
Basics of Matrix Algebra for Statistics with R provides a guide to elementary 
matrix algebra sufficient for undertaking specialized courses, such as multivariate 
data analysis and linear models. It also covers advanced topics, such as general-
ized inverses of singular and rectangular matrices and manipulation of partitioned 
matrices, if you would like to delve deeper into the subject.

The book introduces the definition of a matrix and the basic rules of addition, sub-
traction, multiplication, and inversion. Later topics include determinants, calculation 
of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms 
with respect to vectors. The text explores how these concepts arise in statistical 
techniques, including principal component analysis, canonical correlation analysis, 
and linear modeling.

In addition to the algebraic manipulation of matrices, the book presents numerical 
examples that illustrate how to perform calculations by hand and using R. Many 
theoretical and numerical exercises of varying levels of difficulty aid you in assess-
ing your knowledge of the material. 

Features
• Covers basic algebraic manipulation of matrices, such as basic arithmetic, 

inversion, partitioning, rank, determinants, decompositions, eigenanalysis, and 
Hadamard and Kronecker products

• Shows how to implement the techniques in R using worked numerical 
examples 

• Describes vector and matrix calculus, including differentiation of scalars and 
linear and quadratic forms

• Incorporates useful tricks, such as identifying rank 1 matrices and scalar 
subfactors within products 

• Explains how to convert an optimization problem to an eigenanalysis by 
imposing a non-restrictive constraint

• Presents the derivation of key results in linear models and multivariate 
methods with step-by-step cross-referenced explanations

Avoiding vector spaces and other advanced mathematics, this book shows how to 
manipulate matrices and perform numerical calculations in R. It prepares you for 
higher-level and specialized studies in statistics.
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Preface

The subject matter of this book is basic matrix algebra with a focus on those parts
of the theory that relate to practical statistical applications (so attention is especially
focused on real symmetric matrices) together with a guide to the implementation of
the calculations in R. The aim is to provide a guide to elementary matrix algebra
sufficient for undertaking specialist courses such as multivariate data analysis and
linear models encountered in final year undergraduate and master’s courses. In
addition the material goes a little further than this, providing an initial guide to more
advanced topics such as generalized inverses of singular matrices and manipulation
of partitioned matrices. This is to provide a second step for those who need to go
a little further than just courses such as these, for example, when embarking on a
master’s dissertation or the first year of doctoral research and also to satisfy those
who develop an interest in the subject in its own right. It is not intended to be a
comprehensive text on matrix theory so topics not of direct relevance to these needs
are not included

In addition to the algebraic manipulation of matrices, the objective is to give
numerical examples since it is necessary for a practicing statistician to be able to do
numerical calculations, both by hand and by using R. Much of the exposition is by
presenting examples with detailed solutions.

People undertaking specialist statistics courses are typically in one or the other
of two broad groups. First are those who have arrived through a general mathematics
degree programme or at least the first two years of such a programme. Second are
those arriving after experience in applied sciences such as biomedical or engineering
or sociological sciences, perhaps with a brief introductory course covering essentials
of mathematics and elementary statistics. Both groups will have some knowledge
of basic statistics, including common univariate distributions, estimation, hypothesis
testing and simple linear regression on at least one variable. Both groups will be
familiar with basic [differential] calculus (polynomial and exponential functions,
products, ratios and the chain rule). Typically those in the first group will have
encountered matrices through a study of linear or vector spaces while those in
the second will have escaped such material and most probably have encountered
matrices through solving systems of simultaneous equations or maybe even only
via unmotivated definitions and initially strange rules for matrix multiplication.
Generally, neither group is prepared for the heavy reliance on matrix manipulation
that is required by subjects such as multivariate analysis or linear models. This
text is intended to provide that experience. Keeping in mind the backgrounds of
those coming to statistics through non-mathematical routes (a growing and crucially
important constituency for the discipline of statistics), the presentation given here
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does not rely on notions of linear spaces. This is undeniably a little restrictive when
providing detailed theoretical proofs of some results (for example, the equivalence
of row and column ranks of a rectangular matrix) but examples, illustrations and
intuitive explanations should compensate for the lack of formal proofs.

Arithmetical calculations “by hand” involving matrices are unquestionably
confusing and tedious. Whilst it may be important to know the principles of
such calculations, it is now so easy to use a computer package such as S-PLUS
or R or MATLABr or FREEMAT to perform everything from simple addition
and multiplication to the most sophisticated of techniques so that the numerical
complexities of matrix calculations should not be a hindrance to performing them.
This is an aspect which is largely ignored in mathematical courses on linear spaces
and unlikely to be covered in any detail in courses in most other disciplines. Because
R is the computer language of choice for statistics (not least since it is free and open
source), the presentation here is focused on the use of R rather than any of its rivals
or competitors. This entails some investment in learning R itself but as the intended
primary readership is those embarking on further statistical work, this should be an
investment that provides dividends beyond just the implementation of matrix algebra.
Even though R provides ready-made functions for executing standard statistical
techniques such as estimating linear models and performing principal component
analysis with all the matrix calculations involved hidden from the user there will
always be a need to go beyond the routine everyday calculations provided by the
statistical package.

Chapter 7 provides a brief introduction to differentiation involving vectors and
matrices. This chapter concerns problems involving maximum likelihood in mind,
not just calculation of maximum likelihood estimates but construction of likelihood
ratio tests of hypotheses which only arise in multivariate problems. R’s symbolic
differentiation capabilities are limited and cumbersome, especially in the context of
vectors and matrices, but R is certainly invaluable in numerical implementation of
such tests. Also included is a section (§7.6) on constrained optimisation of quadratic
forms where introduction of a Lagrange multiplier converts the problem to solving
an eigenequation. Some illustrations of these are given in the final Chapter 9 of the
text.

A further comment concerns the exercises. These are provided as an integral part
of the exposition and as a vehicle for self assessment of understanding of the material.
Outline solutions are provided to enable checking of numerical answers and a guide
to the techniques required, but deliberately are not very detailed.

Finally, there are many people to thank for this book, not least several reviewers
(most of whom remain anonymous) whose suggestions and comments have greatly
improved the content and presentation of the book and the help and rapid response
over recent months from Rob Calver, Amber Donley and Saf Khan among others at
Chapman & Hall/CRC Press and especially to Daniel Fieller for the cover photograph
Baobabs in Tete, Mozambique.

Nick Fieller, Sheffield, UK.
nick.fieller@sheffield.ac.uk



1
Introduction

1.1 Objectives
The aim of this book is to provide a guide to elementary matrix algebra sufficient
for undertaking intermediate and advanced statistical courses such as multivariate
data analysis and linear models. Starting from a definition of a matrix and covering
the basic rules of addition, subtraction, multiplication and inversion, the later topics
include determinants, calculation of eigenvectors and eigenvalues and differentiation
of linear and quadratic forms with respect to vectors. These later topics are sometimes
not included in basic courses on linear algebra but are virtually essential for full
discussion of statistical topics in multivariate analysis and linear models. The
notes go a little beyond meeting just this need, providing an initial guide to more
advanced topics such as generalized inverses of singular and rectangular matrices
and manipulation of partitioned matrices. This is to provide a second step for those
who need to go a little further than standard lecture courses on advanced statistics,
for example, when embarking on a dissertation. As well as describing the basics
of matrix algebra, including numerical calculations “by hand”, for example, of
matrix multiplication and inversion, the notes give guidance on how to do numerical
calculations in R (R Core Team 2014). R is broadly similar in operation to the
package MATLABr but oriented specifically towards statistical applications rather
than more general areas of applied mathematics. R is an open source system and
is available free. It is closely similar to the commercial package S-PLUS: the prime
difference is that R is command-line driven without the standard menus and dialogue
boxes for statistical operations in S-PLUS. Otherwise, most code written for the two
systems is interchangeable. There are however a few differences, for example there
may be differences in the available optional arguments for some functions. Generally,
all options available in S-PLUS are also available in R but not necessarily vice versa.
These are quickly verified by use of the help system. The sites from which R and
associated software (extensions and libraries) and manuals can be found are listed at
http://www.ci.tuwien.ac.at/R/mirrors.html.

There are many available user interfaces for R, such as RStudio (Verzani, 2011),
some of which provide a menu-driven facility, but this text assumes use of only the
standard version of R without any such special facility.

Free versions of full manuals for R (mostly in PDF format) can be found at any
of these mirror sites. There is a wealth of contributed documentation.

1



2 Basics of Matrix Algebra for Statistics with R

Some sections are considerably more advanced in concept and technical
requirements than others, for example, those on partitioned matrices (§2.6.1) and
generalized inverses (§8.3), but these have not been starred or marked since what
may seem technically complex to one may seem straightforward to another with a
different background. It is left to the readers to glean what they can from them on
initial readings and then return later if a complete understanding is wanted. Some
topics often covered in texts such as this one are not included (for example linear
spaces) which means that there are a few results (e.g. equality of row and column
rank, §3.1) which will need to be taken on trust or else checked in one of the more
specialist texts referenced in §1.2

Since the applications envisaged for the majority of users of these notes are
within statistics, most emphasis is given to real matrices and mostly to real symmetric
matrices. Unless specifically indicated, all matrices are presumed to be real.

In addition to the algebraic manipulation of matrices the notes give numerical
examples since it is necessary to be able to do numerical calculations, both by hand
and by using R. Much of the exposition is by presenting examples with solutions.
There are additionally some examples for self study and solutions are available
separately (for the desperate) to these. For numerical questions, the calculations are
given only in R and in some cases only the numerical answers are given. A brief
guide to installing and running R is included.

1.2 Further Reading
1.2.1 Matrix algebra

There are many books on matrix algebra and a search will reveal hundreds if not
thousands aimed at readers in the later years at school, throughout university and
at advanced levels of mathematical research. A particular one consulted in the
preparation of this text is Abadir and Magnus (2005) which consists largely of
worked exercises. This will complete many of the details omitted from this book
(in particular complex matrices) but, as is common with all post-school level texts,
it does require a good understanding of linear spaces. It is not specifically written for
any particular discipline but does contain several sections on statistical topics such
as least squares and maximum likelihood estimation. A rather more theoretical book
by Magnus and Neudecker (1988) goes into further details on vector and matrix
calculus. Many statistical texts on topics such as linear models and multivariate
analysis, such as Draper and Smith (1998), Seber and Lee (2012), Anderson (2003),
Cox (2005) and Mardia et al. (1979), contain brief sections or appendices on matrix
algebra but there are also many books aimed at the statistical reader. Three such are
Searle (1982), Basilevsky (2013) and Harville (2008). A comprehensive account of
linear algebra and matrix analysis in statistics is given by Banerjee and Roy (2014).
This contains much advanced material and provides a full guide to the topic but



Introduction 3

is designed for experienced readers. A more specialist book that concentrates on
applications to linear statistical models is Puntanen et al. (2011). This also is aimed
at experienced readers. All have been consulted for ideas on exposition and subjects
of examples. None of these gives any guidance on the computational aspects other
than by hand and none mentions R. A recent book by Vinod (2011) does give a
comprehensive guide to implementation of matrix calculations in R and includes a
guide to getting started in R. The book is particularly good for those wanting to
know about more specialist packages such as fBasics (Wuertz, D. and Rmetrics
Core Team Members, 2013) which contains routines for determining the rank of a
matrix (§3.1). This book has avoided extensive discussion of R packages since many
readers will be encountering R for the first time but their use cannot be avoided for
long and so some details are given of the most frequently used ones such as the MASS
library (Venables and Ripley, 2002) as well as a few with useful additional facilities
such as Matrix (Bates and Maechler, 2014) and CCA (Gonzlez and Djean, 2012).

1.2.2 Elementary R

There is a wealth of information on R readily available and easily accessible free
of charge on the CRAN webpage at http://cran.r-project.org/. The menu on the left
hand side under documentation quickly leads to a basic introduction to R (Venables
et al., 2014) in a pdf file of about a hundred pages. This provides all that is needed
on the R language for this text. For those who want to go further, Zuur et al. (2009)
provides an introduction to the R language and for an introduction to the use of R in
statistics, a starting point is Dalgaard (2008) or Crawley (2005). Crawley (2012) and
Adler (2010) provide comprehensive references to further facilities.

1.3 Guide to Notation
• Generally, matrices are denoted by upper case letters at the beginning and end of

the alphabet: A, B, C, D, U, V, W, X, Y, Z.

• Generally, [column] vectors are denoted by lower case letters at the beginning
and end of the alphabet: a, b, c, d, u, v, w, x, y, z.

• Generally, elements of a vector x are denoted by x1,x2, . . . ,xp.

• Generally, elements of a matrix X are denoted by x11,x12,. . . ,x1n,x21,. . . ,. . . ,xpn.

• Sometimes the columns of a matrix X are denoted by x1, x2,. . ., xn.

• Lower case letters in the middle of the alphabet i, j,k, l,m,n, p,q,r,s, t generally
indicate integers. Often i, j,k, l are used for dummy or indexing integers (e.g. in
summation signs) whilst m,n, p,q,r,s, t are usually used for fixed integers, e.g.
for i = 1,2, . . . ,n.



4 Basics of Matrix Algebra for Statistics with R

• The upper case letters H, I and J are usually reserved for special matrices.

• The transpose of a matrix X is indicated by X′ . Some texts may use an alternative
XT and this may be used in some circumstances here.

• The inverse of a [non-singular] matrix X is indicated as X−1.

• The [Moore–Penrose] generalized inverse of a [not necessarily non-singular or
square] matrix is indicated as A+ and the generalized inverse by A− (A+ is a
restricted form of A−).

• R commands, functions and output are printed in a Courier font like this.

Extensive R output is printed in two (or occasionally three) columns separated
by a vertical rule. The length of the rule indicates the length of the column.

• Brackets. There are three types of brackets: ( ), [ ] and { } in R. The first,
parentheses ( ), are used to enclose the arguments of R functions. The second,
brackets [ ], are used to extract the elements of arrays and the third, braces { },
are used to combine several R expressions into one.

1.4 An Outline Guide to R
1.4.1 What is R?

R is a powerful interactive computer package that is oriented towards statistical
applications. It will run on the most commonly used platforms (or operating
systems), Windows, Linux and Mac. The notes here are oriented towards use on
a Windows platform. R consists of a base system that can be downloaded without
charge together with many contributed packages for specialist analyses. It offers:

• An extensive and coherent set of tools for statistics and data analysis

• A language for expressing statistical models and tools for using linear and non-
linear statistical models

• Comprehensive facilities for performing matrix calculations and manipulations,
enabling concise efficient analyses of many applications in multivariate data
analysis and linear models

• Graphical facilities for interactive data analysis and display

• An object-oriented programming language that can easily be extended

• An expanding set of publicly available libraries or packages of routines for
special analyses

• Libraries or packages available from the official Contributed Packages webpages
are thoroughly tested by the R Core Development Team

• Packages have manuals, help systems and usually include illustrative datasets
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1.4.2 Installing R

Full instructions for installing R are given on the R Project home page at
http://www.r-project.org/. The first step is to choose a site close to you from which
to download the package. Next choose the appropriate operating system, select the
option base and download the system. Accepting the option to run the download
file will install the package after downloading it. Accepting the default options for
locations is simplest but these can be customized. By default an icon R (with version
number) is placed on the desktop. Clicking on the icon will open an R session
(i.e. start the R program). The R graphical user interface (RGui) opens and you are
presented with a screen like this:

R version 3.1.1 (2014-07-10) -- "Sock it to Me"

Copyright (C) 2014 The R Foundation for Statistical Computing

Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

Above this is a menu bar with several drop-down menus and a row of icons. The
Windows and Mac versions are broadly equivalent but differ in detail. Throughout
this text, specific sequences of choices from the drop-down menus refer to the
Windows version.

1.4.3 R is an interactive program

The symbol > is the command line prompt symbol; typing a command or instruction
will cause it to be executed or performed immediately. If you press RETURN before
completing the command (e.g., if the command is very long), the prompt changes
to + indicating that more is needed. This is first illustrated in §2.1.2 on Page 23.
Sometimes you do not know what else is expected and the + prompt keeps coming.
Pressing Esc will kill the command and return to the > prompt. If you want to issue
several commands on one line, they should be separated by a semicolon (;) and they
will be executed sequentially. This is first illustrated in §2.3.2 on Page 28.



6 Basics of Matrix Algebra for Statistics with R

Along the top of the window is a limited set of menus. The Packages

menu allows you to install specific packages (which needs to be done only
once) and then load them into the session. Each time a new session is
started, you have to load the packages which you will need. This can
be done from the Packages>Load Packages... menu or by the command
library(packagename). Some of the commands needed for matrix manipulations
are within the MASS library which is automatically installed (together with a few
others such as stats, Matrix, graphics, ...) when R is first installed, i.e.,
it does not need to be installed from the Packages menu but it does need to be
loaded if needed during each R session. [MASS is Modern Applied Statistics with S
by Venables and Ripley, 2002]. Some packages are automatically loaded during each
R session (e.g., stats and graphics but not Matrix and MASS). To discover which
packages are loaded during a session issue the command search().

A convenient way of running several commands in sequence is to open a script
window using the File>New script menu which opens a simple text editing
window for typing the commands. Highlighting a selection and then clicking on an
icon in the menu bar will run the commands in the selection. Lines in the script
window can be edited and run again. A script can be saved in a file (with default
extension .R) and opened in a later session via the menus.

Pressing the up arrow key ↑ retrieves the last command. This can be edited (using
the left and right arrow cursor keys and not the mouse to move the cursor) and then
run again (by pressing RETURN). Pressing the up arrow key repeatedly will cycle
back through the previous commands until you find the one you want.

1.4.4 Obtaining help in R

Obtaining help on specific functions during an R session can by done by using either
help(functionname) or ?functionname. This will give you the list of possible
arguments and the list of possible values produced. There may also be examples of
their use, including script files which can be cut and pasted into a script window for
you to run. Typing example(functionname) may run one or more examples. This
of course requires you to know the name of the function.

There are certain “reserved” words in R such as “for”, “while”, “if”, “break”,
“next” and “if” where typing help(for) generates an error message. Instead it is
necessary to type help("for"), help("while") etc. to access the R help system
for these control words.

Typing library(help=libraryname) will give summary description of the
library together with an index of all functions and datasets supplied with the
library. Having found the name of a function or a dataset then use help(.), ? and
example(.) to find out more about it. For example library(help=stats)lists all
the functions in library stats; these are mostly statistical functions such as t.test
and then help(t.test) shows exactly how to perform a Student’s t-test.

To find out what various packages can do, look at the CRAN website and
click on packages. This has a basic search facility with CTRL+F (for the Windows
Find dialogue box) which will search for an exact match for the character string
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entered in the dialogue box. For example, to find packages which have functions
for imputation of missing values, go to the Packages page on the CRAN project
page and scroll down to the list headed Available Bundles and Packages, press
CTRL+F and enter impute in the dialogue box. This will list in turn arrayImpute,
impute, imputeMDR, and yaImpute. This technique will only find strings which
appear on the very brief summary descriptions of the packages. A more thorough
search can be performed within an R session with help.search or ?? For example
help.search(characterstring) or equivalently, ??characterstring, will
search all installed packages for an approximate match in the summary description
of each function in the package to the characterstring. The default is to
use fuzzy matching which may have unexpected consequences. For example
using help.search(impute) or equivalently ??impute will also find all such
occurrences of compute. To find out how to avoid this and instead use exact
matching, try help(help.search).

To find out more about R, the R website has links (under Documentation) to
various manuals and other contributed documentation. Following the link from the
CRAN page under Other and R-related projects transfers the user to The R Wiki
at http://wiki.r-project.org/rwiki/doku.php.

1.4.5 R is a function language

All commands in R are regarded as functions; they operate on arguments, e.g.,
plot(x, y) plots the vector x against the vector y, that is, it produces a scatter plot
of x vs. y. Even help is regarded as a function: to obtain help on the function matrix
use help(matrix). To end a session in R use quit(), or q(), i.e. the function
quit() or q() with a null argument. In fact the function quit can take optional
arguments; type help(quit) to find out what the possibilities are.

1.4.6 R is an object-oriented language

All entities (or things) in R are objects. This includes vectors, matrices, data
arrays, graphs, functions, and the results of an analysis. For example, the
set of results from performing a two-sample t-test is regarded as a complete
single object. The object can be displayed by typing its name or it can be
summarized by the function summary(). Even the results of help are objects,
e.g. of help(matrix). If you want to store the object created by this for later
examination (though the need for this may be rare), give it, say, the name
matrixhelp then input matrixhelp<-help(matrix). Typing matrixhelp will
print the help information on the screen (or it can be exported). Note here the
use of the assignment symbol <- (a left pointing arrow) which assigns the object
with name matrixhelp the results of the function help. <- is the most commonly
used symbol for this but _ and = will work in exactly the same way and are
included in the R language for compatibility with other programming languages.
Thus matrixhelp_help(matrix) and matrixhelp=help(matrix) will produce
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exactly the same results as matrixhelp<-help(matrix). Generally <- will be
used throughout this text.

Some functions create an object consisting of just a single value, e.g. the function
sqrt() will consist of a single value, the square root of its argument. Other functions
such as t.test() create objects containing many different values. In the case of
t.test(), these include the value of the t-statistic, the degrees of freedom, the p-
value and a confidence interval for the mean appropriate to the specified alternative
hypothesis (and several others). These individual values are stored in simple objects
with names including a $ symbol. So, if the command testresults<-t.test(x)

is used to test the hypothesis that the mean of the vector x is 0 and store the
complete results of the test in an object testresults, the value of the t-statistic, the
degrees of freedom and the p-value are stored in objects testresults$statistic,
testresults$parameter and testresults$p.value, respectively. The first
time this is illustrated is with the function eigen() in §1.7.12 on Page 18 used
for performing an eigenanalysis (see Chapter 6). The values produced by this
function are the eigenvalues and eigenvectors stored in objectname$values and
objectname$vectors.

Of course, some functions such as help() and plot() produce objects
containing no specific values. To find out what values (if any) and names are
produced by a function, enter help(functionname).

1.4.6.1 The class of an object

Every object in R has a class (or type of object) associated with it. Examples
of classes are "numeric", "matrix" and "character". The function t.test()

produces objects of class "htest". The importance of class is that some functions
require that their arguments are of a particular class or even may operate differently
depending upon which class their argument happens to be. This phenomenon
is illustrated in §2.1.2 on Page 22. The class of an object can be changed by
functions such as as.matrix(.) which will convert a "numeric" class vector into
a "matrix" class. This is only critical in a few cases since R usually takes care of
this matter internally.

1.4.7 Saving objects and workspaces

Objects such as a matrices and vectors (see below) created during an R session can
be saved in an R workspace file through the File>Save Workspace... menu or
via the icon. They can be loaded into the R session by the menu or (if the default
.RData file extension is accepted) the file can be located in Windows Explorer and
clicking initiates an R session with this workspace open and making the working
directory that containing the file. Issuing the command objects(.) (or equivalently
ls(.) or using the menu under Misc) will list the objects created (or retrieved from
a workspace) during the current session.

When you close down R you are prompted as to whether you want to save the
workspace image. If you have loaded a workspace during the session, this will be
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overwritten by the current one. When you next run R, you will start by loading the
most recently saved workspace, i.e. it will retrieve all the objects in the workspace
you last saved. If you have started R by clicking on a saved workspace with the
.Rdata extension, the two workspaces will be merged, perhaps with unexpected
consequences.

1.4.7.1 Mistakenly saved workspace

BEWARE: If you have created all the objects in the workspace during the current
session (i.e., you have not loaded or opened a previously saved workspace) when you
accept Save workspace image? at the end of a session it will be saved somewhere on
your drive. When you next start R, this workspace will be automatically restored.
This can have unexpected consequences and can cause mysterious problems because
you will have objects in the workspace that you might not have intended to be there.
To cure the problem, you can remove all objects by rm(list=ls(all=T)) or use the
menu under Misc and choose Remove all objects. This should give a response
character(0) to the command ls(.).

1.4.8 R is a case-sensitive language

Note that R treats lower case and upper case letters as different, for example,
inverting a matrix is performed using the function solve() but R does not recognize
Solve(), nor SOLVE(), nor .... The objects x and X are distinct (and easy to confuse).
The function matrix and the library Matrix are distinct.

1.5 Inputting Data to R
1.5.1 Reading data from the keyboard

Small amounts of data can be typed directly from the keyboard. For example, to
create a vector x of length 4 containing the four numbers 1.37, 1.63, 1.73, 1.36
do x<-c(1.37, 1.63, 1.73, 1.36) and to enter numbers into a matrix, see the
next section. The function scan(.) can be used to enter data and will stop when a
complete blank line is read. For example:

> x<-scan()

1: 1.37

2: 1.63 1.73

4: 1.36

5:

Read 4 items

> x
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[1] 1.37 1.63 1.73 1.36

scan() is a very flexible function with facilities for entering tables of numbers and
other data; to find out more type help(scan). Note that here and elsewhere lines
starting with > (the prompt symbol) have been entered from the console and other
lines are the responses from R. Thus x<-scan() followed by the data and x are
entered from the console.

1.5.2 Reading data from files

The three main functions for reading tabular data from files are, read.table(),
read.csv() and read.delim(). The first is used primarily for plain text files (i.e.,
with extension .txt or .dat), the second for comma separated values (e.g., as produced
by Excel) and the third for tab-separated values. The default format of the data in
read.table()is that the first row should contain the column names (i.e., variable
names) and the first item of each row is the row name, so the first row contains one
fewer item than the other rows. If the data are not in such a standard form, look at
the help system to find out how to use the additional arguments header, row.names
and col.names to read the data correctly.

If a data file has been saved during an R session (using the save(.) function
(see help(save)), the data can just be retrieved by load(filename). The
source(filename) function will execute all the R commands in the specified file
and this can be a convenient method of delivering a data file. The library foreign

can be used for reading data files created by Minitab, S, SAS, SPSS, Stata, Systat,
dBase, ..., (but not S-PLUS). There are commercially available packages for reading
S-PLUS other files with substantial discounts for academic use.

1.6 Summary of Matrix Operators in R
The operations given below assume that the orders of the matrices involved allow the
operation to be evaluated. More details of these operations will be given in the notes
later.

• R is case sensitive so A and a denote distinct objects.

• To control the number of digits printed to 3 options(digits=3).

• To create a vector x x<−c(x1,x2, ...,xp).

• To access an individual element in a vector x, the ith, x[i].

• To create a matrix A, A<-matrix(data, nrow=m, ncol=n, byrow=F).

• To access an individual element in a matrix A, the (i, j)th, A[i,j].

• To access an individual row in a matrix A, the ith, A[i,]
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• To access an individual column in a matrix A, the jth, A[,j].

• To access a subset of rows in a matrix A, A[i1 : i2, ].

• To access a subset of columns in a matrix A, A[,j1 : j2].

• To access a sub-matrix of A, A[i1 : i2,j1 : j2].

• Addition A+B, A+B.

• Subtraction A−B, A-B.

• Multiplication AB, A%*%B.

• Hadamard multiplication, A�B, A*B.

• Kronecker multiplication A⊗B, A%x%B.

• Transpose A′, t(A).

• Matrix cross-product A′B, crossprod(A,B).

• Inversion A−1, solve(A).

• Moore–Penrose generalized inverse A+, ginv(A) (in MASS library) [or
MPinv(A) (in gnm library)].

• Note: ginv(. will work with almost any matrix but it is safer to use solve(.)

if you expect the matrix to be non-singular since solve(.) will give an error
message if the matrix is singular or non-square but ginv(.) will not.

• Determinant det(A) or |A|, det(A).

• Eigenanalysis, eigen(A).

• To extract a diagonal of a matrix A as a vector, diag(A).

• Trace of a matrix A, sum(diag(A)).

• To create a diagonal matrix, diag(c(x11,x22, . . . ,xpp)).

• To create a diagonal matrix from another matrix, diag(diag(A)).

• To change a dataframe into a matrix, data.matrix(dataframe).

• To change some other object into a matrix, as.matrix(object).

• To join vectors into a matrix as columns, cbind(vec1,vec2, . . . ,vecn).

• To join vectors into a matrix as rows, rbind(vec1,vec2, . . . ,vecn).

• To join matrices A and B together side by side, cbind(A,B).

• To stack A and B together on top of each other, rbind(A,B) .

• To find the length of a vector x, length(x).

• To find the dimensions of a matrix A, dim(A).
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1.7 Examples of R Commands
This section is for quick reference; details are explained later in the text.

1.7.1 Expressions

x′(XX′)−1x : t(x)%*%solve(X%*%t(X)))%*%x

1.7.2 Inputting data

> A<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=F)

> B<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T)

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> A[1,2]

[1] 3

>

> A[1,]

[1] 1 3 5

> A[,2]

[1] 3 4

> B

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> B[2,2]

[1] 5

>

> B[2,]

[1] 4 5 6

> B[,3]

[1] 3 6

> C<-matrix(c(1,2,3,4,5,6),2,3)

> D<-matrix(c(1,2,3,4,5,6),2,3,byrow=T)

> C

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> D

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

1.7.3 Calculations

> A+B

[,1] [,2] [,3]

[1,] 2 5 8

[2,] 6 9 12

> A-B

[,1] [,2] [,3]

[1,] 0 1 2

[2,] -2 -1 0
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> 2*A

[,1] [,2] [,3]

[1,] 2 6 10

[2,] 4 8 12

> A*2

[,1] [,2] [,3]

[1,] 2 6 10

[2,] 4 8 12

Beware:

> A%*%B

Error in A %*% B :

non-conformable arguments

> t(A)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> t(B)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> t(A)%*%B

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[3,] 29 40 51

> A%*%t(B)

[,1] [,2]

[1,] 22 49

[2,] 28 64

BEWARE: A?B gives element-by-element multiplication (the Hadamard or Schur
product) which is rarely required (but see §6.3.0.1):

> A*B

[,1] [,2] [,3]

[1,] 1 6 15

[2,] 8 20 36

Kronecker products

> A%x%B

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 2 3 3 6 9 5 10 15

[2,] 4 5 6 12 15 18 20 25 30

[3,] 2 4 6 4 8 12 6 12 18

[4,] 8 10 12 16 20 24 24 30 36

>

> B%x%A

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 3 5 2 6 10 3 9 15

[2,] 2 4 6 4 8 12 6 12 18

[3,] 4 12 20 5 15 25 6 18 30

[4,] 8 16 24 10 20 30 12 24 36

>
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1.7.4 Dimensions and lengths of matrices of vectors

> C<-matrix(c(1,2,3,4,5,6),2,3)

> dim(C)

[1] 2 3

> dim(t(C))

[1] 3 2

> length(C)

[1] 6

>

> x<-c(1,2,3,4)

> length(x)

[1] 4

> dim(x)

NULL

Beware:

> x

[1] 1 2 3 4

> t(x)

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

> dim(x)

NULL

> dim(t(x))

[1] 1 4

> matrix(x)

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

> dim(matrix(x))

[1] 4 1

> t(matrix(x))

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

> dim(t(matrix(x)))

[1] 1 4

Here, it seems that creating a vector x with x<-c(1,2,3,4) creates a string which
has length 4 but is not regarded by R as a matrix until it is involved in some operation
that only applies to matrices, such as taking the transpose. The fact that the transpose
has dimensions 1 and 4 indicates that x is assumed to be a column vector. However,
the following shows that R will interpret x as either a column vector or as a row
vector according to context, e.g. in pre- or post-multiplication by a square matrix of
conformable dimension. This is demonstrated in the following example:

> x<-c(1,2)

> Z<-matrix(c(1,2,3,4),2,2)

> x

[1] 1 2

> Z

[,1] [,2]

[1,] 1 3

[2,] 2 4
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> Z%*%x

[,1]

[1,] 7

[2,] 10

> x%*%Z

[,1] [,2]

[1,] 5 11

>

If x is forced to be a matrix (i.e. of class matrix in R), one of these multiplications
will give an error because of non-comformability.

> class(x)

[1] "numeric"

> x<-matrix(x)

> class(x)

[1] "matrix"

> Z%*%x

[,1]

[1,] 7

[2,] 10

> x%*%Z

Error in x %*% Z :

non-conformable arguments

1.7.5 Joining matrices together

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> C

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> cbind(A,C)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 1 3 5

[2,] 2 4 6 2 4 6

> t(rbind(t(A),t(B)))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 1 2 3

[2,] 2 4 6 4 5 6

> rbind(A,C)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

[3,] 1 3 5

[4,] 2 4 6

> t(cbind(t(A),t(B)))

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

[3,] 1 2 3

[4,] 4 5 6

Beware: Joining non-conformable matrices will generate error messages
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1.7.6 Diagonals and trace

> E<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T)

> E

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

> diag(E)

[1] 1 5 9

> sum(diag(E))

[1] 15

> diag(c(1,5,9))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 5 0

[3,] 0 0 9

> diag(diag(E))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 5 0

[3,] 0 0 9

1.7.7 Trace of products

> F<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,)

> F

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> F%*%E

[,1] [,2] [,3]

[1,] 66 78 90

[2,] 78 93 108

[3,] 90 108 126

> E%*%F

[,1] [,2] [,3]

[1,] 14 32 50

[2,] 32 77 122

[3,] 50 122 194

> sum(diag(E%*%F))

[1] 285

> sum(diag(F%*%E))

[1] 285

1.7.8 Transpose of products

> t(E%*%F)

[,1] [,2] [,3]

[1,] 14 32 50

[2,] 32 77 122

[3,] 50 122 194

Beware:

> t(E)%*%t(F)

[,1] [,2] [,3]

[1,] 66 78 90

[2,] 78 93 108

[3,] 90 108 126
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> t(F)%*%t(E)

[,1] [,2] [,3]

[1,] 14 32 50

[2,] 32 77 122

[3,] 50 122 194

Note EF and FE are symmetric but
neither E nor F is symmetric. Also
E′F′ 6= (EF)′.

1.7.9 Determinants

> G<-matrix(c(1,-2,2,2,0,1,1,1,-2),3,3,byrow=T)

> G

[,1] [,2] [,3]

[1,] 1 -2 2

[2,] 2 0 1

[3,] 1 1 -2

> det(G)

[1] -7

1.7.10 Diagonal matrices

> G<-matrix(c(1,-2,2,2,0,1,1,1,-2),3,3,byrow=T)

> G

[,1] [,2] [,3]

[1,] 1 -2 2

[2,] 2 0 1

[3,] 1 1 -2

> diag(G)

[1] 1 0 -2

> diag(diag(G))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 0 0

[3,] 0 0 -2

1.7.11 Inverses

> options(digits=3)

> solve(A%*%t(B))

[,1] [,2]

[1,] 1.778 -1.361

[2,] -0.778 0.611

> library(MASS)

> ginv(A%*%t(B))

[,1] [,2]

[1,] 1.778 -1.361

[2,] -0.778 0.611
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Beware:

> ginv(t(A)%*%B)

[,1] [,2] [,3]

[1,] 1.741 0.4630 -0.815

[2,] 0.269 0.0741 -0.120

[3,] -1.204 -0.3148 0.574

BUT:

> solve(t(A)%*%B)

Error in

solve.default(t(A) %*% B):

system is computationally

singular: reciprocal

condition number=1.794e-17

1.7.12 Eigenanalyses

> eigen(A%*%t(B)

$values

[1] 85.579 0.421

$vectors

[,1] [,2]

[1,] -0.610 -0.915

[2,] -0.792 0.403

> eigen(t(A)%*%B)

$values

[1] 8.6e+01 4.2e-01 1.5e-15

$vectors

[,1] [,2] [,3]

[1,] -0.242 -0.815 0.408

[2,] -0.528 -0.125 -0.816

[3,] -0.814 0.566 0.408

1.7.13 Singular value decomposition

> X<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T); X

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

> svd(X)

$d

[1] 1.68e+01 1.07e+00 4.42e-16

$u

[,1] [,2] [,3]

[1,] -0.215 0.887 0.408

[2,] -0.521 0.250 -0.816

[3,] -0.826 -0.388 0.408

$v

[,1] [,2] [,3]

[1,] -0.480 -0.7767 -0.408

[2,] -0.572 -0.0757 0.816

[3,] -0.665 0.6253 -0.408
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1.8 Exercises
(These exercises are intended only for those completely new to R)

(1) Install R on your computer; see §1.4.2.

(2) Go to the CRAN home page and download (but don’t print unless really
desperate to do so) the manual by Venables et al. (2014); see §1.2.2.

(3) Still on the CRAN home page, look at the software under Packages from the link
in the menu on the left, browsing through the packages sorted by name. Find the
description of the package CCA (used in §9.5) and look briefly at the reference
manual.

(4) Try typing direct into the R console window some of the examples given in §1.7.

(5) Open a new script file (§1.4.3 on Page 6) using the menu under File on the top
left of the window.

(6) Type a few R commands into this script window and then highlight them with
the mouse and then click on the middle icon in the top row to run them. (Note
that this icon appears only when the R Editor window is the active window.)

(7) Click on the R console window and then using the menu under File change the
working directory to somewhere convenient. Usually R starts with the working
directory (where it looks for and saves files by default) at the very top level.

(8) Making the R editor window the active window (by clicking the mouse when
the cursor is in it) and using the File on the top left, save the script file in the
new working directory, using a name with extension .R (so that it can be opened
in a a later R session with File > Open script ..., provided the working
directory is the same).





2
Vectors and Matrices

2.1 Vectors
2.1.1 Definitions

A vector x of order p (or dimension p) is a column of p numbers:

x =


x1
x2
...

xp

 .

Technically x is an element of p-dimensional Euclidean space ℜp but this will not
be central to the material below. The numbers xi are the components (or elements)
of x. x may be referred to as a column vector for emphasis. The transpose of x,
x′ = (x1,x2, . . . ,xp) is a row vector. Vectors are presumed to be column vectors
unless specified otherwise. Addition and subtraction of vectors of the same order
is performed element by element

x+ y =


x1 + y1
x2 + y2

...
xp + yp

 .

It is not possible to add or subtract vectors which are not conformable, i.e., which
do not have the same dimension or order.

Scalar multiplication of a vector is element by element:

λx =


λx1
λx2

...
λxp


for any scalar (real number) λ .

The results of addition and subtraction of two vectors are vectors of the same
order. The results of adding to, subtracting from or multiplying a vector by a scalar

21
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are vectors of the same order. Two vectors x and y are equal if they are of the same
order and each pair of corresponding elements is equal, i.e., xi = yi, for i= 1,2, . . . , p.
A vector with all elements 0 is denoted by 0, i.e.,if xi = 0 for i = 1,2, . . . , p, x = 0.
A vector ei with ith element 1 and all others 0 is the ith unit vector. A vector with all
elements 1 is and is denoted by ιp, i.e.,if xi = 1 for i = 1,2, . . . , p then x = ιp. Clearly
∑

p
i=1 ei = ιp.

ιp is referred to as the sum vector [because x′ιp = ι ′px = ∑
p
i=1 xi, see below].

Note that x+ y = y+x (commutativity) and (x+ y)+ z = x+(y+ z) (associativity).
Vectors cannot be multiplied together in a usual way but a useful scalar function of
two vectors is the scalar product (or inner product ). Mathematicians denote this
by 〈x,y〉 and it is defined by 〈x,y〉= ∑

p
i=1 xiyi. In statistics the inner product is more

usually denoted by x′y (see later under matrix multiplication). The outer product of
x and y is defined as xy′ (see §2.3.1 on Page 25.
Note that 〈x,y〉 is a scalar (i.e.,an ordinary number) and we shall see that xy′ is a
p× p matrix (§2.3.1).

Example 2.1:
If x = (1,2,3)′ and y = (4,5,6)′ then x′y == 1× 4 + 2× 5 + 3× 6 = 32 Two
vectors are said to be orthogonal if x′y = 〈x,y〉 = 0. For example if x = (1,2,0)′,
y = (−6,3,0)′, z = (0,0,7)′ then x, y and z are mutually orthogonal. Note that
〈x,x〉= x′x = ∑x2

i = sum of the squared elements of x.

2.1.2 Creating vectors in R

The easiest way to create a vector is to use the function c(x1,x2, . . . ,xp):

> a<-c(1,2,3)

> a

[1] 1 2 3

> b<-c(4,5,6)

and this works in some cases but a and b will be interpreted as either a column or
a row vector according to context. It is better to remove ambiguity and ensure that
the vector is of the right class and force this by making using of the matrix(.,.,.)
function with 1 column:

> c<-matrix(c(3,2,1),3,1,byrow=T)

> d<-matrix(c(6,5,4),nrow=3,ncol=1,byrow=T)

> c

[,1]

[1,] 3

[2,] 2

[3,] 1

> d

[,1]

[1,] 6

[2,] 5

[3,] 4

Without the matrix function, the result has class "numeric", not "matrix". Note
that using the matrix function ensures that R prints the result as a column vector.
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An equivalent way of coercing a string of numbers to be of class "matrix" is to use
the function as.matrix(.):

> b<-c(4,5,6)

> b

[1] 4 5 6

> class(b)

[1] "numeric"

> b<-as.matrix(b)

> b

[,1]

[1,] 4

[2,] 5

[3,] 6

> class(b)

[1] "matrix"

Note also the use of nrow and ncol and the default order that matrix assumes if
they are omitted:

> u<-matrix(c(3,2,1),1,3,

+ byrow=T)

> u

[,1] [,2] [,3]

[1,] 3 2 1

> v<-matrix(c(6,5,4),

+ ncol=1,nrow=3,byrow=T)

> v

[,1]

[1,] 6

[2,] 5

[3,] 4

Note the occurrence of the continuation symbol +.
When entering column vectors or row vectors the byrow argument has no effect,
i.e.,byrow=T and byrow=F give the same result but this is not the case when entering
matrices (see below).

2.2 Matrices
2.2.1 Definitions

An m×n matrix X is a rectangular array of scalar numbers:

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...
xm1 xm2 . . . xmn

 .

This matrix has m rows and n columns; it is an m× n matrix (m by n matrix), it is
a matrix of order m×n. X has dimensions m and n. Technically X is an element of
m×n-dimensional Euclidean space ℜm×n but this will not be central to the material
below. Sometimes we may write X = (xi j).
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For example A =

(
1 2 3
4 4 6

)
is a 2×3 matrix. A [column] vector is a matrix

with one column, it is a n×1 matrix where n is the order of the vector. A row vector
is a 1×n matrix.

The numbers xi j are the components (or elements) of X. A matrix is a square
matrix if m = n, i.e.,if it has the same number of rows and columns, i.e.,an n× n
matrix is a square matrix. The transpose of the m×n matrix X is the n×m matrix X′:

X =


x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
. . .

...
xn1 xm2 . . . xmn

 .

A square matrix X is symmetric if X′ = X. Two matrices X and Y are equal if they
are of the same order and each pair of corresponding elements are equal, i.e.,xi j = yi j,
for i = 1,2, . . . ,m and j = 1,2, . . . ,n.

A matrix with all elements 0 is denoted by 0, i.e.,if xi j = 0 for i = 1,2, . . . ,m
and j = 1,2, . . . ,n then X = 0. A square matrix with all elements not on the diagonal
equal to 0 is a diagonal matrix, i.e.,if xi j = 0 for all i 6= j (and xii 6= 0 for at least one
i).

A diagonal matrix with all diagonal elements 1 (and all others not on the diagonal
0) is denoted by In, i.e.,if xii = 1 for i = 1,2, . . . ,n and xi j = 0 for for all i 6= j for
i, j = 1,2, . . . ,n then X = In. It is referred to as the identity matrix.

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1

 .

If X is a square matrix then diag(X) is the [column] vector of the diagonal elements
of X, i.e.,the vector (xii). If u is a vector, diag(u) is the diagonal matrix with the
elements of u along the diagonal and 0s elsewhere. So diag(diag(X)) is a square
matrix formed by setting all off-diagonal elements of X to 0. Some texts will call
diag(X) this matrix but the form diag(diag(X)) here conforms with R syntax.

The trace of a square matrix is the sum of all the diagonal elements of the matrix,
i.e.,trace(X) = tr(X) = tr(xi j) = ∑

n
i=1 xii. Note that tr(In) = n.
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2.3 Matrix Arithmetic
Addition and subtraction of matrices of the same order are performed element by
element (just as with vectors):

X+Y = (xi j)+(yi j) = (xi j + yi j),

Note that X + Y = Y + X (commutativity) and (X + Y) + Z = X + (Y + Z)
(associativity), provided X, Y and Z are all of the same order. It is not possible
to add or subtract matrices which do not have the same dimensions or order.
Scalar multiplication of a matrix is element by element:

λX = λ (xi j) = (λxi j)(
1 2
3 4

)
+

(
5 6
7 8

)
=

(
6 8
10 12

)
= 2

(
3 4
5 6

)
.

2.3.1 Matrix multiplication

If A and B are matrices then we can multiply A by B (to get AB) only if the number
of columns of A equals the number of rows of B. So if A is an m× n matrix and
B is a n× p matrix, the product AB can be defined (but not the product BA). The
result is a m× p matrix, i.e.,the number of rows of the first matrix and the number
of columns of the second. The (i,k)th element of AB is obtained by summing the
products of the elements of the ith row of A with the elements of the kth column of
B, AB =

(
∑

n
j=1 ai jb jk

)
.

If C is m×n and D is p×q then the product CD can only be defined if n = p, in
which case C and D are said to be conformable. If C and D are such that CD is not
defined then they are non-conformable.

If x and y are vectors of order m and n respectively, i.e.,m×1 and n×1 matrices,
then x and y′ are conformable and so the product xy′ is defined and is a m×n matrix
with (i, j)th element xiy j, i = 1, . . .m, j = 1, . . .n. This is termed the outer product
of x and y. The outer product of the sum vector ιn with itself, i.e., ιnι ′n, is the n× n
matrix Jn with all elements 1.

Example 2.2:

If U =

(
1 2
3 4

)
,V =

(
5 6
7 8

)
then U is 2× 2 and V is 2× 2 so UV is

2×2×2×2≡ 2×2 and VU is 2×2×2×2≡ 2×2.
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So,

UV =

(
1 2
3 4

)(
5 6
7 8

)
=

(
1×5+2×7 1×6+2×8
3×5+4×7 3×6+4×8

)
=

(
5+14 6+16

15+28 18+32

)
=

(
19 22
43 50

)
and

VU =

(
5 6
7 8

)(
1 2
3 4

)
=

(
5+18 10+24
7+24 14+32

)
=

(
23 34
31 46

)
.

. Notice that UV 6= VU because
(

19 22
43 50

)
6=
(

23 34
31 46

)
.

If A =

(
1 2 3
4 5 6

)
and B =

 1 2
3 4
5 6

, then A is a 2× 3 matrix and B is a

3×2 matrix, so AB is 2×3×3×2≡ 2×2 and BA is 3×2×2×3≡ 3×3:

AB =

(
1 2 3
4 5 6

) 1 2
3 4
5 6


=

(
1×1+2×3+3×5 1×2+2×4+3×6
4×1+5×3+6×5 4×2+5×4+6×6

)
=

(
22 28
49 64

)
.

BA =

 1 2
3 4
5 6

( 1 2 3
4 5 6

)

=

 1×1+2×4 1×2+2×5 1×3+2×6
3×1+4×4 3×2+4×5 3×3+4×6
5×1+6×4 5×2+6×5 5×3+6×6

=

 9 12 15
19 26 33
29 40 51

 .

Notice that AB 6= BA and indeed AB is a 2×2 matrix and BA is a 3×3 matrix.
U is 2× 2, A is 2× 3 and B is 3× 2 so U and A are conformable and UA is

defined (and is a 2×2×2×3≡ 2×3 matrix) but U and B are non-conformable and
you cannot calculate UB because it would be 2×2×3×2� anything. We have UA =(

1 2
3 4

)(
1 2 3
4 5 6

)
=

(
9 12 15

19 26 33

)
. Note that the transpose of B, B′, is

2× 3 so U and B′ are conformable and we have UB′ =
(

1 2
3 4

) 1 2
3 4
5 6

′ =(
1 2
3 4

)(
1 3 5
2 4 6

)
=

(
5 11 17

11 25 39

)
.
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In the product AB we say that B is premultiplied by A and A is postmultiplied
by B.

In general for two matrices X and Y, we have XY 6= YX even if X and Y are
mutually conformable (i.e.,both of the products are defined). If we have matrices
such that both XY and YX are defined and if we have XY = YX, we say that X
and Y commute . If X is m× n and Y is p× q and if both XY and YX are defined
then we must have p = n and q = m so XY is m× n× n×m ≡ m×m and YX is
n×m×m× n ≡ n× n. Thus if X and Y commute then XY = YX and in particular
XY and YX must have the same orders so we must have m = n and thus two matrices
can only commute if they are square matrices of the same order . Note that square
matrices do not in general commute (e.g.,U and V above).

If W =

(
2 2
3 5

)
then UW = WU and U and W commute (check this as an

exercise). The identity matrix In commutes with all n×n matrices (check this).
Note that (A + B)2 = A(A + B) + B(A + B) = A2 + AB + BA + B2 and so

(A+B)2 = A2 +2AB+B2 only if A and B commute .

2.3.2 Example 2.2 in R

Brief definitions of matrix operators in R and type illustrations of their use were
given in the previous chapter. This section gives further illustrations using the specific
matrices in the examples above, this time using R. These examples were given with
sufficient detail to perform the calculations ‘by hand’. It is of course important to
understand the principles of matrix multiplication ‘by hand’ and there is no substitute
for trying a few simple examples until the principle is absorbed. However, hand
matrix calculations are undeniably tedious for matrices of anything other than orders
two or three and use of R for them should become the norm.

The operators illustrated here are +, -, %*% (for matrix multiplication) and *

(for scalar multiplication). Note that use of * for multiplication of matrices results in
an element-by-element product which is rarely required (but see §6.3.0.1 and §8.4).

> U<-matrix(c(1,2,3,4),2,2,byrow=T)

> V<-matrix(c(5,6,7,8),2,2,byrow=T)

> W<-matrix(c(2,2,3,5),2,2,byrow=T)

> A<-matrix(c(1,2,3,4,5,6),2,3,byrow=T)

> B<-matrix(c(1,2,3,4,5,6),3,2,byrow=T)
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> U ; V; W

[,1] [,2]

[1,] 1 2

[2,] 3 4

[,1] [,2]

[1,] 5 6

[2,] 7 8

[,1] [,2]

[1,] 2 2

[2,] 3 5

> A;B

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

Note the use of the repeat semicolon symbol ; in the examples above to enter several
commands on one line.

> U+V ;2*U

[,1] [,2]

[1,] 6 8

[2,] 10 12

[,1] [,2]

[1,] 2 4

[2,] 6 8

> U%*%V ;V%*%U

[,1] [,2]

[1,] 19 22

[2,] 43 50

[,1] [,2]

[1,] 23 34

[2,] 31 46

> A%*%B ; B%*%A

[,1] [,2]

[1,] 22 28

[2,] 49 64

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[3,] 29 40 51

> U%*%A ; U%*%t(B)

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[,1] [,2] [,3]

[1,] 5 11 17

[2,] 11 25 39

> U%*%W ;W%*%U

[,1] [,2]

[1,] 8 12

[2,] 18 26

[,1] [,2]

[1,] 8 12

[2,] 18 26

> V%*%W ; W%*%V

[,1] [,2]

[1,] 28 40

[2,] 38 54

[,1] [,2]

[1,] 24 28

[2,] 50 58
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2.4 Transpose and Trace of Sums and Products
If A+B is defined (i.e., A and B have the same orders) then (A+B)′ = A′+B′ and
tr(A+B)=tr(A)+tr(B). If A is m×n and B is n× p then AB is m×n×n× p≡m× p
so (AB)′ is p×m. It is easy to show that (AB)′ = B′A′:

(AB)′ =
(
(ai j)(b jk)

)′
=

(
n

∑
j=1

ai jb jk

)′
=

(
n

∑
j=1

ak jb ji

)
= (b jk)

′(ai j)
′ = B′A′.

Note that A′ is n×m and B′ is p×n so the product A′B′ is not defined (unless p = m)
but B′A′ is defined.

Clearly tr(A) = tr(A′) and if A and B are m×n and n×m matrices (so that both
AB and BA are defined) then tr(AB) = tr(BA) because tr(AB) = ∑

m
i=1 ∑

n
j=1 ai jbi j =

∑
n
j=1 ∑

m
i=1 ai jbi j = tr(BA).

If λ is any scalar then (λA)′ = λA′.

2.5 Special Matrices
2.5.1 Symmetric and skew-symmetric matrices

A square n×n matrix A = (ai j) is symmetric if A′ = A, i.e., ai j = a ji for all i, j. A
square matrix B = (bi j) is skew-symmetric if B′ =−B, i.e.,bi j =−b ji for all i, j. It
is easy to see that all skew-symmetric matrices have zero elements on the diagonals.

Any square matrix X can be expressed as X = 1
2 (X + X′) + 1

2 (X−X′). Since
(X+X′)′ = (X+X′) and (X−X′)′ =−(X−X′) we have that any square matrix can
be expressed as the sum of a symmetric part and a skew-symmetric part.

Let A =

(
1 1
1 0

)
, B =

(
0 1
1 1

)
then both A and B are symmetric but

AB =

(
1 1
1 0

)(
0 1
1 1

)
=

(
1 2
0 1

)
which is not symmetric.

Consider Z = A′BA, if B is symmetric then Z is symmetric, because (A′BA)′ =
A′B′(A′)′ = A′BA if B is symmetric.
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However, the converse is not true: let A =

(
0 0
1 0

)
then A′ =

(
0 1
0 0

)
and

A′BA =

(
0 0
1 0

)(
b11 b12
b21 b22

)(
0 1
1 0

)
=

(
0 0

b11 b12

)(
0 1
0 0

)
=

(
0 0
0 b11

)
which is symmetric whether or not B is symmetric.

2.5.2 Products with transpose AA′

If A is m× n then the products AA′ and A′A are both defined resulting in m×m
and n× n square matrices respectively. Both are symmetric because, for example,
(AA′)′ = (A′)′A = AA′. If the columns of A are a· j then AA′ = ∑ j a· ja′· j. (For a
general product AB = ∑ j a· jb′j· where the b′j· are the rows of B.) A′A is known as the
cross-product of A and more generally A′B is the cross-product of A and B.

2.5.3 Orthogonal matrices

A p× p square matrix A is orthogonal if A′A = AA′ = Ip . Note that for square
matrices if A′A = Ip and if A is non-singular (and so A′ possesses an inverse (A′)−1,
see §5.2.1) then necessarily we have AA′ = Ip since if A′A = Ip then (A′)−1A′AA′ =
(A′)−1IpA′ = Ip (see Chapter 5 for definition of inverses). Also A−1 = A′ and if A is
orthogonal then A′ is also orthogonal.
If A and B are both orthogonal and both p× p then AB is orthogonal because
(AB)′AB = B′A′AB = B′IpB = B′B = Ip. It is possible to have a m× n matrix B
such that B′B = In but BB′ 6= Im, e.g.,the 2× 1 matrix B = (1,0)′ has B′B = 1 and
BB′ 6= I2.
Beware: two conformable matrices U and V are sometimes said to be orthogonal if
UV = 0. This is using the term orthogonal in the same sense as two vectors being
orthogonal (see §2.1.1, Page 22). More strictly it is better to say that U is orthogonal
to V; otherwise saying U and V are orthogonal could mean that both are orthogonal
matrices.

Example 2.3

A =
1√
2

(
1 −1
1 1

)
, B =

(
1
2 −

√
3

2
−
√

3
2 − 1

2

)
are both orthogonal.

A =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, B =

(
cos(θ) −sin(θ)
−sin(θ) −cos(θ)

)
are both orthogonal for any value of θ and it can be shown that any 2×2 orthogonal
matrix is of one of these two forms. Taking θ = π/4, π/3 respectively gives the two
orthogonal matrices above.
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A = 1√
2

 1 −1 1
0 1 2
1 1 −1

 is orthogonal.

If A is a p× p matrix with rows a1·,a2·, . . . ,ap· and columns a·1,a·2, . . . ,a·p then
a′i·a j· = 1 if i = j and 0 if i 6= j and ai·a′j· = 1 if i = j and 0 if i 6= j, i.e.,the rows and
columns of A are orthogonal.

It will be seen in §4.4 that orthogonal matrices are either rotation or reflection
matrices which means that in certain senses multiplying a data matrix by an
orthogonal matrix does not change the intrinsic statistical properties of the data
since it essentially means that the data are rotated onto a new set of orthogonal axes,
possibly followed by a reflection.

An orthogonal matrix whose elements are all +1 or−1 is known as a Hadamard
matrix. These have a role in statistical experimental design.

2.5.4 Normal matrices

A p× p matrix is normal if AA′ = A′A, i.e.,if A commutes with A′. Clearly all
symmetric, all skew-symmetric and all orthogonal matrices are normal.

2.5.5 Permutation matrices

The n×n matrix A is a permutation matrix if each row and each column has exactly
one 1 and the rest of the entries are zero. All permutation matrices are orthogonal.

Example 2.4:

A1 =

(
1 0
0 1

)
,A2 =

(
0 1
1 0

)
,B1 =

 0 0 1
0 1 0
1 0 0

 ,B2 =

 0 1 0
1 0 0
0 0 1


and all identity matrices of any order I2,I3,I4, . . . ,Ip. The columns of a permutation
matrix are the complete set of unit vectors ei taken in some order, i.e.,not
necessarily e1,e2, . . . ,ep. For example B1 = (e3,e2,e1),B2 = (e2,e1,e3). The effect
of premultiplication of a matrix X by a permutation matrix is to permute the rows of
X; postmultiplication permutes the columns.

2.5.6 Idempotent matrices

A p× p matrix A is idempotent if A2 = A. Clearly Ip and 0p×p are idempotent and
so is xx′ with x′x = 1. Idempotent matrices play a key role in statistics because they
can be regarded as projections and indeed are termed projection matrices. It can be
shown (e.g. Banerjee and Roy, 2014, Theorem 8.6) that a matrix P is an orthogonal
projection if and only if it is idempotent and symmetric.
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2.5.6.1 The centering matrix Hn

Let Hn = In− 1
n ιnι ′n then H2

n =
(
In− 1

n ιnι ′n
)2

= In− 1
n ιnι ′n− 1

n ιnι ′n(In− 1
n ιnι ′n)

= In− 1
n ιnι ′n− 1

n ιnι ′nIn +
1
n2 ιn(ι

′
nιn)ι

′
n and ι ′nιn is 1×n×n×1 ≡ 1×1, i.e.,a scalar

and = n noting that ιn is the sum vector, which sums the elements of a vector when
postmultiplying it (or premultiplying it by its transpose). So H2

n = Hn − 1
n ιnι ′n +

1
n ιnι ′n =Hn and Hn is idempotent. Hn is called the centering matrix . Premultiplying
a n× 1 vector by Hn subtracts the overall mean from each element of the vector.
Postmultiplying a n×n matrix by Hn subtracts its column mean from each element.
Note that Hn can be written as Hn = In− 1

n Jn.

2.5.7 Nilpotent matrices

A matrix A 6= 0 is said to be nilpotent if A2 = 0, or more strictly nilpotent of index
2. A matrix such that Ar = 0 but Ar−1 6= 0 is nilpotent of index r.

2.5.8 Unipotent matrices

A n× n matrix A such that A2 = In is said to be unipotent . Simple examples of

unipotent matrices are all identity matrices and A =

(
1 x
0 −1

)
.

2.5.9 Similar matrices

Two matrices A and B are sad to be similar if there is a non-singular matrix C
such that C−1AC = B (see §5 for definition of C−1). Similar matrices share many
properties, notably they have identical eigenvalues; see §6.4.3.

2.6 Partitioned Matrices
2.6.1 Sub-matrices

A sub-matrix of a m× n matrix A is a rectangular m1× n1 section of it forming a
m1×n1 matrix A11. Note that some texts will regard any matrix formed by a subset
of rows and columns (not necessarily contiguous) as a sub-matrix of A. A sub matrix
Ai j of A can be expressed as a product EAF where E and F are matrices with all
entries either 0 or 1. For example, if suppose A11 is the top left hand corner of A
consisting of m1 rows and n1 columns. Let E be the m1× n matrix with a 1 in cells
(1,1),(2,2), . . . ,(m1,m1) and 0 elsewhere and let F be the m× n1 matrix with 1 in
cells (1,1),(2,2), . . . ,(n1,n1) and 0 elsewhere. Then EAF = A11.
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Example 2.5

> A<- matrix(c(1,2,3,4,5,6,7,

+ 8,9),3,3,byrow=T)

> A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

> E<-matrix(c(1,0,0,0,1,0),

+ 2,3,byrow=T)

> E

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

> E%*%A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> F<- matrix(c(1,0,0,1,0,0),

+ 3,2,byrow=T)

> F

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

> A%*%F

[,1] [,2]

[1,] 1 2

[2,] 4 5

[3,] 7 8

> E%*%A%*%F

[,1] [,2]

[1,] 1 2

[2,] 4 5

2.6.2 Manipulation of partitioned matrices

A matrix A could be partitioned in four sub-matrices A11,A12,A21 and A22 with
orders m1×n1,m1×n2,m2×n1 and m2×n2, with m1 +m2 = m and n1 +n2 = n, so
we would have

A =

(
A11 A12
A21 A22

)
.

This can be useful if some of the Ai j have a special form, e.g.,are 0 or diagonal or the
identity matrix. Adding and multiplying matrices expressed in their partitioned form
is performed by rules analogous to those when adding and multiplying element by
element.

For example, if B is partitioned in four sub-matrices B11,B12,B21 and B22 with
orders m1× n1,m1× n2,m2× n1 and m2× n2, C is partitioned in four sub-matrices
C11,C12,C21 and C22 with orders n1× p1,n1× p2,n2× p1 and n2× p2, (so Ai j and
Bi j are addition conformable and Ai j and Ci j are multiplication conformable), we
have

A+B =

(
A11 +B11 A12 +B12
A21 +B21 A22 +B22

)
,

AC =

(
A11C11 +A12C21 A12C12 +A12C22
A21C11 +A22C21 A22C12 +A21C22

)
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which symbolically are identical to the forms we would have if m1 = m2 = n1 =

n2 = p1 = p2 = 1. Further we have A′ =
(

A11 A12
A21 A22

)′
=

(
A′11 A′21
A′12 A′22

)
(note

the interchange of the two off-diagonal blocks).

Example 2.6
A matrix can be partitioned into its individual columns:
Let X = (x1,x2, . . . ,xn) where the xi are p-vectors, i.e.,X is p×n matrix. Then

xi =


xi1
xi2
...

xip

and X′ =


x′1
x′2
...

x′n


is a n× p matrix partitioned into n rows. Further, we have XX′ = ∑

n
k=1 xkx′k and

X′X = (x′ix j) (note that XX′ is a p× p matrix whose (i, j)th element is ∑
n
k=1 xkixk j

and X′X is a n×n matrix whose (i, j)th element is xix j i.e.,∑p
k=1 xikx jk).

A partitioned matrix of the form


Z11 0 0 0
0 Z22 0 0

0 0
. . . 0

0 0 0 Zrr

where Zii is a mi×ni

matrix and the sero sub-matrices are of conformable orders is called a block diagonal
matrix .

2.6.3 Implementation of partitioned matrices in R

Matrices of conformable dimensions can be joined together horizontally and
vertically by command cbind(.,.) and rbind(.,.). A sub-matrix of a m× n
matrix A of dimensions m1 × n1 [in the top left corner] can be specified by
A[1:m_1,1:n_1].

>A<-matrix(c(1:6),2,3); A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> U<-cbind(A,B)

> U

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 1 2 3

[2,] 2 4 6 4 5 6

> B<-matrix(c(1:6),2,3,

+ byrow=T);B

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> U[1:2,3:6]

[,1] [,2] [,3] [,4]

[1,] 5 1 2 3

[2,] 6 4 5 6
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> U[,3:6]

[,1] [,2] [,3] [,4]

[1,] 5 1 2 3

[2,] 6 4 5 6

> V<- rbind(A,B)

> V

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

[3,] 1 2 3

[4,] 4 5 6

> V[1:2,1:3]

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> V[2:4,]

[,1] [,2] [,3]

[1,] 2 4 6

[2,] 1 2 3

[3,] 4 5 6

Note that because U has two rows, U[1:2,3:6] and U[,3:6] refer to the same
sub-matrices (as do V[2:4,] and V[2:4,1:3] since V has three columns).

2.7 Algebraic Manipulation of Matrices
2.7.1 General expansion of products

An expression such as (A + B)(X + Y) can be multiplied out term by term but
remember to preserve the order of the multiplication of the matrices.
So (A+B)(X+Y) = A(X+Y)+B(X+Y) = AX+AY+BX+BY and this cannot
in general be simplified further. In particular, (A+B)2 = (A+B)(A+B) = A(A+
B)+B(A+B) = A2 +AB+BA+B2 and unless A and B commute we can go no
further in collating terms.

2.8 Useful Tricks
2.8.1 Tracking dimensions and 1×1 matrices

It can happen that in an expression involving the product of several matrices and
vectors, some element or sub-product is a 1× 1 matrix (i.e.,a scalar). This permits
two operations of just this part of the product:

(1) It can commute with other terms.

(2) It can be replaced by its transpose.

For example, suppose S is p× p and x and y are both p-vectors (i.e.,p). Let A = Sxx′;
then A is p× p× p×1×1× p = p× p. Let B = Sx then B is p× p× p×1 = p×1.
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AB=(Sxx′)Sx= Sx(x′Sx) which is (p× p× p×1)×(1× p× p× p× p×1). The
second factor x′Sx is (1× p× p× p× p×1) = 1×1, i.e.,a scalar, and so commutes
with the first factor. So (Sxx′)Sx = (x′Sx)Sx. This is of the form of matrix × vector
= scalar × vector (the same vector) and is referred to as an eigenequation (see §6.2).

Another example is used in the next section: consider x′Ax which is 1×1, i.e.,a
scalar, and so is symmetric, since (x′Ax)′= x′Ax, we have x′Ax= 1

2 (x
′Ax+x′A′x) =

1
2 x′(A+A′)x and the matrix 1

2 (A+A′) is symmetric.

2.8.2 Trace of products

Recall that tr(AB) = tr(BA) (if both products are defined) (see §2.4). This is useful
either if one of AB and BA is simple (e.g.,a scalar) or some other simplification is
possible. For example if x is a p-vector then tr(xx′) = tr(x′x) and xx′ is p× p but x′x
is 1×1, i.e.,a scalar, and so possibly easier to evaluate.

An example in the other direction is evaluating y′Sy by noting that y′Sy =
tr(y′Sy) = tr(yy′S) = tr(Syy′), for symmetric S. A trick like this is used in working
with the maximized likelihood of the multivariate normal distribution.

2.9 Linear and Quadratic Forms
If a and x are p-vectors then the inner product a′x = a1x1 +a2x2 + +apxp is termed
a linear form in x; it is presumed that a is a known vector of numbers and x is
a variable. If A is a p× p matrix then x′Ax is a quadratic form in x. Again it is
presumed that A is a known matrix of numbers and x is a variable. Note that x′Ax
is 1× 1, i.e.,a scalar, and so is symmetric, so x′Ax = (x′Ax)′ = x′A′x, and we have
x′Ax = 1

2 (x
′Ax + x′A′x) = 1

2 x′(A + A′)x and the matrix 1
2 (A + A′) is symmetric.

We need only consider the properties of quadratic forms which involve a symmetric
matrix.

If x′Ax > 0 whatever the value of x then A is said to be positive definite and
if x′Ax ≥ 0 for all x then A is said to be positive semi-definite, similarly negative
definite and negative semi-definite if x′Ax < 0 or ≤ 0. It is always assumed that if
these terms are used, then A is symmetric.

Example 2.7 Suppose p = 3, then

x′Ax = a11x2
1 +a22x2

2 +a33x2
3

+a12x1x2 +a21x2x1 +a13x1x3 +a31x3x1 +a23x2x3 +a32x3x2

= a11x2
1 +a22x2

2 +a33x2
3

+(a12 +a21)x1x2 +(a13 +a31)x1x3 +(a23 +a32)x2x3

=
1
2

x′(A+A′)x.
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If A =

 1 4 7
2 5 8
3 5 9

 then

x′Ax = x2
1 +5x2

2 +9x2
3 +6x1x2 +10x1x3 +13x2x3

= x2
1 +5x2

2 +9x2
3 +2×3x1x2 +2×5x1x3 +2×6.5x2x3

so we have x′

 1 4 7
2 5 8
3 5 9

x = x′

 1 3 5
3 5 6.5
5 6.5 9

x, replacing the matrix A

with a symmetric one.

2.10 Creating Matrices in R
Small matrices can be entered directly using the function matrix(.). Large matrices
may best be entered by reading the data from a file into a dataframe (e.g.,with
read.table(.) or read.csv(.) or scan(.)) and then converting to a matrix.
A<−matrix(c(x11, . . . ,xm1,x12, . . . ,xm2, . . . ,x1n, . . . ,xmn),
+ nrow=m, ncol=n, byrow=F)

creates an m×n matrix taking the values column by column.
B<−matrix(c(x11, . . . ,xm1,x12, . . . ,xm2, . . . ,x1n, . . . ,xmn),
+ nrow=m, ncol=n, byrow=T)

creates an m× n matrix taking the values row by row. If the byrow is omitted, then
byrow=F is assumed and the values are taken column by column. If the terms nrow=
and ncol= are omitted (and just the values m and n given), then it is assumed they
are in the order row and column).
Thus A<−matrix(c(x11, . . . ,xm1,x12, . . . ,xm2, . . . ,x1n, . . . ,xmn),m,n) creates an
m× n matrix taking the values column by column. See the next section for more
examples.
If data are read into a dataframe then this can be converted to a matrix by
data.matrix(.) or as.matrix(.):
X<-read.table(filename)

X<-data.matrix(X)

Initially X is of class "dataframe" and then is converted to class "matrix";
as.matrix(X) will have the same effect but can also be used on objects which are
not entirely numeric. The importance of the class of an object is that some commands
will accept arguments only of certain classes.
There are many other ways of creating matrices; some other functions give a matrix
as a result, e.g.,eigen(.) produces a matrix of eigenvectors, cbind(.,.,.) will
join vectors together into a matrix. Details of these are not given here and the
help(.) system is generally most informative.
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Example 2.8

> A<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=F)

> B<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T)

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> B

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Note that the columns of A were filled successively (because byrow=F) and the rows
of B were filled successively (because byrow=T).

> C<-matrix(c(1,2,3,4,5,6),

+ 2,3)

> C

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Note that the columns of C were filled
successively (because byrow=F was
assumed by default).

> D<-matrix(c(1,2,3,4,5,6),

+ 2,3,byrow=T)

> D

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

The rows of D were filled succes-
sively (because byrow=T was spec-
ified). In both cases two rows and
three columns were taken since the
order rows, columns was assumed.

The order can be overridden
by specifying the parameters:

> E<-matrix(c(1,2,3,4,5,6),

+ncol=2,nrow=3,byrow=T)

> E

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

If the parameters are omitted entirely then ncol=1 is assumed and a column vector
is created (which has class matrix because of the matrix(.) function).
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> F<-matrix(c(1,2,3,4,5,6))

> F

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

2.10.1 Ambiguity of vectors

Note that entering vectors without specifying whether they are column or row vectors
can lead to ambiguities: if we create the vector a by

> a<-c(1,2,3)

then it may be interpreted as a column vector (i.e.,a 3×1 matrix) or as a row vector
(i.e.,a 1× 3 matrix) according to what operation is being attempted. R will do its
very best to produce some answer and avoid giving an error message. For example,
if X is a 3×3 matrix, premultiplying X by a will cause a to be assumed to be a row
vector but postmultiplying X by a will cause R to regard a as a column vector. See
§2.11.2.7. This ambiguity can also arise in vectors produced as a result of a function,
for example, the vector of eigenvalues held in eigen(X)$values (see §6.3) may be
treated as a row or column vector according to context.

2.11 Matrix Arithmetic in R
2.11.1 Addition, subtraction and transpose

> A+C

[,1] [,2] [,3]

[1,] 2 6 10

[2,] 4 8 12

> A-D

[,1] [,2] [,3]

[1,] 0 1 2

[2,] -2 -1 0

Beware:

> A+E

Error in A + E : non-conformable arrays



40 Basics of Matrix Algebra for Statistics with R

> E

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

>t(E)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

So A and E′ are conformable:

> A+t(E)

[,1] [,2] [,3]

[1,] 2 6 10

[2,] 4 8 12

2.11.2 Multiplication

2.11.2.1 Standard multiplication

> A<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T)

> B<-matrix(c(1,2,3,4,5,6),nrow=3,ncol=2,byrow=T)

> A; A%*%B; B; B%*%A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[,1] [,2]

[1,] 22 28

[2,] 49 64

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[3,] 29 40 51

2.11.2.2 Element-by-element (Hadamard) multiplication

BEWARE: If A and B have the same numbers of rows and columns then
A*B gives element-by-element multiplication which is rarely required (but see
§6.3.0.1).

> t(B)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> A*t(B)

[,1] [,2] [,3]

[1,] 1 6 15

[2,] 8 20 36

2.11.2.3 Non-commuting matrices

> U<-matrix(c(1,2,3,4),2,2,byrow=T)

> V<-matrix(c(5,6,7,8),2,2,byrow=T)
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> U

[,1] [,2]

[1,] 1 2

[2,] 3 4

> U%*%V

[,1] [,2]

[1,] 19 22

[2,] 43 50

> V

[,1] [,2]

[1,] 5 6

[2,] 7 8

> V%*%U

[,1] [,2]

[1,] 23 34

[2,] 31 46

2.11.2.4 Commuting matrices

> W<-matrix(c(2,2,3,5),2,2,byrow=T)

> W

[,1] [,2]

[1,] 2 2

[2,] 3 5

> U%*%W

[,1] [,2]

[1,] 8 12

[2,] 18 26

> W%*%U

[,1] [,2]

[1,] 8 12

[2,] 18 26

Beware:

> U%*%A

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

But:

> B

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

> U%*%B

Error in U %*% B : non-conformable arguments

> t(B)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> U%*%t(B)

[,1] [,2] [,3]

[1,] 5 11 17

[2,] 11 25 39

2.11.2.5 Transpose of products

> t(U%*%V)

[,1] [,2]

[1,] 19 43

[2,] 22 50

> t(V)%*%t(U)

[,1] [,2]

[1,] 19 43

[2,] 22 50

> t(U)%*%t(V)

[,1] [,2]

[1,] 23 31

[2,] 34 46

So (UV)′ = V′U′ 6= U′V′
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> t(U%*%W)

[,1] [,2]

[1,] 8 18

[2,] 12 26

> t(W)%*%t(U)

[,1] [,2]

[1,] 8 18

[2,] 12 26

> t(U)%*%t(W)

[,1] [,2]

[1,] 8 18

[2,] 12 26

Note that U and W commute so it follows that U′ and W′ also commute.

> U%*%t(W)

[,1] [,2]

[1,] 6 13

[2,] 14 29

> t(W)%*%U

[,1] [,2]

[1,] 11 16

[2,] 17 24

But it does not follow that because U and W commute then W′ also commutes with
U as the above example demonstrates.

2.11.2.6 Cross-products

> crossprod(A); t(A)%*%A

[,1] [,2] [,3]

[1,] 17 22 27

[2,] 22 29 36

[3,] 27 36 45

[,1] [,2] [,3]

[1,] 17 22 27

[2,] 22 29 36

[3,] 27 36 45

> tcrossprod(A) ; A%*%t(A)

[,1] [,2]

[1,] 14 32

[2,] 32 77

[,1] [,2]

[1,] 14 32

[2,] 32 77

> crossprod(A,D); t(A)%*%D

[,1] [,2] [,3]

[1,] 9 19 29

[2,] 12 26 40

[3,] 15 33 51

[,1] [,2] [,3]

[1,] 9 19 29

[2,] 12 26 40

[3,] 15 33 51

> tcrossprod(A,D); A%*%t(D)

[,1] [,2]

[1,] 22 28

[2,] 49 64

[,1] [,2]

[1,] 22 28

[2,] 49 64

2.11.2.7 Ambiguity of vectors

Consider the following:

> X<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T)

> X

[,1] [,2] [,3]

[1,] 1 2 3
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[2,] 4 5 6

[3,] 7 8 9

> a<-c(1,2,3)

> a%*%X

[,1] [,2] [,3]

[1,] 30 36 42

> b<-c(4,5,6)

> X%*%b

[,1]

[1,] 32

[2,] 77

[3,] 122

So a is interpreted as a row vector but b as column vector above.

> a%*%b

[,1]

[1,] 32

> b%*%a

[,1]

[1,] 32

and here the inner product of a and b is returned, whatever the order of the product.
To force a and b to column and row vectors see

> a<-matrix(a,3,1)

> a

[,1]

[1,] 1

[2,] 2

[3,] 3

> b%*%a

[,1]

[1,] 32

> b<-matrix(b,1,3)

> b

[,1] [,2] [,3]

[1,] 4 5 6

> a%*%b

[,1] [,2] [,3]

[1,] 4 5 6

[2,] 8 10 12

[3,] 12 15 18

2.11.3 Diagonal matrices

2.11.3.1 Creating a diagonal matrix from a list

> F<-diag(c(1,2,3,4,5))

> F

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 2 0 0 0

[3,] 0 0 3 0 0

[4,] 0 0 0 4 0

[5,] 0 0 0 0 5
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2.11.3.2 Extracting the diagonal

> E%*%A

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[3,] 29 40 51

> diag(E%*%A)

[1] 9 26 51

2.11.3.3 Converting a matrix to diagonal

> diag(diag(E%*%A))

[,1] [,2] [,3]

[1,] 9 0 0

[2,] 0 26 0

[3,] 0 0 51

2.11.4 Trace

2.11.4.1 Trace of square matrix

> sum(diag(E%*%A))

[1] 86

> sum(diag(U))

[1] 5

> V

[,1] [,2]

[1,] 5 6

[2,] 7 8

> sum(diag(V))

[1] 13

But be careful because sum(V) gives
the sum of all elements in the matrix,
not just the diagonals.

> sum(V)

[1] 26

2.11.4.2 Trace of transpose and products

> sum(diag(U)); sum(diag(t(U)))

[1] 5

[1] 5

> U%*%V

[,1] [,2]

[1,] 19 22

[2,] 43 50

> V%*%U

[,1] [,2]

[1,] 23 34

[2,] 31 46
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But

> sum(diag(U%*%V)); sum(diag(V%*%U))

[1] 69

[1] 69

2.11.4.3 Creating a function for trace of a matrix

A useful facility in R is the creation of functions to execute a sequence of commands
on arguments supplied to it. For example, to create a function tr(.) to calculate the
trace of a matrix, first store the function in the object tr by

> tr<-function(X) { tr<-sum(diag(X))

return(tr)

}

Here, the arguments of the function are indicated by the dummy objects in the first
pair of braces ({}) following function and the sequence of commands to be used is
contained between the second pair of braces; in this case they are sum() and diag().
Then the trace can be calculated by using tr(.). For example:

> tr(U)

[1] 5

> tr(t(U))

[1] 5

> tr(U%*%V);tr(V%*%U)

[1] 69

[1] 69
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2.12 Initial Statistical Applications
2.12.1 Introduction

Here we introduce some illustrations of uses of vectors and matrices in statistics.
This will only be an initial presentation since further analysis depends on material
in later chapters, especially vector and matrix calculus in Chapter 7 which is
used for obtaining maximum likelihood estimates. Also, determinants, inverses and
eigenanalyses are all required for the full treatment of the topics and so the full
discussion will be given after these topics have been covered in subsequent chapters.
We begin with the basic formulation of linear models and multivariate analysis.

Unfortunately, major texts on these subjects do not conform to a single standard
system of notation. This is especially true of multivariate analysis where, for
example, Gnanadesikan (1997) and Mardia et al. (1979) define the data matrix
consisting of n observations on a p-dimensional random variable differently. Another
difference between these two texts is that the former uses a divisor (n− 1) in
the sample variance matrix but the latter uses n. This forces a choice to be made
and here the system used broadly conforms with that of Gnanadesikan (1997).
Consequently, readers more familiar with Mardia et al. (1979) (or who are following
courses based on this or a similar text) will find that some results will appear to be
unfamiliar with X′ instead of X or factors of n instead of (n− 1). This choice has
particular consequence when implementing the results in R since R more naturally
conforms with the Mardia et al. (1979) convention for the data matrix but with the
Gnanadesikan (1997) convention for the sample variance. This warning first arises in
§2.12.3.2 below.

2.12.2 Linear models

The simple linear model expressing the dependence of a variable y on independent
or regressor variables x1,x2, . . .xp can be written as

y = β1x1 +β2x2 + · · ·+βpxp + ε

where ε is a random error term with E[ε] = 0 and var(ε) = σ2. If n observations of y
are available corresponding to n observations on each of the xi then we can write

yi = β1xi1 +β2xi2 + · · ·+βpxip + εi.

If we let the n× 1 vector y = (y1,y2, . . . ,yn)
′, the p× 1 vector β = (β1, . . . ,βp)

′, X
be the n× p matrix with (i, j)th element xi, j; i = 1, . . . ,n; j = 1, . . . , p and the n×1
vector ε = (ε1, . . . ,εn)

′, we can write this succinctly as y = Xβ + ε .
We can then use this expression for investigating the statistical properties of the

model and obtaining estimates of the unknown parameters β . For example, since Xβ

is a constant, we have that E[y] = E[Xβ +ε] = Xβ +E[ε] = Xβ and more generally if
G is a p×n matrix then E[Gy] = E[GXβ +Gε] = GXβ +GE[ε] = GXβ so we might
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be interested in matrices G such that GXβ = β because then we would have a linear
function of the observations Gy which is an unbiased estimator of β .

We will return to this topic in a later chapter.

2.12.3 Multivariate analysis

In the previous section we introduced the idea of writing n observations on p
variables x1,x2, . . . ,xp in the form of a matrix. In the context of a simple linear model,
these variables are regarded as non-random or design variables and the matrix of
observations as the design matrix in the sense that specific values of them can be
chosen to take observations of the variable y which depends upon them, the form of
the dependence being a linear function plus some random error.

Here we will regard the variables x1,x2, . . . ,xp as random variables with means
µi, variances σii and covariances σi j. We will write this as the p-dimensional random
variable x = (x1,x2, . . . ,xp)

′ with mean E[x] = µ and variance var(x) = Σ where Σ

is the symmetric matrix with (i, j)th element σi j. Note that we have Σ = var(x) =
E[(x−E[x])(x−E[x])′] = E[(x− µ)(x− µ)′]. Generally we will assume that Σ is a
non-singular positive definite symmetric matrix. The definition can be extended to
handle cases where the variance matrix is singular (i.e.,positive semi-definite) but we
do not do so here.

If A is a n× p matrix, and b a p× 1 vector, then E[Ax + b] = AE[x] + b
and var(Ax+ b) = Avar(x)A′. Note that var(Ax) = Avar(x)A′ because var(Ax) =
E[(Ax−E[Ax])(Ax−E[Ax])′] = E[A(x−µ)(x−µ)′A′] = AE[(x−µ)(x−µ)′]A′ =
Avar(x)A′.

2.12.3.1 Random samples

Suppose x1,x2, . . . ,xn are independent observations of x, and xi = (xi1,xi2, . . . ,xip)
′.

Define the data matrix X′ as the matrix with ith row given by x′i. So X′ is a n× p
matrix and X is the p×n matrix with columns given by x1,x2, . . . ,xn:

X =


x11 x21 · · · xn1
x12 x22 · · · xn2
...

...
. . .

...
x1p x2p · · · xnp

 .

Define the sample mean vector x̄ = (x̄1, x̄2, . . . , x̄p)
′ = 1

n Xιn. Let X = x̄ι ′n (so X is a
p×n matrix with all columns equal to x̄). Define the sample variance

S = 1
(n−1) (X−X)(X−X)′ = 1

(n−1)

{
n

∑
1

xix′i−nx̄x̄′
}
.

This last equality follows because the (X−X) has columns xi− x̄ and so
(X−X)(X−X)′ = ∑

n
i (xi− x̄)(xi− x̄)′ = ∑

n
i xix′i− 2x̄∑

n
1 x′i + nx̄x̄′ = ∑

n
1 xix′i− nx̄x̄.
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Clearly E[x̄] = µ and var(x̄) = 1
n2 ∑

n
1 var(xi) =

1
n var(x) = 1

n Σ. By showing that

S = 1
(n−1)

{
(1− 1

n )
n

∑
i=1

(xi−µ)(xi−µ)′− 1
n∑∑

i 6= j
(xi−µ)(x j−µ)′

}

and noting that E[(xi − µ)(x− µ)′] = Σ if i = j and 0 if i 6= j we have that
E[S] = Σ, and thus x̄ and S are unbiased estimators of µ and Σ.

2.12.3.2 Sample statistics in R

Suppose a dataframe A consists of n observations on p variables and so is arranged
with rows corresponding to observations and columns to variables. The convention
in this text is to refer to this as the data matrix X′ following Gnanadesikan (1997);
note in particular the transpose.

X<-t(as.matrix(A)) ###set up data matrix

xbar<-X%*%matrix(rep(1,n),n)/n ### calculate mean vector

Xbar<-xbar%*%t(matrix(rep(1,n),n)) ### Calculate X-bar matrix

S<-(X-Xbar)%*%t(X-Xbar)/(n-1) ### Calculate the sample variance

The R code above conforms with the formulation given in the previous section
but R actually has built-in functions to perform these although calculation of the
mean requires use of the function apply(.,.,.) (type help(apply) to find out
the details). Using these allows

xbar<-matrix(apply(X,1,mean),p)

S<-var(t(X))

Note: This may seem unfamiliar to some more experienced readers who
would expect these commands to read xbar<-matrix(apply(A,2,mean),p);

S<-var(A) but it is a consequence of defining the data matrix X as the transpose
of the dataframe A.

The sample correlation matrix R is given by D−
1/2SD−

1/2 where D =
diag(diag(S)) which can be calculated in R by

Dh<-diag(1/sqrt(diag(S)))

R<Dh%*%S%*%Dh

or more easily by cor(t(X)).

2.13 Exercises

(1) Let a =

 1
2
3

 , b =

 4
5
6

 , u =

 3
2
1

 , v =

 6
5
4

 , w = (7,8,9).
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(a) Calculate a+b, v−a, w′+b, 3u, w′−a, v/3, ab′ and ba′.
(b) Repeat the calculations in (a) using R.

(2) Let x =

 2
2
−3

 and y =

 1
−2

1

 .

(a) Which of a, b, u, v in Exercise (1) are orthogonal to x?

(b) Which of a, b, u, v in Exercise (1) are orthogonal to y?

(c) Check the answers to (a) and (b) using R.

(3) Let A =

(
1 2 3
4 5 6

)
, B =

 1 2
3 4
5 6

 , U =

(
1 2
3 4

)
, V =

(
5 6
7 8

)
,

W=

(
2 2
3 5

)
and Z=

(
3 2
3 6

)
(and use the vectors from Exercises (1) and

(2)).

(a) Find AB, B′A′, BA, a′A, a′Aa, Vdiag(U), diag(B′A′), UVWZ,
diag(diag(UV)), diag((diag(U)))diag(diag(V)).

(b) Verify that U and V do not commute but U and W commute and U and Z
commute. Do W and Z commute? (Guess and verify.)

(4) Use the matrices from Exercise (3), and let z = (2,5)′.

(a) Calculate z′Uz, z’Vz,x′BAx and x′A′B′x.

(b) Write the four results in the form x′Sx where S is symmetric.

(5) Let

A =

(
0 1
−1 0

)
, B =

(
0 1
0 0

)
, C =

(
1 1
1 −1

)
, D =

(
1 −1
−1 1

)
,

E =

(
1 1
1 1

)
and F =

(
1 1
−1 −1

)
then show

(a) A2 =−I2 (so A is ‘like’ the square root of −1).

(b) B2 = 0 (but B 6= 0), i.e.,B is nilpotent; see §2.5.7.

(c) CD =−DC (but CD 6= 0).

(d) EF = 0 (but E 6= 0 and F 6= 0).

(6) Show that tr(xy′) = x′y.

(7) Use the R help system to find out what the R functions rep(.) and seq(.) do
by typing help(rep) and help(seq).

(8) (a) Construct the sum vector ι4 in R.

(b) Construct the identity matrix I5.
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(c) Construct the vector e4 of length 23 (i.e.,the vector of length 23 with a 1 in
the fourth place and zeros elsewhere).

(d) Construct the unit matrix J6.

(e) Construct the centering matrix H3.

(f) Construct the vector containing all even numbers in order from 2 to 28.

(9) Suppose A is a non-singular n× n idempotent matrix. Show that In − A is
idempotent.

(10) Suppose A is a non-singular n×n idempotent matrix. Show that A = In.

(11) Suppose A and B are idempotent matrices. Show that (A+B) is idempotent if
and only if AB = BA = 0.

(12) If A is either symmetric or skew-symmetric show that A2 is symmetric.

(13) Suppose x1,x2, . . . ,xn are p-dimensional observations with sample mean and
variance x̄n and Sn and n f xn is a further observation. Show that the sample mean
and variance of the augmented sample x1,x2, . . . ,xn,xn+1 are given by

x̄n+1 =
nx̄n +xn+1

n+1
and Sn+1 =

1
n

{
(n−1)Sn +

n
n+1

(xn+1− x̄n)(xn+1− x̄n)
′
}
.

(These are known as the updating formulæ for mean and variance. They are
appreciably more numerically stable when calculating sample variances for large
quantities of data since the formulæ avoid the subtraction of two similarly sized
large numbers.)

2.13.1 Notes

Exercise (5) illustrates that some rules of scalar multiplication do not carry over to
matrix multiplication. However there are some analogies:

(i) If a real square matrix A is such that A′A = 0, then we must have A = 0 and the
(i, j)th element of A′A is ∑

n
k=1 a2

k j so if A′A = 0, then in particular the diagonal
elements of A′A are all zero so we must have ∑

n
k=1 a2

k j = 0 and so ak j = 0 for
all k and j and so A = 0.

(ii) AB = 0 if and only if A′AB = 0 since if A′AB = 0 then B′A′AB = 0 so
(AB)′(AB) = 0 and the results follow from note (i).

(iii) AB = AC if and only if A′AB = A′AC which follows by replacing B by B−C
in note (ii).



3
Rank of Matrices

3.1 Introduction and Definitions
An m×n matrix X has n columns, x1,x2, . . . ,xn, each of which are [column] vectors
of length m (or more technically they are elements of ℜm) and it has m rows, all of
which are [row] vectors of length n. Two vectors x1 and x2 are linearly independent
if a1x1 + a2x2 = 0 (where a1 and a2 are real numbers) implies a1 = a2 = 0. A set
of vectors x1,x2, . . . ,xr is linearly independent if ∑aixi = 0 implies all ai = 0 or, in
words, they are linearly independent if there are no non-trivial linear combinations
of them which equal zero.

The column rank of X is the maximum number of linearly independent columns
of X. The row rank of X is the maximum number of linearly independent rows of X.
The row rank of X is clearly the same as the column rank of X′ (the transpose of X).

A key theorem, which is non-trivial to prove, is that the row rank and the column
rank of a matrix are equal. Thus we can talk unambiguously about the rank of a
matrix X (written ρ(X)) without specifying whether we mean row rank or column
rank. (The most straightforward proof relies on the notions of a dimension of a vector
space and is beyond the immediate needs of this introductory algebraic material for
statistics.) Given this result, clearly ρ(A) = ρ(A′) and further it can be shown that
ρ(AA′) = ρ(A′A) = ρ(A) = ρ(A′) (e.g. Banerjee and Roy, 2014, p. 132).

Clearly the [column-] rank of X ≤ n and also the [row-] rank of X ≤ m so we
have ρ(X) ≤ min(m,n). The rank of the zero matrix 0 is zero and ρ(X) = 0 only if
X = 0.

Example 3.1

(1) Let X =

(
1 3 5
2 4 6

)
so X is a 2× 3 matrix so ρ(X) ≤ min(2,3) = 2, so

ρ(X) = either 1 or 2. If ρ(X) = 1 then the rows of X are linearly dependent,
i.e., there are constants a1 and a2 such that a1(1,3,5)+a2(2,4,6) = 0. Thus we
need a1 +2a2 = 0,3a1 +4a2 = 0 and 5a1 +6a2 = 0. Subtracting three times the
first equation from the second yields 2a2 = 0 so we have a1 = a2 = 0 and so the
rows of X are linearly independent and ρ(X)≥ 2, thus ρ(X) = 2.

51
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(2) Let X =

(
4 6
6 9

)
. So X is 2× 2 so ρ(X) ≤ 2. If a1(4,6)+ a2(6,9) = 0 (i.e.,

2a1+3a2 = 0) then we have 4a1+6a2 = 0 and 6a1+9a2 = 0, i.e., 2a1+3a2 = 0
(again) so we can take a1 = 3 and a2 =−2 and so the columns of X are linearly
dependent and thus ρ(X)< 2, but ρ(X)≥ 1 and so we conclude ρ(X) = 1.

(3) Let X=

 1 2 3 2
4 5 6 −1
5 7 9 1

 . Then X is 3×4 so ρ(X)≤min(3,4)= 3. Looking

at X it is easy to see that the first row plus the second row is equal to the third row
so the rows are not linearly independent, thus ρ(X) < 3. If ρ(X) = 1 then each
row must be a multiple (possibly fractional) of every other row and again it is
easy to see that this is not so and thus ρ(X)≥ 2 and we conclude that ρ(X) = 2.

(4) Let X =


1 2 3
5 1 5
6 4 5
3 1 4

 . Then X is 4× 3 so ρ(X) ≤ min(4,3) = 3. It is easy

to see that the first two columns of X are linearly independent (otherwise one
would be a multiple of the other) (so certainly ρ(X) ≥ 2) but not so easy to tell
whether all three columns are linearly independent. Suppose X(a1,a2,a3)

′ = 0
then we have a1 +2a2 +3a3 = 0, 5a1 +a2 +5a3 = 0, 6a1 +4a2 +5a3 = 0 and
3a1 + a2 + 4a3 = 0. Subtracting multiples of the first from the second and third
gives −9a2−10a3 = 0 and −8a2−13a3 = 0. Eliminating a2 from these shows
a3 = 0 and hence a2 = a3 = 0 and so the columns of X are linearly independent
and thus ρ(X) = 3.

(5) Let X =

 1 5 6
2 6 8
7 1 8

 . Then X is 3×3 so ρ(X)≤ 3 necessarily and it is easy

to see that the first two columns of X are linearly independent and so ρ(X)≥ 2.
Suppose X(a1,a2,a3)

′= 0, then we have a1+5a2+6a3 = 0, 2a1+6a2+8a3 = 0
and 7a1 + a2 + 8a3 = 0. Using the first equation to eliminate a1 from the
second and third gives −4a2− 4a3 = 0 and −34a2− 34a3 = 0 and so we can
take (a1,a2,a3)

′ = (1,1,−1) to satisfy X(a1,a2,a3)
′ = 0 non-trivially showing

ρ(X)< 3, thus ρ(X) = 2.

3.1.1 Notes

An m×n matrix X with ρ(X) = min(m,n) is said to be of full rank (sometimes full
row rank or full column rank as appropriate). It is clear that it is not always easy to
determine the rank of a matrix, nor even whether it is of full rank, using elementary
definitions as above. In practice, the easiest method is to use results which come
later in these notes. In particular, to determine whether a square n× n matrix is of
full rank, one can evaluate its determinant (using det(X) in R ) and the result that
the determinant is non-zero if and only if X is of full rank; see §4.3.2 on Page 62. To
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find the exact rank of any symmetric square matrix the result that the rank is equal
to the number of non-zero eigenvalues (see §6.4.7 on Page 91) is useful and this can
be easily checked in R with the function eigen(X). For general m× n matrices a
lower bound for the rank is provided by the number of non-zero singular values of X
given by svd(X), see §6.7.2, or as the number of non-zero eigenvalues either XX′ or
X′X; see §6.4.7. Some downloadable R packages contain routines for calculating the
rank of any matrix (e.g., rk(X) in package fBasics). In fact the function qr(X)

will return the rank of X as a byproduct of obtaining the QR decomposition of X; see
§8.2.1.

Example 3.2

(1) If In is the n× n identity matrix (i.e.,n× n, diagonal elements all 1 and all off-
diagonal elements 0, then ρ(In) = n since Ina = a for all vectors a so Ina = 0
implies a = 0 and the rows of In are linearly independent and it is thus of full
rank n.

(2) If D is a diagonal matrix, then ρ(D) = number of non-zero diagonal elements in
D. This follows by an argument similar to that in (1).

(3) ρ(X) = 0 if and only if X = 0. If the rank is zero, then there are no linearly
independent columns and so X = 0. If X = 0, then any column xi of X is 0 and
so we have axi = 0 for any a (including at least one a 6= 0) so X has no linearly
independent columns and thus ρ(X) = 0.

(4) ρ(λX) = λρ(X) if λ 6= 0, [obviously].

3.2 Rank Factorization
3.2.1 Matrices of rank 1

Suppose X is m× n and ρ(X) = 1; then let the columns of X be x1,x2, . . . ,xn and
suppose (with no loss in generality) that x1 6= 0. Since X has rank 1, every column
x j (2 ≤ j ≤ n) of X must be linearly dependent on x1. So for each j, 2 ≤ j ≤ n we
have a1x1 +a jx j = 0, or x j = −(a1/a j)x1, noting that a j 6= 0 because if a j = 0 we
have a1x1 = 0 which implies a1 = 0 because we know x1 6= 0 but we cannot have
both a1 and a j zero. Thus each column of X is a multiple of the first and we can write
X = (a1x1,a2x1, . . . ,anx1) = x1a′ which is of the form xy′ where x is an m-vector
and y an n-vector, i.e., the outer product of x and y′. Conversely if X = xy′, then
X = (y1x,y2x, . . . ,ynx) and so all columns are linearly dependent upon on an m× 1
vector and so ρ(X) = 1.

Thus if a matrix is of rank 1, it can be written as xy′ for some vectors x and
y, (i.e., the outer product of x and y; see §2.3.1 on Page 25). Clearly the converse is
also true.
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3.2.2 m×n matrices of rank r

The above is a special case of the result that any m× n matrix of rank r can be
written as UV′ where U is m× r and V is n× r and each has rank r. Since X is
of rank r it has r linearly independent columns, say u1,u2, . . . ,ur and each column
xi of X is a linear combination of these, so xi = ∑

r
j=1 vi ju j for some constants vi j.

Letting U = (u1,u2, . . . ,ur) and V = (vi j), the result follows. In passing, note that if
V = (v1,v2, . . . ,vr) we have X = ∑

r
j=1 u jv′j, a sum of r m× n matrices each of rank

1.

3.3 Rank Inequalities
3.3.1 Sum and difference

ρ(X+Y) ≤ ρ(X)+ ρ(Y) because if ρ(X) = r and ρ(Y) = s then let x1,x2, . . . ,xr
be r linearly independent columns of X and y1,y2, . . . ,ys be s linearly independent
columns of Y. Then, since every column of X can be expressed as a linear
combination of the xi and likewise every column of Y in terms of the y j, every
column of X+Y can be expressed in terms of a linear combination of the r+s vectors
x1,x2, . . . ,xr,y1,y2, . . . ,ys. So ρ(X+Y)≤ ρ(X)+ρ(Y).

ρ(X− Y) ≥ |ρ(X)− ρ(Y)| follows from above by replacing X by X− Y and
noting ρ(X−Y) = ρ(Y−X).

Note also that ρ(X− Y) = ρ(X + (−Y)) ≤ ρ(X) + ρ(Y) = ρ(X) + ρ(Y), i.e.,
ρ(X−Y)≤ ρ(X)+ρ(Y)

3.3.2 Products

ρ(XY)≤ min(ρ(X),ρ(Y)) because if y1,y2, . . . ,yr are a set of r linearly independent
columns of Y (where ρ(Y) = r and presuming that these are the first r columns
of Y, without losing generality), any column y j of Y can be expressed as a linear
combination of these r columns. If the columns of Z = XY are z1,z2, . . . and
noting z j = Xy j, any column z j of Z can be expressed as a linear combination
of z1,z2, . . . ,zr and so ρ(Z) ≤ r = ρ(Y). Similarly ρ(X) ≤ ρ(Z) and we have
ρ(XY)≤min(ρ(X),ρ(Y)).

3.3.2.1 Product with orthogonal matrix

If C is an orthogonal matrix then ρ(AC) = ρ(A) because ρ(A) = ρ(ACC′) ≤
ρ(AC)≤ ρ(A).

3.3.3 Sub-matrices

If Ai j is a sub-matrix of A then ρ(Ai j)≤ ρ(A) because if we express Ai j = EAF (see
§2.6.1 on Page 32) ρ(Ai j) = ρ(EAF)≤ ρ(EA)≤ ρ(A).
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3.4 Rank in Statistics
In a variety of statistical applications, the rank of a matrix plays a crucial role in the
form of the analysis. For example, in the simple linear model y = Xβ +ε considered
in §2.12.2, the matrix X has dimensions n× p where [usually] n > p. If this matrix
has rank p, then the p× p matrix X′X has rank p which we will see in the next chapter
means that it possesses an inverse and this considerably simplifies obtaining useful
estimates of the unknown parameters β . If X is not of full column rank, estimates may
still be obtainable but may require the use of generalized inverses, a topic we return
to in Chapter 8. This is closely related to considering the system of linear equations
y=Ax which may have a unique solution for x depending on the dimensions and rank
of A or it may be possible to find a least squares solution. This also is considered in
Chapter 8.

In multivariate analysis where the n× p data matrix X′ of n observations of
each of p random variables x1,x2, . . . ,xp, the rank of X′ is important because certain
statistical techniques rest on X′ having full column rank, i.e., whether the columns of
X′ are linearly independent. Note the distinction here between [mathematical] linear
independence and statistical independence. It is quite possible that the p random
variables xi are statistically independent but the columns of X′ are not linearly
independent (e.g., if n < p) and conversely.

Further, if the p random variables xi themselves are linearly dependent (i.e., there
are constants ai such that ∑i aixi = 0), then inevitably the columns of observations of
X′ will be linearly dependent. For example if x3 = x1−x2, the complete set of the xi
will be linearly dependent. Usually in multivariate analysis it is presumed that there
are no such structural linear dependencies (since the variable x3 gives no additional
information, being totally determined by the variables x1 and x2, it can be removed
from the set without really changing the interpretation of and conclusions drawn
from the data). Further, it is usually presumed that if n > p then the columns of X′
are linearly independent though, of course, since they are random observations, it
is possible that by ‘bad luck’ they might not be, especially with random variables
taking a small set of discrete values (not a situation often considered in multivariate
analysis).
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3.5 Exercises

(1) Let X1 =

(
1.3 9.1
1.2 8.4

)
, X2 =

(
1.2 9.1
1.3 8.4

)
, X3 =

(
1 2 3
2 1 9

)
X4 =

 1 2
3 9
2 1

 , X5 =

 1 2 9
2 1 3
9 3 0

 and X6 =

 6 2 8
5 1 6
1 7 8

.

(a) What is the rank of each of X1, . . . ,X6?

(b) Find constants a1,a2,a3 such that a1c31 +a2c32 +a3c33 = 0
where c3 j, j = 1,2,3 are the three columns of X3.

(c) Find constants a1,a2,a3 such that a1r41 +a2r42 +a3r43 = 0
where r4 j, j = 1,2,3 are the three rows of X4.

(2) Let X7 =

 4 5 6
8 10 12

12 15 18

 and X8 =

 4 12 8
6 18 12
5 15 10

.

(a) Show that X7 and X8 are both of rank 1.

(b) Find vectors a and b such that X7 = ab′.
(c) Find vectors u and v such that X8 = uv′.

(3) Let X9 = X3X4 and X10 = X4X3.

(a) Evaluate X9 and X10 in R .

(b) What is the rank of X9?

(c) What is the rank of X10?

(4) If x is a n×1 vector show that ρ(xx′−x′xIn)< n.

(5) If ρ(X)< n and Xx = λx show that (a) ρ(X+λxx′)< n and (b) ρ(X+xy′)< n
for any n×1 vector y.

(6) and ρ(AB) = m show that ρ(A) = ρ(B) = m and thus BA is singular unless both
A and B are square.

(7) If A is m× n with m ≥ n and ρ(A) = n show that ρ(AB) = ρ(B) for any
conformable matrix B.

(8) If X = AB where A is m× n, B is n×m with ρ(A) = ρ(B) = n show that
ρ(X) = ρ(X2) if and only if ρ(BA) = n.

(9) Suppose A is m×n and let B and C be m×m and n×n non-singular matrices.

(i) Show that ρ(BAC) = ρ(A).
(ii) Deduce ρ(BA) = ρ(AC) = ρ(A).
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(10) Show that ρ

(
A 0
0 D

)
= ρ(A)+ρ(D).

NB: Some parts of the following exercises require use of properties (§4.3.2).

(11) Suppose A is m×m and non-singular, D is n×n.

Let Z =

(
A B
0 D

)
and W =

(
Im −A−1B
0 In

)
.

(i) Show that W is non-singular.

(ii) Show that ZW =

(
A 0
0 D

)
.

(iii) Show that ρ(Z) = ρ(A)+ρ(D).

(12) Suppose Z =

(
A B
0 D

)
with B non-singular.

(i) Show that(
Im 0

−DB−1 In

)(
A B
0 D

)(
0 Ip

Im −B−1A

)
=

(
B 0
0 −DB−1A

)
.

(ii) Show that the first and third matrices in part (i) are non-singular.
(iii) Show that ρ(Z) = ρ(B)+ρ(DB−1A).

(13) Suppose Z =

(
A B
0 D

)
with A m× n, B m× q and D p× q with neither A, B

nor D necessarily non-singular. Show that ρ(Z)≥ ρ(A)+ρ(D).

(14) Suppose A, B and C are matrices such that the product ABC is defined.

(i) Show that(
Im −A
0 In

)(
0 AB

BC B

)(
Iq 0
−C Ip

)
=

(
−ABC 0

0 B

)
.

(ii) Show that the first and third matrices in part (i) are non-singular.

(iii) Show that ρ

(
0 AB

BC B

)
= ρ(ABC)+ρ(B).

(15) Suppose A, B and C are matrices such that the product ABC is defined. Show
that ρ(ABC)≥ ρ(AB)+ρ(BC)−ρ(B) (the Frobenius inequality).

(16) Suppose A is m×n and B is n× p show ρ(AB)≥ ρ(A)+ρ(B)−n.
(This is known as Sylvester’s inequality .)

(17) If A is m×n and B is n× p and AB = 0 show that ρ(A)≤ n−ρ(B).

(18) If ρ(Ak) = ρ(Ak+1) show that ρ(Ak+1) = ρ(Ak+2).

(19) If A is n×n show that there is a k, 0 < k ≤ n, such that
ρ(A)> ρ(A2)> .. . > ρ(Ak) = ρ(Ak+1) = . . ..

(20) If A is n×n show that ρ(Ak+1)−2ρ(Ak)+ρ(Ak−1)≥ 0.





4
Determinants

4.1 Introduction and Definitions
With every square n× n matrix A = (ai j), there is a value |A| or det(A), the
determinant of A, calculated from its elements (ai j). Although at first sight
determinants may seem to be mathematical curiosities, they have many crucial roles
in both mathematics and statistics, notably in calculating inverses of non-singular
square matrices (Chapter 5) and in performing eigenanlyses of matrices. (Chapter 6).
In some ways they provide a measure of ‘size’ of a matrix though this analogy should
not be taken too literally.

In statistics, most interest focuses on the determinant of symmetric positive
definite (or positive semi-definite) matrices, especially a variance matrix introduced
in §2.12.3. Sometimes the determinant of the [population] variance matrix Σ of
a p-dimensional random variable x is termed the generalized variance of x. This
occurs in the multivariate joint probability density function of the multivariate normal
distribution (see §9.2) and when changing variables in multiple integrals, a particular
determinant, the Jacobean (see §7.4), is required to complete the transformation.
This arises in finding the [population] mean and variance of the multivariate nrmal
distribution, see §9.2.1. In statistical experimental design (a topic beyond the scope
of this text) the determinant of the symmetric matrix X′X (where X is the design
matrix) plays a role in finding certain types of optimal designs.

After some examples in R, we illustrate some of the basic properties, followed by
considering partitioned matrices allowing some key properties to be proved. The final
section §4.6.2 contains a surprising result which greatly simplifies many statistical
calculations and is used in several places in Chapter 9.

Example 4.1

(i) 2×2 matrices:
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣= a11a22−a12a21.

(ii) 3×3 matrices:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
59
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= a11a22a33−a11a23a32−a12a21a33 +a12a23a31 +a13a21a32−a13a22a31

= a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣−a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣.
In (ii) above, the 3×3 determinant has been expanded along the first row with
each element in the row multiplying the determinant of the 2× 2 sub-matrix
obtained by deleting the row and column containing that element. Note further
that the signs alternate in the expansion. In fact, the 3× 3 determinant could
have been expanded along the first column:

= a11a22a33−a11a23a32−a12a21a33 +a13a21a32 +a12a23a31−a13a22a31

= a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣−a21

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣+a31

∣∣∣∣ a12 a13
a22 a23

∣∣∣∣.
Note that expanding along the first column gives just the same terms as
expanding along the first row but in a different order.

Again each element of the column multiplies the determinant of the 2× 2 sub
matrix obtained by deleting the row and column containing that element, with
alternating signs.
In fact, the 3× 3 determinant could be expanded using any row or column in
the same way with signs alternating starting with a + or a − according as the
row or column number is odd or even, respectively. For example, expanding
along the second row gives

|A|=−a21
∣∣A(21)

∣∣+a22
∣∣A(22)

∣∣−a23
∣∣A(23)

∣∣,
where A(i j) is the matrix obtained by deleting row i and column j. The quantity
ci j = (1)i+ j

∣∣A(i j)
∣∣ is termed the cofactor of ai j. The cofactor matrix of A is

the matrix C = (ci j). C′, the transpose of C, is the adjoint of A and is denoted
by A#.

(iii) A 4×4 matrix can be evaluated by expanding it using any row or column with
each element multiplying a 3×3 matrix.

(iv) If A is any n× n matrix then the determinant of A is |A| = ∑
n
k=1 aikcik =

∑
n
k=1 ak jck j for any choice of i or j (remember cik is the determinant of a

(n−1)× (n−1) matrix). Each cik can in turn be expressed as a sum of terms in
any row and their cofactors. The final expression will contain all of the possible
products of n elements of A taken from distinct rows and columns (i.e., no pair
of terms in any product occurs in the same row or same column of A).



Determinants 61

4.1.1 Notes

(i) If (a11,a21) and (a12,a22) are the coordinates of points in a plane, then |A| is
the area of the parallelogram formed by the vectors (a11,a21)

′ and (a12,a22)
′.

Similarly if A is a 3× 3 matrix, then |A| is the volume of the parallelepiped
formed by the three columns of A.

(ii) More generally for an n × n matrix, |A| represents the volume of the
parallelotope formed by the columns of A. In this sense |A| reflects the size
of the matrix A.

(iii) Note that each term in the expansion of the determinant is a product of n
elements, no two of which are in the same row or column. The sign of the
term depends on whether the sequence of columns [when expanding by rows]
is an even or odd permutation of the integers 1,2, . . . ,n.

Example 4.2

(i) Let X =

(
4 6
6 9

)
then |X|= 4×9−6×6 = 0.

(ii) Let X =

(
3 −1
2 2

)
then |X|= 3×2− (−1)×2 = 8.

(iii) Let X =

 1 5 6
2 6 8
7 1 8

 ,

then |X| = 1× (6× 8− 1× 8)− 2× (5× 8− 1× 6) + 7× (5× 8− 6× 6) =
40−68+28 = 0.

(iv) Let X =

 1 −2 2
2 0 1
1 1 −2

, then (expanding by the middle row)

|X|=−2× ((−2)× (−2)−2)+0−1× (1×1− (−2)×1) =−4−3 =−7.

(v) If A = In then |A|= 1 (expand successively by any row or any column).
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4.2 Implementation in R
The determinant of a square matrix in R is provided by the function det(.).

Example 4.3

> det(matrix(c(1,0,0,1),2,2,byrow=T))

[1] 1

> det(matrix(c(1,0,0,0,1,0,0,0,1),3,3,byrow=T)

+ )

[1] 1

> det(matrix(c(4,6,6,9),2,2,byrow=T))

[1] -2e-15

> det(matrix(c(3,-1,2,2),2,2,byrow=T))

[1] 8

> det(matrix(c(1,5,6,2,6,8,7,1,8),3,3,byrow=T))

[1] -4.64e-14

> det(matrix(c(1,-2,2,2,0,1,1,1,-2),3,3,byrow=T))

[1] -7

(Note that these are the matrices considered in the section above. Values such as
-2E-15 and -4.64e-14 should be taken as zero and may appear to be slightly
different on different platforms.)

4.3 Properties of Determinants
4.3.1 Elementary row and column operations

(i) If we multiply a single row(or column) of A by a scalar λ , then the determinant
is multiplied by λ (follows from definition).

(ii) If we interchange two rows (columns) of a matrix A, then the determinant but
not absolute value changes sign (proof not given, see examples below).

(iii) If we add a scalar multiple of one row (column) to another row (column) the
determinant does not change (proof not given, see examples below). This is
useful in evaluation of matrices.

4.3.2 Other properties of determinants

(i) |A′|= |A| (this follows from the fact that a determinant can be expanded either
by rows or by columns).

(ii) If A is n×n and λ is a scalar then |λA|= λ n |A| (this follows directly from the
definition).
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(iii) If a complete row [or column] of A consists of zeroes (i.e., if ai j = 0 for all
j [or for all i]), then |A| = 0 (consider expanding the determinant by that row
[column]).

(iv) If A has two identical rows [columns] then |A| = 0 (replace one of the rows
[columns] by the difference between the two identical rows [columns]).

(v) If A is n×n and ρ(A) < n then |A| = 0 (if A is not of full rank then there is a
linear combination of rows [columns] that is zero, so replace any row [column]
by this linear combination). The converse is also true, i.e., if ρ(A) = n, then
|A| 6= 0 (see next chapter).

(vi) If D = diag(d1,d2, . . . ,dn), i.e., diagonal matrix with elements d1,d2, . . . ,dn
down the diagonal, then |D|= d1d2 . . .dn (expand |D| successively by leftmost
columns).

(vii) If T is a triangular matrix with elements t1, t2, . . . , tn down the diagonal (i.e.,if
T is upper [lower] triangular then all elements below [above] the diagonal
are zero) then |T| = t1t2 . . . tn (expand |T| successively by leftmost [rightmost]
columns).

(viii) |AB|= |A| |B| for n×n matrices A and B (proof given in §4.5.1 (vii) below).

4.3.3 Illustrations of properties of determinants

(i) If X =

(
3 −1
2 2

)
then X′ =

(
3 2
−1 2

)
so |X′| = 3× 2− 2× (−1) =

6+2 = 8 = |X|.

(ii) If X =

(
3 −1
2 2

)
then

∣∣∣∣ 3×3 −1
3×2 2

∣∣∣∣= 3×3×2−3×2×(−1) = 18+6 =

24 = 3×8 = 3 |X|.

(iii) If X =

(
3 −1
2 2

)
then

∣∣∣∣ −1 3
2 2

∣∣∣∣=−1×2−3×2 =−8 =−|X|.

(iv) If X =

 1 −2 2
2 0 1
1 1 −2

 and Y =

 2 0 1
1 −2 2
1 1 −2

 then

(expanding by the top row)

|Y|= 2× (−2)× (−2)−2)−0+1× (1×1− (−2)×1) = 4×3 = |X|.

(v) If X =

 1 −2 2
2 0 1
1 1 −2

 and Y =

 1−2×2 −2 2
2−2×1 0 1

1−2× (−2) 1 −2
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(subtracting twice the third column from the first column) then

Y =

 −3 −2 2
0 0 1
5 1 −2

 so |Y|=
∣∣∣∣ −3 2

5 1

∣∣∣∣=−7 = |X|.

(vi) X =

(
a11 a12
a21 a22

)
and Y =

(
b11 b12
b21 b22

)
then

XY =

(
a11b11 +a12b21 a11b12 +a12b22
a21b11 +a22b21 a21b12 +a22b22

)
so

|XY| = a11a21b11b12 +a11a22b11b22 +a12a21b21b12 +a12a22b21b22

−a11a21b11b12−a21a12b11b22−a11a22b12b21−a12a22b21b22

= a11a22b11b22−a11a22b12b21−a21a12b11b22 +a12a21b21b12

= (a11a22−a12a21)(b11b22−b12b21) = |X| |Y| .

(vii) X =


1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

. . .
...

...

ρ · · · · · ·
. . . ρ

ρ ρ · · · ρ 1

 then

|X|=

∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

. . .
...

...

ρ · · · · · ·
. . . ρ

ρ ρ · · · ρ 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ ρ · · · ρ

−1+ρ 1−ρ 0 · · · 0
...

...
. . .

...
...

−1+ρ · · · · · ·
. . . 0

−1+ρ 0 · · · 0 1−ρ

∣∣∣∣∣∣∣∣∣∣∣∣
(subtracting the first row from each of the subsequent rows)

=

∣∣∣∣∣∣∣∣∣∣∣∣

1+(n−1)ρ ρ ρ · · · ρ

0 1−ρ 0 · · · 0
...

...
. . .

...
...

0 · · · · · ·
. . . 0

0 0 · · · 0 1−ρ

∣∣∣∣∣∣∣∣∣∣∣∣
= [1+(n−1)ρ](1−ρ)(n−1)

(replacing the first column by the sum of all the columns and then noting the
matrix is upper triangular so the determinant is the product of the diagonal
elements). X is known as the equicorrelation matrix .
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4.4 Orthogonal Matrices
A is orthogonal if AA′ = A′A = In, then since |A|= |A′| and |In|= 1 we have that if
A is orthogonal then |A|=±1. If |A|=+1 then A is termed a rotation matrix and
if |A|=−1 then A is a reflection matrix.

Example 4.4 The matrices A1 =

(
1 0
0 1

)
, A2 =

(
0 1
−1 0

)
and

A3 =

(
cosθ sinθ

−sinθ cosθ

)
are all orthogonal rotation matrices and

B1 =

(
1 0
0 −1

)
, B2 =

(
0 1
1 0

)
and B3 =

(
cosθ sinθ

sinθ −cosθ

)
are all orthogonal reflection matrices.

4.5 Determinants of Partitioned Matrices
4.5.1 Some basic results

Consider the partitioned matrix
(

A B
C D

)
where the dimensions of the sub-

matrices match suitably. Consider first some special cases where some of A, . . . ,D
are either 0 or identity matrices.

(i) If A and B are square matrices then [clearly]
∣∣∣∣ A B

0 D

∣∣∣∣= |A| |D|.
(ii)

∣∣∣∣ 0 Im
In 0

∣∣∣∣= (−1)mn (obtained by column interchanges to convert this matrix

to the identity matrix, each interchange changes the sign of the determinant).

(iii) If B and C are both square matrices then
∣∣∣∣ 0 B

C 0

∣∣∣∣= (−1)mn |B| |C|

noting
(

0 B
C 0

)
=

(
B 0
0 C

)(
0 Im
In 0

)
.

It can be shown that if B and C are not square, then the matrix must be singular
and so has zero determinant.

(iv)
∣∣∣∣ Im B

0 In

∣∣∣∣= 1 (since the matrix is [upper] triangular).
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(v) Noting (if C = 0 and B 6= 0)(
Im 0
0 D

)(
Im B
0 In

)(
A 0
0 In

)
=

(
A B
0 D

)
(and similarly if B = 0 and C 6= 0) gives

∣∣∣∣ A B
0 D

∣∣∣∣= ∣∣∣∣ A 0
C D

∣∣∣∣= |A| |D|.
(vi)

∣∣∣∣ A B
0 D

∣∣∣∣= (−1)m |D|
∣∣BD−1C

∣∣ (where B is m×n)

because
∣∣∣∣ A B

0 D

∣∣∣∣ ∣∣∣∣ Im −BD−1

0 In

∣∣∣∣= ∣∣∣∣ −BD−1C 0
C D

∣∣∣∣
and

∣∣−BD−1C
∣∣= (−1)m

∣∣BD−1C
∣∣.

(vii) (Proof that |AB|= |A| |B|).

Let P =

(
In A
0 In

)
, Q =

(
A 0
−In B

)
, R =

(
0 AB
−In B

)
then PQ = R, |P| = 1 and |Q| = |A| |B|. Now, premultiplying Q by P only
multiplies the last n rows of Q by A and adds them to the first n rows, i.e., it is
essentially a combination of elementary row and column operations and so this
leaves the determinant unchanged, i.e., |PQ|= |Q|= |A| |B|.

Further, |R|= (−1)n |B|
∣∣ABB−1In

∣∣= (−1)2n |AB|= |AB|.

Thus |AB|= |R|= |PQ|= |Q|= |A| |B|.

4.6 A Key Property of Determinants
The results in this section are of key importance in simplifying evaluation of the
determinant of a sum of a single matrix with a product of two matrices. The proofs
rely on non-obvious manipulation of partitioned matrices that is essentially a slick
trick which needs to be memorized.

4.6.1 General result∣∣∣∣ A B
C D

∣∣∣∣= |A| ∣∣D−CA−1B
∣∣= |D| ∣∣A−BD−1C

∣∣
(provided A [D] is non-singular because
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C D

∣∣∣∣= ∣∣∣∣( Im 0
−CA−1 In

)(
A B
C D

)∣∣∣∣= ∣∣∣∣ A B
0 D−CA−1B

∣∣∣∣ and∣∣∣∣ A B
C D

∣∣∣∣= ∣∣∣∣( Im −BD−1

0 In

)(
A B
C D

)∣∣∣∣= ∣∣∣∣ A−BD−1C 0
C D

∣∣∣∣.
4.6.1.1 Note

Replacing C by −C gives |A|
∣∣D+CA−1B

∣∣= |D| ∣∣A+BD−1C
∣∣.

4.6.2 Important special cases

(i) Putting A= Im and D= In in the note above gives |Im−BC|= |In−CB|where
B is m×n and C is n×m.

(ii) Similarly we have |Im +BC|= |In +CB|.

(iii) Putting C = x and B = y′ where x and y are n-vectors gives
|In +xy′|= |I1 + y′x|= (1+∑xyi).

(iv) Putting y = x gives |In +xx′|= |I1 +x′x|= (1+∑x2
i ).

(v) Putting x = In gives |In + ιnιn
′|= (n+1).

4.7 Exercises
The following should be evaluated ‘by hand’ and then checked using R where
possible.

(1) Find the determinants of A =

(
2 3
2 4

)
and B =

(
−4 3

2 −2

)
.

(2) Find the determinant of X =

 4 5 6
8 10 12

12 15 18

.

(3) Find the determinant of X =

 1 2 9
2 1 3
9 3 0

.
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(4) Find the determinants of X =

 2 3 3
3 3 3
3 3 2

 and Y =

 3 2 3
2 6 6
3 6 11

.

(5) Find the determinants of S =

 1+α 1 β

1 1+α β

β β α +β 2

.

(6) Find the determinants of S =

 2 1 3
1 2 3
3 3 10

.

(7) (Equicorrelation matrix) If X = σ2


1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

. . .
...

...

ρ · · · · · ·
. . . ρ

ρ ρ · · · ρ 1

 show that

X = σ2[(1−ρ)In +ριnι ′n] and hence that |X|= σ2n[1+(n−1)ρ](1−ρ)(n−1).

(8) If X =

 1+α 1 β

1 1+α β

β β α +β 2

 show that |X|= α2(2+α +β 2)

by showing that X = αI3 +xx′ for a suitable choice of x.

(9) Use the results of the previous exercise to evaluate the determinant of

S =

 2 1 3
1 2 3
3 3 10

.

(10) To show
∣∣∣∣ A B

B A

∣∣∣∣= |A+B| |A−B| for n×n matrices A and B:

(a) Show
(

In In
0 In

)(
A B
B A

)
=

(
A+B B+A

B A

)
.

(b) Show
(

A+B 0
0 In

)(
In In
B A

)
=

(
A+B B+A

B A

)
.

(c) Show
(

In In
B A

)
=

(
In 0
B In

)(
In In
0 A−B

)
.

(d) Show
∣∣∣∣ A B

B A

∣∣∣∣= |A+B| |A−B|.

(11) Let A =

 2 3
3 3
3 3

 and B =

 3
3
2

 and X =
(

A B
)
.
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(a) Find
∣∣∣∣ A′A A′B

B′A B′B

∣∣∣∣.
(b) Find |AA′+BB′|.
(c) Find |X|.

(12) If A and B are n×m and n× (n−m) matrices and X =
(

A B
)

prove that

|X|2 = |AA′+BB′|=
∣∣∣∣ A′A A′B

B′A B′B

∣∣∣∣.
(13) Show that ∣∣∣∣∣∣∣∣∣

1+λ1 λ2 · · · λn
λ1 1+λ2 · · · λn
...

...
. . .

...
λ1 λ2 · · · 1+λn

∣∣∣∣∣∣∣∣∣= 1+λ1 +λ2 + · · ·+λn.

(14) By considering the matrix
(

E 0
0 In

)
show that∣∣∣∣ EA EB

C D

∣∣∣∣= |E| ∣∣∣∣ A B
C D

∣∣∣∣ .
(15) By considering the matrix

(
Im 0
E In

)
show that

∣∣∣∣ A B
C+EA D+EB

∣∣∣∣= ∣∣∣∣ A B
C D

∣∣∣∣ .
(16) Suppose Z =

(
A B
C D

)
and Z−1 =

(
P Q
R S

)
.

(i) Express ZZ−1 in terms of the eight sub-blocks of Z and Z−1.

(ii) Show that (
A B
C D

)(
Im Q
0 S

)
=

(
A 0
C In

)
.

(iii) Show that (
A B
C D

)(
P 0
R In

)
=

(
A 0
C In

)
.

(iv) Show that

|Z|= |A|
|S|

=
|D|
|P|

.

(17) If |A| 6= 0 and A and C commute show that
∣∣∣∣ A B

C D

∣∣∣∣= |AD−CB|.





5
Inverses

5.1 Introduction and Definitions
In this chapter we consider inverses of matrices which play a similar role to
reciprocals of scalars. We begin with the inverse of a square matrix which has
full rank (see §3.1.1) since this is the easiest and most commonly occurring case in
routine statistical applications. Later (§8.3) we consider generalizations to matrices
which are not square and also to matrices which are not of full rank.

We begin with definitions, examples (including in R) and basic properties before
looking at some tricks for handling matrices which have various patterns. In the fifth
section we consider partitioned matrices. This section is particularly useful in both
linear models and in multivariate analysis when variables might divide into distinct
groups and so it is convenient to partition the design matrix or the data matrix to
reflect these groups. This may lead to interpreting the variance matrix as composed of
blocks down the diagonal, giving the variance matrices of the subgroups of variables
and the off-diagonal blocks as covariances between variables in different groups.
This is illustrated in §9.5.1. Finally, we pick up the various statistical applications
introduced in §2.12 and move a step further in their development.

A square n×n matrix A is non-singular if ρ(A) = n; if ρ(A)< n, A is singular.
If A is an n× n matrix and B is also an n× n matrix such that AB = BA = In, the
n×n identity matrix, then B is the inverse of A and is denoted by A−1.

Example 5.1

(i) If A =

(
2 3
3 4

)
and B =

(
−4 3

3 −2

)
, then AB = BA =

(
1 0
0 1

)
= I2,

so A−1 =

(
−4 3

3 −2

)
.

(ii) If A =

(
3 4
2 3

)
and B =

(
3 −2
−4 3

)
, then AB = BA =

(
1 0
0 1

)
= I2,

so A−1 =

(
3 −2
−4 3

)
.

71
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(iii) If A =

 1 0 0
0 2 3
0 3 4

 and B =

 1 0 0
0 −4 3
0 3 −2

, then

AB = BA =

 1 0 0
0 1 0
0 0 1

= I3 so A−1 =

 1 0 0
0 −4 3
0 3 −2

.

(iv) If A =

 3 0 4
0 1 0
2 0 3

 and B =

 3 0 −4
0 1 0
−2 0 3

, then

AB = BA =

 1 0 0
0 1 0
0 0 1

= I3 so A−1 =

 3 0 −4
0 1 0
−2 0 3

.

(v) If X =

(
a b
c d

)
and Y = 1

ad−bc

(
d −c
−b a

)
, (with ad−bc 6= 0)

then XY = YX =

(
1 0
0 1

)
= I3 so X−1 = 1

ad−bc

(
d −c
−b a

)
.

5.1.1 Notes

(a) Note the similarities between (i) and (iii) and also between (ii) and (iv).

(b) Note that (i) and (ii) follow from the general formula in (v) for 2×2 matrices.

(c) Note that the condition ad−bc 6= 0 in (v) is equivalent to |X| 6= 0.

5.2 Properties
5.2.1 Singular and non-singular matrices

An n×n matrix A only possesses an inverse (i.e., is invertible) if ρ(A) = n. If B is the
inverse of A, In = AB, so n = ρ(In) = ρ(AB)≤min(ρ(A),ρ(B))≤ ρ(A)≤ n; i.e.,
n ≤ ρ(A) ≤ n so ρ(A) = n and A is non-singular. The converse can also be proved
[using ideas of vector spaces], i.e., if A is non-singular A must possess an inverse.

5.2.2 Uniqueness

Suppose A has an inverse B and also an inverse C, AB = In and also CA = In, so
C = C(In) = C(AB) = (CA)B = (In)B = B and the inverse of A, A−1, is unique.
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5.2.3 Inverse of inverse

(A−1)−1 = A because (A)A−1 = A−1(A) = In (because A−1 is the inverse of A), but
this also means that A(A−1) = (A−1)A = In, showing A is the inverse of A−1.

5.2.4 Determinant of inverse

1 = |In| =
∣∣AA−1

∣∣ = |A| ∣∣A−1
∣∣, so

∣∣A−1
∣∣ = |A|−1. So, if A is non-singular (i.e.,

ρ(A) = n if A is n×n) |A| 6= 0 (since A must possess an inverse if it is non-singular,
§5.2.1).

5.2.5 Inverse of transpose

(A′)−1 = (A−1)′ because A′(A−1)′ = (A−1A)′ = In
′ = In [noting that the product of

transposes is the transpose of the reverse product, i.e., X′Y′ = (YX)′, see §2.11.2.5].

5.2.6 Inverse of product

If A and B are both n × n non-singular matrices, (AB)−1 = B−1A−1 because
(AB)B−1A−1 = AInA−1 = AA−1 = In and similarly B−1A−1(AB) = In.

5.2.6.1 Rank of product with non-singular matrix

(Generalization of §3.3.2.1). If C is a non-singular matrix, ρ(AC) = ρ(A) since
ρ(A) = ρ(ACC−1)≤ ρ(AC)≤ ρ(A).

5.2.7 Orthogonal matrices

(See also §2.5.3 and §4.4). An n× n matrix A is orthogonal if A−1 = A′, i.e., if
AA′ = A′A = In. Clearly, if A is orthogonal, so is A′.

5.2.8 Scalar products of matrices

If A is an n×n matrix and λ is any scalar (i.e., real number or constant), (λA)−1 =
(1/λ )A−1, because λA(1/λ )A−1 = λ (1/λ )AA−1 = 1In = In.

5.2.9 Left and right inverses

If A is a non-square m× n matrix (i.e., with m 6= n), a n×m matrix B such that
BA = In is termed a left inverse of A and a n×m matrix C such that AC = Im is
termed a right inverse of A. It can be shown (e.g., Banerjee and Roy, 2014, Theorem
5.5) that if A is of full column rank (i.e., ρ(A) = n), it must possess a left inverse and
if it is of full row rank (i.e., ρ(A) = m), it must possess a right inverse. It will be
shown in §8.3.1 that in these cases the left and right inverses are given by the Moore–
Penrose inverse of A which is given by (A′A)−1A′ and A′(AA′)−1 in the two cases
respectively.



74 Basics of Matrix Algebra for Statistics with R

5.3 Implementation in R
The inverse of a non-singular matrix is provided in R by the function solve(.).
Two other functions in libraries will also produce inverses of non-singular matrices
but they are designed to produce generalized inverses (see §8.3 below) of singular
and non-rectangular matrices. These functions are ginv(A) (in the MASS library)
and MPinv(A) (in the gnm library). The function solve(.) will generate a warning
message if the matrix is singular.

Example 5.2

> A<-matrix(c(2,3,3,4),

+ 2,2,byrow=T)

> A; solve(A)

[,1] [,2]

[1,] 2 3

[2,] 3 4

[,1] [,2]

[1,] -4 3

[2,] 3 -2

> A%*%solve(A)

[,1] [,2]

[1,] 1 0

[2,] 0 1

> B<-matrix(c(3,4,2,3),

+ 2,2,byrow=T)

> B; solve(B)

[,1] [,2]

[1,] 3 4

[2,] 2 3

[,1] [,2]

[1,] 3 -4

[2,] -2 3

> B%*%solve(B)

[,1] [,2]

[1,] 1 0

[2,] 0 1

> C<-matrix(c(1,0,0,0,2,3,

+ 0,3,4),3,3,byrow=T)

> C; solve(C)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 3

[3,] 0 3 4

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 -4 3

[3,] 0 3 -2

> C%*%solve(C)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> D<-matrix(c(3,0,4,0,1,0,

+ 2,0,3),3,3,byrow=T)

> D; solve(D)

[,1] [,2] [,3]

[1,] 3 0 4

[2,] 0 1 0

[3,] 2 0 3

[,1] [,2] [,3]

[1,] 3 0 -4

[2,] 0 1 0

[3,] -2 0 3

> D%*%solve(D)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1
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> E<-matrix(c(1.3,9.1,1.2,

+8.4),2,2,byrow=T)

> E; solve(E)

[,1] [,2]

[1,] 1.3 9.1

[2,] 1.2 8.4

Error in solve.default(E) :

system is computationally

singular: reciprocal

condition number=1.598e-17

> F<-matrix(c(1.2,9.1,1.3,

+ 8.4),2,2,byrow=T)

> F; solve(F)

[,1] [,2]

[1,] 1.2 9.1

[2,] 1.3 8.4

[,1] [,2]

[1,] -4.800 5.200

[2,] 0.743 -0.686

>> F%*%solve(F)

[,1] [,2]

[1,] 1.000e+00 1.0096e-15

[2,] 8.630e-17 1.0000e+00

Note that in first example of the two immediately above the matrix is singular and
the result in the second is the identity matrix I2 to within rounding error of order
10−16. To control the number of digits printed, use the function options(.) with
digits specified, e.g.,options(digits=3).

> U<-matrix(c(1,2,9,2,1,3,9,

+3,0),3,3,byrow=T)

> U; solve(U)

[,1] [,2] [,3]

[1,] 1 2 9

[2,] 2 1 3

[3,] 9 3 0

[,1] [,2] [,3]

[1,] -0.500 1.500 -0.167

[2,] 1.500 -4.500 0.833

[3,] -0.167 0.833 -0.167

> U%*%solve(U)

[,1] [,2] [,3]

[1,] 1.00 0.00 0.00

[2,] 0.00 1.00 0.00

[3,] 0.00 0.00 1.00

> V<-matrix(c(6,2,8,5,1,6,

+1,7,8),3,3,byrow=T)

> V

[,1] [,2] [,3]

[1,] 6 2 8

[2,] 5 1 6

[3,] 1 7 8

> solve(V)

Error in solve.default(V) :

system is computationally

singular: reciprocal

condition number= .177e-18

>

5.4 Inverses of Patterned Matrices
If a matrix has a particular pattern, it can be the case that the inverse has a similar
pattern. So, in some cases it is possible to determine the inverse by guessing the form
of the inverse up to a small number of unknown constants and then determining the
constants so that the product of the matrix and the inverse is the identity matrix. For
example, consider the 3×3 matrix
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X =

 2 3 3
3 2 3
3 3 2

;

this has identical elements down the diagonal and all off-diagonal elements are
identical (but distinct from the diagonal). It is a sensible guess to look for an inverse
with the same structure:

Y =

 a b b
b a b
b b a

.

If XY = I3, we have 2a+6b 3a+5b 3a+5b
3a+5b 2a+6b 3a+5b
3a+5b 3a+5b 2a+6b

= I3 =

 1 0 0
0 1 0
0 0 1


so we require that 2a + 6b = 1 and 3a + 5b = 0, so a = −5b/3 and so b =
1/(6−10/3) = 3/8 and a = 5/8. Check (in R ):

> a<- -5/8 ; b<- 3/8

> X<- matrix(c(2,3,3,3,2,3,3,3,2),3,3,byrow=T)

> Y<- matrix(c(a,b,b,b,a,b,b,b,a),3,3,byrow=T)

> X%*%Y [,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

5.4.1 Matrices of form αIn +βιnι ′n

The example above is a special case of matrices of the form

αIn +βιnι ′n =


α +β β · · · β

β α +β
...

...
... · · ·

. . . β

β · · · β α +β

,

(in above α =−1 and β = 3). Numerical matrices of this form are easy to recognise.
Recall that ιnιn

′ is the n× n matrix J with all elements equal to 1. If the inverse
has a similar form aIn + bιnιn

′, then we need to find constants a and b such that
(αIn +βιnι ′n)(aIn +bιnιn

′) = In so we need In = αaInIn +αbInιnιn
′+aβιnιn

′In +
βbιnιn

′ιnιn
′ = αaIn + (αb + aβ + nbβ )ιnιn

′ (noting ιn
′ιn = n, see §2.8.1). Thus

we need αa + βb + aβ + nbβ = 1 and αb + aβ + nbβ = 0, so a = α−1 and
b =−β/α(α +nβ ).
In the numerical example above we have a = −1 and b = 3/(−1+ 9) = 3/8 and
then the inverse is −I3 + 3ι3ι3

′/8, i.e., with diagonal elements 1− 3/8 = 5/8 and
off-diagonal elements 3/8.
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5.4.2 Matrices of form A+xy′

A further generalization of above is the result that if the n×n matrix A is non-singular
and x and y are n-vectors such that y′A−1x 6=−1, then we have

(A+xy′)−1 = A−1− 1
1+y′A−1x

A−1xy′A−1:

because (A+xy′)(A−1− 1
1+y′A−1x

A−1xy′A−1)

= AA−1− AA−1xy′A−1

1+ y′A−1x
+xy′A−1− xy′A−1xy′A−1

1+ y′A−1x

= In−
Inxy′A−1

1+ y′A−1x
+

xy′A−1 +xy′A−1y′A−1x−xy′A−1xy′A−1

1+ y′A−1x
= In.

Numerical matrices of this form are not easy to recognise unless the matrix A is
the identity matrix or a multiple of it. It is a little easier if additionally x = y. The
main use of this result is that this form arises in various theoretical developments of
methodology.

Example 5.2
If A = aIn and x = y = (x1,x2, . . . ,xn)

′,

then A+xy′ =


a+ x2

1 x1x2 · · · x1xn
x2x1 a+ x2

2 · · · x2xn
...

...
. . .

...
xnx1 xnx2 · · · a+ x2

n

 which is symmetric.

For example, if a = 2 and x = (1,2,3)′, then A+xx′ =

 3 2 3
2 6 6
3 6 11

 .

Note that A−1 = 1/2In, x′A−1x = 7 and so the formula gives the inverse as 0.5 0 0
0 0.5 0
0 0 0.5

− 1
(1+7)×2×2

 1 2 3
2 4 6
3 6 9


=

 0.469 −0.063 −0.094
−0.063 0.375 −0.188
−0.094 −0.188 0.219

.

Check:

> X<-matrix(c(3,2,3,2,6,6,3,6,11),3,3,byrow=T)

> X

[,1] [,2] [,3]

[1,] 3 2 3

[2,] 2 6 6

[3,] 3 6 11
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> solve(X)

[,1] [,2] [,3]

[1,] 0.46875 -0.0625 -0.09375

[2,] -0.06250 0.3750 -0.18750

[3,] -0.09375 -0.1875 0.21875

5.5 Inverses of Partitioned Matrices
5.5.1 Some basic results

Consider the partitioned matrix
(

A B
C D

)
where the dimensions of the sub-

matrices match suitably and non-singularity is assumed where necessary. Consider
first some special cases where some of A, . . . , D are either 0 or identity matrices.
Most of the results below can be demonstrated by direct multiplication.

Recall that
(

A B
C D

)(
P Q
R S

)
=

(
AP+BR AQ+BR
CP+DR CQ+DS

)
.

(i) If A and B are square matrices, then [clearly](
A 0
0 D

)−1

=

(
A−1 0

0 D−1

)
.

(ii)
(

0 B
C 0

)−1

=

(
0 B−1

C−1 0

)
.

(iii)
(

0 B
B−1 0

)−1

=

(
0 B

B−1 0

)
.

(iv)
(

Im B
0 In

)−1

=

(
Im −B
0 In

)
.

(v)
(

Im 0
C In

)−1

=

(
Im 0
−C In

)
.

(vi)
(

A B
0 D

)−1

=

(
A−1 −A−1BD−1

0 D−1

)
.

(vii)
(

A 0
C D

)−1

=

(
A−1 −A−1BD−1

−D−1DA−1 D−1

)
.

(viii)
(

A Im
In 0

)−1

=

(
0 Im
In −A

)
.
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(ix)
(

0 Im
In D

)−1

=

(
−D Im
In 0

)
.

(x)
(

A B
C 0

)−1

=

(
0 C−1

B−1 −B−1AC−1

)
.

(xi)
(

0 B
C D

)−1

=

(
−C−1DB−1 C−1

B−1 0

)
.

(xii)
(

A B
C D

)−1

=

(
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
where E = D−CA−1B.

(xiii)
(

A B
C D

)−1

=

(
F−1 −F−1BD−1

−D−1CF−1 D−1 +D−1CF−1BD−1

)
where F = A−BD−1C.

5.5.1.1 Notes

The matrices E and F in (xii) and (xiii) above are termed the Schur complements
of A and D respectively.

5.6 General Formulae
Let A be an n× n matrix (ai j) and let C = (ci j) be the cofactor matrix of A, so
C′ = A#, the adjoint of A; see §4.1. Then expanding the determinant by row k we
have |A| = ∑

n
j=1 ak jck j for any k and |A| = ∑

n
j=1 a jkc jk for any column k, (these

results follow from the definition of the cofactors ci j in 4.1). Let B be the matrix
obtained by replacing the kth row of A by a copy of row i, then |B| = 0 since it has
two identical rows. Thus, expanding |B| by this row we have ∑

n
j=1 ak jci j = 0 if i 6= k

and similarly |A| = ∑
n
i=1 ai jcik = 0 if k 6= j, i.e., ∑

n
i=1 ai jcik = δ jk |A| where δ jk = 1

or 0 as j = k or j 6= k. Similarly ∑
n
i=1 akic ji = δ jk |A|. Thus AC′ = C′A = |A|In, i.e.,

AA# = A#A = |A|In, or A−1 = |A|−1 A#.

Example 5.3

If A =

(
a11 a12
a21 a22

)
, then |A|= (a11a22−a12a21) and C =

(
a22 −a21
−a12 a11

)
so A# =

(
a22 −a12
−a21 a11

)
so A−1 = 1

a11a22−a12a21

(
a22 −a12
−a21 a11

)
.



80 Basics of Matrix Algebra for Statistics with R

5.7 Initial Applications Continued
5.7.1 Linear equations

In §3.4 we briefly considered systems of linear equations given by y = Ax. It is easy
to see that if A is square and invertible, there is a unique solution for x given by
x = A−1y. This is not the only situation where an exact solution exists, i.e., even
if A is singular or non-square (and therefore no inverse A−1 exists) there may be
a solution for x, which may or may not be unique. This extension requires use of
generalized inverses and is considered in some detail in §8.3.3.1.

5.7.2 Linear models

Returning to the simple linear model introduced in §2.12.2, y = Xβ +ε where y and
ε are n×1 vectors, X is a n× p design matrix and β is a p×1 vector of parameters
where we noted that if there were a matrix G such that GXβ = β , then we would
have Gy (a linear function of the observations y) as an unbiased estimator of β . If X
is of full column rank p, then X′X is a non-singular p× p matrix and so invertible.
If we consider G = (X′X)−1X′, then GXβ = (X′X)−1X′Xβ = β and so (X′X)−1X′y
is an unbiased estimator of β . Again, this is not the only situation where we can
obtain a useful estimator of β and we consider cases where X does not have full
column rank in §8.3.3.1 using generalized inverses. In that section we also consider
in what circumstances (X′X)−1X′y is a least squares estimator of β and finally in
§9.7.2.1 we show that if we make the assumption that the errors εi; i = 1, . . . ,n are
independently and identically normally distributed, then this least squares solution is
also the maximum likelihood estimator.

5.7.3 Multivariate methods

In §3.4 we mentioned that the rank of the n× p data matrix X′ was important, in
particular whether or not it had full column rank. This is because the rank of the
p× p sample variance matrix S = 1

(n−1) (X−X)(X−X)′ is determined by the rank
of X′, so if ρ(X′) = p, then ρ(S) = p and so S is invertible. Certain exploratory
multivariate analysis techniques such as linear discriminant analysis and canonical
correlation analysis (discussed in Chapter 9) involve inversion of the sample variance
S and so if S is singular, then these techniques are inapplicable as they stand and
some form of dimensionality reduction is required. Other (primarily exploratory)
multivariate methods such as principal component analysis and partial least squares
(also discussed in Chapter 9) do not require inversion of the variance S and so can
be useful in such situations. The most common practical reason for S to be singular
(or equivalently X′ not to be of full column rank) is that there are fewer observations
than the number of dimensions, i.e., n < p.
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5.8 Exercises
(1) Find the inverses, both ‘by hand’ and with R, of

(i) A1 =

(
12 7
−4 6

)
.

(ii) A2 =

(
0 5
−4 1

)
.

(iii) A3 =

(
1 5
−4 0

)
.

(iv) A4 =

(
0 5
−4 0

)
.

(v) A5 =


0 0 0 5
0 0 4 0
0 7 0 0
3 0 0 0

.

(2) Suppose AB = BA and that A is a non-singular n×n matrix. Show that A−1B =
BA−1.

(3) Suppose A is an n× n orthogonal matrix and B is n× n. Show that AB is
orthogonal if and only if B is orthogonal.

(4) Suppose X and Y are non-singular n×n matrices and all other matrices stated in
this exercise are also non-singular.

(a) Show that (In +X)−1 = X−1(In +X−1)−1.

(b) Show that (X+YY′)−1Y = X−1Y(In +Y′X−1Y)−1.

(c) Show that (X+Y)−1 = X−1(X−1 +Y−1)−1Y−1 = Y−1(X−1 +Y−1)−1X−1.

(d) Show that X−1 +Y−1 = X−1(X+Y)Y−1.

(e) Show that X−X(X+Y)−1X = Y−Y(X+Y)−1Y.

(f) Show that if (X+Y)−1 = X−1 +Y−1, XY−1X = YX−1Y.

(g) Show that (In +XY)−1 = In−X(In +YX)−1Y.

(h) Show that (In +XY)−1X = X(In +YX)−1.

(5) Show that (A+BCB′)−1 = A−1−A−1B[C−1 +B′A−1B]−1B′A−1 where A and
C are non-singular m×m and n×n matrices and B is m×n.

(6) Show that
(

A B
0 D

)−1

=

(
A−1 X

0 D−1

)
for a suitable X.

(7) Let A =

(
In λιn

λιn
′ 1

)
.



82 Basics of Matrix Algebra for Statistics with R

(i) For what values of λ is A non-singular?

(ii) Find A−1 when it exists.

(8) Suppose A is skew-symmetric and non-singular.

(i) Show that A−1 is skew-symmetric.

(ii) Show that (In−A)(In +A)−1 is orthogonal.

(9) Suppose that AX = 0 and A is idempotent. Let B = (X−A)−1.
Prove that

(i) XB = In−A.

(ii) XBX = X.

(iii) XBA = 0.

(10) Suppose A = In−2xx′ with x′x = 1. Find A−1.

(11) Show that
(

0 A
λ x′

)−1

= 1
λ

(
−x′A−1 1
λA−1 0

)
.



6
Eigenanalysis of Real Symmetric Matrices

6.1 Introduction and Definitions
Eigenvalues and eigenvectors of a matrix provide a fundamental characterisation of
the matrix and are central to many of the theoretical results on matrices. They have
a close connection to determinants and they provide a representation that permits
definition of fractional powers of a matrix, i.e., square and cube roots etc. In most of
this chapter the matrices considered are real symmetric matrices. This restriction is
with statistical applications in mind. Details of extensions to non-symmetric and to
complex matrices are readily available in the references given in §1.2.

In statistics, the eigenanalysis of the variance matrix is the basis of many
statistical analyses. This matrix is necessarily symmetric and also it is positive semi-
definite (see §2.9). Recall that the size of a matrix is reflected by its determinant
(see §4.1.1, note (ii)). This, combined with the properties that the sum and product
of the eigenvalues are equal to the trace and determinant of the matrix (see §6.4.4
below), means that the eigenvalues of a matrix are themselves key properties of
a matrix. Further the eigenvectors associated with the eigenvalues, especially the
dominant (largest) and the minor (smallest) values, give further information and
provide interpretations of statistical interest, e.g., directions of dominant and minor
variation in the case of the eigenanalysis of a variance matrix.

Principal component analysis is a fundamental tool of multivariate analysis and
this involves projecting (or more exactly translating and rotating) the data onto the
eigenvectors of the variance matrix. The advantages of doing this are explained later
in this chapter in §6.5 and in fuller detail in §9.3. Other techniques of multivariate
analysis such as linear discriminant analysis, canonical correlation analysis and
partial least squares discussed in Chapter 9 all rest on the eigenanalysis of various
matrices derived from the data.

Specific methods of statistical analysis are not the only areas where eigenanalysis
plays a crucial role. In §6.7.1 and §8.2 we consider various matrix decompositions,
i.e., expressing a matrix as a product of two or three matrices which have particular
forms, for example the first and third matrices in a product of three factors might be
orthogonal and the second term diagonal. Then in the later parts of §8.2 we show
how these can be used for efficient calculation of determinants and inverses and in
solving linear equations, all of which we have seen arise in many areas of statistical
modelling and statistical analysis.

83
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If S is a n×n matrix, then the eigenvalues of S are the roots of the characteristic
equation of S, |S−λ In| = 0. Some authors refer to eigenvalues as characteristic
values or characteristic roots. The polynomial pS(λ ) = |S−λ In| is called the
characteristic polynomial of S. This is a polynomial of degree n and so has n roots
λ1,λ2, . . . ,λn which are not necessarily distinct. Conventionally we order these so
that λ1 ≥ λ2 ≥ . . .≥ λn, provided, of course, that they are all real numbers.

It can be shown (e.g., Banerjee and Roy, 2014, Theorem 11.18), the Cayley-
Hamilton theorem , that S satisfies its own characteristic equation, i.e., pS(S) = 0,
where it is understood that any scalar µ in pS(λ ) is replaced by µIn.

Example 6.1

(i) If S =

(
1 4
9 1

)
, then the characteristic equations of S is

0 = |S−λ I2|=
(

1−λ 4
9 1−λ

)
= (1−λ )2−36 = λ 2−2λ −35

= (λ −7)(λ +5) so λ1 = 7 and λ2 =−5.

(ii) If S =

(
6 3
3 2

)
, then the characteristic equations of S is

0 = |S−λ I2|=
(

6−λ 3
3 2−λ

)
= (6−λ )(2−λ )−4 = λ 2−8λ +8

= (λ −4)2−8 so λ1 = 4+2
√

2 and λ2 = 4−2
√

2.

(iii) If S =

 2 1 1
1 2 1
1 1 2

, then the characteristic equations of S is

0 = |S−λ I3|= λ 3−6λ 2 +9λ −4 = (λ −4)(λ −1)2

so λ1 = 4 and λ2 = λ3 = 1 so the three eigenvalues of S are 4 (with multiplicity
1) and 1 (with multiplicity 2).

6.2 Eigenvectors
If λ is an eigenvalue of the n× n matrix S, then |S−λ In| = 0 so A = S− λ In
is a singular matrix and so there is a linear combination of the n columns of S
equal to zero (i.e., the columns must be linearly dependent), i.e., there are constants
x1,x2, . . . ,xn, not all zero, such A(x1,x2, . . . ,xn)

′ = 0, such that Ax = 0 or Sx = λx.
This last equation is termed an eigenequation. The vector x is termed an eigenvector
of S [corresponding to the eigenvalue λ ]. The pair (x, λ ) is termed an eigenpair
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of S. Since there are n eigenvalues of S,λ1,λ2, . . . ,λn (not necessarily distinct)
there are n eigenvectors x1,x2, . . . ,xn corresponding to the n eigenvalues. To find
the eigenvectors of a matrix S ‘by hand’ the first step is to find the eigenvalues
λ1,λ2, . . . ,λn by finding the roots of the n-degree polynomial |S−λ In| and then for
each λi in turn solving the simultaneous linear equations Sxi = λixi for xi.

6.2.1 General matrices

Strictly x is termed a right eigenvector if Sx = λx and a left eigenvector if x′S = λx′.
Note that necessarily S must be a square matrix for an eigenvector to be defined. If
S is symmetric (and therefore necessarily square), it is easily seen that left and right
eigenvectors are identical with identical eigenvalues. Left and right eigenvectors of
non-symmetric matrices have the same eigenvalues because |S−λ In|= |(S−λ In)

′|.

6.3 Implementation in R
The command for producing the eigenanalysis of a matrix is eigen(). This produces
the eigenvalues and eigenvectors of a square matrix. If the matrix is not symmetric,
the command produces the right eigenvectors. Left eigenvectors could be obtained
by using eigen() on the transpose of the matrix. The eigenvalues of the matrix S
are stored in the vector eigen(S)$values and the eigenvectors in the n×n matrix
eigen(S)$vectors.

Example 6.2

(i) > X<-matrix(c(1,4,9,1),

+ 2,2,byrow=T)

> X

[,1] [,2]

[1,] 1 4

[2,] 9 1

> eigen(X)

$values

[1] 7 -5

$vectors

[,1] [,2]

[1,] 0.555 -0.555

[2,] 0.832 0.832

To verify the first eigenequation:

> eigen(X)$values[1]* eigen(X)$vectors[,1]

[1] 3.88 5.82

> X%*%eigen(X)$vectors[,1]

[,1]

[1,] 3.88

[2,] 5.82
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(ii) > X<-matrix(c(2,1,1,1,2,1,1,

+ 1,2),3,3,byrow=T)

> X

[,1] [,2] [,3]

[1,] 2 1 1

[2,] 1 2 1

[3,] 1 1 2

> eigen(X)

$values

[1] 4 1 1

$vectors

[,1] [,2] [,3]

[1,] -0.577 0.816 0.000

[2,] -0.577 -0.408 -0.707

[3,] -0.577 -0.408 0.707

To verify the first eigenequation:

> eigen(X)$values[1]* eigen(X)$vectors[,1]

[1] -2.31 -2.31 -2.31

> X%*%eigen(X)$vectors[,1]

[,1]

[1,] -2.31

[2,] -2.31

[3,] -2.31

(iii) To verify all the eigenequations simultaneously:

> options(digits=3)

> X<-matrix(c(2,1,1,1,2,1,1,

+ 1,2),3,3,byrow=T)

> one<-matrix((rep(1,3)),

+ 3,1)

> one

[,1]

[1,] 1

[2,] 1

[3,] 1

> eigen(X)$values

[1] 4 1 1

> one%*%eigen(X)$values

[,1] [,2] [,3]

[1,] 4 1 1

[2,] 4 1 1

[3,] 4 1 1

> X%*%eigen(X)$vectors

[,1] [,2] [,3]

[1,] -2.31 0.000 0.816

[2,] -2.31 -0.707 -0.408

[3,] -2.31 0.707 -0.408

> one%*%eigen(X)$values*

+ eigen(X)$vectors

[,1] [,2] [,3]

[1,] -2.31 0.000 0.816

[2,] -2.31 -0.707 -0.408

[3,] -2.31 0.707 -0.408

6.3.0.1 Notes on examples

(i) Note that the final multiplication in the last example is a triple product, the first
multiplication is a standard matrix multiplication with %*% and the second is an
element-by-element multiplication (i.e., a Hadamard product, see §8.4) of two
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3× 3 matrices with *. This ‘trick’ is one of the rare occasions when this form
of multiplication is useful.

(ii) Use of the sum vector ι3 to create a matrix with rows identical to a row vector
is a useful ‘trick’.

(iii) R treated the vector eigen(X)$vectors as a row vector because it was
premultiplied by a 3×1 matrix ι3 (see §2.10.1 and §2.11.2.7).

(iv) The matrices of eigenvectors in examples (ii) and (iii) above are different (the
second and third are in different orders). This is because the corresponding two
eigenvalues are identical and so it does not matter but R makes an arbitrary
choice and the choice can be different in different sessions (even on the same
installation). In fact there are many other possible choices of the second and
third eigenvectors, e.g., (0.408,−0.816,0.408)′ and (0.707,0.000,−0.707)′,
and again the choice is arbitrary and R may well make different choices on
different occasions.

6.4 Properties of Eigenanalyses
6.4.1 Properties related to uniqueness

(i) If x is an eigenvector of S, any scalar multiple kx is also an eigenvector
because S(kx) = λkx. Usually (as in R ) eigenvectors are normalized so that
x′x = 1 which means that an eigenvector is determined up to its sign, i.e., the
normalized eigenvector can be multiplied by−1 without altering its properties.
Again R makes an arbitrary choice which may well not be consistent from
one occasion to another. Some authorities prefer to resolve the ambiguity by
always taking the first element to be positive (say). This would need specific
checking and implementation in R on each occasion that an eigenanalysis-
related function is used.

(ii) If λi and λ j are distinct eigenvalues of S with eigenvectors xi and x j, then
xi and x j are distinct: suppose xi = x j = x say, then we have Sx = λix and
Sx = λ jx so (λI − λ j)x = 0, so x = 0 because λi 6= λ j which contradicts x
being an eigenvector. Note that this is true whether or not S is symmetric.

(iii) If xi and x j are distinct eigenvectors of S with the same eigenvalue λ , then
any linear combination of xi and x j is also an eigenvector of S since Sxi = λxi
and Sx j = λx j then S(a1xi+a2x j) = λ (a1xi+a2x j). For example, the identity
matrix In has every vector x as an eigenvector.
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6.4.2 Properties related to symmetric matrices

(i) Suppose now that S is real and symmetric, i.e., S = S′, then the eigenvalues λ j
and eigenvectors x j of S are real. To prove this, let λ j = µ j + iν j,x j = y j + iz j
(where here i =

√
(−1)). Equating real and imaginary parts of Sx j = λ jx j gives

Sy j = µ jy j−ν jz j, and Sz j = µ jy j +ν jz j. Premultiplying the first equation by
z′j and the second by y′j and noting z′jSy j = (z′jSy j)

′ (since it’s a scalar) = y′jSz j
(since S is symmetric by presumption) and subtracting the two equations gives
ν jz′jz j +ν jy′jy j = 0, so ν j = 0 because z′jz j + y′jy j > 0, i.e., λ j is real.

(ii) If S is symmetric, eigenvectors corresponding to distinct eigenvalues are
orthogonal because if Sxi = λixi and Sx j = λ jx j, then x′jSxi = λix′jxi and
x′iSx j = λ jx′ix j but x′jSxi =(x′jSxi)

′ because it is a scalar (see §2.8.1) (x′jSxi)
′=

x′iS
′x j = x′iSx j (see §2.11.2.5 and noting S is symmetric), so (λi−λ j)x′ix j = 0

(noting x′ix j = x′jxi) and since λi 6= λ j we have x′ix j = 0 and thus xi and x j are
orthogonal.

If A is not symmetric the eigenvalues may or may not be real. For example the matrix

A =

(
0 −1
1 0

)
is not symmetric and its eigenvalues are the roots of the characteristic equation
λ 2 +1 = 0 which are ±

√
−1. R will handle complex arithmetic such as this:

> A<-matrix(c(0,-1,1,0),2,2)

> eigen(A)

$values

[1] 0+1i 0-1i

$vectors

[,1] [,2]

[1,] 0.707+0.000i 0.707+0.000i

[2,] 0.000+0.707i 0.000-0.707i

where i=
√
(−1).

6.4.2.1 Eigenvectors of non-symmetric matrices

(i) If xi is a right eigenvector of the n× n matrix A with eigenvalue λi, then
Axi = λixi so x′iA′ = λix′i and so x′i is a left eigenvector of A′. Similarly, a
right eigenvector yi of A′ is a left eigenvector of A.

(ii) If xi and y′j are left and right eigenvectors of A corresponding to distinct
eigenvalues λi and λ j, then xi and y j are orthogonal because we have Axi = λixi
and y′jA = λ jy′j. Premultiplying the first by y′j and postmultiplying the second
by xi and subtracting gives (λi−λ j)y′jxi = 0 and so y j and xi are orthogonal for
i 6= j. The vectors xi and yi can be standardized so that x′iyi = 1, in which case
the left and right eigenvectors are said to be biorthogonal. Note that neither
the xi nor the y j are themselves orthogonal unless the matrix A is symmetric.
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6.4.2.2 Illustration of biorthogonality

> X<-matrix(c(1,4,9,1),2,2,byrow=T); X

[,1] [,2]

[1,] 1 4

[2,] 9 1

> eigen(X)

$values

[1] 7 -5

$vectors

[,1] [,2]

[1,] 0.555 -0.555

[2,] 0.832 0.832

> eigen(t(X))

$values

[1] 7 -5

$vectors

[,1] [,2]

[1,] 0.832 -0.832

[2,] 0.555 0.555

> t(eigen(X)$vectors[,1])%*%eigen(t(X))$vectors[,2]

[,1]

[1,] -4.5e-17

6.4.3 Properties related to functions of matrices

(i) If x and λ are an eigenvector and an eigenvalue of S and if S is non-singular,
then x is an eigenvector of S−1 with eigenvalue λ−1 since if Sx = λx then
S−1Sx = λS−1x so S−1x = λ−1x showing x is an eigenvector of S−1 with
eigenvalue λ−1.

(ii) If x and λ are an eigenpair of S, x is an eigenvector of Sk with eigenvalue λ k

since Skx = Sk−1(Sx) = Sk−1(λx) = . . .= λ kx.

(iii) If x and λ are an eigenpair of S, x and (a− bλ ) are an eigenvector and
eigenvalue of aIn−bS since (aIn−bS)x = ax−bλx = (a−bλ )x.

(iv) If S is n×m and T is m×n where n≥ m, then ST and TS have the same non-
zero eigenvalues. The eigenvalues of ST are the roots of |ST−λ In| = 0 but
|ST−λ In| = (−λ )n−m |TS−λ Im|, see §4.6.2. Note that this implies that ST
has at most n−m non-zero eigenvalues.

(v) If x and λ are an eigenpair of ST, then Tx is an eigenvector of TS corresponding
to eigenvalue λ because we have STx = λx so TS(Tx) = λ (Tx).

(vi) If X is an m×n matrix, then XX′ and X′X have the same non-zero eigenvalues.
This follows directly from (iv) above.

(vii) If x and λ are an eigenpair of S and T is a non-singular n×n matrix, then λ is
an eigenvalue of TST−1 corresponding to eigenvector Tx because if Sx = λx
then (TST−1)Tx = λTx. S and TST−1 are similar matrices (see §2.5.9).
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6.4.4 Properties related to determinants

(i) If S is diagonal [or triangular] , then the eigenvalues are the diagonal elements
since S−λ In is diagonal [or triangular] and the determinant of a diagonal [or
triangular] matrix is the product of its diagonal elements (see §4.3.2).

(ii) S is non-singular if and only if all of its eigenvalues are non-zero since
0 = |S−λ In| = |S| if λ = 0 and if |S| = 0, then λ = 0 satisfies |S−λ In| = 0
and so is an eigenvalue of S.

(iii) If µ is not an eigenvalue of S, then S−µIn is non-singular since if |S−µIn|= 0
then µ would be an eigenvalue of S.

(iv) If S has eigenvalues λ1,λ2, . . . ,λn, then |S| = ∏
n
i=1 λi because the λi are the

n roots of |S−λ In| = 0, so |S−λ In| = (λ1−λ )(λ2−λ ) . . .(λn−λ ) for any
value of λ and putting λ = 0 gives the result.

(v) If S has eigenvalues λ1,λ2, . . . ,λn, then tr(S) = ∑
n
i=1 λi, comparing the

coefficients of λ n−1 in |S−λ In|= (λ1−λ )(λ2−λ ) . . .(λn−λ ).

(vi) If S has eigenvalues λ1,λ2, . . . ,λn, then tr(Sk) = ∑
n
i=1 λ k

i which follows from
(v) and §6.4.3(ii).

6.4.5 Properties related to diagonalisation

(i) If X is an n×n matrix with distinct eigenvalues λ1 > λ2 > .. . > λn, then there
exists a non-singular matrix T and diagonal matrix Λ such that T−1XT = Λ and
the elements of Λ are the λi. If the eigenvectors of X are xi, i = 1,2, . . . ,n then
Xxi = λixi, i = 1,2, . . . ,n and if T = (x1,x2, . . . ,xn) (i.e., the matrix composed
of the n eigenvectors as columns), then T is non-singular since the eigenvectors
are linearly independent. Further XT = (λ1x1,λ2x2, . . . ,λnxn) = ΛT where
Λ = diag(λ1,λ2, . . . ,λn) so, multiplying by T−1 we have T−1XT = Λ.

(ii) If X is an n× n matrix with distinct eigenvalues λ1 > λ2 > .. . > λn and Y
commutes with X, then T−1YT = M for some diagonal matrix M because if
Xxi = λixi, then YXxi = λiYxi so X(Yxi) = λi(Yxi) showing that Yxi is another
eigenvector of X corresponding to λi but the λi are distinct so Yxi must be a
scalar multiple of xi, i.e., Yxi = µixi for some scalar µi. Thus xi is an eigenvector
of Y and thus YT = TM where M = diag(µ1,µ2, . . . ,µn).

(iii) If S is a symmetric matrix, then there exists an orthogonal matrix T and a
diagonal matrix Λ such that T′ST = Λ. This result requires a substantial proof
in the general case. In the case where the eigenvalues of S are distinct, it
follows from (i) since by choosing the eigenvectors to be normalised to ensure
x′ixi = 1 we can ensure T is orthogonal so T−1 = T′. In the general case where
there are some multiple eigenvalues (possibly some of which may be zero)
we need to choose k orthogonal eigenvectors corresponding to an eigenvalue
with multiplicity k. The most straightforward proof that this is possible is by
induction and can be found in the references cited.
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(iv) If S is a symmetric matrix, we can write S as TΛT′ = S where Λ is the diagonal
matrix of eigenvalues of S and T is the matrix of eigenvectors.

(v) If X and Y are both symmetric and if X and Y commute, then result (ii) above
can be generalized so there are diagonal matrices Λ and M and a matrix T
such that T′XT = Λ and T′YT = M. If we have T′XT = Λ and T′YT = M, then
XY = TΛT′TMT′ = TΛMT′ = TMΛT′ = TMT′T ΛT′ = YX, noting diagonal
matrices commute. The proof of the converse is more difficult and is not given
here. In the particular case that the eigenvalues are distinct, the result follows
from arguments similar to that in (ii) noting that the eigenvectors in T can be
chosen to be orthogonal.

6.4.6 Properties related to values of eigenvalues

(i) (Bounds for a Rayleigh quotient x′Sx/x′x). If S is an n× n symmetric matrix
with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and x is any vector, then λ1 ≥ x′Sx

x′x ≥ λn .
This follows by noting that x′Sx= x′TΛT′x= y′Λy=∑ j λ jy2

j , where y=T′x so
λ1 ∑ j y2

j ≥ x′Sx≥ λn ∑ j y2
j and ∑ j y2

j = y′y= x′TT′x= x′x since T is orthogonal.

(ii) S is positive definite (i.e., S> 0) if and only if all the eigenvalues of S are strictly
positive: if all the λi are positive, then in particular λn > 0 so x′Sx≥ λn ∑ j y2

j > 0
for any x and thus S > 0. Conversely, if S > 0, then x′Sx > 0 for any x. In
particular we have Sxn = λnxn so x′Sxn = λnx′nxn > 0 so λn > 0 since x′nxn > 0.

(iii) S is positive semi-definite if and only if all the eigenvalues of S are non-
negative. The proof of this is similar to that in (ii) above.

(iv) If S is positive definite, then it is non-singular since its determinant (equal to
the product of its eigenvalues) is strictly positive.

(v) If S is positive semi-definite and non-singular, then it must be positive definite
since its determinant (equal to the product of its eigenvalues) is strictly positive
and so all its eigenvalues must be strictly positive.

6.4.7 Rank and non-zero eigenvalues

The rank of a symmetric matrix S is equal to the number of non-zero eigenvalues.
We have ρ(T′ST) = ρ(Λ) = number of non-zero diagonal elements of Λ, noting
§3.3.2.1 and §3.1.1. Note that this result is not true in general for non-symmetric
matrices but it can be shown that the number of non-zero eigenvalues cannot exceed
the rank of the matrix. For any matrix A we have ρ(A) = ρ(AA′); see §3.1; = number
of non-zero eigenvalues of AA′ since AA′ is symmetric.
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6.4.7.1 Example of non-symmetric matrix

Consider the matrix A =


0 1 0 · · · 0
0 0 1 · · · 0

0 0
. . . . . . 0

...
...

. . . . . . 1
0 0 · · · 0 0

 which has all eigenvalues equal

to zero since it is a triangular matrix with all diagonal elements zero but it is clearly
of rank n− 1 since the first n− 1 rows are linearly independent and the last row is
entirely composed of zeroes. Matrices of this form are termed Jordan matrices.

6.5 A Key Statistical Application: PCA
In the introduction to this chapter we mentioned that a prime statistical application
of eigenanalysis is the exploratory technique of multivariate analysis known as
principal component analysis (PCA). If X′ is a n× p data matrix and var(X′) = S
(where S is a p× p symmetric positive semi-definite matrix) and S has eigenvectors
ai, i = 1, . . . , p with A the matrix whose ith column is ai, then the transformation to
principal components is given by Y′ = (X−X)′A. Since S is symmetric, the columns
of A, ai, are orthogonal so A is orthogonal so multiplying the data matrix X′ by
A is a rotation (with a possible reflection, depending on whether |A| = +1 or − 1;
see §4.4). A change of location (or translation) by subtracting the overall mean X′

followed by a rotation does not alter any intrinsic statistical property of the data, i.e.,
the transformed data Y′ have essentially the same overall statistical properties as the
original data X′.

However, what is gained is that the first component of the data Y′, y′1 = (X−
X)′a1, which is a linear combination of the original observations, has the maximum
possible variance amongst all such linear combinations. This is not obvious and
requires some constrained optimization involving calculus to prove so the details
of the proof are deferred to §9.3. In this sense y′1 is the most important component
of the data. Further, it can be shown that the second component of Y′ given by
y′2 = (X−X)′a2 is the second most important component, having the maximum
possible variance amongst all such linear combinations of the data subject to the
constraint of being orthogonal with the first.

Since statistical information is measured by variance, the first implication of this
important property is that the major statistical features of the data (such as dividing
into subgroups etc.) are likely to be exhibited in the first few components of Y′,
y1,y2, . . . ,yk, where k is chosen so that the variances of y′j are negligible for j > k.
It can be much easier to examine just k components (e.g., with pairwise scatterplots)
than it is if the search is amongst a much larger number p. In this sense we could
say we have reduced the dimensionality of the data from p to k. This can be a
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considerable saving in effort if p is large and k is relatively small (less than 10 say,
or at least appreciably smaller than p).

In §5.7.3 we mentioned that some multivariate techniques were impossible to
perform on data where n < p, i.e., there are fewer observations than dimensions. One
solution is to perform a PCA to reduce the dimensionality from p to k and perform the
subsequent analyses on just the reduced data matrix composed of the first k columns
of Y′.

Similarly in linear models such as y = Xβ + ε , if the design matrix X is not
of full column rank, one solution is to consider the principal components of X and
investigate the regression of y on the first k principal components of X, choosing
k so that this reduced design matrix is of full column rank, a technique known as
principal component regression .

6.6 Matrix Exponential
If X is a n×n square matrix, then the exponential of X is defined to be

eX = exp(X) = 1+X+
X2

2!
+

X3

3!
+ . . .=

∞

∑
r=1

Xr

r!
.

If X has distinct eigenvalues, then X = TΛT−1, §6.4.5, where Λ is a diagonal matrix
of the eigenvalues of X. Then

exp(X) =
∞

∑
r=1

Xr

r!
= T


eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . .

...
0 0 · · · eλn

T−1.

If A is not similar to a diagonal matrix, then it can still be shown (e.g., §11.4, Banerjee
and Roy, 2014) that the exponential series above converges and so exp(X) is properly
defined. It is straightforward to establish basic elementary properties of the matrix
exponential function and this is left to the exercises.

6.7 Decompositions
6.7.1 Spectral decomposition of a symmetric matrix

If S is a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and eigenvectors
(x1,x2, . . . ,xn) we have S = TΛT′, with T′T = In (§6.4.5(iii)). This is known as
the spectral decomposition of S. It is often expressed in the form of a sum of
rank 1 matrices: If T = (x1,x2, . . . ,xn), then TΛ = (λ1x1,λ2x2, . . . ,λnxn) and so
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TΛT′ = ∑ j λ jx jx′j. Each of the matrices x jx′j is of rank 1. If there are r non-zero
eigenvalues (so λr+1 = . . . . . .= λn = 0), then the summation is over r terms.

6.7.1.1 Square root of positive semi-definite matrices

If S ≥ 0, then all of its eigenvalues are non-negative, i.e., λi ≥ 0 and also we
have S = TΛT′, with T′T = In and Λ = diag(λ1,λ2, . . . ,λn). Define Λ

1/2 by Λ
1/2 =

diag(λ
1/2
1 ,λ

1/2
2 , . . . ,λ

1/2
n ). Then let S

1/2 = TΛ
1/2T′ and (S

1/2)2 = TΛ
1/2T′TΛ

1/2 T′ =
TΛ

1/2Λ
1/2T′ = TΛT′ = S and so S

1/2 is a square root of S. Note that there are many
other matrices Q such that Q2 = S but S

1/2 is the only one such that T is orthogonal.
Other [positive] powers of S can be defined similarly. If S is positive definite, then
negative powers can also be defined in a similar way.

6.7.2 Singular value decomposition (svd) of an m×n matrix

If A is an m× n matrix with ρ(A) = r ≤ min(m,n), then there are orthogonal
matrices U and V and a diagonal matrix Λ with positive diagonal elements such
that A = UΛ

1/2V′. The elements Λ
1/2 are called the singular values of the matrix A.

6.7.2.1 Proof of svd

To prove this, first note that AA′ and A′A are both positive semi-definite since
x′AA′x = (A′x)′(A′x) ≥ 0 (likewise A′A) and they have the same non-zero
eigenvalues; see §6.4.3(vi), λ1,λ2, . . . ,λr say. If we define U to be the m× r matrix
of eigenvectors of AA′ corresponding to the non-zero eigenvalues, so AA′U = UΛ

and the m×r matrix U2 to be chosen so that it is orthogonal and AA′U2 = O, i.e., the
columns of U2 corresponds to the zero eigenvalues of AA′, then UU′+U2U′2 = Im.
Define V = A′UΛ−

1/2 . Then we have A′AV = VΛ and V′V = Ir. Since AA′U2 = O
we must have A′U2 = O; see §2.13.1; so A = ImA = (UU′+U2U′2)A = UU′A =

UIrU′A = UΛ
1/2Λ−

1/2U′A = UΛ
1/2V′.

6.7.2.2 Note

Note that U and V are eigenvectors of the symmetric matrices AA′ and A′A, each
with eigenvalues Λ. These are termed the left singular vectors and right singular
vectors of A.

6.7.3 Implementation of svd in R

The command for producing the singular value decomposition of a matrix is svd().
This produces the singular values and left and right singular vectors of a matrix.
The singular values of a m× n matrix A are held in a vector svd(A)$d of length
min(m,n), the left singular vectors are stored in a matrix svd(A)$u of dimensions
(min(m,n),m) and the right singular vectors in a matrix svd(A)$v of dimensions
(min(m,n),m). Notice that if A has rank r < min(m,n), the matrices U and V



Eigenanalysis of Real Symmetric Matrices 95

produced by R contain singular vectors corresponding to zero singular values (i.e.,
eigenvectors of matrices AA′ and A′A corresponding to zero eigenvalues). These are
not actually required for the singular value decomposition but they can easily be
discarded by extracting just the columns of svd(A)$u and svd{A}$v corresponding
to the non-zero eigenvalues, i.e., using svd(A)$u[,1:r] and svd(A)$v[,1:r].
This is illustrated in the last two examples below.

Example 6.3

> options(digits=3)

(i) A symmetric matrix

> S<-matrix(c(2,1,1,1,2,1,1,

+ 1,3),3,3)

> S

[,1] [,2] [,3]

[1,] 2 1 1

[2,] 1 2 1

[3,] 1 1 3

> eigen(S)

$values

[1] 4.41 1.59 1.00

$vectors

[,1] [,2] [,3]

[1,] -0.500 -0.500 0.707

[2,] -0.500 -0.500 -0.707

[3,] -0.707 0.707 0

> # Check on spectral

> # decomposition of S

> eigen(S)$vectors%*%

+ diag(eigen(S)$values)

+ %*%t(eigen(S)$vectors)

[,1] [,2] [,3]

[1,] 2 1 1

[2,] 1 2 1

[3,] 1 1 3

> svd(S)

$d

[1] 4.41 1.59 1.00

$u

[,1] [,2] [,3]

[1,] -0.500 0.500 0.707

[2,] -0.500 0.500 -0.707

[3,] -0.707 -0.707 0

$v

[,1] [,2] [,3]

[1,] -0.500 0.500 0.707

[2,] -0.500 0.500 -0.707

[3,] -0.707 -0.707 0

> # Check on svd of S:

> svd(S)$u%*%diag(svd(S)$

+ d)%*%t(svd(S)$v)

[,1] [,2] [,3]

[1,] 2 1 1

[2,] 1 2 1

[3,] 1 1 3
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> eigen(S%*%t(S))

$values

[1] 19.49 2.51 1.00

$vectors

[,1] [,2] [,3]

[1,] -0.500 0.500 0.707

[2,] -0.500 0.500 -0.707

[3,] -0.707 -0.707 0

> eigen(t(S)%*%S)

$values

[1] 19.49 2.51 1.00

$vectors

[,1] [,2] [,3]

[1,] -0.500 0.500 0.707

[2,] -0.500 0.500 -0.707

[3,] -0.707 -0.707 0

Note that in this case the eigenvectors of S, SS′ and S′S are identical and the
eigenvectors are the same as both of the U and V matrices of the singular value
decomposition. This is because S is symmetric. The eigenvalues of SS′ and S′S
are the squares of the eigenvalues of S and the singular values produced by
the svd. For this reason some texts rather misleadingly refer to the eigenvalues
of symmetric matrices as singular values but this is only true for symmetric
matrices. The next example illustrates that eigenvalues and singular values
of square matrices are in general diffferent. Eigenvalues are not defined for
matrices which are not square but singular values always exist for both square
and non-square matrices.

(ii) A non-symmetric matrix

> A<-matrix(c(2,1,1,1,2,1,4,

+ 2,3),3,3)

> A

[,1] [,2] [,3]

[1,] 2 1 4

[2,] 1 2 2

[3,] 1 1 3

> eigen(A)

$values

[1] 5.45 1.00 0.55

$vectors

[,1] [,2] [,3]

[1,] 0.716 0.707 -0.925

[2,] 0.494 -0.707 0.268

[3,] 0.494 0 0.268

> svd(A)

$d

[1] 6.265 1.269 0.377

$u

[,1] [,2] [,3]

[1,] -0.725 0.458 -0.514

[2,] -0.444 -0.882 -0.160

[3,] -0.526 0.113 0.843

$v

[,1] [,2] [,3]

[1,] -0.386 0.117 -0.9149

[2,] -0.342 -0.940 0.0245

[3,] -0.857 0.322 0.4028
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> # Check on svd of A:

> svd(A)$u%*%diag(svd(A)$d)%*%t(svd(A)$v)

[,1] [,2] [,3]

[1,] 2 1 4

[2,] 1 2 2

[3,] 1 1 3

>

> eigen(A%*%t(A))

$values

[1] 39.248 1.610 0.142

$vectors

[,1] [,2] [,3]

[1,] -0.725 0.458 0.514

[2,] -0.444 -0.882 0.160

[3,] -0.526 0.113 -0.843

> eigen(t(A)%*%A)

$values

[1] 39.248 1.610 0.142

$vectors

[,1] [,2] [,3]

[1,] -0.386 0.117 0.9149

[2,] -0.342 -0.940 -0.0245

[3,] -0.857 0.322 -0.4028

Note that in this example the eigenvalues of A are different from the singular
values which are the square roots of the eigenvalues of AA′ and A′A. The
eigenvectors of AA′ are identical to the U matrix of the singular value
decomposition and those of A′A are identical to the V matrix of the svd.

(iii) A non-square matrix of full rank

> B<-matrix(c(1,2,3,4,5,6)

+ ,2,3)

> B

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> svd(B)

$d

[1] 9.526 0.514

$u

[,1] [,2]

[1,] -0.620 -0.785

[2,] -0.785 0.620

$v

[,1] [,2]

[1,] -0.230 0.883

[2,] -0.525 0.241

[3,] -0.820 -0.402

> eigen(B%*%t(B))

$values

[1] 90.735 0.265

$vectors

[,1] [,2]

[1,] 0.620 -0.785

[2,] 0.785 0.620

> eigen(t(B)%*%B)

$values

[1] 9.07e+01 2.65e-01 0

$vectors

[,1] [,2] [,3]

[1,] -0.230 0.883 0.408

[2,] -0.525 0.241 -0.816

[3,] -0.820 -0.402 0.408
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> # Check on svd of B

> svd(B)$u%*%diag(svd(B)$d)%*%t(svd(B)$v)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

>

Note that here the 2× 3 matrix B is of full rank so there are no zero singular
values. The matrix BB′ is 2× 2 and has rank 2 and so both eigenvalues are
non-zero but the 3×3 matrix B′B has rank 2 and so has one zero eigenvalue.

(iv) A non-square matrix not of full rank

> X<-matrix(c(3,2,1,4,2,0,5,

+ 2,-1,-1,0,1),4,3,byrow=T)

> X

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 4 2 0

[3,] 5 2 -1

[4,] -1 0 1

> svd(X)

$d

[1] 7.9 1.90 0.0

Note one zero singular
value so final eigenvector
is arbitrary, though
harmless and irrelevant.

$u

[,1] [,2] [,3]

[1,] -0.44 0.68 0.069

[2,] -0.56 0.12 0.504

[3,] -0.68 -0.44 -0.573

[4,] 0.12 0.56 -0.642

$v

[,1] [,2] [,3]

[1,] -0.902 -0.14 0.41

[2,] -0.428 0.39 -0.82

[3,] 0.045 0.91 0.41

> U<-svd(X)$u

> V<-svd(X)$v

> D<-svd(X)$d

> # Check on SVD of X

> U%*%diag(D)%*%t(V)

[,1] [,2] [,3]

[1,] 3 2.0e+00 1.0e+00

[2,] 4 2.0e+00 2.1e-16

[3,] 5 2.0e+00 -1.0e+00

[4,] -1 2.5e-16 1.0e+00

> # Now use only non-zero

> # eigenvectors & values

>

> UU<-U[,1:2]

>

> VV<-V[,1:2]

>

> DD<-diag(D[1:2])

>

> # Check on SVD of X with

> # this reduced set

>

> UU%*%DD%*%t(VV)

[,1] [,2] [,3]

[1,] 3 2.0e+00 1.0e+00

[2,] 4 2.0e+00 1.4e-16

[3,] 5 2.0e+00 -1.0e+00

[4,] -1 5.6e-17 1.0e+00
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This example illustrates that retaining the singular vectors corresponding to
zero singular values does not affect the decomposition in the sense that we still
have UDV′ = X even if U and V include the arbitrary columns corresponding to
zero singular values. Consequently, it may be that there is little practical value
in discarding these columns (as performed with UU, VV and DD), especially if
there are only very few as is the case in this example. It could be sensible to do
so, however, if the original matrix is large (many tens of rows and columns or
more, say) but of low rank. Carrying several tens of irrelevant dimensions in U
and V could decrease numerical accuracy by introducing more rounding errors
as well as adding to the computational task of matrix manipulations.

(v) A 3×3 Jordan matrix of rank 2

> J<-matrix(c(0,1,0,0,0,1,

+ 0,0,0),3,3)

> J

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 1 0 0

[3,] 0 1 0

> eigen(J)

$values

[1] 0 0 0

$vectors

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 1 -1 0

> svd(J)

$d

[1] 1 1 0

$u

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 -1 0

[3,] -1 0 0

$v

[,1] [,2] [,3]

[1,] 0 -1 0

[2,] -1 0 0

[3,] 0 0 1

> U<-svd(J)$u[,1:2]

> V<-svd(J)$v[,1:2]

> D<-diag(svd(J)$d[1:2])

> U%*%D%*%t(V)

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 1 0 0

[3,] 0 1 0
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6.8 Eigenanlysis of Matrices with Special Structures
To show that a vector x and scalar λ are an eigenvector and eigenvalue of a matrix
A, it is only necessary to demonstrate that Ax = λx. Sometimes the matrix A
has a particular structure that can be manipulated, perhaps using the useful tricks
indicated in §2.8. Sometimes this may be deceptively simple and not obvious without
experience. Particular results relate to rank 1 matrices and matrices composed as the
sum of a rank 1 matrix with a scalar multiple of the identity matrix.

6.8.1 The rank one matrix xx′

If x is a vector of length n, then xx′ is an n× n matrix of rank 1 (since ρ(xx′) <
min(ρ(x),ρ(x′)) = 1). We have xx′x = x(x′x) = (x′x)x, noting that (x′x) is a scalar
and so commutes with the vector x. This is in the form Ax = λx with A = xx′
and λ = (x′x) and so x is an eigenvector of xx′ with eigenvalue (x′x). Since xx′
is symmetric and of rank 1 it has only one non-zero eigenvalue.

6.8.2 The rank one matrix Sxx′

If x is a vector of length n, then Sxx′ is an n× n matrix of rank 1 (since ρ(Sxx′) <
min(ρ(S),ρ(xx′)) = 1). We have Sxx′Sx = Sx(x′Sx) = (x′Sx)Sx, noting that (x′Sx)
is a scalar and so commutes with the vector Sx. This is in the form Ax = λx with
A = Sxx′ and λ = (x′Sx) and so Sx is an eigenvector of Sxx′ with eigenvalue (x′Sx).
Since Sxx′ is of rank 1 it has only one non-zero eigenvalue (see §6.4.7).

6.8.3 The matrix aIn +bxy′

(aIn + bxy′)x = aInx + bxy′x = ax + b(y′x)x (noting that y′x is a scalar and so
commutes with x). Thus (aIn + bxy′)x = (a + by′x)x and x is an eigenvector of
aIn+bxy′ with eigenvalue (a+by′x). The rank of aIn+bxy′ is not in general 1 (e.g.,
consider a = 1 and b = 0) and so will in general have other non-zero eigenvalues and
corresponding non-trivial eigenvectors.

To find the other eigenvalues, consider |aIn +bxy′−λ In|= |(a−λ )In +bxy′|=
(a − λ )n |In +bxy′/(a−λ )| = (a − λ )n |1+by′x/(a−λ )|; see §4.6.2; = (a −
λ )n−1(a+by′x−λ ) and so the other eigenvalues are a with multiplicity n−1. Note
that if x = y and a 6= 0 and a+ by′x 6= 0, the matrix is symmetric with n non-zero
eigenvalues and so is of full rank and thus non-singular.
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6.9 Summary of Key Results
n×n matrix A with eigenvalues λ1,λ2, . . . ,λn and [right] eigenvectors x1,x2, . . . ,xn.

(1) ∑
n
i=1 λi = trace(A).

(2) ∏
n
i=1 λi = |A|.

(3) A and CAC−1 have identical eigenvalues for C non-singular.

(4) Eigenvectors of CAC−1 are Cxi.

(5) AB and BA have identical non-zero eigenvalues.

(6) Eigenvectors of BA = B times those of AB.

(7) If A is symmetric, the eigenvalues of A are real.

(8) If A is symmetric, the eigenvectors corresponding to distinct eigenvalues are
orthogonal.

(9) The single non-zero eigenvalue of the n× n rank 1 matrix xx′ is x′x with
corresponding eigenvector x.

(10) The single non-zero eigenvalue of the n× n rank 1 matrix Sxx′ is x′Sx with
corresponding eigenvector Sx.

6.10 Exercises

(1) Let X =

 0 0 6
1/2 0 0
0 1/3 0

.

(i) Show that |X|= 1.

(ii) Show that λ = 1 is an eigenvalue of X.

(iii) Show that X3 = In but X2 6= In.

(2) Find the eigenvalues of the n×n matrix


1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

. . .
...

...

ρ · · · · · ·
. . . ρ

ρ ρ · · · ρ 1

 and show

that one eigenvector is proportional to ιn.
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(3) If X has eigenvalues 2λ , λ +α and λ +3α and |X| = 80 and tr(X) = 16 find
the eigenvalues of X.

(4) If λ is an eigenvalue of X show that λ +α is an eigenvalue of X+αIn.

(5) If x is a n×1 vector find the spectral decomposition of xx′.

(6) If x is a n× 1 vector and S is a symmetric n× n matrix find the spectral
decomposition of xSx′.

(7) If T = kS where k is a scalar, show that T and S have identical eigenvectors and
the eigenvalues of T are obtained by multiplying those of S by k.

(8) Find the square root of the matrix

S =

 2 1 1
1 2 1
1 1 3

 .

(9) If X is 2×2, show that |X+ In|= |X|+1 if and only if tr(A) = 0.

(10) Suppose X is n×n matrix with distinct eigenvalues.

(a) Show that exp(αX)exp(βX) = exp((α +β )X).
(b) Show that Xexp(X) = exp(X)X.
(c) Show that

(
exp(X)

)r
= exp(rX) where r is an integer and r > 0.

(d) Show that
(
exp(X)

)−1
= exp(−X).

(e) Show that
(
exp(X)

)′
= exp(X′).

(f) Show that |exp(X)|= exp(tr(X)).

(11) If X and Y are n× n matrices, each with distinct eigenvalues, and XY = YX,
show that exp(X+Y) = exp(X)expY) = exp(Y)expX).

(12) Suppose A is idempotent and symmetric,

(i) Show that the eigenvalues of A are 1 or 0.
(ii) Show that tr(A) = ρ(A).

(iii) Show that ρ(In−A) = n−ρ(A).

(13) Where is the fallacy in the ‘deceptively obvious proof’ of the Cayley-Hamilton
theorem, pA(λ ) = |A−λ In| so pA(A) = |A−AIn|= |A−A|= 0?

(14) If A is nilpotent show that all eigenvalues of A are 0.

(15) If all eigenvalues of A are 0, show that A is nilpotent.

(16) SupposeA is a real n×n skew-symmetric matrix.

(i) Show that the only real eigenvalue of A is 0.
(ii) Show that if n is odd, then A has at least one eigenvalue of 0.



7
Vector and Matrix Calculus

7.1 Introduction
This section considers various simple cases of differentiation of scalar-valued,
vector-valued and matrix-valued functions of scalars, vectors and matrices with
respect to scalars, vectors and matrices. For example, the quadratic form x′Ax is
a scalar function of a vector x, xx′ is a matrix function of a vector x, tr(X) and |X|
are scalar functions of a matrix X and Ax is a vector function of a vector x. Not all
combinations of these will be covered here.

Broadly, the procedure consists of [partially] differentiating each element of the
function with respect to each element of the arguments and arranging the results in a
vector or matrix as appropriate. We use partial differentiation if the argument is not
a scalar; this is equivalent to differentiation with respect to the individual elements.
Thus the result of differentiating a scalar with respect to a vector [matrix] will consist
of the vector [matrix] of partial derivatives of the scalar with respect to the elements
of the vector [matrix]. Differentiating a vector-valued function of a vector argument
with respect to another vector will result in a matrix where the individual elements
are the partial derivatives of each element of the function with respect to each element
of the vector argument. Generally, differentiating an m× n matrix with respect to a
p× q matrix can be defined and will result in a matrix of dimension mp× nq. We
consider only the cases where not only is one of m and p equal to 1 but also one of n
and q equals 1. Other cases can be handled with the use of Kronecker products and
vec operators (Chapter 8) and some of the exercises of this chapter illustrate some of
the simpler cases requiring these further ideas.

Most of the basic results can be obtained by expressing the functions of the
vectors in terms of the individual elements and expanding, for example, inner
products of vectors as sums of products of individual elements. It may help
understanding to write out explicitly the cases n = 1 and n = 2. Many of the basic
rules of scalar calculus of single variables (e.g., differentiation of products etc.) carry
through recognisably to the vector and matrix cases.
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7.2 Differentiation of a Scalar with Respect to a Vector

If x is a vector of length n and f = f (x) is a scalar function of x then ∂ f
∂x is defined

to be the vector

∂ f
∂x

=


∂ f
∂x1
∂ f
∂x2
...

∂ f
∂xn

 .

7.2.1 Derivative of a′x

f (x) = a′x = ∑ j a jx j so ∂ f
∂x j

=
∂ (∑ j a jx j)

∂x j
= a j so

∂ f
∂x

=
∂a′x
∂x

=


a1
a2
...

an

= a.

7.2.2 Derivative of x′x

f (x) = x′x = ∑ j x2
j so ∂ f

∂x j
=

∂ (∑ j x2
j )

∂x j
= 2x j so

∂ f
∂x

=
∂x′x
∂x

=


2x1
2x2

...
2xn

= 2x.

7.2.3 Derivative of quadratic forms x′Sx

We can, without loss of generality, take S to be symmetric (see §2.9 on Page 36).
First consider the special cases of n = 1 and n = 2:
Case n = 1: x = (x1), S = (s11), f (x) = x1s11x1 = x2

1s11 so ∂ f
∂x = 2s11x1 = 2Sx.

Case n = 2: i.e., x = (x1.x2)
′, S =

(
s11 s12
s12 s22

)
then x′Sx = x2

1 +2x1x2s12 + x2
2s22

so ∂ f
∂x = ( ∂ f

∂x1
, ∂ f

∂x2
)′ = ((2x1s11 +2x2s12),(2x1s12 +2x2s22))

′ = 2Sx.
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General case: f (x) = x′Sx = ∑k ∑ j xksk jx j = ∑k ∑ j, j 6=k xksk jx j +∑ j s j jx2
j so

∂ f
∂xi

=
∂ (∑k ∑ j, j 6=k xksk jx j +∑ j s j jx2

j)

∂xi
= ∑

j, j 6=i
si jx j + ∑

k,k 6=i
sikxk +2siixi

= siixi + ∑
j, j 6=i

si jx j + ∑
k,k 6=i

sikxk + siixi = 2Sx.

Noting §2.9, clearly if A is not symmetric then the derivative of x′Ax is (A+A′)x.

7.3 Differentiation of a Scalar with Respect to a Matrix

If X is an m×n matrix (xi j) and f = f (X) is a scalar valued function of X then ∂ f
∂X is

defined to be the m×n matrix

∂ f
∂X

=


∂ f

∂x11

∂ f
∂x12

· · · ∂ f
∂x1n

∂ f
∂x21

∂ f
∂x22

· · · ∂ f
∂x2n

...
...

. . .
...

∂ f
∂xm1

∂ f
∂xm2

· · · ∂ f
∂xmn

=

(
∂ f
∂xi j

)
.

Special care needs to be taken with this definition since the xi j may not be
functionally independent. For example, if the matrix X is symmetric so that xi j = x ji

then ∂ f
∂xi j

may be different from the value obtained in the non-symmetric case.
Symmetry is the most common situation in statistical applications where this arises
but skew-symmetric matrices and also matrices of other special structures (diagonal,
triangular, banded etc.) need careful handling. In the cases considered below, it is
to be understood that there is no other functional relationship between the elements
other than symmetry where that case is declared.

7.3.1 Derivative of tr(X)

If X is n× n then f (X) = tr(X) = ∑k xkk so ∂ f
∂xi j

= 0 if i 6= j and 1 if i = j. Thus
∂ f
∂X = In.

7.3.2 Derivative of a′Xa when X is not symmetric

If X is an n×n matrix then a′Xa=∑i ∑ j aia jxi j so assuming xi j 6= x ji,
∂ (a′Xa)

∂xi j
= aia j.

Thus ∂ (a′Xa)
∂X = aa′ provided X is not symmetric.
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7.3.3 Derivative of a′Xa when X is symmetric

If X is a symmetric n×n matrix and a is a vector of length n then

a′Xa = 2
n

∑
i=1

i−1

∑
j=1

aia jxi j +
n

∑
i=1

a2
i xii,

so ∂ (a′Xa)
∂xi j

= 2aia j if i 6= j and ∂ (a′Xa)
∂xii

= a2
i (i = j).

Thus ∂ (a′Xa)
∂X = 2aa′−diag(diag(aa′)) if X is symmetric.

7.3.4 Derivative of tr(XA) when X is not symmetric

If X and A are n×n matrices then tr(XA) = ∑i ∑ j xi ja ji so ∂ (tr(XA))
∂xi j

= a ji

thus ∂ (tr(XA))
∂X = A′ provided X is not symmetric.

7.3.5 Derivative of tr(XA) when X is symmetric

If X and A are n×n matrices and X is symmetric then

tr(XA) =
n

∑
i=1

i−1

∑
j=1

xi j(ai j +a ji)+
n

∑
i=1

xiiaii

so ∂ (tr(XA))
∂xi j

= ai j +a ji if i 6= j and ∂ (tr(XA))
∂xi j

= aii (if i = j).

Thus ∂ (tr(XA))
∂X = A+A′−diag(diag(A)) if X is symmetric.

7.3.6 Derivative of tr(A′XA)

If X and A are n×n matrices then A’XA is n×n. Since tr(A′XA)= tr(XAA′) (see §2.4
on Page 29) and since AA′ is symmetric, we have ∂ tr(A′XA)

∂X = 2AA′−diag(diag(A))
or AA′ according as X is symmetric or non-symmetric (by §7.3.5 and §7.3.4).

7.3.7 Derivative of |X| when X is not symmetric

If X is n× n and f = f (X) = |X| then ∂ f
∂X = |X|(X−1)′. First consider the case

n = 2 : X = (xi j), f (X) = |X|= x11x22− x12x21. So

∂ f
∂X

=

(
x22 −x21
−x12 x11

)
= |X|(X−1)′.

7.3.7.1 General proof in non-symmetric case

Generally we have |X| = ∑
n
j=1 x jkc jk for any row k where c jk is the cofactor of x jk

(§4.1 on Page 60) so ∂ f
∂xi j

= ci j and thus ∂ f
∂X = (ci j) =

(
X#)′ where X# is the adjoint
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matrix of X. Since X−1 = |X|−1 X# (§5.6 on Page 79) we have X# = |X|
(
X−1)′ and

thus ∂ f
∂X = |X|(X−1)′.

7.3.8 Derivative of |X| when X is symmetric

If X is n× n and f = f (X) = |X| then ∂ f
∂X = |X|{2X−1− diag(diag(X−1))}. First

consider the case n = 2 : X = (xi j), f (X) = |X|= x11x22− x2
12. So

∂ f
∂X

=

(
x22 −2x21
−2x21 x11

)
= |X|{2X−1−diag(diag(X−1))}.

7.3.8.1 General proof in symmetric case

Generally we have |X| = ∑
n
j=1 x jkc jk for any row k where c jk is the cofactor of

x jk (§4.1 on Page 60) so ∂ f
∂xi j

= 2ci j for i 6= j, and cii for i = j. Thus ∂ f
∂X =

2(ci j)− diag(ci j) = 2X# − diag
(
diag

(
X#)) where X# is the adjoint matrix of X.

Since X−1 = |X|−1 X# (§5.6 on Page 79) we have X# = |X|
(
X−1) and thus ∂ f

∂X =

|X|{2X−1−diag(diag(X−1))}.

7.3.9 Derivative of |X|r

If f = f (X) = |X|r then ∂ f
∂X = r |X|r−1 ∂ f

∂ |X| = r |X|r−1 |X|
(
X−1)′ = r |X|r

(
X−1)′

provided X is not symmetric and r 6= 0.
When X is symmetric then clearly ∂ f

∂X = r |X|r {2X−1−diag(diag(X−1))}.

7.3.10 Derivative of log(|X|)

If f = f (X) = log(|X|) then ∂ f
∂X = |X|−1 ∂ f

∂ |X| = |X|
−1 |X|

(
X−1)′ = (X−1)′ provided

X is not symmetric.
When X is symmetric then clearly ∂ f

∂X = 2X−1−diag(diag(X−1)).

7.4 Differentiation of a Vector with Respect to a Vector

If x is a vector of length n and f = f (x) is a vector function of length m then ∂ f
∂x is

defined to be the m×n matrix

∂ f
∂x

=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn

=

(
∂ fi

∂x j

)
.
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If y = f (x) then the determinant of ∂x
∂y , |

∂xi
∂y j
| is known as the Jacobean of the

transformation x→ y and is used when changing an integral with respect to x to
one with respect to y; see §9.2.1.

7.4.1 Derivative of Ax

If A is m×n then f = f (x) = Ax = (∑ j a1 jx j,∑ j a2 jx j, . . . ,∑ j am jx j)
′, so

∂ f
∂x

=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn

=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

= A.

7.5 Differentiation of a Matrix with Respect to a Scalar
If the elements of a m× n matrix A are functions of a scalar x, i.e., A = (ai j) =
(ai j(x)), the derivative with respect to x is simply the matrix of derivatives of ai j(x)
with respect to x.

7.5.1 A = (1,x,x2,x3, . . . ,xn−1)

If A = A(x) = (1,x,x2,x3, . . . ,xn−1), the derivative of A with respect to x is
(0,1,2x,3x2,x3, . . . ,(n−1)xn−2).

7.5.2 Autocorrelation matrix

If A(x) =



1 x x2 · · · xn−1

x 1 x x2 xn−2

x2 x
. . . · · ·

...
...

... · · ·
. . .

...
xn−1 · · · x2 x 1



then
∂A
∂x

=



0 1 2x · · · (n−1)xn−2

1 0 1 2x (n−2)xn−3

x2 x
. . . · · ·

...
...

... · · ·
. . . x

(n−1)xn−2 · · · 2x 1 0

 .
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7.6 Use of Eigenanalysis in Constrained Optimization
A powerful procedure for optimizing a function involving quadratic forms subject
to a quadratic constraint rests on reducing the problem to solving an eigenequation
(see §6.2). This is analogous to solving a polynomial equation where showing that
the solution is one of the roots of a polynomial almost solves the problem completely
but an extra step or argument is need to determine which particular root is required.
In the same way an extra step is required to determine which particular eigenpair that
satisfies the eigenequation is required. In outline, the procedure is as follows (where
optimization is to be performed with respect to x):

(1) Introduce a Lagrange multiplier to incorporate the constraint in a new objective
function.

(2) Differentiate with respect to x and set the derivative equal to zero.

(3) Recognise this is an eigenequation with the Lagrange multiplier as eigenvalue.

(4) Deduce that there are ONLY a limited number of possible values for this
eigenvalue (all of which can be calculated numerically).

(5) Use some extra step to determine which eigenvalue gives the desired optimum
(typically using the constraint somewhere).

Sometimes this procedure can be used when there is no explicit constraint but where
it can be seen that the problem is invariant to scalar multiplication of x (for example
a ratio of quadratic forms in x) and so a scalar constraint can be introduced without
affecting the solution to the problem. This is illustrated in the examples below.

Example 7

(i) To optimize x′Sx subject to x′x = 1 where S is symmetric.

Let Ω = x′Sx−λ (x′x−1) where λ is a Lagrange multiplier.
∂Ω

∂x
= 2Sx−2λx (see §7.2.3) so we require Sx = λx.

Thus we require x to be an eigenvector of S corresponding to eigenvalue λ .
Since Sx = λx, we have x′Sx = λx′x = λ (since x′x = 1). So the maximum
and minimum values of x′Sx are obtained by taking x to be the eigenvectors
corresponding to the largest and smallest eigenvalues of S.

(ii) To optimize x′Sx
x′Ax where S and A are symmetric and A is non-singular.

Since the ratio is invariant with respect to scalar multiplication of x, the problem
is not affected by imposing a scalar constraint on x. The most convenient is to
require x′Ax = 1 and optimize x′Sx subject to the constraint x′Ax = 1. Define
Ω = x′Sx−λ (x′Ax−1) where λ is a Lagrange multiplier.
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∂Ω

∂x
= 2Sx−2λAx so we require Sx = λAx or A−1Sx = λx.

Thus we require x to be an [right] eigenvector of A−1S corresponding to
eigenvalue λ . Since A−1Sx = λx, we have x′Sx = λx′Ax = λ (since x′Ax = 1).
So the maximum and minimum values of x′Sx/x′Ax are obtained by taking x to
be the [right] eigenvectors corresponding to the largest and smallest eigenvalues
of A−1S.

(iii) To maximize x′β (β ′XX′β )−1β ′x with respect to the p×1 vector β .

Since β ′XX′β is 1× p× p× n× n× p× 1 ≡ 1, i.e., a scalar, we need to
maximize x′ββ ′x/β ′XX′β = β ′xx′β/β ′XX′β , noting β ′x is 1× p× p× 1 ≡
1, also a scalar and so commutes with x′β . This is in the form of the
previous example with S = xx′ and A = XX′ so the maximum value is given
when β is the [right] eigenvector of (XX′)−1xx′ corresponding to its largest
eigenvalue. Since ρ((XX′)−1xx′) ≤ ρ(x) = 1 this has only one non-zero
eigenvalue which is x′(XX′)−1x with [right] eigenvector (XX′)−1x (because
(XX′)−1xx′(XX′)−1x = x′(XX′)−1x(XX′)−1x noting that the scalar x′(XX′)−1x
commutes with the other terms.

(iv) To optimize Φ = x′Ay√
x′Sxy′Ty

with respect to x and y, where x and y are p× 1

and q× 1 vectors, A is p× q, S is p× p and T is q× q and S and T are both
symmetric and non-singular.

First, note that Φ is invariant to scalar multiplication of both x and y and
so the problem is unaltered if scale constraints are imposed on both x
and y. The most convenient constraints to take are x′Sx = y′Ty = 1, so
define Ω = x′Ay− λ (x′Sx− 1)− µ(y′Ty− 1) where λ and µ are Lagrange
multipliers. Differentiating with respect to x and to y and setting the
derivatives equal to zero shows that we require Ay− 2λSx = 0 and A′x−
2µTy = 0 (see §7.2.1). Premultiplying the first by x′ and postmultiplying
the transpose of the second by y and recalling the constraints show
that 2λ = 2µ = Φ. Premultiplying the first equation by S−1x′Ay gives
S−1x′AyAy− S−1x′Ayx′AySx = 0, i.e., S−1x′AyAy− (x′Ay)2x = 0 (noting
x′Ay is a scalar). Postmultiplying the transpose of the second by T−1A′S−1

gives x′AT−1A′S−1 − x′Ayy′TT−1A′S−1 = 0, i.e., (taking the transpose)
S−1x′AyAy = S−1AT−1A′x. Substituting this in the preceding equation gives
S−1AT−1A′x=(x′Ay)2x. Thus we require x to be an eigenvector of S−1AT−1A′
corresponding to eigenvalue (x′Ay)2 = Φ2. Clearly we need to take the largest
eigenvalue to maximize Φ for any value of y. A similar argument shows that to
maximize Φ for any value of x we need to take the eigenvector of T−1A′S−1A
corresponding to its largest eigenvalue (x′Ay)2 = Φ2. Thus to maximize Φ with
respect to both x and y, these should be taken as the eigenvectors of S−1AT−1A′
and T−1A′S−1A corresponding to their largest eigenvalues.
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7.7 Exercises
(1) If x = (x1,x2, . . . ,xn)

′ and f (x) = x find ∂ f
∂x .

(2) If A, X and B are m×n, n× p and p×m matrices (where n 6= p) find ∂ tr(AXB)
∂X .

(3) If A, X and B are n×n matrices find ∂ tr(AXB)
∂X .

(4) If A, X and B are n×n matrices find ∂ tr(AX′B)
∂X .

(5) Find ∂ tr(X2)
∂X .

(6) If X is a n×n matrix with elements xi j and is not symmetric (i.e., xi j 6= x ji) show
that ∂X−1

∂xi j
=−X−1

∆[i j]X−1 where ∆[i j] is a n×n matrix with ∆rs = δriδs j, where
δ is Kronecker’s delta function, i.e., the elements of ∆ are all zero except in the
(i, j)th place where there is a 1.

(7) If X is a n× n matrix with elements xi j and is symmetric (xi j = x ji) show that
∂X−1

∂xi j
=−X−1(

∆[i j]+∆[ ji]
)
X−1.

(8) Find the maximum value of x′Xaa′X′x/x′XX′x.

(9) Find the maximum value of x′A′By with respect to x and y subject to the
constraints x′x = y′y = 1 where A and B are n× p and n×m matrices.

(10) Show that ∂AB
∂x = A ∂B

∂x +
∂A
∂x B.

(11) Show that ∂A�B
∂x . = A� ∂B

∂x + ∂A
∂x �B where � indicates the Hadamard product

(see §8.4).

(12) Show that ∂A⊗B
∂x = A⊗ ∂B

∂x + ∂A
∂x ⊗B where ⊗ indicates the Kronecker product

(see §8.5).





8
Further Topics

8.1 Introduction
This section provides an introduction to a few topics in matrix algebra which are
unlikely to be considered in an early undergraduate level course on linear algebra but
can be of immense practical use in certain statistical applications. The next section
is a collation of various further decompositions of matrices into factors of particular
structures. The first of these is restricted to matrices of full column rank and the
others are restricted to square matrices. These have application both in developing
methodological techniques and in efficient numerical calculation of solutions of
linear equations, eigenanalyses, determinants and inverses of non-singular matrices.

Section 3.2.2 considered the factorization of a m×n matrix of rank r into factors
m×r and r×n, both of rank r. Spectral and singular value decompositions which rest
on eigenanalyses of symmetric matrices (symmetric S and AA′ in §6.7.1 and §6.7.2
respectively) were considered in some detail in Chapter 6 but the decompositions
considered here do not rest on eigenanalyses. Details of the derivations of these are
beyond the scope of this text but guidance on their implementation in R is given.

The second topic is generalized inverses which extend the definition of an inverse
beyond that of a non-singular square matrix. This has application in the analysis
of linear models, particularly models where the design matrix is not of full rank.
The third and fourth consider different forms of the product of two matrices, the
Hadamard and Kronecker products. The latter has application in the formulation and
analysis of mixed fixed and random effects linear models.

8.2 Further Matrix Decompositions
8.2.1 QR Decomposition

If A is a m× n matrix of full column rank (i.e., ρ(A) = n, n ≤ m) and if A can
be factored into A=QR with Q a m× n matrix with orthonormal columns and R
n×n upper triangular, (see §8.2, Banerjee and Roy, 2014) then QR is said to be the
QR decomposition of A. The factorization is unique. Since n = ρ(X) = ρ(QR) ≤
min(ρ(Q),ρ(R))≤ n we have ρ(Q) = ρ(R) = n, i.e., Q has full column rank and R
is non-singular. Since Q has orthonormal columns we have Q′Q = In but in general
QQ′ 6= Im unless m = n in which case Q is a non-singular orthogonal matrix.

113
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8.2.1.1 Implementation in R

The R function for obtaining a QR decomposition of a matrix A is qr(A). It is in the
base system so no special packages have to be loaded. This function produces a m×n
matrix (in qr(A)$qr) containing the factor R in the upper triangle and the lower
triangle contains information on the factor Q in compact form. The actual factors
can be extracted from this using two auxiliary functions qr.R(.) and qr.Q(.). The
function also returns the rank of the matrix (in qr(A)$rank) which is a convenient
alternative to the function rk(.) in the package fBasics mentioned in §3.1.1.
Thus the sequence of commands needed is:

qra<-qr(A) ### perform QR decomposition

QA<-qr.Q(qra) ### obtain Q factor in QA

RA<-qr.R(qra) ### obtain R factor in RA

The function qr(.) will actually produce a factorization even if A is not of full
column rank or if m < n. If m > n but if ρ(A)< n then the R factor will be a singular
triangular matrix, i.e., with some zero diagonal elements.

Example 8.1:

(i) A 4×3 matrix of full column rank

> set.seed(137)

> options(digits=2)

> A<-matrix(c(sample(1:12)),

+ 4,3)

> A

[,1] [,2] [,3]

[1,] 8 3 12

[2,] 5 9 1

[3,] 10 6 2

[4,] 7 4 11

> qra<-qr(A)

> qra

$qr

[,1] [,2] [,3]

[1,] -15.43 -10.177 -12.8

[2,] 0.32 -6.199 4.8

[3,] 0.65 0.061 9.1

[4,] 0.45 0.010 -0.4

Note calculation of ρ(A):

$rank

[1] 3

$qraux

[1] 1.5 2.0 1.9

$pivot

[1] 1 2 3

attr(,"class")

[1] "qr"

> QA<-qr.Q(qra);RA<-qr.R(qra)

> QA;RA

[,1] [,2] [,3]

[1,] -0.52 0.367 0.40

[2,] -0.32 -0.920 0.14

[3,] -0.65 0.096 -0.75

[4,] -0.45 0.100 0.52

[,1] [,2] [,3]

[1,] -15 -10.2 -12.8

[2,] 0 -6.2 4.8

[3,] 0 0.0 9.1
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> QA%*%RA

[,1] [,2] [,3]

[1,] 8 3 12

[2,] 5 9 1

[3,] 10 6 2

[4,] 7 4 11

So A = QR.

> A

[,1] [,2] [,3]

[1,] 8 3 12

[2,] 5 9 1

[3,] 10 6 2

[4,] 7 4 11

> QA%*%t(QA)

[,1] [,2] [,3] [,4]

[1,] 0.56 -0.12 0.08 0.48

[2,] -0.12 0.97 0.02 0.13

[3,] 0.08 0.02 0.99 -0.08

[4,] 0.48 0.13 -0.08 0.48

> t(QA)%*%QA

,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

So Q′Q = I3 but QQ′ 6= I4.

(ii) A 4×3 matrix of rank 2.

> X<-matrix(c(3,2,1,4,2,0,5,

+ 2,-1,-1,0,1),4,3,byrow=T)

> X

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 4 2 0

[3,] 5 2 -1

[4,] -1 0 1

> qrx<-qr(X)

> qrx

$qr

[,1] [,2] [,3]

[1,] -7.14 -3.36 4.2e-01

[2,] 0.56 0.84 1.7e+00

[3,] 0.70 0.77 7.0e-16

[4,] -0.14 -0.63 -9.5e-01

$rank

[1] 2

> QX<-qr.Q(qrx); QX

[,1] [,2] [,3]

[1,] -0.42 0.70 0.15

[2,] -0.56 0.14 -0.71

[3,] -0.70 -0.42 0.56

[4,] 0.14 0.56 0.41

> RX<-qr.R(qrx); RX

[,1] [,2] [,3]

[1,] -7.1 -3.36 4.2e-01

[2,] 0.0 0.84 1.7e+00

[3,] 0.0 0.00 7.0e-16

Note 0 entry on diagonal of R so R is singular and ρ(R) = 2.
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> QX%*%RX

[,1] [,2] [,3]

[1,] 3 2.0e+00 1.0e+00

[2,] 4 2.0e+00 -8.8e-16

[3,] 5 2.0e+00 -1.0e+00

[4,] -1 -1.7e-16 1.0e+00

So X = QR.

> X

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 4 2 0

[3,] 5 2 -1

[4,] -1 0 1

> QX%*%t(QX)

[,1] [,2] [,3] [,4]

[1,] 0.689 0.23 0.083 0.39

[2,] 0.228 0.83 -0.061 -0.29

[3,] 0.083 -0.06 0.978 -0.11

[4,] 0.394 -0.29 -0.105 0.50

> t(QX)%*%QX

,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

So Q′Q = I3 but QQ′ 6= I4.

(iii) A 3×4 matrix of rank 2 (i.e., m < n and not of full rank).

> X<-matrix(c(3,2,1,4,2,0,5,

+ 2,1,2,-4,2),3,4,byrow=T)

> X

[,1] [,2] [,3] [,4]

[1,] 3 2 1 4

[2,] 2 0 5 2

[3,] 1 2 -4 2

> qrx<-qr(X)

> qrx

$qr

[,1] [,2] [,3] [,4]

[1,]-3.74 -2.14 -2.4 -4.80

[2,] 0.53 1.85 -6.0 0.93

[3,] 0.27 -0.75 0 0

$rank

[1] 2

> QX<-qr.Q(qrx) ; QX

[,1] [,2] [,3]

[1,] -0.80 0.15 -0.58

[2,] -0.53 -0.62 0.58

[3,] -0.27 0.77 0.58

> RX<-qr.R(qrx); RX

[,1] [,2] [,3] [,4]

[1,] -3.7 -2.1 -2.4 -4.80

[2,] 0.0 1.9 -6.0 0.93

[3,] 0.0 0.0 0 0

> QX%*%RX

[,1] [,2] [,3] [,4]

[1,] 3 2 1 4

[2,] 2 0 5 2

[3,] 1 2 -4 2

> X

[,1] [,2] [,3] [,4]

[1,] 3 2 1 4

[2,] 2 0 5 2

[3,] 1 2 -4 2

So X = QR.
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> t(QX)%*%QX

[,1][,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> QX%*%t(QX)

[,1][,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

So Q′Q = I3 and in this case QQ′ = I4.

8.2.2 LU and LDU decompositions

If A is a n× n square matrix and if A can be factored into A = LU with L lower
triangular and all diagonal entries equal to 1 and U upper triangular, then LU is
said to be the LU decomposition of A. Note that it may not be possible to obtain
an LU decomposition of A but it can be shown (e.g., §3.3, Banerjee and Roy,
2014) that there is a permutation matrix P such that A = PLU or equivalently
P′A = LU recalling that all permutation matrices are orthogonal; see §2.5.5. The
effect of premultiplying A by a permutation matrix P′ is to re-order the rows of A;
see §2.5.5. Further, it can be shown that this factorization is unique. Some authors
(e.g., Banerjee and Roy, 2014) restrict the definition of a LU decomposition to non-
singular matrices, in which case all the diagonal entries of U are non-zero.

If A is non-singular then all the diagonal entries of U are non-zero and so it is
possible to obtain a LDU decomposition where the diagonal elements of U are all
equal to 1 (as are those of L) from a LU decomposition by extracting the diagonal
of U into a diagonal matrix D and premultiplying U by D−1, with A non-singular all
the diagonal entries of D are be non-zero and so D is non-singular.

8.2.2.1 Implementation in R

R provides a function lu(A) for obtaining the LU decomposition of a matrix A. It is
in the library Matrix which must be loaded by the command library(Matrix)

(or using the Packages drop-down menu) before using the function. Note the
capitalisation of Matrix. This produces a permutation matrix P such that A = PLU
or equivalently P′A = LU.

The Matrix library is included when R is first installed and so does not have to be
installed specially. The library contains a collection of functions written specifically
for handling very large sparse matrices, though these functions will also operate on
dense matrices of modest size. Sparse matrices are ones where most of the entries
are zero and dense matrices are ones where most entries are non-zero. Because the
functions are designed for handling sparse very large matrices if the results of the
functions are matrices, they are stored in a compact form and so an auxiliary function
is needed to convert them to ordinary matrices. Typically this function is expand(.).
After use of expand(.) the L, U factors and the permutation matrix P are stored in
values accessed by $L, $U and $P respectively. Thus the sequence of commands is:
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library(Matrix) ### load the library Matrix

ALU<-lu(A) ### Obtain the LU deocmposition for A

### (permuted if necessary by P)

E<-expand(ALU) ### Expand the results of lu(A) to

### ordinary matrix form

L<-E$L ### Obtain the L factor

U<-E$U ### Obtain the U factor

P<-E$P ### Obtain the P permutation matrix

L%*%U ; t(P)%*%A ### Check that P’A=LU

P%*%L%*%U ; A ### Check that A=PLU

There is no ready-made function in R library Matrix for obtaining the LDU
decomposition but it can be constructed in a few extra lines to the above code as
follows (where the matrix V holds the matrix U with diagonal elements set to 1):

D<-diag(diag(U)) ### Obtain the diagonal matrix of

### diagonal elements of U

V<-solve(D)%*%U ### ensure diagonal elements of U are 1

P%*%L%*%D%*%V ; A ### Check that A=PLDV

Example 8.2:

(i) LU decomposition of a 4×4 arbitrary matrix

> library(Matrix)

> options(digits=2)

> set.seed(137)

> A<-matrix(c(sample(-10:10,

+ 16)),4,4)

> A

[,1] [,2] [,3] [,4]

[1,] 3 -4 9 4

[2,] -2 5 -7 6

[3,] 7 8 -3 -6

[4,] 10 0 2 -9

> ALU<-lu(A)

> E<-expand(ALU)

> L<-E$L

> U<-E$U

> P<-E$P

>P

4 x 4 sparse Matrix of

class "pMatrix"

[1,] . . | .

[2,] . . . |

[3,] . | . .

[4,] | . . .

>L; U

4 x 4 Matrix of class

"dtrMatrix" (unitriangular)

[,1] [,2] [,3] [,4]

[1,] 1.00 . . .

[2,] 0.70 1.00 . .

[3,] 0.30 -0.50 1.00 .

[4,] -0.20 0.62 -0.62 1.00

4 x 4 Matrix of

class "dtrMatrix"

[,1] [,2] [,3] [,4]

[1,] 10.0 0.0 2.0 -9.0

[2,] . 8.0 -4.4 0.3

[3,] . . 6.2 6.8

[4,] . . . 8.3
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> L%*%U ; P%*%A

4 x 4 Matrix of

class "dgeMatrix"

[,1] [,2] [,3] [,4]

[1,] 10 0 2 -9

[2,] 7 8 -3 -6

[3,] 3 -4 9 4

[4,] -2 5 -7 6

[,1] [,2] [,3] [,4]

[1,] 10 0 2 -9

[2,] 7 8 -3 -6

[3,] 3 -4 9 4

[4,] -2 5 -7 6

So P’A=LU.

> P%*%L%*%U ; A

4 x 4 Matrix of

class "dgeMatrix"

[,1] [,2] [,3] [,4]

[1,] 3 -4 9 4

[2,] -2 5 -7 6

[3,] 7 8 -3 -6

[4,] 10 0 2 -9

[,1] [,2] [,3] [,4]

[1,] 3 -4 9 4

[2,] -2 5 -7 6

[3,] 7 8 -3 -6

[4,] 10 0 2 -9

So A=PLU.

(ii) Example (i) continued to obtain the LDU decomposition

> D<-diag(diag(U))

> V<-solve(D)%*%U

> U; V; D

4 x 4 Matrix of

class "dtrMatrix"

[,1] [,2] [,3] [,4]

[1,] 10.0 0.0 2.0 -9.0

[2,] . 8.0 -4.4 0.3

[3,] . . 6.2 6.8

[4,] . . . 8.3

4 x 4 Matrix of

class "dgeMatrix"

[,1] [,2] [,3] [,4]

[1,] 1 0 0.20 -0.900

[2,] 0 1 -0.55 0.038

[3,] 0 0 1.00 1.105

[4,] 0 0 0.00 1.000

[,1] [,2] [,3] [,4]

[1,] 10 0 0.0 0.0

[2,] 0 8 0.0 0.0

[3,] 0 0 6.2 0.0

[4,] 0 0 0.0 8.3

> P%*%L%*%D%*%V

4 x 4 Matrix of class

"dgeMatrix"

[,1] [,2] [,3] [,4]

[1,] 3 -4 9 4

[2,] -2 5 -7 6

[3,] 7 8 -3 -6

[4,] 10 0 2 -9

>

> A

[,1] [,2] [,3] [,4]

[1,] 3 -4 9 4

[2,] -2 5 -7 6

[3,] 7 8 -3 -6

[4,] 10 0 2 -9

So A = PLDU.
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8.2.3 Cholesky decomposition

The Cholesky decomposition of a symmetric and positive semi-definite n×n matrix
A is A = TT′, with T lower triangular. We have A = LDU with the diagonal elements
of D non-negative since A is positive semi-definite. Since A is symmetric we have
LDU = A = A′ = U′D′L′ = U′DL′ and since the LDU decomposition is unique we
have U = L′ so A = LDL′ = (LD

1/2)(LD
1/2)′ = TT′ with T lower triangular.

8.2.3.1 Implementation in R

The R function for obtaining a Cholesky decomposition of a matrix A is chol(A).
It is in the base system so no special packages have to be loaded. Additionally, there
is a function Cholesky(A) in the library Matrix written to handle sparse matrices.
Here details are given only of the use of chol(A). Care must be taken when using
chol(A) because R does not check whether A is symmetric, nor does it check that
A is positive semi-definite. Further, R actually returns an upper triangular matrix
rather than a lower triangular even though the usual statement of the decomposition
is in terms of lower triangular matrices. That is if A is positive definite it produces
an upper triangular matrix U such that U′U = A, i.e., L = U′. If A is not positive
semi-definite then R will still produce results but these will be meaningless, i.e., it is
not true that t(chol(A))chol(A)=A. If A is not symmetric then R will produce a
decomposition of the symmetric matrix obtained by reflecting the upper triangle of A
about the main diagonal, provided this is positive semi-definite. If A is positive semi-
definite but not positive definite then it is possible that the upper triangular matrix U
is such that U′U=AP for some permutation matrix P 6= In. To obtain the permutation
P it is necessary to call the function with an extra parameter chol(A,pivot=TRUE)
and then use additional steps. Details of this are given in the R help system (see
help(chol)) and are illustrated in the exercises below.

Thus before using chol(A) it is advisable to do two preliminary checks:

A-t(A) ### This should be 0 if A is symmetric

eigen(A)$values ### These should all be non-negative.

### If any are 0 then use chol(A,pivot=TRUE)

Example 8.3:

(i) A 3×3 positive definite symmetric matrix

> options(digits=2)

> A<-matrix(c(8,3,5,3,7,2,5

+ ,2,9),3,3)

> A

[,1] [,2] [,3]

[1,] 8 3 5

[2,] 3 7 2

[3,] 5 2 9

> t(A)-A

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

So A is symmetric.
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> eigen(A)$values

[1] 15.1 5.8 3.2

So A is positive definite.

> U<-chol(A)

> t(U)

[,1] [,2] [,3]

[1,] 2.8 0.000 0.0

[2,] 1.1 2.424 0.0

[3,] 1.8 0.052 2.4

Take T = U′ and
check TT′ = A:

> t(U)%*%U

[,1] [,2] [,3]

[1,] 8 3 5

[2,] 3 7 2

[3,] 5 2 9

8.2.4 Schur decomposition

The Schur decomposition of a n×n matrix A is Q′AQ = T where Q is orthogonal and
T is upper triangular with diagonal elements equal to the eigenvalues of A. A proof
is provided in more advanced texts, (see §11.5, Banerjee and Roy, 2014). Since Q is
orthogonal Q−1 = Q′ so A and T are similar matrices (§2.5.9) and so have identical
eigenvalues (§6.4.3). Thus every square matrix is similar to a triangular matrix. The
eigenvalues of a triangular matrix are given by its diagonal elements; see §6.4.4.

8.2.4.1 Implementation in R

R provides a function Schur(A) for obtaining the Schur decomposition of a
matrix A. It is in the library Matrix which must be loaded by the command
library(Matrix) (or using the Packages drop-down menu) before using the
function.

Example 8.4:

(i) Schur decomposition of a 3×3 arbitrary matrix

> library(Matrix)

> options(digits=2)

> set.seed(999)

> A<-matrix(c(sample(-10:10,

+ 9)),3,3)

> A

[,1] [,2] [,3]

[1,] -2 5 -1

[2,] 1 3 7

[3,] -9 8 -5

> T<-Schur(A)$T

> diag(T);eigen(A)$values

[1] -12.0 3.1 4.9

[1] -12.0 4.9 3.1

> Q<-Schur(A)$Q

> t(Q)%*%A%*%Q; T

[,1] [,2] [,3]

[1,] -12.0 2.5 -5.7

[2,] 0.0 3.1 6.5

[3,] 0.0 0.0 4.9

[,1] [,2] [,3]

[1,] -12 2.5 -5.7

[2,] 0 3.1 6.5

[3,] 0 0.0 4.9
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Note that the diagonal elements of T are the eigenvalues of A though given in a
different order and Q′AQ = T up to negligible rounding errors.

8.2.5 Application to obtaining eigenvalues

If A is a square matrix then the QR-algorithm for finding the eigenvalues of A is as
follows: define A0 = A and Ak+1 = RkQk where Ak = QkRk is the QR decomposition
of Ak. Since Ak+1 = RkQk = Q−1

k QkRkQk = Q−1
k AkQk all the Ak are similar and

so have identical eigenvalues. It can be shown that the sequence Ak converges to
an upper triangular matrix T whose eigenvalues are given by the diagonal elements
which must therefore be the eigenvalues of A.

8.2.6 Application to finding determinants

If A is a n× n non-singular square matrix with QR decomposition A = QR with
Q orthogonal and R upper triangular then |A| = |Q||R| = |R| = ±∏i rii recalling
that the determinant of an orthogonal matrix is ±1 (§4.4) and the determinant of a
triangular matrix is the product of its diagonal elements (§4.4). If A = PLU then
|A|= (−1)s

∏i lii ∏i uii where s is the number of row interchanges needed to convert
the permutation matrix P to the identity matrix In. If A is positive semi-definite and
A = TT′ is the Cholesky decomposition of A then |A|= ∏i e2

ii.

8.2.7 Applications of decompositions to solving Ax = y

First, note that if A happens to be a n×n square lower triangular matrix then it is easy
to solve the equation Ax = y without inverting A by forward substitution: since A
is lower triangular the first equation involves only x1 so this can be substituted into
the second to obtain x2 and then both values into the third, and so on. Similarly if A
is upper triangular the equation is easily solved by back substitution , starting with
xn. If A is not triangular then the equation Ax = y may be solved in two stages by
decomposing A into factors, at least one of which is triangular.

If A is a n× n square matrix then A = PLU for some permutation matrix P and
lower and upper triangular matrices L and U. If Ax = y then PLUx = y so LUx = P′y
(noting P is orthogonal). Let z = Ux and solve Lz = P′y for z by forward substitution
and then solve Ux = z for x by backward substitution. Once the decomposition of A
has been found all subsequent steps involve no matrix inversions or multiplications
and so giving substantial computation savings if the equation has to be solved for
several different values of y.

If A is symmetric and positive definite then A = TT′ with T lower triangular is
the Cholesky decomposition and so Ax = y can be solved in two stages as with the
LU decomposition.

If A is m× n with m > n and of full column rank with QR decomposition
A = QR and if Ax = y, we have QRx = y so Rx = Q′y (recalling Q′Q = In) and
this can be solved by back substitution. This may be an exact solution or it may be an
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approximate solution in which case it is the least squares solution. This is discussed
further in §8.3.3.1.

If A is m× n with m < n and of full row rank then A′ is of full column rank.
Let the QR decomposition of A′ be A′ = QR. Then it can be shown (see 8.3.3.1
on Page 131) that a solution to Ax = y is given by xQ(R′)−1y. Since R′ is lower
triangular (R′)−1y can be calculated by forward substitution.

8.2.8 Application to matrix inversion

The inverse of a square n×n matrix A is a solution X of the set of equations AX = In
so any of the methods descussed above can be used to solve the equations Axi = ei
for i = 1,2, . . . ,n obtaining the columns of X in turn.

8.3 Generalized Inverses
So far in this text we have only considered inverses of square non-singular matrices.
In this section we relax these conditions to consider matrices which are square and
singular and also non-square matrices. The aim is to define matrices which have
many of the properties of an inverse and so allow the extension of many of the
techniques and results in statistics which involve inversion of a square non-singular
matrix to such cases.

For example, if A is a non-singular n×n matrix then the [unique] solution of the
linear equation Ax = b is x = A−1b where A−1 is the ordinary inverse of A defined in
Chapter 5. If A is singular or if A is m×n with m 6= n then we can consider solutions
of the linear equation Ax = b in terms of generalized inverses.

We consider first the Moore–Penrose inverse which is defined by requiring
the MP inverse to satisfy four properties. These ensure that this type of inverse is
unique and that if the matrix should happen to be square and non-singular then it
is the ordinary inverse. We follow this by considering matrices satisfying only the
first of the Moore–Penrose conditions, these are termed generalized inverses. This
single condition does not uniquely define a matrix and there may be arbitrarily many
satisfying the condition but nevertheless they can play a useful role in statistical
methodology. In particular, many of the key results needed for investigating exact
and approximate solutions to the linear equation Ax = b (including least squares
solutions) depend only upon the first of the Moore–Penrose conditions and so they
can be expressed in terms of generalized inverses although in practice they would
be calculated using the Moore–Penrose inverse, not least since R has a ready-made
function for this but does not provide any easy facility for calculating the arbitrarily
many generalized inverses.
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8.3.1 Moore–Penrose inverse

Recall that the inverse A−1 of a non-singular n× n matrix A is defined to be that
matrix satisfying A−1A = AA−1 = In. It is easy to verify that the matrix M = A−1

satisfies the following four properties:

(i) AMA = A

(ii) MAM = M

(iii) (AM)′ = AM, i.e., AM is symmetric

(iv) (MA)′ = MA , i.e., MA is symmetric

If A is any matrix, not necessarily non-singular or square, then a matrix M satisfying
these four conditions is termed the Moore–Penrose inverse of A and we denote it
as A+. Note that we do not include the most obvious condition satisfied by A−1

that AA−1 = A−1A = In. We show below that A+ is uniquely defined by these four
conditions and so it is justified to refer to the Moore–Penrose inverse rather than
a Moore–Penrose inverse. However, first we show that there is indeed a matrix A+

satisfying these four conditions and so it does make sense to consider whether it is
unique or not.

To do this we need a result from an earlier chapter using the singular value
decomposition of A (see §6.7.2 on Page 94): if A is m× n of rank r then there exist
m× r and n× r orthogonal matrices U and V and a r× r diagonal matrix Λ with
positive diagonal elements such that A = UΛ

1/2V′. Define M = VΛ−
1/2U′, then we

have to demonstrate that M satisfies each of the four Moore–Penrose conditions.
AMA = UΛ

1/2V′VΛ−
1/2U′UΛ

1/2V′ = UΛ
1/2V′ = A since V′V = U′U = Ir since both

U and V are orthogonal. Similarly MAM = M. (AM)′ = UΛV′VΛ−
1/2U′ = UU′

which is symmetric. Similarly (MA)′ = VV′ which is symmetric and so M satisfies
all four of the conditions and so is a Moore–Penrose inverse of A.

To show A+ is unique, suppose there are two matrices M and P that satisfy
the four conditions. We note that AM = AM′ = M′A′ = M′APA′ = M′A′P′A′ =
(AM)′(AP)′ = AMAP = AC, using just conditions (i) and (iii). Also we have
MA = MA′ = A′M′ = APA′M′ = A′P′A′M′ = (PA)′(MA)′ = PAMAP = PA using
just conditions (i) and (iv). Then, using condition (ii) M = MAM = BAP = PAP = P.

It follows immediately that if A is a square non-singular matrix then A+ = A−1

since we have already seen that A−1 satisfies the four Moore–Penrose conditions.
We have ρ(A) = ρ(A+) because ρ(A) = ρ(AA+A) ≤ ρ(A+) = ρ(A+AA+) ≤

ρ(A), using MP conditions (i) and (ii). Similarly ρ(A) = ρ(AA+) = ρ(A+A).
We leave as exercises the results that (A+)+ =A, (A′)+ =(A+)′, (AA+)+ =AA+

and (A+A)+ = A+A. All can be verified by checking that the four MR conditions are
satisfied.

If A is a m×n matrix then further key results are

(i) If ρ(A) = m (i.e., is of full row rank) then A+ = A′(AA′)−1 and so AA+ = Im.

(ii) If ρ(A)= n (i.e., is of full column rank) then A+ =(A′A)−1A′ and so A+A= In.
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(iii) If ρ(A) = 1 then A+ = (tr(AA′))−1A′.

(iv) If B is a n× p matrix and ρ(A) = n and ρ(B) = n then (AB)+ = B+A+.

The proofs of these results are not given here but can be found in many texts, in
particular in Abadir and Magnus (2005). Note that (i) and (ii) show that it is not
possible for both AA+ = Im and A+A = In to be true simultaneously unless m = n,
in which case A is non-singular and A+ = A−1.

8.3.2 Moore–Penrose inverses in R

R provides a function ginv(.) for calculating the Moore–Penrose inverse of a
matrix. It is in the MASS library so the MASS library needs to be loaded before
using the function by the command library(MASS). This library is automatically
included when R is first installed and so does not need to be installed separately.
There is also an equivalent function MPinv(.) in the gnm library which does
have to be installed separately (this library provides facilities for fitting non-linear
generalized linear models).

Example 8.5:

(i) A non-square matrix not of full rank

> library(MASS)

> options(digits=2)

> A<-matrix(c(3,2,1,4,2,0,5,

+ 2,-1,-1,0,1),4,3,byrow=T)

> A

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 4 2 0

[3,] 5 2 -1

[4,] -1 0 1

>

> M<-ginv(A)

> M

[,1] [,2] [,3] [,4]

[1,] 0 0.06 0.11 -0.06

[2,] 0.20 0.06 -0.06 0.11

[3,] 0.30 0.06 -0.22 0.28

>

To check that the four Moore–Penrose conditions are satisfied:

> A%*%M%*%A

[,1] [,2] [,3]

[1,] 3 2e+00 1e+00

[2,] 4 2e+00 3e-16

[3,] 5 2e+00 -1e+00

[4,] -1 2e-16 1e+00

(i) so AMA = A,
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> M%*%A%*%M

[,1] [,2] [,3] [,4]

[1,] 2e-17 0.06 0.11 -0.06

[2,] 2e-01 0.06 -0.06 0.11

[3,] 3e-01 0.06 -0.22 0.28

(ii) so MAM = M,

> M%*%A

[,1] [,2] [,3]

[1,] 0.8 0.3 -0.2

[2,] 0.3 0.3 0.3

[3,] -0.2 0.3 0.8

(iii) so (AM)′ = AM,
i.e., AM is symmetric,

> A%*%M

[,1] [,2] [,3] [,4]

[1,] 7e-01 3e-01 -1e-16 3e-01

[2,] 3e-01 3e-01 3e-01 1e-16

[3,] 1e-16 3e-01 7e-01 -3e-01

[4,] 3e-01 8e-17 -3e-01 3e-01

>

(iv) so (MA)′ = MA,
i.e., MA is symmetric
(within negligible
rounding errors).

(ii) A non-square matrix of full row rank

> options(digits=2)

> library(MASS)

> B<-matrix(c(1,2,3,4,5,6)

+ ,2,3)

> B

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> M<-ginv(B)

> M

[,1] [,2]

[1,] -1.33 1.08

[2,] -0.33 0.33

[3,] 0.67 -0.42

> M%*%B

[,1] [,2] [,3]

[1,] 0.83 0.33 -0.17

[2,] 0.33 0.33 0.33

[3,] -0.17 0.33 0.83

> B%*%M

[,1] [,2]

[1,] 1.0e+00 0

[2,] 2.7e-15 1

So B+B 6= I3 but BB+ = I2.
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(iii) A non-square matrix of full column rank

> library(MASS)

> C<-matrix(c(1,2,3,5,1,5,6,4,5,3,1,4),4,3); C

[,1] [,2] [,3]

[1,] 1 1 5

[2,] 2 5 3

[3,] 3 6 1

[4,] 5 4 4

> M<-ginv(C)

> M

[,1] [,2] [,3] [,4]

[1,] -0.1336 -0.198 -0.028 0.323

[2,] -0.0072 0.154 0.133 -0.140

[3,] 0.1930 0.064 -0.071 -0.022

> M%*%C

[,1] [,2] [,3]

[1,] 1.0e+00 -2.2e-16 4.4e-16

[2,] -1.1e-16 1.0e+00 -1.1e-16

[3,] -2.8e-17 5.6e-17 1.0e+00

> C%*%M

[,1] [,2] [,3] [,4]

[1,] 0.824 0.28 -0.25 0.075

[2,] 0.276 0.57 0.39 -0.118

[3,] -0.251 0.39 0.64 0.108

[4,] 0.075 -0.12 0.11 0.968

So C+C = I3 but CC+ 6= I4.

(iv) A column vector

> library(MASS)

> D<-matrix(c(1,3,7)); D

[,1]

[1,] 1

[2,] 3

[3,] 7

> M<-ginv(D); M

[,1] [,2] [,3]

[1,] 0.017 0.051 0.12

> D%*%M

[,1] [,2] [,3]

[1,] 0.017 0.051 0.12

[2,] 0.051 0.153 0.36

[3,] 0.119 0.356 0.83

> M%*%D

[,1]

[1,] 1

> sum(diag(D%*%t(D)))*M

[,1] [,2] [,3]

[1,] 1 3 7

So tr(DD′)D+ = D′, i.e., D+ = [tr(DD′)]−1D′.
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8.3.3 Generalized inverse

A matrix G is termed a generalized inverse of the m× n matrix A if it satisfies the
first of the Moore–Penrose conditions: AGA = A. It is usually denoted by A− and
necessarily is a n×m matrix. The Moore–Penrose inverse of A, A+ is clearly a
generalized inverse of A and we know that the Moore–Penrose inverse is unique
but the proof of this required an appeal to each of the four MP conditions (see
§8.3.1). This suggests that a generalized inverse satisfying only the first condition
is not necessarily unique. This is indeed the case and it can be shown (see Abadir
and Magnus (2005) §10.5) that any generalized inverse can be written in the form
A− = A+ + Q−A+AQAA+ where Q is any n×m matrix, i.e., Q is arbitrary. It
is easily verified that AA−A = A, recalling that AA+A = A (the first of the MP
conditions). Note that taking Q = A+ gives A− = A+ as the generalized inverse,
recalling that A+AA+ = A+ (the second of the MP conditions).

R has no ready-made function to produce generalized inverses but the form above
can be used, together with ginv(.) in the MASS library, to produce a generalized
inverse (which of course will be different for different choices of Q).

The primary role of generalized inverses is in discussing solutions of the system
of linear equations in x, Ax = y. There may be many solutions for x if A is singular
or non-square.

Example 8.6:

(i) A non-square matrix not of full rank

> library(MASS)

> options(digits=2)

> A<-matrix(c(3,2,1,4,2,0,5,

+ 2,-1,-1,0,1),4,3,byrow=T)

> A

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 4 2 0

[3,] 5 2 -1

[4,] -1 0 1

> ### First need the

> ### MP-Inverse of A

> M<-ginv(A)

> M

[,1] [,2] [,3] [,4]

[1,] 6.9e-18 0.06 0.11 -0.06

[2,] 1.7e-01 0.06 -0.06 0.11

[3,] 3.3e-01 0.06 -0.22 0.28

> ### Next generate an

> ### arbitrary 3x4

> ### matrix Q

> set.seed(137)

> Q<-matrix(c(sample(1:12

+ ,replace=T)),3,4)

> Q

[,1] [,2] [,3] [,4]

[1,] 8 10 11 4

[2,] 5 5 10 9

[3,] 11 12 8 10

> ### Now calculate

> ### Generalized Inverse

> G<-M+Q-M%*%A%*%Q%*%A%*%M

> G

[,1] [,2] [,3] [,4]

[1,] -0.56 1.5 2.6 3.9

[2,] -5.72 -3.8 3.1 7.1

[3,] -1.89 2.8 2.6 6.3
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> ### check G satisfies

> ### the first condition

> A%*%G%*%A

[,1] [,2] [,3]

[1,] 3 2.0e+00 1.0e+00

[2,] 4 2.0e+00 -6.4e-14

[3,] 5 2.0e+00 -1.0e+00

[4,] -1 -2.7e-14 1.0e+00

>

> ### Next generate a

> ### different arbitrary

> ### 3x4 matrix Q

> set.seed(163)

> Q<-matrix(c(sample(1:12

+ ,replace=T)),3,4)

> Q

[,1] [,2] [,3] [,4]

[1,] 4 6 2 9

[2,] 9 8 6 4

[3,] 7 1 5 9

>

> ### Now calculate

> ### Generalized Inverse

> G<-M+Q-M%*%A%*%Q%*%A%*%M

> G

[,1] [,2] [,3] [,4]

[1,] -4.39 0.89 0.17 5.72

[2,] 0.61 2.72 3.83 0.89

[3,] -1.39 -4.44 2.50 6.06

>

> ### check G satisfies

> ### the first condition

> A%*%G%*%A

[,1] [,2] [,3]

[1,] 3 2.0e+00 1e+00

[2,] 4 2.0e+00 -6e-14

[3,] 5 2.0e+00 -1e+00

[4,] -1 -2.2e-14 1e+00

This example shows two of the arbitrarily many generalized inverses of A by
generating two random versions of Q using the function sample(.) (type
help(sample) for more information on this function). The seeds used for the
R random number generator were 137 and 163 and so can be reproduced if
desired.

(ii) A non-square matrix of full column rank

> options(digits=2)

> library(MASS)

> C<-matrix(c(1,2,3,5,1,5,6,

+ 4,5,3,1,4),4,3); C

[,1] [,2] [,3]

[1,] 1 1 5

[2,] 2 5 3

[3,] 3 6 1

[4,] 5 4 4

> M<-ginv(C); M

[,1] [,2] [,3] [,4]

[1,] -0.134 -0.20 -0.03 0.32

[2,] -0.007 0.15 0.13 -0.14

[3,] 0.193 0.06 -0.07 -0.02

> set.seed(137)

> Q<-matrix(c(sample(1:12,

+ replace=T)),3,4);Q

[,1] [,2] [,3] [,4]

[1,] 8 10 11 4

[2,] 5 5 10 9

[3,] 11 12 8 10

> G<-M+Q-M%*%C%*%Q%*%C%*%M

> C%*%G%*%C

[,1] [,2] [,3]

[1,] 1 1 5

[2,] 2 5 3

[3,] 3 6 1

[4,] 5 4 4
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> set.seed(163)

> Q<-matrix(c(sample(1:12,

+ replace=T)),3,4);Q

[,1] [,2] [,3] [,4]

[1,] 4 6 2 9

[2,] 9 8 6 4

[3,] 7 1 5 9

> G<-M+Q-M%*%C%*%Q%*%C%*%M

> C%*%G%*%C

[,1] [,2] [,3]

[1,] 1 1 5

[2,] 2 5 3

[3,] 3 6 1

[4,] 5 4 4

(iii) A column vector

> options(digits=1)

> library(MASS)

> D<-matrix(c(1,6,3),3,1)

> M<-ginv(D);M

[,1] [,2] [,3]

[1,] 0.02 0.1 0.07

> set.seed(2015)

> Q<-matrix(c(sample(

+c(7,3,1),replace=T))

+,1,3); Q

[,1] [,2] [,3]

[1,] 7 1 7

> G<-M+Q-M%*%D%*%Q%*%D%*%M

> G

### check G satisfies

### first condition

>D%*%G%*%D

[,1] [,2] [,3]

[1,] 6 -3 5

[,1]

[1,] 1

[2,] 6

[3,] 3

> set.seed(1966)

> Q<-matrix(c(sample(

+c(7,3,1),replace=T))

+,1,3); Q

[,1] [,2] [,3]

[1,] 1 3 7

> G<-M+Q-M%*%D%*%Q%*%D%*%M

> G; D%*%G%*%D

[,1] [,2] [,3]

[1,] 0.2 -2 4

[,1]

[1,] 1

[2,] 6

[3,] 3

8.3.3.1 Solutions of linear equations

The linear equation in x, Ax = y, may possess a unique solution, no solution or
arbitrarily many solutions. For example, the equation

(
1 1
2 2

)
x =

(
1
1

)
has no solution

since it is not possible for both x1+x2 = 1 and 2x1+2x2 = 1 to be true simultaneously
so it is said to be inconsistent . If the equation Ax = y has a solution it is said to
be consistent . The equation (1,1)x = 1 (where x is a 2× 1 column vector has the
solutions x = (1,q)′ for any value of q, so there are arbitrarily many solutions.

If Ax = y is consistent then there is a solution, x? say, so that Ax? = y. So
y = Ax? = AA−Ax? = AA−y. Conversely, if AA−y = y then let x? = A−y so
Ax? = AA−y = y and thus the equation is consistent. Thus a necessary and sufficient
condition for the equation Ax = y to be consistent is that AA−y = y. This provides
a way of checking whether a system of linear equations is consistent. In practice, of
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course, this would be checked by using the Moore–Penrose inverse A+ because of
the ease of computation.

Clearly if A is a square non-singular matrix then A− = A−1 and so AA−y =
AA−1y = y and so the equation is consistent and x = A−1y is the unique solution
(since A−1 is unique).

Further, if Ax = y is consistent and if A is m×n with m > n and ρ(A) = n, i.e.,
it has full column rank then A′A is a non-singular n× n matrix and so possesses an
inverse; consequently premultiplying both sides of the equation by (A′A)−1A′ gives
a solution as x = (A′A)−1A′y.

Notes:

(a) This argument is only valid if Ax = y is consistent because if it is not, it would
depend upon a false premise, i.e., it is possible that A has full column rank but
x = (A′A)−1A′y is not a solution of the equation (and indeed the equation has no
solutions). This is illustrated in the first of the examples below.

(b) In the full column rank case (A′A)−1A′ = A+; see key result (ii) in §8.3.1 on
Page 125, so the solution can be written as x = A+y.

(c) If m = n, i.e., A is square and therefore non-singular, then (A′A)−1 = A−1(A′)−1

and so this reduces to x = A−1y as the (unique) solution.

(d) It will be seen that in general the solution x = A+y is unique when m > n and
ρ(A) = n, provided the equation is consistent (i.e., has any solutions at all).

Suppose Ax = y is consistent (so that AA−y = y), then if A− is any generalized
inverse of A we have AA−A=A so AA−Ax=Ax, then if Ax= y we have A(A−y)= y
and so x = A−y is a solution of Ax = y. Conversely, suppose Ax = y is consistent and
has a solution x = Gy. Let a j be the jth column of A and consider the equations
Ax = a j. Each of these has a solution x = e j, the jth unit vector, i.e., a vector with
jth element 1 and all others 0 and so the equations are consistent. Therefore the
equations Ax = a j have a solution x = Ga j for all j and so AGa j = a j for all j and
thus AGA = A.

Recalling (see §8.3.3) that any generalized inverse A− can be written in the form
A− = A++Q−A+AQAA+ and provided the equation is consistent, i.e., AA+y = y,
we can write any solution of Ax = y in the form x = (A+ +Q−A+AQAA+)y =
A+y+(In−A+A)q, where q is any conformable vector (i.e., n×1), writing q for Qy.

If A has full column rank then A+A= In (see key result (ii) in §8.3.1 on Page 125)
and thus the solution above reduces to x =A+y and is unique even if A is non-square.

If A has full row rank then AA+ = Im (see key result (i) in §8.3.1 on Page 125)
and so AA+y = y for any y and so the Ax = y equation is consistent for any y and
has a solution x = A+y. If the QR decomposition of A′ is given by A′ = QR then
A+ = A′(AA′)−1 = QR(R′Q′QR)−1 = QRR−1(R′)−1 = Q(R′)−1 as stated in §8.2.7
on Page 123.

If the equation Ax = y has no solutions or has many different solutions, the
question arises as to which is the best approximate solution or is the best exact
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solution. One method is to base the choice on the least squares criterion . Consider
the quantity (Ax−y)′(Ax−y) and choose a value of x which minimises this (whether
or not the equation is consistent). Let x? = A+y then (Ax− y) = A(x− x?)−
(Im −AA+)y. Noting that (Im −AA+)′(Im −AA+) = (Im −AA+), because AA+

is symmetric by definition and AA+AA+ = AA+, and also noting that A′(Im −
AA+) = 0 gives (Ax− y)′(Ax− y) = (x−A+y)′A′A(x−A+y) + y′(Im −AA+)y.
Since (x−A+y)′A′A(x−A+y)≥ 0 the sum of squares (Ax−y)′(Ax−y) is minimised
when A(x−A+y) = 0 which is true when x = x? = A+y. So x = A+y is the least
squares solution of the equation Ax = y and it may be an approximate solution or it
may be an exact solution.

Summary:

• The linear equation Ax = y may have a unique exact solution, many exact
solutions or no exact solutions.

• If it has a solution (i.e., is consistent) then this is given by x = A−y.

• A necessary and sufficient condition for it to have any solutions is that AA−y= y.
Essentially, this amounts to saying the solution might be x = A−y (but check that
it works to see whether there are any exact solutions at all).

• If A has full row rank then it has at least one solution for every value of y.

• If A has full column rank and if the equation is consistent then then x = A+y is
the unique solution.

• Irrespective of whether the equation is consistent x = A+y is the least squares
solution, i.e., it minimises (Ax− y)′(Ax− y).

Example 8.7: (Details of the calculations are left to the exercises.)

(i) A matrix of full column rank but equation is not consistent.

Let A =

 1 1
2 2
3 4

 and y =

 1
1
1

 then clearly the columns of A are linearly

independent and so ρ(A) = 2 but AA+y =

 0.6
1.2
1.0

 6= y and so the equation

Ax = y is not consistent. This is easily seen because Ax = y implies that
x1 + x2 = 1 and 2x1 + 2x2 = 1 (and 3x1 + 4x2 = 1) and the first two equations

cannot both be true. Note that if y =

 1
2
7

 or y =

 3
6
11

 then in each case

AA+y = y and so the equation has a solution and indeed it is unique and given
by A+y (see exercises below).
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(ii) A 3×4 matrix of rank 2.

Let A =

 2 3 3 1
3 4 5 1
1 2 1 1

 and y =

 14
22
6


then A+ =


0.02 0.05 −0.01
0.14 −0.16 0.43
−0.08 0.30 −0.46

0.12 −0.21 0.44

. It is easily verified that AA+y = y

so the equation is consistent. Thus it has at least one solution, one of these is

provided by x = A+y =


1.3
1.1
2.8
−0.2

. Other solutions are given by x = A+y+

(I4−A+A)q =


1.3
1.1
2.8
−0.2

+q−


0.18 0.24 0.29 0.06
0.24 0.65 0.06 0.41
0.29 0.06 0.82 −0.24
0.06 0.41 −0.24 0.35

q, where

q is any 4×1 vector. For example, taking q =


1
1
1
1

 gives x =


1.5
0.7
2.9
0.2

.

Verification that this does provide a solution and other details of the calculations
are left to the exercises.

8.4 Hadamard Products
If A and B are two m×n matrices then their Hadamard product A�B is the element-
by-element product defined by (A�B)i j = ai jbi j. Hadamard products are not defined
for matrices of different orders.

It is easy to see that Hadamard products follow the familiar rules of multiplicative
arithmetic of scalars (commutative, associative and distributive): A�B = B�A,
(A�B)�C = A� (B�C) and A� (B+C) = A�B+A�C. Further, if λ is a
scalar then clearly λ (A�B) = (λA)�B = A� (λB) and (A�B)′ = A′�B′.

Other properties of Hadamard products include;

• If A is a square n×n matrix A� In = diag(diag(A)).

• If u and x are m× 1 vectors and v and y are n× 1 vectors then (uv′)� (xy′) =
(u�x)(v� y)′.

• If ρ(A) = ρ(B) = 1 then ρ(A�B)≤ 1.

• ρ(A�B)≤ ρ(A).ρ(B).
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• If A and B are both m×n and x is n×1 then diag(Adiag(diag(x))B′) = (A�B)x.

• x′(A � B)y = tr(diag(diag(x))Adiag(diag(y))B′), where x, y, A and B are
conformable so that the various products are well-defined.

Proofs of these are left as exercises below. Further key results concerning Hadamard
products are given in Styan (1973). The most notable of these are:

• When A and B are both square then ιn
′(A�B)ιn = tr(AB).

• When A and B are both positive [semi-]definite then so is A�B (the Schur
product theorem).

• If A and B are both square positive semidefinite n× n matrices and λ1 ≥ λ2 ≥
. . . ≥ λn ≥ 0 are the eigenvalues of A and bmin and bmax are the smallest and
largest diagonal elements of diag(B) and µ j is the jth largest eigenvalue of A�B
then λnbmin ≤ µ j ≤ λ1bmax.

• If ν1 ≥ ν2 ≥ . . .≥ νn ≥ 0 are the eigenvalues of B then λnνn ≤ µ j ≤ λ1ν1.

• |A�B| ≥ A|.|B|.
For detailed proofs of these and indeed further results and applications to multivariate
statistical analysis, the reader is referred to Styan (1973).

8.5 Kronecker Products and the Vec Operator
If A is a m×n matrix and B is a p×q matrix then the Kronecker product of A and
B, A⊗B, is the mp×nq matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
a11B am2B · · · amnB

 .

The vectorization of a matrix A is obtained by stacking the columns of A on top of
one another. If the ith column is ai then

vec(A) =


a1
a2
...

an

=



a11
...

am1
a12

...
am2

...
amn


,
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so vec(A) is a mn × 1 vector. A similar operator vech(A) of a square n × n
[symmetric] matrix A stacks just the lower triangle of the elements of A and so is
a n(n+ 1)/2× 1 vector. The connection between Kronecker products and the vec
and vech operators will become apparent below.

8.5.1 Elementary properties of Kronecker products

It is straightforward to verify from the definition that the basic properties below hold
(presuming the matrices are conformable as necessary):

• λ ⊗A = A⊗λ = λA for any scalar λ .

• (λA)⊗ (µB) = λ µA⊗B.

• (A⊗B)⊗C = A⊗ (B⊗C).

• (A+B)⊗C = A⊗C+B⊗C.

• A⊗ (B+C) = A⊗B+A⊗C.

• (A⊗B)′ = A′⊗B′ and hence if A and B are both square symmetric matrices then
so is A⊗B.

It can be seen that in general A⊗B 6= B⊗A, for example taking

A =

(
1 0
0 0

)
and B =

(
1 0
0 1

)
gives

A⊗B =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and B⊗A =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

8.5.2 Further properties of Kronecker products

Properties which are little less straightforward are

• The mixed product rule. If A is m×n, B is p×q, C is n× r and D is q× s then
(A⊗B)(C⊗D) = (AC)⊗ (BD) because

(A⊗B)(C⊗D)

=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
a11B am2B · · · amnB




c11D c12D · · · c1nD
c21D c22D · · · c2nD

...
...

...
c11D cm2D · · · cmnD



=


f11BD f12BD · · · f1nBD
f21BD f22BD · · · f2nBD

...
...

...
f11ND fm2BD · · · fmnBD

 , where fi j =
n

∑
k=1

aikck j = (AC)i j,

= (AC)⊗ (BD).
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• If A is n× n and B is p× p then (A⊗ B)−1 = A−1 ⊗ B−1 because (A⊗
B)−1(A−1⊗B−1) = (AA−1)⊗ (BB−1) (using the previous result) = In⊗ Ip =
Inp.

• If A = UADAV′A and B = UBDBV′B are the singular value decompositions of
A and B then the singular value decomposition of A⊗B is given by A⊗B =
(UA⊗UB)(DA⊗DB)(VA⊗VB)

′ which can be seen by noting that (VA⊗VB)
′ =

(V′A⊗V′B) and applying the mixed product rule twice in succession.

• If A is m× n and B is p× q then ρ(A⊗B) = ρ(A)ρ(B). This follows from the
previous result because ρ(A) equals the number of non-zero diagonal elements
of DA, (i.e., the non-zero singular values of A). Similarly for B and ρ(A⊗B) is
the number of non-zero elements of DA⊗DB which is the product of the numbers
of non-zero elements in DA and in DB.

• If A and B are m×m and n× n square matrices then tr(A⊗B) = tr(A)tr(B)
because

tr(A⊗B) =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

am1B am2B · · · ammB


= (a11 +a22 + . . .+amm)tr(B) = tr(A)tr(B).

• If A and B are m×m and n× n upper [lower] triangular square matrices then
A⊗B is upper [lower] triangular because if A and B are upper triangular then
ai j = 0 if i > j so

A⊗B =


a11B a12B · · · a1mB

0 a22B · · · a2mB
...

...
. . .

...
0 0 · · · ammB


and each of the blocks aiiB is upper triangular so all entries below the main
diagonal are 0 and so A⊗B is upper triangular, similarly for lower triangular.

• If A and B are orthogonal matrices then A⊗B is orthogonal because we have
AA′ = A′A = Im and BB′ = B′B = In so (A⊗B)(A⊗B)′ = (AA′)⊗ (BB′) =
Im⊗ In = Imn by the mixed product rule. Similarly (A⊗B)′(A⊗B) = Imn.

8.5.3 Decompositions of Kronecker products

In the same way as the singular value decomposition of A⊗B can be obtained as
the equivalent factorization into Kronecker products of corresponding factors, as
shown above by repeated application of the multiple product rule, analogous results
hold for other decompositions (where suffixes A and B are used for factors in the
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decompositions of A and B and A and where in each case B values are assumed to
have the forms required for validity of the decompositions):

• Spectral decomposition: A⊗B = (TA⊗TB)(ΛA⊗ΛB)(T′A⊗T′B).

• QR decomposition: A⊗B = (QA⊗QB)(RA⊗RB).

• LU decomposition: A⊗B = (PA⊗PB)(LA⊗LB)(UA⊗UB).

• Cholesky decomposition: A⊗B = (TA⊗TB)(T′A⊗T′B).

• Schur decomposition: (Q′A⊗Q′B)(A⊗B)(QA⊗QB) = TA⊗TB.

8.5.4 Eigenanalyses and determinants of Kronecker products

Throughout this section A and B are m×m and n×n square matrices.
If Ax = λx and By = µy then (A⊗B)(x⊗ y) = λ µ(x⊗ y) (using the mixed

product rule) and so x⊗ y is an eigenvector of (A⊗B) corresponding to eigenvalue
λ µ . In fact all the eigenvalues of (A⊗B) are given by the set {λiµ j; i = 1, . . . ,m; j =
1, . . . ,n} because, considering the Schur decomposition (Q′A ⊗Q′B)(A⊗B)(QA ⊗
QB) = TA ⊗ TB, diag(TA) contains all the λi and diag(TB) all the µ j and the
eigenvalues of (A⊗B) are given by diag(TA⊗TB) which contains all the λiµ j; i =
1, . . . ,m; j = 1, . . . ,n.

However, it is not the case that all the eigenvectors of (A⊗B) are given by
(xi⊗ y j); i = 1, . . . ,m; j = 1, . . . ,n. For example if A = B =

(
0 0
1 0

)
then it is easy to

verify that the eigenvalues of A and A⊗A are all zero but A has only one eigenvector
and A⊗A has three eigenvectors. Demonstration of this is left as an exercise.

Noting that the determinant of a matrix is given by the product of all of its
eigenvalues, |A⊗B| = |A|n |B|m which follows from the Schur decomposition of
A⊗B.

8.5.5 Elementary properties of the vec operator

It is straightforward to verify from the definition that the basic properties below hold
(presuming the matrices are conformable as necessary):

• vec(λA) = λvec(A).

• vec(A+B) = vec(A)+vec(B) if A and B have the same orders.

• vec(x) = vec(x′) for all vectors x.

• The trace of products rule. (vec(A)′vec(B)= tr(A′B) because (vec(A))′vec(B)=
∑i j ai jbi j = ∑i j(A′B)i j = tr(A′B).
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8.5.6 Connections between Kronecker products and vec operators

• vec(xy′) = y⊗x because

vec(xy′) =


y1x
y2x

...
ynx

= y⊗x.

• The triple product rule. Suppose A, B and C are m×n, n× p and p×q matrices,
then vec(ABC) = (C′⊗A)vec(B) because if B = ∑

p
i−1 b)ie′i where bi and ei are

the columns of B and Ip then

vec(ABC) = vec

(
p

∑
i−1

Abie′iC

)
=

p

∑
i−1

vec
(
(Abi)(C′ei)

′)
=

p

∑
i−1

(C′ei)⊗ (Abi) (applying the result above)

= (C′⊗A)
p

∑
i−1

(ei⊗bi) (applying the mixed product rule)

= (C′⊗A)
p

∑
i−1

vec(bie′i) = (C′⊗A)vec(B).

• tr(ABCD) = vec(D′)′(C′ ⊗ A)vec(B) because tr(ABCD) = tr(D(ABC)) =
vec(D′)′vec(ABC) = vec(D′)′(C′ ⊗A)vec(B), noting that if ABCD is square
then the product D(ABC)is defined and applying results given above. Similarly,
noting that tr(ABCD) = tr(D′C′B′A′), we have tr(ABCD) = (vec(D)′(A ⊗
C′)vec(B′).

• Suppose A is m× n and B is n× p, then vec(A) = (In ⊗A)vec(In) because
A = AInIn and the result follows from the triple product rule. Similarly vec(A) =
(Im⊗A′)vec(Im) noting that A = ImImA.

• vec(AB) = (B′ ⊗ Im)vec(A) = (B′ ⊗A)vec(In) = (Ip ⊗A)vec(B) noting that
AB = ImAB = AInB = ABIp and applying the triple product rule.

8.5.7 Kronecker products and vec operators in R

The Kronecker product A⊗B is obtained in R using the multiplication symbol %x%
by A%x%B (ordinary matrix multiplication is A%*%B). There is no ready made function
for the vec operator in the base system of R nor any of the libraries supplied on
first installation. The library matrixcalc (Novomestky, 2012) contains a function
vec(.) (and also a function vech(.)) which performs the operation. This library
needs to be installed using the Packages>Install package(s)... menu (after
first choosing a CRAN mirror from which to access the package). This only needs
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to be done once and after that it can be loaded with library(matrixcalc). This
library contains various other functions which may be of interest to specialist users
and a complete list can be obtained by the command library(help=matrixcalc).

Alternatively, it is possible to write a simple function in R to perform the
operation:

vec<-function(A) {

vec<-as.matrix(A[,1])

for (i in 2:dim(A)[2]) {vec<-rbind(vec,as.matrix(A[,i]))}

return(vec)

}

Note that although A[,1]and the A[,i]) are columns of the matrix A, R may
treat them as either row or column vectors according to context (see §2.10.1 and
§2.1.2), choosing the row vector option if both possibilities are compatible. Use of
the function as.matrix(.) forces the column vector choice.

Example 8.8: First, store the function vec(.) for use in several examples and set
number of digits of output.

> vec<-function(A) {

+ vec<-as.matrix(A[,1])

+ for (i in 2:dim(A)[2]) {vec<-rbind(vec,as.matrix(A[,i]))}

+ return(vec)

+ }

> options(digits=2)

(i) Illustration of triple product rule vec(ABC) = (C′⊗A)vec(B):

> A<-matrix(c(1,0,1,0),2)

> B<-matrix(c(1,1,1,0),2)

> C<-matrix(c(1,0,1,1),2)

> A; B ;C

[,1] [,2]

[1,] 1 1

[2,] 0 0

[,1] [,2]

[1,] 1 1

[2,] 1 0

[,1] [,2]

[1,] 1 1

[2,] 0 1

>

> A%x%B

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 1 0 1 0

[3,] 0 0 0 0

[4,] 0 0 0 0

> A%x%C

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 0 1 0 1

[3,] 0 0 0 0

[4,] 0 0 0 0
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> vec(A%*%B%*%C)

[,1]

[1,] 2

[2,] 0

[3,] 3

[4,] 0

> (t(C)%x%A)%*%vec(B)

[,1]

[1,] 2

[2,] 0

[3,] 3

[4,] 0

(ii) Eigenanalyses of A, B and A⊗B in example (i):

> eigen(A)

$values

[1] 1 0

$vectors

[,1] [,2]

[1,] 1 -0.71

[2,] 0 0.71

> eigen(B)

$values

[1] 1.62 -0.62

$vectors

[,1] [,2]

[1,] -0.85 0.53

[2,] -0.53 -0.85

> eigen(A%x%B)

$values

[1] 1.62 -0.62 0.00 0.00

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.85 -0.53 -0.71 0.00

[2,] 0.53 0.85 0,00 -0.71

[3,] 0.00 0.00 0.71 0.00

[4,] 0.00 0.00 0.00 0.71

>

> eigen(A)$vec%x%eigen(B)$vec

[,1] [,2] [,3] [,4]

[1,] -0.85 0.53 0.60 -0.37

[2,] -0.53 -0.85 0.37 0.60

[3,] 0.00 0.00 -0.60 0.37

[4,] 0.00 0.00 -0.37 -0.60

This example shows that the eigen-
values of A⊗ B are the products
of the eigenvalues of A and B
and at first sight it might appear
that the eigenvectors of A⊗B are
not given by the Kronecker prod-
ucts of the eigenvectors of A and
B. Since the last two eigenval-
ues of A⊗B are both zero there
are arbitrarily many choices for
the eigenvectors and it is easy
to verify that (−0.71,0,0.71,0)′

and (0,−0.71,0,0.71)′ are valid
choices for eigenvectors corre-
sponding to zero eigenvalues and
also (0.60,0.37,−0.60,−0.37)′

and (−0.37,0.60,0.37,−0.60)′

are equally valid choices.
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8.6 Exercises

(1) If A =

 73 45 46
45 58 29
46 29 29

 find its Cholesky decomposition A = TT′.

(2) If A =

 34 31 51
31 53 32
51 32 85

 find its Cholesky decomposition A = TT′.

(3) Show that (A+)+ = A.

(4) Show that (A′)+ = (A+)′.

(5) Show that (AA+)+ = AA+.

(6) Show that (A+A)+ = A+A.

(7) If A is symmetric (i.e., if A′ = A) show that AA+ = A+A.

(8) Show that A′AA+ = A′ = A+AA′.

(9) If A =

(
A1 0
0 A2

)
show A+ =

(
A+

1 0
0 A+

2

)
.

(10) If x =

 1
6
3

 find x+ without using any of the R functions for finding Moore–

Penrose inverses and check the result with ginv(.).

(11) If X=

 4 12 8
6 18 12
5 15 10

 find X+ without using any of the R functions for finding

Moore–Penrose inverses and check the result with ginv(.).

(12) If X =

 6 2 8
5 1 6
1 7 8

, find X+ without using any of the R functions for finding

Moore–Penrose inverses and check the result with ginv(.).

(13) Let A =

 1 1
2 2
3 4

 and y =

 1
1
1

.

(a) Show that AA+y =

 0.6
1.2
1.0

 6= y.

(b) What is the least squares solution to the equation Ax = y?
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(c) If instead y =

 1
2
7

 or y =

 3
6

11

 show that in both cases the equation

is consistent and find solutions. Are these solutions unique in either or both
cases?

(14) Let A =

 2 3 3 1
3 4 5 1
1 2 1 1

 and y =

 14
22

6

.

(a) Show that the equation Ax = y is consistent.

(b) Show that x =


1.3
1.1
2.8
−0.2

 and x =


1.5
0.7
2.9
0.2

 are both solutions of the

equation.

(c) Find a different solution to the equation.

(15) Show that if x is a n×1 vector then tr(xx′) = 1′nx�x, where ιn is the n×1 vector
with all entries equal to one.

(16) If A is a square n×n matrix then show that A� In = diag(diag(A)).

(17) If u and x are m× 1 vectors and v and y are n× 1 vectors then show that
(uv′)� (xy′) = (u�x)(v� y)′.

(18) If ρ(A) = ρ(B) = 1 then show that ρ(A�B)≤ 1.

(19) Show that ρ(A�B)≤ ρ(A).ρ(B).

(20) If A and B are both m× n and x is n× 1 show that diag(Adiag(diag(x))B′) =
(A�B)x.

(21) Show that x′(A�B)y = tr(diag(diag(x))Adiag(diag(y))B′), where x, y, A and B
are conformable so that the various products are well-defined.

(22) If A and B are n×n matrices and Λ is a n×n matrix with diagonal elements λi
then show that diag(AΛB) = (A�B)diag(Λ).

(23) If A is m×n and B is p×q then show that (A⊗B)− = A−⊗B−.

(24) If A is m×n and B is p×q then show that (A⊗B)+ = A+⊗B+.

(25) If A =

(
0 0
1 0

)
find the eignevectors of A and A⊗A.



9
Key Applications to Statistics

9.1 Introduction
This section considers some basic results that are encountered in introductory courses
on multivariate analysis and linear models using a matrix-based formulation. The
purpose is to provide some details of the techniques used to establish these results,
giving cross-references to those sections where the techniques are established.
Substantial use is made of results from Chapter 7 and especially of §7.6 in the case
of §9.2.7 on union-intersection tests and in derivation of the key results in the data
analytic techniques in §9.3, §9.4 and §9.5.

Keeping this aim in mind means that only very brief descriptions are given of
important topics such as principal components analysis, discriminant analysis and
so on and little discussion of their purpose and interpretation is included since the
information is readily available in standard specialist texts. Similarly, discussion of
the evaluation of statistical tests (likelihood ratio and union-intersection) is left to
other texts except that for the sake of completeness numerical solutions to some of
the exercises do use R functions such as mvrnorm(.) and pchisq(.) without full
descriptions of their use. Readers can readily find details of these in the R help(.)

system.

9.2 The Multivariate Normal Distribution
The random p× 1 vector x has a p-dimensional multivariate normal distribution
Np(µ,Σ) if the probability density function of x is

fx(x) =
1

(2π)
p/2 |Σ|1/2

exp{−1/2(x−µ)′Σ−1(x−µ)}.

We write x∼ Np(µ,Σ). Here it is taken that µ is a p×1 vector and Σ is a symmetric,
non-singular positive definite p× p matrix. It is possible to extend this definition to
a singular matrix Σ but that is not considered here.

143
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9.2.1 Standardization

If x∼ Np(µ,Σ) and y = Σ−
1/2(x−µ) where Σ−

1/2 is as defined in §6.7.1.1 then

(x−µ)′Σ−1(x−µ) = y′y =
p

∑
i=1

y2
i

so the density of y is fy(y) =
1

(2π)
p/2 |Σ|1/2

exp{−1/2y′y}Jxy,

where Jxy is the Jacobean; see§7.4.
Since y = Σ−

1/2(x− µ), x = Σ
1/2(y+ µ) and ∂x

∂y = Σ
1/2 (see§7.4.1) so Jxy = |Σ|

1/2

and

fy(y) =
1

(2π)
p/2

exp{−1/2y′y}= 1
(2π)

p/2
exp
{
−

p

∑
i=1

y2
i
}
,

showing that the yi are independent univariate N(0,1) variables (and thus fx(x) > 0
and integrates to 1 and so is a proper probability density function). Noting that
E[y] = 0, var(y) = Ip and if x is a p-dimensional random variable and recalling (see
§2.12.3) that if A is a n× p matrix, and b a p×1 vector, then E[Ax+b] = AE[x]+b
and var(Ax+b) = Avar(x)A′ gives E[x] = µ and var(x) = Σ

1/2IpΣ
1/2 = Σ (since Σ is

symmetric so is Σ
1/2 ).

9.2.2 Random samples

Suppose x1,x2, . . . ,xn are independent observations of x ∼ Np(µ,Σ), and xi =
(xi1,xi2, . . . ,xip)

′. Recall from §2.12.3.1 that we define the sample mean vector
x̄ = (x̄1, x̄2, . . . , x̄p)

′ = 1
n Xιn. Let X = x̄ι ′n (so X is a p× n matrix with all columns

equal to x̄). Further we define the sample variance

S = 1
(n−1) (X−X)(X−X)′ = 1

(n−1)

{
n

∑
1

xix′i−nx̄x̄′
}
.

In §2.12.3.1 it was shown that E[S] = Σ, and thus x̄ and S are unbiased estimators
of µ and Σ. Further, using characteristic functions of normal random variables it is
possible to show that x̄∼ Np(µ

1
n Σ).

9.2.3 Maximum likelihood estimates

If x1,x2, . . . ,xn are independent observations of x ∼ Np(µ,Σ) then the likelihood of
(µ,Σ) is

Lik(µ,Σ;X) =
1

(2π)
p/2 |Σ|n/2

exp
{
−1/2

n

∑
i=1

(xi−µ)′Σ−1(xi−µ)
}
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and the log-likelihood is

`(µ,Σ;X) = loge(Lik(µ,Σ;X)

= −1/2

n

∑
i=1

(xi−µ)′Σ−1(xi−µ)− 1/2np log(2π)− 1/2n log(|Σ|)

= −1/2

n

∑
i=1

(xi− x̄)′Σ−1(xi− x̄)− 1/2n(x̄−µ)′Σ−1(x̄−µ)

− 1/2np log(2π)− 1/2n log(|Σ|).

So ∂`
∂ µ

= nΣ−1(x̄−µ) (using §7.2.3) and thus (setting the derivative equal to 0) µ̂ = x̄.
Writing T = Σ−1 gives

∂`

∂T
= {nΣ− (n−1)S−n(x̄−µ)(x̄−µ)′}

− 1/2diag
(
diag((nΣ− (n−1)S−n(x̄−µ)(x̄−µ)′))

)
(using §7.3.3 and §7.3.10). Setting this equal to 0 gives Σ̂ = (n−1)

n S+(x̄− µ̂)(x̄− µ̂)′

and when µ̂ = x̄ this gives the [unrestricted] maximum likelihood estimates of µ and
Σ as µ̂ = x̄ and Σ̂ = (n−1)

n S.
More generally, whatever the maximum likelihood estimate (mle) of µ is, if d= x̄− µ̂

then Σ̂ = (n−1)
n S + dd′. Note that this general formula applies only when Σ is an

unknown symmetric matrix and other than the constraint of symmetry there are no
other interdependencies between the elements of Σ so, for example, it would not be
applicable if Σ = σ2[(1− ρ)In + ριnι ′n], the equicorrelation matrix with σ and ρ

unknown. This form is useful in constructing likelihood ratio tests where the null
hypothesis puts some restriction on µ so that under the null hypothesis the mle of µ

is not x̄. In these cases we can easily obtain the mle of Σ and hence the maximized
likelihood under the null hypothesis.

9.2.4 The maximized log-likelihood

For the construction of likelihood ratio tests we need the actual form of
the maximized likelihood under null and alternative hypotheses. Typically, the
alternative hypothesis gives no restrictions on µ and Σ and so the mles under the
alternative hypothesis are as given earlier (i.e., µ̂ = x̄ and Σ̂ = (n−1)

n S). The null
hypothesis will either impose some constraint on Σ (e.g., H0 : Σ = Σ0) or some
constraint on µ (e.g., H0 : µ = µ0 or H0 : µµ ′ = 1). In these latter cases we obtain the
estimate of µ and then use the more general form for Σ̂ given above. For example,
under H0 : µ = µ0 we have µ̂ = µ0 and so

Σ̂ = (n−1)
n S+(x̄−µ0)(x̄−µ0)

′ = 1
n

n

∑
i
(xi−µ0)(xi−µ0)

′.

To calculate the actual maximized likelihood in either case often requires the use
of the trick in manipulating matrices discussed on Page 36 in §2.8.2 which is
that ∑

n
i y′iSyi = tr(S∑

n
i yiy′i). The advantage of this is that the matrix product on the
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right hand side might reduce to the identity matrix whose trace is easy to calculate.
Applying this result gives

n

∑
i=1

(xi− x̄)′Σ−1(xi− x̄) = tr
(
Σ
−1

n

∑
i=1

(xi− x̄)(xi− x̄′)
)

= tr
(
Σ
−1(n−1)S

)
= (n−1)tr

(
Σ
−1S
)

and

(x̄−µ)′Σ−1(x̄−µ) = tr
(
Σ
−1(x̄−µ)(x̄−µ)′

)
.

Thus the log-likelihood can be written as

`(µ,Σ;X) = −1/2(n−1)tr
(
Σ
−1S
)
− 1/2n

(
tr
(
Σ
−1(x̄−µ)(x̄−µ)′

))
− 1/2np log(2π)− 1/2n log(|Σ|).

This form is often easier to work with when finding the values of the maximized log-
likelihoods under null and alternative hypotheses which are needed for constructing
likelihood ratio tests. With Σ̂ = (n−1)

n S+dd′ where d = x̄− µ̂ we have

max
µ,Σ

`(µ,Σ;X) = −1/2np− 1/2np log(2π)− 1/2n log(| (n−1)
n S+dd′|).

9.2.5 Examples of likelihood ratio tests

The purpose of this section is not to present a full account of the theory of hypothesis
testing but to illustrate some of the techniques and results established earlier by
showing how these can be used to construct likelihood ratio test (LRT) statistics and
to evaluate them numerically in cases where data have been obtained. Discussion of
the evaluation of the statistical results is not given here since that is the role of more
specialist courses on multivariate analysis; see for example §5.2.1 of Mardia et al.
(1979).
When testing a null hypothesis H0 against an alternative HA the likelihood ratio test
statistic is given by λ = 2{`max(HA)− `max(H0)} where `max(H0) and `max(HA) are
the maximized values of the log-likelihood under H0 and HA respectively. General
theory gives the asymptotic distribution of this statistic under various regularity
conditions but that is not considered further here. Thus the procedure entails using
maximum likelihood estimation to estimate any unknown parameters under the null
and alternative hypotheses, substituting these into the log-likelihood and taking twice
the difference. Throughout this section it will be assumed that x1,x2, . . . ,xn are
independent observations of x∼ Np(µ,Σ), and xi = (xi1,xi2, . . . ,xip)

′.

9.2.5.1 One-sample T 2-test

If H0 : µ = µ0 and HA : µ 6= µ0 then under H0 we have only to estimate Σ since is µ

specified as µ0 which yields

`max(H0) = −1/2np− 1/2np log(2π)− 1/2n log(|S+dd′|)

where d = x̄−µ0. Under HA there are no restrictions on the parameters so µ̂ = x̄ and
so

`max(H0) = −1/2np− 1/2np log(2π)− 1/2n log(|S|),
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giving the LRT statistic as λ = {n log(|S+dd′|)−n log(|S|)}= n log(|S+dd′|/|S|)
= n log(|S+dd′||S−1|) (using §5.2.4)
= n log(|S−1(S+dd′)|) (using §4.3.2 (viii))
= n log(In +S−1dd′)|= n log(1+dS−1d′)| (using §4.6.2) .

This is a monotonic function of ndS−1d= n(x̄−µ0)
′S−1(x̄−µ0) which is Hotelling’s

T 2 statistic, so demonstrating that Hotelling’s T 2-test is a likelihood ratio test.

Implementation in R: Calculation of T 2 statistics in R can be done directly as

T2<-n*t(xbar-mu0)%*%solve(S)%*%(xbar-mu0)

The R library ICSNP (Nordhausen et al., 2012), which contains tools for various
multivariate nonparametric analyses, includes a function HotellingsT2(.) which
will perform one- and two-sample Hotelling’s T 2-tests though note that the value of
the test statistic produced is the scaled version which has an F-distribution.

9.2.5.2 Multisample tests: MANOVA

Suppose we have k independent samples of sizes ni from Np(µi,Σ) and wish to test
the hypothesis H0 : µ1 = µ2 = . . . = µk = µ against HA : at least one µi 6= µ . The
log-likelihood is

`(µ1,µ2, . . . ,µp,Σ;X) = −1/2npk log(2π)− 1/2nk log(|Σ|)

−1/2

k

∑
i=1

{
(n−1)tr

(
Σ
−1Si

)
+n
(
tr
(
Σ
−1(x̄i−µi)(x̄i−µi)

′))}
(i.e., the sum of the k separate log-likelihoods of the individual samples).
Under H0 we have a sample of size n = ∑ni from Np(µ,Σ) so the mles are µ̂ = x̄ and
Σ̂ = (n−1)

n S and so

`max(H0) = −1/2np− 1/2np log(2π)− 1/2n log(| (n−1)
n S|), noting

k

∑
i=1

{
(n−1)tr

(
Σ̂
−1Si

)
+n
(
tr
(
Σ̂
−1(x̄i− µ̂i)(x̄i− µ̂i)

′))}
=

k

∑
i=1

{
tr
(

n
(n−1)S

−1
ni

∑
j=1

(xi j− x̄i)(xi j− x̄i)
′)+ntr

(
n

(n−1)S
−1(x̄i− x̄)(x̄i− x̄)′

)}

and
k

∑
i=1

{
ni

∑
=1
(xi j− x̄i)(xi j− x̄i)

′+ni(x̄i− x̄)(x̄i− x̄)′
}

= (n−1)S.

Under HA we have µ̂i = x̄i, the ith sample mean and Σ̂=∑
k
1(ni−1)Si =

(n−k)
n W, where

W = 1
n−k ∑

k
1(ni−1)Si, the [pooled] within-groups sample variance . So

`max(HA) = −1/2np− 1/2np log(2π)− 1/2n log(| (n−k)
n W|) noting

Σ
−1(x̄i− µ̂i)(x̄i− µ̂i)

′ = Σ
−1(x̄i− x̄ii)(x̄i− x̄ii)

′ = 0.
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Thus the LRT statistic is λ = 2{`max(HA)− `max(H0)} = n log
∣∣∣ (n−1)S
(n−k)W

∣∣∣ which is a

monotonic function of |S||W| = |W
−1S|. Define the between-groups variance B by

(k−1)B = ∑
k
i ni(x̄i− x̄)(x̄i− x̄)′ = (n−1)S− (n−k)W so an equivalent test statistic

is |W−1[(k−1)B+(n−k)W| or equivalently Λ= |Ip+ k−1
n−k W−1B|. Λ is termed Wilks’

Λ and has a Λ(p,n− k,k−1) distribution.
It is in principle straightforward to calculate the various statistics using

elementary R functions (and this is outlined in §9.4.2 below) but a ready made
function manova(.) is available and details of its use are in the help system.

9.2.5.3 The hypothesis H0 : µ ′µ = r2
0

Suppose x ∼ Np(µ,σ
2Ip). Note that µ ′µ = r2

0 implies that µ lies on a sphere of
specified radius r0 and the alternative hypothesis is taken as HA = H0. With Σ = σ2Ip
we have Σ−1 = σ−2Ip and so
`(µ,σ ,X) = −1/2(n−1)tr(Sσ

−2)− 1/2n(x̄−µ)′(x̄−µ)σ−2

−1/2 log(2π)− 1/2np log(σ2),

noting log(|σ2Ip|) = p log(σ2), see §4.3.2 (ii)).
Let Ω = `(µ,σ ,X)− λ (µ ′µ − r2

0) (where λ is a Lagrange multiplier introduced
for the constrained optimization). Then ∂Ω

∂ µ
= n(x̄− µ)σ−2 − 2λ µ so we require

µ̂ = nx̄
n+2λσ2 . Since µ̂ ′µ̂ = r2

0 we have µ̂ = x̄r0√
x̄′x̄

(which does not depend upon σ2).

∂`

∂σ
= (n−1)tr(S)σ−3 +n(x̄−µ)′(x̄−µ)σ−3−npσ

−1

so σ̂ =

√
1

np
{(n−1)tr(S)+n(x̄− µ̂)′(x̄− µ̂)}

=

√
1

np
{(n−1)tr(S)+n(

√
x̄′x̄− r0)2}

=

√
1

np

{
∑x′ixi−2nr0

√
x̄′x̄+nr2

0

}
.

Thus
`max(H0) =−1/2np− 1/2np log(2π)− 1/2n log( 1

np{(n−1)tr(S)+n(x̄− µ̂)′(x̄− µ̂)})

=−1/2np− 1/2np log(2π)− 1/2n log( 1
np

{
∑x′ixi−2nr0

√
x̄′x̄+nr2

0

}
).

Note that the general formula given in §9.2.4 does not apply here since that relied
on differentiating with respect to Σ when Σ was a symmetric matrix and that was
the only interdependency between the elements of Σ but here we have Σ = σ2IP
so all diagonal elements of Σ are equal. `max(HA) = −1/2np − 1/2np log(2π) −
1/2n log

(∣∣ (n−1)
n S

∣∣). Thus the likelihood ratio test statistic is
λ = 2{`max(HA)− `max(H0)}

= n log
(

1
np

{
∑x′ixi−2nr0

√
x̄′x̄+nr2

0

}
/
∣∣ (n−1)

n S
∣∣) .
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9.2.6 Union-intersection tests

An alternative strategy for constructing hypothesis tests is based on the union-
intersection principle. A test of a hypothesis expressed as an intersection of
component hypotheses based on a union of one dimensional rejection regions for
each one dimensional hypothesis is referred to as a union-intersection test (UIT).
Although such tests do not necessarily possess the optimal properties of likelihood
ratio tests (such as the asymptotic null distribution of the test statistic) they may
provide additional insight into the data, in particular providing an indication of the
direction of departure from a multivariate null hypothesis. A full discussion of the
method is not given here; it is available in many standard texts, for example §5.2.2 of
Mardia et al. (1979).

In outline, the procedure consists of projecting the data into one dimension and
testing the hypothesis in that one dimension. The particular dimension chosen is that
which shows the greatest deviation from the null hypothesis. Typically this leads to
an optimization problem involving quadratic forms or ratios of quadratic forms in
the projection vector. Often these can be solved by the techniques for constrained
optimization discussed in §7.6 where the constraint might be that the projection
vector is of unit length or some other scale constraint such as the denominator of
a ratio of quadratic forms is unity. The selection of examples below illustrates the
method.

9.2.7 Examples of union-intersection tests

Again, the purpose of this section is to illustrate some of the techniques. A full
account of underlying theory is left to more specialist texts. Throughout this section
it will be assumed that x1,x2, . . . ,xn are independent observations of x ∼ Np(µ,Σ),
and xi = (xi1,xi2, . . . ,xip)

′ with sample mean and variance x̄ and S. Projecting the
sample into one dimension will be achieved with a projection vector β . Thus if X′
is the data matrix in p-dimensions, the projected data matrix is X′β and individual
projected observations are x′iβ ; i = 1, . . . ,n. The sample variance of the projected
sample is β ′Sβ .This follows directly from the definition, using algebra similar to
that employed in §9.2.1 for the equivalent result for the population variance.

9.2.7.1 Two-sample T 2-test

We now test H0 : µ1 = µ2 against HA : µ1 6= µ2 based on samples of size n1 and n2
from Np(µi,Σ); i = 1,2. Suppose the sample means and variances of the two samples
are x̄i, Si; i = 1,2 and let S =

(
(n1−1)S1 +(n2−1)S2

)
/(n−2) where n = n1 +n2,

the pooled estimate of the common variance Σ. If the data are projected into one
dimension by a projection vector β the means and variances of the project samples
are x̄′iβ ; i= 1,2 and β ′Sβ . The appropriate test in one dimension of H0β : µ ′1β = µ ′2β

is a two-sample Student’s t-test with test statistic given by tβ where

t2
β
=

n1n2β ′(x̄1− x̄2)(x̄1− x̄2)
′β

nβ ′Sβ
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and the UIT procedure is to maximize this with respect to β .
This is essentially Example 7 (ii) on Page 109 and the maximum is given by the only
non-zero eigenvalue of the rank 1 matrix n1n2S−1(x̄1 − x̄2)(x̄1 − x̄2)

′/n which is
n1n2(x̄1− x̄2)

′S−1(x̄1− x̄2)/n (with corresponding eigenvector S−1(x̄1− x̄2)). Thus
the UIT statistic is T 2 = n1n2

n (x̄1− x̄2)
′S−1(x̄1− x̄2), i.e., a two-sample Hotelling’s

T 2-test.

9.2.7.2 Test of H0 : Σ = Σ0 against HA : Σ 6= Σ0

If the sample variance, based on a sample of size n is S then the variance of the
one-dimensional sample is β ′Sβ and the one-dimensional component hypothesis is
H0β : β ′Σβ = β ′Σ0β for which the appropriate test is a [two-sided] chi-squared test
based on rejecting H0β if (n− 1)β ′Sβ/β ′Σ0β is improbably small or large. The
UIT test statistic is obtained by optimizing this with respect to β . This problem is
considered in Example 7 (ii) on Page 109 where it is shown that the maximum and
minimum values are given by the largest and smallest eigenvalues of (n− 1)Σ−1

0 S.
Clearly an equivalent test can be based on the largest and smallest eigenvalues of
Σ
−1
0 S.

In the absence of asymptotic results the test statistics would need to be evaluated
by simulation techniques, generating a number K, say, of random samples of size
n drawn from Np(0,Σ0) and seeing in how many of the samples the smallest and
largest eigenvalues of Σ

−1
0 Si; i = 1, . . . ,K lay either above λ1 or below λp where

λ1 ≥ λ2 ≥ . . . ≥ λp are the ordered eigenvalues of the observed sample value of
Σ
−1
0 S. For a two-sided [equi-tailed] test of size α , the null hypothesis H0 would be

rejected either if fewer than 100(1− 1/2α)% of the simulated largest eigenvalues of
Σ
−1
0 Si are greater than λ1 or if fewer than 100(1− 1/2α)% of the simulated smallest

eigenvalues of Σ
−1
0 Si are less than λp.

Implementation of such a simulation test in R is straightforward but is a little
beyond the scope of this text except to note that a random sample of size n drawn
from Np(0,Σ0) can be obtained by using the simple function rnorm(.) to generate
p independent univariate samples from N(0,1) to form a data matrix Y′ and then

transforming these to a sample X′ from Np(0,Σ0) by X = Σ
1/2
0 Y, see §9.2.1 (where

Σ
1/2
0 is defined in §6.7.1.1). Alternatively the MASS library has a function mvrnorm(.)

which will draw a random sample of specified size from a multivariate normal
distribution with given mean and variance.

9.2.7.3 Multisample tests: MANOVA

The likelihood ratio test for the multivariate one-way analysis of variance was derived
in §9.2.5.2 and here we consider the UIT approach. We use the notation established
in that section.

Projecting the data into one dimension gives a hypothesis of equal means of k
univariate Normal populations as the component hypothesis, i.e., a one-way analysis
of variance, with test statistic given by the F-ratio Fβ = β ′Bβ/β ′Wβ , where B
and W are the between- and within-groups variances. Maximization of this ratio



Key Applications to Statistics 151

with respect to β was considered in Example 7 (ii) and the maximum value is
the largest eigenvalue of W−1B. Recall that the LRT statistic for this problem is
Λ = |Ip + k−1

n−k W−1B| which can be shown to be equivalent only if k = 2 but for k > 2
the two tests are different. The R function manova(.) will optionally produce the
value of the UIT statistic and details are given in the help() system.

9.3 Principal Component Analysis
An informal account of PCA was given in §6.5 where some justification was given
for the technique being regarded as a major exploratory tool of multivariate data
analysis. In that section the principal components were taken as the projections of
the data onto the eigenvectors of the variance matrix S but it is better to define the
components differently and then show that these are given by the eigenanalysis of
S. If X′ is a n× p data matrix then the first principal component of X′ is that linear
combination of the p variables y′1 = (X−X)′a1 such that var(y1)

′ is maximized,
subject to the constraint a′1a1 = 1. Subsequent principal components are defined
successively in a similar way, so the ith component is y′i = (X−X)′ai such that var(y′i)
is maximized, subject to the constraints a′iai = 1 and a′ia j = 0 for all j < i. Note that
y′i is a n× 1 vector, i.e., a set of n univariate observations which are projections of
X′ onto the vector ai. Some texts develop the theory of principal components with
the actual data matrix X′ (or else say that “without loss of generality the variable
means are assumed to be zero”). Working explicitly with the mean corrected data
matrix (X−X)′ rather than the actual data matrix X′ emphasises this mean correction
(especially important when adding in supplementary points) and conforms with the
R functions princomp() and the default option of prcomp(.). These functions are
discussed further below.

9.3.1 Derivation

We need to maximize var(y′1) = var((X−X)′a1) = a′1Sa1 subject to a′1a1 = 1, where
S is the sample variance of X′. This was considered in Example 7 (i) where the
solution is given that a1 is the [normalized] eigenvector of S corresponding to its
largest eigenvalue. A simple extension of the argument used in Example 7 (i) shows
that the ith component is obtained by taking ai as the eigenvector of S corresponding
to its ith largest eigenvalue. Note that these eigenvectors are orthogonal (see property
6.4.2 (ii)) and so the conditions a′ia j = 0 for all j < i are satisfied. Note further that
the ai are defined only up to a factor of ±1 and different R functions may make
different choices. This does not fundamentally alter the statistical properties of the
transformation. A similar ambiguity of sign of eigenvectors arises in other techniques
such as linear discriminant analysis and canonical correlation analysis discussed in
later sections.
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9.3.2 Calculations in R

Before discussing the functions provided in R for principal component analysis we
will first indicate how to perform the calculations with more elementary R functions.
The key step is the eigenanalysis of the covariance matrix S. This can be done either
with the function eigen(.) or with svd(.), noting that S is a symmetric square
matrix. The function svd(.) is known to be numerically more stable than eigen(.)

so is the preferred choice. S can be calculated either by S<-var(t(X)) or by the few
lines of code given in §2.12.3.2. If the data matrix referred to the full set of principal
components is designated as Y′ then Y′ = (X−X)′A where A is the matrix whose
columns are the eigenvectors of S. To perform this in R we do

xbar<-X%*%matrix(rep(1,n),n)/n

Xbar<-xbar%*%t(matrix(rep(1,n),n))

S<-var(t(X))

Y<-t(t(X-Xbar)%*%svd(S)$v)

A score plot (i.e., a scatter plot of the data rotated onto principal components)
is obtained by plotting the columns of Y′ against each other, i.e by
plot(t(Y)[,i], t(Y)[,j]) for a plot of component i against component j.

If Z′ is a m× p data matrix of m supplementary observations on the same p
variables and it is required to apply the same transformation to Z′ then this is achieved
by W′= (Z−X[m])

′A where X[m] is the p×m matrix with all columns equal to x̄. This
is achieved in R by

Xbarm<-xbar%*%t(matrix(rep(1,m),m))

W<-t(t(Z-Xbarm)%*%svd(S)$v)

The columns of W′ can then be plotted as supplementary points on an
existing score plot of the data used to determine the principal components
with points(t(W)[,i], t(W)[,j]). Alternatively, if the analysis has been
performed with prcomp(.) the generic function predict(.) can be used with
predict(object,newdata) where object is an object of class prcomp. Type
help(predict.prcomp) for more details.

It is sometimes preferable to perform principal component analysis using the
correlation matrix S instead of the variance matrix S. Calculation of R is described
in §2.12.3.2.

R provides two functions for principal component analysis, princomp(.) and
prcomp(.). The first is a legacy of S-PLUS and is provided for compatibility but
in general its use is deprecated. The functions will give slightly different values for
the eigenvalues of the variance matrix because princomp(.) uses a divisor n for
the variance while prcomp(.) uses a divisor n− 1 (so the eigenvalues produced
by princomp(.) will be (n− 1)/n × those produced by prcomp(.); see Exercises
6 (7). Further, princomp(.) uses internally the function eigen(.) for the key
eigenanalysis step whilst prcomp(.) uses the more stable svd(.). A further major
difference is that princomp(.) requires n ≥ p but there are no restrictions with
prcomp(.) and it will work with n < p, though of course the final p−n eigenvalues
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will be zero and so the principal components corresponding to these values will be
chosen arbitrarily and so have no interpretation.

By default prcomp(.) subtracts variable means from the data matrix and uses
the variance matrix for calculation of principal components. Both of these can be
changed by additional arguments. The function returns the transformed data, the
matrix of eigenvectors and the vector of eigenvalues. Full details are readily available
from help(prcomp).

9.3.3 Population and sample principal components

It is sometimes useful to keep in mind the distinction between population and sample
principal components: given a random variable x with variance Σ its population
principal components are given by the eigenvectors of Σ taken in the order of
decreasing magnitude of the eigenvalues of Σ. Strictly the principal components
are defined as those linear combinations of the variables which have maximal
variance subject to normalizing and orthogonality constraints. Given a random
sample of independent observations of x in a data matrix X′ with var(X′) = S
the sample principal components are the eigenvectors of S, again conventionally
taken in the order of decreasing magnitude of the eigenvalues of S. It is presumed
that the sample principal components are estimates of the population principal
components and indeed it can be shown that asymptotically this is true; see for
example Anderson (2003). In particular it is presumed that the ith sample principal
component is an estimate of the ith population component but this is only true for
arbitrarily large samples (i.e., asymptotically). For small samples the sampling error
of the eigenvalues of S can be substantial. Anderson (2003) gives the asymptotic
distribution of the ith sample eigenvalue as N(λi,2λ 2

i /n). If two [population]
eigenvalues are close then the sample eigenvalues can ‘swap’ over, so changing the
order of the corresponding eigenvectors (or principal components). To illustrate this
phenomenon consider the matrix

Σ =


1.011 0.212 −0.512 0.289
0.212 1.013 0.187 −0.512
−0.512 0.187 1.013 0.212

0.289 −0.512 0.212 1.011


which has eigenvalues 1.554, 1.500, 0.946 and 0.048 (so the first two are numerically
close) and eigenvectors

0.54 −0.48 −0.46 0.52
−0.46 −0.52 −0.54 −0.48
−0.46 0.52 −0.54 0.48

0.54 0.48 −0.46 −0.52

 .

The following transcript from an R session shows setting the seed for the random
number generator to 137, generating a sample of size 50 from N4(0,Σ), calculating
the eigenanalysis of the sample covariance matrix S and showing that the first and
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second eigenvectors of Σ are not approximately parallel to the first two eigenvectors
of S (as assessed by calculating their inner products which should be close to±1) but
they are near parallel to the second and first eigenvectors of S (with inner products of
±0.95), indicating that the first two eigenvalues of S have ‘swapped over’ . Indeed
this is also apparent by looking at the pattern of signs of the first two eigenvectors of
Σ and S. In the following code the population variance Σ is denoted as m.

> options(digits=2)

> set.seed(137)

> library(MASS)

> m<-matrix(c(1.011,0.212,

+ -0.512,0.289,0.212,1.013,

+ 0.187,-0.512,-0.512,0.187,

+ 1.013,0.212,0.289,-0.512,

+ 0.212,1.011),4,4)

> eigen(m)

$values

[1] 1.554 1.500 0.946 0.048

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.54 -0.48 -0.46 0.52

[2,] -0.46 -0.52 -0.54 -0.48

[3,] -0.46 0.52 -0.54 0.48

[4,] 0.54 0.48 -0.46 -0.52

> x1<-eigen(m)$vectors[,1]

> x2<-eigen(m)$vectors[,2]

> X<-t(mvrnorm(50,c(0,0,0,0),m))

> S<-var(t(X))

> eigen(S)

$values

[1] 1.771 1.114 0.888 0.047

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.30 -0.69 0.36 0.55

[2,] -0.66 0.22 0.56 -0.45

[3,] 0.35 0.54 0.59 0.49

[4,] 0.59 -0.43 0.45 -0.51

> y1<-eigen(S)$vectors[,1]

> y2<-eigen(S)$vectors[,2]

> t(x1)%*%y1 ; t(x2)%*%y2

[,1]

[1,] 0.3

[,1]

[1,] 0.29

> t(x1)%*%y2 ; t(x2)%*%y1

[,1]

[1,] -0.95

[,1]

[1,] 0.95

If the random number generator seed is changed to 163 then the inner products of
corresponding eigenvectors of Σ and S are 0.93 and 0.95 and those of first and second
eigenvectors−0.29 and 0.3, indicating that in this case the first two eigenvalues have
not swapped places (this is left to the reader to verify). If the seed is kept as 137 but
the sample size increased to 10000 then no swapping occurs.

Of course, in many practical situations the population variance is totally unknown
and so it would not be possible to detect such swapping. It is not obvious from the
first run that the first two population eigenvalues are close together when the sample
values are 1.771 and 1.114 (see transcript above). However, a common practical
situation where such swapping is a real danger is in simulations involving extraction
of eigenvalues from randomly generated matrices, such as in §9.2.7.2. There the test
statistic only involved eigenvalues so the bias introduced by swapping is small but if
the interest is in the eigenvectors (for example obtaining an envelope of a particular
principal component as a ‘bootstrap’ confidence band) then swapping of sample
eigenvalues will result in inclusion of a sample principal component approximately
orthogonal to the ‘correct’ direction.
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These comments do not apply solely to principal components. Sample eigenvalue
swapping is a danger in any technique requiring calculation of sample eigenvalues
and eigenvectors, such as linear discriminant and canonical correlation analyses
discussed in the next two sections and other techniques beyond the scope covered
here such as biplots (Gower and Hand, 1995) and correspondence analysis
(Greenacre, 2010) where bootstrap samples can be used to assess variabilities of
score plots. There is some discussion of this potential pitfall in Ringrose (1996 and
2012).

9.4 Linear Discriminant Analysis
Discriminant analysis is concerned with multivariate data measured on objects
divided into two or more known groups. The objective may be to classify further
objects into one or other of these groups or it may be directed towards describing the
differences between these groups. In both cases particular interest is in determining
which linear combinations of variables best highlight the differences between the
groups. As in many areas of statistics, terminology varies between authors, so these
linear combinations may be referred to as linear discriminants, or more loosely
as discriminant functions or canonical variates or, following Gnanadesikan (1997),
as crimcoords. The term canonical variates is also used for a closely related
(mathematically at least) set of linear combinations of variables arising in canonical
correlation analysis. Here we will use the term crimcoords.

9.4.1 Derivation of crimcoords

Suppose there are ni p-dimensional observations from Group i, i = 1, . . . ,k and
∑ni = n. Let the data matrix of observations from the ith group be X′i, so the
observations are {xi j; j = 1, . . . ,ni, i = 1, . . . ,k} (so xi j is a p×1 vector).
Let x̄i = Xiιn/n be the group i mean and

let Si =
1

ni−1
(Xi−Xi)(Xi−Xi)

′ be the within-group i variance and

W =
1

n− k

k

∑
i=1

(ni−1)Si be the pooled within-groups variance.

Define B =
1

k−1

k

∑
i=1

(x̄i− x̄)(x̄i− x̄)′ the between-groups variance.

Then (n−1)S=(X−X)(X−X)′=(n−k)W+(k−1)B which is the ‘multivariate

analysis of variance’.
The first crimcoord is defined as that vector a1 which maximizes the ratio

a′1Ba1/a′1Wa1 which highlights the difference between the groups to the greatest
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possible extent in the sense that it maximizes the usual F-statistic for testing the
hypothesis of equal group means in a one-way analysis of variance. The problem of
maximizing this ratio was considered in Example 7 (ii) where it is shown that the
maximum is achieved when a1 is the [right] eigenvector of W−1B corresponding
to its largest eigenvector. In passing, note that the function a1x is referred to as
Fisher’s linear discriminant function . The complete set of eigenvectors of W−1B
corresponding to its r non-zero eigenvalues is the set of crimcoords or canonical
variates. The latter term is used in particular in the context of interpreting the
loadings of the variables so as to describe the nature of the difference between the
groups. In general r =min(p,k−1) (unless there are collinearities between the group
centroids).

In general, the crimcoords ai are not orthogonal (though it is easy to show
that aiWa j = 0 if i 6= j if the eigenvalues are distinct). Nevertheless, it is usual to
plot the data rotated onto the non-orthogonal set of crimcoords (though drawing
the axes representing the crimcoords perpendicular to each other) by constructing
a scatterplot of (X−X)′ai against (X−X)′a j and perhaps add data measured on
objects of unknown classification to such a plot as supplementary points. Again note
the mean correction which is given explicitly here for conformity with the R function
lda(.) in the MASS library. Supplementary observations need to be mean corrected
by the means of the data used to determine the crimcoords.

9.4.2 Calculation in R

R provides a function lda(.) for performing linear discriminant analysis. It is
contained in the MASS library so this has to be opened with library(MASS)

before using lda(.). The function may not work quite as expected because it
incorporates a facility for specifying prior probabilities of classification. These are
used both as weightings for the individual groups in calculation of the within-
groups variance W and as prior probabilities in classifying further observations.
By default the function takes the prior probabilities as proportional to the group
sizes ni so yielding the within-groups variance W as described above but then
uses these weights also as prior probabilities in classifying further observations
with the function predict.lda(.). This can be overridden so, for example, while
still using the group sizes for calculation of W (and hence the crimcoords) but
using equal prior probabilities for classifying further observations by specifying
prior=c(rep(1,k)/k in the call to predict.lda(.). Alternatively the generic
function predict(.) can be used provided its argument is of class lda.

We show first how to calculate the within- and between-groups variances using
elementary matrix manipulations in two ways. The first involves constructing a group
indicator matrix which is a little cumbersome and the second uses the advanced
functions split(.) and lapply(.) whose details can be obtained from the help()
system. We suppose the data are given in a n× (p− 1) data frame A where the first
p columns contain the observations and the final column contains a group indicator.
We also suppose that group sizes ni are known.
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> X<-t(as.matrix(A[,1:p]) ## extract the data matrix X’

> group<-factor(A[,p+1] ## set up the group indicator

> nobs<-c(n1,n2,...,nk) ## set up a vector of group sizes

> n<-sum(nobs) ## total sample size

> G<-matrix(c(rep(1,nobs[1]),rep(0,n),rep(1,nobs[2]),

+ rep(0,n),...,rep(1,nk)),n,k) ## G is the group indicator

## matrix G_ij=1 if and only if case i is in group j

F<- G<-matrix(c(rep(1,nobs[1])/nobs[1],rep(0,n),

+ rep(1,nobs[2])/nobs[2],rep(0,n),...,rep(1,nk/nobs[k])),n,k)

## F is used in calculating group means in M

> M<-F%*%t(X)

> xbar<-t(one)%*%t(X)/n ## overall mean vector

> W<-t(t(X)-G%*%M)%*%(t(X)-G%*%M)/(n-k) ##

> B<-t(G%*%M-one%*%xbar)%*%(G%*%M-one%*%xbar)/(k-1)

## W and B are within and between groups variances

A useful check on the calculations is to ensure that the analysis of variance is
satisfied, i.e., that (n-1)*var(t(X))=(n-k)*W+(k-1)*B (up to rounding errors).
Note that the line calculating B may appear to be different from the formula given in
the previous section B = 1

k−1 ∑
k
i=1(x̄i− x̄)(x̄i− x̄)′ but the R calculations are in terms

of matrices with ni copies of (x̄i− x̄).
If the number of groups k is large (i.e., more than 5 or 6, say) then calculation

of the group indicator G is cumbersome and a quicker way of doing this if the
group sizes are equal is to split the dataframe into separate group dataframes
with the function split(.) (note that the argument of split(.) must be of class
"dataframe" and not of class "matrix") followed by calculation of variances of
each group dataframe with the function lapply(.) as follows:

Xdat<-split(A[,1:p],A[,p+1])

## note A is a dataframe not a matrix

## creates a list of dataframes, one for each group

Xdat<-lapply(Xdat,as.matrix)

## convert group dataframes to matrices

Xvar<-lapply(Xdat,var)

## find variance of each group

W<-Reduce("+",Xvar)*(n/k-1)/(n-k)

## assumes groups are of equal sizes

B<-((n-1)*var(X)-(W*(n-k))/k-1

Having obtained W and B, the within- and between-groups variances, it is then
easy to calculate any of the statistics used for multivariate analysis of variance
referred to in §9.2.5.2and §9.2.7.3. The crimcoords can be obtained by the first k−1
vectors given by eigen(solve(W)%*%B)$vectors but note that the scaling used
for the eigenvectors ensures that y′y = 1 whereas the scaling used for the crimcoords
produced by the function lda(.) ensures that y′Wy = 1, i.e., multiplying the
eigenvectors produced by eigen(solve(W)%*%B)$vectors by a factor y′y/y′Wy
will reproduce the crimcoords from lda(.) held in the matrix lda(.)$scaling.
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The data transformed to crimcoords is given by Y′ = (X − X)′V where V
is obtained either from V=eigen(solve(W)%*%B)$vectors[,1:k-1] or from
V=lda(.)$scaling. The difference in scaling will not be apparent if scatterplots
of the data referred to crimcoords are produced by the basic R command plot(.)

but willl be noticeable if the MASS library routine eqscplot(.) is used.

9.5 Canonical Correlation Analysis
Canonical correlation analysis is concerned with investigating the relationship
between two sets of variables measured on the same objects. In particular, the aim
is to find which linear combination of variables of a n× p data matrix X′ has the
maximum correlation with which linear combination of variables of a n× q data
matrix Y′ amongst all such liner combinations. For example, in analyzing results
of questionnaires eliciting subjects’ opinions of a product, one set of variables may
reflect the socio-economic aspects of the subjects and the other set may relate to their
opinions on various properties of the product.

9.5.1 Derivation of canonical variates

If Sxx, Syy and Sxy are the sample variances and covariance matrices respectively of
X′, Y′ and (X′,Y′) and x and y are p-vectors then the correlations between X′x and Y′y
is x′Sxyy/

√
x′Sxxxy′Syyy. It was shown in Example 6 (iv) that this is maximized with

respect to x and y by taking x to be the eigenvector of S−1
xx SxyS−1

yy S′xy corresponding
to its largest eigenvalue and y to be the eigenvector of S−1

yy S′xyS−1
xx Sxy corresponding

to its largest eigenvalue. These eigenvectors are termed the first canonical variates
of X′ and Y′.

If the complete set of eigenpairs of S−1
xx SxyS−1

yy S′xy is (u1,λ1), . . . ,(ur,λr) where
λ1 ≥ λ2 ≥ . . . ≥ λr and those of S−1

yy S′xyS−1
xx Sxy are (v1,λ1), . . . ,(vr,λr) (noting the

eigenvalues are identical) where r = min(p,q) then it can be shown that the linear
combinations of X′ with Y′ given by (u2,v2) . . . ,(ur,vr) maximise the correlation
between linear functions of the X′ and Y′ variables subject to the constraints of
orthogonality with earlier ones and thus are termed the canonical variates of X′ and
Y′. Plots of the [mean corrected] data referred to canonical variates may provide
insight into the structure of a relationship between the data sets, i.e., plots of
(X− X)′ui against (X− X)′u j (typically with j = i + 1) or (X− X)′ui against
(Y−Y)′vi and (Y−Y)′vi against (Y−Y)′v j can all be useful in informal investigation
the structure of the data.

It can be shown that if the Y′ variables are group indicators or a set of binary
dummy variables then the canonical variates of the X′ variables are precisely the
linear discriminants or crimcoords between the groups. This is the reason that
the latter are sometimes referred to as canonical variates — they are the linear



Key Applications to Statistics 159

combinations of the X′ variables that ‘most highly correlate’ with the group structure,
i.e., discriminate between them. The fact that a different scaling constraint is used in
the analysis is immaterial since the result is invariant to scale.

Note that if the complete n× (p+q) data matrix is Z′ =
(

X′ Y′
)

then we have

var(Z′) =
(

Sxx Sxy
S′xy Syy

)
.

9.5.2 Calculation in R

Suppose the data are presented in n× p and n× q data matrices X′ and Y′, then the
calculations of the various canonical variates proceed as follows:

## set values of p and q

Z<-t(cbind(t(X),t(Y)))

S<-var(t(Z))

Sxx<-S[1:p,1:p]

Sxy<-S[1:p,(p+1):(p+q)]

Syy<-S[(p+1):(p+q),(p+1):(p+q)]

U<-solve(Sxx)%*%Sxy%*%solve(Syy)%*%t(Sxy)

V<-solve(Syy)%*%t(Sxy)%*%solve(Sxx)%*%Sxy

eigen(U) ## calculate canonical variates for X variables

eigen(V) ## calculate canonical variates for Y variables

The data can then be transformed to canonical variates by subtracting the variable
means and multiplying by the matrix of eigenvectors

t(X-Xbar)%*%eigen(U)$vectors; t(Y-Ybar)%*%eigen(V)$vectors

Note that because the eigen(.) function was used for the eigenanalysis the scaling
of eigenvectors here is to ensure they have unit length. The difference in scaling
is only apparent if the MASS library function eqscplot(.) is used to produce
scatterplots, otherwise plot(.) will by default adjust the scaling to fit on the page.

There are two R functions for performing canonical correlation analysis:
cancor(.) in the basic stats library (which is always loaded in an R session)
and cc(.) in the CCA package which must be installed and then opened before
the function is used. The cancor(.) function uses a scaling of the eigenvectors
to ensure that x′iS

−1
xx xi =

1
n−1 = y′jS

−1
yy y j and the cc(.) function uses a scaling

such that x′iS
−1
xx xi = 1 = y′jS

−1
yy y j. The cc(.) function in the CCA package has the

additional advantage of providing the scores of the data on the canonical variates in
cc(t(X),t(Y))$scores$xscores and cc(t(X),t(Y))$scores$yscores.

Neither cancor(.) nor cc(.) supports the generic function predict(.) for
adding supplementary points to existing canonical variate plots so a further m× (p+
q) data matrix (A′ B′) needs to be transformed by

t(A-Xbarm)%*%eigen(U)$vectors; t(B-Ybarm)%*%eigen(V)$vectors,

where Xm and Ym are m× p and m×q matrices with columns x̄ and ȳ.
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9.6 Classical Scaling
A rather different multivariate problem is finding a n× p data matrix X′ whose inter-
point distances best match a given n× n distance matrix D. A distance matrix is a
symmetric matrix with non-negative entries and all elements on the leading diagonal
zero. A distance matrix is said to be Euclidean if there is indeed a configuration of
n points in p-dimensional Euclidean space with distance matrix D. The square of the
inter-point distance distance between the ith and jth observations in X′ (regarded as
points in p-dimensional Euclidean space) is (xi−x j)

′(xi−x j).
To produce a configuration of points with n×n distance matrix given by D first

define A by (ai j) = (−1/2d2
i j), i.e., A =−1/2D�D (where � indicates the Hadamard

product, §8.4) and then define B = HnAHn where Hn is the n× n centering matrix
(see §2.5.6.1). Then the classical scaling theorem (Mardia et al., 1979) states that if
the matrix B is positive semi-definite with rank p with eigenvectors x(i) scaled such
that x′(i)x(i) then the data matrix X′ = (x(1),x(2), . . . ,x(p)) has distance matrix given
exactly by D. Proof of this result is left as an exercise or it may be found in Mardia
et al. (1979) or Cox (2005). Note that B is a n×n matrix so its eigenvectors x(i) are
n×1 vectors and thus X′ is a n× p matrix.

9.6.1 Calculation in R

The function cmdscale(.) will produce a configuration of points with given
Euclidean distance matrix. By default it produces only the first two dimensions but
this can be overridden by including an option k=p to produce p dimensions. The
following R code will produce a solution ‘from scratch’:

### set values of n and p ###

> Hn<-diag(rep(1,n))-matrix(rep(1,n*n),n,n)/n

> ## Hn is nxn centering matrix

> A<--D*D/2 ## note Hadamard product

> B<-Hn%*%A%*%Hn

> B.eig<-eigen(B)

> X<-B.eig$vectors[,1:p] ## take first p eigenvectors

> X<-t(X%*%diag(sqrt(B.eig$values[1:p])))

> ## X’ is required data matrix.

If D is not Euclidean then some of the eigenvalues of the matrix B will be negative.
The pragmatic solution is to take just those eigenvectors of B corresponding to
positive eigenvalues but other possibilities are discussed in Mardia et al. (1979) and
Cox (2005). These include using non-metric methods which are provided by function
isoMDS(.) and sammon(.) in the MASS library.
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9.7 Linear Models
9.7.1 Introduction

This section considers the central topic of linear models. First comes an account of
the standard linear regression model with sections on the estimation of parameters
and their properties. This is followed by discussion of variations on the standard
model and a selection of particular models used in special cases. This is by no means
a full account of the topic but is intended to illustrate some of the key results and
techniques in the area which would be encountered early in a specialist course on the
subject.

9.7.2 The standard linear regression model

The standard linear model for a set of observations y is y = Xβ + ε where y is
a n× 1 vector, X is n× p design matrix with n ≥ p, β is a p× 1 vector of
unknown parameters and ε is a n× 1 random vector with E[ε] = 0 and var(ε) =
σ2In. It is presumed that X is a known matrix giving the values of p independent
variables for each observation. Thus the standard model assumes that observations
are independent and their values can be partitioned into a systematic [fixed] part and
a random part. The contributions to y from Xβ are termed fixed effects . Variants of
the standard model might be to let var(ε) = σ2V where V is a known non-singular
n× n matrix or to extend the model to include random effects by y = Xβ +Zγ + ε

where Z is a n× q matrix of observations of q random variables and γ is a n× q of
unknown parameters.

9.7.2.1 Estimation of parameters

In §8.3.3.1 it was shown that the value of β which minimizes (y−Xβ )′(y−Xβ ),
i.e., the least squares solution of Xβ = y is β̂ = X+y where X+ is the Moore–Penrose
inverse (§8.3.1) of X. If ρ(X) = p then X+ = (X′X)−1X′ (see §8.3.1, further key result
(ii)) so β̂ = (X′X)−1X′y.

An alternative derivation of this is to consider Ω = (y−Xβ )′(y−Xβ ) (the sum
of squares) and differentiate this with respect to β to obtain −2X′y+2X′Xβ . Setting
this equal to zero gives

X′Xβ = X′y (9.1)

Equations (9.1) are known as the normal equations or as the least squares
equations (in the plural because β is a vector of p unknowns). It can be shown
(Guttman, 1982) that any solution of (9.1) is of the form GX′y with G a generalized
inverse of X′X. If X′X is non-singular, i.e., if X is of full column rank and ρ(X) = p,
then this gives β̂ = (X′X)−1X′y. The minimized sum of squares is Ωmin = (y−
Xβ̂ )′(y−Xβ̂ ) = y′y− β̂X′Xβ̂ , noting β̂X′Xβ̂ = y′Xβ̂ . The quantity y′y− β̂X′Xβ̂

is referred to as the residual sum of squares .
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If we make the additional assumption that ε ∼Nn(0,σ2In) then y∼Nn(Xβ ,σ2In)
and so the likelihood is

Lik(β ,σ ;y) =
1

(2π)np/2σn
exp
{
− (y−Xβ )′(y−Xβ )

2σ2n

}
and so the maximum likelihood estimate of β is obtained by minimizing (y−
Xβ )′(y−Xβ̂ ) and thus the least squares estimator β̂ is also the maximum likelihood
estimator.

9.7.2.2 The Gauss–Markov theorem

E[β̂ ] = (X′X)−1X′E[y] = (X′X)−1X′Xβ = β and var(β̂ ) = var((X′X)−1X′y) =

(X′X)−1X′var(y)((X′X)−1X′)′ = σ2(X′X)−1. Thus β̂ is unbiased for β and further
the ith element of β̂ , β̂i, is the minimum variance unbiased linear estimator of βi
as shown by the Gauss–Markov theorem: if θ = a′β then the minimum variance
unbiased estimator of θ which is a linear function of y is given by a′β̂ . To prove
this note that if θ̂ = c + b′y is an unbiased estimator for θ for any value of β

(in particular β = 0) then we must have c = 0 and a = X′b. var(θ̂) = σ2b′b and
b′b = (b−X(X′X)−1a)′(b−X(X′X)−1a)+ a′(X′X)−1a, so b′b is minimized when
b=X(X′X)−1a and the minimum value is a′(X′X)−1a. Since var(a′β̂ )= a′var(β̂ )a=
σ2a′(X′X)−1a we have established that a′β̂ is the minimum variance unbiased linear
estimator of a′β . Taking a = (0,0, . . . ,0,1,0, . . . ,0)′ (so a j = 1 if i = j, 0 otherwise)
gives the result that the ith element of β̂ , β̂i, is the minimum variance unbiased linear
estimator of βi.

9.7.2.3 Residuals and estimation of error variance

Having obtained an estimate β̂ of β the fitted values are ŷ = Xβ̂ . The differences
between the observed and fitted values are referred to as the residuals e. We have e =
y−Xβ̂ = y−X(X′X)−1X′y= (In−X(X′X)−1X′)y. The matrix M= In−X(X′X)−1X′
is symmetric and idempotent (§2.5.6) and MX = 0. The matrix H = X(X′X)−1X′
is symmetric and idempotent and it also plays an important role and is known as
the hat matrix (because for example Hy = ŷ). Both H and M are fundamental in
calculating measures of leverage, influence and Cook’s distance (concepts concerned
with assessing how individual observations contribute to model estimation). This is
beyond the scope of this text but is well covered in the more recent specialist texts
on linear models such as Faraway (2014).

var(e) = var(My) = M′var(y)M = Mσ2InM = σ2M2 = σ2M.
Because E[e] = 0 we have E[e2

i ] = σ2mii where mii is the ith diagonal element
of M. Now E[e′e] = ∑E[e2

i ] = σ2
∑mii = σ2tr(M) = σ2(n− tr(X(X′X)−1X′)) =

σ2(n− tr((X′X)−1X′X)) = σ2(n− tr(Ip)) = (n− p)σ2 (note use of results on trace
of sums and products from §2.4). Thus if σ̂2 = e′e/(n− p) then σ̂2 is an unbiased
estimate of σ2.
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Example 9.1: The single factor model
Suppose y = Xβ + ε where X is the n× p matrix

X =


ιn1 0n1 · · · 0n1
0n2 ιn2 · · · 0n2

...
...

. . .
...

0np 0np · · · ιnp

 where n =
p

∑
i=1

ni and 0ni is a vector of ni 0s,

and y = (y11,y12, . . . ,y1n1 ,y21, . . . ,y2n2 , . . . ,ypnp)
′ then

X′X =


n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · np

 so (X′X)−1 =


1/n1 0 · · · 0

0 1/n2 · · · 0
...

...
. . .

...
0 0 · · · 1/np

 .

Then β̂ = (y1,y2, . . . ,yp)
′.

Example 9.2: The single factor model with overall mean
As an example of a case where the design matrix is not of full rank consider now the
model y = Xβ + ε where X is the n× p (where p = k+1) matrix

X =


ιn1 ιn1 0n1 · · · 0n1
ιn2 0n2 ιn2 · · · 0n2
...

...
...

. . .
...

ιnp 0np 0nk · · · ιnk

 i.e., the left hand column of X is ιn

and β = (µ,µ1,µ2, . . . ,µk)
′. Clearly X is not of full column rank (i.e., ρ(X) < p)

since the left hand column is the sum of all the others so X′X is singular. The least
squares solution is still given by X+y but it is no longer true that X+ = (X′X)−1X′
since this is only true in general if X is of full column rank. If all the group sizes ni
are equal to m so n = mk then X+ =

(
X+

1 X+
2 · · ·X

+
k

)
where X+

i is the p×m matrix
with first row with all elements 1/(n+m), the (i+1)th row equal to k/(n+m) and
all other rows equal to −1/(n+m),

i.e., X+
i =

1
n+m



1 1 · · · 1

−1 −1 · · · −1

k k · · · k
...

...
...

...
−1 −1 · · · −1

← (i+1)th row

(proof of this is left as an exercise). This leads to estimates β̂1 = µ̂ = ny/(n+m) and
β̂i = µ̂i = yi−ny/(n+m), i = 1, . . . ,k. E[β̂ ] = X+E[y] = X+Xβ and X+X is a p× p
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symmetric matrix Z = (zi j) with

zi j =


+k/(k+1) if i = j
+1/(k+1) if i = 1 or if j = 1 (i 6= j)
−1/(k+1) otherwise.

So X+Xβ 6= β and thus the least squares estimate is biased.

9.7.3 Least squares estimation with constraints

An alternative way of handling such a non-full rank case is to impose constraints on
the parameters. Suppose ρ(X) = p−q, then impose q constraints on the parameters
by Bβ = δ where B is a q× p matrix with rows linearly independent of all the rows
of X and ρ(B) = q and δ is a known q×1 vector. Constraints of this form are known
as identifiability constraints . We will show that the estimator

β̃ = (X′X+B′B)−1X′y+(X′X+B′B)−1B′δ

satisfies the least squares Equations (9.1) and satisfies the constraints and is unbiased
for β . To prove this first consider the matrix

W =

(
X
B

)
; W′W =

(
X′ B′

)( X
B

)
= (X′X+B′B).

W is clearly of rank p because the rows of B are linearly independent of those of
X, so ρ(X′X+B′B) = ρ(W′W) = ρ(W) = p and so (X’X+B’B) is non-singular and
thus invertible.

Next, E[β̃ ] = (X′X+B′B)−1X′Xβ + γ (where γ = (X′X+B′B)−1B′δ )
= (X′X+B′B)−1(X′X+B′B−B′B)β + γ

= (Ip− (X′X+B′B)−1B′B)β + γ

= β − (X′X+B′B)−1B′(Bβ )+ γ

= β − (X′X+B′B)−1B′δ + γ = β − γ + γ = β

and thus β̃ is an unbiased estimate of β .
Since ρ(X) = p−q there are p−q linearly independent rows of X. Let P be the

permutation matrix such that

PX =

(
X1
X2

)
where ρ(X1) = p−q and X2 = FX2 for some F.

The matrix Z=

(
X1
B

)
is of full rank p and so is invertible.

Let
(

X1
B

)−1

=
(
V′1 V′2

)
so Ip =

(
X1
B

)(
V′1 V′2

)
=

(
X1V1 X1V2
BV1 BV2

)
.

So X1V2 = 0 and BV2 = Iq.



Key Applications to Statistics 165

Now PXV2 =

(
X1V2

FX1V2

)
= 0 so XV2 = 0. Thus(X′X+B′B)V2 = B′BV2 = B′

and so V2 = (X′X+B′B)−1B′ and hence we have

X(X′X+B′B)−1B′ = XV2 = 0 and B(X′X+B′B)−1B′ = BV2 = Iq

so Bβ̃ = B(X′X+B′B)−1X′y+B(X′X+B′B)−1B′δ = 0y+ Iqδ = δ

and thus β̃ satisfies the constraint that Bβ = δ .
Finally, we show that (X′X + B′B)−1 is a generalized inverse of X′X. This fact
follows because X′X(X′X + B′B)−1X′ = [(X′X + B′B)− B′B](X′X + B′B)−1X′ =
X′− 0 = X′, so X′X(X′X+B′B)−1X′X = X′X and thus (X′X+B′B)−1 satisfies the
first of the Moore–Penrose conditions (§8.3.1) and so is a generalized inverse of X′X.
Consequently (X′X+B′B)−1X′y satisfies the least squares Equations (9.1) and since
X′X(X′X+B′B)−1B′δ = 0 we conclude that β̃ satisfies the least squares Equations
(9.1). A considerably shorter proof of this and related results using linear spaces is
given in Puntanen et al. (2011).

Example 9.3: The single factor model with overall mean (continued)
To illustrate this, we continue the example above with β = (µ,µ1,µ2, . . . ,µk)

′ and
impose the identifiability constraint that ∑

k
i=i µi = 0, i.e., Bβ = 0 where B = (0, ιk

′).
Then (X′X+B′B) is a symmetric p× p matrix Z = (zi j) with

zi j =


n if i = j = 1
k if i = j > 1
m if i = 1 or if j = 1 (i 6= j)
1 otherwise.

and then (X′X+B′B)−1X′ = (Y1 Y2 · · ·Yk) where Yi is the p×m matrix with all
elements on the first row equal to 1/n, those on the (i+1)th row equal to m/n and on
all other rows equal to −1/n,

i.e., Yi =
1
n



1 1 · · · 1

−1 −1 · · · −1

m m · · · m
...

...
...

...
−1 −1 · · · −1

← (i+1)th row

(the proof of this is left as an exercise). This leads to estimates β̂1 = µ̂ = y and
β̂i+1 = µ̂i = yi− y, i = 1, . . . ,k.

Calculation of this in R is straightforward:

p<-5 ; m<-3 ; n<-m*(p-1)## set values of p and m

X<-matrix(c(rep(1,n),rep(c(rep(1,m),rep(0,n)),p-2),
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rep(1,m)),n,p) ## design matrix

B<-matrix(c(0,rep(1,p-)),1,p) ## constraint matrix

beta<-solve(Z)%*%t(X)%*%y ## estimate of beta with data in y

9.7.4 Crossover trials

In a crossover clinical trial to compare two or more treatments (see, for example,
Jones and Kenward, 2003) subjects are divided into groups and each subject receives
each treatment but the order of treatments in different groups is different. For
example in a trial to compare two treatments A and B the first group would receive
treatment A and then after a period of time change to treatment B. Those in the
second group receive treatment B in the first period followed by treatment A in the
second period. The possible responses could include an effect due to the treatment,
an effect due to the period and potentially a carryover effect of one treatment from
the first period having a residual effect in the second period.

Suppose there are m subjects in Group 1 receiving the treatments in the order
A → B and n in group 2 receiving them in the order B→ A and that the fixed
effects to be considered are µ , the overall mean, the relative treatment effects
τA, τB, τA + τB = 0, the relative period effect π1, π2, π1 + π2 = 0 and relative
carryover effects λA, λB,λA +λB = 0 and αi, i = 1,2, . . . ,m,m+1,m+2, . . . ,m+n,
∑αi = 0 the fixed effects of subject i. If y = (y1,y2, . . . ,y2(m+n))

′ then the model can
be written as y = Xβ + ε , where, β = (µ,τA,τB,π1,π2,λ1,λ2,α1,α2, . . . ,α(m+n))

′,

ε ∼ N2(m+n)(0, σ2I2(m+n)) and µ

X =



1 1 0 1 0 1 0 1 0 0 · · · · · · · · · 0
1 1 0 1 0 1 0 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...

1 1 0 1 0 1 0 0 · · ·
. . . 1 0 · · · 0

1 0 1 1 0 0 1 0 0 0 0 1 · · · 0
...

...
...

...
...

...
... · · · · · · · · · · · ·

. . . . . . 0
1 0 1 1 0 0 1 · · · · · · · · · · · · · · · 0 1
1 0 1 0 1 1 0 1 0 0 · · · · · · · · · 0
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
1 0 1 0 1 1 0 0 · · · 1 0 0 · · · 0
1 1 0 0 1 0 1 0 · · · 0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
. . . . . . . . .

...
1 1 0 0 1 0 1 0 · · · · · · · · · 0 1 0
1 1 0 0 1 0 1 0 · · · · · · · · · · · · 0 1
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with identifiability constraints Bβ = 0 where

B =


0 1 1 0 0 0 0 0 · · · 0
0 0 0 1 1 0 0 0 · · · 0
0 0 0 0 0 1 1 0 · · · 0
0 0 0 0 0 0 0 ι ′2(m+n)

 .

Here the first m rows of the design matrix X relate to the subjects in group 1 in
the first period, the next n rows to those in the second group in the first period and
then the next m and n rows to the first and second groups respectively in the second
period. Then the estimates of the parameters β are given by β̂ = (X′X+B′B)−1X′y
(see §9.7.3).

It is more usual to regard the patients as randomly selected from a wider
population and thus that the effect of patient k is a random variable with a normal
distribution N(0,φ 2). If we write τ = τA = −τB, π = π1 = −π2, λ = λA = −λB
(thus eliminating the need for identifiability constraints) this leads to a mixed effects
model: y = Zβ + α + ε , where y = (y1,y2, . . . ,y2(m+n))

′, β = (µ,τ,π,λ )′, α ∼
N2(m+n)(0, φ 2J2⊗ I(m+n)) ε ∼ N2(m+n)(0, σ2I2(m+n)) and (reordering the subjects
so successive pairs of observations are the two results from subjects in period 1 and
period 2)

Z =



1 1 1 1
1 −1 −1 1
...

...
...

...
1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
...

...
...

...
1 −1 1 −1
1 1 −1 −1


.

Note that J2 is the matrix
(

1 1
1 1

)
and ⊗ indicates a Kronecker product (see §8.5) so

J2⊗ I(m+n) is the 2(m+n)×2(m+n) block diagonal matrix (see §2.6.2) with 2×2
matrices J2 down the diagonal.

In the case m= n of equal numbers of subjects in the groups, the columns of Z are
orthogonal and Z′Z= 4nI4 so (Z′Z)−1Z′=Z′/(4n) and so the least squares estimates
(see §8.3.3.1 and §9.7.2.1) of the fixed effects are given by β̂ = (Z′Z)−1Z′y =
Z′y/(4n) giving the usual estimates of the parameters as various linear contrasts in
the observations; see Jones and Kenward (2003).

9.7.4.1 Obtaining the design matrix in R

The matrix X can be calculated in two stages, first constructing the first seven
columns and then including the m+ n columns as two identity In matrices stacked
above one another.
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# set values of m and n, the numbers of

# subjects in the two groups

k<-m+n

X<-matrix(c(rep(1,2*(m+n)), rep(1,m),rep(0,m+n),rep(1,n),

rep(0,m),rep(1,m+n),rep(0,n), rep(1,m+n),rep(0,m+n),

rep(0,m+n),rep(1,m+n), rep(1,m),rep(0,n),rep(1,m),rep(0,n),

rep(0,m), rep(1,n),rep(0,m),rep(1,n)),2*(m+n),7)

X<-cbind(X,rbind(diag(rep(1,k)),diag(rep(1,k))))

The constraints matrix B is constructed by

B<-matrix(c(0,1,1,rep(0,7+2*(m+n)),1,1,rep(0,7+2*(m+n),1,1,

rep(0,7),rep(1,2*(m+n)),4,7,byrow=T)

If the data are reordered so that successive pairs of observations are the two results
from subjects in periods 1 and 2 then the design matrix for the fixed effects (with
constraints eliminated as above) Z can be calculated as

Z<-matrix(c(rep(1,2*k),rep(c(1,-1),m),rep(c(-1,1),n),

rep(c(1,-1),m+n),rep(1,2*m),rep(-1,2*n)),2k,4)

9.8 Exercises
(1) Suppose the random variable x has variance Σ0, a known p× p positive definite

symmetric matrix, and X′ is a n× p data matrix of independent observations of x
with sample variance S. Find a matrix A such that the data matrix Y′ = X′A has
sample variance matrix Σ0.

(2) Suppose Σ0 =

(
4.031 3.027
3.027 3.021

)
. Using the R function mvrnorm(.) in the

MASS library and the previous exercise generate a sample of 47 two-dimensional
observations which have a sample variance of Σ0.

(3) With Σ0 as given in the previous exercise generate 27 observations whose sample
mean is (20.25,29.83)′ and sample variance Σ0 and a further 20 observations
with sample mean (18.95,28.63)′ and sample variance Σ0. (Rao’s paradox).

(4) Using the R function runif(.), matrix(.), var(.) and eigen(.) generate
a random 5×5 orthogonal matrix.

(5) Suppose x1,x2, . . . ,xn are independent observations of Np(λ µ0,Σ0) where µ0
and Σ0 are known and λ is an unknown scalar.

(i) Show that the mle of λ is given by λ̂ = µ ′0Σ
−1
0 x̄/µ ′0Σ

−1
0 µ0.

(ii) Find the mean and variance of λ̂ and hence give its distribution.
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(iii) Show that the LRT statistic for testing H0 : µ = λ µ0 for some scalar λ

(where µ0 and Σ0 are known) is n(x̄− λ̂ µ0)
′Σ−1

0 (x̄− λ̂ µ0) which under H0
follows a χ2

p-distribution.

(iv) In a standard feeding experiment on greenfinches, four types of sunflower
seeds were placed in identical quadruple compartment bird feeders in each
of 27 suburban gardens. The mean weights consumed of the four types
after 120 minutes were 47 g, 45 g, 39 g and 42 g. Experience from a long
series of such standard experiments suggests that the standard deviations
of the amounts consumed of any type of sunflower seed in a single garden
can be taken to be 10 g and the pairwise correlations between the weights
consumed are 0.1. Do these data suggest that greenfinches have unequal
preferences for the various types of sunflower seeds?

(6) Suppose x1,x2, . . . ,xn are independent observations of Np(µ,λΣ0) where Σ0 is a
known positive definite matrix and λ is an unknown scalar and µ is not assumed
to be known.

(i) Show that the mle of λ is λ̂ = n−1
np tr(Σ−1

0 S) where S is the sample variance
matrix.

(ii) In a feeding experiment on sea urchins, equal amounts of three types
of algæ were placed in 27 tanks each containing a single sea urchin.
After 24 hours the mean weight losses over the 27 samples of the three
types of algæ were 4.7 g, 3.9 g and 4.2 g with sample variance matrix

S =

 1.1 0.0 0.1
0.0 0.9 0.0
0.1 0.0 0.8

. Are these data consistent with the theory that

the amounts of algæ have equal variances with pairwise correlations of
0.1?





Outline Solutions to Exercises

Chapter 1: Introduction
(1) Install R on your computer; see §1.4.2.

Done?

(2) Go to the CRAN home page and download (but don’t print unless really desperate to do
so) the manual by Venables et al. (2014); see §1.2.2.

Done? Many people find it more convenient to keep the manual in .pdf form so
it can be accessed during an R session and use the linked contents list and/or
search facility to find details of the topic of interest.

(3) Still on the CRAN home page, look at the software under Packages from the link in the
menu on the left, browsing through the packages sorted by name. Find the description of
the package CCA (used in §9.5) and look briefly at the reference manual.

Done? The objective is to give some idea of the range of packages available and
the nature of the available documentation on them.
The aim of the next five exercises is just to provide a little familiarity with key
elements of operating R . It will be presumed that these have all been done.

(4) Try typing direct into the R console window some of the examples given in §1.7.

(5) Open a new script file (§1.4.3 on P6) using the menu under File on the top left of the
window.

(6) Type a few R commands into this script window and then highlight them with the mouse
and then click on the middle icon in the top row to run them. (NB: This icon appears only
when the R Editor window is the active window).

(7) Click on the R console window and then using the menu under File change the working
directory to somewhere convenient. Usually R starts with the working directory (where it
looks for and saves files by default) at the very top level.

(8) Making the R editor window the active window (by clicking the mouse when the cursor
is in it) and using the File on the top left save the script file in the new working directory,
using a name with extension .R (so that it can be opened in a a later R session with
File > Open script ..., provided the working directory is the same).
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Chapter 2: Vectors and Matrices

(1) Let a =

 1
2
3

 , b =

 4
5
6

 , u =

 3
2
1

 , v =

 6
5
4

 , w = (7,8,9).

(a) Calculate a+b, v−a, w′+b, 3u, w′−a, v/3, ab′ and ba′.

(b) Repeat the calculations in (a) using R.

> a<-matrix(c(1,2,3),3,1)

> b<-matrix(c(4,5,6),3,1)

> u<-matrix(c(3,2,1),3,1)

> v<-matrix(c(6,5,4),3,1)

> w<-matrix(c(7,8,9),1,3)

> a;b;u;v;w

[,1]

[1,] 1

[2,] 2

[3,] 3

[,1]

[1,] 4

[2,] 5

[3,] 6

[,1]

[1,] 3

[2,] 2

[3,] 1

[,1]

[1,] 6

[2,] 5

[3,] 4

[,1] [,2] [,3]

[1,] 7 8 9

> a+b

[,1]

[1,] 5

[2,] 7

[3,] 9

> v-a

[,1]

[1,] 5

[2,] 3

[3,] 1

> t(w)+b

[,1]

[1,] 11

[2,] 13

[3,] 15

> 3*u

[,1]

[1,] 9

[2,] 6

[3,] 3

> w-t(a)

[,1] [,2] [,3]

[1,] 6 6 6

> v/3

[,1]

[1,] 2.000000

[2,] 1.666667

[3,] 1.333333
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> a%*%t(b)

[,1] [,2] [,3]

[1,] 4 5 6

[2,] 8 10 12

[3,] 12 15 18

> b%*%t(a)

[,1] [,2] [,3]

[1,] 4 8 12

[2,] 5 10 15

[3,] 6 12 18

(2) Let x =

 2
2
−3

 and y =

 1
−2

1

 .

(a) Which of a, b, u, v in Exercise (1) are orthogonal to x?

(b) Which of a, b, u, v in Exercise (1) are orthogonal to y?

(c) Check the answers to (a) and (b) using R.

> x<-matrix(c(2,2,-3),3,1)

> x

[,1]

[1,] 2

[2,] 2

[3,] -3

> t(x)%*%a

[,1]

[1,] -3

> t(x)%*%b

[,1]

[1,] 0

> t(x)%*%u

[,1]

[1,] 7

> t(x)%*%v

[,1]

[1,] 10

> y<-matrix(c(1,-2,1),3,1)

> y

[,1]

[1,] 1

[2,] -2

[3,] 1

> t(y)%*%a

[,1]

[1,] 0

> t(y)%*%b

[,1]

[1,] 0

> t(y)%*%u

[,1]

[1,] 0

> t(y)%*%v

[,1]

[1,] 0

> t(x)%*%w

Error in t(x) %*% w :

non-conformable arguments

> t(y)%*%w

Error in t(y) %*% w :

non-conformable arguments

Thus x is orthogonal only to b and y is orthogonal to a, b, u and w. Note that a
column vector cannot be orthogonal to a row vector because the transpose of one
is non-conformable with the other.

(3) Let A =

(
1 2 3
4 5 6

)
, B =

 1 2
3 4
5 6

 , U =

(
1 2
3 4

)
, V =

(
5 6
7 8

)
,

W =

(
2 2
3 5

)
and Z =

(
3 2
3 6

)
(and use the vectors from Exercises (1) and (2)).
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> A<- matrix(c(1,2,3,4,5,6),

+2,3,byrow=T)

> A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> B<-matrix(c(1,2,3,4,5,6),

+3,2,byrow=T)

> B

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

> U<-matrix(c(1,2,3,4),

+2,2,byrow=T)

> U

[,1] [,2]

[1,] 1 2

[2,] 3 4

> V<-matrix(c(5,6,7,8),

+2,2,byrow=T)

> V

[,1] [,2]

[1,] 5 6

[2,] 7 8

> W<-matrix(c(2,2,3,5),

+2,2,byrow=T)

> W

[,1] [,2]

[1,] 2 2

[2,] 3 5

> Z<- matrix(c(3,2,3,6),

+2,2,byrow=T)

> Z

[,1] [,2]

[1,] 3 2

[2,] 3 6

(a) Find AB, B′A′, BA, a′A, a′Aa, Vdiag(U), diag(B′A′), UVWZ, diag(diag(UV)),
diag(diag(U))diag(diag(V)).

> A%*%B

[,1] [,2]

[1,] 22 28

[2,] 49 64

> t(B)%*%t(A)

[,1] [,2]

[1,] 22 49

[2,] 28 64

> B%*%A

[,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[3,] 29 40 51

> t(a)%*%A

Error in t(a) %*% A :

non-conformable arguments

> t(a)%*%A%*%a

Error in t(a) %*% A :

non-conformable arguments

> V%*%diag(U)

[,1]

[1,] 29

[2,] 39

> diag(t(B)%*%t(A))

[1] 22 64

> U%*%V%*%W%*%Z

[,1] [,2]

[1,] 756 1096

[2,] 1716 2488

> diag(diag(U%*%V))

[,1] [,2]

[1,] 19 0

[2,] 0 50

> diag(diag(U))%*%

+ diag(diag(V))

[,1] [,2]

[1,] 5 0

[2,] 0 32

(b) Verify that U and V do not commute but U and W commute and U and Z commute.
Do W and Z commute? (Guess and verify.)
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> U%*%V

[,1] [,2]

[1,] 19 22

[2,] 43 50

> V%*%U

[,1] [,2]

[1,] 23 34

[2,] 31 46

> U%*%W

[,1] [,2]

[1,] 8 12

[2,] 18 26

> W%*%U

[,1] [,2]

[1,] 8 12

[2,] 18 26

> U%*%Z

[,1] [,2]

[1,] 9 14

[2,] 21 30

> Z%*%U

[,1] [,2]

[1,] 9 14

[2,] 21 30

> W%*%Z

[,1] [,2]

[1,] 12 16

[2,] 24 36

> Z%*%W

[,1] [,2]

[1,] 12 16

[2,] 24 36

(4) Use the matrices from Exercise (3), and let z = (2,5)′.

(a) Calculate z′Uz, z’Vz,x′BAx and x′A′B′x.

> t(z)%*%U%*%z

[,1]

[1,] 154

>

> t(z)%*%V%*%z

[,1]

[1,] 350

>

> t(x)%*%B%*%A%*%x

[,1]

[1,] 21

>

> t(x)%*%t(A)%*%t(B)%*%x

[,1]

[1,] 21

(b) Write the four results in the form x′Sx where S is symmetric.

US = 1/2(U+U′) =
(

1 2.5
2.5 4

)
VS = 1/2(V+V′)

(
5 6.5

6.5 8

)

BAS = A′B′S =

 9 15.5 22
15.5 24 36.5
22 36.5 51

 .

Check:

> t(z)%*%US%*%z

[,1]

[1,] 154

>

> t(z)%*%VS%*%z

[,1]

[1,] 350
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> ABS<-(B%*%A+t(A)

+ %*%t(B))/2

> ABS

[,1] [,2] [,3]

[1,] 9.0 15.5 22.0

[2,] 15.5 26.0 36.5

[3,] 22.0 36.5 51.0

> t(x)%*%ABS%*%x

[,1]

[1,] 21

(5) Let A =

(
0 1
−1 0

)
, B =

(
0 1
0 0

)
, C =

(
1 1
1 −1

)
, D =

(
1 −1
−1 1

)
,

E =

(
1 1
1 1

)
and F =

(
1 1
−1 −1

)
.

> A<-matrix(c(0,1,-1,0),2,2,byrow=T)

> B<-matrix(c(0,1,0,0),2,2,byrow=T)

> C<-matrix(c(1,1,1,-1),2,2,byrow=T)

> D<-matrix(c(1,-1,-1,-1),2,2,byrow=T)

> E<-matrix(c(1,1,1,1),2,2)

> F<-matrix(c(1,1,-1,-1),2,2,byrow=T)

then show:

(a) A2 =−1 (so A is ‘like’
the square root of −1).

> A%*%A

[,1] [,2]

[1,] -1 0

[2,] 0 -1

(b) B2 = 0 (but B 6= 0), i.e., B is nilpo-
tent; see §2.5.7.

> B%*%B

[,1] [,2]

[1,] 0 0

[2,] 0 0

(c) CD =−DC (but CD 6= 0).

> C%*%D

[,1] [,2]

[1,] 0 -2

[2,] 2 0

> D%*%C

[,1] [,2]

[1,] 0 2

[2,] -2 0

(d) EF = 0 (but E 6= 0 and F 6= 0).

> E%*%F

[,1] [,2]

[1,] 0 0

[2,] 0 0

Exercise (5) illustrates that some rules of scalar multiplication do not carry over to matrix
multiplication. However there are some analogies:

(i) If a real square matrix A is such that A′A = 0 then we must have A = 0 and the
(i, j)th element of A′A is ∑

n
k=1 a2

k j so if A′A = 0 then in particular the diagonal
elements of A′A are all zero so we must have ∑

n
k=1 a2

k j = 0 and so ak j = 0 for all k
and j and so A = 0.
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(ii) AB= 0 if and only if A′AB= 0 since if A′AB= 0 then B′A′AB= 0 so (AB)′(AB) =
0 and the results follow from note (i) above.

(iii) AB = AC if and only if A′AB = A′AC which follows by replacing B by B−C.

(6) Show that tr(xy′) = x′y.(
xy′
)

i j = xiy j so tr(xy′) = ∑i xiyi = x′y.

(7) Use the R help system to find out what the R functions rep(.) and seq(.) do by typing
help(rep) and help(seq).

Done?

(8) (a) Construct the sum vector ι4 in R .

> matrix(rep(1,4),ncol=1)

[,1]

[1,] 1

[2,] 1

[3,] 1

[4,] 1

(b) Construct the identity matrix I5.

> diag(rep(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

or diag(5); see help(diag).

(c) Construct the vector e4 of length 23 (i.e., the vector of length 23 with a 1 in the fourth
place and zeros elsewhere).

> as.matrix(diag(rep(1,23))[,4])

Check this. Note that although this extracts the 4th column of the identity
matrix I23, R will treat this ambiguously as a row or column vector unless it
is forced to be a 23×1 matrix with the function as.matrix(.).

(d) Construct the unit matrix J6.

matrix(rep(1,36),6,6) or c(rep(1,6))%*%t(c(rep(1,6)))
(e) Construct the centering matrix H3.

diag(rep(1,3))-matrix(rep(1,9),3,3)/3

To write a function to construct Hn.
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> Hn<- function(n)

+ {Hn<-diag(rep(1,n))-matrix(rep(1,n*n),n,n)/n

+ return(Hn)}

(f) Construct the vector containing all even numbers in order from 2 to 28.

matrix(seq(2,28,2),ncol=1)

(9) Suppose A is a non-singular n×n idempotent matrix. Show that In−A is idempotent.

(In−A)2 = (In−A)(In−A) = (In−A−A+A2) = (In−A).

(10) Suppose A is a non-singular n×n idempotent matrix. Show that A = In.

Since A is non-singular it is invertible with inverse A−1 so In = AA−1 = A2A−1

(since A is idempotent) = A. So any idempotent matrix which is not the identity
matrix must be singular.

(11) Suppose A and B are idempotent matrices. Show that (A+B) is idempotent if and only if
AB = BA = 0.

(A+B)2 = A2 +AB+BA+B2 = A+B+AB+BA = A+B if AB = BA = 0.
(A+B)2 =A+B only if AB+BA= 0. Premultiplying by A gives AB+ABA= 0
and postmultiplying by Agives ABA+BA = 0. Subtracting these two equations
gives AB−BA = 0 and thus AB = BA = 0.

(12) If A is either symmetric or skew-symmetric show that A2 is symmetric.

(A2)′ = ((A′)(A′))′ = A2 (since A′ =±A).

(13) Suppose x1,x2, . . . ,xn are p-dimensional observations with sample mean and variance x̄n
and Sn and n f xn is a further observation. Show that the sample mean and variance of the
augmented sample x1,x2, . . . ,xn,xn+1 are given by

x̄n+1 =
nx̄n +xn+1

n+1
and Sn+1 =

1
n

{
(n−1)Sn +

n
n+1

(xn+1− x̄n)(xn+1− x̄n)
′
}
.

(These are known as the updating formulæ for mean and variance. They are appreciably
more numerically stable when calculating sample variances for large quantities of data
since formulæ avoid the subtraction of two similarly sized large numbers.)

x̄n+1 =
1

n+1 ∑
n+1
1 xi =

1
n+1{∑

n
1 xi +xn+1}= nx̄n+xn+1

n+1

Sn+1 =
1
n

n+1

∑
i=1

(xi− x̄n+1)(xi− x̄n+1)
′

=
1
n

n

∑
i=1

(xi− x̄n+1)(xi− x̄n+1)
′+

1
n
(xn+1− x̄n+1)(xn+1− x̄n+1)

′.
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Now
n

∑
i=1

[xi− x̄n+1][xi− x̄n+1]
′ =

n

∑
i=1

[xi−
nx̄n +xn+1

n+1
][xi−

nx̄n +xn+1

n+1
]′

=
n

∑
i=1

[xi− x̄n +
x̄n−xn+1

n+1
][xi− x̄n +

x̄n−xn+1

n+1
]′

= (n−1)Sn +
n

(n+1)2 (x̄n−xn+1)(x̄n−xn+1)
′,

noting that the cross-product terms vanish. Further

(xn+1− x̄n+1)(xn+1− x̄n+1)
′ =

(
xn+1−

nx̄n +xn+1

n+1

)(
xn+1−

nx̄n +xn+1

n+1

)′
=

n2

(n+1)2 (xn+1− x̄n)(xn+1− x̄n)
′

and so

Sn+1 =
1
n

{
(n−1)Sn +

n
n+1

(xn+1− x̄n)(xn+1− x̄n)
′
}
.

Chapter 3: Rank of Matrices

(1) Let X1 =

(
1.3 9.1
1.2 8.4

)
, X2 =

(
1.2 9.1
1.3 8.4

)
, X3 =

(
1 2 3
2 1 9

)
X4 =

 1 2
3 9
2 1

 , X5 =

 1 2 9
2 1 3
9 3 0

 and X6 =

 6 2 8
5 1 6
1 7 8

.

(a) What is the rank of each of X1, . . . ,X6?

(i) X1 =

(
1.3 9.1
1.2 8.4

)
, X1 6= 0 so ρ(X1) = 1 or 2. If ρ(X1) = 1 then

the second column of X1 is a multiple of the first column; 9.1/1.3=7,
8.4/7=1.2 so the second column is a multiple of 7 of the first and
ρ(X1) = 1. (Note that similarly the second row is a multiple 0.923
of the first.)

(ii) X2 =

(
1.2 9.1
1.3 8.4

)
, X2 6= 0 so ρ(X2) = 1 or 2. 9.1/1.2 = 7.583 and

7.583×1.2 = 9.858 6= 8.4 and so the second column is not a multiple
of the first and so ρ(X2) = 2.

(iii) X3 =

(
1 2 3
2 1 9

)
. X3 is a 2× 3 matrix ρ(X3) = 1 or 2, since

ρ(X3) ≤ min(2,3). If ρ(X3) = 1 then the second row is a multiple
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of the first. It is easy to see that this is not so and so ρ(X3) = 2.

(iv) X4 =

 1 2
3 9
2 1

. X4 is a 3×2 matrix ρ(X4) = 1 or 2, since ρ(X4)≤

min(3,2). If ρ(X4) = 1 then the second column is a multiple of the
first. It is easy to see that this is not so and so ρ(X4) = 2.

(v) X5 =

 1 2 9
2 1 3
9 3 0

. X5 is a 3×3 matrix ρ(X5) = 1, 2 or 3. ρ(X5) 6=

1 since, for example, the second column is not a multiple of the first.
If ρ(X5) = 2 then there are constants a1, a2 and a3 (not all zero) such
that a1 + 2a2 + 9a3 = 0,2a1 + a2 + 3a3 = 0 and 9a1 + 3a2 = 0. The
third implies a2 = −3a1; substituting this into the second and third
gives −5a1 +9a3 = 0 and −a1 +3a3 = 0. Subtracting three times this
last from the preceding one shows that a1 = 0 and hence a2 = a3 = 0.
Thus ρ(X5) = 3.

(vi) X6 =

 6 2 8
5 1 6
1 7 8

. Clearly ρ(X6) = 2 or 3.

If ρ(X6) = 2 then there are constants a1, a2and a3 (not all zero) such
that 6a1 +2a2 +8a3 = 0, 5a1 +a2 +6a3 = 0 and a1 +7a2 +8a3 = 0.
Subtracting the third from the first gives 5a1− 5a2 = 0, so a1 = a2.
Substituting this in any of the three original equations gives a1 =−a3.
So taking a1 = a2 = 1 and a3 = −1 satisfies all three equations and
so we have found suitable constants a1, a2 and a3 (not all zero); thus
ρ(X6) = 2.

(b) Find constants a1,a2,a3 such that a1c31 + a2c32 + a3c33 = 0 where c3 j, j = 1,2,3
are the three columns of X3.

X3 =

(
1 2 3
2 1 9

)
so we require constants a1, a2and a3 (not all zero)

such that a1 + 2a2 + 3a3 = 0 and 2a1 + a2 + 9a3 = 0. Subtracting three
times the first from the second gives −a1 − 5a2 = 0, so we could take
a2 = 1, a1 = −5 and putting these in either equation gives a3 = 1. So we
have (a1,a2,a3) = (−5,1,1).

(c) Find constants a1,a2,a3 such that a1r41 +a2r42 +a3r43 = 0 where r4 j, j = 1,2,3 are
the three rows of X4.

X4 =

 1 2
3 9
2 1

, so we require constants a1, a2and a3 (not all zero) such

that a1 + 3a2 + 2a3 = 0 and 2a1 + 9a2 + a3 = 0. These equations are much
the same as in (b) but with a2 and a3 interchanged so it is easy to see that we
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can take (a1,a2,a3) = (−5,1,1).

(2) Let X7 =

 4 5 6
8 10 12

12 15 18

 and X8 =

 4 12 8
6 18 12
5 15 10

.

(a) Show that X7 and X8 are both of rank 1.

(i) It is easy to see that the second and third rows of X7 are multiples
by 2 and 3 of the first row (or that the second and third columns are
multiples by 1.25 and 1.5 of the first). So ρ(X7) = 1.

(ii) It is easy to see that the second and third columns of X8 are multiples
by 3 and 2 of the first (or that the second and third rows are multiples
by 1.5 and 1.25 of the first). So ρ(X8) = 1.

(b) Find vectors a and b such that X7 = ab′.
Since ρ(X7) = 1 there must exist vectors a and b such that X7 = ab′ (see
§3.2.1). Noting the solution to (a) (i) it is sensible to take the first row of X7
and the sequence of multiples of it identified. So, first try a = (4,5,6)′ and
b = (1,2,3)′ which gives ab′ = X7.

(c) Find vectors u and v such that X8 = uv′.

Since ρ(X8) = 1 there must exist vectors u and v such that X8 = uv′.
Noting the discussion in the solution to (a) (ii) and trying u = (4,6,5)′ and
v = (1,3,2)′ would give uv′ = X′8 so instead u = (1,3,2)′ and v = (4,6,5)′.

(3) Let X9 = X3X4 and X10 = X4X3.

(a) Evaluate X9 and X10 in R .

> x3<-matrix(c(1,2,3,2,1,9), 2,3, byrow=T)

> x3

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 1 9

> x4<-matrix(c(1,2,3,9,2,1),3,2,byrow=T)

> x4

[,1] [,2]

[1,] 1 2

[2,] 3 9

[3,] 2 1

> x9<-x3%*%x4

> x9

[,1] [,2]
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[1,] 13 23

[2,] 23 22

> x10<-x4%*%x3

> x10

[,1] [,2] [,3]

[1,] 5 4 21

[2,] 21 15 90

[3,] 4 5 15

(b) What is the rank of X9?

ρ(X9) = 2 since clearly the second column is not a multiple of the first.

(c) What is the rank of X10?

ρ(x10) = ρ(X4X3)≤min(ρ(X4),ρ(X3)) = min(2,2) = 2. ρ(X10) 6= 1 since
clearly the second column is not a multiple of the first so ρ(X10) = 2.

(4) If x is a n×1 vector show that ρ(xx′−x′xIn)< n.

x′(xx′−x′xIn) = x′xx′−x′(x′x)In = (x′x)x′− (x′x)x′In = (x′x)x′− (x′x)x′ = 0
so the columns of (xx′−x′xIn) are linearly dependent and thus the matrix cannot
be of full rank.

(5) If ρ(X)< n and Xx = λx show that:

(a) ρ(X+λxx′)< n

X+λxx′ = X+Xxx′ = X(In +xx′)
so ρ(X+xIn)≤min(ρ(X),ρ(In +xx′))< n.

(b) ρ(X+xy′)< n for any n×1 vector y.

X+xy′ = X+λx(y′/λ ) = X+Xx(y′/λ ) = X(In +x(y′/λ ))
so ρ(X+xy′)≤min(ρ(X),ρ((In +x(y′/λ ))< n.

(6) If A is m× n, B is n×m and ρ(AB) = m show that ρ(A) = ρ(B) = m and thus BA is
singular unless both A and B are square.

ρ(AB)≤min(ρ(A),ρ(B)) and ρ(A)≤min(m,n) so m≤ n and thus ρ(A) = m.
Similarly ρ(B) ≤ min(m,n) so ρ(B) = m. BA is n× n so ρ(BA) ≤ n but also
ρ(BA) ≤ min(ρ(A),ρ(B)) = m and m ≤ n so ρ(BA) = n only if m = n, i.e.,
unless both A and B are square.

(7) If A is m× n with m ≥ n and ρ(A) = n show that ρ(AB) = ρ(B) for any conformable
matrix B.

Suppose B is n× p. ρ(AB) ≤ min(ρ(A),ρ(B)) = min(n,r) where ρ(B) = r.
Suppose (without losing any generality) that the first n rows of A are linearly
independent and the first r columns of B are linearly independent. Then the first
r columns of AB are linearly independent and so ρ(AB) ≥ r but ρ(AB) ≤ r so
ρ(AB) = r.
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(8) If X = AB where A is m×n, B is n×m with ρ(A) = ρ(B) = n show that ρ(X) = ρ(X2)
if and only if ρ(BA) = n.

Because ρ(A) = n we have ρ(X) = ρ(AB) = n (by the previous exercise). So
ρ(X2) = ρ(A(BA)B) ≤ min(n,ρ(BA)) so if n = ρ(X2) then ρ(BA) ≥ n but
ρ(BA)≤ n so ρ(BA) = n. Suppose now that ρ(BA) = n then ρ((BA)2) = ρ(BA)
by the previous exercise and applying it again gives ρ((BA)3) = ρ((BA)2) = n
but ρ((BA)3) = ρ(BX2A) ≤ min(n,ρ(X2)) so ρ(X2) ≥ n and ρ(X2) ≤ n so
ρ(X2) = n.

(9) Suppose A is m×n and let B and C be m×m and n×n non-singular matrices.

(i) Show that ρ(BAC) = ρ(A).
ρ(A) = ρ(B−1BACC−1)≤ ρ(BAC)≤ ρ(A) so ρ(BAC) = ρ(A).

(ii) Deduce ρ(BA) = ρ(AC) = ρ(A).

Put C = In and then B = Im.

(10) Show that ρ

(
A 0
0 D

)
= ρ(A)+ρ(D).

Consider the matrices A0 =

(
A
0

)
and D0 =

(
0
D

)
and let a0 and d0 be

non-zero columns of A0 and D0. Then α1a0 +α2d0 = α1

(
a
0

)
+α2

(
0
d

)
=(

α1a
α2d

)
so if α1a0+α2d0 = 0 then α1 = α2 = 0 and thus the non-zero columns

of A0 and D0 are linearly independent and the results follows.

NB: Some parts of the following exercises require use of properties (§4.3.2).

(11) Suppose A is m×m and non-singular, D is n×n.

Let Z =

(
A B
0 D

)
and W =

(
Im −A−1B
0 In

)
.

(i) Show that W is non-singular.

W is a triangular matrix with all diagonal elements 1 and so has determinant
1 (see §4.3.2 property (vii)) and so is non-singular by property (v) of §4.3.2.

(ii) Show that ZW =

(
A 0
0 D

)
.

ZW =

(
AIm +B0 −AA−1B+BIn
0A+D0 −0A−1B+DIn

)
=

(
A 0
0 D

)
.

(iii) Show that ρ(Z) = ρ(A)+ρ(D).

ρ(Z) = ρ(ZW) (W is non-singular, Exercise (9)) = ρ

(
A 0
0 D

)
= ρ(A)+

ρ(D) (using Exercise (10) above).

(12) Suppose Z =

(
A B
0 D

)
with B non-singular.



184 Outline Solutions to Exercises

(i) Show that
(

Im 0
−DB−1 In

)(
A B
0 D

)(
0 Ip

Im −B−1A

)
=

(
B 0
0 −DB−1A

)
.(

Im 0
−DB−1 In

)(
A B
0 D

)
=

(
A+0 B+0

−DB−1A+0 −DB−1B+D

)
and(

A B
−DB−1A 0

)(
B 0
0 −DB−1A

)
=

(
B 0
0 −DB−1A

)
.

(ii) Show that the first and third matrices in part (i) are non-singular.

Noting that these matrices are triangular with all diagonal elements 1 this
follows by properties (v) and (vii) of §4.3.2.

(iii) Show that ρ(Z) = ρ(B)+ρ(DB−1A).

This follows using the results of part (i) and Exercises (9) and (10).

(13) Suppose Z =

(
A B
0 D

)
with A m× n, B m× q and D p× q with neither A, B nor D

necessarily non-singular. Show that ρ(Z)≥ ρ(A)+ρ(D).

Suppose ρ(A) = r and ρ(D) = s. Consider the n+q columns of Z(
a1
0

)
,

(
a2
0

)
, . . . ,

(
ar
0

)
, . . . ,

(
an
0

)
(

b1
d1

)
,

(
b2
d2

)
, . . . ,

(
bs
ds

)
, . . . ,

(
bq
dq

)
where a1,a2, . . . ,ar and d1,d2, . . . ,ds are linearly independent columns of A and
D and b1,b2, . . . ,bs are the columns of B corresponding to those of D. Suppose
these columns are linearly dependent, then there are αi; i = 1, . . . ,r and β j; j =
1, . . . ,s such that ∑αiai +∑β jb j = 0 and ∑β jd j = 0. Since the d j are linearly
independent we must have β j = 0 and thus ∑αiai = 0 and so αI = 0. Thus there
are at least r+ s linearly independent columns in Z, i.e., ρ(Z)≥ ρ(A)+ρ(D).

(14) Suppose A, B and C are matrices such that the product ABC is defined.

(i) Show that(
Im −A
0 In

)(
0 AB

BC B

)(
Iq 0
−C Ip

)
=

(
−ABC 0

0 B

)
.

The product of the first two matrices is
(
−ABC 0

BC AB+B

)
and then the

result follows.
(ii) Show that the first and third matrices in part (i) are non-singular.

Noting that these matrices are triangular with all diagonal elements 1 this
follows by properties (v) and (vii) of §4.3.2.

(iii) Show that ρ

(
0 AB

BC B

)
= ρ(ABC)+ρ(B).

This follows using the results of part (i) and Exercises (9) and (10).
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(15) Suppose A, B and C are matrices such that the product ABC is defined. Show that
ρ(ABC)≥ ρ(AB)+ρ(BC)−ρ(B). (This is known as the Frobenius inequality)

From the previous exercise ρ

(
0 AB

BC B

)
= ρ(ABC)+ρ(B).

Also ρ

(
0 AB

BC B

)
= ρ

(
AB 0
B BC

)
≥ ρ(AB) + ρ(BC) (interchanging

columns and using Exercise (13)). Thus ρ(ABC)≥ ρ(AB)+ρ(BC)−ρ(B).

(16) Suppose A is m×n and B is n× p show ρ(AB)≥ ρ(A)+ρ(B)−n.
(This is known as Sylvester’s inequality .)

ρ(AInB) ≥ ρ(AIn) + ρ(InB)− ρ(In) (by the Frobenius inequality) and so
ρ(AB)≥ ρ(A)+ρ(B)−n.

(17) If A is m×n and B is n× p and AB = 0 show that ρ(A)≤ n−ρ(B).
ρ(A)+ρ(B)−n≤ ρ(AB) = 0 (Sylvester’s inequality) and so ρ(A)≤ n−ρ(B).

(18) If ρ(Ak) = ρ(Ak+1) show that ρ(Ak+1) = ρ(Ak+2).

ρ(Ak+2) = ρ(AAk+1)≤min(ρ(A),ρ(Ak+1)). Also, by the Frobenius inequality,
ρ(Ak+2) = ρ(AAkA) ≥ ρ(Ak+1)+ρ(Ak+1)−ρ(Ak) = 2ρ(Ak+1)−ρ(Ak+1) =

ρ(Ak+1). So ρ(Ak+1) = ρ(Ak+2).

(19) If A is n×n show that there is a k, 0 < k ≤ n, such that ρ(A)> ρ(A2)> .. . > ρ(Ak) =
ρ(Ak+1) = . . ..

ρ(Ar+1) ≤ min(A,ρ(Ar)). If ρ(Ar) = ρ(Ar+1) then ρ(Ar+1) = ρ(Ar+2) = . . .
by the previous exercise. If ρ(Ar+1) < ρ(Ar) then consider ρ(Ar+2), since
n≥ ρ(Ar+1)> 0 there must be a k, 0 < k ≤ n such that ρ(Ak) = ρ(Ak+1).

(20) If A is n×n show that ρ(Ak+1)−2ρ(Ak)+ρ(Ak−1)≥ 0.

ρ(Ak+1) = ρ(AAk−1A) ≥ 2ρ(Ak)− ρ(Ak−1) by the Frobenius inequality so
ρ(Ak+1)−2ρ(Ak)+ρ(Ak−1)≥ 0.
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Chapter 4: Determinants

(1) Find the determinants of A =

(
2 3
2 4

)
and B =

(
−4 3

2 −2

)
.

> A<-matrix(c(2,2,3,4)

+,2,2)

> A;det(A)

[,1] [,2]

[1,] 2 3

[2,] 2 4

[1] 2

> B<-matrix(c(-4,-2,3,-2)

+,2,2)

> B;det(B)

[,1] [,2]

[1,] -4 3

[2,] -2 -2

[1] 14

(2) Find the determinant of X =

 4 5 6
8 10 12

12 15 18

.

> X<-matrix(c(4,8,12,5,10,15,6,12,18),3,3)

> X;det(X)

[,1] [,2] [,3]

[1,] 4 5 6

[2,] 8 10 12

[3,] 12 15 18

[1] 0

It is easy to see that rows 2 and 3 are multiples (by 2 and 3) of the first row and
so X has rank 1 and therefore |X|= 0. The R calculations confirm this.

(3) Find the determinant of X =

 1 2 9
2 1 3
9 3 0

.

> X<-matrix(c(1,2,9,2,1,3,9,3,0),3,3)

> X; det(X)

[,1] [,2] [,3]

[1,] 1 2 9

[2,] 2 1 3

[3,] 9 3 0

[1] 18

(4) Find the determinants of X =

 2 3 3
3 3 3
3 3 2

 and Y =

 3 2 3
2 6 6
3 6 11

.
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> X<-matrix(c(2,3,3,3,

+ 3,3,3,3,2),3,3)

> X; det(X)

[,1] [,2] [,3]

[1,] 2 3 3

[2,] 3 3 3

[3,] 3 3 2

[1] 3

> Y<-matrix(c(3,2,3,2,

+ +6,6,3,6,11),3,3)

> Y ; det(Y)

[,1] [,2] [,3]

[1,] 3 2 3

[2,] 2 6 6

[3,] 3 6 11

[1] 64

(5) Find the determinants of S =

 1+α 1 β

1 1+α β

β β α +β 2

.

|S|=

∣∣∣∣∣∣
1+α 1 β

1 1+α β

β β α +β 2

∣∣∣∣∣∣=
∣∣∣∣∣∣

α −α 0
1 1+α β

β β α +β 2

∣∣∣∣∣∣
(subtracting the second row from the first)

=

∣∣∣∣∣∣
α 0 0
1 2+α β

β 2β α +β 2

∣∣∣∣∣∣ (adding the first column to the second)

= α
(
(2+α)(α +β

2)−2β
2)= α

2(2+α +β
2).

(6) Find the determinants of S =

 2 1 3
1 2 3
3 3 10

.

|S| =

∣∣∣∣∣∣
2 1 3
1 2 3
3 3 10

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 −1 0
1 2 3
3 3 10

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0
1 3 3
3 6 10

∣∣∣∣∣∣= 1.(30−18) = 12

(first subtracting the second row from the first and then adding the first column
to the second).
Check in R:

> det(matrix(c(2,1,3,1,2,3,3,3,10),3,3))

[1] 12

Note the nested commands det(matrix(c(..))).
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(7) (Equicorrelation matrix) If X = σ2



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

. . .
...

...

ρ · · · · · ·
. . . ρ

ρ ρ · · · ρ 1

 show that

X = σ2[(1−ρ)In +ριnιn
′] and hence that |X|= σ2n[1+(n−1)ρ](1−ρ)(n−1).

Note that (1− ρ)In + ριnιn
′ = (1− ρ)In + ρJn (where Jn is the n× n matrix

with all elements 1). The diagonal elements of this are (1−ρ)+ρ = 1 and the
off-diagonal elements are 0+ρ = ρ , thus X = σ2[(1−ρ)In +ριnιn

′]. We have

|X| =
∣∣σ2[(1−ρ)In +ριnιn

′]
∣∣= σ

2n(1−ρ)n
∣∣∣∣In +

ρ

1−ρ
ιnιn

′
∣∣∣∣

= σ
2n(1−ρ)n

∣∣∣∣I1 +
ρ

1−ρ
ιn
′
ιn

∣∣∣∣ (noting special case (i) in §4.6.2)

= σ
2n(1−ρ)n

(
1+

ρ

1−ρ
n
)
= σ

2n[1+(n−1)ρ](1−ρ)(n−1).

(8) If X =

 1+α 1 β

1 1+α β

β β α +β 2

 show that |X| = α2(2+α +β 2) by showing that

X = αI3 +xx′ for a suitable choice of x.

If x = (1,1,β ) then x =

 1 1 β

1 1 β

β β β 2

 and so X = αI3 +xx′.

Thus |X|= |αI3 +xx′|= α3 |I1 +x′x/α| and since x′x = ∑i x2
i = 2+β 2 we have

|X|= α2(2+α +β 2).

(9) Use the results of the previous exercise to evaluate the determinant of

S =

 2 1 3
1 2 3
3 3 10

 .

Inspection shows that taking α = 1 and β = 3 in the previous exercise gives the
matrix S = I3 +(1,1,3)(1,1,3)′ and so |S|= 12(2+1+32) = 12, in agreement
with Exercise (6).



Outline Solutions to Exercises 189

(10) To show
∣∣∣∣ A B

B A

∣∣∣∣= |A+B| |A−B| for n×n matrices A and B:

(a) Show
(

In In
0 In

)(
A B
B A

)
=

(
A+B B+A

B A

)
.

This follows directly from the rule for multiplying partitioned matrices; see
§2.6.2.

(b) Show
(

A+B 0
0 In

)(
In In
B A

)
=

(
A+B B+A

B A

)
.

This follows directly from the rule for multiplying partitioned matrices; see
§2.6.2.

(c) Show
(

In In
B A

)
=

(
In 0
B In

)(
In In
0 A−B

)
.

This follows directly from the rule for multiplying partitioned matrices; see
§2.6.2.

(d) Show
∣∣∣∣ A B

B A

∣∣∣∣= |A+B| |A−B|.

Thus(
In In
0 In

)(
A B
B A

)
=

(
A+B 0

0 In

)(
In 0
B In

)(
In In
0 A−B

)
.

Noting
∣∣∣∣ In In

0 In

∣∣∣∣= 1 =

∣∣∣∣ In 0
B In

∣∣∣∣
and

∣∣∣∣ A+B 0
0 In

∣∣∣∣= |A+B| and
∣∣∣∣ In In

0 A−B

∣∣∣∣= |A−B|

we have
∣∣∣∣ A B

B A

∣∣∣∣= |A+B| |A−B|.

(11) Let A =

 2 3
3 3
3 3

 and B =

 3
3
2

 and X =
(

A B
)
.

> A<-matrix(c(2,3,3,3,3,3),3)

> B<-matrix(C(3,3,2),3)

> X<-cbind(A,B)

> X

[,1] [,2] [,3]

[1,] 2 3 3

[2,] 3 3 3

[3,] 3 3 2

> A;B

[,1] [,2]

[1,] 2 3

[2,] 3 3

[3,] 3 3

[,1]

[1,] 3

[2,] 3

[3,] 2
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(a) Find
∣∣∣∣ A′A A′B

B′A B′B

∣∣∣∣.
> C<-cbind(t(A)%*%A,t(A)%*%B)

> D<-cbind(t(B)%*%A,t(B)%*%B)

> det(rbind(C,D))

[1] 9

(b) Find |AA′+BB′|.

> det(A%*%t(A)+B%*%t(B))

[1] 9

(c) Find |X|.

> det(X)

[1] 3

(12) If A and B are n×m and n× (n−m) matrices and X =
(

A B
)

prove that |X|2 = |AA′+BB′|=
∣∣∣∣ A′A A′B

B′A B′B

∣∣∣∣.
|X|2 = |X||X′|= |XX′|=

∣∣∣(A B
)(

A B
)′∣∣∣

=

∣∣∣∣(A B
)( A′

B′

)∣∣∣∣= |AA′+BB′|.

|X|2 = |X′||X|= |X′X|=
∣∣∣∣( A′

B′

)(
A B

)∣∣∣∣= ∣∣∣∣ A′A A′B
B′A B′B

∣∣∣∣.
(13) Show that ∣∣∣∣∣∣∣∣∣

1+λ1 λ2 · · · λn
λ1 1+λ2 · · · λn
...

...
. . .

...
λ1 λ2 · · · 1+λn

∣∣∣∣∣∣∣∣∣= 1+λ1 +λ2 + · · ·+λn.

∣∣∣∣∣∣∣∣∣
1+λ1 λ2 · · · λn

λ1 1+λ2 · · · λn
...

...
. . .

...
λ1 λ2 · · · 1+λn

∣∣∣∣∣∣∣∣∣ = |In + ιnλ
′| where λ = (λ1,λ2, . . . ,λn)

′

= |1+λ
′
ιn|= 1+λ1 +λ2 + · · ·+λn.

(14) By considering the matrix(
E 0
0 In

)
show that

∣∣∣∣ EA EB
C D

∣∣∣∣= |E| ∣∣∣∣ A B
C D

∣∣∣∣ .
(

E 0
0 In

)(
A B
C D

)
=

(
EA EB
C D

)
and

∣∣∣∣ E 0
0 In

∣∣∣∣= |E|
and the result follows.

(15) By considering the matrix(
Im 0
E In

)
show that

∣∣∣∣ A B
C+EA D+EB

∣∣∣∣= ∣∣∣∣ A B
C D

∣∣∣∣ .
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(
Im 0
E In

)(
A B
C D

)
=

(
A B

C+EA D+EB

)
and

∣∣∣∣ Im 0
E In

∣∣∣∣= 1

and the result follows.

(16) Suppose

Z =

(
A B
C D

)
and Z−1 =

(
P Q
R S

)
.

(i) Express ZZ−1 in terms of the eight sub-blocks of Z and Z−1.

ZZ−1 =

(
AP+BR AQ+BS
CP+DR CQ+DS

)
(ii) Show that (

A B
C D

)(
Im Q
0 S

)
=

(
A 0
C In

)
.

(
A B
C D

)(
Im Q
0 S

)
=

(
Im AQ+BS
0 CQ+DS

)
=

(
A 0
C In

)
,

noting AQ+BS = 0 and CQ+DS = In because ZZ−1 =

(
Im 0
0 In

)
.

(iii) Show that (
A B
C D

)(
P 0
R In

)
=

(
A 0
C In

)
.

Similarly AP+BR = Im and CP+DR = 0 and the result follows.
(iv) Show that

|Z|= |A|
|S|

=
|D|
|P|

.

Note that∣∣∣∣ A 0
C In

∣∣∣∣= |A| and
∣∣∣∣ Im Q

0 S

∣∣∣∣= |S| (etc.) gives |Z|= |A|
|S|

=
|D|
|P|

.

(17) If |A| 6= 0 and A and C commute show that
∣∣∣∣ A B

C D

∣∣∣∣= |AD−CB|.∣∣∣∣ A B
C D

∣∣∣∣= |A||D−CA−1B| (see §4.6)

= |AD−ACA−1B|= |AD−CAA−1B|= |AD−CB|.
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Chapter 5: Inverses
(1) Find the inverses, both ‘by hand’ and with R of

(i) A1 =

(
12 7
−4 6

)
.

|A1|= 12×6−7× (−4) = 100; A−1
1 = 1

100

(
6 −7
4 12

)
.

> A1<-matrix(c(12,-4,7,6),2,2)

> A1;det(A1);solve(A1)

[,1] [,2]

[1,] 12 7

[2,] -4 6

[1] 100

[,1] [,2]

[1,] 0.06 -0.07

[2,] 0.04 0.12

(ii) A2 =

(
0 5
−4 1

)
.

|A2|= 0×1−5× (−4) = 20; A−1
2 = 1

20

(
1 −5
4 0

)
.

> A2<-matrix(c(0,-4,5,1),2,2)

> A2;det(A2);solve(A2)

[,1] [,2]

[1,] 0 5

[2,] -4 1

[1] 20

[,1] [,2]

[1,] 0.05 -0.25

[2,] 0.20 0.00

(iii) A3 =

(
1 5
−4 0

)
.

|A3|= 1×0−5× (−4) = 20; A−1
3 = 1

20

(
0 −5
4 1

)
.

> A3<-matrix(c(1,-4,5,0),2,2)

> A3;det(A3);solve(A3)

[,1] [,2]

[1,] 1 5

[2,] -4 0

[1] 20

[,1] [,2]

[1,] 0.0 -0.25

[2,] 0.2 0.05

(iv) A4 =

(
0 5
−4 0

)
.

|A4|= 0×0−5× (−4) = 20; A−1
4 = 1

20

(
0 −5
4 0

)
.
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> A4<-matrix(c(0,-4,5,0),2,2)

> A4;det(A4);solve(A4)

[,1] [,2]

[1,] 0 5

[2,] -4 0

[1] 20

[,1] [,2]

[1,] 0.0 -0.25

[2,] 0.2 0.00

(v) A5 =


0 0 0 5
0 0 4 0
0 7 0 0
3 0 0 0

.

|A5|= 3×7×4×5 = 420; A−1
5 =


0 0 0 3−1

0 0 7−1 0
0 4−1 0 0

5−1 0 0 0

.

> A5<-matrix(c(0,0,0,3,0,0,7,0,0,4,0,0,5,0,0,0),4,4)

> A5;det(A5);solve(A5)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 5

[2,] 0 0 4 0

[3,] 0 7 0 0

[4,] 3 0 0 0

[1] 420

[,1] [,2] [,3] [,4]

[1,] 0.0 0.00 0.00 0.33

[2,] 0.0 0.00 0.14 0.00

[3,] 0.0 0.25 0.00 0.00

[4,] 0.2 0.00 0.00 0.00

>

(2) Suppose AB = BA and that A is a non-singular n×n matrix. Show that A−1B = BA−1.

AB = BA so ABA−1 = BAA−1 = BIn = B (postmultiplying by A−1), so
A−1ABA−1 = A−1B (premultiplying by A−1), so BA−1 = A−1B.

(3) Suppose A is an n× n orthogonal matrix and B is n× n. Show that AB is orthogonal if
and only if B is orthogonal.

A is orthogonal so AA′ = A′A = In. Suppose B is orthogonal, then BB′ = B′B so
AB(AB)′ = ABB′A′ = AInA′ = AA′ = In. Similarly (AB)′AB = In and thus AB
is orthogonal.
Suppose now AB is orthogonal then AB(AB)′ = In, i.e., ABB′A′ = In so
A′ABB′A = A′A (premultiplying by A′ and postmultiplying by A) so BB′ = In.
Similarly (AB)′AB = In so B′B = In and thus B is orthogonal.

(4) Suppose X and Y are non-singular n× n matrices and all other matrices stated in this
exercise are also non-singular.
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(a) Show that (In +X)−1 = X−1(In +X−1)−1.

(In +X)X−1(In +X−1)−1 = X−1(In +X−1)−1 +XX−1(In +X−1)−1

= (In +X−1)(X−1 + In)
−1 = In.

(b) Show that (X+YY′)−1Y = X−1Y(In +Y′X−1Y)−1.(
(X+YY′)

)(
X−1Y(In +Y′X−1Y)−1Y−1)

= (XX−1Y+YY′X−1Y)(In +Y′X−1Y)−1Y−1

= Y(In +Y′X−1Y)(In +Y′X−1Y)−1Y−1

= YInY−1 = In.

(c) Show that (X+Y)−1 = X−1(X−1 +Y−1)−1Y−1 = Y−1(X−1 +Y−1)−1X−1.

(X+Y)X−1(X−1 +Y−1)−1Y−1 = (In +YX−1)(X−1 +Y−1)−1Y−1

= Y(Y−1 +X−1)(X−1 +Y−1)−1Y−1 = YInY−1 = In
So (X+Y)−1 = X−1(X−1 +Y−1)−1Y−1 and also
(X+Y)−1 = Y−1(X−1 +Y−1)−1X−1 by symmetry.

(d) Show that X−1 +Y−1 = X−1(X+Y)Y−1.

X−1(X+Y)Y−1 = (In +X−1Y)Y−1 = Y−1 +X−1In = X−1 +Y−1.

(e) Show that X−X(X+Y)−1X = Y−Y(X+Y)−1Y.

X−X(X+Y)−1X = X(X+Y)−1((X+Y)−X)
= (X+Y−Y)(X+Y)−1Y = Y−Y(X+Y)−1Y.

(f) Show that if (X+Y)−1 = X−1 +Y−1 then XY−1X = YX−1Y.

If (X+Y)−1 = X−1 +Y−1 then In = (X+Y)(X−1 +Y−1) = 2In +XY−1 +
YX−1, so X+Y+XY−1X = 0.
Similarly X+Y+YX−1Y = 0 so XY−1X = YX−1Y.

(g) Show that (In +XY)−1 = In−X(In +YX)−1Y.

(In +XY)(In−X(In +YX)−1Y)
= In +XY−X(In +YX)−1Y−XYX(In +YX)−1Y
= In +XY−X((In +YX)−1 +YX(In +YX)−1)Y
= In +XY−X(In +YX)−1(In +YX)Y = In +XY−XInY = In.

(h) Show that (In +XY)−1X = X(In +YX)−1.

(In +XY)−1X = (In−X(In +YX)−1Y)X = X(In− (In +YX)−1YX)
= X(In +(In +YX)−1− (In +YX)−1− (In +YX)−1YX)
= X(In +(In +YX)−1− (In +YX)−1(In +YX))
= X(In +YX)−1.

(5) Show that (A+BCB′)−1 = A−1−A−1B[C−1 +B′A−1B]−1B′A−1 where A and C are
non-singular m×m and n×n matrices and B is m×n.

Putting D = [C−1 +B′A−1B] gives
(A+BCB′)(A−1−A−1B[C−1 +B′A−1B]−1B′A−1)

= In−BD−1B′A−1 +BCB′A−1−BCB′A−1BD−1B′A−1

= In−BC{−C−1D−1 + In−B′A−1BD−1}B′A−1

= In−BC{In−DD−1}B′A−1 = In.
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(6) Show that
(

A B
0 D

)−1

=

(
A−1 X

0 D−1

)
for a suitable X.(

A B
0 D

)(
A−1 X

0 D−1

)
=

(
AA−1 AX+BD−1

0 DD−1

)
= Im+n

if X =−A−1BD−1.

(7) Let A =

(
In λιn

λιn
′ 1

)
.

(i) For what values of λ is A non-singular?

Using the general result in §4.6 gives∣∣∣∣ In λιn
λιn
′ 1

∣∣∣∣= |In||1−λιn
′In
−1

λιn|= 1−nλ
2

So the matrix is non-singular for all values of λ 6=±n−
1/2 .

(ii) Find A−1 when it exists.

Using result (xii) of §5.5.1 gives

A−1 =

 In +
λ 2

1−nλ 2 Jn − λ

1−nλ 2 ιn

− λ

1−nλ 2 ιn
′ 1

1−nλ 2


and it is easy to verify that AA−1 = A−1A = In.

(8) Suppose A is skew-symmetric and non-singular.

(i) Show that A−1 is skew-symmetric.

(A−1)′ = (A′)−1 =−A−1 and so A−1 is skew-symmetric.

(ii) Show that (In−A)(In +A)−1 is orthogonal.

(In−A)(In +A)−1
(
(In−A)(In +A)−1

)′
= (In−A)(In +A)−1

(
(In +A)′

)−1
(In−A)′

= (In−A)(In +A)−1
(
(In−A)

)−1
(In +A)

= (In−A)(In +A)−1(In +A)(In−A)−1 = In
(noting that (In−A) and (In +A) commute)

and thus (In−A)(In +A)−1 is orthogonal.

(9) Suppose that AX = 0 and A is idempotent. Let B = (X−A)−1. Prove that

(i) XB = In−A.

XB = X(X−A)−1 = (A+X−A)(X−A)−1 = A(X−A)−1 + In
= AB+ In.
Now−A = AX−A = AX−A2 = A(X−A) = AB−1 so AB =−A and thus
XB = In−A.
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(ii) XBX = X.

XBX = (In−A)X = X−AX = X.

(iii) XBA = 0.

XBA = (In−A)A = A−A2 = A−A = 0.

(10) Suppose A = In−2xx′ with x′x = 1. Find A−1.

Suppose A−1 = λ Inyy′ then we require
In = (In−2xx′)(λ In− yy′) = λ In−2λxx′− yy′+2xx′yy′.
This is satisfied by taking λ = 1 and y = x. So A−1 = A.

(11) Show that
(

0 A
λ x′

)−1

= 1
λ

(
−x′A−1 1
λA−1 0

)
.(

0 A
λ x′

)(
−x′A−1 1
λA−1 0

)
=

(
0+λ In 0+0

−λx′A−1 +λx′A−1
λ +0

)
= λ In.

Chapter 6: Eigenanalysis

(1) Let X =

 0 0 6
1/2 0 0
0 1/3 0

.

(i) Show that |X|= 1.

|X|= 6
∣∣∣∣ 1/2 0

0 1/3

∣∣∣∣= 6× 1/2× 1/3 = 1.

(ii) Show that λ = 1 is an eigenvalue of X.

If λ = 1 then |X−λ I3|=

∣∣∣∣∣∣
−1 0 6

1/2 −1 0
0 1/3 −1

∣∣∣∣∣∣= 0 (adding twice the second

row to the first and then expanding by the first column). So 1 is an
eigenvalue of X.

(iii) Show that X3 = In but X2 6= In.

Either by hand or in R:

> X<-matrix(c(0,1/2,0,0,0,1/3,6,0,0),3,3)

> X%*%X

[,1] [,2] [,3]

[1,] 0.00 2 0

[2,] 0.00 0 3

[3,] 0.17 0 0

> X%*%X%*%X

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1
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(2) Find the eigenvalues of the n×n matrix X =



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

. . .
...

...

ρ · · · · · ·
. . . ρ

ρ ρ · · · ρ 1

 and show that

one eigenvector is proportional to ιn.

X = (1−ρ)In +ριnιn
′. The eigenvalues are the roots of |X−λ In| = |(1−ρ −

λ )In + ριnιn
′| = (1− ρ − λ )n|I1 + ρι ′nιn/(1− ρ − λ )| = (1− ρ − λ )n−1(1−

ρ − λ + nρ) and so the eigenvalues are (1− ρ) (with multiplicity (n− 1) and
(1+(n−1)ρ).
Xιn = (1+(n−1)ρ,1+(n−1)ρ, . . . ,1+(n−1)ρ)′ = (1+(n−1)ρ)ιn so ιn is
an eigenvector of X with eigenvalue 1+(n− 1)ρ . Since any scalar multiple of
an eigenvector is also an eigenvector with the same eigenvalue it follows that the
eigenvector of X corresponding to the eigenvalue 1+(n−1)ρ is proportional to
ιn.

(3) If X has eigenvalues 2λ , λ + α and λ + 3α and |X| = 80 and tr(X) = 16 find the
eigenvalues of X.

Since the trace and determinant of a matrix are equal to the sum and product of its
eigenvalues we have 4λ +4α = 16, so λ +α = 4, and 2λ (λ +α)(λ +3α) = 80
so 2λ (4)(4+2α) = 80 so (4−α)(2+α) = 5, giving α2−2α−3= 0 so α =−1
and λ = 5 or α = 3 and λ = 1, giving the eigenvalues as 2, 5 and 10 in either
case.

(4) If λ is an eigenvalue of X show that λ +α is an eigenvalue of X+αIn.

Since λ is an eigenvalue of X with eigenvector x (say) we have Xx = λx so
(X+αIn)x = λx+αx = (λ +α)x so λ +α is an eigenvalue of X+αIn with
the same eigenvector x.

(5) If x is a n×1 vector find the spectral decomposition of xx′.
xx′x = (x′x)x so x is an eigenvector of xx′ with eigenvalue x′x and this is the

only non-zero eigenvalue since xx′is symmetric and of rank 1. A normalized
eigenvector of xx′ is x/(x′x)1/2 and thus

(
x/(x′x)1/2

)(
diag(x′x)

)(
x/(x′x)1/2

)′ is
the spectral decomposition of xx′.

(6) If x is a n×1 vector and S is a symmetric n×n matrix find the spectral decomposition of
xSx′.(

Sx/(x′Sx)1/2
)(

diag(x′Sx)
)(

Sx/(x′Sx)1/2
)′ is the spectral decomposition of

xSx′.

(7) If T = kS where k is a scalar show that T and S have identical eigenvectors and the
eigenvalues of T are obtained by multiplying those of S by k.

If (x,λ ) is an eigenpair of S then Sx = λx so T = kS = (kλ )x so (x,kλ ) is an
eigenpair of T.
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(8) Find the square root of the matrix

S =

 2 1 1
1 2 1
1 1 3

 .

> S<-matrix(c(2,1,1,1,2,

+ 1,1,1,3),3,3)

> Z<-svd(S)

> SQ<-Z$u%*%sqrt(diag(Z$d))

+ %*%t(Z$v)

>

#### Check:

> SQ%*%SQ

[,1] [,2] [,3]

[1,] 2 1 1

[2,] 1 2 1

[3,] 1 1 3

To write a function to calculate matrix square roots:

> SQR<-function(S){

+ Z<-svd(S)

+ SQR<-Z$u%*%sqrt(diag(Z$d))

+ %*%t(Z$v)

+ return(SQR)

+ }

>

#### Check:

> W<-SQR(S)

> W%*%W

[,1] [,2] [,3]

[1,] 2 1 1

[2,] 1 2 1

[3,] 1 1 3

(9) If X is 2×2 show that |X+ In|= |X|+1 if and only if tr(X) = 0.

Suppose the eigenvalues of X are λ1 and λ2, then |X| = λ1λ2. Also the
eigenvalues of |X + In| are λ1 + 1 and λ2 + 1 (see the previous exercise) so
|X+ In| = (λ1 + 1)(λ2 + 1) = λ1λ2 + (λ1 + λ2) + 1 = |X|+ tr(X) + 1 and the
result follows.

(10) Suppose X is n×n matrix with distinct eigenvalues.

Let X=T−1
ΛT where Λ is a diagonal matrix with the eigenvalues λi, i= 1, . . . ,n

of X. Then exp(X) = T−1diag(exp(λi))T.

(a) Show that exp(αX)exp(βX) = exp((α +β )X).

The eigenvalues of αX are αλi, i = 1, . . . ,n so

exp(αX)exp(βX) = T−1diag(exp(αλi))TT−1diag(exp(βλi))T
= T−1diag((exp(α +β )λi))T = exp((α +β )X).

(b) Show that Xexp(X) = exp(X)X.

Xexp(X) = X
(
∑

∞
r=1

Xr

r!

)
= ∑

∞
r=1

Xr+1

r! =
(
∑

∞
r=1

Xr

r!

)
X = exp(X)X.



Outline Solutions to Exercises 199

(c) Show that
(
exp(X)

)r
= exp(rX) where r is an integer and r > 0.(

exp(X)
)r

=
(
T−1diag(exp(λi))T

)r

= T−1(diag(exp(λi))
)rT

= T−1diag(exp(rλi))T = exp(rX)

noting that rλi are the eigenvalues of rX.

(d) Show that
(
exp(X)

)−1
= exp(−X).

This follows by an argument similar to that in the previous exercise.
(e) Show that

(
exp(X)

)′
= exp(X′).(

exp(X)
)′
=
(
∑

∞
r=1

Xr

r!

)′
= ∑

∞
r=1

(X′)r

r! = exp(X′).
(f) Show that |exp(X)|= exp(tr(X)).

|exp(X)|= |T|−1|diag(exp(λi))||T|= ∏i exp(λi) = exp∑i λi = exp(tr(X)).

(11) If X and Y are n× n matrices, each with distinct eigenvalues and XY = YX, show that
exp(X+Y) = exp(X)exp(Y) = exp(Y)expX).

exp(X)exp(Y) =
∞

∑
j=0

∞

∑
k=0

X jYk

j!k!
=

∞

∑
j=0

j

∑
k=0

X j−kYk

( j− k)!k!

=
∞

∑
j=0

1
j!

j

∑
k=0

(
j
k

)
X j−kYk =

∞

∑
j=0

(X+Y) j

j!
= exp(X+Y)

where the rearrangement of the infinite summations relies on the absolute
convergence of the exponential series and the binomial expansion of (X +
Y) j relies on the commutativity of X and Y and their powers. Clearly
exp(X)exp(Y) = exp(Y)expX).

(12) Suppose A is idempotent and symmetric,

(i) Show that the eigenvalues of A are 1 or 0.

Suppose (λ , x) is an eigenpair of A then Ax = λx so A2x = Ax = λAx =
λ 2x which is true only if λ = 1 or 0. Thus all eigenvalues of A are 0 or 1.

(ii) Show that tr(A) = ρ(A).
Since ρ(A) = number of non-zero eigenvalues (noting A is symmetric (see
§6.4.7) and since tr(A) = ∑λi (see property 6.4.4 (v)) and all eigenvalues
are 0 or 1 we have tr(A) = ρ(A). (In−A)(In−A) = In−2A+A2 = In−A

(iii) Show that ρ(In−A) = n−ρ(A).

Since (In−A) is idempotent (see Exercise (9)) ρ(In−A) = tr(In−A) =
tr(In)− tr(A) = n−ρ(A).

(13) Where is the fallacy in the ‘deceptively obvious proof’ of the Cayley-Hamilton theorem
“pA(λ ) = |A−λ In| so pA(A) = |A−AIn|= |A−A|= 0”?
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pA(λ ) = |A− λ In| is a scalar equation involving the scalar λ . It is invalid to
substitute a n×n matrix for a scalar and further the Cayley-Hamilton theorem is
that pA(A) = 0 – the zero matrix not the scalar zero. For a full proof see Banerjee
and Roy (2014) or Abadir and Magnus (2005); it involves considering the Schur
decomposition (see §8.2.4) of A.

(14) If A is nilpotent show that all eigenvalues of A are 0.

Suppose (λ , x) is an eigenpair of A then Ax = λx so Ax = λx so A2x = λAx,
i.e., λ 2x = 0 so λ = 0.

(15) If all eigenvalues of A are 0 show that A is nilpotent.

If all the eigenvalues of A are 0 then its characteristic polynomial is pA(λ ) = λ n

and thus, by the Cayley-Hamilton theorem (see Page 84), An = 0 so A is
nilpotent.

(16) Suppose A is a real n×n skew-symmetric matrix.

(i) Show that the only real eigenvalue of A is 0.

Suppose (λ , x) is an eigenpair of A then Ax = λx then A′Ax = λA′x =
−λ 2x, i.e., (−λ 2, x) is an eigenpair of the positive semi-definite symmetric
matrix A′A, but all eigenvalues of a real positive semi-definite symmetric
matrix are non-negative (see §6.4.6 (ii)), i.e., −λ 2 ≥ 0 and so either λ = 0
or λ is imaginary.

(ii) Show that if n is odd then A has at least one eigenvalue of 0.

Since A is real |A| is real but |A| = ∏i λi and the product of an odd
number of imaginary values is imaginary, there must be an even number
of imaginary values and thus at least one must be 0.

Chapter 7: Vector and Matrix Calculus
(1) If x = (x1,x2, . . . ,xn)

′ and f (x) = x find ∂ f
∂x .(

∂ f
∂x
)

i j =
∂xi
∂x j

= In since ∂xi
∂x j

= 1 if i = j and 0 otherwise.

(2) If A, X and B are m×n, n× p and p×m matrices (where n 6= p) find ∂ tr(AXB)
∂X .

Note that because n 6= p X is not symmetric. tr(AXB) = tr(X(BA))
so ∂ tr(AXB)

∂X = (BA)′ = A′B′ (using §7.3.4).

(3) If A, X and B are n×n matrices find ∂ tr(AXB)
∂X .

tr(AXB) = tr(XBA) so ∂ tr(AXB)
∂X = BA+A′B′−diag(diag(BA)) or A′B′

according as X is symmetric or not (using §7.3.4 and §7.3.5).
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(4) If A, X and B are n×n matrices (where n 6= p) find ∂ tr(AX′B)
∂X .

tr(AX′B) = tr((AX′B)′) = tr(B′XA′) so ∂ tr(AX′B)
∂X = ∂ tr(B′XA′)

∂X
= BA+A′B′−diag(diag(A′B′)) or BA according as X is symmetric or not.
(Note that diag(diag(A′B′)) = diag(diag(BA)), verifying that
∂ tr(AX′B)

∂X = ∂ tr(AXB)
∂X when X is symmetric.)

(5) Find ∂ tr(X2)
∂X .

tr(X2) =
n

∑
i=1

n

∑
k=1

xikxki so
∂ tr(X2)

∂xrs
= 1.xsr + xsr.1 and thus

∂ tr(X2)

∂X
= 2X′.

(6) If X is a n× n matrix with elements xi j and is not symmetric (i.e., xi j 6= x ji) show
that ∂X−1

∂xi j
= −X−1∆[i j]X−1 where ∆[i j] is a n× n matrix with ∆rs = δriδs j (where δ is

Kronecker’s delta function, i.e., the elements of ∆ are all zero except in the (i, j)th place
where there is a 1.

The ‘trick’ here is to consider the identity XX−1 = In and differentiate both sides:
∂XX−1

∂xi j
= ∂ In

∂xi j
= 0 so X ∂X−1

∂xi j
+ ∂X

∂xi j
X−1 = 0 and since clearly ∂X

∂xi j
= ∆[i j] we have

X ∂X−1

∂xi j
+∆[i j]X−1 = 0 so ∂X−1

∂xi j
=−X−1

∆[i j]X−1.

(7) If X is a n× n matrix with elements xi j and is symmetric (i.e., xi j = x ji) show that
∂X−1

∂xi j
=−X−1(∆[i j]+∆[ ji]

)
X−1.

If X is symmetric then ∂X
∂xi j

= ∆[i j]+∆[ ji] and so as above we have

∂X−1

∂xi j
=−X−1(

∆[i j]+∆[ ji]
)
X−1.

(8) Find the maximum value of x′Xaa′X′x/x′XX′x.

Since this is invariant with respect to scalar multiplication of x we can impose
the constraint x′XX′x = 1 and introduce a Lagrange multiplier λ and define
Ω = x′Xaa′X′x−λ (x′XX′x−1). Differentiating with respect to x and setting the
derivative equal to zero shows Xaa′X′x = λXX′x, i.e., (XX′)−1Xaa′X′x = λx.
So we require x as the eigenvector of (XX′)−1Xaa′X′ corresponding to its only
non-zero eigenvalues (noting that it is of rank 1). This eigenvector is (XX′)−1Xa
with eigenvalue a′X′(XX′)−1Xa and the maximum value is λ = a′X′(XX′)−1Xa.

(9) Find the maximum value of x′A′By with respect to x and y subject to the constraints
x′x = y′y = 1 where A and B are n× p and n×m matrices.

This is essentially a special case of §7.6 (iv) with S= Ip and T= Im and S=A′B.
This formulation is that given as the starting point of partial least squares
regression (see, for example, Cox, 2005) where A is a matrix of observations of
independent variables and B are observations of the responses. The maximum
value is given as the square root of the largest eigenvalue of A′BB′A (or
equivalently the largest singular value of A′B).

(10) Show that ∂AB
∂x = A ∂B

∂x + ∂A
∂x B.
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(AB)i j = ∑k aikbk j so

∂ (AB)i j

∂xrs
=

∂ ∑k aikbk j

∂xrs
= ∑

k
aik

∂bk j

∂xrs
+∑

k

∂aik

∂xrs
bk j = A

∂B
∂x

+
∂A
∂x

B.

(11) Show that ∂A�B
∂x .=A� ∂B

∂x +
∂A
∂x �B where� indicates the Hadamard product (see §8.4).

(A�B)i j = ai jbi j so

∂ (A�B)i j

∂xrs
=

∂ai jbi j

∂xrs
= ai j

∂bi j

∂xrs
+

∂ai j

∂xrs
bi j = A� ∂B

∂xrs
+

∂A
∂xrs
�B.

(12) Show that ∂A⊗B
∂x = A⊗ ∂B

∂x + ∂A
∂x ⊗B where⊗ indicates the Kronecker product (see §8.5).

(A⊗B)i j = ai jB so

∂ (A⊗B)i j

∂xrs
=

∂ai jB
∂xrs

= ai j
∂B
∂xrs

+
∂ai j

∂xrs
B = A⊗ ∂B

∂xrs
+

∂A
∂xrs
⊗B.

Chapter 8: Further Topics

(1) If A =

 73 45 46
45 58 29
46 29 29

 find its Cholesky decomposition A = TT′.

> A<-matrix(c(73,45,46,

+ 45,58,29,46,29,29),3,3)

A

[,1] [,2] [,3]

[1,] 73 45 46

[2,] 45 58 29

[3,] 46 29 29

> t(A)-A

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

> eigen(A)$values

[1] 1.4e+02 2.2e+01 -2.3e-16

So A is symmetric and
positive semidefinite,
noting one zero eigenvalue.

> U<-chol(A,pivot=TRUE)

Warning message:

In chol.default(A,

pivot = TRUE) :

the matrix is either

rank-deficient

or indefinite

> t(U)

[,1] [,2] [,3]

[1,] 8.5 0.00 0.0e+00

[2,] 5.3 5.50 0.0e+00

[3,] 5.4 0.12 -7.1e-15

attr(,"pivot")

[1] 1 2 3

attr(,"rank")

[1] 2
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Since A is not positive definite we may not obtain an exact decomposition with
A = TT′ (taking T=t(U)).

> t(U)%*%U

[,1] [,2] [,3]

[1,] 73 45 46

[2,] 45 58 29

[3,] 46 29 29

> A

[,1] [,2] [,3]

[1,] 73 45 46

[2,] 45 58 29

[3,] 46 29 29

So in this case we do obtain the Cholesky decomposition A = TT′ (taking
T=t(U)) without further steps but there is no guarantee this would be the case as
the following exercise illustrates. So it is advisable always to use the extra steps
given in the next exercise.

(2) If A =

 34 31 51
31 53 32
51 32 85

 find its Cholesky decomposition A = TT′.

> A<-matrix(c(34,31,51,31,

+ 53,32,51,32,85),3,3)

> A

[,1] [,2] [,3]

[1,] 34 31 51

[2,] 31 53 32

[3,] 51 32 85

> t(A)-A

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

> eigen(A)$values

[1] 1.4e+02 3.3e+01 -1.8e-15

So A is symmetric and
positive semi-definite, noting
one zero eigenvalue.

> U<-chol(A,pivot=TRUE)

Warning message:

In chol.default(A,

pivot = TRUE) : the

matrix is either

rank-deficient

or indefinite

> t(U)

[,1] [,2] [,3]

[1,] 9.2 0.0 0

[2,] 3.5 6.4 0

[3,] 5.5 1.8 0

attr(,"pivot")

[1] 3 2 1

attr(,"rank")

[1] 2

Since A is not positive definite we may not obtain an exact decomposition with
A = TT′ (taking T=t(U)).
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> t(U)%*%U

[,1] [,2] [,3]

[1,] 85 32 51

[2,] 32 53 31

[3,] 51 31 34

> A

[,1] [,2] [,3]

[1,] 34 31 51

[2,] 31 53 32

[3,] 51 32 85

This is the case in which t(U)%*%U gives A with permuted rows and columns,
so we need extra steps:

> key <- attr(U, "pivot")

> V<-(U[, order(key)])

> T<-t(V)

> T

[,1] [,2] [,3]

[1,] 5.5 1.8 0

[2,] 3.5 6.4 0

[3,] 9.2 0.0 0

Check TT′ = A.

> T%*%t(T)

[,1] [,2] [,3]

[1,] 34 31 51

[2,] 31 53 32

[3,] 51 32 85

> A

[,1] [,2] [,3]

[1,] 34 31 51

[2,] 31 53 32

[3,] 51 32 85

(3) Show that (A+)+ = A.

We need to show that A satisfies the four Moore–Penrose conditions to be the
MP-inverse of A+, i.e., that A+AA+ = A+, AA+A = A, (AA+)′ = AA+ and
(A+A)′ = A+A. But these are just the four conditions that A+ satisfies to be the
MP-inverse of A in a different order ((i) and (ii) are interchanged and (iii) and
(iv) are interchanged).

(4) Show that (A′)+ = (A+)′.

We need to show that (A+)′ satisfies the four Moore–Penrose conditions to be the
MP-inverse of A′, i.e., that A′(A+)′A′=A′, (A+)′A′(A+)′= (A+)′, (A′(A+)′)′=
A′(A+)′ and ((A+)′A′)′ = (A+)′A′. These follow immediately from the four
conditions for A+ to be the MP-inverse of A by transposing each of the four
equations and reordering them (interchanging (i) and (ii) and interchanging (iii)
and (iv)).

(5) Show that (AA+)+ = AA+.

AA+AA+AA+ = (AA+A)(A+AA+) = AA+ because A+ is the MP-inverse of A
and so satisfies MP conditions (i) and (ii). Thus AA+ satisfies MP conditions
(i) and (ii) as MP-inverse of AA+. (AA+AA+)′ = (AA+)′(AA+)′ = AA+AA+

(because A+ satisfies conditions (iii) and (iv) as MP-inverse of A) and thus
AA+ satisfies conditions (iii) and (iv) as inverse of MP-inverse of AA+ and we
conclude (AA+)+ = AA+.

(6) Show that (A+A)+ = A+A.

This follows by near identical arguments to those used in Exercise (5).
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(7) If A is symmetric (i.e., if A′ = A) show that AA+ = A+A.

AA+ = (AA+)′ (because AA+ is symmetric by the third MP-condition) =
(A+)′A′ = (A′)+A = A+A.

(8) Show that A′AA+ = A′ = A+AA′.
A′AA+ = A′(AA+)′ = A′(A+)′A′ = (A+A)′A′ = A+AA′, noting that AA+

and A+A are symmetric by MP-conditions (iii) and (iv). Also A′(A+)′A′ =
(AA+A)′ = A′ by MP-condition (i).

(9) If A =

(
A1 0
0 A2

)
show A+ =

(
A+

1 0
0 A+

2

)
.

This follows by direct verification of the four Moore–Penrose conditions.

(10) If x =

 1
6
3

 find x+ without using any of the R functions for finding Moore–Penrose

inverses and check the result with ginv(.).

Note that x is of rank 1 so x+ = tr(xx′)−1x′:

> x<-matrix(c(1,6,3)) ; t(x)/sum(x*x)

[,1] [,2] [,3]

[1,] 0.022 0.13 0.065

> #CHECK

> ginv(x)

[,1] [,2] [,3]

[1,] 0.022 0.13 0.065

(11) If X =

 4 12 8
6 18 12
5 15 10

 find X+ without using any of the R functions for finding

Moore–Penrose inverses and check the result with ginv(.).

Note that X is of rank 1 so X+ = tr(XX′)−1X′:

> X<-matrix(c(4,12,8,6,18,12,5,15,10),3,3,byrow=T)

> X

[,1] [,2] [,3]

[1,] 4 12 8

[2,] 6 18 12

[3,] 5 15 10

> t(X)/sum(diag(X%*%t(X)))

[,1] [,2] [,3]

[1,] 0.0037 0.0056 0.0046

[2,] 0.0111 0.0167 0.0139

[3,] 0.0074 0.0111 0.0093

> #CHECK

> ginv(X)

> [,1] [,2] [,3]

[1,] 0.0037 0.0056 0.0046

[2,] 0.0111 0.0167 0.0139

[3,] 0.0074 0.0111 0.0093
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(12) If X =

 6 2 8
5 1 6
1 7 8

, find X+ without using any of the R functions for finding Moore–

Penrose inverses and check the result with ginv(.).

It was shown in Exercises 3.1, Exercise (1) (vi) that X has rank 2 and so is
singular. We cannot use the result X+ = tr(XX′)−1X′ because this only applies
to matrices of rank 1. Instead we can use the result based on the singular value
decomposition but note that since X is of rank 2 one of the singular values is
zero and so we need to extract just those eigenvectors corresponding to non-zero
singular values.

> X<-matrix(c(6,5,1,2,1,7,8,6,8),3,3)

> U<-svd(X)$u[,1:2]

> V<-svd(X)$v[,1:2]

> D<-svd(X)$d[1:2]

> M<-V%*%solve(diag(D))%*%t(U)

> M

[,1] [,2] [,3]

[1,] 0.069 0.066 -0.077

[2,] -0.038 -0.044 0.112

[3,] 0.031 0.023 0.036

> #CHECK

> ginv(X)

[,1] [,2] [,3]

[1,] 0.069 0.066 -0.077

[2,] -0.038 -0.044 0.112

[3,] 0.031 0.023 0.036

>

(13) Let A =

 1 1
2 2
3 4

 and y =

 1
1
1

.

(a) Show that AA+y =

 0.6
1.2
1.0

 6= y.

> library(MASS)

> A<-matrix(c(1,2,3,1,2,4),

+3,2)

> A

[,1] [,2]

[1,] 1 1

[2,] 2 2

[3,] 3 4

> y<-matrix(c(1,1,1),3,1)

> y

[,1]

[1,] 1

[2,] 1

[3,] 1

> G<-ginv(A)

> G

[,1] [,2] [,3]

[1,] 0.8 2 -1

[2,] -0.6 -1 1

> A%*%G%*%y

[,1]

[1,] 0.6

[2,] 1.2

[3,] 1.0

(b) What is the least squares solution to the equation Ax = y?

The least squares solution is given by x = A+y.
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> G%*%y

[,1]

[1,] 1.4

[2,] -0.8

so x = A+y =
(

1.4
−0.8

)
is the least squares solution.

(c) If instead y =

 1
2
7

 or y =

 3
6

11

 show that in both cases the equation is

consistent and find solutions. Are these solutions unique in either or both cases?

> y<-matrix(c(1,2,7),

+3,1)

> A%*%G%*%y

[,1]

[1,] 1

[2,] 2

[3,] 7

> G%*%y

[,1]

[1,] -3

[2,] 4

> y<-matrix(c(3,6,11),

+3,1)

> A%*%G%*%y

[,1]

[1,] 3

[2,] 6

[3,] 11

> G%*%y

[,1]

[1,] 1

[2,] 2

In both cases AA+y = y and so the equations are consistent and have

solutions given by x = A+y of x =

(
−3

4

)
and x =

(
1
2

)
.

In each case the solution is unique because A has full column rank.

(14) Let A =

 2 3 3 1
3 4 5 1
1 2 1 1

 and y =

 14
22

6

.

(a) Show that the equation Ax = y is consistent.

> library(MASS)

> options(digits=1)

> A<-matrix(c(2,3,1,3,4,2,

+ 3,5,1,1,1,1),3,4)

> y<-matrix(c(14,22,6),

+ 3,1)

> A

[,1] [,2] [,3] [,4]

[1,] 2 3 3 1

[2,] 3 4 5 1

[3,] 1 2 1 1
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> y

[,1]

[1,] 14

[2,] 22

[3,] 6

> G<-ginv(A)

> A%*%G%*%y

[,1]

[1,] 14

[2,] 22

[3,] 6

So AA+y = y and thus the equation is consistent.

(b) Show that x =


1.3
1.1
2.8
−0.2

 and x =


1.5
0.7
2.9
0.2

 are both solutions of the equation.

> x<-matrix(c(1.3,1.2,

+ 2.8,-0.2),4,1)

> x; A%*%x

[,1]

[1,] 1.3

[2,] 1.2

[3,] 2.8

[4,] -0.2

[,1]

[1,] 14

[2,] 22

[3,] 6

> x<-matrix(c(1.5,0.7,

+ 2.9,0.2),4,1)

> x; A%*%x

[,1]

[1,] 1.5

[2,] 0.7

[3,] 2.9

[4,] 0.2

[,1]

[1,] 14

[2,] 22

[3,] 6

Thus both values of x satisfy the equation.

(c) Find a different solution to the equation.

All solutions to the equation are of the form x = A+y + (I4 −A+A)q =
1.3
1.1
2.8
−0.2

 + q −


0.18 0.24 0.29 0.06
0.24 0.65 0.06 0.41
0.29 0.06 0.82 −0.24
0.06 0.41 −0.24 0.35

q, where q is any

4× 1 vector. Taking q as a random vector generated by choosing elements
randomly from the first ten integers (using 137 for the seed of the random
number generator) gives:

> set.seed(137)

> q<-matrix(c(sample

+ (c(1:10),4)),4,1)

> q

[,1]

[1,] 7

[2,] 4

[3,] 8

[4,] 6
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> x<-G%*%y+q-G%*%A%*%q

> x

[,1]

[1,] 3

[2,] -2

[3,] 3

[4,] 3

> #### verify solution:

> A%*%x

[,1]

[1,] 14

[2,] 22

[3,] 6

(15) Show that if x is a n× 1 vector then tr(xx′) = 1′nx� x, where ιn is the n× 1 vector with
all entries equal to one.

The (i, i)th element of xx′ is x2
i and so tr(xx′) = ∑

n
i x2

i and the ith element of x�x
is x2

i and the result follows.

(16) If A is a square n×n matrix then show that A� In = diag(diag(A)).
Since In has zero entries everywhere except along the diagonal elements which
are all 1, A� In is a diagonal matrix with elements aii, i.e., diag(diag(A)).

(17) If u and x are m×1 vectors and v and y are n×1 vectors then show that (uv′)� (xy′) =
(u�x)(v� y)′.
The (i, j)th element of (u� x)(v� y)′ is uixiv jy j and the (i, j)th element of
(uv′)� (xy′) is uiv jxiy j = uixiv jy j, so (uv′)� (xy′) = (u�x)(v� y)′.

(18) If ρ(A) = ρ(B) = 1 then show that ρ(A�B)≤ 1.

Since A and B are of rank 1 they can be expressed as A = uv′ and B = xy′ (see
§3.2.1, Page 53) and so using the previous exercise ρ(A�B) can be expressed
as the product of two rank 1 matrices and so has rank ≤ 1 (see §3.3.2).

(19) Show that ρ(A�B)≤ ρ(A).ρ(B).
Suppose ρ(A) = r and ρ(B) = s then A and B can be expressed as the sum of
r and s matrices each of rank 1, so ρ(A�B) can be expressed as the sum of
rs matrices each of rank 1 (the products of the individual rank 1 matrices) so
ρ(A�B)≤ rs, using the result of the previous exercise and §3.3.1.

(20) If A and B are both m×n and x is n×1 show that diag(Adiag(diag(x))B′) = (A�B)x.

Suppose A= (a1,a2, . . . ,an and B= (b1,b2, . . . ,bn), i.e., ai and bi are the column
vectors of A and B, then

diag(Adiag(diag(x))B′) =

(
n

∑
i=1

xiaib′i

)
=

n

∑
i=1

xidiag(aib′i) =
n

∑
i=1

xici = (A�B)x

where ci is the ith column of (A�B).

(21) Show that x′(A� B)y = tr(diag(diag(x))Adiag(diag(y))B′), where x, y, A and B are
conformable so that the various products are well-defined.

From the previous exercise we have (A�B)y = diag(Adiag(diag(y))B′) and
noting that if x is n× 1 and X is n× n then x′diag(X) = tr(diag(diag(x))X) we
have x′(A�B)y = tr(diag(diag(x))Adiag(diag(y))B′).
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(22) If A and B are n×n matrices and Λ is a n×n matrix with diagonal elements λi then show
that diag(AΛB) = (A�B)diag(Λ).

Let a?i be the ith column vector of A and b′i? be the ith row vector of B then

diag(AΛB =

(
n

∑
i=1

λia?ib′i?

)
=

n

∑
i=1

λidiag(a?ib′i?) =
n

∑
i=1

λici = (A�B′)diag(Λ),

where ci is the ith column of (A�B′).

(23) If A is m×n and B is p×q then show that (A⊗B)− = A−⊗B−.

(A⊗B)(A−⊗B−)(A⊗B) = (AA−A)⊗ (BB−B) (applying the mixed product
rule, §8.5.2, twice in succession) = (A⊗B).

(24) If A is m×n and B is p×q then show that (A⊗B)+ = A+⊗B+.

This follows by checking each of the four Moore–Penrose conditions in a similar
way to the solution to the previous exercise.

(25) If A =
(

0 0
1 0
)

find the eignevectors of A and A⊗A.

> A<-matrix(c(0,1,0,0),2)

> eigen(A)

$values

[1] 0 0

$vectors

[,1] [,2]

[1,] 0 2e-292

[2,] 1 -1e+00

> eigen(A%x%A)

$values

[1] 0 0 0 0

$vectors

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 1 0

[3,] 0 0 0 1

[4,] 1 -1 0 0

> eigen(A)$vec%x%eigen(A)$vec

[,1] [,2][,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 1 -1 -1 1

So the eigenvectors of A⊗A are not
given by the Kronecker products of
the eigenvectors of A.
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Chapter 9: Key Applications to Statistics
(1) Suppose the random variable x has variance Σ0, a known p× p positive definite symmetric

matrix, and X′ is a n× p data matrix of independent observations of x with sample
variance S. Find a matrix A such that the data matrix Y′ = X′A has sample variance matrix
Σ0.

If Z′ = X′S−
1/2 then the sample variance of the observations of z = S′x is

S−
1/2SS−

1/2 = Ip so if Y′ = Z′Σ
1/2
0 then Y′ has sample variance Σ

1/2
0 .1.Σ

1/2
0 = Σ0.

Thus we need to take A = Σ
1/2
0 S−

1/2 .

(2) Suppose Σ0 =

(
4.031 3.027
3.027 3.021

)
. Using the R function mvrnorm(.) in the MASS library

and the previous exercise, generate a sample of 47 two-dimensional observations which
have a sample variance of Σ0.

First define function for matrix square roots used in Exercises 6, Exercise (8) on
Page 198:

> SQR<-function(S){

+ Z<-svd(S)

+ SQR<-Z$u%*%sqrt(diag(Z$d))%*%t(Z$v)

+ return(SQR)}

Next, generate 47 two-dimensional multivariate normal observations with any
mean and variance (taken here as 0 and I2) and find covariance S:

> library(MASS)

> V<-matrix(c(1,0,0,1),2,2)

> X<-t(mvrnorm(47,c(0,0),V))

> S<-var(t(X))

Finally set up Σ0 and using previous exercise find required matrix A to multiply
X to obtain required data matrix Y′ and check its sample variance:

> Sig<-matrix(c(4.031,3.027,3.027,3.021 ),2,2)

> Y<-SQR(Sig)%*%solve(SQR(S))%*%X

> ### Require observations are in data matrix Y’

> ### Check:

> var(t(Y))

[,1] [,2]

[1,] 4.031 3.027

[2,] 3.027 3.021

(3) With Σ0 as given in the previous exercise generate 27 observations whose sample mean is
(20.25,29.83)′ and sample variance Σ0 and a further 20 observations with sample mean
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(18.95,28.63)′ and sample variance Σ0 (Rao’s paradox.)

Continuing the R session from the previous exercise the extra steps needed are
to ensure that the sample mean is as required, so initially the random numbers
are generated with an arbitrary mean, then this is corrected to that specified for
each sample. The first sample will be in data matrix Y′ and the second in Z′.

> X<-t(mvrnorm(27,c(0,0),V))

> S<-var(t(X))

> Y<-SQR(Sig)%*%solve(SQR(S))%*%X

> ybar<-matrix(apply(Y,1,mean),2)

> Ybar<-(ybar-c(20.25, 29.83))%*%t(matrix(rep(1,27),27))

> Y<-Y-Ybar

>

> X<-t(mvrnorm(20,c(0,0),V))

> S<-var(t(X))

> Z<-SQR(Sig)%*%solve(SQR(S))%*%X

> zbar<-matrix(apply(Z,1,mean),2)

> Zbar<-(zbar-c(18.95, 28.63))%*%t(matrix(rep(1,20),20))

> Z<-Z-Zbar

NB: This example exhibits Rao’s paradox , named by Healy (1969) and first
discussed by Rao (1966), where the difference between the two sample means
of each individual component would be assessed as significant at the 5% level
by a t-test but taking the multivariate Hotelling’s T 2-test of the two components
together the difference is not significant at the 5% level. Demonstration of this is
left to the reader.

(4) Using the R function runif(.), matrix(.), var(.) and eigen(.) generate a random
5×5 orthogonal matrix.

This is one possible method but there are many other ways of generating random
orthogonal matrices.

> options(digits=2)

> set.seed(137)

> X<-matrix(runif(100,0,1),20,5)

> S<-var(X)

> A<-eigen(S)$vectors

> A

[,1] [,2] [,3] [,4] [,5]

[1,] -0.37 0.210 0.19 -0.326 0.821

[2,] -0.32 0.571 0.32 -0.428 -0.536

[3,] -0.25 -0.477 -0.51 -0.658 -0.132

[4,] 0.83 0.081 0.17 -0.523 0.107

[5,] -0.12 -0.629 0.76 -0.066 -0.099

> ## A is orthogonal. Check:

> A%*%t(A); t(A)%*%A
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[,1] [,2] [,3] [,4] [,5]

[1,] 1.0e+00 5.6e-17 0.0e+00 1.2e-16 -1.2e-16

[2,] 5.6e-17 1.0e+00 -2.5e-16 -1.7e-16 -1.9e-16

[3,] 0.0e+00 -2.5e-16 1.0e+00 -1.4e-16 -3.6e-16

[4,] 1.2e-16 -1.7e-16 -1.4e-16 1.0e+00 -1.5e-16

[5,] -1.2e-16 -1.9e-16 -3.6e-16 -1.5e-16 1.0e+00

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0e+00 -1.2e-16 -1.4e-17 -7.1e-17 5.4e-17

[2,] -1.2e-16 1.0e+00 5.6e-17 -4.1e-16 -6.9e-17

[3,] -1.4e-17 5.6e-17 1.0e+00 1.7e-16 -1.4e-17

[4,] -7.1e-17 -4.1e-16 1.7e-16 1.0e+00 -2.5e-16

[5,] 5.4e-17 -6.9e-17 -1.4e-17 -2.5e-16 1.0e+00

(5) Suppose x1,x2, . . . ,xn are independent observations of Np(λ µ0,Σ0) where µ0 and Σ0 are
known and λ is an unknown scalar.

(i) Show that the mle of λ is given by λ̂ = µ ′0Σ
−1
0 x̄/µ ′0Σ

−1
0 µ0.

The log-likelihood is

`(λ ;X) = −1/2

n

∑
i=1

(xi− x̄)′Σ−1
0 (xi− x̄)− 1/2n(x̄−λ µ0)

′
Σ
−1
0 (x̄−λ µ0)

− 1/2np log(2π)− 1/2n log(|Σ0|)

so
∂`

∂λ
= nµ

′
0Σ
−1
0 x̄−nλ µ

′
0Σ
−1
0 µ0.

Setting this equal to zero gives λ̂ = µ ′0Σ
−1
0 x̄/µ ′0Σ

−1
0 µ0.

(ii) Find the mean and variance of λ̂ and hence give its distribution.

E[λ̂ ] = µ ′0Σ
−1
0 E[x̄]/µ ′0Σ

−1
0 µ0 = µ ′0Σ

−1
0 λ µ0/µ ′0Σ

−1
0 µ0 = λ .

var(λ̂ ) = µ
′
0Σ
−1
0 var(x̄)(µ ′0Σ

−1
0 )′/(µ ′0Σ

−1
0 µ0)

2

= µ
′
0Σ
−1
0 (Σ0/n)(Σ−1

0 µ0)/(µ
′
0Σ
−1
0 µ0)

2 = 1/µ
′
0Σ
−1
0 µ0.

Hence λ̂ ∼ N(λ ,1/µ ′0Σ
−1
0 µ0).

(iii) Show that the LRT statistic for testing H0 : µ = λ µ0 for some scalar λ (where
µ0 and Σ0 are known) is n(x̄− λ̂ µ0)

′Σ−1
0 (x̄− λ̂ µ0) which under H0 follows a χ2

p-
distribution.

Under H0 µ̂ = λ̂ µ0 and under H0 µ̂ = x̄ so the LRT statistic is
2{`max(H0)− `max(H0)}= n(x̄− λ̂ µ0)

′Σ−1
0 (x̄− λ̂ µ0).

(iv) In a standard feeding experiment on greenfinches, four types of sunflower seeds
were placed in identical quadruple compartment bird feeders in each of 27 suburban
gardens. The mean weights consumed of the four types after 120 minutes were 47 g,
45 g, 39 g and 42 g. Experience from a long series of such standard experiments
suggests that the standard deviations of the amounts consumed of any type of
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sunflower seed in a single garden can be taken to be 10 g and the pairwise
correlations between the weights consumed are −0.1. Do these data suggest that
greenfinches have unequal preferences for the various types of sunflower seeds?

We have µ0 = (1,1,1,1)′ = ι4, x̄ = (47,45,39,42)′ and (noting that
a standard deviation of 10 implies a variance of 100 and a correlation

0.1 implies a covariance of 10) Σ0 =


100 −10 −10 −10
−10 100 −10 −10
−10 −10 100 −10
−10 −10 −10 100

.

Although it is possible to find the inverse of Σ0 explicitly using the result
in §5.4.1 there is little advantage in doing so if the calculations are going
to be performed in R.

options(digits=3)

> xbar<-matrix(c(47,45,39,42),4)

> mu0<-matrix(c(1,1,1,1),4)

> Sig<-110*diag(c(1,1,1,1))-10*mu0%*%t(mu0)

> Z<-solve(Sig)

> lamhat<-(t(mu0)%*%Z%*%xbar/t(mu0)%*%Z%*%mu0)[1,1]

> LRT<-27*t(xbar-lamhat*mu0)%*%Z%*%(xbar-lamhat*mu0)

> lamhat; LRT; 1-pchisq(LRT,4)

[1] 43.2

[,1]

[1,] 9.02

[,1]

[1,] 0.0606

Note that although the LRT statistic is a scalar R calculates it as a 1× 1
matrix and so it is necessary to extract the (1,1)st element. Thus we
have λ̂ = 43.2 and the value of the LRT statistic is 9.02 which under the
null hypothesis that greenfinches have equal preferences is an observation
from a χ2

4 -distribution, yielding a p-value of 0.061 and so there is only
slight evidence that greenfinches have unequal preferences for the types of
sunflower seeds.

(6) Suppose x1,x2, . . . ,xn are independent observations of Np(µ,λΣ0) where Σ0 is a known
positive definite matrix and λ is an unknown scalar and µ is not assumed to be known.

(i) Show that the mle of λ is λ̂ = n−1
np tr(Σ−1

0 S) where S is the sample variance matrix.

The log-likelihood is (see §9.2.4)

`(µ,λ ;X) = −1/2(n−1)tr
(
Σ
−1
0 S
)
/λ − 1/2n

(
tr
(
Σ
−1
0 (x̄−µ)(x̄−µ)′

))
/λ

− 1/2np log(2π)− 1/2n log(|Σ0|)− 1/2np log(λ ),

so
∂`

∂λ
= 1/2(n−1)tr

(
Σ
−1
0 S
)
/λ

2 + 1/2n
(
tr
(
Σ
−1
0 (x̄−µ)(x̄−µ)′

))
/λ

2

−1/2np/λ .
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Differentiating ` wrt µ gives µ̂ = x̄ and so setting the derivative of ` wrt λ

equal to zero gives λ̂ = n−1
np tr(Σ−1

0 S).

Under H0 µ̂ = x̄ and Σ̂ = n−1
n S so `max(H0) = 1/2np − 1/2np log(2π) −

1/2n log(| n−1
n S|).

Under H0 µ̂ = x̄ and Σ̂ = λ̂Σ0 so `max(H0) = 1/2np − 1/2np log(2π) −
1/2n log(|Σ0|)− 1/2np log( n−1

np tr(Σ−1
0 S)).

Thus the LRT statistic is
2{`max(H0) − `max(H0)} = np log( n−1

np tr(Σ−1
0 S)) − n log(| n−1

n Σ
−1
0 S|).

(Mardia et al. (1979), Page 134). Note that this statistic can be written as
np log(a/g) where a and g are the arithmetic and geometric means of the
eigenvalues of n−1

n Σ
−1
0 S; see key results (1) and (2) of §6.9).

(ii) In a feeding experiment on sea urchins, equal amounts of three types of algæ were
placed in 27 tanks each containing a single sea urchin. After 24 hours the mean
weight losses over the 27 samples of the three types of algæ were 4.7 g, 3.9 g

and 4.2 g with sample variance matrix S =

 1.1 0.0 0.1
0.0 0.9 0.0
0.1 0.0 0.8

. Are these data

consistent with the theory that the amounts of algæ have equal variances with
pairwise correlations of 0.1?

Note that the LRT does not involve the actual amounts of algæ consumed.

We have S =

 1.1 0.0 0.1
0.0 0.9 0.0
0.1 0.0 0.8

 and take Σ0 =

 1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

.

> S<-matrix(c(1.1,0,0.1,0,0.9,0,0.1,.0,0.8),3,3)

> one<-matrix(c(1,1,1),3)

> Sig<-0.9*diag(c(1,1,1))+0.1*one%*%t(one)

> Z<-26/27*solve(Sig)%*%S

> LRT<-27*(3*log(sum(diag(Z))/3)-log(det(Z)))

> LRT;1-pchisq(LRT,5)

[1] 1.21

[1] 0.944

The approximate null distribution of the LRT statistic is χ2
5 (5 is

the difference in numbers of independent parameters estimated under
H0 and H0). Thus the value of the LRT statistic of 1.21 provides little
evidence against the hypothesis that the variance is a scalar multiple of Σ0.
Note that only high values of the LRT statistic provide evidence against the
null hypothesis.
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Basics of Matrix Algebra for Statistics with R provides a guide to elementary 
matrix algebra sufficient for undertaking specialized courses, such as multivariate 
data analysis and linear models. It also covers advanced topics, such as general-
ized inverses of singular and rectangular matrices and manipulation of partitioned 
matrices, if you would like to delve deeper into the subject.

The book introduces the definition of a matrix and the basic rules of addition, sub-
traction, multiplication, and inversion. Later topics include determinants, calculation 
of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms 
with respect to vectors. The text explores how these concepts arise in statistical 
techniques, including principal component analysis, canonical correlation analysis, 
and linear modeling.

In addition to the algebraic manipulation of matrices, the book presents numerical 
examples that illustrate how to perform calculations by hand and using R. Many 
theoretical and numerical exercises of varying levels of difficulty aid you in assess-
ing your knowledge of the material. 

Features
• Covers basic algebraic manipulation of matrices, such as basic arithmetic, 

inversion, partitioning, rank, determinants, decompositions, eigenanalysis, and 
Hadamard and Kronecker products

• Shows how to implement the techniques in R using worked numerical 
examples 

• Describes vector and matrix calculus, including differentiation of scalars and 
linear and quadratic forms

• Incorporates useful tricks, such as identifying rank 1 matrices and scalar 
subfactors within products 

• Explains how to convert an optimization problem to an eigenanalysis by 
imposing a non-restrictive constraint

• Presents the derivation of key results in linear models and multivariate 
methods with step-by-step cross-referenced explanations

Avoiding vector spaces and other advanced mathematics, this book shows how to 
manipulate matrices and perform numerical calculations in R. It prepares you for 
higher-level and specialized studies in statistics.
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