegun (1964) (Chapter 26, written by M. Zelen and N. C. 
Severo) and were verified by Chen and Makowsky (1976) (who discovered a 
minor misprint and provided a FORTRAN subprogram). Lee (1988) used 
(27.9) (with corrections) to evaluate cdf values for F and reported some 
advantages over the MDFD subroutine in IMSL (1985). 

Random variates following F-distributions are easily constructed from 
beta variates, which can be obtained by methods described in Chapter 25, 
Section 2. Grzeg6rski (1972) provided a procedure, "PF Snedecor," to 
evaluate the cdf of Fu,.v2. The procedure is much faster than an algorithm 
"Fisher," proposed for integral degrees of freedom v ,  and v2 by Donner 
(19681, and in some cases faster than Morris's (1969) procedure "F test." ("F 
test" is twice as long as "PF Snedecor" and uses twice as many variables.) 

Grzeg6rski uses the formulas 

Pr[Fu,.v2 5 f ] = 

' ~ ( v I ,  ~ 2 ,  X )  for v2 even, 
1 - P ( v 2 , v l , l  - x )  for v ,  even, 

0.5 + [R(v1 ,~2 ,  X )  

- ,im [(vI - 1)/21! 
P ( v l , v , , x ) l / ~  forv l ,v20dd,  

\ [(v2 - 11/21! 

(27 .lo) 
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where x = vl  f / (vl  f + v,) and 

1 1 k !  
x k  + tan- ' -- id$&))- 

[If y is fractional, one would use y! = T( y + 11.1 As v, increases, the value 
of X:,/~2 tends to 1 with probability 1. If v ,  remains constant, the distribu- 
tion of tends to that of X:l/vl as v2 tends to infinity. 

Let Un = X:/(Xi/n), where X: and Xi are mutually independent chi- 
square variables with v and n degrees of freedom, respectively. Note that 
U,/v has a F-distribution with v, n degrees of freedom. Then, with G(x)  and 
g(x) denoting the distribution and the density functions of X: (see Chapter 
181, Fujikoshi (1987) has shown that 

Further, by considering the transformed random variable 

i where n > max(0,(2 - v)/2j, Fujikoshi and Mukaihata (1993) have shown 1 that 

I 

for all real x .  (These authors have also presented some approximations and 
bounds for the quantiles of the distribution of V,.) 



330 F-DISTRIBUTION 

For purposes of approximation it is often convenient to study the distribu- 
I tion of z ~ ~ . ~ ~  = 2 log F,I,v2* rather than that of Fvl,,2 itself. [This variable 

was in fact used by Fisher (19241.1 The distribution of log FYI,v2 is sometimes 
called the logarithmic F-distribution. Approximations themselves will be dis- 
cussed in the next section, but here we give formulas for the moments of 
z,,. ,2. Dropping the suffices for convenience, we have the moment-generating 
function 

The cumulants of z are 

where $(z) = (d/dz) log T(z) is the digamma function. Note that all mo- 
ments of z are finite. For r 2 2 an alternative formula is 

There are also a number of special expressions for K,(z) depending on the 
parity of v, and v,. We now give these in summary form [see Aroian (1941); 
Wishart (1947)l. 

1. v ,  and v, both euen: 

where 11: denotes summation from j = $ min(v,, v2) to (i max(v ,, v2) 
- 1) inclusive and C:j-'  = 0 if v, = v,. 

'~ l though this is a random variable, it is usually denoted in the literature by a small z 
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and generally (for r 2 2) 

where 

2. v ,  and V, both odd: 

for r 2 2, where 

In particular, 

where the limits of summation in Cy are now from j = $ min(v,, v,) - 
I to j = 4 max(v,, v,) - 3/2. 
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3. v ,  ecen, v2 odd: 

4. v2 even, v ,  odd: 

for r 2 2. (27.17) 

It is helpful, in remembering these formulas, to think of the relation 

3 ORDER STATISTICS 

Order statistics G', I I GA for random samples of n from the Gu,,u2 
distribution (27.3) were considered by Patil, Raghunandanan, and Lee 
(1985a, b). Tables of E[Gi], E [ G ~ ~ ] ,  and E[GiGj] were provided for n = 2(1)5, 
V ,  = 2(1)4, and v2 = 5(1)7. Expressions for the pdf and cdf are quite compli- 
cated even in the relatively simple case of even degrees of freedom. The case 
of odd degrees of freedom presents substantial computational difficulties. 

4 TABLES 

In view of relation (27.81, tables of the incomplete beta function ratio can be 
used to evaluate the cumulative distribution function of FuI,u2. In suitable 
cases tables of binomial (or negative binomial) probabilities can of course be 
used. This has been noted by a number of authors [e.g., Bizley (1950); 
Johnson (1959); Mantel (1966)l. Similarly from tables of percentile points of 
the beta distribution, corresponding points of F-distributions can be obtained 
with little computational effort. It is, however, convenient to have available 
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tables giving percentile points of F-distributions (i.e., values of F,l,,2~,) 
directly for given values of v,, v,, and a. Such tables are commonly available. 
Here we give only the more notable sources, excluding reproductions (in part 
or whole) in textbooks. It is to be noted that it is customary to give only upper 
percentiles (i.e., a 2 0.5). Lower percentiles are easily obtained from the 
formula 

Greenwood and Hartley (1961) classified tables of F,I,,2,1 -, according to two 
broad categories: 

1. With a = 0.005, 0.001, 0.025, 0.05, 0.1, and 0.25. 
2. With a = 0.001, 0.01, 0.05, and 0.20. 

Merrington and Thompson (1943) gave tables of the first type to five 
significant figures for v ,  = 1(1)10,12,15,20,24,30,40,60,120, 00 and v, = 

1(1)30,40,60,120,~. (The higher values are chosen to facilitate harmonic 
interpolation with 1 2 0 ~ - '  as the variable.) Fisher and Yates (1953) gave 
tables of the second type to two decimal places for v ,  = 1(1)6,8,12,24,m and 
v, = 1(1)30,40,60, 120, 00. More extensive tables (though only to three signif- 
icant figures) have been given by Hald (1952). He gave values of F,,, v 2 ,  I -a for 
a = 0.0005, 0.0001, 0.1, 0.3, and 0.5 with 

and 

and also for 

with 

and 

Many other tables of FUl* y 2 ,  (I are derived from one or more of these tables. 
However, the earliest tables (as has already been mentioned in Section 27.2) 
gave values not of F,,, ,2,a but of zvl ,  Y Z ,  a = 4 log F, , , ,2,a. For large values of 
v ,  or v,, interpolation with respect to numbers of degrees of freedom is 
much easier for z than for F. This does not appear to be the original reason 
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for introducing z [see Fisher (192411, but it is now the main reason for using 
such tables [Fisher and Yates (195311. Of course for occasional interpolation 
it is possible to use tables of the F-distribution and to calculate the needed 
values of 

Zinger (1964) has proposed the following method for interpolating in tables 
of percentile points of Ful,u2 in order to evaluate Pr[FuI,u2 > K]. One seeks 
to find tabled values Ful , u z ,  , -a and Ful, u2, -ma such that Ful, v2, -ma I K I 
F u l ,  u2, 1 -a. Then 

where k satisfies the equation 

Laubscher (1965) has given examples showing the accuracy of harmonic 
interpolation (with arguments v;', v;') for either univariate or bivariate 
interpolation with respect to v ,  and v,, where a is fixed. Bol'shev, Gladkov, 
and Shcheglova (1961) presented auxiliary tables for accurate computations 
of the beta and z-distribution functions. 

Mardia and Zemroch (1978) compiled tables of F and related distribu- 
tions and gave algorithms for their evaluation. Their tables include values of 
Ful,u2,a to five significant figures for 

The inclusion of fractional values of v ,  and v, is useful when an F-distribu- 
tion is used as an approximation. 

5 APPROXIMATIONS AND NOMOGRAMS 

Because of Eq. (27.8), that expresses the probability integral of the F-distri- 
bution as an incomplete beta function ratio, approximations to the latter can 
be applied to the former. Such approximations have already been described 
in Chapters 3 and 25. Here we will describe more particularly some approxi- 
mations to the F-distribution. They also can be used as approximations to the 
incomplete beta function ratio. In fact this section may be regarded as 
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an extension of the discussions of Chapter 3, Section 6, and Chapter 25, 
Section 6. 

The approximations cited below for are quite ingenious for the most part 
and historically valuable, and we have decided to include them to mirror the 
developments in this field of investigation realizing fully well that practical 
utility of a number of them becomes less prominent with the advances in 
computer technology. 

We have already noted that z = log F has a more nearly normal 
distribution than does F itself. Several approximations are based on either a 
normal approximation to the distribution of z or some modification thereof 
-such as that provided by using a Cornish-Fisher expansion (Chapter 12, 
Section 5). 

For large values of both v ,  and u, the distribution of z may be approxi- 
mated by a normal distribution with expected value $(v; ' - v; ') ( = 8) and 
variance i(u;' + v;') (= u2). This leads to the simple approximate formula 

suggested by Fisher (1924). Fisher also suggested that replacement of v; I ,  v; 
by (u, - I)-', (u2 - 1)-I might improve accuracy. 

More elaborate approximations can be obtained using expansions of 
Cornish-Fisher (1937) type. One such approximation [Aroian (1941); Fisher 
and Cornish (1960); Wishart (195711, using approximate formulas for the 
cumulants, is 

The first two terms of approximation (27.19) can be written 

1 1 
s + u,, + -a(": - 1) = s[i + -(u: - 1) + uau. 

3 3 I 
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I 
Fisher (1924) suggested the approximation 

1 which makes some allowance for later terms in (27.19). This approximation 
was improved by Cochran (1940) with the formula 

which differs from the sum of the first three terms of (27.19) by approxi- 
mately [(u: + l lU , ) /36]  ( 6 2 / u ) .  

Carter (1947) obtained another formula using more accurate expressions 
for the cumulants of z derived by Wishart, together with certain modifica- 
tions in the expansions. His formula for v , ,  v 2  large is 

where 

v; = v, - 1 ,  j = 1 , 2 .  

We may also note the following approximate result of Aroian (1942): For 
v ,  and v ,  large, he showed 

to be approximately distributed as t with ( v ,  + v 2  - 1 )  degrees of freedom. 

, , Aroian also proposed the approximation 

where t , I + V 2 - , , , - ,  is the 100 ( 1  - a)% point of t distribution with ( v ,  + v 2  
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- 1) degrees of freedom. The right-hand side is always less than a. The 
approximation is reported to be generally not as good as the Cornish-Fisher 
type formula (27.21). 

These formulas were further modified by Aroian (19471, who gave a 
number of interesting numerical comparisons of the accuracy of various 
approximations. His conclusions were that a better approximation, than that 
provided by expansions of the type we have so far discussed [except (27.22)], 
is provided (at least for v,, v2 > 20), by an approximation suggested by 
Paulson (1942). 

Paulson's formula is based on the Wilson-Hilferty approximation to the 
distribution of X2, the remarkable accuracy of which has been described in 
Chapter 18, Section 5. If the distributions of XI and X, (at the beginning of 
this chapter) are each approximated in this way, we see that the distribution 
of F,',/:~ is approximated by the distribution of the ratio of two independent 
normal variables. In fact F,',"'2 is approximately distributed as 

where U,, U2 are independent unit normal variables. Using a further approxi- 
mate formula for the distribution of this ratio (Chapter 13, Section 6.3), we 
are led to the approximation of taking 

to have a unit normal distribution [Paulson (1942)j. This approximation is 
also remarkably accurate for v, r 10. Smillie and Anstey (1964) utilized it in 
a computer routine. 

For v2 5 10 values of upper percentage points F u , ~ u 2 , ,  calculated from 
(27.24) can be improved by using the formula 

(Improved value) = m x (Calculated value) + c 

where m and c depend on v2 and the percentile but not on v,. Ashby (1968) 
gave values of m and c for a = 0.95,0.99,0.999; v2 = 1(1)10 with which 
accuracy to three significant figures is attained. For small values of v2 I 3 
Kelley (1948) recommended replacing W by 

One of the earliest computer programs for calculating P d F  > f 1 using this 
corrected formula was published by Jaspen (1965). He gave comparisons of 
exact and calculated values for v ,  = 2, v2 = 2. Further comparisons, for 
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v, ,  V, = 1,2,4,10,20,60,1OOO but only for f = F,,,, Z,,,, were made by 
Golden, Weiss, and Davis (1968). It appears from Jaspen (1965) that accuracy 
is better in the lower rather than the upper tail of the F-distribution. 

A similar approximation can be obtained using Fisher's approximation to 
the ,y2 distribution (m - 4- approximately a unit normal variable) 
in place of the Wilson-Hilferty approximation. 

The resulting approximation is to regard 

as a unit normal variable. Since the Fisher transformation is generally less 
accurate than the Wilson-Hilferty transformation, one would expect (27.25) 
to be generally more accurate than (27.26). While this is so, the comparison is 
not as disadvantageous to (25.26) as might be expected. 

If only one of v ,  and v2 is large (e.g., v,), then the natural approximation 
to use is FvI*v.Z distributed as X,21/v,. (It is clearly always possible to arrange 
that v2 > v, in this case.) Scheffi and Tukey (1944) have proposed a simple 
improvement on this which, in terms of the incomplete beta function ratio 
[Chapter 25, Eq. (27.3)1, is that if 

then 

In terms of F-distributions this can be stated as 

(At one stage the derivation of this entails reversing the degrees of freedom 
of F.) McIntyre and Ward (1968) constructed a computer program using this 
approximation. 

Mudholkar and Chaubey (1976) utilize the relation between F- and beta 
distributions to adjust their Patnaik-type, Pearson-type, and Sankaran-type 
approximations to I , (p ,  q )  (see Chapter 25, Section 6.1) for approximating 
percentage points of F-distributions: 
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where 

and x = (1 + (v,/v2)f)-I. Here K , ,  K ~ ,  and K, are the cumulants of 
(-log X), where X has a standard beta ($v2, t v , )  distribution: 

where 

[see Chapter 25, Eq. (25.13Y'I. If v, is odd, an approximate "interpolated" 
expression, 

is used for K,. If both v, and v2 are even, the formula 

enables one to calculate values of the cdf of FYI,YZ as a sum of probabilities 
for a binomial distribution with parameters i (v ,  + v2) - 1, v, f/(v2 + v, f). 
However, if V ,  or v2 (or both) are odd, this is not possible. For such cases 
George and Singh (1987) suggested an approximate formula of form 

P ~ [ F ~ ~ , ~ ~  2 f ]  = Ia+,Ioef([f (vl + I ) ] ,  [ i ( v 2  f 1)]), (27.30a) 

where [a ]  denotes "integer part of a," and a and j3 are constants depending 
on V ,  and v,. [Formula (27.30a) was based on approximating the distribution 
of log F,,, u2 by a generalized logistic distribution.] 

Earlier Mantel (1966) had suggested that when v, and/or v2 are odd, 
values of I,( f v,, $v2) can be interpolated from neighboring values for even 
v ,  and v2-for example, if V ,  = 3 and v, = 5-the values Ip(l, 2), Ip(l, 3), 
IP(2, 2), and Ip(2, 3) can be used to estimate 1,(1.5, 2.5). [Note that in each 
case p = v, f/(v2 + v, f ) ( = 3 f/(5 + 3 f here).] George and Singh (1987) 
found that when both v ,  and v2 are odd, (27.30a) gives superior results, 
especially in the tails of the distribution, but when only one of v ,  and v2 is 
odd, Mantel's approximation is slightly better. 
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If (-log X) is approximated as (aX: + b), then v is determined by 
equating the first three moments of (-log X )  and (aX: + b), obtaining 

var( - log X ) 
a = (  2v ) I'2, 

b = E[-log X]  - av. (27.30b) 

Davenport and Herring (1979) have suggested a so-called adjusted Cornish- 
Fisher approximation for FuI,Y2,a. Johnson (1973) devised a number of 
empirical formulas for Ful,u2,a, for a = 0.95,0.975, which are set out in Table 
27.1. The accuracy is * 0.6%. 

In most cases the error is less than 0.2%. The maximum error occurs at 
V ,  = v, = 120 for a = 0.95 and v ,  = 60, v, = 120 for a = 0.975. Ojo (1985, 
1988) provides approximations to the distribution of log F by means of 
t-distributions, having the same mean, variance, and coefficient of kurtosis as 
a linear function of log F. Viveros (1990) considers power transformations. 
He suggests regarding 

as a unit normal variable, with 

These values are obtained by considering the Taylor expansion of the pdf 
of log F about the mode of the distribution. Alternatively, for any given c, d 
and g can be chosen as the expected value and standard deviation of Fc, 
producing a standardized variable in (27.30~). Note that - f s c I f .  

Nomograms for evaluation of incomplete beta function values can be used 
for calculation of values of cumulative F-distributions. There is a nomogram 
specifically designed for the F-distribution in Stammberger (1967) which is 
reproduced in Figure 27.2. From this nomogram one can evaluate any one of 
Pr[Fu,,u2 I f 1, f ,  v I ,  and v 2  given the values of the other three quantities, 
using two straight edges (indicated by broken lines in Figure 27.2). 
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Table 27.1 Johnson's empirical formulas for FvI,v2,, for a = 0.95,0.975, 
and their accuracy 

Maximum Absolute 
% Deviation from 

Group v ,  2 Approximate F,,, .  Y >.,,. 9S F Y I . Y 2 . 0 . ~ ~  

88.889 + I 0.6 
( v ,  + 1 1.533)(v2 + 11.533) 

Maximum Absolute 
% Deviation from 

Group V ,  " 2  Approximate F,,. ,  ?,,I. 9,s 
Ful. u ~ , 0 . ~ 7 5  

f Source: Johnson (1973). 
L 
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APPLICATIONS 

Dion and Fridshal(1982) conjectured that 

and 

Burk et al. (1984) showed that this conjecture is true for v, = v2. However, 
numerical studies showed that the conjecture is false if v, # v2, for all y in 
an interval 0 I y s yo, together with some "holes" in yo < y < 1. (-yo .= 

0.0043 for v, = 4, v ,  = 2.) 

The commonest application of the F-distribution in statistical work is in 
standard tests associated with the analysis of variance. Many of these are 
based on a general result of Kolodziejczyk (19351, according to which the 
likelihood ratio test of a general linear hypothesis (H,) about the parameters 
of a general linear model with normal residuals can be expressed in terms of 
a statistic that has an F-distribution when H, is valid. The application of the 
F-distribution in testing equality of variances of two normal populations has 
been described in Section 27.1. 

In some earlier tables of (upper) percentiles of F-distributions, the tables 
are stated to apply to the distribution of "greater divided by lesser mean 
square." While it is true that it is often convenient to take the ratio so that it 
exceeds 1, this affects the significance level of the test. If tables of upper 
100a% percentiles are used (FV,,Y2. I then the actual significance level is 
not a but 2a. This can be seen by noting that "significance" is attained if the 
observed ratio is either greater than F -a or less than (Fv2,vl ,  ,-a)-1 = 

Fv1.u2.a. 
The F-distribution is also used in the calculation of power functions of 

these tests and of confidence limits for the ratios of variances of normal 
populations. The relation between F-distribution and binomial distributions 
has already been noted in Section 27.3. A consequence of this is that the 
approximate confidence limits ( p ,  3) for a binomial proportion obtained by - 
solving the equations 
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[where r represents the observed value of a binomial (n,  p )  variable] can be 
expressed in terms of percentile points of an F-distribution: 

Box (1949) expresses certain approximations to the distributions (under 
multinormality conditions) of multivariate test statistics in terms of F-distri- 
butions. These are just convenient ways of representing the results of fitting 
Pearson Type VI distributions. This family of distributions will be discussed 
in Section 27.7. Donner, Wells, and Eliasziw (1989) describe uses of F-distri- 
butions as approximations to distributions of certain statistics in analysis of 
variance for unbalanced designs [see also Satterthwaite (194611. 

The F-distribution is also used for approximating other distributions. Yip 
(1974) approximated the distribution of a random variable X using the first 
four moments. He equated the first four moments of ( X  + g)/h to those of 
Ful,,2 [see Eq. (27.6)] and solved the resulting equations for v,, v,, g,  and h. 
Yip (1974) also applied this method to obtain approximations of non- 
central F-distribution (Chapter 30) and that of Hotelling's generalized T;. 

Four-moment approximations can of course be obtained from tables of the 
percentage points of Pearson curves, but these tables do not cover all the 
(PI,/?,) points in the F-region. Whenever the ( P I ,  P2)  values of X lie within 
this F-region, the four-moment F-distribution F = ( X  + g)/h will generally 
provide close approximations to the distribution of X. 

Wood (1989) used a three-parameter F-distribution as an approximation 
to the distribution of a positive linear combination of central chi-square 
variables. Numerical results indicate that the proposed approximation is 
superior over Satterthwaite's (1946) and Buckley and Eagleson's (1988) 
approximations (unless 0.95 or 0.05 point of the linear combination is 
required), but is less accurate than the iterative Gamma-Weibull approxima- 
tion due to Solomon and Stephens (1977). 

7 PEARSON TYPE VI DISTRIBUTIONS 

We have already remarked that any F-distribution is a special form of 
Pearson Type VI distribution (27.3). Here we give an account of this general 
family, to which F-distributions belong. The most general form of equation 
for the probability density function of a Type VI distribution can be written 
as [Elderton and Johnson (196911 

[assuming that the sign of X has been chosen so that d m  2 01. 
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The graph of p,(x) against x has a single mode at 

provided that q ,  is positive. If q ,  is zero, the mode is at x = a,, and if q ,  is 
negative, px(x) tends to infinity as x tends to a,. In the last two cases px(x> 
decreases as x increases from a,. 

The r th  moment of X  about a ,  is 

E [ ( X  - a , ) ' ]  = 
(a2  - a,) ' (q1 - I ) ( ' )  

( 4 1  - 9 2 - 2 ) ' "  ' 

Note that if r  2 q ,  - q ,  - 1, the r th  moment is infinite. The expected value 
and variance of the distribution are 

The four parameters a , ,  a,, q , ,  and q ,  can of course be expressed in terms 
of the first four moments of X .  In fact q ,  and - q ,  are given by 

1 1 
T ( r  - 2 )  k - r ( r  + 2 )  

2  J-", p , ( r  + 2 )  -t 16(r + 1 )  (2'7.35) 

I 

i F 
where r  = -6(/3, - p ,  - 1)/(2/3, - 3/3, - 6). Note that for Type VI curves, 
2 8 ,  - 3 8 ,  - 6  > 0 SO that r  < 0, and also 

There is a simple relation between Type VI and Type I distributions 
(Chapter 25): The distribution of Y = ( X  - a , ) / ( X  - a , )  is of standard beta 
form, with parameters q2 + 1 and q,  - q,  - 1. If X I ,  X,; . ., X,, are inde- 
pendent random variables, each having a distribution of form (27.321, the 

formal equations for the maximum likelihood estimators a^,, a^,, q^, ,  and q^, 
? 
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has been reported by several different authors [see Aroian (1953), Cacoullos 
(1965)]. Kymn (1974) provides an elementary derivation. 

There is also a relationship (mentioned in Chapter 3, Section 6.1) between 
the binomial and F-distributions. This can be summarized by the equation 

(r  is an integer, 0 I r I n), where Y is a binomial variable with parameters 
(n, p )  [Bizley (1950); Jowett (1963)l. Noncentral F-distributions are discussed 
in Chapter 30. Multivariate generalizations are discussed in Chapter 40. 

There are several pseudo-F-distributions corresponding to replacement of 
either or both, of S, and S, in (27.2) by some other sample measure of 
dispersion such as sample range or mean deviation [see, e.g., Newman 
(193911. 

The works of David (1949), Gayen (19501, Horsnell (19531, Swain (19651, 
Tiku (1964), and Zeigler (1965) are the most comprehensive among the 
numerous investigations of F-distributions under nonnormal conditions, 
namely when the variables X,, X,; - ., Xn in the definitions of S, (t = 1,2) 
have nonnormal distribution. Additional references will be indicated in 
Chapter 28, Section 7, in connection with the similar problem for t-distribu- 
tions. 

The truncated Type VI distribution with density function 

P 
= [log(l + P ) ]  ( l + p x ) - I ,  

O < x < l , p >  - 1 (27.40) 

(x denotes a proportion) has been used to represent the distribution of 
references among different sources [Bradford (1948); Leimkuhler (196711. 
When used for this purpose it is called the Bradford distribution. Of course X 
would be more naturally represented as a discrete variable and the Bradford 
distribution may be regarded as an approximation to a Zipf or Yule distribu- 
tion (Chapter 11). 

In the analysis of variance one often has a situation wherein the ratios of 
each of a number of "mean squares" M,, M,, . . . , Mk to a residual mean 
square M, have to be considered. M, can be regarded as being distributed as 
U * ( ~ , ~ , / V , )  ( j  = 0,1,. . . , k )  and the M's as mutually independent. If one of 
the ratios M,/M, ( j  + 0) is large, it is helpful to compare it with the 
distribution of max, . , . k(  M,/M,). In the case where v ,  = v, = . -  . = vk = 
v (not necessarily equal to v,), this distribution is related to that of "Studen- 
tized" X2-namely the ratio of the minimum of k independent X: variables 
to an independent X:,> variable. 
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Armitage and Krishnaiah (1964) have given tables of the upper 1%, 2+%, 
5%, and 10% points of this distribution, to two decimal places for 

k = 1(1)12, 

v = 1(1)19, 

v, = 6(1)45 (also v, = 5% and 10% points). 

Tables of the upper 1% and 5% points of (max, ., ., M,)/(min, ., ., M,) 
for k = 2(1)12 and v ,  = v, = . . = v, = v = 2(1)10,12,15,20,30,60,03, 
are contained in Pearson and Hartley (1958); for additional comments on 
this, see the end of Section 8.2. 

8.1 "Generalized" F-Distributions 

Several "generalized" F-distributions have been described in the last two 
decades. We have already noted Prentice's (1975) work in connection with 
the z-distribution. A variety of generalizations that have been studied, with 
differing notations, are included within the general form of distributions of 
a ~ ; , ~ ~ ,  for various values of a and b. 

Ciampi, Hogg, and Kates (1986) provide a general discussion of this class 
of distributions, indicating special values of the four parameters (a, b, v,, v,) 
corresponding to certain well-known distributions. They obtain maximum 
likelihood estimators for the parameters using a "generalized reduced gradi- 
ent method" described in Lasdon et al. (1978). 

If XI  and X, are mutually independent, and Xi has a gamma (a,,/?,) 
distribution [Chapter 17, Eq. (17.23)l with the pdf 

pw.(x,) = {p'.r(ni))-lx;~-l exp(-p;'x,), xi > 0, i = 1,2, (27.41) 

then Xl/X2 is distributed as 

alp, 

a2P2 
F 2 a 1 . 2 a z .  

Pham-Gia and Duong (1989) termed this a "corrected" F-distribution and 
denoted it by G3F. (It is related to the G3B distributions discussed in 
Chapter 25, Section 7). Dyer (1982) established the distributions of sums of 
independent variables having G3F distributions, and applied his results to 
various problems in reliability, multivariate analysis and Bayesian modeling. 
Shah and Rathie (1974) obtained distributions of products of G3F variables. 
Amaral-Turkrnan and Dunsmore (1985) used G3F distributions (which they 
called Inbe distributions) in studies on information in predictive distributions 
for a gamma model. 
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If y = aF4,uz (a ,  b > 01, then 

[Malik (196711. Of course the r th moment of Y is 

br r(;v I + b r ) r ( i v 2  - br) - ar($) , 
r - )  1 v2 [~f .(27.5)1.  

r(;v 1 ) r ( $ v 2 )  2 b  

As mentioned earlier, generalizations of the beta distribution of the 
second kind (see Chapter 25) also become generalizations of the F-distribu- 
tion and, as a result, is often denoted by GB2. The density function of this 
generalized F-distribution is given by [see McDonald and Richards (1987a, b)] 

The k th moment (about zero) of X is given by 

from which we readily obtain the mean of X to be 

McDonald and Richards (1987a) discuss various properties of this distribu- 
tion and also discuss the maximum likelihood estimation of the parameters of 
the distribution (with an additional scale parameter 6) .  

The cumulative distribution function corresponding to the above general- 
ized F density may be expressed in terms of the confluent hypergeometric 
function ,F,  (see Chapter 1); see, for example, McDonald and Richards 
(1987a). The behavior of the hazard rate of this distribution has been 
examined by McDonald and Richards (1987b). Bookstaber and McDonald 
(1987) show that the above generalized F-distribution is quite useful in the 
empirical estimation of security returns and in facilitating the development of 
option pricing models (and other models) which depend on the specification 
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and mathematical manipulation of distributions. Mixtures of two generalized 
F-distributions have been considered by McDonald and Butler (1987) who 
have applied it in the analysis of unemployment duration. McDonald and 
Butler (1990) have used the generalized F-distribution while discussing 
regression models for positive random variables. Applications of the general- 
ized F-distribution in modeling insurance loss processes have been illustrated 
by Cummins et al. (1990). McDonald and Bookstaber (1991) have developed 
an option pricing formula based on the generalized F-distribution, which 
includes the widely used Black Scholes formula that is based on the assump- 
tion of lognormally distributed returns. 

8.2 Other Related Distributions 

Block and Rao (1973) define the beta warning time distribution as the 
marginal distribution of X when the conditional distribution of X,  given 
Y = y, is a beta ( m ,  n )  distribution over (0, y ) ,  with the pdf 

and Y has the pdf (27.42) with a = 1. The pdf of X is 

( V , / V ~ ) " I / ~ X ~ - I  y ( v l / ( 2 b ) ) - m - n  ( Y - x ) ~ - I  

P x ( x )  = 
b B ( m ,  n ) B ( j v I ,  $ v 2 )  [ + ( v I / v 2 ) Y ~ / ~  J ( V I + V ~ ) / ~  

dy .  (27.45) 

If n = 1 ,  we have 

m ( v I / v 2 ) " 1 / 2 x 1 n - '  
p x ( X )  = 

bB( ;v , ,  j v , )  
[ B ( $ V ~  - bm, $v2  + bm) 

where BJa,  b )  is the incomplete beta function defined in Chapter 1 ,  Eq. 
(1.90). The distribution with the pdf (27.46) is called a distended beta 
distribution. There are further details in Block and Rao (1973). Mihram 
(1969) contains some motivations for these kinds of distributions. 

Mielke and Johnson (1974) reparametrize (27.42) taking 



OTHER RELATED DISTRIBUTIONS 351 

and obtain 

Introducing the restriction K = a 8  (i.e., v ,  = 2a ;  v2 = 2), we obtain 

[since B(a,  1) = a-'I which is called Mielke's beta-kappa distribution. This 
distribution is applied for stream flow and precipitation data. The cdf 
corresponding to (27.48a) is 

From (27.48b) it follows that the quantile y,, making F,(y,) = p, is 

Inserting this formula in the expressions for distributions of order statistics 
produces remarkably simple results. 

Mielke and Johnson (1974) provide an iterative procedure for calculation 
of maximum likelihood estimators of the parameters P ,  8 and a (= K/O) of 
distribution (27.47). The r th  moment of (27.48) is 

(see page 322). Finally, returning to the situation described in Section 27.1 
but with the distributions of the X,,s being of symmetrical Pareto-Levy form, 
with 

then the limiting distribution of 
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I 

i 
j 
i 

as n , ,  n2  -+ UJ has the cdf 

[Runde (199311. Table 27.2 shows some percentile points of this distribution. 
The corresponding density is 

~ a { f - " / ~  + f "I2 + ~ c o s ( + T ~ ) }  ' 

Figures 27.3a, b exhibit some examples of this pdf. 
The distribution of the maximum of certain sets of correlated F-variables is 

relevant to a procedure employed in the analysis of variance, in which it is 
desired to test whether the maximum of a number (say, k )  of ratios of 
mutually independent mean squares M,; - a ,  Mk to a common "residual" 
mean square, M,,, is significantly large. 

On the assumption of a standard (linear) model with independent ho- 
moscedastic (common variance a 2 )  and normally distributed residuals, the 
null hypothesis (no fixed effects) distribution of Mj is u2X~,/vj  ( j  = 

0,1,. . . , k )  and the test statistic used in this procedure is 

Under the null hypothesis, M,/M,, is distributed as F,,,,,,, but the k variables 
M,/M,,, . . ., Mk/M, are not mutually independent. 

In the special case v ,  = v, = . . . = v, = v, say, T is distributed as 
(v,/v) x (ratio of maximum of k independent X: variables to an indepen- 
dent X:,, variable). The distribution of W = (v/v,)T is thus that of the 
maximum of k correlated G,.,,, variables. 



OTHER RELATED DISTRIBUTIONS 

2.20 

Figure 27.3 Densities pF( fla) for various a 

Now if X  = m a x ( X , ,  ., X k )  and X I ;  - ., Xk are mutually independent 
with common X: distribution, then 

k 

Pr[ x r; X I  = ( ~ ~ / ~ r ( g ) )  { f y ( v / 2 ) - l e - y / 2  dy  } , x z 0, 

and the density 
k - l  

px( x )  = k ( 2 ' / 2 r ( g ) )  - k ( t y ( v / 2 ) - l e - Y / 2  d y )  x ( v / 2 ) -  l e - x / 2  X l O ,  

whence 
- k  

p, , ,(w) = k ( 2 v l l / 2 r ( $ ) )  - 1 ( 2 v / 2 r ( f  )) w ( v / 2 ) - l  

2 } - - I ,  -"(I +' )I2  du. (27.54) 
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Krishnaiah and Armitage (1964) provided tables of upper lOOa% points 
(Tu, vll. I -u  ) of T for a = 0.01,0.10,0.25, for the choices of v = 2(2)40; v, = 
10(2)90; k = 1(1)12. Hamdy, Son, and AlMahmeed (19871, dealing with the 
special case k = 2, use the formula (valid for even v and v,) 

where 

These authors give values of Tv,,l,, ,-, to five decimal places for a = 

0.005,0.01,0.025,0.1,0.90,0.95,0.975,0.995; v = 4(2)100; V, = 4(2)8. (They 
refer to the existence of further tables, for v, = 10(10)80, with the same 
values of LY and v.) 

Hartley (1950a, b) studied the distribution of a different, though similar 
F-type statistic, used in testing equality of k variances. This is the distribu- 
tion of the ratio 

where y's are mutually independent random variables with a common X: 
distribution, as mentioned earlier on page 348. 



and 
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Roy, Roy, and Ali (1993) have introduced the binomial mixture of F-dis- 
tributions with density function 

O < X < W .  

The kth moment about zero of X is given by 

from which, in particular, we obtain the mean and variance of X to be 

" 2  2npv2 E [ X ]  = - + 
v 2  - 2  v , ( v 2  - 2 )  

2 v ; ( v l  + V 2  - 2 )  
var( X)  = 

vI(v2 - 2 ) * ( ~ 2  - 4 )  

+ 4 ~ ~ 2 2  

v : ( v 2  - 212(v2 - 4 )  

x ( n ( 2  + 5u, - v , v 2 )  + ( n 2  - n  - v ,  - 4)p). 
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C H A P T E R  2 8  

1 GENESIS AND HISTORICAL REMARKS 

If X I ,  X,, . . . , X, are independent random variables each having the same 
normal distribution, with expected value ( and standard deviation u ,  then, 
& ( x  - ()/a (with = n-'C;,,X,) has a unit normal distribution. This 
statistic can be used in the construction of tests and confidence intervals 
relating to the value of 5 provided that u is known. If u be not known, it is 
reasonable to replace it by the estimator S = [(n - l)-'C;= ,(Xi - x)2]1/2 
giving the statistic T = 6(.% - (N(n - 1)-'C;, I(Xj - .%)2]-1/2. This pro- 
cedure was adopted for some time, without making allowance for differences 
between the distributions of \/;;(.% - ( ) / c r  and &(.% - ()/S. It was real- 
ized that the two distributions are not identical but the determination of the 
actual distribution presented difficulties. "Student" (1908) obtained the dis- 
tribution of 

and gave a short table of its cumulative distribution function. 
Recall the results on the joint distribution of X and S described in 

Chapter 13. There it can be seen that T' is distributed as a ratio U/X,- I ,  the 
two variables U (a unit normal variable) and x,- ,  being mutually indepen- 
dent. The divisor d X n - l  in the denominator was introduced by Fisher 
(1925a) who defined t with v degrees of freedom as the distribution of 

This quantity is usually called Student's t and the corresponding distribution 
is called Student 's distribution. Occasionally, they are called Fisher's statistic 
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and distribution, respectively, but these latter terms more commonly refer to 
the variance-ratio F and its distribution, as were discussed in Chapter 27. 
The evolution of the t-statistic and its various usages are explained in 
Eisenhart (1979) and Box (1981). 

Cacoullos (1965) showed that if X, and X,  are independent X 2  variables 
(Chapter 18) each with v degrees of freedom, then ;G(x, - X,X X,Xl)- 
has a t, distribution. Equivalently, if Y has a F,,,-distribution, then 
I - i & ( ~ ' / 2  - y- ' l2 )  has a t, distribution. See Chapter 27, Section 8 (page 
347). 

A notable characterization is due to Bondesson (19811, who has shown 
that for i.i.d. random variables XI; ., X, that have a common distribution 
with finite moments of all orders and a pdf that is continuous at zero, if 

is distributed as 1 , - ,  for all n 2 2, then this common distribution must be 
normal with mean zero and positive variance. It should be noted that for 
n = 2 there is a distribution (without a finite expected value)--that of the 
reciprocal of a unit normal variable-for which  fir?((^, - x ) '  + (X, - 
,%?)2)-1/2 = ~ ~ Z ( ; I X ,  - X21)-' has a tl-distribution. 

For a brief recent description of some properties of the t distribution and 
information concerning the available tables and approximations, interested 
readers may refer to Stuart and Ord (1994, pp. 546-549). 

2 PROPERTIES 

The probability density function of t ,  = U[X,/ 61-' is 

This is a special form of the Pearson Type VII distribution. It is symmetrical 
about t = 0 and has a single mode at t = 0. It is easy to show that 

iim p, ( l )  = ( f i ) - ' e - t 2 / 2 .  
,+w " 

In fact, as v -+ m, the distribution of t, tends to the unit normal distribution. 
(This fact is the basis of most of the methods of approximation described in 



If t,., is defined by the equation 

then (from the symmetry) 

tu,0.5 = O = u0.5, 

where WU,) = a. 

However, for a > 0.5, 

t,., > u, > 0, 

and for a < 0.5, 

t,,, < mu,-, < 0 

(of course t,, , -, = t,,,). 
Making the transformation w = v(v + y2)-I, we have for t r 0, 

where IJa,  b )  is the incomplete beta function ratio, which is defined in 
Chapter 1. This identity can be used for computer evaluation of t-distribution 
functions using one of the several algorithms for evaluating the beta distribu- 
tion function (see Chapter 25, Section 6). In particular, Lee and Singh (19881, 
starting from (28.4a), reached the formulas 

1 - - , . - I  
2 

sin- '(2y - 1) for v odd, (28.4b) 

where y = v/(v + t 2 )  and C,<', = - 1, CY-, = 0. Alternative expressions 
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(valid for all t )  are 

I 1  
Pr[t, I t ]  = - + -tan-' t for v = 1, 

2 r 
(28.4d) 

and, setting 8 = tan- '(t/  &>, 

l r  I 7 

+ 

[see Zelen and Se\ 

' (3) (5) . . . ( v - 2) b"o 
" "1 

for v odd and greater than 1, (28.4e) 

rero (196411. 

, . . 

for ' v even 

Amos (1964) obtained several expressions for Pr[t, I t ]  in terms of hyper- 
geometric functions (see Chapter 1, Section A6). For example, 

for 

I which is useful when both I ~ J / v ' / ~  and v are small. 
All odd moments of t,, about zero are zero. If r is even. then the r th 

central moment is 

P A  t, 

f (Note that if r a v ,  the r th moment is infinite.) Setting r = 1, we obtain a 



formula for the mean deviation as 

From (28.51, 

decreases from 9 for v = 5 to 3 as v + 03. Also ru,(t,) = d m  = 0 
[Wishart (1947)l. 

From (28.6) and (28.7a), 

Mean deviation 
1 

- - V - 1 -  (28.8) { 
Standard deviation i 

The multiplier of tends rapidly to 1 as v increases, as can be seen 
from Table 28.1. 

The probability density function of t ,  has points of inflexion at 

As v increases, the distribution of t, approaches quite rapidly to the unit 
normal distribution. Figure 28.1 compares the t4 and unit normal probability 
density functions. Even for such a small number of degrees of freedom, the 
two functions are not markedly dissimilar. If the standardized t4-that is, 
t4/ a-distribution is used the agreement is even closer [Weir (1960a)l. 

By considering the transformed random variable 

when v > f ,  Fujikoshi and Mukaihata (1993) have shown that the distribu- 
tion of U, converges rapidly to the standard normal distribution. In fact these 

Table 28.1 Ratio of mean deviation to standard deviation for t ,  distribution 

v 3 4 5 6 7 8 9 10 11 12 

Ratio 0.637 0.707 0.735 0.750 0.759 0.765 0.770 0.773 0.776 0.778 
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Probability 
Density 

Function 

0.4 - t with 4 degrees of freedom 

-4 -3 -2 -1 

Figure 28.1 Comparison of Unit Normal and t ,  Dens~ty Funct~ons 

authors have shown that 

Pr[U,, r x ]  = @ ( x )  + O ( V - ~ )  

for all real x. Fujikoshi and Mukaihata (1993) have also derived some 
approximations and bounds for the quantiles of the distribution of U,,. 

If v is odd, the characteristic function of t ,  is 

where m = i (v  + 1) and the c,,,'s satisfy the recursive relations: 

- l ,c , - , , ,  = ( (2m - 3)(2m - 5) - . . 3 .  I ) - ' ,  C o , m  = 19 C1.m - 

el,, = ( c ~ - ~ , , , , - ~  + (2112 - 3 - j ) ~ , . , - ~ } ( 2 m  - 3 ) - '  f o r l s j s m -  1 

[Mitra (197811. In particular, 

c~ , , ( t )  = exp( -Id), 

cp,l(t) = (1 + l tfil)exp(-ltfil) ,  

cp,$t) = (1 + I t 6 1  + ; t2)exp(-It6l),  

q, ,(t)  = ( I  + l r J i l  + p t 2  + $ ~ t J i ~ ' ) e x p ( - - ~ t A ~ ) .  (28.10) 



Ifram (1972) provides an alternative form 

( r n )  

qt2,,, + 1 ( t )  = [ ~ ( t , m  + $) I - ' 2n i [ ( z  + i)-m-'exp{it(2rn + ~ ) " ~ z ) ] ~ ~ , / m ! .  

He also provides (without detailed derivation) an expression for the case 
v = 2n, namely 

( k + 2 n )  
co (exp(it (2n) ' I2  z)) . 

~ p , ~ , f t )  = ( ~ ( i ,  n ) ) - ' 2 n i  ( n  ' ) (2 i l k  ,?=I 

k = o  ( k  + 2n)! 

The Fourier transform of the t-distribution involves simple Bessel polynomi- 
als. In particular, the quotient 

where 

( n  + k ) !  
'n(') = ' ( n  - k)!  k = O  

and yn is the nth Bessel polynomial [y,(z) = F,( -n, n + 1; - ; -z/2)1 
arises in connection with the problem of infinite divisibility of the t,-distribu- 
tion. To show that this distribution is infinitely divisible, it is sufficient to 
prove that (28.13) is strictly monotonic in [O, m). For n = 4, 5, and 6, this was 
established by Ismail and Kelker (1976), implying infinite divisibility for 
v = 9, 11, and 13. Later in the same year Grosswald (1976a) proved the strict 
monotonicity of (28.13) for odd values of n and finally Grosswald (1976b) 
succeeded in showing the validity of this result for all n, thus proving the 
general infinite divisibility of Student's t-distributions. Epstein (1977) pro- 
vided, independently, a somewhat more elementary proof. As in the case of 
Grosswald's proof, the "even" case is more complicated. The distribution of 
t; I ,  for v (2 3) odd, fails to be infinitely divisible. 

3 TABLES AND NOMOGRAMS 

3.1 Tables 

The cumulative t-distributions and percentile points have been rather thor- 
oughly tabulated. We give here a list, roughly in chronological order. There 
are in addition short tables in many textbooks, which are mostly derived from 



and 
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tables in our list. (Note that v = a, corresponds to the unit normal distribu- 
tion.) 

The earliest published tables were provided by "Student" (1908). These 
gave values of Pr[z, I z], where z, = t,/ m. Later the same author 
["Student" (19231 gave the values of Pr[t, I t ]  to four decimal places for 
v = 1(1)20, rn and t = 0(0.1)6.0, and also to six decimal places for v = 3(1)11 
and t = 6.0(0.5)10.0(1)12(2)16(4)28. 

In Pearson and Hartley (1958) there are tables of Pr[t, I t ]  to five decimal 
places for 

v = 1(1)24,30,40,60, 1 2 0 , ~  

0.0(0.1)4.0(0.2)8.0 (v 5 20), 
0.00(0.05)2.0(0.1)4.0,5 (v 2 20) ' 

and of t,,, to three decimal places for 

v = 1(1)30,40,60, 120, a, 

and 

cr = 0.6,0.75,0.9,0.95,0.975,0.99,0.995,0.9975,0.999,0.9995. 

Also t,,, is given to at least three significant figures for 

v = 1(1)10 and a = 0.9999,0.99999,0.999995. 

Parts of these tables appeared earlier in Baldwin (1946) and Hartley and 
Pearson (1950); parts are reproduced in Janko (1958). Rao, Mitra, and 
Mathai (1966) gave similar tables with the addition of v = 80 (and exclusion 
of v = 120) and a = 0.7, 0.8. These tables are notable for the extreme tail 
percentiles included. For more extensive sets of values of v, however, some 
of the following tables are more useful. 

Fisher and Yates (1966) gave values of t,,, to three decimal places for 

v = 1(1)30,40,60,120 

a = 0.55(0.05)0.95,0.975,0.99,0.995,0.9995. 

Lampers and Lauter (1971) extended these tables by adding values for 
a = 0.5625(0.0625)0.9375, excluding 0.75. Veseli (1964) gave values of t,, , to 
four decimal places for v = 30(1)120 and a = 0.95, 0.975, 0.995. 



In Owen (1962) there are values of t,,, to four decimal places for 

and 

a = 0.75,0.90,0.95,0.975,0.99,0.995. 

Also given are values of t,,, to five decimal places for 

with 

These tables are notable for the extensive series of values of v. 
Federighi (1959) concentrated on values of a very near to 1 (i.e. the 

extreme upper tail of the distribution). His tables give values of t , , ,  to three 
decimal places for 

and 

Hill (1972) tabulated quantiles t , , , , ,  of the Student t-distribution, corre- 
sponding to the two-tail probability levels 

cu = 0.9(-0.1)O.l; {5,2,1) X 10-2'-')-1q-5'-30 

for v = 1(1)30(2)50(5)100(10)150, 200, (240, 300, 400, 600, 1200) X (1, 10, 
I , 100). to 20 decimal places for t,,,!, < lo3, 20 significant figures otherwise. 
1 He provides many ingenious approx~rnations in the introduction of his tables. 

Hald (1952) gave the values of t,,, to three decimal places for 

2 

I and 

1 a = 0.6(0.1)0.9,0.95,0.975,0.99,0.995,0.999,0.9995. 
1 

Values of the density function p, ( t )  are tabulated in Bracken and Schleifer 
(1964), Smirnov (1961), and ~ukh i tme  (1938). The last reference provides 
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seven decimal places for 

v = 1(1)10,12, 15,20,24,30 

with 

t  = 0.05(0.1)7.25. 

In addition there are values for v = 60 with t  = 0.05(0.1)6.35. The tables of 
Bracken and Schleifer (1964) cover greater ranges of values of each of the 
arguments (note especially the fractional value v = 1.5): 

v = 1, 1.5,2(1)10,12, 15,20,24,30,40,60,120,~ 

and 

t  = 0.00(0.01)8.00. 

The collection of Smirnov (1961) includes values of p,!t)  and Pr[t ,  I t ]  to 
six decimal places for 

v = l(1) 12 with t  = 0.00(0.01)3.00(0.02)4.50(0.05)6.50 

and for 

v = 13(1)24 with t  = 0.00(0.01)2.50(0.02)3.50(0.05)6.50. 

This collection further includes values of Pr[t ,  I t ] ,  also to six decimal 
places, for 

v = 1(1)10 with t = 6.5(0.1)9.0; 

for 

v = 25(1)35 with t  = 0.00(0.01)2.50(0.02)3.50(0.05)5.00 

and for 

103v-' = 30(-2)O with t = 0.00(0.01)2.50(0.02)5.00. 

(Note the extensive fractional values of v.) There are also extensive tables of 
t,,, to four decimal places for 

v = 1(1)30(10)100, 120, 150(50)500(100)1000, 1500,2000(1000)6000, 

8000.10.000.w 
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a = 0.6,0.75,0.9,0.95,0.975,0.99,0.995,0.9975,0.999,0.9995. 

(See also Section 4.) These tables include values of the multiplying constant 
K, = (~v)- ' /~I ' ( ;(w + l )) /r(fv) and log K, to ten significant figures for 
v = 1(1)24. 

Cotterman and Knoop's (1968) tables (to five decimal places) provide 
boundary values T,(p), T,(p) such that, to three decimal places, Pr[t, 2 TI is 
equal to p [ p  = 0.000(0.001)0.500] for any value of T between T,(p) and 
T2(p), for v = 1(1)15. Laumann (1967) gives Pr[t, I t] to seven decimal 
places for t = 0(0.01)4.50, v = 20(2)40(10)100(20)200, 300, 500, 1000. The 
tables of Mardia and Zemroch (1978) include values of t,,, to five significant 
figures for v = 0.1(0.1)3(0.2)7(0.5)11(1)40, 60, 120, m and 1 - a = 0.0001, 
0.0005, 0.001, 0.005, 0.01, 0.02, 0.03(0.01)0.1, 0.2, 0.25, 0.3, 0.4. Note that 
many fractional values of w are included, which is convenient when a 
t-distribution is used as an approximation. 

Kafadar and Tukey (1988) note that t,,, is approximately a linear function 
of log(1 - a),  and they propose to use tables exploiting this fact to make 
linear interpolation more effective. They introduce the index 

-log,(l - a) with G = lo-' ' 

and term the units decigalts ("galt" in honor of Fancis Galton). The base (GI 
of the logarithms is chosen to make commonly used values of a correspond 
to nearly (or exactly) integer decigalt values (e.g., the values corresponding to 
a = 0.95, 0.975, and 0.99 are 13.0103, 16.0205, and 20, respectively). Kafadar 
and Tukey also introduce bidec values of 1 - a = 2 ~ 1 0 - ~  for integer values 
j ,  k and present a "bidec table" showing t , , ,  to three decimal places, with a 
taking values of form 1 - 2 ~ 1 0 - ~ ,  and also showing the approximate equiva- 
lent decigalt values. (The paper also includes further useful instructions on 
interpolation.) 

Tiku and Kumra (1985) have published tables of expected values and 
variances and covariances of order statistics for Student's t-distribution. The 
values are given for p = t ( v  + 1) = 2(0.5)10 and n (sample size) 5 20. 
Expressions for n > 20 are presented in Tiku and Suresh (1992). 

3.2 Nomograms 

The preceding list shows that the t, distributions have been thoroughly 
tabulated. The available tables are more than sufficient for almost all 
applications. However, practical situations arise that call for quick evaluation 
of values of t,,, or Pr[t, I t]. In such cases it is useful to have a reliable 
graphical method of determining the required value with sufficient accuracy. 
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Figure 28.2 James-Levy's Nomogram. v is the number of degrees of freedom. Given any two of 
v, t or Pr[r, I r ]  we can determine the third. 

James-Levy (1956) gave a nomogram relating u, t, and Pr[t, < t]. It is 
reproduced in Figure 28.2. The nomogram is used by placing a straightedge 
joining given values of any two of these quantities. The intersection with the 
third line then gives the required value of the third quantity. To find t,,,, for 
example, the appropriate points on the u and Pr[t, I t ]  lines are joined, and 
the intersection with the t line gives t,.,. With a = 0.950 - 0.999, an 
accuracy of about 0.001 in r , , ,  can usually be attained. 

Stammberger (1967) published a simple nomogram from which the value 
of any one of u, Pr[t, > t], and t, given the values of the other two 
quantities, can be read off using a straight edge. This nomogram is repro- 
duced in Figure 28.3. 

Babanin (1952) provided a nomogram (or abac) from which values can be 
read directly, without using a straightedge. However, this nomogram is not as 
simple as those of James-Levy and Stammberger. 



Figure 28.3 Stammberger's Nomogram 

4 APPROXIMATIONS 

There has been an intense study of possible approximations to t-distribu- 
tions. Some of the approximations produced have very high accuracy, and 
some are rather complicated. For our present purpose simplicity, as well as 
accuracy, is an important factor in assessing the value of an approximation. 



We have decided to include some complicated approximations in view of 
their substantial historical value. 

The simplest approximation is made by regarding t, as a unit normal 
variable. This is very crude unless v is at least 30, and it is unsatisfactory for 
considerably larger values of v if extreme tails (e.g., (t,l > 4) of the distribu- 
tion are being considered. The simple modification of standardizing the t 
variable, and regarding t u r n  as having a unit normal distribution 
[suggested by Weir (1960a)l effects a substantial improvement, but the 
approximation is still only moderately good (for analytical purposes) if v is 
less than 20 (or if extreme tails are being considered). As in Section 3, we 
present a list in very rough chronological order. 

Fisher (1925b) gave a direct expansion of the probability density, and 
hence of Pr[t, I t], as a series in v-I. For the probability density function he 
gives the formula 

p, ( t )  = & ( t )  1 + i ( t 4  - 2 t 2  - 1)v-I 
1 4  

1 + -(tI2 - 22tI0 + 113t8 - 92th - 33t4 - 6 t 2  + 1 5 ) ~ - %  + . .  
384 

(28.14) 

where &(t) = (&)-I exp(- i t 2 ) .  Integrating (28.141, we obtain 

i 
i 

The maximum absolute error of this approximation is shown in Table 28.2. 
Fisher and Cornish (1960) inverted this series, obtaining the avproxima- 

1 
1 - - - 

t ion 

+ L0a(30.6 + 190: + 170,' - 1 5 ) ~ - ~ .  
384 

(28.16) 

Dickey (1967) obtained an asymptotic (divergent) series approximation for 
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Table 28.2 Maximum absolute error of (28.15), c (d )  = c X lod 
-- 

Max IErrorl 

5 2.8( - 3) 
6 1.4( - 3) 
7 8.2( - 4) 
8 5.M - 4) 
9 3.2( - 4) 
10 2.2( - 4) 
11 1.5( -4) 
12 l.l( -4) 
13 8.M - 5) 
14 6.1( - 5) 
15 4.7( - 5) 
20 1.3-5) 
25 6.5( - 6) 
30 3.2( - 6) 
35 1.7(-6) 
40 1 .O( - 6) 
45 6.4( - 7) 
50 4.3( - 7) 
60 2.1( - 7) 
80 6.6( - 8) 
100 2.7( - 8) 
120 1.3( - 8) 

Source: Ling (1978). 

t < 6 in terms of Appell polynomials A r ( x )  defined by the identity 

Setting u = z(v + I)- ' ,  x = i ( l  + v- 'I t2,  we have 

Dickey gives the table of coefficients B,,,  in A r ( x )  = xrC,',,Br,,xl pre- 
sented in Table 28.3. 

Hendricks (1936) also approximated directly to the probability density 
function, obtaining 
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Table 28.3 Values of coefficients B,. ,. in Appell polynomials, A , ( x )  = x r Z :  = ,B, 

Source: Dickey ( 1967). 

where 

C v 

i 
i 
L 

This gives quite good results in the "center" of the distribution (It1 < 2) but 
i not in the tails. 
1 Formula (28.18) is equivalent to the approximation d m c , t , ,  
I 
L ~ [ t ?  + 2 ~ I - l ' ~  has a unit normal distribution. In vractice I/-c. ma 
1 be replaced by \/2v - 1 unless v is small. Some numerical comparisons are 
i 
t shown in Table 28.4. 

Another approximation, of a similar nature, was obtained by Elfving 

where 



Table 28.4 Com~arison of Hendricks's aooroximation in (28.18) with the exact value 

Values of r., , 
Hendricks's 

a Exact Value Approximation 

v = 9 0.55 0.129 0.129 
0.65 0.398 0.398 
0.75 0.703 0.703 
0.85 1.100 1.104 
0.95 1.833 1.844 
0.975 2.262 2.290 
0.99 2.821 2.869 
0.995 3.250 3.389 

v = 29 0.55 0.127 0.127 
0.65 0.389 0.389 
0.75 0.683 0.683 
0.85 1.055 1.055 
0.95 1.699 1.700 
0.975 2.045 2.047 
0.99 2.462 2.466 
0.995 2.756 2.764 

The error can be shown to be less than times the true value of 
Pr[t, I t ] ,  for all values of t. Hotelling and Frankel (1938) sought to find a 
function of t ,  with a distribution that is well approximated by the unit 
normal distribution. The leading terms of their series (which is in fact a 
Cornish-Fisher form of expansion) are 

The successive terms rapidly become more complicated. Table 28.5 [taken 
from Hotelling and Frankel (1938)l gives values of U, corresponding to t,,, 
for various values of v and cu using the first two (x ,  1, three ( x , ) ,  four (x,), 
and five (x,) terms of (28.20). The correct values of U, are also shown. For 

I extreme tails poor results are obtained with v = 10, but even for extreme 
tails ( a  = 0.99995) quite good results are obtained with v 2 30, if five terms 
are used. 

Among other investigations of expansions of Cornish-Fisher type we note 
the work of Peiser (1943) and Goldberg and Levine (1946). Peiser used the 



Table 28.5 Approximations-Values of U, using expansion (28.20) 

0.95 0.975 0.995 0.9995 0.99995 

a v = 1 0  v = 3 0  v = 1 0  v = 3 0  v = 1 0  v = 3 0  v = 1 0  v = 3 0  v = 1 0  v = 3 0  v=100  

t ,  1.812 1.697 2.228 2.042 3.169 2.750 4.587 3.646 6.22 4.482 4.052 
x ,  1.618 1.642 1.896 1.954 2.294 2.554 2.059 3.212 0.05 3.69 3.88 
X ,  1.650 1.645 1.980 1.960 2.754 2.579 4.981 3.313 12.86 3.98 3.89 
x ,  1.643 1.645 1.953 1.960 2.446 2.575 0.896 3.283 20.44 3.85 3.89 
X4 7.163 3.293 75.66 3.91 3.89 

'a 1.645 1.960 2.576 3.291 3.891 



Table 28.6 
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Approximation to I,,, using (28.21) 

10 (28.21) 
Exact 

30 (28.21) 
Exact 

60 (28.21) 
Exact 

120 (28.21) 
Exact 

Source: Peiser (1943). 

simple formula 

Table 28.6 [taken from Peiser (1943)J shows that this gives useful results for ' I 
v 2 30. 

Goldberg and Levine included one further term in the expansion, giving 

1 1 
t,., i Ua + -(u: + U,)V-' + - ( ~ u , S  f 16U: + ~ u , ) v - ~ .  (28.22) 

4 96 

The next two terms in the series are 

Goldberg 
calculated 

9491.1 Table 28.7, taken from 
and Levine (1946), compares exact values with approximate values 
from (28.22). (The original tables also give values obtained using 

b lAbramowitz and Stegun (1964, p. 

only the first two terms, as in Peiser's work.) Inclusion of the third term 
considerably improves the approximation, which is now reasonably good for v 
as small as 20. Simaika (1942) improved the approximation U = t , m  
by introducing higher powers of U.  The approximation sinh-'(t,,d=) 
with a unit normal distribution [Anscombe (1950)l is a special case of a 
transformation of noncentral t (Chapter 31). It is not much used for 
central t. 
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Table 28.7 Comparative table of approximate and exact values of the percentage 
points of the t-distribution 

Probability Degrees of Approximate Exact 
Integral (a) Freedom (v) Percentage Point" Percentage Point 

0.9975 1 21.8892 127.32 
2 9.1354 14.089 

10 3.5587 3.5814 
20 3.1507 3.1534 
40 2.9708 2.9712 
60 2.9145 2.9146 

120 2.8599 2.8599 
1 16.3271 63.657 
2 7.2428 9.9248 

10 3.1558 3.1693 
20 2.8437 2.8453 
40 2.7043 2.7045 
60 2.6602 2.6603 

120 2.6174 2.6174 
1 7.1547 12.706 
2 3.8517 4.3027 

10 2.2254 2.2281 
20 2.0856 2.0860 
40 2.0210 2.021 1 
60 2.0003 2.0003 

120 1.9799 1.9799 
1 4.5888 6.3138 
2 2.7618 2.9200 

10 1.8114 1.8125 
20 1.7246 1.7247 
40 1.6838 1.6839 
60 1.6706 1.6707 

120 1.6577 1.6577 
1 0.9993 1 .OOOO 
2 0.8170 0.8165 

10 0.6998 0.6998 
20 0.6870 0.6870 
40 0.6807 0.6807 
60 0.6786 0.6786 

120 0.6765 0.6766 

"From (28.22). 



Chu (1956) obtained the following inequalities, which aid in assessing the 
accuracy of simple normal approximations to the distribution of t,, for 
A s O ,  B z O , v 2 3 :  

Y[@(B/?) v + l  
- ( A ) ]  5 P A  < t < B] 

He showed that for v large, the ratio of absolute error to correct value of 
Pr[A < t, < B] using the unit normal approximation to t,, is less than v-I. 

Wallace (1959), developing the methods used by Chu (19561, obtained 
bounds for the cumulative distribution function of t,. These are most easily 
expressed in terms of bounds on the corresponding normal deviate u(t), 
defined by the equation (with t > 0) 

@ ( u ( t ) )  = Pr[t, I t] .  (28.24) 

Wallace summarized his results as follows: 

( )  2 (1 - V ) ~ V  I (  + t 2 v ) ] ' 2  for Y > f ,  (28.25b) 

and also 

u ( t ) r [ v l 0 ~ ( l + r ~ v - ~ ) ] ' / ~ - 0 . 3 6 8 ~ ~ ~ ~  f o r v a ; .  (28.25~) 

From (28.25a) and (28.25b) it can be seen that [V  log(1 + t ' ~ - ' ) ] ' / ~  differs 
from u(t) by an amount not exceeding 2 5 ~ - I % ;  (28.25~) shows that the 
absolute error does not exceed 0 . 3 6 8 ~ - ' / ~ .  Usually (28.25b) gives a better 
(i.e., greater) lower bound than (28.2%). 

Wallace further obtained two good approximations without giving precise Z 

bounds for (28.27): 
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L 

383 

with 

s = O.l84(8v + 3)v-'[log(l + t2v- I ) ]  -'I2. 

He stated that (28.27) is within 0.02 of the true value of u(t) for a wide range 
of values of t. Prescott (1974) advocated use of (28.26). 

Wallace compared the values given by (28.25a1, (28.25b), (28.254, (28.261, 
and (28.27) and by the formula corresponding to the Paulson approximation 
to the F-distribution (Chapter 27) (setting v, = 1): 

~r[ l t , l  r t ]  = Pr - 2v-')t2/' - 7][v-'t413 + 1 1 " ~  

(28.28) 

r 
c His results are shown in Table 28.8. 

The accuracy of (28.27) is noteworthy, though the formula is rather 
complicated. Peizer and Pratt (1968) have proposed other formulas of this 
kind: 

and 

--o\- - - . (28.29b) 

Gaver and Kafadar (1984) provide a simple approximation to percentage 
points of t-distribution very similar to (28.29b) of a somewhat su~erior 
accuracy. 

Cornish (1969) reported Hill's (1969) Cornish-Fisher type expansions in . . 

terms of u = {a, log(1 + t2v- ' )J1/2 and a, = v - $, as follows: 

1 1 
u ( t )  = u + - (u3 + 3 u ) a i 2  - - 

48 23040 
(4u7 + 33u5 + 240u3 + 855u)ai4, 

(28.30a) 

and inversely 

t",, = [ ~ ( e x ~ [ u ' ~ a ; ' ]  - I ) ] "~ ,  (28.30b) 

where 



Exact 
v r Value Eq. (28.25a) Eq. (28.25b) Eq. (28.25~) 

0.294 0.208 < 0 
0.832 0.589 0.465 
1.269 0.897 0.901 
1.683 1.190 1.315 
2.043 1.445 1.675 
2.231 1.577 1.863 
3.035 2.146 2.667 
4.799 3.393 4.431 

- --- - 

Paulson 
Eq. (28.26) Eq. (28.27) Eq. (28.28) 

100 100 21.447 21.483 21.429 21.446 21.429 21.450 18.541 

Source: Wallace (1959). 



APPROXIMATIONS 

Mickey (1975) suggested the approximation 

which is a modified Chu (1956) transform approximation; see page 382. 
These investigations suggest a general class of transformations of form 

If, in Wallace's (1959) or Mickey's (1975) transformations, t is expressed as a 
function of u ( t )  and them expanded in a power series, it agrees with Fisher's 
expansion up to O(v- '1 .  Bailey (1980) showed that by choosing a = - g, 
b = 4, c = g,  and h = A in (28.32), agreement up to O ( U - ~ )  can be 
achieved, and the approximation 

is accurate to ~ ( v - ~ )  locally in the vicinity of u ( t )  = 1.9469. This value is 
likely to be of interest in many applications. 

Bailey also suggested 

where z ,  is the unit normal ( v  + 00) value for u( t ) .  For z ,  = 1.96, 2.5758, 
and 3.2905, very high accuracy up to o ( v - ~ )  is achieved and for z ,  = 2.3276 
the accuracy improves to O W 4 ) .  

Soms (1984) extended the bounds of Birnbaum (1942) and Sampford 
(1953) (see Chapter 13 and Chapter 33, Section 7.1 in the first edition) for the 
ratio of the upper tail area of the normal distribution to the upper tail of the 
t-distribution by showing that 

1 where f J x )  is the Student density with v degrees of freedom satisfies the I 



inequalities 

where the lower bound is valid for all v 2 1 and the upper for v r 2 (not 
necessarily integer-valued). 

An earlier result of Soms (1976) is 

Soms (1984) gave 

A ( x , ~ m i n )  < <A(x?ymax),  (28.38) 

where 

I + Y  
A ( x , Y )  = for v > 2, 

( x 2  + 4c:(l  + y ) 2 ] l ' 2  + yx 

For v < 2 the definitions of ymin and y,,, are interchanged, and for v = 2, 
ymin = ymax and R, , ,  = A(x,  y,,,,,). Soms compared his bounds with those of 
Peizer and Pratt (1968) and Wallace (1959) without reaching definite conclu- 
sions. In general the lower bound in (28.38) is the best while the picture is 
mixed for upper bounds. 

Among formulas developed empirically, we mention results of four investi- 
gations, reported by Cucconi (1962), Gardiner and Bombay (1965), Moran 
(1966), and Kramer (1966). Gardiner and Bombay (1965) gave formulas of 
the form 

t , , ,  = ( a v  + b + c v - ' ) ( v  + d + e v - I ) - '  (28.39) 

for various percentiles. Values of a, b,  c ,  d ,  and e for a = 0.95, 0.975, and 
0.995 are shown in Table 28.9 (note that a = U,). The corresponding values 
of t,., are correct to four decimal places for v > 3. These results are rather 
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Table 28.9 Values of a, b, c, d, and e for the approximation in (28.39) 

a a b c d e 

better, for smaller values of v,  than those obtained with Cucconi's (1962) 
formulas: 

Moran's (1966) investigations were confined to comnarisons at 2.5%. 0.5% 
and 0 

At 

l 

and 

" - ~~ - - - - - - - - - - - - - .  r ----- - - - -  - 

.05% percentiles, and led to the following approximations: 
the 2.5% point, 

The formula 

was found to give fairly good results both for a = 0.975 and a = 0.995. 
Values 
in Tab1 

given by (28.421, (28.431, and (28.45) for cx = 0.975, 0.995, 
e 28.10. 

.e shown 



Table 28.10 Comparison of approximations (28.421, (28.431, and (28.45) 
with exact values of U, 

a = 0.975, U, = 1.9600 a = 0.995, U, = 2.5758 - 
Y Eq. (28.42) Eq. (28.45) Eq. (28.45) Eq. (28.43) 

3 2.1369 1.9284 2.6628 2.3961 

Formula (28.45) gives reasonably good results for v 2 10. Kramer's (1966) 
approximations are based on unpublished results obtained by Ray (1961). He 
stated that the following formulas have errors less than 0.001 for 3 < v < 120: 
F o r O < t < l ,  

For 1 I t I 2, 

For t > 2, 
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Similar accuracy for v  = 1 is obtained with the following formulas: 
For 0 < t  I i, 

Pr[O < t ,  < t ]  = .rr-'(t - St3 + f t 5  - f t 7) .  

For f < t  < $, 

PI-[0 < t ,  < I ]  = t + ~ - ' [ t ( r  - 1 )  - f ( t  - 1 )  2 

3 +6(r - 1)  - t  - 1 ) .  (28.47b) 

For t  2 $, 

Pr[O < t ,  < t ]  = f - n - ' [ t - I  - f tC3  + - f t - '1 .  ( 2 8 . 4 7 ~ )  

For v  = 2  the formula 

Pr[O < r ,  < r ]  = t ( 8  + 4 t 2 ) - ' I 2  

is exact for all t  2 0. Formulas (28.46) and (28.47) are well suited for use in 
calculators. 

For calculating extreme tail probabilities of the t ,  distribution, Pinkham 
and Wilk (1963) suggested using the expansion 

dy = x w , + R , ( t ) ,  m < i ( u +  I ) ,  (28.49a) 

2 - 1  - ( u - l ) / 2  
w ,  = v ( u -  1 ) - , ( 1  + r  u  ) 

, j = 1,2, ..., m - 1, 

and the remainder term R,( t )  does not exceed (in absolute value) w,,,. 
Table 28.11 [taken from Pinkham and Wilk (1963)l shows how good 

approximations can be obtained with this formula using only three terms in 



Table 28.11 Exact and approximate tail areas for the t-distribution 
with v degrees of freedom 

- - - - - 

Exact Approximation (28.49a) with m = 3 

Tail Areaa v = 7 v = 15 v = 40 

0.001 0.000 816 0.001 06 0.001 02 
0.000 05 0.000 042 8 0.000 051 5 0.000 050 3 
0.000 01 0.000 008 66 0.000 010 2 0.000 010 05 
0.000 001 0.000 000 873 0.000 001 02 0.000 001 003 
0.000 000 1 0.000 000 087 7 0.000 000 102 0.000 000 100 1 

Source: Pinkham and Wilk (1963). 
"These tail areas are exact to the extent that Federighi's (1959) tabled quantiles are exact. 

the expansion (i.e., m = 3). An expansion of the integral (28.49a) in terms of 
w = [ l  + t 2 v - 1 ] - 1 / 2  was used by Hill (1970a) for t 2  > n 2 1: 

The inverse of this series was used to express t 2 v - 1  in terms of z = 
[ v ~ / ~ c , ~ ] ~ / ~ ,  where c ,  is the normalizing constant of the probability integral, 
yielding the formula 

which is exact for v  = 2, and for larger v  correct to over six digits for 
z < v - ' .  

Cornish (1969) reported Hill's (1969) Cornish-Fisher type expansions in 
terms of u = [ a ,  log(1 + t2v- ' ) I1/*,  where a ,  = v  - (1/2) [see Eqs. (28.30a) 
and (28.30b)I. M. A. A. Cox (1991) has adapted Hill's (1970a) algorithm for 
evaluation of percentage points of the Student's [-distribution written in 
ALGOL code for use on a spreadsheet. The resulting code is entered via the 
macro facility. The package adopted is SYMPHONY@; however, the logic 
may be readily implemented in both LOTUS 123O and SUPER CALCQ. In 
Zelen and Severo (1964) the following approximations are stated: 

I 



APPROXIMATIONS 

For v I 5, but t large, 

Pr[t, I t ]  = 1 - a,t-' - but-'"+" 

with 

a ,  = 0.3183, a, = 0.4991, a, = 1.1094, a, = 3.0941, a, = 9.948, 

b ,  = 0.0000, 6, = 0.0518, 6 ,  = -0.0460, 6, = -2.756, b, = - 14.05. 

For v large, 

Gentleman and Jenkins (1968) published an approximation, suitable for 
computer use, of form 

where each c, is the ratio of a quintic to a quadratic polynomial in v-I. This 
gives five decimal place accuracy for v > 10. Values of the c,'s (as functions 
of V-I) are shown in Table 28.12. 

Taylor (1970) provided an algorithm for applying this method. For v 2 5 
the absolute error is always less than 0.001. Ling (1978) compared several 
approximations and demonstrated that for degrees of freedom from 5 to 45, 
the formula of Gentleman and Jenkins (1968) was best, according to his 
criterion of maximum absolute error, for tail areas between 0.0001 and 
0.4999. 

Continuing Ling's (1978) investigations, Lozy (1982) pointed out that the 
best approximation to Student's t-distribution is that of Hill (1970a, 1972, 
1981). This involves a generalized Cornish-Fisher type expansion [Hill and 
Davis (1968)1, in which 

U = Z + ( Z 3  + 3Z)b-I - & ( 4 z 7  + 33Z5 + 240Z3 + 855Z)b-2 (28.53) 

with as above Z = {a log(1 + ~ - l t : ) } ~ / ~ ,  a = v - i, b = 48a2, is approxi- 
mately a unit normal variable. Hi11 (1972, 1981) provided the first seven terms 
while Hill (1970a) pointed out that the contribution of the fourth term may 
be accounted for by replacing the denominator (lob2) of the third term by 

10b(b + 0.8z4 + 10) 

Lozy (1982) also compared Gentleman-Jenkins, Peizer-Pratt, Cornish-Fisher, 



Table 28.12 Coefficients for the approximation in (28.52) 

Coefficient Numerator Denominator 

C I  0.009979441 - 0.581821~ - ' + 1.390993~-~ 1 - 5.537409~-' + 11.42343~-~ 
- 1.222452~--' + 2.151185~-I 
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and various approximations of Hill (2-term, 3-term, and 3-term modified) and 
concluded: 

The Gentleman-Jenkins and Hill approximations are the only ones to give five 
correct decimal places for a small number of degrees of freedom, and one would 
probably opt for the simple Hill two-term approximation over the rather compli- 
cated Gentleman-Jenkins one. Since the two-term Hill approximation gives an 
accuracy of five decimals for eight degrees of freedom, as opposed to about 4-5 
decimals for the Peizer-Pratt and Wallace approximations, and is no more compli- 
cated than they are, there would again seem to be no justification for using any of 
the latter. 

BukaE and Burstein (1980) provided a table of coefficients for polynomial 
approximations of t,,, for five values of a with proportional error less than 
0.00005. The basis is Goldberg and Levine's (1946) approximation 

For large v 2 120 the authors use 

t , q , = b , + b l x ,  w h e r e x = v - ' , b , = U , ,  

1 
b l  = q(U2 + U,). 

Then, for given v and a ,  they approximate t,,, by 

R N ( x )  = b,, + b I x  + b2x2 + +bNxN,  

where for specified N, b,;.., b,, are computed so that the maximum 
relative error 

i 
b 

is minimized for small v. Table 28.13 provides the appropriate values of 6, 

Sinclair (1980) notes that for large t, logPr[t, > t l  is approximately linear 
in log t ,  with slope - t. For large values of t he suggests the approximation 

{ 2 ~ r [ t ,  > 11)-"' = a,t  + p, t- ' ,  

and 



Table 28.13 Coefficients for polynomial approximation (28.54b) of Student's t 
percentage points (I,,,) 

a 

0.900 0.950 0.975 0.990 0.995 

where 

and 

The values of a, and P, are chosen by equating the two leading terms in the 
Taylor series expansion of $(a,t + Put- ' ) -"  to the two leading terms in the 
expansion, in negative powers of r, of Pr[t, > tl. The difference between the 
true value of Pr[t, > t ]  and the approximation from (28.55) is of order 
t-'"+4'. Since the value of Pr[t, > t ]  is of order t-", the absolute relative 
error is of order t-4. Comparisons between Pinkham and Wilk (19631, 
Mickey (1975), and Sinclair (1980) are provided in Sinclair (1980). 

Richter and Gundlach (1990) have suggested the following approximations 
(for a > f ): 

and 

where y,(v) and y2(v) are appropriate constants and do not depend on a. 
They claim that these formulas are accurate to within f 4 X (for 
Y 2 4). Table 28.14 [from Richter and Gundlach (199011 presents some values 
of y,(v) and y2(u). AS v -, m, y,(u) --, 1 ( j  = 1,2), and it appears that, for 
v > 33, one might take 
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Table 28.14 Values of y ,( v )  and y,( v )  for (28.56) and (28.57) 

5 0.4 124 0.7036 20 0.7223 0.8576 
6 0.4672 0.7324 2 1 0.7295 0.861 1 
7 0.5088 0.7541 22 0.7361 0.8642 
8 0.5440 0.7713 23 0.7424 0.8673 
9 0.5722 0.7852 24 0.7482 0.8701 

10 0.5860 0.7967 25 0.7536 0.8729 
11 0.6163 0.8067 26 0.7588 0.8752 
12 0.6340 0.8152 27 0.7636 0.8775 
13 0.6495 0.8227 28 0.7681 0.8797 
14 0.6633 0.8293 29 0.7725 0.8818 
15 0.6756 0.8553 30 0.7765 0.8837 
16 0.6868 0.8406 31 0.7804 0.8856 
17 0.6969 0.8454 32 0.7841 0.8874 
18 0.7061 0.8498 33 0.7876 0.8891 

Source: Richter and Gundlach (1990). 

5 APPLICATIONS 

The major applications of the t-distribution, construction of tests and confi- 
dence intervals relating to the expected values of normal distributions, have 
been discussed in Section 1. 

In particular, if X I ,  X,; . a ,  Xn are independent random variables, each 
having a normal distribution with expected value 6 and standard deviation 
o, then the distribution of f i ( 2  - ()/St [where = n-'C;= 'X, and s', = 
(n - 1)-'X,",,(X, - x)2]  is a t-distribution with n - 1 degrees of freedom. 
Since 

~ r [ l h ( Z  - ()/SII < tn-  = I - a, 

it follows that 

P - ( t  / ) s  < 5 < + ( ) s ]  = 1 - a. (28.58) 
- 

So X lt (t ,- , , ,-  :/ h ) ~ '  is a confidence interval for 5 with confidence 
coefficient 100(1 - a)%. For practical purposes, it is convenient to have a 
table of multipliers b",, = tn- , * ,  - ? /  6 so that the limits of the interval are 
f bn,,S1. Table 28.15 contains a few values of b,.,. 
In analysis of variance tests, when one of the sums of squares being 

compared has 1 degree of freedom, the appropriate null hypothesis distribu- 
tion is F with 1, Y degrees of freedom, which is identical with the distribution 
of t:.  Confidence limits for a single specified linear function of parameters in 
a general linear model (Chapter 27) corresponding to a single degree of 
freedom are constructed in a similar way to that just described. 
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Table 28.15 Values of b,., 

"Student's" distributions (along with stable distributions; see Chapter 12, 
Section 4) have been found to provide adequate models for description of 
changes in prices of speculative assets such as stocks. Some relevant refer- 
ences are Praetz (1972), Praetz and Wilson (19781, Blattberg and Gonedes 
(19741, McLeay (1986), and Taylor and Kingsman (1979). In the last of these 
papers a three-parameter Student (i.e., Pearson Type VII) distribution is 
fitted to daily changes in commodity prices. Recent applications of Student's 
distributions include the following: 

1. [Eggers and Andersen (1989), Andersen, Lauritzen, and Thommesen 
(1990), Lauritzen, Thommesen, and Andersen (1990)l representing the 
distribution of the phase derivative (random frequency of a narrowband 
mobile channel) of air components in an urban environment. 

2. [Mirza and Boyer (1992)l as part of noise models for depth map data 
and in the development of appropriate M-estimators. 

3. [Angers (1992)l as (independent) prior distributions for expected values 
of multinormally distributed variables. 

4. [Verdinelli and Wasserman (1991)l as an underlying model while dis- 
cussing the Bayesian analysis of outlier models using the Gibbs sam- 
pling approach. 

6 PEARSON TYPE MI DISTRIBUTIONS AND THEIR MODIFICATIONS 

The general Type VII distribution has a probability density function that can 
be expressed in the form 

This depends on the three parameters m,  c, and 6. The t ,  distribution is 
obtained by putting m = i ( v  + I), c = \/;;, and 8 = 0. Thus, if X has the 
distribution (28.59), then J=(X - t ) / a  is distributed as t2,- ,. The 
shape of the curve represented by (28.59) is therefore the same as the shape 
of the curve corresponding to the t2 , - ,  distribution. This has been described 
in Section 2 and will not be discussed here. The present section will be 
devoted to discussion of the problem of estimation of the parameters m,  c, 
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and 6, given observed values of n independent random variables XI ,  
X2; - ., X,,, each having the distribution (28.59). This problem was discussed 
by Fisher (1922) as one of the earliest illustrations of the use of the method 
of maximum likelihood. Some further formulas were published by Sichel 
(1949) who also applied his method of frequency moments to the problem. 
Our discussion is based on these two papers. 

The equations satisfied by the maximum likelihood estimators h, t, [, can 
be written in the form 

[ ( J 2 ] * ( ) - ( h i ) ,  n - '  C log 1 + --- 
j =  l 

For large values of n the standard formulas give the following aooroxima- 1 - - 
tions: 

i m  + 1 
co r r (h ,  c * )  = 

m J(2m - l)[,")(m - $1 - l ( l ) ( m ) ]  ' 
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Taylor (1980) gives this analysis in terms of parameters k = 2m - 1 and 
h = c2(2m - I)-'. In these formulas $ ( z )  = (d/dz)logI'(z), $(')(z) = 
(d/dz)$(z), and so on. 

Formula (28.61~) also gives the approximate variance of the maximum 
likelihood estimator of .$ when the values of either or both of m and c are 
known. The asymptotic formulas for the variances of (and correlation be- 
tween) the maximum likelihood estimators of m and c are the same whether 
the value of 6 is known or unknown. 

If c is known, then 

n var(Maximum likelihood estimator of m) = [$"'(m - $) - $(''(rn)] - I .  

The estimators of m and .$ are obtained by solving equations (28.60a) and 
(28.60b) with c  ̂ replaced by c. If m is known, then 

n var(Maximum likelihood estimator of c )  = 

Formulas (28.62) and (28.63) are applicable whether or not the value of 5 is 

The parameters may also be estimated by equating sample and population 
values of first, second, and fourth moments. In terms of the population 
moments 

Denoting by f i ,  c', $, the estimators obtained by replacing population values 
by sample values on the right-hand side of (28.641, we have the following 
approximate formulas (for n large): 

n va r (h )  = f ( m  - 1)(2m - 5)(2m - 312(2m2 - 5m + 12) 

~ ( 2 m  - 7)- ' (2m - 9) - ' ,  

n var(E) = f c2 (m - 1)(2m - 3)(8m3 - 48m2 + 108m - 83) 

x ( 2 m  - 5)- '(2m - 7)-'(2m - 9)- ' ,  

n var(f) = c2(2m - 3)-I .  
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Note that 

Equation (28.654 is exact and is also valid if either one or both of c and 
m have known values, 

Equations (28.65a) and (28.65b) cannot be used unless m exceeds 4:, 
Equations (28.65a) and (28.65b) apply whether the value of 5 is known or 

not. 

If either m or c is known, the other parameter ( c  or m, respectively) can 
be estimated by equating 

var(X) = c2(2m - 3 ) - '  

to the sample variance. For n large we have the following approximate 
formulas for the variance of estimators of m, c obtained from (28.64): 

I 

n(Variance of estimator of m )  = (2m - 312(m - 1)(2m - 5 ) - ' ,  (28.67a) 

n(Variance of estimator of c )  = c 2(m - 1)(2m - 5)- ' .  (28.67b) 

The parameter 5 may be estimated by the median. The variance of this 
estimator is approximately 

I 

1 For m < 2.8 the median has a smaller asymptotic variance than the 

1 arithmetic mean. (The latter has infinite variance for m I 1.5.) The ratio of 
r asymptotic variance of mean to that of median decreases as m increases, 
I tending to 0.637 (the value for normal distributions) as m + m. 
i 
k Fraser (1976) and Sprott (1980) use the distributional form 

where A(r 1) is assumed to be known. Sprott (1980) obtains an estimator of 
a, regarding O as a nuisance parameter, and using the method of maximum 
relative likelihood, maximizing 

X) = PAX;  B*)/p,(X; i),  

where 0, is the parameter of interest and 0* = (O,, OT, O,*;. ., 0:) is the 



r5str;cted maximum likelihood estimator of 8 = (e l ,  8,; ., 8,) and 6 = 

(6,, 6,; . ., 4) is the unrestricted maximum likelihood estimator. Borwein 
and Gabor (1984) investigate the behavior of the MLE of parameter u in this 
model. 

This distribution appears in the following model of Bayesian inference: 
Let X I ,  X,; - ., X,, be observations taken from N(6, u2) ,  where 8 and cr2 
are unknown. The likelihood function of 6, after integrating over u2  with 
respect to the noninformative prior a-2 d o 2  (proper inverse gamma prior 
distributions for oZ could also be used here) is of form 

where X, S2 are the usual sample mean and variance, and 

[See Fan and Berger (1992) and Gambino and Guttman (19841, among 
others, for additional details.] 

McDonald and Newey (1988) and Butler et al. (1990) studied distributions 
with pdfs of form 

They term them GTdistributions. When p = 2 and o = &!a, (28.71) reduces 
to the pdf of a t-distribution with 2q degrees of freedom. In these distribu- 
tions a is a scale parameter while p and q control the shape of the density. 
Larger values of p and q are associated with "lighter" tails of the density. 
The hth moment of Y exists, provided h < pq, and is given by 

In an earlier paper McDonald and Butler (1987) point out that the log t 
distribution [LT(y; p,  o ,  q)] with the pdf 

is a lognormal distribution mixed with an inverse gamma distribution. [See 
also Hogg and Klugman (1983)l. A similar result holds for the G T  distribu- 
tions, which are mixtures of Subbotin distributions with the pdf 
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p e - ( I ~ 1 / u ) " / ( 2 ~ ~ ( p - ' ) }  

[See Eq. (24.83YI with inverse generalized gamma distributions [Butler et al. 
(1990)l. (This result has applications in Bayesian inference.) The pdf of the 
inverse generalized gamma (IGG( y; - a, P, q ) )  is 

P/y ) a ~ + l e - ( ~ / ~ ) "  
p v ( y ; a , P , q )  = 

(see Chapter 17). [Recall the relation between generalized gamma with the 
pdf 

laJ( y / p ) a P - l e - ( ~ / ~ ) "  

P V  P)  
9 Y 2 0 ,  

denoted by GG(y; a , P ,  p), and inverse generalized gamma, denoted by 
IGG(y; a ,  P, PI: 

I G G ( y ; a , P ,  P) = GG(Y;  - a , P ,  P).] 

Vaughan (1992) studies the Tiku-Suresh (1992) method of estimation for the 
(generalized) Student family: 

[cf. (28.69)] (28.76) 

for p ,  k, and a > 0. The values of p and k satisfy k = 2 p  - 3 if p 2 2 and 
k = 1 for 1 I p 5 2. (For p = 1 we have Cauchy distributions.) 

The maximum likelihood equations, for p known, 

~ I O ~ L  2 p  --- = - 

and 

n 2 p  " 
= - + - C Z , g ( Z , )  = 0, 

k ~ , = l  

where Z, = ( X I  - @)/a and g(z)  = z( l  + z2/k)- ' ,  have no explicit solu- 
tions except, of course, when p = m. 

Tiku and Suresh (1992) and Vaughan (1992) provided a method for 
estimating 8 and a by solving (28.77a) and (28.77b) iteratively. If no more 
than half of the sample values in a random sample of size n coincide, then, as 



Vaughan (1992) shows, there is a unique pair of values (i, 3) satisfying 
(28.77a) and (28.77b1, simultaneously and maximizing the likelihood function. 

The modified maximum likelihood method of estimation suggested by 
Tiku and Suresh (1992) involves expression of these equations in terms of 
order statistics (Xi') with ZI = (Xi' - e)/u: 

and 

and then linearizing a log L/a6 using the Taylor series approximation 

where 

f f .  = 
(2/k)5/ 

[ I  + ( l / k ) l f I 2  ' 

Note that since the distribution is symmetric, E:=,a, = 0. Incorporating 
(28.79) into equations (28.78), they arrive at the MML estimators 

where 

2P  " 
B = - c  aiX;, 

k ; = I  

2P  " A 2 c =  - Zp,{x,'- e*} . 
k , = I  
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Note that in &* the divisor n is replaced by 4- for bias reduction; if 
g(z) is linear in z ,  the estimators obtained are the ML estimators. The 
estimator of a in (28.80b) may, however, take on negative values in some 
instances. A detailed analysis of these estimators is available in Vaughan 
(1992), who extends the results to censored situations. 

7 OTHER RELATED DISTRIBUTIONS 

We have already noted that the distribution of t: is identical with that of F 
with 1, v degrees of freedom. On account of the symmetry, about zero, of the 
t, distribution, 

Pr[F,,, < K ]  = pr[t; < K ]  = ~r[lt,,l < a], 
and so 

4K = ~",( ,+,) /2.  

Other relations between the t and F distributions have been described in 
Chapter 27. Psarakis and Panaretos (1990) introduced the distribution of the 
random variable W = It,l, termed the folded t uariable. The expected value 
and variance are 

I 

, v > 2. (28.82b) 

They show that the folded standard normal distributions with the pdf 

(see Chapter 13, Section 10.3) is the limiting form of the folded t-distribution 
as v -, m. 

The folded t-distribution is related to the chi-distribution by the relation 

where X and Y are independent chi variables with 1, v degrees of freedom, 

W with 1 degree of freedom is the standard half-Cauchy. If X has an F,., 
distribution, then (as noted in Section 11, f 6 ( ~ ' / ~  - X-'I2) has a t, 



distribution, so +\/;;(x'/~ - x-'l2) has a folded t-distribution with v degrees 
of freedom. Psarakis and Panaretos (1990) tabulate values of the cdf F,(w), 
for w = 0.0(0.1)6.0 and v = 1(1)5, 10, and 20. 

There are a number of pseudo-t-distributions obtained by replacing x,/ 6 
in the denominator of 

by variables with other distributions (still independent of U). These corre- 
spond to replacing S' in \/;;(p - ()/St by other sample measures of disper- 
sion, in particular by the range [max( X,, . . . , X,) - m i d  X I ,  . . , X,)] or the 
mean deviation n -  'Cj", ,I X, - TI. These latter have the common feature that 
they are distributed as uT, where T is the variable corresponding to the case 
u = 1. Hence the ratio is distributed as U/T and so does not depend on the 
value of u [e.g., see Pillai (1951)l. 

The use of statistics of this kind has been described in Chapter 13. If the 
distribution of the denominator is approximated by a cx,/ 6 distribution, 
the ratio is approximated by a c- ' t ,  distribution. Usually v is fractional, and 
it is necessary to interpolate if standard tables are used (in which v is usually 
given for integer values only, the tables of Mardia and Zemroch (1978) are a 
notable exception). Alternatively, approximate formulas may be used. 

Birnbaum and Vincze (1970) studied the distribution of 

from a general distribution with a continuous cdf. Here 

is the population median, r is an integer 1 r r I m and the sample size is 
2m + 1; X,l,,+, is the sample median. 

The statistic T* is similar to the t-statistic. The denominator is an 
estimator (sample interquartile range) of a scale parameter (population 
interquartile range). This statistic is invariant under linear transformations 
and needs only three order statistics for calculation. Under mild regularity 
conditions [continuity of p;(x) and p;(p) = 01 the limiting distribution of 
T* (for a fixed r )  is 

where +(.) is the unit normal pdf. Tables (based on simulations) of 
Pr[T* > t], when X is normally distributed, for m = 1(1)10, r = l(l)m and 
t = 0.0(0.1)5 were provided by Tague (1969). 
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The distribution of (XI - Z)/S', where X, is randomly chosen from X,,  
X,; , -, X, was found by Thompson (1935) to be related to the t-distribution. 
In fact, setting E[X,] = 0 and var(XI) = 1 (which does not affect the 
distribution), we obtain 

n - 2 
= Y +  - ( x , - X ) ,  

n - 1  

with Y and (X,- x ) '  mutually independent, and Y distributed as x:-,. 
Hence (X, - X)/S1 is distributed as [(n - 1)/ & ] u ( ~ ~ - ,  + u~) - ' / ' ,  
with U (standard normal) and X:-2 mutually independent; that is, as 
beta ( f ,  - 1) over the range [-(n - l)/ &,(n - 1)/ 61. Equivalently 
(X, - X)/S' is distributed as 

n - 1  
----&PTt,-,{I + ( n  - 2)t,Z-,)- . 
6 

Smith (1992) provides an elegant derivation of the distribution of the t-statis- 
tic (28.1) when U and X: are not necessarily independent. With X: = C;= ,y2, 
we take Z = ( U ,  Y) to have a multinormal distribution with expected value 0 
and variance-covariance matrix 

V is a v x 1 vector and 1, denotes the identity matrix of order v. If V = 0, 
then U and X: are independent and t - t,. If V # 0, defining w = V'V 2 0 
(and since 1x1 = 1 - w 2 0, w 5 I), Smith (1992) derives the density function 

T ( v / ~ ) { T v ( ~  - w ) ) " ~  

--a, < t <m, 

where (a), = a(a + 1) . . ( a  + i - 1). 
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The discrepancy between exact and nominal probabilities P[T > t,] is 
small; the worst relative errors occur for small V, large w, and small a. For 
10% and smaller values of 1 - a the exact tail probabilities under depen- 
dence are smaller than the nominal ones. Using Student's values thus gives 
rise to conservative inference. 

The distribution of &(z - -)/Sf when XI ,  X2; - ., X, have identical, 
but not normal, distributions has been studied for the following cases: 

Rectangular. By Hotelling and Frankel (1938), Perlo (1933), Rider (1929, 
1931), Rietz (1939), Siddiqui (1964), Watanabe (1960- 19661, and Ali 
(1975, 1976). 

Exponential. By Geary (1936) and Hoq, Ali and Templeton (1978). 

Edgeworth series. By Bartlett (1939, Ghurye (19491, Gayen (1949, 19521, 
Tiku (19631, and Zackrisson (1959). 

Compound (mixture) normal. By Hyrenius (1950) and Quensel (1943). 
Various distributions. (Rectangular, Laplace, X2, Beta). By Watanabe 

(1960- 19661, Sansing (1976), and Sansing and Owen (1974). 
Stable distributions. By Logan et al. (1973). 

Laderman (1939) gave a general formula for the distribution of t, for any 
continuous parent population, for sample size two. In a number of cases 
exact distributions have been obtained only for small sample sizes [v usually 
up to 3 or 41. For the parent rectangular distribution Siddiqui has given 
bounds for the probability integral of t, and obtained numerical values for 
v r 6. Hotelling (1961), by a geometrical method, has shown that as t -+ m, 

the ratio of Pr[t, > t ]  to its normal theory value tends to 

for a parent uniform distribution, (28.88) 
2 Y + 1 r ( + ( v  + 3))  

and that for a parent Cauchy distribution [pdf rr-l(l + x2)-'1, the limiting 

[ (v  + i ) /T](V+1) /2r (+(V + I ) )  

He also obtained similar results for Pearson Type 11, exponential and double B 

exponential (Laplace) distributions. 
i 
1 

Of most general interest are the results for Edgeworth series. The results 
are given for a!! n and indicate the variation from the Student's t-distribution 
that one might expect to be associated with given nonnormal values of the 
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moment ratios. Ghurye (1949) considered a series only up to the term in a, Gayen (1949, 1952) included further terms. The results of Tiku (1963) 
appear to correspond to inclusion of still further terms in the expansion for 
the distribution in the parent population. Gayen obtained 

Pr[t, > t ]  = (Value for normal population) 

- JLilp@(t) - ( a 2  - np,,ct) + s , p P s r )  (28.90) 

and gives a table of the functions P(.). We reproduce part of his table as 
Table 28.16 [See also Chung (19461.1 We should also note a formula obtained 
by Bradley (1952, p. 21) for a Cauchy parent population (for which we cannot 
use moment ratios as an index of nonnormality). It expresses the value of 
Pr[t, I t], for positive t, as a series in t d 2  (up to and including the t-6 
term).* 

Ratcliffe (1968) presented results of an empirical investigation of the 
distribution of t for five markedly non-normal parent distributions (including 
rectangular, exponential, Laplace, gamma, and a U-shaped distribution). He 
studied, in particular, the reduction in the effect of non-normality with 
increasing sample size. He concluded that a sample size of 80 or more should 
eliminate effects of non-normality (mainly skewness) for most practical pur- 
poses. For symmetrical population distributions the necessary sample size is 
much less. 

Efron (1968) has given a theoretical discussion of the distribution of t 
under general symmetry conditions. 

Hoq, Ali, and Templeton (1978) obtained the distribution of T = 

&(.% - O ) / S  when the parent distribution is exponential. Closed expres- 
sion are available for n = 2, 3 and 4 for values of the argument t 2 
((n - 1Xn - 2)/2)'12. The upper tails of the distribution are heavier when 
the parent distribution is exponential than when it was normal, however the 
half-normal parent distribution [px(x)  = ( 2 / ~ ) ' / ~ e x ~ ( - x ~ / 2 ) ,  x > 01 gives 
a heavier/upper tail than the exponential for all t 2 n - 1. 

Although further progress has been made since Hoq, Ali, and Templeton 
(1978), explicit expressions for the distribution of T for all n in the case of 
exponential parent distribution are not as yet available. 

Sansing and Owen (1974) consider the case of a parent standard double 
exponential (Laplace) distribution (Chapter 24) with pdf 

p x ( x )  = jexp(-1x1). 

They show that the pdf of the t-statistic (see Section 1) based on a random 

*In all of the above cases the X ' s  are assumed to  be mutually independent. Weibull (1958) 
considered cases where they are normal but serially correlated. 



Table 28.16 Corrective factors for distribution of t ,  in nonnormal 
(Edgeworth) populations 
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Table 28.16 (Continued) 

Normal 
t Theory p ~ ( t )  ppL(t) Pp,( t )  

v = 5  

0.0 0.5000 0.0271 0.0000 0,0000 
0.5 0.3192 0.0355 - 0.0049 - 0.0041 
1 .O 0.1816 0.0397 
1.5 0.0970 0.0440 0.0002 0.0074 
2.0 0.05 10 0.0340 0.0022 0.0122 
2.5 0.0272 0.0234 0.0025 0.0125 
3.0 0.0150 0.0154 0.0021 0.0104 
3.5 0.0086 0.0099 0.0016 0.0079 
4.0 0.0052 0.0065 0.001 1 0.0057 

v = 6 

0.0 0.5000 0.025 1 0.0000 0.0000 
0.5 0.3174 0.0329 - 0.0044 - 0.0035 
1 .O 0.1780 0.0430 - 0.0033 - 0.0005 
1.5 0.0921 0.04 13 0.0000 0.0066 
2.0 0.0462 0.03 15 0.0019 0.01 1 1 
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Table 28.16 (Continued) 

Normal 
t Theory p @ l ( t )  Pp,(t) Pp,( t )  

sample of size n is of form 

The pdf is bounded by 

where 

and 
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In the extreme tails, for It1 > n - 1 ,  Sansing (1976) showed that 

We shall now discuss the distribution and approximations to the distribu- 
tion of a difference of two 'Student' variables which is of great importance in 
connection with the Behrens-Fisher problem. 

Ghosh (1975) has shown that if v ,  = v2  = v ,  and Z = TI - T2, then 

- l v + l \  1 

X I '  nv 

He provides a table of values of Pr[O < Z < z ]  for 

z = O.O(O.5) 10.0; v = 1,2(2)  10 

and for 

z = 0.0(0.5)7.5; v = 1(1)20. 

Guenther (1975) noted that (28.93) can be expressed as 

where 

The coefficients C. can be calculated recursivelv. from the relatinn 

This form is suitable for calcuiation with a pocket calculator. 
Chaubey and Mudholkar (1982) observed that in general, if F J x )  and 

I F2(x) are two distribution functions symmetric around zero with unit second 
moment then the mixture 



has the same properties. Now 

I 

I is distributed symmetrically around zero with unit variance. To  approximate 
t the distribution of Z = TI  - T2 the authors chose F , ( x )  as @(XI  and F2(x) 

as the cdf of a standardized symmetric distribution with higher 
kurtosis-specifically, the distribution of i m t , .  Equating the 4-th 
and 6-th cumulants of the mixture to those of Z, the values of v and A are 

where 

R = ( A '  + A 2 ) / Q 2  

and 

with 

A .  J = ( v ,  - 2)-2(Vj  - 4)- 'V,?;  

We have 

where d* = d /  a. If F , ( x )  and F 2 ( x )  are not too dissimilar it is proposed 
to approximate the 100a% point, D, of D by 

where X , ( a )  = F; ' ( a )  and X 2 ( a )  = F; ' ( a )  denote the upper 100a% points 
of F , ( x )  ( = @ ( x ) )  and F 2 ( x )  respectively. Explicitly 

AU, + ( 1  - A ) t , , ,  

where U, = a- ' ( a ) ,  and v ,  A are given by (28.95). Using Wallace's (1959) 
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transform (28.26), t ,  can be approximated by 

where U is a unit normal variable. 
Calculations suggest that little accuracy is lost by using t,* in place of t , .  

Thus 

Pr[D s d l  = A@(d*)  + ( 1  - A ) @ ( d * * ) ,  

where 

d* = d / [ { v , / ( v ,  - 2 ) )  + { ~ 2 / ( ~ 2  - 2 ) ) I V 2 ,  

d** = ( ( 8 v  + 1 ) / ( 8 v  + 3 ) ) [ u  log(l + ( d * ' / ( v  - 2 ) ) ) ] .  

Comparisons show that the Chaubey-Mudholkar approximation is far 
superior to Patil's (1965) approximation (e.g., for the case v ,  = v 2  = 10 and 
a = 0.99, the exact value of d ,  is 3.807, the mixture approach yields 3.815 
while Patil's approximation gives 3.940; for v ,  = v 2  = 20, a = 0.99 the values 
are 3.526, 3.527 and 3.585 respectively.) 

Ghosh (19751, having derived the exact distribution of D, suggests the 
approximations: 

d + ( d / f i )  
Pr[D s d l  = b ( d / f i )  - 

3 2 f i  

Q , ( d )  = ( 1  + 8 ) ( d 2  + l o ) ,  

1 + e 2 

( 3 d 6  + 98d4 + 620d2 + 168) 

( d l 0  + 66d" 1016d6 - 1296d4 - 65328d2 - 141408) 

(3dI0 - 58d8 - 280d6 + 6864d4 - 70032d2 + 122592) 

where 



and 

Inverting (28.99) we get 

where U, satisfies NU,) = a, 

Chaubey and Mudholkar's (1982) approximation is as accurate as Ghosh's 
(1975) approximation, though considerably simpler, especially when the Wal- 
lace transform is used; see Table 28.17. 

The distributions of linear functions of the form alT,  - a2T2, with a l ,  a2 
both positive, and T,, T2 independent variables distributed as t,,, tV2  respec- 
tively have been studied in connection with tests of the hypothesis that 
expected values of two normal distributions are equal, when it cannot be 
assumed that the standard deviations of the two distributions are equal. Tests 
of this kind were proposed by Behrens (1929) and studied later by Fisher 
(1935, 1941); they are said to relate to the "Behrens-Fisher problem." 

Suppose that Xi], Xj2; . ., X,,,, are independent random variables, each 
normally distributed with expected value 6, and standard deviation a;. ( j  = 

1,2). Then for j = 1,2, ,&(x, - c , ) /S i  is distributed as f a , - ,  (using a 
notation similar to that employed in Section 1). According to one form of the 
fiducial argument (Chapter 13, Section 8), from 

h ( Z ,  - 6,) 
distributed as tn , - ,  , s; 
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Table 28.17 Comparison of approximations for Dm ( v ,  = v,) I 
Approximations for D, 

v l  = v2  a Exact [I] [2] 131 [41 

10 0.55 0.1892 0.1892 0.1885 0.1798 0.1892 
0.75 1.022 1.022 1.020 0.9776 1.022 
0.90 1.978 1.979 1.979 1.926 1.978 
0.95 2.581 2.582 2.586 2.554 2.581 
0.99 3.807 3.815 3.820 3.940 3.814 

Note: [ I ]  Mixture (Chaubey-Mudholkar) (28.96); 121 same (with Wallace transform) (28.98); 
131 Patil (1965): 141 Ghosh (1975) (28.99). 

we can deduce 1 

- L (fiducially) distributed as X - [ A) i n , - ,  

(Xi and Si are regarded as fixed). Formally we can say that 

6, - 5, is (fiducially) distributed as 

The Behrens-Fisher test procedure rejects the hypothesis 6, = 5, at the level 
of significance a if (according to the fiducial distribution) 

Pr[[, - 6, < 01 < +a or Pr[e2 - t I  > 01 < +a. 

Note that X,, Z,, S;, and S; are regarded as constants in the fiducial 
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distribution. It is found convenient to use the quantity 

I-DISTRIBUTIONS 

XI - x, 
-t tVl cos 8 - tPl  sin 8 ,  (28.102) 

\ / ( ~ ; ~ / n , )  + ( ~ ; 2 / n , )  

with 

The distribution of 

D, = T ,  cos 19 - Tz sin 8 

is needed to calculate fiducial limits for ( 6 ,  - 5,). Tables of percentile points 
of the distribution of D, are available as follows: 

Sukhatme (1938) gave values of DOq,,,, to three decimal places for 

v , , Y ,  = 6,8,12,24,03 and 0 = 0°(15")40". 

Fisher and Yates C1966) included these values together with values of 
DOx,,, (also to three decimaI places) and also values with a = 0.95, 
0.975, 0.99, 0.995, 0.9975, and 0.999, for v ,  = 10, 12, 15, 20, 30, 60, and 
Y Z  = =. 

Weir (1966) gave values of D,,,, ,, to three decimal places for 

Isaacs eF al. (1974) provided values (to two decimal places) of Do*, for 
a = 0.75,0.90, 0.95, 0.975, and 0.999, and for the same values of v , ,  v,,  
and 8 as Weir (1966). These tables are reproduced in Novick and 
Jackson (197'41, 

Ruben (1960) shewed that D, has the same distribution as the ratio of a 
t V 1  + ,2 variable to an independent variable 

where X has a standard beta distribution (Chapter 25) with parameters 
1 I 

7 V 2 .  
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Patil (1965) suggested that the distribution of D be approximated by that 
of ct, with 

, v I , v 2  > 4. (28.103) 

These values are chosen to make the first four moments of the two distribu- 
tions agree. 

The approximation is exact when cos 8 = 1 or sin 8 = 1. It gives satisfac- 
tory results, even for v l , v 2  as small as 7 ,  in the central part of the 
distribution (ID,J < 5) .  The approximation is very good when both v,'s are at 
least 24. The relative error is large in extreme tails. 

Weir (1960b) has also provided the following approximations for the upper 
percentage point of a related statistic. He found that 

X I  - X 2  

j [ ( n l  - l ) s ; / ( ( n l  - 3 ) n l } l  + [ ( n 2  - 1 ) s ; / { ( n 2  - 3)n211 

has upper 2.5% points (a = 0.975) between 1.96 and 2, provided that n ,  2 6 
and n2 2 6. 

Welch (1938) suggested approximating the distribution of n; + n; I S ;  

by that of cX;  with 

c v = ~ [ n ; ' ~ ; ~ + n ; ' ~ f ] = n ; ' r : + n ; ' o ~ ,  (28.104a) 

2c2v = var[n;'s;' + n ; ' ~ ; ' ]  = 2n; ' (n1  - 1)-'c: + 2 n y 2 ( n 2  - l ) - ' u ; ;  

that is, 

n; ' (n l  - 1)-'a: + n y 2 ( n 2  - l)a,4 
C = 

- I  2 - I  2 
n1 f f l  + n2 f f 2  

9 

- 1  2 2 (n ; 'a:  + n 2  a 2 )  
V = 

n ; * ( n ,  - 1)o: + n ~ ~ ( n ,  - 1 ) ~ ;  ' 



Then (XI - 22Xn; '~ ;2  + n ; ' ~ f ) - ' / ~  is approximately distributed as 

(since cv = n;'u: + n;'ui). Further work was done on this problem by 
Aspin (1948) who has provided some tables [Aspin (1949)l from which exact 
probabilities can be obtained [see also Welch (194911. 

Rahman and Saleh (1974) derive the distribution of D, for all combina- 
tions of v, and v,. The expression is rather complicated. In the special case 
where v, = v, = v, we have 

B(;(v + I ) ,  ;(v + i ) ) r ( ~  + ;) 
P D ( ~ )  = csc 8 cot" 8 

~ ( v n ) ( r ( t v ) f  

where ,F,(., . ; . ; ) is the Gaussian hypergeometric function [Chapter 1, 
Eq. (1.10411. 

Rahman and Saleh (1974) provide 97.5% and 95% points of the distribu- 
tion of D, for v, = 6(1)15 and v, = 6(1)9. The numerical evaluation is 
accomplished by evaluating the Appell function using a Gaussian quadrature 
numerical integration technique. It should be noted that Behrens (1929) 
provided an integral form of the distributions of Do for various degrees of 
freedom. Fisher (1935) confirmed the result and extended Behrens's theory. 
Later Fisher and Healy (1956) gave the exact distributions of Do for small 
odd values of the degrees of freedom. 

Molenaar (1977) provided inter alia, the two following approximations to 
Pr[a,t,, - a2tvz I dl. Assume that 5 I v ,  I V, (take the complement if 
v, > v,). (The case v ,  < 5 is not considered.) 

Method U 
Take +(u), where denotes the unit normal cdf function and u = d/(w, + 
o2) ' i2 ,  with oi = a f  v,/(v, - 2) (i = 1,2). 

Method V 
Take +(v), where v = sgn(t) 

f - (5/6) 
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and 
- I / Z  

t = d(1 - ;) (w, + O J ~ ) - " ~  

(This is a simplified Patil method.) 
Including 

Method W: Exact calculation, 
Molenaar recommends the following system: 

For maximum 
absolute error 

of at most: Use method: 

0.01 U i f v , 2 1 6  V i f 6 1 v , d 1 5  W i f v l = 5  
0.005 U i f u ,  2 3 0  V i f 7 r v I  5 2 9  W i f u ,  = 6  
0.002 Uif v ,  2 72 V i f 9  s v ,  5 71 W i f 6 r v I  18 
0.001 U if v, 2 140 V if 12 I v, r 139 W if 7 r v, I 11 
0.0005 U i f v , 2 2 7 3  V i f 1 6 1 v , r 2 7 2  W i f 9 1 v , r 1 5  
0.0002 U i f v , 2 6 8 0  Vif231v,1679 Wif141v,122 
0.0001 U if v ,  2 1310 V if 32 r v ,  r 1309 W if 19 r v, I 31 

The error in method U is rather robust against changes in the parameter. 
The largest error occurs for probability values between 0.20 and 0.25 and 
between 0.75 and 0.80. The secondary minimum and maximum occur very 
close to 0.01 and 0.99, respectively. For method V the largest discrepancies 
are at the values of probability between 0.72 and 0.75 and 0.25 and 0.28, 
respectively, with the secondary maxima and minima in the vicinity of 
0.01 -0.02 and 0.98-0.99. 

Nel, van der Merwe and Moser (1990) have tackled the Behrens-Fisher 
problem directly, and they have provided an exact distribution for 

XI - 2, 
T =  1/2 ' 

{n ; + n;  'sf] 

The distribution is a generalization of the noncentral F-distribution and will 
be discussed in Chapter 30. Hajek (1962) had shown that if C:= , A J  = 1, and 

U being a unit normal variable and if U and the XZ's are mutually indepen- 
dent, then for r '  I 0 5 r", Pr[tl 5 T 5 t"1 lies between Pr[t' 5 t, 5 t"]  and 
Pr[tl s t, I t"]  (calculated on normal theory), where m = Cf= ,v, and v is 
any integer not exceeding min(uJ/AJ). 



Wallgren (1980) investigated the distribution of 

where the joint distribution of X and Y is bivariate normal [see Chapter 32, 
Eq. (32.2)1, vs2/u2 is distributed as X: [see Chapter 18, Equation (18.5)) 
and (X, Y) and S are mutually independent. Also 

The special case p = 0 ( X  and Y independent), with 5 and q equal to zero 
was solved by Harter (1951). 

In general, W is distributed as the product of two correlated noncentral t 
variables (see Chapter 31), 

X 
w' = 5 [distributed as t l ( E ) ]  

and 

distributed as t l  

When 5 = q = 0, W, and W2 are correlated random variables, each dis- 
tributed as c,. Wallgren (1980) obtained the following expressions for the cdf 
of W in this case: 

For w  < 0, 

where 

with u = tan-'(- (1 - p2)l/2/p), 0 5 o 5 ,r, 
o forp > 0, 

and 

Q,(6; p, w )  = ,r-'[{v sin 8 sin(8 + cos-I p ) }  

x {W + Y sin e sin(6 + cos-' p))] 'I2; 

for w > 0, 
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where 

a f o r p < O ,  
& 2 =  ( ( Y + T  f o r p > o  

Roy, Roy, and Ali (1993) have introduced a binomial mixture of t-distribu- 
tions with density function 

~ ' ( 1  - P)  
" - r x 2 r  

, . A ( n \  

The moments of X are given by 

and 

. [ L /  

In particular, we obtain 

np2(1 + 2n)(v  - 2) 
P I ( X )  = 0 ,  and P 2 ( X )  = 3 

(np + ;)2(v - 4) 

McDonald and Newey (1988) introduced a generalized t distribution with 
density function 

P 
~ x ( x l p 1 4 )  = 9 

q + ( l / p )  

- o c < x < w  n n > n  

which clearly includes the t density in (28.2) as a special case when 
and q = 2v. (In fact, it is the density function of t , /  a). The 

p  = 2 
above 

generalized density also includes as a special case Box and Tiao's power- 1 



Table 28.18 Values of the coefficient of kurtosis, p,, for the generalized t distribution 
for various choices of p and q 

q = 1.0 2.0 5.0 10 50 100 m 

p = 0.5 635.0 35.8 29.8 25.2 
1 .0 36.0 10 3 h 53 h 25 6 nfl 

2.0 4.00 3.38 3.06 3.03 3.00 
3.0 4.11 2.72 2.54 2.44 2.43 2.42 
5.0 4.28 2.38 2.15 2.11 2.08 2.07 2.07 

10.0 2.07 1.94 1.90 1.89 1.89 1.88 1.88 
50.0 1.81 1.81 1.81 1.80 1.80 1.80 1.80 

100.0 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

exponential density or Subbotin distribution [see Eq. (24.83)', for example] 

pe-~x~"/{2r (p- ' ) ) ,  -03  < x < 03, p > 0, 

when q + m. Both these density functions are symmetric about zero. While 
the odd order moments of X are consequently zero, the even order moments 
of X are given by 

E [ x Z k ]  = q k / p  B i k  - + I , .  - 5 ) / B ( : 7 q ) -  
P P 

Table 28.18, taken from McDonald (1991), presents values of the coefficient 
of kurtosis, P , ( X ) ,  for various choices of p and q. McDonald (1984) has 
shown that the above generalized t distribution is, in fact, a mixture of the 
generalized gamma distribution and the power-exponential distribution of 
Box and Tiao. 

McDonald and Newey (1988) used the generalized t distributions to 
develop partially adaptive estimation of regression models; also see McDon- 
ald and Nelson (1989). Butler et al. (1990) discussed the robust estimation of 
regression models by using the generalized t distributions. Similarly, partially 
adaptive estimation of ARMA time series models via the generalized t 
distributions has been developed by McDonald (1989). 
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Noncentral 2-Distributions 

1 DEFINITION AND GENESIS 

If U , ,  U,; . . , U,, are independent unit normal variables, and a,, a,, . . . ,a,, are 
constants then the distribution of 

depends on a , ,  6,; . ., 8, only through the sum of their squares. It is called 
the noncentral X 2  distribution with v degrees of freedom and noncentrality 
parameter A = CY,,6:. 

The symbol C ( A ~  denotes a variable with this distribution. It is derived 
from the symbol X:, denoting a central X 2  variable with v degrees of 
freedom (Chapter 18), which has the same distribution as C,",,0,*. In fact, 
when A = 0, the "noncentral" distribution becomes the central X 2  distribu- 
tion. 

Whenever justified by the context, the symbols v and A may be omitted 
and the symbols used. (The prime is retained to denote "noncentral.") 
Sometimes 6, and sometimes + A ,  are called the noncentrality parameter. 
We will not use these notations. 

A simple way in which the noncentral X 2  distribution arises is in the 
distribution of the sum of sauares 

where 

x = n - I  EX] 
] = I  

and XI,  X,, . . . , X,, are independent random variables with X, distributed 



normally with expected value 6, and standard deviation u (the same for all j )  
for j = 1,2 , .  . . , n. Clearly we can write 

with q s  independent unit normal variables. Then 

where 

Applying a transformation from U ; ,  . . - , U,' to U , ,  . . , Un - I ,  G' (Chapter 
13, Section 3) such that 

U , ,  - . . , Un - , being independent unit normal variables, we see that 

where the 6,'s are linear functions of the 6,'s, and 0,'s of the Lr,"s. Setting 
U,' = 0 for all j, it follows that 0, = 0 for all j and that 

Hence S is distributed as a2 times a noncentral X 2  with n - 1 degrees of 
freedom and noncentrality parameter 

that is, as 
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2 HISTORICAL NOTES 

The distribution was obtained by Fisher (1928, p. 663) as a limiting case of 
the distribution of the multiple correlation coefficient (Chapter 32). He gave 
upper 5% points of the distribution for certain values of v and A (Section 7). 
The distribution has been obtained in a number of different ways, described 
in outline in Section 3. 

Patnaik (1949) emphasized the relevance of this distribution in approxi- 
mate determination of the power of the x2-test and also suggested ap- 
proximations to the noncentral X2-distribution itself. The noncentral x2- 
distribution can be regarded as a generalized Rayleigh distribution [Miller, 
Bernstein, and Blumenson (1958); Park (1961)l (see, for example, Chapter 18) 
also called the Rayleigh-Rice or Rice distribution. In this form it is used in 
mathematical physics. 

The noncentral X2-distribution has also arisen in communication theory. 
In this context the noncentral X2-distribution function is called the Marcum 
Q-function, and the noncentrality parameter is interpreted as a signal-to-noise 
ratio. Some references in this area are Marcum (19481, Helstrom (1960), 
Felsen (19631, Urkowitz (1967), and Rice (19681, among many others. 

3 DISTRIBUTION 

The cumulative distribution function of X ~ 2 ( ~ )  is 

while F(x; v, A) = 0 for x < 0 [Patnaik (1949)l. It is possible to express 
F(x; V, A), for x > 0, in an easily remembered form as a weighted sum of 
central X 2  probabilities with weights equal to the probabilities of a Poisson 
distribution with expected value $A.  This is 



NONCENTRAL X Z - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

Thus X:~(A) can be regarded as a mixture of central X 2  variables. This 
interpretation is often useful in deriving the distribution of functions of 
random variables, some (or all) of which are noncentral xZ's. [See, e.g., the 
discussion of the noncentral F-distribution, Chapter 30, Section 3.1 

The probability density function can, similarly, be expressed as a mixture 
of central X 2  pdfs: 

[Fisher (1928)], (29.4) 

" (y2/4)' 
'a(') = ('y)a51 j!T(a + j + 1) 

is the modified Bessel function of the first kind of order a [Abramowitz and 
Stegun (196411. 

Although v was an integer in our account of the genesis of x?(A), the 
distribution defined by (29.3) and (29.4) is a proper distribution for any 
positive v. For convenience we omit the subscript X ? ( ~ )  from F ( . )  and p( .) 
in this chapter, but the values of the parameters v and A are shown explicitly, 
as F ( x ;  v, A), p ( x ;  V, A), respectively. 

The distribution has been derived in several different ways. Fisher (1928) 
gave an indirect derivation (by a limiting process). The first direct derivation 
was given by Tang (1938). Geometric derivations have been given by Patnaik 
(1949), Ruben (1960), and Guenther (1964). It is also possible to derive the 
distribution by a process of induction, first obtaining the distribution of 
xi2(A) and then using the relation 

X ~ A )  = xi2(h)  + x:-I, (29.5a) 

the noncentral and central x2's in the right-hand side being mutually 
independent. [See, e.g., Johnson and Leone (1964, p. 245) and Kerridge 
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Hjort (1989) used an alternative decomposition 

where Z, is the "purely eccentric part" (or "purely noncentral part") of 
X f ( ~ )  and has a noncentral X Z  distribution with zero degrees of freedom 
(and noncentrality A) [Siegel (197911 with the cdf 

with ~ r [ ~ i  I z ]  = 1 for all z .  Jones (1989) indicated Torgerson (1972) to be 
the first reference on noncentral Xz-distribution with zero degrees of free- 
dom. 

The moment-generating function may be used [Graybill (1961)l or the 
characteristic function may be inverted by contour integration [McNolty 
(196211. Alternatively we note that the moment-generating: function Ivan der 
Vaart (196711 is 

E exp C t ( q  + [ 

Noting that (1 - 2t)-("+'"/' is the moment-generating function of x,2+,,, we 
obtain the formula (29.4). 

The moment-generating function can also be written 



which shows that 

[Alam and Rizvi (1967)l as can also be obtained by integration by parts. 
There are a number of different forms in which the cumulative distribution 
function and the probability density function may be presented. We have first 
presented those forms which seem to be the most generally useful. We now 
discuss some other forms. 

If v is even, the cumulative distribution function of X:2(~) can be ex- 
pressed in terms of elementary functions. Using the relation (Chapter 18) 
between the integral of a X:-distribution (with v even) and a sum of Poisson 
probabilities, it can be shown that 

where XI ,  X2 are independent Poisson variables with expected values $x,  +A, 
respectively [Fisher (1928); Johnson (195911. 

It follows that the probability density function of xf(A) also can be 
expressed in terms of elementary functions when v is even. This remains true 
when v is odd because the pdf (29.4) can be written in terms of elementary 
functions by using the formula 

sinh z 
I m + ? ( z )  = gzm+1/2(: $ ) m ( T )  ( m  integer). (29.9) 

Tiku (1965) obtained an expression for the pdf in terms of the generalized 
Laguerre polynomials : 

J ( x )  r ( j + m + l )  
L:.m'(~) = c . m > -1, (29.10) 

i = o  ( j  i ) !  T(i  + m  + 1) ' 

as defined by Tiku (1965) [see also Chapter 1, Eq. (1.173)l. Tiku showed that 

A further alternative form is [Venables (1971)l 

where ,Fl is defined in Chapter 1. 
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Formula (29.2) for the cumulative distribution can be rearranged by 
expanding e - v 2  in powers of $ A ,  collecting together like powers of $ A  and 
interchanging the order of summation. The resulting expression is compactly 
represented as 

or e"/2g,,, symbolically, where g, = PrfX;+,, I X I  and A is the forward 
difference operator ( A g ,  = g, + , - g,). This formula was given by Bol'shev 
and Kuznetzov (1963). 

Extending Tiku's result, Gideon and Gurland (1977) provided Laguerre 
expansions of form 

x ,  A I ~ +  l ya , -A ' y  

F ( x ;  V ,  A )  - /n r ( a + l )  
dy 

+ e-A'xl 
" A t k c k r ( k )  

( " X I ) " '  r ( a  + I + k )  L',"+,"(A'x ,) . (29.13) 
k =  l 

The notation L,  below denotes an expansion of the form (29.13) in which the 
first i moments of the random variable associated with the leading term of 
the expansion (a gamma r.v.1 have been equated to corresponding moments 
of X ~ 2 ( ~ ) ;  L?'(x) is the nth generalized Laguerre polynomial (29.10), x ,  = 
x + 8 and a ,  0 and A' are chosen as follows: 

F 0 r L , , , a + l = v / 2 , $ = 0 , ~ = $ .  
For L, ,  a + 1 = v /2 ,  0 = 0,  A' = ( a  + l ) / { n ( l  + a2)} .  

I 

For L,,  a + 1 = vA'(1 + a 2 ) ,  8 = 0, A' = ( 1  + a2)/(2(1 + 28,)). 
For L,, a + 1 = 2vAt2(1 + 2a2), 0 = 2nA1(1 + 26,) - n( l  + 6'1, 

1 A' = +(1 + 2a2) / (1  + 3s2);  and 6 ,  = A/v. 

Lo-L, show that for large and small noncentrality A, the series Lo, L ,  are 
the best, though the series L ,  and L,  produce good results in this range 
also. In choosing between the higher moment series L ,  and L ,  and a lower 
moment series such as Lo,  the higher moment series usually give three- to 
five-place decimal accuracy with just a few terms (one to five) but may gain 
additional accuracy only slowly. The series Lo, however, usually produces 
less accuracy up to the first five to ten partial sums, but after that converges 
rapidly to the true probability. 



Venables (1971) provided several alternative Laguerre expansions for 
F ( x ;  V, A). The "most promising" was 

where 

( x )  = ( t )  d [as in Chapter 1, Eq. ( 1 . 8 5 ) ] ,  
0 

with (/3)j = P(/3 + 1 )  . . ( P  + j - 1). Convergence is fairly rapid if either v 
or A (or both) are large, provided that x  is not too small, say, less than 

12 x , , ~ , ~ , ( A ) .  [The simpler expression (29.2) also converges rapidly for large A.1 
Han (1975) gave the following formula, applicable when v (= 2s + 1) is 

odd: 

where F("( . )  denotes d J F ( . ) / d h i .  For v = 3 (m = I )  we have 

where cp(t) = @'(t).  
Chou et al. (1984) derived the representation 
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and in particular, 

F ( x ;  1 , A )  = a(& - 6)  - a ( - &  - 6). 

The pdf is 

Integration by parts gives the simple formula (29.7). 
Guenther (1964) obtained 

= T ~ - ( " - 2 ) / 4 ~ ( u - 2 ) / 2 ( ~ ) ~ ( V - 2 ) / 4  v ( f i ) v ( f i ) -  (29.19) 

Temme (1993) obtained the expressions 

I 

1 + [ ) ' 4 ( u 2 , 2 ( ,  ) - T ) )  for x > A ,  

B whirh ~ r o  rl~imorl tn h9.m c n m a  or\m-..+n+;,-nl n~..n,*,,,, 
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Ennis and Johnson (1993) obtained the formula 

m 

F ( x v )  = - T '  ' ( I  - y 2 ) ~ Y ' 4 e r p ( - ~ ~ y 2 ( l  + y2)-I)  

For computational purposes this formula avoids the need to evaluate the sum 
of an infinite series, but it does require numerical integration over an infinite 

A F ( x ;  v ,  A) = ( A  - ( v  - 4 ) )  F ( x ;  v - 2 ,  A )  

+ { x  + ( V  - 4 ) ] F ( x ;  v  - 4 ,  A) - x F ( x ;  v  - 6 ,  A) .  

[See also Cohen (1988) and Temme (199311. For A = 0, writing v + 2  in place 
of V ,  (29.22a) reduces to the relation 

( v - 2 ) F ( x ; v , O )  = ( x  + V -  2 ) F ( x ; v -  2,O) - x F ( x ; v - 4 , O )  

among central X 2  cdfs, as noted by Khamis (1965). 
The following recurrence relations, among others, were obtained by 

Cohen (1988): 

d p ( x ;  v - 2 ,  A )  
p ( x ;  V ,  A) = p ( x ;  v - 2,  A )  + 2  

d p ( x ;  v  + 2,  A) 
p ( x ;  v ,  A )  = p ( x ;  v  + 2,  A) + 2  

P ( ~ ;  v ,  A )  = A - ( " - ~ ) / ~  

The further relation 

d F ( x ; v ,  A )  1  
= - { F ( x ; v  + 2,  A )  - F ( x ; v , A ) )  (29.23d) 

d A 2  
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is useful when interpolating with respect to A,  while [cf. (28.7)] 

a F ( x ;  v ,  A) 1 
= p ( x ;  v ,  A) = - { F ( x ;  v - 2 ,  A) - F ( x ;  v ,  A)) (29.7)' 

ax 2 

is useful for interpolating with respect to x. Note that (29.23d) and (29.7)' 
together imply that 

d F ( x ;  v ,  A )  
= - p ( x ;  v + 2 ,  A). a A 

[See Quenouille (1949), Guenther and Terragno (19641, Ruben (19741, and 
Schroder (19891.1 

Ashour and Abdel-Samad (1990), based on Shea (1988), developed the 
following computational formula: 

a 
C , ( a ,  b )  = - C , - , ( a ,  b )  and c , ( a ,  b )  = 1 .  

b + i  

For odd integer values of v ,  they use the series (29.3) with 

F ( x ;  v + 2j ,O)  = 2{1 - a(&)} 

[Abramowitz and Stegun (1964)l. 
Kallenberg (1990) has obtained bounds for the difference between cdfs of 

noncentral chi-squares with common degrees of freedom ( v )  but different 
noncentrality parameters (A, A*). If A I A* 

0 < F ( x ;  V ,  A )  - F ( x ;  v ,  A*) _< ( 2 ~ ) - ' ' ~ ( @  - G ) F ( X ;  v - 1,O).  

where 
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[Note that F ( x ;  v - 1,O) is the cdf of central ,y:-,.] The lower limit (0) 
corresponds to the fact that F ( x ;  v, A )  is a decreasing function of A .  A better 
lower bound, also obtained by Kallenberg, is provided by the following result: 
If 

lim inf max ( A , ,  A*,) > 0 (29.25b) 
n -0 

and 

LF - fi = O ( l ) ,  

X --+ 
(b) 

Figure 29.1~-c  Probability density functions of noncentral and central chi-square. 



A = 0 
(central X2) 
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x 4  

(c) 

Figure 29.1 Conhnued 

then there is a C(v) such that 

SUPIF(X;U,A.) - F(X; U ,  A:)/ c ( u ) l f l  - KJ. 
x > 0 

Typical plots of p ( x ;  u, A) were provided by Narula and Levy (1975). They 
are shown in Figures 29.la, b, As a comparison Figure 2 9 . 1 ~  exhibits 
p(x; u, 01, that is, pdf's of central X2-distributions. It is easy to see 
the increases in location parameters (mean, median, and mode) associated 
with increases in the noncentrality parameter, A for given v, (as also with 
increases in the degrees of freedom v for given A). 

Siege1 (1979) defined a ,yf(A) (noncentral X 2  with zero degrees of 
freedom) variable as follows: Choose K from a Poisson distribution with 
mean $A so that Pr[ K = k l  = e-A/2(f~)k/k!  (k = 0, 1, . . . ). Then choose 
Y, - X:r .  a central chi-squared distribution. When K = 0, adopt the conven- 
tion that the central Xi distribution is identically zero; this accounts for the 
discrete component of x:(A). Thus X;(A) is a mixture of the distributions 
0, x;, Xi, . . with Poisson weights. [See (29.5d.l 

The cumulative distribution function of Y ,  -  xi(^) is 

F(y;O, A) = 1 - e -  



la) 

Figure 29.2a, b Improper density of the distribution for some values of the noncentrality 
parameter A ,  (a) for A 5 2, (b) for A 2 2. 
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where y 2 0 and zero otherwise. These series converge quickly; hence this 
formula is convenient for computing. Figures 29.2a, 6 ,  taken from Siegel 
(19791, show the (improper) probability density functions p(x;  0, A) of X;(A) 
for various values of A .  Clearly apparent are the reduction in area associated 
with the mass e-"' at zero, asymptotic normality when A is Large, and 
asymptotic exponentiality X ;  of the positive component when A is small. 
This distribution was used by Siegel (1979) to obtain critical values for a test 
of uniformity. Note that the purely noncentral part, 2, of X ~ 2 ( ~ ) ,  as defined 
by Hjort (1989) [see (29.5b)], is a , ~ C ( A )  random variable, as was mentioned 
above. 

4 MOMENTS 

From (29.6) the moment-generating function of X 1 2 ( ~ )  is 

M(/;L', A/ = (I - Z t )  -""exp 

The cumulant-generating function is 

K ( t ;  v. A) = log M(r; v, A) = - j v  log(1 - 2 t )  + A ~ ( I  - 2r ) - ' .  (29.26) 

Hence the r t h  cumulant is 

K ,  = 2'-1 ( r  - l)!(v + r A ) .  

In particular 

and hence 

From these formulas the values of the moment ratios can be calculated. 



MOMENTS 

where y 2 0 and zero otherwise. These series converge quickly; hence this 
formula is convenient for computing. Figures 29.2a, b, taken from Siegel 
(1979), show the (improper) probability density functions p ( x ;  0, A) of X;(A) 
for various values of A. Clearly apparent are the reduction in area associated 
with the mass e-'''2 at zero, asymptotic normality when A is large, and 
asymptotic exponentiaiity X ;  of the positive component when A is small. 
This distribution was used by Siege1 (1979) to obtain critical values for a test 
of uniformity. Note that the purely noncentral part, ZA of X f ( ~ ) ,  as defined 
by Hjort (1989) [see (29.5b11, is a X ~ ( A )  random variable, as was mentioned 
above. 

4 MOMENTS 

From (29.6) the moment-generating function of X?(A) is 

The cumulant-generating function is 

K ( ~ ; v , A )  = log M ( ~ ; v , A )  = -;v log(1 - 2 t )  + Ar(1 - 2 t ) - I .  (29.26) 

Hence the r th  cumulant is 

K ,  = 2'- ' ( r  - l)!(v + rA). 

In particular 

' K ,  = v + A = E [ ~ ' ~ ] ,  
2 

K ,  = 2(v + 21) = var(*") = [ u ( ~ ' ~ ) ]  , 

K 3  = 8(V + 3A) = pj(X'2),  

K 4  = 48(u + 4A), 

and hence 

p4(xf2) = K~ + 3 ~ :  = 48(v + 4A) + 12(v + 2 ~ ) ~ .  (29.29) 

From these formulas the values of the moment ratios can be calculated. 



These are 

From these equations it follows that 

whence 

The expressions for moments of X ~ 2 ( ~ )  about zero are not so elegant as those 
for the central moments and cumulants [Park (1961)l. Sen (1989) has dis- 
cussed the mean-median-mode inequality. 

The following formula for the r th  moment about zero was given (private 
communication) by D. W. Boyd: 

The moment-generating function of $ I O ~ [ ~ ' ~ ( A ) / V ]  was used by Bennett 
(1955) to evaluate the moments of this variable. It is evident that 

and that the values of ~ [ ( l o ~ [ ~ ~ + ~ , / v I ) ~ ]  can be obtained from 

with E~ = t, E ,  = 0 for r > 1. [See Eqs. (27.10) and (27.14)', Chapter 27.1 
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For integer v we have the following expressions for reciprocal moments: 1 
1. For v > 2r  and even, 

2. For v > 2r  and odd. 
t 
J 

[Bock et al. (198411. (For v I 2r  the r th reciprocal moment is infinite.) 

Here 1 
i 

D( y )  = (4' exp(t2) dr e -~ ' / '  1) I 
I 

is the Dawson integral. This is a nonnegative function of y (for y > 0) with 
maximum value 0.541044.. . attained at y = 0.924139.. . . For large y, 
D(y) - fy-I. 

An alternative expression, valid for all v > 2r,  is 
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Ullah (1976) noted that this can be expressed as 

,F,(+v - r ;+v ; fA) ,  (29.32d) 

where ,F,( . )  is a confluent hypergeometric function (see Chapter 1). Yet 
another expression is 

E[ (X:~(A)) -~]  = E J [ E [ ( X ; + ~ J ) - ~ ] ]  

= E,[{(v + 2 1  - 2)(v + 2 1  - 4) . - .  ( v  + 2 1  - 2 r ) ) ' ] ,  

(29.32e) 

where J has a Poisson distribution with expected value f h  [e.g., Egerton and 
Laycock (198211. 

5 PROPERTIES OF THE DISTRIBUTION 

Reproductivity 
From the definition it is clear that if X l f ( ~ , )  and X1:(~2) are independent, 
then the sum [X;:(~l) + X E ( ~ 2 ) ]  is distributed as X ~ + , $ ~ ,  + A2) This may 
be described verbally by saying that the noncentral X 2  distribution is repro- 
ductive under convolution and that the degrees of freedom, and also the 
noncentralities, are additive under convolution. 

Characterimtion 
If Y has a x?(A) distribution and Y = Y, + Y2 + . -  . + Y,, where the 7 ' s  
are independent and identically distributed, then each has a ,yi2(A/v) 
distribution. The special case v = 2 was studied by McNolty (1962). F(x;  v, A) 
is of course an increasing function of x for x > 0. It is a decreasing function 
of v and of A. In fact for any fixed value of x, 

lim F ( x ;  v, A) = lirn F ( x ;  V,  A) = 0. 
v - m  A - r m  

The distribution of the standardized variable 

x?(A) - (v  + A) 

[2(v + 2 ~ ) ] " ~  

tends to normality as v + w, A remaining fixed, or as A -r m, v remaining 
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Unimodality 
The distribution of x:(A) is unimodal. The mode occurs at the intersection 
of the probability density functions of X ~ 2 ( ~ )  and X:-z(~), that is, at the 
value x satisfying the equation 

Completeness 
The family of X;'(A) distributions for a finite range A ,  < A < A, of values of 
A ,  is complete in the classical sense [Marden (1982); Oosterhoff and Schreiber 
(1987)l. 

Monotonicily 
As noted in Section 3, F ( x ;  V, A) is an increasing function of each of v and A 
(see Figures 29.lb, c )  [Ghosh (1973); Ruben (197411. 

6 ESTIMATION 

The noncentral X 2  distribution depends on two parameters: v, the degrees of 
freedom, and A ,  the noncentrality. If v is known, then the maximum 
likelihood estimator i, of A ,  given values of n independent random variables 
XI,  X,; . ., X, each having density function (29.4), must satisfy the equation 

that is, 

if this equation has a positive root. This equation is usually not easy to solve. 
For the case v = 2 Meyer (1967) showed that the equation has a positive 
solution if X = n-'C:=, XI > 2; otherwise the maximum likelihood estimator 
takes the value zero. He furthermore shows that 

lim ~ r [ x  > 21 = 1 .  
n-+a. 

Extending Meyer's result to values of v exceeding 2, Dwivedi and Pandey 
(1975) showed that the MLE of A (with v known) is zero if is not greater 
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than v and satisfies the equation 

where h(z) = I , / , ( ~ ) { Z I ~ , - ~ , / ~ ( ~ ) } -  I .  I,(z) is the modified Bessel function of 
order v of purely imaginary argument; see Chapter 1 for an explicit expres- 

[since h(z) = z -  ' for large z]. 
Anderson (1981a, b) considered maximum likelihood estimation of param- 

eters a ,  A based on observations Y,, Y, , .  - ., Yn, each distributed as v 
being known. (She actually considered values n, a; . ., E, but this 
did not affect the MLEs.) The MLE equations are (29.34a) with X, replaced 
by Y,/(i2, together with 

n 

e2 = (vn)-I  (v, - i). (29.34b) 
r = l  

Anderson (1981a) stated that these equations have unique solutions, 
provided that e2 is not too small. The asymptotic variances and covariance 
of e2 and ii = i l l 2 &  (as n + oc) are 

n var($) = A - ' ( + U A - '  - 1 - A + B u - ~ ) u ~ ,  (29.35a) 

n var(d2)  = A - ' ( O A - ' U - ~  - l ) u 4 ,  (29.35b) 

n c o v ( f i , ( i 2 ) = ~ - 1 ~ 1 ~ 2 ( B ~ - ' u - 2 - 1 - ~ - ' ) u 3 ,  (29.3%) 

A = ( B A - ' ~ - ~  - l ) ( i v  + A - I )  - 1, 

Anderson (1981b) provided bounds on the value of BA-'u-~, namely 

(29.36a) 



We have 

ESTIMATION 

For large A a better lower bound, also given by Anderson, is 

1 + A - '  - $(v - 1)A-' + f ( v  - l ) ( v  - 2 ) ~ ~ .  (29.36b) 

Also for large A, 

n var(3)  = t{l - 2(v - 1 ) ~ - ~  + . . ) a Z,  

n va r ( i )  = 1 + +A2, 

cor r ( i ,  3 )  = (1 - A-'){l - 2(v - 2)AF2) . 

Note the high correlation between i and 6. 
If a is known, an unbiased moment estimator of A is 

n 

,i = C x, - v. 
r = l  

n va r ( i )  = 2v + 4A, 

while the CramCr-Rao lower bound for variance of unbiased estimators of 
is 

~ ( o A - '  - 1) - ' n - ' ,  

where 8 is as defined in (29.35). The asymptotic relative efficiency (ARE) of 
i is 

 ARE(^) = 4(8h- '  - 1)- ' (2v + 4 ~ ) - '  

= 1 - ;hF2 + f ( 2 v  - 3 ) ~ - '  + . .  . for large A .  (29.40) 

9 When v = 1, results for estimating parameters of folded normal distribu- 

E tions (Chapter 13, Section 7.3) are applicable because *',(A) [=  + J f i l  
has the same distribution as I U + fi I ,  where U has a unit normal distribu- 
tion. The general folded normal distribution [Leone, Nelson, and Nottingham 
(1961)] is the distribution of ) U a  + ( 1  and has density function 



[Evidently JUu + 81 has the same distribution as U ~ ; ( ~ ~ / U ~ ) . ]  See Section 
7.3 of Chapter 13 for related details. 

The first and second moments about zero of distribution (29.41) are 

and 

respectively. Leone, Nelson, and Nottingham (1961) gave tables of expected 
value (pf) and standard deviation (af) for 

[Note that the least possible value of p,/uf is ( i r r  - 1)-'12 = 1.3237.1 
Leone, Nelson, and Nottingham (1961) also gave values of the cumulative 
distribution function to four decimal places for [/u = 1.4(0.1)3.0 and argu- 
ments at intervals of 0.01. Some values of the moment ratios ( P ,  and P2) 
were given by Elandt (1961). 

The parameters 6 and u can be estimated by equating sample first and 
second moments to (29.42a), (29.42b), respectively. The tables of Leone, 
Nelson, and Nottingham (1961) facilitate solution. Simple explicit solutions 
are obtained by using second and fourth moments. Here 8 = pf/uf is 
estimated by 6, the solution of the equation 

Sample 4th moment - 
3 + 6 i 2  + i4 

(29.43) 
(Sample 2nd moment12 (1  + P ) ~  . 

Elandt (1961) obtained expansions to terms of order n - 3  for the variances of i 
1 the estimators of 8 by the two methods. There appears to be little difference , 

for 8 less than 0.75; the method using first and second sample moments is 
about 40% more efficient when 8 = 3. 

The maximum likelihood equations for estimators (, 6 of 6 and u can be 
expressed in the form 
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Johnson (1962) obtained asymptotic formulas for the variances of 6 (= [/G) 
and G. They are rather complicated, but for large values of 8 ,  

n var(6) = 1 + ;tl2, 

n var(G) = f, 

corr(6, G) = - 8(2 + 82)-1'2. 

Relative to the maximum likelihood estimators, the efficiency of estima- 
tion of 19 from first- and second-sample moments is about 95% when 8 = 1, 
and increases with 8. For small I9 the efficiency is low. If a is known [e.g., if 
we have a x',(A) distribution and wish to estimate A], the maximum likelihood 
equation for [ is (29.44b) with G replaced by a. 

We now consider situations in which n = 1 so that only a single observed 
value X, say, of a X ~ 2 ( ~ )  variable is available. If v is known, a natural 
estimator of A is 

- 
A = X - v ,  

which is a moment estimator that can be obtained by equating observed to 
expected values. It is also a uniform minimum variance unbiased estimator. 
However, there are (biased) estimators which have a smaller mean square 
error (MSE). 

The simplest is 

Perlman and Rasmussen (1975) considered modified forms of A, namely 

b 
X - V +  -, v > 5 , O < b < 4 ( ~ - 4 ) .  

X 

Neff and Strawderman (1976) carried the analysis further, obtaining estima- 
tors 

X - v + - ,  v > l , O < b <  xa 
r (  X )  

i X - v + -  
XU ' v > 8, r (  X )  monotonic increasing, (29.45e) 

i 
4(v - 4)(v - 6)(v + 8) 

O < c < v - 4. (29.45f) 



These estimators all have uniformly smaller mean square errors than i. Note 
that (29.450 is bounded as X + 0, which is not true of (29.45~1429.45e). 

Kubokawa, Robert, and Saleh (1993) have shown that the estimators 

and 

also have mean square error uniformly less than that of h and are bounded 
as X -, 0. 

Alam and Saxena (1982) defined a noncentral gamma distribution with 
parameters cw, 8 by the pdf 

where 

This is the distribution of 2 X $ ~ )  with 

v = 2 a  and A = 20. 

Alam and Saxena compared the MSEs of the maximum likelihood and 
moment estimators of 0. The MSE of the moment estimator is somewhat less 
than that of the maximum likelihood estimators. See Table 29.1 which shows 
the ratios of the MSEs (in terms of our original A and v.) Venables (1975) 
suggested a novel approach to determining confidence limits for A which 
provides useful results if the observed value is large compared with the 
relevant percentage points of the (central) X:-distribution. 

He noted that the complement of the cdf of X f ( ~ )  can be written 
[cf (29.4)] 
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Table 29.1 Mean-square-error ratios, M S E ( ~ )  / MSE(( X - v) +) 

v\A 1 2 10 20 

Source: Alam and Saxena (1982). 

This can be regarded as a "confidence distribution" (fiducial distribution) for 
A, which is a mixture of distributions with Pr[A = 01 = 1 - F(x;  v,O) and 
{F(A; 2j, 0)) with weights { ( ~ X ) J / ( ~ V ) ~ ~ ~ )  ( j  = 1,2, .  . . ). 

In ~ r i n c i ~ l e .  one could find 100(1 - a)% confidence limits for A as the 
lower and upper 50a% points of (29.47). Venables proposed the following 
approximate method. The corresponding moment-generating function is 

E*[er" = 1 - F ( x ;  v,O) 

If x is sufficiently large, then 

F ( x ;  v,O) = ~ ( x ( 1  - 2 r ) ' ;  U,O)  = I ,  

and the moment-generating function is approximately 

The corresponding approximate cumulants are 

K: = 2'-'(r - l)!(m - v + 2). (29.50) 

In particular 

Venables gave a Cornish-Fisher type of expansion for the 100a% point of 
i 
! 

the confidence distribution in terms of the corresponding unit normal deviate 
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u,, when @(u,) = a. Part of this is 

DeWaal (1974) considered Bayesian estimation of A, minimizing expected 
(quadratic) loss, based on a "noninformative" prior distribution and reported 
the astonishing result that ( X  + v) is the indicated estimator! (This estimator 
can never be less than v, and it always has bias v.) 

If one assumes a prior of gamma form 

the Bayes estimator of A is 

with mean square error 

As c -, 0, I( X )  approaches X + p. 

7 TABLES AND COMPUTER ALGORITHMS 

There has been a large number of studies on the computation of the 
noncentral chi squared cdf, F(x;  v, A) in the last 20 years, including some 
duplications. For calculation of F(x;  v, A), the simple series expansion (29.3) 
is convenient for small values of A. The error committed by terminating c at 
(s + 1)-th term is negative and must be less than 
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in absolute value (for any v or x). This in turn cannot exceed 

[see Chapter 4, Eq. (4.49)] 

To ensure that the absolute error is less than 100a%, we take 
( S  + 1 - +A)/ fi > u,, where N u , )  = 1 - a. Here are a few typical 

values of min s = 1 + [ u , f i  + $A - 11: 

A = 2 8 32 
a min s = 1 + [u,] 1 + [2ua + 31 1 + [4ua + 151 

0.001 4 10 28 
0.0001 4 11 30 
0.00001 5 12 33 

([a] denotes integer part of a.) These values provide minimum guaranteed 
accuracy for all x and all v .  Much better accuracy will be obtained for small 
v and small x. Guenther (1975) found, for example, that using the series 
(29.3) for x = 4.60517, v = 2, and A = 2.2, he obtained five decimal place 
accuracy. 

The most extensive tables of the noncentral X2-distribution are those of 
Haynam, Govindarajulu, and Leone (1973). These tables are especially in- 
tended to facilitate calculations involving the power of various x2 tests. 
Using x:., -a to denote the upper 100a% point of the central x2-distribution 
with v degrees of freedom and 

to denote power with respect to noncentrality A, the values tabulated are the 
following: 

Table 1. fl to Four decimal places, 

Table 2. A to three decimal places for the same values of a and v as in 
Table 1, 

Table 3. v to three decimal places for the same values of a, A and f3 as in 
Tables 1 and 2. 



1 The first tables (apart from special calculations) relating to the noncentral 1 
X2-distribution were compiled by Fix (1949). These tables give A to three 
decimal places for 

This table is also reproduced in the Bol'shev-Smirnov tables (1965). A similar 
table is included in Owen's tables (1962). 

Bark et al. (1964) gave tables of ~ r [ ~ f ( w ~ )  2 u2] = Q(u, w )  to six decimal 
places for w = 0(0.02)3.00 and u = O(0.02) until Q(u, w) is less than 
0.0000005. For cases when w > 3 and u 1 3 ,  they suggested using the 
formula 

and gave tables of the function e-"l,(x). For u 2 w > 3 the formula sug- 
gested is 

where q = 1 - @(u - w - (2w)-'), E = (1 + w2)-I and R(q, E )  is also given 
in these tables. Using (29.56a), (29.56b) can also be used for w > u > 3. 

Johnson (1968) gave tables of percentile points: values x(v, A, a) such that 
P ~ [ ~ ? ( A )  > x(v, A, a)] = a - to four significant figures for 6 = 0.2(0.2)6.0; 
v = 1(1)12, 15, 20; a = 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25,0.5, 
0.75,0.9,0.95,0.975,0.99,0.995,0.9975,0.999. Tables of d m  to four 
significant figures for the same values of 6 and v, but only for a = 0.01, 
0.025, 0.05, 0.95, 0.975, and 0.99 were given by Johnson and Pearson (1969). 

A computer program for calculating p(x; v, A) and F(x; v, A) was pub- 
lished by Bargmann and Ghosh (1964) [also by Robertson (196911. They used 
formulas (29.2) and (29.4) and provided parameters that are in the range 

to loC8, obtaining accuracy to five significant figures. More detailed 
tables for the cases v = 2,3, calculated in connection with "coverage" 
problems, are described in Section 9. 

Narula and Desu (1981) have developed a rapid algorithm for computing 
F ( x ;  V, A )  from (29.13). The algorithm, written in FORTRAN 66, uses Lau's 
(1980) algorithm for the incomplete gamma function and Pike and Hill's 
(1966) algorithm for calculating the log gamma function. 

Wiener (1975) provided a simple computer program (LAMBDA) written 
in FORTRAN, for use in calculating the power of a test of the hypothesis 
(H,,) that X has a X,Z distribution against alternatives that it has a 
distribution ( A  + 0). If the critical region (leading to rejection of H,) is 
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in absolute value (for any v or x).  This in turn cannot exceed 

[see Chapter 4 ,  Eq. (4 .49 ) ] .  

To ensure that - the absolute error is less than 100a%, we take 
(s  + 1 - + A ) /  \ / + A  > u,, where @(u,)  = 1 - a. Here are a few typical 

values of min s = 1 + [ u , a  + + A  - 11: 

A = 2 8 32 
(Y min s = 1 + [u , ]  1 + [2u, + 31 1 + [4u, + 151 

( [ a ]  denotes integer part of a. )  These values provide minimum guaranteed 
accuracy for all x and all v. Much better accuracy will be obtained for small 
v and small x .  Guenther (1975) found, for example, that using the series 
(29.3) for x = 4.60517, v = 2, and A = 2.2, he obtained five decimal place 
accuracy. 

The most extensive tables of the noncentral X2-distribution are those of 
Haynam, Govindarajulu, and Leone (1973). These tables are especially in- 
tended to facilitate calculations involving the power of various X 2  tests. 
Using X:, , -, to denote the upper 100a% point of the central X2-distribution 
with v degrees of freedom and 

to denote power with respect to noncentrality A ,  the values tabulated are the 
following: 

Table 1. f3 to four decimal places, 

a Table 2. A to three decimal places for the same values of a and v as in k Table 1, 
L 

1 - /3 = 0.1(0.02)0.7(0.01)0.99. * 

Table 3. v to three decimal places for the same values of a, A and f3 as in 
Tables 1 and 2. 



u,, when Wu,) = a. Part of this is 

DeWaal (1974) considered Bayesian estimation of A, minimizing expected 
(quadratic) loss, based on a "noninformative" prior distribution and reported 
the astonishing result that ( X  + v) is the indicated estimator! (This estimator 
can never be less than v, and it always has bias v.) 

If one assumes a prior of gamma form 

the Bayes estimator of A is 

with mean square error 

( 1  + ~ ) - ~ { p  + 2A + (2 + c12(p - C A ) ~ ] .  (29.54) 

As c -+ 0, l ( X )  approaches X + p. 

7 TABLES AND COMPUTER ALGORITHMS 

There has been a large number of studies on the computation of the 
noncentral chi squared cdf, F(x;  v, A) in the last 20 years, including some 
duplications. For calculation of F(x; v, A), the simple series expansion (29.3) 
is convenient for small values of A. The error committed by terminating c at 
(s + 1)-th term is negative and must be less than 
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in absolute value (for any v or x ) .  This in turn cannot exceed 

m [see Chapter 4 ,  Eq. (4.49)]  

To ensure that the absolute error is less than 100a%, we take 
(S + 1 - ; A ) /  a > u,, where M u , )  = 1 - a. Here are a few typical 

values of min s = 1 + [u,@ + $ A  - 11: 

A = 2 8 32 
a min s = 1 + [u,]  1 + [2ua + 31 1 + [4u, + 151 

0.001 4 10 28 
0.0001 4 1 1  30 
0.00001 5 12 33 

( [ a ]  denotes integer part of a. )  These values provide minimum guaranteed 
accuracy for all x and all v. Much better accuracy will be obtained for small 
v and small x .  Guenther (1975) found, for example, that using the series 
(29.3) for x = 4.60517, v = 2, and A = 2.2, he obtained five decimal place 
accuracy. 

The most extensive tables of the noncentral X2-distribution are those of 
Haynam, Govindarajulu, and Leone (1973). These tables are especially in- 
tended to facilitate calculations involving the power of various X 2  fests. 
Using X:, -, to denote the upper 100a% point of the central X2-distribution 
with v degrees of freedom and 

to denote power with respect to noncentrality A ,  the values tabulated are the 
following: 

Table 1. fl to four decimal places, 

Table 2. A to three decimal places for the same values of a and v as in 
Table 1, 

Table 3. v to three decimal places for the same values of a, A and P as in 
Tables 1 and 2. 



The first tables (apart from special calculations) relating to the noncentral 
X2-distribution were compiled by Fix (1949). These tables give A to three 
decimal places for 

This table is also reproduced in the Bol'shev-Smirnov tables (1965). A similar 
table is included in Owen's tables (1962). 

Bark et al. (1964) gave tables of ~ r [ , y f ( w ~ )  2 u2] = Q(u, w) to six decimal 
places for w = 0(0.02)3.00 and u = O(0.02) until Q(u, w) is less than 
0.0000005. For cases when w > 3 and u 1 3 ,  they suggested using the 
formula 

and gave tables of the function e-"l,(x). For u 2 w > 3 the formula sug- 
gested is 

Q(u ,  W )  = 9 - R(q ,  E),  (29.56b) 

where q = 1 - @(u - w - (2w)-'), E = (1 + w2)-' and R(q, E)  is also given 
in these tables. Using (29.56a), (29.56b) can also be used for w > u > 3. 

Johnson (1968) gave tables of percentile points: values x(v, A, a) such that 
P~[~:(A) > x(v, A, a)] = a - to four significant figures for 6 = 0.2(0.2)6.0; 
v = 1(1)12, 15, 20; a = 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25,0.5, 
0.75,0.9,0.95,0.975,0.99,0.995,0.9975,0.999. Tables of d m  to four 
significant figures for the same values of 6 and v, but only for a = 0.01, 
0.025, 0.05, 0.95, 0.975, and 0.99 were given by Johnson and Pearson (1969). 

A computer program for calculating p ( x ;  v, A) and F(x; v, A) was pub- 
lished by Bargmann and Ghosh (1964) [also by Robertson (196911. They used 
formulas (29.2) and (29.4) and provided parameters that are in the range 

to obtaining accuracy to five significant figures. More detailed 
tables for the cases v = 2,3, calculated in connection with "coverage" 
problems, are described in Section 9. 

Narula and Desu (1981) have developed a rapid algorithm for computing 
F(x; v, A) from (29.13). The algorithm, written in FORTRAN 66, uses Lau's 
(1980) algorithm for the incomplete gamma function and Pike and Hill's 
(1966) algorithm for calculating the log gamma function. 

Wiener (1975) provided a simple computer program (LAMBDA) written 
in FORTRAN, for use in calculating the power of a test of the hypothesis 
(H,,) that X has a XS distribution against alternatives that it has a X ~ 2 ( ~ )  
distribution (A # 0). If the critical region (leading to rejection of H,)  is 



APPROXIMATIONS 461 

(so that the significant level of the test is a), the power with respect to an 
alternative hypothesis ( H , )  specifying A = A ,  is 

which is computed by the program. Wiener (1975) also gives values of A 
satisfying 

p(Alff) = P (29.58) 

for v = 1(1)30(2)50(5) 100; 

a = 0.001,0.005,0.01,0.025,0.05; 0.1; 

p = 0.01(0.01)0.30(0.20)0.90, 

tabulated in the same form as in Haynam, Govindarajulu, and Leone (1970). 
Posten (1989) provided another recursive algorithm for evaluating 

F(x; v, A )  in terms of a single central F ( x ;  v,O), including a modification to 
deal with technical difficulties when A is large, and using a recursive relation 
to evaluate F(x; v + 2 j, 0). For evaluation of the central F(x;  v + 2 j, 0) 
values, Posten recommends using a continued fraction method [e.g., 
Boardman and Kopitzke (197511. 

Farebrother (1987) and Ding (1992) have presented algorithms for com- 
puting the non-central X 2  distribution function. It is important to add here 
that Boomsma and Molenaar (1994) recently reviewed four packages for 
MS-DOS personal computers (Electronic Tables, P Calc, Sta Table, and 
STATPOWER) producing cumulative probabilities and quantiles for many 
common continuous distributions discussed in this and the previous volumes, 
with a particular emphasis on the non-central distribution. 

Zolnowska (1965) described a method of generating random numbers 
from "Rayleigh-Rice" distributions. 

8 APPROXIMATIONS 

Many approximations to noncentral X2-distributions, in particular to the 
value of P ~ [ ~ : * ( A )  I XI, have been suggested. In selecting an approximation, 
both simplicity and accuracy should be considered, although these tend to be 
contrary requirements. 

Early approximations to noncentral X 2  fall roughly into two groups. In the 
first group we have normal approximations to the distribution of some 
fractional power of a noncentral X 2  variate [Patnaik (1949); Abdel-Aty 
(1954); Sankaran (1959, 1963)l. These approximations can sometimes be 
extended by the inclusion of one or two terms in terms of an Edgeworth 



expansion, but the improvement in accuracy is often quite small, especially in 
view of the usually tedious calculation involved. 

The second group consists of central gamma (i.e., central x 2 )  approxima- 
tions of form ax2 + P, where a, p are suitably chosen constants, [Patnaik 
(1949); Pearson (195911. These can be converted into normal approximations, 
such as by the Wilson-Hilferty [Chapter 18, Eq. (18.2411 cube root approxima- 
tion (and hence made to enter the first group), or they can be extended by 
several terms in a Laguerre series expansion [see Khamis (1965); Tiku 
(196511. 

Both the form of (29.4) and the inequalities in (29.31) lead one to expect 
that a gamma distribution should give a useful approximation. The simplest 
approximation consists of replacing X'2 by a multiple of central x2 ,  cXf, say, 
with c and f so chosen that the first two moments of the two variables X F ( ~ )  
and cXf agree. The appropriate values of c and f are 

This approximation was suggested by Patnaik (1949). [Two additional correc- 
tive terms to Patnaik's approximation were derived by Roy and Mohamad 
(1964).1 Pearson (1959) suggested an improvement of this approximation, 
introducing an additional constant b, and choosing b, c, and f so that the 
first three moments of x ~ ( A )  and (cXf + b) agree. The appropriate values of 
b, c, and f are 

This gives a better approximation to F(x ;  v, A) than does Patnaik's approxi- 
mation, for x large enough. But since the Pearson approximation ascribes a 
nonzero value to Pr[-h2(v + 3A)-' < X'2 I 01, it is not as good an approxi- 
mation when x is small. 

It can be shown that for x and v fixed, the error of Patnaik's approxima- 
tion to F(x ;  v, A) is 0(A2) as A -, 0, O(A - ' I2)  as A -+ 00; the error of 
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Pearson's approximation is also 0(A2) as A -+ 0, but O(A- '1 as A -+ oo. In 
both cases the error bounds are uniform in x .  In both Patnaik's and 
Pearson's approximations f is usually fractional so that interpolation is 
needed if standard X 2  tables are used. 

Approximations to the central X Z  distribution (Chapter 18, Section 5) may 
be applied to the approximating central X2's in Patnaik's and Pearson's 
approximations. If the Wilson-Hilferty approximation [Chapter 18, 
Eq. (18.2411 be applied then the approximation 

1 /3 
2(v + 21) 

normal with expected value 1 - and 
9(v + A )  

2(v + 2A) 
variance 

v + A  

is obtained [Abdel-Aty (1954)). Sankaran (1959, 1963) discussed a number of 
such further approximations, including 

( - ( v  - I ) } " ~  approximately normal with expected value 

{ l  + i (  v - I ) ) " ~  and variance 1, (29.61b) 

x'2 - f(v - 1) 
approximately normal with expected 

- 1 ' I* 

l and variance ( v  + A)  -', (29.61~) 
3(v + A) 

h 

approximately normal with expected value 

! and variance 

where 

h = 1 - f ( v  + A)(v + 3A)(v + 2 ~ ) - ~ .  



Table 29.2 Errors of Johnson (29.68), Patnaik (29.591, Pearson (29.60), 
Abdel-Aty (29.61a1, and Sankaran (29.61b-d) approximations for v = 2,4 and 7 

Exact Johnson Patnaik Pearson Abdel-Aty Sankaran 
v A Value (29.68) (29.59) (29.60) (29.61a) (29.61b) (29.61~) (29.61d) 

Upper 5% points 
2 1 8.642 0.92 -0.01 -0.04 -0.08 0.09 0.23 -0.06 

4 14.641 0.55 0.08 -0.06 0.02 0.04 0.04 -0.01 
16 33.054 0.28 0.29 -0.03 0.27 0.02 0.01 0.02 
25 45.308 0.23 0.35 - 0.03 0.33 0.01 0.00 0.00 

Lower 5% points 
2 1 0 . 1 7  * 0.03 -0.09 0.00 * * - 0.05 

4 0.65 -0.43 0.29 -0.12 0.24 0.08 -0.01 0.01 
0.02 

I 
16 6.32 -0.25 0.57 -0.02 0.55 0.02 0.00 
25 12.08 -0.21 0.60 -0.01 0.59 0.01 0.00 0.03 i 

Note: The tabled quantity is the approximate value less the exact value. Exact values of upper 
5 %  points are taken from Fisher (1928), and lower 5% points from Ganvood (1934). The stability 
of the errors in Pearson's approximation to the upper 5% points is noteworthy. A correction of 
0.16(v + 2)-' would produce remarkably accurate results; this would also apply to the lower 5% 
points for v = 4 and v = 7. 

Of these, (29.61b) is not good for small values of A; (29.61d) is remarkably 
accurate for all A but is rather complicated, and not much more accurate 
than Pearson's approximation. (See the comparisons in Table 29.2.) 

Hayya and Ferrara (1972) found evidence from simulation that the normal 
approximation [based on Patnaik's (1949) approximation] that 
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is distributed normally with expected value 

and unit variance is "justified" at the 5% significance level. For A < 80 the 
approximation is "justified" for the right tail (but not the left tail). (The 
authors are rather vague as the meaning of "justified," which is based on a 
graphic representation.) As was already mentioned above, any of these 
approximations might be improved by using an Edgeworth expansion, but the 
need for calculating higher cumulants makes this unattractive. 

Rice (1968) gave an expansion (as a series in powers of v-I) for the 
cumulative distribution function which should give uniform accuracy over the 
whole range of values of the argument. Other approximations, valid for small 
values of A, may be obtained from the Laguerre series expansion (29.11). 
Better results are obtained by expanding the distribution of an appropriate 
linear function of in a Laguerre series [Tang (1938); Tiku (19631. 

Bol'shev and Kuznetzov (1963) used a method in which the distribution of 
*:(A) is related to the distribution of a central ,y2 with the same number of 
degrees of freedom. They wished to determine a function w(x; v, A) such that 

This is equivalent to requiring that W(X:(A); v, A) be approximately dis- 
tributed as a central X 2  with v degrees of freedom. 

For small A ,  

where 

and 0(A3) is uniform in any finite interval of x. Hence, as A -+ 0, 

To estimate percentage points, namely solutions x ( a ,  v, A )  of the equations 

the inverse function 

x(w*;v ,  A) = w* + w*v-l + +w*{l - ( V  + ~ ) - I w * ) A ~ v - ~  (29.65) 



is used. If X:,a is the (tabulated) 100a% point of the central X>distribution, 

is used as an approximation to x (a ,  v, A). 
Next, we mention two formulas obtained by direct normal approximation. 

If a normal distribution is fitted to the Xt(~)-distribution, we obtain 

where 

Applying a normal approximation to the right-hand side of (29.61, Johnson 
(1959) obtained 

In each case the error (as A -+ a) is O(A-'I2) uniformly in x. 
These approximations are simple but not very accurate. The relative 

accuracy of a number of approximations can be judged from Table 29.2. It 
can be seen that only Pearson (29.60) and Sankaran (29.61d) are reliable over 
a wide range of values of A. Patnaik's and Abdel-Aty's formulas deteriorate 
as A increases, while the other formulas improve. 

Germond and Hastings (1944) gave the approximation 

which is correct to four decimal places for R I 0.4. They also gave a table of 
(small) corrections to this formula, giving four decimal place accuracy up to 
R = 1.2, and further tables for larger values of R. For R > 5 the formula 

.: 

gives useful results. We also note a simple empirical approximation to 
F x(0.95, v, A) due to Tukey (1957) which appears to be quite accurate. 
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The following useful approximations, for x and A both large, are due to 
Temme (1993): 

For x > A. 

For x 5 A, 

9 APPLICATIONS 

One use of the noncentral X2-distribution-that of representing the distribu- 
tion of a sample variance from a normal population with unstable expected 
value-has been described in Section 1. A rather more generally useful 
application is in approximating to the power of x2-tests applied to contin- 
gency tables (tests of goodness of fit). In one of simplest of such tests the data 
consist of N observations divided among k classes n , ,  n 2 ,  - - a ,  II, with N, 
observations in class n ,  ( i  = 1, ..., k). If H, is the hypothesis that the 
probability of an observation falling into II, is a,, ( i  = 1,2, .  . . , k )  and the 

I alternative hypotheses specify other values for these probabilities, then an 
approximation to the likelihood ratio test is one with a critical region of form 

i 

where K, is a suitably chosen constant. If the true values of the probabilities 
are a, (i = 1,2,.  . . , k )  with, of course, Cik_ I ~ i  = 1, then T is approximately 
distributed as Xf- J A )  with 

If a; = a,, for all i, that is, if H, is valid, then A = 0 and the approximate 
distribution is that of a central xz-,. So, to obtain a significance level 
approximately equal to a, we take 

2 
Km = Xk-1 .a .  

The power, when the true values of the probabilities are a,, 7r2, . . . , a, is 



then approximately 

There is a good discussion of more complex forms of X 2  tests in Patnaik 
(1949). Noncentral X 2  also appears in the calculation of approximate powers 

I of certain nonparametric tests [Andrews (1954); Lehmann (1959, pp. 302- 
306)l. 

Extending an argument of Wilks (1962, p. 419), it can be shown that when 
the data can be represented by n independent random variables with 
identical distributions depending on parameters ( O , ,  8,; . ., 8,), then the 
limiting distribution (as n + 03) of 

- 2 log (likelihood ratio) 

is, under certain sequences of alternative hypotheses converging to the null 
hypothesis, a noncentral X2-distribution. The likelihood ratio here is the ratio 
of two maximized values of the likelihood function, the numerator being 
restricted by certain of the 8's being assigned fixed values, while the denomi- 
nator is not restricted. 

Sugiura (1968) obtained an asymptotic expansion (up to order n-I) of the 
non-null distribution of the logarithm of the likelihood ratio statistic for tests 
of multivariate linear hypotheses in the form of a linear combination of 
noncentral X 2  probabilities with increasing numbers of degrees of freedom 
and the same noncentrality parameter. 

Noncentral X 2  also appears in a slightly disguised form in calculations of 
the probability that a random point (XI ,  X,; . ., X,) with the X's mutually 
independent normal variables, each having expected value 0 and standard 
deviation u (the same for all i), falls within an offset hypersphere 
Cr= ,(Xi - (;I2 I R ~ .  This probability is evidently 

pr[Xf(u-2 i =  6 1 t:) 5 (y2]. CT 

For v = 2, this is the probability of hitting a circular target of radius R when 
the point of aim is offset (t,, t2) from the center of the target and variation 
about the point of aim is spherical normal with variance u2.  

A number of tables of this quantity have been produced, especially for the 
physically interesting cases v = 2 and v = 3. An extensive summary is given 
by Guenther and Terragno (1964), who also give a useful bibliography. For 
the case v = 2, very detailed tables are available [Bell Aircraft Corp. (1956); 
DiDonato and Jarnagin (1962a); Marcum (1950)l. The most easily available 
short summary tables are in Burington and May (19701, DiDonato and 
Jarnagin (1962a, b), and Owen (1962, pp. 178-180). The DiDonato and 



There is thus less need for extensive tables in this case, but there is a short 
table available [Guenther (196111. 

For general conditions under which a quadratic form in normal variables 
is distributed as noncentral x2 ,  see Chapter 29 of the first edition of this 
volume. Spruill (1979) has shown that the measurement of electrical power in 
a circuit is related to the estimation of the noncentrality parameter of a 
chi-square distribution. 

Noncentral X2-distributions have been applied in various aspects of finan- 
cial theory: 

1. Boyle (1978, 1979) observed that the size of individual claims in certain 
classes of insurance is distributed as KXi  (i.e., has an exponen- 
tial distribution), while the number of such claims in a specified period 
(e.g., a year) has a Poisson distribution. It follows that the total amount 
of claims over the period has a K ~ ; ( ~ B )  distribution, where B is the 
expected value of the Poisson distribution. 

2. The distribution of interest rates under specified assumptions about 
technological change and assumptions about preferences and existence 
of a steady state distribution for the interest rate was investigated by 
Cox, Ingersoll, and Ross (1985). It was observed that the probability 
density of the interest rate at time s, conditional on its value at the 
current time t ,  following a "mean-reverting process," appears to have a 
noncentral Xz-distribution with the noncentrality parameter propor- 
tional to the current spot rate. 

3. A more subtle application pertains to the so-called CEV (constant 
elasticity of variance) model, relating volatility and stock price(s). It is 
assumed to be governed by a "diffusion process" of the type 

dS = pSd t  + ~ 5 S p - ~ d Z ,  
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Jarnagin references contain values of R/u  to give specified values of proba- 
bilities; the other references give values of probabilities for specified values 
of R / a  and (6: + (;)/a2. 

For the case v = 3, there is the simple relation 

1 
-- [ e x  - i ( ~ 1 . 2  - El2} 

There is thus less need for extensive tables in this case, but there is a short 
table available [Guenther (1961)l. 

For general conditions under which a quadratic form in normal variables 
is distributed as noncentral x2 ,  see Chapter 29 of the first edition of this 
volume. Spruill (1979) has shown that the measurement of electrical power in 
a circuit is related to the estimation of the noncentrality parameter of a 
chi-square distribution. 

Noncentral X2-distributions have been applied in various aspects of finan- 
cial theory: 

1. Boyle (1978, 1979) observed that the size of individual claims in certain 
classes of insurance is distributed as ~~i (i.e., has an exponen- 
tial distribution), while the number of such claims in a specified period 
(e.g., a year) has a Poisson distribution. It follows that the total amount 
of claims over the period has a ~ ~ ; 2 ( 2 8 )  distribution, where 0 is the 
expected value of the Poisson distribution. 

2. The distribution of interest rates under specified assumptions about 
technological change and assumptions about preferences and existence 
of a steady state distribution for the interest rate was investigated by 
Cox, Ingersoll, and Ross (1985). It was observed that the probability 
density of the interest rate at time s, conditional on its value at the 
current time t ,  following a "mean-reverting process," appears to have a 
noncentral X2-distribution with the noncentrality parameter propor- 
tional to the current spot rate. 

3. A more subtle application pertains to the so-called CEV (constant 
elasticity of variance) model, relating volatility and stock price(s). It is 
assumed to be governed by a "diffusion process" of the type 



where dZ is a Wiener process and /3 - 2 is the so-called elasticity of 
return variance with respect to price. If p = 2 (i.e., the elasticity is 
zero), prices are lognormally distributed and the variance of returns is 
constant. Utilizing Cox, Ingersoll, and Ross's (1985) results, Schroder 
(1989) has shown that the CEV process can be expressed as a linear 
combination of cdfs of two noncentral chi-squared densities with dif- 
ferent degrees of freedom but the same noncentrality parameter. 

4. Hayya and Ferrara (1972) encountered a noncentral chi-squared distri- 
bution in a risk analysis model relating costs and revenues. 

10 RELATED DISTRIBUTIONS 

We have noted in Section 6, that x',(A) is a folded normal variable (discussed 
in Chapter 13). Equations (29.3) and (29.4) represent a connection between 
the noncentral x2- and Poisson distributions. Other relationships, already 
mentioned in this chapter, are as follows: 

1. If A = 0, the noncentral X 2  becomes a central x2. 
2. The limiting distribution of a standardized xf (h)  variable is the unit 

normal distribution if either (a) v -, m, A remaining constant, or 
(b) A -+ w, v remaining constant. 

3. The limiting distribution of a standardized (singly or doubly) noncentral 
F variable, as the denominator degrees of freedom tends to infinity 
(noncentralities remaining constant) is the distribution of multiple of a 
noncentral X 2  variable (Chapter 30, Section 5). i 

i 

4. Press (1966) has shown that the distribution of linear functions of 
1 

independent noncentral X 2  variates with positive coefficients can be 
expressed as mixtures of distributions of central x2's. This is part of the 
theory of quadratic forms in normal variables, which is the subject of a 
chapter in a planned volume on Continuous Multivariate Distributions. 

5. Mixtures of central X2-distributions, analogous to (29.3) but with dif- 
ferent weights, occur as the null hypothesis distributions of certain test 
statistics. Bartholomew (1959a, b) encountered such a situation in con- 
structing a test of the hypothesis that a sequence of expected values of 
normal distributions (5,) ( i  = 1,. . . , k )  with common variance ( a 2 )  is 
constant against alternatives specifying ordering of the 5,'s. 

The statistic, based on rn mutually independent random variables 
Xl,. ., xm, 
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with Xj distributed as XI, ( j  = 1,. . . , m )  is distributed as a mixture of a finite 
number of central X 2  distributions. The name "chi-bar-squared" distribution 
was coined, apparently by Conoway et al. (1990) to apply to the distribution 
obtained by replacing the central x2's by noncentral x2's [see Chapter 18, 
Eq. (18.71)l. The latter can in turn be represented according to (29.4) as 
mixtures of central X2's, so that (29.74) includes all chi-bar-squared distribu- 
tions. See Bartholomew (19611, Barlow et al. (1972), and Conoway et al. 
(1990) for further details. 

Chi-bar-squared distributions can arise as compound noncentral chi-squared 
distributions in which the noncentrality parameter, A, of is ascribed a 
distribution. Then the pdf of the corresponding random variable Y, say, is 

with a corresponding formula for the cdf. 
Szroeter (1992) has considered the case where 

A = T'T + c2,  

where T is a r x 1 vector, with variance-covariance matrix R and expected 
value T. If o denotes the largest eigenvalue of Q then, as o -+ 0, 

E , [ F ( x ;  V ,  A) ]  -+ F ( x ;  v ,  A ) ,  

where 

A  = T'T + c2. 

Szroeter obtained the bound 

for any 6 1 6, with 

He also obtained the alternative upper bound 



and the alternative lower bound 

~ ( ( 1  + o ) - ' x ;  v', A )  < E A [ F ( x ;  v, A) ] ,  (29.77b) 

where 

v for v = r = rank(Q), c = 0, 
V' = ( 

max( Y ,  rank(0)  + 1) otherwise. 

If X I  and X ,  are mutually independent random variables, with Xj 
distributed as X ? ( A , )  ( j  = 1 , 2 ) ,  the distribution of the ratio Y = Xl/X, is 
easily obtained a; that of a mixture of Gvl+2j1~v2+, j2  variables (as defined in 
Chapter 27) with products of Poisson probabilities 

as weights. Using equation (27.3) of Chapter 27, we have 1 
8 

The distribution of the product Z = X I  X2 is similarly that of a mixture of 
2 , y v l + 2 i l x , 2 2 + 2 i 2  distributions, with the same weights (29.78). The formal expres- 

sion is more complicated in appearance than (29.79a) because the distribu- 
tion of the product of X:l and X ~ , + 2 i ,  is more complicated in appearance 
than that of their ratio. Using the distribution of the product of two mutually 
independent gamma variables, given in Chapter 17, Section 8.4, we obtain 

where 
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is the modified Bessel function of the second kind (see Chapter 1). [Note that 
Kg( y = Y ).I 

Kotz and Srinivasan (1969) have obtained (29.79a) and (29.79b), using 
Mellin transforms. [In their formulas, summation is with respect to i, and 
( i ,  + i,) instead of i ,  and i,.] For two degrees of freedom, simpler expres- 
sions are available in Kotz and Srinivasan (1969). 
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C H A P T E R  3 0  

Noncentral F-Distributions 

1 DEFINITION AND GENESIS 

In Chapter 27 the F-distribution with v,, v, degrees of freedom was defined 
as the distribution of the ratio ( X ~ , / ~ , X X ~ 2 / ~ 2 ) - ' ,  where the two X2's are 
mutually independent. If both x2's are replaced by noncentral x2's, we 
obtain the doubly noncentral F-distribution with v ,  , v, degrees of freedom and 
noncentrality parameters A,, A, defined as the distribution of the ratio 

In many applications A, is equal to zero, so there is a central X 2  in the 
denominator. This might be called a "singly noncentral F," but the word 
"singly" is usually omitted, and it is called a noncentral F with v,,  v, degrees 
of freedom and noncentrality parameter A , .  The case A ,  = 0, A, # 0 is not 
usually considered separately, since this corresponds simply to the reciprocal 
of a noncentral F ,  as just defined. 

We will use the notations Fg.,2(A,, A,) for the doubly noncentral F 
variable defined by (30.1) and F:,,,l(A,) for the (singly) noncentral F variable 

(and also for the corresponding distributions). Note that with these symbols 

In this chapter we will be mainly concerned with (singly) noncentral F-distri- 
butions. Doubly noncentral F-distributions will appear again in Section 7. 
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The noncentral F-distribution is used in the calculation of the power 
functions of tests of general linear hypotheses. As pointed out in Chapter 27, 
these include standard tests used in the analysis of variance such as by Tang 
(19381, Madow (1948), Lehmann (1959), and Scheffi (19591, to mention just a 
few of the earlier published studies. Later references include Cohen (19771, 
Fleishrnan (19801, and Cohen and Nel (1987), with emphasis on fixed effects 
models. 

2 HISTORICAL REMARKS 

The noncentral beta distribution, which is related to the noncentral F-distri- 
bution (see Section 7), was derived by Fisher (1928) in connection with 
research on the distribution of the multiple correlation coefficient (see 
Chapter 32). Its properties were discussed by Wishart (1932). The noncentral 
F-distribution itself was derived by Tang (1938) though Patnaik (1949) seems 
to have been the first to call the distribution by this name. Tang (1938) also 
used the doubly noncentral F-distribution (though without actually using this 
name) in studies of the properties of analysis of variance tests under nonstan- 
dard conditions. For a general account of the distribution and its applications 
to linear models, see Odeh and Fox (1975). 

3 PROPERTIES 

Since the numerator and denominator in (30.2) are independent, it follows 
that 

whence 
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and the third central moment is 

Pearson and Tiku (1970) provided alternative formulas, introducing the 
symbol A ,  = A , / v , :  

i 6 ~ l  2 v ;  x 1 + 3 A , +  A: + 
( 2 v ,  + v ,  - 2 )  ( v ,  + v 2 -  2 ) ( 2 v ,  + v 2  - 2 )  A:] 
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Reciprocal moments of FL1, ,$A, ) are as follows: 

For v, > 2r  and even, 

For v ,  > 2r  and odd, 

where 

(the Dawson integral) [Bock, Judge, and Yancey (1984)l. (For v ,  5 2r, the 
reciprocal moment is infinite.) 

We also note the characteristic function 

Recall from Chapter 29 that the distribution of X::(~,) can be represented 
as a mixture of central X : l + 2 j  distributions in proportions e - A l / 2 ( $ ~ , ) ~ / j !  
( j = O , l , 2  ,... ). So 
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is distributed as a mixture of central GuI+2J,u2 distributions [as defined in 
Chapter 27, Eq. (27.311 in proportions e - 4 / 2 ( f ~ l ) ~ / j !  ( j  = 0,1,2,. . . 1. Hence 
the probability density function of G~l ,u$Al )  is (we use G' for convenience) 

The probability density function of FLI. ,$AI) = (v2/u1 )G~l,,$Al) is (using 
now the contraction F' for convenience) 

(v ,  + v2)(v1 + v2  + 2) . .  . ( v ,  + v2 + 2 . j T )  
X 

j!v,(v, + 2) - .  . ( v ,  + 2 . jT) 

where pFV1,YL( f is the density function of the central F-distribution with 
v,, v 2  degrees of freedom. Note that while 

it is not true that 
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The noncentral F density for v, = v2  = 1 is 

where c = (A/2)f(l + f ) - I  and D(.) is the Dawson integral. 
The cumulative distribution can be expressed in terms of an infinite series 

of multiples of incomplete beta function ratios: 

where IJa, b) is the incomplete beta function ratio given by IJa, b) = 
j,Pta-'(1 - t )h- l  dt/B(a, b). Since it is possible to express the incomplete 
beta function ratio in several different ways (Chapter I), there is a corre- 
sponding range of different expressions for the cumulative distribution func- 
tion of noncentral F. For the special case where v2 is an even integer, there 
are some quite simple expressions in finite terms. Sibuya (1967) pointed out 
that these can all be obtained by using the formal identity 

[cf. Eq. (29.12)', Chapter 291 , (30.11) 

with h(.) an incomplete beta function ratio, together with recurrence rela- 
tionships satisfied by this function. 

In particular, Sibuya (1967) showed that (if v, is an even integer) 

P ~ [ F , ' ~ , . ~ A , )  sf] 

where Y = v ,  f/(v2 + v ,  f ). 
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Replacing I , ($v ,  + i ,  f v ,  - i )  by a polynomial, we obtain a formula given 
by Seber (1963): 

i = O  

j = o  i - j  

(30.13) 
i = 0 

where 

This formula was obtained (in slightly different form) by Nicholson (1954) 
and Hodges (19551, though these authors did not give the recurrence formula 
for T,. An expression of similar type, given by Wishart (1932) and Tang 
(19381, is 

where 

Equations (30.12)-(30.14) apply only where v ,  is an even integer. Price 
(1964) obtained some finite expressions which are applicable when v, is an 
odd integer. These are rather complicated, and are not reproduced here. If 
formula (30.11) be applied directly to (30.10), the following infinite series 
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expansion, valid for general v,, is obtained: 

where 

This can be expressed in terms of generalized Laguerre polynomials [see 
Tiku (1965a)l. Tiku also obtained a more complicated but more rapidly 
convergent expansion than (30.15): 

where the ti's are as defined in (30.151, 

Note that the 6's do not depend on v,. 
As would be intuitively be expected, it can be shown that Pr[F,',,wz(A,) I f ] 

is a decreasing function of A , .  The probability density function is unimodal. 
As v, tends to infinity the distribution of F~I .wJA,)  approaches that of 
v;' X (noncentral X 2  with v ,  degrees of freedom and noncentrality parame- 
ter A,). Also, as A ,  tends to zero, the distribution of course tends to the 
(central) FYI, ,,2-distribution. 

Alternative expressions for the cumulative distribution function and the 
moment generating function were given by Venables (1975). 
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Figure 30.la, b Noncentral F density functions 

Narula and Levy (1975) provided plots (shown in Figure 3 0 . 1 ~ )  of noncen- 
tral F density for A, = 3 and ( v , ,  v,) = (10, lo),  (5,  lo),  (3,  lo),  and (1, 10). 
As the number of degrees of freedom in the numerator decreases, the curves 
become flatter with the median, mean and mode shifting to the right. 
Another diagram (shown in Figure 30.lb) provided by Narula and Levy 
(1975) contains a series of noncentral F density curves for ( v , ,  v,) = (5,101 
as the noncentrality parameter increases from A ,  = 0 to A ,  = 1, A ,  = 3, and 
A, = 5. Here also the curves become flatter for larger values of A ,  and 
similar shift of location characteristics to the right takes place. 

4 TABLES AND COMPUTER PROGRAMS 

4.1 Tables 

The earliest tables to be published were those of Tang (1938). These tables 
were motivated by the calculation of power functions of variance ratio tests, 
and they give values of Pr[F:I,Y2(Al) > FYI,Y2.'1] to three decimal places for 
IY = 0.95, 0.99; v ,  = 1(1)8; v z  = 2(2)6(1)30, 60, w, and 4- = 

1.0(0.5)3.0(1)8. 
The latter table is reproduced in a number of textbooks. It has been 

extended by Lachenbruch (1966) with values of the probability to four 
decimal places for the same values of IY and v - 1(1)12(2)16(4)24, 30(10)50, 
75; u, = 2(2)20(4)40(10)80; and \ll,/(v,+ = 1.0(0.5)3.0(1)8. Lachen- 
bruch also gave tables of percentiles Fil, Y 2 .  ,(A ,) of the noncentral F-distribu- 
tion for A, =2(2)20; a=0.01 ,  0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975, 0.99; 
v ,  = 1(1)10, 15, 20, 30, 50, 60, 120; and v ,  = 2(2)10(10)40, 60. Values are 
generally to four decimal places, except for v ,  = 1 or v ,  r 30, when they are 
only to three significant figures. Only three significant figures are also given 
for v ,  = 2, 3, 4, with v ,  = 2; v ,  = 2, 3, with v ,  = 4; v ,  = 2 with v ,  = 6 and 
v ,  = 120 with v ,  = 30. 



TABLES AND COMPUTER PROGRAMS 489 

Pearson and Hartley (1951) gave graphical representations of Tang's 
tables, in the form of power functions of analysis of variance tests. Patnaik 
(1949) has published a chart showing the relations among A , ,  v,, and v2 
implied by the constraints 

for a = 0.95, P = 0.5 or 0.9. Fox (1956) gave charts showing contours of 
4 = 4- in the (v , ,  v2) plane when (30.17) is satisfied, for a = 0.95, 
0.99, and p = 0.5(0.1)0.9. 

Lehmer (1944) gave values of 4 to three decimal places for a = 0.95,0.99; 
p = 0.2, 0.3, with v ,  = 1(1)9 and 120/v, = 1(1)6(2)12, v2 = 2(2)18 and 
240/v2 = 1(1)4(2)12. There is also a table of this kind published by Ura 
(1954). It gives to two decimal places for a = 0.95, P = 0.90, with 
v, = 1(1)9 and 120/v, = 0(1)6(2)12, v2 = 2(2)18 and 120/v2 = 0(1)6. 

Tiku (1967) gave values of Pr[F~I,v2(Al) > , to four decimal places 
for a = 0.005, 0.01, 0.025, 0.05; v ,  = 1(1)10, 12; v2 = 2(2)30, 40, 60, 120, m; 

[A,/(v, + 1)1'12 = 0.5(0.5)3.0. 

4.2 Computer Programs 

Bargmann and Ghosh (1964) reported a FORTRAN program that computes 
the probability density and cumulative distribution functions of noncentral 
F-distributions. Fleishman (1980) reported on a program with similar capabil- 
ities, for which he used Venables (1975) representation. Several effective and 
easy-to-use recursive algorithms for evaluating incomplete beta function 
ratios (Chapter 25) and noncentral beta distribution functions can be applied. 
The first published algorithms specifically for computing noncentral F (or, 
equivalently, beta distribution functions) are due to Norton (19831, followed 
by Schader and Schmid (1986) and Lenth (1987). These algorithms all involve 
"accurate routines" for computing incomplete beta function ratios, notably 
an early example constructed by Majumder and Bhattacharjee (1973). 

All of the algorithms actually use the incomplete noncentral beta function 
ratio (see Section 7 )  

where IJa, b )  is the usual incomplete beta function ratio [Chapter 1, Eq. 
(1.91)]. Some of the algorithms have different error bounds for the difference, 
E,, between the exact value and the value obtained by truncating the 
summation in (30.18) at j = r; some have different procedures for evaluating 
the incomplete beta function. 



490 NONCENTRAL F-DISTRIBUTIONS 

Norton (1983) used the bound 

This bound was previously used by Guenther (1978). Lenth (1987) improved 
this bound to 

and Wang (1992) increased the lower bound to e - u 2 ( ~ ~ ,  Irf  l/(r + I)! 
Schader and Schmid (1986) and Lenth (1987) avoided the expenditure of 

time necessary to calculate the quantities Ix(a + j, b )  in (30.18) for j = 

0,1,2, .  . . , by repeated use of the relation 

[cf. Chapter 25, Eq. (25.72a)l (30.20) 

[as well as, of course, T(a + 1) = aI'(a)]. Frick (1990) has commented on 
Lenth's work, noting that good results can be expected for A ,  small, but for 
A ,  large, a large number of terms must be used in the summation in (30.18) 
(i.e., r must be large). Frick suggested omitting the first s terms in the 
summation as well as those with j greater than r. The additional error arising 
from omitting the first s terms is bounded by 

since 

if Y has a Poisson (0) distribution (see Chapter 4). To ensure that the 
introduced error is less than a specified amount 6, we have to take 

s 5 max ( - A l  - u6E70)9 
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Table 30.1 Values of r + 1 needed to achieve error bounds 10 -8  and 10 -I0 

Error Value of A ,  

Bound 0.5 1.0 2.0 4 6 8 10 15 20 

6 8 11 14 17 20 22 27 32 
10- I 0  8 10 12 16 19 22 25 31 36 

where NU,) = 6. For example, taking U, = -5, we have 6 = 0.0000003. 
Then s I + A ,  - 5m is clearly adequate. 

Apart from this modification, Lenth's algorithm has been somewhat elabo- 
rated by Posten (1993) who applied a similar technique to one he used with 
noncentral chi-square distributions, see Chapter 29. Posten suggested starting 
from a value for j approximately equal to $ A ,  and then working "outward" 
(increasing and decreasing j )  until the sum of the Poisson multipliers 

is sufficiently close to 1. If P( r ,  s) 2 1 - E, then the error in using Cj,, in 
place of C:=" in (30.18) is not greater than E. 

Lee (1992) noted that the error in taking Cj=,, in place of Ey=,, in (30.18) 
is bounded by (30.19b) and he provided a table (Table 30.1) that gives the 
number of terms ( r  + 1) needed to achieve various error bounds. 

The method for evaluating [,(a, 6 ;  A,) used in IMSL (1987) for 0.5 < 
A ,  < 20 when max(a, 6 )  < 200 is less than half as efficient (in CPU time) as 
Lee's. However, Lee's approach requires evaluation of r + 1 incomplete beta 
function ratios, whereas Posten's and Lenth's approaches need only one such 
computation. Singh and Relyea (1992) followed similar lines to Lenth (1987) 
and Posten (19931, and they used Guenther's (1978) error bound (30.19a). 
They differed in using explicit expressions for the incomplete beta function 
ratios. 

As the preceding discussion illustrates-even without technical 
details-clear examples of multiplication and overlap of results are prevalent 
in the statistical literature, especially in the area of statistical algorithms. 
Much of it is due to lack of coordination, almost identical publication in 
different journals, and unjustified publication of results providing "epsilon" 
improvement. 

5 APPROXIMATIONS 

From formula (30.2) we can see that approximations to noncentral X2-distri- 
butions can be used to give approximations to noncentral F-distributions. 
Thus the simple approximation to the distribution of X: f (~ , )  by that of cX;, 



with c = (v ,  + 2A,XvI + A,)- ' ;  v = (v ,  + A , ) ~ ( v ,  + 2Al)-' gives an ap- 
proximation to the distribution of F:I,Y2(Al) by that of ( c v / v ~ ) F ~ , ~ ~  = 

(1 + A,v;')F,,,~. (Note the need for the factor v/v,.) The accuracy of this 
approximation has been studied by Patnaik (1949). Of course the distribution 1 I 
of F,,,2 itself may also be approximated by one of the methods described in 
Chapter 27, leading to a composite approximation to the distribution of 
FLI. ,2( A 1. Thus, using Paulson's approximation, Severo and Zelen (1960) 
were led to suggest 

as approximately having a unit normal distribution. Laubscher (1960) also 
independently derived this result and compared it with that obtained by using 
Fisher's square root approximations to the distributions of the X2's and 
F,,, ,29 namely 

approximately unit normal. Laubscher (1960) compared values of 
Pr[F:I,Y2(Al) < f I as approximated by (30.24) and (30.25) with the exact 
values for the choices of parameters 

v1 "2 A '  
3 10,20 4, 16 
5 10,20 6,24 
8 10,30 9,36 

with f = F,I,u2,,; a = 0.95,0.99. 

Despite the fact that the Wilson-Hilferty transformation, on which (30.24) 
is based, is generally more accurate than Fisher's transformation, on which 
(30.25) is based, the latter approximation is slightly more accurate than the 
former. The position was reversed for the larger values of f and A , .  

However, a similar comparison, carried out by Fowler (1984) for v, = 1(1)6, 
8, 12, 24, and v2 = 6(2)30,40,60,120, and 240, with A:/v, = 0.1, 0.25, 0.4, 
and he found that (30.24) was generally superior, at least in the lower tail 
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[F( f ;  v,, v,, A,) 5 0.51 for v ,  1 6. [Cohen (1977) unfortunately relied more 
often on (30.25) in his power analyses because it appeared to be somewhat 
better than (30.24) except for small u,, v,, and A , .  See also Cohen and Nel 
(19871.1 

Laubscher (1960) considered 

as a possible transformation to unit normal-based on approximate 
variance-equalizing property-but the result was accurate only for very large 
A,. Tiku (1966) obtained quite good results by fitting the distribution of 
F,',,,$A,) by that of ( b  + cF,',,,~), choosing b, c, and v so as to make the first 
three moments agree. The values that do this are 

b =  - v2(u2 - 2)- ' (c  - 1 - A,v;'), (30.27) 

where 

H = 2(v, + A,)" 3(v,  + A,)(v, + 2A,)(v2 - 2) + (v ,  + 3A,)(v2 - 2)2, 

K = (v ,  + A,)*  + (v,  - 2)(v,  + 2A,). 

On the other hand, Mudholkar, Chaubey, and Lin (1976) first approxi- 
mated the equivalent degrees of freedom (v) for ,y:f(A,) by 

v = 
( ~ 1  + 2AIl3 

[cf. Chapter 29, Eq. (29.60)], (30.28a) 
(v ,  + 3 ~ 1 ) ~  

and then they chose c and b to give the correct first two moments of 
F,',, ), leading to 

This appeared to be better for the right tail (larger values of f) than Tiku's 
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approximation (30.271, but the position was reversed in the left tail (lower 
values). Generally the two approximations were of comparable accuracy. 

Tiku (1966) found that his approximation [with b, c ,  and v given by 
(30.2711 was better than Severo and Zelen's (30.24) or Patnaik's. Of the latter 
two, Severo and Zelen's seems to be the easier one to compute, although 
slightly less accurate than Patnaik's for large v,. 

Pearson and Tiku (1970) analyzed the relation between noncentral and 
central F-distributions by plotting the ( P I ,  p,) for the two classes of distribu- 
tions. They discovered that "(a) for a given v,, the (PI ,  P,) points for the 
distribution of central F appeared to lie very close to a straight line; (b) 
again, for the same v,, the beta points for Fyl,,y2(Al) lay very nearly on the 
line (a), converging on to it as either v, or A ,  were increased." 

They noted that Tiku's three-moment approximation (30.27) involves the 
use of the correct p,  but an incorrect p . The differences in the values of P,  
become very small as either 4 = d m  or v, increases. Errors of 
0.15 or less in P ,  will rarely affect the position of upper percentage points by 
more than 1/100 of the standard deviation, but they do affect the lower 
percentage points rather substantially, by as much as 3/100 or 4/100 of the 
standard deviation at the 0.5 and 1.0% points. (A better approximation in 
the lower tail could probably be obtained by using a distribution having the 
correct first four moments when value of p,  is greater than 4.) 

By analogy with the central F-distribution, one might expect to obtain 
useful approximations by considering the distribution of 

Zl l .  ,z(A,) = f log F ~ I , Y 2 (  A,) (i.e., the noncentral Z distribution .) 

Since Z' = Zhq,$A,) = flog(v,/v,) + f l o g X ~ ( h l )  - flogX,$ the cumu- 
lants of Z' are 

Barton, David, and O'Neill (1960) gave formulas to aid in the computation of 
K , ( ~ ~ ( A , ) )  and utilized them in calculating the power function of the F-test, 
by fitting Edgeworth series to the distribution of 2'. 

Pearson (1960) obtained good results by fitting the distributions of 2' by 
S, distributions (see Chapter 12, Section 4.3). [It should be noted that Tiku 
(1965a) stated incorrectly that Pearson fitted F'-distributions by S, distribu- 
tions.] However, the computations of the cumulants of Z' is rather laborious. 
In Barton, David, and O'Neill (1960) where details are given, the cumulants 
are expressed in terms of polygamma functions [Chapter 1, Eq. (1.3911 and 
special 9-functions, tabulated in the article. 

Noting that 
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and that {X,21(~,))'/3 and (X,2,)'/3 may be well approximated by normal 
distributions, Mudholkar, Chaubey, and Lin (1976) suggested using an Edge- 
worth expansion for the distribution of 

making use of Aty's (1954) expressions for cumulants of cube roots of 
noncentral chi-square variables. (They actually used the first three terms of 
the expressions in their calculations.) 

6 ESTIMATION OF THE NONCENTRALITY PARAMETER A ,  

Considerable attention has been devoted to estimation of the noncentrality 
parameter A ,  from a single observed value F' of a Fit ,  ,$A ,) variable (v, and 
v, being known). The major part of this section will describe results of these 
efforts. At the conclusion of the section, there is a short discussion of 
maximum likelihood estimation based on n independent observed values F ; ,  
F;; .., F;. 

The uniformly minimum variance unbiased estimator of A ,  is 

[Perlman and Rasmussen (1975)l. Unfortunately, it is not always positive, and 
so is inadmissible. Chow (1987) showed that 

is also inadmissible. With expected square error as criterion, any esti- 
mator of form a{v;'(v2 - 2)F' - I )+  is inadmissible. The estimator 
a{v;'(v2 - 1)F' - 1) dominates A t  for all A ,  provided that 

max ( , ~ ~ ~ ~ ) s a s l .  o --- 

Rukhin (1993) has investigated linear functions of F' as estimators of A , .  
For analytical purposes it is convenient to replace F' by G' = v,F'/v, 
distributed as G~,.,$A,). The expected quadratic error of aG' + b is 

+ 2(v2 - 2)- ' (v,  + A,)a(b - A,) + ( b  - A,),, 

v, > 4. (30.34) 
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Calculations show that any estimator with a > v ,  - 4 is improved by taking 
a = v 2  - 4. If v ,  1 4, the estimator aGt + b has infinite expected quadratic 
error and is therefore inadmissible. [See also Rasmussen (1973).] 

Bayesian estimator of A ,  was discussed by Perlman and Rasmussen (1975) 
and DeWaal (1974). If A ,  has, as prior distribution, that of yXi(y > O ) ,  then 
under quadratic loss the Bayesian estimator is 

As y -, w, we obtain the improper Bayesian estimator 

Both (30.35) and (30.36) have larger mean square errors than 

Perlman and Rasmussen (1975) noted that any proper prior distribution (no 
matter how diffuse) yields a Bayes estimator that is closer to (30.37) than to 
either (30.35) or (30.36). Indeed these two estimators cannot be less than v , ,  
which seems very strange. 

For ( v , ,  v , )  2 5 the estimator 

has lower mean square error than 

if 0 < b < 4 v ; ' ( v 2  + 2 ) - ' ( v I  - ~ X V ,  + v 2  - 2)a for all a > 0 .  Perlman and 
Rasmussen (1975) recommended using the values ! 

They also remarked that the introduction of improper prior distributions may 
be the reason that the estimators (30.35) and (30.36) appear to be so strange. 
[See also Efron (1970, 1973).] Gelfand (1983) has studied methods of search- 
ing for appropriate prior distributions. 

We now consider construction of a confidence interval for A , ,  based on a 
single observed value F'. Venables (1975) suggested a method for construct- 
ing a confidence interval for A ,  that is similar to the one he proposed for 
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estimating the noncentrality parameter of a noncentral chi-square distribu- 
tion [Chapter 29, Eqs. (29.47) et seq.]. Analogously to Eq. (29.47) of Chapter 
29, he constructed a confidence distribution for A , ,  given an observed value 
F' of a FY)I.V2(A I )  variable, with cdf 

The moment-generating function corresponding to (30.41) is 

which Venables approximated by 

giving approximate cumulants 

K: = 2 r - 1 ( r  - 1 ) ! ( v 2 ( l  + v ; I F ' ) ~  - v l  - 
+ 2 )  

= 2 ' - ' ( r  - 1)!(rF1 - v ,  + 2 + ~ ( v ; ' ) }  

[cf. Eq. (29.50) of Chapter 291. (30.44) 

However, he did not proceed to develop a Cornish-Fisher-type expansion 
for quantiles (confidence limits) for A ,  (as he did for A in Chapter 29), but he 
suggested instead fitting a distribution using the first few approximate mo- 
ments. 

Guirguis (19901, wishing to solve the equation 
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for A,, uses an iterative method based on the formula 

For F' > 0, a Pr[F:l.v2(Al) 5 Ff]/dAl is negative, and there is no solution to 
(30.45) if F' < Fi l rvZIm.  If this is not so, there is a unique solution of (30.45) 
since Pr[ F:l*vz(A,) 5 F'] + 0, as A ,  -+ m. 

Guirguis uses a modification of linear-Newton (L-Newton) iteration, which 
he terms exponential-Newton (E-Newton). In seeking a solution of the 
equation 

g ( x )  = a, 

the (n + 1)-th iterate x k ,  is calculated as 

The E-Newton method is better than the L-Newton method when a good 
initial guess is not available. 

Lam (1987) proposes an iterative procedure for computing confidence 
intervals for the non-centrality parameter A. A computer program written in 
Fortran 77 is available from the author. 

Guirguis (1990) compared the L- and E-Newton methods with a 
quadratic-Newton (Q-Newton) method employed by Narula and Weistroffer 
(1986) with v ,  = 8, v, = 2, a = 0.01, F' = 0.5(1)9.5, and he found that the 
E-Newton converges faster than L-Newton for F' = 0.5 and 1; both are 
about the same for F' > 1. Q-Newton is much slower than either L- or 
E-Newton. 

If n independent random variables G',, . . . , GL have a common distribu- 
$on X : f ( ~ , ) / X ~ , ,  with v, and v, known, the maximum likelihood estimator 
A ,  of A ,  is the solution of the equation 

" v,G: ,F;(;(V, + v,), i v , ;  ~ , v , G : ( v ,  + v,G;)- ' )  
n =  c , (30.48) 

, =  2 + I ,F0(f(v,  + v,), jv , ;  i , v , G ~ ( v 2  + v,G:)-I) 

where 
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is the confluent hypergeometric function (Chapter 1, Section A7). Pandey 
and Rahman (1971) proved the uniqueness of a positive solution of (30.48) 
provided 

7 RELATED DISTRIBUTIONS 

7.1 Doubly Noncentral F-Distributions 

The doubly noncentral F-distribution defined by (30.1) has already been 
noted. Using the representation of each of the noncentral x2's as mixtures of 
central X 2  distributions, we see that 

is distributed as a mixture of Gu +2j,uz+2k-distributions in proportions 
(e-Al/2 (fA,)~/j!) . (e-"/2($~2)k/k!\.  Hence (using the contracted forms 
F", G" for the variables) the probability density function of G" is 

p ( g ;  v, ,  vz; A,, A , )  

and that of F" (= v2G"/vl) is 
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This result was also obtained by Malik (1970) using a Mellin transform and 
independently in a slightly different though equivalent form, by Bulgren 
(1971). 

Pe and Drygas (1994) have obtained the representations 

The cdf of G" is of course 

The cdf of F", Pr[F;:,, (A,, A,) s f ]  is obtained by replacing g by f v1v ; '  on 
the right-hand side of (30.51). 

The r th moment about zero of F" is 

pl,( F ")  = E [ F n r ]  
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[For v ,  s  2r, ptr(F") is infinite.] Tiku (1972) expressed (30.52) in the form 

where M(a,  6 ;  x )  = ,F,(a, 6 ;  x )  = C~=,a[J lb[J lxJ / j !  is a confluent hypergeo- 
metric function (see Chapter 1, Section A7). 

Bulgren (1971) gave tables of percentile points of F", namely values 
f = F" v,. v2. u ( A , ,  A,) such that 

P ~ [ F A , ~ ~ ( A I ~ A ~ )  s f ]  = a (30.53) 

for v ,  = 2 , 4 , 8 ;  v ,  = 4, 15 ,30 ,60;  a = 0.95,0.99; A,, A ,  = 0.5, 
1.5,2(1)6,9,10,24. Winer's (1971) textbook contains tables of doubly noncen- 
tral F-distributions. 

More extensive tables were provided by Tiku (1974). These include values 
o f f  for v ,  = 1(1)8, 10, 12; v ,  = 2(2)12, 16, 20, 24,30,40, 60; a = 0.95,0.99; 
+, = { A 1 / ( 2 v I  + 1))'/2 = O(0.513.0; 4, = (A2/ (2v2  + 1))1/2 = 0(1)8. An- 
other table gives values of Pr[Fi:,v2(A,, A,) > f I for the above values of +, 
and 4,; v ,  = v ,  = 4(2)12 and (1  + v ,  f / v 2 ) Y 1  = 0.02(0.08)0.50, 0.60, 0.75, 
0.95. 

Tiku (1972) had investigated an approximation to the distribution of 
F:,,,2(AI, A,)  by that of a linear function of a central F variable. His analysis 
consisted of the following steps: 

1. If (A,/v,)  < f ,  M(r, f v,; - $A,)  converges rapidly and is approxi- 
mately equal to (1 + v ; ' ~ , ) - '  and hence the r th  moment of F" [see 
(30.521 ] is approximately equal to p'r(F~,~v2(A,)Xl  + V;'A,)-'. 

2. In turn the distribution of (F"  + a ) / h  is approximately distributed as 
Fv,v2 with 

and 

where p',, p,, p3 ,  and p ,  refer to the distributions of F". 

Table 30.2 is an extract from a more extensive table in Tiku (1972), 
showing the errors in approximate values of Pr[F;:,,$A,, A,) > Ful~v2,0,us] for 

! various values of v , ,  v,, and 4,. The errors become large for larger values of 
I 4,. Tiku (1972) recommends using the exact formula if A,/v, > i. 
i 
! 



502 NONCENTRAL F-DISTRIBUTIONS 

Table 30.2 True values (1) and errors x lo4 (2) in approximate values 
of Pr[F:',,,I(A,,A2) > FWI , v 2 ,  0.951, with v, = 4 

4 2  
0.0 0.5 1 .O 2.0 3.0 

v2 41 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

0 0.0500 0 0.0328 - 7 0.0215 - 17 0.0092 -30 0.0039 -31 
1 0.2398 - 1 0.2788 - 18 0.1326 -52 0.0717 - 119 0.0381 -15 
2 0.7714 - 1 0.6886 - 4 0.6070 -22 0.4562 - 125 0.3301 -283 
3 0.9868 1 0.9729 - 7 0.9536 28 0.8980 91 0.8222 128 

Approximations to the distributions of the noncentral X2-distributions can 
be used to derive approximations to the doubly noncentral F-distributions. It 
is of course possible to approximate the distribution of just one of the two 
noncentral X2's. Thus, if the distribution of X E ( ~ 2 )  is approximated by that 
of ctX;, with c' = (u2 + 2A2)(v2 + A2)-l and u' = (v2 + A,)~(U, + 2h2)-I, 
then the corresponding approximation to the distribution of F:,, vZ(A,, A,) is 
that of (v2/(c'v'))F:l,v(h,) = (1 + A~U;')- 'F;~,~.(A,).  If both numerator and 
denominator are approximated, the approximating distribution is that of 

with v = ( v ,  + A , ) ~ ( v ,  + 2hl ) - ' ;  u' = (v2 + ~ ~ ) ~ ( u ~  + 2h2)-'. 
The doubly noncentral F-distribution is used when estimating the effect, I 

on the power function of analysis of variance tests, of nonrandom effects in 1 

the residual variation. For example, in a standard one-way classification, if 
each individual in a group has a departure from the group mean, depending 1 
on the order of observation, then the residual (within group) sum of squares 
is distributed as a multiple of a noncentral rather than a central x2  variable i 

[Scheffi (1959, pp. 134-1391. 
Application of doubly noncentral F-distributions to two-way cross-classi- 

fication analysis of variance is illustrated in Tiku (19721, among numerous 
other sources. Engineering applications are described in Wishner (1962) and 
Price (1964). 

7.2 Noncentral Beta Distributions 

If X: and Xk are mutually independent, then it is known (Chapter 27) that 
5 X:(Xvl + X:2)-1 has a standard beta distribution with parameters i v , ,  fu,. If 

is replaced by the noncentral X:f(~,) ,  the resultant distribution is called a 
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noncentral beta distribution with (shape) parameters t v , ,  kv2 and noncentral- 
ity parameter A,. If both x2's are replaced by noncentral x2's, giving 

the corresponding distribution is a doubly noncentral beta distribution with 
(shape) parameters i v  ,, i v ,  and noncentrality parameters A ,, A,. Noncentral 
beta distributions can be represented as mixtures of central beta distributions 
in the same way as noncentral F's can be represented as mixtures of central 
F's. 

Each noncentral X 2  may be approximated by Patnaik's approximation 
(Chapter 29). This leads to approximating the distribution by that of 

('I + 2A' ) (v2  + x (Beta variable with parameters f , .  f 2 )  (30.56) 
( '1 + A l ) ( ~ 2  + 2A2) 

where f, = (vj + ~ , ) ~ ( v ,  + 2h,)-' ( j  = 1,2). 
DasGupta (1968) compared this approximation with (1) an expansion 

using Jacobi's polynomials (see Chapter 1, Sections A6, A l l )  with initial beta 
distribution having correct first and second moments, and (2) Laguerre series 
expansions for each of the noncentral X 2  distributions. He found that the 
Patnaik approximation was in general sufficiently accurate for practical 
purposes. Although approximations (1) and (2) are rather more accurate, 
they are more troublesome to compute. 

It will be recalled that the distribution of X ;2 (~ )  is related to that of the 
difference between two independent Poisson variables (see Chapter 29). By a 
similar argument [Johnson (1959)] it can be shown that if v, is even, 

where Y and Z are mutually independent, Y has a negative binomial 
distribution (Chapter 5, Section 1) with parameters $v2, v, f/v,, and Z has a 
Poisson distribution with parameter $A,. By a direct extension of this argu- 
ment, we obtain the relation for the doubly noncentral F-distribution, 

m 

P~[F~,. , ,(A,,  A,) < f] = C e-"I2 ---- 
j = O  j !  

where 5 and Z are independent, Y; has a negative binomial distribution with 
parameters t v ,  + j, v ,  f/v,, and Z is distributed as in (30.57). 

Gupta and Onukogu (1983) derived an expression for the density of a 
product of two independent non-central beta variables with shape parame- 
ters (+v,, fv,) and ( i s , ,  $s,), and noncentrality parameters A ,  and A,, 



respectively. Their  representation is in terms of a Poisson weighted sum of 4 
mixtures of the  corresponding central beta distributions. i 
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C H A P T E R  3 1  

Noncentral t-Distributions 

1 DEFINITION 

The distribution of the ratio 

where U and X, are independent random variables distributed as standard 
normal [N(O, 111 and chi with v degrees of freedom, respectively, and 6 is a 
constant, is called the noncentral t-distribution with v degrees of freedom and 
noncentrality parameter 6. Sometimes S* (or even i s2) ,  rather than S, is 
termed the noncentrality parameter. If S is equal to zero, the distribution is 
that of (central) t with v degrees of freedom, as was discussed in Chapter 28. 

When there is no fear of confusion, S may be omitted and t: used instead 
of t:(S). Occasionally even the v may be omitted, and t' used. However, 
whenever there is possibility of confusion-such as when two or more values 
of the noncentrality parameter are under discussion-the full symbol tL(6) 
should be used. 

2 HISTORICAL REMARKS 

The noncentral t-distribution was derived (though not under that name) by 
Fisher (19311, who showed how tables of repeated partial integrals of the 
standard normal distribution could be used in connection with this distribu- 
tion. Tables given by Neyman, Iwaszkiewicz, and Kolodziejczyk (1935) and 
Neyman and Tokarska (1936) were based on evaluation of probability inte- 
grals of certain noncentral t-distributions. 

Tables from which percentage points of noncentral t-distributions could 
be obtained were given by Johnson and Welch (1940). Later tables [Resnikoff 
and Lieberman (1957); Locks, Alexander, and Byars (1963); Bagui (1993)l are 
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fuller and require less calculation. Charts based on the probability integral 
are given by Pearson and Hartley (1954) (see also Section 7). 

Formal expressions for the distribution function are rather more compli- 
cated than those for noncentral X 2  and F. A number of different formulas 
can be found in Amos (1964). A number of approximations for probability 
integrals, and for percentage points, of noncentral t-distributions have been 
proposed. Comparisons of various approximations for percentage points have 
been made by van Eeden (1961) and by Owen (1963). See Section 6 for more 
details. Computer programs for calculating percentage points have been 
described by Owen and Amos (1963) and by Bargmann and Ghosh (1964). 
Amos (1964) reported on comparisons of two such computer programs. See 
Section 7 for more details. 

3 APPLICATIONS AND ESTIMATION 

The statistic 6 ( z  - [,)/S is used in testing the hypothesis that the mean of 
a normal population is equal to 5,,. If (= n-'Cy= , X i )  and 

are calculated from a random sample of size n, and the population mean is 
equal to 5,, then 6 ( x  - t,)/S should be distributed as (central) t with 
n - 1 degrees of freedom. If, however, the population mean 5 is not equal to 
to, then 6 ( x  - t , ) / S  is distributed as t h - , ( 6 ( 5  - (,)/a), where u is the 
population standard deviation. The power of the test is calculated as a partial 
integral of the probability density function of this noncentral t-distribution. 

Similarly a statistic used in testing equality of means of two normal 
populations, ( I l l )  and (n,) (with common, though unknown, variance u2) ,  
using random samples of sizes n, ,  n,, respectively, is 

(31.2) 
d ( n l  + n2  - 2)- ' [ (n ,  - 1)s: + (n ,  - 

. 

If the two population means are indeed equal, this statistic should be 
distributed as (central) t with (n ,  + n, - 2) degrees of freedom. But, if 
(mean of population II,) - (mean of population H,) = 8, then the statistic is 

distributed as tL ,+ , ,2-2(~o- '  Jn ln2(n ,  + n,) . Here, again, the power of -9  
the test can be calculated as a partial integral of the appropriate noncentral 
t-distribution. 
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Charts giving powers of t-tests have been published in Pearson and 
Hartley (1954) and Croarkin (1962). Tables of the power function are also 
available in Neyman, Iwaszkiewicz, and Kolodziejczyk (1935) and Davies 
(1954). Noncentral t-distributions also occur as distributions of certain test 
statistics in multivariate analysis [see, e.g., Gupta and Kabe (1992)l. 

It is sometimes desired to calculate confidence intervals for the ratio of 
population mean to standard deviation (reciprocal of the coefficient of 
variation). Such intervals may be computed in suitable cases by noting that if 
X and S 2 be calculated from a random sample of values XI ,  X,; . a ,  X, 
from a normal population with expected value 6 and standard deviation u, 
then ~ X / S  is distributed as tL- l(6,$/u). Symmetrical 100(1 - a )% con- 
fidence limits for e/u are obtained as solutions for e of the equations 

and 

[Approximations to the distribution of the sample coefficient of variation in 
relation to the noncentral t-distribution were studied by McKay (1932) and 
an accurate (to four decimal places) approximation to the percentage points 
in terms of the X 2  percentage points was derived by Iglewicz, Myers, and 
Howe (19681.1 

Belobragina and Eliseyev (1967) have constructed a nomogram that indi- 
rectly gives the lower 100(1 - a ) %  bounds for ,$/a. Actually their charts 
show upper bounds for @( -6/u), given Z/S. Sample sizes included are 5, 
10, 20, 50, and 100; and confidence coefficients 90%, 95%, 97%, 99%, and 
99.9%. 

Rukhin (1992) considered point estimation of (6/uI2. The maximum 
likelihood estimator is 

and the minimum variance unbiased estimator (for n > 3) is 
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Rukhin pointed out that this estimator can be negative and so is inadmissi- 
ble, and he proceeded to search for good estimators of form 

Using mean square error as a measure of inaccuracy, Rukhin has recom- 
mended estimators of form 

for cases where I(/al is expected to be large. These estimators are admissible 
within the class of estimators (31.9, but not generally. 

We now consider the problem of constructing a 100(1 - a)% confidence 
interval for the 100 P% quantile of the distribution of X, which is 5 + up@ 
[with 5 and a defined as above, and @(up) = PI. This problem was consid- 
ered by Stedinger (1983a, b) and Chowdhury and Stedinger (1991) in connec- 
tion with estimating P-' year flood flows in hydraulic engineering (see also 
below). Since &(x - 5 - upa)/S is distributed as t ; - , ( -uP6) ,  we have 

Hence 

is a 100(1 - a)% confidence interval for 6 + upa .  An equivalent formula 
[since tl, ,( - 6) = - t;, , -,(a)] is [Wolfowitz (1946)l 
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Tables (to three decimal places) of the multipliers of S are presented in 
Stedinger (1983a) for 

[See also Chowdhury and Stedinger (1991).] Comparisons with some approxi- 
mate formulas are also included in this paper, which is particularly concerned 
with applications in distributions of flood flows. This is one among many of 
the fields of application developed in recent years, broadening the already 
extensive bibliography (of over 100 references) in Owen (1968). 

Kiihlmeyer's (1970) monograph also contains many examples. Here we 
note a few later examples. Hall and Sampson (1973) utilized (31.7) in 
constructing approximate tolerance limits for the distribution of the product 
of two independent normal variables in connection with pharmaceutical 
tablet manufacture. Malcolm (1984) used noncentral t-distributions in setting 
microbiological specifications for foods. Lahiri and Teigland (1987) found 
that noncentral t-distributions gave good fits to distributions of forecasters' 
estimates of Gross National Product and Inflation Price Deflator. Miller 
(1989) used noncentral t-distribution in calculating parametric empirical 
Bayes factors for calculating normal tolerance bounds. Dasgupta and Lahiri 
(1992) utilized noncentral t-distribution in one of several models they con- 
sider for interpretation of survey data. 

Phillips (1993) applies noncentral t-distributions in constructing tests for 
hypotheses that the probability that the ratio between 'bioavailability' for a 
new and standard drug formulations falls between specified limits. 

4 MOMENTS 

The r th moment of ti(6) about zero is 

r/2 r(;(v - r))  ( r ) ( 2 ~ ) ! ~ , - ~ ,  
= (f  .) 2 j  2 ~ j !  . (31.8) 

r ( t v )  ~ j s r / ~  

Hogben, Pinkham, and Wilk (1961) gave an alternative form, in which the 
sum is replaced by the expression e-'Z/2(d/da)r(e"z/). Merrington and 
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Pearson (1958) gave the following expressions: 

The rth central moment can be expressed as a polynomial in S2: 

Hogben, Pinkham, and Wilk (1961) provided tables of the coefficients c,,,(v) 
to six significant figures for r = 2,3,4, and 

They also give values of d l / 6  [see (31.9a)j to six significant figures. 
For v large (with S fixed) 

and the skewness moment ratio fi is approximately v-'6(3 - a2v-'). 
Note that the skewness has the same sign as 6; this is also true of the 
expected value. Further the distribution of t $ - 6 )  is a mirror image (re- 
flected at rl = 0) of that of t36). 

The (P I ,  p2 )  values of the t:  distribution fall in the Type IV region of the 
Pearson system of frequency distributions (see Chapter 12). Merrington and 
Pearson (1958) found the interesting approximate relation: 
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5 DISTRIBUTION FUNCTION 

Since the events tL(6) < 0 and U + 6 < 0 are identical, 

Pr[t;(6) < 01 = Pr[U < -61 = @(-a ) .  (31.10) 

Also, 

Pr[t:(6) I t ]  = 1 - Pr[t:(-6) I - t ] .  (31 .lo)' 

The relationship 

leads to 

The right-hand side of (31.11) can be written 

For computational purposes the following formulas, due to Kiihlmeyer 
(1970), may be useful: 

For v odd, 

Pr[tl(6) I t ]  = @(-a@) + 27 + 2(Ml + M, + . . .  +Mu-?) 

For v even, 

Pr[tL(6) I t ]  = @(-a)  + 27r(M0 + M2 + +M,-2), 

where 
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with 
I 

a, = { (k  - 2)a , - , ) -  for k r 3, a, = 1 ,  

M - ,  = 0 ,  

q ( x )  = (&)-'e-"/' = ~ ( x ) .  

Differentiating (31.11) with respect to t gives the probability density function 

where Hh,(x)  = ( v ! ) - ' / r u u  exp[ - $ ( u  + x)']  du. See also Eq. (31.19) below. 
This form was given by Fisher (1931), in the introduction to Airey's (1931) 
tables of the Hh functions. Note that ( f i ) - ' H h , ( x )  is the vth repeated 
partial integral of the standard normal probability density function 

Voit and Rust (1990) point out that the Hh,, function can be expressed in 
terms of the Whittaker U  function as 

~ h , (  -8 )  = U ( V  + 4, -e)e-02/4 ,  (31.14) 
where 

and y ,  and y ,  are the odd and even solutions of the differential equation 
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They exploit this observation to construct another, S-system, representation 
of noncentral t-distributions. (See the remarks on page 519.) 

There are still other formulas for the distribution of t:(S). First, we have 

e - 6 2 / 2 r ( i ( v  + I ) )  v ( ~ + 1 ) / 2  

= 
( v )  (2) 

This is of form p,l(t) = C7=O~J[9(t)]J, where the c,'s are constants and 4 
9(t) = t S h ( v  + t2)- ' I2.  The expression [6(t)]" is to be interpreted as 1 for 1 i 
all values (including 0) of Nt). If S = 0, the expression for p,:(t) reduces to 
that of a (central) t, density. Note that if 6 and t are of opposite signs, the 
series alternates in sign. The series in (31.15) can be evaluated term by term 
to give values for probabilities in terms of incomplete beta function ratios. If 
the range of integration be taken from 0 to t (> O), each term is positive, and 

[See also Hawkins (1979.1 Guenther (1975) provided an expansion in terms 
of incomplete beta function ratios (see Chapter 1, Section A6) 

where 

This formula is suitable for pocket calculators, and the formula was used by 
Lenth (1989) for his computer algorithm (see Section 7). 

It is possible to obtain an expansion similar to (31.16) for Pr[-t < t: 5 01 
with - t < 0, but the terms now alternate in sign. However, probabilities of 
the latter kind can be evaluated from (31.16) as well as the value of 
Pr[-t < t: I t], which is equal to pr[t12 I t2] .  In this case we note that t t  
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has the noncentral F-distribution F;,,(S) (Chapter 30, Section 4). Hence 

If v is even, and t > 0, Pr[O < t: < t l  can be expressed as a finite sum in 
terms of Hh functions: 

Among the formulas given by Amos (1964), one to which he gave special 
attention, in regard to its computing use, expresses the cumulative distribu- 
tion function of t l  in terms of confluent hypergeometric functions (see 
Chapter 1, Section A7): 

( b  cannot be zero, or a negative integer). The formula (for v > 2) is 

"2/(w + r Z ) ' / 2  1 ~ r [ t ;  a t ]  = I - (fi)-~/~~ exp( - ?u2)  du 
- m 
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If v is even, the first of the two summations contains only a finite number 
( i v  + 1) of terms; if v is odd, the second summation contains only a finite 
number [ t (v + 3)J of terms. 

Hodges and Lehmann (1965) derived an asymptotic (with v -, w) series 
for the power of the t-test (see Section 3) with v degrees of freedom in terms 
of the central moments of ,y,/ 6. They found that using this series for v 
"not too small" (the case v = 40 was investigated in detail), determination of 
the power with sufficient precision is possible in many cases. Moreover the 
series is useful as an indicator of the proper interpolation procedures with 
respect to S in the noncentral t tables (see Section 6). 

If t > 0, Guenther (1975) recommended separating the infinite sum in 
equation (31.20) into two sums, one for j odd and one for j even. In summing 
the even terms, using the identity 

and putting t = u ,  followed by u = ( j  + l)/f, we have 

where p( f ;  v, ,  v2) is the (central) F density with v,, v2 degrees of freedom 
[Chapter 27, Eq. (27.4)]. This expression is especially suitable for pocket 
calculator use. 

Ifram (1970) noted that the pdf of a normal random variable X with 
expected value 6 and variance 1 can be expressed as 

I 
= 5EK [ P ~ ~ ~ + ~ ( ~ x I ) ]  + ~ ~ x - ' E ~ [ P ~ ; , + , ( I x I ) ] .  (31.22) 

where 

2 (x )  = { 2 ~ / 2 r ( ; ~ ) } -  lx (w/2 ) -  le -x /2  
p x  ,> [cf. Eq. (18.1), Chapter 181 

and K has a Poisson distribution with expected value ;S2. From this he 
deduced that 
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where G,,,,z is distributed as the ratio X:,/X:, of independent X2's. If CI2 
has a GYI,Y2 distribution, then U is said to be a ,/= random variable. 
Voit and Rust (1990) suggest evaluating noncentral t-distributions using a 
canonical S-system form [see Chapter 12, Eq. (12.90)l. They note that the 
noncentral t density, given by (31.15) can be written 

where 

and that 

( v  + t2)lI2 
S ( t )  and Z ( t )  = 

vS S ' ( t )  

satisfy the differential equation 

This permits construction of an S-system representation [Chapter 12, 
Eq. (12.90)l for central and noncentral t-distributions. They also describe an 
S-system approach for computing quantiles and moments of noncentral 
t-distributions. 

6 APPROXIMATIONS 

This rather lengthy Section mirrors the extensive literature on approxima- 
tions to non-central distributions which attracted a substantial number of 
researchers in the last fifty years or so. In spite of the advances in computer 
technology, this topic of research is far from extinct or exhaustion, as 
indicated by the ingenious work of Deutler (1984) to be described below. 

If S is kept at a fixed value, and v is increased without limit, the t l  
distribution tends to the normal distribution N(S, 1). If v (> 2) is kept fixed, 
and 6 increased without limit, the standardized tl-distribution tends to the 
standardized x i '  distribution. 

Earlier approximations were based on an indirect approach. Jennett and 
Welch (1939) used the approximate normality of (U - tbX,v-'/2) in the 
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equation 

Pr[t: s t ]  = P ~ [ U  - I ~ , V - ' / ~  s -81 (31.25) 

to obtain 

Pr[t: 2 * I  = ( & ) - I  j: e-u2/2 
m 

'fu , 

with 

x = [l + t2u-I var(X,,)] 1 / 2 ( - 6  + ~ U - ' / ~ E [ ~ ~ ] ] .  

An approximation to the percentage point t:,,(S), defined by 

~ r [ t ; ( S )  s t:,,(S)] = a, 

is found by putting x = u, and solving for t. The resulting approximation is 

Sb, + u,Jb; + (1 - b;)(S2 - u:) 
t;,, = 9 ( 3  1.26a) 

bf - u:(1 - bf)  

where 

Values of b,, are given in Table 35 of Pearson and Hartley (1954) for 
v = 1(1)20(5)50(10)100, and also in van Eeden (1958). 

Johnson and Welch (1940) introduced the further approximations var(x,) 
= j5, and E[xy] = &, giving the value (1 + i t 2 ~ - ' ) - ' / 2 ( t  - 6) for X, and 
leading to the approximation 

[Masuyama (1951) showed how rough values of this approximation may be 
obtained using a special type of "improved binomial probability paper."] An 
approximation intermediate between (31.26a) and (31.26b) is obtained by 
using the correct value of E[x,,] but replacing vadx,) by i .  This was given by 
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van Eeden (1958) as 

Sb,, + u.46: + i ( S 2  - uf)v- '  
t:,, = (31.26~) 

b,Z - f u i v - '  

The preceding approximations give real values for t:., only for limited ranges 
of S and u,: For (31.26a) we must have 

b,Z + (1 - b,2)(a2 - u:) > 0; 

that is, u: < b:(l - b:)-' + S2. 

For (31.26b) we must have 

1 + f (S2 - u ~ ) v - '  > 0; 

that is, u: < 2v + S2. 

For (31.26~) we must have 

that is, 

Since 2vb; < b:(1 - b:)-' < 2v, it follows that (31.26b) can be used over a 
wider range of values of a (for given S) than (31.26a1, and (31.26a) over a 
wider range than (31.26~). However, it should be borne in mind that when 
approaching limiting allowable values of a ,  the formulas may become less 
reliable. Also the wider range of (31.26b) is offset by its lower accuracy [van 
Eeden ( 195811. 

The problem of solving the inverse equation, 

for 6, given t, V, and a, needed to establish confidence intervals for 6 was 
tackled by Deutler (1984), and he improved on Johnson and Welch's (1940) 
earlier result. Denoting the solution of (31.27) by S(t; v, a) ,  the crude 
approximation [Johnson and Welch (1940)l 

where @(urn) = a, bv = d m r ( $ ( v  + l))/r($v) as in (31.26a). and at = 

2 4 1  - b;), was refined by Deutler (1984) by utilizing a numerically stable 
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Johnson and Welch (1940) also provided tables from which S(t; v ,  a )  can 
be calculated directly. The tables provide values of A(t; v ,  a),  and S(t; v ,  a )  is 
calculated from 

Values of A(t; v ,  a )  are tabulated for 

The higher values of v are selected to facilitate interpolation with respect to 
12/ 6. 

In Kiihlmeyer's (1970) monograph, A(t; v ,  a )  is tabulated against y = 
( 1  + t 2 ( 2 v ) - 1 ) - 1 / 2  for Ill/ 6 I 0.75 and against 

for I t [ /  6 < 0.75 for a = 0.99, 0.95, 0.90, and the same values of v .  [For 
a = 0.01, 0.05, 0.10 the identity 6(t; v ,  a )  = -a(- t ;  v ,  1 - a )  can be used.] 

Direct approximations to the distribution of noncentral t are of later date. 
For small values of S and large ( > 20) values of v ,  the simple approximation 
of the standardized t: variable by a standard normal variable gives fair 
results. This is equivalent to using the formula 

Since var(t:) is not finite if v I 2, this formula cannot be used for v I 2. As 
we have implied above, it is in fact unlikely to be useful unless v is fairly 
large and S is fairly small. When S = 0, the approximation becomes 

which has already been noted, as a fair approximation, in Section 4 of 
Chapter 28. 

A better approximation is obtained, as is to be expected, if a Pearson Type 
IV distribution is fitted, making the first four moments agree with those of 
the noncentral t-distribution. Merrington and Pearson (1958) found that this 
gives upper and lower 5%, 1%, and 0.5% points with an error no greater 
than 0.01, for a considerable range of values of 6 and v (including v as small 
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as 8). Further investigations, by Pearson (19631, confirmed the closeness of 
the two systems of distributions. 

If a Cornish-Fisher expansion be applied to the distribution of tb(6), the 
following approximate expansion (up to and including terms in v - ~ )  is 
obtained: 

Setting 6 = 0 in (31.33a1, we obtain the approximation [see Chapter 28, 
Eq. (28.16)] for central t, percentage points: 

If these terms in (31.33a) be replaced by the exact value of t,,,, then the 
approximation becomes 

t:,,(S) a t,,, + S + f s ( 1  + 2u: + u,S)v-l 

+&6[3(4u4, + 12u: + 1) + 6(u i  + 4ua)S 

-4(uz - 1)a2 - 3 ~ , 6 " v - ~ .  (31.33b) 

Extensive numerical comparisons for v = 2(1)9, given by van Eeden (1958) 
indicate that, for 6 > 0, formula (31.33a) gives the better results for lower 
percentage points (a < f), while (31.33b) is better for a > f .  

Azorin (1953) obtained another type of approximation by constructing an 
approximate variance equalizing transformation. Starting from the relation- 
ship 

with 

we obtain the transformation 



which is to be approximated as a standard normal variable. This transforma- 
tion was studied by Laubscher (1960). Azorin suggested two similar transfor- 
mations of simpler form (each to be approximated as a standard normal 
variable): 

These transformations approximate noncentral t  by S ,  distributions (see 
Chapter 12, Section 4.3). Transformations of type (31.34) would be expected 
to give accuracy comparable to the Type IV approximation, in view of the 
close similarity between Type 1V and S,-distributions. 

A remarkably accurate transformation was suggested by Harley (1957). 
She suggested that the distribution of tL(S) be approximated by that of a 
function of the sample correlation coefficient R (Chapter 32) in random 
samples of size v + 2 from bivariate normal population with the population 
correlation coefficient 

L 

P = s \ 1 2 v +  1 + s 2 .  

The proposed function is 

(see Chapter 32, Section 2). 
While percentage points of t :  can be approximated from those of R,  using 

(31.39, it is also possible to approximate percentage points of R, using those 
of t: .  It is this latter use that appears to be the more valuable, in the opinion 
of van Eeden (1958) and Owen (1963). 

Hogben, Pinkham, and Wilk (1964) approximate the distribution of Q = 

t l(v + t C ) - ' l 2  and hence the distribution of t: .  Fitting a Type I (beta) 
distribution (with range - 1 , l )  to Q is of course equivalent to approximating 
the distribution of ti .  This approximation is claimed to be especially useful 
for small values of 6. 

Mention may be made of approximations proposed by Halperin (1963). 
These are not of great accuracy but appear to provide a bound for percent- 
age points. They are also simple to compute, using tables of percentage 



points of central t, (t,,,) and X: (X:,a). The suggested inequalities are 
(assuming that 6 > 0) 

6\/v 
'L.a(S) 2 - + tu,a CY 1 0.43. (31.36b) 

Xu. I -a 

Kraemer (1978) approximates tL cdfs by means of (central) t-distribution 
cdfs. The approximation is based on the following result, proved by Kraemer 
(1978): A function 0 = O(6, v) exists such that 

where g = t ( t2  + v)-'I2. Kraemer (1978) found empirically that good results 
are obtained with O(S, v) = S(S2 + v)- 'I2. Using this value, together with 
Johnson and Welch's (1940) second normal approximation, she obtained 

which yields 

For moderate sized v and S > 0, neither approximation (31.38) nor (31.39) 
is uniformly better. Kraemer (1978) suggested that in estimating 95th per- 
centiles, the t-approximation would be better for 6 < 2, but the normal 
approximation would be better for 6 > 2. "One-tailed tests, and confidence 
intervals based on the t approximation will tend to be on the conservative 
side; the normal approximation will tend to err on the liberal side." Kraemer's 
approximation complements the existing approximations being most accurate 
for parameter values for which tables of the exact distributions are rather 
sparse. 
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7 TABLES, CHARTS, AND COMPUTER ALGORITHMS 

The earliest tables of the noncentral t-distribution were produced by Jerzy 
Neyman and his co-workers in the mid-thirties of this century. Substantial 
contributions to the tabulation of this distribution were carried out in the 
early sixties by several authors to be indicated below. The most comprehen- 
sive volume of tables appeared in 1993. For historical interest and perspec- 
tive, we present a rather detailed description of the earlier contributions. 

The tables of Neyman, Iwaszkiewicz, and Kolodziejczyk (1935) and 
Neyman and Tokarska (1936) were calculated to give the power of the t-test. 
The first paper (Table 111) gives the operating characteristic (= 1 - Power) 
of a 5% significance limit t-test at values 6 = 1(1)9 for v = 1(1)30 (i.e., 
values of Pr[t1(6) 1 t,.,,,,,]]) and also values of 6 satisfying the equation 
Pr[t:(S) I t,,,,,,,] = 0.05. The second paper gives more extensive tables of 
the same kind. Owen (1965) gave tables, to five decimal places, of values of 6 
such that Pr[t:(G) I t , ,  , -,I = P for 

The tables of Johnson and Welch (1940) give values of a quantity A such 
that 

Comparing with approximation (31.26b1, it is seen that one might expect 
A = u,, so values of A should not vary too much as 6 and v vary and 
interpolation becomes simpler. Values of A are given for v = 

4(1)9,16,36,144, a, (i.e. u,); above v = 9, interpolation with respect to 
1 2 ~ - ' / ~  is suggested. The argument used is y = (1 + ft:v-')-'/' for 
0.6 r ( y l  r 1, and y' = ytl/ 6 for l y l  r 0.6. Values of a [(l - E )  in the 
original] are 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
0.95, 0.975, 0.99, and 0.995. Since the argument is a function of t:, direct 
entry into the tables leads to a value 

such that t1,,(6') = t'. To obtain tL.,(S) for a given 6, an iterative (or inverse 
interpolation) procedure is necessary. A table giving the results of such 
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procedures, for the case a = 0.95 only, is also provided. This table gives A to 
three or four decimal places as a function of 77 = [S/ &](l + ~S*V-')-~/*. 
The later tables of Owen (1963) include a substantial extension of this last 
table. The argument 77 is tabulated at intervals of 0.01, instead of 0.1; A is 
given to five decimal places, and values v = 1,2,3 are included, in addition 
to those in the Johnson and Welch tables. Values of a ,  however, are now 
0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.75,0.9, 0.95, 0.975, 0.99,0.995. Owen also 
gives tables of A (to five decimal places) as a function of y and y' (in the 
same form as Johnson and Welch) for these new sets of values of v and a. 
There are also extensive tables of quantity k (to three decimal places) such 
that 

for p = 0.75, 0.9, 0.95, 0.975, 0.99, 0.999, 0.9999, 0.99999, and v + 1 = 

2(1)200(5)400(25)1000(500)2000, 3000, 5000, 10000, w; a has the same values 
as in Owen's other tables. The choice of u p d m  as noncentrality parame- 
ter makes it convenient to use the tables in calculating confidence intervals 
for percentage points of normal distributions. Thus, since the inequality 
X - kS < 6 - u p u  is equivalent to 

it follows that 

This probability is equal to a if 

Setting n = v + 1, we obtain Eq. (31.42). 
Owen also gives values of k satisfying 

for n = 1, v = 1 , 2  (and m), a = 0.90, 0.95, 0.99, and for p = 
0.50(0.01)0.90(0.005)0.990(0.001)0.999(0.0001)0.9999 and some even higher 
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values of p. Further tables give values of k satisfying (31.44) for 

Some extracts from Owen's tables are included in the survey by Owen (1968). 
The tables of Resnikoff and Lieberman (1957) are also based on 

Eq. (31.42). They give t;,,(u,d=)/ \/E; for 

(For v = 2, 3, and 4, values are not given corresponding to a = 0.99,0.995.) 
These tables also give probability integrals of the noncentral t-distribution 

(to four decimal places) 

for the same values of p and v, and for x at intervals of 0.05. There is also a 
table of values of the probability density function, for the same values of p, 
v, and x .  

Locks, Alexander, and Byars (1963) have produced a similar, but more 
extensive set of tables of the probability density function. To facilitate use in 
connection with multiple regression, values of the noncentrality parameter 
equal to up- and u , d x  are used. However, the tables do not 
include specified values of p; they rather take up = 0.0(0.025)3.0. 

Hodges and Lehmann (1968) noted that if normal equivalent deviates are 
used, problems of interpolation are much less troublesome. Thus, if 

then they table a quantity A satisfying the equation 

Values of A are given to four decimal places for 

a = 0.005,0.01,0.025,0.05,0.1, 

P = 0.5(0.1)0.9,0.95,0.99, and v = 3(1)6,8,12,24, w. 
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For given a and p, A is a rather smooth function of V. For v > 6, a r 0.01, 
and p I 0.09, linear harmonic interpolation give good results, and practically 
useful values can be obtained well beyond these limits. 

Among shorter useful tables, mention must be made of those of van 
Eeden (1961) and Scheuer and Spurgeon (1963). Van Eeden gives 
t ~ , , ( u , ~ )  directly [to three decimal places (two for a = 0.99,0.01)1 for 
v = 4(1)9, a = 0.01,0.025,0.05,0.95,0.99, and p = 0.125,0.15(0.05)0.45. 
Scheuer and Spurgeon give values of the same function (to three decimal 
places) for the values of p and v used by Resnikoff and Lieberman (19571, 
but only for a = 0.025,0.975. 

Bruscantini (1968) made a detailed study of the distribution of Y = U + 
Ox2. He referred to, and gave a short extract from, unpublished tables giving 
values, to five decimal places of the cumulative distribution function of the 
standardized variable 

for argument y' at intervals of 0.5 and 0 = 2.00(0.05)7.20. These are in fact 
values of Pr[t;(yV) > 81 with 

Recently [Bagui (199311 extensive tables of values of t:,,(S) have ap- 
peared. Included are values to five decimal places for 

Computer algorithms for evaluation of cumulative distribution function of 
the noncentral t-distribution were provided by Cooper (1968) (algorithm S5) 
[reprinted and updated in Griffiths and Hill (1985)l-one of the first algo- 
rithms in the newly established algorithm section of Applied Statistics, Lenth 
(1989), Narula and Weistroffer (1986), Guirguis (19901, and Posten (1993), 
among others. 

Cooper's algorithm, written in standard FORTRAN, uses the numerical 
method given by Owen (1965b). The integration is theoretically exact pro- 
vided that the auxiliary functions can be evaluated exactly. The essential part 
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involves the auxiliary function 

t a n- ' a  1 r , , r ~ ~  

For h 2 a Cooper (1968) used the approximation 

t a n - ' a  1 1 
T ( h , a )  = ----- - ---- jl' exp ($1 du 

277 2 , 4 5 5 0  

tan- ' ( l / a )  + (Cooper's algorithm AS 4) .  
277 

Another subroutine used is the normal integral (Cooper's algorithm S2). For 
large degrees of freedom Cooper used normal approximation, and fractional 
degrees of freedom were not allowed. The accuracy claimed by the author is 
to more than six decimal places. However, for v near 100 the error of the 
normal approximation is in the vicinity of 5 x 

Lenth's (1989) algorithm is based on the infinite series expansion (31.21) 
due to Guenther. The error En incurred by using a finite sum terminating at 
j = n is bounded by 

where, as above, 

I - 6 2 / 2 ( 6 2 / 2 ) ~  

p.  = z e 
I j! [See also Singh, Relyea, and Bartolucci (1992)l. 

Accuracy of Lenth's algorithm to within +lo- '  is guaranteed within 100 
terms for - 11.0 I S I 11.0. For evaluation of the incomplete beta function, 
an updated version of Majumder and Bhattacharjee's algorithm (1973) is 
used. In the majority of cases Cooper's algorithm is faster than Lenth's-the 
price paid for increased generality. Experience shows that on an IBM PC 
(Microsoft Fortran 77, standard library) no errors larger than lo-' were 
observed using Lenth's (1989) algorithm. 
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Singh, Relyea, and Bartolucci (1992) and Posten (1993) give algorithms 
also based on Guenther's formula (31.21). Here we describe Posten's algo- 
rithm in some detail. It uses the expansion [cf. (31.21)] 

with x = V / ( V  + f2). The basic problem is to evaluate the truncated sum 
2n c T B , ,  

j = O  

where 

and 

The recursive formulas for evaluation of this sum are as follows: Set 

D, = T2,  and E, = T 2 , + ,  , 
then 

with Do = 1 ,  EO = s @ ,  Dl = ( A / i ) D  ,-,, Ei = { ~ / ( i  + f ) ) ~  ,-,, and 

r(iv + 1 )  
SS(0) = ~ " / ~ ( 1  - x ) ,  

r(fv) 
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For evaluation of S(0) and SS(O), Posten's (1986) algorithm might be used. 
Singh, Relyea, and Bartolucci (1992) have used a similar method. 

Posten (1993) conducted a preliminary study of the algorithm over a range 
of values of t and 6, with degrees of freedom 4, 19, and 39. The calculated 
results (in double precision on an IBM 3000 series mainframe computer) 
were compared with results using the Cooper-Owen (1965) algorithm used in 
IMSL (1987). In most cases it was easy to obtain 12 or more place accuracy 
with fewer than N = 200 terms and often with N less than 100. 

Chattamvelli and Shanmugam (1994) recently presented an algorithm for 
the noncentral t-distribution which does not require the evaluation of the 
incomplete beta function. Consequently, this algorithm is suitable for the 
evaluation of the noncentral t distribution function even on calculators. 
These authors also have presented a step-by-step algorithm which may easily 
be programmed. 

8 RELATED DISTRIBUTIONS 

8.1 Noncentral Beta Distribution 

The noncentral beta distribution is defined as the distribution of the ratio 

See Chapter 30 (Section 7). It can be seen that [t:(6)I2/[v + {t:(6))2] is 
distributed as b\,,(62). This is also the distribution of e 2 ,  where Q is the 
variable (mentioned in Section 6) studied by Hogben, Pinkham, and Wilk 
(1964). [See also David and Paulson (1965, p. 434).] 

8.2 Doubly Noncentral t-Distribution 

If the X, in the denominator of tL(6) is replaced by a noncentral X, 
(noncentrality parameter A), the distribution of the modified variable is 
called a doubly noncentrai t-distribution with noncentrality parameters (6, A) 
and Y degrees of freedom. Symbolically 

1 

Since X:(A) is distributed as a mixture of ,y,+2,-distributions in proportions 

t e-w2(+~) ' / j !  ( j  = 0,1,2, . . . 1, the distribution of tz(S, A )  is a mixture of 
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distributions in these same proportions. Hence all formulas, approximations, 
tables, and so forth, for the noncentral t-distribution can be applied to the 
doubly noncentral t-distribution. For example, the r th  moment of t," about 
zero is 

for r < u,  where ~ ~ ( 0 )  = e - ' ~ ' / j ! .  Krishnan (1967) pointed out that the 
summation in this formula can be expressed as the confluent hypergeometric 
function ~ ( f ( v  - r); i v ;  +A) and that an even simpler form can be obtained 

I I I using Kummer's formula e - w 2 ~ ( l ( v  2 - r); f v; :A) = M(?r; ~ v ;  - ?A). 
Kocherlakota and Kocherlakota (1991) have provided the explicit formulas 

and, in particular, 

Krishnan (1967) obtained some recurrence relations between moments about 
zero of t,"(6, A), t,"-,(6, A), and t,"-,(a, A). These formulas are most conve- 
niently given in terms of the quantities 
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They are 

For v large, S and A remaining fixed, 

Since the available tables (at the time of writing) of hypergeometric and 
gamma functions were inadequate to be used for computing moments of 
t:(S, A), Krishnan (1967) also presented tables, to six decimal places, for 
A = 2(2)8(4)20 of 

for v = 2(1)20, 

for v = 3(1)20, 

d l (  t: 
" = 6(S2 + 3) 

for v = 4(1)20, 

C4 = 
p14( t: ) 

S4 + 6S2 + 3 
for v = 5(1)20. 

(Note that the c's are independent of 6.) 
In the same paper Krishnan considered two approximations to the distri- 

bution of t:(S, A). In three special cases good results were obtained using a 
method suggested by Patnaik (1955) in which the distribution is approximated 
by that of ct;(S), c and f being chosen to give correct values for the first two 
moments. The other method, an extension of Harley's (1957) method (see 
Section 61, also gave useful, though not quite as accurate, results. For this 
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approximation one calculates L = [(v - 3)p ' , ,u ] [~p ' I ,V]-1 ,  K = 
(1 - 2 ~ - ~ ) ~ ' ~ , ~ ,  and 

Then the distribution of tr(6, A) is approximately that of 

where R is distributed as the product moment sample correlation in a sample 
of size v + 2 from a bivariate normal population with correlation p (see 
Chapter 32, Section 2). 

Krishnan (1968) gave tables of Pr[t:(G, A )  I 11 to four decimal places for 
v = 2(1)20, 6 = -311.5, A = 0(2)8. (Note that for I, < 0, Pr[t:'(S, A )  2 t o ]  
can be evaluated as Pr[tZ( - 6, A) 2 -to].) 

Krishnan, and also Bulgren and Amos (1968), gave the following formula 
involving double summation: 

where , F, = M, and 

1 0  a = -  /3 = a2 (1  - a ) ,  Jjr > 0. 
v +  t i '  

Bulgren and Amos (1968) gave some other series representations and also a 
table of values of Pr[t;(6, A )  I to] to six decimal places for t,, = 1,2, and 
v = 2,5(5)20, 6 = - 4(2)4, A = 0(4)8. 

The cumulative distribution function of tZ(6, A) is given by 
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where U and W are independent unit normal and variables, respec- 
tively. Hence 

where F(t;  V, 6) is the cdf of a tL(6) variable. [Kocherlakota and Kocher- 
lakota (1991).] 

Availability of computational algorithms for tL(6) makes it simpler to 
determine F(r; v; 6, A). [The routine DTNDF was used in IMSL (19871.1 
Krishnan (1968) and Kocherlakota and Kocherlakota (1991) observed that 
since 

it follows that t:,,(6, A) = -t:-, -,(-a, A). As a result tables for negative 6 
are not needed. Note also that the median of t:( - 6, A) is the same as minus 
of t36 ,  A). 

Kocherlakota and Kocherlakota (1991) also provided tables of values of 
t:,,(S, A )  for a = 0.05,0.1,0.25,0.5,0.75,0.9, and 0.95 with v = 5(5)20, 6 = 

0,2,4, A = 0,4,8. These authors used (31.61) combined with (31.60) for their 
calculations, obtaining results agreeing with Krishnan (1968) and Bulgren and 
Amos (1968). [Carey (1983) described another algorithm for the evaluation of 
F(t;  v; 6, A).] 

8.3 Modified Noncentral t-Distribution 

The most common modified t-statistic is obtained if we replace the S in the 
denominator (see Section 3) by the sample range W or by the mean of a 
number of independent sample ranges [see Lord (1947,1950) and Chapter 
131. Thus in place of the X ,  in the denominator of rL(6) (see Section 1) there 
is a variable having some other distribution but still independent of the U 
variable in the numerator. 

The noncentrality of the distribution is associated with the 6 in the 
numerator. The denominator (in both original and modified forms) has t h e  

same distribution for both the central and noncentral cases. So approxima- 
tions to this latter distribution that have been used for the central case can 
also be applied to the noncentral case, with reasonable hope of obtaining 
useful results. For example, if the distribution of W is approximated by that 
of Xv,(c'~"'2)-', then (U + 6)/W may be approximated by c1tLI(6). Discus- 
sion of approximations to the distribution of noncentral modified t are found 
in Lord (1950) and Zaludovi (1960). 



538 NONCENTRAL t-DISTRIBUTIONS 

8.4 Distribution of Noncentral t-Statistic When the Population 
is Nonnormal 

Noncentral t-statistic distributions have been studied as early as in the 
thirties and forties in order to assess the effect of nonnormality on the power 
of the t-test. We note, in particular, the work of Ghurye (1949) and Srivas- 
tava (1958). The first of these authors extended some results of Geary (1936), 
1947) who supposed that the population density function could be adequately , 
represented as 

h 
y 4 Srivastava, utilizing later results of Gayen (1949), obtained formulas for the & 

F case when the population density function is as in (31.63), with additional $ i 
terms 

(i.e., the next terms in the Edgeworth expansion). The correction to the ! 

normal theory power is of the form 2 

where the P's do not depend on the p's but on the noncentrality, the degrees 
of freedom, and the significance level of the test. 

Bowman, Lam, and Shenton (1986) have studied the even moments and 
approximations of 

where the X,'s are independent random variables, each having the standard 
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exponential distribution, with the pdf 

[Since E[X,l = 1 # 0, (31.65) would have a noncentral r-distribution, 
r:,-,(&), if the common distribution of the X's were normal with expected 
value 1.1 

Mulholland (1977) suggested studying the distribution of 

utilizing the recurrence relation 

Bowman, Lam, and Shenton obtained the following formulas for the pdfs of 
W,, W,, and W,: 

' 3 ~ ( 4 ~  - 1) -I/2,  7 ~ ~ s ;  I 

2 0 1 r  - 3n(4w - 1)- ' I 2,  I 
- - j s w s ;  

2 6 7 r  - 3n(4w - 1 ) - ' I 2  - 6 6  tan- '  (6w - 3)'12 

, + 18(4w - 1)[(2w - 1)/(4w - l)]"', t s w s l .  

( 3  1 . 6 8 ~ )  
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C H A P T E R  3 2  

Distributions of Correlation 
Coefficients 

1 INTRODUCTION AND GENESIS 

The statistic known as the sample (product-moment) correlation coefficient, 
based on n pairs of observed values of two characters, represented by 
random variables ( X , ,  Y , )  ( t  = 1, . . . , n) is 

where X = n - 'Cy,, X,;  = n -'C:, ,Y,. There are many alternative expres- 
sions. One of the most useful is 

(1989! observes that 

where L , ,  L2 are the eigenvalues of the Gram matrix 
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and provided that IX*l = IY* I, 

G = (  cos 8 C O ~ ' ) I X * ~ .  1 

(This shows that R is less suitable as a measure of association unless 
IX*l = b'*l.) See Rodgers and Nicewander (1988), and also Section 3, for 
several other representations of R.  The distribution that is the main topic of 
this chapter is the distribution of R when 

1. (Xi, Y , )  and (Xi, 5 )  are mutually independent if i +: j ,  
2 .  the joint distribution of X, and Y ,  has probability density function 

1 1 2 
x - 5  

Px,,Y, ( x t  y) = 
2.rruxuy J1-I;T ex.[- 2 - p2) ( ( I  

for each t = 1,2,.  . . , n (ax > 0; u y  > 0; - 1 < p < 1). 

Formula (32.2) is that of the general bivariate normal distribution, which 
will be studied in a planned volume on Continuous Multiuariate Distributions. 
We discuss the distribution of R before the parent distribution (32.2) 
because R is univariate, while (32.2) is a multivariate distribution and so is 
appropriate to the volume on multivariate distributions. However, we will use 
a few of the properties of (32.2) in order to pursue our analysis of the 
distribution of R.  The first is that p is the population correlation coefficient: 

The second is that XI, Y, each have normal distributions, with E[X,l = 5; 
E[Y, ]  = 7 7 ;  var(X,) = u i ;  var(Y,) = a:. The conditional distribution of Y,,  
given XI, is normal, with expected value 7) + (puv/ux)(XI - 5) and vari- 
ance (1 - p2)u,?. 

Rao (1983), while reminiscing on the origin and development of the 
correlation coefficient, has pointed out that the source of symbol R for the 
correlation coefficient was really the first letter of Reversion (according to 
Karl Peason). Galton himself referred to his measure R as the index of 
co-relation, and Weldon called it the Galton function. While Karl Pearson 
and Sheppard derived the large-sample standard error of R, Fisher (1915) 
derived the exact distribution of R ,  under normality. Fisher also soon found 
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a simple transformation R = tanh Z',  known as Fisher's z'-transformation, to 
considerably simplify the sampling distribution of R as well as the inference 
procedures based on the observed value of R. 

In his classic treatise on Natural Inheritance, Galton wrote in 1908 of his 
discovery with that inspiring phraseology so typical of him: "This part of the 
inquiry may be said to run along a road on a high level, that affords wide 
views in unexpected directions, and from which easy descents may be made 
to totally different goals.. . ". It is important to mention here that the 
correlation coefficient may be computed for any bivariate distribution with 
measured variables, but it certainly will not be an appropriate measure of 
intensity of association if the regression is curved; indeed we do not know at 
all thoroughly how its value is to be interpreted for many purposes unless the 
distribution itself is normal. Neglect of this latter point is sometimes quite 
flagrant. 

This chapter is primarily concerned with the distribution of R correspond- 
ing to (32.2), but the distributions arising under some other conditions will 
also be discussed in Section 3. Furthermore Sections 8 and 9 are devoted to 
distributions of serial correlations, and Section 11 to distribution of multiple 
correlation. 

For a brief recent discussion of some aspects of the distribution of the 
sample correlation coefficient (such as the derivation of the exact distribu- 
tion, transformations, approximations, moments, robustness, etc.), interested 
readers may refer to Stuart and Ord (1994, pp. 556-570). 

2 DERIVATION OF DISTRIBUTION OF R 

Since the correlation between the standardized variables (X, - ()/ax and 
(Y, - T)/u, is the same as that between X, and Y, ,  no generality is lost by 
taking ( = 77 = 0; ax = a, = 1. We now consider the conditional distribu- 
tion of R for fixed values of X , ,  X,; . a ,  X,,. Since the conditional distribu- 
tion of Y,, given X,, is normal with expected value pX, and variance (1 - p2) 
(remembering that we are taking 5 = 7 = 0; ax = a, = I), it follows that 
R(l - R , ) - ' / ,  is distributed as (n - 2)-1/2 times noncentral t with (n - 2) 
degrees of freedom and noncentrality parameter 

(See Chapter 31, Section 6.) 
To obtain the overall (unconditional) distribution of R(l - R ~ ) - ' / , ,  we 

must calculate the expected value of the density function so obtained, over 
the distribution of X, ,  X,; . ., X,. Since the density function depends on the 
X's only through the statistic E:, ,(XI - XI2, we need only use the fact that 
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this statistic is distributed as X 2  with n - 1 degrees of freedom, that is, as 
X:-l (Chapter 18, Section 1). Writing V = R(l - R ~ ) - ' / ~ ,  the conditional 
probability density of V is 

where S = Cy= '=,(Xi - g ) 2 .  
Since 

and 

I : - 1 
0 ~ 1 2  exp - -p2s(l - ]ps(s)  ds 

it follows that 

Finally, making the transformation V = R(l - R ~ ) - ' / ~ ,  we obtain 
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[The constant multiplier may be expressed in an alternative form by using the 
identity 6 ~ ( f ( n  - l))I'($n - 1) = 2-("-"'l~(n - 3)!] 

There are a number of other forms in which the right-hand side of (32.6a) 
may be expressed. These include 

( n  - 2)(1 - p2)'n-1'/2 (1 - r 2 )  (11 -4)/2 

p n ( r )  = 
JT(n  - I )B($ ,  n - $ ) ( l  - p r )  I I  -(3,/2) 

with 0 = cos- ' (pr )  [Fisher (l915)].  

In all cases - 1 5 r 5 1. [, F1( . . - ) is the Gauss hypergeometric function 
defined in Chapter 1, Eq. (1.104).] 

Formulas (32.6b) and (32.6~) are obtainable, each from the other, by 
simple transformation of the variable in the integral. Equation (32.6e) is a 
direct consequence of (32.6a) and, even for moderately large n, the hypergeo- 
metric series converges rapidly. Formulas (32.6d) and (32.6f) are notable in 
that they express the probability density by a finite number of terms which 
involve elementary functions only. 

Fisher (1915) obtained the distribution of R in the form (32.60 motivated 
by a geometrical argument. [Earlier investigations were made by Student 
(1908) and Soper (19131.1 This distribution also served Fisher as the initial 
model for introducing the "fiducial method of inference" (see Chapters 1 
and 13, and Chapter 28, Section 7) and has been, in this connection, the 



550 DISTRIBUTIONS OF CORRELATION COEFFICIENTS 

subject of numerous discussions in the literature [e.g., Fraser (1963); Williams 
(1993)l. 

There are several elementary derivations of p,(r) for the case p = 0. 
Here we note a purely geometric derivation by Chance (1984), which is valid 
for any spherically symmetric distribution and was inspired by Fisher's (1915) 
derivations. [Fisher treated each of X and Y as a point on an n-dimensional 
sphere and noted that the correlation coefficient corresponds to the cosine of 
the angle ( 8 )  between the radii to the two points. For the remainder of his 
paper, however, he relied upon an analytical treatment of the bivariate 
normal distribution to derive a general expression.] An elementary deriva- 
tion, after a change of variables, was also given by Srivastava and Khatri 
(1 979). 

For p = 0 we have the so-called null pdf of R: 

r [ (n  - I]/2] (11-4)/2 

"R"' = r ( i ) r [ ( n  - 2)/21 
(1 - r 2 )  for - 1 < r < 1. (32.7) 

(The distribution is symmetric around 0.) The corresponding moment-gener- 
ating function is 

where 

is a modified Bessel function of the second kind of order (n - 3)/2. The 
corresponding (real-valued) characteristic function, expressed in terms of the 
Bessel function J,, _,,, ,(t), where I,.( 2) = i-"J,.(iz), is 

For small values of n, simple explicit formulas for the cumulative distribu- 
tion (cdf) of R were obtained by Garwood (1933). A few of these are shown 
in Table 32.1, with yll denoting the pdf of R [pR(r ;  p, n ) ] ,  and 

The values of y, and y, are 
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Table 32.1 Formulas for the cdf of R 

n FR(r; p, n )  

3 a - ' [ C O S - I ( - r )  - a-lp(l - r 2 ) ~ ( r p ) ]  

Note. The authors are grateful to Drs. 0. 0ksoy and L. A. Aroian for pointing out a misprint in 
these formulas in the first edition of this book. See Oksoy and Aroian (1982). 

I 

Values of y,, for n  > 4 can be calculated from the recurrence formula 

y,, = (1 - r Z P 2 ) - ' ( ( 1  + r 2 ) ( l  - p2)}"2 

x [ ( n  - 3 ) - ' ( 2 n  - 5 ) r p y , - ,  

1 / 2  l - 2 ) -  - { I  - ( 1  - p 2  Y , - ~ ]  

[Soper et al. ( 1 9 1 7 ) l .  ( 3 . 1 0 )  

Garwood (1933) also obtained the general formula, for odd n  (= 2 s  + 31, 

I / Z  F R ( r ; p , 2 s  + 3 )  = T-' cos-I r  - ( 1  - r 2 )  [ ( 2 s ! ) l - ' ~ - ' ( l  - p2) '+ '  
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Greco (1992) suggest that evaluation can be facilitated bv usinn the  fnmulas 

- for n odd, 
- 

for n even, 

(32.11b) 

where Lk = ((1 - p2X1 - r2))1/2dkQ(rp)/d(rp)k, which may be evaluated 
from the recurrence relation 

As n increases, the expressions rapidly become more complicated. However, 
despite the complexity of the formulas, the density function is represented by 
a simple curve over the range - 1 I r I 1 with a single mode (antimode if 
n < 4). 

We also note that the value of FR(0) = Pr[R s 01 can be evaluated rather 
simply. Since R I 0 is equivalent to 

C (x, - Z ) Y ,  i 0, 
! = I  

we need to evaluate the probability of this latter event. For given 
X I ,  X,; . ., Xn the probability is (using results already quoted in this section): 



Averaging over the distribution of C:,,(X, - z)* (which is chi-square with 
n - 1 degrees of freedom), we see that 

[This result was noted by Armsen (1956) and Ruben (19631.1 
The moments of the distribution of R can be expressed in terms of 

hypergeometric functions [Ghosh (1966)l: 

where 
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Ghosh (1966) also obtained the following expansions in inverse powers of m 
(= n + 6): 

P p, = -336 + 6(12 + 77p2)m-I - (162 - 1137p2 - 6 8 4 4 ~ ~ ) m - ~ ]  
m 

+O(m-4)  (32.15a) 

(note that the sign of is opposite to that of p), and 
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Extending Ghosh's (1966) results, Iwase (1985) obtained the following 
explicit expressions (not involving integrals) for F,(r; p, n ) ,  valid for n 2 3: 

where 

with (g),, = g(g + 1 ) .  . . ( g  + h - I), and ,F,(a, b; c;  z )  is the Gauss hyper- 
geometric function defined in Chapter 1 [see Eq. (1.104)]. 

In particular, 

This is of course equivalent to (32.12). 
Also the k th moment of R about zero is 
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[compare with Eqs. (32.13)1, and 

for any nonnegative real number k, provided that n 2 3 and Ipl z 1. 
[3F2(', , . ; . , ; - ) is a generalized hypergeometric function, as defined in 
Chapter 1, Eq. (1.140).] 

For everyday use, remember that the bias in R as an estimator of p is 
approximately - ip( l  - p2)n-'  and that 

var(R) = (1 - p 2 )  n - ' (see Section 5).  (32.20) 

It is interesting that 

E[sin-' R ]  = sin- ' p. (32.21) 

[See Harley (1954, 1956); Daniels and Kendall (1958).] Subrahmaniam and 
Gajjar (1980) claim that this is the only nonconstant function g( R )  for which 
E[g(R)I = g(p). 

We conclude this section by giving two relationships [(32.22) and (32.2311 
satisfied by pR(r). They are not generally of practical use but may be helpful 
in specific problems and have some intrinsic interest: 

[Hotelling (195311. [The near symmetry of the coefficients in r (left hand) and 
p (right hand) should be noted.] Also 

[Soper et al. (1917)l. 

3 HISTORICAL REMARKS 

Although our primary interest is in the distributions of R (and other 
measures of association) rather than in the history of the statistic R in (32.1). 
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most popular, and widely used (and abused), descriptive measures of degree 
of linear relationship between two variables, the product-moment (Pearson) 
correlation coefficient (32.1) was first described explicitly by Karl Pearson 
(1896, p. 265). He introduced the formula with the following words: "Thus it 
appears that the observed result is the most probable when r is given the 
value S(xy)/(nu,u,). This value presents no practical difficulty in calcula- 
tion, and therefore we shall adopt it. It is the value given by Bravais, but he 
does not show it is the best." 

The formula Pearson described is the one given in modern usage as 

= 
i = l  [cf. (32.1)'], 

nu,", 

where Xi* = Xi - and Y.* = - Y as in (32.1)'. 
There is evidence [see, e.g., Symonds (1926); Tankard (1984)l that K. 

Pearson's (1896) formula had been in manuscript some time before its 
publication. K. Pearson (1895) contains a brief reference to the formula, and 
so does Yule (1895) who was a student of Pearson. 

The phrase "coefficient of correlation" in place of Galton's (1886) "index 
of co-relation" and Weldon's "Galton's function" was introduced by F. Y. 
Edgeworth in his Newmarch lectures at University College, London, in 1892 
[see K. Pearson (1920); Stigler (1978)l. Karl Pearson was greatly influenced by 
Edgeworth (1892a, b) in his initial groundbreaking work [K. Pearson (189611. 

It was realized that properties of R (or r,,) which are of most practical 
value can be summed up as follows: 

2. R = - 1 implies a line sloping downward to the right with all observa- 
tions lying directly on the line (i.e., a perfect negative linear relation 
between the observed X's and Y's). 

3. R = 1 implies a perfect positive linear relation in the sample data. 

4. R near to zero implies little or no linear relationship (but there may be 
a nonlinear relation between the two). 

5. If X, Y are independent, pxy = 0, where p,, is the population corre- 
lation coefficient between X and Y 

6. If X ,  Y are normal random variables, then p,, = 0 implies that X and 
Y are independent. The same property is also valid if each one of X 
and Y is a binary random variable. 

7. R and p,, are invariant to location and scale transformations. 

In early days there was considerable emphasis on construction of conve- 
nient formulas for computing R. For example, Symonds (1926) collected no 
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fewer than 52(!) such formulas as examples. Among them were three versions 
involving the "gross scores" X and Y: 

These were evidently intended to appeal to calculators of various, slightly 
different tastes. 

These formulas were first published in Harris (1910). They were rediscov- 
ered independently by Thurstone (1917) and Ayres (1920). Indeed, these 
formulas are sometimes referred to as "Ayres's formulas" in educational and 
psychological literature. As Symonds (1926) pointed out: "This is a good 
example of scientific men doing research without endeavoring to find out 
what has been done in the same field in the past." Hull (1925) and Dodd 
(1926) invented special "automatic correlation machines" to compute E X ,  
ZY, C  x 2, ZY ', and C X Y .  

More general formulas, involving deviations x' = X - 6, y' = Y - 77 from 
"assumed means" or "arbitrary origin" (6,17) simply i.eplace X, Y in 
(32.25aH32.25~) by x', y' ,  respectively. These were essentially given even 
earlier by Yule (1897), albeit in the slightly disguised form 

where c, is the "distance between the assumed and the true mean." - 
[ c x  = 5 - X ;  C u  = 77 - TI. 

The "difference formula" 

was given by K. Pearson (1896). It was independently rediscovered by Boas 
(1909). (Pearson immediately wrote an indignant rejoinder, criticizing Boas 
for his negligence in studying the literature.) A variant ("sum formula") of 
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the difference formula, 

apparently appeared first in Kelley (1923). Yet another variant 

was devised by Huffaker (1925). 
Considerable attention was devoted to the special equivariance case 

Harris (1910) proposed a number of formulas, including 

for this case. Less familiar formulas, in Symonds (1926), include 

Z ( x l  + y')' - Z ( x f  - y ' )  
2 

R = 
Z ( x f  + + Z ( x '  - Y ' ) ~  ' 

Printed forms (also called "charts" and "data sheets") facilitating calculation 
of the correlation coefficient were offered for sale in the United States in the 
early 1920s. 

Early work on the distribution of R was almost exclusively devoted to 
cases in which X and Y had joint bivariate normal distributions. In later 
years there has been an increased emphasis on situations where this is not 
the case, and consideration of robustness arises. This is the topic of the next 
section. 

4 DISTRIBUTlON OF R IN NONNORMAL POPULATIONS 
AND ROBUSTNESS 

The distribution of R for samples from nonnormal populations has been 
worked out in detail only for certain special cases. For certain bivariate 
Edgeworth populations, investigations indicate the kinds of variation one 
might expect with various departures from normality, as measured by the 
lower moment ratios. (The assumption that there are n independent pairs of 
observations, each with the same joint distribution, has been retained.) 
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Quensel (1938) supposed that cumulants (and mixed cumulants) of order 
higher than four were negligible and that the population value of the 
correlation coefficient p was zero. Gayen (1951) extended this work by 
allowing p to be nonzero. He obtained an expansion for the density function 
in terms of the right-hand side of Eqs. (32.6aH32.6f) [here denoted by 
f(r ,  p)] and its derivatives with respect to p. The formula is 

where the L's are functions of n,  p and the cumulant ratios yij = 

K;,K; ; /~K~;~/~ ,  namely 

L4, I = ~ P ( Y ~ O  + 704) - 4 ( ~ 3 1  + 713) + 2 ~ ~ 2 2 ,  

L4 ,2  = ~ ' ( ~ 4 0  + ~ 0 4 )  - 4 ~ ( ~ 3 1  + 71.3) + 2(2 + p2)y229 
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Cook (1951a, b) obtained expressions (up to and including terms in n-2)  
for the first four moments of R in terms of the cumulants and cross-cumu- 
lants of the parent population (without specifying the exact form of this 
population distribution). The second and third terms, respectively, of (32.30) 
can be regarded as corrections to the normal density p,(rlp), for kurtosis and 
skewness. Gayen (1951) gave values of these corrective terms for certain 
special cases. When p is zero, the terms are small, even for n as small as 
four. However, an example with p = 0.8 shows that quite substantial correc- 
tions can be needed when n is not large. 

Gayen further discussed the distribution of 2' = tanh-I R (see the next 
section) obtaining expansions for its expected value, variance, P I ,  and P,. He 
found that PI  and P, of 2' still tend to the normal values of 0 and 3 as n 
increased, though not so rapidly as when the parent population is normal. 
Table 32.2 gives the leading terms in expressions for moments and moment 
ratios of R and 2'. Cheriyan (1945) reported results of sampling experiments 
on distribution of correlation coefficient in random samples from certain 
bivariate gamma distributions. 

In the last 20 years there has been a proliferation of papers on the distrib- 
ution of R in samples from nonnormal bivariate distributions. A frequent 
feature of the methodology has been the use of Cornish-Fisher expansions 
(Chapter 12, Section 51, following the lines explored by Quensel (1938), 
Gayen (19511, and Cook (1951a, b). Nakagawa and Niki (1992) have extended 
these results, obtaining expressions for cumulants of R up to and including 
terms of order nP3. (The general expression for the approximate fourth 
cumulant is extremely lengthy, containing some 345 terms!). They present 
results of simulation, exhibiting the improvement in accuracy achieved by 
inclusion of the terms of order n-" Apart from a bivariate normal parent 
population, they consider two other special cases-of samples from bivariate 
uniform distributions over (1) a parallelogram and (2) a trapezoid-as shown 
in Figures 32.la, 6.  When d = 0, both (1) and (2) of course are the same 
standard bivariate uniform distribution. The values of the correlation coeffi- 
cient are, for the parallelogram, 

for the trapezoid, 

Since 1970 there has been a number of papers on the distribution of R in 
random samples from mixtures of two bivariate normal distributions 
[Bebbington (1978); Kocherlakota and Kocherlakota (1981); Srivastava (1983); 
Srivastava and Awan (1982, 1984); and Srivastava and Lee (1984)l. Some of 
these will now be summarized, using the following common notation, for 
convenience: The bivariate normal distribution of two random variables X. Y 
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1 X 

(a) 

Figure 32.1 Bivariate uniform distributions 

(b)  

parallelogram (a) and on trapezoid (b). 

has the pdf 

and the cdf 

All the papers just mentioned use two-component mixture models with the 
cdf  s of form 

in various specializations. 
Bebbington (1978) studied the distribution of R in random samples of size 

n from the mixture distribution with the cdf (32.33) and 
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regarding this as a "contaminated" bivariate normal distribution, the second 
term representing the "contamination." Bebbington's mixture is the bivariate 
analog of the univariate mixture used when the effect of outliers is of 
interest. Simulations indicated that R is (as would be expected) biased 
toward zero as an estimator of p. The effect was greater for large p. (For 
n = 50 and p = 0.8, the average of the simulated values of R was 0.688.) 

Bebbington suggested "hull trimmingv-deletion of observed ( x ,  y 1 values 
on the bivariate convex hull of the set of n observed values (the vertices of 
the smallest area convex polyhedron including all observed values)-to 
improve R as an estimator of p. Titterington (1978) suggested a more refined 
method of trimming, based on minimal covering ellipsoids; see also Tiku and 
Balakrishnan (1986) for a different robust estimator of p based on trimming. 

Srivastava and Lee (1984) and Srivastava and Awan (1984) used the 
mixture distribution (32.33) with 

Figures 32.2a, b, taken from Srivastava and Lee (19841, show the corre- 
1 sponding pdfs  of R, for sample sizes n = 6,10, respectively and w = 0.5, 0.7, 

0.9, 0.95, and 1 (corresponding to a single bivariate normal distribution). 

Figure 32.2a The probability density functions of the sample correlation coefficient R ( n  = 6). 
Note that when w = 1, the corresponding graph is the probability density function of R under 
the normality assumption. 
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i 
, 

1 3 1  I i 

1 Figure 32.2b The probability density functions of the sample correlation coefficient R (n = 10). 
; 
i Note that when OJ = 1, the corresponding graph is the probability density function of R under 

the normality assumption. 

These graphs confirm Kowalski's (1972) and Duncan and Layard's (1973) 
refutation of E. S. Pearson's (1929) blanket claim of robustness of R to the 
underlying mixture distributions. On the other hand, in the case of common 
covariance matrix, Srivastava and Awan's (1984) investigations seem to refute 
Duncan and Layard's (1973) assertion (for the case of different covariance 
matrices) that when p = 0 does not imply independence, the R statistic is 
likely to be sensitive to departures from normality. The results are thus still 
inconclusive and depend upon the correlation structure of the bivariate 
normal model assumed. 

Srivastava and Awan (1984) also present an explicit formula for the pdf of 
R when 

0 x 1  = ax2  = a x ,  

U y l  = U y 2  = u y ,  
3 

P I  = P2 = P  I 

;i 
1 
Z 

(i.e., there is a common variance-covariance matrix), but it is possible that 
6 ,  # t2 and/or q ,  # q 2  The general formula is very complicated. Even in 

I 
I 
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the case p = 0, Srivastava and Awan obtain 

- I  

g = o  

where 

which is quite complicated. (Note that without loss of generality one can take 
a* = m y =  1, 6' = q 1  = 0.) 

The authors claim that convergence in (32.34) for "moderate" n (about 20) 
is achieved if h is truncated around 20, when the accuracy of computation is 
fixed at However, in the general case when p # 0, and especially when 
p > i, convergence is slower. They also conclude that for two-sided testing 
purposes, when the contamination is less than lo%, the discrepancy between 
bivariate normal and mixture of two bivariate normals "is not so serious." 
Compare with Bebbington's (1978) conclusions, cited above. 

A major interest has been the relative stability ("robustness") of certain 
transforms of R, especially the following transforms: 

1. [Fisher (1921)l 2' = tanh-' R. 
2. [Nair-Pillai; Pillai (194611 (R - pX1 - Rp)-I. 
3. [Samiuddin (1970)l (n - 2 ) ' 1 2 ( ~  - p)[(l - R2Xl - p2)1-'/2. 
4. [Harley (1956)l sin-' R 
5. [Ruben (1966)l ( a ~  + bp){l + +(R2  + p2)) -1 /2 ,  where R = 

R(1 - R)-II2, p' = p(l - p2)-'/2. a = (n - ')'/2; and b = (n - $)'/2. 
2 
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Kocherlakota and Kocherlakota (1981) study the distribution of R from 
samples of size n  from the mixture (32.33) with 6 ,  = 6 ,  = 7 7 ,  = 7, (= O), 
a,, = ax, = a,, = ay2 (= l), but p ,  # p,. The skewness of the mixture is 
zero. The kurtosis is 

where 

The kurtosis, and also p  [=  corr(X, Y)] were studied as functions of p , ,  p,,  
and w .  As w increases the departure from bivariate normality (zero kurtosis) 
generally increases at first and then falls off. The maximal departure from 
normality tends to be high when p ,  and p, are apart, and was observed to be 
the highest for p ,  = 0.1 and p, = 0.8 with w = 0.3. Formulas are provided 
for the moments of R,  using Cook's (1951a) expansions in the general 
bivariate case and the robustness of transforms 1 through 4 to this type of 
nonnormality is studied. Nair and Pillai's and Samiuddin's transforms [2 and 
3, respectively] are the most robust, with Fisher's Z', transform 1, nearly as 
robust. The arcsine transform 4 does not seem to be robust to this type of 
nonnormality. As in the case of other types of nonnormality, investigated by 
Subrahmaniam and Gajjar (1979), an increase in the sample size does not 
greatly reduce the kurtosis. Unlike the situation in the normal case, trans- 
forms 1 and 4 remain stubbornly biased with little or no reduction as the 
sample size increases. Even for the "worst" nonnormal situation ( p ,  = 0.1 
and p, = 0.81, Nair-Pillai's transform 2 appears to be quite robust. 

Other papers on the effects of nonnormality include Yang (19701, 
Kowalski (19721, Zeller and Levine (19741, Havlicek and Peterson (1977), 
Subrahmaniam and Gajjar (1978), Kocherlakota and Singh (1982a,b), 
Kocherlakota, Kocherlakota, and Balakrishnan (19851, Kocherlakota, 
Balakrishnan, and Kocherlakota (1986), Fowler (19871, and Shanmugam and 
Gajjar (1992). 

Subrahmaniam and Gajjar (1980) examined all five of transforms, obtain- 
ing expansions for the first four moments up to and including terms of order 
n - I ,  using the methods of Cook (1951a, b). In particular, they compared the 



behavior of the five transforms under the assumption of a doubly right-trun- 1 
cated bivariate normal distribution with the pdf 1 

As indexes of robustness they used the differences between the expected 
values and ratios of standard deviations from the values they would have for 
normal theory (i.e., with a and b each infinite). For expected value Nair- i 

Pillai's transform 2 is the sturdiest, followed closely by Samiuddin's transform 
3 and Ruben's transform 5. It is of interest that for Fisher's transform 1 and 
Harley's transform 4, increase in sample size n does not reduce the effect of 
nonnormality in this respect. 

If comparison is based on the ratios (actual/normal theory) of standard 
deviations, a notable feature is that higher values of (pl lead to higher 
standard deviations in the nonnormal case if p is positive, while the reverse is 
the case if p is negative. Increase in sample size does not affect the 
comparisons greatly. For large I p (  the least robust seems to be Harley's 
transform 4. 

These conclusions were based on parent distributions with p = f 0.05, 
+ 0.25, f 0.5, _+ 0.75, and truncation points a = b = - 2.5, - 1.5,0,0.5. [See 
also Bebbington (1978); Gajjar and Subrahmaniam (1978).1 

Shanmugam and Gajjar (1992) compare the transforms 1 through 4 for the 
Farlie-Gumbel-Morgenstern joint bivariate exponential distributions with pdfs 
of form 

[The population correlation coefficient (p) has the value :a in this case, so it 
cannot exceed f in absolute value.] They find that Fisher's 2' (transform 1) is 
the most robust for small values of JpJ I 0.05 as judged in the same way as 
above. Transforms 2 through 4, on the other hand, are rather severely 
affected by nonnormality, at least of this kind. 

Kocherlakota and Singh (1982b) study the distributions of transforms 1 
through 5, using the cumulants/Cornish-Fisher technique, for R based on 
random samples from two population distributions: 

1.  Bivariate t .  X = W,/ n, Y = W2/ @ with (W,, W2) having a joint 
bivariate normal distribution with the pdf 4(w,, w,; 0,O; 1, 1; and V, 
independent of (W,, W,), distributed as X:/v. 

2.  Bivariate ,y2. X = C;-1W15, Y = CY=~W; with (W,,, W,,), j = 

1,2, .  . . , v, mutually independent, each distributed as (W,, W,) as given 
in 1, (namely as a bivariate t ) .  
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5 TABLES AND APPROXIMATIONS (ASYMPTOTIC EXPANSIONS) 

5.1 Tables 

From Section 2 it is clear that the distribution of R is so complicated that it 
is very difficult to use it without a practicable approximation or an extensive 
set of tables. We may note that this distribution is important because it is the 
distribution of the correlation coefficient in random samples from a bivariate 
normal population, not because it is suitable for fitting purposes. 

David (1938) prepared a useful set of tables. She gave values of the 
probability density pR(r; p, n )  and of the cumulative distribution function 
FR(r; p, n )  to five decimal places for n = 3(1)25,50,100,200,400. For n s 25, 
r = - 1.00(0.05)1.00 for p = 0.0(0.1)0.4 and r = - 1.00(0.05)0.600(0.025)1.000 
for p = 0.5(0.1)0.9, with additional values for r = 0.80(0.01)0.900(0.005)1.000 
when p = 0.9. For n > 25 narrower intervals are used. [Note that the 
quantity tabulated as "ordinate" is actually 1000 pR(r).] The Introduction to 
these tables contain some interesting notes on the distribution of R. 

Subrahmaniam and Subrahmaniam (1983) extended David's tables, giv- 
ing FR(r; p, n )  to five decimal places for n = 26(1)49, p = 0.1(0.1)0.9, r = 

- 0.70(0.05)0.65(0.025)0.975, and also quantiles r , ( ~ ;  n )  satisfying 
FR(ra(p;n))  = a  for a = 0.01, 0.02, 0.025,0.05,0.1,0.2,0.8, 0.9, 0.95,0.975, 
0.98, 0.99 and n = 4(1)50,100,200,400 to four decimal places.' 

Boomsma (1975) noted that in David's (1938) tables the numbers in 
the "Area" (cdf) column on page 50, for n = 100, p = 0.4, have all 
been displaced one position upward. These errors were also noted by 
Subrahmaniam and Subrahmaniam (1983) in their extension of David's 
tables. They gave corrected values of FR(r; p, n )  for n = 100, p = 0.4, 
r = -0.10(0.05)0.70. [Their computational technique used a 32-point quadra- 
ture (DQG-321.1 

Oksoy and Aroian (1981) provided values of FR(r; p, n )  and pR(r; p, n )  to 
six decimal places for n = 3(1)6, 35, 40(10)60 and p = 0,0.5,0.98. Oksoy 
and Aroian (1982) also provided values of ra(p; n )  to four decimal places 
for the same values of n and p, and for a = 0.0005, 0.001, 
0.0025(0.0025)0.0100, 0.0175,0.0250, 0.0375, 0.05, 0.075, 0.10(0.05)0.90, 0.925, 
0.95,0.9625,0.975,0.9825,0.99(0.0025)0.9975,0.9990,0.9995. They also refer 
to more detailed, unpublished tables of FR(r; p, n )  for n = 3(1)10(2)24, 
25(5)40(lO)loo(lO0)500, and p = 0(0.05)0.90,0.92,0.94,0.95,0.96,0.98. They 
recommend use of Garwood's (1933) formulas [see Table 32.11 for rapid 
calculation of the density function, the cdf, and quantiles, and they noted 
that Hotelling's (1953) formula (32.6e) for the pdf is also useful in this 
respect. 

Odeh and Owen (1980, pp. 228-264) provided tables of confidence limits 
-values of pa(r; n )  satisfying FR(r; pa(r; n); n )  = a for n = 3(1)30,40, 
60, 100, 120, 150,200,400, r = -0.95(0.05)0.95. and a = 0.005.0.01, 
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0.025, 0.05, 0.1, 0.25, 0.75, 0.90, 0.95, 0.975, 0.99,0.995. The interval 
(P, -(,/,,(R; n), peI2(R; n)) is a 100(1 - E ) %  confidence interval for p, given 
R. Their methods of calculation (given on pp. 287-2941 depend on Garwood's 
(1933) formula, on an adaption of Hotelling's formula for cdf, using a series 
involving incomplete beta functions, and on a new formulation for the 
confidence limits of p, using Fisher's transformation as a starting point. 

Extensive tables of quantiles [r,(p; n)] were provided by Odeh 
(1982), giving values to five decimal places for p = 0.0(0.1)0.9,0.95, n = 

4(1)30(2)40(5)50(10)100(20)200(100)1000, and a = 0.005, 0.01, 
0.025,0.05,0.1,0.25,0.75,0.9,0.95,0.975,0.99,0.995. Odeh (19831, using the 
algebraic programming system REDUCE 2 (on an IBM 4341 computer) 
provided exact expressions for FR(r; p, n) for values n = 3(1)10. For n = 5,6 
he used essentially the expressions of Garwood (1933) as rewritten by Oksoy 
and Aroian (1981, 1982, Table 1 et seq.). For n = 7(1)10 Odeh's expressions 
are obtained using the basic recurrence formulas of Hotelling (1953). For 
n = 9,10 the first nine derivatives of 

2 2 - I /2CoS-~(-rp)  Q ( ~ P )  = (1 - r P ) [see (32.9)] (32.38) 1 
are presented in Oksoy and Aroian (1982). These derivatives, which occur in 
the formulas for FR(r; p, n) ,  involve polynomials in pr and Q itself in the 
numerator, together with powers of 1 - (pr)2 in the denominator. For odd 
n, however, p does not appear in the denominator of these expressions. 
Guenther (1977), on the other hand, advocated the use of formula (32.6a) for 
numerical calculation of the cdf of the sample correlation coefficient on 
"modern desk calculators" [such as Monroe 19301. He found that the terms 
in the formula for Pr[O < R < r], based on (32.6a), converge quite rapidly 
with good error bounds. 

Guenther (1977) derived the formula 

where Fl.l,l.z(.) is the cumulative distribution function of a F-variable with 
(u, ,  u2) degrees of freedom (see Chapter 271, 



[Note that the Kl(j)'s are terms in the negative binomial expansion of 
(1 - p2)-(n-i)/2.] He combined this with a formula for Pr[R > 0] [(see, e.g., 
(32.11) or (32.191 to evaluate 

Guenther (1977) showed that if the first and second series on the right-hand 
side of (32.39) are terminated at j = r ,  and j = r,, respectively, the error in 
FJr; n ,  p) is negative and less than 

where H u I .  ,,Z( y = Pr[ FuI,  s y 1, in absolute value. He presented numerical 
results demonstrating the accuracy of his formulas. 

Stammberger (1968) has constructed a nomogram from which it is possible 
to determine any one of Pr[R I rl, r or n, given the other two values. 

5.2 Approximations Using Transforms 

For most practical purposes, approximations to the distribution of R use 
Fisher's (1915, 1921) transformation 

This transformation might be suggested as a variance-equalizing transforma- 
tion, noting that [from (32.14b)I 

This approach, however, was not explicitly used by Fisher (1915) in his 
original suggestion of this transformation. 
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Approximate values of moments and moment ratios of Z' are 

1 l + p  1 1 
k l l ( z f )  = - log - + -p(n - l ) l [ l +  < ( 5  + p2)(n - I)- ' ] ,  

2 1 - p  2 

These values were given by Fisher (1921) and corrected later by Gayen 
(1951). [See also Nabeya (1951).1 Comparing (32.45a) and (32.45b) with 
(32.15a) and (32.15b1, it can be seen that the ( P I ,  P,) values for 2' are much 
closer to the normal values (0,3) than are the values for R. Also var(Z1) does 
not depend on p up to and including terms of order (n - I)-'. 

The most commonly used approximation is to regard Z'  as normally 
distributed with expected value $ log((1 + p)/(l - p)) and variance 
(n - 3)-I. The latter value is obtained by noting that 

To improve the approximation, the expected value may be increased by 
(2n - 5)-'p. Fowler (1987) took the value of EIZ'] from (32.44a1, and 
var(Z') from (32.44b1, and treated Z' as a normally distributed variable, 
resulting in "good approximation in the tails." 

Another kind of approximation can be based on consideration of the 
structure of the random variable R. Recalling the argument used, at the 



beginning of Section 2, in deriving the distribution of R ,  we see that for a 
fixed set of values of X , ,  X 2 ;  ., X,,  R ( l  - R Z ) F 1 / '  is distributed as 

that is, as 

where U is a unit normal variable and U and x,-,  are mutually independent. 
Averaging over the joint distribution of the X's, we see that R ( l  - R ~ ) - ' / ~  
is distributed as 

where u,  xn-  ,, and ,yn-, are mutually independent. This representation was 
constructed by Ruben (1963, 1966) who used it as the basis for the following 
approximations. From the representation (32.47), we have 

Provided that n is not too small, x, - ,  and x , - ,  may be approximated by 
normal variates according to Fisher's approximation that (a - 4-1 
is approximately distributed as a unit normal variable. Then 

is approximately distributed normally with expected value 

and standard deviation 
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Hence from (32.48) 

Muddapur (1988) showed that in the special case when a, = a,, the 
statistic 

where S  = ~ ( S , S ; '  + S i l S , )  and S, = ( ( n  - l ) - ' C y = , ( X ,  - X ) 2 ) ' / 2 ,  
S ,  = { ( n  - 1)-'C:!, ,(Y, - p ) 2 ) ' / 2 ,  has an exact t , - ,  distribution. If it so 
happens further that S,  = S,, then (32.50a) would reduce to 

T** = 
R - P  1/n-2n-2. 

{(1 - p 2 ) ( l  - R ~ ) ] " ~  

This statistic was proposed by Samiuddin (1970) as having approximately a 
t , - ,  distribution (for all p and all u,/u,) for moderately large n (even if 
s, # S,).  

Roughly equivalently, 

has an approximate beta ( i n  - 1 ,  i n  - 1 )  distribution over ( -  1 ,  l), with 

P ~ [ v  I c ]  = I , , . ,  , , / , ( :n - 1 ,  i n  - 1 ) .  

This approximation was reported to be good for n  2 8  and even for large p. 
Muddapur (1988) pointed out that 

has an approximate F,-,, , -, distribution. For p = 0, the distribution is 
exact. The relations 



can be used in conjunction with (32.51) to construct approximate 100(1 - a)% 
confidence intervals for p if values of the appropriate quantiles of Fn -,, , -, 
are not available using the tables of the F-distribution. 

Muddapur (1988) tabulated corresponding confidence limits for p for 
a = 0.025, 0.005, and R = 0(0.05)0.95. These intervals seem to be quite wide 
even for n as large as 25, and especially so for small values of IRI. 

A better approximation than Fisher's for a one-sided limit is obtained by 
using 

as a rn- ,  variable, where R' (given R and p) satisfies 

W - E [ w ~ ~ ]  Iog{(l + R1) / ( l  - R ' ) }  
- - 

4- (32.54) 
\/var( Wlp = 0) 

with W = log((1 + R)/(l - R)) ,  

1 + P  5 + p 2  1 1 + 2 p 2 + 3 p 4  
E[WJp] = log- + 

I - p  n - 1  4(n - 1) 
+ . ) ,  

8(n  - 112 

Kraemer (1973) claimed that if the quantity p' = pl(p,n)  satisfies the 
conditions 

1. Ip1(p, n)l 2 lpl, 
2. pl(p, n )  = p when p = 0, - 1, or 1, 
3. pl(p, n) = -p'( - p ,  n), 
4. limn ,,pl(p, n)  = p, 
then 

i m ( ~ - p ' )  - ~ Z W  
- (32.56) 

d ( 1  - R 2) ( l  - pr2)  
' 

with W = (R  - pl)/(l - Rp'), is approximately distributed as In_,. 
However, Mi (1990) has pointed out, by means of a counterexample, 
that these four conditions are not sufficient and that additional condi- 
tions of type 

5. p' = p + o(n-I), 
6. p' of same sign as p, and, possibly, 
7. lp'l 5 1, 
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may be needed. The choice of p'(p, n) = p is a possibility [Samiuddin (1970)1, 
but Kraemer (1973) recommended setting pl(p, n)  equal to the median of the 
distribution of R (given p and n) - p*(p, n), say. She provided a table of 
values of p* for p = 0.1(0.1)0.9, and n = 11(1)25,50,100,200,400, appropri- 
ate for lpl "not too near" to 1. [Mi (1990) noted that the median satisfies 
conditions 6 and 7 but was unable to ascertain whether it satisfies condition 
51. Kraemer's approximation is less cumbersome and quite accurate (see also 
the remark at the end of Section 5.3). 

Niki and Konishi (1984) provided an asymptotic expansion for the median 
p* : 

that is accurate to five decimal places for n > 20. Kraemer (1973) also used 
linear interpolation accurate only for three decimal places. She also sug- 
gested additional normal approximations, including 

and 

She found the approximation (32.58) to be superior to David's (1938) approx- 
imation for small n and I p  1 I 0.6, but for Jp 1 2 0.8 David's approximation is 
the more accurate one. Thomas (1989) recommended David's approximation 
and provided a diagram that indicates that even for n = 15 and p = 0.8 the 
graphs of the approximate and exact cdfs  are very close. (The largest 
discrepancy is in the vicinity of R = 0.65.) For 0.4 r p I 0.6 the curves are 



virtually indistinguishable. However, other authors [e.g., Kraemer (1973), as 
noted above; Konishi (197811 reach different conclusions. 

Konishi (1978) derives the following approximation: 

1 l + R  1 
- log - - - log - 
2 1 - R  2 1 - p  

where m = n - $ + $p2. The approximation gives high accuracy over the 
whole range of variation of R for relatively small n. The optimal choice of m 
(more precisely the correction to n) is still an open problem. The approxima- 
tion is more accurate than Ruben's (1966) and Kraemer's (1973) approxima- 
tions [(32.48) and (32.56), respectively] for p r 0.3, and is far better for 
p 2 0.7. 

As Chaubey and Mudholkar (1978) have pointed out in this age of 
advanced computer technology many approximations to the distribution of R 
are of interest on the grounds of novelty, accuracy, and/or aesthetics rather 
than practicality. They noted that the reason that Fisher's approximation fails 
to maintain its accuracy for large values of lpl, even if n is not too small, is 
the high kurtosis of the distribution of Z'. From Gayen (1951) we have 

(P I  decreases more rapidly with n than does P2 - 3). 
Since p, - 3 of the Student's t-distribution with v degrees of freedom is 

6/(v - 4), the number of degrees of freedom v of the t distribution with 
approximately matching kurtosis is 

Chaubey and Mudholkar proposed to approximate standardized 2' by a 
multiple of Student's r variable with v, = [vl degrees of freedom, where v is 
given by (32.62). The 100a% percentile of R is approximately given by 

r,(p; n) = tanh [ p + crt,,,,,, ( - 'v: "'I, (32.63) 



where 

rr = t a n h '  p + i ( n  - 1)- 'p{l  + f ( 5  + p)'(n - I ) - ' ) ,  

Utilizing Wallace's (1959) transformation [Chapter 28, Eq. (28.26)] to normal- 
ize the t-distribution, the authors arrived at 

where @(la) = a. Numerical computations indicate that Chaubey and 
Mudholkar's (1978) approximation to cumulative probabilities and quantiles 
compares favorably with Kraemer's and Ruben's approximations in both 
simplicity and accuracy. (Ruben's and Kraemer's approximations for quan- 
tiles each involve solutions of quadratic equations). 

5.3 Asymptotic Expansions of the Distribution of R 

Asymptotic expansions of the distribution (under bivariate normality) of 

1 l + R  
Z1(R)  = - log - 

2 1 - R  

were derived by Winterbottom (1980) and Niki and Konishi (1984), among 
others. Niki and Konishi consider the transformed variable 

They list the first ten cumulants of Z*, noting that K,,,, is of order 
n-(2i+')/2, instead of n-'2J-')/2. They obtain 

where @ ( X I  and 4 ( x )  are the standard normal cdf and pdf, respectively, and 
the coefficients ai depend on z and p. They can be expressed in terms of 
Hermite polynomials. The expansion (up to a,) involves the first 15 Hermite 
polynomials, while the corresponding Edgeworth expansion for the distribu- 
tion function of R is more complicated, involving the first 23 Hermite 
polynomials. 



The expansion including the first eight a,'s guarantees accuracy to five 
decimal points for a sample of size 11 or larger and to six decimal places for 
n 2 16. Winterbottom's (1980) Cornish-Fisher form of Edgeworth expansion 
involves seven Hermite polynomials and is somewhat less accurate. 

Mudholkar and Chaubey (1976) represented the distribution of 2' by a 
mixture of a normal and a logistic distribution, obtaining the approximation 

where 

with 

The idea is to account for the excess kurtosis of the distribution of Fisher's 
Z' (which is of order n - ' )  as compared with skewness PI (which is 
of order n - 9 ) .  The approximation seems to be of comparable accuracy to 
that of Chaubey and Mudholkar's (1978) approximation (32.641, involving a 
t-distribution, although the authors do not compare these approximations 
explicitly. For detailed comparison of Ruben's, Kraemer's, Mudholkar and 
Chaubey's (1976), and Winterbottom's (1980) approximations, the reader is 
referred to Winterbottom (1980); for those of Ruben (1966), Kraemer (1973), 
Winterbottom (1980), and Niki and Konishi, see Niki and Konishi (1984). 

Niki and Konishi's (1984) approximation is extremely accurate and very 
complex. Despite the tremendous advances in computational procedures and 
analytic methodology in statistics during the last 50 years, the yardstick, so far 
as the distribution of correlation coefficient is concerned, is still the remark- 
able work of F. N. David in the 1930s, carried out with the rather primitive 
computational facilities available at that time but highly ingenious insofar as 
the approach to the numerical approximations of complicated functions is 



concerned. For small values of p, Kraemer's (1973) t-distribution approxima- 
tion seems to be better than the more complicated omnibus approximations. 

6 ESTIMATION OF p: ADDITIONAL ROBUSTNESS CONSIDERATIONS 

6.1 General Remarks 

The literature on estimation of correlation coefficients in the last 20 years is 
very extensive, and comes from mathematically oriented statistical journals, 
on the one hand, and sociological, psychological, and educational ones, on 
the other (the latter including numerous empirical investigations) with little 
coordination among them, causing substantial duplications and triplications. 
[Only the works of H. C. Kraemer (1973, 1980) seem to have appeared in 
both statistical and educational journals, providing a narrow, but a most 
welcome, bridge.] Contradictory, confusing, and uncoordinated floods of 
information on the "robustness" properties of the sample correlation coeffi- 
cient R are scattered in dozens of journals. (Some evidence of this has been 
apparent in Sections 4 and 5). Various partial simulations and empirical 
conclusions seem to be directed, on the whole, toward justifying the applica- 
tion of R even in nonnormal situations and when p Z 0. However, results of 
studies of this issue can be found in the literature, supporting both extreme 
points of view-of practical robustness, and unsettling volatility. 

Sometimes there is failure to distinguish between nonnormality robustness 
(of the distribution of R and of properties of formal inference concerning p) 
and robustness with respect to outlying observations. Devlin, Gnanadesikan, 
and Kettenring (1975) warn us that R is very sensitive to outliers. They point 
out that the influence function* for R is unbounded which may yield 
"potentially catastrophic effects of a small fraction of deviant ~ b ~ e ~ a t i ~ n ~ . "  
Their Monte Carlo results provide empirical verification of the nonrobust 
properties of R. Bias and mean square error increase markedly as the tails of 
the parent distribution (e.g., Cauchy) become heavier. In many cases the bias 
is substantial and accounts for 99% of the mean square error; see also Tiku 
and Balakrishnan (1986). On the other hand, Zellner and Levine (1974), 
based on extensive simulations, claim that " R  is (an) efficient estimator of the 
population p when the underlying distribution is not normal, as it is when the 
underlying distribution is normal," and also, when p is high the standard 
errors are lower for platykurtic distributions than for normal ones. Kowalski 
(1972) and Duncan and Layard (1973) arrive at contradictory results, so far as 
the behavior of R from a bivariate exponential distribution is concerned. 
Earlier investigations by Rider (1932) for uniform distributions, Hey (1938) 
using data collected in agricultural tests, Nair (1941) for exponential distribu- 

*The "influence function" of a statistic may informally be described as an index of the effect on 
the distribution of the statistic of a single additional observation with value x. It is of course a 
mathematical function of x. For details, see Hampel (1974) and Huber (1977, p. 9). 
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tions, and Norris and Hjelm (1961) (normal, uniform, peaked, slightly skewed, 
and markedly skewed distributions) all seem to conclude that 0.05 and 0.01 
quantiles are very close to those under the bivariate normal assumption. 
Havlicek and Peterson (1977) went even further, claiming that the Pearson R 
is robust to rather extreme violations of basic assumptions of bivariate 
normality and type of scale used. Failure to meet the basic assumptions 
separately or in various combinations had little effect on the resultant 
distributions of R. For the 216 distributions of R computed in their study, 
there were no significant deviations from the theoretical expected propor- 
tions of R at the 0.005, 0.01, 0.025, or 0.05 quantiles. Thus it was concluded 
that the effect of violations of these two assumptions has little effect upon the 
distribution of R and that probability statements in regard to testing the 
hypothesis that p = 0 would be accurate. Both Guilford and Frischter (1973) 
and McNemar (1962) have indicated that some of the basic assumptions, such 
as normality, do not have to be met. On the other hand, Nunnaly (1967) has 
maintained that interpretations of an obtained R may not be correct if there 
are violations of the basic assumptions. Fowler (1987) concludes that R is 
"remarkably robust" and retains power (as a test of p = 0) even under 
extreme violations of distributional assumptions (however, Spearman's R, 
may sometimes provide a more powerful test of the null hypothesis p = 0). 
In the applied literature, the transformation t = R((n - 2)/(1 - R ~ ) ] ' / ~  is 
quite popular and is claimed to be insensitive to violations of the normality 
assumption when p = 0 (see also page 582). 

When p # 0, the robustness of R has been examined both analytically 
[Kraemer (1980); see below] and empirically [Kowalski (1972)) with less 
agreement as to the effects of nonnormality. It should, however, be noted 
that although asymptotically 

this is a very poor approximation unless n is very large. Indeed David (1938) 
states: " . . . up to a sample as large as 400 the distribution curves of R from 
p = 0.0 to p = 0.6 (about) are tending only very slowly to normality, while for 
n = 400 and p > 0.6 there is a very wide divergence from the normal 
distribution." Kraemer (1980) points out that if the conditional distribution 
of Y, given X, is normal, with 

and var(Y1X) does not depend on X, while the kurtosis ( P ,  - 3)  of the 
marginal distribution of X is A ,  then the transform 
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has approximately a normal distribution with zero expected value and vari- 
ance 1 + a p 2 ~ .  

Thus the asymptotics of R will coincide with those of bivariate normal R 
if and only if limn ,, var[&{(~,/a,) - A)] = ( A  + 2)/4 = (i.e., A = 0). 
On the other hand, when p = 0, the distribution of 

under the same assumptions, as mentioned above, is unconditionally that of 
t ,  and thus approaches unit normal as n -, m. [See also Edgell and Noon 
(1984); Havlicek and Peterson (1977).] 

In summary, the null ( p  = 0) distribution of R is approximately that of 
bivariate normal R (at least for large sample size) provided that the linearity 
and homoscedasticity conditions hold. The nonnull distribution of R is robust 
provided that an additional kurtosis condition holds. 

The convergence of (32.50bY to its asymptotic distribution has been shown 
to be quite rapid. Surprisingly, bootstrap estimation of the correlation coef- 
ficient, which was one of the central points of Diaconis and Efron's (1983) 
investigations, seems to receive rather negative assessment in the applied 
literature [see, e.g., Rasmussen (198711. The bootstrap yields overly liberal 
Type I error rates, and overly restricted confidence intervals. Furthermore it 
performs as poorly on bivariate normal as on bivariate nonnormal popula- 
tions. Finally, Silver and Dunlap (1987) emphasize that there is substantial 
benefit to be gained by transforming correlation coefficients to Fisher's Z' 
prior to averaging, then backtransforming the average, especially if sample 
sizes are small. 

As Kowalski (1972) pointed out in an extensive historical survey, "A 
review of the literature revealed an approximately equal dichotomy of opin- 
ion. For every study indicating the robustness of the distribution of R,  one 
could cite another claiming to show just the opposite." A survey of subse- 
quent literature reveals a similar state of affairs. One of the main conclusions 
of Kowalski's investigations is that E. S. Pearson's (1929) claim that "the 
normal bivariate surface can be mutilated and distorted to a remarkable 
degree without affecting the frequency distribution of R" should be modified. 
"The distribution of R in samples from mixtures of bivariate normal distribu- 
tions may depart considerably from the corresponding normal density even 
when p,, = 0 and even for large sample size." 

Duncan and Layard (1973) point out that for a bivariate distribution (not 
necessarily bivariate normal) having finite fourth moments, the distribution of 
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converges in distribution to N(0, u ~ ( ~ ) ) ,  where 

and y,, is the cumulant ratio of order (i, j )  of the bivariate distribution (e.g., 
yZ2 = K ~ ~ / ( U ~ U ; ) ,  where and a; are the variances of the marginal 
distributions). If the distribution is bivariate normal, all of the A's vanish and 
a2(p)  = 1. Likewise, if the components are independent, p = 0, y2, = 0, and 
u2(0) = 1. If independence does not hold, the asymptotic variance of 
tanh-' R is not generally n - I ,  whether or not p = 0, and normal theory 
procedures based on Z' = tanh-'R may not be valid', even asymptotically, 
for nonnormal bivariate populations. Duncan and Layard (1973), like 
Kraemer (1973, 19801, pointed out that the asymptotic variance of T = 

R d m /  d m ,  when p = 0, is 1 + y,,, which indicates asymp- 
totic nonrobustness. 

6.2 Point Estimation 

Olkin and Pratt (1958) derived the unique minimum variance unbiased 
estimator of p in the form 

where , F,(cr, p; y; x )  is the Gaussian hypergeometric function [see Chapter 1, 
Section A6]. 

Alternative representations are 

R* = R dr ;  (32.70b) 

R* = R dr. (32.70~) 

R* is an odd function of R and is strictly increasing. For p = rt 1, R* = R = 
It 1 with probability 1. Hence - 1 I R* I 1, which is also the range of p. 
Values of R* (and also R*/R)  for R = 0(0.1)1 and n = 2(2)30 were pro- 
vided by Olkin and Pratt (1958). 

These authors suggested use of the approximation 

which is accurate to within k0.01 for n 2 8, and within k0.001 for n 2 18. 
Note that n is equal to N (to the number of observations) if the mean of the 
variables X and Y are known and to N - 1 when they are unknown and are 
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estimated by X and F. The variance of R* was derived by Iwase (1981) for 
the equal variance case for even N and for N = 3. He pointed out that in the 
equal variance case, this estimator is not good for small n and Ipl but is 
asymptotically efficient as n increases. 

Pradhan and Sathe (1975) observed that, given independent random 
variables (X,,Y,), i = 1,2 from a bivariate normal distribution with cdf 
@ ( x ,  Y ;  0,O; Ux, a,; P), 

Pr[X,Y, + X2Y2 > 01 = i(l + p ) .  (32.72) 

Defining for 1 s i < j n 

1 if X,Y, + X,Y, > 0, 
Si] = ( 

0 otherwise, 

and ( ) 3 = EX, < ,S,,, the estimator 

is an unbiased estimator of p. The authors did not obtain an exact expression 
for var(6) but point out that from U-statistic properties it follows that 

When n = 2, the estimator becomes 6 = sgn(X,Y, + X2Y2). 
Sibuya (1964) started by observing that if a, = o, = 1, 

is an unbiased estimator of p (based on a sample of size I!) and 

Using this in an application of Blackwell-Rao theorem, he derived (for 
n 2 1) the minimum variance unbiased estimator 
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where 

[Note that W = 2(1 + p)VIS and V = 2(1 - p ) - ' T  are independent Xi ran- 
dom variables.] Use of this estimator depends on knowledge of the standard 
deviations of X and Y, so it is not often of much practical value. 

It turns out that the problem of efficient estimation of the correlation 
coefficient p in the case when population variances are known is a rather 
delicate one. When all five parameters are unknown, a complete sufficient 
statistic is 

If only the population variances are known, 

(ZX;, z y ,  C(X? + y 2 ) ,  I;x;y) 

is a complete sufficient statistic, and if the only unknown parameter is p ,  

or equivalently (Z(X, + Y,I2, Z(Xi - XI2) is sufficient. However, in this case 
the statistic is not complete, yielding infinitely many unbiased estimators of p 
based on the sufficient statistic. 

The case where 6,  77, a,, and a, are all known was thoroughly investi- 
gated by Iwase (1981) and by Iwase and Set6 (1984). Iwase (1981) proposed a 
family of estimators c,,,,, indexed by k and I ,  for the @ ( x ,  y;O; 0; 1 , l ;  p) 
model, given by 
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[Frtchet (1950); Godwin (1964); Mallows (1956, 1963)l are included to assist 
readers wanting more details. 

Note that for s = 2r  the Wald inequality becomes one of the Cantelli 
inequalities. Also for 6,. 5 x r  5 pIzr/p',. there is no suitable Cantelli inequal- 
ity. A detailed account of these inequalities is given in Godwin (1964), 
together with further inequalities applicable to sums of independent vari- 
ables. This latter topic has been further developed by Hoeffding (1963) and 
Bennett (1968). 

Bennett (1968) showed that if X,; . -, XI, are independent with finite 
expected values E[ X,] and variances [a( Xj)I2, and Pr[ XI - E[ XI] > M,]  = 0 
for all j, then (with t < 1) 

where 

c;, , M,  
B = 

max, MI ' 

and 

In Bennett (1968) there is a table of f ( t ,  r )  to six decimal places for 
t = 0.00(0.02)1.00, r = 2.0(0.5)5.0. Among further properties of IHR and 
DHR distributions, we note that (1 - F(x))'/" is a decreasing (increasing) 
function of x if F (x )  is IHR (DHR). The following implications (and no 
others) hold among the eight classes discussed above: 

IFR * IFRA * NBU * NBUFR * NBUFRA 
u u 

DMRL - NBUE * HNBUE, 

[Kochar and Wiens (1987); Bondesson (198311, also 

IFR e s  IFR * IFR 

( *  denotes convolution). The exponential distribution belongs to each of the 
eight classes, with equality in each defining inequality. 
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where ,F, is the hypergeometric function and S and T are given by (32.76). 
The estimator @,,,,, does not satisfy the inequality l@,,k, , l  5 1 if I = 0, n is a 
positive integer and 2k < n + 1 or if I > -1, n is positive integer and 
n - 2k = 1. 

Generally 

[If 5 and 77 are unknown, replace S and T by 

and 1 

which are mutually independent X:- I random variables.] 
For k = :, I = 0, we have the Sibuya (1964) estimator. For n = 2, k = 1, 

I = 0, we arrive at Pradhan and Sathe's (1975) estimator. For k = 0, 1 = 0, 
we have @,.,,,,, = (C:,,X,Y,)/n, the conventional estimator which is locally 
MVUE at p = 0. For k = 1, 1 = 0, we have 

a 

where R' = 22 x,Y,/Z(X,Z + q 2 )  is DeLury's (1938) estimator. This is Olkin 
and Pratt's estimator, (32.70a), with R replaced by R'. As n -+ w, b,,.,,,) - 
p,*, ,,,) = (S  - T)/(S + T)k. Iwase (1985) derived an expression for var(p,, ,,,,) 
and showed that the asymptotic variance is 

For k = (1  + 2pZ)- '  the expression simplifies to 

The leading term is the CramCr-Rao lower bound. 
Note that @,,,,,, is the UMVUE for p, with variance attaining the 

CramCr-Rao lower bound (1 - p2)2/n in the M0,O; u 2 ,  u 2 ;  p) model, which 
is larger than the bound n- ' (1  - p2)*(1 + pZ)- '  for the model (6  = 77 = 0, 
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Figure 32.3 lim nvar(p,,,,,,,) 
I1 - X 

ax = a, = 1) under consideration. Graphs of lim,,, n var(P ,,,,*,,) against p 
for various values of k are presented in Figure 32.3, indicating that, at least 
for large p, the value k = 1 seems to be optimal. 

DeLury (1938) noted that if it is known only that 6 = and ax = a,, then 
the statistic 

where M = fI;=,(X, + Y;), is a slightly better estimator of p than is R. If it 
is only known that a, = a,, DeLury suggested using the estimator 
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which has the pdf 

lwase and Set6 (1984) generalized Iwase's (1981) results. More precisely, they 
generalized the unbiased estimator 

f ' n . k . 0  
- 

r ( t n  + I - k) (S + T I *  " ' I  2 ' 2 ' 2 ' (S + T I ~  J '  

(32.82) 
I 

i 
for both positive and negative k to 

(under the condition n + 1 > 2k  > 0 for c = O), where 

where J ( . )  is a Bessel function of the first kind. Their aim was to adjust the 
random variables S and T to 2aS and 2bT,  with appropriately chosen a and 
b [not necessarily a = (1 + p)-I and b = (1 - P I - ' ] .  

It is easy to show that if c  = 0, the integration can be performed explicitly, 
yielding p,, , ,,. An alternative form, for n > 1 and c > 0, is 

n 1 
x 2 F , ( k ,  n - 1; - 2 + 1; - -((6 2c + n)' - 4 m r ) )  dr. 

(32.85a) 
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For n = 1  we have 

and 

where 

L z 
e r f ( r )  = Kil exp( - t 2 )  d t .  

It is evident that p',, l /z(c) approaches the Sibuya estimator p' as c -, 0. In 
this sense we can identify 6 , -  , , , (O) with p'. 

The authors recommend, for "practical application" (with n = I!) the 
values k = and c = 1,  leading to 

with variance 

The introduction of the parameter c makes it possible to reduce the variance 
in the case n = 1, especially when p , ,  ,($) is compared with Sibuya's simpli- 
fied estimator p', for all values of p. The authors further conjecture that 
p,.,(c) might be expected to have small variances when n is greater than 1 
and suggest studying the construction of estimators with c a random variable 
depending on S and T, in the expectation that the variance will be close to 
the CramCr-Rao lower bound. 
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6.3 Maximum Likelihood Estimation j 

The likelihood function for a random sample (XI, Y,) ( i  = 1,. . . , n )  of size n 1 

from a bivariate normal distribution (32.2) is 

= (277) . . ( I  - p L )  ' - exp[- -' 2 (X, - 6)" 
2 ( *  - p 2 )  tux i = ,  

r = l  

Equivalently 

l o g ~ ( ~ , y 1 5 , 7 7 ; f f x 7 ~ y ;  P )  

Solving the maximum likelihood equations 

a log I a log I a log I a log I a log I 
-- - -= -= -= - -  - 0 

86 a77 a ffx a f fy  ap 

I yields the maximum likelihood estimators 

and 
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But, starting from the pdf of R in the form (32.6b), we obtain the equation 

for the corresponding maximum likelihood estimator 6' of R.  Of course both 
$ and $ have the same asymptotic maximum likelihood properties. 

Fisher (1915) showed that from (32.90) 

Comparison with (32.14a) shows that for p > ( < I  0, R has a negative 
(positive) bias, and consequently $ will have an even greater negative 
(positive) bias. If some (or all) of the parameters 5, q ,  ox, and cry are known, 
the corresponding maximum likelihood estimators would probably yield bet- 
ter results (at least asymptotically) than 6 or $. 

The simplest case is when 5 and q are known but not ax or a,. Replacing 
X and Y in R by 6 and 7, respectively, we obtain the MLE 

The associated distribution theory is the same as for R, except that n is 
replaced by n + 1. If ux and a, are known but not 5 or q, the natural 
estimator 

is unbiased but suffers from the drawback that it can take values outside the 
range of values of p ( -  1 I p I 1). The maximum likelihood equation for a 
MLE, 6(ux, a,), under these conditions is the real root of the cubic equation 

which maximizes I and lies between - l and 1 [Kendall (1949); Madansky 
(1958)l. Madansky (1958) gives a detailed analysis of the conditions for a 
unique solution of (32.94) satisfying the stated requirements. He shows that 
asymptotically a unique solution exists with probability 1. He also compares 
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the asymptotic variances of R, R(ux, u,), and C(ux, a,), which are 

2 
nva r (R)  = (1 - p 2 ) ,  

n var(R(ax, v,)) = 1 + p 2 ,  

n var(p^(ux, v,)) = ( 1  + p2)- ' (1 - p2)  . 

Therefore the ARE of R is (1 + p2)- ' and of R(ux, u Y  ), (1 - P2)2(1 + p2)-,. 
As in the cases described earlier, if 6 and 71 are known in addition to ax and 
a,, the appropriate analysis is obtained by replacing and with 5 and 71, 
respectively. The asymptotic variances and relative efficiencies are un- 
changed. 

Azen and Reed (1973) consider maximum likelihood estimation of p when 
it is known that ax/( = u,/q = c > 0. (This also implies that 5 > 0 and 
7 > 0.) They present an iterative procedure for calculating the maximum 
likelihood estimator, p^(c), say. They find that the asymptotic efficiency of R 
relative to p^(c) is less than 81% for c < 0.1 and Ipl > 0.5, although R is i 
almost as efficient as b(c) for c > 1 and (p(  < 0.3, and for large c ( 2 10) the j 
efficiency is practically 100%. The efficiency of R [relative to b(c)] is less for 
negative p than for the corresponding positive p. Azen and Reed's (1973) 
general recommendations are: "For samples of size n = 25 or larger, b(1) or 
6 be used if c 2 1 and it is suspected that )p1 2 0.5. This is because, 
asymptotically, R is at most 80% as efficient as p  ̂ for Ipl 2 0.5. If n is 
approximately equal to 10, we recommend using ;(I), or p̂  if Ipl 2 0.7. On 
the other hand, for samples as small as n = 5, we recommend using Pearson's 
R. Finally, for c > 1 we recommend Pearson's R." 

6.4 Estimation of Common p Based on Several Samples 

Donner and Rosner (1980) compare four different methods of estimating a 
common correlation coefficient p based on samples for k ( 2  2) bivariate 
normal populations of sizes n , ,  n,, . . . , n,. In general, since the expected 
values (t,, 71;) and variances (u$,,u)?,) will vary with i = 1 , .  . . , k, i t  is not 
valid to use the Pearson product moment sample correlation coefficient 
based on all n (= z f = , n i )  pairs ( X , , , y j )  ( i  = 1, ..., k;  j = 1, .. . , n , )  of 
observed values. The most common procedure is to compute the product- 
moment coefficients R , , .  . -, R ,  for each sample separately, convert to the Z' 
transform values 

Z: = 3 log (: - = tanh-I R , ,  
- 

\ - 
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and estimate p  by 

- 
6, = tanh 2: = {exp(2zi.) - l){exp(22: + I ) - ' .  (32.96) 

where 

Explicitly, 

where g, = ( n  - 3 k ) - ' ( n ,  - 3), i = 1 ,2 , .  . . , k .  
Donner and Rosner (1980) compare p, with the following estimators: 

1. Convert the observed ( X I , ,  Y,,) to standardized values 

x,, - x, 
X' = 

1 I 
Sx, ' 

- - 
where ( X , ,  Y,) are the sample means and Sx,,  S,, the sample standard 
deviations for the data from the ith population. Then calculate bs as 
the sample product-moment coefficient for the n pairs ( X I > ,  x.;). Evi- 
dently 

!i 

Ps = ( n  - k)-' C ( n ,  - 1 ) R , .  (32.97) 
1 - 1  

[Donner and Rosner (1980) showed that when p = 0 ,  6,. is a superior 
estimator (for p)  than &.I 

2. Obtain Pearson's (1933) "maximum likelihood estimator" 6, by solving 
the equation 



Table 333 Bounds on distribution functions 

Names Conditions Values of x Limits on 1 - F ( x )  

Wald 

Chebyshev - x' > P, 1 - F ( x )  I p',/xr 
Canteili - x r  2 P ' ~ ~ / P ' ~  1 - F ( x )  

s (pfzr  - pf,?) / [ (xr  - ,.Lf,)? + p'2r - p:1 
x r  5 pfr 1 - F ( x )  

2 1 - {(p'2r - pf,?/[(pfr - x r ) =  + P ' *~  - pt,?1l 
r < s  1 2 p',/xr 2 p!,/x' 1 - F ( x )  I (k t ,  - p',S.'-r)/(xr(x,T-r - Sr)] ,  

where S( > 0, + x )  satisfies 
c; x" - J x' + #(c; - x.s) 

r 

+SX(/.Lr - x ' )  = 0 
Gauss-Winkler F1(x ' )  2 F ' ( x )  x r  < r r ( r  + 1)-"-"p', 1 - F ( x )  I 1 - x [ ( r  + l)p',]-'/' 

2 F'(xf ' )  
if X' < x < X" x r  > r r ( r  + l ) - ( r - I 'p ' ,  I - F ( x )  1 [( l  + r - ' ) x ] - ' d ,  
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the following sets of values of ni: 

k = 2: 

The ratios of mean square errors 

and also relative closeness: 

for J = c, H I ,  H 2 ,  and P were used as criteria for comparisons. Summa- 
rized here are the results: 

1. For p < 0.5, p',, performs best; for p > 0.5, p,. performs best. 
2. Performance of b,, is between p',, and c,.. 
3. In the neighborhood of p = 0.5, p,, pH,, and 6, perform about equally 

well. 
4. 6 ,  is a relatively poor estimator, unless p is small. 
5. When sample sizes n, are equal, the performances of 6, and 6, are 

nearly identical. 
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1 

The ranges of relative efficiencies (inverse MSE) to is, with 

n l = l O ,  n 2 = 2 5 ,  n , = 5 0 ,  n ,=100 ,  

and p increasing from 0 to 0.7 are for 6, from 0.97 to 1.09, for @,, from 1.01 
to 0.97 and for b,, from 0.97 to 1.10. The Donner and Rosner (1980) - .. . 
estimator p, is quite good and is simple to calculate. 

Mi (1990) uses Kraemer's (1973) suggested approximation, 

&(R ,  - P)  

for a suitable value of v, (depending on n,) that implies that R ,  has an 
approximate pdf 

( 1  - p2)u1'2(l - r 2 )  
(v , -2 ) /2  

P R , ( ~ )  = 9 - 1 s r s l .  (32.104) B(fv, ,  f ) ( 1  - pr)"  

The corresponding likelihood function is proportional to 3 

and the maximum likelihood equation is 

A / b A  Ri 1 - ,- 

Mi (1990) recommends using v, = n, (resulting in an estimator that mini- 
mizes E[(bA - P)~]) .  The equivalent equation 

n,R, ;A - k 

was given by Hedges and Olkin (1985) and is also equivalent to Pearson's 
equation (32.98) for 6,. The mean square error of 6, is approximately 
(1 - p2)2/Et= =,n,. 

In yet another investigation Viana (1982) studied in detail the three 
following maximum-likelihood-type estimators of p:  

1. The only real root of 
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where 

This approximation is based on the truncated expansions 

2. A linearly combined estimator 

We have var(p*,) - (1 - p2I2(n - k)- '  as n t m. 

3. A doubly transformed linearly combined estimator that is simply p, 
[Eq. (32.96)]. 

For k = 3, n I 90, and n ,  = n, = n,, .* has a smaller mean square error 
and variance than both b* and 13: at the expense of a relatively large bias. 

We note with regret the marked lack of coordination among the studies by 
Viana (1982), Paul (1988), and Mi (1990) despite the fact that all three papers 
appeared in the same journal! Viana does not refer to Donner and Rosner 
(1980) either, despite similarity in problems and methodology. 

6.5 Miscellaneous Estimation Problems 

1. Maximum likelihood estimation of p from a "broken random sample" 
was considered by DeGroot and Goel (1980). Specifically each pair of 
observations (X,, y.) (i = 1,.  . . , n) gets "broken" so that all that is 
available is ( X , ,  X,; . ., X,) and (Y,', Y;; . ., Ynl), where the latter is 
some (unknown) permutation of Y,, Y,; . ., Y,. Denoting by R the 
sample correlation coefficient for a specific "pairing" ( X i ,  y;(,,)B1(i = 

1,. . . , n), where 8 = (8(1); . ., Oh)) is a permutation of (1,. . . , n), the 
maximum likelihood estimator of p is 

m y  RIeI if max R[,, r I min R~,,I, 

.= (  e e (32.110) 
min RIeI if max RIol n min R~, , J .  

e e 1 e 
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Unfortunately, this estimator is not reasonable because it is always 
equal to the maximum or minimum possible sample correlation coeffi- 
cient that can be calculated from the broken sample. DeGroot and 
Goel (1980) proposed to use an estimator ; which would maximize the 
"integrated" (average) likelihood defined as 

summation being over all n! permutations 0 of (1,. . . , n). The log 
(likelihood) function is 

1 
Constant - -n Iog(1 - p 2 )  + n ( l  - p 2 ) - I  + log 

2 I 
Equating the derivative with respect to p to zero, we obtain 

This equation has to be solved numerically to obtain 6. 
2. Bayesian estimation of p has received relatively little attention in the 

literature. Gokhale and Press (1982) have mentioned, as possible prior 
distributions for p, triangular distributions (see Chapter 26, Section 9) 
with the pdfs 

or 

p ) ,  1 (32.114b) p ( p l a  = 1) = -L(l + 
or 

~ ( p l f f  = -1) = $(1  - p) ,  -1 5 p I 1. (32.114~) 

They also mention beta priors with the pdfs 
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However, no justification (or motivation) is presented for choice of these 
priors. 

They do discuss assessing a prior distribution for p, using the concordance 
probability 

T(P)  = P r [ ( x I  < X2, YI < Y2) u ( X I  > X,, Y, > Y,) l p ]  (32.116) 

or the conditional exceedance probability 

7 SAMPLE COVARIANCE 

The sample covariance can be defined as 

If each of the independent pairs (X,, Y,) has a bivariate normal distribution 
as in (32.21, this is the maximum likelihood estimator of the population 
covariance puxay.  We will find it more convenient to consider the distribu- 
tion of the sums of products of deviations from sample means: 

C = C (XI -Z)(Y, - Y ) .  (32.119) 
r = l  

The distribution of C has been derived, using various methods, by 
Mahalanobis, Bose, and Roy (1937), Pearson, Jeffery, and Elderton (1929), 
Wishart and Bartlett (1932), and Hirschfeld (1937). Remembering that the 
conditional distribution of Y, given XI ,  X,, . . . , X,, is normal with expected 
value [q + (puy/uxXXr - t )]  and standard deviation u y d m ,  we see 
that the conditional distribution of C, given XI ,  X,; . ., X ,  is normal with 
expected value (puy/ux)S and standard deviation u y ~ ~ ,  where 

s = (x, - q 2 .  
I =  1 

Noting that S is distributed as X:- ,a;, it follows that the probability density 
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function of C is 

S ( n - 4 ) / 2  exp( - $ S / U ; )  
P C ( C )  = 

r ( i ( n  - 1))  I 
If ax = uy = 1 ,  then 

where K , ( z )  denotes the modified Bessel function of the second kind, of 
order v (Chapter 12, Section 4). From this formula, distributions of C, with 
ux # l , u y  f 1, are easily derived. Some other equivalent forms for the 
density function have been given by Press (1967). He also pointed out that if 
n  is odd, then it is possible to express the density as a finite series of 
elementary functions, since 

( n  -3) /2  ( f ( n  - 3 )  + j ) !  1 .- . (32.122) 
,=" ( i n  - 3 - ) ( 2 2 ) '  

The characteristic function of C is 

Hence the distribution of C is also that of ~ a x a , ( ( l  + p)ZI  - (1  - p)Z21, 
where Z ,  and Z2 are independent random variables each distributed as ,y2 
with n - 1 degrees of freedom. Note that this distribution is the K form of 
the Bessel function distribution described in Chapter 12, Section 4. 

From the representation 
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it follows that 

In particular 

The representation (32.124) also shows clearly how the distribution of C / n  
tends to normality as n tends to infinity. 

8 CIRCULAR SERlAL CORRELATION 

In formula (32.1) for the correlation coefficient, X ,  and Y,  are usually 
thought of as representing observations of different characters on the same 
individual. Although this is so in very many applications, it is not formally 
necessary, and some useful models and techniques can be based on modifi- 
cations of this idea. In particular, one can take Y,  = X I + , ,  with appropriate 
allowance for end effects. The correlation coefficients so obtained are called 
serial correlations. The absolute value of the difference between t and the 
subscript of X  corresponding to Y,  is called the lag of the correlation. (It is 
clear that similar results are obtained by taking Y, = X I + ,  or Y,  = X I _ , . )  

Serial correlations are most commonly employed when the subscript t in 
XI  defines the number of units of time elapsed, from some initial moment, 
when X, is observed. However, serial correlations can be, and have been 
used when the ordering is nontemporal (e.g. spatial). 

There is occasionally confusion between serial correlation and biserial 
correlation coefficients. The latter are discussed in the (first) edition of 
Multicariate Continuous Distributions. Here we just note two additional refer- 
ences [Bedrick (1990, 199211. 

It is of interest to note that the mean square successive difference ratio 
[von Neumann (1941)], 
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where the Z,'s are mutually independent normal random variables, each 
having expected value zero and standard deviation a .  Further Z, is indepen- 
dent of all X, for j < t. The series is supposed to be started by a random 
variable X,,, which is distributed normally with expected value zero, and has 
standard deviation a ( l  - p2)- ' /2. The effect of this rather odd-looking 
assumption is to ensure that each X ,  has the same variance ( a 2 )  as well as 
the same expected value (zero). 

The method used by von Neumann (1941) in deriving the distribution of d 
(for p = 0) may also be used in deriving the distributions of serial correla- 
tions (for p = 0 or p # 0). The results possess the characteristic property that 
the density functions take different forms for different intervals in the range 
of variation of the variable. 

The density function of R ,  for the case p = 0 was obtained by Anderson 
(1942) [see also Koopmans (1942)l in the simple form 

where 

n (A, - A,) 
i z j ,  1 =  1 

( n  odd), 

( 1 1  - 2 ) / 2  I 
(32.133)' 

n (A, - A,) ( n  even). 
i + j ,  1= 1 

Anderson also obtained formulas for the distribution of R, (circular serial 
correlation with lag I). He also considered the distribution of the statistic 

(where we use our knowledge that E [ X j ]  = 0). Roughly speaking, the distri- 
bution of R ,  is close to that of R, ,  with n increased by 1. For the case n odd 
(and p = O), Anderson showed that this is exactly so, provided that a, is 
multiplied by ,/-. Madow (1945) extended these results to the case 
p # 0. He used the simple, but effective, device of noting that if 
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(TI, T 2 ; .  ., Ts) = T is a sufficient set of statistics for parameter(s1 8 ,  then 

~ T ( f l 8 )  P x , : . . x ( x , , . . . ,  ~ " 1 8 )  

The joint distribution of T for general p  can then easily be derived for p  = 0. 
In this case T is composed of the numerator and denominator of R !  (or 
R,, d l ,  etc.). The density function of R ,  so obtained is 

forA,,, s r  <A,, m = 1  ,..., ( n  - 1 ) .  (32.135) 

Daniels (1956) obtained the following expansion for the density of R',: 

r ( f n  + 1 ) ( 1  - p n )  
P i , ( ' )  = 

G(1 + p2 - 2 ~ r ) " ' ~  

I , <  7 , ( n - 1 ) / 2  " ," \ 

The jth term is 

Kemp (1970) used the first-order approximation from (32.136), 

1 
i p d , ( r )  = ( n  + 1 ) ( 1  - r 2 )  ( n -  1 ) / 2  I , - 1  5 r  5 1 ,  (32.137) 

5 
1 to obtain approximate expressions for the moments of R , ,  arriving at 
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and 

The randomization ( p  = 0) distribution of R ,  (or R',) is the distribution 
obtained by considering all possible orderings of the n observed values 
X , ;  . . , X,,. Since the denominator is unchanged by reordering, this is essen- 
tially the distribution of the n! possible values of the numerator. Wald and 
Wolfowitz (1943) studied this distribution. 

9 NONCIRCULAR SERIAL CORRELATION 

The distributions of noncircular serial correlations are generally even more 
complicated than those of the corresponding circular correlations. It is 
possible, however, to obtain formulas for the moments which are reasonably 
easy to comprehend. 

We will first consider the noncircular serial correlation of lag 1 ,  as 

with X,, = 0, and its distribution under model (32.132). The joint density 
function of XI,  - . . , Xn is 

The distribution of f i l  clearly does not depend on o, and we will henceforth 
take a = 1. TheAjoint moment-generating function of the numerator and 
denominator of R ,  is then 

where for n r 2, 

with D,,(O,, 0 2 )  = D,(O, ,  0 2 )  = 1.  
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White (1957) evaluated the first and second moments of R , ,  using the 
formula 

a r n { ~ n ( ~ 1 ~  t ~ ) } - " ' ~  
d t ,  d l2  . .. dt,. aey f3,-0 

Shenton and Johnson (1965) found it more convenient to use the formula for 
moments about p ([fm] = integer part of tm): 

where 

where alln' are defined by 

[m/21 C ( - i ) j  ( m )  m - 2 j  = e - ~ 2 / 2  ,m* aj Y ) and ahm' = 1. 
J = O  

We now quote some of their results, in the form of asymptotic series 

3 ( n  + 1 9 ) ( n  - 3 ) p 4  3 ( n 3  + 32n2 + l l l n  - 928)p6 + + 
( n  + 9)"' ( n  + 1 3 ) ' ~ '  

"Here D denotes the differential operator described in Chapter 1 ,  Section A4. 
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For n  large the following expansions in powers of n-I can be used: 

(The original expansions for ~ [ k , ]  and E [ ( R ,  - pI2] were given up to and 
including terms in K 6 . )  

Shenton and Johnson (1965) also obtained formulas for P I  and P 2  and 
gave results of calculations using *these formulas. These are included in Table 
32.3. The exact distribution of R l  was obtained by Pan (1964) for the case 
where the correlation between X, and X, is p  for li - j l  = 1 and zero 
otherwise. In this case Cy, ,( Xj - X ) 2  is distributed as a multiple of ,y2, and 
it is possible to follow the method of von Neumann (1941). It can be shown 
that k l  is distributed as 

where U , ,  U2 ,  ., Un - , are independent unit normal variables and 

A ,  > A 2  > . . .  > A n - , ,  
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Table 32.3 Moment values for the distribution of R ,  

n 
P 6 8 10 15 50 100 500 

0.0 (b) 0.4254 0.3519 0.3109 0.2530 0.1401 0.0995 0.0447 
(d l  4.7331 3.0022 2.7859 2.7440 2.8919 2.9430 2.9881 

0.2 (a) 0.0456 0.0380 0.0323 0.0232 0.0077 0.0039 0.0008 
(b) 0.4244 0.3500 0.3086 0.2502 0.1378 0.0977 0.0438 
(c) 0.0267 0.0418 0.0476 0.0477 0.0242 0.0134 0.0029 
(d) 4.8014 3.0767 2.8625 2.8171 2.9302 2.9648 2.9930 

0.4 (a) 0.0902 0.0755 0.0642 0.0463 0.0154 0.0078 0.0016 
(b) 0.4217 0.3445 0.3017 0.2419 0.1304 0.0920 0.0410 
(c) 0.1067 0.1719 0.1999 0.2067 0.1085 0.0610 0.0134 
(d) 5.0031 3.3104 3.1096 3.0613 3.0647 3.0422 3.0103 

0.6 (a) 0.1321 0.1114 0.0952 0.0689 0.0230 0.0118 0.0024 
(b) 0.4182 0.3358 0.2901 0.2275 0.1172 0.0815 0.0359 
(c) 0.2392 0.4021 0.4872 0.5372 0.3099 0.1774 0.0394 
(d) 5.3160 3.7301 3.5833 3.5721 3.3839 3.2310 3.0535 

08 (a) 0.1674 0.1426 0.1228 0.0900 0.0306 0.0157 0.0032 
(b) 0.4155 0.3256 0.2751 0.2067 0.0958 0.0641 0.0272 
(c) 0.4319 0.7466 0.9563 1.1876 0.9171 0.5318 0.1235 
(d) 5.6832 4.3496 4.3732 4.5969 3.8334 3.8032 3.1926 

1.0 (a) 0.1893 0.1599 0.1369 0.0998 0.034" 0.019" 0.004" 
(b) 0.4146 0.3167 0.2603 0.1826 0.06" 0.03" 0.006" 
(c) 0.7456 1.2859 1.7182 2.4705 3.89a 5.1" 6.5" 
(d) 6.0955 5.1633 5.5432 6.5897 9.3" 11.3" 13.2" 

Source: Shenton and Johnson (1965). 

Key: (a) E I ~ ,  - pl ,  (b) standard deviation of d l ,  (c) p , ( i , ) ,  (d) p,(fi,). ~ [ d ,  - pl and 
p , ( R , )  are zero for p = 0. 

"The values thus marked are tentative due to uncertain round-off error. 

and zero are the characteristic roots of the matrix MAM with 
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The values of the A's are, for odd order A's, 

while A,, A,,.. ., A21(n-1) /2 j  are roots of the equation 

with 

The cumulative distribution function of h ,  is of different form in each of the 
intervals A,,, I h, I A,, being 

for A , + ,  I r I A,. (32.146) 

The integrals in this formula can be evaluated approximately by means of the 
formula (with N sufficiently large) 

where 

( 2 j  - 1 ) a  
y j N )  = COS 

2 N  

Note that the variables U,2[C~:,'U,2]-1 are correlated beta variables with a 
joint Dirichlet distribution (see Chapter 40 of the first edition of Continuous 
Multiuariate Distributions) and so R ,  is a linear function of such variables. 
Pan (1964) also considered a modified noncircular serial correlation coeffi- 
cient obtained by dividing a sequence of 2n values XI; . ., X,, into two 
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sets-the first n and the last n values, respectively. The coefficient is defined 
as 

(32.148) 

where 
4 

By essentially the same procedure as before it can be shown that R , ,  , is 
distributed as (E,"S:A,V,)/(C,":;V,), where the V's are mutually independent 
variables, each distributed as X 2  with two degrees of freedom. The A's have 
the same values as for d l .  The cumulative distribution function now takes the 
much simpler form 

Similar investigations of the distribution of R I , ,  were performed earlier by 
Watson and Durbin (1951) (who also computed tables of 5% significant 
points for their well known and widely used exact noncircular test of the 
existence of serial correlation in a series of n observations). Watson and 
Durbin's paper was reproduced in Kotz and Johnson (1991). The asymptotic 
normality of k ,  for general 1 was proved by Pan (1964, 1966). The random- 
ization ( p  = 0) distribution of k ,  was studied by David and Fix (1966). 

For independent X,'s with a common normal distribution, 

Despite numerous investigations, by highly skilled researchers, in various 
fields during the last 20 years, the problem of the behavior of sample serial 
correlation coefficient under nonnormality has not as yet been fully resolved. 
This is partly due to the uncoordinated and sporadic nature of this research. 
More organized comprehensive studies (utilizing modern computational tech- 
nology) are desirable to put this problem at rest. 

We note here a few results relating to the distribution of R, ,  , in nonnor- 
ma1 populations. In each case the Xi's are assumed to be independent. For 



Table 32.4 Distributions of first serial correlation coefficient 

Mean Standard Deviation Lower Quantiles 

P o xO.(K)l fo.(n,s %I.OIo x o . 0 5 0  2 0 .  l (N 

Exponential - 0.00207 0.04683 - 0.13604 - 0.1 1541 -0.10522 -0.07673 -0.061 13 
(0.00002) (0.00001 ) (0.00008) (0.00005) (0.00006) (0.00005) (0.00004) 

- 2.861 - 2.420 - 2.203 - 1.595 - 1.261 
$ Weibull -0.00214 0.04483 - 0.10169 - 0.08798 - 0.08123 - 0.06238 - 0.05187 
Kx2 (0.00002) (0.00001) (0.00016) (0.00008) (0.00007) (0.00003) (0.00003) 

-2.221 - 1.915 - 1.764 - 1.343 - 1.109 

Skewness Kurtosis Upper Quantiles 

r I f 2  ~ o . w H l  xo.v50 &).w) fO.WS ~ 0 . v 9 v  

Exponential 0.17041 0.04871 0.05872 0.07712 0.11281 0.12610 0.15439 
(0.00082) (0.00219) (0.00005) (0.00004) (0.00007) (0.00008) (0.00017) 

1.298 1.691 2.453 2.737 3.341 
Weibull 1.02894 2.12262 0.05600 0.08064 0.13588 0.15964 0.21524 

K x ~  (0.00209) (0.01 146) (0.00006) (0.00003) (0.00014) (0.00026) (0.00032) 
1.297 1.847 3.079 3.609 4.849 

Nore: Estimated quantiles, means, standard deviations and coetlicients of skewness and kurtosis of the sample serial 
correlation coefficient of order 1. Series of n = 450 independent exponential and $ Weibull variates. Averaged estimates from 
six synthetic samples each with 750,000 trials. Quantities in parentheses are estimates of the standard deviation of the 
estimates. The third line in each group gives the estimated quantiles, standardized by subtracting ji and dividing by 5. 

Source: Lewis (1972). 
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exponential distributions, Moran (1967b) obtained 

Generally, n l / ' ~ , , ,  converges in distribution to a unit normal variable, if the : 
first moments of the X, exist. The variance of R , .  , tends to be smaller for i 

random variables with long tails (platykurtic) than in the normal case. i 
i 

Very serious departures from normal theory occur for the quantiles of 1 
R',, , when the X,'s have a common Weibull, distribution (Chapter 21) with i 
parameter c = i, (i.e., a Kx, distribution). In this case Moran's approxima- 
tion to the variance is poor and the normal approximation is considerably off. 
Table 32.4, from Lewis (1972), illustrates some results for this case and for 
exponentially distributed X,'s. 

Cox (1966), Moran (1967a, b, 1970), Yang (1970), and Lewis (19721, among 
others, used simulation methods to investigate the properties of 

where Z = n-'C:=, X,, for the following parent distributions: normal, 
mixture of two normal, uniform, Laplace, Cauchy, gamma (a ,  1) with 
a = 1.5,2,3, 10,26, Weibull, and exponential for n = 10,20, as reported in 
Goodman and Lewis (1972). 

10 LEIPNIK DISTRIBUTION 

The distributions described in Sections 7 and 8 (dealing with sample covari- 
ance and circular serial correlation) are rather complicated in form. An 
ingenious method of "smoothing" the characteristic function [eliminating the 
discontinuities in the derivatives of pd,(r)] proposed by Dixon (1944) and 
Rubin (1945) and extended by Leipnik (1947) leads to the much simpler 
(approximate) formula 

pk,(r) = [ B ( + ,  $(n  + 1))] - ' ( l  - r2)'"-""(1 + p2  - 2pr)-n/2,  

- 1 I r _< 1. (32.152) 

Daniels (1956) investigated the error of this approximation and obtained an 
upper bound for it. Note that if p = 0, we have 
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which is the distribution of an ordinary (nonserial) correlation for a bivariate 
normal population with p = 0, when the sample size is n + 3. 

White (1957) pointed out that (1 + p2 - 2pr)-"I2 can be expressed in 
terms of Gegenbauer polynomials c~"/*'(x) as 

where 

with x(') = X ( X  - 1 ) .  . . (X - r + 1). and so 

The Gegenbauer polynomials are a special kind of Jacobi polynomials, [see 
Chapter 1, Eq. (1.175)1. They are orthogonal with respect to the weight 
function (1 - x ~ ) ( " - ' ) / ~  over the interval - 1 I x I 1. 

The cumulative distribution function is 

The moment-generating function of R', is 

where J , ( t )  is a Bessel function of order v [see Eqs. (32.8)l. 
The rth moment about zero is 
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i 

From (32.157) we find that [Jenkins (195611 

Kemp (1970) derived formulas for the jth moment about 1, and the jth 
central moment, denoted by ,,&(I) and .p j ,  respectively, of distribution 
(32.152) in several alternative forms. Among them we note that 

1 1 
,,pi = ( 1  - p ) ( l  + p ) - " ~ ,  + 1 ) ,  2 ( n  + 1 ) ,  ~n - j ; n  + 1; 

where j5 = n p / ( n  + 1) is the expected value, 

is Appell's hypergeometric function of the third kind, and 

I 

where ,F ,  is a Gaussian hypergeometric function (Chapter 1, Section A6). 
A recurrence relation for (32.161) is 
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Some 18 years later McCullagh (1989) rediscovered Leipnik's distribution in 
a different context, as a noncentral version of the symmetric beta family. He 
provided plots of the density for various p and n.  The densities are asymptot- 
ically normal as n + m for each fixed p.  

McCullagh extends the definition of the density to values Ipl > 1 by 
defining 

He derived expressions for cumulants of this distribution and also those of a 
distribution with the pdf 

which is related to the Leipnik distribution by 

McCullagh (1989) also obtained a pivotal statistic for p, namely 

which has a beta ( $ ( n  + l ) ,  i) distribution. 
The maximum likelihood estimator, b, of p,  based on n independent 

random variables Y; ( i  = 1,2 , .  . . , n )  with common distribution (32.1521, 
satisfies the equation 

Note that this equation depends on n,  only as the number of terms in the 
summation. Equivalently 
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Note the similarity to the Cauchy maximum likelihood equation [Chapter 16, 
Eq. (16.3511 

where 8 and A are the location and (known) scale parameters, respectively. 
Viewing p and n = 2v as two unknown parameters, McCullagh calculates 

the Fisher information matrix, noting that the Fisher information tends to 
infinity as p -, f 1. The distributions (32.152) and (32.164) arise as exit 
distributions of Brownian motion in n + 2 space (for integer n), where a 
particle starts at the point p = (p, 0, . . . ,0 )  on x,-axis. The probability of 
hitting the unit sphere is 1 for - 1 < p < 1 and lpl -" for IpI > 1. Saw (1984) 
encountered Leipnik distributions (also without naming them) in connection 
with decomposition of densities on unit m spheres. It might be expected that 
the transformation tanh-'  k ,  would produce a more nearly normally dis- 
tributed variable, as is the case for the ordinary product-moment correlation 
(32.1). Such a transformation was studied by Quenouille (1948). 

However, from (32.158b) it can be seen that 

whereas var(R) = (1 - p2)2/n. Equation (32.169) suggests the use of the 
transformation 

2 = sin- ' d l ,  (32.170) 

which would be variance equalizing for R ,  in the same sense as is Z' [Eq. 
(32.42)] for R. Indeed Jenkins (1954a) showed that (32.170) is of comparable 
effectiveness for R , ,  as Z1 is for R. He obtained the formulas 
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t nd 
- 1  - 1  fi = -3p(l - p2)-1'2n-1/2(l + f (2  - 5p2)(l - p2) n } + ~ ( n - ' ' ~ ) ,  

- I  - 1  p2 = 3 + 2(7p2 - 1)(1 - p2) n + 0(nW2) .  

11 MULTIPLE CORRELATION COEFFICIENT 

The multiple correlation coefficient between a random variable X,, (the 
dependent variable) and variables X I ,  X,; . -, Xk (the independent vari- 
ables), with k 2 2, is defined to be the maximum correlation between X,, and 
any linear function of the independent variables: 

0 1 . 0 2 ~  > U A  

(Where there is no risk of confusion the subscripts 0.12. .  . k can be omitted.) 
If the variance-covariance matrix of X,,, X, ,  . . . , Xk is 

(where V,, , is the variance-covariance matrix of XI; . a ,  X ,  ), then 

Since (by appropriate choice of signs of the a,'s) p ( . )  can always arranged not 
to be negative, we can choose a to maximize the square 

( avov;, a ) 

(a'", I ,a) ' 

The maximized value of the square of the correlation coefficient is 

viv- 'v,, 
var( Xo) ' 

so the multiple correlation coefficient is 
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(The more common term for the square is the multiple coefficient of determi- 
nation, but we will not follow this practice.) Suppose now that X,, XI; - -, Xk 
have a joint multinormal distribution and that we have available values of n 
independent sets of these variables. The quantity R,,,,, , , , obtained by 
replacing in (32.175) the elements of V by their maximum likelihood estima- 
tors (i.e., the mean squares and mean products of deviations from sample 
means) is called the sample multiple correlation coefficient. This is of course a 
random variable and has a sampling distribution, though the word "sample" 
is often omitted from its name when the meaning is otherwise clear. Also, 
just as p,,,,, , , , is often replaced by p, so R,,,,. , , , is replaced by R when this 
is conveniently possible. 

Following the method of Ruben (19661, already described in Section 3, 
Hodgson (1967) showed that (with n > k + 11, R2(1 - R2)- '  is distributed 
as 

where the x2's and the unit normal variable U are mutually independent. 
From the identity (noting that R cannot be negative) 

Pr[R I r ]  

and approximating the distribution of the ratio (32.176) or the left-hand side 
of the last inequality in (32.177) in the braces, Hodgson suggested the 
following approximations (h being a suitable positive number): 

(32.177)' 

has approximately a unit normal distribution, and 

(R2(1 - R2)-l)" (32.177)" 

is approximately normally distributed with expected value 
h 

[ (n  - k + h - 2 ) l ( k  + 2h - 2 + ( n  + h - 2)[p2( l  - p i ) - ' ) ]  
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and variance 

2 h 2 ( n  - k  - " ( k  + ( n  - l ) p 2 ( l  - p 2 ) - 1 ) 2 * - I ( 2 n  - k ) ( l  - p 2 ) I .  

The distribution of R~ was originally obtained by Fisher (1928), using a 
geometrical method [see also Soper (1929)l. [Special cases had been dis- 
cussed earlier by Yule (1921) and Isserlis (19171.1 Fisher obtained the 
formula 

r(in)(1 - p 2 ) ( n  - 
2 - ( r 2 ) ( k / 2 ) - 1  ( 1  - r 2 )  ( ( n - k ) / 2 ) - 1  

" R ' ' ~  ) - TI'(+ ( k  - l ) ) I ' ( f ( n  - k ) )  

The integral can be evaluated by expanding the integrand in powers of cos 8 
and integrating term by term. The result can be conveniently expressed in 
terms of a hypergeometric function 

An alternative expression is 

[This expression was given by Anderson (19841, and used by Ding and 
Bargmann (1991a) as a basis for a numerical method, and an efficient 
computer program (Algorithm AS260) for evaluation of the distribution of 
R'.] 
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The null ( p 2  = 0 )  pdf of R2 is 

( l  - r2)(n-k-3)/2 ( k - 2 ) / 2  
( r 2 )  

P " " ~ ' )  = B [ ( n  - k  - 1 ) / 2 ,  k / 2 ]  ' 0  < r 2  < 1. (32.180) 

This is a standard beta distribution with parameters fk,  t ( n  - k - 1). 
From the representation (32.179)', or by direct expansion, it is possible to 

express pRz(r2) as a mixture of standard beta distributions with parameters 
( i k  + j ) ,  i ( n  - k  - 11, with weights being the terms in the expansion of the 
negative binomial 

( l -p i -31 

That is, 

m 

with weights 

This result was obtained by Gurland (19681, using characteristic functions. 
He also showed that for n  - k  odd, R2(1 - p2Xl - p  2 ~ 2 ) - 1  is distributed as 
a mixture of standard beta distributions with parameters ( $ k  + j ) ,  $ (n  - 
k  - 1 )  and weights given by the terms in the binomial expansion of 
( p 2  + ( 1  - p 2 ) } ( " - k - ' ) / 2  SO that 

where I J a ,  b )  is the incomplete beta ratio. Note that there is only a finite 
number of terms in this expansion. Various methods of derivation of the 
distribution will be found in Garding (1941), Moran (1950), Soper (1929), and 
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Wilks (1932). Williams (1978) obtained (32.182) by another method, essen- 
tially showing that conditionally on sample values of (XI;.-, X, ) ,  
(R2/k)((1 - R2)/(n - k - I))-' (the ratio of mean square due to multiple 
linear regression to residual mean square in the analysis of variance) has a 
noncentral F-distribution (see Chapter 27) and then averaging over the 
(X,; . ., X,) distribution (cf. beginning of Section 2). Detailed numerical 
investigations of series (32.181) and (32.182) are reported in Gurland and 
Milton (1970). 

In a more recent paper Gurland and Asiribo (1991) provided other 
representations of the distribution of R2, utilizing Gurland's (1968) result 
that W = R2(1 - R2)-I is distributed as the ratio Y,/Y2 of mutually inde- 
pendent random variables with characteristic functions 

where g = $(n - k), h = $ (n  - 11, a = (1 - p2)-I. They concentrated on 
the distribution of Y, [termed a "kinked" X 2  by Gurland and Milton (1970)l 
and offered several alternative representations for the cdf and pdf of Y, in 
terms of scaled X2-distributions and confluent hypergeometric distributions, 
implying alternative representations of the distribution of R ~ .  

The mth moment of R about zero can be expressed in a convenient form, 
due to Banerjee (19521, 

(1 - p2)(n-')/2 V f ( k  + m ) )  1 1 1  
P',,,(R) = 

r ($ (n  - 1 + m ) )  
D " " ~ F ~ ( ? ( ~  - 1 +m). -n. 2 ' 2  - k ; ~ ' ) ,  

where D' denotes the operator fp"(a/(ap). The expected value and variance 
of R 2 are 



(note that R2, as an estimator of p2, has a substantial positive bias), and 
1 

I 2 
4p2(1 - p2) ( n  - k - 1)2 

+ O ( n W 2 )  for p f 0, 
- - ( n 2  - l ) ( n  + 3) 

for p = 0 

[Wishart (1931)l. 
The distribution of R (or R2) is complicated in form, and considerable 

attention has been devoted to the construction of useful approximations. It is 
natural to try Fisher's transformation Z' = log((1 + R)/(1 - R ) ]  = 

tanh-I R. However, as for serial correlation, it is clear that this transforma- 
tion is not very suitable. Gajjar (1967) has shown that the limiting distribution 
of d X n - l  tanh-' R, as n tends to infinity, is not normal but is noncentral ,y 
with k degrees of freedom and noncentrality parameter (n - l)(tanh-I p)2. 
Numerical calculations indicate that tanh-' R will not give generally useful 
results. 

Khatri (1966) proposed two approximations. The first is to regard 

with 

as being approximately distributed as noncentral F with k ,  (n - k - 1) 
degrees of freedom and noncentrality parameter 

[cf. Williams (1978)l. The second of Khatri's approximations uses a different 
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multiple of R2/(1 - R2). The multiplier is 

and the approximate distribution is a central F-distribution with 

[ ( n  - k  - l ) p 2  + k 1 2 [ ( n  - k - l )p2(2  - pi)  + k ]  - I ,  n  - k  - 1 

degrees of freedom. Independently Gurland (1968) also obtained this approx- 
imation. 

Khatri suggested that these approximations be used for n  - k  - 1 2 100; 
he preferred the second when p2 is large. Gurland and Asiribo (1991) 
provided a further approximation to the distribution by applying the Wilson- 
Hilferty transformation of a X 2  random variable (Chapter 18). This yields an 
approximation to the distribution of U = R2/(1 - RI2 in terms of a normal 
distribution. Comparisons with the approximation (32.186b) of Khatri (1966) 
and Gurland (1968) for k = 6,10, n = 10,20,40, p = 0,0.1(0.2)0.9, and also 
for values p2  = O.l(O.210.9 are presented. They indicate that for the most 
part, the approximations are of about the same accuracy. 

Moschopoulos and Mudholkar (1983) provide a normal approximation to 
the distribution of R 2  that seems to be very accurate for p > $, with errors in 
the cdf only in the fourth decimal place. For smaller values of p, errors may 
appear in the third decimal place. 

The approximation is of form 

which is approximately normal with expected value and variance (and also h 
and g , )  given by rather complicated functions of n ,  k ,  and p. 

Srivastava (1983), Gupta and Kabe (19911, and h e y  (1990) have dis- 
cussed the distribution of R2 based on random samples from a mixture of m 
(k + 1)-variate multinormal populations, and they have obtained expressions 
for the exact distribution. Srivastava and Gupta and Kabe deal with the case 
m = 2, whereas h e y  deals with the general case. 

Amey (1990) programmed this cdf for the case p = 0 using IMSL (1987) 
subroutines and obtained upper percentage points of R2 for selected values 
of the parameters.  H e  tabulated the values of R:, where 
Pr[R2 5 Rilp  = 01 = a for a = 0.90,0.95,0.99, k = 2,3,4,5, n  = 10, 15,20, 
and for k = 2,3,4,5 and n  = 10,15,20 with selected values of differences 
among the expected values of component distributions. 

It can be shown that Pr[ R 5 rlp] is a decreasing function of p. Upper and 
lower limits for 100(1 - a ) %  confidence intervals for p can be obtained by 
solving the equations j!,p,(rlp) dr  = a , ,  1 - a, ,  with ( a ,  + a,)  = a. 
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Kramer (1963) gave tables for constructing lower 95% limits (i.e., a, = 0.05, 
'Y2 = 0). 

R 2  is a biased estimator of p2, as can be seen from (32.185a). Venables 
(1985) discussed Fisher's (1924) A-transformation of R2, which is aimed at 
reducing this bias. It is defined as 

or, equivalently, 

Venables showed that A is very close to the maximum likelihood estimator 
of P2, based on marginal likelihood calculated from (32.179). Specifically he 
proved that (32.179) has a unique maximum value in the parameter space 
0 r p2 I 1  at 6 ,  say, and that if R2 I k(n - I)- ' ,  fi2 = 0; on the other 
hand, if 1 > R 2  > k(n - I)-', Venables showed the maximum likelihood 
estimator to be at the unique maximum of the marginal likelihood function in 
the range 0 < p2 < 1. What this implies is that for k(n - I ) - '  < R2 < 1, the 
maximum marginal likelihood estimator b2 satisfies the inequalities 

Note, however, that b2, being a nonnegative estimator, cannot be exactly 
unbiased, although it has a substantially smaller bias than R2. Venables 
(1985) also provided an expansion for c2 of the type 

thus extending the A statistic. Here 

He justifiably pointed out that for higher j the coefficients are much more 
complicated and probably of doubtful numerical usefulness. 



r 

MULTIPLE CORRELATION COEFFICIENT 

Olkin and Pratt (1958) showed that 

is the unique minimum variance unbiased estimator of p2.  It differs from R~ 
only by quantities of order n - '  and is a strictly increasing function of R 2.  
Note that if R2 = 1, then R * ~  = 1; however, if R 2  = 0, then R** = -k(n - 
k + 2)-' which is negative, as must be the case since E [ R * ~ I ~  = 01 = 0. 

Sylvan's (1969) MLE of the multiple correlation coefficient when some 
observations of one variable, say, the last one, x, ,  are missing is constructed 
as follows: Let 

The multiple correlation coefficient is 

Hence 

We partition the ocerall sample variance-covariance matrix 2 into 

c 

i Assume that x,  has c missing observations. Let the matrix of the corrected 
5 sums of squares (ss) and products (sp) of observations including all of x's and 

X,l be 
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based on n - c degrees of freedom. The matrix of corrected sum of squares 
and sum of products of all observations on x* and x ,  is 

based on n degrees of freedom. 
To obtain Sylvan's (1969) estimator, the estimators 

where 

are substituted into (32.175) or (32.175)'. 
Gupta (1987) extended Sylvan's result and obtained somewhat simpler 

estimator d 2  when c observations on a variable are missing. To this end, 
Gupta (1987) recalled the identity 

where the first factor is the contribution of x* to 1 - R ~ ,  while the second 
factor is the contribution of x k  conditional on x*. Noting that 1 - R2 is a 
particular case of Wilks's A [cf. Eq. (32.174)], he obtained the somewhat 
simpler estimator: 
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It appears that the true value of p2 is overestimated by Sylvan's (1969) 
method but underestimated by Gupta's (1987) method. It was further noted 
by Gupta, based on the general theory of Wilks's 11 statistics, that 

I 
where c is the number of observations missing, has an asymptotic X 2  

distribution with k degrees of freedom. 
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Lifetime Distributions and 
Miscellaneous Orderings 

enormous, so we have again had to restrict ourselves to a small representa- 
tive sample of the results. Some of the literature is cited in the references 
without mention in the text. 

We will look in some detail at a representative class of life distributions 
known as Birnbaum-Saunders distributions. These distributions are generated 
by a simple transformation of normal variables and have been rather exten- 
sively studied. Birnbaum-Saunders distributions can be derived from several 
models of mechanism of lifetime distribution. 

We will also consider results on ordering of distributions, since this topic is 
especially relevant to life distributions. Ordering also confers considerable 
generality and enables some practical applications of distributions. Books by 
PeEarii, Proschan, and Tong (1992) and Shaked and Shanthikumar (1994) 
(and their co-authors who contributed to the chapters on applications) both 
provide a detailed and systematic treatment of stochastic orders, highlight 
their growing importance, and illustrate their usefulness in numerous appli- 
cations. A classified bibliography of stochastic orders and applications has 
also been prepared by Mosler and Scarsini (1993) with the collaboration of 
R. Dyckerhoff and H. Holz. 
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1 INTRODUCTION 

The number of possible different continuous distributions is limitless. In this 
chapter we restrict our attention to distributions of some importance in 
statistical practice or theory that were not covered in Chapters 12 through 32. 

We will mostly concentrate on lifetime distributions, a field that has been 
intensively studied in the years since the publication of the first edition of this 
volume. The basic text by Barlow and Proschan (1981) has substantially 
influenced the development of the subject. A more recent paper by Barlow 
and Mendel (1992) is a significant contribution to Bayesian analysis of 
lifetime distributions. The literature on lifetime (or life) distributions is I 
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We have omitted discussion of Kolmogorov-Smirnov and related distribu- 
tions involving sample cumulative distribution functions. Although we pre- 
sented this topic in the first edition, interest in it has grown over the last 
25 years and now there is available orderly classification in the literature. The 
reader is referred to the compendium by D'Agostino and Stephens (1986) for 
extensive information on this subject. The discussion of circular normal (von 
Mises) distributions and their extensions (spherical normal distributions, 
etc.), the subject of a comprehensive monograph by Fisher, Lewis, and 
Embleton (1989) has been moved to the planned new edition of Continuous 
Multicariate Distributions. 

2 LIFE DISTRIBUTIONS 

Every cumulative distribution function F over the nonnegative real line can 
be a life distribution. If F is absolutely continuous then, provided that 
1 - F,(t) > 0, the hazard (or failure) rate function 

represents the conditional density of failure at time t, given survival until 
time t. When p,(t) is a density function, we also have the hazard rate 
function to be h,(t) = p,(t)/(l - FT(t )I; see Chapter 1. Given h,(t), F T ( ~ )  
can be derived from 

FT( t )  = 1 - exp - h , ( x )  dr , 0 I t < m. [ 6  I 
Note that the hazard rate function is sometimes confused with the condi- 
tional failure density function 

We have already encountered a number of more or less commonly used 
life distributions such as exponential, mixture of exponentials, Weibull, and 
especially extreme value distributions, whose truncated form is the well-known 
Gompertz distribution (see Chapter 22). Extensive classes of such distribu- 
tions, covering developments up to the early 1960% were discussed by 
Buckland (1964). 

The exponential distribution is used in many situations to represent 
distribution of lifetimes. If the departure from this distribution is too pro- 
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nounced to be ignored, a Weibull distribution may be used. Among others 
used [Barlow (1968); Bain (1974)] there is the linear failure rate distribution 
(see also Section 4) with density function 

and a distribution with density function 

p T ( t )  = [1 + e(1 - e- ')]exp(-[I + e ( t  + e-' - l ) ] ) ,  t > 0. (33.4) 

(These distributions are in standard form. A further parameter can be 
introduced by considering the distribution of aT,  with a > 0.) 

Flehinger and Lewis (1959) discussed two lifetime distributions con- 
structed from specific hazard rate functions (see Section 4). These are given 
by 

a + 2b2t ,  a + 3c"l (Hazard rate), 

leading to 

1 - exp[-at - (bt)2] .  1 - exp[-at - (ct)'] 

(Cumulative distribution function). (33.5) 

[cf. (33.311. The parameters a ,  b, and the argument t are all positive. It is, of 
course, also possible to consider a distribution with hazard rate a + 2b2t + 
3 ~ 9 ~  and cumulative distribution function 

but the extra complexity makes this unattractive. Flehinger and Lewis also 
discussed the use of a truncated normal distribution (Chapter 13, Section 
10.1) as a lifetime distribution. 

Greenwich (1992) has suggested use of a distribution with unimodal 
hazard rate 

which corresponds to 

and is in fact the distribution of b(2F2.n/a)'/2, where F2,, denotes a central 
F random variable with (2, a )  degrees of freedom (see Chapter 27). Shaked 
(1977) has investigated life distributions with hazard rate functions of the 
general form 
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where the functions g,(t) and g2(t) are assumed to be known and not to 
depend on A ,  or A,. The form (33.7) includes many types of hazard rate 
functions that are encountered in practice, including functions that are not 
everywhere monotonic. As noted above, Bain (1974) dealt with the case 
g,(t) = te) ( j  = 1,2) [and the linear hazard rate obtained by taking 8 ,  = 0, 
8, = 1; see (33.3).] Gaver and Acar (1979) gave a thorough discussion of 
models of this kind. Gaver and Acar discussed bathtub,hazard rate models 

(i) XL( X )R( X )  with X standard exponential, and 

L( X )  concave in X, L(0) < 1, L(m) = 1, 
R(X)  convex in X, R(0) = 1, R(0) > R(m); 

(ii) Hazard rate of form h(t) = g(t)  + A + k(t), where 

g(t)  > 0 decreasing function of t, lim g ( t )  = 0, 
i - +m 

k(t)  increasing (preferably with k(0) = 0, k(m) = m), 

e.g. h(t) = - + Bt + A. 
t + a  

Crowder et al. (1991) give, inter alia, graphs of hazard functions for 

Weibull (c = 0.5,1.5,2.5,5); Unit normal; Gumbel; 
Log normal [log X -+ N(p,  u 2 )  with u = $, i, 1, I;, and 

p chosen to make E[ XI  = 11; 
Gamma [ a  = 0.5, 1.5,2.5,5 with P chosen to make E[ X I = 11. 

Hazard rates of the form (33.7) arise naturally, and commonly for systems 
with two independent components. Bain and Engelhardt (1991) provide a 
detailed discussion of estimation procedures for parameters of life-time 
distributions with polynomial hazard rates. Their method involves the deter- 
mination of a least-squares polynomial fit to a set of points, and is applicable 
to both complete and censored samples. 

Foster and Craddock (1974) considered (33.7) for the case g,( t )  = 1, 
g,(t) = exp( -at). Substituting 

g l ( t )  = I[",K,(t)l 

g,(t) = I,~.rn)(t) 

(for some K > 0), in (33.7), we obtain piecewise constant hazard rate func- 
tions discussed by Prairie and Ostle (1961) and Colvert and Boardman (1976). 
Dimitrov, Chukova, and Green (1993) have discussed continuous probability 
distributions with periodic hazard rates. Shaked (1977) arrived at functions of 
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I h t  Figure 33.1 A bathtub-shaped hazard function. 

form (33.7) with g , ( t )  = 1, g,(t) = sin t when modeling the hazard rate 
function of an item influenced by periodic fluctuations of temperature. He 
investigated maximum likelihood estimation of A ,  and A, when the distribu- 
tion corresponding to (33.7) is of form IHR (increasing hazard rate), IHRA 
(increasing hazard rate on average), or NBU (new better than used) (see 
Section 4). Note that the distributions (33.5) are all of IHR type. 

For many living (i.e., human) populations the hazard rate is of the 
so-called bathtub type (see Figure 33.1). In several practical situations, the 
effect of age on a component is initially beneficial, but after a certain period 
the effect of age is adverse. Infant mortality or work hardening of certain 
tools are typical instances of such aging. This type of monotonic aging is 
usually modelled using life distributions displaying bathtub failure rates 
(BFR) and may be defined as follows. 
A life distribution F is said to be a BFR (upturned bathtub failure rate, 
UBFR) distribution if there exists a t,, 2 0 such that the cumulative hazard 
rate function - log F(t)  is concave (convex) on [ O ,  t,,] and convex (concave) 
on [t,,, m). 

This definition of a BFR distribution is quite general and extends the idea 
of distributions possessing a bathtub-shaped failure rate to situations where 
the failure rate itself does not exist [see Mitra and Basu (1994)l. 

MacGillivray (1981) investigated the relation between the number of 
changes from increasing to decreasing hazard rate and that of 

the motivation being that the number of changes in concavity of log(1 - F,(t)} 
is limited by that of log p,(t). 

Dhillon (1981 [see also Leernis (1986)l introduced a two-parameter system 
of life distributions-the exponential power distributions. The two-parameter 
system can have increasing, decreasing, or bathtub-shaped hazard rates. The 
survival functions are 
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al 

Figure 33.2 Hazard rate (33.8b) for various values of P.  

with hazard rates 

This is bathtub shaped if /3 < 1, achieving a minimum value for hT(t) at 
t = ((1 - ~ ) / ( a p ) ) ' / ~  (see Figure 33.2). For P = 1 we have extreme value 
distributions (see Chapter 22). 

Dhillon (1981) also constructed another two-parameter system, with sur- 
vival functions 

and hazard rate functions 

Typical graphs of hT(t) are shown in Figure 33.3. Dhillon provided maximum 
likelihood estimation procedures for both systems of distributions, (33.8a) 
and (33.9). 

Hjorth (1980) proposed a three-parameter system of life distributions with 
survival functions 
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Figure 33.3 Hazard rate (33.10) for various values o f  P .  

and hazard rates 

These distributions have bathtub shaped hazard rate functions, if 0 < a < p y .  
A mixture of two Weibull distributions with shape parameters P, satisfy- 

ing p,  < 1 < pz (see Chapter 21) also produces a distribution with a bathtub 
hazard rate. Unlike Dhillon's two-parameter bathtub distributions, this distri- 
bution involves five parameters; see Nelson (1982) and Lawless (1982). 

By noting that the shape of a probability density function restricts that of 
its hazard function and vice versa, Sibuya (1994) was primarily concerned 
with the six specific shapes, viz., increasing, decreasing, unimodal, anti-uni- 
modal, increasing-decreasing-increasing, and decreasing-increasing-decreas- 
ing. Then, of the six by six total possible shape combinations, Sibuya (1994) 
has shown that sixteen are impossible and by means of examples has shown 
the remaining twenty are possible. 

Kunitz (1989) suggests using a mixture of gamma distributions (see Chap- 
ter 17) as an adequate model for distributions with bathtub-shaped hazard 
functions. These are defined in terms of the total-time-on-test (TTT)  trans- 
form 

These change from convex to concave in the interval (0 , l )  and are "extremal" 
in the power of tests of exponentiality for DFR or IFR alternatives. 

The type of monotonic ageing described earlier for bathtub failure rate 
models can also be studied through the class of IDMRL distributions, 



646 LIFETIME DISTRIBUTIONS AND MISCELLANEOUS ORDERINGS 

introduced by Guess, Hollander, and Proschan (1986) through the mean 
residual life function, defined as follows: 
A life distribution F is said to be an increasing initially, then decreasing mean 
residual life (IDMRL) (decreasing initially, then increasing mean residual life, 
DIMRL) distribution if there exists a to 2 0 such that p,,,(t) = 
jyF(x)dw/F(t) is nondecreasing (nonincreasing) on [0, t,,] and nonincreasing 
(nondecreasing) on [ t , , , ~ ) .  See Section 4.2 (page 670) for related families 
introduced by Mitra and Basu (1994). 

Zelterman (1992) studied hazard rate functions which rise rapidly and 
become unbounded at a finite point + corresponding to a cap on the 
maximum lifetime attainable. (The motivation is to estimate an absolute limit 
on attainable human lifespan conditional on the existence of such a limit.) 
Specifically: 

with parameter 0 < /3 < 1 controlling the shape. (Models with /3 < 0 corre- 
spond to the Type 2 extreme value distribution; see Chapter 22. For /3 + 0, 
we obtain a generalized Pareto distribution (see Chapter 19) with survival 
function 

with the hazard rate h(t) = (a - Pt)-I.) The corresponding survival function 
is 

The main feature of these survival functions is the discrete jump of F(r)  to 
zero at t = 4, representing an abrupt mass extinction of all survivors at the 
cap t = $, and the density function p( t )  associated with this h(t) and F ( 0  is 
mixed in the sense that it contains both a continuous and a discrete compo- 
nent: 

~ ( t )  = ~ ( t l e ,  P ,  g )  = point mass at r = 4 
other values of t .  

Hazard rates with a change point or phases have been studied by 
Blackstone, Naftel, and Turner (1980) and Hazelrig, Turner, and Blackstone 
(1982) among others. 

Hazelrig, Turner, and Blackstone (1982) provide some hazard functions 
for analyzing survival data with a family of continuous-differential survival 
distributions. (The models are related by a common differential equation; 

J similarity to the earlier ideas of Voit, mentioned in Chapter 12, should be 
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noted.) The generic differential equation, in terms of the cumulative distribu- 
tion function, F(t) ,  is given by 

with the shape parameters m ,  v > 0, yielding under the initial condition 
F(O) = 0 

The parameter p in the time-scale factor is often called the modulus of 
mortality. Values of m are naturally classified into three categories: 

Hazelrig, Turner, and Blackstone (1982) provide a schematic diagram of 
special cases of this generic family which includes hyperbolic, hyper logistic, 
single-hit [ F ( t )  = (1 - e-"'/'")'"], hyper-Gompertz, and exponential distri- 
butions. Figure 33.4 presents graphs of four examples of this generic hazard 
function h ( p t ) .  Note that the case v = 3 and m = -0.2 yields a hazard rate 
with a local maximum and a local minimum. 

Hazard rates of the form 

were studied by Lewis and Shedler (1976, 1979) using simulation methodol- 
om. 

Dimensionless Time 

Figure 33.4 Four examples of the generic hazard function h ( p t ) .  
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Makino (1984) introduced the concept of mean hazard rate (MHR): 

where r,,,(t) = hT(t). He showed that 

(The latter quantity is sometimes called mean failure rate.) 
For a unit normal distribution, MHR = 0.9048557; a Weibull distribution 

(Chapter 21) with shape parameter c = 3.4392 has approximately the same 
MHR. (It is noteworthy that for c = 3.43938 the median and expected value 
of the Weibull distribution coincide.) 

Armero and Bayarri (1993) have discussed Kummer distributions. A ran- 
dom variable X has a Kummer distribution with parameters a ,  P, y, 6 
( a  > 0, /3 > 0, 6 > 0) if it has a continuous distribution with probability 
density function 

where the constant C is such that 

Here, U(a, b, z )  is one of Kummer's functions (a confluent hypergeometric 
function; see Chapter 1) with an integral representation 

m 

I '(a)U(a, b ,  z )  = / e-"to-'(1 + t ) b - a - '  dt ,  a > 0 ,  z > 0 .  
0 

The moments of X can be easily expressed in terms of the U function. For 
example, we have 

As noted by Armero and Bayarri (1993), the Kummer distribution generalizes 
both gamma and F distributions. For example, the above Kummer distribu- 
tion, when y = 0, becomes the Gamma ( a ,  p )  distribution. Similarly, it may 
be easily seen that the Kummer distribution with a = vl/2, P = 0, y = 

(v ,  + v2)/2 and 6 = 1 becomes the F-distribution with (v,, v,) degrees of 
freedom. 
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Evans and Swartz (1994) have discussed a class of densities useful in 
life-test analyses formed by taking the product of nonnegative polynomials 
and normal densities, and termed these distributions as polynomial-normal 
distributions. A polynomial-normal density function is of the form 

where Z(- )  is the standard normal density function, Q(- )  is a nonnegative 
polynomial, and the normalizing constant C is given by 

If Qc.1 is a polynomial of degree 2m, the integration needed to determine C 
can be exactly evaluated by a Gauss-Hermite rule of order m + 1; in this 
case, 

where the w, and x ,  are the Gauss-Hermite weights and points, respectively. 
Similarly, the r th  moment about zero can be evaluated exactly by a Gauss- ! 
Hermite rule of order [(r + 2m + 1)/2]. Observing that this family provides 
a rich class of distributions that can be used in modeling when faced with 
non-normal characteristics such as skewness and multimodality, Evans and 
Swartz (1994) have discussed some inference procedures for these distribu- 
tions. 

Creedy and Martin (1994) have used a generalized gamma distribution as a 
model of the distribution of prices. The probability density function of this 
distribution is 

The normalizing constant 7 needs to be determined numerically. This 
generalized gamma distribution includes many well-known distributions as 

t 

i 
special cases. For example, the case 8 ,  = 8, = 8, = 0 gives an exponential 

1 distribution, the case 8,  = 8, = 0 gives a Rayleigh distribution, and the case 
I 8, = 0, = 0 yields a gamma distribution. In addition, this distribution is 
f 

related to the generalized gamma distribution of McDonald (1984) and also 
r to the generalized lognormal distribution discussed by Lye and Martin (1993). 
i. 

1 
i 
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(a) (b) 

Figure 33.5 Two generalized gamma densities of Creedy and Martin. 

Two plots of Creedy and Martin's generalized gamma densities are presented 
in Fig. 33.5. 

(a) p x ( x )  = exp{610g x - l l x  + 8,x2 - ( ~ 7 3 )  - 77) 

(b)  p x ( x )  = exp(610g x - 5x + 8,x2 - ( ~ " 3 )  - 77) 

Sobolev (1994) introduced the following family of life distributions, termed 
q - r distributions, and investigated its properties as well as estimation 
procedures: 

where p is a scale parameter. He considered the following cases: 1. q, r > 0; 
2. q, r > 0 and r -* 0; 3. q, r < 0; and 4. q, r < 0 and Irl + 0. Case 2 yields 

1 
p ( x )  = qpqx"', 0 _< x I - (power function) 

P 
while Case 4 yields 

p ( x )  = q p q ~ - q - ' ,  p 5 x 5 m (Pareto) 

Values of (q, r )  equal to ( -  $, - 2), (1, O), (1, l),  (2, l), (3, l), (2,2) and 

correspond respectively to stable Levy, rectangular, folded normal, Rayleigh, 
Maxwell, exponential, and Weibull distributions. Note the resemblance with 
the generalized distributions of McDonald (see Chapter 27) and with the 
generalizations of the gamma distribution (see Chapter 17). The modified 
Laplace transform of the Sobolev family 

- Q 
p(x)exp{- (u)'/')cix = p[(p2/r + s~/ ' ) ' '~]  

for Case 1, and similarly for the other cases it is of the form J, being a 
function of the remaining parameters. 
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3 BIRNBAUM-SAUNDERS DISTRIBUTIONS AND TRANSFORMATIONS 

In this section we will consider some other distributions that have been 
suggested to represent lifetime based on more or less realistic conjectures 
about the mechanism leading to conclusion of a "life." This treatment is far 
from exhaustive. 

We have already discussed a number of simple transformations of normal 
variables in Chapter 12, from the viewpoint of construction of general 
systems of distributions. Birnbaum and Saunders (1968a) were led to a 
discussion of the distribution of 

(where p and a are positive parameters and U is a unit normal variable) 
from a model representing time to failure of material subjected to a cyclically 
repeated stress pattern. They supposed that the jth cycle leads to an increase 
X, in length of a "crack" and that the sum Zy,, X, is approximately normally 
distributed with expected value nPo and standard deviation uO&. Then the 
probability that the crack does not exceed a critical length w ,  say, is 

It was supposed that "failure" occurs when the crack length exceeds w .  If 
T denotes the lifetime (in number of cycles) until failure, then the cdf of T is 
approximately 

(it being assumed that probability of negative values of X,'s can be neglected). 
If (33.15) is regarded as an exact equation, then i t  follows that 

has a unit normal distribution. Equation (33.16) can be rewritten 
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which is of the same form as (33.14), with 

Thus T has a Birnbaum-Saunders distribution if 

has a unit normal distribution. Clearly cT  (c > 0) also has a Birnbaum- 
Saunders distribution, with parameters p c  and a [Birnbaum and Saunders 
(196911. Also the distribution of T- '  is the same as that of T, with P 
replaced by P - '  and the parameter a unchanged in value. 

From Eq. (33.18), Chang and Tang (1994a, b) recently proposed a simple 
random variate generation algorithm for the Birnbaum-Saunders distribution 
as follows: "Suppose Z is a standard normal variable and U is a uniform 
(0 , l )  random variable. Let t ,  and t 2  be the roots of the quadratic equation 

where z is a value of Z. Then, a Birnbaum-Saunders random variable with a 
and p as its shape and scale parameters, respectively, is given by 

where I(,, is the indicator function of event A." Observe that the last step is 
along the lines of Michael, Schucany, and Haas (1976) ensuring that the 
conditional probability of selecting either of the two roots t ,  and t , ,  given 
that Z = z ,  is 1/2. 

The parameter P is simply a multiplier and does not affect the shape of 
the distribution of T. The moment ratios of T depend only on a ,  and the 
( P I ,  P 2 )  points lie on a line. The situation is analogous to that for lognormal 
distributions [see Chapter 14, Eqs. (14.9)l. 
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The expected value of ( T / p ) '  is 

[ 2 ( r  - j + i)] ! 2 ( r - j + i )  

= ,=o i ( 2 r )  2 j  ;=o (i)  2 r - j + j  ( - j  1 ( la)  2 
. (33.19) 

Note that ~ [ ( i U a ) ~ { ( t U a ) ~  + l)'] = 0 if s is odd. From (33.19) we find that 

As a tends to zero, the distribution tends to normality. The ratio 

P 2 ( T )  - 3 

is remarkably stable, varying between 2.88 (as a -, a) and 3.42 (as a + 0). 
T is a monotonically increasing function of U. The median of T corre- 

sponds to U = 0 and is equal to 0. Since 

it follows that the relation 

T,T, -, = p 2  (33.21) 

holds between the lower and upper 100a% points of the djstrjbutjon of T, 
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The average hazard rate v ( t )  = ( l / t ) j , ' h ( s ) d s  of the Birnbaum-Saunders 
distribution approaches a constant as t + m. This rate is nearly non-decreas- 
ing. Mann, Schafer, and Singpurwalla (1974) provide graphs of the density 
and the corresponding v ( t ) .  A comparison between the hazard rates of 
the Birnbaum-Saunders and the lognormal distributions is given in Nelson 
(1990). While the hazard rate of Birnbaum-Saunders is zero at t = 0 ,  then 
increases to a maximum for some to and finally decreases to a finite val- 
ue, the hazard rate of the lognormal distribution decreases to zero (see 
Chapter 14, Section 1 ) .  

An alternative expression for the Birnbaum-Saunders distribution preva- 
I lent in the literature is 

where t ( t )  = r ' I 2  - t - ' I 2  and @(-) is the standard normal cumulative distri- 
bution function. [See also the remarks made after Eq. (33.22).] 

The pdf of T is 

The alternative expression for the probability density function corresponding 
to (33.21)' is 

Desmond (1985, 1986) noted that this distributional form, derived by 
Birnbaum and Saunders (19691, had been previously obtained by Freudenthal 
and Shinozuka (1961) with a somewhat different parametrization. 

He observed that this model is based on the following assumptions about 
the "fatigue" process: 

1. Fatigue failure is due to repeated application of a common cyclic stress pattern. 
2. Under the influence of this cyclic stress a dominant crack in the material grows 

until a critical size w is reached at which point fatigue failure occurs. 
3. The crack extensions in each cycle are random variables with the same mean 

and variance. 
4. The crack extensions in each cycle are statistically independent. 
5. The total extension of the crack, after a large number of cycles, is approximately 

normally distributed by the central limit theorem. 
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It was noted above that the crack length is assumed to be normally 
distributed in Birnbaum and Saunders' original derivation, so it can, in 
principle, take on negative values with nonzero probability. This possibility is 
ignored in the derivation. Desmond (1985) provided a more general deriva- 
tion of the Birnbaum-Saunders distribution without assuming normality for 
the distribution of crack length: 

1. A variety of distributions for crack size (many of which are on the positive real 
line) are possible which still result in a Birnbaum-Saunders distribution for the 
fatigue failure time. 

2. I t  is possible to allow the crack increment in a given cycle to depend on the 
total crack size at the beginning of the cycle and still obtain a fatigue life 
distribution of the Birnbaum-Saunders type. 

Desmond (1985) also derived the Birnbaum-Saunders distribution, using a 
biological model due to Cramtr (1946, p. 219) of which the "law of propor- 
tional effects" [see, e.g., Mann, Schafer, and Singpurwalla (1974)l is a special 
case. He points out that the application of CramCr's argument in the fatigue 
context leads to a Birnbaum-Saunders type distribution, rather than a lognor- 
mal distribution, as suggested by Birnbaum and Saunders (1969) and Mann, 
Schafer, and Singpunvalla (1974). 

He further provided failure models in random environments described by 
stationary continuous-time Gaussian processes, for which the Birnbaum- 
Saunders distribution is appropriate. These include failure due to the re- 
sponse process being above a fixed level for too long a period of time. The 
damage in an excursion above the fixed level is related to the so-called 
Z,,-exceedance measures of CramCr and Leadbetter (1967). (The case n = 1 
corresponds to using areas cut off by the process above the fixed level of 
measures of damage.) Fatigue failure may also be due to the stress history, 
that is proportional to the response of a lightly damped single degree of 
freedom oscillator excited by stationary Gaussian white noise. All of these 
models lead to distributions of the Birnbaum-Saunders type. Setti, Iwase, and 
Oohara (1993), analyzing the rainfall characteristics of the city of Hiroshima, 
reached the conclusion that for these data the distribution of periods of 
continuous rainfall is best fitted by a Birnbaum-Saunders distribution with a 
cdf of form (33.15). Their analysis employs a so-called Tsukatani-Shigemitsu 
test which is based on the (a,, 6,) chart where 

and 
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p, being the ith moment about the mean prI (i = 2,3). For the distribution 
(33.22), these parameters are functions of a2 only: 

Saunders and Birnbaum (1969) have proposed the following methods for 
calculating maximum IikeIihood estimators of the parameters. The maximum 
likelihood estimator of /3 is the unique positive root of 

where 

[See also Achcar (19931.1 Having calculated 6, the maximum likelihood 
estimator C? of a can be obtained directly from the formula 

As an initial value to use in the iterative solution of (33.251, theUmean mean" 
I 

is suggested. It is further shown that if 
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value between T and H).  If 2H > T, then iterative calculation of 

will converge to b. 
The "mean mean," (TH) , /~ ,  referred to above, has approximate variance 

(for n large) 

The expected value is approximately 

For a < \/Z it is suggested that (TH)"~ can be used in place of the 
maximum likelihood estimator of f?. 

Ahmad (1988) noted that while the "mean-mean" estimator is asymptoti- 
cally unbiased, it does have a positive bias in finite size samples. He 
suggested the following jackknife estimator, based on a random sample 
T I , -  a ,  T, of size n = mg (m and g being integers). Divide the sample into 
m groups B,, . . . , B,, of size g each and calculate 

where Z,;, denotes summation over all j = 1, .  . . , n except j = i ( i  = 

1,. . . , m). The jackknife estimator is 

where 

[the "mean mean;" see (33.27)]. 

Ahmad (1988) also showed that P * ,  as defined in (33.30), is a consistent 
estimator of f? (as is also the mean-mean estimator). He evaluated the mean 
square errors of both estimators, concluding that P* has the smaller error, 
although both have the same limiting distribution. 
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An alternative approach, based on the idea of equating first moments, 
leads to a simple estimator. Since a - ' { ( ~ / p ) ' / ~  - (/?/T)I/2) has a unit 
normal distribution [see (33.1811, 

Equating the observed average value 

to zero, we obtain the estimator 

PI = in= [cf. (33.27)] . 
C T,- ' 1 2  

Corresponding to any estimator P,, say, of P it is natural to use the "moment 
estimator" of a: 

Note that, if the value of p is known, the statistic obtained by replacing P, by 
fl in (33.32) is a maximum likelihood estimator of a ,  distributed as a X , / 6 .  

Comparing (33.22) with Eq. (15.4a) of Chapter 15 (and reparametrizing 
the latter with /I = 0 ,  A = we see that there is a clear relationship 
between the pdfs of Birnbaum-Saunders and inverse Gaussian distributions. 
In fact the Birnbaum-Saunders pdf (33.22) is a mixture (with equal weights) 
of the inverse Gaussian I G ( P , P ~ - ~ )  pdf and the pdf of the reciprocal 
IG(P,P- 'a2)  of this variable. This result was noted by Desmond (1985, 
1986), and by Jorgensen, Seshadri, and Whitmore (19911, who have noted 
that the Birnbaum-Saunders distribution belongs to a two-parameter expo- 
nential family [contrary to the opinion of Bhattacharyya and Fries (1982)1, 
but it is not an exponential dispersion model. 

Engelhardt, Bain, and Wright (1981) point out that the pdf (33.22) satisfies 
regularity conditions that ensure that the maximum likelihood estimators 
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(h ,  4 )  of ( a ,  p )  have a joint asymptotically bivariate normal distribution with 
mean ( a ,  p) and asymptotic variance-covariance matrix 

where 

with 

where, as before, t ( t )  = t i / 2  - t - ' I2 .  Engelhardt, Bain, and Wright (1981) 
utilized this result to construct large-sample inference procedures on a and 
p. The variable & ( h a - '  - 1) is approximately a pivotal statistic (has a 
parameter-free distribution) as also is n 1 / 2 ( / $ ~ - '  - I ) { +  + & - 2  - I (&) ) - ' /~ .  
Hence approximate independent 100(1 - E ) %  confidence intervals 

(&(I  + ( 2 n ) - i / 2 u l )  I ,  h{l + ( ~ n ) - " ~ ~ , ; } - ' )  for a (33.34a) 

and 

j [ l  + n-l/'(l + ( t  + & - 2  - ) 1 2 ) ]  ) for 0 ,  (33.34b) 

can be constructed. Engelhardt, Bain, and Wright (1981) also discussed some 
asymptotic results. 

Achcar (1993) has developed Bayesian estimation procedures based on 
two "noninformative" joint prior distributions for a and P ,  with the pdfs 

P , , ~ ( Q ,  b)  a ( a b ) - ' ,  a , b  > 0, (33.35) 

and 

(Both distributions are improper.) For (33.36) the joint posterior distribution 
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of a and p, given T = ( T I ; .  -, Tn), has the pdf 

p , ( a ,  b l ~ )  a a-(n+Ob-(n/2)-1(+ + a - 2 ) 1 ' 2  
a p ( i ~ b  + T, , ) ]  

Xexp{- t a - 2 ( b - 1  C T , + b z ~ ; ' - 2 n  " n 
i =  l i =  1 

(33.37) 

The corresponding pdf in case (33.35) is obtained by omitting the factor (a + a - 2 ) 1 / 2 .  
The posterior density function of P, for case (33.351, is 

For the case (33.36) Achcar (1993) obtained an approximate formula for 
pp(blT)  by multiplying the right-hand side of (33.38) by 

The posterior density of a is of simpler form, being proportional to 

a n e x p [ - n u 2 ( (  I =  h I T,)"'( I -  f: I T , " '  l ) ] ,  a > O ,  (33.40) 

for case (33.39,  and approximately proportional to 

for case (33.36). If P is known, Achcar (1993) suggested using a prior gamma 
distribution (Chapter 17) for a-2 .  This had been discussed by Padgett (1982) 
in connection with Bayesian estimation of the reliability function correspond- 
ing to (33.22). Padgett also discussed use of an improper prior for a, with 
pa(a) proportional to a - I. 

If T is distributed as (33.22), and Y = log T (i.e., T = e Y ) ,  then 
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where y = log p, has a unit normal distribution. This is a special case 
( u  = 2) of the sinh-nomzal distribution [denoted SN(a, y, u)] introduced by 
Rieck and Nedelman (1991) as the distribution of Z if 

has a unit normal distribution. 
The pdf of Z is 

Rieck and Nedelman (1991) noted that SN(a, y , u )  distributions have the 
following properties: 

1. The distribution is symmetric about the location parameter y. 
2. The distribution is strongly unimodal for a 5 2 and bimodal for cy > 2. 
3. The mean and variance are given by E[Zl = y and var(Z) = u2w(a), 

where w(a) is the variance when u = 1. There is no closed-form expres- 
sion for d a ) ,  but Rieck (1989) provided asymptotic approximations to it 
for small and large a. 

4. If 2, - SN(a, y, a ) ,  then S, = 2(2, - y)/u converges in distribution to 
the standard normal distribution as a approaches 0. 

Rieck and Nedelman (1991) discussed maximum likelihood and least- 
squares estimation of the model 

where 2, - SN(a, O,2), x: = (xi , ,  xi2; . ., x,,) are p explanatory variables 
and 0' = ( e l ,  0,; . ., 8,) is a vector of unknown parameters to be estimated. 
The MLE of a2  is given by 

where 6 is the MLE for the vector 0. A numerical procedure must be used to 
determine 6. The asymptotic variance of C? is G2/(2n), and the vector 
n'/2(C, - q) [where q = (0, aY 1 converges in distribution to a multinormal 
with expected value vector 0. 

The bimodality of the sinh-normal density when a > 2 can cause multiple 
maxima of the likelihood. Rieck (1989) provided an example with three 
least-squares solutions to the likelihood equations; two solutions were max- 
ima, and the third a saddle point. 

Experience with aircraft-engine data indicates that the case a > 2 is 
unusual in practice, and Rieck (1989) showed that if a < 2 the MLE of 0 is 
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Table 33.1 Least-squares efficiency for values of a 

Monte Carlo Results ( p  = 2) 

01 02 
a Efficiency n = 10 n = 20 n = 10 n = 20 

unique if X' = (XI, X,; . ., X,) has rank p. Rieck and Nedelman (1991) also 
investigate a "reduced biased MLE" estimator of a given by 

a2 = [ n / { n  - p ~ ( & ) ) ] & * ,  (33.45) 

where 

A ( a )  = 2(2 + a 2 ) ( 4  + a')-' 

for small a. The relative error for values of a less than 0.5 is less than 0.3%; 
A(a )  approaches 2 as a approaches infinity. The authors also investigated 
least-squares estimation of model (33.43). They found that the least-squares 
estimator (LSE) of 8 is not as efficient as the MLE but provides an unbiased 
estimator for 8 and that it is highly efficient for small values of a, as 
indicated in Table 33.1 (for p = 2), based on simulations that compare 
small-sample relative efficiency of LSE and MLE. The LSE of P is given by 
the classical equation: 

where Y is the column vector of the observations (Y,'s) and X is as previously 
defined. 

Achcar and Espinosa (1993) have discussed Bayesian estimation for model 
(33.43) when the Z's have a Birnbaum-Saunders distribution. 

Chang and Tang (1994) have discussed the construction of confidence 
intervals for the loopth percentile of the Birnbaum-Saunders distribution, 
and then the determination of conservative two-sided tolerance limits using 
these confidence limits. These authors have also described how these results 
could be used for the reliability evaluation when using the Birnbaum-Saunders 
model. 

Chaudhry and Ahmad (1993) have recently introduced a distribution with 
the pdf 

The mode is at I = ( p / ~ r ) ' / ~ .  This is, in fact, the distribution of 1 /  fi, when 
Y has an inverse Gaussian distribution. 
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Ahmad and Chaudhry (1993) have exploited this relationship inter alia to 
obtain the characterization that given TI;. ., T,, independent and identically 
distributed, such that E[Tr] exists for r = -4, -2, and 2, and that 
(E[T-~]) - '  exists, a necessary and sufficient condition for C ~ = , T , - ~  and 
Cy= - n2(C?, ,7;.-')-' to have distribution (33.46) is that they be indepen- 
dent. Compare these with characterizations of the inverse Gaussian distribu- 
tion presented in Chapter 15. 

4 ORDERING AND CLASSIFICATION OF DISTFUBUTIONS 

4.1 Basic Definitions and Bounds 

In this section we will only discuss ordering among independent random 
variables, although the general topic was initiated, to a large extent, in a 
classical paper of Lehmann (1966) (and independently in the pioneering work 
of van Zwet in 1964) where it was associated with dependence properties of 
two (or more) random variables. (This aspect will find a place in our planned 
volume on multicariate distributions.) 

It should be emphasized here that the number of various classifications 
and orderings of distributions is legion. Many of them are only loosely 
coordinated and a certain amount of confusion and duplication is inevitable. 
A systematic ordering and classification of various orderings is very much 
needed, perhaps utilizing modern computer facilities. The books by Petarid, 
Proschan, and Tong (1992) and Shaked and Shanthikumar (1994), mentioned 
in the beginning of this chapter, are useful contributions in this direction. 

An original aim of development of some of these orderings was to replace 
overreliance on moment functions-standard deviations, skewness (G), 
and kurtosis (fi,), for example-as measures to be used in comparing 
distributions. However, it might also be said that there has been an unneces- 
sary proliferation of varieties of ordering, many of doubtful practical value. 
We have attempted to give a reasonably comprehensive overview of the 
relatively well-established types of ordering, but it is quite likely that more or 
less ingenious further kinds will have been developed by the time of publica- 
tion. We have endeavored to reproduce faithfully the ideas and concepts 
current in this field but have often not provided thorough critical evaluation. 

There is an immense (and occasionally overlapping) literature on ordering, 
so, once again, we are compelled to be selective in our discussion of 
references here (we give an additional few at the end of the chapter) and 
even of basic concepts. 

Ordering of life distributions with respect to aging properties has been a 
popular and fruitful area of investigation during the last 30 years. The 
discussion in Section 7.2 of Chapter 33 of the first edition of this volume 
("Distributions Classified by Hazard Rate") dealt only with IHR (DHR) and 
IHRA (DHRA) criteria of aging. In the more recent literature it has been 
fashionable to use slightly different terminology. For completeness, we will 
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provide eight classes of life distributions based on aging concepts and related 
orderings. Although these definitions are valid for distributions on the whole 
real line, they are usually restricted to life distributions with Fx(0) = 0. 

As indicated in Section 2 of this chapter [see Eq. (33.1)1 the failure rate 
(referred therein as hazard rate) function is 

where Fx(x )  = 1 - Fx(x)  is the suruivor function. 
The definitions of orderings also use the mean residual lifetime 

In the definitions below the subscript X is omitted. The subscript X will also 
often be omitted later. 

1. F ( x )  is said to be an increasing failure rate (IFR) distribution if 
-log F ( x )  is convex. If the density exists, this is equivalent to saying 
that r(,)(x) is nondecreasing. 

2. F ( x )  is said to be an increasing failure rate average (IFRA) distribution 
if -log F ( x )  is a star-shaped function, namely, if -log F ( A x )  < 
- A  log F ( x )  for 0 I A I 1 and x 2 0. When the failure rate exists, 
this is equivalent to saying that v ( x )  = j,;r(,,(t) d t /x  is nondecreasing. 

3. F ( x )  is said to be a new better than used (NBU) distribution if 
-log F ( x )  is superadditive, namely, if - log P(x + y )  2 -log F ( x )  - 
log F ( y ) ,  x ,  y 2 0. This is equivalent to the statement Pr[X > x + yl 
X > X I  I Pr[X > y l  

4. F ( x )  is said to be a decreasing mean residual life (DMRL) distribution 
if p( ,)(XI is nonincreasing. 

5. F ( x )  is said to be a new better than used in expectation (NBUE) 
distribution if p[,,(x) s p,,)(O), x 2 0. 

6. F ( x )  is said to be a harmonic new better than used in expectation 
(HNBUE) distribution if /:F(t)dt r P { ~ ) ( X )  e x p I - ~ / p ( ~ ) ( x ) ) ,  x 2 0. 

7. For absolutely continuous F(x) ,  with failure rate r,,,(x), we say that 
F ( x )  is a new better than used in failure rate (NBUFR) distribution if 
' ( ,)(x) 2 r(,)(O), X 2 0. 

8. For absolutely continuous F(x) ,  we say that F ( x )  is a new better than 
used in failure rate average (NBUFRA) distribution if 
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Further classes can be defined by replacing B (better) by W (worse), with 
appropriate changes in the signs of inequalities. Hazard ( H I  can replace 
failure ( F )  in the definitions. 

The NBU class [3 above] was extended by Hollander, Park, and Proschan 
(1986) to a NBU-to class, defined as follows: A life distribution F(x)  is NBU 
of age t,, (NBU-I,,) if 

F ( x  + to) I F(x )F ( t , )  for all x r 0. (33.49) 

The dual NWU-to class is defined analogously, reversing the inequality 
(33.49). 

The NBU-to includes the NBU class, and the NWU-to includes the 
NWU class. There is a detailed discussion in Hollander et al. (1986). For 
more discussion of IFRA, HNBUE (HNWUE), NBUE (NWUE), and related 
classes, we refer the reader to Alzaid, Ahmed, and Al-Osh (1987), Block and 
Savits (19761, Bondesson (1 9831, Cao and Wang (19901, Klefsjo (1982a, b), 
and Mehrotra (1981), and there are many others. 

As indicated in 1, distributions with increasing hazard rate (IHR distribu- 
tions) and with decreasing hazard rate (DHR distributions) are those distri- 
butions for which r,,,(x) is an increasing or decreasing function of x, 
respectively. The exponential distribution, with a constant hazard rate, is a 
natural boundary between these two classes. The half-normal (chi with one 
degree of freedom) distribution is a DHR distribution. The Weibull distribu- 
tion [see (21.11, Chapter 211 is IHR if c > 1, and DHR if c < 1. 

Barlow and Marshall (1964, 1965, 1967) gave bounds on the cdfs for IHR 
and DHR distributions. Some of these bounds are provided in Table 33.2. 
These bounds can be compared with the well-known Chebyshev-type bounds, 
which are summarized for convenience in Table 33.3. A few references 

Table 33.2 Bounds on distributions classified by hazard rates 

Conditions Values of x Limits o n  1 - F ( x )  

IHR x 2 ,i;Ir 1 - F ( x )  5 w ( x ) ,  where 

i.e., A, = ( - x i l o g  w ( x ) ) r ( r - l o g w  x J r ) / r ( r ) )  
r l / r  

x 5 CLr 
I 1 - F ( x )  2 exp(-x/A' ,  ') 

DHR x 5 rA:/' 1 - F ( x )  2 exp(-x/A' , / ' )  
x 2 r h Y r  1 - F ( x )  >_ ( rx /e ) 'Ar  

IHRA x < ,iyr 1 - F ( x )  2 exp( -bx) ,  
where b satisfies 

p!, = x r ( l  - e - " )  + bj,"tre-h' dt 

Note: A, = d,/r(r + 1). 
Barlow and Marshall (1967) gave limits for F ( x Z )  - F ( x , )  for any x, > x ,  > 0 for each 

of the above cases. For the case where r = 1, and when both the first and second moments 
are known, better, but considerably more complicated, inequalities are available in Barlow 
and Marshall (1964, 1965). 
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4.2 Reliability Classification of Orderings 

From the classification described in the previous section, we have the 
following orderings (which overlap with other orderings introduced from 
different viewpoints by various authors): 

1. FIT G iff C- I(F(x)} is convex [ F(0) = G(0) = 0 and G is strictly 
increasing on its support which is a single interval.] This is also 
equivalent to concex ordering denoted by F 2 G. When the densities 
exist, an equivalent formulation is 

r ( ~ )  ( F - ' ( u ) )  is nondecreasing for u in [0, 11. 
rKa(G-l(u)) 

lFRA 
2. F < G iff G- ' (F(x))  is star-shaped. This is equivalent to star-order- 

ing and is also denoted F 2 G. 

3. F is superadditice (subaddiriue) with respect to G [denoted F S<U G 
( F  G)] if 

G - ' [ ~ ( x  + y)]  2 ( I ) G - ' [ ~ ( x ) ]  + ~ - ' [ F ( Y ) ]  

for all x and y in the support of F. 
NBU 

4. F < G iff G-I * F(x)  is superadditive. This is equivalent to superad- 
ditice ordering (see 3 above) and is also denoted as F ?  G. The 
relationships among these orderings are expressed by the following 
scheme of implications: 

Kochar and Wiens (1987) and Kochar (1989) define a (M)DMRL 
(more decreasing in mean residual life) ordering [for distribution func- 
tions F on [O, m) with F(0) = 01 as 

DMRL 
F < G if and only if 

w(F,(F-'(u)) . is nonincreasing for u in [0, 11. 
P(G)(G-'(u)) 

DMRL 
If G(x)  = e-", then F < G iff F is a DMRL distribution (see 
Definition 4 on page 664). Exponential distributions thus act as a 
reference point for DMRL relationship. The relation between IFR 
(convex) ordering and DMRL ordering is 

DMRL F ' F < ~ G + F  < G. 
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5. Kochar and Wiens also introduce NBUE and HNBUE orderings (cf. 
definitions 5 and 6 in the preceding section), using the concept of the 
equilibrium sur~~ ica l  function, defined as 

The hazard rate of Fe(x )  is 

[Note that ? ( , , ( x )  = ( p ( F ) ( ~ ) ) - ' . ]  Then 

NBUE T ( F ) ( ~ - ' ( U ) )  
F < G  if and only if - 2- 

r ( G ) ( G - ' ( u ) )  

for all u  in [O, 11. Equivalently, 

NBUE 
F  < G if and only if G,-' * F , ( x )  2 G - '  * F ( x )  for all x 2 0, 

(33.53)' 

where as above * denotes the convolution operator. Also 

HNBUE G ; ' * F , ( x )  d 
F < G  if and only if 2 -G; '  * F , ( x )  I,=,, 

X dr 

for all x  2 0, 

or equivalently 

HNBUE 
F  < G if and only if F , ( x p o , ( x ) )  2 G , ( x p G ( x ) )  for all x  2 0 

(33.54)'  

N BU NBUE 
In general, F < G does not imply F  < G  [see Kochar and Wiens 

(1987) for a counterexample]. However, 

NBU NBUE 
if c ( x )  = e - " ,  then F < G  + F  < G  

NBUE HNBUE 
andalso F  < G  * F  < G .  
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Relations among DMRL, NBUE, and dispersive (tail) orderings (see Sec- 
tion 4.3) can be expressed in terms of equilibrium distribution functions. 
They are not particularly revealing [see Kochar (1989) for details]. 

Mitra and Basu (1994) introduced a family of life distributions, called the 
NWBUE (NBWUE) family, which includes the IDMRL class of distributions 
as well as all BFR distributions (see the definition on page 643). Their 
definition of this family of distributions is as follows: A life distribution F 
having support on [O,m) and finite mean is said to be new worse then better 
than used in expectation (NWBUE) (new better then worse than used in 
expectation, NBWUE) if there exists a point x,, 2 0 such that the mean 
residual life time 

1 2 ( < ) p ( F ) ( O )  for X < X ( )  

F )  o f o r x r x ( , .  

Point x,, referred to as change point of the distribution function F, need not 
be unique. However, for a continuous distribution function F, the collection 
of all change points of an NWBUE (or NBWUE) distribution (say, C( , , )  is 
either a singleton or a closed interval. It may be noted that a NWBUE 
(NBWUE) distribution is NBUE (NWUE) if 0 E C , , ,  while it is NWUE 
(NBUE) if a, E CcF, .  

Mitra and Basu (1994) have established some inequalities and used them 
to derive bounds for moments of a NWBUE distribution. 

A close relation between HNBUE and Lorenz ordering [Chap- 
ter 12, Eq. (12.8)] is worth noting. Recall that the Lorenz curve of F ( x )  is 

L , ( u )  = p l r , ( u ) l 1 ' ~ - l ( s )  ds.  o 5 u 5 1 ,  (33.55) 
0 

and the Lorenz ordering is 

F I, G if and only if L , ( u )  2 L , ( u )  for all u in ( 0 , l ) .  

Kochar (1989) shows that 

HNBUE 
F < G ifandonlyif F I ,  G ,  

namely, the conditions 

E ( X P , . , ( X ) )  2 ~ ' , ( X I , L ( ~ ( X ) )  

and 

p ( F ) ( u ) r ~ - ' ( s )  0 ds @ ( < ; ) ( " ) f ' G - i ( s )  0 ds 

are equivalent. 
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HNBUE 
Another revealing property of HNBUE ordering is that if F < G ,  then 

the coefficient of variation of F is less than that of G. (Of course the 
converse is not universally true.) Arnold and Villasefior (1985) show that 
Lorenz ordering is preserved under monotonic transformation g(x) if and 
only if 

g ( x )  = ax, a > 0, x 2 0, 

Arnold (1991) shows that the only functions g ( X )  for which 

are defined by 

g ( x )  > 0 for all x > 0, 

and are monotonically nondecreasing for x 2 0, while g(x)/x are monotoni- 
cally nonincreasing for x > 0. Analogously 

X I, g ( X )  for all X 

is equivalent to 

g ( x )  > 0 for all x > 0 and is monotonically nondecreasing 

and 

g(x) /x  is monotonically nondecreasing for x > 0. 

Arnold and Villasefior (1991) study Lorenz orderings among order statis- 
tics XI  I X2 t s . . . - < Xrr : from random samples of size n for several 
specific population distributions. For standard uniform distributions (see 
Chapter 26) they show that 

Xi+l:n < L  Xi:n SL X, : ,~ - I  (33.56a) 

and also that 
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[Here we are modifying the notation used heretofore. Xi:" ,  for example, 
represents the cdf of X i :  ,.I 

Relationship (33.56b) also applies for any symmetric population distribu- 
tion with finite range 0 to c  (> 0). These results also hold for power-function 
distributions (see Chapter 25) with the cdf 

However, for Pareto distributions with the cdf 

we have 

Xi: , ,  SL Xi+l:ny 

reversing part of (33.56a); we also have 

Xi:n SL Xi+ l : t r+ l .  

4.3 Alternative Stochastic Classification of Orderings 

An alternative classification of orderings (not specifically geared to life 
distributions) is presented below, starting with the natural but very rigid 
stochastic ordering-which turns out to be related to other types of ordering 
popularized in the literature on reliability [see, e.g., Barlow and Proschan 
(1975, 1981)l: 

1. It is hard to ascertain when and where the concept of stochastic ordering 
was introduced into probability theory. One of the earliest references in 
statistical literature is van Zwet (1964). A natural definition for "F is 
stochastically less than G" (denoted F I,, G) would be 

F ( x )  2 G ( x )  for all x .  

i 
a However, a conventional definition is 

E [ ~ ( X ) ~ F , ( X )  = ~ ( x ) ]  L E [ ~ ( X ) ~ F , ( X )  = ~ ( x ) ]  for all x ,  

(33.58) 
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2. F is less than (or equal to) G in hazard-rate sense ( F  I,,, G) if 

F ( x )  is nonincreasing for x in [o, G - ' ( I ) ]  . 
C( x 

This is also called positioe uniform stochastic ordering by Keilson and 
Sumita (1992). There are several equivalent definitions: 

a. F I,,, G - rCF)(x) 2 T ( ~ ) ( x )  (if F and G are absolutely continuous). 
Note the reversed sign for the hazard rate inequality. - 

b. F I,,, G - F 2Tp2 C, where TP2 is total positi~:ity of order 2 ordering, 
defined by 

c. F I,,, G - F(xlx > y) r c(xlx  > y) for all 0 I x I y, where 
F(xlx > y) = F(x + y)/F(y) and c(xlx  > y) = c ( x  + y) /c(y)  are 
conditional survival functions. 

Note that F I,,, G 3 F r,, G. See Keilson and Sumita (1992) for 
details. 

3. When the densities f (x )  = F1(x) and g(x) = G'(x) exist, we can have 
likelihood ratio (LR) ordering with F sLR G if f(t)/g(t) is a nonin- 
creasing function of t for t 2 0. Since F r;,, G implies that for 
t, > I, ,  

we have 

Therefore 

F I,, G - F s,,, G .  

The converse is not valid. 
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4. F is stochastically less (more)  variable than G [denoted F 5,  ( 2, )GI 
if 

for all nonincreasing (nondecreasing) conuex integrable functions h( - )  
with 

If E[ XIFx(x) = F(x)l = EIXIFx(x) = G(x)] ,  then (33.60) holds for 
all convex integrable functions h ( - )  [Metzger and Riischendorf (199111. 

Equivalently F I, G if and only if 

If F I, G, it implies that F gives less weight to extreme values than 
does G. As Metzger and Riischendorf (1991) have pointed out, variabil- 
ity ordering is in fact "a combination of a 'variability' ordering and of 
the stochastic ordering I,, ", and "a pure variability ordering" can be 
obtained by requiring 

5. Dispersice ordering (and related orderings) have been studied by several 
authors, including Bickel and Lehmann (1976, 1979), Lewis and 
Thompson (1981), Oja (1981), Shaked (19821, Deshpande and Kochar 
(1983), Bartoszewicz (1985, 1986), Droste and Wefelmeyer (1989, and 
Marzec and Marzec (1991a, b, 1993). 

As pointed out by D. J. Saunders (1984), dispersive ordering can be 
described loosely by saying that the graph of one cdf is always steeper 
than that of the other, where the definition of "steeper" is in terms of 
the inverse (quantile) function. The following definition is implicit in 
Lewis and Thompson (1981): G is more dispersed than F ( F  Idis, G) if 

for all a > 0 and 0 < a < 1. [ F- ' ( a )  = inf(t : F(t ) 2 a)]. Deshpande 
and Kochar (1983) showed that this definition is equivalent to 

G I ( @ )  - G - ' ( a )  2 F-I (@) - F - ' ( a )  for 0 < a < p < 1, 

(33.63)' 

an ordering considered by Saunders and Moran (1978) and Saunders 
(1978). 
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Lehmann (1966) defined F to have a lighter tail than G if 

for some M > 0 and all 0 < a < /3 < 1. An equivalent definition, introduced 
earlier by Fraser (1957) in his pioneering book on Nonparametric Methods is 
that { G - ' ( F ( x ) )  - x )  is a nondecreasing function of x. This can be estab- 
lished by putting a = F ( x )  and /3 = F ( y )  with x I y in (33.63)'. It was 
referred to and used by Doksum (1969), in connection with studies on the 
power of rank tests, who termed it tail-ordering, and studied by Yanagimoto 
and Sibuya (1976), who described it as G is stochastically more spread than F. 
This definition is implicit in Shaked (1982), who dealt with the absolutely 
continuous case. Shaked's definition is given in terms of sign changes of a 
function. It was extended to a more general case by Lynch, Mimmack, and 
Proschan (19831, in the following way: Define S ( x  ,, . . . , x,,,) as the number of 
sign changes of the sequence x , ,  . . . , x,,, discarding zero terms, and S( f )  as 
the number of sign changes of the function f on (-m,  +w). Specifically, 

over all t ,  < t ,  < . . . < t,,, ( m  = 2,3,.  . . ). Also denote F ( x  - c )  as F,., and 
S, = S(F,. - G )  for distribution functions F and G .  Then 

F G - (for each real c )  (33.65) 

a. S(F,. - G )  I 1 ,  
b. if S,. = 1, then F, - G changes sign from - to +.  

The family of gamma ( a ,  /3) distributions (see Chapter 17), with constant /3, 
is dispersively ordered by the shape parameter a .  The larger the value of the 
shape parameter a ,  the more dispersed is the distribution. 

Barlow and Proschan (1975) describe the following orderings for life 
distribution cdfs F and G [with F(0)  = G ( 0 )  = 01 and G strictly increasing 
on its support, which is a single interval: 

a. F is con~lex-ordered with respect to G (denoted F 2 G )  if G - ' [ ~ ( x ) ]  is 
convex. 

b. F is star-ordered with respect to G (denoted F ? G )  if G - ' [ ~ ( x ) ]  is 
star-shaped, namely G - ' [ F ( x ) ] / x  increases with x for all x in the 
support of F. 
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There is a simple relation between convex- and star-ordering, namely 

Also, F 2 G * F G under the single condition that 

[Sathe (1984)l. Earlier versions of this result [Doksum (1969); Deshpande and 
Kochar (1983)] require that F and G be absolutely continuous and F'(0) 2 
G'(0) > 0. 

We note the relations 

F s,, G and F ? G - F <,,, G [Sathe (1984)l 

and 

F I,, G and F % G - F <,,, G [~artoszewicz (1985)l 

Bartoszewicz (1986) provided relations between hazard rate ordering and 
dispersive ordering. If F and G are absolutely continuous over their support 
t 2 0 and F(0) = G(0)  = 0,  then the conditions r,,,(t) 5 r,,,(t) for all t r 0 
and 

F ( t  + x )  
F ( x l t )  = is a decreasing function of x for all t L 0 

F( t 

imply that F G. Similarly, under the same conditions, 

F G and F (or G )  is IFR - r,,,(t) s r,,,(t) 

for all t > 0. 
Barlow and Proschan (1975) obtained the classical result 

su 
Also F < G and F <,, G 3 F <,,, G. This connection between superaddi- 
tive ordering and dispersive ordering is established in Ahmed et al. (1986). 
[This is actually a combined version of three letters submitted by Alzaid and 
Ahmed, Bartoszewicz, and Kochar.] 

The condition F <,, G is essential, as can be seen from the well known 
counterexample 
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in which G-'[F(x)] = x 2  satisfies the superadditivity condition, while 
G-I[F(x)] - x = x(x - 1) is neither nondecreasing nor nonincreasing in x 
for all x r 0. The same example shows that the condition r ( f )  2 r(GJt) (f). does not, in general, imply that F <,,, G. However, the cond~ t~on  F -?,, G 
can be replaced by Sathe's condition 

Bagai and Kochar (1986) investigated the relation between TP, (or equiva- 
lently hazard rate) ordering (see above-the beginning of Section 4.3) and 
dispersive (tail-) ordering. They showed that if F or G is IFR, then 

Similarly, if F or G is DFR, then 

In particular, if both F and G are exponential distributions (and so both IFR 
and DFR), then 

We note, again, the pivotal position of the exponential distribution in 
ordering schemes. 

Droste and Wefelmeyer (1985) discuss the dispersive ordering and its 
alternative versions for strongly unimodal distributions [i.e., for the distribu- 
tions such that their convolution with any unimodal distribution is unirnodal; 
Ibragimov (19.5611. 

6. Oja (1981) introduces ordering based on convexity of order k. [A 
function f ( x )  is concex of order k ,  k = 2 ,3 , .  . . , iff 

If the sign of the inequality is reversed, the function is concaLfe of order k. If 
the derivative exists, f ( x )  is convex (concave) of order k if and only if 
f ( k ' ( ~ )  2 ( I )  0 for all x.1 

1 1 . . . 1 
X I  x2 . . . 

X k  

X k - l  .,"-I . . . 
I x,"-' 

f ( ~ l )  f ( ~ 2 )  . . .  f ( ~ k )  

2 0 for all x ,  < x, < . . . < xk .  
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The ordering F I, G applies if and only if 

is convex of order k. The ordering F s l G  is, of course equivalent 
to F <,,, G, while F S, G is the usual conL3ex ordering, introduced by 
van Zwet (1964). Oja (1981) used the terminology that F I, G means that F 
is "not more skewed to the right than G," and showed that 

for all x l  < (x,, x,) I X, in the support of F, where 

The I, ordering is a natural extension of IFR ordering for random 
variables that are not necessarily positive. Indeed the condition "G- 'F  is 
convex (concave)" is an alternative definition for IFR (DFR) ordering (cf. 1 
in Section 4.2). Oja (1981) asserted that S, ordering is an alternative to 
ordering with respect to kurtosis, and he provided a motivation based on the 
convexity of the function 

7. Another ordering, focusing on tail behavior, is the more recently 
formulated Parzen ordering. This was suggested explicitly by Alzaid and 
Al-Osh (1989), motivated by the original paper of Parzen (1979) and its 
extension and refinement by Schuster (1984). It is based on the concept of 
the density -quan tile function 

F ' [F- ' (u)]  for u in [0, 11. (33.70) 

Parzen (1979) observed that, as u -, 1, 

F'[F- '(u)] - (1  - u)"". 

He called the exponent a,, the right-tail exponent. It is defined by 
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where 

Similarly, as u -+ 0, 

where 

a ,  = lim 
uJ (u )  

F ' [F- ' (u) ]  ' 

Alzaid and Al-Osh (1989) defined an ordering based on the tail-exponent 
function 

For exponential distributions, a,,,(.) = 1. Values for some other distribu- 
tions are 

Pareto (Chapter 19) px(x)  = ( p x  I + @ - ' ) - I  a(,.,(u) = 1 + p 
Logistic (Chapter 23) px(x)  = e--'(I + e--')-* a,,,(u) = 1 - 2u 
Power function (Chapter 25) p,(x) = j3(1 - x ) ~ - '  a,,,(u) = 1 - p 

In view of the relationships 

a. F -? G o q F ) ( u )  5 ( Y ( ~ ) ( U ) ,  
b. F is IFR (DFR) if and only if a,,.,(u) I ( 2 )  1 for all u in [0, 11, 

Alzaid and Al-Osh (1989) defined the Parzen ordering F <, G  if and only if 

lim a(,.,(l - u)  < lim a((;)(l - u) .  
1 1 - 1 -  ( ( + I -  

This ordering is preserved for the order statistics-namely F <, G  if and 
only if F,,, <, G,,,, where F,,, ,  G,,, are the cdfs of the jth-order statistic in 
random samples of size n from F, G, respectively. 

We have 

Uniform <, Power(p) <, Exponential <, Pareto ( a  < 1) 

<, Cauchy <, Pareto ( a  > 1) , (33.74) 

an ordering in terms of tail behavior that has some intuitive appeal. 
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8. We finally note that Metzger and Riischendorf (1991) have introduced 
a more general concept of conditional ordering, in which the inequality(s) 
defining the ordering need apply only on a restricted subset of values of the 
variable. They applied this for the variability ordering [see (33.60) above] but 
the technique can be used for most other orderings. 

Rojo (1992, 1993) introduced two "pure-tail" orderings: 

D-ordering is defined by 

F ( x )  
F I, G if limsup- <m,  

x - r m  G ( x )  (33.75) 
F <, G if F I, G but G gD F, 

( F  -, G if F I, G and G I, F .  

q-ordering is defined by 

F - ' ( u )  
F 2, G if lim sup < O0, 

4 - 1  G - ' ( u )  
F <, G if F I, G but G g, F, 

(33.76) 

( F  -, G if F I, G and G 5, F. 

Although closely related, these two orderings are not identical. In fact 
q-ordering is location and scale invariant, but D-ordering is not. There is a 
detailed discussion of relationships between the two orderings in Rojo (1992). 

D-ordering is related to hazard rate orderings (definition 2 at the start of 
this section) in that both depend on the behavior of the function F(x)/C(x). 
Rojo (1988) discusses the effects on D-ordering and q-ordering of operations 
of convolution, finite mixture, and (strictly increasing) transformations. The 
"weak" orderings I, , I, (also -, , -, ) are preserved under these 
operations. Although this is often also true for the "strong" orderings 
<, , <, , some restrictions are needed in convolutions for <, and in 
transformations for <, . See Rojo (1993) for details. 

By considering two distributions F and G with respective densities f and 
g ,  Jorgensen (1994) defined a strict partial ordering by taking F has a heauier 
upper tail than G to mean there exists 1 > 0 such that for every a and every 
b > 0 there is an x* for which 

I +  f ( x )  - + bx) < o for every x > x* 
1 - F ( x )  1 - G ( a  + b x )  

Jorgensen similarly defined the ordering F has a heacier lower tail than G .  
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Pearson (Types 11, 1V, VI, VII) 
Perks 
polynomial-normal 
power-function 
pseudo-t 
Rayleigh (see noncentral chi-square(d)) 

Discrete distributions: 
Bernoulli 
binomial 
binomial-uniform 
discrete rectangular 
geometric 
negative binomial 
Poisson 

SUBJECT INDEX 

Rayleigh-Rice (see noncentral 
chi-square(d)) 

rectangular (see uniform) 
rectangular mean 
s,, s,, S" 
sg, SL. s; 
S-systems 
sinh-normal 
skew-Laplace 
skew-normal 
spherical uniform 
Studentized chi-square(d1 
Subbotin 
t 
tine 
triangular 
uniform 
von Mises 
Weibull 
Weibull-exponential 
Weibullized beta 
Yule 
Zipf 

Convergence, 10 
Cornish-Fisher expansion, 121, 335, 340, 378, 

390, 457, 462, 465, 494, 497,538 
generalized, 391 

Correlated F variables, 352 
Correlation coefficient, 41, 66, 525,536, 

545-627 
Correlation coefficient transforms, 566-568 
Covariance, 599 
Cramtr-Rao lower bound, 26, 91, 131, 134, 

586, 589 
Cumulant generating function, 86, 117, 124, 

165, 218, 447 

Decigalts, 372 
Density quantile function, 678 
DHR, 663 
DHRA, 663 
"Difference" formula, 558 
Differential equation, 124, 144, 146, 284, 515, 

647 
Differential operator, 606 
Dirichlet distributions. 301, 609 



SUBJECT INDEX 

Discriminant function, 139 
Distribution-free estimator, 79 
DMRL, 664 
Double exponential distribution, see Laplace 

distribution 
two-piece, 193 

Double Weibull distribution, 198 
Doubly noncentral beta distribution, 503 
Doubly noncentral F distribution, 480, 499 
Doubly noncentral I distribution, 533 

Efficiency, 176-177, 182, 222, 287, 585, 592, 
662 

Elasticity of variance, 469 
Entropy, 71, 118, 166, 279 
Estimation: 

"block-type", 5 1 
generalized reduced gradient, 348 
least-squares, 84, 227 
linear, 28-29, 39 
maximum likelihood, 41, 47, 78, 83, 92-93, 

127-139, 150, 172, 196-197, 223, 227, 
286, 288-289, 397, 451, 454-455, 495, 
498, 510, 590, 592, 597, 599, 615, 625, 
644, 655, 661 

maximum relative likelihood, 399 
minimax, 290-291, 293 
minimum mean square error, 31, 35, 132, 

288 
minimum variance unbiased, 187, 196, 292, 

303,455, 495,510, 583-584 
moments, 221, 303,398,453-454 
probability-weighted moments, 50, 81 
robust, 187 

Expansions: 
Cornish-Fisher, 121, 335, 340, 378, 380, 457, 

462, 465, 494, 497, 538 
Edgeworth, 121, 406-410 
Laguerre, 439-440, 462,465, 487 
Taylor, 340, 402 

Expert systems, 237 
Exponential distribution, 124, 130, 141, 170, 

190, 281, 295-296, 313, 406, 580, 611, 
640, 647, 667, 677 

Exponential family, 658 
Exponential power distribution, 643 
Extremal quotient, 86, 354 
Extreme value theory, 10 
Extreme value distributions, 1-93 

compounded, 88 
generalized, 75-85 

F-distributions, 142, 244, 322-355, 623, 641, 
648 

"corrected", 348 
generalized, 348 

Failure rate, see Hazard rate 
Feasibility moment matching, 227 
Fiducial probability, 414, 457, 549 
Fisher's 2-transformation (of F), 334, 494 
Fisher's Z'-transformation (of R), 547, 569, 

579, 616, 621 
Force of mortality, see Hazard rate 
Frequency moments, 397 
Functions (mathematical): 

Appell's hypergeometric, 264, 418, 614 
Appell polynomials, 376 
Bernoulli numbers, 117 
Bessel functions, 436, 452, 477, 550, 588, 

600, 613 
Catalan's constant, 148 
Cauchy-Schwarz inequality, 283 
confluent hypergeometric, 193,248,326,349, 

450, 499, 501, 517, 534, 621, 648 
continued fractions, 248 
Dawson integral, 449, 483 
Dirichlet integral, 300 
eigenvalues, 213, 545, 608 
Euler-Maclaurin summation form, 228 
Euler's constant, 228 
Fourier expansion, 242 
Fourier integral, 192 
Fourier transform, 165, 368 
gamma, 262, 535 
Gaussian hypergeometric, 211,253,281,418, 

549, 553, 555, 583, 614, 619 
Gegenbauer polynomials, 613 
Gram matrix, 545 
Hermite polynomials, 122 
Hh, 515-517 
hypergeometric, 365, 535 
incomplete beta, 211, 350, 533 
incomplete beta ratio, 211, 238, 332, 364, 

485, 489, 491, 516, 620 
incomplete gamma, 196 
incomplete gamma ratio, 307 
Jacobi polynomials, 613 
Kummer's formula, 534 
Laguerre polynomials (generalized), 438,487 
Lkvy representation, 165 
Mellin transform, 258, 500 
polygamma, 123, 218, 223, 250, 494 
Riemann zeta, 117, 136 
Stirling's formula, 219 



SUBJECT INDEX 

G3B distributions, 251, 348 
Galton's function, 546, 557, see also 

Correlation coefficient 
Gamma distribution, 89, 194, 244, 306, 407, 

462, 612, 642,648-649,660 
generalized, 422, 649 

Generalized extreme value distribution, 75-85 
Generalized logistic distribution, 88 
Generalized Rayleigh distributions, see 

Noncentral chi-square(d) distribution 
Generalized variance, 33 
Geometric distribution, 150, 310 
Gini index, 220 
Gompertz distributions (law), 25, 640 
Goodness-of-fit tests, 67, 81, 135, 138, 281, 284 
Grouped data, 83, 308 
Growth curve, 113, 130 
Growth model, 113, 140 
GT distributions, 400 

Half-Cauchy distributions, 226 
Half logistic distributions, 150 
Harmonic mean, 226 
Hazard rate, 82, 349, 640-680 
History, 508,527, 556-559 
HNBUE distributions, 664, 671 
Homoscedasticity, 582 
Hotelling's generalized T;, 344 
"Hull trimming", 564 
Hyperbolic distribution, 647 
Hyperbolic secant distribution, 147 

generalized, 148 
Hyperbolic secant square(d) distributions, 406 
Hyper Gompertz distributions, 647 
Hyperspace logistic distribution, 647 
Hypothesis testing, 37, 178, 323, 362, 460, 467, 

481,488, 509, 512 

IDMRL distributions, 646 
IFR distributions, 643, 678 
IFRA distributions, 643, 678 
IHR distributions, 643, 663 
IHRA distributions, 643, 663 
Inbe distributions, 348 
Index of co-relation, 546,557, see also 

Correlation coefficient 
Inequalities: 

Cantelli, 666-667 
Chebyshev, 284, 566, 666 
Chernoff, 284 
Gauss-Winkler, 666 
Wald, 666 

Inferences: 
conditional, 49 
predictive, 82 

Infinite divisibility, 368 
Influence functions, 580 
Information matrix, 78-79 
Information-generating function, 118, 169, 274 
Interpolation, 244, 404, 518 

bivariate, 334 
harmonic, 333-334 

Inverse gamma distributions, 400 
Inverse Gaussian distributions, 658, 662 
Inverse generalized gamma distributions, 401 
Irwin-Hall distributions, 296, 307 
Iteration: 

exponential-Newton, 495 
linear-Newton, 495, 498 
Newton-Raphson, 79, 224, 656 
quadratic-Newton, 495, 498 

Jackknife estimator, 657 

"Kinked" chi-square(d), 621 
Kolmogorov-Smirnov statistics, 68, 179, 307, 

640 
Kuiper statistic, 68 
Kummer distributions, 648 
Kurtosis ordering, 167 
Kurtosis tests. 301 

L,, L,, LU distributions, 151 
Lagrangian-beta distributions, 255 
Laplace distribution, 149, 164-201, 295, 406, 

612 
first law of Laplace, 164 
second law of Laplace, 164 

Law of proportional effects, 654 
Least-squares, 84, 227, 661 
Length-biased distributions, 249 
Life: 

mean residual, 120 
tables, 82 
testing, 308 

Lifetime distributions, 639-663, see also 
Survival functions 

Likelihood function, 74, 147 
Likelihood ratio, 235, 467, 673 
Limiting distributions of extremes, 4 (see also 

Extreme value distributions) 
Linear estimation simplified, 181 



L 

SUBJECT INDEX 

Linear hypothesis: NBUFRA, 664 
generalized, 139, 343, 481 NBWUE, 670 
multivariate, 468 Nearest neighbor, 142 

Linnik's distributions, 200 Negative binomial distributions, 256, 332, 620 
Location-scale parameters, 140, 152, 557 Noise, 187 
Log beta distributions, 247 Nomogram, 54, 334, 340, 372-374, 510, 571 
Log-gamma distributions, 19 Babanin, 373 
Log t distributions, 400 James-Levy, 373 
Logistic distributions, 113-154, 579 Stammberger, 340, 373,571 

generalized, 140-143, 339 Noncentral beta distributions, 251, 502, 533 
Logarithmic F-distributions, 330 Noncentral chi-square(d) distributions, 251, 
Logit analysis, 139 433-473,491, 649 
Log-Laplace distributions, 192 Noncentral F distributions, 344,347,470, 
Loglogistic distributions, 151 480-504, 517, 621 
Lognormal distributions, 13, 247,350, 642, 652 Noncentral gamma distributions, 456 
Log-odds, 135 Noncentral t distributions, 380, 420, 508-539 
Lorenz curve, 220 modified, 537 
Lorenz ordering, 670-671 Nonnormality, 167, 538, 559, 580,610 
Loss function, 135, 291 Normal distributions, 191, 305, 519, 641-642 

Marcum Q-function, see Noncentral chi- Odds ratio, 140 
square distribution Order statistics, 15-17, 29, 38, 67, 71, 76-78, 

Marginal likelihood, 624 90, 123-127, 130, 137-138, 140, 144-146, 
Mean deviation /standard deviation ratio, 117, 168-171, 183, 190, 196, 280-281, 287, 

148, 166, 195-196, 219, 279, 298, 366 293-305, 313, 332-334, 372,404 
'Mean mean', 656 Ordering, 663-680 
Mean hazard rate, 648 conditional, 680 
Mean residual life, 120 convex, 668-675 
Mean square error, 51, 496, 511, 595 D-, 680 

minimum, 35 dispersive, 674-676 
Mean square successive difference ratio, 601 hazard rate, 673, 676 
Median, 139, 168, 172, 176, 181, 399, 576 likelihood ratio, 673 
Midrange, 177 Parzen, 678 
Mielke's beta-kappa distributions, 351 positive uniform stochastic, 673 
Missing observations, 625 pure-tail, 680 
Mixtures, 91, 115, 153, 187, 197, 200, 249, 302, q-, 680 

303, 355, 412, 470, 472, 483, 533, 561, reliability, 668 
563,579, 620, 640, 645, 680 star, 668, 675 

Mode, 153, 662 stochastic, 672 
Modulus of mortality, 647 strong, 680 
Moment-generating function, 86, 123, 141, 218, superadditive, 668, 676 

250, 279,437, 447, 457, 487, 497, 605, 613 tail, 675 
Moments, probability-weighted, 50, 81 variability, 674 
Moving average, 187 Outliers, 64-66, 138, 171 
Multiple coefficient of determination, 618 
Multiple comparisons, 139 
Multiple correlation coefficient, 435, 481, Pareto distributions, 148, 672 

617-627 Pareto-Lkvy form, 351 
Multiple regression, 529, 621 Pearson distributions, 219, 227 

Type 11, 406 
Type IV, 513,523, 525 

NBU, 664 Type VI, 248,325,344 
NBUE, 664, 670 Type VII, 195,363,393 
NBUFR, 664 Perks's distributions. 143 
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