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Preface

A switched linear system is a hybrid system which consists of several linear
subsystems and a rule that orchestrates the switching among them. Switched
linear systems provide a framework which bridges the linear systems and
the complex and/or uncertain systems. On one hand, switching among linear
systems may produce complex system behaviors such as chaos and multiple
limit cycles. On the other hand, switched linear systems are relatively easy
to handle as many powerful tools from linear and multilinear analysis are
available to cope with these systems. Moreover, the study of switched linear
systems provides additional insights into some long-standing and sophisticated
problems, such as intelligent control, adaptive control, and robust analysis and
control.

Switched linear systems have been investigated for a long time in the
control literature and have attracted increasingly more attention since the
1990s. The literature grew exponentially and quite a number of fundamental
concepts and powerful tools have been developed from various disciplines.
Despite the rapid progress made so far, many fundamental problems are still
either unexplored or less well understood. In particular, there still lacks a
unified framework that can cope with the core issues in a systematic way.
This motivated us to write the current monograph.

The book presents theoretical explorations on several fundamental prob-
lems for switched linear systems. By integrating fresh concepts and state-of-
the-art results to form a systematic approach for the switching design and
feedback control, a basic theoretical framework is formed towards a switched
system theory which not only extends the theory of linear systems, but also
applies to more realistic problems.

The book is primarily intended for researchers and engineers in the sys-
tem and control community. It can also serve as complementary reading for
linear/nonlinear system theory at the post-graduate level.

The book contains seven chapters which exploit several independent yet
related topics in detail.
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Chapter 1 introduces the system description, background and motivation
of the study, and presents several general concepts and fundamental observa-
tions which provide a sound base for the book.

Chapter 2 concisely reviews some necessary facts from Wonham’s geomet-
ric method, linear algebra and stability theory, as well as other useful tools
such as differential inclusion theory, Lie algebra, and automata theory.

Chapter 3 deals with stabilizing switching design for switched autonomous
systems. Besides stability, the switching frequency and robustness are also
considered. First, general results are presented for pointwise/consistent sta-
bilization. Second, based on the average method, periodic switching laws are
designed to steer the switched systems stable. Third, a state-feedback switch-
ing law is presented based on an appropriate partition of the state space. To
avoid possible chattering induced by the perturbations, a modified strategy
is proposed by introducing a positive level set. Fourth, to further reduce the
switching frequency, a combined switching law is developed by integrating the
time-driven switching mechanism with the state-feedback switching scheme.
An observer-based switching law is also formulated for the case when the state
information is not available. Finally, the discrete-time counterparts are briefly
discussed.

In Chapter 4, we address the controllability, observability, feedback equiv-
alence and canonical forms for switched control systems. For continuous-time
systems, we prove that both the controllable set and the unobservable set are
subspaces of the total space. Verifiable geometric characterizations are pre-
sented for the controllable/unobservable subspaces. Based on these, a switched
control system can be brought into the canonical decomposition via suitable
coordinate and feedback transformations. Parallel results are presented for
discrete-time switched systems. The chapter also investigates the problem of
sampling without loss of controllability. Sampling criteria are obtained and
various regular switching and digital control schemes are discussed in detail.
In addition, we discuss in depth several other issues including the controllabil-
ity under constrained switching/input, local controllability, and decidability
of controllability/observability.

The problem of feedback stabilization is investigated in Chapter 5. Stabi-
lizing design for switched control systems is challenging since both the control
input and the switching law are design variables, and their interaction must
be fully understood. Based on the canonical decomposition, we are able to
design stabilizing switching/input laws for several classes of switched control
systems. In particular, for a linear system controlled by multiple controllers
and measured by multiple sensors, an elegant and complete treatment is pre-
sented for the problem of dynamic output feedback stabilization. We also solve
the stabilization problem for the switched linear system where the summation
of the controllability subspaces of the individual subsystems is the total state
space. For the case that the system is completely controllable, several suffi-
cient conditions are presented for quadratic stabilizability and non-quadratic
stabilizability as well. For the most general setting where both controllable
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part and uncontrollable part exist, we discuss the main obstacles involved and
propose possible ways for handling it.

Chapter 6 addresses two optimization problems for switched linear sys-
tems. The first is the optimal switching problem where the switching signal is
the only design variable to achieve the optimality. In this scheme, we compute
the optimal convergence rate for systems which are simultaneously triangu-
larizable, and present several nice properties of the optimal cost for a general
infinite time horizon cost function. Next, we present a two-state optimization
methodology for solving the mixed optimal switching/control problem of the
switched linear system where both the switching signal and the control in-
put are design variables. In this scheme, we discuss how to find the optimal
switching signal and the optimal control input for solving the optimality and
the sub-optimality problems.

Finally, Chapter 7 concludes the book by briefly summarizing the main
results presented in the book and presenting related open problems for further
investigation.

To summarize, the monograph presents the most recent theoretical devel-
opment on switching design and feedback control for switched linear dynam-
ical systems. By integrating novel ideas, fresh insights, and rigorous results
in a systematic way, the book provides a sound base for further theoretical
research as well as a design guide for engineering applications.

The logic connections among the chapters are as follows:

⎧⎨
⎩

Chap. 1

Chap. 2

⎫⎬
⎭ =⇒

⎧⎨
⎩

Chap. 3

Chap. 4

⎫⎬
⎭ =⇒

⎧⎨
⎩

Chap. 5

Chap. 6

⎫⎬
⎭ =⇒ Chap. 7.
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List of Symbols

Throughout this book, the following conventions and notations are adopted:

a
def
= b defines a to be b

s.t. means such that
w.r.t. means with respect to

R
def
= the field of real numbers

C
def
= the field of complex numbers

N
def
= the set of integers

R+ def
= the set of positive real numbers

R+
def
= the set of nonnegative real numbers

N+ def
= the set of natural numbers

N+
def
= the set of nonnegative integers

Rn def
= the set of n-dimensional real vectors

Rn×m def
= the set of n × m-dimensional real matrices√−1
def
= the imaginary unit

�s
def
= the real part of complex number s

I (In)
def
= the identity matrix (of dimension n × n)

ei
def
= the i column of I

xT or AT def
= the transpose of vector x or matrix A

A−1 def
= the inverse of matrix A

A+ def
= the Moore-Penrose pseudo-inverse of matrix A

P > 0 (P ≥ 0)
def
= matrix P is real symmetric and (semi-)positive definite

P < 0 (P ≤ 0)
def
= matrix P is real symmetric and (semi-)negative definite
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det A
def
= the determinant of matrix A

sr A
def
= the spectral radius of matrix A

sv A
def
= the set of singular values of matrix A

λ(A)
def
= the set of eigenvalues of A

λmax(A)
def
= the maximum eigenvalue of real symmetric matrix A

λmin(A)
def
= the minimum eigenvalue of real symmetric matrix A

xi,x(j)
def
= the i-th element of vector x

A(i, j),Aij
def
= the ij-th element of matrix A

|a| def
= the absolute value of number a

|w| def
= the length of string w

‖x‖ def
= the Euclidean norm of vector x

‖A‖ def
= the induced Euclidean norm of matrix A

‖x‖p
def
= the lp norm of vector x

‖A‖p
def
= the induced lp-norm of matrix A

< x, y >
def
= the inner product of x and y in Rn

Im A
def
= the image of operator/matrix A

Ker A
def
= the kennel of operator/matrix A

W⊥ def
= the annihilator of W

X/Y or X
Y

def
= the factor (quotient) space

ΓAY def
= the smallest A-invariant subspace

containing subspace Y
Γ{A1,··· ,Am}Y def

= the smallest multiple Ai-invariant subspace
containing subspace Y

{x, y, · · · } def
= a set of quantities x, y, etc.

max S
def
= the maximum element of set S

min S
def
= the minimum element of set S

sup S
def
= the smallest number that is larger than or equal

to each element of set S

inf S
def
= the largest number that is smaller than or equal

to each element of set S

arg max S
def
= the index of maximum element of ordered set S

arg min S
def
= the index of minimum element of ordered set S

∅ def
= the empty set

measΩ
def
= the Lebesgue measure of set Ω in Rn

intΩ
def
= the interior of set Ω

co Ω
def
= the convex hull of set Ω
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Br
def
= the ball centered at the origin with radius r

Sr
def
= the sphere centered at the origin with radius r

k̄
def
= set {1, · · · , k}

k
def
= set {0, 1, · · · , k − 1}

k!
def
= the factorial of k

mod(a, b)
def
= the remainder of a divided by b

sgn(·) def
= the signum function

sat(·) def
= the saturation function with unit limits

lims↑t f(s)
def
= the limit from the left of function f(·) at t

lims↓t f(s)
def
= the limit from the right of function f(·) at t

M
def
= the fixed index set {1, 2, · · · , m}

{ai}M or {ai}m
i=1

def
= the set {a1, a2, · · · , am}

[a, b)
def
= the real number set {t ∈ R : a ≤ t < b} or

the integer set {t ∈ N : a ≤ t < b}
[a, b]

def
= the real number set {t ∈ R : a ≤ t ≤ b} or

the integer set {t ∈ N : a ≤ t ≤ b}
S[a,b)

def
= the set of well-defined switching paths over [a, b)

S[t0,∞) or S def
= the set of well-defined switching paths over [t0, ∞)

Σ(Ci, Ai, Bi)M
def
= the switched linear system with

subsystems (Ci, Ai, Bi), i ∈ M

Σ(Ai, Bi)M
def
= the switched linear system with

subsystems (Ai, Bi), i ∈ M

Σ(Ci, Ai)M
def
= the unforced switched linear system with

subsystems (Ci, Ai), i ∈ M

Σ(Ai)M
def
= the switched autonomous system with

subsystems Ai, i ∈ M

σ
def
= the switching signal of the switched system

(σ)→h def
= time-transition of σ by h

φ(t; t0, x0, u, σ)
def
= the solution of the switched system

Φ(t1, t2, u, σ)
def
= the state transition matrix of the switched system

C(Ai, Bi)M
def
= the controllable set of switched linear system Σ(Ai, Bi)M

R(Ai, Bi)M
def
= the reachable set of switched linear system Σ(Ai, Bi)M

UO(Ci, Ai)M
def
= the unobservable set of switched system Σ(Ci, Ai)M

UR(Ci, Ai)M
def
= the unreconstructible set of switched system Σ(Ci, Ai)M
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Introduction

1.1 Switched Dynamical Systems

In general, a switched (nonlinear) system is composed of a family of subsys-
tems and a rule that governs the switching among them, and is mathematically
described by

δx(t) = fσ(x(t), u(t), d(t)) x(t0) = x0

y(t) = gσ(x(t), w(t)) (1.1)

where x(t) is the state, u(t) is the controlled input, y(t) is the measured
output, d(t) and w(t) stand for external signals such as perturbations, σ is

the piecewise constant signal taking value from an index set M
def
= {1, · · · ,m},

fk, k ∈ M are vector fields, and gk, k ∈ M are vector functions, while the
symbol δ denotes the derivative operator in continuous time (i.e., δx(t) =
d
dtx(t)) and the shift forward operator in discrete time (i.e., δx(t) = x(t+1)).

Figure 1.1 presents an illustrating diagram for the architecture of a
switched system. It is clear that a switched system is multi-model in nature.
Each individual component model

δx(t) = fk(x(t), u(t), d(t))
y(t) = gk(x(t), w(t)) (1.2)

for k ∈M is said to be a subsystem or mode of the switched system. Besides
the subsystems, the switched system also consists a switching device usually
called the supervisor. The supervisor produces the switching rule σ, denoting
the switching signal or switching law, which orchestrates the switching among
the subsystems.

Generally speaking, the subsystems represent the low-level ‘local’ dynam-
ics governed by conventional differential and/or difference equations, while
the supervisor is the high-level coordinator producing the switches among
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Fig. 1.1. Schematic of a switched system

the local dynamics. The dynamics of the system is determined by both the
subsystems and the switching signal.

In general, a switching signal may depend on the time, its own past value,
the state/output, and/or possibly an external signal as well

σ(t+) = ϕ(t, σ(t), x(t)/y(t), z(t)) ∀ t (1.3)

where z(t) is an external signal produced by other devices, σ(t+) = lims↓t σ(s)
in continuous time and σ(t+) = σ(t+ 1) in discrete time.

If σ(t) = i, then we say that the ith subsystem is active at time t. It is
clear that at any instant there is one (and only one) active subsystem.

Given a function pair (x(·), θ(·)) over [t0, t1), where x : [t0, t1) �→ Rn is
absolutely continuous, and θ : [t0, t1) �→ M is piecewise constant. Function
x(·) is said to be a solution (or state trajectory) of (1.1) via switching signal
(1.3) at x0 over [t0, t1), if x(t0) = x0, and for almost all t ∈ [t0, t1), we have

δx(t) = fθ(t)(x(t), u(t), d(t))
y(t) = gθ(t)(x(t), w(t))

θ(t+) = ϕ(t, θ(t), x(t)/y(t), z(t)).

The term “for almost all t ∈ [t0, t1)” means that “for all t ∈ [t0, t1) except
for possibly a set of isolated instants” in continuous time and “for all inte-
gers in [t0, t1)” in discrete time. The corresponding function θ(·) is said to
be generated by the switching signal (1.3) along x(·) at x0 over [t0, t1). The
solution over other types of time intervals, such as [t0, t1] and [t0,∞), can be
understood in the same way.
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According to the above definition, we had, in fact, excluded any impulse
in the state and input variables.

In this book, we focus on a special but very important class of switched
systems where all the subsystems are linear time-invariant and the switching
signals are governed by deterministic processes. These systems are termed as
switched linear systems and are described by

δx(t) = Aσx(t) +Bσu(t) + Eσd(t) x(t0) = x0

y(t) = Cσx(t) +Gσw(t) (1.4)

where Ak, Bk, Ck, Ek and Gk are linear mappings (matrices) in appropriate
spaces. The nominal system is the system free of disturbances, that is

δx(t) = Aσx(t) +Bσu(t)
y(t) = Cσx(t). (1.5)

If no control input is imposed on the system, then, the system is said to be
a switched autonomous system, or an unforced switched system. The unforced
switched linear system is described by

δx(t) = Aσx(t)
y(t) = Cσx(t). (1.6)

In this book, we denote system (1.5) by Σ(Ci, Ai, Bi)M . Similarly, we
denote by Σ(Ai, Bi)M , Σ(Ci, Ai)M , and Σ(Ai)M the switched system without
output and/or input, respectively. In the case that we need to distinguish
between continuous time and discrete time, we simply denote

∑
c(Ci, Ai, Bi)M

for continuous-time systems and
∑

d(Ci, Ai, Bi)M for discrete-time systems.

1.2 Background and Examples

1.2.1 Background and Motivations

In this subsection, we briefly discuss the background and motivation in the
study of switched systems.

Switched systems deserve investigation for theoretical reasons as well as
for practical reasons.

First, switched systems can be used to model systems that are subject
to known or unknown abrupt parameter variations such as synchronously
switched linear systems [76], networks with periodically varying switchings
[19], and sudden change of system structures due to various reasons [149,
24]. For example, the failure of a component or subsystem may have taken
place in so short a time interval as to be considered an instantaneous event
by comparison with the nominal time constants of the plant model. Hence,
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Plant 
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Supervisor

Controller 1

Controller 2

Controller m

…
Fig. 1.2. Schematic of a system with multiple controllers

switching among different system structures is an essential feature of many
engineering and practical real world systems.

Second, when we try to control a single process by means of multi-
controller switching, the overall system can be described by a switched system.
Indeed, suppose that for a single process described by

δx(t) = f(x(t), u(t), d(t))

there are several candidate controllers for the system

u(t) = ξi(x(t), wi(t)) i = 1, · · · ,m

where wi stands for the external signals associated with the ith control device.
Then, the overall system can be described by the switched system

δx(t) = fσ(x(t), w(t), d(t))

where fi = f(x(t), ξi(x(t), wi(t)), d(t)). An illustrative diagram for this archi-
tecture is shown in Figure 1.2. In the literature, this multi-controller switching
scheme is also known as the hybrid control architecture.

The multi-controller switching scheme provides an effective and power-
ful mechanism to cope with highly complex systems and/or systems with
large uncertainties [83, 109, 88, 175]. One such example is hybrid control for
nonholonomic systems which are not stabilizable by means of any individual
continuous state feedback controller [82, 62, 54]. For these systems, multi-
controller switching among smooth controllers provides a good conceptual
framework to solve the problem. Even for simple linear time-invariant (LTI)
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systems, the performance (e.g., transient response) can be improved through
controllers/compensators switching [45, 98, 73, 87]. For example, as a common
practice in stabilizing an LTI system, we use a hybrid controller that involves
switching between a time-optimal or near time-optimal controller when the
state is far from the equilibrium, and a linear controller near the equilibrium.
This strategy can steer the system to the equilibrium quickly without exciting
high-frequency dynamics or exceeding realistic actuator bandwidth.

As a special but very important class of switched systems, switched linear
systems provide an attractive framework which bridges the gap between linear
systems and the highly complex and/or uncertain systems. On one hand,
switched linear systems are relatively easy to handle as many powerful tools
from linear and multilinear analysis are applicable to cope with these systems.
On the other hand, these systems are accurate enough to represent many
practical engineering systems with complex dynamics. In addition, the study
of switched linear systems provides additional insights to some long-standing
and sophisticated problems, such as

• robust analysis and control [14, 32, 122, 131];
• adaptive control [48, 51, 63];
• intelligent control [151, 115, 43];
• gain scheduling [120, 15]; and
• multi-rate digital control [126, 26].

Practically, the study of switched systems has benefited, or will potentially
benefit, many real world systems. These include

• power systems and power electronics;
• automotive control;
• aircraft and air traffic control;
• computer disks; and
• network and congestion control.

1.2.2 Examples

In this subsection, we present several examples to highlight some essential
features and implications of switched systems.

Example 1.1. Suppose that we have two force-free linear systems

ẋ = A1x =
[

1 −2
2 1

]
x (1.7)

and

ẋ = A2x =
[

3 −2
1 −1

]
x. (1.8)

Simple computation shows that the spectrum of A1 is {1 ± 2
√
−1} and the

spectrum of A2 is {1±
√

2}. Accordingly, neither of the systems is stable.
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Fig. 1.3. Phase portraits of the two LTI systems
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Fig. 1.4. Phase portraits within shorter (left) and longer horizons (right)

The first system has an unstable focus, hence it could rotate from any
given non-origin state to any given direction of the phase plane. The second
system, on the other hand, has a stable mode and an unstable mode. The
stable mode is the subspace

Ws = span
{[

2−
√

2
1

]}
.

Figure 1.3 shows their phase portraits. From these, a switching strategy can
be proposed as follows to produce globally stable behaviors.

Given any initial condition x(t0) = x0, we let the second system be active
if the state is in Ws, the stable mode of A2. Otherwise, let the first system
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Fig. 1.5. The partition sectors (left) and a sample trajectory (right) in the phase
plane

be active. As Ws is an invariant subspace of A2, this strategy always steers
any state to approach the origin via, at most, one switch. In this scheme, the
stable mode serves as a slide mode, just as in the variable structure control
scheme. However, this strategy requires the slide mode to be accessed exactly.
Any derivation will cause the state trajectory to diverge to infinity. In this
sense, the above strategy is only theoretically feasible. Figure 1.4 illustrates
the phase portraits of the state trajectories under this strategy for a shorter
time horizon (t ≤ 5) and for a longer time (t ≤ 7.88), respectively. It is clear
that the the state converges along the ‘slide mode’ at the beginning but finally
diverges to infinity.

To overcome the sensitivity problem, we modify the strategy as follows.
Let ξ ∈ Ws be an eigenvector of A2 corresponding to the stable eigenvalue
λ = 1−

√
2. It can be seen that ξT (A2 +AT

2 )ξ = 2λξT ξ < 0. As a result, there
is a sector Γ of R2:

Γ = {(x, y) ∈ R2 : k1x
2 ≤ xy ≤ k2x

2}

which includes ξ as an interior point such that

xT (A2 +AT
2 )x < 0 ∀ x ∈ Γ.

In addition, we fix a small neighborhood of the stable mode

Γ0 = {(x, y) ∈ R2 : k3x
2 ≤ xy ≤ k4x

2}

such that Γ0 is a strict subset of Γ . Let us assign a switching signal using the
following rules :

(i) if the state is in Γ0, then let the second subsystem be active;
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(ii) if the state is outside Γ , then let the first subsystem be active;
(iii) otherwise, keep the active system unchanged.

It can be seen that this switching strategy always produces stable trajectories.
The advantage of this strategy is that it is insensitive to small derivations of
the state. Figure 1.5 illustrates the sectors Γ and Γ0 as well as a sampling
phase portrait in the time interval [0, 50]. It clearly shows that, though the
trajectory converges globally, it locally diverges twice when deviations from
the ‘slide mode’ occur. Another feature is that the switching signal is initial-
state dependent, i.e., different initial states correspond to different switching
signals. Figure 1.6 illustrates this by depicting the switching signals corre-
sponding to two different initial states.

From this example, we have the following observations :

(a) Appropriate switching among the unstable systems produces stable global
system behavior.

(b) The stabilizing switching strategies may involve either a finite or infinite
number of switches, while the infinite switching strategy performs better
than the finite one in practice.

(c) Both the stabilizing switching strategies are initial-state dependent, i.e.,
different initial states correspond to different switching time and index
sequences.

0 10 20 30 40 50 60

1

2

Time (Sec)

x
0
=[0.1184; 0.3148]

0 10 20 30 40 50 60

1

2

Time (Sec)

x
0
=[−1.4751;−0.2340]

Fig. 1.6. The switching signals for different initial states

In addition, for this example, there is no initial-state independent switching
strategy that produces stable state trajectories (c.f. Theorem 3.4). That is,
for any switching signal of the form σ : [t0,∞) �→ {1, 2}, the resultant time-
varying system
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ẋ(t) = Aσ(t)x(t)

is unstable.

Example 1.2. (PWM-Driven Boost Converter) [33]

eS(t) 
+

_

+

_
eC(t)

iL(t) L s (t) 

0

1

RC

Fig. 1.7. The Boost converter

T 2T 3T 4T

1
d0T d1T d2T d3T

0
0

s 
(t

)

Fig. 1.8. Pulse-width modulation

In this example, we illustrate the modelling of PWM-driven Boost converter.
Figure 1.7 shows the schematic of a Boost converter. Here, L is the inductance,
C the capacitance, R the load resistance, and es(t) the source voltage. With
this converter, it is possible to transform the source voltage es(t) into a higher
voltage eC(t) over the load R.

The switch s(t) is controlled by a PWM device. Suppose that the switch
can have two states, namely, 0 and 1. Then, we have s(t) ∈ {0, 1}. For sim-
plicity, assume that s(t) can switch at most once in each period. In Figure 1.8,
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we depict the periods as 0, 1, 2, 3 and the relative pulse width as d0, · · · , d3,
where di ∈ [0, 1].

The schematic of the PWM-driven Boost converter is shown in Figure 1.9.

u

s(t)
PWM Converter 

Fig. 1.9. PWM driven Boost converter

By introducing the normalized variables τ = t/T , L1 = L/T , and C1 =
C/T , the differential equations for the Boost converter are as follows:

ėC(τ) = − 1
RC1

eC(τ) + (1− s(τ))
1
C1

iL(τ)

i̇L(τ) = −(1− s(τ))
1
L1

eC(τ) + s(τ)
1
L1

eS(τ). (1.9)

Let x1 = eC , x2 = iL, u = eS , σ = s+ 1, and

A1 =
[− 1

RC1

1
C1

− 1
L1

0

]
and B1 =

[
0
0

]

A2 =
[
− 1

RC1
0

0 0

]
and B2 =

[
0
1

L1

]
.

Then, equations in (1.9) can be described by

ẋ = Aσx+Bσu σ ∈ {1, 2}

which is exactly the switched linear system with two subsystems.
Note that, in the above model, both the input u and the switching signal

σ are design variables. A constraint imposed on the switching signal is that
at most one switch occurs in any unit time interval.

Example 1.3. (Hybrid Stabilization of a Wheeled Mobile Robot) [4]
The next example addresses the problem of parking the wheeled mobile robot
of the unicycle type, shown in Figure 1.10, where x1 and x2 are the coordinates
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Fig. 1.10. Wheeled mobile robot of unicycle type

of the point in the middle of the rear axle, and θ denotes the angle that the
vehicle makes with the x1-axis. The kinematics of the robot can be modelled
by the equations

ẋ1 = u1 cos θ
ẋ2 = u1 sin θ
θ̇ = u2 (1.10)

where u1 and u2 are the control inputs (the forward and the angular velocity,
respectively). By parking the vehicle we mean making x1, x2 and θ tend to
zero by applying state feedback. What makes this problem especially inter-
esting is that the corresponding system is nonholonomic and hence cannot be
asymptotically stabilized by any time-invariant continuous state feedback law.
As a result, the classical smooth theory and design mechanism of nonlinear
control systems cannot be applied. However, if we address the problem using
the hybrid control scheme, the obstruction disappears.

To see this, we first introduce some intermediate variables. Let

y1 = θ

y2 = x1 cos θ + x2 sin θ
y3 = x1 sin θ − x2 cos θ
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and

D1 = {x ∈ R3 : |x3| >
‖x‖
2
}

D2 = {x ∈ R3 : x 
∈ D1}.

Next, let us define a set of candidate controllers

u1 =
[
u1

1
u1

2

]
=
[
−4y2 − 6y3

y1
− y3y1

−y1

]

u2 =
[
u2

1
u2

2

]
=
[
−y2 − sgn(y2y3)y3
− sgn(y2y3)

]

where sgn(·) is the signum function

sgn(t) =
{

1 if t ≥ 0
−1 otherwise.
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switching time = 0.9551 (Sec)

Fig. 1.11. State trajectory with one switch

With these controllers, system (1.10) can be represented as an unforced
switched nonlinear system

ẋ(t) = fσ(x(t))

where x = [x1, x2, θ]T , σ ∈ {1, 2}, and
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fi(x) =

⎡
⎣ui

1 cos θ
ui

1 sin θ
ui

2

⎤
⎦ i = 1, 2.

Finally, define the switching law by

σ(t) =
{

1 if x(t) ∈ D1
2 if x(t) ∈ D2.

(1.11)

Then, it can be proven that the switched system is exponentially stabilizable.
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Fig. 1.12. Input trajectory with one switch

Roughly speaking, the switching strategy is to first adjust the angle (away
from zero) of the robot if necessary, and then drive the robot smoothly to
the origin. Figures 1.11 and 1.12 show the state and input trajectories of the
switched system initialized at

x(0) = [1.1909,−1.8916,−0.0376]T

respectively. It can be seen that both trajectories converge exponentially to
the origin. Figure 1.13 simulates the parking process which clearly shows the
two-stage feature of the parking strategy (first backward, then forward).

When the original angle of the robot is far from zero, then, the parking
can be made smoothly without any switch. Figures 1.14 and 1.15 show the
state/input trajectories as well as the parking simulation, respectively. The
switched system is initialized at

x(0) = [−1.3362, 0.7143, 1.6236]T .

It can be seen that, though the state and input are smooth vectors, the parking
process still exhibits the two-stage feature.
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This example clearly exhibits the power of the hybrid control methodology
in addressing complex dynamical systems.

1.3 Elementary Analysis

1.3.1 Classification of Switching Signals

For the switched system

δx(t) = fσ(x(t), u(t))
y(t) = hσ(x(t)) (1.12)



1.3 Elementary Analysis 15

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2
starting

backward

forward

Fig. 1.15. Parking animation without switch

suppose that the subsystem dynamics fi, hi, i ∈ M are given and fixed. In
addition, assume that the input u is also given in advance.

For the above system, the performance of the overall system totally relies
on the switching signal. As we have mentioned, different switching signals
may produce totally different system behaviors. In this subsection, we take a
close look at the possible expressions of the switching signals and present a
classification for different types of switching signals.

In general, the switching signal is a piecewise constant function of time, its
own past values, the state/output, and possibly the external signal. A general
representation can thus be given by

σ(t) = ψ ([t0 ∞), σ([t0 ∞)), x([t0,∞))/y([t0,∞)), z([t0,∞))) t ≥ t0

where t0 is the initial time, z : [t0,∞) �→ Rl is an external signal produced
by an external device (e.g., an observer). Note that the expression does not
exclude possible non-causal relationships, that is, the switching signal at a
time may depend on the future measurements from its own or other variables.
In reality, most relationships are causal. A causal description of the switching
signal is given by

σ(t+) = ψ ([t0, t], σ([t0, t]), x([t0, t])/y([t0, t]), z([t0, t])) t ≥ t0

where σ(t+) = lims↓t σ(s) in continuous time and σ(t+) = σ(t+1) in discrete
time. It can be seen that the switching signal at a time may rely on the
past measurements of time, state/output, etc. For example, the discrete-time
switching signal with initial condition
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σ(t0) = arg min{xT (t0)Aix(t0)}i∈M

σ(t0 + 1) = σ(t0)

and recursion

σ(t+ 1) = max{arg min{xT (t)Aix(t)}i∈M , σ(t− 1)} t = 1, 2 · · ·

includes a one-step lag delay. In this book, we further assume that the switch-
ing signal only depends on the instantly past (on-line) measurements, i.e.,

σ(t+) = ψ (t, σ(t), x(t)/y(t), z(t)) t ≥ t0. (1.13)

In the following, we briefly classify the switching signals into several types,
which we will frequently use in the book.

1) Switching Path

A switching signal is said to be a switching path if it is a function of time.
Given an initial time t0, a switching path is defined on a time interval
[t0, t1) with t0 < t1 ≤ ∞

σ : [t0, t1) �→M.

Note that the switching path is independent of the initial state. That is,
such a switching signal is consistent with any initial state.
In the continuous-time case, two switching paths θ1 and θ2 over [t0, t1) are
said to be indistinguishable, if they coincide almost everywhere, i.e., the
time set

{t ∈ [t0, t1) : θ1(t) 
= θ2(t)}

is a set of isolated real numbers. Two indistinguishable paths are seen to
be one path as they produce the same system dynamics. For simplicity,
we let θ[t0,t1) denote a switching path over [t0, t1).

2) Time-driven Switching Law

If the switching signal only relies on the time and its past values, then we
say that the switching signal is a time-driven switching law. A time-driven
switching law can be described by

σ(t+) = ψ(t, σ(t)) t ≥ t0. (1.14)

A typical feature is that it is independent of the state/output variables.
A switching path θ[t0,t1) is said to be generated by the time-driven switching
law, if for almost all t ∈ [t0, t1), we have

θ(t+) = ψ(t, θ(t)).

As a special case, a switching path always generates itself.
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As an example, we define recursively the time-driven switching law

σ(t0) = arg max{0.5, t20}

σ(t+) = arg min{−(σ(t))2,−27
8

(t+ 1)(t− 1)σ(t)− 4}. (1.15)

In continuous time, the switching law generates the switching path θ with

θ(t) =

⎧⎨
⎩

2 over [t0,−1) if t0 < −1
1 over [t0, 1

3 ) if t0 ∈ [− 1
3 ,

1
3 )

2 over [t0,∞) if t0 > 1

but generates no switching path if t0 ∈ (−1,− 1
3 ) or t0 ∈ ( 1

3 , 1) as there
is a deadlock in this situation. Indeed, by the recursive formula, for any
t ∈ (−1,− 1

3 )∪ ( 1
3 , 1), it should switch to the other subsystem at the ‘next

time of t’. As the time is continuous, this clearly leads to a deadlock. In
discrete time, however, the switching law generates the switching path

σ =
{

1 if t = 0
2 otherwise

which is defined everywhere.
3) Event-driven Switching Law

A switching signal is said to be an event-driven switching law, if the time
does not explicitly appear in the expression (1.13), i.e.,

σ(t+) = ψ (σ(t), x(t)/y(t), z(t)) . (1.16)

In particular, a switching signal is said to be a state-feedback switching
law, if it only depends on its past value and the state variables, i.e.,

σ(t+) = ψ (σ(t), x(t)) . (1.17)

Similarly, a switching signal is said to be an output-feedback switching law,
if it only depends on its past value and the output variables, i.e.,

σ(t+) = ψ (σ(t), y(t)) (1.18)

and to be a dynamic-output-feedback switching law, if it depends on its
past value, the output variables, and possibly an external signal z, i.e.,

σ(t+) = ψ (σ(t), y(t), z(t)) . (1.19)

Given an initial state x0 and a time interval [t0, t1) with t1 > t0, a switching
path θ[t0,t1) is said to be generated by the event-driven switching law (1.16)
at x0 over [t0, t1) w.r.t. the switched system, if there is a state trajectory
x : [t0, t1) �→ Rn with x(t0) = x0, such that for almost any t ∈ [t0, t1), we
have
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δx(t) = fθ(t)(x(t), u(t))
y(t) = hθ(t)(x(t))

θ(t+) = ψ (θ(t), x(t)/y(t), z(t)) .

Note that a switching law may generate different switching paths w.r.t.
different switched systems.

4) Pure-state/output-feedback Switching Law

A switching signal is said to be a pure-state-feedback switching law, if it
only depends on the state variables, i.e.,

σ(t+) = ψ (x(t)) . (1.20)

Similarly, switching signal is said to be a pure-output-feedback switching
law, if it only depends on the output variables, i.e.,

σ(t+) = ψ (y(t)) . (1.21)

A typical pure-state-feedback switching law is the quadratic form

σ(t+) = arg min{xT (t)P1x(t), · · · , xT (t)Pmx(t)}

where Pi, i ∈M are real matrices.

Roughly speaking, by a switching law we mean that the switching signal is
initial-condition-dependent. In contrast, a switching path is simply a function
of time and hence is independent of the system state/output. A switching
signal is said to be determinant at x0 over [t0, t1), if it generates a unique
switching path at x0 over [t0, t1). It is said to be completely determinant over
[t0, t1), if for any x0 ∈ Rn and t′0 ∈ [t0, t1), the switching law generates a
unique switching path at x0 over [t′0, t1).

It should be noticed that, as a special case, a switching path defined on
[t0, t1) generates itself, and hence is completely determinant over [t0, t1).

1.3.2 Operations on Switching Signals

Given a switched system in advance, suppose that σ1 and σ2 are two switching
signals defined by

σi(t+) = ψi(t, σi(t), x(t)/y(t), z(t)) i = 1, 2.

σ1 is said to be the time-transition of σ2 by h (w.r.t. the switched system),
denoted by σ1 = (σ2)→h, if

ψ1(t, σ1(t), x(t)/y(t), z(t)) = ψ2(t+ h, σ2(t+ h), x(t+ h)/y(t+ h), z(t+ h)).

Note that, if σ1 is the time-transition of σ2 by h, then σ2 is the time-transition
of σ1 by−h. A switching signal σ is said to be time-invariant at x0 over [t0, t1),
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provided that, for any h, and switching path θ[t0,t1) generated by σ at x0 over
[t0, t1), the path θh defined by

θh(t) = θ(t− h) ∀ t ∈ [t0 + h, t1 + h)

is a switching path generated by σ→h at x0 over [t0+h, t1+h). In addition, the
switching signal is said to be time-invariant over [t0, t1) if it is time-invariant
at each state in Rn over [t0, t1). The switching signal is said to be (completely)
time-invariant if it is time-invariant over any time interval. It can be seen that
any switching path is time-invariant over its time domain, so is any switching
signal in state/output-feedback form. However, a time-driven switching signal
may not be time-invariant. As an example, it can be verified that the time-
driven switching signal defined by (1.15) in the continuous-time case is not
time-invariant.

Similarly, for two switching signals defined by

σi(t+) = ψi(t, σi(t), x(t)/y(t), z(t)) i = 1, 2

σ1 is said to be the radial-transition of σ2 by λ ∈ R (w.r.t. the switched
system), if

ψ1(t, σ1(t), x(t)/y(t), z(t)) = ψ2(t, σ2(t), λx(t)/λy(t), λz(t)).

Note that, if σ1 is the radial-transition of σ2 by λ 
= 0, then σ2 is the radial-
transition of σ1 by 1

λ . A switching signal σ is said to be radially invariant,
if for any λ ∈ R, the radial-transition of the switching signal by λ coincides
with the switching signal itself, i.e.,

ψ(t, σ(t), x(t)/y(t), z(t)) = ψ(t, σ(t), λx(t)/λy(t), λz(t)).

It can be seen that any switching path is radial-invariant, so is any time-
driven switching law. However, an event-driven switching signal may not be
radial-invariant. For example, the pure-state-feedback switching law

σ(t+) = arg min{‖x(t)‖, xT (t)x(t)}

is in general not radial-invariant.
A switching signal is said to be transition-invariant, if it is both time-

invariant and radial-invariant. In the book, when we design switching signals,
we will always focus on the transition-invariant switching signals.

Given two switching paths θi : [ti, si) �→ M , i = 1, 2, θ2 is said to be a
sub-path of θ1 on [t2, s2), denoted by θ2 = θ1[t2,s2), if [t2, s2) ⊆ [t1, s1), and
for almost any t ∈ [t2, s2)

θ1(t) = θ2(t).

Another operation on switching signals is the concatenation of switching
signals. Given two switching paths θ1[t1,s1) and θ2[t2,s2), the concatenation of
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θ1 with θ2, denoted by θ1∧θ2, is a new switching path defined on [t1, s1+s2−t2)
with

(θ1 ∧ θ2)(t) =
{
θ1(t) if t ∈ [t1, s1)
θ2(t− s1 + t2) if t ∈ [s1, s1 + s2 − t2).

The concatenation of more than two switching paths can be defined in the
same way by recursion.

The operation of concatenation can be extended to general switching sig-
nals as follows. Suppose that a switching signal σ1 is determinant at x0 over
[t1, s1) and hence it generates a unique switching path θ1[t1,s1). Let x1 =
limt↑s1 x(t), where x(·) is a solution of the switched system via σ1 at x0 over
[t1, s1). Suppose that a switching signal σ2 is determinant at x1 over [t2, s2),
and hence it generates a unique switching path θ2[t2,s2). Then, a switching
signal σ is said to be a concatenation of σ1 with σ2 at (x0, [t1, s1), [t2, s2)),
if it generates uniquely the switching path θ1[t1,s1) ∧ θ2[t2,s2) at x0 over
[t1, s1 + s2 − t2).

A more useful concept is the concatenation of two switching signals via
a given region. Suppose that σ1 and σ2 are two switching signals, Ω is a
closed region in the state space. Then, a switching signal σ is said to be a
concatenation of σ1 with σ2 at (x0, t1, [t2, s2)) via Ω, if it generates a unique
switching path θ[t1,s1+s2−t2) with

s1 = min{t ≥ t1 : x(t) ∈ Ω}

such that σ is the concatenation of σ1 with σ2 at (x0, [t1, s1), [t2, s2)).

Example 1.4. For continuous-time switched system Σ(Ai){1,2} with

A1 =
[

1 2
−2 1

]
and A2 =

[
−1 0
0 10

]

let Ω = {x ∈ R2 : x2 = 0}, and σ1 ≡ 1 and σ2 ≡ 2. It can be seen that
the concatenation of σ1 with σ2 via Ω is the following pure-state-feedback
switching law

σ(t) =
{

1 if x(t) 
∈ Ω
2 otherwise

which always makes the switched system asymptotically stable.

1.3.3 Well-definedness and Well-posedness

An important issue for the switched system is the existence and uniqueness
of the solution. A switching path θ is said to be well-defined on [t1, t2), if it
is defined in [t1, t2), and for all t ∈ [t1, t2), both lims↑t θ(s) (for t = t1, let
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lims↑t1 θ(s) = θ(t1)) and lims↓t θ(s) exist, and it has only finite jump instants
in any finite time sub-interval of [t1, t2). That is, the set of jump times

{t ∈ [t1, t2) : lim
s↑t

θ(s) 
= lim
s↓t

θ(s)}

is finite for any finite time interval [t1, t2).
Note that, for the continuous-time switching path, a jump time must be a

discontinuous time, but the converse is not necessarily true. For example, the
switching path

θ(t) =
{

1 if t ∈ N
2 otherwise

has infinite discontinuous times in [t0,∞) for any t0 <∞. However, it has no
jump time at all and hence is well-defined. On the other hand, the switching
path

θ(t) =
{

1 if t ∈ { 1
k}∞

k=1
2 otherwise

is not well-defined on any interval containing zero because lims↓0 θ(s) does
not exist.

In the book, we denote by S[t0,t1)(or S in short) the set of well-defined
switching paths on [t0, t1).

It is clear that the well-definedness excludes the possibility of the Zeno
phenomenon (chattering) which is not desired in most situations. It is also
clear that any discrete-time switching path is well-defined.

By means of the well-definedness of switching paths, we can further define
the well-definedness of general switching signals. For this, fix a switched sys-
tem and let σ be a switching signal of the system. The switching signal σ is
said to be well-defined at x0 over [t0, t1) (w.r.t. the switched system), if it is
determinant at x0 over [t0, t1) and the switching path θ that uniquely gener-
ated by σ at x0 over [t0, t1) is well-defined on [t0, t1). In addition, the switching
signal is said to be well-defined over [t0, t1) (w.r.t. the switched system), if for
any x0 ∈ Rn, it is well-defined at x0 over [t0, t1). The switching signal is said
to be (completely) well-defined, if it is well-defined over any interval [t0, t1)
with −∞ < t0 < t1 ≤ ∞.

Suppose that the subsystems’ dynamics are given and switching signal σ is
completely well-defined. Then, for any initial condition (t0, x0), the switching
signal generates a unique switching path at x0 over [t0, t1) (for some t1 > t0),
denoted by θx0

[t0,t1)
. Therefore, the switching signal can be expressed by σ(t) =

ϕ(t; t0, x0), where

ϕ(t; t0, x0) = θx0
[t0,t1)

(t) ∀ t ∈ [t0, t1).

In this book, whenever the subsystems’ dynamics are given and clear from
the context, we are quick to express a well-defined switching signal in either



22 1 Introduction

the standard form σ(t+) = ψ(t, σ(t), x(t)/y(t), z(t)) or in the form σ(t) =
ϕ(t; t0, x0).

On the other hand, a switched system is said to be well-posed at x0 over
[t0, t1) w.r.t. switching signal σ, if for any given piecewise continuous and
locally integrable input u, the switching signal σ is well-defined at x0 over
[t0, t1) w.r.t. the switched system, and the switched system admits a unique
solution via the switching signal at x0 over [t0, t1). Similarly, the switched
system is said to be well-posed over [t0, t1) w.r.t. the switching signal, if for
any x0 ∈ Rn, the system is well-posed at x0 over [t0, t1) w.r.t. the switching
signal; the switched system is said to be (completely) well-posed w.r.t. the
switching signal, if for any time interval [t0, t1) with −∞ < t0 < t1 ≤ ∞, the
system is well-posed over [t0, t1) w.r.t. the switching signal.

Given a switched system, if the switching signal is a switching path or
a time-driven switching law, the well-posedness of the switched system and
the well-definedness of the switching signal are decoupled and hence are in-
dependent of each other. However, for a switching signal in the event-driven
form, its well-definedness implies that the state information is available on
[t0, t1), which means that the switched system admits at least one solution
at x0 over [t0, t1). Note that in this case, the switched system is well-posed
if, and only if, it admits only one solution. Accordingly, if the switched sys-
tem satisfies the global Lipschitz condition, then, the well-posedness of the
switched system is equivalent to the well-definedness of the switching signal.
For the switched linear system, when the control input is globally integrable,
then, the well-definedness of the switching signal implies the well-posedness of
the switched system, hence they are equivalent to each other. In other words,
for the switched linear system

δx(t) = Aσx(t) +Bσu(t)
y(t) = Cσx(t) (1.22)

where the control input is piecewise continuous and globally integrable, and
the switching signal σ defined by

σ(t+) = ψ(t, σ(t), x(t)/y(t))

the following statements are equivalent :

(i) the system is well-posed at x0 over [t0, t1) under the switching signal;
(ii) the switching signal is well-defined at x0 over [t0, t1) w.r.t. the system; and
(iii) there is a unique pair (x, θ), where x : [t0, t1) �→ Rn is absolutely contin-

uous and θ : [t0, t1) �→ M is well-defined, such that x(t0) = x0, and for
almost any t ∈ [t0, t1), we have

δx(t) = Aθ(t)x(t) +Bθ(t)u(t)
y(t) = Cθ(t)x(t)

θ(t+) = ψ(t, θ(t), x(t)/y(t)).
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In this book, we focus on designing switching signals such that they are
well-defined and hence the switched linear systems are well-posed.

1.3.4 Switching Sequences

For a well-defined switching path θ defined on interval [t0, t1), it has a finite
number of jump instants in any finite length sub-interval of [t0, t1). Any jump
instant t ∈ (t0, t1) is said to be a switching time. That is, a switching time t
satisfies

lim
s↑t

θ(s) 
= lim
s↓t

θ(s).

As we have mentioned, for a continuous-time switching path, a switching
time must be a discontinuous time, but the converse is not necessarily true. In
fact, for any switched system, suppose that two switching paths are identical
except on a set of isolated times, then, the two paths lead to the same system
behavior. This implies that changing values of a switching path on isolated
time instants does not affect the system dynamics. In the book, when we
design a switching path, we usually make it to be either θ(t) = θ(t+) in which
the path is continuous from the right, or to be θ(t) = θ(t−) in which the path
is continuous from the left. Besides, we always assume that the switching path
is continuous everywhere except at the switching times.

Note also that, for a well-defined path θ, the set of its switching times is
a set of isolated instants. Let s1, s2, · · · , sl be the ordered switching times in
[t0, t1) with

t0 < s1 < s2 < · · · < sl < t1.

Note that l is a nonnegative integer and is possibly infinite when t1 = ∞.
Let s0 = t0. The ordered sequence {s0, s1, · · · , sl} = {si}l

i=0, is said to be the
switching time sequence of θ on [t0, t1). We denote by TS

[t0,t1)
θ this sequence

and also TSθ when the interval [t0, t1) is clear from the context. Similarly, the
index sequence {θ(t0+), θ(s1+), · · · , θ(sl+)} = {θ(si+)}l

i=0 is said to be the
switching index sequence of θ on [t0, t1), and is denoted by IS

[t0,t1)
θ or ISθ in

short. The sequence of ordered pairs

{(t0, θ(t0+)), (s1, θ(s1+)), · · · , (sl, θ(sl+))} = {(si, θ(si+))}l
i=0

is said to be the switching sequence of θ over [t0, t1), and will be denoted
by SS

[t0,t1)
θ or SSθ in short. Note that a switching sequence {(si, ki)}l

i=0
uniquely determines a switching path (up to possibly re-arranging the value
at the switching times) by the relationship

θ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
k0 t ∈ [t0, s1)
k1 t ∈ [s1, s2)
...
kl t ∈ [sl, t1).
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Finally, let hi = si+1 − si for i = 0, · · · , l − 1 and hl = t1 − sl, then the
sequence

{(θ(t0+), h0), · · · , (θ(sl+), hl)}

is said to be the switching duration sequence of θ on [t0, t1), and will be
denoted by DS

[t0,t1)
θ or DSθ in short. It is clear that the switching duration

sequence is uniquely determined by the switching sequence, and vice versa.
The same sequences for a switching signal can be defined through the

switching path generated by the switching signal. Suppose that switching sig-
nal σ is well-defined at x0 over [t0, t1), and θ[t0,t1) is the switching path gener-
ated by the switching signal at x0. The switching (time/index/duration) se-
quence at x0 over [t0, t1) is defined to be the switching (time/index/duration)
sequence of the switching path θ[t0,t1). To include the information of the initial
condition, we add the initial state to the sequence. For example, a switching
sequence is in the form

{x0, (s0, k0), (s1, k1), · · · , (sl, kl)}.

It should be noted that a well-defined switching law always generates a
unique switching path at a given initial condition which is also well-defined. In
general, different initial conditions may correspond to different switching paths
and hence different switching sequences. This is a critical feature which makes
the switched linear system essentially distinct from a linear time-varying sys-
tem, where all initial states correspond to a single path. To further understand
this point, let us examine a simple example.

Example 1.5. Consider a planar switched linear system given by

ẋ(t) = Aσx(t) σ ∈ {1, 2}

with

A1 =
[

1 0
0 −2

]
and A2 =

[
−2 0
0 1

]
.

Let the switching signal be

σ(t) = arg min{xT (t)A1x(t), xT (t)A2x(t)}. (1.23)

The switching signal is event-driven so it is initial-state-dependent. In general,
the switching sequences may be finite or infinite for different initial conditions.
It can be seen that, if the initial condition is x(0) = x0 = [a, 0]T with a 
= 0,
then the corresponding switching sequence is {x0; (0, 2)}, which means that
the second subsystem is always active hence there is no switch at all. Similarly,
if the initial condition is x(0) = x0 = [0, b]T with b 
= 0, then the corresponding
switching sequence is {x0; (0, 1)}, which means that the first subsystem is
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always active and there is no switch at all. In both cases, the switched system
degenerates into linear time-invariant systems. For initial state x(0) = x0 =
[a, b]T with ab 
= 0, however, the switching sequence is always infinite.

This example clearly illustrates the fact that the switching sequence de-
pends heavily on the initial state.

Finally, a determinant switching signal is said to be with dwell time τ , if
ti+1−ti ≥ τ for any two consecutive switching times ti and ti+1. Let Sτ be the
set of switching signals with dwell-time τ . It is clear that any switching signal
with a positive dwell time is well-defined. The converse is not necessarily to
be true, for instance, the switching path

θ(t) =
{

1 if t ∈ [k − 1
k , k + 1

k ) for some k ∈ N+

2 otherwise

is completely well-defined over [0,∞), but it does not permit a positive dwell
time.

1.3.5 Solutions of Switched Linear Systems

For a nonlinear system, usually it is very hard (if not impossible) to explicitly
express the solution in terms of the system parameters in an analytic way. On
the other hand, for well-posed switched linear systems, this is always possible.

For clarity, let φ(t; t0, x0, u, σ) denote the state trajectory at time t of a
continuous-time switched linear system

ẋ(t) = Aσx(t) +Bσu(t) (1.24)

initialized at x(t0) = x0 with input u and switching signal σ.
Suppose that the switching signal is well-defined and its switching sequence

is

{x0, (t0, i0), (t1, i1), · · · , (tl, il)}.

As the i0th subsystem is active during [t0, t1), we have

ẋ(t) = Ai0x(t) +Bi0u(t) x(t0) = x0 t ∈ [t0, t1).

This is a linear differential equation with an initial condition, so its solution
can be given explicitly by

φ(t; t0, x0, u, σ) = eAi0 (t−t0)x0 +
∫ t

t0

eAi0 (t−τ)Bi0u(τ)dτ t ∈ [t0, t1)

and (by the continuity of the state trajectory)

x1 = x(t1) = φ(t1; t0, x0, u, σ) = eAi0 (t1−t0)x0 +
∫ t1

t0

eAi0 (t1−τ)Bi0u(τ)dτ.
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During period [t1, t2), the i1th subsystem is active, thus, we have

ẋ(t) = Ai1x(t) +Bi1u(t) x(t1) = x1 t ∈ [t1, t2).

Again, the solution can be given explicitly by

φ(t; t0, x0, u, σ) = eAi1 (t−t1)x1 +
∫ t

t1

eAi1 (t−τ)Bi1u(τ)dτ

= eAi1 (t−t1)eAi0 (t1−t0)x0 + eAi1 (t−t1)
∫ t1

t0

eAi0 (t1−τ)Bi0u(τ)dτ

+
∫ t

t1

eAi1 (t−τ)Bi1u(τ)dτ t ∈ [t1, t2)

and

x2 = x(t2) = φ(t2; t0, x0, u, σ) = eAi1 (t2−t1)x1 +
∫ t2

t1

eAi1 (t−τ)Bi1u(τ)dτ.

Continuing with the above procedure, the solution for the switched system
can be computed to be

φ(t; t0, x0, u, σ) = eAik
(t−tk)eAik−1 (tk−tk−1) · · · eAi1 (t2−t1)eAi0 (t1−t0)x0

+ eAik
(t−tk) · · · eAi1 (t2−t1)

∫ t1

t0

eAi0 (t1−τ)Bi0u(τ)dτ

+ · · ·+ eAik
(t−tk)

∫ tk

tk−1

eAik−1 (tk−τ)Bik−1u(τ)dτ

+
∫ t

tk

eAik
(t−τ)Bik

u(τ)dτ t ∈ [tk, tk+1). (1.25)

Let

Ψ(t, σ, x0) = eAik
(t−tk)eAik−1 (tk−tk−1) · · · eAi0 (t1−t0) t ∈ [tk, tk+1].

It is clear that the state transition matrix is given by

Φ(t1, t2, σ, x0) = Ψ(t1, σ, x0) (Ψ(t2, σ, x0))
−1

.

The solution of the system can be re-written, in terms of the transition
matrix, as

φ(t; t0, x0, u, σ) = Φ(t, t0, σ, x0)x0 +
∫ t

t0

Φ(t, τ, σ, x0)u(τ)dτ.

From this expression, we can draw a few useful conclusions as follows:

(i) For a switched linear system, if the switching signal is well-defined and
the input is globally integrable, then the system always permits a unique
solution for the forward time space.
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(ii) The solution is usually not continuously differentiable at the switching
instants, even if the input is smooth.

(iii) The state transition matrix is a multiple multiplication of matrix function
of the form eAt. Accordingly, properties of functions in this form play an
important role in the analysis of switched linear systems.

Similarly, for a discrete-time switched linear system

xk+1 = Aσxk +Bσuk (1.26)

the solution is

xk = Aσ(k−1) · · ·Aσ(1)Aσ(0)x0 +Aσ(k−1) · · ·Aσ(1)Bσ(0)u0 + · · ·
+Aσ(k−1)Bσ(k−2)uk−2 +Bσ(k−1)uk−1. (1.27)

The state transition matrix is

Φ(k1, k2, σ) = Aσ(k1−1) · · ·Aσ(k2) k1 > k2.

In terms of the transition matrix, the solution can be rewritten as

xk = Φ(k, 0, σ)x0 +
k−1∑
j=0

Φ(k, j, σ)uj .

From the solution, we have:

(i) For a switched linear system, the system permits a unique solution for
the forward time space. Hence, any discrete-time switched system is well-
posed.

(ii) The state transition matrix is a multiple multiplication of matrices. Ac-
cordingly, properties of matrix multiplication play an important role in
analyzing the switched system.

Finally, for both continuous-time and discrete-time switched linear sys-
tems, the state trajectory possesses several nice properties under mild condi-
tions. As the properties are widely used in the following chapters, we state
them separately as propositions for easy reference.

Proposition 1.6. For the switched linear system, suppose that the switching
signal is time-invariant. Then, for any given initial condition (t0, x0), input
u, and time τ , we have

φ(t; t0, x0, u, σ) = φ(t+ τ ; t0 + τ, x0, u
′, σ′) ∀ t ≥ t0

where u′(t) = u(t− τ) for t ≥ t0 + τ , and σ′ = σ→h is the time-transition of
σ by h.

The proposition asserts that the state trajectory is time-transition invari-
ant when the switching signal is time-invariant, hence we term it as the time-
transition invariance property. This means that, if x(·) is a trajectory of the
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switched system with some initial condition (t0, x0), then, for any τ ∈ R, its
time transition y(·) = x(·+ τ) is also a trajectory of the switched system with
the same initial state. In other words, the set of state trajectories is invariant
under any time transition. Accordingly, the switched linear system behaves in
a ‘time-invariant’ manner.

Proposition 1.7. For the switched linear system, suppose that the switching
signal is radial-invariant. Then, for any given initial condition (t0, x0), input
u, and λ ∈ R, we have

φ(t; t0, λx0, u, σ) = λφ(t; t0, x0, u
λ, σ) ∀ t ≥ t0 λ ∈ R

where (uλ)(t) = λu(t) for t ≥ t0.
The proposition asserts that the state trajectory is linear w.r.t. the initial

state when the switching signal is radial-invariant, hence we term it as the
radial-transition invariance property. This means that, if x(·) is a trajectory of
the switched system with initial condition x(t0) = x0, then its radial transition
y(·) = λx(·) is also a trajectory of the switched system with the initial state
y(t0) = λx0. In other words, the switched linear system behaves in a ‘radially
linear’ manner.

For a completely well-posed switched linear system, let U[t0,∞) denote the
set of inputs which are piecewise continuous over [t0,∞). For a well-defined
switching path θ[t0,∞) ∈ S[t0,∞), let

T θ
[t0,∞)(x0) = {φ(t; t0, x0, u, θ) : ∀ t ∈ [t0,∞), u ∈ U[t0,∞)}.

This set includes the states attainable from x(t0) = x0 via the switching path
θ over [t0,∞). As a switching path is both time-invariant and radial-invariant,
Proposition 1.6 implies that set T θ

[t0,∞)(x0) is t0-independent, i.e.,

T θ→(s2−s1)

[s1,∞) (x0) = T θ
[s2,∞)(x0) ∀ s1, s2 ∈ R x0 ∈ Rn.

Similarly, Proposition 1.7 implies that the set is radially linear w.r.t. the initial
state, i.e.,

T θ
[t0,∞)(λx0) = λT θ

[t0,∞)(x0) ∀ t0, λ ∈ R x0 ∈ Rn

where λΩ = {λx : x ∈ Ω} for a set Ω. Furthermore, let

T[t0,∞)(x0) = ∪θ∈S[t0,∞)T θ
[t0,∞)(x0)

and, for a set Ω ⊆ Rn

T[t0,∞)(Ω) = ∪x∈ΩT[t0,∞)(x).

It can be seen that the sets are independent of t0 and are radially linear. As
a result, if Ω is a neighborhood of the origin (i.e., contains the origin as an
interior point), then
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T[t0,∞)(Ω) = T[t1,∞)(Rn) ∀ t0, t1 ∈ R.

On the other hand, as any well-defined switching signal generates a unique
switching path at any x0 ∈ Rn which is in S[t0,∞), the set T[t0,∞)(Ω) in
fact contains all the states attainable from Ω via any well-defined switching
signal over [t0,∞), including those that are not time-invariant and/or radial-
invariant.

The above discussions reveal several fundamental features of switched lin-
ear systems. As an implication, for a property of the state that does not
explicitly rely on the time, we have the following observations :

(i) if the property holds at some t0, then it also holds at any other time; and
(ii) if such a property can be achievable via a well-defined switching signal,

then it can also be achievable via a well-defined switching signal that is
transition-invariant.

To make the above observations clearer, we discuss here a typical type
of property that does not explicitly rely on the time. Let Ω1 and Ω2 be two
subsets of Rn, any property of the form

(the closure of) T[t0,∞)(Ω1) contains/spans Ω2

does not explicitly rely on the time t0. This form includes a few special but
important cases. To see this, let

Sr = {x ∈ Rn : ‖x‖ = r} and Br = {x ∈ Rn : ‖x‖ ≤ r} r ∈ R+.

Note that for an unforced switched linear system, the derivative of the state
is bounded by a linear function of state. Note also that the origin is, or can be
made to be, an equilibrium of the unforced/forced switched system. Taking
into account the above observations, we can re-state the following well-known
properties as :

(a) (uniform) stability at t0: (u ≡ 0) ∃ r < 1 such that

x ∈ Sr =⇒ T[t0,∞)(x) ∈ B1

(b) asymptotic stability at t0: (u ≡ 0) stability plus 0 ∈ clT[t0,∞)(x) for any
x ∈ S1, where ‘cl’ denotes the closure of a set;

(c) controllability at t0: x ∈ S1 =⇒ 0 ∈ T[t0,∞)(x); and
(d) reachability at t0: T[t0,∞)(0) ⊃ S1.

As a result, these properties do not rely on the initial time t0. For instance,
if the switched linear system is controllable at t0, then it is also controllable
at any other time instant. Other related properties, such as the (asymptotic)
stabilizability and observability, also possess this initial-time-independent fea-
ture. In this book, when we formulate and discuss the notions, we simply as-
sume that t0 = 0 without loss of generality. Similarly, when we seek switching
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signals that make the switched system stable or controllable, we always seek
from the set of well-defined switching paths or the set of well-defined and
transition-invariant switching signals.

Finally, note that in Items (b)-(d), the unit sphere S1 can be replaced
by any neighborhood of the origin, or any sphere that encircles the origin.
This means that the local properties (asymptotic stability, etc.) are in fact
equivalent to the global ones. Accordingly, we do not distinguish these local
properties from their global counterparts.

1.4 Notes and References

The switched system is a special form of the hybrid dynamic system which
contains both continuous dynamics and discrete elements. Hybrid systems
have attracted considerable attention from both the control and computer
communities. However, as general hybrid models are quite complex, the study
of hybrid systems is still in the elementary stage [18]. The reader is referred to
the monographs [156, 117] for an introduction. There has also been an annual
conference on hybrid systems since 1993 [70, 71].

The study of switched systems has a long history and could be traced back
to the pioneering work on the Lyapunov approach for the absolute stability of
Lur’e systems. It is well known that a Lur’e system is absolutely stable if there
is a common Lyapunov function for all the extreme systems. This corresponds
to the stability of a switched linear system with subsystems coinciding with
the extreme systems. This idea had been extended later to address the stability
of time-varying systems and the robustness of uncertain linear systems.

Since the 1990s, switched systems have attracted increasing attention
and recent years have witnessed an enormous growth of interest in switched
systems. The literature, especially that on the stability issues, grew at an
exponential rate. Various mathematical tools, such as linear and multilin-
ear algebra, nonsmooth analysis, and game theory, have been exploited in
the study of switched systems. The reader is referred to the survey papers
[31, 92, 99, 173, 102, 141] and the monograph [90] for recent development.
For switched systems where the switching signals are governed by random
processes (e.g., jump linear systems), the reader is referred to [84, 149, 97]
for surveys and [42, 29] for recent development. In addition, the advan-
tages of multiple-controller switching in complex systems were exploited in
[45, 109, 110, 98, 88, 87], and more tutorial and introductory material can be
found in the special issues [3, 106, 2, 34].
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Mathematical Preliminaries

2.1 Introduction

This chapter presents a number of useful mathematical concepts and tools,
many of which implicitly or explicitly underlie the material to be covered in
the main portion of the book. While much of the material is standard and
can be found in classical textbooks, we also include a number of useful items
that are not commonly found elsewhere. Thus, this chapter serves as a short
review and as a convenient reference when necessary. In addition, this chapter
forms the basis for the subsequent development.

2.2 Linear Spaces

A linear (vector) space consists of an additive group, of elements called vectors,
and an underlying field of scalars. We consider only spaces over the field of
real numbers, R. Linear spaces are denoted by script capitals X , Y, · · · ; their
elements (vectors) by lower case Roman letters x, y, · · · and field elements
(real numbers) by lower case Roman or Greek letters.

Suppose that X is a linear space and x1, · · · , xk its elements. The span,
denoted by

span{x1, · · · , xk}

is the set of all linear combinations of the xi, with coefficients in R. Space X
is said to be finite-dimensional if there exist a finite k and vectors x1, · · · , xk

such that

X = span{x1, · · · , xk}.

Suppose that X 
= 0, the dimension of X , denoted by dimX , is the least k
which this happens. Let dim 0 = 0.
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A set of vectors {xi, i = 1, · · · , k} is said to be (linearly) independent, if
the relation

k∑
i=1

cixi = 0 ci ∈ R

implies ci = 0 for all i ∈ k̄
def
= {1, · · · , k}. If {xi, i ∈ k̄} is independent and

x ∈ span{xi, i ∈ k̄}, then the representation

x = c1x1 + · · ·+ cmxm

is unique for each x ∈ X . For an n-dimensional space X , there exists a set of
independent vectors {xi, i ∈ n̄}, called a basis for X , which spans the space

X = span{xi, i ∈ n̄}.

Unless otherwise stated, all linear spaces in this book are finite dimen-
sional.

A (linear) subspace Y of linear space X is a nonempty subset of X which is
a linear space under the operations of vector addition and scalar multiplication
inherited from X . That is, for any vectors y1, y2 ∈ Y and any real scalars c1
and c2, we have c1y1 + c2y2 ∈ Y. The notation Y ⊆ X will henceforth mean
that Y is a subspace of X . Geometrically, a subspace is a hyperplane passing
through the origin of X . Thus, the zero vector belongs to any subspace.

Suppose that Y and Z are subspaces of X , we define their summation and
intersection by

Y + Z = {y + z : y ∈ Y, z ∈ Z}
Y ∩ Z = {x : x ∈ Y, x ∈ Z}.

It is clear that the summation and intersection of subspaces are also sub-
spaces. In contrast, unions of subspaces are generally not subspaces. Another
important distinction between summation and union of subspaces lies in that,
it is always possible for a linear space to be expressed as a summation of
subspaces of strictly lesser dimensions, while a finite dimensional linear space
can in no way be expressed as a finite (even countable) union of subspaces of
strictly lesser dimensions. The latter property, known as the Baire’s Category
Theorem [169], will play a role in proving Theorems 4.30 and 4.31.

Given a linear space, the family of all its subspaces is partially ordered by
subspace inclusion (⊆), and under the operation + and ∩, is to form a lattice,
namely, Y + Z is the minimum subspace that contains both Y and Z, while
Y ∩ Z is the largest subspace contained in both Y and Z.

A family of k subspaces X1, · · · ,Xk of X is said to be independent, if

Xi ∩ (
∑
j �=i

Xj) = 0 ∀ i ∈ k̄.
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If the family {Xi, i ∈ k̄} is independent, then every vector in
∑k

i=1 Xi has a
unique representation

x = x1 + · · ·+ xk xi ∈ Xi i ∈ k̄.

The sum X0 =
∑k

i=1 Xi is called an internal direct sum, and is written as

X0 = X1 ⊕ · · · ⊕ Xk = ⊕k
i=1Xi.

If Y and Z are subspaces of X , then there exist Y1 ⊆ Y and Z1 ⊆ Z such
that

Y + Z = Y1 ⊕ (Y ∩ Z)⊕Z1.

Let X1 and X2 be arbitrary linear spaces. The external direct sum of X1 and
X2, denoted by X1⊕̃X2, is the linear space of all ordered pairs {(x1, x2) : x1 ∈
X1, x2 ∈ X2}, under componentwise addition and scalar multiplication. Under
isomorphism ≈, we have

⊕̃k
i=1Xi ≈ ⊕k

i=1Xi.

We shall not distinguish between the two types of direct sum, and will denote
both by ⊕.

Finally, let Y ⊆ X . Vectors x, y ∈ X are said to be equivalent mod Y if
x− y ∈ Y. We define the quotient space X

Y as the set of equivalence classes

x̄ = {y ∈ X : y − x ∈ Y}, x ∈ X .

The function x �→ x̄ is a map P : X �→ X
Y called the canonical projection of X

on X
Y .

2.3 Maps and Matrices

Let X and Y be linear spaces. A function ϕ : X �→ Y is a linear transformation
(map) if

ϕ(c1x1 + c2x2) = c1ϕ(x1) + c2ϕ(x2) ∀ x1, x2 ∈ X c1, c2 ∈ R.

X is the domain of C and Y is the codomain. If Y = X , then the map is an
endomorphism of X .

Let {xi, i ∈ n̄} be a basis for X and {yj , j ∈ m̄} a basis for Y. For any
linear map C : X �→ Y, we have

Cxi = c1iy1 + · · ·+ cmiym i ∈ n̄

for uniquely determined elements cji ∈ R. The array
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MatC =

⎡
⎢⎣
c11 · · · c1n

. . .
cm1 · · · cmn

⎤
⎥⎦

is the matrix of C w.r.t. the given basis pair. Usually, we do not distinguish
between a linear map and its matrix representation, and write C = MatC.
We denote by Rm×n the class of all m by n matrices with real entries.

Let C : X �→ Y be a map, V ⊆ X , and W ⊆ Y. The image of C on V is
the set

CV = {Cx : x ∈ V} ⊆ Y

while the kernel of C on W is the set

C−1W = {x ∈ X : Cx ∈ W} ⊆ X .

Specifically, we denote CX by ImC, and C−10 by KerC. Both ImC and
KerC are subspaces.

Let X = R1⊕R2. Since the representation x = r+ s, r ∈ R1 and s ∈ R2,
is unique for each x ∈ X , there is a function x �→ r, called the projection on
R1 along R2. The projection is in fact an endomorphism Q : X �→ X such
that ImQ = R1 and KerQ = R2. Similarly, there is a projection on R2 along
R1, which corresponds to an endomorphism P . It is clear that

Id = Q+ P

where Id stands for the identity map mapping any vector into itself.
We assume that the reader is familiar with the rules of matrix algebra. For

a column (or row) vector a, a(j) denotes its jth entry; for a matrix A, A(i, j)
denotes its (i, j)th entry. Given a real matrix A, denote its rank by rankA,
its determinant by detA (when A is square). The nth-order identity matrix is
denoted by In. The characteristic polynomial of an nth-order square matrix
A is the nth degree monic polynomial

π(A) = det(sIn −A).

The spectrum of A, denoted by λ(A), is the set of n complex zeros of its
characteristic polynomial, listed according to multiplicity. The elements of
the spectrum are the eigenvalues of A. The spectral radius of A, written as
srA, is the radius of the smallest disc centered at the origin in the complex
plane that includes all the eigenvalues of A.

A matrix P is said to be positive (negative) definite, denoted by P > 0
(P < 0), if it is symmetric and all its eigenvalues are positive (negative).
Similarly, a semi-positive (semi-negative) definite matrix P is written as P ≥ 0
(P ≤ 0). A matrix A is said to be stable, or Hurwitz, if its spectrum locates
in the open left half of the complex plane. Similarly, matrix A is said to be
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discrete-time stable or Schur, if its spectrum locates in the open unit ball of
the complex plane.

The inverse of a nonsingular matrix T is denoted by T−1. The set of
nonsingular matrices in Rn×n, denoted by Gl(n), forms a group under matrix
multiplication. Two matrices A and B are said to be similar, if ∃ T ∈ Gl(n)
such that A = T−1BT . The relation of similarity is an equivalence relation
and two similar matrices represent the same linear map under different bases.
Indeed, let C : Rn �→ Rn be an endomorphism. Suppose that MatC is a
matrix representation of C under a basis of Rn. Then, the matrix set

{T (MatC)T−1 : T ∈ Gl(n)}

defines all possible matrix representations under different bases (coordinates).
The simplest representations, usually judged by the number of zero entries and
the possession of triangular structures, are said to be the canonical forms. One
canonical form for any linear map A, known as the rational canonical form,
is the block diagonal form

MatA = diag(A1, · · · , Ak) =

⎡
⎢⎣
A1 · · · 0

. . .
0 · · · Ak

⎤
⎥⎦

where Ai, i ∈ k̄ is in the companion form

Ai =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
ai1 ai2 ai3 · · · aiji

⎤
⎥⎥⎥⎥⎥⎦

Let ‖ · ‖ denote a norm of a vector or induced norm of a matrix. Well-
known norms including the l2 (Euclidean) norm and l∞ (max) norm. For any
matrix norm ‖ · ‖, we have

‖A‖ ≥ sr(A) = lim
k→∞

‖Ak‖ 1
k ∀ A ∈ Rn×n.

For a matrix exponential function eAt, we have

‖eAt‖ ≤ p(t)eγt ∀ t ∈ R+ (2.1)

where p(t) is a polynomial with a degree less than n, and γ = max{�s : s ∈
γ(A)} is the maximum real part of the spectrum of A. In general, γ is said to
be the convergence rate of A as there is no smaller γ for Inequality (2.1) to
hold. By (2.1), for any α > γ, there is a real constant β = β(α) such that

‖eAt‖ ≤ βeαt ∀ t ∈ R+.
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Another useful estimation is

‖eAt‖ ≤
∞∑

k=0

(‖A‖t)k

k!
= e‖A‖t ∀ t ∈ R+

where k! is the factorial of k with 0! = 1.

2.4 Invariant Subspaces and Controllable Subspaces

Let A : X �→ X be an endomorphism and Y be a subspace of X . Y is said to be
A-invariant if AY ⊆ Y. Denote V = X

Y , and let P : X �→ V be the canonical
projection. Then, there exists a unique map Ā : V �→ V such that ĀP = PA.

Suppose that Y is A-invariant and Z is any subspace such that Y⊕Z = X .
Let {yi, i ∈ l̄} and {zj , j ∈ k̄} be bases of Y and Z, respectively. It is clear
that the vectors

{y1, · · · , yl, z1, · · · , zk}

form a basis for X , and under this basis, we have

MatA =
[
A1 A3
0 A2

]
A1 : l × l A2 : k × k.

Let A : X �→ X and Y be a subspace of X . We denote the smallest A-
invariant subspace containing Y by ΓAY. We also term this subspace as the
(single) controllable subspace of pair (A,Y). This subspace can be described
in terms of A and Y by

ΓAY = Y +AY + · · ·+An−1Y. (2.2)

The operation can be defined recursively as

ΓA1ΓA2Y = ΓA1(ΓA2Y).

Similarly, let A = {A1, · · · , Am} be a set of maps. Subspace Y is said
to be (multiple) A-invariant, if it is Ai-invariant for all i ∈ m̄. Suppose
that Y is A-invariant and Z is any subspace such that Y ⊕ Z = X . Let
{yi, i ∈ l̄} and {zj , j ∈ k̄} be bases of Y and Z, respectively. In the basis
{y1, · · · , yl, z1, · · · , zk} of X , we have

MatAi =
[
Ai1 Ai3
0 Ai2

]
Ai1 : l × l Ai2 : k × k i ∈ m̄.

That is, matrices Ai, i ∈ m̄ are simultaneously block triangularizable with
consistent block dimensions.
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For map set A = {A1, · · · , Am} and subspace Y, let ΓAY denote the small-
est A-invariant subspace containing Y. This subspace is termed the (multiple)
controllable subspace of (A,Y).

Let us define the nested subspaces

Y0 = Y
Yj+1 = ΓA1Yj + · · ·+ ΓAmYj j = 0, 1, · · · .

Then, we have

ΓAY =
∞∑

k=0

Yk.

Note that if dimYj = dimYj+1, then Yl = Yj for any l > j. This implies
that Y = Yn, where n = dimX . Directly in terms of A and Y, we have

ΓAY =
j1,··· ,jn−1∈n∑
i0,··· ,in−1∈m̄

A
jn−1
in−1

· · ·Aj1
i1
Y (2.3)

where n
def
= {0, 1, · · · , n−1}. In (2.3), ΓAY is the summation of (mn)n items.

It requires large computational effort to calculate this subspace if m and n are
relatively large. To overcome this, here we provide a procedure to determine
the subspace efficiently.

Denote the nested subspaces as

W0 = Y

Wj = Wj−1 +
m∑

k=1

AkWj−1 j = 1, 2, · · · .

Let W =
∑∞

j=0Wj . Then, we have

W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ W

and

ΓAY = W.

Note that if Wj = Wj+1 for some j, then Wk = Wj for any k > j
and further Wj = W. This fact, together with dimW ≤ n, implies that
Wn−n0 = W = ΓAY, where n0 =dimW0.

Denote

ρ = min{k : Wk = ΓAY} ≤ n− n0

and
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nk = dimWk k = 1, · · · , ρ.
A basis of ΓAY can be constructed according to the following procedure.

First, choose a basis γ1, · · · , γn0 of W0.
Next, since

W1 = W0 + span{Akγj , k = 1, · · · ,m, j = 1, · · · , n0}
= span{γ1, · · · , γn0 , Akγj , k = 1, · · · ,m, j = 1, · · · , n0}

we can find a basis γ1, · · · , γn1 of W1 by searching the set

{γ1, · · · , γn0 , Akγj , k = 1, · · · ,m, j = 1, · · · , n0}
from left to right.

Then, continuing with the process, we can find a basis

γ1, · · · , γn0 , · · · γnl−1+1, · · · , γnl

for Wl. Since

Wl+1 = Wl + span{Ajγk, j = 1, · · · ,m, k = nl−1 + 1, · · · , nl}
= span{γ1, · · · , γnk

, Ajγk, j = 1, · · · ,m, k = nl−1 + 1, · · · , nl}
by searching the set

{γ1, · · · , γnl
, Ajγk, j = 1, · · · ,m, k = nl−1 + 1, · · · , nl}

from left to right for linearly independent column vectors, we can find a basis

γ1, · · · , γn0 , · · · , γnl−1+1, · · · , γnl
, γnl+1, · · · , γnl+1

for Wl+1.
Finally, we have

ΓAY = span{γ1, · · · , γn0 , · · · , γnρ−1+1, · · · , γnρ}.
It involves not more than m2n column vectors in the procedure, which is only
a small fraction of the original quantity, (mn)n.

From the above analysis, if γj = Aik
· · ·Ai1bi0 , then

Ail
· · ·Ai1bi0 ∈ {γ1, · · · , γnρ} ∀ l ∈ k.

As nρ ≤ n, there are at most n different (indexes of) subsystems whose
parameters appear in {γ1, · · · , γnρ}. This implies the following proposition.

Proposition 2.1. Suppose that A = {Ai, i ∈ m̄} and m > n = dimX . Then,
for any subspace Y, there exists a subset Ā of A with less than or equal to n
elements, such that

ΓAY = ΓĀY. (2.4)

A pair (A,Y) is said to be reducible, if there is a strict subset Ā of A such
that (2.4) holds. Otherwise, the pair is irreducible. Proposition 2.1 asserts that
any pair ({Ai, i ∈ m̄},Y) with m > n is reducible.
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2.5 Reachability of Linear Systems

Consider the linear time-invariant system given by

ẋ(t) = Ax(t) +Bu(t) (2.5)

where x ∈ Rn is the state, u ∈ Rp is the input, A ∈ Rn×n and B ∈ Rn×p.
Given input u and initial state x(0) = x0, the solution of the dynamical

system can be expressed as

x(t) = φ(t; 0, x0, u) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ.

Let T be any positive real number. The reachable set of the system at time
T is the set

RT = {φ(T ; 0, 0, u) : u ∈ C([0, T ];Rp)}

where C([0, T ];Rp) is the space of continuous functions from [0, T ] to Rp. As

RT = {
∫ T

0
eA(T−τ)Bu(τ)dτ : u ∈ C([0, T ];Rp)}

it is clear that the reachable set is a subspace of Rn.
To set up the connection between subspace RT and the curve of subspaces

t �→ Im(eAtB), define WT to be the smallest subspace of Rn that contains the
image of eAtB for all t ∈ [0, T ]. That is, WT is the subspace spanned by the
set of vectors

LT = {eAtBz : t ∈ [0, T ], z ∈ Rp}.

Proposition 2.2. RT = WT .
Proof. By making the change of variable s = T − τ , we have

φ(T ; 0, 0, u) =
∫ T

0
eAsBu(T − s)ds. (2.6)

The integrand in (2.6) is in WT . As WT is a closed subspace of Rn, we have

φ(T ; 0, 0, u) ∈WT ∀ u ∈ C([0, T ];Rp).

This clearly implies that RT ⊆WT .
To establish the reverse inclusion, we introduce the controllability gram-

mian. The controllability grammian at time T , is given by

CT =
∫ T

0
eAτBBT eAT τdτ.
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It is clear that CT is symmetric and semi-positive definite. For each v ∈ Rn,
define the control function

uv(t) = BT eAT (T−t)v.

It can be seen that

φ(T ; 0, 0, uv) =
∫ T

0
eAτBBT eAT τvdτ = CT v.

As a result, we have

{φ(T ; 0, 0, uv) : v ∈ Rn} = ImCT

which implies that ImCT ⊆ RT . On the other hand, since CT is symmetric,
we have

ImCT = (KerCT )⊥
. (2.7)

Suppose that v ∈ Ker(CT ). Then, we have

0 = < v,CT v >=
∫ T

0
< v, eAτBBT eAT

v > dτ

=
∫ T

0
< BT eAT τv,BT eAT τv > dτ =

∫ T

0
‖BT eAT τv‖2dτ

where < ·, · > denotes the inner product of vectors in Rn. From this, we can
conclude that

BT eAT τv = 0 τ ∈ [0, T ]. (2.8)

As a result, we have

0 =< BT eAT τv, z >=< v, eAτBz > ∀ z ∈ Rp.

It follows that v is orthogonal to LT . As a result, v is orthogonal to subspace
WT which is spanned by LT . This means that

Ker(CT ) ⊆ (WT )⊥

which in turn means that

WT ⊆ ImCT ⊆ RT . ��

From the proof of Proposition 2.2, we in fact have

RT = WT = ImCT .

In addition, by repeatedly differentiating both sides of Equation (2.8) at τ = 0,
we have
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BT (AT )kv = 0 ∀ τ ∈ [0, T ] k = 0, 1, · · · .

This is equivalent to

v ∈ ∩∞
k=0 Ker

(
BT (AT )k

)
= ∩n−1

k=0

(
Im(AkB)

)⊥
=

(
n−1∑
k=0

ImAkB

)⊥

= (ΓA ImB)⊥
.

Together with the reasonings in the proof of Proposition 2.2, we have

ImCT = ΓA ImB.

The above analysis is summarized in the following lemma which will be
frequently utilized in Chapter 4.

Lemma 2.3. For any positive time T , the following subspaces always coincide
with each other :

(i) the reachable set RT = {
∫ T

0 eA(T−τ)Bu(τ)dτ : u ∈ C([0, T ];Rp)};
(ii) the image space of the controllability grammian

CT =
∫ T

0
eAτBBT eAT τdτ ;

(iii) subspace WT = span{eAtBz : t ∈ [0, T ], z ∈ Rp}; and
(iv) the smallest A-invariant subspace that contains ImB, ΓA ImB.

2.6 Variety and Genericity

Let A,B, · · · be real matrices with known entries and P be a parameter space.
Suppose that Π(P, A,B, · · · ) is some property which may be asserted about
them. For some values in P, the property may be true, while for other values,
it may not. In some cases, it turns out that once a property is true for one
parameter value, it is true for almost all parameter values. To make this idea
precise, we borrow the terminology from algebraic geometry. Let

p = (p1, · · · , pN ) ∈ RN

and consider a polynomial ϕ(p1, · · · , pN ) with coefficients in R. An algebraic
variety V ∈ RN is defined to be the locus of common zeros of a finite number
of polynomials ϕ1, · · · , ϕk:

V = {p : ϕi(p1, · · · , pN ) = 0 i ∈ k̄}.

V is proper if V 
= RN and nontrivial if V 
= ∅, the empty set. A property
Π is merely a function Π : RN �→ {0, 1}, where Π(p) = 1 (or 0) means Π
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holds (or fails) at p. Let V be a proper variety. The property Π is said to
be (algebraically) generic w.r.t. V if Π(p) = 0 only for p ∈ V . Property Π is
(algebraically) generic if such a V exists.

For slightly broader notions, we define the analytic variety and genericity
as follows. Suppose that ΩN is the set of real analytic functions on RN . An
analytic variety is defined to be the locus of the set of common zeros of a
finite number of analytic functions

V = {p : φi(p1, · · · , pN ) = 0, φi ∈ ΩN i ∈ k̄}.

Let V be a proper analytic variety. The property Π is said to be (analytically)
generic w.r.t. V provided that Π(p) = 0 only for p ∈ V . Property Π is
(analytically) generic if such a V exists.

Any algebraic variety is also an analytic variety, and accordingly, any al-
gebraically generic property is also analytically generic. As an illustrative ex-
ample, a proper algebraic variety in R contains only a finite number of points,
while a proper analytic variety may consist of an (countable) infinite number
of (isolated) points.

In our approach, we do not distinguish between the algebraic variety and
genericity from the analytic ones and we shall refer to them as variety and
genericity.

2.7 Stability and Lyapunov Theorems

Consider the vector differential equation described by

ẋ(t) = f(t, x) x(0) = x0 (2.9)

where x(t) ∈ Rn, and f : R+ ×Rn �→ Rn is piecewise smooth and globally
Lipschitz. We further assume that the origin is an equilibrium, that is f(t, 0) =
0, for t ≥ 0.

Let φ(t; t0, x0) denote the solution of (2.9) corresponding to the initial
condition x(t0) = x0, evaluated at time t.

Stability concerns the behavior of the solution when x0 
= 0 but is close to
it.

Definition 2.4. The equilibrium 0 is said to be :

• stable if, for each ε > 0 and each t0 ≥ 0, there exists a δ = δ(ε, t0) such
that

‖x0‖ < δ(ε, t0) =⇒ ‖φ(t; t0, x0)‖ < ε ∀ t ≥ t0

• uniformly stable if, for each ε > 0, there exists a δ = δ(ε) such that

‖x0‖ < δ(ε) t0 ≥ 0 =⇒ ‖φ(t; t0, x0)‖ < ε ∀ t ≥ t0
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• attractive if, for each t0 ≥ 0, there exists a δ = δ(t0) > 0 such that

‖x0‖ < δ(t0) =⇒ ‖φ(t0 + t; t0, x0)‖ → 0 as t→∞

• uniformly attractive if there exists a δ > 0 such that

‖x0‖ < δ, t0 ≥ 0 =⇒ ‖φ(t0 + t; t0, x0)‖ → 0 as t→∞ uniformly in x0, t0

• asymptotically stable if it is both stable and attractive;
• uniformly asymptotically stable if it is uniformly stable and uniformly

attractive; and
• exponentially stable if there exist real constants r, α, β > 0 such that

‖φ(t0 + t; t0, x0)‖ ≤ βe−αt‖x0‖ ∀ t, t0 ≥ 0 ‖x0‖ < r.

These stability concepts are local in nature, i.e., they are concerned only
with a small neighborhood of the equilibrium. Global versions can be defined
by allowing the attractive properties to hold in a global sense. If the solution
is radially linear, that is

φ(t; t0, λx0) = λφ(t; t0, x0) ∀ λ ∈ R t ≥ t0 x0 ∈ Rn

then a local stability concept is equivalent to the corresponding global one.
This is precisely the case for switched linear systems (c.f. Section 1.3.5), hence,
we do not need to distinguish between the local and global stability concepts.

We say that the dynamical system is stable (attractive, etc.) if the origin
is a stable (attractive, etc.) equilibrium point of the system.

The Lyapunov approach provides a rigorous method for addressing sta-
bility. Here, we review several concepts that are used in Lyapunov stability
theory.

A function α : R+ �→ R+ is of class K if it is continuous, strictly increasing,
and α(0) = 0.

A continuous function V (x, t) : Rn ×R+ �→ R with V (0, t) ≡ 0 is :

• (locally) positive definite (V (x, t) � 0) if there exist a constant r > 0, and
a class K function α(·), such that

V (x, t) ≥ α(‖x‖) ∀ t ≥ 0 x ∈ Br

• (locally) semi-positive definite (V (x, t) � 0) if there exists a constant r > 0,
such that

V (x, t) ≥ 0 ∀ t ≥ 0 x ∈ Br

and
• decrescent if there exist a constant r > 0, and a class K function β(·), such

that
V (x, t) ≤ β(‖x‖) ∀ t ≥ 0 x ∈ Br.
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Given a continuously differentiable (C1) function V : Rn ×R+ �→ R, the
(Lie) derivative of V along system (2.9) is defined as

V̇ (x, t) =
dV

dt
(x, t) =

∂V

∂t
(x, t) +

[
∂V

∂x
(x, t)

]T

f(t, x).

Theorem 2.5. (Lyapunov Theorem) The equilibrium 0 of system (2.9) is :

(i) stable if there exists a C1 V (x, t) � 0 such that −V̇ (x, t) � 0;
(ii)uniformly stable if there exists a C1 decrescent function V (x, t) � 0 such

that −V̇ (x, t) � 0;
(iii)asymptotically stable if there exists a C1 V (x, t) � 0 such that −V̇ (x, t) �

0;
(iv)uniformly asymptotically stable if there exists a C1 decrescent function

V (x, t) � 0 such that −V̇ (x, t) � 0;
(v) exponentially stable if there exist a C1 V (x, t) � 0, and positive real con-

stants α, β, γ, and p ≥ 1, such that, for all x and t, we have

α‖x‖p ≤ V (x, t) ≤ β‖x‖p and V̇ (x, t) ≤ −γ‖x‖p;

and
(vi)unstable if there exist a C1 decrescent function V : Rn ×R+ �→ R, and a

time t0 ≥ 0, such that V̇ � 0, and for any sufficiently small positive real
number r, there exists a non-origin point x ∈ Br such that V (x, t0) ≥ 0.

Function V (x, t) in Theorem 2.5 is called the Lyapunov function. The
theorem provides sufficient conditions for the origin to be stable, etc.

As a special case of (2.9), we consider the linear time-varying system given
by

ẋ(t) = A(t)x(t) t ≥ 0 (2.10)

where entries of A(t) are piecewise smooth functions of time.
It is clear that the origin is always an equilibrium of system (2.10). The

solution of (2.10) is given by

φ(t; t0, x0) = Φ(t, t0)x0

where Φ(·, ·) is the state transition matrix associated with A(·) and is the
unique solution of equation

d

dt
Φ(t, t0) = A(t)Φ(t, t0) Φ(t0, t0) = In ∀ t0 ≥ 0 t ≥ t0.

With the aid of this explicit characterization of the solution, it is possible to
derive some useful conditions for stability, as stated in the following result.
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Theorem 2.6. Linear time-varying system (2.10) is uniformly asymptotically
stable if and only if it is exponentially stable.

Next, consider the linear time-invariant system given by

ẋ(t) = Ax(t) t ≥ 0. (2.11)

In this special case, Lyapunov theory is very complete, and we have the fol-
lowing theorem.

Theorem 2.7. For linear time-invariant system (2.11), the following state-
ments are equivalent :

(i) the system is asymptotically stable;
(ii)the system is exponential stable;
(iii)matrix A is Hurwitz;
(iv)the Lyapunov equation

ATP + PA = −Q (2.12)

has a unique solution P > 0 for any Q > 0; and
(v) Equation (2.12) has a unique solution P > 0 for some Q > 0.

The last statement asserts the existence of a quadratic Lyapunov function

V (x) = xTPx

where P is symmetric and positive definite.
For the discrete-time linear time-invariant system

xk+1 = Axk k ∈ N+ (2.13)

a similar result can be stated as follows.

Theorem 2.8. For discrete-time linear time-invariant system (2.13), the fol-
lowing statements are equivalent :

(i) the system is asymptotically stable;
(ii)the system is exponential stable;
(iii)matrix A is Schur;
(iv)the Lyapunov difference equation

P −ATPA = Q (2.14)

has a unique solution P > 0 for any Q > 0; and
(v) Equation (2.14) has a unique solution P > 0 for some Q > 0.

Finally, for the switched linear system

δx(t) = Aσx(t) (2.15)
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(guaranteed ) stability means that the system is stable with arbitrary switch-
ing. That is, for any switching path θ[0,∞) ∈ S, the time-varying system

δx(t) = Aθ(t)x(t) t ≥ 0

is stable.
Suppose that there exists a common quadratic Lyapunov function V (x) =

xTPx for the subsystems:

AT
i P + PAi ≤ 0 i ∈M. (2.16)

It can be seen that the Lyapunov function decreases along any state trajec-
tory of the switched system. Accordingly, the switched system is (guaranteed)
stable. In fact, if a switched linear system is (guaranteed) stable, then, there
exists such a Lyapunov function, though not necessarily quadratic, as stated
in the following result.

Theorem 2.9. A necessary and sufficient condition for guaranteed stability
of the switched linear system is the existence of a smooth function of state
which is a common Lyapunov function for all the subsystems.

Another stability of switched systems is the switched stability. Suppose
that the switching signal is given and known, for instance,

σ(t) = ϕ(t, t0, x0) (2.17)

where ϕ is a known function. As we mentioned before, we can always assume
that t0 = 0 without loss of generality. For a fixed x0, define

f(t, x) = Aϕ(t,0,x0)x.

Then, the switched system becomes

δx(t) = f(t, x(t)) x(0) = x0. (2.18)

Switched system (2.15) with the specified switching signal (2.17) is said to be
switched (asymptotically, exponentially, etc.) stable if system (2.18) is (asymp-
totically, exponentially, etc.) stable as defined in Definition 2.4.

Note that the switched stability is defined only when the switching signal
is specified. In the book, when we talk about stability of a switched system
with a specified switching signal, we always refer to switched stability.

2.8 Campbell-Baker-Hausdorff Formula and Average
Systems

In this section, we briefly review the average method based on a formula from
Lie algebra known as the Campbell-Baker-Hausdorff (CBH) formula.
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Given two real square matrices, A and B, matrix eAeB is always nonsin-
gular. Hence, we can find a complex matrix C such that

eAeB = eC . (2.19)

Generally speaking, there is no guarantee that we can find such a matrix
which is real. However, if ‖A‖ + ‖B‖ ≤ ln 2, then a real C satisfying (2.19)
exists, and is given by the convergent infinite expression (the CBH formula)

C = A+B +
1
2
[A,B] +

1
12

[[A,B], B] +
1
12

[[B,A], A] + · · ·

where [A,B] = AB −BA is the commutator product of A and B.
Based on the CBH formula, we can prove the following lemma.

Lemma 2.10. Let A1, · · · , Am be matrices in Rn×n. Then, there is a positive
real number η such that

exp(Amt) exp(Am−1t) · · · exp(A1t) = exp

((
m∑

i=1

Ai

)
t+ Υtt

2

)

for any t ≤ η, where entries of matrix Υt are analytic and bounded. Moreover,
an upper (norm) bound of Υt can be explicitly estimated.

This lemma provides a basis for the average method described below.
Suppose that we have a set of linear time-invariant systems

ẋ(t) = Aix(t) i ∈ m̄.

We then integrate them in a multi-rate manner as follows. Let T > 0 be a
base period and α1, · · · , αm be positive real numbers with

∑m
i=1 αi = 1. Let

A(·) be the periodic matrix function of time, with period T : A(t+T ) = A(t),
∀ t ≥ 0, and

A(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A1 t ∈ [0, α1T )
A2 t ∈ [α1T, (α1 + α2)T )
...
Am t ∈ [(

∑m−1
i=1 αi)T, T ).

For the linear periodic system

ẋ(t) = A(t)x(t) t ≥ 0 (2.20)

let the time-invariant system

ẋ(t) = A0x(t) A0 =
m∑

i=1

αiAi (2.21)
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be its average system. Note that the average matrix A0 is a linear convex
combination of Ai, i ∈ m̄.

The state transition matrix Φ of system (2.20) satisfies

Φ(T, 0) = exp(αmAmT ) exp(αm−1Am−1T ) · · · exp(α1A1T )

while the state transition matrix Ψ of system (2.21) satisfies

Ψ(T, 0) = exp(A0T ).

According to Lemma 2.10, we have

lim
T→0+

exp(αmAmT ) exp(αm−1Am−1T ) · · · exp(α1A1T ) = exp (A0T ) .

This leads to the following observation.

Lemma 2.11. Suppose that the average system satisfies

‖Ψ(t, t0)‖ ≤ βeδ(t−t0) ∀ t ≥ t0

for some β and δ. Then, for any ε > 0, there exist positive real numbers κ
and ρ such that

‖Φ(t, t0)‖ ≤ κe(δ+ε)(t−t0) ∀ t ≥ t0

for time-varying system (2.20) with T ≤ ρ.
The lemma asserts that the convergence rate of the time-varying system

(2.20) can arbitrarily approach that of the average system (2.21) by means
of high frequency switching. In particular, if the average system (2.21) is
exponentially stable, then the time-varying system (2.20) is also exponentially
stable if period T is sufficiently small.

Finally, it should be noticed that the average approach applies only to
continuous-time systems.

2.9 Differential Inclusions

Let X and Y be two normed spaces. A set-valued map F from X to Y is a map
that associates a set F (x) ⊆ Y with any x ∈ X . The set {x ∈ X : F (x) 
= ∅} is
called the domain of F , and the set ∪x∈XF (x) is the image of F . The graph
of F , denoted by grF , is defined as

grF = {(x, y) ∈ X × Y : y ∈ F (x)}.

A differential inclusion is described by

ẋ(t) ∈ F (x(t)) (2.22)
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where F : Rn �→ Rn is a set-valued map. A function x : [t0, t1] �→ Rn is said
to be a trajectory of the differential inclusion, if it is absolutely continuous
and satisfies (2.22) almost everywhere in [t0, t1].

Note that the differential inclusions model a wide class of dynamical sys-
tems, including conventional control systems and switched systems. Indeed,
the control system

ẋ(t) = f(t, x(t), u(t)) u(t) ∈ U(t)

can be associated with the differential inclusion

ẋ(t) ∈ ∪u∈U(t)f(t, x(t), u).

Similarly, a switched system

ẋ(t) = fσ(t, x(t), u(t)) u(t) ∈ U(t) σ ∈M

can be associated with

ẋ(t) ∈ ∪i∈M ∪u∈U(t) fi(t, x(t), u).

In general, we are interested in the class of differential inclusions (2.22)
where F (x) is closed and convex for all x ∈ Rn, as these systems possess good
properties and are relatively easy to analyze. For a differential inclusion which
does not belong to this class, we can generalize the system to

ẋ(t) ∈ clcoF (x(t)) (2.23)

where clcoF stands for the closed convex hull of set F . System (2.23) is said
to be a relaxed system of system (2.22). It is clear that any trajectory of
a differential inclusion is also a trajectory of its relaxed system. In general,
the reverse is not true. However, under mild assumptions, each trajectory
of the relaxed system can be approximated by a trajectory of the original
system. This is guaranteed by the well-known Filippov-Wazewski Theorem.
The following result states a special case of the theorem.

Lemma 2.12. Fix a finite time T , a vector ξ ∈ Rn, and let z : [0, T ] �→ Rn

be a solution of the differential inclusion

ż(t) ∈ clco{A1z(t), · · · , Amz(t)} z(0) = ξ. (2.24)

Let r : [0, T ] �→ R be a continuous function satisfying r(t) > 0 for all t ∈ [0, T ].
Then, there exists a solution x : [0, T ] �→ Rn of

ẋ(t) ∈ {A1x(t), · · · , Amx(t)} x(0) = ξ

such that

‖z(t)− x(t)‖ ≤ r(t) ∀ t ∈ [0, T ].
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By this lemma, in a finite time interval, any trajectory of the relaxed sys-
tem can be approximated by a trajectory of the original switched linear system
with the same initial condition. For an infinite time interval, this property does
not hold in general. However, if we allow some relaxation in the initial con-
dition, the property does hold for the infinite-time interval, as stated in the
following result.

Lemma 2.13. Fix ξ ∈ Rn and let z : [0,∞) �→ Rn be a solution of

ż(t) ∈ clco{A1z(t), · · · , Amz(t)} z(0) = ξ.

Let r : [0,∞) �→ R be a continuous function satisfying r(t) > 0 for all t ≥ 0.
Then, there exist an η with ‖η− ξ‖ ≤ r(0), and a solution x : [0,∞) �→ Rn of

ẋ(t) ∈ {A1x(t), · · · , Amx(t)} x(0) = η

such that

‖z(t)− x(t)‖ ≤ r(t) ∀ t ∈ [0,∞).

This lemma sets up a connection between stability of a switched linear sys-
tem and stability of its relaxed system. Indeed, suppose that the switched lin-
ear system is stable (asymptotically stable, exponentially stable, resp.), then
by the lemma, the differential inclusion (2.24) is also stable (asymptotically
stable, exponentially stable, resp.). As the reverse holds trivially, stability is
in fact equivalent pairwise.

2.10 Lie Product and Chow’s Theorem

Suppose that Ω is an open set in Rn. Let f and g be mappings (vector fields)
from Ω to Rn. Hence, the mappings can be represented as

f(x) =

⎛
⎜⎜⎜⎝
f1(x1, · · · , xn)
f2(x1, · · · , xn)

...
fn(x1, · · · , xn)

⎞
⎟⎟⎟⎠ and g(x) =

⎛
⎜⎜⎜⎝
g1(x1, · · · , xn)
g2(x1, · · · , xn)

...
gn(x1, · · · , xn)

⎞
⎟⎟⎟⎠ .

The vector field f is said to be analytic, if each fi is a real analytic function.
For an analytic vector field f on Ω and x0 ∈ Ω, there is an integral curve ξ
defined on an open interval (t1, t2) of R with 0 ∈ (t1, t2) and ξ(0) = x0. That
is, ξ is a solution of the differential equation

ξ̇(t) = f(ξ(t)) ξ(0) = x0 t ∈ (t1, t2).
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For notational convenience, denote ξ(t) by Φf
t (x0) for t ∈ (t1, t2). When f is

a linear vector field f(x) = Ax, it is clear that Φf
t (x0) = eAtx0.

The Lie product (or bracket) of f and g, denoted by [f, g], is the vector
field defined by

[f, g](x) =
∂f

∂x
g(x)− ∂g

∂x
f(x) x ∈ Ω

where ∂f
∂x is the Jacobian matrix of mapping f :

∂f

∂x
=

⎛
⎜⎝

∂f1
∂x1

· · · ∂f1
∂xn

. . .
∂fn

∂x1
· · · ∂fn

∂xn

⎞
⎟⎠ .

When f and g are linear vector fields, i.e., f(x) = Ax, and g(x) = Bx, we
have

[f, g](x) = [Ax,Bx] = (AB −BA)x.

It is clear that

[Ax,Bx] = [A,B]x

where [A,B] is the commutator product of A and B.
The following simple proposition summarizes several basic properties of

the Lie product.

Proposition 2.14. The Lie product of vector fields possesses the following
properties :

(i) it is bilinear over R, i.e., if f1, f2, g1, g2 are vector fields and r1, r2 are real
numbers, then, we have

[r1f1 + r2f2, g1] = r1[f1, g1] + r2[f2, g1]
[f1, r1g1 + r2g2] = r1[f1, g1] + r2[f1, g2];

(ii)it is skew commutative, i.e., [f, g] = −[g, f ]; and
(iii) it satisfies the Jacobi identity, i.e., for any vector fields f1, f2 and f3, we

have

[f1, [f2, f3]] + [f2, [f3, f1]] + [f3, [f1, f2]] ≡ 0.

These properties are basic requirements for a linear space to be considered
a Lie algebra, which is defined below.

Definition 2.15. A linear space V over R is a Lie algebra if, in addition to
its linear space structure, it is possible to define a binary operation V ×V �→ V ,
denoted by [·, ·], which has the following properties :
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(i) the operation is skew commutative, i.e.,

[v, w] = −[w, v] ∀ v, w ∈ V

(ii)the operation is bilinear over R, i.e.,

[αv1 + βv2, v3] = α[v1, v3] + β[v2, v3] ∀ v1, v2, v3 ∈ V α, β ∈ R

(iii)the operation satisfies the Jacobi identity, i.e.,

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0 ∀ v1, v2, v3 ∈ V.

By the definition, it can be seen that the set of analytic vector fields is a
Lie algebra under the Lie product.

In the nonlinear setting, as we distinguish between points and tangent
vectors, the concept of linear subspace generalizes to two different ones. First,
a k-dimensional (regularly imbedded) submanifold Γ of Ω is a subset of Ω such
that around each point of Γ , there exists a coordinate neighborhood U such
that Γ ∩ U is given by {xj = cj : j = 1, · · · , n − k}, where c1, · · · , cn−k are
constants. On Γ ∩ U , we have local coordinates given by (xn−k+1, · · · , xn).
Second, a distribution ∆ on Ω is a mapping which assigns to each x ∈ Ω a
subspace ∆(x) of TxΩ in an analytic fashion, where TxΩ is the tangent space
to Ω at x. If each of these subspaces is of dimension k, then ∆ is said to be of
rank k. The connection between the two concepts is as follows. Λ is an integral
submanifold of ∆ if for every x ∈ Λ, ∆(x) = TxΩ. In other words, ∆(x) is the
tangent space to Ω at x.

Given a set of vector fields f1, · · · , fk, let {f1, · · · , fk}LA denote the Lie
algebra generated by f1, · · · , fk. That is, {f1, · · · , fk}LA is the smallest Lie
algebra that contains f1, · · · , fk. This Lie algebra contains the linear combi-
nation of all the possible Lie product of the form

[g1, [g2, · · · , [gs−1, gs]]] gi ∈ {f1, · · · , fk} i = 1, · · · , s 0 ≤ s <∞.

It is clear that {f1, · · · , fk}LA is a distribution.
With these preparatory concepts, we are in the position to state the main

theorem of this section. The theorem is an extension of the well-known Chow’s
Theorem and hence is termed the Generalized Chow’s Theorem.

Theorem 2.16. Suppose that Ω is a pathwise connected open set in Rn, and
L = {f1, · · · , fk} is a set of analytic vector fields defined on Ω. Let L =
{f1, · · · , fk}LA be the Lie algebra generated by L. For any x ∈ Ω, let Λx be
the largest integral submanifold of L passing through x. Then, for any y ∈ Λx,
there exist a natural number s, a real number sequence t1, · · · , ts, and an index
sequence i1, · · · , is, such that

y = Φ
fis
ts
◦ · · · ◦ Φfi1

t1 ◦ Φfi1
t1 (x)

where ‘◦’ denotes the composition of functions.
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2.11 Language and Directed Graph

We start with a finite but nonempty set of symbols, Ξ, called the alphabet.
From the individual symbols we construct strings, which are finite sequences
of the symbols from the alphabet. The concatenation of two strings w and v,
denoted by wv, is the string obtained by appending the symbols of v to the
right end of w, that is, if

w = a1a2 · · · ai and v = b1b2 · · · bj

then, we have

wv = a1a1 · · · aib1b2 · · · bj .

The length of string w, denoted by |w|, is the number of symbols in the string.
A string with length zero is said to be an empty string. For a nonempty string
w, any string of consecutive characters in w is said to be a substring of w.

If w is a string, then wn stands for the string obtained by repeating w n
times. As a special case, let w0 be the empty string.

Consider a partially ordered set Q with a unique maximum element 1 and
a unique minimum element 0. The set is said to be N -Nether if it does not
contain any strictly decreasing sequence of length N . For a given finite set of
maps

G = {fi : Q �→ Q}k
i=1

we define a language in alphabet {1, · · · , k} as

LG = {ω = ω1 · · ·ωl : fω(0) < 1}

where fω
def
= fω1 ◦ fω2 ◦ · · · ◦ fωl

.
The pair (Q, G) is said to be a monotone automaton if all maps in G are

monotone w.r.t. the order in Q and fi(1) = 1 for all fi ∈ G.
The following lemma follows easily from the well-known Pumping Lemma.

Lemma 2.17. Suppose that (Q, G) is a monotone automaton, and Q is N -
Nether. Then, there exists a nature number F (N, k), such that, for any w ∈
LG with |w| > F (N, k), we can find strings x, y and z satisfying the following
properties :

(i) w = xyz;
(ii) |xy| ≤ F (N, k);
(iii) |y| ≥ 1; and
(iv) for all i ∈ N+, we have xyiz ∈ LG.
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Finally, we briefly introduce the concept of directed graphs. A directed
graph, or digraph, consists of a finite set V of points and a collection of ordered
pairs of distinct points. Any such pair (u, v) is called an arc or directed line
and usually denoted by uv.

A (directed) walk in a digraph is an alternating sequence of points and
arcs

v0, x1, v1, · · · , xk, vk

in which each arc xi is vi−1vi. The length of such a walk is k, the number of
occurrences of arcs in it. A closed walk has the same first and last points, and
a spanning walk contains all the points. A circle is a non-trivial closed walk
with all points distinct (expect for the first and last).

2.12 Notes and References

In this chapter, we briefly reviewed some mathematical concepts which will
be useful in the development of the following chapters. It is assumed that the
reader already has some working knowledge in these areas.

The geometrical concepts of invariant subspace are standard and the mate-
rial was taken mainly from Wonham’s famous monograph [160]. The concept,
properties and algorithm of multiple controllable subspaces are natural exten-
sions from those of single controllable subspaces. These were adopted from the
recent works of the authors [52, 142]. Proposition 2.2 is based on the results
in [36].

The matrix notation adopted here is standard and can be found in most
textbooks, e.g., [50] and [66].

Genericity is a fundamental concept in system science. The notion of (al-
gebraic) genericity here was taken from [160]; see also the recent survey paper
[35] for related issues. The analytic variety and genericity were defined by the
authors for notational convenience. Nevertheless, the notions have a sound
mathematical base which can be found, for example, in the classical work
[78].

The stability theory here is standard and the reader is referred to [57] and
[157] for further references. Theorem 2.9 was proven in [93, 30].

The Campbell-Baker-Hausdorff formula, also known as Baker-Campbell-
Hausdorff formula, has several variations in different mathematical fields.
Here, we adopted the version from [41] and [152]. The key point is to merge
a multiplication of matrix exponentials into one matrix exponential. As the
state transition matrix of a switched linear system is a multiplication of ma-
trix exponentials, the formula is useful in addressing the stability issues for
switched linear systems.

The differential inclusion material introduced in Section 2.9 was taken
from [125]. Lemma 2.12 was reported in [47], and Lemma 2.13 was adopted
from [72].
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The Lie product introduced in Section 2.10 is very elementary and can
be found in any standard Lie algebra textbook. For an advanced reference
on the concepts and their extensive applications to nonlinear control theory,
the reader is referred to the textbook [74]. The Generalized Chow’s Theorem,
Theorem 2.16, was taken from the recent work [22].

Finally, the section on automata and graphs, Section 2.11, is also standard
and can be found in, e.g., [95] and [58]. Lemma 2.17 was taken from [56].
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Stabilizing Switching for Autonomous Systems

3.1 Introduction

In this chapter, we consider the switched linear autonomous system given by

δx(t) = Aσx(t) (3.1)

where x(t) ∈ Rn is the state, σ ∈M
def
= {1, · · · ,m} is the piecewise constant

switching signal to be designed, Ak ∈ Rn×n, k ∈M are real constant matri-
ces, and δ is the derivative operator in continuous time and the shift forward
operator in discrete time.

Our primary aim is to design, if possible, switching signals to make the
switched systems stable.

Definition 3.1. System (3.1) is said to be (asymptotically, exponentially)
stabilizable, if there is a switching signal σ such that the system is well-posed
and uniformly (asymptotically, exponentially) stable. Such a switching signal
σ is said to be a stabilizing switching signal for system (3.1).

Suppose that σ is completely well-defined. Then, it can be written as
σ(t) = ϕ(t; t0, x0), where (t0, x0) is the initial condition and ϕ(·; t0, x0) is
the switching path generated by the switching signal at x0 over [t0,∞). The
switching signal is said to be consistent (to the initial state), if it is independent
of the initial state, i.e.,

ϕ(t; t0, x1) = ϕ(t; t0, x2) ∀ t ≥ t0 x1, x2 ∈ Rn.

As stated in Section 1.3.5, when we address the stabilizability of switched
linear systems, without loss of generality, we can focus on the design of
transition-invariant switching signals with t0 = 0. As a consequence, a consis-
tent switching signal is in fact a switching path

ϕ(t; t0, x0) = ϕ(t) ∀ t ≥ 0.

If the switched system is stabilizable by means of a consistent switching
signal, then it is consistently stabilizable as defined in the following.
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Definition 3.2. System (3.1) is said to be consistently (asymptotically, ex-
ponentially) stabilizable, if there is a consistent switching signal σ such that
the system is well-posed and uniformly (asymptotically, exponentially) stable.

For comparison, we sometimes refer to the stabilizability defined in Defini-
tion 3.1 as pointwise stabilizability. It is obvious that consistent stabilizability
implies pointwise stabilizability, but the converse is not true in general. For
example, the switched linear system Σ(Ai)2̄ with

A1 =
[

1 −2
2 1

]
and A2 =

[
3 −2
1 −1

]
(3.2)

is pointwise stabilizable as shown in Example 1.1. However, by Theorem 3.4,
which will be presented later, this switched system is not consistently stabi-
lizable.

We also need the notion of quadratic stabilizability which is a special case
of asymptotic stabilizability.

Definition 3.3. System (3.1) is said to be quadratically stabilizable, if there
exist a switching signal σ, and a positive definite quadratic function V (x) =
xTPx, such that the system is well-posed, and −V (x) � 0.

It is clear that the quadratic function V (x) is a Lyapunov function of the
switched system, and we have

φT (t; 0, x0, σ)(AT
σ(t)P + PAσ(t))φ(t; 0, x0, σ) < 0 ∀ t ≥ t0 x0 
= 0

where φ(t; 0, x0, σ) denotes the solution of (3.1) at t with initial condition
x(0) = x0 via σ.

Besides stability, there are other additional performance specifications
which should be met.

An important issue for switching design is to reduce the switching fre-
quency to an acceptable level. Take digital networks for example. The digital
data must be transferred in real-time. This sets a data rate limit, which in turn
limits the allowable switching frequency. Bearing this in mind, the switching
signal should be designed to prevent the actuator from fast switching, or chat-
tering, which can not only increase the necessary data rate, but also damage
the system. However, the design of low frequency switching is very challeng-
ing in general, even for simple systems such as linear time-invariant systems
[73, 107].

Another critical issue for switching design is to enhance the robustness
against system uncertainties and perturbations. As disturbance exists almost
everywhere, a switching signal cannot work properly if it is not robust. More-
over, for a state-feedback switching signal, the resultant switching paths may
differ from each other for the nominal system and the perturbed system with
the same initial condition. This poses an additional challenge because a well-
defined switching signal for the nominal system may result in the ill-posed
chattering phenomenon for the perturbed system.
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In short, a ‘good’ switching signal should satisfy the following basic
criteria :

• it makes the switched system stable;
• it can avoid fast switching, preferably with a guaranteed positive dwell

time;
• it is robust to (time-varying and nonlinear) system perturbations; and
• it uses measurable system information only.

This chapter aims to provide a design methodology for a good stabilizing
switching signal. We first present some general results that provide basic ob-
servations on the ability and limitations of switching design. Then, we analyze
and design the periodic switchings, the state/output-feedback switchings, and
the combined switchings for stability and robustness. We focus on continuous-
time systems, except in Section 3.7 where discrete-time systems are addressed.

3.2 General Results

3.2.1 Algebraic Criteria

For a linear time-invariant system, it is well known that the system is stable
when its poles are located in the open left half of the complex plane. For
stabilizability of switched linear systems, we have a similar criteria as follows.

Theorem 3.4. Suppose that the switched linear system Σ(Ai)M is consis-
tently stabilizable. Then, there is a k ∈M such that

n∑
i=1

λi(Ak) ≤ 0

where λi(A), 1 ≤ i ≤ n are the eigenvalues of matrix A. Furthermore, if the
system is consistently asymptotically stabilizable, then the inequality is strict.
Proof. Let σ be a consistent switching signal that stabilizes the switched
system. Suppose that the switching duration sequence of σ is

DSσ = {(i0, h0), (i1, h1), · · ·} .

If the sequence is finite, i.e., there involve only finite switches in σ, then, it can
be seen that the last active subsystem must be stable and the theorem follows
immediately. If the sequence is infinite, it follows from the well-posedness of
σ that there involve only finite switches in any finite time. As a consequence,∑l

i=1 hi →∞ as l →∞. According to Definition 3.2, by setting ε = 1, there
exists a δ > 0 such that

‖x0‖ ≤ δ =⇒ ‖φ(t; 0, x0, σ)‖ ≤ 1 ∀ t ≥ t0.

In particular,
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‖eAis hs · · · eAi1h1eAi0h0x0‖ ≤ 1 ∀ x0 ∈ Bδ s = 0, 1, · · · .

As a consequence, all entries of the matrices

eAi0h0 , eAi1h1eAi0h0 , · · · , eAis hs · · · eAi1h1eAi0h0 , · · · (3.3)

must be bounded by
1
δ
. Suppose that

� = min
k∈M

{
n∑

i=1

λi(Ak)

}
> 0.

Then, we have

det eAkh = exp

(
h

n∑
i=1

λi(Ak)

)
≥ e�h k ∈M h > 0.

As a result,

det eAis hs · · · eAi1h1eAi0h0 ≥ e�
∑s

j=0 hj →∞ as s→∞.

This contradicts the boundedness of entries of the matrices. This establishes
the former part of the theorem. The latter part can be proven in a similar
manner. ��

Theorem 3.5. Suppose that the switched linear system Σ(Ai)M is pointwise
stabilizable. Then, there is a k ∈M such that

min
{
λ1(Ak +AT

k ), · · · , λn(Ak +AT
k )
}
≤ 0. (3.4)

Furthermore, if the system is pointwise asymptotically stabilizable, then the
inequality is strict.
Proof. We proceed by contradiction.

Suppose that all the eigenvalues of Ak +AT
k are positive. This implies that

Ak +AT
k > 0 k ∈M.

As the index M is finite, there is a positive real number ε such that

Ak +AT
k ≥ εIn k ∈M.

Let V (x) = xTx. It is easily seen that

V̇ |Akx ≥ εV (x) k ∈M.

According to Theorem 2.5, each non-trivial trajectory diverges to infinity via
any switching signal, hence the system is unstable.

The latter part can be proven in the same way. ��
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Remark 3.6. The above two necessary conditions are by no means sufficient
except for the simplest case of one dimensional systems. Nevertheless, an
advantage of the conditions is that they are easily verifiable.

As an application, it can be easily verified that system (3.2) does not
satisfy Theorem 3.4, hence, it is not consistently stabilizable.

Corollary 3.7. For any second-order switched linear system consisting of one

subsystem A1 =
[

0 1
−1 0

]
, the system is pointwise asymptotically stabilizable if

and only if

min
k∈M

min
j∈n̄
{λj(Ak +AT

k )} < 0. (3.5)

Proof. The if part follows immediately from Theorem 3.5.
According to (3.5), there exists another subsystem, say, A2, such that

A2 +AT
2 is not semi-positive definite. As a result, there is a sector

Λ = {x ∈ R2 : k2x
2
1 ≤ x1x2 ≤ k1x

2
1}

with k2 < k1, such that

xT (A2 +AT
2 )x < 0 ∀ x ∈ Λ x 
= 0.

On the other hand, the first subsystem can rotate a state to any direction with-
out changing its 2-norm. Based on these observations, we assign a switching
law σ which is the concatenation of σ1 ≡ 1 with σ2 ≡ 2 via Λ. That is, if
the state is in Λ, let the second subsystem be active, otherwise, let the first
subsystem be active. It can be seen that this switching strategy makes the
switched system asymptotically stable. ��

This corollary establishes the simple geometric fact: If one subsystem is
purely rotative, then the switched system is stabilizable when another sub-
system is contractible along certain direction.

3.2.2 Equivalence of the Stabilization Notions

For a linear time-varying system, a well-known property is that uniformly
asymptotic stabilizability implies (hence is equivalent to) exponential stabi-
lizability (c.f. Theorem 2.6). A problem naturally arises: Does this equivalence
still hold for switched linear systems? The following result provides an affirma-
tive answer to the problem. To establish the equivalence, we need the concept
of switched convergence.

Definition 3.8. System (3.1) is said to be switched convergent, if for each
state x0 ∈ Rn, there is a switching signal σx0 , such that the state trajectory
initialized at x(0) = x0 converges to the origin, that is

lim
t→∞φ(t; 0, x0, σx0) = 0.
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Theorem 3.9. The following statements are equivalent :

(i) the switched system is asymptotically stabilizable;
(ii) the switched system is exponentially stabilizable; and
(iii) the switched system is switched convergent.

Proof. It is obvious that (ii) =⇒ (i) =⇒ (iii). Thus, we only need to prove
(iii) =⇒ (ii).

First, by switched convergence, we know that, for each state x on the unit
sphere S1, there exist a time tx, and a switching path σx : [0, tx] �→ M , such
that

φ(tx; 0, x, σx) ∈ B 1
4
. (3.6)

Suppose that the switching time sequence of σx is t1, · · · , tk with

t0 = 0 < t1 < · · · < tk < tk+1
def
= tx.

Then, the corresponding state transition matrix is

Φ(t, 0, σx) = eij(t−tj)eij−1(tj−tj−1) · · · ei0(t1−t0)

t ∈ [tj , tj+1] j = 0, 1, · · · , k

where i0, · · · , ik are the corresponding switching indices. In terms of the tran-
sition matrix, we can re-write Equation (3.6) as

Φ(tx, 0, σx)x ∈ B 1
4
.

As a result, there is a neighborhood Nx of x such that

Φ(tx, 0, σx)y ∈ B 1
2
∀ y ∈ Nx.

Next, let x vary along the unit sphere, it is obvious that

∪x∈S1Nx ⊇ S1.

As the unit sphere is a compact set in Rn, by the Finite Covering Theorem,
there exist a finite number l, and a set of states x1, · · · , xl on the unit sphere,
such that

∪l
i=1Nxi ⊇ S1.

Accordingly, we can partition the unit sphere into l regions R1, · · · , Rl, such
that

(a) ∪l
i=1Ri = S1, and Ri ∩Rj = ∅ for i 
= j; and

(b) for each i, 1 ≤ i ≤ l, we have

Φ(txi
, 0, σxi

)y ∈ B 1
2
∀ y ∈ Ri.
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In view of Item (b), for each i = 1, · · · , l and x ∈ Ri, we re-define tx and
σx by

tx = txi
and σx = σxi

.

Let T = maxl
i=1 txi , and η = maxi∈M ‖Ai‖. It is clear that

‖Φ(t, 0, σx)‖ ≤ eηT ∀ x ∈ S1 t ≤ tx.

Then, for any x0 
= 0, construct a switching path θx0 : [0,∞) �→ M as
follows. Define recursively a sequence of states

z0 = x0

zk+1 = φ(t zk
‖zk‖

; 0, zk, σ zk
‖zk‖

) k = 0, 1, · · · .

As zk/‖zk‖ ∈ S1 for all k = 1, 2, · · · , from the previous derivations, it follows
that the signal σ zk

‖zk‖
(·) is known over [0, t zk

‖zk‖
]. Let

θx0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ z0
‖z0‖

(t) t ∈ [0, t z0
‖z0‖

)
σ z1

‖z1‖
(t− t z0

‖z0‖
) t ∈ [t z0

‖z0‖
, t z0

‖z0‖
+ t z1

‖z1‖
)

...
σ zk

‖zk‖
(t−

∑k−1
i=0 t zi

‖zi‖
) t ∈ [

∑k−1
i=0 t zi

‖zi‖
,
∑k

i=0 t zi
‖zi‖

)
...

which is defined over [0,∞). In this way, each non-origin state x0 is assigned
a switching path θx0 : [0,∞) �→M . For x0 = 0, assign θx0 to be any switching
path.

Finally, we prove that each state trajectory under the above switching
path is exponentially convergent. To see this, let

α = ln 2/T and β = 2eηT .

It follows from Proposition 1.7 that

φ(t; 0, λx0, θx0) = λφ(t; 0, x0, θx0) ∀ t, x0 λ ∈ R.

Accordingly, we have

‖zk+1‖ ≤
‖zk‖

2
k = 0, 1, · · · .

On the other hand, as tx ≤ T for all x ∈ S1, we have

‖φ(t; 0, x0, θx0)‖ ≤ eηT ‖φ(
∑k−1

i=0 t zi
‖zi‖

; 0, x0, θx0)‖

∀ t ∈ [
∑k−1

i=0 t zi
‖zi‖

,
∑k

i=0 t zi
‖zi‖

) k = 0, 1, · · · .
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Combining the above reasonings gives

‖φ(t; 0, x0, θx0)‖ ≤ β exp (−αt) ‖x0‖ ∀ x0 ∈ Rn t ≥ 0. (3.7)

As the constants α and β are independent of x0 and θx0 , Inequality (3.7)
shows that the switched system is exponentially stabilizable. ��

Remark 3.10. The relationship between switched convergence and exponen-
tial stability is an important issue for dynamic systems. The equivalence be-
tween them has been established for linear differential inclusions [101]. As a
direct consequence, for a switched linear system with arbitrary switching sig-
nals, convergence implies exponential stability. Theorem 3.9 ensures that, if
a switched system is switched convergent, then the system is also exponen-
tially stabilizable. In Section 6.3, this theorem will be utilized to address the
infinite-time horizon optimal switching problem.

3.2.3 Periodic and Synchronous Switchings

Switching path θ[0,∞) is said to be periodic, if there exists a positive time T
such that

θ(t+ T ) = θ(t) ∀ t ≥ 0.

Switching path σ is said to be synchronous, if there exist a base rate ω, and
a sequence of natural numbers {µ1, µ2, · · · }, such that the switching time
sequence is

{0, µ1ω, µ2ω, · · · }.

Periodic and synchronous switching signals are interesting from the viewpoint
of implementation.

Theorem 3.11. If a switched system is consistently asymptotically stabiliz-
able, then, there is a periodic and synchronous switching path which asymp-
totically stabilizes the switched system.
Proof. If there is a subsystem, say, Ak, that is asymptotically stable, then the
constant switching signal σ ≡ k works. Otherwise, suppose that a switching
signal σ with duration sequence

DSσ = {(i0, h0), (i1, h1), · · ·}

asymptotically stabilizes the switched system. It is obvious that this switching
signal must involve infinite switches. From the proof of Theorem 3.4, matrix
sequence (3.3) converges to the zero matrix. Consequently, there is a finite
number N such that

‖eAiN
hN · · · eAi1h1eAi0h0‖ < 1. (3.8)
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Let us define a function g : RN+1 �→ R+ by

g(s0, s1, · · · , sN ) = ‖eAiN
sN · · · eAi1s1eAi0s0‖.

It can be seen that g is a continuous function of its arguments. Since

g(h0, h1, · · · , hN ) < 1

there is a neighborhood Λ of (h0, h1, · · · , hN )T in RN+1 such that

g(z) < 1 ∀ z ∈ Λ.

Choose a z0 = (r0, r1, · · · , rN )T from Λ, where rj is a rational number for any
j = 0, 1, · · · , N . It can be verified that the periodic and synchronous switching
path θ with duration sequence

DSθ = {(i0, r0), · · · , (iN , rN ), (i0, r0), · · · , (iN , rN ), · · ·} (3.9)

asymptotically stabilizes the switched system. ��
Estimation (3.8) is very important in analyzing the convergence of the

systems. It establishes the contractibility uniformly for all initial states.

Corollary 3.12. For a switched linear system, the following statements are
equivalent :

(i) the system is consistently asymptotically stabilizable;
(ii)the system is consistently exponentially stabilizable;
(iii)the system is periodically and synchronously asymptotically stabilizable;
(iv)there exist a natural number l, an index sequence i1, · · · , il, and a positive

real number sequence h1, · · · , hl, such that matrix eAil
hl · · · eAi1h1 is Schur;

and
(v) for any real number s ∈ (0, 1), there exist a natural number l = l(s), an

index sequence i1, · · · , il, and a positive real number sequence h1, · · · , hl,
such that

‖eAil
hl · · · eAi1h1‖ ≤ s. (3.10)

Proof. From the proof of Theorem 3.11, (i) implies that, there is a finite
number N , such that

‖eAiN
hN · · · eAi1h1eAi1h1‖ = γ < 1

for some sequences i1, · · · , iN and h1, · · · , hN . Let l = kN , where k is to be
determined later. Define

ij+µN = ij and hj+µN = hj j = 1, · · · , N µ = 1, · · · , k − 1.

It can be seen that

‖eAil
hl · · · eAi1h1eAi1h1‖ = (‖eAiN

hN · · · eAi1h1eAi1h1‖)k = γk.

Accordingly, for any s ∈ (0, 1), by letting k ≥ ln s
ln γ , Inequality (3.10) holds.

This means that (i) =⇒ (v). In the same manner, we can prove that (iv) =⇒
(v). On the other hand, from the proof of Theorem 3.9, we have (iv) =⇒ (iii).
Other implications are trivial and hence the theorem follows. ��
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3.2.4 Special Systems

A switched linear system Σ(Ai)M is said to be triangular if each subsystem
is in the triangular form:

Ak =

⎡
⎢⎣
ak
1,1 · · · ak

1,n

. . .
0 · · · ak

n,n

⎤
⎥⎦ k ∈M.

Triangular systems are interesting because they have a simple structure, and
many non-triangular systems can be made to be triangular by means of equiv-
alent transformations (simultaneous triangularization) [113]. Here, we present
a stabilizability criterion for triangular systems.

Suppose that A = (ai,j)n×n. Let Ad = diag (a1,1, · · · , an,n) denote the
matrix obtained from A by replacing all the off-diagonal entries with zeros,
and l(A) the row vector (−a1,1, · · · ,−an,n). Matrix L ∈ Rm×n is said to be
semi-positive provided that there is an x ∈ Rn with x ≥ 0, such that Lx > 0,
the inequalities denoting entrywise inequality.

Theorem 3.13. The following statements are equivalent :

(i) triangular system Σ(Ai)M is consistently asymptotically stabilizable;
(ii) diagonal system Σ(Ad

i )M is consistently asymptotically stabilizable;
(iii)diagonal system Σ(Ad

i )M is pointwise asymptotically stabilizable; and
(iv) matrix L =

[
l(A1)T , · · · , l(Am)T

]T is semi-positive.

Proof. By Corollary 3.12, the system is consistently asymptotically stabiliz-
able if and only if there exist a natural number k, and sequences i1, · · · , ik and
h1, · · · , hk, such that matrix eAik

hk · · · eAi1h1 is Schur. The equivalence be-
tween (i) and (ii) comes from the fact that the eigenvalues of eAik

hk · · · eAi1h1

are the same as those of eAd
ik

hk · · · eAd
i1

h1 .
Next, we show that (ii) ⇐⇒ (iv). It is clear that (ii) is equivalent

to the existence of sequences i1, · · · , ik and h1, · · · , hk such that matrix
eAd

ik
hk · · · eAd

i1
h1 is Schur. Since diagonal matrices are commutative, this is

equivalent to the existence of nonnegative real numbers t1, · · · , tm such that
matrix

eAd
1t1 · · · eAd

mtm = exp(Ad
1t1 + · · ·+Ad

mtm)

is Schur. Accordingly, we have

A1(j, j)t1 + · · ·+Am(j, j)tm > 0 ∀ j = 1, · · · , n

which implies that matrix L is semi-positive.
Finally, we establish by contradiction that (iii) =⇒ (iv). Suppose that (iv)

does not hold. This means that any matrix in the form exp(Ad
1t1+· · ·+Ad

mtm)
is not convergent (to the zero matrix). As a result, any matrix of the form
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eAd
ik

hk · · · eAd
i1

h1 is not convergent. As such a matrix is diagonal, by Theorem
3.5, the diagonal system Σ(Ad

i )M is not pointwise asymptotically stabilizable.
��

This theorem converts the stabilizability of triangular systems into the
semi-positiveness of a matrix, which can be verified effectively [75].

For the switched linear system with a stable convex combination, the fol-
lowing theorem shows that these systems are consistently stabilizable.

Theorem 3.14. Suppose that there is a stable convex combination of Ak, k ∈
M . Then, the switched system is consistently asymptotically stabilizable.
Proof. Suppose that

∑
k∈M wkAk is Hurwitz for w1, · · · , wm with

wk ≥ 0 k ∈M and
∑
k∈M

wk = 1.

By Lemma 2.10, there is a positive real number ρ such that

sr (exp(wmhAm) · · · exp(w1hA1)) < 1 ∀ h ≤ ρ (3.11)

where sr(A) denotes the spectral radius of matrix A. As a result, matrix
exp(wmρAm) · · · exp(w1ρA1) is Schur. Define the periodic switching path θ as

DSθ = {(1, w1ρ), · · · , (m,wmρ), (1, w1ρ), · · · , (m,wmρ), · · ·} . (3.12)

It can be seen that θ asymptotically stabilizes the switched system. ��

3.2.5 Robustness Issues

In this subsection, we briefly discuss the robustness of switched linear systems.
Suppose that system (3.1) undergoes small perturbations :

ẋ(t) = (Aσ + εσBσ)x(t) (3.13)

where Bk ∈ Rn×n for k ∈ M are given and fixed, and εk for k ∈ M are real
numbers.

Theorem 3.15. Suppose that nominal system (3.1) is asymptotically stabi-
lizable. Then, there are positive numbers κ1, · · · , κm, such that the perturbed
system (3.13) is also asymptotically stabilizable if

|εk| ≤ κk k ∈M.

Proof. By the proof of Theorem 3.9, we can partition the unit sphere into a
finite set of regions R1, · · · , Rl, such that

(a) ∪l
i=1Ri = S1, and Ri ∩Rj = ∅ for i 
= j;
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(b) for each i, 1 ≤ i ≤ l, we have a time txi
and a switching path σxi

, such
that

Φ(txi , 0, σxi)y ∈ B 1
2
∀ y ∈ Ri

and
(c) there is a time T , such that txi ≤ T for all i = 1, · · · , l.
Now fix an i ∈ l̄. Suppose that the switching duration sequence for σxi

in
[0, txi) is

{(ji1, hi1), · · · , (jiki
, hiki

)}.

Then, we have

‖eAjiki
hiki · · · eAji1hi1y‖ ≤ 1

2
∀ y ∈ Ri.

Define a function

gi(ε1, · · · , εm) = sup
y∈Ri

‖e(Ajiki
+εjiki

Bjiki
)hiki · · · e(Aji1+εji1Bji1 )hi1y‖.

It is clear that gi is a continuous function of its arguments. As

gi(0, · · · , 0) ≤ 1
2

there are positive numbers κi1, · · · , κim, such that

gi(ε1, · · · , εm) ≤ 2
3

∀ |εi| < κij j ∈M.

Let i vary and denote

κk = min{κ1k, · · · , κlk} k ∈M.

Suppose that the perturbed system (3.13) is with

|εk| ≤ κk k ∈M.

Let Φ′ denote the transition matrix of system (3.13). It is clear that

Φ′(txi , 0, σxi)y ∈ B 2
3
∀ y ∈ Ri i = 1, · · · , l.

This, together with the proof of Theorem 3.9, implies that the perturbed
system is asymptotically stabilizable. ��

Remark 3.16. Theorem 3.15 establishes an important fact on robustness of
switched linear systems. Indeed, it asserts that sufficiently small perturbations
on the system matrices A1, · · · , Am will not turn an asymptotically stabiliz-
able switched system into an unstable system. This is the generalization of its
time-invariant counterpart, namely, each stable linear time-invariant system
has a positive stability margin.
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Remark 3.17. If we take a n× n real matrix as a point in the n2-dimensional
Euclidean space, switched system (3.1) is associated to a point in the mn2-
dimensional Euclidean space. Theorem 3.15 implies that, all asymptotically
stabilizable n-th order switched systems with m subsystems form an open set
in the mn2-dimensional Euclidean space.

In the perturbed model (3.13), we fix Bk for k ∈M and take εk for k ∈M
as the perturbed variables. An alternative way is to describe the perturbed
system as

ẋ(t) = (Aσ +Bσ)x(t) (3.14)

where Bk ∈ Rn×n for k ∈ M are the perturbations. In this situation, the
robustness theorem can be stated as follows.

Theorem 3.18. Suppose that nominal system (3.1) is asymptotically stabiliz-
able. Then, there are positive real numbers κ1, · · · , κm, such that the perturbed
system (3.14) is also asymptotically stabilizable if

‖Bk‖ ≤ κk k ∈M.

For consistently asymptotically stabilizable switched systems, a similar
robustness property holds as follows.

Theorem 3.19. Suppose that nominal system (3.1) is consistently asymptot-
ically stabilizable. Then, there are positive numbers κ1, · · · , κm, such that the
perturbed system (3.13) is also consistently asymptotically stabilizable if

|εk| ≤ κk k ∈M.

Proof. If there is a subsystem, say, A1, that is asymptotically stable, then,
there is a positive number κ1 such that A1 + ε1B1 is still asymptotically
stable when |ε1| < κ1. In this case, the constant switching signal σ ≡ 1
asymptotically stabilizes the perturbed system if |ε1| < κ1 and |εi| < ∞, i =
2, · · · ,m.

Next, we assume that no subsystem is asymptotically stable. By the
proof of Theorem 3.11, there exist a finite number N , a sequence of indices
i1, · · · , iN , and a sequence of time intervals h1, · · · , hN , such that

‖eAiN
hN · · · eAi1h1‖ = r < 1. (3.15)

Let us define a function ρ : Rm �→ R+ by

ρ(s1, · · · , sm) = ‖e(AiN
+siN

BiN
)hN · · · e(Ai1+si1Bi1 )h1‖.

It can be seen that ρ is a continuous function of its arguments. Because
ρ(0, · · · , 0) = r < 1, there is a sequence of positive numbers κ1, · · · , κm such
that



70 3 Stabilizing Switching for Autonomous Systems

ρ(s1, · · · , sm) < 1 ∀ si ∈ [−κi, κi] i ∈M.

Accordingly, the periodic switching path θ with

DSθ = {(i1, h1), · · · , (iN , hN ), (i1, h1), · · · , (iN , hN ), · · ·}

asymptotically stabilizes the perturbed systems provided that |εi| < κi, i ∈
M . ��

Remark 3.20. A special case of interest is when Bk = In for k ∈ M . Because
In is commutative with any matrix, we can easily prove that the perturbed
system (3.13) is consistently asymptotically stabilizable if

εi1h1 + · · ·+ εiN
hN < − ln r. (3.16)

Note that there is no lower bound for εi’s.

Example 3.21. For the third-order switched linear system with two subsystems

A1 =

⎡
⎣1 0 0

0 −1 0
0 0 −2

⎤
⎦ and A2 =

⎡
⎣−10 −1 10

1 0 6
−1 −4 2

⎤
⎦

it can be verified that

‖ exp(0.4A2) exp(A1)‖ ≈ 0.7803 < 1.

Consequently, this switched system is consistently asymptotically stabilizable.
Let us consider the perturbed system (3.13) with B1 = B2 = I3. From

Remark 3.20, the perturbed system is consistently asymptotically stabilizable
if

ε1 + 0.4ε2 < − ln 0.7803 ≈ 0.2481.

3.3 Periodic Switching

In this section, we investigate the stabilizing and robust design issues via
periodic switching signals. For the switched linear autonomous system (3.1),
we make the following assumption.

Assumption 3.1 . There is a convex combination of Ak, k ∈ M which is
Hurwitz.
In view of this assumption, let A0

def
=
∑

k∈M wkAk be Hurwitz with wk ≥ 0
and

∑
k∈M wk = 1.

Under this assumption, we are able to apply the average technique to ap-
proximate the switched system with a linear time-invariant system. According
to Lemma 2.10, for a sufficiently small ρ, we have
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exp(wmAmρ) exp(wm−1Am−1ρ) · · · exp(w1A1ρ) = exp (ρ(A0 + ρΥρ)) .

Moreover, for a sufficiently small ρ, matrix Ā
def
= A0 + ρΥρ is Hurwitz.

Let us fix such a ρ. Define a periodic switching path

σ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 mod (t, ρ) ∈ [0, w1ρ)
2 mod (t, ρ) ∈ [w1ρ, (w1 + w2)ρ)
...
m mod (t, ρ) ∈ [(

∑m−1
i=1 wi)ρ, ρ)

∀ t ≥ t0 (3.17)

where mod (a, b) denotes the remainder of a divided by b.
Let {(t0, i0), (t1, i1), · · · } be the switching sequence of the switching path.

Define the matrix function

Ψ(t, σ) = eAik
(t−tk)eAik−1 (tk−tk−1) · · · eAi0 (t1−t0) t ∈ [tk, tk+1].

The state transition matrix can be expressed as

Φ(s1, s2, σ) = Ψ(s1, σ)Ψ(s2, σ)−1 ∀ s1, s2 ≥ t0. (3.18)

The solution of system (3.1) is given by

x(t) = Φ(t, t0, σ)x0 ∀ t ≥ t0.

We have the following estimation for the state transition matrix.

Lemma 3.22. Transition matrix (3.18) is exponentially convergent, that is,
there exist two positive numbers α and β such that

‖Φ(s1, s2, σ)‖ ≤ β exp (−α(s1 − s2)) ∀ s1 ≥ s2.

Proof. Since

Φ(ρ, 0, σ) = exp(wmAmρ) · · · exp(w1A1ρ) = exp(Āρ)

for any nonnegative integers l1 ≤ l2, we have

Φ(l2ρ, l1ρ, σ) = exp(Ā(l2 − l1)ρ).

As Ā is Hurwitz, there are positive numbers α and κ such that

‖Φ(l2ρ, l1ρ, σ)‖ ≤ κ exp (−α(l2ρ− l1ρ)) .

For any s1 ≤ s2, let l1, l2 satisfy

l1ρ ≤ s1 < (l1 + 1)ρ (l2 − 1)ρ < s2 ≤ l2ρ.

Simple calculation gives
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‖Φ(s2, s1, σ)‖ ≤ ‖Φ(l1ρ, s1, σ)‖‖Φ(l2ρ, l1ρ, σ)‖‖Φ(s2, l2ρ, σ)‖
≤ κ exp (−α(l2ρ− l1ρ)) ‖Φ(0, s1 − l1ρ, σ)‖‖Φ(0, l2ρ− s2, σ)‖.

Denoting

κ1 = max
0≤t≤ρ

‖Φ(0, t, σ)‖

the maximum is attainable because Φ(0, t, σ) is continuous from t. Combining
the above inequalities gives

‖Φ(s1, s2, σ)‖ ≤ κ2
1κ exp (−α(l2ρ− l1ρ)) ≤ κ2

1κ exp (−α(s2 − s1)) .

Let β = κ2
1κ and the lemma follows. ��

Next, we consider the perturbed switched system given by

ẋ(t) = Aσx(t) + fσ(t) x(t0) = x0 (3.19)

where fk : R+ �→ Rn, k ∈ M are piecewise continuous vector functions rep-
resenting system perturbations or uncertainties.

Note that the above model allows different perturbations for different
subsystems, thus reflecting many practical situations. For example, in the
framework of multi-controller switching, different controllers may induce dif-
ferent types of noises. If the noises are controller-independent, we simply have
f1 = f2 = · · · = fm.

Let

N = sup
t≥t0,k∈M

{‖fk(t)‖}.

The perturbations fk(·), k ∈M are said to be

i) bounded, if N <∞;
ii) convergent (to the origin), if ‖fk(t)‖ → 0 as t→∞ for all k ∈M ; and
iii) exponentially convergent (to the origin), if ‖fk(t)‖ ≤ δ exp(−γt), ∀ t, k ∈

M for some positive real numbers δ and γ.

Theorem 3.23. Suppose that Assumption 3.1 holds. Then, for system (3.19)
with periodic switching signal (3.17), we have the following :

(i) the system state is bounded if the perturbation is bounded;
(ii)the system state is bounded and convergent if the perturbation is bounded

and convergent; and
(iii)the system state is exponentially convergent if the perturbation is exponen-

tially convergent.

Proof. According to Lemma 3.22, there exist two positive numbers α and β
such that

‖Φ(s1, s2, σ)‖ ≤ β exp (−α(s1 − s2)) ∀ s1 ≥ s2.
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Denote f(t) = fσ(t)(t), t ≥ t0. First, suppose that f(·) is bounded. Then,
we have

‖x(t)‖ = ‖Φ(t, t0, σ)x0 +
∫ t

t0

Φ(t, τ, σ)f(τ)dτ‖

≤ ‖Φ(t, t0, σ)‖‖x0‖+N

∫ t

t0

‖Φ(t, τ, σ)‖dτ

≤ β‖x0‖+
β

α
N.

Hence, the state is bounded.
Second, suppose that f(·) is bounded and convergent. Then, for any given

positive number ε, we can find a time T ≥ t0 such that

‖x(t)‖ ≤ ε ∀ t ≥ T. (3.20)

Indeed, for any given positive number �, there exists a T1 ≥ t0 such that

‖f(t)‖ ≤ � ∀ t ≥ T1.

Therefore, we have

‖x(t)‖ = ‖Φ(t, t0, σ)x0 +
∫ t

t0

Φ(t, τ, σ)f(τ)dτ‖

≤ β exp (−α(t− t0)) ‖x0‖+N

∫ T1

t0

β exp (−α(t− τ)) dτ

+�
∫ t

T1

β exp (−α(t− τ)) dτ

≤ β exp (−α(t− t0)) ‖x0‖+
β

α
N exp (−α(t− T1)) +

β

α
�.

Choose T and � to satisfy

exp(−αT )‖x0‖ ≤
ε

3
β

α
N exp (−α(T − T1)) ≤

ε

3
and � ≤ εα

3β
.

With these, inequality (3.20) follows. From the arbitrariness of ε, the conver-
gence of the state follows.

Third, suppose that ‖f(t)‖ ≤ δ exp(−γt), ∀ t. Then, we have

‖x(t)‖ ≤ β exp (−α(t− t0)) ‖x0‖+
∫ t

t0

β exp (−α(t− τ)) δ exp(−γτ)dτ.

Simple derivation gives

‖x(t)‖ ≤

⎧⎪⎨
⎪⎩

(β‖x0‖+ βδ
γ−α ) exp (−α(t− t0)) if γ > α

(β‖x0‖+ βδ
α−γ ) exp (−γ(t− t0)) if γ < α

(β‖x0‖+ βδ
εe ) exp (−(α− ε)(t− t0)) if γ = α
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where e = exp(1) and ε is any sufficiently small positive number. As a result,
the state is exponentially convergent. This completes the proof of the theorem.
��

Remark 3.24. This theorem establishes several nice robustness properties for
a class of switched linear systems. In particular, the bounded perturbation
(implying) bounded state property is desirable in many practical situations.
Moreover, it can be seen from the proof that the bound of the state can
be explicitly estimated. Therefore, given any allowable state bound, we can
estimate a bound of perturbations which makes the system state bounded
within the allowed level.

Remark 3.25. It can be seen from the proof that the decay rate of the state
relies heavily on the decay rate of the transition matrix, which in turn relies
on the choice of the switching signal. A question naturally arises: How can we
find a periodic switching signal with the largest possible decay rate for the
transition matrix? Intuitively, we need to find a natural number l, an index
sequence i0, i1, · · · , il and a duration sequence h0, h1, · · · , hl, such that

ln ‖ exp(Ail
hl) · · · exp(Ai1h1) exp(Ai0h0)‖∑l

j=0 hj

→ min .

Because this problem can be quite involved, we leave it open for further in-
vestigation.

3.4 State-feedback Switching

3.4.1 State-space-partition-based Switching

In this subsection, we formulate a state-feedback switching signal based on an
appropriate partition of the state space.

First, suppose that Assumption 3.1 holds and the average matrix

A0 =
∑
k∈M

wkAk

is Hurwitz. Solving the Lyapunov equation

AT
0 P + PA0 = −In

for symmetric matrix P , we obtain a positive definite solution P . Denote

Qk = AT
k P + PAk k ∈M.

Then, fix a set of real numbers ri ∈ (0, 1), i ∈ M . For any initial state
x(t0) = x0, set
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σ(t0) = arg min{xT
0 Q1x0, · · · , xT

0 Qmx0}

where arg min stands for the index which attains the minimum among M . If
there are more than one such index, we simply choose the minimum index.

The first switching time instant is determined by

t1 = inf
{
t > t0 : xT (t)Qσ(t0)x(t) > −rσ(t0)x

T (t)x(t)
}
.

If the set is empty, then, let t1 = ∞. Otherwise, define the switching index as

σ(t1) = arg min{xT (t1)Q1x(t1), · · · , xT (t1)Qmx(t1)}.

Finally, we define the switching time/index sequences recursively by

tk+1 = inf
{
t > tk : xT (t)Qσ(tk)x(t) > −rσ(tk)x

T (t)x(t)
}

σ(tk+1) = arg min
{
xT (tk+1)Q1x(tk+1), · · · , xT (tk+1)Qmx(tk+1)

}
k = 1, 2, · · · . (3.21)

Lemma 3.26. Under the above switching law, system (3.1) is well-posed and
quadratically stable.
Proof. We first prove the well-posedness of the switching signal.

Suppose that tk and tk+1 are two consecutive switching time instants. Let
i = σ(tk+). It follows from the switching signal that

1) xT (tk)Qix(tk) = minj∈M{xT (tk)Qjx(tk)}; and
2) xT (tk+1)Qix(tk+1) ≥ −rix

T (tk+1)x(tk+1).

As
∑

j∈M wjQj = −In and
∑

j∈M wj = 1, it follows from Item 1) that

xT (tk)Qix(tk) ≤ −xT (tk)x(tk). (3.22)

For notational convenience, denote xk = x(tk), xk+1 = x(tk+1), and let ϑ be
any real number greater than 1.

First, consider the case

‖x(t)‖ ≤ ϑ‖xk+1‖ ∀ t ∈ [tk, tk+1]. (3.23)

In this case, define a function

g(t) = xT (t)(Qi + In)x(t) t ∈ [tk, tk+1].

It follows from (3.22) and Item 2) that

g(tk) ≤ 0 g(tk+1) ≥ (1− ri)xT
k+1xk+1. (3.24)

Simple computation gives

dg

dt
(t) = xT (t)

(
AT

i (Qi + In) + (Qi + In)Ai

)
x(t).
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Denote νi = ‖AT
i (Qi + In) + (Qi + In)Ai‖. By inequality (3.23), we have

|dg
dt

(t)| ≤ ϑ2νix
T
k+1xk+1 ∀ t ∈ [tk, tk+1].

Combining this with (3.24) yields

ϑ2νi(tk+1 − tk) ≥ (1− ri)

which implies that

tk+1 − tk ≥ (1− ri)/(ϑ2νi).

Second, suppose that (3.23) does not hold. This means that there is a
t∗ ∈ [tk, tk+1) satisfying

‖x(t∗)‖ > ϑ‖xk+1‖. (3.25)

From system equation (3.1), we have

x(t∗) = exp (Ai(t∗ − tk+1))xk+1.

From (3.25) and the fact that

‖ exp (Ai(t∗ − tk+1)) ‖ ≤ exp (‖Ai‖(tk+1 − t∗))

it follows that

tk+1 − tk ≥ tk+1 − t∗ > lnϑ/‖Ai‖.

From the above reasonings, we have

tk+1 − tk ≥ η
def
= sup

ϑ>1
min
i∈M

(
(1− ri)/(ϑ2νi), lnϑ/‖Ai‖

)
.

Hence, the switching signal has a positive dwell time η, and hence it is well-
defined.

To prove the quadratic stability of the switched system, let us consider the
Lyapunov function candidate V (x) = xTPx. Its derivative along the system
trajectory is

dV

dt
(x(t)) = xT (t)Qσ(t)x(t) ≤ −rσ(t)x

T (t)x(t) ≤ −rxT (t)x(t)

where r = min{r1, · · · , rm}. As a result, the quadratic function V (x) is a
Lyapunov function of the system and the theorem follows from the Lyapunov
Theorem, Theorem 2.5. ��

Although the lemma guarantees the well-definedness of the switching sig-
nal, it cannot prevent fast switching and chattering in the event that the
system undergoes perturbations. This is justified by the following example.
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Example 3.27. Consider the perturbed system given by

ẋ(t) = Aσx(t) + fσ(t) σ ∈ {1, 2}

A1 =
[
−2 0
0 1

]
and A2 =

[
1 0
0 −2

]

f1(t) =
[
−1
1

]
exp(−0.1t) and f2(t) =

[
1
−1

]
exp(−0.1t) (3.26)

where f1 and f2 are perturbations associated to the first and second subsys-
tems, respectively.
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Fig. 3.1. State trajectory and switching number of system (3.26)

As A1 +A2 = −I2, we can choose w1 = w2 = 1
2 . Simple computation gives

P = 1
2I2. Suppose that we use the state-feedback switching signal (3.21) with

r1 = r2 = 0.4. Figure 3.1 depicts the state trajectories and the number of
switches, respectively, when the system initializes at x(0) = [1,−1]T . It can
be seen that the chattering phenomenon occurs when t > 11.45. In fact, as the
state trajectory converges to the origin, the information of the state is ‘merged’
by the perturbations, that is, ‖fσ(t)‖

‖x(t)‖ → ∞. Because the state direction and
the perturbation direction are always opposite, chattering occurs.

3.4.2 A Modified Switching Law

In this subsection, we consider the perturbed switched linear system (3.19)
where the switching signal is chosen to be in state-feedback form.
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For a switched system with nonlinear perturbations, the design of a state-
feedback stabilizing switching law is quite sophisticated. Indeed, a state-
feedback switching law usually generates different switching paths with respect
to different system perturbations. In other words, the perturbations make the
switching paths ‘drift’ away. Because of this, the perturbation analysis for
time-varying systems is not applicable.

To ensure well-posedness of the perturbed switched systems, we modify
the switching law given in the previous subsection as follows.

Fix a positive real number υ. For perturbed switched system (3.19), define
the following state-feedback switching signal.

For any initial state x(t0) = x0, set

σ(t0) = arg min{xT
0 Q1x0, · · · , xT

0 Qmx0}.

If there are more than one such index, we select the minimum one.
The subsequent switching time/index sequences are defined recursively by

tk+1 = inf
{
t > tk : xT (t)Qσ(tk)x(t) > −rσ(tk)x

T (t)x(t), ‖x(t)‖ > υ
}

σ(tk+1) = arg min{xT (tk+1)Q1x(tk+1), · · · , xT (tk+1)Qmx(tk+1)}
k = 0, 1, · · · . (3.27)

The switching signal is the same as that in (3.21), except that we fix a
level set for switching, that is, no switch occurs within the υ-neighborhood of
the origin.

Under this switching law, the perturbed system possesses nice robustness
properties as shown in the following theorem.

Theorem 3.28. For system (3.19), suppose that Assumption 3.1 holds. If the
perturbations are bounded, then the state-feedback switching signal (3.27) is
well-defined and the system state is bounded.
Proof. First, we prove that the switching law is well-defined by showing that
the switching signal has a positive dwell time.

Suppose that tk and tk+1 are two consecutive switching time instants. It
follows from the switching signal that

1) xT (tk)Qσ(tk)x(tk) = mini∈M{xT (tk)Qix(tk)};
2) xT (tk+1)Qσ(tk)x(tk+1) ≥ −rσ(tk)x

T (tk+1)x(tk+1); and
3) ‖x(tk+1)‖ ≥ υ.

As
∑

i∈M wiQi = −In and
∑

i∈M wi = 1, it can be seen that Item 1) implies
that

4) xT (tk)Qσ(tk)x(tk) ≤ −xT (tk)x(tk).

For notational convenience, denote

xk = x(tk) xk+1 = x(tk+1) and j = σ(tk).



3.4 State-feedback Switching 79

Let us consider the case

‖x(t)‖ ≤ 2‖xk+1‖ ∀ t ∈ [tk, tk+1]. (3.28)

In this case, define a function

g(t) = xT (t)Qjx(t) + xT (t)x(t) t ∈ [tk, tk+1].

It follows from Items 2) and 4) that

g(tk) ≤ 0 and g(tk+1) ≥ (1− rj)xT
k+1xk+1. (3.29)

Simple computation gives

dg

dt
(t) = xT (t)

(
AT

j (Qj + In) + (Qj + In)Aj

)
x(t) + 2(fj(t))T (Qj + In)x(t).

Let us denote

ν1 = ‖AT
j (Qj + In) + (Qj + In)Aj‖

and

ν2 = ‖Qj + In‖ and ν3 = sup
t∈[tk,tk+1]

‖fj(t)‖.

In view of Item 3) and Inequality (3.28), we have

‖dg
dt

(t)‖ ≤ 4ν1x
T
k+1xk+1 + 4ν2ν3‖xk+1‖

≤ (4ν1 + 4ν2
ν3

υ
)xT

k+1xk+1 ∀ t ∈ [tk, tk+1].

Combining this with (3.29) yields

(4ν1 + 4ν2
ν3

υ
)(tk+1 − tk) ≥ (1− rj)

which implies that

tk+1 − tk ≥ (1− rj)/(4ν1 + 4ν2
ν3

υ
).

Next, suppose that (3.28) does not hold. This means that there is a t∗ ∈
[tk, tk+1) satisfying

‖x(t∗)‖ > 2‖xk+1‖. (3.30)

From the system equation (3.19), we have

xk+1 = exp (Aj(tk+1 − t∗))x(t∗) +
∫ tk+1

t∗
exp (Aj(tk+1 − τ)) fj(τ)dτ
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which is equivalent to

x(t∗) = exp (Aj(t∗ − tk+1))xk+1 −
∫ tk+1

t∗
exp (Aj(t∗ − τ)) fj(τ)dτ.

As exp(Ajt) is continuous and ‖ exp(Aj0)‖ = 1, there is a positive number ν4
such that

‖ exp(Ajt)‖ ≤
3
2

∀ t ∈ [−ν4, 0].

Suppose that

tk+1 − t∗ ≤ min
(
ν4,

υ

3N

)
where N is the upper bound of perturbations. Then, we have

‖x(t∗)‖ ≤ 3
2
‖xk+1‖+

3
2
(tk+1 − t∗)N ≤ 2‖xk+1‖

which contradicts (3.30). As a consequence, we have

tk+1 − tk ≥ tk+1 − t∗ > min
(
ν4,

υ

3N

)
.

The above reasonings show that for any consecutive switching time in-
stants tk and tk+1, we have

tk+1 − tk ≥ min
j∈M

(
(1− rj)/(4ν1 + 4ν2

ν3

υ
), ν4,

υ

3N

)
(3.31)

which sets a lower bound for the dwell time of the switching signal. This
ensures that the switching signal is well-defined.

Finally, we show that the system state is bounded. In fact, we can prove
by contradiction that

‖x(t)‖ ≤
(
λmax

λmin

) 1
2

max
(
‖x0‖,

2‖P‖
r

N, υ

)
def
= µ ∀ t ≥ t0 (3.32)

where λmax and λmin are the maximum and minimum eigenvalues of matrix
P , and r = min(r1, · · · , rm). Indeed, suppose that ‖x(t∗)‖ > µ for some
t∗ > t0. Then, let

µ1 = max
(
‖x0‖,

2‖P‖
r

N, υ

)
=
(
λmin

λmax

) 1
2

µ.

From ‖x0‖ ≤ µ1 and the continuity of the state, there exists a time instant
s ∈ [t0, t∗) satisfying

‖x(s)‖ = µ1 and ‖x(t)‖ > µ1 ∀ t ∈ (s, t∗]. (3.33)
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Consider the Lyapunov function candidate given by

V (x) = xTPx.

Its derivative along the system trajectory can be computed as

dV

dt
(x(t)) = xT (t)Qσ(t)x(t) + 2(fσ(t))TPx(t).

As ‖x(t)‖ ≥ µ1 ≥ υ, ∀ t ∈ [s, t∗], it follows from the switching signal that

xT (t)Qσ(t)x(t) ≤ −rσ(t)x
T (t)x(t) ∀ t ∈ [s, t∗].

This, together with (3.33), implies that

dV

dt
≤ 0 ∀ t ∈ [s, t∗].

Consequently, we have

V (x(t)) ≤ V (x(s)) ≤ λmax‖x(s)‖2 = λmaxµ
2
1 ∀ t ∈ [s, t∗]

which in turn implies that

xT (t)x(t) ≤ V (x(t))
λmin

=
λmax

λmin
µ2

1 = µ2 ∀ t ∈ [s, t∗].

Note that the last inequality contradicts the assumption that ‖x(t∗)‖ > µ. As
a result, Inequality (3.32) holds for all t ≥ t0. This completes the proof of the
theorem. ��

Remark 3.29. In switching signal (3.27), the parameters υ and rk play twofold
roles in determining the performance of the perturbed system. Generally
speaking, the role of υ is to prevent the switching signals from chattering.
On one hand, a sufficiently small υ may result in a sufficiently small dwell
time and a sufficiently high switching frequency, which is usually undesirable
in practice. On the other hand, a larger υ may lead to a larger system state
bound, which is also undesirable. Similarly, smaller rk, k ∈ M may lead to
a larger system state bound, while larger rk, k ∈ M may result in a smaller
dwell time. The choice of these parameters should be balanced according to
the performance requirement.

If the perturbations are convergent, then the system state can be made
to converge to any given small neighborhood of the origin. This can be seen
from the following result.

Theorem 3.30. For system (3.19), suppose that Assumption 3.1 holds. If the
perturbations are bounded and convergent, then, there is a time instant T ≥ t0
such that
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‖x(t)‖ ≤
(
λmax

λmin

) 1
2

υ ∀ t ≥ T. (3.34)

Proof. As in the proof of Theorem 3.28, we consider the Lyapunov function
candidate V (x) = xTPx and its derivative along the system trajectory

dV

dt
= xT (t)Qσ(t)x(t) + 2(fσ(t))TPx(t).

Let η = ‖P‖, r = min(r1, · · · , rm), and f(t) = fσ(t). Whenever

‖x(t)‖ ≥ max
(
υ,

4η
r
‖f(t)‖

)
def
= ψ(t)

it follows from the switching law that

dV

dt
≤ −rxT (t)x(t) + 2fT (t)Px(t) ≤ −r

2
xT (t)x(t) ≤ − r

2λmax
V (x(t)).

Therefore, for any t ≥ t0, at least one of the following two inequalities holds

a) ‖x(t)‖ ≤ ψ(t); and

b)
d ln(V (x(t)))

dt
≤ − r

2λmax
.

Fix a time instant s ≥ t0. Suppose that Item a) does not hold at t = s,
then either

‖x(t)‖ ≥ ψ(t) ∀ t ∈ [t0, s]

or there is an s∗ ∈ [t0, s) such that

‖x(s∗)‖ ≤ ψ(s∗) and ‖x(t)‖ > ψ(t) ∀ t ∈ (s∗, s].

In the former, integrating d ln(V (x(t)))
dt from t0 to s gives

ln(V (x(s)))− ln(V (x(t0))) ≤ −
r

2λmax
(s− t0)

which implies that

‖x(s)‖2 ≤ λmax

λmin
exp

(
− r

2λmax
(s− t0)

)
‖x0‖2.

Similarly, in the latter, we have

‖x(s)‖2 ≤ λmax

λmin
exp

(
− r

2λmax
(s− s∗)

)
ψ(s∗)2.

To summarize, for any s ≥ t0, we have
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‖x(s)‖2 ≤ max
(
ψ(s)2,

λmax

λmin
exp

(
− r

2λmax
(s− t0)

)
‖x0‖2 ,

sup
s∗<s

{
λmax

λmin
exp

(
− r

2λmax
(s− s∗)

)
ψ(s∗)2

})
. (3.35)

As f(t) is convergent, there is a time T1 ≥ t0 such that

‖f(t)‖ ≤ r

4η
υ ∀ t ≥ T1.

Recall that N is an upper bound of ‖f(·)‖. If N ≤ rυ
4η , then let T2 = 0.

Otherwise, let T2 = 4λmax

r ln
(

4Nη
rυ

)
. Finally, let T3 = 4λmax

r ln
(

‖x0‖
υ

)
. With

these, it can be seen that, for any t ≥ max(T1 + T2, T3)
def
= T , we have

ψ(t) = υ exp
(
− r

2λmax
(t− t0)

)
‖x0‖2 ≤ υ2

and

sup
s∗<t

{
exp

(
− r

2λmax
(t− s∗)

)
ψ(s∗)2

}
≤ υ2.

It follows from (3.35) that

‖x(t)‖2 ≤ λmax

λmin
υ2 ∀ t ≥ T.

This completes the proof. ��
Utilizing this theorem, we can design a switching signal to make the per-

turbed system ‘practically’ convergent by choosing a suitable υ. Indeed, given
a level of practical tolerance, ε, let υ = ( λmin

λmax
)

1
2 ε, then the switching signal

will bring the system state into the ε-neighborhood of the origin in a finite
time. Due to the arbitrariness of the ε, the switched system can be steered
into any pre-assigned neighborhood of the origin with a well-defined switching
law.

3.4.3 Observer-based Switching

In this subsection, we explore the possibility of designing a switching law
based on measured output instead of the state information.

Consider the switched linear system described by{
ẋ(t) = Aσx(t) + fσ(t)
y(t) = Cσx(t) (3.36)

where x(t), σ are the same as in (3.1), y(t) ∈ Rq is the measured output,
fi(t), i ∈ M are piecewise continuous vector functions denoting for system
perturbations, and Ai, Ci, are matrices of compatible dimensions.
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For system (3.36), we consider the state estimator (observer) given by

˙̂x = Aσx̂+ Lσ[y − Cσx̂] (3.37)

where y and σ are the output and switching signal of system (3.36), respec-
tively, and gain matrices L1, · · · , Lm ∈ Rn×q are to be determined later.

Note that the observer itself is a switched linear system.

Assumption 3.2. There exist a positive definite matrix P1, and matrices Yi,
such that

AT
i P1 + P1Ai − CT

i Y
T
i − YiCi < 0 ∀ i ∈M.

Let Li = P−1
1 Yi. The above assumption asserts that there exists a common

quadratic Lyapunov function for switched system

ẋ = (Aσ − LσCσ)x. (3.38)

Indeed, let V (x) = xTP1x. Its derivative along system (3.38) is

dV

dt
(x(t)) = xT (t)

(
AT

σP1 + P1Aσ − CT
σ Y

T
σ − YσCσ

)
x(t)

which is a negative definite function of state. This implies that system (3.38) is
stable under arbitrary switching (c.f. Theorem 2.9). Furthermore, let Φσ(t, t0)
be the state transition matrix of Equation (3.38). Then, it can be proven that

‖Φσ(t, t0)‖ ≤
(
λ2

λ1

) 1
2

e− γ
2λ1

(t−t0) (3.39)

where λ1 and λ2 denote the minimum and maximum eigenvalues of matrix P1,
respectively, and γ denotes the minimum eigenvalue among Qi

def
= −(AT

i P1 +
P1Ai − CT

i Y
T
i − YiCi) for i ∈M .

To stabilize system (3.36) via observer-based switching, we propose a mod-
ified switching strategy based on switching law (3.27).

Fix a positive real number υ. Suppose that x̂ is initialized at x̂(t0) = x̂0.
Set

σ(t0) = arg min{x̂T
0 Q1x̂0, · · · , x̂T

0 Qmx̂0}.

If there are more than one such index, just pick the minimum one.
The subsequent switching time/index sequences are defined recursively by

tk+1 = inf
{
t > tk : x̂T (t)Qσ(tk)x̂(t) > −rσ(tk)x̂

T (t)x̂(t), ‖x̂(t)‖ > υ
}

σ(tk+1) = arg min{x̂T (tk+1)Q1x̂(tk+1), · · · , x̂T (tk+1)Qmx̂(tk+1)}
k = 0, 1, · · · . (3.40)

The switching signal is the same as that in (3.27), except that the observer
x̂ is used instead of the real state x.
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Theorem 3.31. For system (3.36), suppose that Assumptions 3.1 and 3.2
hold. Then, the dynamic-output-feedback switching law (3.40) is well-defined,
and we have

(i) the perturbed system is bounded if the perturbations are bounded; and
(ii)the perturbed system is practically convergent if the perturbations are con-

vergent.

Proof. Define the difference between the real state and the estimated state

x̃ = x− x̂.

Subtracting (3.37) from (3.36), we obtain

˙̃x(t) = (Aσ − LσCσ)x̃(t) + fσ(t). (3.41)

Combining (3.37) with (3.41), we have

˙̃x = (Aσ − LσCσ)x̃+ fσ (3.42)
˙̂x = Aσx̂+ LσCσx̃. (3.43)

Let Φσ(t, t0) be the state transition matrix of the nominal system (3.38).
The solution of Equation (3.42) can be given by

x̃(t) = Φσ(t, t0)x̃(t0) +
∫ t

t0

Φσ(τ, t0)fσ(τ)dτ.

It follows from Assumption 3.2 that (3.39) holds. From (3.39), it can be seen
that x̃ is bounded if the perturbations fi, i ∈ M are bounded, and x̃ is
convergent if the perturbations fi, i ∈M are convergent.

For system (3.43), take ˙̂x = Aσx̂ as the nominal system and LiCix̃, i ∈M
as the exoteric perturbations. The theorem follows directly from Theorems
3.28 and 3.30. ��
Example 3.32. For comparison, we continue to address system (3.26) in Ex-
ample 3.27.
Set υ = 0.2, and simulate the state trajectory and switching signal under the
modified switching law (3.27). This is shown in Figure 3.2. It is clear that
no chattering occurs in this case, albeit at the expense of the state becoming
practically convergent rather than exponentially convergent.

Next, suppose that the full state information is not available. Assume that
the measured output is y = x2 for the first subsystem and y = x1 for the
second subsystem. Let

L1 =
[

0
2

]
and L2 =

[
1
0

]
.

It can be verified that Assumption 3.2 holds. Figure 3.3 shows the state and
observer trajectories for the switched system under the observer-based switch-
ing law (3.40) with υ = 0.2 and x̂(t0) = [0, 0]T . The corresponding switching
signal is depicted in Figure 3.4.
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Fig. 3.2. State trajectory and switching signal under switching signal (3.27)
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Fig. 3.3. State and estimator trajectories under switching signal (3.40)

3.5 Combined Switching

In this section, we first focus on the switched systems with two subsystems
(i.e., m = 2). Then, we extend it to the general case in the last subsection.

3.5.1 Switching Strategy Description

For a switched linear system with two subsystems, suppose that none of A1
and A2 is Hurwitz but Assumption 3.1 holds. Fix w1, w2, r1, r2 as described
in Section 3.4.1.
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Fig. 3.4. Switching signal under the observer-based switching signal

Let A0 = w1A1 +w2A2, and P > 0 be such that AT
0 P +PA0 = −In. From

Lemma 2.10, we can find a τ > 0 such that

(A0 + Υtt)TP + P (A0 + Υtt) < 0 ∀ t ≤ τ.

As a result, we have

(exp(w2A2τ) exp(w1A1τ))
T
P (exp(w2A2τ) exp(w1A1τ))

≤ (1− δ)P < P (3.44)

where δ ∈ (0, 1).
Let τ1 = w1τ , τ2 = w2τ , and Qi = AT

i P + PAi, i = 1, 2.
The following switching strategy combines the ideas from the state-

feedback switching signal (3.21) and from the average method introduced
in Section 3.3.

Suppose that the system has the initial state x(t0) = x0. Set

σ(t0) = arg min{xT
0 Q1x0, x

T
0 Q2x0}.

The subsequent switching time/index sequences are defined recursively by

tk+1 =
{

inf
{
t > tk : xT (t)Q1x(t) > −r1xT (t)x(t)

}
+ τ1 if σ(tk) = 1

inf
{
t > tk + τ2 : xT (t)Q2x(t) > −r2xT (t)x(t)

}
if σ(tk) = 2

σ(tk+1) =
{

2 if σ(tk) = 1
1 if σ(tk) = 2 k = 0, 1, · · · . (3.45)

According to this strategy, when the first subsystem is active, it should be
kept active for the additional dwell-time τ1 after the state-feedback switching
time is due. On the other hand, if the second subsystem is active, it should be
kept active for the dwell time τ2, then the state-feedback switching mechanism
decides the next switching time. Suppose that tk is a switching time with
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σ(tk) = 1, it can be seen from the strategy that, the period [tk, tk+2) can
be divided into two phases: in [tk, tk+1 − τ1) ∪ [tk+1 + τ2, tk+2), the system is
governed by the state-feedback switching mechanism, while in [tk+1−τ1, tk+1+
τ2), the system is governed by the time-driven mechanism. That is, the average
period (i.e., time duration for a cyclic switching) is the summation of the two
phases. In this way, the resultant switching frequency is lower than that of a
single mechanism.

In the above strategy, the state-feedback switching mechanism works in a
nontrivial way as shown in the following theorem.

Theorem 3.33. There is a positive real number η, such that the dwell time
of the first subsystem is not less than τ̄1

def
= η + τ1.

Proof. Suppose that tk and tk+1 are two consecutive switching time instants
with σ(tk) = 1. Let t̄k+1 = tk+1− τ1. It follows from the switching signal that

1) xT (tk)Q2x(tk) ≥ −r2xT (tk)x(tk); and
2) xT (t̄k+1)Q1x(t̄k+1) ≥ −r1xT (t̄k+1)x(t̄k+1).

As w1Q1 + w2Q2 = −In and w1 + w2 = 1, it follows from Item 1) that

(1− w2)xT (tk)Q1x(tk) = −xT (tk)x(tk)− w2x
T (tk)Q2x(tk)

≤ −(1− w2r2)xT (tk)x(tk)

which further implies that

3) xT (tk)Q1x(tk) ≤ −xT (tk)x(tk).

For notational convenience, let xk = x(tk), xk+1 = x(t̄k+1), and ϑ be any real
number greater than 1.

First, consider the case

‖x(t)‖ ≤ ϑ‖xk+1‖ ∀ t ∈ [tk, t̄k+1]. (3.46)

In this case, define a function

g(t) = xT (t)(Q1 + In)x(t) t ∈ [tk, t̄k+1].

It follows from Items 2) and 3) that

g(tk) ≤ 0 g(t̄k+1) ≥ (1− r1)xT
k+1xk+1. (3.47)

Simple computation gives

dg

dt
(t) = xT (t)

(
AT

1 (Q1 + In) + (Q1 + In)A1
)
x(t).

Denote ν1 = ‖AT
1 (Q1 + In) + (Q1 + In)A1‖. By inequality (3.46), we have

|dg
dt

(t)| ≤ ϑ2ν1x
T
k+1xk+1 ∀ t ∈ [tk, t̄k+1].
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Combining this with (3.47) yields

ϑ2ν1(t̄k+1 − tk) ≥ (1− r1)

which implies that

t̄k+1 − tk ≥ (1− r1)/(ϑ2ν1).

Second, suppose that (3.46) does not hold. This means that there is a
t∗ ∈ [tk, t̄k+1) satisfying

‖x(t∗)‖ > ϑ‖xk+1‖. (3.48)

From the system equation, we have

x(t∗) = exp (A1(t∗ − t̄k+1))xk+1.

It follows from (3.48) and

‖ exp (A1(t∗ − t̄k+1)) ‖ ≤ exp (‖A1‖(t̄k+1 − t∗))

that

t̄k+1 − tk ≥ t̄k+1 − t∗ > lnϑ/‖A1‖.

From the above reasonings, we have

t̄k+1 − tk ≥ η
def
= sup

ϑ>1
min

(
(1− r1)/(ϑ2ν1), lnϑ/‖A1‖

)
. ��

Note that, function (1−r1)/(ϑ2ν1) monotonically decreases as ϑ increases,
and lnϑ/‖A1‖ monotonically increases as ϑ increases. Hence, η is the inter-
section value.

Theorem 3.34. The switched system is exponentially stable under the switch-
ing signal (3.45).
Proof. Consider the Lyapunov function candidate given by

V (x) = xTPx. (3.49)

Its derivative along the system trajectory is

dV

dt
(x(t)) = xT (t)Qσ(t)x(t).

First, let λ1 and λn be the minimum and maximum eigenvalues of matrix
P , respectively. Suppose that tk is any switching time with σ(tk) = 1. We ex-
amine the consecutive switching intervals [tk, tk+1) and [tk+1, tk+2). According
to the switching signal, we have
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xT (t)Qσ(t)x(t) ≤ −rσ(t)x
T (t)x(t) ≤ −

rσ(t)

λn
V (x(t))

t ∈ [tk, tk+1 − τ1) ∪ [tk+1 + τ2, tk+2). (3.50)

Hence, V (x(t)) decays exponentially in the above time intervals. On the other
hand, from (3.44), it follows that

V (x(tk+1 + τ2)) < (1− δ)V (x(tk+1 − τ1)).

Within the interval [tk+1 − τ1, tk+1 + τ2], we have

‖x(s2)‖ ≤ emax(‖A1‖,‖A2‖)(s2−s1)‖x(s1)‖ ∀ s1 ≤ s2

which implies that

V (x(s2)) ≤ λnx
T (s2)x(s2) ≤

λn

λ1
emax(‖A1‖,‖A2‖)(s2−s1)V (x(s1)) ∀ s1 ≤ s2.

Let

α = min
(
r1
λn

,
r2
λn

,
− ln(1− δ)

τ

)

and

β =
λn

λ1
exp ((max(‖A1‖, ‖A2‖) + α)τ) .

The above analysis shows that

V (x(tk+2)) = V (x(tk))e−α(tk+2−tk)

and

V (x(s2)) ≤ βV (x(s1))e−α(s2−s1) ∀ tk ≤ s1 ≤ s2 ≤ tk+2. (3.51)

Note that if σ(t0) = 2, then (3.51) holds in [t0, t0 + τ2) and (3.50) holds in
[t0 + τ2, t1).

Next, for any two time instants s1 and s2 with t0 ≤ s1 < s2, suppose that

s1 ∈ [tk1 , tk1+2) s2 ∈ [tk2 , tk2+2).

Then, we have

V (x(s2)) ≤ βe−α(s2−tk2 )V (x(tk2)) ≤ βe−α(s2−tk1+2)V (x(tk1+2))
≤ β2e−α(s2−s1)V (x(s1)).

As a result, the Lyapunov function decays exponentially, and hence the
switched system is exponentially stable. ��
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Remark 3.35. From the proof, it is clear that, when the state-feedback mech-
anism works, the Lyapunov function candidate strictly decreases along the
state trajectory. While in the time-driven period, the Lyapunov function de-
creases at discrete time instants. In between these time instants, the Lyapunov
function may strictly increase along the state trajectory. Therefore, the state
trajectory does not necessarily admit a quadratic Lyapunov function. That
is, there may not exist a quadratic Lyapunov function W (x) such that

W (x(t2)) ≤W (x(t1)) ∀ t2 > t1.

This is an essential feature of the switching strategy. Later, we will show that
the strategy can be extended to cope with more general classes of switched
systems, including systems which are not quadratically stabilizable.

3.5.2 Robustness Properties

Consider a perturbed switched linear system given by

ẋ(t) = Aσx(t) + fσ(t) x(t0) = x0 (3.52)

where σ ∈ {1, 2}, and fi : [t0,∞) �→ Rn, k = 1, 2 are piecewise continuous
vector functions representing system perturbations or uncertainties.

Theorem 3.36. For perturbed system (3.52), suppose that Assumption 3.1
holds. Then, under the switching law (3.45), we have

(i) the system state is bounded if the perturbations are bounded;
(ii)the system state is bounded and convergent if the perturbations are bounded

and convergent; and
(iii)the system state is exponentially convergent if the perturbations are expo-

nentially convergent.

Proof. In terms of the notation defined in Section 3.5.1, we further define the
function

f(t) = fσ(t) t ≥ t0

and denote

r = min(r1, r2) p = ‖P‖ q = max(‖Q1‖, ‖Q2‖)

θ = min

(
r

4λn
,−

ln(1− δ
2 )

2τ

)
� = e‖A1‖τ1e‖A2‖τ2

and

# =
(
λn

λ1

) 1
2

exp
((

2q + r

2λ1
+ 2θ

)
τ

)
.
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We estimate an upper bound for the state norm in terms of the initial
state and the perturbations. Define a function

µ1(t) = max
(
‖x0‖e−θ(t−t0),

4p
r
‖f(t)‖, 8p�2

δλ1

∫ t+τ

t

‖f(ζ)‖dζ
)

t ≥ t0.

It can be seen that µ1(·) is piecewise continuous. Re-define the function if
necessary at the discontinuous points such that the function is continuous
from the left. We are to prove by contradiction that

‖x(t)‖ ≤ µ(t)
def
= # sup

ς∈[t0,t]
µ1(ς)e−θ(t−ς) ∀ t ≥ t0. (3.53)

For this, suppose that

‖x(t∗)‖ > µ(t∗) (3.54)

for some t∗ > t0. From ‖x0‖ ≤ µ1(t0) and the continuity of the state, there
exists a time instant s ∈ [t0, t∗) such that

‖x(s)‖ ≤ µ1(s) and ‖x(t)‖ ≥ µ1(t) ∀ t ∈ (s, t∗]. (3.55)

Consider the Lyapunov function candidate given by

V (x) = xTPx.

Its derivative along the system trajectories can be computed to be

dV

dt
(x(t)) = xT (t)Qσ(t)x(t) + 2fT (t)Px(t).

Suppose that the switching time sequence is {t0, t1, t2, · · · }. Any time instant
s falls into either of the two cases :

(a) there is a nonnegative integer k such that σ(tk) = 1 and s ∈ [tk, tk+2); or
(b)σ(t0) = 2 and s ∈ [t0, t1).

For Case (a), it follows from (3.55) that

dV

dt
(x(t)) ≤ −rσx

T (t)x(t) + 2p‖f(t)‖‖x(t)‖ ≤ −r
2
xT (t)x(t) ≤ − r

2λn
V (x(t))

∀ t ∈ (s, t∗] ∩ ([tk, tk+1 − τ1) ∪ [tk+1 + τ2, tk+2)) (3.56)

and

dV

dt
(x(t)) ≤ qxT (t)x(t) + 2p‖f(t)‖‖x(t)‖ ≤ (q +

r

2
)xT (t)x(t)

≤ 2q + r

2λ1
V (x(t)) ∀ t ∈ (s, t∗] ∩ [tk+1 − τ1, tk+1 + τ2]. (3.57)
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In addition, if

[tk+1 − τ1, tk+1 + τ2] ∈ [s, t∗]

then, we have

x(tk+1 + τ2) = eA2τ2eA1τ1x(tk+1 − τ1) + eA2τ2

∫ tk+1

tk+1−τ1

eA1(tk+1−ζ)f(ζ)dζ

+
∫ tk+1+τ2

tk+1

eA2(tk+1+τ2−ζ)f(ζ)dζ

which implies that

V (x(tk+1 + τ2)) ≤ xT (tk+1 − τ1)eAT
1 τ1eAT

2 τ2PeA2τ2eA1τ1x(tk+1 − τ1)

+2p�2‖x(tk+1 − τ1)‖
∫ tk+1+τ2

tk+1−τ1

‖f(ζ)‖dζ + p�2

(∫ tk+1+τ2

tk+1−τ1

‖f(ζ)‖dζ
)2

≤ (1− δ)V (x(tk+1 − τ1)) +
δ

4
λ1µ1(tk+1 − τ1)‖x(tk+1 − τ1)‖

+
δ2

64p
λ2

1(µ1(tk+1 − τ1))2

≤ (1− δ

2
)V (x(tk+1 − τ1)) ≤ e−2θτV (x(tk+1 + τ2))

where the relationships µ1(tk+1− τ1) ≤ ‖x(tk+1− τ1)‖, p ≥ λ1, and δ ∈ (0, 1)
are used. Combining this with (3.56), we have

V (x(tk+2)) ≤ e−2θ(tk+2−tk)V (x(tk)).

On the other hand, it follows from (3.56) and (3.57) that, for all s1, s2 ∈
(s, t∗] ∩ [tk, tk+2), we have

V (x(s2)) ≤ exp
(

(
2q + r

2λ1
+ 2θ)τ

)
exp(−2θ(s2 − s1))V (x(s1)). (3.58)

If t∗ > tk+2, let l be the largest natural number such that t∗ > tk+2l. A similar
argument gives

V (x(tk+2l)) ≤ exp(−2θ(tk+2l − tk+2))V (x(tk+2)) (3.59)

and

V (x(t∗)) ≤ exp
(

(
2q + r

2λ1
+ 2θ)τ

)
exp(−2θ(t∗ − tk+2l))V (x(tk+2l)). (3.60)

Combining (3.58) and (3.59) with (3.60), we have
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V (x(t∗)) ≤ exp
(

2(
2q + r

2λ1
+ 2θ)τ

)
exp(−2θ(t∗ − s))V (x(s)). (3.61)

For Case (b), we can proceed in the same way, using [t0, t0 + τ2) instead of
[tk+1−τ1, tk+1+τ2) and [t0+τ2, t1) instead of [tk, tk+1−τ1)∪ [tk+1+τ2, tk+2).
The same reasonings show that (3.61) also holds in this case.

To summarize, (3.61) holds for both cases. Therefore, we have

‖x(t∗)‖2 ≤
1
λ1
V (x(t∗))

≤ 1
λ1

exp
(

2(
2q + r

2λ1
+ 2θ)τ

)
exp(−2θ(t∗ − s))V (x(s))

≤ λn

λ1
exp

(
2(

2q + r

2λ1
+ 2θ)τ

)
exp(−2θ(t∗ − s))µ2

1(s)

≤ µ2(t∗)

which contradicts the assumption (3.54). As a result, the estimation (3.53)
always holds.

Now, we are ready to derive (i)-(iii) from (3.53).
(i) Suppose that ‖f(t)‖ ≤ Nf for all t ≥ t0. It is clear that

µ1(t) ≤ max
(
‖x0‖,

4p
r
Nf ,

8p�2

δλ1
τNf

)
t ≥ t0.

Therefore, the state is bounded by

‖x(t)‖ ≤ #max
(
‖x0‖,

4p
r
Nf ,

8p�2

δλ1
τNf

)
def
= Nx.

(ii) Suppose that f(t) is bounded and convergent. For any given positive
real number ε < Nf , there is a time T1 such that

‖x0‖ ≤
ε

#
eθ(t−t0) ‖f(t)‖ ≤ min

(
r

4p
,
δλ1

8p�2τ

)
ε

#
∀ t ≥ T1.

Let T2 = 1
θ ln Nx

ε and T = T1 + T2. Simple analysis gives

µ(t) ≤ #max

(
sup

s∈[t0,T1]
µ1(s)e−θ(t−T1), sup

s∈[T1,t]
µ1(t)

)
≤ ε ∀ t ≥ T.

From the arbitrariness of ε, the convergence of the state follows.
(iii) Suppose that

‖f(t)‖ ≤ βe−α(t−t0) t ≥ t0

for some positive real numbers α and β. Then, simple calculation yields

µ(t) ≤ #max
(
‖x0‖,

4p
r
β,

8p�2β

δλ1α

)
e− min(θ,α)(t−t0) t ≥ t0

which shows that the system state is exponentially convergent. ��
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Remark 3.37. It can be seen from the proof that the bound of the state can
be explicitly estimated. Moreover, we can also estimate the eventual bound
of the state. Indeed, suppose that the eventual bound of the perturbation is
Nfe, that is

lim sup
t→∞

‖f(t)‖ = Nfe.

Then, from (3.53), it is clear that the eventual bound of the state is given by

lim sup
t→∞

‖x(t)‖ ≤ Nxe = max
(

4p
r
Nfe,

8p�2

δλ1
τNfe

)
.

Consequently, given any allowed state (eventual) bound, we can estimate a
(eventual) bound of perturbations that makes the system state (eventually)
bounded within the allowed level.

3.5.3 Observer-based Switching

In this subsection, we explore the possibility of designing switching signals
based on the measured output instead of the state information.

Consider the switched linear system described by{
ẋ(t) = Aσx(t) + fσ(t)
y(t) = Cσx(t) + hσ(t) (3.62)

where x(t), σ and fi(t) are the same as in (3.52), y(t) ∈ Rq is the measured
output, hi(t), i = 1, 2 are piecewise continuous vector functions that stand
for output perturbations, and Ai, Ci, i = 1, 2 are matrices of compatible
dimensions. We assume that information of the state and perturbations is not
available on-line.

System (3.62) represents a switched linear system with multiple sensor
devices. The description includes multi-sensor scheduling as a special case
[117].

Assumption 3.3. Both the matrix pairs (C1, A1) and (C2, A2) are observ-
able.
Note that this assumption is very mild as the property of observability is
generic for all matrix pairs [160].

For system (3.62), consider the state estimator given by

˙̂x = Aσx̂+ Lσ[y(t)− Cσx̂] (3.63)

where y(t) and σ are the output and switching signal of system (3.62), respec-
tively, and matrices L1, L2 ∈ Rn×q are to be determined later.

Fix w1, w2, r1, r2 and τ as described in Section 3.5.1. Let τ1 = w1τ and
τ2 = w2τ . In addition, fix a real number ϕ ∈ (0, 1).
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Choose gain matrices Li, i = 1, 2 such that

‖e(Ai−LiCi)t‖ < ϕ ∀ τi ≤ t < 2τi i = 1, 2. (3.64)

Note that the above choice is always possible because of the observability
assumption. Intuitively, for any given t ≥ 0, the following inequality holds

‖e(Ai−LiCi)t‖ ≤ p(ρ)eρnt

where ρ = {ρ1 ≤ · · · ≤ ρn} denotes the real parts of the eigenvalues of matrix
(Ai −LiCi), and p(·) is a polynomial function. Note that ρ can be arbitrarily
assigned by choosing appropriate gain matrices Li. When ρ approaches −∞
proportionately, p(ρ) increases polynomially but eρnt decreases exponentially,
hence ‖e(Ai−LiCi)t‖ decreases and can be made arbitrarily small. See [176]
and [89] for more details.

With these preparations, we are ready to formulate the observer-based
switching law as follows.

Suppose that x̂ initializes at x̂(t0) = x̂0. Set

σ(t0) = arg min{x̂T
0 Q1x̂0, x̂

T
0 Q2x̂0}.

The subsequent switching time/index sequences are defined recursively by

tk+1 =
{

inf
{
t > tk : x̂T (t)Q1x̂(t) > −r1x̂T (t)x̂(t)

}
+ τ1 if σ(tk) = 1

inf
{
t > tk + τ2 : x̂T (t)Q2x̂(t) > −r2x̂T (t)x̂(t)

}
if σ(tk) = 2

σ(tk+1) =
{

2 if σ(tk) = 1
1 if σ(tk) = 2 k = 0, 1, · · · . (3.65)

This switching strategy is exactly the same as (3.45), except that the state
x(t) is substituted by the estimator x̂(t). The following result establishes the
fact that it inherits the nice robustness properties.

Theorem 3.38. For system (3.62), suppose that Assumptions 3.1 and 3.3
hold. Then, under the switching strategy (3.65), we have

(i) the system state and the estimator are bounded if the perturbations are
bounded;

(ii)the system state and the estimator are bounded and convergent if the per-
turbations are bounded and convergent; and

(iii)the system state and the estimator are exponentially convergent if the per-
turbations are exponentially convergent.

Proof. Define the difference between the real state and the estimated state
by

x̃ = x− x̂.

Subtracting (3.63) from (3.62), we obtain
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˙̃x = (Aσ − LσCσ)x̃+ fσ(t)− Lσhσ(t). (3.66)

On the other hand, it follows from (3.63) that

˙̂x = Aσx̂+ LσCσx̃+ Lσhσ(t). (3.67)

For this equation, take ˙̂x = Aσx̂ as the nominal system and LσCσx̃(t) as an
exoteric perturbation, along with Lσhσ(t). By Theorem 3.36, we only need
to prove that x̃(t) is bounded (convergent, exponentially convergent) if the
perturbations fσ and hσ are bounded (convergent, exponentially convergent).

Suppose that the switching time sequence is t0 < t1 < t2 < · · · and the
switching index sequence is j0 = σ(t0+), j1 = σ(t1+), j2 = σ(t2+), · · · . It
follows from the switching strategy (3.65) that, for any consecutive switching
times tk and tk+1, we have

tk+1 − tk ≥
{
τ1 if jk = 1
τ2 if jk = 2. (3.68)

By (3.64), we can find a positive real number α such that

‖e(Ai−LiCi)t‖ ≤ e−αt ∀ t ≥ τi. (3.69)

Indeed, let

α = min
(
− lnϕ

2τ1
,− lnϕ

2τ2

)
.

For any t ∈ [τi, 2τi), we have

‖e(Ai−LiCi)t‖ ≤ ϕ ≤ e−αt.

For any t ≥ 2τi, there exists a natural number l such that t ∈ [(l + 1)τi, (l +
2)τi). As a result, we have

‖e(Ai−LiCi)t‖ ≤ ‖e(Ai−LiCi)(t−lτi)‖‖e(Ai−LiCi)lτi‖ ≤ e−α(t−lτi)ϕl ≤ e−αt.

Define matrix function

Ψ(t, σ) = e(Ajk
−Ljk

Cjk
)(t−tk) · · · e(Aj1−Lj1Cj1 )(t2−t1)e(Aj0−Lj0Cj0 )(t1−t0)

tk < t ≤ tk+1.

The state transition matrix of the error system (3.66) can be expressed as

Φ(s1, s2, σ) = Ψ(s1, σ)Φ(s2, σ)−1 ∀ s1, s2 ≥ t0.

The solution of system (3.66) is given by

x̃(t) = Φ(t, t0, σ)x̃0 +
∫ t

t0

Φ(t, ζ, σ)(fσ(ζ)− Lσhσ(ζ))dζ ∀ t ≥ t0.
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From (3.68) and (3.69), it follows that

‖Φ(s1, s2, σ)‖ ≤ βe−α(s1−s2) ∀ s1 ≥ s2 ≥ t0

where β = exp (‖(A1 − L1C1)‖τ1) exp (‖(A2 − L2C2)‖τ2). Therefore,

‖x̃(t)‖ ≤ βe−α(t−t0)‖x̃0‖+ β

∫ t

t0

e−α(t−ζ)‖(fσ(ζ)− Lσhσ(ζ))‖dζ ∀ t ≥ t0.

From this we can prove that x̃(t) is bounded/convergent/exponentially-
convergent for bounded/convergent /exponentially-convergent perturbations.
We omit the details for briefness. ��

According to Theorem 3.38, the observer-based switching strategy works
well in the event that the system undergoes unmeasurable perturbations. Note
that we can also allow perturbations for the estimator in the scheme. That is,
instead of (3.63), the estimator is given by

˙̂x = Aσx̂+ Lσ[y(t)− Cσx̂] + gσ(t)

where gi(t), i = 1, 2 are piecewise continuous vector functions representing
perturbations induced by the estimator. In this case, it is clear that Theorem
3.38 still holds.

Combining the above proof with that of Theorem 3.36, an explicit bound
estimation can be obtained for the system state and estimator. Note that,
due to the extra perturbations from the error system, the estimated state
bound may be quite larger than that of the system under the state-feedback
switching strategy.

3.5.4 Extensions

In this subsection, we discuss the possibility of generalizing the results to a
broader class of switched linear systems. The systems are described by{

ẋ(t) = Aσx(t) + fσ(t)
y(t) = Cσx(t) + hσ(t) (3.70)

where the system structure is the same as in (3.62), but with an arbitrarily
large number of subsystems rather than only two.

In the scheme, a key role of Assumption 3.1 is to guarantee (3.44), that is,
there exists a (quadratic) Lyapunov-like function which decreases at discrete
times. Thus, it is natural to substitute Assumption 3.1 by (3.44). In fact, the
systems satisfying (3.44) form exactly the class of consistently asymptotically
stabilizable systems (c.f. Section 3.2).

In view of Corollary 3.12, for a consistently asymptotically stabilizable
system Σ(Ai)M , there exist a natural number ι, an index set j1, · · · , jι ∈M ,
and a positive real number set τ1, · · · , τι, such that matrix eAjι τι · · · eAj1τ1
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is Schur stable. In addition, we can assume, without loss of generality, that
j1 
= jι. In fact, if j1 = jι, we can prove that eAjι−1τι−1 · · · eAj1 (τ1+τk) is also
asymptotically stable. In addition, it is clear that we can assume ji 
= ji+1 for
i = 1, · · · , ι− 1.

In the following, we consider the class of systems which are consistently
asymptotically stabilizable. We start from the equivalent assumption.

Assumption 3.4. There exist a natural number ι, an index set j1, · · · , jι ∈
M with ji 
= ji+1 and j1 
= jι, and a positive real number set τ1, · · · , τι, such
that matrix eAjι τι · · · eAj1τ1 is Schur.
Note that Assumption 3.1 implies Assumption 3.4, but the converse is gener-
ally not true. This means that the class of systems which satisfies Assumption
3.4 is broader than that satisfying Assumption 3.1. In particular, Assump-
tion 3.1 implies quadratic stabilizability but Assumption 3.4 does not exclude
non-quadratic stabilizability (an example is given in Example 3.41 in Section
3.6).

Given a matrix Q > 0, solve for the discrete-time Lyapunov equation

(eAjι τι · · · eAj1τ1)TPeAjι τk · · · eAj1τ1 − P +Q = 0

we have a unique symmetric solution P > 0.
Concerning the system output, we make the following assumption.

Assumption 3.5. Matrix pair (Ci, Ai) is observable for all i ∈M .
As mentioned in the previous subsection, fix a real number ϕ ∈ (0, 1), we can
find gain matrices Li, i ∈M such that

‖e(Ai−LiCi)t‖ < ϕ ∀ τi ≤ t < 2τi i ∈M. (3.71)

We construct the following state estimator

˙̂x = Aσx̂+ Lσ[y(t)− Cσx̂] + gσ(t) (3.72)

where gi(t), i ∈ M are the possible perturbations induced by the state esti-
mator.

Fix ri ∈ (0, 1) for i ∈M and let τ0 = τι. The generalized switching strategy
is formulated as follows.

1. Initialization. Set

σ(t0) =
{
j1 if x̂T

0 Qj1 x̂0 ≤ x̂T
0 Qjι

x̂0
jι otherwise

and

ι0 =
{

1 if σ(t0) = j1
0 if σ(t0) = jι.
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2. Recursion. Define recursively the consecutive time and index as

tk+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
{
t > tk : x̂T (t)Qσ(tk)x̂(t) > −rσ(tk)x̂

T (t)x̂(t)
}

+ τ1
if mod (k, ι) ∈ {0, ι− 1} and σ(tk) = j1

inf
{
t > tk + τι : x̂T (t)Qσ(tk)x̂(t) > −rσ(tk)x̂

T (t)x̂(t)
}

if mod (k, ι) ∈ {0, ι− 1} and σ(tk) = jι
tk + τι0+ mod (k,ι) otherwise

σ(tk+1) = mod (k + ι0, ι) + 1 k = 0, 1, · · · . (3.73)

In the above switching strategy, the switching index sequence is cyclic.
The observer-based switching mechanism is incorporated into the first and
last phases. The strategy degenerates into (3.65) for the case ι = 2.

Unlike in Theorem 3.33, we lack a guaranteed dwell-time for the observer-
based switching mechanism in general. This is because Item 3) in the proof of
Theorem 3.33 does not necessarily hold without Assumption 3.1. Nevertheless,
the observer-based switching mechanism still works in a random manner, that
is, when the switching is in the first or last phases and

x̂(t) ∈ {x : xTPx < −rσ(t)xTx}

the observer-based switching mechanism will work and decide the next switch-
ing time. See Example 3.41 for a simulation study.

The following theorem states the main result for the generalized class of
systems.

Theorem 3.39. For system (3.70), suppose that Assumptions 3.4 and 3.5
hold. Then, under the switching strategy (3.73), we have

(i) the system state and the estimator are bounded if the perturbations are
bounded;

(ii)the system state and the estimator are bounded and convergent if the per-
turbations are bounded and convergent; and

(iii)the system state and the estimator are exponentially convergent if the per-
turbations are exponentially convergent.

Proof. The theorem can be proven in the same way as in the proofs of The-
orems 3.36 and 3.38. We hence omit the details. ��

3.6 Numerical Examples

Example 3.40. Consider the switched linear system Σ(Ai){1,2} with

A1 =

⎡
⎣−2.1 1.4 5.9
−8.0 −5.7 −0.2
0.6 5.8 1.6

⎤
⎦ and A2 =

⎡
⎣ 1.0 −0.5 −2.8

4.8 −5.0 1.1
−1.0 −6.6 −2.1

⎤
⎦ . (3.74)
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Simple calculation shows that wA1+(1−w)A2 is Hurwitz for 0.33 ≤ w ≤ 0.75.
By letting w1 = 0.37 and w2 = 0.73, the average matrix is

A0 = w1A1 + w2A2 =

⎡
⎣−0.1470 0.2030 0.4190

0.0640 −5.2590 0.6190
−0.4080 −2.0120 −0.7310

⎤
⎦

which possesses eigenvalues at −0.5806 ± 0.1148
√
−1, and −4.9758. Solving

the Lyapunov equation AT
0 P + PA0 = −I3 yields

P =

⎡
⎣ 1.9737 −0.0924 0.4999
−0.0924 0.1800 −0.2312
0.4999 −0.2312 0.7748

⎤
⎦ .
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Fig. 3.5. State trajectories of system (3.74)

First, we fix the period τ = 0.08. Hence, we have τ1 = 0.0296 and τ2 =
0.0504. In the following simulations, we assume that the system has the initial
state

x0 = [1.4435,−0.3510, 0.6232]T .

Let r1 = r2 = 0.1. Figure 3.5 shows the state trajectories of the switched sys-
tem under the state-feedback switching law (3.21) and the combined switching
law (3.45), respectively. It can be seen that both trajectories converge with
satisfactory rates. However, for the former case, the number of switches is 382,
but for the latter, only 44. That is, by introducing the dwell time, we sub-
stantially reduce the switching frequency in this example. On the other hand,
if we just exploit the time-driven periodic switching signal (3.17) at the cyclic
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Fig. 3.6. Switching signals with and without dwell time

period τ , the number of switches is 124. That is, the combined switching strat-
egy reduces more than half of the switches by introducing the state-feedback
switching mechanism. The resultant switching signals are shown in Figure 3.6.
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Fig. 3.7. State trajectories of the perturbed systems

Next, consider the system with perturbations. Let

f1(t) =

⎡
⎣ sin(2t)
−0.5 sat(t− 1)
sgn(cos(3t))

⎤
⎦ and f2(t) =

⎡
⎣ −te−t

ln(2+t2

1+t2 )
−0.5

⎤
⎦

and
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Fig. 3.8. Switching signals of the perturbed systems

f̄i(t) =
1

1 + t
fi(t) i = 1, 2

where sat(·) is the saturation function with unit limits, and sgn(·) is the
signum function. It is clear that f1, f2 are bounded and f̄1, f̄2 are convergent.
Figure 3.7 shows the state trajectories of the systems with perturbations fk

and f̄k, respectively. The corresponding switching signals are given in Figure
3.8. It is clear that the switching frequencies are much higher than that of the
nominal system.
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Fig. 3.9. State and estimator trajectories of the nominal system under the observer-
based switching signal
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Fig. 3.10. State trajectories of the perturbed systems under the observer-based
switching signal

Finally, suppose that the full state information is not available. Assume
that x1 is measurable for the first subsystem and x2 for the other. That is,

C1 = [1, 0, 0] and C2 = [0, 1, 0].

We assign the eigenvalues of Ai−LiCi to be {ξ, ξ± ξ
√
−1} where ξ is chosen

such that (3.64) is satisfied. In this way, we have the high-gain matrices

L1 = [746.80000, 1255903.1437,−255818.7443]T

L2 = [59560.0425, 356.9000,−207024.5944]T .

Suppose that the estimator has the initial condition

x̂0 = [0, 0, 0]T .

Figure 3.9 depicts the trajectories of the state and the estimator. Although the
system state behaves properly, the estimator undergoes very high transient
overshoot. State trajectories for the perturbed systems are shown in Figure
3.10.

Example 3.41. Consider the switched linear system Σ(Ai){1,2} with

A1 =
[

2.440 −6.253
2.572 −9.540

]
and A2 =

[
1.053 17.578
−0.345 1.947

]
. (3.75)

Numerical verification shows that Assumption 3.1 does not hold for this sys-
tem. As a result, the system is not quadratically stabilizable by any switch-
ing signal. However, a simple search indicates that eτ2A2eτ1A1 is Schur when
τ1 = 0.60 and τ2 = 1.10. Solving the discrete-time Lyapunov function
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Fig. 3.11. State trajectory and switching signal of system (3.75)
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(eτ2A2eτ1A1)TPeτ2A2eτ1A1 − P + 0.5I2 = 0

we obtain

P =
[

6.5383 −3.6203
−3.6203 2.7962

]
.

Let r1 = r2 = 0.1 and suppose that the system has the initial condition

x(0) = [0.7812, 0.5690]T .

Figure 3.11 shows the state trajectory and switching signal under the
switching strategy (3.73). It is clear that the switching path is nearly pe-
riodic, hence the dominant time of the state-feedback mechanism is far less
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than that of the time-driven mechanism, though detailed information clearly
shows that the state-feedback mechanism does work in most switching peri-
ods. Figure 3.12 depicts the state trajectories of the perturbed system with
bounded perturbations

f1(t) =
[

0.3
− sgn(sin(2t))

]
and f2(t) =

[
−0.5 sat(t2 − 3t)

ln(cos(t))

]

and convergent perturbations

f̄i(t) =
1

ln(2 + t2)
fi(t) i = 1, 2

respectively. It can be seen that the perturbed trajectories have remarkably
larger bounds than that of the nominal system, indicating that the system
is quite sensitive to the perturbations. This is not surprising because the
switching frequency is rather low so that the effect of the perturbations can
accumulate during the constant (non-switching) process.

3.7 Discrete-time Switched Systems

In this section, we consider the discrete-time switched linear autonomous sys-
tem given by

xk+1 = Aσxk (3.76)

where x ∈ Rn, and Ai ∈ Rn×n for i ∈M , and σ is the switching signal taking
values from the index set M .

3.7.1 Contractive and Pre-contractive

In this subsection, we discuss some properties related to the convergence of
matrix multiplications from a finite set of matrices. It is well-known that any
trajectory of a linear time-invariant system

xk+1 = Axk

is convergent if and only if A is Schur, i.e., the spectral radius of A is less
than one. For the switched linear system, we aim to find similar properties.

First, let us characterize what we mean by saying a set of matrices is
convergent.

Definition 3.42. A set {H1, · · · , HN} of n × n matrices is switched con-
vergent, provided that, for each x ∈ Rn, there is a sequence {ji(x)}∞

i=1 with
ji(x) ∈ {1, · · · , N}, such that the vector sequence

x,Hj1(x)x,Hj2(x)Hj1(x)x, · · ·
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converges to the origin, 0.
When N = 1, the concept degenerates to the usual concept of matrix

convergence.

Example 3.43. Consider the four symmetric matrices

H1 =
[

0.5 0
0 2

]
H2 =

[
1.25 −0.75
−0.75 1.25

]

and

H3 =
[

2 0
0 0.5

]
H4 =

[
1.25 0.75
0.75 1.25

]
.

It can be routinely verified that each Ai has spectral radius 2. But set {Hi}4i=1
is switched convergent, as seen from the following facts :

(i) H1 contracts each nonzero vector in the closed cone C1, co-axial with the
x1-axis having vertex angle at the origin, and measuring 45◦. H2, H3 and
H4 act similarly on vectors in cones C2, C3 and C4 which are counter-
clockwise rotations of C1 through 45◦, 90◦, and 135◦, respectively.

(ii) There is a real number β ∈ (0, 1), such that, for each non-origin x ∈ R2,
we have

4
min
i=1
{‖Hix‖} < β‖x‖.

Thus, the set is switched convergent.
The example suggests the following definition.

Definition 3.44. Let ‖ · ‖υ be any norm on Rn. The set {H1, · · · , HN} of
n × n matrices is contractive w.r.t. ‖ · ‖υ, provided that, for any non-origin
x ∈ Rn, there is an i ∈ {1, · · · , N}, such that ‖Hix‖υ < ‖x‖υ.

Usually, the above concept is norm-dependent. To avoid this situation, we
propose the following concept.

Definition 3.45. Let ‖ · ‖υ be any norm on Rn. The set {H1, · · · , HN} of
n × n matrices is pre-contractive w.r.t. ‖ · ‖υ, provided that, for any non-
origin x ∈ Rn, there is a finite sequence {ji(x)}n(x)

i=1 , ji(x) ∈ {1, · · · , N}, such
that

‖
(
Π1

i=n(x)Hji(x)

)
x‖υ < ‖x‖υ.

The following result establishes the equivalence between switched conver-
gence and pre-contractiveness w.r.t. a norm.
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Theorem 3.46. Let ‖ · ‖υ be any norm on Rn, and K = {H1, · · · , HN} be a
set of n × n matrices. Then, the matrix set is pre-contractive w.r.t. ‖ · ‖υ if
and only if it is switched convergent.
Proof. It is clear that switched convergence of K implies pre-contractiveness
of K to any norm.

Assume that K is pre-contractive w.r.t. ‖ · ‖υ. Then, for each x ∈ Rn,
x 
= 0, there is a finite sequence {ji(x)}n(x)

i=1 , ji(x) ∈ {1, · · · , N}, such that

‖
(
Π1

i=n(x)Hji(x)

)
x‖υ < ‖x‖υ. (3.77)

Note that, for any y = λx with λ 
= 0, to maintain Inequality (3.77), it suffices
to choose ji(y) = ji(x) and n(y) = n(x). Note also that, once (3.77) holds for
x, it also holds for nearby vectors with the same n(x) and ji(x), i.e.,

‖
(
Π1

i=n(x)Hji(x)

)
y‖υ < ‖x‖υ y − x ∈ Br

for sufficiently small r. Due to the Finite Covering Theorem, there is a positive
integer l such that n(x) ≤ l for all x 
= 0. As a consequence, the augmented
matrix set

K̄
def
=
{
Π1

i=kHji
: k ≤ l, 1 ≤ ji ≤ N

}
is contractive w.r.t. ‖ · ‖υ. This means that, for each x 
= 0, there exist an
H ∈ K̄, and a β(x) ∈ (0, 1), such that

‖Hix‖υ < β(x)‖x‖υ.

Applying the Finite Covering Theorem once again, we can infer that there is
a β ∈ (0, 1) such that

β(x) ≤ β ∀ x 
= 0.

The above reasonings show that, for any x 
= 0, there is a sequence
{ji(x)}n(x)

i=1 such that n(x) < l, and

‖
(
Π1

i=n(x)Hji(x)

)
x‖υ ≤ β‖x‖υ.

To show that K is switched convergent, select x ∈ Rn and define recursively
an index sequence and a vector sequence by

y0 = x

n0 = n(y0)
pi(x) = ji(y0) i = 1, · · · , n0

yk+1 =
(
Π

nk−1+1
i=nk

Hpi(yk)

)
yk

nk+1 = nk + n(yk+1) k = 0, 1, · · ·
pi(x) = ji−nk

(x) i = nk + 1, · · · , nk+1
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where we set n−1 = 0. In this way, we have the sequence {pi(x)}∞
i=1. It is clear

from this construction that, for any k ∈ N+, we have

‖
(
Π1

i=nk
Hpi(x)

)
x‖υ ≤ βk+1‖x‖υ. (3.78)

Let

γ = max{‖Hi‖υ}i∈M .

For any δ ∈ N+, there exist a nonnegative integer k, and an s ∈ {1, · · · , l−1},
such that

δ = nk + s.

Accordingly, we have

‖
(
Π1

i=δHpi(x)
)
x‖υ ≤ ‖Πnk+1

i=δ Hpi(x)‖υ‖
(
Π1

i=nk
Hpi(x)

)
x‖υ

≤ γsβk+1‖x‖υ ≤ γ(l−1)βk+1‖x‖υ. (3.79)

As δ →∞, k →∞ and the theorem follows. ��

Corollary 3.47. Pre-contractiveness is norm-independent.
Proof. As switched convergence is norm-independent, by Theorem 3.46, the
corollary follows. ��

The estimation (3.79) is very important in the following derivations. In
fact, as nk+1 − nk ≤ l for all k = 0, 1, · · · , (3.79) implies that

‖
(
Π1

i=δHpi(x)
)
x‖υ ≤ ραδ‖x‖υ ∀ x ∈ Rn δ = 1, 2, · · · (3.80)

where ρ = γ(l−1), and α = β
1
l . Note that α < 1, and both α and ρ do not

depend on x. This observation leads to the following result.

Corollary 3.48. If K = {Hi}i∈M is contractive w.r.t. ‖ · ‖υ, then K is
switched convergent.
Proof. It is straightforward. ��

Although the pre-contractiveness is norm-independent, the contractive-

ness is norm-dependent in general. For example, the matrix H =
[

0 1
0 0

]
is

contractive w.r.t. the norm ‖x‖Q =
(
xTQx

) 1
2 with Q =

[ 1
2 0
0 1

]
, but is not

contractive w.r.t. the Euclidean norm ‖ · ‖2. However, for some matrix sets,
the contractiveness w.r.t. one norm implies the contractiveness w.r.t. another
related norm, as constructed in the next theorem.

Theorem 3.49. Suppose that K = {Hi}i∈M is contractive to ‖·‖. Let {ωi}n
i=1

be a basis of Rn such that

Hjωi =
{
λjωi i = j
0 i 
= j
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for some λi ∈ R, i = 1, · · · , n. For each x ∈ Rn with x =
∑n

i=1 xiωi, let

‖x‖∗ =
n∑

i=1

|xi|‖ωi‖.

Then, ‖ · ‖∗ is a norm on Rn and K is contractive w.r.t. ‖ · ‖∗.
Proof. It is straightforward and is therefore omitted. ��

Finally, we point out with an example that pre-contractiveness may not
imply contractiveness w.r.t. any norm.

Example 3.50. Let K = {H1, H2} with

H1 =
[

3 0
0 0

]
and H2 =

[
0 0
0 4

]
.

As H1H2 = 0, K is pre-contractive. Suppose that there is a norm ‖ · ‖ on R2

w.r.t. which K is contractive. Let

ω1 =
[

1
0

]
and ω2 =

[
0
1

]
.

Then, by Theorem 3.49,

‖x‖∗ = |x1|‖ω1‖+ |x2|‖ω2‖

defines a norm on R2 and K is contractive w.r.t. this norm. Taking any

x =
[
y
1

]
with y > 0, we have either ‖H1x‖∗ < ‖x‖∗ or ‖H2x‖∗ < ‖x‖∗.

This implies that either y < ‖ω2‖
2‖ω1‖ or y > 3‖ω2‖

‖ω1‖ . This is not true for y ∈
[ ‖ω2‖
2‖ω1‖ ,

3‖ω2‖
‖ω1‖ ]. This contradiction means that K is not contractive w.r.t. any

norm.

3.7.2 Algebraic Criteria

For a discrete-time linear time-invariant system, it is well known that the
system is stable when its poles are located in the open unit ball of the complex
plane. For stabilizability of switched linear systems, we have similar criteria
as follows.

Theorem 3.51. Suppose that the switched linear system (3.76) is consistently
stabilizable. Then, there is a k ∈M such that

|Πn
i=1λi(Ak)| ≤ 1

where λi(A), 1 ≤ i ≤ n are the eigenvalues of matrix A. Furthermore, if the
system is consistently asymptotically stabilizable, then the inequality is strict.
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Proof. The theorem can be proven in a similar manner as in the proof of its
continuous-time counterpart (Theorem 3.4) and we shall only summarize the
main points here.

According to Definition 3.2, by setting ε = 1, there exist a positive number
δ, and switching signal σ, such that ‖x0‖ ≤ δ implies that ‖φ(t; 0, x0, σ)‖ ≤ 1
for t ≥ t0. Hence, we have

‖Aσ(s) · · ·Aσ(1)Aσ(0)x0‖ ≤ 1 ∀ x0 ∈ Bδ s = 0, 1, · · · .

As a result, all entries of the matrices

Aσ(0), Aσ(1)Aσ(0), · · · , Aσ(s) · · ·Aσ(1)Aσ(0), · · ·

must be bounded by
1
δ
. Suppose that

� = min
k∈M

{|Πn
i=1λi(Ak)|} > 1.

Then, we have

|detAk| = |Πn
i=1λi(Ak)| ≥ � k ∈M.

As a result,

|detAσ(s) · · ·Aσ(1)Aσ(0)| ≥ �s →∞ as s→∞.

This contradicts the boundedness of entries of the matrices. This establishes
the former part of the theorem. The latter part can be proven in a similar
way. ��

Theorem 3.52. If a switched linear system is pointwise stabilizable, then
there is a k ∈M such that

svmin(Ak) ≤ 1

where svmin(·) denotes the smallest singular value. Furthermore, if the system
is pointwise asymptotically stabilizable, then the inequality is strict.
Proof. We proceed to prove by contradiction.

Suppose that the minimum singular value of each Ak is greater than 1.
This implies that

AT
kAk > In k ∈M.

As the index M is finite, there is a positive real number ε such that

AT
kAk ≥ (1 + ε)In k ∈M.

Take V (x) = xTx. It is easily seen that, for any state trajectory, we have
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Fig. 3.13. State trajectory and phase portrait of system (3.81)

V (xk+1)− V (xk) > εV (xk) k ∈M.

According to the Lyapunov Theorem, every non-trivial trajectory diverges to
infinity w.r.t. any switching signal, hence the system is unstable.

The latter part can be proven in the same way. ��
As an example, it can be easily verified that the system Σ(Ai)2̄ with

A1 =
[ 1

2 0
0 21

10

]
and A2 =

21
20

[ √
3

2
1
2

− 1
2

√
3

2

]
(3.81)

does not satisfy Theorem 3.51, hence it is not consistently stabilizable. How-
ever, this system is pointwise asymptotically stabilizable. Indeed, applying A2
on any state x once means that the state rotates clockwise through 30◦ with
the norm increasing by one twentieth, i.e.

‖A2x‖ =
21
20
‖x‖.

It can be seen that, by applying A2 up to five times, any state can be steered
into one of the two 30◦ cones centered at the x1-axis. On the other hand, for
any x in either cone, we have

‖A1x‖ ≤ 0.7271‖x‖.

Note that

0.7271
(

21
20

)5

≈ 0.93 < 1

which implies that
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‖A1A
k
2x‖ < ‖x‖ ∀ x ∈ R2 k = 0, 1, · · · , 5.

Based on this observation, we propose the following state-feedback switching
strategy: If the state is in one of the two 30◦ cones centered at the x1-axis,
activate the first subsystem, otherwise activate the second subsystem. Under
this switching law, the switched system is asymptotically stable. Figure 3.13
shows this with the state trajectory and phase portrait initialized at

x0 = [−1.4409, 0.5711]T .

3.7.3 Equivalence Among the Stabilizability Notions

By definition, asymptotic stabilizability implies switched convergence. A ques-
tion naturally arises: Is the converse true? By means of (3.80), we can not only
answer this question, but also go further to prove the following result.

Theorem 3.53. For the discrete-time switched linear system, the following
statements are equivalent :

(i) the switched system is pointwise asymptotically stabilizable;
(ii) the switched system is pointwise exponentially stabilizable; and
(iii) the switched system is switched convergent.

Proof. It is clear that (ii) =⇒ (i) =⇒ (iii). Thus we only need to prove
(iii) =⇒ (ii).

Suppose that the switched system is switched convergent. Following the
proof of Theorem 3.46, for any given x ∈ Rn, and any norm ‖·‖υ in Rn, there
is an index sequence p1(x), p2(x), · · · , such that

‖
(
Π0

i=kApi(x)
)
x‖υ ≤ ραi‖x‖υ ∀ x ∈ Rn k = 1, 2, · · ·

for some positive numbers α and ρ which are independent of x. This clearly
implies that the switched system is exponentially stabilizable. ��

This theorem shows that switched convergence actually implies (hence is
equivalent to) pointwise exponential stabilizability. This is a nice property to
have and is quite useful in many situations.

Next, we present equivalent characteristics of consistent stabilizability.

Theorem 3.54. For the discrete-time switched linear system, the following
statements are equivalent :

(i) the system is consistently asymptotically stabilizable;
(ii)the system is consistently exponentially stabilizable;
(iii)there exist a natural number k, and an index sequence i1, · · · , ik, such that

matrix Aik
· · ·Ai1 is Schur; and

(iv)for any real number s ∈ (0, 1), there exist a natural number l = l(s), and
an index sequence i1, · · · , il, such that

‖Ail
· · ·Ai1‖ ≤ s.
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Proof. It can be seen that (iii) is equivalent to switched convergence by
means of consistent switching signals. By Theorem 3.53, we have (iv) =⇒
(iii) ⇐⇒ (ii) ⇐⇒ (i). Hence we need only to prove that (iii) =⇒ (iv).

Suppose that (iii) holds. This means that matrix Aik
· · ·Ai1 is Schur for

some i1, · · · , ik. Accordingly, we have

(Aik
· · ·Ai1)

j → 0 as j →∞.

This clearly implies (iv). ��

3.7.4 Robustness Analysis

In this subsection, we address two robustness issues for stabilization of the
discrete-time switched linear system. One is where the disturbance depends
linearly on the state, and the other is where the disturbance is a nonlinear
function of time.

First, suppose that the switched system undergoes small perturbations :

xk+1 = (Aσ +Bσ)xk (3.82)

where Bi ∈ Rn×n is the structured perturbation of Ai for i ∈M .

Theorem 3.55. Suppose that nominal system (3.76) is pointwise asymptoti-
cally stabilizable. Then, there is a positive number κ, such that the perturbed
system (3.82) is also pointwise asymptotically stabilizable if ‖Bi‖ < κ, i ∈M .
Proof. By Theorems 3.46 and 3.53, the nominal system is pre-contractive
w.r.t. any norm on Rn. Following from the proof of Theorem 3.46, we can
divide the state space Rn into a finite number of cones

∪l
i=1Wi = Rn

where in each cone Wi, there is an index sequence ji
1, · · · , ji

si
such that

‖(Π1
k=si

Aji
k
)x‖ ≤ β‖x‖ ∀ x ∈ Wi (3.83)

for some β < 1. Taking the perturbations into account, we have(
Π1

k=si
(Aji

k
+Bji

k
)
)
x =

(
Π1

k=si
Aji

k

)
x+ ϑ(Aji

1
, Bji

1
, · · · , Aji

si
, Bji

si
)x

where ϑ(·) is the summation of all multiplications that involve at least one
Bi’s. Note that, as ‖Bi‖ → 0, we have ‖ϑ(·)‖ → 0. In view of (3.83), together
with the fact that ϑ depends continuously on the Bi’s, for a sufficiently small
positive real number κ, we have

‖
(
Π1

k=si
(Aji

k
+Bji

k
)
)
x‖ < ‖x‖ ∀ x ∈ Wi ‖Bi‖ ≤ κ.
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This means that the perturbed switched system is still pre-contractive w.r.t.
‖ · ‖ if ‖Bi‖ ≤ κ. Again, by Theorems 3.46 and 3.53, the perturbed switched
system is pointwise asymptotically stabilizable. ��

Next, we turn to the robustness analysis for switched systems subject to
nonlinear time-varying perturbations. For this, consider a perturbed switched
system given by

xk+1 = Aσxk + fσ(k) (3.84)

where fi : N+ �→ Rn, i ∈M represent system perturbations or uncertainties.

Theorem 3.56. For perturbed system (3.84), suppose that the nominal sys-
tem is consistently asymptotically stabilizable. Then, under any stabilizing pe-
riodic switching path, we have

(a) the system state is bounded if the perturbation is bounded;
(b) the system state is bounded and convergent if the perturbation is bounded

and convergent; and
(c) the system state is exponentially convergent if the perturbation is exponen-

tially convergent.

Proof. The proof is similar to the proof of Theorem 3.23 and here we shall
only outline the main points.

Suppose that σ is a periodic switching path that asymptotically stabilizes
the nominal system. Let T be its period. Then, it can be seen that, there
exists a natural number k such that

‖Π0
i=kT−1Aσ(i)‖ < 1.

From this we can find positive real numbers α and β with α < 1, such that

‖Πk1
i=k2

Aσ(i)‖ ≤ βαk2−k1+1 k2 ≥ k1. (3.85)

For each state trajectory of the perturbed switched system, we have

‖xk+1‖ ≤ ‖Π0
i=kAσ(i)‖‖x0‖+

k∑
j=0

(‖Πj+1
i=kAσ(i)‖‖fσ(j)(j)‖)

≤ βαk+1‖x0‖+ β

k∑
j=0

(αk−j‖fσ(j)(j)‖).

This inequality guarantees that the state is bounded for bounded perturba-
tions, convergent for bounded and convergent perturbations, and exponen-
tially convergent for exponentially convergent perturbations. This completes
the proof of the theorem. ��

The theorem asserts that each stabilizing periodic switching signal for the
nominal system is in fact also robust to time-varying nonlinear perturbations.
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3.8 Notes and References

As a switched system consists of a number of subsystems and a rule that
orchestrates the switching among them, the study of stability for these systems
mainly includes two major categories: the definite stability of switched stable
systems where all the subsystems are stable, and the stabilizability of switched
unstable systems where none of the subsystems are stable. In the literature,
much effort has been devoted to establishing tools for stability analysis, such
as the Lyapunov approach [17, 1, 100, 112, 123, 23, 61]. In contrast, relatively
less attention has been paid to the design of stabilizing switching signals for
switched unstable systems [158, 44, 159, 7] (an exception is the extensive study
for second-order switched systems, see, e.g., [164, 67, 68, 69]), which is what
we have discussed in this chapter.

In Section 3.2, we presented general results and criteria for pointwise sta-
bilizability as well as consistent stabilizability. The main material was taken
from [130], and Theorem 3.9 was adopted from [136].

The periodic switching design is based on the average technique. Under the
periodic switching signal, the switched system is linear time-varying and hence
the theory of time-varying systems is applicable. Accordingly, the robustness
properties presented in Theorem 3.23 can be seen as a special case of [79,
Lemma 5.2].

The state-feedback switching design is based on an appropriate state-space
partition. Switching signal (3.21) was proposed in [158, 159]. Lemma 3.26 was
also adopted from there. The proof of the well-posedness is based on the simple
idea that ‘bounded speed’ plus ‘positive distance to travel’ imply guaranteed
dwell time. This idea was also applied to the proofs of Theorems 3.28 and
3.33. A similar idea has been used for switching control of nonholonomic
systems [64]. The modified switching strategies in Subsections 3.4.2 and 3.4.3
were proposed in [131]. The combined switching strategies in Section 3.5 were
presented in [132].

For discrete-time switched systems, the stabilization and robustness issues
can be addressed in an analogical manner. However, there are at least two
significant differences between the continuous-time systems and the discrete-
time systems. One is that ill-posed phenomenon does not exist in discrete time,
thus, we do not need to worry about the well-posedness of discrete-time sys-
tems. The other is that there is no discrete-time version of the CBH formula,
hence the average approach does not apply to discrete-time systems. Most of
the results in Subsection 3.7.1 were taken from [126, 129]. The other parts of
Section 3.7 were newly developed using similar ideas from the continuous-time
systems.

Besides the switching signals presented in this chapter, there are also sev-
eral other kinds of switching strategies in the literature. For example, switched
stable systems can be stabilized by the (average) dwell-time switching signals
[105, 64]. The robustness analysis of the switching signals can be found in
[170, 171].



4

Controllability, Observability, and Normal
Forms

4.1 Introduction

In this chapter, we address several fundamental issues which reveal intrinsic
system properties and pave the way for tackling control synthesis problems.

A fundamental pre-requisite for the design of linear feedback control sys-
tems is a good understanding of the structural properties of the linear systems
under consideration. These properties are closely related to the concepts of
controllability, observability and stability of control systems which are of fun-
damental importance in the literature of systems and control. However, for
controllability and observability analysis of switched linear control systems,
a much more difficult situation arises since both the control input and the
switching signal are design variables to be determined, and thus the interac-
tion between them must be fully understood.

Here, we present several complete criteria for controllability/observability
in the geometric notions. By means of the criteria, we are able to decompose
a switched system into a controllable part and an uncontrollable part as well
as an observable part and an unobservable part. More elegant normal forms
can be obtained using equivalent coordinate and feedback transformations.
These normal forms reveal clearly the system structures and pave the way
for further investigation of synthesis problems such as feedback stabilization
which will be addressed in the next chapter.

When a continuous-time system is connected to a digital device, the over-
all system can be represented by a single-rate or multi-rate sampled-data sys-
tem. The sampled-data system sets up a bridge between the continuous-time
switched linear system and its discrete-time counterpart. This scheme also en-
ables us to address the continuous-time/discrete-time switched linear systems
in a unified framework. Criteria are obtained for sampling without loss of con-
trollability. Several combined digital control with regular switch schemes are
developed. These results provide tractable strategies for the practical control
of switched linear systems.
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In this chapter, we also address several fundamental issues which are
closely related to controllability and observability. In particular, we examine
several controllability notions from the nonlinear control theory and establish
the equivalence among them; we address the controllability with switching
and/or input constraints; and we briefly discuss the local controllability and
decidability issues.

4.2 Definitions and Preliminaries

4.2.1 Definitions

Consider the switched linear control system given by

δx(t) = Aσx(t) +Bσu(t)
y(t) = Cσx(t) (4.1)

where x ∈ Rn is the state, u ∈ Rp is the input, y ∈ Rq is the output, σ ∈M
is the switching signal, and δ is the derivative operator in continuous time
and the shift forward operator in discrete time.

In the system representation, we do not impose any full rank condition on
the input matrices Bk, k ∈ M . This implicitly allows us to consider the case
when the column numbers of Bi are not the same. Indeed, suppose that Bk is
of n× pk for k ∈M . Let p = max{pk : k ∈M}, and expand each Bk to n× p
by adding zero columns when necessary. Then, the expanded system is of the
form (4.1).

Let φ(t; t0, x0, u, σ) denote the state trajectory at time t of switched system
(4.1) starting from x(t0) = x0 with input u and switching path σ.

In the following definitions of controllability, reachability, etc., we always
set t0 = 0. As stated in Section 1.3.5, this assumption does not lose any
generality. In addition, the switching signal is assumed to be taken for S, the
set of well-defined switching paths over the defined time interval.

Definition 4.1. State x ∈ Rn is controllable, if there exist a time instant
tf > t0, a switching path σ : [t0, tf ] �→ M , and an input u : [t0, tf ] �→ Rp,
such that φ(tf ; t0, x, u, σ) = 0. The controllable set of system (4.1), denoted
by C(Ci, Ai, Bi)M or C in short, is the set of states which are controllable.

Definition 4.2. System (4.1) is said to be (completely) controllable, if its
controllable set is the total state space, Rn.

The reachability counterparts can be defined in the same fashion as follows.

Definition 4.3. State x ∈ Rn is reachable, if there exist a time instant
tf > t0, a switching path σ : [t0, tf ] �→ M , and an input u : [t0, tf ] �→ Rp,
such that φ(tf ; t0, 0, u, σ) = x. The reachable set of system (4.1), denoted by
R(Ci, Ai, Bi)M or R in short, is the set of states which are reachable.
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Definition 4.4. System (4.1) is said to be (completely) reachable, if its reach-
able set is Rn.

The concepts of observability and reconstructibility can be defined in a
similar manner.

Definition 4.5. State x is said to be unobservable, if for any switching path
σ, there exists an input u such that

Cσφ(t; t0, x, u, σ) = Cσφ(t; t0, 0, u, σ) ∀ t ≥ t0.

The unobservable set of system (4.1), denoted by UO(Ci, Ai, Bi)M or UO in
short, is the set of states which are unobservable.

In other words, the unobservable set includes the initial states which can-
not be distinguished from the origin using knowledge of the future output and
input.

Definition 4.6. System (4.1) is said to be (completely) observable, if its un-
observable set is null.

Definition 4.7. State x is said to be unreconstructible, if for any switching
path σ, there exists an input u such that

Cσφ(t; t0, x, u, σ) = Cσφ(t; t0, 0, u, σ) ∀ t ≤ t0.

The unreconstructible set of system (4.1), denoted by UR(Ci, Ai, Bi)M or UR
in short, is the set of states which are unreconstructible.

In other words, the unreconstructible set includes the initial states which
cannot be identified from the origin using knowledge of the past output and
input.

Definition 4.8. System (4.1) is said to be (completely) reconstructible, if its
unreconstructible set is null.

The above controllable/reachable/unobservable/unreconstructible sets are
defined on the set of switching paths. In fact, the concepts can be confined to
a fixed switching path as follows.

Let σ : R �→M be a given switching path.

Definition 4.9. State x ∈ Rn is controllable via σ, if there exist a time
instant tf > t0, and an input u : [t0, tf ] �→ Rp, such that φ(tf ; t0, x, u, σ) = 0.
The controllable set via σ, denoted by Cσ(Ci, Ai, Bi)M or Cσ in short, is the
set of states which are controllable via σ.

Definition 4.10. State x ∈ Rn is reachable via σ, if there exist a time instant
tf > t0, and an input u : [t0, tf ] �→ Rp, such that φ(tf ; t0, 0, u, σ) = x. The
reachable set via σ, denoted by Rσ(Ci, Ai, Bi)M or Rσ in short, is the set of
states which are reachable via σ.
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Definition 4.11. State x ∈ Rn is unobservable via σ, if there exists an input
u, such that

Cσφ(t; t0, x, u, σ) = Cσφ(t; t0, 0, u, σ) ∀ t ≥ t0.

The unobservable set of system, denoted by UOσ(Ci, Ai, Bi)M or UOσ in
short, (4.1) is the set of states which are unobservable via σ.

Definition 4.12. State x is said to be unreconstructible via σ, if there exists
an input u, such that

Cσφ(t; t0, x, u, σ) = Cσφ(t; t0, 0, u, σ) ∀ t ≤ t0.

The unreconstructible set via σ of system (4.1), denoted by URσ(Ci, Ai, Bi)M

or URσ in short, is the set of states which are unreconstructible via σ.
The concepts of complete controllability via σ, complete reachability via

σ, etc., can be defined accordingly in the standard sense.
It can be seen that

C(Ci, Ai, Bi)M = ∪σ∈SCσ(Ci, Ai, Bi)M

R(Ci, Ai, Bi)M = ∪σ∈SRσ(Ci, Ai, Bi)M

and

UO(Ci, Ai, Bi)M = ∩σ∈SUOσ(Ci, Ai, Bi)M

UR(Ci, Ai, Bi)M = ∩σ∈SURσ(Ci, Ai, Bi)M .

4.2.2 Elementary Analysis

We consider the continuous-time switched linear system given by

ẋ(t) = Aσx(t) +Bσu(t)
y(t) = Cσx(t). (4.2)

Given an initial state x(0) = x0, an input u, and a switching path
σ : [0, tf ] �→M , the solution of Equation (4.2) is given by

x(t) = φ(t; t0, x0, u, σ) = eAik
(t−tk)eAik−1 (tk−tk−1) · · · eAi0 (t1−t0)x0

+eAik
(t−tk) · · · eAi1 (t2−t1)

∫ t1

0
eAi0 (t1−τ)Bi0u(τ)dτ + · · ·

+eAik
(t−tk)

∫ tk

tk−1

eAik−1 (tk−τ)Bik−1u(τ)dτ +
∫ t

tk

eAik
(t−τ)Bik

u(τ)dτ

tk < t ≤ tk+1 1 ≤ k ≤ s (4.3)

where {0, t1, · · · , ts} is the switching time sequence of σ in [t0, tf ), {i0 =
σ(0+), · · · , is = σ(ts+)} is the switching index sequence of σ in [t0, tf ), and
ts+1 = tf .
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It can be seen that the reachable set is

R(Ci, Ai, Bi)M = {x = φ(t; 0, 0, u, σ) : t ≥ 0, u ∈ Up, σ ∈ S[0,t]}

= {eAik
hk · · · eAi1h1

∫ h0

0
eAi0τBi0u(τ)dτ + · · ·+

∫ hk

0
eAik

τBik
u(τ)dτ :

k ∈ N+, ij ∈M,hj > 0, u ∈ Up}

where Up is the set of pth-dimensional piecewise continuous vector functions.
It can be seen that the set is independent of the output. For clarity, we denote
by R the set R(Ci, Ai, Bi)M for system Σ(Ci, Ai, Bi)M without ambiguity.

By Lemma 2.3, for any matrices A ∈ Rn×n, B ∈ Rn×p and t > 0, we have
{∫ t

0
eAτBu(τ)dτ : u ∈ Up

}
=

n−1∑
j=0

Aj ImB (4.4)

where ImB denotes the image space of B, i.e., ImB = {Bz : z ∈ Rp}.
Denote Bk =ImBk, and Dk =

∑n−1
j=0 A

j
kBk for k ∈M . It follows from (4.4)

that the reachable set can be expressed as

R = ∪∞
k=1 ∪i0,··· ,ik∈M ∪h1,··· ,hk>0(eAik

hk · · · eAi1h1Di0 + · · ·+Dik
). (4.5)

Similarly, the controllable set is

C(Ci, Ai, Bi)M = ∪∞
k=1 ∪i0,··· ,ik∈M ∪h0,··· ,hk>0(e−Ai0h0Di0

+ · · ·+ e−Ai0h0 · · · e−Aik
hkDik

). (4.6)

The set is also independent of the output and is denoted as C when the context
is clear.

Let A = {Ai, i ∈ M} and B =
∑

i∈M ImBi. Denote by V the multiple
controllable subspace of (A,B) (c.f. Section 2.4). That is, V is the smallest
subspace of Rn that is invariant under each Ai and contains each ImBi for
i ∈M . The expression of V in the system matrices is

V =
j1,··· ,jn−1∈n∑
i0,··· ,in−1∈M

A
jn−1
in−1

· · ·Aj1
i1
Bi0 . (4.7)

Recall that for a matrix A and a subspace W, ΓAW denotes the smallest
A-invariant subspace that contains W. It is clear that eAtImB ⊂ ΓA ImB for
all A ∈ Rn×n, B ∈ Rn×p and t ∈ R. This gives

R ⊂ ∪∞
k=1 ∪i0,··· ,ik∈M (ΓAik

· · ·ΓAi1
Di0 + · · ·+Dik

) ⊂ V (4.8)

and

C ⊂ ∪∞
k=1 ∪i0,··· ,ik∈M (Di0 + · · ·+ ΓAi0

· · ·ΓAik−1
Dik

) ⊂ V. (4.9)

As a simple consequence, we have the following proposition.
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Proposition 4.13. If switched linear system (4.2) is controllable or reachable,
then

V = Rn.

4.2.3 A Heuristic Example

For a switched linear system with two or more subsystems, if the number of
switches is subject to certain restrictions, the reachable set and controllable
set are not necessarily linear subspaces, and the sets may not be coincident
with each other. To see this, let Rj and Cj denote the sets of states which are
reachable from and controllable to the origin within j switches, respectively.
Rj and Cj may differ from each other for certain js as illustrated in the
following example.

Example 4.14. Consider system (4.2) with n = 4, m = 2, and

A1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦ B1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ A2 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ . (4.10)

It can be calculated that

V = {

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦}.

Simple computation gives

R0 = span{

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦} and R1 = {

⎡
⎢⎢⎣
a
at
0
0

⎤
⎥⎥⎦ : a ∈ R, t ≥ 0}.

Note that set R1 is neither a subspace nor a union of countable subspaces.
Further calculation yields

R2 = {

⎡
⎢⎢⎣
a
b
bt
0

⎤
⎥⎥⎦ : a, b ∈ R, t ≥ 0} and R3 = {

⎡
⎢⎢⎣

a
at3 + b
bt2
0

⎤
⎥⎥⎦ : a, b ∈ R, t2, t3 ≥ 0}.

Sets R2 and R3 are strict subsets of V, and R3 strictly includes R2 as a
subset.
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Repeating this process, we have

R4 = span{

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦} = V.

By analogy, the controllable counterparts are given by

C0 = span{

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦} and C1 = {

⎡
⎢⎢⎣

a
−at
0
0

⎤
⎥⎥⎦ : a ∈ R, t ≥ 0}

C2 = {

⎡
⎢⎢⎣

a
b
−bt
0

⎤
⎥⎥⎦ : a, b ∈ R, t ≥ 0}

C3 = {

⎡
⎢⎢⎣

a
−at2 + b
−bt1

0

⎤
⎥⎥⎦ : a, b ∈ R, t1, t2 ≥ 0}

C4 = span{

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦} = V.

To summarize, for system (4.10), we have the following observations:

(i) C = R = V;
(ii) not all Rj and Cj are subspaces, and Rj 
= Cj for j = 1, 2, 3; and
(iii) the dimension of V is three, while it needs four switches to transfer an

arbitrarily given state in V to the origin.

Item (i) reveals that both the controllable set and the reachable set are
subspaces, and the two sets are exactly the multiple controllable subspace
V. Items (ii) and (iii), however, indicate that complex phenomena may arise
when switching between different subsystems occurs. For (ii), the difference
is due to incomplete switching which is a unique phenomenon of switched
systems. For (iii), it is natural to raise the question:

For a given switched system, what is the least number of switches required
to transfer any arbitrarily given state in the controllable set to the origin?

This question is still open for future investigation.



124 4 Controllability, Observability, and Normal Forms

4.2.4 Two Supporting Lemmas

As expressed in (4.3), the state transition matrix for switched system (4.2)
is a multiple multiplication of matrix functions of the form eAt. Accordingly,
properties of exponential matrix functions play an important role in the struc-
tural analysis for switched linear systems. In this subsection, a couple of rank
properties for exponential matrix functions are presented. These properties
are crucial to the derivations of the controllability/observability criteria in
Section 4.3.1.

Lemma 4.15. For any given matrix A ∈ Rn×n and subspace B ⊆ Rn, the
following equation holds for almost all t1, t2, · · · , tn ∈ R

eAt1B + eAt2B + · · ·+ eAtnB = ΓAB.

Proof. Let matrix B be such that ImB = B, and Z be the smallest subspace
of Rn that contains the subspaces eAtB for all t ∈ R. That is, Z is spanned
by the set of vectors

{eAtBz : t ∈ R, z ∈ Rn}.

By Lemma 2.3, Z is exactly the controllable subspace of matrix pair (A,B):

Z = span{eAtBz : t ∈ R, z ∈ Rn} = ΓAB.

Suppose that eAt0jBzj , j = 1, · · · , n, spans subspace Z, i.e.,

Z = span{eAt01Bz1, · · · , eAt0nBzn}.

This implies that

eAt01B + · · ·+ eAt0nB = ΓAB

or equivalently,

rank[eAt01B, · · · , eAt0nB] = dim(ΓAB).

Denote integer r = dim(ΓAB), and define matrix function

L(t1, · · · , tn) = [eAt1B, · · · , eAtnB].

Choose a nonsingular submatrix M0 with maximal rank in L(t01, · · · , t0n).
Therefore, M0 is nonsingular and rankM0 = rankL(t01, · · · , t0n) = r. Denote
the corresponding submatrix of L(t1, · · · , tn) as M(t1, · · · , tn), and its deter-
minant as d(t1, · · · , tn).

Since each entry in matrixM(t1, · · · , tn) is an analytic function of variables
t1, · · · , tn, d(t1, · · · , tn) is also an analytic function of its arguments. As
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d(t01, · · · , t0n) 
= 0

its zeros form a proper variety of Rn (c.f. Section 2.6). Therefore, the non-
regularity of matrix M(t1, · · · , tn) is a generic property. This implies that

rankL(t1, · · · , tn) ≥ rankM(t1, · · · , tn) = r

for almost all t1, · · · , tn. Together with the fact that Z ⊆ ΓAB, we can con-
clude that

eAt1B + · · ·+ eAtnB = ΓAB

for almost all t1, · · · , tn. ��

Lemma 4.16. For any given matrices Ak ∈ Rn×n and Bk ∈ Rn×p, k = 1, 2,
inequality

rank[A1e
A2tB1, B2] ≥ rank[A1B1, B2] (4.11)

holds for almost all t ∈ R.
Proof. Denote matrix function Ω(t) = [A1e

A2tB1, B2]. Choose a nonsingular
submatrix G with maximal rank in Ω(0) = [A1B1, B2]. Denote the corre-
sponding submatrix of Ω(t) as ∆(t), and its determinant as ς(t). It is stan-
dard that all elements of ∆(t) are linear combinations of the form tkeλt, hence
ς : R �→ R is an analytic function. Because ς(0) =detG 
= 0, the zeros of ς(t)
form a proper variety in R. As a result, the property ς(t) 
= 0 is generic.
Accordingly, for almost all t, ∆(t) is nonsingular. Therefore,

rankΩ(t) ≥ rank∆(t) = rankG = rank[A1B1, B2]

for almost all t. ��
Note that inequality (4.11) cannot be substituted by equality, as shown by

the following example

A1 = I3 A2 =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ and B1 = B2 =

⎡
⎣0

0
1

⎤
⎦ t 
= 0.

For this example, it can be verified that

rank[A1e
A2tB1, B2] = 2 > 1 = rank[A1B1, B2] t 
= 0.

4.3 Controllability and Observability in Continuous
Time

4.3.1 Controllability and Reachability

In this subsection, we identify the controllable set and the reachable set for
switched linear systems.
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Theorem 4.17. For switched linear system (4.2), the reachable set is

R = V. (4.12)

Proof. Define the nested subspaces

V1 = D1 + · · ·+Dm

Vj+1 = ΓA1Vj + · · ·+ ΓAm
Vj j = 1, · · · , n− 1.

Then, we have V = Vn.
We are to design a switching path σ such that each state in V can be

reached from the origin via this switching path. That is, Rσ(Ci, Ai, Bi)M =
Rn.

Assume that the switching index sequence of σ is cyclic, i.e.,

i0 = 1, i1 = 2, · · · , im−1 = m, im = 1, im+1 = 2, · · · , i2m−1 = m,

· · · , il−m+1 = 1, il−m+2 = 2, · · · , il = m (4.13)

where the number l and the switching time sequence 0, t1, · · · , tl are to be
determined later.

Let tf > tl. From (4.5), the reachable set at tf is

Rσ(tf ) = eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil

where hj = tj+1 − tj , j = 0, 1, · · · , l − 1 and hl = tf − tl.
Since

eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil

= eAil
hl(eAil−1hl−1 · · · eAi1h1Di0 + · · ·+ eAil−1hl−1Dil−2 +Dil−1) +Dil

it follows from Lemma 4.16 that

dim (eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil
)

≥ dim(eAil−1hl−1 · · · eAi1h1Di0 + · · ·+ eAil−1hl−1Dil−2 +Dil−1 +Dil
)

for almost all hl.
By repeatedly applying Lemma 4.16, for almost all hl, · · · , hl−m+1, we

have

dim (eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil
)

≥ dim(eAil−1hl−1 · · · eAi1h1Di0 + · · ·+Dil−1 +Dil
)

...
≥ dim(eAiτ1

hτ1 · · · eAi1h1Di0 + · · ·+ eAiτ1
hτ1Diτ1−1 +Diτ1

+ · · ·+Dil
)

= dim(eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)
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where τ1 = l −m.
It follows from Lemma 4.16 that

dim (eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)

= dim(eAiτ1
hτ1 e

Aiτ1−1hτ1−1(eAiτ1−2hτ1−2 · · · eAi1h1Di0 + · · ·
+eAiτ1−2hτ1−2Diτ1−3 +Diτ1−2) + eAiτ1

hτ1Diτ1−1 +Diτ1
+ V1)

≥ dim(eAiτ1
hτ1 (eAiτ1−2hτ1−2 · · · eAi1h1Di0 + · · ·+ e

Aiτ1−2hτ1−2Diτ1−3

+Diτ1−2) + eAiτ1
hτ1Diτ1−1 +Diτ1

+ V1)

= dim(eAiτ1
hτ1 (eAiτ1−2hτ1−2 · · · eAi1h1Di0 + · · ·+ e

Aiτ1−2hτ1−2Diτ1−3

+Diτ1−2 +Diτ1−1) +Diτ1
+ V1)

for almost all hτ1−1.
By the same reasoning, we have

dim (eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 (eAiτ1−2hτ1−2 · · · eAi1h1Di0 + · · ·+ e

Aiτ1−2hτ1−2Diτ1−3

+Diτ1−2 +Diτ1−1) +Diτ1
+ V1)

≥ dim(eAiτ1
hτ1 (eAiτ1−3hτ1−3 · · · eAi1h1Di0 + · · ·+ e

Aiτ1−3hτ1−3Diτ1−4

+Diτ1−3 + · · ·+Diτ1−1) +Diτ1
+ V1)

...
≥ dim(eAiτ1

hτ1 (eAiτ1−m
hτ1−m · · · eAi1h1Di0 + · · ·+ e

Aiτ1−m
hτ1−mDiτ1−m−1

+Diτ1−m + · · ·+Diτ1−1) +Diτ1
+ V1)

= dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−m(eAiτ1−m−1hτ1−m−1 · · · eAi1h1Di0 + · · ·

+Diτ1−m−1) + eAiτ1
hτ1V1 +Diτ1

+ V1)

for almost all hj , j = τ1 − 1, · · · , τ1 −m+ 1.
Continuing with the above process gives

dim (eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−m(eAiτ1−m−1hτ1−m−1 · · · eAi1h1Di0 + · · ·

+Diτ1−m−1) + eAiτ1
hτ1V1 +Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−me

Aiτ1−2m
hτ1−2m(eAiτ1−2m−1hτ1−2m−1 · · ·

×eAiτ1−2m
hτ1−2meAi1h1Di0 + · · ·+Diτ1−2m−1)

+eAiτ1
hτ1 e

Aiτ1−m
hτ1−mV1 + eAiτ1

hτ1V1 +Diτ1
+ V1)

...
≥ dim(eAiτ1

hτ1 e
Aiτ1−m

hτ1−m · · · eAiτ1−nm
hτ1−nm(eAiτ1−nm−1hτ1−nm−1 · · ·

×eAi1h1Di0 + · · ·+Diτ1−nm−1) + eAiτ1
hτ1 · · · eAiτ1−nm+m

hτ1−nm+mV1
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+ · · ·+ eAiτ1
hτ1V1 +Diτ1

+ V1)

= dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−m · · · eAiτ1−nm

hτ1−nm(eAiτ1−nm−1hτ1−nm−1 · · ·
×eAi1h1Di0 + · · ·+Diτ1−nm−1) + eAiτ1

(hτ1+···+hτ1−nm+m)V1

+ · · ·+ eAiτ1
hτ1V1 +Diτ1

+ V1) (4.14)

for almost all hj , j = τ1 − mn + 1, · · · , τ1 − mn + m − 1, τ1 − mn + m +
1, · · · , τ1 −mn+ 2m− 1, · · · , τ1 −m+ 1, · · · , τ1 − 1. The relationships, ij =
ij+m, j = 1, 2, · · · , are used in the last equation of (4.14).

From Lemma 4.15, we have

ΓAiτ1
V1 = eAiτ1

hτ1V1 + · · ·+ eAiτ1
(hτ1+hτ1−m+···+hτ1−mn+m)V1 (4.15)

for almost all hj , j = τ1, τ1 − m, · · · , τ1 − mn. Accordingly, we can rewrite
(4.14) as

dim (eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 · · · eAiτ1−nm

hτ1−nm(eAiτ1−nm−1hτ1−nm−1 · · · eAi1h1Di0

+ · · ·+Diτ1−nm−1) + ΓAiτ1
V1 +Diτ1

).

Applying Lemma 4.16 once again, for almost all hj , j = τ1, τ1−m, · · · , τ1−
mn, we have

dim (eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 · · · eAiτ1−nm

hτ1−nm(eAiτ1−nm−1hτ1−nm−1 · · · eAi1h1Di0

+ · · ·+Diτ1−nm−1) + ΓAiτ1
V1 +Diτ1

)

≥ dim(eAiτ1−m
hτ1−m · · · eAiτ1−nm

hτ1−nm(eAiτ1−nm−1hτ1−nm−1 · · · eAi1h1Di0

+ · · ·+Diτ1−nm−1) + ΓAiτ1
V1 +Diτ1

)

... (4.16)

≥ dim(eAiτ1−nm
hτ1−nm(eAiτ1−nm−1hτ1−nm−1 · · · eAi1h1Di0 + · · ·

+Diτ1−nm−1) + ΓAiτ1
V1 +Diτ1

)

= dim(eAiτ1−nm
hτ1−nme

Aiτ1−nm−1hτ1−nm−1 · · · eAi1h1Di0 + · · ·
+eAiτ1−nm

hτ1−nmDiτ1−nm−1 +Diτ1−nm + ΓAiτ1
V1)

where the relationship Diτ1
= Diτ1−mn is used.

Since each of Equations (4.15) and (4.16) holds for almost all hj , j =
τ1, τ1 −m, · · · , τ1 −mn, almost all choices of hj , j = τ1, τ1 −m, · · · , τ1 −mn
satisfy (4.15) and (4.16) simultaneously.

Continuing with this process, we can prove that, for almost all hj , j =
τ1 −mn, · · · , τ1 −m2n+ 1, we have
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dim (eAiτ1
hτ1 · · · eAi1h1Di0 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1−mn
hτ1−mn · · · eAi1h1Di0 + · · ·+ e

Aiτ1−mn
hτ1−mnDiτ1−mn−1

+Diτ1−mn
+ ΓAiτ1

V1)

...
≥ dim(eAiτ2

hτ2 · · · eAi1h1Di0 + · · ·+Diτ2
+ ΓAiτ1

V1

+ · · ·+ ΓAiτ1−m+1
V1)

= dim(eAiτ2
hτ2 · · · eAi1h1Di0 + · · ·+Diτ2

+ V2)

where τ2 = τ1 −m2n.
Proceeding with the above reasonings, we finally have

dim (eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil
)

≥ dim(eAiτn
hτn · · · eAi1h1Di0 + · · ·+Diτn

+ Vn) ≥ dimV (4.17)

where τn = l −
∑n−1

k=0 m(mn)k.
Let l ≥

∑n−1
k=0 m(mn)k − 1, then from (4.8) and (4.17), it follows that

Rσ(tf ) = V

which implies (4.12). ��

Theorem 4.18. For switched linear system (4.2), the controllable set is

C = V. (4.18)

Proof. The proof is completely parallel to that of Theorem 4.17 and is hence
omitted. ��

From the above theorems, the controllable set and the reachable set are
always identical. Moreover, the set forms a subspace of the state space, which
is exactly the smallest Ai-invariant subspace that contains

∑
k∈M ImBk, V.

For a linear time-invariant system, the subspace is the controllable subspace
of (A,B). This explains the reason why V is termed the controllable subspace
of the switched system.

Corollary 4.19. For switched linear system (4.2), the following statements
are equivalent:

(i) the system is completely controllable;
(ii) the system is completely reachable; and
(iii)V = Rn.

Remark 4.20. The geometric criterion (iii) is equivalent to the algebraic cri-
terion



130 4 Controllability, Observability, and Normal Forms

rank[B1, · · · , Bm, A1B1, · · · , AmB1, · · · , A1Bm, · · · , AmBm,

A2
1B1, · · · , AmA1B1, · · · , A2

1Bm, · · · , AmA1Bm, · · · ,
An−1

1 B1, · · · , AmA
n−2
1 B1, · · · , A1A

n−2
m Bm, · · · , An−1

m Bm] = n.

These criteria generalize the well-known controllability criteria for linear time-
invariant systems (see, e.g., [21] and [77]).

Remark 4.21. Due to Corollary 4.19, we can give an equivalent definition of
controllability as follows.

Definition 4.22. System (4.2) is said to be (completely) controllable, if for
any states x0 and xf , there exist a time instant tf > 0, a switching path
σ : [0, tf ] �→M , and an input u : [0, tf ] �→ Rp, such that x(tf ; 0, x0, u, σ) = xf .

Remark 4.23. From the proof of Theorem 4.17, it can be seen that reachability
can be achieved through one switching path in any finite time. That is, there
exists a switching path σ, such that for and any time T > 0, and any states x0
and xf in V, there exist a time instant tf ≤ T , and an input u : [0, tf ] �→ Rp,
such that x(tf ; 0, x0, u, σ) = xf . In particular, we have

Cσ(Ai, Bi)M = Rσ(Ai, Bi)M = V

which shows that controllability (reachability) can be achieved via a fixed
path.

Remark 4.24. The controllable and reachable sets are invariant under different
permutations of Ak and Bk for k ∈M . That is, suppose that both j1, · · · , jm
and l1, · · · , lm are permutations of 1, · · · ,m, then the controllable (reachable)
set of system (4.2) coincide with that of the system given by

ẋ(t) = Āσx(t) + B̄σu(t) (4.19)

where Āk = Ajk
, and B̄k = Blk for k ∈M .

Remark 4.25. As discussed in Section 2.4, a basis for V is of the form

{b1, Ai1,1b1, Aik1,1 · · ·Ai1,1b1, · · · ,
bn0 , Ai1,n0

bn0 , Aikn0 ,n0
· · ·Ai1,n0

bn0} (4.20)

where bj ∈ ∪j∈M ImBj , kj ≥ 0, and 1 ≤ il,j ≤ m for l = 1, · · · , kj and
j = 1, · · · , n0. Since the number of vectors in (4.20) is not more than n, there
are at most n different subsystems whose parameters appear in (4.20). That is
to say, at most n subsystems contribute to the controllability and reachability.
By removing the redundant subsystems from the switched system, we assume
m ≤ n without loss of generality.
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4.3.2 Observability and Reconstructibility

By Definition 4.5, state x is said to be unobservable, if for any switching path
σ, there exists an input u such that

Cσφ(t; 0, x, u, σ) = Cσφ(t; 0, 0, u, σ) ∀ t ≥ 0.

From the expression of the state solution in (4.3), this implies that

Cik
eAik

(t−tk) · · · eAi0 t1x = 0 ∀ tk < t ≤ tk+1

where {(0, i0), (t1, i1), · · · } is the switching sequence of σ. By the arbitrariness
of σ, we have

Cik
eAik

hk · · · eAi0h0x = 0 ∀ k ∈ N+ hj > 0 ij ∈M.

This is equivalent to

Cik
Alk

ik
· · ·Al0

i0
x = 0 ∀ k ∈ N+ lj ∈ N+ ij ∈M. (4.21)

Define a nested sequence of subspaces by

O1 = ImCT
1 + · · ·+ ImCT

m

Oj+1 = ΓAT
1
Oj + · · ·+ ΓAT

m
Oj j = 1, 2, · · · .

Let

O = On =
∞∑

i=1

Oi

and

U = O⊥ = {x′ : < x, x′ >= 0 ∀ x ∈ O}

where < ·, · > denotes the standard inner product in Rn.

Theorem 4.26. For switched linear system (4.2), the unobservable set is the
subspace U .
Proof. From (4.21), we have

x ∈ UO ⇐⇒ x ∈ ∩k∈N+ ∩
l1,···lk∈N+
i1,··· ,ik∈M Ker(Cik

Alk
ik
· · ·Al0

i0
).

This means that

x ∈ UO ⇐⇒ x ∈

⎛
⎝ ∑

k∈N+

l1,···lk∈N+∑
i1,··· ,ik∈M

Im(Cik
Alk

ik
· · ·Al0

i0
)T

⎞
⎠

⊥

⇐⇒ x ∈ O⊥.

Therefore, we have

UO = O⊥ = U . ��
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Theorem 4.27. For switched linear system (4.2), the unreconstructible set is
subspace U .
Proof. The theorem can be proven in the same way as for Theorem 4.26 and
is hence omitted. ��

Corollary 4.28. For switched linear system (4.2), the following statements
are equivalent:

(i) the system is completely observable;
(ii) the system is completely reconstructible;
(iii) system Σ(AT

i , C
T
i )M is completely controllable;

(iv) system Σ(AT
i , C

T
i )M is completely reachable; and

(v) O = Rn.

The corollary establishes the principle of duality, namely, if we term the sys-
tem Σ(AT

i , CT
i )M as the dual system of Σ(Ci, Ai)M , then, the complete ob-

servability (reconstructibility) of a switched system is equal to the complete
reachability (controllability) of its dual system. The principle of duality plays
an important role in the analysis and control of switched linear systems.

4.3.3 Path Planning for Controllability

In this subsection, we study the following switching control design problem
for switched system (4.2).
Switching Control Design Problem Given any two states x0 and xf in
the controllable subspace V, find a switching path σ and a control input u to
steer the system from x0 to xf in a finite time.
Combining the proof of Theorem 4.17 and the geometric approach of linear
systems [160], we can formulate a procedure to address this problem as follows.

From the proof of Theorem 4.17, we can find a natural number l, positive
real numbers h1, · · · , hl, and an index sequence i0, · · · , il, such that Equation
(4.17) holds. This, together with (4.8), implies that

V = eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil
. (4.22)

Fix a positive real number h0. Define the switching time sequence as

t0 = 0 tk = tk−1 + hk−1 k = 1, · · · , l + 1.

From Lemma 2.3, for any k ∈M and t > 0, we have

Dk = ImW k
t (4.23)

where

W k
t =

∫ t

0
eAk(t−τ)BkB

T
k e

AT
k (t−τ)dτ.
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Combining (4.22) with (4.23) leads to

V = eAil
hl · · · eAi1h1 ImW i0

h0
+ · · ·+ eAil

hl ImW
il−1
hl−1

+ ImW il

hl
. (4.24)

The path planning problem is to find, for any initial state x0 and target
state xf , both from the controllable subspace, a control input u such that

xf = x(tl+1) = eAil
hl · · · eAi0h0x0 + eAil

hl · · · eAi1h1

∫ t1

0
eAi0 (t1−τ)Bi0u(τ)dτ

+ · · ·+
∫ tl+1

tl

eAil
(tl+1−τ)Bil

u(τ)dτ. (4.25)

To this end, consider the piecewise continuous control strategy given by

u(t) = BT
ik
eAT

ik
(tk+1−t)ak+1 tk ≤ t < tk+1 k = 0, 1, · · · , l (4.26)

where ak ∈ Rn, k = 1, · · · , l + 1 are constant vector variables to be deter-
mined.

Combining (4.25) with (4.26) gives

xf − eAil
hl · · · eAi1h1eAi0h0x0

= eAil
hl · · · eAi1h1

∫ t1

t0

eA1(t1−τ)B1B
T
1 e

AT
1 (t1−τ)dτa1

+ · · ·+
∫ tl+1

tl

eAil
(tl+1−τ)Bil

BT
il
eAT

il
(tl+1−τ)dτal+1.

This is equivalent to

xf − eAil
hl · · · eAi0h0x0 = [eAil

hl · · · eAi1h1W i0
h0
, · · · ,W il

hl
]a (4.27)

where a = [aT
1 , · · · , aT

l+1]
T .

Note that

xf − eAil
hl · · · eAi0h0x0 ∈ V.

It follows from (4.24) that linear equation (4.27) with unknown a has at least
one solution. The solution(s) of Equation (4.27) can be computed by symbolic
or numerical softwares.

Suppose that a0 = [aT
0,1, · · · , aT

0,l+1]
T is a solution of Equation (4.27).

Define the control input as

u(t) = BT
ik
eAT

ik
(tk+1−t)a0,k+1 tk ≤ t < tk+1 k = 0, 1, · · · , l (4.28)

and the switching path as

σ(t) = ik for t ∈ [tk, tk+1) k = 0, 1, · · · , l. (4.29)
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Following the above reasonings, we have

xf = x(tl+1; 0, x0, u, σ).

That is, the piecewise continuous control input (4.28) and the switching path
(4.29) constitute a solution for the switching control problem of switched
system (4.2).

Example 4.29. Consider the switched systems given by

A1 = 0 B1 = e1 Aj = eje
T
j−1 Bj = 0 j = 2, · · · ,m m ≤ n (4.30)

where ej , 1 ≤ j ≤ n is the unit column vector with the jth entry equal to
one.

To compute the controllable subspace V, we follow the procedure presented
in Section 2.4.

It can be readily seen that

W0 = span{e1}.

By searching the independent vectors in

W1 = span{e1, Aje1, j = 1, · · · ,m}

we obtain

W1 = span{e1, A2e1} = span{e1, e2}.

Continuing with this process, we have

Wk = span{e1, · · · , ek, Ajek j = 1, · · · ,m} = span{e1, · · · , ek+1}

for k = 2, · · · ,m− 1, and

Wm = span{e1, · · · , em, Ajem j = 1, · · · ,m}
= span{e1, · · · , em} = Wm−1.

Thus, V = W = Wm−1. According to Theorems 4.17 and 4.18 , the control-
lable (reachable) set is

R = C = span{e1, · · · , em}

which is an m-dimensional subspace. If m = n, then the switched system is
controllable and reachable.

Next, we address the switching control problem for system (4.30). Follow-
ing the path planning procedure, we consider the periodic switching index
sequence and piecewise continuous input.

Let us choose the switching time sequence to be
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t0 = 0 t1 = 1 t2 = 2 · · · .

Accordingly, hk = h = 1 for k = 0, 1, · · · . Simple calculation gives

eA1h = In and eAjh = In +Aj j = 2, · · · ,m.

Let l = ml0 with l0 to be determined. Under the periodic switching index
sequence (4.13), we can compute

dim (eAil
h · · · eAi1hDi0 + · · ·+ eAil

hDil−1 +Dil
)

= dim(eAil
h · · · eA2hD1 + eAil

heAil−m+1h · · · eAil−m
hD1 + · · ·+D1)

= dim(Ql0B1 +Ql0−1B1 + · · ·+ B1)

where

Q = eAmheAm−1h · · · eA2h = In +A2 + · · ·+Am.

It can be verified that vectors B1, QB1, · · · , Qm−1B1 are linearly indepen-
dent, and

V = span{B1, QB1, · · · , Qm−1B1}.

Accordingly, we choose l0 = m− 1.
Simple calculation gives

W 1
h = e1e

T
1 and W k

t = 0 k = 2, · · · ,m.

For any given states x0 and xf in V, consider equation

[Qm−1W 1
h , · · · , QW 1

h ,W
1
h ]a = xf −Qm−1x0. (4.31)

Let P denote the submatrix of [Qm−1B1, · · · , QB1, B1] consisting of the
first m rows. It is clear that P is nonsingular. Denote

a0 = [P−1, 0](xf −Qm−1x0).

A solution of Equation (4.31) is given by

a = [a0(1), 0, · · · , 0, a0(2), 0, · · · , 0, · · · , a0(m), 0, · · · , 0]T

where a0(j) denotes the jth entry of vector a0.

4.4 Controllability and Observability in Discrete Time

Consider a discrete-time switched linear control system given by

xk+1 = Aσxk +Bσuk

yk = Ckxk (4.32)
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where xk ∈ Rn and uk ∈ Rp are the state and the input, respectively,
σ : N+ �→M is the switching path to be designed.

It can be calculated that

xk = Aik−1 · · ·Ai0x0 +Aik−1 · · ·Ai1Bi0u0

+ · · ·+Aik−1Bik−2uk−2 +Bik−1uk−1 (4.33)

where ij = σ(j) for j ∈ k.
Define

C(i0, · · · , ik) = (Aik
· · ·Ai0)

−1(Aik
· · ·Ai1Bi0 + · · ·+ Bik

). (4.34)

Let Ck denote the set of states that can be transferred to the origin within k
steps. It can be readily seen that

Ck = ∪i0,··· ,ik−1∈MC(i0, · · · , ik−1) (4.35)

and

C = ∪∞
k=1Ck (4.36)

where C is the controllable set of system (4.32).

Define

R(i0, · · · , ik) = Aik
· · ·Ai1Bi0 + · · ·+Aik

Bik−1 + Bik
.

Let Rk denote the set of states that are reachable from the origin within k
steps. It can be readily seen that

Rk = ∪i0,··· ,ik−1∈MR(i0, · · · , ik−1)

and

R = ∪∞
k=1Rk = ∪∞

k=1 ∪i0,··· ,ik−1∈M R(i0, · · · , ik−1) (4.37)

where R is the reachable set of system (4.32).

4.4.1 General Results

Theorem 4.30. The switched linear system (4.32) is controllable if and only
if there exist an integer k <∞, and i0, · · · , ik, such that

Im(Aik
· · ·Ai1Ai0) ⊆ R(i0, · · · , ik). (4.38)

Proof. From (4.34), (4.35) and (4.36), the controllable set of system (4.32)
is given by
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C = ∪∞
k=1 ∪i0,··· ,ik−1∈M ((Aik−1 · · ·Ai0)

−1(Aik−1 · · ·Ai1Bi0 + · · ·
+Aik−1Bik−2 + Bik−1)).

That is, the controllable set can be expressed as a union of countable
subspaces of Rn. Because Rn cannot be expressed as a countable union of
lower-dimensional subspaces (Baire’s Category Theorem, see Section 2.2), to
ensure controllability of system (4.32), we have

C(i0, · · · , ik) = (Aik
· · ·Ai0)

−1(Aik
· · ·Ai1Bi0 + · · ·+Aik

Bik−1

+Bik
) = Rn (4.39)

for some k <∞ and i0, · · · , ik ∈M . That is

(Aik
· · ·Ai1Bi0 + · · ·+Aik

Bik−1 + Bik
) ⊇ Im(Aik

· · ·Ai0). ��

For the reachability of switched linear systems, a similar criterion can be
obtained as follows.

Theorem 4.31. The switched linear system (4.32) is reachable if and only if
there exist an integer k <∞, and i0, · · · , ik ∈M , such that

R(i0, · · · , ik) = Rn. (4.40)

Proof. From (4.37), the reachable set is the countable union of subspaces
R(i0, · · · , ik−1). The theorem follows easily from the Baire’s Category Theo-
rem. ��

In view of the above theorems on reachability and controllability, the fol-
lowing criteria are readily obtained for observability and reconstructibility by
using the principle of duality.

Theorem 4.32. The switched linear system (4.32) is observable if and only
if there exist an integer k <∞, and i0, · · · , ik, such that

Ei0 +AT
i0Ei1 + · · ·+AT

i0 · · ·A
T
ik−1

Eik
= Rn (4.41)

where Ei = ImET
i for i = 1, · · · ,m.

Theorem 4.33. The switched linear system (4.32) is reconstructible if and
only if there exist an integer k <∞, and i0, · · · , ik, such that

Ei0 +AT
i0Ei1 + · · ·+AT

i0 · · ·A
T
ik−1

Eik
⊇ Im(AT

i0 · · ·A
T
ik

). (4.42)

Note that the conditions of theorems are not verifiable in general. The
proofs do not provide any information on how to find switching paths for
controllability, reachability, etc. As a result, the scheme is not constructive.

In the remainder of this subsection, we focus on the structure of the con-
trollable and reachable sets. As given in (4.36) and (4.37), both sets are unions
of countable subspaces. Unlike in continuous time, the controllable/reachable
sets are not subspaces anymore, and the two sets are not identical in general.
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Example 4.34. Consider system (4.32) with n = 4,m = 2, and

A1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

⎤
⎥⎥⎦ B1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ A2 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

Simple calculation gives

V = span{e1, e2}
R = span{e1} ∪ span{e2}
C = span{e1, e2, e3} ∪ span{e1, e2, e4}.

Note that neither the controllable set nor the reachable set is a subspace
of the total space. Furthermore, R ⊂ V ⊂ C, where the subset relationships
are strict. ��

By (4.37), the reachable set is the union of countable subspace

R = ∪k∈N+ ∪i0,··· ,ik−1∈M R(i0, · · · , ik−1).

Each such subspace is said to be a component of the reachable set. A compo-
nent W is said to be maximal, if there is no other component which strictly
contains W as a subset.

It can be seen that the reachable set is the union of its maximal compo-
nents. For a switched system Σ(Ai, Bi)M , we denote by c(Ai, Bi)M the integer
k such that the reachable set is the union of exactly k maximal components,
if such an integer exists. Otherwise, let c(Ai, Bi)M = ∞.

The following example shows that for any given integer k ≤ ∞, there
always exists a switched system such that the reachable set is the union of
exactly k maximal components.

Example 4.35. Let n ≥ 3, k is a given natural number. For each θ ∈ R, let

R2(θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

Let Jl denote the l × l Jordan block

Jl =

⎡
⎢⎢⎢⎣

0 1 · · · 0
. . .

0 0 · · · 1
0 0 · · · 0

⎤
⎥⎥⎥⎦ .

Define

A1 =
{

diag(R2( 2π
k ), Jn−2) if k is odd

diag(R2(π
k ), Jn−2) if k is even.
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Let

A2 = diag(02, Jn−2) B1 = e3 B2 = e2.

Then, we have

R =

⎧⎪⎪⎨
⎪⎪⎩
∪k

i=1 span
{
e3,

[
R2( 2iπ

k )ê2
0

]}
if k is odd

∪k
i=1 span

{
e3,

[
R2( iπ

k )ê2
0

]}
if k is even

where ê2 =
[

0
1

]
.

As each of the k components is maximal, we have c(Ai, Bi)2̄ = k.
If we let A1 = diag(R2(1), Jn−2) and keep others unchanged, then, it can

be seen that the reachable set is the union of countable maximal components,
that is, c(Ai, Bi)2̄ = ∞.

The component of controllable/unobservable/unreconstructible sets can be
discussed in the same manner, and we leave this to the reader as an exercise.

4.4.2 Reversible Systems

System (4.32) is said to be reversible, if all matrices Ai, i = 1, · · · ,m are non-
singular. As had been proven in [46], any causal discrete-time (input-output)
system can be realized by means of a reversible state variable representation.
Accordingly, reversible system representation is very general and applicable
to a large class of systems.

Let V denote the minimal subspace which is invariant under Ai for i ∈M
and contains

∑m
j=1 Bj .

Since AiImB ⊆ ΓA ImB for all A ∈ Rn×n, B ∈ Rn×p and i ≥ 0, we know
that the reachable set satisfies

R ⊆ ∪∞
k=0 ∪i0,··· ,ik−1∈M (ΓAik−1

· · ·ΓAi1
Bi0 + · · ·+ Bik−1) ⊆ V. (4.43)

Similarly, the controllable set satisfies

C ⊆ ∪∞
k=0 ∪i0,··· ,ik−1∈M (ΓA−1

i0
Bi0 + · · ·+ ΓA−1

i0
· · ·ΓA−1

ik−1
Bik−1) ⊆ V.

In what follows, we present verifiable criteria of controllability and reach-
ability for reversible switched linear systems. As in continuous time, we prove
that the reachable and controllable sets are nothing but subspace V.

Theorem 4.36. Suppose that the switched linear system (4.32) is reversible.
Then, its reachable set is

R = V. (4.44)
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Proof. Let us proceed by contradiction. Suppose that

dimR(i0, · · · , ik) = max{dimR(l0, · · · , lj) : l0, · · · , lj ∈M, j = 0, 1, · · · }
< dimV.

It follows that, for any arbitrary given integers l0, · · · , lj , we have

R(l0, · · · , lj , i0, · · · , ik) = R(i0, · · · , ik)

which implies that

(Aik
· · ·Ai0)(Alj · · ·Al1Bl0) ⊆ R(i0, · · · , ik). (4.45)

On the other hand, we have

V =
j1,··· ,jn∈n∑
i1,··· ,in∈M

Ajn

in
· · ·Aj1

i1
Bi1 . (4.46)

Since j and l0, · · · , lj in (4.45) can arbitrarily take any values, we obtain

(Aik
· · ·Ai0)V ⊆ R(i0, · · · , ik)

which is a contradiction because

dim[(Aik
· · ·Ai0)V] = dimV > dimR(i0, · · · , ik)

where the equality follows from the identity dimAV =dimV for any nonsingu-
lar matrix A ∈ Rn×n and subspace V ⊆ Rn.

Accordingly, we have

dimR(i0, · · · , ik) = dimV. (4.47)

It follows from (4.43) that

R = V. ��

Theorem 4.37. Suppose that the switched linear system (4.32) is reversible.
Then, its controllable set is

C = V. (4.48)

Proof. This theorem can be proven following the same argument as in the
proof of Theorem 4.36, the details are hence omitted. ��

Corollary 4.38. For a reversible switched linear system, the following state-
ments are equivalent:
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(i) the system is completely controllable;
(ii) the system is completely reachable; and
(iii)V = Rn.

Proof. The corollary follows directly from Theorems 4.36 and 4.37. ��

Remark 4.39. The criteria are in the same form as those in the continuous-
time case. However, it should be noted that the proofs are quite different. In
particular, the proof of Theorem 4.36 is proceeded by contradiction and does
not provide a constructive procedure to plan a path for controllability.

The observability and reconstructibility criteria can be obtained by the
principle of duality.

Theorem 4.40. For a reversible switched linear system, the following state-
ments are equivalent:

(i) the system is completely observable;
(ii) the system is completely reconstructible; and
(iii)O = Rn.

Example 4.41. (Controllability of a multi-rate sampled-data system)
Consider the linear continuous time-invariant system given by

ẋ = Ax+Bu(t) =

⎡
⎢⎢⎣

0 −100π 0 0
100π 0 0 0

0 0 3
2π 0

0 0 0 3
2π

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

10 0
10 0
0 10
0 10

⎤
⎥⎥⎦u(t) (4.49)

which can be verified to be controllable.
The corresponding sampled-data system is given by

xk+1 = ATxk +BTuk

where T is the sampling interval, and

xk = x(kT ) uk = u(kT ) AT = eAT BT =
∫ T

0
eτAdτB.

Suppose that the sampling intervals are chosen to be T1 = 0.01 and
T2 = 0.015, respectively. Then, the corresponding matrix pairs (AT1 , BT1)
and (AT2 , BT2) are

AT1 =

⎡
⎢⎢⎣
−1 0 0 0
0 −1 0 0
0 0 −0.5 − sin 3

2π
0 0 sin 3

2π −0.5

⎤
⎥⎥⎦ and BT1 =

⎡
⎢⎢⎣

0.1 0
0.1 0
0 −0.05− 0.1 sin 3

2π
0 −0.05− 0.1 sin 3

2π

⎤
⎥⎥⎦

and
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AT2 =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ and BT2 =

⎡
⎢⎢⎣

0.15 0
−0.15 0

0 −0.15
0 −0.15

⎤
⎥⎥⎦

respectively. It can be verified that

rank[BTi , ATi
BTi

, · · · , A3
Ti
BTi

] = 3 i = 1, 2

which show that the corresponding sampled-data systems are not controllable.
Now, we consider the multi-rate sampling of system (4.49) with sampling

rate of either T1 or T2. A question naturally arises: Does there exist a sampling
strategy such that the resultant switched system is controllable? That is, is
the switched system (4.32) with Ai = ATi , Bi = BTi , i = 1, 2 controllable or
not?

Simple computation gives

V ⊇ span{B1, B2, A1B1, A2B2} = R4.

From Corollary 4.38, the controllability follows. In addition, it can be verified
that

C(2, 1) = R(2, 1) = R4.

Accordingly, the switched system is controllable from (and reachable to) any
point within 2 steps by choosing subsystem (A2, B2) at the first step and then
switching to subsystem (A1, B1) at the second step.

This example shows that switching among different sampling rates may
avoid singularity caused by inappropriate choice of sampling rates.

4.5 Canonical Decompositions

In this section, we investigate various normal forms of switched linear systems
based on the controllability/observability criteria presented in the previous
sections. Due to the similarity between the criteria for continuous-time sys-
tems and the counterparts for reversible discrete-time systems, we treat the
two cases in a unifying framework.

Consider a switched linear control system described by

δx(t) = Aσx(t) +Bσu(t)
y(t) = Cσx(t) (4.50)

where δ denotes the derivative operator in continuous time and the shift for-
ward operator in discrete time. In the discrete-time case, we assume that the
system is reversible, that is, Ai for i ∈M are nonsingular matrices.
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Suppose that T is a nonsingular n× n real matrix. By letting x̄ = Tx, it
follows from (4.50) that

δx̄(t) = TAσT
−1x̄(t) + TBσu(t)

y(t) = CσT
−1x̄(t). (4.51)

This equation describes the same system dynamics in different bases of the
state space. Thus the two systems are equivalent under the coordinate trans-
formation x̄ = Tx.

For systems which are equivalent, their controllable/observable sets are
also connected by the equivalence transformation in a clear manner.

Proposition 4.42. Denote V̄ and Ū the controllable set and unobservable set
of system (4.51), respectively. Then, we have

V̄ = TV and Ū = TUO.

Proof. Simple calculation gives

V̄ =
j1,··· ,jn−1∈n∑
i0,··· ,in−1∈M

(TAin−1T
−1)jn−1 · · · (TAi1T

−1)j1 Im(TBi0)

= T

j1,··· ,jn−1∈n∑
i0,··· ,in−1∈M

A
jn−1
in−1

· · ·Aj1
i1

ImBi0 = TV.

Similarly, suppose that x ∈ Ū . Then, we have CiT
−1(TAk

jT
−1)kx = 0 for

all i, j ∈M and k ∈ n. This means that T−1x ∈ UO. Therefore, Ū = TUO. ��
As a simple implication, we have the following corollary.

Corollary 4.43. The properties of complete controllability/observability are
invariant under any equivalence transformation.

4.5.1 General Canonical Forms

By Theorems 4.18 and 4.37, the controllable set C of system (4.50) is a sub-
space of Rn. Denote n1 = dim C. Let γ1, · · · , γn1 be a basis set of C. Extend
the basis to basis {γi}n

i=1 of Rn, and let T be the matrix of transition from
the standard basis of Rn to [γ1, · · · , γn]. Let

Āk = TAkT
−1 and B̄k = TBk k ∈M.

From the fact that C is invariant under Ak and contains ImBk for each k ∈M ,
we can prove that the matrices are in the following block form

Āk =
[
Āk,1 Āk,2

0 Āk,3

]
and B̄k =

[
B̄k,1

0

]
k ∈M (4.52)

where Āk,1 ∈ Rn1×n1 and B̄k,1 ∈ Rn1×p.
The above analysis is summarized in the following theorem.
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Theorem 4.44. Switched system Σ(Ak, Bk)M is equivalent to Σ(Āk, B̄k)M .
Moreover, switched system Σ(Āk,1, B̄k,1)M is completely controllable.

System Σ(Āk, B̄k)M in triangular form (4.52) is said to be in controllability
canonical form.

By duality, we have the following observability canonical decomposition.

Theorem 4.45. Switched system Σ(Ck, Ak)M is equivalent to Σ(C̃k, Ãk)M

in the form

Ãk =
[
Ãk,1 0
Ãk,2 Ãk,3

]
and C̃k =

[
C̃k,1, 0

]
k ∈M. (4.53)

Moreover, switched system Σ(C̃k,1, Ãk,1)M is completely observable.
A system in the above form is said to be in observability canonical form.
We can also decompose the system based on both controllability and ob-

servability as follows.

Theorem 4.46. Switched system (4.50) is equivalent to the following system

∑
⎛
⎜⎜⎝[0 C̄i2 0 C̄i4],

⎡
⎢⎢⎣
Āi11 Āi12 Āi13 Āi14

0 Āi22 0 Āi24
0 0 Āi33 Āi34
0 0 0 Ā44

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣
B̄i1
B̄i2
0
0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

M

. (4.54)

In addition, switched system
∑([

Āi11 Āi12
0 Āi22

]
,

[
B̄i1
B̄i2

])
M

is completely con-

trollable, and switched system
∑(

[C̄i2 C̄i4],
[
Āi22 Āi24

0 Ā44

])
M

is completely

observable.
Proof. Suppose that subspaces Yi, i = 1, 2, 3, 4 are chosen such that

Y1 = C ∩ UO C = Y1 ⊕ Y2 UO = Y1 ⊕ Y3 ⊕4
i=1 Yi = Rn.

Select a basis βi1, · · · , βiri
for each Yi. Let

L = [β11, · · · , β1r1 , β21, · · · , β2r2 , β31, · · · , β3r3 , β41, · · · , β4r4 ].

Let T be the matrix that transforms the standard basis of Rn to L.
Note that both subspaces C and UO are Ak-invariant for all k ∈M . From

this, it can be seen that the subspace Y1 is also Ak-invariant for all k ∈ M .
This, together with Proposition 4.42, implies that

TC = span
{
x =

[
x1

0

]
: x1 ∈ Rr1+r2

}
.

Similarly, we can prove that
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TUO = span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
x1

0
x3

0

⎤
⎥⎥⎦ : x1 ∈ Rr1 , x3 ∈ Rr3

⎫⎪⎪⎬
⎪⎪⎭

and the theorem follows. ��
The form in (4.54) is said to be the standard canonical form of the switched

system. It divides the state variables into four parts. The first is controllable
but unobservable, the second is both controllable and observable, the third
is both uncontrollable and unobservable, and the fourth is observable but
uncontrollable. The partition is the same as in the linear time-invariant case
(see, e.g., [160]).

4.5.2 Controllable Systems: Single-input Case

In this subsection, we present normal forms for switched linear systems via
both state and feedback transformations.

By introducing state feedback

u(t) = Fσx(t) +Gσv(t) v ∈ Rp (4.55)

where Gi is nonsingular for i ∈ M , and v is the new input, the switched
system Σ(Ai, Bi)M is transformed to Σ(Ai +BiFi, BiGi)M .

Proposition 4.47. The controllable subspace is invariant under any state
feedback.
Proof. Let V and V̄ denote the controllable subspaces of Σ(Ai, Bi)M and
Σ(Ai +BiFi, BiGi)M , respectively. As

(Ai +BiFiGi)V ⊆ AiV + ImBi ⊆ V

V is (Ai +BiFi)-invariant. This means that

V̄ ⊆ V.

On the other hand, system Σ(Ai, Bi)M can be seen as the transformed system
from Σ(Ai +BiFi, BiGi)M via state feedback

v(t) = −G−1
σ(t)Fσ(t)x(t) +G−1

σ(t)u(t) ∀ t ≥ t0.

Hence V ⊆ V̄, and the proposition follows. ��
If we implement both coordinate and feedback transformations, the struc-

ture of the controllable part can be made simpler than the canonical form
presented in Section 4.5.1. To see this, we first focus on the controllable single-
input systems as described below.
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Definition 4.48. Switched system Σ(Ai, Bi)M is said to be of multi-input, if
rank[B1, · · · , Bm] ≥ 1. The system is said to be of single-input, if rankBk = 1
for some k ∈M and Bj = 0 for j 
= k.

For a single-input system, by possibly re-indexing the subsystems, we can
always assume that B1 
= 0 while Bj = 0 for j ≥ 2.

Suppose that the single-input system Σ(Ai, Bi)M is completely control-
lable. The system is said to be reducible, if some subsystem can be discarded
to produce a completely controllable system. Otherwise, the system is irre-
ducible. From Remark 4.25, an irreducible system has at most n subsystems,
i.e., m ≤ n. Note that the reducibility concept is consistent with the one
defined in Section 2.4.

Let Z0 = ΓA1 ImB1. Define recursively the following

Zj =
∑
i∈M

ΓAiZj−1 j = 1, 2, · · · .

Denote nk = dimZk for k ∈ N+, and let ρ = min{k : Zk = Rn} ≤ n − n0.
The following procedure resembles the one presented in Section 2.4 and can
be used to find a basis of Rn.

First, let γi = Ai−1
1 B1 for i = 1, · · · , n0.

Second, we can find a basis γ1, · · · , γn1 of Z1 by searching the set

{γ1, · · · , γn0 , A
l
kγj , k ∈M, l ∈ {1, · · · , n− 1}, j = 1, · · · , n0}

from left to right.
Continuing with the process, suppose that we have found a basis

γ1, · · · , γn0 , · · · γnl−1+1, · · · , γni

for Zi. Then, by searching the set

{γ1, · · · , γnl
, Al

jγk, j ∈M, l ∈ {1, · · · , n− 1}, k = ni−1 + 1, · · · , ni}

from left to right for linearly independent column vectors, we can find a basis

γ1, · · · , γn0 , · · · , γni−1+1, · · · , γni , γni+1, · · · , γni+1

for Zi+1.
Finally, we can find a basis

{γ1, · · · , γn0 , · · · , γnρ−1+1, · · · , γn}

for Rn.
With this procedure, for all j ≥ 2, we can always express γj by Aij

γkj

with unique ij and kj . For l ∈ n̄, let El = span{e1, · · · , el}. Denote Q1 =
[γ1, · · · , γn].

As Z0 is A1-invariant, we denote by A11 the restriction of A1 in Z0. Sup-
pose that the characteristic polynomial of A11 is
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det(sI −A11) = sn0 + α1sn0−1 + · · ·+ αn0−1s+ αn0 .

Denote

Q2 =

⎡
⎢⎢⎢⎢⎢⎣

1 α1 · · · αn0−2 αn0−1
0 1 · · · αn0−3 αn0−2

. . .
0 0 · · · 1 α1
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ and T = Q1 diag(Q2, In−n0).

Let F1 be the first row of T−1A1T . Introduce coordinate transformation
x̄ = T−1x and state feedback u(t) = −F1x̄+ v(t) when σ(t) = 1, and denote
by Σ(Āi, B̄i)M the transformed system. It is clear that B̄1 = e1 and the first
row of Ā1 is zero. It follows from γj = Aijγkj that

T−1AijTT
−1γkj = T−1γj .

As T−1γj = ej , the above equation exactly states that the kjth column of Āij

is ej . Similarly, from the fact

AiZl ⊆ Zl+1 ∀ i ∈M l ∈ N+

we know that the jth column of Āi is in Enl+1 . Hence, we arrive at the following
conclusion.

Theorem 4.49. The controllable single-input system Σ(Ai, Bi)M is equiva-
lent, via suitable coordinate and feedback transformations, to normal system
Σ(Āi, B̄i)M with

(i) B̄1 = e1 and the first row of Ā1 is zero;
(ii)for all j ≥ nl and i ∈M , the jth column of Āi is in Enl+1 ; and
(iii) for all j ≥ 2, the kjth column of Āij is ej.

The normal system in the theorem is said to be the single-input control-
lable normal form of the controllable system. In particular, when the system
degenerates into a linear time-invariant system, the normal form becomes⎛

⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0

. . .
0 0 · · · 0 0
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

1
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

which is the standard normal form for controllable single-input systems.
Unlike the linear time-invariant case, normal forms for the controllable

single-input switched system are usually not unique. In the following, we list
the possible norm forms for second- and third-order switched systems by ap-
propriate classification.

For n = 2, a controllable system satisfies either of the two cases:
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(i) rank[B1, A1B1] = 2; and
(ii) rank[B1, A1B1] = 1, and rank[B1, A2B1] = 2.

In the former case, the normal form is

Ā1 =
[

0 0
1 0

]
and Ā2 =

[
∗ ∗
∗ ∗

]
where ‘*’ stands for a real-valued number whose value cannot be determined
by the controllability property. It is clear that subsystem (Ā1, B̄1) is in the
controllable normal form, and Ā2 is not necessarily in any specific form. In
the latter case, the normal form is

Ā1 =
[

0 0
0 ∗

]
and Ā2 =

[
0 ∗
1 ∗

]
.

Similarly, a third-order controllable single-input system with two subsys-
tems falls into one of the five cases:

(a) rank[B1, A1B1, A
2
1B1] = 3;

(b) rank[B1, A1B1, A
2
1B1] = 2, rank[B1, A1B1, A2B1] = 3;

(c) rank[B1, A1B1, A
2
1B1] = rank[B1, A1B1, A2B1] = 2, and

rank[B1, A1B1, A2A1B1] = 3;
(d) rank[B1, A1B1] = 1, rank[B1, A2B1, A1A2B1] = 3; and
(e) rank[B1, A1B1] = 1, rank[B1, A2B1, A1A2B1] = 2, and

rank[B1, A2B1, A
2
2B1] = 3.

For case (a), the normal form is

Ā1 =

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦ and Ā2 =

⎡
⎣∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

⎤
⎦ .

For case (b), the first two columns of Ā1 and the first column of Ā2 are fixed,
the other column of Ā1 is constrained but the other columns of Ā2 are totally
unspecified. Hence, the matrices are in form

Ā1 =

⎡
⎣0 0 0

1 0 ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣0 ∗ ∗

0 ∗ ∗
1 ∗ ∗

⎤
⎦ .

Cases (c)-(e) can be discussed in the same way, and the normal forms are

Ā1 =

⎡
⎣0 0 0

1 0 ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣∗ 0 ∗
∗ 0 ∗
0 1 ∗

⎤
⎦

Ā1 =

⎡
⎣0 0 0

0 0 ∗
0 1 ∗

⎤
⎦ and Ā2 =

⎡
⎣0 ∗ ∗

1 ∗ ∗
0 ∗ ∗

⎤
⎦

Ā1 =

⎡
⎣0 0 0

0 ∗ ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣0 0 ∗

1 0 ∗
0 1 ∗

⎤
⎦
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respectively.

4.5.3 Feedback Reduction: Multi-input Case

For controllable multi-input switched linear systems, normal forms under co-
ordinate and feedback transformations can be obtained using the same method
as in the previous subsection. In particular, Theorem 4.49 can be extended
to the multi-input case. However, the normal form may look more complex
and its system structure may be less clear. Since the system decomposition
is mainly used for addressing synthesis problems such as feedback stabiliza-
tion and regulation, a better way is to change a multi-input problem into a
single-input problem, just as in the standard linear system theory.

To turn a multi-input system into a single-input one, we need a non-regular
linear state feedback of the form

u(t) = Fx+Gv G ∈ Rm×1

where the gain matrix G is a column vector. The idea of using non-regular
state feedbacks in control system design can be traced back to the work of
[65] which showed that a multi–input controllable linear system can always be
brought to a single–input controllable linear system via a non-regular static
state feedback, thus enabling an easy proof of the pole assignment theorem for
the multi–input case. This idea was generalized to address nonlinear systems
in [154, 155]. Other implementations of non-regular state feedbacks could be
found in the well-known Morgan’s problem [103] and feedback linearization
[144, 53, 140].

The following lemma is an extension of [59, Lemma 2] from linear systems
to switched linear systems.

Lemma 4.50. Suppose that switched linear system Σ(Ai, Bi)M is control-
lable. Then, for any nonzero vector b ∈

∑
k∈M ImBk, there exist index se-

quences i1, · · · , in−1 and l1, · · · , ln−1 with lj ≤ j, and a vector sequence
ui1 , · · · , uin−1 in Rp, such that the vectors defined by

η1 = b and ηk+1 = Aik
ηlk +Bik

uik
k = 1, · · · , n− 1 (4.56)

are independent.
Proof. We proceed by induction. As η1 
= 0, it is independent. Suppose that
that k < n− 1 and η1, · · · , ηk have been constructed according to (4.56) and
are independent. Denote by Wk the linear subspace spanned by η1, · · · , ηk.
We have to choose ik, lk and uik

such that

ηk+1 = Aik
ηlk +Bik

uik

∈ Wk.

If this is not possible, then

Aik
ηlk +Bik

u ∈ Wk ∀ ik ∈M lk ∈ k̄ u ∈ Rp.
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Let u = 0, we have

Aik
ηlk ∈ Wk ∀ ik ∈M lk ∈ k̄.

In other words,Wk is Ai-invariant for all i ∈M . At the same time, Bik
u ∈ Wk

for all u ∈ Rp. This means that
∑

i∈M ImBi ⊆ Wk. Now that Wk is Ai-
invariant and contains

∑
i∈M ImBi, it contains the controllable subspace of

system Σ(Ai, Bi)M as a subspace. This is a contradiction because system
Σ(Ai, Bi)M is controllable. ��

Theorem 4.51. Any controllable multi-input system can be changed into a
controllable single-input system via suitable non-regular state feedback.
Proof. Choose a nonzero vector b from ∪i∈M ImBi. By Lemma 4.50, we
can construct a basis of Rn according to (4.56). Let gain matrices Fi satisfy
Fik

ηlk = uik
for k = 1, · · · , n − 1. Note that the choice of such Fi is always

possible since {ηk}n
k=1 are independent. Each ηk can be expressed by

ηk = (Aκj +BκjFκj ) · · · (Aκ1 +Bκ1Fκ1)b

for some j and κl ∈ M . This implies that each ηk is in the controllable
subspace of system Σ(Ai +BiFi, b)M . Consequently, system Σ(Ai +BiFi, b)M

is controllable.
Suppose that b ∈ ImBj . Let bj = b and bl = 0, l 
= j. It can be seen that

the single-input system Σ(Ai+BiFi, bi)M is controllable. By introducing non-
regular state feedback

u(t) =
{
Fjx(t) +Gjv(t) if σ(t) = j
Fσ(t)x(t) otherwise

where Gj satisfies BjGj = b, the original multi-input system Σ(Ai, Bi)M is
changed into the single-input system Σ(Ai +BiFi, bi)M which is controllable.
��

Example 4.52. Suppose that we have a multi-input system Σ(Ai, Bi)2̄ with

A1 =

⎡
⎢⎢⎢⎢⎣

1 −3 0 0 −1
−2 0 0 0 2
2 −1 0 1 −2
0 0 1 0 0
2 −1 0 0 −2

⎤
⎥⎥⎥⎥⎦ B1 =

⎡
⎢⎢⎢⎢⎣

1 1
0 2
0 0
0 0
1 0

⎤
⎥⎥⎥⎥⎦ A2 = 0 B2 =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ .

Let

F1 =
[

0 0 0 0 0
1 0 0 0 0

]
G1 =

[
1
0

]
F2 = [1 0 0 0 0] G2 = 0.

It can be verified that the single-input system Σ(Ai +BiFi, BiGi)2̄ is control-
lable. By applying the searching procedure as in Section 4.5.2, we have
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Q1 =

⎡
⎢⎢⎢⎢⎣

1 1 −4 0 0
0 2 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ and Q2 = I3.

Let T = (Q1 diag(Q2, I2))−1. Let F ′
1 be the first row of matrix T (A1 +

B1F1)T−1, and F ′
2 = [0, 0, 0]. Denote

Ā1 = T (A1 +B1F1)T−1 − TB1G1F
′
1 = TA1T

−1 + TB1(F1T
−1 −G1F

′
1)

and

B̄1 = TB1G1 Ā2 = T (A2 +B2F2)T−1 B̄2 = TB2G2.

The system Σ(Āi, B̄i)2̄ is in the normal form (c.f. Theorem 4.49) with

Ā1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 −8 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ B̄1 =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ Ā2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 −4 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ B̄2 = 0.

This normal form is the reduced system from the original system via coordi-
nate and feedback transformations

x̄ = Tx and u = (FσT
−1 −GσF

′
σ)x+Gσv.

4.6 Sampling and Digital Control

4.6.1 Sampling Without Loss of Controllability

Consider a linear time-invariant system given by

ẋ(t) = Ax(t) +Bu(t). (4.57)

Under equidistant sampling and piecewise constant control, the corre-
sponding sampled-data system is

xk+1 = Cτxk +Dτuk (4.58)

where τ is the sampling period, and

xk = x(kτ) uk = u(kτ) Cτ = eAτ Dτ =
∫ τ

0
exp(tA)dtB.

The problem of sampling without loss of controllability has been addressed
extensively during the past thirty years (see, for example, [153] and the refer-
ences therein). In particular, it is well-known that, the controllability property
can be preserved under almost any sampling rate, except for possibly isolated
points of the real axis.
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Lemma 4.53. Suppose that system (4.57) is controllable. If si = δi +
ωi

√
−1, i = 1, · · · , n are the eigenvalues of matrix A, then under the con-

dition

exp(siτ) 
= exp(slτ) ∀ si 
= sl (4.59)

or equivalently,

τ 
= kπ

ωi − ωl
∀ si 
= sl s.t. δi = δl k = ±1,±2, · · · (4.60)

the sampled-data system (4.58) is also controllable.
For an uncontrollable system, the above result still holds in the sense of

preserving the controllable subspace.

Lemma 4.54. Let C1 and C2 denote the controllable subspaces of systems
(4.57) and (4.58), respectively. Then, under the same condition as in Lemma
4.53, we have

C1 = C2.

Proof. It follows from standard linear system theory that, via a proper non-
singular state transformation z = Px, system (4.57) can be transformed into

ż(t) = Āz(t) + B̄u(t)

where

Ā = PAP−1 =
[
Āc Ā12
0 Āc̄

]
B̄ = PB =

[
B̄c

0

]

and (Āc, B̄c) is controllable.
By the same state transformation zk = Pxk, k = 0, 1, · · · , the sampled-

data system (4.58) is transformed into

zk+1 = C̄zk + D̄uk

where

C̄ = PCτP−1 =
[
C̄c C̄12
0 C̄c̄

]
and D̄ = PDτ =

[
D̄c

0

]
.

It is easy to verify that

C̄c = exp(Ācτ) and D̄c =
∫ τ

0
exp(Āct)dtB̄c.

Therefore, (C̄c, D̄c) is the sampled-data system of (Āc, B̄c) with sampling
period τ . Since the set of eigenvalues of Āc is a subset of the eigenvalue set
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of A, it follows from Lemma 4.53 that, under the assumption of the lemma,
(C̄c, D̄c) is also controllable. As a result, we have

dimΓCτ ImDτ = dimΓC̄c
Im D̄c = dimΓĀc

Im B̄c = dimΓA ImB.

In view of the relationship that ΓCτ ImDτ ⊆ ΓA ImB, we have

ΓCτ ImDτ = ΓA ImB.

This establishes the lemma. ��
To prove the main result of this subsection, we also need the following

supporting lemma.

Lemma 4.55. Each A-invariant subspace is also exp(Aτ)-invariant for all
τ ∈ R. Conversely, if τ is selected such that Condition (4.60) holds, then
each exp(Aτ)-invariant subspace is also A-invariant.
Proof. Suppose that V is an A-invariant subspace, it is readily seen that

AkV ⊆ V ∀ k = 0, 1, · · · .

In view of the power expansion of exp(Aτ), we have

exp(Aτ)V ⊆
∞∑

k=0

AkV = V

which establishes the former part of the lemma.
To prove the latter part, let V be exp(Aτ)-invariant. Choose a matrix D

with V = ImD. By definition, Γexp(Aτ) ImD = V. Let

C = exp(Aτ) and B =
(∫ τ

0
exp(tA)dt

)−1

D.

It can be seen that (C,D) is the sampled-data system of (A,B) with sampling
rate τ . By Lemma 4.54, it follows that

ΓA ImB = ΓC ImD = V.

Therefore, V is A-invariant. ��
Next, we turn to the continuous-time switched linear system Σ(Ak, Bk)M .

Sampling all the subsystems (Ak, Bk), k ∈ M , with a (unified) period τ , we
have m sampled-data systems (Cτ

k , D
τ
k), k ∈ M . Denote the discrete-time

switched linear system
xk+1 = Cτ

σxk +Dτ
σuk (4.61)

as the sampled-data system of the continuous-time system Σ(Ak, Bk)M . It
can be readily seen that the sampled-data system corresponds to the original
system with synchronous switching path and piecewise constant control input.
As a result, the controllable subspace of the original system includes that of
the sampled-data system as a subset. The following theorem establishes the
fact that the two subspaces are coincident for almost any sampling rate.
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Theorem 4.56. Let Cc and Cs denote the controllable subspaces of systems
(4.2) and (4.61), respectively. Suppose that sk,l = δk,l +ωk,l

√
−1, l = 1, · · · , n

are the eigenvalues of matrix Ak, then under the condition

exp(sk,lτ) 
= exp(sk,iτ) ∀ l, i = 1, · · · , n k ∈M sk,l 
= sk,i

or equivalently,

τ 
= ιπ

ωk,l − ωk,i
∀ sk,l 
= sk,i s.t. δk,l = δk,i ι = ±1,±2, · · · (4.62)

we have

Cc = Cs.

Proof. It follows from Lemma 4.54 that

ΓCτ
k

ImDτ
k = ΓAk

ImBk k ∈M.

Since Cs is Cτ
k -invariant and contains ImDτ

k , we have

Cs ⊇
∑
k∈M

ΓCτ
k

ImDτ
k ⊇

∑
k∈M

ImBk.

By Lemma 4.55, Cs is Ak-invariant for k ∈M . Combining these facts leads to

Cs ⊇ ΓΛB = Cc

where Λ = {A1, · · · , Am} and B = Im[B1, · · · , Bm]. On the other hand, it is
obvious that

Cs ⊆ Cc.

Thus, the two controllable subspaces are identical. ��

Remark 4.57. Theorem 4.56 sets up a bridge between a continuous-time
switched linear system and its discrete-time counterpart. Indeed, any switch-
ing/control strategy for the latter can also be applicable to the former in terms
of controllability. An advantage of this scheme is that we can achieve control-
lability via synchronous switching and piecewise constant control, which are
more attractive than an ‘arbitrary’ switching/control law from the implemen-
tation point of view. This scheme also enables us to address the continuous-
time/discrete-time switched linear systems in a unified framework.

4.6.2 Regular Switching and Digital Control

In this subsection, we discuss the possibility of controlling a continuous-time
switched system by means of the cyclic and synchronous switching signals
and the piecewise constant control inputs. As discussed in Remark 4.57, this
problem can be addressed in the sampled-data framework.
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Definition 4.58. Switching path σ is said to be cyclic, if there is a subset
{j1, · · · , js} of M, such that the switching index sequence is

{j1, · · · , js, j1, · · · , js, · · · }.

Definition 4.59. Switching path σ is said to be of single-rate, if there is a
base rate ω, such that the switching time sequence is

{ω, 2ω, 3ω, · · · }.

Note that any single-rate switching path is also a synchronous switching
path (c.f. Section 3.2.3).

Roughly speaking, a cyclic switching path has a cyclic switching index
sequence, and a single-rate switching path has an equidistant switching time
sequence. Cyclic and/or single-rate switching paths are interesting from the
viewpoint of implementation.

For a discrete-time switched system

xk+1 = Cσxk +Dσuk (4.63)

suppose that the system is reversible, that is, Ck is nonsingular for all k ∈M .
Let Ψ denote the ordered set {1, 2, · · · ,m}, and define

Ψ2 = Ψ ∧ Ψ = {1, · · · ,m, 1, · · · ,m}
Ψ i+1 = Ψ i ∧ Ψ i = 2, 3, · · · .

Let R(h1, · · · , hkm;Ψk) denote the reachable set from the origin via the
switching path with the switching time sequence {0, h1, h1+h2, · · · ,

∑km
j=1 hj}

and the cyclic index sequence Ψk. Simple calculation gives

R(h1, · · · , hkm;Ψk) = C
hkm
m · · ·Ch2

2 Im[D1, C1D1, · · · , Ch1−1
1 D1]

+Chkm
m · · ·Ch3

3 Im[D2, C2D2, · · · , Ch2−1
2 D2]

+ · · ·+ C
hkm
m Im[Dm−1, · · · , C

hkm−1−1
m−1 Dm−1]

+ Im[Dm, · · · , Chkm −1
m Dm].

Suppose that

dimR(η1, · · · , ηk∗m;Ψk∗
)

= max{dimR(h1, · · · , hkm;Ψk) : k ≥ 0, hj ∈ N+}. (4.64)

The existence of the maximum comes from the fact that all the dimensions are
equal to or less than n, a finite number. Denote R∗ = R(η1, · · · , ηk∗m;Ψk∗

)
and it is obvious that R∗ is a subspace of Cd, the controllable subspace of
system (4.63).
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Theorem 4.60. R∗ is exactly the controllable subspace of system (4.63).
Proof. Consider the subspace

R(η1, · · · , ηk∗m, η1, · · · , ηk∗m;Ψ2k∗
) = (Cηk∗m

m · · ·Cη1
1 )R∗ +R∗.

It follows from (4.64) that

dim[(Cηk∗m
m · · ·Cη1

1 )R∗ +R∗] ≤ dimR∗

which implies that

(Cηk∗m
m · · ·Cη1

1 )R∗ ⊆ R∗. (4.65)

Note that matrices Ck, k ∈M are nonsingular. Thus, we have

dim[(Cηk∗m
m · · ·Cη1

1 )R∗] = dimR∗.

This, together with (4.65), yields

(Cηk∗m
m · · ·Cη1

1 )R∗ = R∗.

As a result, for any vector ν 
∈ R∗, we have (Cηk∗m
m · · ·Cη1

1 )ν 
∈ R∗.
Let s1, · · · , sm be any positive integers. Simple calculation gives

R(η1, · · · , ηk∗m, s1, · · · , sm, η1, · · · , ηk∗m;Ψ2k∗+m) =
(Cηk∗m

m · · ·Cη1
1 )(Csm

m · · ·Cs1
1 )R∗ + · · ·+R∗.

It is not difficult to prove that

(Csm
m · · ·Cs1

1 )R∗ ⊆ R∗.

Indeed, suppose that

(Csm
m · · ·Cs1

1 )R∗ 
⊆ R∗

then, from the above rationale, we have

(Cηk∗m
m · · ·Cη1

1 )(Csm
m · · ·Cs1

1 )R∗ 
⊆ R∗

which contradicts (4.64). By the non-singularity of matrices Ck, we have

(Csm
m · · ·Cs1

1 )R∗ = R∗ (4.66)

for any s1, · · · , sm. Accordingly, we have

CmR∗ = Cm(Csm
m · · ·Cs1

1 )R∗ = (Csm+1
m · · ·Cs1

1 )R∗ = R∗

which implies that R∗ is Cm-invariant. In the same way, we can prove that
R∗ is Ck-invariant for all k = m− 1, · · · , 1.

On the other hand, note that
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ImDm ⊆ R∗ Cηk∗m
m ImDm−1 ⊆ R∗ · · · Cηk∗m

m · · ·Cη2
2 ImD1 ⊆ R∗

which, together with the invariant property of R∗, implies that

ImDk ⊆ R∗ k ∈M.

The above analysis shows that subspace R∗ is Ck-invariant for k ∈M and
contains

∑
k∈M ImDk as a subspace. Therefore,

R∗ ⊇ Cd.

This establishes the theorem. ��

Remark 4.61. In this theorem, the switching index sequence is of the order
Ψ = (1, · · · ,m). It is obvious that the theorem still holds for any other order,
that is, any permutation of Ψ .

Remark 4.62. Though Theorem 4.60 guarantees that controllability can be
achieved via cyclic switching paths, it does not provide any constructive way of
finding such a switching signal. A straightforward way is to check one by one,
that is, to compute R(h1, · · · , hkm; Ψk) for any possible k, h1, · · · , hkm and Ψ .
To ensure effectiveness, it is desirable to have a finite number of candidates,
or equivalently, that each state can be driven to the origin in finite steps via
a cyclic switching signal. This leads naturally to the following question:

For any fixed n and m, is there a natural number η such that for any
switched system (4.63) of order n and with m subsystems, it has

∪∑km
j=1 hj≤ηR(h1, · · · , hkm;Ψk) = Cd ?

If the answer is positive, then we can find a controllable switching path by
exhaustively searching for the finite candidates. However, it seems that the
above problem is quite difficult and we leave it open for further investigation.

The above theorem demonstrates that it suffices to exploit cyclic switching
for the purpose of controllability. A question naturally arises: Is it possible
to use more regular switching, for example, cyclic and single-rate switching,
to achieve controllability? The next example gives a negative answer to this
question.

Example 4.63. (Discrete-time system loses controllability under cyclic and
single-rate switching)
Consider the switched system (4.63) with n = 4,m = 2, and

C1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ D1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ C2 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ D2 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

It can be verified that
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rank
[
D1, C2D1, C1C2D1, C

2
1C2D1

]
= 4.

Therefore, the switched system is controllable.
On the other hand, none of the subsystems are controllable. In addition, if

we denote by R(h) the reachable set via any cyclic switching path with single-
rate h, then, we can verify that none of the sets is the total space. Indeed, it
can be seen that

R(h) =
∞∑

i=0

(Ch
1C

h
2 )i ImD1 ∪

∞∑
i=0

Ch
1 (Ch

2C
h
1 )i ImD1

= Γ(Ch
1 Ch

2 ) ImD1 ∪ Ch
1 (Γ(Ch

2 Ch
1 ) ImD1).

Note that

C3
1 = C2

2 = I4.

Therefore, Γ(Ch
1 Ch

2 ) ImD1 falls into one of the six cases:

Γ(C0
1C0

2 ) ImD1 Γ(C0
1C1

2 ) ImD1 Γ(C1
1C0

2 ) ImD1

Γ(C2
1C0

2 ) ImD1 Γ(C1
1C1

2 ) ImD1 Γ(C2
1C1

2 ) ImD1.

Simple computation shows that none of the above subspaces is the total space.
Similarly, none of the subspaces Γ(Ch

2 Ch
1 ) ImD1 is the total space. As a result,

for any natural number h, the set R(h) is not the total space and hence the
controllability is lost.

The above example also excludes the possibility of achieving controllability
via any cyclic switching path with a periodic time sequence. That is,

R(h1, h2, h1, h2, · · · ;Ψ l) 
= R4

for any h1, h2, l ∈ N+ and Ψ either {1, 2} or {2, 1}.
Next, we turn to the continuous-time case. By combining Theorem 4.56

with Theorem 4.60, we obtain the following theorem.

Theorem 4.64. For the continuous-time switched linear system, any two
states in the controllable subspace can be steered to each other via a cyclic
and synchronous switching path and a piecewise constant control law.

In general, controllability cannot be achieved by an cyclic and single-rate
switching path, as illustrated in the following example.

Example 4.65. (Continuous-time system loses controllability under cyclic and
single-rate switching)
Consider the continuous-time switched system Σ(Ai, Bi)2̄ with

A1 =

⎡
⎣0 0 0

1 0 0
0 0 0

⎤
⎦ and B1 =

⎡
⎣1

0
0

⎤
⎦
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and

A2 =

⎡
⎣0 0 0

0 0 1
1 0 1

⎤
⎦ and B2 =

⎡
⎣0

0
0

⎤
⎦ .

It can be verified that this system is controllable.
On the other hand, it can be calculated that, under a cyclic switching

sequence with single duration rate τ , the reachable set is

R(τ) = span{

⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
1

⎤
⎦}

which is a strictly proper subspace of the controllable subspace.

4.7 Further Issues

In this section, we further discuss some issues closely related to the control-
lability and observability of switched linear systems. These include the intro-
duction of other controllability concepts, mainly from the context of nonlinear
control systems, and their relationships with the concepts given in Section
4.2.1. We also address the controllability for constrained switched linear sys-
tems where the switching/input are subject to certain constraints. Finally, we
briefly discuss the decidability of various controllability/observability notions.

4.7.1 Equivalence Among Different Controllability Notions

The controllability notions defined in Section 4.2.1 correspond to their coun-
terparts in standard linear systems. As a switched linear system is essentially
a nonlinear system, it is necessary to introduce the ‘nonlinear’ notions and
make a comparison between them.

First, we introduce some global controllability notions. The notions are
standard and can be found, for example, in the textbooks [74, 111].

Consider a nonlinear control system given by

ẋ = f(x, u) x ∈ Rn u ∈ Rp. (4.67)

Definition 4.66. For nonlinear system (4.67), a point x2 is said to be :

• reachable from x1, denoted by x2 ∈ R(x1), if there exist a measurable
input function, and a time T > 0, such that the trajectory of the controlled
system satisfies x(0) = x1 and x(T ) = x2;

• reachable from x1 at a given time T > 0, denoted by x2 ∈ RT (x1), if x2 is
reachable from x1 at the pre-assigned time instant T ;
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• weakly reachable from x1, denoted by x2 ∈WR(x1), if there exist a natural
number l, and a state sequence z0 = x1, z1, · · · , zl = x2, such that either
zi ∈ R(zi−1) or zi−1 ∈ R(zi) for each i ∈ l̄; and

• weakly reachable from x1 at a given time T > 0, denoted by x2 ∈
WRT (x1), if there exist a natural number l, a state sequence z0 =
x1, z1, · · · , zl = x2, and a positive real number sequence T1, · · · , Tl, such
that either zi ∈ RTi

(zi−1) or zi−1 ∈ RTi
(zi) for each i ∈ l̄, and∑

i∈l̄ Ti = T .

Note that WR is an equivalence relationship. That is,

(a) x ∈WR(x);
(b)x ∈WR(y) =⇒ y ∈WR(x); and
(c) x ∈WR(y) and y ∈WR(z) implies that x ∈WR(z).

The relationship R, however, is not an equivalence in general. For example,
for the non-affine one-dimensional system

ẋ = u2

x2 ∈ R(x1) if and only if x2 ≥ x1, hence 1 ∈ R(0) but 0 
∈ R(1). The non-
symmetry comes from the non-reversibility of the time space. In view of this,
we introduce the notion of symmetric switched systems as follows.

A switched linear system Σ(Ai, Bi)M is said to be symmetric, if for each
Ai, i ∈M , there is a j ∈M such that Aj = −Ai. For any symmetric switched
linear system, R is an equivalence relationship.

Given a switched linear system Σ(Ai, Bi)M , let its symmetric closure
system be the symmetric switched linear system Σ(Cj , Dj)N , where each
(Cj , Dj), j ∈ N , is either (Ai, Bi) or (−Ai, Bi) for some i ∈ M , and vice
versa.

Definition 4.67. Nonlinear system (4.67) is said to be :

• controllable, if R(x) = Rn for each x ∈ Rn;
• small-time controllable, if ∪0<T≤tRT (x) = Rn for any t > 0 and x ∈ Rn;
• T -controllable, if RT (x) = Rn for any T > 0 and x ∈ Rn;
• weakly controllable, if WR(x) = Rn for any x ∈ Rn;
• weakly small-time controllable, if ∪0<T≤tWRT (x) = Rn for any t > 0,

and x ∈ Rn; and
• weakly T -controllable, if WRT (x) = Rn for any T > 0, and x ∈ Rn.

It can be seen that

T − controllable =⇒{
small-time controllable =⇒ controllable
weakly T − controllable =⇒ weakly small-time controllable

}
=⇒ weakly controllable. (4.68)



4.7 Further Issues 161

It is worthy to notice that the above notions are global and bi-directional
in nature. That is, the controllabilities require that any given initial state can
be steered to any target state in the state space. Thus, the controllabilities
are in fact imply both the controllability and reachability defined in Section
4.2.1.

Let us compare the notions with the one given in Definition 4.2. Note
that the equivalence notion in Definition 4.22 is exactly the same as the first
controllability notion in Definition 4.67. As a result, we only need to compare
the notions in Definition 4.67.

Theorem 4.68. For the switched linear system, the following statements are
equivalent:

(i) the system is controllable;
(ii) the system is small-time controllable;
(iii) the system is T -controllable;
(iv) the system is weakly controllable;
(v) the system is weakly small-time controllable; and
(vi) the system is weakly T -controllable.

Proof. In view of the relationship (4.68), we only need to prove the T -
controllability from the weak controllability. To make use of the controlla-
bility criteria presented in the previous sections, we proceed by showing the
following implications:

weak controllability =⇒ controllability =⇒ T -controllability.
To establish the former part, note that, for any switched linear system,

weak controllability implies controllability of its symmetric closure system.
In addition, the controllability of a switched linear system is equivalent to
that of its symmetric closure system. To see this, recall that the control-
lable set of a switched system Σ(Ai, Bi)M is the smallest A-invariant sub-
space containing

∑
i∈M ImBi, where A = {A1, · · · , Am}. It is clear that this

subspace is also the smallest Ā-invariant and containing
∑

i∈M ImBi, where
Ā = {A1, · · · , Am,−A1, · · · ,−Am}. The controllability of a switched linear
system hence coincides with that of its symmetric closure system.

The latter part can be derived from the path planning algorithm in Section
4.3.3. Indeed, note that Equation (4.24) holds for a fixed and finite l. As
ImW i

t1 = ImW i
t2 for any positive t1 and t2, it is always possible to choose hi

in (4.24) such that
∑

hi ≤ T/2 for any pre-assigned T > 0. That is to say,
for any given states x0 and xf in the controllable subspace, the system can
be steered from x0 to the origin within T/2 time, and from the origin to xf

within T/2 time. These, together with the fact the origin is an equilibrium of
the unforced system, imply that xf can be attainable from x0 using exactly
T time for any T > 0. ��

The theorem shows that the different (global) controllability notions are
in fact equivalent to each other for continuous-time switched linear systems.
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4.7.2 Reachability Under Constrained Switching and Input

In the aforementioned concepts of controllability and observability, the switch-
ing path and the control input are assumed to be designed in an arbitrary
manner. That is, we do not impose any restriction on the possible ways of
switching and control. In many practical situations, this is not the case. For
example, in workshops, the order of the activated subsystems is pre-assigned
rather than arbitrarily assigned. In this case, for instance, we must first ac-
tivate subsystem 1, then switch to subsystem 2, then subsystem 3, etc. This
fixed sequence imposes a restriction on the switching signal. Another example
is the control input undergoing certain saturations which imposes a restriction
on the control input.

In this subsection, we discuss various switching/input constraints and
their possible influences on controllability. We focus on the continuous-time
switched systems.

For switched linear systemΣ(Ai, Bi)M , let φ(t; t0, x0, u, σ) denote the state
trajectory at time t of the switched system starting from x(t0) = x0 with input
u and switching signal σ.

Let S0 be the allowed set of switching paths, and U0 be the allowed set of
input functions. The reachable set of the system under S0 and U0 is the set
of states which are attainable in a finite time by appropriate choices of the
inputs and switching paths in the allowed sets.

Definition 4.69. The reachable set of the switched linear system at time T >
0 starting from x under S0 and U0, denoted by R(x, T,U0,S0), is

R(x, T,U0,S0) = {φ(T ; 0, x, u, σ) : u ∈ U0, σ ∈ S0}.

The system is said to be (completely) T -reachable under S0 and U0, if

R(x, T,U0,S0) = Rn ∀ x ∈ Rn T > 0.

First, we consider the case that the switching sequence is subject to certain
restrictions.

4.7.2.1 Reachability Under Restricted Switching Signal

Suppose that G is a directed graph (digraph) composed of set M as the
set of points and a set of arcs N , where N ⊆ M × M . Let G = (M,N)
govern the allowed switchings from one subsystem to another. That is, for
any k ∈ M , the (possibly empty) set Nk = {i ∈ M : (k, i) ∈ N} defines
the allowed subsystem indices following the kth subsystem. In other words, if
(k, i) 
∈ N , then, any switching from the kth subsystem to the ith subsystem
is prohibited. Accordingly, if N is a strict subset of M ×M , then the directed
graph imposes a nontrivial restriction on the switching index sequence. Let SG

denote the set of switching paths obeying the restriction. On the other hand,
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1

32

Fig. 4.1. The directed graph G in (4.69)

we assume temporarily that there is no constraint imposed on the input, and
let UG denote the set of piecewise continuous input functions.

In general, the set R(0, T,UG,SG) under the digraph is a strict subset of
the controllable subspace of the unconstrained system. For example, suppose
that

G = ({1, 2, 3}, {(1, 2), (1, 3), (2, 3), (3, 2)}) (4.69)

(the graph G is shown in Figure 4.1) with

A1 =

⎡
⎣0 1 1

0 0 0
0 0 0

⎤
⎦ A2 =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦ A3 = 0

B1 = 0 B2 = 0 B3 =

⎡
⎣0

0
1

⎤
⎦ .

Then, the reachable set under the graph can be calculated to be

R(0, T,UG,SG) = span{

⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦}

which is a strict subset of the controllable subspace, R(Ai, Bi)3̄ = R3.
Given any sequence i1, · · · , il, we say that the sequence generates set L,

if ij ∈ L for any j = 1, · · · , l, and each element in L appears at least once in
the sequence.

Recall that a closed walk in a digraph is an alternating sequence of points
and arcs
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v0, x1, v1, · · · , xk, vk

in which each arc xi is vi−1vi and v0 = vk. Each walk generates a subset of
M which contains each point in the walk.

Theorem 4.70. Suppose that L is a subset of M and directed graph G per-
mits a closed walk which generates set L. If switched system Σ(Ai, Bi)L is
completely controllable, then, we have

R(x, T,UG,SG) = Rn ∀ x ∈ Rn T > 0 (4.70)

which means that the switched system Σ(Ai, Bi)M is completely T -reachable
under graph G.
Proof. Suppose that the closed walk that generates set L is

k1 ∼ k2 ∼ · · · ∼ ks ∼ k1

where ‘∼’ denote the corresponding arcs in the walk.
We consider a switching path with the cyclic switching index sequence

k1, · · · , ks, k1, · · · , ks, · · · . (4.71)

The number of switches l and the switching times t1, · · · , tl are to be deter-
mined later.

Note that this switching path is in the allowed switching set SG.
Let tf > tl. From (4.5), the reachable set at tf is

R(tf ) = eAks hl · · · eAk2h1Dk1 + · · ·+ eAks hlDks−1 +Dks

where hj = tj+1 − tj , j = 0, 1, · · · , l − 1 and hl = tf − tl.
Arrange a permutation of L = {i1, · · · , ij} such that i1, · · · , ij is a subse-

quence of k1, · · · , ks. It is clear that the cyclic index sequence

i1, · · · , ij , i1, · · · , ij , · · ·

is a subsequence of index sequence (4.71). Denote the corresponding subse-
quence of h0, · · · , hl to be τ1, · · · , τµ. Applying Lemma 4.16 repeatedly, we
have

dim
(
eAks hl · · · eAk2h1Dk1 + · · ·+ eAks hlDks−1 +Dks

)
≥ dim

(
eAij

τµ · · · eAi2τ2Di1 + · · ·+ eAij
τµDij−1 +Dij

)
for almost all h0, h1, · · · . Choose l to be sufficiently large. This means that µ is
also sufficiently large. By the proof of Theorem 4.17, for almost all τ1, · · · , τµ,
we have

eAij
τµ · · · eAi2τ2Di1 + · · ·+ eAij

τµDij−1 +Dij = R(Ai, Bi)L = Rn.

As a result, R(tf ) = Rn. From the fact that

R(tf ) ⊆ R(x, T,UG,SG)

the theorem follows. ��
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Corollary 4.71. Suppose that directed graph G permits a spanning and closed
walk. Then, we have

R(x, T,UG,SG) = R(Ai, Bi)M ∀ x ∈ Rn T > 0.

Proof. It is clear that the set R(x, T,UG,SG) is a subset of R(Ai, Bi)M . On
the other hand, from the proof of Theorem 4.70, we have

dimRG(∗) ≥ dimR(Ai, Bi)M

where RG(∗) ⊆ R(x, T,UG,SG) is the reachable set of switched system along
some allowed switching path under graph G. This means that the two sets
coincide with each other. ��

This corollary provides an important piece of information for the reacha-
bility of the switched linear system under the restricted switching mechanism.
Indeed, according to the corollary, assume that the directed graph permits a
spanning and closed walk, then, the switched system possesses the complete
reachability under the graph. The assumption is very mild and can be met in
many practical situations. For example, in a workshop, m working procedures
are required to produce a product. Suppose that the procedure sequence is
cyclic among 1, · · · ,m − 1, but between any two procedures the mth proce-
dure applies. This corresponds to the directed graph (with m = 5) depicted
in Figure 4.2. It can be seen that a spanning and closed walk is

1 ∼ m ∼ 2 ∼ m ∼ · · · ∼ m− 1 ∼ m ∼ 1

which generates the set M = {1, · · · ,m}. According to Corollary 4.71, the
reachable set under the graph is exactly the controllable subspace of the un-
constrained switched system.

A special but very interesting case is that the subsystems are divided
into different groups and any transition within a group is forbidden. This
means that only transitions among different groups are allowed. A typical
example is a production workshop with a set of procedures each of which
can be implemented in several alternative ways. In this case, the switching
is severely restricted as only transitions between groups (the procedures) are
allowed. However, as a spanning and closed walk always exists in this case,
the reachable set coincides with the controllable subspace of the unconstrained
system.

Figure 4.3 shows an example where the subsystems are divided into three
groups. A sample spanning and closed walk is

1 ∼ 4 ∼ 2 ∼ 3 ∼ 4 ∼ 5 ∼ 8 ∼ 4 ∼ 6 ∼ 1 ∼ 4 ∼ 7 ∼ 1.

Corollary 4.71 can be further extended to more general cases. For exam-
ple, for a switched system with a restriction on the switching signal which is
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2 45

1

3

Fig. 4.2. The schematic of the directed graph with m = 5

not necessarily described by a directed graph, we can prove that, the reach-
able set under the restriction coincides with the controllable subspace of the
unconstrained system, provided that, there exists an allowed switching index
sequence where each individual index appears sufficiently many times. This
assumption is very mild and holds for many interesting cases.

41   3 
8

2  5 
6  7 

Fig. 4.3. The schematic of the grouped directed graph with m = 8
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4.7.2.2 Reachability Under Restricted Control Input

In many practical situations, the control input is subject to hard constraints,
such as saturation and/or non-symmetry (e.g., v is allowed but −v not). Under
these situations, the controllability analysis may be more difficult.

Consider the local controllability of the origin of the switched linear system
with input saturation

ẋ(t) = Aσx(t) +Bσ(t)u(t) u(t) ∈ U (4.72)

where U is a neighborhood of the origin.
Note that the system model reflects many practical situations where the

control input is subject to hard constraints such as saturation or force/enegy
limit. A typical example for U is that the set is a ball in Rn centered at the
origin. However, here we do not require the set to be convex or symmetric. The
only intrinsic assumption is that it contains the origin as an interior point.

Let U denote the set of piecewise continuous input functions taking values
from U .

By means of the reachability criteria presented in Section 4.3, we are able
to obtain the following criterion.

Theorem 4.72. The constrained T -reachable set R(0, T,U ,S) contains the
origin as an interior for any T > 0 if and only if the unconstrained switched
system is completely controllable, that is

C(Ai, Bi)M = Rn. (4.73)

Proof. Let V denote C(Ai, Bi)M for briefness. The necessity (only if) part
can be easily proven by contradiction. Indeed, the violation of (4.73) means
that the controllable subspace of the unconstrained switched system is a strict
subspace of the total space. Accordingly, there is an x ∈ Rn/V. As

λx 
∈ V ∀ λ 
= 0

the unconstrained switched system is not locally reachable at the origin by
definition. This implies that the constrained switched system is not locally
reachable at the origin.

To prove the other part, we need to recall some formulas in Section 4.3.3.
In (4.24), we proved that there exist a natural number l, and a cyclic index
sequence i0, · · · , il, such that

V = eAil
hl · · · eAi1h1 ImW i0

h0
+ · · ·+ eAil

hl ImW
il−1
hl−1

+ ImW il

hl
(4.74)

for almost any positive real number sequence h0, · · · , hl, where

W k
t =

∫ t

0
eAk(t−τ)BkB

T
k e

AT
k (t−τ)dτ.
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Fix such a sequence h0, · · · , hl. Under the piecewise continuous control strat-
egy

u(t) = BT
ik
eAT

ik
(tk+1−t)ak+1 tk ≤ t < tk+1 k = 0, 1, · · · , l (4.75)

where t0 = 0, tk+1 = tk + hk, k = 1, · · · , l, we have

x = −
(
eAil

hl · · · eAi0h0
)−1

[eAil
hl · · · eAi1h1W i0

h0
, · · · , eAil

hlW
il−1
hl−1

,W il

hl
]a

where a = [aT
1 , · · · , aT

l+1]
T , and x is a controllable state. This equation sets

up a connection between the controllable state x and the constant vector a
which relates to the control input law.

Let x0 = 0 and define matrix

L = [eAil
hl · · · eAi1h1W i0

h0
, · · · , eAil

hlW
il−1
hl−1

,W il

hl
]. (4.76)

Condition (4.73) implies that the linear operator

L : R(l+1)n �→ Rn L(a)
def
= La

is onto (surjective). This, together with the linearity of the operator, implies
that, for any set W in R(l+1)n containing the origin as an interior, the set

L(W ) = {L(a) : a ∈W}

also contains the origin as an interior in Rn. On the other hand, from (4.75),
it can be seen that the set of allowed constant vectors

{a = [aT
1 , · · · , aT

l+1]
T : u(t) ∈ U ∀ t ∈ [0,

l∑
k=1

hk]}

contains the origin as an interior point in R(l+1)n.
The above analysis shows that, for the switched linear system with the

input constraint, the reachable set R(0,
∑l

k=0 hk,U ,S) at the origin contains
the origin as an interior point.

Finally, note that, for any T1 ≤ T2, we have

R(0, T1,U ,S) ⊂ R(0, T2,U ,S). (4.77)

Indeed, suppose that x ∈ R(0, T1,U ,S), then, there exist a switching signal
σ(·) and an input u(·) defined on [0, T1], with u ∈ U , such that

x = φ(0, T1, u, σ).

Now, define another switching signal σ′ and input u′ on [0, T2] by

σ′(t) =
{
σ(0) t ∈ [0, T2 − T1)
σ(t+ T1 − T2) otherwise



4.7 Further Issues 169

and

u′(t) =
{

0 t ∈ [0, T2 − T1)
u(t+ T1 − T2) otherwise.

It can be seen that

φ(0, T2, u
′, σ′) = φ(0, T1, u, σ) = x.

As a result, (4.77) holds.
The above reasonings show that, for any T > 0, the set R(0, T,U ,S)

contains the origin as an interior point. ��
Note that, in the proof of the theorem, the design of input and the design

of the switching signal are decoupled in the following sense. In the proof, what
we need is an index sequence i0, · · · , il, and a duration sequence h0, · · · , hl,
such that

eAil
hl · · · eAi1h1Di0 + · · ·+ eAil

hlDil−1 +Dil
= V. (4.78)

For the purpose of proving the theorem, any sequence i0, · · · , il with this
property suffices. This observation, together with the proof of Theorem 4.70,
indicates that the following generalized conclusion can be made.

Theorem 4.73. Suppose that directed graph G permits a spanning and closed
walk, and U is a set in Rn containing the origin as an interior. Then, for the
constrained switched linear system

ẋ(t) = Aσx(t) +Bσu(t) u(t) ∈ U σ ∈ SG

the constrained T -reachable set R(0, T,U ,SG) contains the origin as an in-
terior for any T > 0 if and only if the unconstrained switched system is
completely controllable.

This theorem applies to more practical situations where both the switching
signal and the control input are subject to constraints. Of course, an important
concern is whether the region of locally reachable set is large enough. In
general, the locally reachable set is not necessarily convex or in a regular
shape, even if set U is a closed convex set centered at the origin. Accordingly,
it seems difficult to exactly determine the reachable set. Nevertheless, the set
can be estimated in the following way.

Suppose that the unconstrained switched linear system is completely con-
trollable. Then, for any fixed T > 0, there is an allowed switching signal σ with
index sequence i0, · · · , il, and duration sequence h0, · · · , hl,

∑l
k=0 hk = T ,

such that (4.78) holds. Suppose also that

U ⊇ {u ∈ Rp : ‖u‖∞ ≤ r}.

Note that such an r always exists. Let
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µ =
l

max
k=0

{‖Bik
eAik

hk‖∞}.

Let κ = n(l + 1) and ζ1, · · · , ζk be the unit vectors in Rk. Next, compute
xi = 1

µLζi for each i = 1, · · · , κ, where L is given in (4.76). Finally, let Xσ be
the closed and convex closure of set {x1, · · · , xκ}. Then, we have

Xσ ⊆ R(0, T,U ,SG).

Let

X = ∪σXσ. (4.79)

This set can be seen as a (conservative) estimation of the locally reachable
set at the origin. Due to the finiteness of l, there is a finite number of allowed
switching index sequences. However, the number of allowed switching time
sequences is infinite. To approximate X in a tractable way, we can divide the
interval [0, T ] into an appropriate number of sub-intervals and assume that
switching only occurs at the discrete instants. In this way, the number of
feasible switching signals is limited and the union in (4.79) is computable.

4.7.3 Local Controllability

Local controllability means the ability to control the system to nearby (local)
states rather than global states in the state space.

Definition 4.74. Nonlinear system (4.67) is :

• locally controllable at x0, if x0 is an interior point of R(x0); and
• locally weakly controllable, if x0 is an interior point of WR(x0).

Definition 4.75. Nonlinear system (4.67) is :

• locally (completely) controllable, if it is locally controllable at any non-
origin state; and

• locally (completely) weakly controllable, if it is locally weakly controllable
at any non-origin state.

First, we present a necessary and sufficient condition for locally complete
(weak) controllability. Suppose that the system is locally completely control-
lable. This means that for any non-origin state x0, x0 ∈ intR(x0). As a special
case, for each non-origin state x0, there is a neighborhood of x0, Nx0 , such
that Nx0 ⊆ R(x0). In particular, we have

S1 ⊂ ∪x∈S1Nx.

As the unit sphere is a compact set of Rn, it follows from the Finite Covering
Theorem that, there is a finite number of states y1, · · · , ys such that
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S1 ⊂ ∪s
i=1Nyi

.

On the other hand, for any positive real number r, the radially linear property
(c.f. Proposition 1.7) guarantees that we can choose Nx with

Nλx = λNx ∀ x 
= 0 λ 
= 0

such that

Sr ⊂ ∪s
i=1Nryi .

Therefore, the system is locally controllable at x0 if and only if it is controllable
at λx0 for any nonzero λ.

For locally weak controllability, the above reasonings also make sense.
Hence, we have the following simple proposition.

Proposition 4.76. The switched linear system is locally completely (weakly)
controllable if and only if, there exist a finite number s, and a set of states
{yi}s

i=1 on S1, such that

S1 ⊂ ∪s
i=1 intR(yi) (S1 ⊂ intWR(yi) resp.)

where int denotes the interior of a set w.r.t. the normal topology of Rn.
Next, we turn to the switched linear autonomous system Σ(Ai)M . For this

system, there is no control input, the only design variable is the switching sig-
nal. As the origin is always an equilibrium of the system under any switching
signal, the origin itself forms an invariant set of the system and hence is not
locally controllable. As an implication, the unforced system is not globally
controllable in any sense. However, by means of the switching signal, it is
still possible to make the system locally controllable in a certain area of the
state space. In fact, in some cases the switched system is ‘almost globally’
controllable as exhibited in the following example.

Example 4.77. Consider the planar unforced switched linear system Σ(Ai)2̄
with

A1 = I2 and A2 =
[

0 1
−1 0

]
.

According to Theorem 4.18, the controllable subspace is null. Take any two
non-origin states x1 and x2. If ‖x1‖ ≤ ‖x2‖, then it can be seen that the
x2 ∈ R(x1). Indeed, let x0 = ‖x1‖

‖x2‖x2, then, x2 ∈ R(x0) via A1 as x2 and x0

are in the same direction, and x0 ∈ R(x1) via A2 as A2 is a purely rotative
matrix. This means that, for any two non-origin state x1 and x2 in Rn, we have
x2 ∈WR(x1), and hence the system is locally completely weakly controllable.
In the same way, we can prove that, for the enlarged system Σ(Ai)3̄ with
A3 = −I2, each non-origin state is locally completely controllable.
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The example exhibits the independent interest of the local controllability
for switched autonomous systems.

Let L = {A1x, · · · , Amx}LA be the Lie algebra generated by Aix. The
algebra is spanned by all the vectors in the form

[Ai1x, [Ai2x, [· · · , [Ail−1x,Ail
x]]]] ij ∈M

where [·, ·] denotes the Lie product. As

[A1x,A2x] = (A2A1 −A1A2)x

for any x ∈ Rn, L(x) is in the form

L(x) = span {A1x, · · · , Amx,B1x,B2x, · · · }

where Bj is a commutator in the form

Bj = [Ak1 , [Ak2 , [· · · [Akl−1 , Akl
]]]] ki ∈M.

The following properties of the Lie algebra are readily obtained:

(i) L(0) is the null space.
(ii) dimL(λx) = dimL(x), for all state x ∈ Rn and real number λ 
= 0.
(iii) Let r = max{dimL(x) : x ∈ Rn}, and Ω = {x ∈ Rn : dimL(x) = r},

then, Ω is an open and dense subset of Rn (c.f. The proof of Lemma
4.16).

Now, we establish a criterion for local controllability. For this, we need the
following technical lemma.

Lemma 4.78. Let U be a pathwise connected open set, and assume that
dimL(x) = n for all x ∈ U . Let T (x) denote the largest integral sub-manifold
of L passing through x. Then, we have

T (x) ⊇ U ∀ x ∈ U.

Proof. If this is not true, then, there are states x and y such that x ∈ U , y ∈ U ,
and y is a boundary point of T (x). As T (x) ∪ T (y) is a connected integral
sub-manifold of L passing through x, and y is an interior of T (x)∪T (y), T (x)
is a strict subset of T (x) ∪ T (y), which contradicts the fact that T (x) is the
largest integral sub-manifold of L passing through x. ��

Theorem 4.79. For the unforced switched linear system Σ(Ai)M , a state x
is locally weakly controllable if and only if the Lie algebra L is of full rank at
x, that is

rankL(x) = n. (4.80)
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If the system is symmetric, then state x is locally controllable if and only if
Condition (4.80) holds.
Proof. If dimL(x) = s < n, then, by Theorem 2.16, T (x) is a sub-manifold of
dimension s. As WR(x) ⊆ T (x), the system is not locally weakly controllable.

If dimL(x) = n, then, there is a neighborhood U of x such that dimL(y) =
n for all y ∈ U . By Lemma 4.78, we have T (x) ⊇ U . It follows from the
Generalized Chow’s Theorem (Theorem 2.16) that state x is locally weakly
controllable. ��

Corollary 4.80. The unforced switched linear system Σ(Ai)M is locally com-
pletely weakly controllable if and only if rankL(x) = n for all x ∈ S1.

Example 4.81. Suppose that n = 3, m = 2, and

A1 =

⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ and A2 =

⎡
⎣ 0 0 1

0 −1 0
−1 0 0

⎤
⎦ .

Simple computation gives

{A1x,A2x}LA = span{

⎡
⎣ x1

x2
−x3

⎤
⎦ ,
⎡
⎣ x3
−x2
−x1

⎤
⎦ ,
⎡
⎣x3

0
x1

⎤
⎦ ,
⎡
⎣ x1

0
−x3

⎤
⎦}.

It can be seen that

dim{A1x,A2x}LA =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 0
1 if x1 = x3 = 0 x2 
= 0
2 if x2 = 0 x2

1 + x2
3 
= 0

3 otherwise.

Accordingly, let

Ω1 = {x : x2 > 0, x2
1 + x2

3 
= 0} and Ω2 = {x : x2 < 0, x2
1 + x2

3 
= 0}

the two sets are pathwise connected open sets in which the Lie algebra is the
total space. By Theorem 4.79, both Ω1 and Ω2 are locally weakly controllable.
In fact, it follows from Lemma 4.78 that

WR(x) = Ωi ∀ x ∈ Ωi i = 1, 2.

Similarly, let

Ω3 = {x : x2 = 0, x2
1 + x2

3 
= 0}.

Apply Theorem 4.79 to this two dimensional sub-manifold, Ω3 is locally
weakly controllable. In addition, on sub-manifold Ω3, A2 is purely rotational
and hence it can reach any direction, and A1 possesses a stable mode and an
unstable mode. This means that Ω3 is in fact locally controllable, and we have
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R(x) = Ω3 ∀ x ∈ Ω3.

Finally, let

Ω4 = {x : x2 > 0, x2
1 + x2

3 = 0} and Ω5 = {x : x2 < 0, x2
1 + x2

3 = 0}.

Then, both Ω4 and Ω5 are locally controllable.
It is interesting to note that, each region Ωi is invariant under the locally

weak controllability, and any two states within the same set are weakly con-
trollable. In other words, each region is the largest integral sub-manifold of
the Lie algebra.

4.7.4 Decidability of Reachability and Observability

Decidability involves the ability to verify a property in a finite time. For
continuous-time switched linear systems, the reachable set is a subspace which
can be explicitly determined in a finite time. Accordingly, the property of
complete reachability is decidable, which means that we can assert a defi-
nite (yes or no) answer in a finite time to the question “Is this system com-
pletely reachable?”. For discrete-time switched systems, the situation becomes
quite challenging. As proved in Section 4.4.2, complete reachability is decid-
able for reversible discrete-time switched systems. For general (not necessar-
ily reversible) discrete-time systems, we showed in Theorem 4.31 that system
Σd(Ai, Bi)M is reachable if and only if there exist an integer k <∞, and an
index sequence i0, · · · , ik, such that

Aik
· · ·Ai1ImBi0 + · · ·+Aik

ImBik−1 + ImBik
= Rn

or equivalently,

rank[Aik
· · ·Ai1Bi0 , · · · , Aik

Bik−1 , Bik
] = n. (4.81)

By this criterion, if we know an upper bound of k, say, k ≤ l and l is
known, then the complete reachability can be verified in a finite time by
examining relationship (4.81) for all possible combinations of i0, · · · , ik with
ij ∈ M and k ≤ l. Therefore, the decidability of the complete reachabil-
ity depends on whether such an upper bound exists. Unfortunately, we do
not currently know the answer and thus the decidability of the complete
reachability is still open. Similarly, the decidability of complete controllabil-
ity/observability/reconstructibility is also open for further investigation.

We now turn to another kind of reachability and observability, known as
the pathwise reachability and the pathwise observability.

Definition 4.82. Switched system Σ(Ci, Ai, Bi)M is said to be pathwise
reachable, if for any switching path σ, the reachable set via σ is the total
space

Rσ(Ci, Ai, Bi)M = Rn.
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Definition 4.83. Switched system Σ(Ci, Ai, Bi)M is said to be pathwise ob-
servable, if for any switching path σ, the corresponding unobservable set is the
null space

UOσ(Ci, Ai, Bi)M = 0.

Note that pathwise reachability/observability require that the switched
system is reachable/observable via each possible switching signal. As a result,
each subsystem must be reachable/observable. For a continuous-time switched
system, this is also sufficient for pathwise reachability/observability, as shown
in the following proposition.

Proposition 4.84. A continuous-time switched linear system is pathwise
reachable/observable if and only if each of its subsystems is completely reach-
able/observable.
Proof. We need only to prove the sufficiency.

Suppose that each of the subsystems is reachable. Let σ be any switching
signal. Suppose that its switching sequence is

{(t0, i0), (t1, i1), · · · , (tl, il)}

where 0 ≤ l ≤ ∞. The reachable set via σ is (c.f. (4.5))

Rσ = ∪l
k=1(e

Aik
(tk+1−tk) · · · eAi1 (t2−t1)Di0 + · · ·+Dik

)

where tl+1
def
= ∞. Note that Dik

itself is the total space, thus we have

Rσ = Rn.

The case of observability can be proven in the same manner. ��
For pathwise reachability of the discrete-time switched system, the decid-

ability depends on the full rank property of any matrix in the form

[Bik
, Aik

Bik−1 , · · · , Aik
· · ·Ai1Bi0 ]

where i0, · · · , ik ∈M . Suppose that there is a finite k, such that any rank de-
fectiveness of the above matrix means that the system is not pathwise reach-
able, then the property of pathwise reachability is decidable. Fortunately, this
idea does work and we can prove the following theorem.

Theorem 4.85. The pathwise reachability/observability property is decidable.
Proof. We prove that the pathwise reachability is decidable.

If the system is pathwise reachable, then, each subsystem (Ai, Bi) must
be reachable. This means that

An−1
i ImBi + · · ·+ ImBi = Rn
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which implies that

ImAi + ImBi = Rn. (4.82)

Accordingly, we assume that (4.82) holds.
Let Ξ be the set of subspaces of Rn. Under the subset relationship, Ξ is

partially ordered with the unique maximum element 1
def
= Rn and the unique

minimum element 0 which is the null subspace. In addition, the set is (n+2)-
Nether as it does not contain any strictly decreasing sequence of length n+2.
Define a finite set of maps

G = {fi : Ξ �→ Ξ}i∈M

by

fi(Y) = AiY + ImBi Y ∈ Ξ i ∈M.

Then, we define a language in the alphabet {1, · · · ,m} as

LG = {ω = ω1 · · ·ωl : fω(0) < 1}

where fω
def
= fω1 ◦ fω2 ◦ · · · ◦ fωl

(c.f. Section 2.11).
It can be seen that the pair (Ξ,G) is a monotone automaton. Indeed, it

is clear that all maps in G are monotone with respect to the partial order in
Ξ. Besides, it follows from (4.82) that fi(1) = 1 for all fi ∈ G. By Lemma
2.17, there exists a number F (n + 2,m), such that, for any w ∈ LG with
|w| > F (n + 2,m), we can find strings x, y and z satisfying the following
properties:

(i) w = xyz;
(ii) |xy| ≤ F (n+ 2,m);
(iii) |y| ≥ 1; and
(iv) for all i ∈ N+, we have xyiz ∈ LG.

As an implication, if there exists a w ∈ LG with |w| > F (n + 2,m), then,
fxyiz(0) < 1 for all i = 1, 2, · · · .

By the definition of G, for a word ω = ω1 · · ·ωk, we have

fω(0) = Aω1Aω2 · · ·Aωk−1 ImBωk
+ · · ·+Aω1 ImBω2 + ImBω1

which is exactly the reachable set of the switched system along the switching
path ω1 · · ·ωk.

Combining the above reasonings, we can conclude that, if the pathwise
reachability cannot be achieved in time F (n + 2,m), then, the system must
not be pathwise reachable. As a result, the pathwise reachability is decidable.
��
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4.8 Notes and References

The concepts of controllability and observability presented here are natural
extensions of the standard ones from linear systems. The reader is referred to
the standard textbooks, e.g., [21] and [77]. We adopted Wonham’s geometric
approach [160] as a main tool for analysis. The controllability/observability
criteria in Section 4.2 were first presented in [142]. See also [40, 150, 145,
162, 168, 161, 85] for related work. Studies for second-order switched linear
systems can be found in [96, 163].

The counterpart of discrete-time systems has been studied for many years
by Stanford and his co-workers. The material here was mainly selected from
[127, 128, 26, 27]. Theorems 4.30, 4.36 and 4.37 were taken from [52].

The structure decomposition and canonical forms were adopted from [127,
26] for discrete time and [137, 139, 134] for continuous time. This part extends
the related theory of linear systems to switched linear systems, and will play
a key role in addressing the feedback stabilization problem in Chapter 5.

Sampling of dynamic systems is an old topic and the supporting lemma
4.53 was adopted from [153]. The main results presented here, as well as the
discussion on digital control and regular switching, were taken from [138, 133].

In Section 4.7, the topics are natural extensions of the controllabil-
ity/observability discussed in the previous sections. The first two subsections,
4.7.1, and 4.7.2, were adopted from the recent work [135]. Section 4.7.3 on lo-
cal controllability was mainly adopted from [22]. Theorem 4.85 can be found
in [56], see also a much detailed proof in [5]. Other parts of Section 4.7.4 were
newly developed based on the results presented in the previous sections.
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Feedback Stabilization

5.1 Introduction and Preliminaries

In this chapter, we address the problem of state/output feedback stabilization
of switched linear control systems. As in the standard linear system theory, we
present constructive design procedures based on the canonical forms presented
in Chapter 4.

Feedback stabilization involves finding appropriate switching signals as
well as state/output feedback controllers to make the closed-loop systems
(asymptotically) stable. Once the feedback controllers are given, the closed-
loop systems are force free, and the switching signal design can then be carried
out using the approaches presented in Chapter 3. Thus, we mainly focus on
the feedback control design issues in this chapter.

This chapter addresses several classes of switched linear systems. The first
is a single process controlled/measured by multiple controllers/sensors. In this
case, we present a concise and complete treatment of the problem of dynamic
output stabilization. The second is a controllable system where the summation
of the controllability subspaces of the individual subsystems is the total state
space. For this class of systems, we propose a stabilizing state-feedback control
scheme with dwell time. The third is in the general controllability canonical
form, and for which we present criteria and design methods for state feedback
stabilization.

Consider the switched linear control system given by

ẋ(t) = Aσx(t) +Bσuσ(t)
y(t) = Cσx(t) (5.1)

where x ∈ Rn is the state, uk ∈ Rpk , k = 1, · · · ,m are piecewise continuous
inputs, y ∈ Rq is the output, σ ∈ M is the switching signal to be designed,
and Ai, Bi, Ci, i ∈M are real matrices of compatible dimensions.

For the problem of stabilization of switched linear control systems, we seek
both the switching signal and the control input to steer the switched system



180 5 Feedback Stabilization

asymptotically stable. Accordingly, both the switching signal and control in-
put are design variables. As we explained in Section 1.3, the switching signal
may either be time-driven, event-driven, or mixed. Similarly, the control in-
put may either be open-loop or closed-loop. As a result, there are several
types of stabilizability, for example, the stabilizability via time-driven switch-
ing and open-loop input, and the stabilizability via state-feedback switching
and output feedback control input, etc.

In this chapter, we assume that the switching signal is measurable on-line.
Accordingly, we can incorporate the switching signal into the controller such
that the control input is in the piecewise (gain-scheduling type) form

ui(t) = ϕi(x(t)) i ∈M. (5.2)

Definition 5.1. System (5.1) is said to be (state) feedback stabilizable, if
there exist a switching signal σ, and state feedback control inputs in the form
(5.2), such that the closed-loop switched system

ẋ(t) = Aσx(t) +Bσϕσ(x(t))

is well-posed and uniformly asymptotically stable.
Note that the switched linear control system becomes a switched nonlinear

autonomous system if the controller is nonlinear. Usually, switched nonlinear
systems are much harder to handle than switched linear systems as the transi-
tion invariance properties (c.f. Section 1.3.5) do not hold for general switched
nonlinear systems. In view of this, we restrict our attention to piecewise linear
controllers as defined below.

Definition 5.2. System (5.1) is said to be (piecewise) linear (state) feedback
stabilizable, if there exist a switching signal σ, and piecewise linear state feed-
back control inputs

ui(t) = Fix(t) i ∈M (5.3)

such that the closed-loop switched system

ẋ(t) = (Aσ +BσFσ)x(t)

is well-posed and uniformly asymptotically stable.
By Theorem 3.9, the piecewise linear state feedback stabilizability is equiv-

alent to the exponential stabilizability by means of piecewise linear state feed-
back controllers.

The above definition of linear feedback stabilizability is still quite general.
Whenever possible, we further restrict our attention to a special type of the
stabilizability as follows.

Definition 5.3. System (5.1) is said to be (piecewise linear state) quadrati-
cally stabilizable, if there exist a switching signal σ, and piecewise linear state
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feedback control inputs in form (5.3), such that the closed-loop switched system
is well-posed and quadratically stable.

We also need the concept of stabilization by dynamic output feedback
control inputs.

Definition 5.4. System (5.1) is said to be dynamic output feedback stabiliz-
able, if there exist a dynamic output feedback control law of form

u(t) = g(y(t), x̂(t), σ)
˙̂x(t) = f̄(x̂(t), y(t), σ)

and a switching signal

σ(t+) = ψ(t, σ(t), y(t), x̂(t))

such that the overall system

ẋ(t) = Aσx(t) +Bσg(y(t), x̂(t), σ(t))
˙̂x(t) = f̄(x̂(t), y(t), σ(t))

is well-posed and uniformly asymptotically stable.
The following two lemmas are obtained directly from Chapter 3.

Lemma 5.5. System (5.1) is quadratically stabilizable if there exist gain ma-
trices Fi, i ∈M such that the matrix pencil{∑

i∈M

wi(Ai +BiFi) : wi ≥ 0,
∑
i∈M

wi = 1

}

contains a Hurwitz matrix.

Lemma 5.6. System (5.1) is linear feedback stabilizable if there exist gain ma-
trices Fi, i ∈M , a time sequence h1, · · · , hl, and an index sequence j1, · · · , jl,
such that matrix

e(Ajl
+Bjl

Fjl
)hl · · · e(Aj1+Bj1Fj1 )h1

is Schur.

5.2 Multiple Controller and Sensor Systems

In this section, we consider the switched linear control system described by{
ẋ(t) = Ax(t) +Bσuσ(t)
y(t) = Cσx(t) (5.4)

where x(t) ∈ Rn is the state, ui(t) ∈ Rp, i ∈ M are the control inputs,
y(t) ∈ Rq is the measurable output, σ is the switching signal to be designed,
and A, Bi, Ci are fixed matrices of compatible dimensions.

System (5.4) represents a linear plant with multiple control/sensor de-
vices. The description includes the multi-controller switching and multi-sensor
scheduling as special cases [117].
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5.2.1 State Feedback Stabilization

In this subsection, let us consider the problem of stabilization via state feed-
back controllers and time/state-driven switching signals.

Recall that any switched linear system permits the canonical decomposi-
tion. For system (5.4), we have the following special type of canonical decom-
position.

Lemma 5.7. Switched system (5.4) is equivalent, via some state transforma-
tion, z = Tx, to system

ż(t) =

⎡
⎣ ż1ż2
ż3

⎤
⎦ = Āz(t) + B̄σuσ(t)

y(t) = C̄σz(t) (5.5)

where

Ā = TAT−1 =

⎡
⎣ Ā11 Ā12 Ā13

0 Ā22 Ā23
0 0 Ā33

⎤
⎦ B̄i = TBi =

⎡
⎣ B̄i,1
B̄i,2
0

⎤
⎦

C̄i = CiT
−1 = [0 C̄i,1 C̄i,2] i ∈M. (5.6)

In (5.5), z1 is controllable but unobservable, z2 is controllable and observable,
and z3 is uncontrollable.

It can be seen from the decomposition (5.5) that z3 is decoupled from z1,
z2 and the control input. As a consequence, system (5.5) is stabilizable only if
matrix Ā33 is Hurwitz, or equivalently, the unstable mode of A is controllable.
Let

β(s) = Π l
j=1(s+ sj)

be the monic minimal polynomial of matrix A. Define polynomial

β+(s) = Π�sj≥0(s+ sj).

Note that the subspace

Kerβ+(A) = Ker(Π�sj≥0(A+ sjIn))

is the unstable mode of A. Let C denote the controllable subspace of system
(5.4), and n2 = dim C.

Assumption 5.1. Kerβ+(A) ⊆ C.
This assumption ensures that the uncontrollable mode is stable, that is, matrix
Ā33 in (5.6) is Hurwitz.

Now, let us consider system (5.5) in canonical form. Denote
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Â1 =
[
Ā11 Ā12
0 Ā22

]
B̂i =

[
B̄i,1
B̄i,2

]
i ∈M

and

B̂ = [B̂1, · · · , B̂m].

Note that the controllable subspace of switched system Σ(Â1, B̂i)M is exactly
the controllable subspace of the pair (Â1, B̂). As the former is controllable,
matrix pair (Â1, B̂) is controllable. Therefore, for any arbitrarily given set of
desired (symmetric) poles Λ = {λ1, · · · , λn2} with negative real parts, we
can construct a feedback gain matrix G ∈ Rmp×n2 , such that matrix Â1 +B̂G
possesses eigenvalue set Λ. Let us partition G as

G =

⎡
⎢⎣
G1
...

Gm

⎤
⎥⎦ Gi ∈ Rp×n2 .

Fix a set of weighted factors, wi > 0, i ∈M with
∑

i∈M wi = 1, and define

Fi =
1
wi
Gi F̄i = [Fi, 0] ∈ Rp×n i ∈M.

For system (5.5) with the piecewise linear feedback control inputs

ui(t) = F̄iz(t) = Fi

[
z1(t)
z2(t)

]
i ∈M (5.7)

the overall system is given by

ż(t) = (Ā+ B̄σF̄σ)z(t). (5.8)

Denote Ãi = Ā+ B̄iF̄i, i ∈M , and furthermore, the average matrix

Ã =
∑
i∈M

wiÃi =
[
Â1 + B̂G Â2

0 Ā33

]

where Â2 =
[
Ā13
Ā23

]
. Because both diagonal blocks of Ã are Hurwitz, ma-

trix Ã itself is also Hurwitz. From Lemma 5.5, system (5.8) is quadratically
stabilizable.

In what follows, we briefly introduce two switching strategies for switched
system (5.8). One is based on the average method and leads to periodic switch-
ing paths, and the other is based on the Lyapunov approach and results in
state-feedback switching laws.

First, according to Lemma 2.10, there is a positive real number η such
that
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exp(Ãmwmρ) · · · exp(Ã1w1ρ) = exp
(
ρÃ+ ρ2Υρ)

)
(5.9)

for any ρ ≤ η, where entries of matrix Υρ are bounded and continuous.
For any matrix E, let ψ(E) denote the maximum real part of all its eigen-

values. Fix a positive real number ε < −ψ(Ã) and select a δ such that

ψ(Ã+ δΥδ) ≤ ψ(Ã) + ε.

The existence of such a δ is guaranteed by (5.9) and the continuity of eigen-
values.

Define the periodic switching path as

σ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 mod (t, δ) ∈ [0, w1δ)
2 mod (t, δ) ∈ [w1δ, (w1 + w2)δ)
...
m mod (t, δ) ∈ [

∑m−1
i=1 wiδ, δ)

∀ t ≥ t0. (5.10)

Simple analysis shows that, under this switching path and the feedback control
law (5.7), the switched system is exponentially stable with convergence rate
−ψ(Ã)− ε.

Second, fix a positive number τ such that Ã + τIn is still Hurwitz. Fix
a positive-definite matrix Q, and denote by P the unique, positive-definite
solution of the Lyapunov equation

(Ã+ τIn)TP + P (Ã+ τIn) = −Q.

Denote

Qk = (Ãk + τIn)TP + P (Ãk + τIn) k ∈M.

For any initial state x(t0) = x0, set

σ(t0) = arg min{xT
0 Q1x0, · · · , xT

0 Qmx0}.

The following switching time/index sequences are defined recursively by

tk+1 = inf
{
t > tk : xT (t)Qσ(tk)x(t) > 0

}
σ(tk+1) = arg min

i∈M

{
xT (tk+1)Qix(tk+1)

}
k = 0, 1, · · · . (5.11)

Under this state-feedback switching law and feedback control law (5.7),
the switched system is well-posed and exponentially convergent at rate τ , i.e.,
there is a positive number N such that

‖x(t)‖ ≤ Ne−τ(t−t0)‖x0‖.

The above analysis is summarized in the following theorem.
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Theorem 5.8. System (5.4) satisfying Assumption 5.1 is linear feedback sta-
bilizable.

Remark 5.9. If system (5.4) is completely controllable, then, we can select the
feedback control law and the switching signal, such that the rate of conver-
gence can be arbitrarily assigned for the closed-loop system. Indeed, in this
case, the convergence rate of the average matrix Ã can be arbitrarily assigned,
and the convergence rate of the closed-loop system can arbitrarily approach
that of the average system by sufficiently high frequency switching.

Remark 5.10. The switching index sequence can be arbitrarily assigned. That
is, we can first activate subsystem 1, then switch to subsystem 2, then subsys-
tem 3, etc. Alternatively, we can first activate subsystem 2, then, subsystem
3, then subsystem 1, etc. This feature is crucial in practice when some sub-
systems must be activated before others, as is often the case encountered in
workshops. However, different sequences of switching may require different
switching frequencies to ensure stability of the closed-loop system.

Remark 5.11. The ratios among weighted factors can be arbitrarily assigned.
The only requirement is that wi 
= 0 for all i ∈M . In contrast, the assumption
of
∑

i∈M wi = 1 is technical. This flexibility of choosing weighted factors would
be beneficial in some circumstances. For example, some control devices may
be more reliable than others. In this case, the ratios of these devices can be
set higher than others. In particular, if we choose w1 = · · · = wm = 1

m , then,
the switching signal (5.10) is periodic with the same duration interval for any
subsystem at each period. In this case, the closed-loop system behaves in a
multi-rate control manner which can be easily implemented in practice.

5.2.2 State Estimator

In the previous subsection, we introduced the state feedback control scheme
under the assumption that the state variables are available. When the mea-
surement of the state variables is not available, we need additional dynamics
to estimate them.

In this subsection, we propose a state estimator to approximate the state
variables. For stabilization, we only need to estimate the state variables which
are used in the feedback loop, that is, the controllable part as illustrated in
(5.7). For this, it is necessary for this part to be completely observable. Let
W denote the unobservable subspace of system (5.4).

Assumption 5.2. C ∩W = {0}.
Under this assumption, the canonical form (5.5) can be rewritten as

ż(t) =
[
ż2
ż3

]
=
[
Ā22 Ā23
0 Ā33

]
z(t) +

[
B̄σ2
0

]
uσ(t)

y(t) = [C̄σ2 C̄σ3]z(t) (5.12)
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where z2 is controllable and observable and z3 is uncontrollable.
We propose the following estimator (observer) for z2

˙̂z2(t) = Ā22ẑ2(t) + Lσ[y(t)− C̄σ2ẑ2] + B̄σ2uσ(t) (5.13)

where ui(t), y(t) and σ are the inputs, output and switching signal of system
(5.4), respectively, and matrices L1, · · · , Lm ∈ Rn2×q are to be determined
later.

The dynamical equation of the estimator can be rewritten as

˙̂z2(t) = (Ā22 − LσC̄σ2)ẑ2(t) + Lσy(t) + B̄σ2uσ(t). (5.14)

Note that the estimator itself is a switched system, but the switching signal
is the same as in system (5.4). Hence, the switching signal here is not an
independent design variable.

Define the difference between the real state and the estimated state

z̃2 = z2 − ẑ2. (5.15)

Subtracting (5.14) from (5.12), we obtain

˙̃z2 = (Ā22 − LσC̄σ2)z̃2 + (Ā23 − LσC̄σ3)z3
ż3 = Ā33z3. (5.16)

Theorem 5.12. Under Assumptions 5.1 and 5.2, system (5.16) is exponen-
tially stabilizable via the periodic switching signal (5.10).

Proof. Denote matrix C̄2 =

⎡
⎢⎣
C̄12
...

C̄m2

⎤
⎥⎦. It follows from Assumption 5.2 that

matrix pair (C̄2, Ā22) is completely observable. Therefore, for any arbitrarily
given set of desired (symmetric) poles Ψ = {ψ1, · · · , ψn2} with negative real
parts, we can construct a feedback gain matrix L̄ ∈ Rn2×mq such that matrix
Ā22 − L̄C̄2 possesses eigenvalue set Ψ . Partition L̄ as

L̄ =
[
L̄1, · · · , L̄m

]
L̄i ∈ Rn2×q. (5.17)

Furthermore, define

Li =
1
wi
L̄i i ∈M.

Compute

∑
i∈M

wi

[
Ā22 − LiC̄i2 Ā23 − LiC̄i3

0 Ā33

]
=
[
Ā22 − L̄C̄2 Ā23 − L̄C̄3

0 Ā33

]
(5.18)
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where C̄3
def
=

⎡
⎢⎣
C̄13
...

C̄m3

⎤
⎥⎦ . Note that Ā22 − L̄C̄2 is Hurwitz, and it follows from

Assumption 5.1 that Ā33 is also Hurwitz. Consequently, the average matrix in
(5.18) is Hurwitz. By Lemma 3.26, system (5.16) is exponentially stabilizable
via a periodic switching signal in form (5.10) with a sufficiently high switching
frequency. This completes the proof of the theorem. ��

Remark 5.13. Due to Theorem 5.12, we call estimator (5.13) the asymptotic
state estimator. Note that the error dynamics do not rely on the input, and
the estimated state can track the real state asymptotically whether the real
state converges or not. However, stability (and convergence rate) of the error
system does depend on the switching frequency of the switching signal. The
estimated state may not approach the real state if the switching is not fast
enough.

Remark 5.14. From the proof, we see that, if the system is completely control-
lable, then, we can assign any pole set for the average system by appropriately
selecting gain matrix L. Furthermore, if the switching frequency is sufficiently
high, then the error dynamical system converges exponentially at a rate near
that of the average system. Hence, the estimator can approximate the real
state at any given rate of convergence.

5.2.3 Separation Principle

In this subsection, we show that the design of the state feedback and the
design of the state estimator can be carried out independently for the problem
of dynamic output feedback stabilization. This separation property enables us
to solve the problem in a clear and constructive way.

Using estimated state (5.13) to substitute for the real state in feedback
controller (5.7), we obtain

ż(t) =
[
ż2
ż3

]
=
[
Ā22 Ā23
0 Ā33

]
z(t) +

[
B̄σ2
0

]
uσ(t)

y(t) = [C̄σ2 C̄σ3]z(t)
ui(t) = Fiẑ2(t) i ∈M
˙̂z2(t) = Ā22ẑ2(t) + Lσ[y(t)− C̄σ2ẑ2] + B̄σ2uσ(t). (5.19)

Substituting the inputs and output expressions into the differential equations,
we obtain the overall system given by

ż2 = Ā22z2 + B̄σ2Fσ ẑ2 + Ā23z3
˙̂z2 = (Ā22 + B̄σ2Fσ − LσC̄σ2)ẑ2 + LσC̄σ2z2 + LσC̄σ3z3

ż3 = Ā33z3. (5.20)
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Denote ω =
[
zT
2 , ẑ

T
2 , z

T
3
]T , and

Ωi =

⎡
⎣ Ā22 B̄i2Fi Ā23
LiC̄i2 Ā22 + B̄i2Fi − LiC̄i2 LiC̄i3

0 0 Ā33

⎤
⎦ i ∈M.

We can rewrite the overall switched system (5.20) as

ω̇(t) = Ωσω(t). (5.21)

The average matrix of Ωi, i ∈ M under weighted factors wi, i ∈ M can be
computed as

Ω =
∑
i∈M

wiΩi =

⎡
⎣ Ā22 B̄2G Ā23
L̄C̄2 Ā22 + B̄2G− L̄C̄2 L̄C̄3

0 0 Ā33

⎤
⎦ .

It can be seen that this matrix is similar to a block triangular matrix with
stable diagonal blocks. Indeed, let

T =

⎡
⎣ In2 0 0
In2 −In2 0
0 0 In−n2

⎤
⎦ .

Simple calculation gives

TΩT−1 =

⎡
⎣ Ā22 + B̄2G −B̄2G Ā23

0 Ā22 − L̄C̄2 Ā23 − L̄C̄3
0 0 Ā33

⎤
⎦ .

Therefore, the characteristic polynomial of the average matrix is the product
of those of the state feedback, the state estimator and the uncontrollable
mode. As a result, the average system

ω̇(t) = Ωω(t) (5.22)

is stable. By Lemma 3.26, we obtain the main result of this section.

Theorem 5.15. Under Assumptions 5.1 and 5.2, system (5.4) is dynamical
output feedback stabilizable.

Remark 5.16. From the above analysis, the separation property holds for the
average system in terms of eigenvalue assignment. That is, for the switched
system, the design of the state feedback controller (5.7) and the design of
the observer gain matrices (5.17) can be carried out independently. However,
there is no such separation property for the design of the switching signal.
In fact, a switching signal in the form of (5.10) stabilizes the overall system
(5.20) if and only if it stabilizes both the state feedback system (5.8) and the
state estimator system (5.14).
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5.2.4 Design Procedure and Illustrative Examples

In this subsection, we summarize the results presented in the previous subsec-
tions and carry out a systematic design procedure for the problem of dynamic
output feedback stabilization.

Step 0. (Initialization) Suppose that system (5.4) is given with known
parameters A, Bi and Ci, i ∈M .
Step 1. Choose a group of linear independent column vectors from matrix
[B1, · · · , Bm, · · · , An−1B1, · · · , An−1Bm] with maximum number, then
extend it to a basis of Rn. Let T be the matrix of transition from the
standard basis of Rn to this basis. Compute

Ā = TAT−1 B̄i = TBi C̄i = CiT
−1 i ∈M.

These matrices must be of the form

Ā = TAT−1 =
[
Â1 Â2
0 Ā33

]
B̄i = TBi =

[
B̂i

0

]
C̄i = CiT

−1 = [C̄i,1 C̄i,2] i ∈M. (5.23)

Step 2. Verify if Ā33 is Hurwitz. If not, then exit. Otherwise, continue
with the following steps.
Step 3. Fix weighted factors wi, i ∈M . Denote

B̂ = [w1B̂1, · · · , wmB̂m].

Design matrix F such that matrix Â1 + B̂F is Hurwitz or possesses a
pre-assigned eigen-structure. Partition F as

F = [F1, · · · , Fm].

Step 4. Let Ĉ1 =

⎡
⎢⎣
w1C̄11

...
wmC̄m1

⎤
⎥⎦ . Verify if the pair (Ĉ1, Â1) is observable. If

not, then exit. Otherwise, continue with the following steps.
Step 5. Design matrix L such that matrix Â1−LĈ1 is Hurwitz or possesses

a pre-assigned eigen-structure. Partition L as L =

⎡
⎢⎣
L1
...
Lm

⎤
⎥⎦ .

Step 6. Let Ωi =

⎡
⎣ Â1 B̂iFi Â2

LiC̄i1 Â1 + B̂iFi − LiC̄i1 LiC̄i2
0 0 Ā33

⎤
⎦ , i = 1, · · · ,m. Find

a positive real number δ such that matrix exp(Ωmwmδ) · · · exp(Ω1w1δ) is
Schur.
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Based on this procedure, the following conclusions can be drawn:

(i) If the procedure stops at Step 2, then the system is not stabilizable by any
control/switching laws.

(ii) If the procedure stops at Step 4, then the switched system is stabilizable
via switching signal (5.10) with the piecewise linear state feedback

ui(t) = [Fi 0]Tx(t) i ∈M.

However, the output feedback stabilization problem does not admit a so-
lution in general.

(iii) Otherwise, the system is dynamic output feedback stabilizable. Dynamic
output feedback

ui(t) = Fiẑ2(t) i ∈M
˙̂z2(t) = (Â1 + B̂σFσ − LσC̄σ1)ẑ2(t)− Lσy(t) (5.24)

and switching signal (5.10) provide a solution for the stabilization problem
of system (5.4).

In what follows, we present two numerical examples for illustration. The
former focuses on the state feedback control scheme and the main issue is
to compare the state-feedback switching scheme with the periodic switching
scheme. The latter focuses on the observer design and the dynamic output
feedback stabilization.

Example 5.17. Consider system (5.4) with n = 5, m = 3, and

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 2
2 1 −3 2 −1
−1 2 3 1 −4
−2 3 1 5 0
0 0 0 0 −2

⎤
⎥⎥⎥⎥⎦ B1 =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦ B2 =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ B3 =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦ . (5.25)

This system is already in controllability canonical form (5.5). It has a one-
dimensional, uncontrollable, but stable mode with a pole at φ1 = −2, and a
four-dimensional, controllable mode which possesses three unstable poles and
one stable pole.

Fix the equi-weighted factors w1 = w2 = w3 = 1
3 . Let

B = [w1B1, w2B2, w3B3].

For the average system pair (A,B), by assigning its controllable mode poles
to φ2 = {−2.5,−3,−3.5,−4}, we obtain a feedback gain matrix as

F =

⎡
⎣F1
F2
F3

⎤
⎦ =

⎡
⎣28.5 19.5 −9 6 0
−3 6 19.5 3 0
−6 9 3 27 0

⎤
⎦ . (5.26)
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The average matrix can be computed to be

A0 = A+BF =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 2
2 1 −3 2 −1
−1 2 3 1 −4
−2 3 1 5 0
0 0 0 0 −2

⎤
⎥⎥⎥⎥⎦ (5.27)

which possesses pole set φ1 ∪ φ2.
For the switched system, define the piecewise linear feedback control law

as

ui(t) = Fix(t) i ∈M.

The switching signal σ(t) will be designed later. The autonomous system with
this control law becomes

ẋ = (A+BσFσ)x(t). (5.28)
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Fig. 5.1. State trajectory under periodic switching

Let us design switching signals for system (5.28).
First, applying the average method of Section 5.2.1 with ε = 0.5, we can

compute that any frequency higher than 3.98 will work, that is,

ψ(eA3w1τeA2w2τeA1w3τ ) ≤ e�τ (5.29)

for any τ < 1
3.98 , where

Ai = A+BiFi i ∈M and � = max (max(φ2) + ε, φ1) = −2.
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Fig. 5.2. Input trajectories under periodic switching
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Fig. 5.3. State trajectory under state-feedback switching

Fix δ = 0.25, and define a periodic switching path as in (5.10). The over-
all system is exponentially stable with the convergence rate of �. Figure 5.1
depicts the state trajectory initialized at

x0 = [−0.5703, − 1.4986, − 0.2517, 0.5530, 0.4175]T .

It can be seen that the trajectory is not smooth at the switching instants.
However, the uncontrollable mode, x5, is always smooth because it does not
rely on the switching signal. The bounded control effort of each subsystem is
shown in Figure 5.2.

Second, applying the state-feedback strategy, we obtain a switching law
as in (5.11). The state and input evolutions are given in Figures 5.3 and 5.4,
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Fig. 5.4. Input trajectories of subsystems under state-feedback switching
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Fig. 5.5. State and input trajectories of the average system

respectively. For comparison, the state and input trajectories of the average
system are depicted in Figure 5.5. It seems that there is no significant dif-
ference among the convergence rates. However, the control inputs are quite
different.

Figure 5.6 shows the switching signals of both switching schemes. It clearly
illustrates that the former is regular, while the latter is quite irregular. Sur-
prisingly, the (average) frequency of the state-feedback switching is higher
than that of the periodic switching. This indicates that the average method
does not always lead to higher frequency of switching in comparison with
other well-established switching strategies.
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Fig. 5.6. Switching signals of the two schemes

Example 5.18. Consider system (5.4) with n = 4, m = 2, and

A =

⎡
⎢⎢⎣

1 −1 1 2
0 0 1 −1
0 3 2 −1
0 0 0 −2

⎤
⎥⎥⎦ B1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

C1 = [1 − 1 0 1] C2 = [0 1 0 − 2]. (5.30)

This system is already in canonical form (5.5). It has a one-dimensional, un-
controllable, but stable mode with a pole at φ1 = −2, and a three-dimensional,
controllable mode which possesses three unstable poles.

Partition the system matrices as in (5.23) and fix the equally weighted
factors w1 = w2 = 1

2 . Let B̂ = [w1B̂1, w2B̂2]. For the matrix pair (Â1, B̂),
by assigning its poles to φ2 = {−2.5,−3,−3.5}, we obtain a feedback gain
matrix as

F =
[
F1
F2

]
=
[
−8.00 0.58 −2.47
−0.017 −23.5 −16

]
.

Similarly, set Ĉ1 =
[
w1C̄11
w2C̄21

]
and φ3 = {−4,−4.5,−5}. Find a gain matrix L

such that Â1 − LĈ1 has the pole set φ3. This yields

L = [L1, L2] =

⎡
⎣17.38 22.0

6.39 22.0
41.25 90.0

⎤
⎦ .

The average matrix can be computed to be
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Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 −1.0 1.0 −4.0 0.29 −1.24 0
0 0 1.0 0 0 0 0
0 3.0 2.0 −0.0 −11.75 −8.0 0

8.69 2.31 0 −11.69 −3.02 −0.24 −13.3
3.19 7.81 0 −3.19 −7.81 1.0 −18.81
20.62 24.38 0 −20.63 −33.13 −6.0 −69.38

0 0 0 0 0 0 −2.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

which possesses the pole set φ1 ∪ φ2 ∪ φ3.
For the switched system, define the state estimator as

˙̂z2(t) = (Â1 + B̂σFσ − LσC̄σ1)ẑ2(t)− Lσy(t)

and the feedback control law as

ui(t) = Fiẑ2(t) i ∈M.

The switching signal σ(t) will be designed later. The overall system with this
control law becomes

ω̇ = Ωσω(t). (5.31)

Now, we design the switching signal for system (5.31).
First, let us require that the closed-loop system has an average con-

vergence rate of r = −2.0. Numerical computation shows that any peri-
odic switching with base period less than 0.77 will work, that is, matrix
exp(Ω2w2δ) exp(Ω1w1δ) has spectral radius less than e−rδ for any δ < 0.77.
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Fig. 5.7. State and input trajectories with δ = 0.77
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Fig. 5.9. State and input trajectories of the overall system with δ = 0.1

Let us fix the period at δ = 0.77, and define a periodic switching law as in
(5.10). Figure 5.7 depicts the state and input trajectories initialized at

ω0 = [−1.1398,−0.2111, 1.1902,−1.1162, 0.6353,−0.6014, 0.5512]T .

It can be seen that the state trajectory is not smooth at switching instants.
However, the uncontrollable mode x4 is always smooth because it does not
rely on the switching law. The trajectories of the estimator and the error
dynamics are shown in Figure 5.8.

For the switching signal, a smaller period would result in a system behav-
ior that better resembles that of the average system. Figure 5.9 shows the
state and input trajectories with period δ = 0.1. Compared with the previous
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Fig. 5.11. State trajectories of the disturbed system with δ = 0.77 (left) and
δ = 0.10 (right)

figures, this one has more switches but appears much more like a linear time-
invariant system. For comparison, norms of the state and output trajectories
of the average system, and of the switched system with δ = 0.10 and δ = 0.77,
respectively, are depicted in Figure 5.10. It can be seen that the system with
the larger period deviates (from the average system) more than that of the
smaller one in the transient process.

Finally, it is interesting to simulate the robust performance of close-loop
system. Consider the disturbed switched system given by

ẋ(t) = Aσx(t) + f(x(t)) (5.32)
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where f(x) = [0.5 sin(x1), 0.5 sin(x2), 0.5 sin(x3), 0.5 sin(x4)]T . The gain ma-
trices F and L are the same as in the above. The state trajectories under
periodic switching paths with δ = 0.77 and δ = 0.10 are shown in Figure 5.11.
For this example, it is clear that the system with the smaller period performs
better in attenuating disturbance.

5.3 A Stabilizing Strategy with Dwell Time

In this section, we investigate the problem of stabilization for a switched
linear system where the summation of controllable subspaces of the individual
subsystems is the total state space.

Consider a switched linear system given by

ẋ(t) = Aσx(t) +Bσuσ(t). (5.33)

Let Di denote the controllable subspace of the ith subsystem, i.e.,

Di =
n−1∑
j=0

Aj
i ImBi.

Assumption 5.3.
∑

i∈M Di = Rn.
By this assumption, the summation of the controllable subspaces of the indi-
vidual subsystems is the total state space. As a result, the switched system is
controllable.

Define a sequence of subspaces of Rn described by

W1 = ∩i∈MDi

Wk =
∑

i1,··· ,ik−1∈M

(∩j �∈{i1,··· ,ik−1}Dj) k = 2, · · · ,m.

It is obvious that W1 ⊂ W2 ⊂ · · · ⊂ Wm =
∑

i∈M Di = Rn.
A basis of Rn can be constructed according to the following procedure.

First, choose a group of base vectors γ1, · · · , γs1 in W1. Then, expand them
to γ1, · · · , γs1 , γs1+1, · · · , γs2 , which form a basis of W2. Continuing with this
process, we finally find a basis γ1, · · · , γn of Wm = Rn. Let T be the matrix
that transforms the standard basis of Rn to this basis.

Let z(t) = T−1x(t). System (5.33) can be re-written as

ż = T−1AσTz + T−1Bσuσ. (5.34)

Suppose that dim Di = ki and let indices ji
1 < ji

2 < · · · < ji
ki

be such that

span{γji
1
, · · · , γji

ki

} = Di.

Let
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yi = [zji
1
, · · · , zji

ki

]T i ∈M

yi = [z1, · · · , zji
1−1, zji

1+1, · · · , zji
2−1, · · · , zji

ki
+1, · · · , zn]T i ∈M.

Let λi,1, · · · , λi,n−ki
be the real parts of the eigenvalues of Ai correspond-

ing to the uncontrollable mode of system (Ai, Bi). Define

λi = max{λi,1, · · · , λi,n−ki
} i ∈M.

If λi < 0 for some i, then the i-th subsystem is stabilizable, and the constant
switching signal σ ≡ i will make the switched system stable. In this case, the
switched system degenerates into a stabilizable linear time-invariant system.
To avoid this trivial case, we assume that λi ≥ 0 for each i ∈M . Define

η = max{‖Ai‖∞ : i ∈M}.

Fix an r > mη + 1. It is routine from linear system theory that we can
construct feedback gain matrices Fi, i ∈ M , such that each of the real parts
of the eigenvalues of Ai + BiFi corresponding to the controllable mode of
(Ai, Bi) is less than −r. Applying linear feedback input

ui(t) = Fix(t) i ∈M (5.35)

Equation (5.34) becomes

ż = T−1(Aσ +BσFσ)Tz. (5.36)

For notational convenience, let ‖ · ‖ denote the l∞ norm of a vector. As
yi is in the controllable subspace of subsystem (Ai, Bi), the real parts of the
corresponding poles are less than −r. Therefore, if σ(t) = i for t ∈ [t1, t2],
then

‖yi(t2)‖ ≤ cie
−r(t2−t1)‖yi(t1)‖ (5.37)

for some positive constant ci. On the other hand, for any t2 > t1, we have

‖z(t2)‖ ≤ eη(t2−t1)‖z(t1)‖. (5.38)

Let c = max{c1, · · · , cm, 1}. Fix a positive real number τ >
(m+ 1) ln c
r −mη

.

We are now ready to formulate a stabilizing switching strategy for system
(5.36).

For any given initial state z0 = z(t0), there exists an integer i0, i0 ∈
M , such that ‖yi0(t0)‖ = ‖z0‖. Define recursively the following switching
time/index sequences by

tk = inf{t : t ≥ tk−1 + τ, ‖yik−1(t)‖ ≤ ‖yik−1(t)‖}
ik = argk∈M{‖yk(tk)‖ = ‖z(tk‖} k = 1, 2, · · · . (5.39)
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Theorem 5.19. Suppose that switched system (5.33) satisfies Assumption
5.3. Then, under the piecewise linear state feedback control law (5.35) and
the switching law (5.39), the closed-loop system is asymptotically stable.
Proof. For any fixed j ≥ 0, consider the interval [tj , tj+m+1]. We are to prove
that the rate of convergence of ‖z(t)‖ in this interval is less than

δ
def
=

(m+ 1) ln c− (r −mη)τ
(m+ 1)τ

< 0.

Accordingly, the closed-loop system is asymptotically stable.
To this end, denote

Λ = {l : j ≤ l ≤ j +m, tl+1 − tl > τ}.

From (5.37) and (5.38), it follows that

‖z(tl+1)‖
{

= ‖ykl
(tl+1)‖ ≤ ce−rhl‖z(tl)‖ if l ∈ Λ

≤ eηhl‖z(tl)‖ = eητ‖z(tl)‖ otherwise j ≤ l ≤ j+m (5.40)

where hl = tl+1 − tl, l = j, · · · , j +m.
On one hand, if Λ 
= ∅, then from (5.40), and the fact that

δ >
(m+ 1) ln c+ ρητ − r

∑
j∈Λ hj

tj+m+1 − tj

we have

‖z(tj+m+1)‖ ≤ cm+1e(ρητ−r
∑

j∈Λ hj)‖z(tj)‖ ≤ eδ(tj+m+1−tj)‖z(tj)‖

where ρ is the number of elements of set {l : j ≤ l ≤ j +m,hl = τ}.
On the other hand, if Λ = ∅, then hl = τ , l = j, · · · , j + m. Because

il ∈ {1, · · · ,m} for l = j, · · · , j + m, there exist integers l1 and l2, j ≤ l1 <
l2 ≤ j +m, such that kl1 = kl2 . From (5.40) and (5.38), it follows that

‖z(tj+m+1)‖ ≤ cj+m+1−l2e(j+m+1−l2)ητ‖z(tl2)‖
= cj+m+1−l2e(j+m+1−l2)ητ‖ykl2

(tl2)‖
≤ cj+m−l1e(j+m−l1)ητ‖ykl2

(tl1+1)‖
≤ cj+m+1−l1e(j+m−l1)ητ−rτ‖ykl1

(tl1)‖
= cj+m+1−l1e(j+m−l1)ητ−rτ‖z(tl1)‖
≤ cm+1emητ−rτ‖z(tj)‖
= eδ(m+1)τ‖z(tj)‖
= eδ(tj+m+1−tj)‖z(tj)‖. ��

Remark 5.20. Note that for each subsystem, the convergence rate of the con-
trollable sub-dynamics dominates the divergence rate of uncontrollable sub-
dynamics. Consequently, any periodic switching with a sufficiently large dwell
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time can also lead to asymptotic stability. That is, for a sufficiently large dwell
time τ , define the periodic switching sequence as

{(0, 1), · · · , ((m− 1)τ,m), (mτ, 1), · · · , ((2m− 1)τ,m), · · · } (5.41)

then, the closed-loop system of (5.33), (5.35) and (5.41) is asymptotically
stable.

Example 5.21. Let n = 5,m = 3, and

A1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ B1 =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦ A2 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ B2 =

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦

A3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
1 0 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ B3 =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ .

It can be verified that Assumption 5.3 holds. According to Theorem 5.19, this
switched system is asymptotically stabilizable.
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Fig. 5.12. State trajectory under switching law (5.39)

By fixing r = 10 and τ = 0.2, a stabilizing state feedback and switching
strategy can be obtained accordingly. Let the initial state be given by

x(0) = [−2.0452, 2.0757,−0.7796,−2.7625, 0.6311]T .
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Fig. 5.13. Switching signal under switching law (5.39)

Figure 5.12 shows the convergence of the state, while Figure 5.13 gives the
corresponding switching path. As shown in Figure 5.13, neither the switching
index sequence nor the switching time sequence is periodic.

0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0

2

4

6

8

Time (Sec)

x

x

x

x
x

4

2

5

3

1

Fig. 5.14. State trajectory under a periodic switching path

As pointed in Remark 5.20, for a sufficiently large dwell time, a periodic
switching path also results in a stable closed-loop system. Figure 5.14 shows
the convergence of the state with dwell time τ = 0.3. Simulation study reveals
that, for any dwell time smaller than 0.25, the state trajectory of the closed-
loop system diverges to infinity exponentially.
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5.4 General Controllable Systems

In this section, we discuss the relationship between controllability and sta-
bilizability. By definition, complete controllability means that the system is
stabilizable (in a finite time) via appropriate open-loop control input and time-
driven switching signal, see Section 4.3.3 for constructive design procedures.
It is natural to ask: Does controllability imply feedback stabilizability or even
quadratic stabilizability? As we will see, the question is quite complicated and
challenging.

5.4.1 General Results

Consider a controllable switched linear system given by

ẋ(t) = Aσx(t) +Bσuσ(t). (5.42)

It is well known that a controllable linear system is both linear state feed-
back stabilizable and quadratically stabilizable. For switched linear systems,
the relationship between the controllability and the stabilizability is much
more complicated. In the following, we present an example which is control-
lable but not linear state feedback stabilizable. For this, we need a supporting
lemma which sets a necessary condition for linear feedback stabilizability.

Lemma 5.22. Switched linear system (5.42) is not piecewise linear feedback
stabilizable, if for each sequence of gain matrices Fi, i ∈ M , there exists a
one-dimensional subspace W of Rn, such that W is (Ai + BiFi)-invariant
and (Ai +BiFi)|W is unstable for all i ∈M .
Proof. AsW is of dimension one, (Ai+BiFi)|W is in fact a scalar matrix with
a positive real entry. SinceW is invariant under (Ai +BiFi) for all i ∈M , any
state trajectory initialized from W will remain in the subspace and hence di-
verge under arbitrary switching signal. This implies that the switched system
is not stabilizable by means of gain matrices Fi, i ∈M . The assumption of ar-
bitrariness of the gain matrices in the theorem clearly excludes the possibility
of the linear state feedback stabilizability of the switched system. ��

Example 5.23. Consider system (5.42) with n = 3, m = 2, and

A1 =

⎡
⎣0 0 0

1 1 0
0 0 1

⎤
⎦ B1 =

⎡
⎣1

0
0

⎤
⎦ A2 =

⎡
⎣0 0 0

0 1 0
1 0 1

⎤
⎦ B2 =

⎡
⎣0

0
0

⎤
⎦ . (5.43)

It can be verified that the system is completely controllable.
For any gain matrices F1 and F2 with

Fi = [fi1, fi2, fi3] i = 1, 2

it is clear that
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A1 +B1F1 =

⎡
⎣ f11 f12 f13

1 1 0
0 0 1

⎤
⎦ and A2 +B2F2 =

⎡
⎣0 0 0

0 1 0
1 0 1

⎤
⎦ .

If f2
12 + f2

13 
= 0, it can be verified that subspace

W = span{

⎡
⎣ 0
−f13
f12

⎤
⎦}

is invariant under Ai +BiFi for i = 1, 2. Otherwise, subspace

W = span{

⎡
⎣0

1
0

⎤
⎦}

is invariant under Ai +BiFi for i = 1, 2. In either case, we have

(Ai +BiFi)|W = 1 i = 1, 2

which are unstable. By Lemma 5.22, the switched linear control system is not
linear feedback stabilizable. ��

It is interesting to notice that the unstable sub-dynamics (subspace) rely
on the (parameters of) gain matrices. In other words, different sequences of
gain matrices may correspond to different unstable sub-dynamics. This means
that piecewise linear gain matrices are not always able to eliminate unsta-
ble common sub-dynamics. To overcome this intrinsic problem, we can either
search for nonlinear feedback controllers or extend the scheme of piecewise lin-
ear feedback stabilization (for example, a subsystem is associated with more
than one linear controller). This is an important subject for further investi-
gation.

Next, we assume that the system is single-input and in the controllable
normal form. That is, we restrict systems

∑
(Ai, Bi)M with

B1 = [1, 0, · · · , 0]T Bj = 0 j 
= 1.

The following theorem establishes a simple sufficient condition for feedback
stabilizability.

Theorem 5.24. For a single-input switched system
∑

(Ai, Bi)M , suppose that
there exists a sequence of real numbers wi, i ∈ M , such that matrix pair
(
∑

i∈M wiAi, B1) is controllable. Then, the switched system is quadratically
stabilizable.
Proof. Without loss of generality, we assume that each wi is nonnegative and
w1 > 0 (see Remark 5.26 below). Let A0 =

∑
i∈M wiAi and B0 = w1B1. As

(A0, B1) is controllable, (A0, B0) is also controllable. Therefore, we can find
a feedback gain matrix F1 such that A0 + B0F1 is Hurwitz. Introducing the
linear state feedback control input
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u1(t) = F1x(t)

the closed-loop switched system is
∑

(Ai +BiFi)M with Fj = 0, j 
= 1. Note
that ∑

i∈M

wi(Ai +BiFi) = A0 +B0F1

is Hurwitz. By Lemma 5.5, the switched system is quadratically stabilizable.
��

Remark 5.25. From the proof, the eigenvalues of the average matrix A0+B0F1
can be arbitrarily (symmetrically) assigned by appropriately choosing F1. On
the other hand, the convergence rate of the switched system can arbitrarily
approach that of the average system by a suitable switching signal. As a result,
the convergence rate of the switched system can be arbitrarily pre-assigned.

Remark 5.26. Note that the controllability of (
∑

i∈M wiAi, B1) for a sequence
w1, · · · , wm implies the controllability of (

∑
i∈M wiAi, B1) for almost any

sequence w1, · · · , wm in Rm. Here “for almost all parameter values” is to
be understood as “for all parameter values except for those in some proper
algebraic variety in the parameter space”. In other words, the set

{(w1, · · · , wm) : (
∑
i∈M

wiAi, B1) is not controllable}

is a variety in Rm. This comes from the fact that the controllability is a
generic property (see, e.g., [160, 35]). As a result, controllability is preserved
in an open and dense set of Rm. This fact plays a crucial role in the design
of the stabilizing strategy for general switched systems in the next section.

5.4.2 Low Dimensional Systems

In this subsection, we apply Theorem 5.24 to low-dimensional controllable
switched systems.

For n = 2, a controllable system satisfies either of the two cases:

(i) rank[B1, A1B1] = 2;
(ii) there is a j ∈M , j 
= 1 such that rank[B1, AjB1] = 2.

In the former case, the condition of Theorem 5.24 is satisfied with w1 = 1
and wi = 0, i = 2, · · · ,m. In the latter case, the condition of Theorem 5.24
is satisfied with wj = 1 and wi = 0, i 
= j. As a result, any controllable
planar switched system is quadratically stabilizable. This is summarized in
the following theorem.

Theorem 5.27. A second-order controllable switched linear system is quadrat-
ically stabilizable with any pre-assigned rate of convergence.
For the single-input third-order system with two subsystems, as classified in
Section 4.5.2, there are five normal forms as follows:
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(a) Ā1 =

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦ and Ā2 =

⎡
⎣∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

⎤
⎦;

(b) Ā1 =

⎡
⎣0 0 0

1 0 ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣0 ∗ ∗

0 ∗ ∗
1 ∗ ∗

⎤
⎦;

(c) Ā1 =

⎡
⎣0 0 0

1 0 ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣∗ 0 ∗
∗ 0 ∗
0 1 ∗

⎤
⎦;

(d) Ā1 =

⎡
⎣0 0 0

0 0 ∗
0 1 ∗

⎤
⎦ and Ā2 =

⎡
⎣0 ∗ ∗

1 ∗ ∗
0 ∗ ∗

⎤
⎦;

(e) Ā1 =

⎡
⎣0 0 0

0 ∗ ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣0 0 ∗

1 0 ∗
0 1 ∗

⎤
⎦.

It can be verified that, for forms (a), (c), (d) and (e), the condition of
Theorem 5.24 is always satisfied; for forms (b), the condition of Theorem 5.24
is violated if and only if the normal form is

Ā1 =

⎡
⎣0 0 0

1 0 0
0 0 υ1

⎤
⎦ and Ā2 =

⎡
⎣0 υ2 υ3

0 υ4 0
1 −υ1 υ4

⎤
⎦ (5.44)

where υ1, · · · , υ4 are arbitrary real numbers.
For switched system in the form (5.44), a detailed analysis based on Lemma

5.5 shows that, the system is quadratically stabilizable if and only if either
υ1 < 0 or υ4 < 0. In other words, the system is not quadratically stabilizable
for the case when υ1 ≥ 0 and υ4 ≥ 0.

For the case where the system is not quadratically stabilizable, it may be
linear feedback stabilizable as illustrated in the following.

To stabilize systems in the form (5.44), we seek a linear feedback control
input such that the closed-loop system is stabilizable by means of periodic
switching signals. By Lemma 5.6, it suffices to find a feedback gain vector
f1 = [f11, f12, f13], and two positive real numbers h1 and h2, such that matrix

exp (A2h2) exp ((A1 + b1f1)h1) (5.45)

is Schur.
Fix a positive real number h1. Let f11 = −2ρ, f12 = −ρ2, and f13 = η,

where ρ and η are real numbers to be determined. It can be computed that
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exp ((A1 + b1f1)h1) = exp

⎛
⎜⎜⎝
⎡
⎢⎢⎣
−2ρ −ρ2 η

1 0 0

0 0 υ1

⎤
⎥⎥⎦h1

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

(1− h1ρ) e−h1ρ −h1ρ
2e−h1ρ η(h1ρ2e−h1ρ+h1υ1ρe−h1ρ−υ1e−h1ρ+υ1eh1υ1)

(ρ+υ1)2

h1e
−h1ρ (1 + h1ρ) e−h1ρ −η(h1ρe−h1ρ+h1υ1e−h1ρ+e−h1ρ−eh1υ1)

(ρ+υ1)2

0 0 eh1υ1

⎤
⎥⎥⎥⎥⎦ .

The analytic expression of exp (A2h2) can also be computed as

eA2h2 =

⎡
⎣υ5 υ6 υ7

0 eυ4h2 0
υ8 υ9 υ10

⎤
⎦

where υ5, · · · , υ10 are analytic functions of h2. Note that υ1υ8+υ9 is a nonzero
function if and only if υ2 
= υ1υ4. As the function is analytic, it is nonzero for
almost any h2 (except for possibly isolated points) when υ2 
= υ1υ4.

Suppose that υ2 
= υ1υ4. Fix a positive h2 such that υ1υ8 + υ9 
= 0. Let

η =
−υ10

υ1υ8 + υ9
(ρ+ υ1)

2
.

With some manipulation, we can express (A2h2) exp ((A1 + b1f1)h1) in the
form

Λ(ρ) =

⎡
⎢⎢⎣
q1(ρ)e−ρh1 q2(ρ)e−ρh1 r1+q3(ρ)e−ρh1

(ρ+υ1)2

q4(ρ)e−ρh1 q5(ρ)e−ρh1 r2+q6(ρ)e−ρh1

(ρ+υ1)2

q7(ρ)e−ρh1 q8(ρ)e−ρh1 q9(ρ)e−ρh1

(ρ+υ1)2

⎤
⎥⎥⎦

where r1, r2 are fixed real numbers and qi(·), i = 1, · · · , 9 are polynomials of
ρ whose degrees are less than 3.

It is clear that

Λ∞
def
= lim

ρ→∞Λ(ρ) =

⎡
⎣0 0 r1

0 0 r2
0 0 0

⎤
⎦ .

The spectral radius of this matrix is zero. As a result, for any given positive
number ε < 1, there is a ρε such that

sr (Λ(ρ)) ≤ ε ∀ ρ ≥ ρε.

Pick such a ρ, the closed-loop switched system is exponentially stable with

the convergence rate not less than
ln ε

h1 + h2
.
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Example 5.28. For the controllable single-input normal system
∑

(Ai, bi)2̄
with

A1 =

⎡
⎣0 0 0

1 0 0
0 0 1

⎤
⎦ and A2 =

⎡
⎣0 0 0

0 1 0
1 −1 1

⎤
⎦ . (5.46)

this corresponds to the form (5.44) with υ2 
= υ1υ4.
Let h1 = h2 = 0.1 and ρ = 10. By the above-mentioned design procedure,

we have

f1 = [−20.0000,−100.0000, 328.9121].

It can be verified that matrix eA1h1eA2h2 has spectral radius 0.4359 and hence
is Schur stable. Therefore, system

∑
(A1+b1f1, A2) is stable under the periodic

switching signal

σ(t) =
{

1 if mod (t, 0.2) ≤ 0.1
2 otherwise.
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Fig. 5.15. State and input trajectories of system (5.46)

The above analysis shows that the system is linear feedback stabilizable.
A sample state trajectory and the corresponding input trajectory are shown
in Figure 5.15 where the initial state is

x(0) = [1.4435,−0.3510, 0.6232]T . ��

Next, we turn to the case that υ2 = υ1υ4 in form (5.44). In this case, we
can transform system

∑
(Āi, B̄i)2̄ into an equivalent form

∑
(Âi, B̄i)2̄ with
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Â1 = TĀ1T
−1 + TB̄1f1 =

⎡
⎣0 0 0

1 υ1 0
0 0 υ1

⎤
⎦

Â2 = TĀ2T
−1 =

⎡
⎣0 0 υ3

0 υ4 0
1 0 υ4

⎤
⎦ (5.47)

where

T =

⎡
⎣1 −υ1 0

0 1 0
0 0 1

⎤
⎦ and f1 = [υ1 υ

2
1 0].

For system
∑

(Âi, B̄i)2̄, let

f̄1 = [−ρ̄1 − ρ̄2 + υ1,−ρ̄1ρ̄2, f̄13]

where ρ̄1, ρ̄2 and f̄13 will be determined later. Simple calculation gives

exp
(
(Â1 + B̄1f̄1)h̄1

)
=

⎡
⎣ω1 ω2 ω3
ω4 ω5 ω6
0 0 1

⎤
⎦ eh̄1 v1

where

ω1 =
−ρ̄2 e−h̄1 ρ̄2 + e−h̄1 ρ̄1 ρ̄1

−ρ̄2 + ρ̄1
ω2 =

(
e−h̄1 ρ̄1 − e−h̄1 ρ̄2

)
ρ̄2 ρ̄1

−ρ̄2 + ρ̄1

ω3 = −
f̄13

(
e−h̄1 ρ̄1 − e−h̄1 ρ̄2

)
−ρ̄2 + ρ̄1

ω4 = −e
−h̄1 ρ̄1 − e−h̄1 ρ̄2

−ρ̄2 + ρ̄1

ω5 =
−ρ̄2 e−h̄1 ρ̄1 + e−h̄1 ρ̄2 ρ̄1

−ρ̄2 + ρ̄1

ω6 =
f̄13

(
−e−h̄1 ρ̄2 ρ̄1 + ρ̄2 e

−h̄1 ρ̄1 − ρ̄2 + ρ̄1

)
ρ̄1 ρ̄2 (−ρ̄2 + ρ̄1 )

.

Denote

eÂ2h̄2 =

⎡
⎣ ῡ5 0 ῡ6

0 eυ4h̄2 0
ῡ7 0 ῡ8

⎤
⎦ .

Suppose that υ3 > 0, then we have ῡ8 > eυ4h̄2 . Let

ρ̄1 =
1
h̄1

ln
ῡ8 − eυ4h̄2

ῡ8eῡ1h̄1

and
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f̄13 =
1
ῡ7

(ῡ8e
υ1h̄1 + eυ4h̄2).

When ρ̄2 →∞, the spectral radius of matrix

exp
(
Â2h̄2

)
exp

(
(Â1 + B̄1f̄1)h̄1

)
approaches zero. As a result, for any given positive number ε < 1, there is a
ρε such that

sr
(
exp

(
Â2h̄2

)
exp

(
(Â1 + B̄1f̄1)h̄1

))
≤ ε ∀ ρ̄2 > ρε.

Pick such a ρ̄2, the closed-loop switched system is exponentially stable with

the convergence rate not less than
ln ε

h̄1 + h̄2
.

Now, suppose that υ3 < −υ2
4
4 . In this case, let

f̄1 = [−2ρ+ υ1, − ρ2, 0]

where ρ is a positive real number to be determined. At the same time, let h̄2
be such that

υ4 sin

(
h̄2

√
−υ3 +

υ2
4

4

)
+
√
−4υ3 + υ2

4 cos

(
h̄2

√
−υ3 +

υ2
4

4

)
= 0.

Simple manipulation yields

h̄2 =
2√

−4υ3 + υ2
4

(
− arctan(

√
−4υ3 + υ2

4

υ4

)
+ kπ k = 1, 2, · · · .

It can be calculated that matrix exp(Â2h̄2) is of form

⎡
⎣∗ 0 ∗

0 ∗ 0
∗ 0 0

⎤
⎦. From this, we

can establish that

lim
ρ→∞ exp(Â2h̄2) exp(Â1h̄1) =

⎡
⎣0 0 ∗

0 0 0
0 0 0

⎤
⎦ .

As a result, for sufficiently large ρ, the closed-loop system is exponentially
stable with any pre-assigned rate of convergence.

Example 5.29. Consider controllable single-input normal system
∑

(Âi, B̄i)2̄
with

Â1 =

⎡
⎣0 0 0

1 1 0
0 0 1

⎤
⎦ and Â2 =

⎡
⎣0 0 2

0 1 0
1 0 1

⎤
⎦ . (5.48)
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Fig. 5.16. State and input trajectories of system (5.48)

This corresponds to the form (5.47) with υ3 > 0.
Let h̄1 = h̄2 = 1 and ρ̄2 = 500. From the above-mentioned design proce-

dure, we have

f̄1 = [−498.2269, 386.5457,−1078.5935].

It can be verified that matrix eÂ1h̄1eÂ2h̄2 has spectral radius 0.2592 and hence
is Schur stable. As a result, system

∑
(Â1 + B̄1f̄1, Â2) is stable under the

periodic switching signal

σ(t) =
{

1 if mod (t, 2) ≤ 1
2 otherwise.

The above analysis shows that the system is feedback stabilizable. A sam-
ple state trajectory and the corresponding input trajectory are shown in Fig-
ure 5.16, where the initial state is

x(0) = [1.4435,−0.3510, 0.6232]T . ��

When υ3 = 0, it can be verified that Lemma 5.22 applies and hence the
system is not linear feedback stabilizable. In the case that −υ2

4
4 ≤ υ3 < 0, the

stabilizability of system (5.47) is still an open problem.
Finally, we consider multi-input switched systems. For a switched system

Σ(Ai, Bi)2̄ with

rankB1 + rankB2 ≥ 2

without loss of generality, we assume that

rankB2 ≤ rankB1 ≤ 2.
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Let b1 be the first column of B1. According to the proof of Theorem 4.51,
there exist a nonsingular matrix T , and feedback gain matrices F1 and F2,
such that the single-input switched system Σ(Āi, b̄i)2̄ is in the controllability
normal form, where

Āi = T (Ai +BiFi)T−1 i = 1, 2 b̄1 = Tb1 = e1 b̄2 = 0.

Let B̄i = TBi for i = 1, 2. It is clear that the stabilizability of system
Σ(Ai, Bi)2̄ is equivalent to the stabilizability of Σ(Āi, B̄i)2̄. For the latter,
it has been proven that the system is quadratically stabilizable except for the
case when Ā1 and Ā2 are in the form (5.44). As a result, we only need to
address this special case.

If rankB1 = 2, then, there is a b̄3 
∈ span{e1} such that

B̄1 = [b̄1, b̄3].

It can be verified that, there exist a gain matrix F̄1, and nonnegative real
numbers w1 and w2, such that matrix

w1(Ā1 + B̄1F̄1) + w2Ā2

is Hurwitz, which means that system Σ(Āi, B̄i)2̄ is quadratically stabilizable.
Similarly, if rankB1 = rankB2 = 1, it can be verified that, there always exist
a gain matrix F̄2, and nonnegative real numbers w1 and w2, such that matrix

w1Ā1 + w2(Ā2 + B̄2F̄2)

is Hurwitz, which also means that system Σ(Āi, B̄i)2̄ is quadratically stabi-
lizable.

Summarizing the above analysis, we have the following theorem.

Theorem 5.30. For a three dimensional controllable switched linear control
system with two subsystems, Σ(Ai, Bi)2̄, we have the following conclusions:

(i) if rankB1+ rankB2 ≥ 2, then it is quadratically stabilizable;
(ii)if the system is single-input, then it is quadratically stabilizable if it is not

equivalent to normal form (5.44);
(iii) for normal system (5.44), it is quadratically stabilizable if and only if

either υ1 < 0 or υ4 < 0; and
(iv)for normal system (5.44), it is linear feedback stabilizable if either υ2 
=

υ1υ4 or υ3 
∈ [−υ2
4
4 , 0].

5.5 General Systems in Controllability Canonical Form

In this section, we address the stabilizability of switched linear control systems
which are not necessarily controllable.
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Consider the general switched system in controllability canonical form

ẋ1 = A1σx1 +A2σx2 +B1σuσ

ẋ2 = A3σx2 (5.49)

where
∑

(A1i, B1i)M is completely controllable.
To stabilize the system, we need to find a switching signal σ, and feedback

control inputs ui, i ∈ M , such that the closed-loop system is asymptotically
stable. For this, a necessary condition for stabilizability is that the uncon-
trollable mode system

∑
(A3i)M is stabilizable via suitable switching signal.

In addition, a common switching signal has be be sought to stabilize both
the controllable part and the uncontrollable part. This, of course, brings new
challenges to the problem.

To utilize Lemma 5.5, we make a more restrictive assumption as follows.

Assumption 5.4. For system (5.49), matrices A31, · · · , A3m have a stable
convex combination.
For the controllable mode

∑
(A1i, B1i)M , it can be transformed into a con-

trollable single-input system
∑

(Āi, bi)M via a coordinate change z1 = T−1x1
and a feedback reduction ui = Fix1 +Givi, i ∈M .

Combining Theorem 5.24 and and Lemma 5.5, we obtain the following
result.

Theorem 5.31. For system (5.49), suppose that Assumption 5.4 holds. If
there exists a sequence of real numbers wi, i ∈ M , such that matrix pair
(
∑

i∈M wiĀi, b1) is controllable, then the system is quadratically stabilizable.
Proof. By Assumption 5.4, there is a stable convex combination of A3i,
namely, A30 =

∑
i∈M µiA3i, where µi, i ∈ M are nonnegative real num-

bers. It is clear that there is a sufficiently small positive real number η, such
that

∑
i∈M νiA3i is still stable for any νi ∈ (µi, µi + η). On the other hand,

the assumption of the theorem ensures that matrix pair (
∑

i∈M wiĀi, b1) is
controllable for almost any sequence w1, · · · , wm (c.f. Remark 5.26). As a re-
sult, there is a sequence of positive real numbers ωi, ωi ∈ (µi, µi + η), such
that matrix pair (

∑
i∈M ωiĀi, b1) is controllable. Let gain matrix f1 be such

that matrix
∑

i∈M ωiĀi +ω1b1f1 is stable. Back to the original system (5.49),
we introduce the linear feedback control inputs

ui = (Fi +GifiT
−1)x1

def
= F̃ix1 i ∈M

where fi = 0 for i 
= 1. The closed-loop system reads as

ẋ1 = (A1σ +B1σF̃i)x1 +A2σx2

ẋ2 = A3σx2.

Computing the convex combination with weighted factors ωi gives
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∑
ωi

[
(A1σ +B1σF̃i A2σ

0 A3σ

]
=
[
T (
∑

ωiĀi + b1f1)T−1 A2i

0
∑

ωiA3i

]
.

As both the diagonal sub-matrices are Hurwitz, the above matrix is also Hur-
witz. By Lemma 5.5, the original system (5.49) is quadratically stabilizable.
��

Corollary 5.32. For system (5.49), suppose that Assumption 5.4 holds. If the
controllable subspace is of dimension one or two, then the system is quadrat-
ically stabilizable.

Example 5.33. Consider system
∑

(Ai, Bi)2̄ with

A1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 −1 2
1 0 0 3 0
0 0 1 1 0
0 0 0 1 2
0 0 0 −2 −3

⎤
⎥⎥⎥⎥⎦ B1 =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦

A2 =

⎡
⎢⎢⎢⎢⎣

0 −3 1 −2 0
0 1 0 −1 3
1 0 1 2 −2
0 0 0 −2 3
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ B2 = 0. (5.50)

It is clear that the system is in the controllability canonical form and the
controllable mode is in the single-input controllable normal form. Partition the
system matrices as in (5.49). It can be seen that the third-order controllable
mode is not in form (5.44). Simple verification shows that µA31+(1−µ)A32 is
stable for µ ∈ ( 1

4 ,
2
3 ). According to Theorem 5.31, the system is quadratically

stabilizable.
Next, fix ω = 0.40. By assigning the poles of pair (ωA31 +(1−ω)A32, ωb1)

at {−1.0,−1.1,−1.2}, we obtain a gain matrix

f1 = [13.2500, 99.0000,−116.08333].

By introducing the state feedback control law u1 = f1x1, the system is trans-
formed into an autonomous system, which possesses a stable convex combi-
nation. Applying the state-feedback switching strategy (3.21), we obtain a
stabilizing switching signal. Take initial condition

x(0) = [−1.0106, 0.6145, 0.5077, 1.6924, 0.5913]T .

Figure 5.17 shows the state and input trajectories. It can be seen that the
state trajectory looks quite ‘smooth’ in appearance, which indicates that the
switching frequency is quite high.
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Fig. 5.17. State and input trajectories of system (5.50)

5.6 Stabilization of Discrete-time Systems

For the discrete-time switched linear system

xk+1 = Aσxk +Bσuk (5.51)

where xk ∈ Rn, uk ∈ Rp, the problem of state feedback stabilization is to
seek a switching signal and a state feedback input to steer the switched system
asymptotically stable.

In this section, we present two schemes for the feedback stabilization prob-
lem. One is the quadratic stabilization by means of piecewise linear state
feedback input. The other is the deadbeat control for controllable switched
systems.

5.6.1 Piecewise Linear Quadratic Stabilization

The switched linear system is piecewise linear quadratically stabilizable, if there
exist a switching signal σ, and a mode-dependent linear feedback input law
of the form

uk = Fσxk (5.52)

such that the switched system

xk+1 = (Aσ +BσFσ)xk (5.53)

is quadratically stable.
Recall that the quadratic stability of a system means that there is a

quadratic Lyapunov candidate V (x) = xTPx, such that the function strictly
decreases along each non-trivial system trajectory, i.e.,
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V (xk+1)− V (xk) < 0 k = 0, 1, · · · . (5.54)

Combining (5.53) and (5.54) leads to

min
i∈M

{xT
(
(Ai +BiFi)TP (Ai +BiFi)− P

)
x} < 0 ∀ x 
= 0. (5.55)

On the other hand, suppose that for switched system (5.51), there exist a set
{Fi}i∈M of gain matrices and a positive definite matrix P satisfying (5.55),
then the state-feedback switching law

σ(k) = arg min
i∈M

{xT
k

(
(Ai +BiFi)TP (Ai +BiFi)− P

)
xk}

k = 0, 1, · · · (5.56)

quadratically stabilizes the system (5.53), which means that switched system
(5.51) is piecewise linear quadratically stabilizable. The above observation
leads naturally to the following definition and lemma.

Definition 5.34. The set {H1, · · · , Hs} of symmetric n× n matrices is said
to be positive definite, denoted by {Hi}s

i=1 > 0, if ∀ x ∈ Rn, x 
= 0, there is
an index i, 1 ≤ i ≤ s, such that xTHix > 0.

In the literature, the positive definiteness of a set of matrices (or functions)
is also called completeness [124, 174].

Lemma 5.35. Switched system (5.51) is piecewise linear quadratically stabi-
lizable, if and only if, there exist a set {Fi}i∈M of gain matrices, and a positive
definite matrix P , such that the set {P−(Ai+BiF )TP (Ai+BiFi)}i∈M is pos-
itive definite. Furthermore, in this case, (5.56) provides a stabilizing switching
strategy.
Proof. It is obvious from the above analysis. ��

By this lemma, the piecewise linear quadratic stabilizability is reduced to
the existence of the matrices P and {Fi}i∈M satisfying (5.55). However, the
simultaneous searching of the m+1 matrices is usually very difficult. In what
follows, we prove that we can reduce the problem to the searching of only one
matrix. For this, we need a technical lemma.

Fix a positive definite matrix P in Rn×n. For a subspace W of Rn, let

W⊥
P = {y ∈ Rn : yTPx = 0 ∀ x ∈ W}.

Lemma 5.36. Suppose that A ∈ Rn×l and W = ImA. Then, each z ∈ Rn

can be written as z = z1 + z2, where

z1 = A(ATPA)+ATPz ∈ W

and

z2 = (In −A(ATPA)+ATP )z ∈ W⊥
P
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where A+ is the Moore-Penrose pseudo-inverse of A.
Proof. Since Rn = W ⊕ W⊥

P , there exist a unique w1 ∈ W and a unique
w2 ∈ W⊥

P , such that z = w1 + w2. Let v ∈ Rn be such that w1 = Av. As
w2 ∈ W⊥

P , we have

ATP (z −Av) = ATPw2 = 0.

Thus, equation ATPAx = ATPz has a unique solution x = v. Note that

µ = (ATPA)+ATPz

is also a solution of the same equation. This implies that

z −Aµ ∈ Ker(ATP ). (5.57)

We claim that Ker(ATP ) = W⊥
P . Indeed, this can be seen from the following

relationships

(y ∈ W⊥
P ) ⇐⇒ (yTPAξ = 0 ∀ ξ ∈ Rl) ⇐⇒ (ATPy = 0).

It is clear that Aµ ∈ W. Therefore, we have

z = Aµ+ (z −Aµ)

with

Aµ = A(ATPA)+ATPz = z1 ∈ W

and

z −Aµ = (In −A(ATPA)+ATP )z = z2 ∈ W⊥
P . ��

The following theorem reduces the problem of stabilizability to the search
of only one matrix, hence greatly improve the practical utilization of the
approach.

Theorem 5.37. Suppose that switched system (5.51) is reversible. Then, the
system is piecewise linear quadratically stabilizable, if and only if, there exists
a positive definite matrix P such that the set

{P − (Ai +BiKi)TP (Ai +BiKi)}i∈M

is positive definite, where

Ki = −(BT
i PBi)+BT

i PAi i ∈M.

In this case, a stabilizing control law is

uk = Kσxk k = 0, 1, · · ·
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and a stabilizing switching law is defined in (5.56).
Proof. The sufficiency is directly from Lemma 5.35. Hence, we only need to
prove the necessity.

Suppose that the system is piecewise linear quadratically stabilizable.
Then, by Lemma 5.35, there exist a set of gain matrices {Fi}i∈M , and a
positive definite matrix P , such that

max
i∈M

{xT (P − (Ai +BiFi)TP (Ai +BiFi))x} > 0 ∀ x 
= 0.

This is equivalent to

min
i∈M

{xT ((Ai +BiFi)TP (Ai +BiFi))x} < xTPx} ∀ x 
= 0.

To prove that the set

{P − (Ai +BiKi)TP (Ai +BiKi)}i∈M

is positive definite, it suffices to prove, for any i ∈M , the inequality

(Ai +BiKi)TP (Ai +BiKi) ≤ (Ai +BiFi)TP (Ai +BiFi). (5.58)

For this, fix an i ∈ M and let A = Ai, B = Bi, and W = ImB. By Lemma
5.36, any x ∈ Rn can be written as x = xW + x⊥

W , where

xW = A(ATPA)+ATPx ∈ W

and

x⊥
W = (In −A(ATPA)+ATP )x ∈ W⊥

P .

Fix an x ∈ Rn and let y = Ax. For any F ∈ Rp×n, we have

xT (A+BF )TP (A+BF )x =
yTPy + (yW +BFA−1y)TP (yW +BFA−1y).

Note that, the first term in the right side is independent of F , and the second
term is 0 if and only if yW +BFA−1y = 0. By Lemma 5.36, this is exactly the
case when F = −(BTPB)+BTPA. This means that (5.58) holds and hence
the proof is complete. ��

By this theorem, the piecewise linear quadratic stabilizability of the re-
versible switched system is equivalent to the feasibility of the matrix inequality

{P − (Ai −Bi(BT
i PBi)+BT

i PAi)TP (Ai −Bi(BT
i PBi)+BT

i PAi)}i∈M < 0

with respect to P . Unfortunately, the inequality is generally non-convex and
a constructive method to check its feasibility is yet to be known.
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5.6.2 Deadbeat Control

For continuous-time switched linear systems with piecewise linear feedback
control inputs, the origin itself forms an isolated invariant set, that is, a non-
origin state cannot reach the set in a finite time. Accordingly, to steer any
non-origin state to the origin in a finite time, nonlinear feedback control laws
must be exploited. For discrete-time switched systems, however, it is possible
to achieve finite time stabilizability by means of piecewise linear feedback
control laws. This motivates the following concept.

Definition 5.38. The discrete-time switched linear system
∑

(Ai, Bi)M is
said to be (piecewise linear state) feedback deadbeat stabilizable, if there are
gain matrices Fi, i ∈M , a natural number k, and an index sequence i1, · · · , ik,
such that

H(i1, · · · , ik)
def
= (Aik

+Bik
Fik

) · · · (Ai2 +Bi2Fi2)(Ai1 +Bi1Fi1) = 0.

In this case, the gain matrices Fi, i ∈M are said to be deadbeat gain matrices.
Recall that any controllable linear time-invariant system (A,B) is feedback

equivalent to the Brunovski normal form. That is, there exist a nonsingular
matrix T , and a gain matrix F , such that

T−1(A+BF )T =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · ·

. . .
0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

def
= Ã and T−1B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

def
= B̃.

Note that Ãn = 0, and hence (A+BF )n = 0 and F is a deadbeat gain matrix.
In the following, we assume that the system is reversible and the input

matrices Bi ∈ Rn×p, i ∈ M are of full column rank, that is, rankBi = p for
all i ∈M .

Theorem 5.39. Suppose that p = n− 1 and switched system
∑

(Ai, Bi)M is
completely controllable. Then, the system is feedback deadbeat stabilizable.
Proof. If one of the subsystems is completely controllable, then, it is clear
that the controllable subsystem (and hence the switched system) is feedback
deadbeat stabilizable. Otherwise, none of the subsystems are controllable, and
it can be seen that, there are at least two subsystems, say, the first and the
second, such that rank[B1, B2] = n. This means that, there is a column b2 of
B2, such that T = [B1, b2] is square and nonsingular. By means of appropriate
feedback gain matrices F1 and F2, we have

T−1(A1 +B1F1)T =

⎡
⎢⎢⎢⎣

0 0 · · · 0
. . .

0 0 · · · 0
0 0 · · · 1

⎤
⎥⎥⎥⎦ and T−1(A2 +B2F2)T =

⎡
⎢⎢⎢⎣
∗ ∗ · · · ∗

. . .
∗ ∗ · · · ∗
0 0 · · · 0

⎤
⎥⎥⎥⎦



220 5 Feedback Stabilization

where ‘*’ denotes possible nonzero entries. Note that the multiplication of the
above two matrices is the zero matrix. As a result, the switched system is
feedback deadbeat stabilizable. ��

Theorem 5.40. Suppose that p = 1, m = n, and switched system
∑

(Ai, Bi)M

is completely controllable and irreducible. Then, the system is feedback dead-
beat stabilizable.
Proof. The assumptions of the theorem imply that T

def
= [B1, · · · , Bn] is

square and nonsingular. Furthermore, the controllable subspace of each pair
(Ai, Bj) is a subspace of Im[Bi, Bj ] for all i, j ∈ M . The latter implies that,
for each T−1AiT , its off-diagonal entries are 0 except possibly those in the
ith row. The ith row, however, can be made to be zero by means of a suitable
feedback transformation. In other words, we can find a feedback gain matrix,
such that matrix T−1(Ai +BiFi)T has zero off-diagonal entries and zero ith
row. Accordingly, the multiplication of all these matrices is the zero matrix,
hence the switched system is feedback deadbeat stabilizable. ��

We now turn to three-dimensional switched systems. In view of Theorems
5.39 and 5.40, we only need to consider the case when p = 1 and m = 2.

Theorem 5.41. Suppose that p = 1, m = 2 and n = 3, and switched system∑
(Ai, Bi)M is completely controllable. Then, the system is feedback deadbeat

stabilizable.
Proof. Without loss of generality, we assume that neither subsystem is con-
trollable.

First, suppose that B1 and B2 are linearly dependent, that is, B2 = λB1.
In this case, the controllability of the switched system implies that T =
[B1, A1B1, A2B1] is nonsingular. Denote

T−1A1T =

⎡
⎣0 a1 a2

1 a3 a4
0 0 a5

⎤
⎦ and T−1A2T =

⎡
⎣0 b1 b2

0 b3 0
1 b4 b5

⎤
⎦ .

Let

F1 = [0,−a1,−a2 − a5b5]T

and

F2 =
1
λ

[−a4,−b1 − a3b3 − a4b4,−b2 − a4b5]T.

It can be verified that

T−1(A2 +B2F2)(A1 +B1F1)(A2 +B2F2)T = 0

which implies that the switched system is feedback deadbeat stabilizable.
Second, suppose that B1 and B2 are linearly independent, that is, rank[B1,

B2] = 2. By interchanging the subsystems’ indices, we have either T =
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[B1, B2, A1B1] or T = [B1, B2, A1B2] is nonsingular. In the former case, de-
note

T−1A1T =

⎡
⎣0 a1 a2

0 a3 0
1 a4 a5

⎤
⎦ and T−1A2T =

⎡
⎣ b1 b2 b3b4 b5 b6
b7 b8 b9

⎤
⎦ .

If b1 + a5b7 
= 0, then, let

F1 = [−b7 + a5b9
b1 + a5b7

,−a1 −
a3b2 + a4b3 + a3a5b8 + a4a5b9

b1 + a5b7
,

−a2 −
a5b3 + a2

5b9
b1 + a5b7

]T

and

F2 = −[b4, b5, b6]T.

It can be verified that

T−1(A1 +B1F1)(A2 +B2F2)(A1 +B1F1)T = 0

which implies that the switched system is feedback deadbeat stabilizable.
If b1 + a5b7 = 0, then, let

F1 = [−a5,−a1,−a2 − a2
5]T

and

F2 = −[b4, b5, b6]T.

It can be verified that

T−1(A1 +B1F1)2(A2 +B2F2)T = 0

which implies that the switched system is feedback deadbeat stabilizable.
In the later case, i.e., T = [B1, B2, A1B1], we can prove in a similar way

that the switched system is feedback deadbeat stabilizable. ��

5.7 Notes and References

Stability and stabilization are primary issues of dynamic systems. The prob-
lem of feedback stabilization of switched linear systems has been addressed
for a long time. Early work includes [147, 148] for switched systems governed
by random processes. Feedback stabilizing design for deterministic switched
systems was addressed in [38, 39, 40], where necessary conditions and suffi-
cient conditions were obtained for switched systems under periodic switching
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strategies. For switched linear discrete-time systems, feedback stabilization
and state deadbeat control were addressed in [126, 127, 26, 8]. In particular,
in [126, 8] a feedback design framework was established based on the Lya-
punov approach. The same scheme has been applied to the continuous-time
systems in [124, 118]. This approach provides a sufficient condition for feed-
back stabilizability, but it is usually not easy to find the required Lyapunov
functions.

The canonical decomposition and normal forms presented in the previous
chapter provide a rigorous approach for addressing the problem of feedback
stabilization. A major advantage of this approach is that it is constructive
and permits efficient and flexible design procedures. The material presented in
this chapter mainly follows this approach. Section 5.2 was adopted from [139],
Section 5.3 from [145], and Sections 5.4 and 5.5 from [137]. From Sections 5.4
and 5.5 we can see that, though the theory is far from complete, the scheme
parallels standard linear system theory (see, e.g., [21, 77]) in many aspects.

The stabilization problem for discrete-time switched systems is quite dif-
ferent from its continuous-time counterpart. In fact, most results for the latter
depend more or less on the average method, which does not apply to discrete-
time systems. As a result, the discrete-time stabilization theory is not as rich
as the continuous-time theory. Nevertheless, by means of the Lyapunov ap-
proach, we can obtain some sufficient conditions such as those presented in
Section 5.6.1. Most results presented in Section 5.6.1 were taken from [126].
The results for feedback deadbeat stabilization, presented in Section 5.6.2,
were adopted from [26].
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Optimization

6.1 Introduction

If the individual subsystems are given, then the behavior of a switched sys-
tem depends on the switching signal. Usually, different switching strategies
produce different system behaviors and hence lead to different system perfor-
mances. A well-known example is the switched server system which is able, not
only to produce regular stable behavior, but also to produce highly unstable
behavior such as chaos and multiple limit circles. In this situation, the choice
of a suitable switching law to optimize certain performance index becomes an
important and well-motivated problem.

Optimization over switching signals is indeed a challenging problem. As
a switching signal is a discontinuous function of time and possibly highly
nonlinear, the optimization is extremely intricate and non-convex in nature.

In this chapter, we focus on two types of optimization problems for
switched linear systems with/without control inputs.

First, we investigate how one particular choice of the switching signal af-
fects the system performance. The aim is to find an optimal switching strategy
that causes an unforced switched system to behave optimally according to a
certain performance index. The performance index here is either the conver-
gence rate or the infinite horizon integrand of the cost function. For the former,
an optimal switching strategy is developed to minimize the convergence rate.
For the latter, the finiteness and other basic properties are established for the
optimal cost.

Second, we address several mixed optimization problems for switched lin-
ear control systems where both the switching signal and the control input are
design variables. A two-stage optimization method is developed to solve the
optimal switching/control problem by means of a set of differential and alge-
braic equations, and to solve the linear feedback suboptimal control problem
by means of a locally convergent algorithm.
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6.2 Optimal Convergence Rate

In this section, we consider the unforced switched linear system given by

ẋ(t) = Aσx(t) x(t0) = x0 (6.1)

where the real constant matrices Ai ∈ Rn×n, i ∈ M are given, and the
switching signal σ ∈M is the design variable.

Without loss of generality, we assume that t0 = 0.

6.2.1 Definitions and Preliminaries

In this subsection, we introduce the notion of optimal convergence rate for
unforced switched linear systems. Generally speaking, the optimal convergence
rate captures the largest possible convergence rate by means of appropriate
switching.

Given a linear time-invariant system

ż(t) = Bz(t) z(t0) = z0

it is well known that z(t) = eB(t−t0)z0 and the state norm satisfies

‖z(t)‖ ≤ e‖B‖(t−t0)‖z0‖ ∀ t ≥ t0 (6.2)

and

‖z(t)‖ ≤ α(t)eλmr(t−t0)‖z0‖ ∀ t ≥ t0

for some α(·) ∈ P, where P is the set of polynomial functions of time, and
λmr is the convergence rate (the maximum real part of the eigenvalues) of B.

For switched system (6.1), the solution of the state equation can be com-
puted to be

φ(t; t0, x0, σ) = eAik
(t−tk) · · · eAi0 (t1−t0)x0 tk < t ≤ tk+1

where {t0, t1, · · · } is the switching time sequence and {i0, i1, · · · } is the switch-
ing index sequence. It is clear that the state transition matrix is given by

Ψ(t1, t2, σ) = Ψ0(t1, t0, σ)(Ψ0(t2, t0, σ))−1 t1, t2 ≥ t0

where

Ψ0(t, t0, σ) = eAik
(t−tk)eAik−1 (tk−tk−1) · · · eAi0 (t1−t0) tk < t ≤ tk+1.

From (6.2), it can be seen that

‖φ(t; t0, x0, σ)‖ ≤ eρ(t−t0)‖x0‖ t ≥ t0 σ ∈ S

where ρ = max{‖A1‖, · · · , ‖Am‖}.
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Definition 6.1. The convergence rate of switched system (6.1) at x0 under
switching path σ is defined as

ρσ(Σ(Ak)M , x0) = inf{ω : ∃ α(·) ∈ P s.t. ‖φ(t, t0, x0, σ)‖ ≤
α(t)eω(t−t0)‖x0‖ ∀ t ≥ t0}.

In the literature, the convergence rate defined here was termed as the
stability index for continuous-time systems [172] and the Lyapunov indicator
for discrete-time systems [6].

Listed below are some simple facts on the convergence rate :

1) For a linear time-invariant system, the convergence rate is exactly given
by the largest real part of its poles.

2) Given any real number β > ρσ(Σ(Ak)M , x0), there exists a positive real
constant δ such that

‖φ(t; t0, x0, σ)‖ ≤ δeβ(t−t0)‖x0‖ ∀ t ≥ t0

3) lim supt→∞
ln(‖φ(t; t0, x0, σ)‖/‖x0‖)

t− t0
= ρσ(Σ(Ak)M , x0) ∀ x0 
= 0.

4) If ρσ(Σ(Ak)M , x0) < 0, then switching path σ makes the switched system
exponentially convergent starting from x0.

Definition 6.2. For switched system (6.1), the optimal convergence rate is
defined as

ρ∗(Σ(Ak)M ,S) = sup
x0 �=0

inf
σ∈S

{ρσ(Σ(Ak)M , x0)}.

The following result collects known bounds for the convergence rates.

Proposition 6.3. Denote by λmin
k and λmax

k the minimum and the maximum
real parts of the eigenvalues of matrix Ak, k ∈M , respectively. Then, we have

min
k∈M

λmin
k ≤ ρ∗(Σ(Ak)M ,S) ≤ min

k∈M
λmax

k .

Note that the optimal convergence rate is defined over the set of well-
defined switching paths, S. Similarly, we can define the convergence rate over
any specific class of switching paths. For example, let Sτ denote all the switch-
ing paths with dwell time τ , then we can define

ρ∗(Σ(Ak)M ,Sτ ) = sup
x0∈Rn

inf
σ∈Sτ

{ρσ(Σ(Ak)M , x0)}.

For simplicity, we denote ρ∗ for ρ∗(Σ(Ak)M ,S).
The notion of the optimal convergence rate is closely related to the sta-

bilization problem studied in Chapter 3. In fact, if ρ∗(Σ(Ak)M ,S) < 0, then
there is a switching signal that makes the switched system stable, as indicated
in the following proposition.
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Proposition 6.4. For switched system (6.1), the following statements are
equivalent :

(i) the system is asymptotically stabilizable;
(ii) the system is exponentially stabilizable; and
(iii)ρ∗ < 0.

6.2.2 Triangularizable Systems

Although the notion of the convergence rate is very natural and fundamen-
tal from both theoretical and practical viewpoints, the computation of the
optimal convergence rate is very difficult in general. That is understandable
because, by Proposition 6.4, the computation of the optimal convergence rate
is more difficult than verifying whether a switched system is stabilizable or
not, which is already very intricate. Here, we focus on triangular systems
whose component systems possess triangular structures.

Triangular systems are interesting because they have simple structures,
and many non-triangular systems can be made to be triangular by means of
equivalent transformations (simultaneous triangularization) [113]. For these
systems, the optimal convergence rate can be explicitly formulated in terms
of the system eigenvalues. The main point is that, as the optimal convergence
rate is invariant under equivalent transformations, the computation of the
convergence rates for a switched system can be reduced to that of an equivalent
normal system with a simpler structure.

Switched system (6.1) is said to be simultaneously (upper) triangular-
izable, if the matrix set A = {A1, · · · , Am} is simultaneously triangulariz-
able, that is, there exists a complex nonsingular matrix T ∈ Cn×n such that
Bk

def
= T−1AkT are of upper triangular form:⎡

⎢⎣
bk(1, 1) · · · bk(1, n)

. . .
0 · · · bk(n, n)

⎤
⎥⎦ ∈ Cn×n k ∈M. (6.3)

For a simultaneously triangularizable matrix set, we can transform it into the
following real normal form.

Theorem 6.5. Suppose that A = {A1, · · · , Am} is simultaneously triangular-
izable. Then, there exists a real nonsingular matrix G, such that G−1AkG is
of the form

Āk
def
= G−1AkG =

⎡
⎢⎢⎢⎣
A1k ∗ · · · ∗
0 A2k · · · ∗
...

...
. . .

...
0 0 · · · Alk

⎤
⎥⎥⎥⎦ (6.4)
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where l ≤ n, Ajk is either a 1× 1 or 2× 2 block, and the size of the jth block,
Ajk, is the same for all k ∈ M . In addition, if Ajk is of 2 × 2, then it is in
the form

Ajk =
[
µjk ωjk

−ωjk µjk

]
.

Proof. As matrix set {A1, · · · , Am} is simultaneously triangularizable, for
any polynomial p(y1, · · · , ym) over R, the eigenvalues of p(A1, · · · , Am) are
p(b1(i, i), · · · , bm(i, i)), i = 1, · · · , n. This shows that the matrix set possesses
Property III in [49, pp.442]. By Theorems 1 and 9 in [49], there is an orthog-
onal matrix H ∈ Rn×n such that

H−1AkH =

⎡
⎢⎢⎢⎣
B1k ∗ · · · ∗
0 B2k · · · ∗
...

...
. . .

...
0 0 · · · Blk

⎤
⎥⎥⎥⎦ (6.5)

where l ≤ n, and for fixed j ≤ l, we have

(i) Bj1, · · · , Bjm are 1× 1 or
(ii)Bj1, · · · , Bjm are 2× 2, with one of these matrices, say, Bjq, of the form

Bjq =
[
rjq ujq

−vjq rjq

]
ujq > 0 vjq > 0

and each of Bjk, k ∈ M is a real linear polynomial gjk in Bjq, that is,
Bjk = gjk(Bjq).

As Bjq in (ii) possesses a pair of (conjugated) complex eigenvalues, it follows
from standard matrix theory that there exists a real nonsingular matrix Tj ∈
R2×2 such that

T−1
j BjqTj =

[
µjq ωjq

−ωjq µjq

]
µjq, ωjq ∈ R.

Furthermore, since any polynomial of the matrix
[
µjq ωjq

−ωjq µjq

]
is still in the

same form, we have

T−1
j BjkTj = gjk(T−1

j BjqTj) =
[
µjk ωjk

−ωjk µjk

]
µjk, ωjk ∈ R k ∈M.

Define K = diag[K1, · · · ,Kl], where Kj = 1 if the corresponding block in
(6.5) is 1×1, and Kj = Tj if the block is 2×2. Let G = HK and the theorem
follows. ��
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Remark 6.6. Simultaneous triangularization of matrix sets has been investi-
gated extensively, see, for example, [104, 121, 113] and the references therein.
In particular, the following classes of matrix sets (and the corresponding
switched systems) have been proven to be simultaneously triangularizable :

a) the system matrices are commutative pairwise, that is AiAj = AjAi, i, j ∈
M [108];

b) the Lie-algebra generated by the system matrices is solvable [91]; and
c) A = {A1, A2} and rank(A1A2 −A2A1) = 1 [86].

6.2.3 Main Result

Suppose that switched system (6.1) is simultaneously triangularizable. That
is, there exists a real nonsingular matrix T such that

Āk = T−1AkT =

⎡
⎢⎢⎢⎣
A1k ∗ · · · ∗
0 A2k · · · ∗
...

...
. . .

...
0 0 · · · Alk

⎤
⎥⎥⎥⎦

where Aik is either 1× 1 or 2× 2.
Note that A1k(1, 1), · · · , Alk(1, 1) are (ordered) real parts of the eigenval-

ues of Ak (neglecting the multiplicity for the conjugated pairs). Let

si = [Ai1(1, 1), · · · , Aim(1, 1)] i = 1, · · · , l

and

Λ = {r = [r1, · · · , rm]T : rk ≥ 0,
∑
k∈M

rk = 1}.

Theorem 6.7. Suppose that switched system (6.1) is simultaneously triangu-
larizable. Then, its optimal convergence rate is

ρ∗ = min
r∈Λ

(
l

max
i=1

(si · r)
)
. (6.6)

Proof. First, fix an r = [r1, · · · , rm] ∈ Λ, and consider the periodic switching
path given by

σ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 mod (t, 1) ∈ [0, r1)
2 mod (t, 1) ∈ [r1, r1 + r2)
...
m mod (t, 1) ∈ [

∑m−1
i=1 ri, 1)

t ≥ t0

where mod (a, b) denotes the remainder of a divided by b.
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Denote

Φ
def
= Ψ(1, 0, σ) = eAmrmeAm−1rm−1 · · · eA1r1 = T

⎡
⎢⎣
B1 · · · ∗
...

. . .
...

0 · · · Bl

⎤
⎥⎦T−1

where Bi = eAimrm · · · eAi1r1 . If Aik ∈ R1×1, then, it can be seen that Bi =

exp(si · r). If Aik ∈ R2×2 with Aik =
[
µik ωik

−ωik µik

]
, then it can be verified that

the spectral radius of Bi is

eµimrm · · · eµi1r1 = exp(si · r).

Therefore, the spectral radius of Φ is

max{exp(s1 · r), · · · , exp(sl · r)} =
l

max
i=1

(si · r).

By the standard matrix theory, there exists an α0 ∈ P such that

‖Φj‖ ≤ α0(j)
(
exp

(
l

max
i=1

(si · r)
))j

j = 1, 2, · · ·

which implies that the state transition matrix satisfies

‖Ψ(j, 0, σ)‖ ≤ α0(j) exp
(
j

l
max
i=1

(si · r)
)

j = 1, 2, · · · .

Furthermore, for any t ≥ t0, there is a nonnegative integer j0 such that
t ∈ [j0, j0 + 1). As the switching path is periodic with period 1, we have

Ψ(t, 0, σ) = Ψ(t− j0, 0, σ) · Ψ(j0, 0, σ).

Define

ν1 = max
q∈[0,1]

‖Ψ(q, 0, σ)‖ and ν2 = max
q∈[0,1]

exp
(
−q l

max
i=1

(si · r)
)
.

Then, we have

‖Ψ(t, 0, σ)‖ ≤ α(t) exp
(
t

l
max
i=1

(si · r)
)

where α = ν1ν2α0 ∈ P. By Definition 6.1, we have

ρσ(Σ(Ak)M , x0) ≤
l

max
i=1

(si · r) ∀ x0 ∈ Rn.

As r is arbitrary from Λ, by Definition 6.2, we have

ρ∗ ≤ min
r∈Λ

(
l

max
i=1

(si · r)
)
.
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Assume that the above inequality is strict, that is

ρ∗ < min
r∈Λ

(
l

max
i=1

(si · r)
)
. (6.7)

Then, there exists a switching path σ0 ∈ S such that

ρ∗ ≤ sup
x0 �=0

ρσ0(Σ(Ak)M , x0) < min
r∈Λ

(
l

max
i=1

(si · r)
)
.

Note that

lim sup
t→∞

ln(‖φ(t, 0, σ0)‖/‖x0‖)
t

= ρσ0(x0) x0 
= 0

which implies that

lim sup
t→∞

ln(‖Ψ(t, 0, σ0)‖)
t

= sup
x0 �=0

ρσ0(x0). (6.8)

Let

ε =
1
2

(
min
r∈Λ

(
l

max
i=1

(si · r)
)
− sup

x0 �=0
ρσ0(x0)

)
. (6.9)

By (6.8), there exists a time t∗ ≥ t0 such that

‖Ψ(t∗, 0, σ0)‖ ≤ exp

(
( sup
x0 �=0

ρσ0(x0) + ε)t∗

)
. (6.10)

Let t0 < t1 < · · · < tj be the switching time sequence of σ0 in [t0, t∗]. Simple
computation gives

Ψ(t∗, 0, σ0) =

⎡
⎢⎣
ϕ1 · · · ∗
...

. . .
...

0 · · · ϕl

⎤
⎥⎦

where

ϕ1 = exp

(
j∑

µ=0

A1σ0(tµ)(tµ+1 − tµ)

)

...

ϕl = exp

(
j∑

µ=0

Alσ0(tµ)(tµ+1 − tµ)

)

with tj+1 = t∗. Let rk denote the active duration ratio of the kth subsystem,
that is,
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rk =

∑
σ0(tj)=k(tj+1 − tj)

t∗
k ∈M.

It can be seen that r
def
= [r1, · · · , rm]T ∈ Λ. As in the first part of the proof,

the spectral radius of Ψ(t∗, 0, σ0) is computed to be exp
(
t∗(maxl

i=1(si · r))
)
.

As the spectral radius of a matrix is smaller than or equal to its 2-norm, by
(6.10), we have

exp
(
t∗(

l
max
i=1

(si · r))
)
≤ ‖Ψ(t∗, 0, σ0)‖ ≤ exp

(
t∗( sup

x0 �=0
ρσ0(x0) + ε)

)
.

This, together with the definition of ε in (6.9), implies that

l
max
i=1

(si · r) ≤ sup
x0 �=0

ρσ0(x0) + ε < min
r∈Λ

(
l

max
i=1

(si · r)
)

which is a contradiction. This shows that the assumption (6.7) is not true. As
a result, we have

ρ∗ = min
r∈Λ

(
l

max
i=1

(si · r)
)
. ��

Note that Theorem 6.7 implies Theorem 3.13 as a special case.
It can be seen that the optimal convergence rate is related to not only the

set of the eigenvalues, but also the order of the eigenvalues in the triangular
normal form.

6.2.4 Computational Procedure and Example

First, we briefly discuss the computational procedure to obtain the optimal
convergence rate. It is clear that the set Λ is a (m − 1)-dimensional polygon
of Rm. Define

Λi = {r ∈ Λ : si · r =
l

max
j=1

(sj · r)} i = 1, · · · , l. (6.11)

Note that some Λi’s may be empty. It can be seen that each nonempty Λi

is connected and convex, and ∪l
i=1Λi = Λ. Thus, each nonempty Λi is also a

polygon. Let Υi denote the set of the extremal points of Λi. Then, we have

ρ∗ = min
r∈Λ

(
l

max
i=1

(si · r)) =
l

min
j=1

(min
r∈Λj

(sj · r)) =
l

min
j=1

(min
r∈Υj

(sj · r)). (6.12)

Second, as seen in the proof of Theorem 6.7, we indicate a way to design
switching signals with optimal convergence rate. For a fixed period h, define
a periodic switching path by
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σ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 mod (t, h) ∈ [0, r1h)
2 mod (t, h) ∈ [r1h, (r1 + r2)h)
...
m mod (t, h) ∈ [(

∑m−1
i=1 ri)h, h).

(6.13)

Suppose that r = [r1, · · · , rm]T is chosen corresponding to ρ∗, i.e.,

ρ∗ =
l

max
i=1

(si · r).

Then, the switching path steers the switched system convergent (or divergent)
at the optimal convergence rate. Note that, although the optimal convergence
rate is the same for all period h, different periods may result in different
transient performances for the switched system.

Example 6.8. For the block triangular switched system Σ(Ai)2̄ with

A1 =

⎡
⎢⎢⎣

1 −2 0 −1
0 −3 1 2
0 0 −2 4
0 0 −4 −2

⎤
⎥⎥⎦ and A2 =

⎡
⎢⎢⎣

2 3 −2 1
0 −4 −2 1
0 0 1 −2
0 0 2 1

⎤
⎥⎥⎦

we have

s1 = [1, 2] s2 = [−3,−4] s3 = [−2, 1].

To compute the optimal convergence rate, it follows from (6.11) that

Λ1 = Λ and Λ2 = Λ3 = ∅.

It can be verified that the extreme points of set Λ1 are

r1 = [1, 0]T and r2 = [0, 1]T .

The optimal convergence rate can be calculated from (6.12) to be

ρ∗ = min
j
{s1 · rj} = 1.

This shows that the switched system is not asymptotically stabilizable. On
the other hand, if we interchange the first and second diagonal entries of A2,
that is, let

Ā1 = A1 and Ā2 =

⎡
⎢⎢⎣
−4 3 −2 1
0 2 −2 1
0 0 1 −2
0 0 2 1

⎤
⎥⎥⎦

then, we have
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s1 = [1,−4] s2 = [−3, 2] s3 = [−2, 1].

Similar computation gives

ρ∗ = s1 ·
[

5
8
,
3
8

]T

= −7
8
.

This shows that switched system Σ(Āi)2̄ is asymptotically stabilizable.
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Figures 6.1 and 6.2 show the state trajectories of system Σ(Āi)2̄ under
switching path (6.13) with h = 0.1 and h = 2, respectively. In both figures,
the initial state is chosen to be

x0 = [0.1184, 0.3148, 1.4435,−0.3509]T .

It can be seen that, though the state converges to zero at the same (optimal)
rate in both cases, their transient performances are quite different.

6.3 Infinite-time Optimal Switching

6.3.1 Finiteness of Optimal Cost

Suppose that {pi}i∈M is a set of functions defined on Rn. Assume that each
of the functions is continuous, positive definite and radially unbounded. Ac-
cordingly, there are two sets of functions of class K, {γi}i∈M and {γi}i∈M ,
such that

γi(‖x‖) ≤ pi(x) ≤ γi(‖x‖) ∀ i ∈M x ∈ Rn. (6.14)

For technical reasons, in certain situations, we further impose one or more of
the following assumptions :

Assumption 6.1. γi, i ∈ M are locally Lipschitz at zero, that is, there are
positive real numbers εi and κi such that

|γi(t)| ≤ κit ∀ t ∈ [0, εi] i ∈M.

Assumption 6.2. There exist positive real numbers εi and νi such that

|γi(t)| ≥ νit ∀ t ∈ [0, εi] i ∈M.

Assumption 6.3. For any i ∈ M , there exist a polynomial ϕi of time with
ϕi(0) = 0, and positive real numbers µi, such that

|pi(x)− pi(y)| ≤ ϕi(‖x− y‖) ∀ x, y ∈ Rn x− y ∈ Bµi .

Note that Assumption 6.3 implies Assumption 6.1. Generally speaking, the
assumptions are quite mild and are satisfied in many situations, for example,
when pi(x) are homogeneous and of even degrees.

Consider the infinite horizon cost function given by
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J(x0, θ) =
∫ ∞

0
pθ(x(t))dt (6.15)

where x(t) = φ(t; 0, x0, θ) is the state trajectory starting from x(0) = x0 under
switching path θ.

The problem of optimal switching is to find, for a given x0, a switch path
θx0 that minimizes the cost function

J(x0, θx0) = min
θ∈S[0,∞)

J(x0, θ).

The switching path θx0 is said to be an optimal switching path at x0. If an
optimal switching path exists at each x0 ∈ Rn, then, the switching law that
generates θx0 at x0 for any x0 ∈ Rn is said to be an optimal switching law.
The optimal state trajectory can be defined in the same manner.

As the problem may not admit any optimal switching path/law, we pro-
pose separately the notion of optimal cost.

Definition 6.9. The optimal cost associated with the cost function at x0 is

J(x0) = inf
θ∈S[0,∞)

J(x0, θ).

The worst case optimal cost (in the unit ball) associated with the cost function
is

J∗ = sup
‖x0‖≤1

J(x0).

The worst case optimal cost reflects the worst possible cost in the unit
ball. In many practical situations, the initial state is not exactly measurable
in advance, and the worst case optimal cost measures the worst case over the
initial states in the unit ball.

The following simple facts are easily verified:

• J(x0) ≥ 0 for all x0 ∈ Rn, and J(x0) = 0⇐⇒ x0 = 0;
• if x : [0,∞) �→ Rn is an optimal state trajectory, then, for any s ∈ [0,∞),

the state trajectory y : [0,∞) �→ Rn with y(·) = x(· + s), is also optimal;
and

• if each pi(·) is homogeneous of degree k, i.e.,

pi(λx) = λkpi(x) ∀ λ ∈ R x ∈ Rn i ∈M

then J(·) is also homogeneous of degree k. In addition, if θx0 is an optimal
switching path at x0, then, it is also an optimal switching path at λx0
with λ ∈ R.

An important issue is the connection between the optimal problem and
the stabilization problem. The following theorem sets up a connection in a
clear way.
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Theorem 6.10. Suppose that Assumption 6.1 holds. Then, the following
statements are equivalent :

(i) the optimal cost J(x0) is finite for any given x0 ∈ Rn;
(ii) the worst case optimal cost is finite; and
(iii) the switched system is asymptotically stabilizable.

Proof. We establish the equivalence between (i) and (iii). The equivalence
between (ii) and (iii) can be proven in the same manner.

To prove that (i) =⇒ (iii), suppose that the optimal cost J(x0) is finite
for any given x0. This means that for each x0 ∈ Rn, there is a switching path
θ[0,∞) such that ∫ ∞

0
pθ(t)(φ(t; 0, x0, θ))dt <∞.

From (6.14), it can be seen that

pθ(t)(φ(t; 0, x0, θ)) ≥ γ(‖φ(t; 0, x0, θ)‖)

where the monotone function γ is defined by

γ(t) = min
i∈M

{γi(t)} t ∈ [0,∞).

Accordingly, we have ∫ ∞

0
γ(‖φ(t; 0, x0, θ)‖)dt <∞. (6.16)

This, together with the fact that

‖ d
dt
φ(t; 0, x0, θ)‖ ≤ η‖φ(t; 0, x0, θ)‖ ∀ t ∈ (0,∞) (6.17)

where η = max{‖Ai‖}i∈M , implies that

lim
t→∞φ(t; 0, x0, θ) = 0. (6.18)

Indeed, suppose that (6.18) does not hold. Accordingly, there exist a real
number ε, and a time sequence {ti}∞

i=1 with limi→∞ ti = ∞ such that

‖φ(ti; 0, x0, θ)‖ ≥ ε i = 1, 2, · · · .

Without loss of generality, we assume that ti+1 − ti ≥ 1 for all i ∈ N+. By
(6.17), it is clear that

‖φ(t; 0, x0, θ)‖ ≥ εe−η ∀ t ∈ [ti, ti + 1].

Therefore, we have
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0
γ(‖φ(t; 0, x0, θ)‖)dt ≥

∞∑
i=1

∫ ti+1

ti

γ(εe−η)dt = ∞

which contradicts (6.16). This means that the state trajectory φ(t; 0, x0, θ) is
convergent. By Theorem 3.9, the switched system is asymptotically stabiliz-
able.

Next, we show that (iii) =⇒ (i). Suppose that the switched system is
asymptotically stabilizable. Then, by Theorem 3.9, the system is exponentially
stabilizable. That is, there are positive real numbers α and β, such that for
any x0 ∈ Rn, there exists a switching signal σ satisfying

‖φ(t; 0, x0, σ)‖ ≤ βe−αt‖x0‖ ∀ t ≥ 0. (6.19)

As a result, we have

J(x0) ≤ J(x0, σ) =
∫ ∞

0
pσ(φ(t; 0, x0, σ))dt

≤
∫ ∞

0
γ̄(βe−αt‖x0‖)dt

where function γ̄ is defined by

γ̄(t) = max
i∈M

{γi(t)} t ∈ [0,∞).

By Assumption 6.1, the γis are locally Lipschitz. As a result, for any s ≥ 0,
there is a real number ρs, such that the linear function γ̂(t) = ρst overwhelms
γ̄ on [0, s], that is,

γ̄(t) ≤ γ̂(t) = ρst t ∈ [0, s].

Therefore, we have

J(x0) ≤
∫ ∞

0
γ̄(βe−αt‖x0‖)dt ≤

∫ ∞

0
ρβ‖x0‖βe−αt‖x0‖dt

=
β

α
ρβ‖x0‖‖x0‖ (6.20)

which sets an upper bound for the optimal cost. ��
Note that if we know an exponentially stabilizing switching signal and

the associated constants α and β as in (6.19), then (6.20) provides an upper
bound for the optimal cost. The following example illustrates this idea.

Example 6.11. Consider the optimal switching problem for switched linear
system Σ(Ai){1,2} with

A1 =

⎡
⎣1 −4 3

4 1 −2
0 0 −2

⎤
⎦ and A2 =

⎡
⎣−3 1 5
−1 −3 2
0 0 2

⎤
⎦ . (6.21)
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Let

p1(x) = x2
1 + x2

2 + x3 sinx2 + 2x2
3

p2(x) = 2x4
1 + x4

2 + x3
1 sat(x3) + x4

3

where sat(·) is the standard saturation functions with unit limits. Set

γ1(t) = 3t2 and γ2(t) = 3t4 ∀ t ∈ R.

Accordingly, we can choose ρs = 3 max{s, s3} for all s ∈ R.
On the other hand, it can be seen that both A1 and A2 are in the upper

block triangular form. From Theorem 6.7, it can be calculated that the optimal
convergence rate is ρ∗ = − 1

2 , and this convergence rate can be achieved by
the periodic switching path

θ(t) =
{

1 mod (t, h) ∈ [0, w1h)
2 mod (t, h) ∈ [w1h, h)

where h is any positive real number, and w1 = 5
8 .

Let h = 1, α = −ρ∗ = 0.5, and

β = max
{

max
t∈[0,w1h]

{‖eA1t‖eαt}, max
t∈[w1h,h]

{‖eA2(t−w1h)eA1w1h‖eα(t−w1h)}
}

< 3.300.

By the theory presented in Section 6.2, we have

‖φ(t; 0, x0, θ)‖ ≤ βe−αt ∀ t ≥ 0.

By (6.20), an upper bound of the optimal cost is

J(x0) ≤
β

α
ρβ‖x0‖ < 65.34 max{‖x0‖, 10.89‖x0‖3}.

The worst case optimal cost is bounded by

J∗ ≤ 65.34 ∗ 10.89 ≈ 711.55.

6.3.2 Basic Properties

Given an s ≥ 0, define

Js = sup{J(x0) : ‖x0‖ ≤ s}.

It follows from (6.20) that

Js ≤
βs

α
ρβs (6.22)

which provides a useful upper bound for Js.
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Theorem 6.12. Suppose that the switched system is asymptotically stabiliz-
able, and the cost function satisfies Assumptions 6.1 and 6.2. Then, any op-
timal state trajectory is exponentially convergent.
Proof. Suppose that x(·) is an optimal state strategy starting from x(0) =
x0 
= 0. Let θ(·) be the associated switching path, that is,

ẋ(t) = Aθ(t)x(t) for almost all t ∈ [0,∞).

It is clear that

J(x0) = J(x0, θ) =
∫ ∞

0
pθ(t)(x(t))dt <∞. (6.23)

From the proof of Theorem 6.10, it can be seen that∫ ∞

0
pθ(t)(x(t))dt ≥

∫ ∞

0
γ(x(t))dt. (6.24)

By Assumption 6.2, for any t > 0, there exist positive real numbers νt
i , such

that

γi(s) ≥ νt
is ∀ s ∈ [0, t].

Define ν = min{ν‖x0‖
i }i∈M for all t ≥ 0. Let r1 = ‖x0‖

2 . As pointed out in the
proof of Theorem 6.10, the state trajectory must be convergent. Hence, the
time

t1 = min{t ≥ 0: x(t) ∈ Br1}

exists and is finite. As x(t) 
∈ Br1 for t ∈ [0, t1), we have

∫ t1

0
γ(x(t))dt ≥

∫ t1

0
νr1dt =

1
2
ν‖x0‖t1.

This, together with inequality (6.24), implies that

t1 ≤
2J(x0)
ν‖x0‖

.

Furthermore, it follows from (6.22) that

t1 ≤
2β
να

ρβ‖x0‖
def
= δ.

This means that for any optimal state trajectory x(·), there is a time t1 ≤ δ,
such that x(t1) ∈ B ‖x(0)‖

2
. On the other hand, let

y(t) = x(t+ t1) t ∈ [0,∞).
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By the optimality of x(·), the state trajectory y(·) is also an optimal state
trajectory starting from y(0) = x(t1) ∈ B ‖x(0)‖

2
. Accordingly, there is a time

s2 ≤ δ such that y(s2) ∈ B ‖y(0)‖
2

, which implies that

x(t2) ∈ B ‖x(t1)‖
2

where t2 = t1 +s2. Continuing with this process, we can find a monotone time
sequence 0 = t0 < t1 < t2 < · · · such that

(i) ti+1 − ti ≤ δ ∀ i ∈ N+;
(ii) x(ti+1) ∈ B ‖x(ti)‖

2
∀ i ∈ N+; and

(iii) ‖x(t)‖ ≤ eηδ‖x(ti)‖ ∀ t ∈ [ti, ti+1] i ∈ N+, where η = maxi∈M{‖Ai‖}.

These facts suffice to conclude that there exist positive numbers α1 and β1,
which may be dependent on x0, such that

‖x(t)‖ ≤ β1e
−α1t‖x0‖ ∀ t ∈ [0,∞). ��

Theorem 6.13. Suppose that the cost function satisfies Assumption 6.3, and
the switched system is asymptotically stabilizable. Then, the optimal cost J(x0)
is a continuous function of x0.
Proof. First, by (6.22), it can be seen that, for any ε > 0, there is δ > 0 such
that Jδ < ε. This implies that J(x) is continuous at x = 0. Select δ such that

δ < 1 and δ ≤ µ
def
= min{µi : i ∈M}, where µi is given in Assumption 6.3.

Then, for x0 
= 0, let x(·) be a state trajectory starting from x0 and
satisfying

|
∫ ∞

0
pθ(t)(x(t))dt− J(x0)| ≤ ε

where θ(·) is the associated switching path. As the state trajectory is conver-
gent, there is a time t1 such that

x(t) ∈ B δ
2
∀ t ≥ t1.

On the other hand, there exists a time t2 such that

|
∫ t2

0
pθ(t)(x(t))dt−

∫ ∞

0
pθ(t)(x(t))dt| ≤ ε.

Let t∗ = max{t1, t2}.
Next, let Φ(s1, s2, θ) be the transition matrix corresponding to θ. It is clear

that

‖Φ(s1, s2, θ)‖ ≤ eη(s1−s2) ∀ s1 ≥ s2 ≥ 0 (6.25)

where η = max{‖Ai‖ : i ∈M}. Let
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� =
δ

2
e−ηt∗

.

Then, we have

φ(t; 0, y0, θ)− x(t) = Φ(t, 0, θ)(y0 − x0) ∈ Br(t) ∀ ‖y0 − x0‖ ≤ � t ∈ [0, t∗]

where

r(t) =
δ

2
e−η(t∗−t) t ∈ [0, t∗].

Fix such a y0 and let y(·) be the state trajectory starting from y0 via switching
path θ, i.e.,

y(t) = φ(t; 0, y0, θ) t ∈ [0,∞).

By Assumption 6.3, we have

|
∫ t∗

0
pθ(t)(x(t))dt−

∫ t∗

0
pθ(t)(y(t))dt| ≤

∫ t∗

0
ϕ(‖x(t)− y(t)‖)dt (6.26)

where ϕ = a1t+ a2t
2 + · · ·+ ajt

j is the polynomial defined by

ϕ(t) =
∑
i∈M

ϕi(t) ∀ t ≥ 0.

It can be seen that∫ t∗

0
ϕ(‖x(t)− y(t)‖)dt ≤

∫ t∗

0

j∑
i=1

|ai|
δi

2i
e−iη(t∗−t)dt

≤
(

j∑
i=1

µi−1|ai|
i2iη

)
δ

def
= ωδ.

Finally, note that y(t∗) ∈ Bδ. This means that J(y(t∗)) < ε. Let ϑ be a
switching path such that

J(y(t∗), ϑ) ≤ J(y(t∗)) + ε ≤ 2ε.

Let θ̄ denote the concatenation of θ[0,t∗] and ϑ[0,∞), that is,

θ̄(t) =
{
θ(t) if t ∈ [0, t∗]
ϑ(t− t∗) if t ∈ (t∗,∞).

Combining the above reasonings, we have

|J(y0, θ̄)− J(x0)| ≤ |J(y0, θ̄)− J(x0, θ)|+ ε

≤ |
∫ t∗

0

(
pθ(t)(y(t))− pθ(t)(x(t))

)
dt|+

∫ ∞

t∗
pθ̄(t)(y(t))dt+ 2ε

≤
∫ t∗

0
ϕ(‖x(t)− y(t)‖)dt+ J(y(t∗), ϑ) + 2ε

≤ ωδ + 4ε = ε̄.
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As both ε and δ can be chosen to be arbitrarily small, ε̄ can be made to be
arbitrarily small. This implies that, if y0 is sufficiently close to x0, then J(y0) ≤
J(x0)+ ε̄. By interchanging the roles of x0 and y0, we have J(x0) ≤ J(y0)+ ε̄.
This means that limy0→x0 J(y0) = J(x0) which leads to the conclusion. ��

6.3.3 Optimal State Trajectory and Optimal Process

In this subsection, we establish a relationship between optimal state trajectory
of the switched linear system and optimal process of the relaxed differential
inclusion.

Suppose that p(·) is a function defined on Rn. Assume that the function
is continuous, positive definite, and that there exist a polynomial ϕ of time
with ϕ(0) = 0, and a positive real number µ, such that

|p(x)− p(y)| ≤ ϕ(‖x− y‖) ∀ x, y ∈ Rn ‖x− y‖ ≤ µ. (6.27)

For the relaxed differential inclusion

ẋ(t) ∈ co{A1x(t), · · · , Amx(t)} (6.28)

where ‘co’ denotes the convex hull, consider the infinite horizon cost function
given by

K(x(·)) =
∫ ∞

0
p(x(t))dt (6.29)

where x(·) is a feasible state trajectory (process) of the relaxed differential
inclusion.

The optimal cost associated with the cost function at x0 is

Kx0 = inf
x(0)=x0

K(x(·)).

The (worst case) optimal cost associated with the cost function is

K∗ = sup
‖x0‖≤1

Kx0 .

A process x∗(·) with K(x∗(·)) = Kx∗(0) is said to be an optimal process.
Let J(x0) and J∗ denote the optimal cost and the worst case optimal cost

of the optimal switching problem for switched system (6.1) under the same
cost function, respectively. As each state trajectory of the switched linear
system is also a feasible process of the relaxed differential inclusion, it is clear
that Kx0 ≤ J(x0) and K∗ ≤ J∗.

Theorem 6.14. Suppose that the switched linear system is asymptotically sta-
bilizable. Then, for any x0 ∈ Rn, we have

Kx0 = J(x0).
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Proof. We follow a similar procedure as in the proof of Theorem 6.13.
First, for any ε > 0, there is a δ ≤ min{1, µ} such that

J(x0) ≤ ε ∀ x0 ∈ Bδ.

Second, fix an x0 
= 0. For ε, there is a process x(·) of the relaxed differ-
ential inclusion, such that x(0) = x0, and

|K(x(·))−Kx0 | ≤ ε.

Let t1 be a time such that

‖x(t)‖ ≤ δ

2
∀ t ≥ t1.

By Lemma 2.12, for any continuous function r : [0, t1] �→ R satisfying r(t) > 0
for all t ∈ [0, t1], there exists a state trajectory y(·) of the switched linear
system with y(0) = x0, such that

‖y(t)− x(t)‖ ≤ r(t) ∀ t ∈ [0, t1].

Let r(t) ≤ δ
2e

−t. From (6.27), it is clear that

|
∫ t1

0
p(y(t))− p(x(t))dt| ≤

∫ t1

0
ϕ(‖y(t)− x(t)‖)

where ϕ = a1t + a2t
2 + · · · + ajt

j is the polynomial defined in (6.27). It can
be seen that

∫ t1

0
ϕ(‖x(t)− y(t)‖)dt ≤

∫ t1

0

j∑
i=1

|ai|δie−iηtdt

≤
(

j∑
i=1

µi−1

iη
|ai|
)
δ

def
= ωδ.

Third, as ‖y(t1)‖ ≤ ‖x(t1)‖+ r(t1) ≤ δ, we have

J(y(t1)) ≤ ε.

As a result, there is a switching path ϑ[0,∞) such that
∫ ∞

0
p(φ(t; 0, y(t1), ϑ))dt ≤ J(y(t1)) + ε ≤ 2ε.

Let z(·) be the state trajectory concatenated by y(·) over [0, t1] and φ(·; 0,
y(t1), ϑ) over (0,∞), that is
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z(t) =
{
y(t) t ∈ [0, t1]
φ(t− t1; 0, y(t1), ϑ) t ∈ (t1,∞).

It can be seen that ∫ ∞

0
p(z(t))dt ≤

∫ t1

0
p(y(t))dt+ 2ε.

Finally, combining the above reasonings, we have

Kx0 ≥
∫ ∞

0
p(x(t))dt− ε ≥

∫ t1

0
p(x(t))dt− ε

≥
∫ t1

0
p(y(t))dt− ε− ωδ ≥

∫ ∞

0
p(y(t))dt− 3ε− ωδ

≥ Jx0 − 3ε− ωδ.

As both ε and δ can be chosen to be arbitrarily small, this implies that
J(x0) ≤ Kx0 . This leads directly to the theorem. ��

Corollary 6.15. Under the condition of Theorem 6.14, we have K∗ = J∗,
and Kx0 is a continuous function of x0 in Rn.

Corollary 6.16. Under the condition of Theorem 6.14, any optimal state tra-
jectory of the switched linear system is an optimal process of the relaxed dif-
ferential inclusion.
Corollary 6.16 indicates a method to find the optimal state trajectory (and
hence the optimal switching signal) of the switched linear system. Indeed, in
the literature, there have already been many works on finding the optimal
process of the differential inclusion. If an optimal process x(·) is a boundary
process, i.e.,

ẋ(t) ∈ {A1x(t), · · · , Amx(t)}

for almost all t ∈ [0,∞), then, the process is also an optimal state trajectory
of the switched linear system. If the relaxed differential inclusion does not
have any boundary optimal process, then, the switched linear system has no
optimal state trajectory. In particular, if the relaxed differential inclusion does
not have any optimal process, then, the switched linear system does not have
any optimal state trajectory, either.

6.3.4 Discrete-time Case

For the discrete-time unforced switched linear system

x(k + 1) = Aσ(k)x(k) (6.30)



6.3 Infinite-time Optimal Switching 245

several results presented in Sections 6.3.1 and 6.3.2 can be obtained in a
parallel manner. In this subsection, we present the main results and outline
the key points of the proofs.

Suppose that {pi}i∈M is a set of functions defined on Rn. Assume that
each function is continuous and bounded by positive definite polynomials of
state. That is, there are two sets of polynomials {γi(·)}M and {γi(·)}M with
γi(0) = 0 and γi(0) = 0, such that

γi(x) ≤ pi(x) ≤ γi(x) ∀ i ∈M x ∈ Rn.

The problem of optimal switching is to find, for a given x0, a switching
path θx0 that minimizes the cost function

J(x0, θx0) = min
θ∈S

J(x0, θ)

where

J(x0, θ) =
∞∑

k=0

pθ(k)(x(k)) (6.31)

and S is the set of switching paths defined on N+.
The optimal switching path, the optimal switching law, and the optimal

state trajectory can be defined in the same manner as in continuous time.

Definition 6.17. The optimal cost associated with the cost function at x0 is

J(x0) = inf
θ∈S

J(x0, θ).

The worst case optimal cost (in the unit ball) associated with the cost function
is

J∗ = sup
‖x0‖≤1

J(x0).

The following technical lemma follows directly from the fact that {γi(·)}M

and {γi(·)}M are positive definite polynomials.

Lemma 6.18. Define two functions on Rn by

γ(x) = min
i∈M

{γi(x)} and γ̄(x) = max
i∈M

{γi(x)}.

Then, for any s ≥ 0, there are two positive real numbers ρs and ρs such that

ρs‖x‖ ≤ γ(x) ≤ γ̄(x) ≤ ρs‖x‖ ∀ x ∈ Bs.

Without loss of generality, we assume that ρs is increasing and ρs is de-
creasing as s increases.
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Theorem 6.19. The following statements are equivalent :

(i) the optimal cost J(x0) is finite for any given x0 ∈ Rn;
(ii) the worst case optimal cost is finite; and
(iii) the switched system is asymptotically stabilizable.

Proof. We establish the equivalence between (i) and (iii). The equivalence
between (ii) and (iii) can be proven in the same manner.

To prove that (i) =⇒ (iii), suppose that the optimal cost J(x0) is finite
for any given x0. This means that for each x0 ∈ Rn, there is a switching path
θ[0,∞) such that

∞∑
k=0

pθ(k)(φ(k; 0, x0, θ)) <∞.

It can be seen that

pθ(k)(φ(k; 0, x0, θ)) ≥ γ(φ(k; 0, x0, θ))

where function γ is defined in Lemma 6.18. Accordingly, we have

∞∑
k=0

γ(φ(k; 0, x0, θ)) <∞.

This implies that

lim
k→∞

γ(φ(k; 0, x0, θ)) = 0

which in turn implies that trajectory φ(t; 0, x0, θ) converges. By Theorem 3.53,
the switched system is asymptotically stabilizable.

To show that (iii) =⇒ (i), suppose that the switched system is asymptot-
ically stabilizable. Then, by Theorem 3.53, the system is exponentially stabi-
lizable. That is, there exist a switching signal σ, and positive real numbers α
and β, such that

‖φ(t; 0, x0, σ)‖ ≤ βe−αt‖x0‖ ∀ x0 ∈ Rn t ∈ N+. (6.32)

It can be seen that

J(x0) ≤ J(x0, σ) ≤
∞∑

t=0

γ̄(φ(t; 0, x0, σ))

where function γ̄ is defined in Lemma 6.18. It follows from Lemma 6.18 that

γ̄(x) ≤ ρβ‖x0‖‖x‖ x ∈ Bβ‖x0‖.

Therefore, we have
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J(x0) ≤
∞∑

k=0

ρβ‖x0‖βe−αk‖x0‖ =
βeα

α(eα − 1)
ρβ‖x0‖‖x0‖ (6.33)

which sets an upper bound for the optimal cost. ��
Given an s ≥ 0, define

Js = sup{J(x0) : ‖x0‖ ≤ s}.

It follows from (6.33) that

Js ≤
βseα

α(eα − 1)
ρβs (6.34)

which provides a useful upper bound for Js.

Theorem 6.20. Suppose that the switched system is asymptotically stabiliz-
able. Then, any optimal state trajectory is exponentially convergent.
Proof. Suppose that x(·) is an optimal state trajectory starting from x0 
= 0.
Let θ(·) be the associated switching path, that is,

x(k + 1) = Aθ(k)x(k) ∀ k ∈ N+.

It is clear that

J(x0) = J(x0, θ) =
∞∑

t=0

pθ(t)(x(t)) <∞. (6.35)

From the proof of Theorem 6.19, it can be seen that

∞∑
k=0

pθ(k)(x(k)) ≥
∞∑

k=0

γ(x(k)). (6.36)

Let r1 = ‖x0‖
2 .

As pointed out in the proof of Theorem 6.19, the state trajectory must be
convergent. Accordingly, the state trajectory is bounded, i.e., ‖x(k)‖ ≤ ν for
some ν and all k ∈ N+. Define

k1 = min{k ≥ 0: x(k) ∈ Br1}.

It is clear that x(k) 
∈ Br1 for k ≤ k1. Therefore, we have

k1∑
k=0

γ(x(k)) ≥
k1∑

k=0

ρν
‖x0‖

2
≥ ρν

‖x0‖
2

k1.

This, together with inequality (6.36), implies that

k1 ≤
2J(x0)
ρν‖x0‖

.
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Furthermore, it follows from (6.34) that

k1 ≤
2βeα

ρνα(eα − 1)
ρβ‖x0‖ def

= δ.

This means that for any optimal state trajectory x(·), there is a time instant
k ≤ δ such that x(k) ∈ B ‖x(0)‖

2
. On the other hand, let

y(k) = x(k + k1) k ∈ N+.

By the optimality of x(·), the state trajectory y(·) is also an optimal state
trajectory starting from y(0) = x(k1). Accordingly, there is a time s2 ≤ δ
such that y(s2) ∈ B ‖y(0)‖

2
, which implies that

x(k2) ∈ B ‖x(k1)‖
2

where k2 = k1 + s2. Continuing with this process, we can find a monotone
time sequence 0 = k0 < k1 < k2 < · · · such that

(i) ki+1 − ki ≤ δ ∀ i ∈ N+;
(ii)x(ki+1) ∈ B ‖x(ki)‖

2
∀ i ∈ N+; and

(iii) ‖x(k)‖ ≤ eηδ‖x(ki)‖ ∀ t ∈ [ti, ti+1] i ∈ N+, where η = maxi∈M{‖Ai‖}.

These facts suffice to conclude that the state trajectory is exponentially con-
vergent. ��

Theorem 6.21. Suppose that the switched system is asymptotically stabiliz-
able. Then, the optimal cost J(x0) is a continuous function of x0.
Proof. The theorem can be proven in the same manner as the proof of The-
orem 6.13, and we hence omit the details. ��

6.4 Mixed Optimal Switching and Control

In this section, we address the optimization problem for the switched linear
system where both the control input and the switching signal are design vari-
ables. For such a problem, we need to find the optimal switching signal and
optimal control input simultaneously. To address this problem, a key issue is
to understand the interaction between the switching signal and control input,
which is very difficult and challenging. Here, we focus on the simplest case
where both the time horizon and the switching number are finite.

6.4.1 A Two-stage Optimization Approach

Switched Linear Quadratic Optimal Control Problem Given a
switched linear control system
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ẋ(t) = Aσx(t) +Bσu(t) x(t0) = x0 (6.37)

a fixed end-time tf < ∞, and an upper bound l of the number of allowed
switches, find (if possible) a piecewise continuous input u : [t0, tf ] �→ Rn, and
a switching signal σ which switches at most l times in [t0, tf ], such that the
quadratic cost function

J(x0, σ, u) =
1
2
xT (tf )Qfx(tf ) +

∫ tf

t0

(
1
2
xTQx+

1
2
uTRu)dt (6.38)

is minimized, where Qf ≥ 0, Q ≥ 0 and R > 0.
In the above formulation, the assumption of the fixed end time is not

crucial as we can easily convert a free end-time problem into a fixed end-time
one by introducing an additional state variable. However, the assumption that
the number of switches is bounded by a fixed number is crucial in the approach
to be developed. In many practical applications, the high frequency switching
is not desired and a positive dwell time is applied. In this case, an upper
bound for the switching number is the length of horizon tf − t0 divided by
the dwell time.

In the problem, we need to find an optimal control solution (σ∗, u∗) such
that

J(x0, σ
∗, u∗) = min

σ∈S,u∈U
J(x0, σ, u) (6.39)

where S is the set of well-defined switching paths over [t0, tf ], U is the set of
piecewise continuous vector functions over [t0, tf ].

As the number of switches is bounded by l, the problem can be equivalently
formulated as :

Find a nonnegative integer k ≤ l, an index sequence i0, · · · , ik in M , a
time sequence t1, · · · , tk in [t0, tf ], and a control input u ∈ U , such that
the cost function

J(x0, t1, · · · , tk, i0, · · · , ik, u) = J(x0, θ, u)

is minimized, where θ is the switching path with the switching sequence

{(t0, i0), (t1, i1), · · · , (tk, ik)}.

If we fix the switching signal, the problem is reduced to a conventional op-
timal control problem for linear time-varying systems. This simple observation
leads us towards considering the problem as a two-stage optimization prob-
lem. That is, we decompose the problem into two subproblems. The following
lemma provides a support to this two-stage decomposition.

Lemma 6.22. For a given x0 ∈ Rn, suppose that

(i) an optimal solution (σ∗, u∗) exists; and
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(ii)for any fixed switching index sequence i0, · · · , ik, there exist a time se-
quence t1, · · · , tk, and a control input u, such that the cost function

J(x0, t1, · · · , tk, i0, · · · , ik, u)

is minimized.

Then, we have

J(x0, σ
∗, u∗) = min

i0,··· ,ik

min
t1,··· ,tk,u

J(x0, t1, · · · , tk, i0, · · · , ik, u). (6.40)

Proof. The proof is straightforward and is hence omitted. ��
Based on the lemma, we propose the following two-stage optimization

approach.

Stage 1. Fixing a switching index sequence, solve the optimal control
problem for the corresponding time-varying system. That is, fixing a non-
negative integer j ≤ l, and a switching index sequence i0, i1, · · · , ij , find
(if possible) a switching time sequence t1, · · · , tj in [t0, tf ], and piece-
wise continuous input u : [t0, tf ] �→ Rp, such that the cost function
J(x0, t1, · · · , tk, i0, · · · , ik, u) is minimized; and
Stage 2. Regarding the optimal cost for each switching index sequence
i0, i1, · · · , ij as a function

J1 = J1(i0, i1, · · · , ij) = min
t1,··· ,tk,u

J(x0, t1, · · · , tk, i0, · · · , ik, u)

minimize J1 w.r.t. the switching index sequence.

As l is known, the number of possible switching index sequences can be
computed to be kl

m
def
=
∑l

j=0 m(m−1)j , where m is the number of subsystems.
In particular, when m = 2 the number is 2(l + 1) which is linear w.r.t. l.
Accordingly, in the second stage, we just need to compare the kl

m number of
costs :

J∗ = min{J1(i0, · · · , ij) : j ≤ l, is ∈M s = 1, · · · , j}.

As a consequence, the second stage is conventional but the first is the core
and difficult step for solving the problem. Indeed, in the first stage, we need to
determine the optimal switching time sequence, which is the most challenging
issue.

To illustrate the approach, consider the simplest case where the switched
system has two subsystems and there is only one switch with fixed index
sequence.
Single Switch Optimal Control Problem. For a switched system

ẋ = A1x+B1u t0 ≤ t < t1

ẋ = A2x+B2u t1 ≤ t ≤ tf (6.41)
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find an optimal switching instant t1 and an optimal input u to minimize the
cost function (6.38).

By introducing a state variable xn+1 corresponding to the switching in-
stant t1, and a new scaled time variable τ with

t = t0 + (xn+1 − t0)τ for 0 ≤ τ ≤ 1
t = xn+1 + (tf − xn+1)(τ − 1) for 1 ≤ τ ≤ 2

the problem is converted to finding an optimal xn+1 and an optimal control
u for the system

dx(τ)
dτ = (xn+1 − t0)(A1x+B1u)

dxn+1
dτ = 0

0 ≤ τ < 1

dx(τ)
dτ = (tf − xn+1)(A2x+B2u)

dxn+1
dτ = 0

1 ≤ τ ≤ 2

with the quadratic cost function

J =
1
2
xT (2)Qfx(2) +

∫ 1

0
(xn+1 − t0)L(x, u)dτ

+
∫ 2

1
(tf − xn+1)L(x, u)dτ (6.42)

where

L(x, u) =
1
2
xTQx+

1
2
uTRu.

First, assuming that we are given a fixed xn+1, we can apply the principle
of optimality as follows. Suppose that the optimal cost function is

V ∗(x, τ, xn+1) =
1
2
xTP (τ, xn+1)x (6.43)

where PT (τ, xn+1) = P (τ, xn+1). The Hamilton-Jacobi-Bellman (HJB) equa-
tion is

−∂V
∗

∂τ
(x, τ, xn+1) = min

u
{(xn+1 − t0)[L(x, u)

+
∂V ∗

∂x
(x, τ, xn+1)(A1x+B1u)]} (6.44)

in the interval τ ∈ [0, 1) and

−∂V
∗

∂τ
(x, τ, xn+1) = min

u
{(tf − xn+1)[L(x, u)

+
∂V ∗

∂x
(x, τ, xn+1)(A2x+B2u)]} (6.45)
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in the interval τ ∈ [1, 2].
Using the idea for solving the conventional optimal control problems, we

can prove that the solution to (6.44) is

u(x, τ, xn+1) = −K(τ, xn+1)x(τ, xn+1) (6.46)

where

K(τ, xn+1) = R−1BT
1 P (τ, xn+1)

and P (τ, xn+1) satisfies the following parametrized Riccati equation

−∂P
∂τ

= (xn+1 − t0)(Q+ PA1 +AT
1 P − PB1R

−1BT
1 P ). (6.47)

Similarly, the solution to (6.45) is also (6.46) with

K(τ, xn+1) = R−1BT
2 P (τ, xn+1)

and P satisfies the following parametrized Riccati equation

−∂P
∂τ

= (tf − xn+1)(Q+ PA2 +AT
2 P − PB2R

−1BT
2 P ). (6.48)

The boundary condition at τ = 2 is given by

P (2, xn+1) = Qf . (6.49)

As a result, any optimal trajectory satisfies the following constraints :

−∂P
∂τ

= (xn+1 − t0)(Q+ PA1 +AT
1 P − PB1R

−1BT
1 P ) τ ∈ [0, 1)

−∂P
∂τ

= (tf − xn+1)(Q+ PA2 +AT
2 P − PB2R

−1BT
2 P ) τ ∈ [1, 2]

P (2, xn+1) = Qf . (6.50)

The parametrized optimal cost at τ = 0 is

J1(t1) = J1(xn+1) = V ∗(x0, 0, xn+1) =
1
2
xT

0 P (0, xn+1)x0. (6.51)

Next, if J1(xn+1) is obtained for each xn+1 ∈ [t0, tf ], then, the optimal
cost can be calculated by seeking the minimal cost

J∗ = min
xn+1∈[t0,tf ]

J1(xn+1) = min
xn+1∈[t0,tf ]

1
2
xT

0 P (0, xn+1)x0.

This means that the optimal switching instant xn+1 should be either the
extreme point (t0 or tf ), which means that no switch occurs, or an inner
point with the derivative equal to zero, that is
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dJ1

dxn+1
(xn+1) = 0.

To determine dJ1
dxn+1

(xn+1), differentiate the cost function w.r.t. xn+1

dJ1

dxn+1
(xn+1) =

1
2
xT

0
∂P

∂xn+1
(0, xn+1)x0. (6.52)

To obtain this cost, we need to know ∂P
∂xn+1

, which can be computed from
(6.47) and (6.48) as

− ∂

∂τ
(

∂P

∂xn+1
) = (Q+ PA1 +AT

1 P − PB1R
−1BT

1 P )

+(xn+1 − t0)(
∂P

∂xn+1
A1 +AT

1
∂P

∂xn+1

− ∂P

∂xn+1
B1R

−1BT
1 P − PB1R

−1BT
1

∂P

∂xn+1
) (6.53)

in the interval τ ∈ [0, 1) and

− ∂

∂τ
(

∂P

∂xn+1
) = (Q+ PA2 +AT

2 P − PB2R
−1BT

2 P )

+(tf − xn+1)(
∂P

∂xn+1
A2 +AT

2
∂P

∂xn+1

− ∂P

∂xn+1
B2R

−1BT
2 P − PB2R

−1BT
2

∂P

∂xn+1
) (6.54)

in the interval τ ∈ [1, 2]. The boundary condition is

∂P

∂xn+1
(2, xn+1) = 0. (6.55)

Accordingly, the solution of ∂P
∂xn+1

(0, xn+1) can be obtained and the optimal
xn+1 can be determined.

As the analytic expression for the optimal solution is usually not available,
numerical solutions have to be sought. To this end, we propose an efficient
numerical procedure to compute the optimal switching time.

Searching Algorithm for Optimal Switching Time

1. Set the iteration index k = 0. Choose an initial time sk ∈ [t0, tf ].
2. Compute J1(sk) and dJ1

dxn+1
(sk).

3. Using the gradient projection method, update sk to be sk+1 = sk + akdtk
(the step size ak can be chosen using the Armijo’s rule [13]). Set the
iteration step k = k + 1.

4. Repeat Steps 2 and 3, until dJ1
dxn+1

(sk) is within a pre-specified neighbor-
hood of the origin.
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Remark 6.23. It can be seen that there is no difficulty in applying the above
method to the optimal control problem with several subsystems and more
than one switch. For this, we can convert the problem to an equivalent prob-
lem in τ ∈ [0, k + 1] if there are k switches. It is then straightforward to dif-
ferentiate the Riccati equations, which are parameterized by xn+1, · · · , xn+k,
so as to obtain additional differential equations for ∂J

∂xn+i
’s. Along with the

corresponding boundary condition at τ = k + 1, we can solve the resultant
initial value ordinary differential equations backwards in τ to find the values
at τ = 0. By doing this, we obtain the accurate values of ∂J

∂xn+i
’s. What re-

mains is to search for an optimal switching time sequence, and this can be
done by means of standard numerical algorithms in optimization.

Example 6.24. Consider the switched linear system Σ(Ai, Bi)2̄ with

A1 =
[

0 0
0 0.5

]
b1 =

[
1
0

]
A2 =

[
0.1 1
−1 0.1

]
b2 =

[
0
0

]
. (6.56)

Let x0 = [1,−1]T and tf = 5. We are to minimize the cost function

J(x0, u, σ) = xT (tf )x(tf ) +
∫ tf

0
(xT (t)x(t) + u2(t))dt

where the switching signal is allowed to switch at most once. According to
the two-state optimization approach, we first classify the four switching index
sequences as

{1} {2} {1, 2} {2, 1}.
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Fig. 6.3. The optimal state trajectory
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Then, for the latter two switching sequences, determine the switching times
that minimize the cost function. The optimal cost can be obtained by compar-
ing the costs associated with the switching sequences. The optimal switching
sequence is computed to be

{(0, 2), (2.334, 1)}

and the optimal cost is

J(x0) ≈ 9.1808.

The optimal state and input trajectories are shown in Figures 6.3 and 6.4,
respectively. It is clear that the state trajectory approaches the origin although
both subsystems are individually unstable.

6.4.2 Piecewise Constant Feedback Suboptimal Control

In the finite horizon optimization problem, even for a linear time-invariant
system, the optimal control input is a linear time-varying feedback of the
state. The time-varying nature of the state feedback is not desired in many
practical situations. In this subsection, we seek a piecewise time-invariant
linear state feedback control input to optimize the cost index. This scheme has
been extensively addressed in the literature for linear time-invariant systems.
Here, we re-visit and extend the scheme to switched linear systems.

For a switched linear system

ẋ(t) = Aσx(t) +Bσu(t) x(t0) = x0 (6.57)

if the switching signal is known, then, the switched system is given by

ẋ(t) = A(t)x(t) +B(t)u(t) x(t0) = x0 (6.58)
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where A(t) = Aσ(t) and B(t) = Bσ(t), for t ≥ t0.
The optimal linear regulator problem is to determine the control u on

[t0, tf ] which minimizes the quadratic cost function:

J(x0, t0, tf , u) = xT (tf )Qfx(tf ) +
∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

where the end time tf is fixed, the terminal state x(tf ) is unconstrained, Qf

and Q are positive semi-definite matrices, while matrix R is positive definite.
It is well known that the optimal control u∗ is generated by the linear

feedback law

u∗(t) = −R−1BT (t)K(t)x(t) = −L∗(t)x(t)

where K(t) is the unique (positive semi-definite) solution of the matrix Riccati
differential equation

K̇(t) = −AT (t)K(t)−K(t)A(t)−Q+K(t)B(t)R−1BT (t)K(t)

with the boundary condition K(tf ) = Qf . Furthermore, the matrix K(t) has
the property that, for arbitrary t ∈ [t0, tf ) and x ∈ Rn, we have

J(x, t, tf , u)|u=−L∗(t)x(t) = min
u

J(x, t, tf , u) = xTK(t)x. (6.59)

In particular, substituting x0 and t0 for x and t, respectively, we have

min
u

J(x0, t0, tf , u) = xT
0 K(t0)x0.

Consider the control law uL(t) = −L(t)x(t) with L(t) 
= L∗(t). Clearly, uL

is not optimal. Therefore, by comparing the cost associated with the use of
L(t) as opposed to L ∗ (t), it is possible to obtain bounds on the matrix K(t).
This is illustrated by the following lemma which was reported in [80].

Lemma 6.25. Let L(t) be an arbitrary p× n time-varying matrix defined for
t ∈ [t0, tf ]. Let VL(t) denote the (unique positive semi-definite) solution of the
linear matrix differential equation

V̇L(t) = −VL(t) (A(t)−B(t)L(t))− (A(t)−B(t)L(t))T
VL(t)

−Q− LT (t)RL(t)

satisfying the boundary condition VL(tf ) = Qf . Then

K(t) ≤ VL(t) ∀ t ∈ [t0, tf ].

Next, we turn to the suboptimal control of the switched linear sys-
tem. We are seeking an optimal switching path θ with switching sequence
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{(t0, i0), · · · , (tj , ij)}, where the number of switches j is less than or equal to
a given number l, and optimal linear state feedback gains F0, · · · , Fj , such
that the quadratic cost index

J(x0, θ, u) = xT (tf )Qfx(tf ) +
∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

= xT (tf )Qfx(tf ) +
∑j

k=0

∫ tk+1

tk

1
2
xT (t)(Q+ FT

k RFk)x(t)dt (6.60)

is minimized, where tj+1
def
= tf , and u(t) = Fkx(t) for t ∈ [tk, tk+1).

By the two-state optimization approach introduced in the previous subsec-
tion, we first fix the switching index sequence and seek the optimal switching
times and the optimal gain matrices, then solve the optimization problem by
comparing the costs with respect to the set of switched index sequences.

We focus on the first stage and suppose that the switching index sequence
i0, · · · , ij is given. Let {tk}j

k=1 be a set of switching times such that

t0 < t1 < · · · < tj < tj+1 = tf .

Let {Lk}j
k=0 be a set of gain matrices. Define the time-varying gain matrix

L(·) by

L(t) =

⎧⎪⎨
⎪⎩
L0 t ∈ [t0, t1)
...
Lj t ∈ [tj , tf ].

In addition, let θ be the switching path corresponding to the switching se-
quence {(t0, i0), · · · , (tj , ij)}, uL be uL(t) = −L(t)x(t) for t ∈ [t0, tf ], A(·)
and B(·) be A(t) = Aθ(t) and B(t) = Bθ(t) for t ∈ [t0, tf ], and ΦL(s1, s2) be
the transition matrix corresponding to the matrix A(t)−B(t)L(t). Then, we
have

J(x0, θ, uL) = xT
0 VL(t0)x0 (6.61)

where

VL(x0) = (ΦL(tf , t0))TQfΦL(tf , t0)

+
∫ tf

t0

(ΦL(t, t0))T
(
Q+ LT (t)RL(t)

)
ΦL(t, t0)dt.

For a fixed k ∈ j̄, this equation can be re-written as

VL(x0) = (ΦL(t1, t0))T · · · (ΦL(tf , tj))TQfΦL(tf , tj) · · ·ΦL(t1, t0)

+
∫ tk

t0

(ΦL(t, t0))T
(
Q+ LT (t)RL(t)

)
ΦL(t, t0)dt+ (ΦL(tk, t0))T

×
∫ tf

tk

(ΦL(t, tk))T
(
Q+ LT (t)RL(t)

)
ΦL(t, tk)dtΦL(tk, t0).
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By differentiating J(x0, θ, uL) w.r.t. Lk (c.f. [80]), we have

∂

∂Lk
J(x0, θ, uL) = Pkx0x

T
0 (6.62)

where

Pk =
∫ tk+1

tk

(
BT

ik
VL(t)−RLk

)
ΦL(t, t0)(ΦL(t, t0))T dt. (6.63)

Similarly, by differentiating J(x0, θ, uL) w.r.t. tk, and using the relations

d

dt
ΦL(t, s) = (A(t)−B(t)L(t))ΦL(t, s)

d

ds
ΦL(t, s) = −ΦL(t, s)(A(s)−B(s)L(s))

and

L(tk−) = Lk L(tk+) = Lk+1

we obtain

∂

∂tk
J(x0, θ, uL) = xT

0 (ΦL(tk, t0))TSkΦL(tk, t0)x0 (6.64)

where

Sk = VL(tk)
(
Aik+1 +Bik+1Lk+1 −Aik

−Bik
Lk

)
+
(
Aik+1 +Bik+1Lk+1 −Aik

−Bik
Lk

)T
VL(tk)

+(LT
k+1RLk+1 − LT

kRLk) k = 0, · · · , j. (6.65)

Suppose that {L∗
k}

j
k=0 and {t∗k}

j
k=0 minimize the cost index. Then, we

have

∂

∂L∗
k

J(x0, θ, uL∗) = 0 and
∂

∂t∗k
J(x0, θ, uL∗) = 0 k = 0, · · · , j.

By (6.62) and (6.64), this is equivalent to

Pkx0x
T
0 = 0 and xT

0 (ΦL∗(t∗k, t0))
TSkΦL∗(tk, t0)x0 = 0 (6.66)

for k = 0, · · · , j, which gives a necessary condition for the optimal solution.
As it is virtually impossible to obtain explicit analytic expressions for

{L∗
k}

j
k=0 and {t∗k}

j
k=0, we need to develop an iterative scheme to solve Equa-

tions (6.62) and (6.64). That is, given a set of gain matrices {L1
k}

j
k=1 and a set

of switching times {t1k}
j
k=1, we need to find new sets {t2k}

j
k=1 and {L2

k}
j
k=1 such

that the resultant cost is reduced. To be more specific, there exist nonnegative
real numbers ε0, · · · , εj such that
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t2k = t1k − εk
∂

∂t1k
J(x0, θ

1, uL1) k = 0, · · · , j

t0 < t21 < · · · < t2j < tf J(x0, θ
2, uL1) ≤ J(x0, θ

1, uL1) (6.67)

where θ2 is the switching path corresponding to the new switching times
{t2k}

j
k=0, and uL1 corresponds to {L1

k}
j
k=0 and {t1k}

j
k=0. The numbers ε0, · · · , εj

are chosen according to the well-known gradient or steepest descent schemes.
Similarly, there exist nonnegative real numbers ε0, · · · , εj such that

L2
k = L1

k − εk
∂

∂L1
k

J(x0, θ
2, uL1) k = 0, · · · , j

J(x0, θ
2, uL2) ≤ J(x0, θ

2, uL1) (6.68)

where uL2 corresponds to {L2
k}

j
k=0 and {t2k}

j
k=0. The numbers ε0, · · · , εj

are chosen according to one of the well-known gradient or steepest descent
schemes.

The procedure is summarized as follows:

1) choose initial iterate sets {L1
k}

j
k=0 and {t1k}

j
k=0 with corresponding cost

J(x0, θ
1, uL1);

2) calculate {t2k}
j
k=0 using (6.64) and (6.65), and the gradient scheme in (6.67)

so that J(x0, θ
2, uL1) ≤ J(x0, θ

1, uL1) ;
3) calculate {L2

k}
j
k=0 using (6.62) and (6.63), and the gradient scheme in

(6.68) so that J(x0, θ
2, uL2) ≤ J(x0, θ

2, uL1); and
4) re-set {L1

k}
j
k=0 by {L2

k}
j
k=0 and {t1k}

j
k=0 by {t2k}

j
k=0, and repeat the pro-

cedure successively.

Since the cost function decreases at each iteration, the convergence to a
local minimum is guaranteed.

Remark 6.26. In this scheme, we allow the feedback gains to vary according to
the active subsystem index, and the switching times. That is, ik1 = ik2 does
not necessarily mean that Lk1 = Lk2 . However, the scheme can be modified
so as to be applicable to the piecewise linear feedback framework where each
subsystem is assigned a unique feedback gain.

Remark 6.27. The optimal choice of switching times and feedback gains gen-
erally depend on the initial state x0. In some practical situations, the initial
state is not known a priori. In this case, we can minimize a cost function
independent of the initial state. A nice choice for this purpose is the trace of
VL(x0), which is n times the average of the cost in (6.61) as x0 varies over the
unit sphere. Such an initial-independent optimal problem can be addressed
using the approach presented in this subsection.

6.5 Notes and References

Optimization is a mature topic in mathematics and has been extensively
addressed in various branches and fields of application. Optimization for
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switched and hybrid systems has also attracted much attention in recent
years. In particular, general versions of the maximum principle have been
developed, and they are applicable to switched systems [146]. Various as-
pects of the optimization problems have been explored in the literature
[18, 116, 37, 114, 55, 94, 10, 16, 28, 11] too.

The optimal convergence rate introduced in Section 6.2 was adopted from
[143]; see also [121] for related work on simultaneous triangularization. The
discussions on the relationship between the asymptotic stabilizability and
the infinite horizon optimal switching problem, presented in Section 6.3 for
continuous-time systems and for discrete-time systems, were adopted from the
recent work [136].

In Section 6.4, a couple of mixed (sub)optimal switching/control problems
were introduced. The two-stage optimization method in Subsection 6.4.1 was
mainly adopted from [167]. This method actually provides a basic framework
for approaching the optimization problems of switched and hybrid systems; see
also [165, 166, 9] for similar treatments. The suboptimal scheme presented in
Subsection 6.4.2 was extended from the early works [80, 81, 12] for suboptimal
control of linear time-varying systems.



7

Conclusions and Perspectives

7.1 Summary of the Book

In this book, we focused on the control and design issues of switched linear
systems where the subsystems are linear time-invariant, while the switching
signal and the control input are design variables. The topics include the design
of switching signals to robustly stabilize autonomous switched systems; the
joint design of the switching signal and the control input to achieve control-
lability, observability, and stability; and the search for the optimal switching
signal and the optimal control input with respect to a performance cost. While
most of the topics are conventional in the system and control literature, the
involvement of the switching mechanism brings new insights as well as new
challenges to the topics.

In Chapter 1, we briefly described the system formulations and discussed
the related background and motivations. In Section 1.3, we presented several
general concepts and fundamental observations, which provide a sound basis
for the book.

Chapter 2 gathered the mathematical preliminaries and tools needed for
the development of the book. Most of the material is elementary and can
be found in the classical textbooks. A few exceptions include the concept
and construction of multiple controllable subspaces in Section 2.4, and the
Generalized Chow’s Theorem in Section 2.10.

In Chapter 3, the switching signal design methodology was investigated
for the stability and robustness of the unforced switched linear system. Unlike
in conventional control theory, where the control input is the design variable,
here the only design variable is the switching signal whose role is far from
being well understood in the literature. The main results presented in this
chapter include:

• the equivalence among switched convergence, asymptotic stabilizability,
and exponential stabilizability (Theorems 3.9 and 3.53);
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• the equivalence between the consistent stabilizability and the periodic sta-
bilizability (Theorems 3.12 and 3.54);

• the combined switching strategy (3.45) and the establishment of its the
robustness properties (Theorem 3.36);

• the observer design for robust stabilization (Theorem 3.38).

These results, together with others, provide insights into the capability and
limitations of the switching scheme, and pave the way for further investigation.

Controllability, observability, and system decomposition issues have been
addressed in Chapter 4. We proved that, for continuous-time systems, the
controllable set and reachable set always coincide with each other, and the set
is exactly the multiple controllable subspace which can be directly calculated
from the system matrices (Theorems 4.17 and 4.18). This complete geomet-
ric criterion greatly facilitates the development of the constructive approach
for the stabilization of switched linear systems. The observability and recon-
structibility were addressed by the principle of duality (Theorems 4.26 and
4.27). For discrete-time systems, the above criteria still hold for a fairly large
class of systems (Theorems 4.36 and 4.37), while examples were presented to
show that the controllable and reachable sets are not subspaces in general
(Examples 4.34 and 4.35).

Based on the controllability/observability criteria, a switched linear system
can be transformed into the canonical form with a clear system structure (The-
orem 4.46). In addition, we proved that, a controllable multi-input switched
system can be reduced to a controllable single-input system by means of non-
regular state feedback (Theorem 4.51), hence each controllable system admits
a single-input controllable normal form (Theorem 4.49). These pave the way
for addressing the feedback stabilization problem in Chapter 5. We also showed
that the controllability is preserved by means of equidistance sampling under
almost any sampling rate (Theorem 4.56). This provides a bridge between a
continuous-time switched system and its discrete-time counterpart, thus en-
abling us to address the problems of digital control and regular switching in
a unified framework. Finally, several further issues related to controllability
were discussed and the results provide complementary insights from various
points of view.

In Chapter 5, we examined the problem of stabilization by means of switch-
ing/input design. We adopted the approach that combines the stabilizing
switching design in Chapter 3 and the piecewise linear state/output feed-
back control design based on the normal forms presented in Chapter 4. First,
for a single process controlled/measured by multiple controllers/sensors, we
designed separately the piecewise state feedback controller and the piecewise
state estimator (observer) based on the system canonical decomposition. By
incorporating the estimator into the feedback loop and establishing the sepa-
ration property of the overall system, the problem of dynamic output feedback
stabilization was solved in a thorough and elegant manner (Theorem 5.15).
Second, if the summation of the controllability subspaces of the individual
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subsystems is the total state space, then, a stabilizing state-feedback control
scheme with a dwell time was developed (Theorem 5.19). Third, for switched
systems in the controllable normal forms, a sufficient condition was obtained
for the piecewise linear quadratic stabilization problem (Theorem 5.24), and
was applied to the second and third order systems by the detailed classifica-
tion. In addition, the general stabilization problem was briefly discussed and
a sufficient condition was obtained (Theorem 5.31). In the discrete-time case,
deadbeat feedback controllers were designed for third-order systems (Theorem
5.41) as well as other special classes of systems (Theorems 5.39 and 5.40).

Finally, several optimization problems have been addressed in Chapter 6.
In general, the optimization over the switching signals is highly non-convex
and non-smooth in nature, hence the problems are usually very difficult to ad-
dress. We classified the problems into optimal switching problems where the
switching signal is the only optimization variable, and mixed problems where
both the optimal switching signal and optimal control input are to be sought.
For the optimal switching problems, we formulated the optimal convergence
rate for the systems which are simultaneously triangularisable (Theorem 6.7);
set up the connections between the finiteness of the infinite horizon optimal
cost and the asymptotic stabilizability (Theorems 6.10-6.13, and 6.19-6.21);
and established the equalization of the optimal costs for the switched linear
system and the relaxed differential inclusion (Theorem 6.14). For the mixed
problems, a two-stage optimization methodology was proposed for determin-
ing the optimal and suboptimal switching signal and control input.

7.2 Concluding Remarks

To conclude, we have the following general comments.

1. The switched linear systems are essentially nonlinear systems.
Due to the involvement of the switching signal, the switched linear system
is essentially a nonlinear system. Different switching signals may lead to
different complex system behavior such as multiple limit cycles [118], and
chaos [20], which are very different from linear behavior. In the book, we
also presented several essentially nonlinear characteristics of the switched
linear system, including the examples showing that stabilizability does
not imply linear feedback stabilizability (Example 5.23), and that the
controllable set is the union of an infinite number of maximal components
(Example 4.35). The nonlinear nature of the switched linear system brings
challenges to theoretical analysis as well as great value to practical ap-
plications. Indeed, it is the nonlinear features that make switched linear
system widely represented in industrial and engineering practice. From
the viewpoint of hybrid systems, the switched system includes both the
continuous dynamics and discrete event (switching). This is a critical fac-
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tor of switched systems which has been attracting increasing attention in
the literature.

2. The switched linear system possesses many linear characteristics.
As made clear in Section 1.3.5, switched linear systems have several nice
features that are valuable in analysis and design. These include:
• the time invariance property (Proposition 1.6);
• the radially linear property (Proposition 1.7);
• the analytic solution is readily obtained in terms of the system param-

eters.
By means of these nice properties, many linear and multi-linear tools are
applicable or extensible to the analysis and design of the switched linear
system. These tools include Wonham’s geometric approach (especially the
multiple invariant subspace scheme), and linear algebra (e.g., the technical
lammas in Section 4.2.4).

3. The bottleneck for understanding the switched linear system is the switch-
ing mechanism.
While both the switching signal and the control input play important roles
in determining the behavior of the switched linear system, the bottleneck
for understanding the switched system is the switching mechanism. This
is quite natural because the role of the control input is relatively well un-
derstood in the literature. In this sense, the study of the unforced switched
system is most needed to reveal the intrinsic features of switched systems.

4. The field of switched linear systems is largely unexploited.
In the field of switched linear systems, there have already been many
good results and more are emerging. However, most fundamental issues
are still in need of further exploration. Generally speaking, the switched
linear system theory is still in an early stage of development. Perhaps the
only exception is the continuous-time controllability/observability theory
where both verifiable criteria and constructive path planning algorithms
are available. Nevertheless, as more and more powerful tools are being
introduced or developed to cope with the systems, it seems reasonable
to expect a comprehensive switched linear system theory which extends
the standard linear theory on one hand and applies to more real world
problems on the other hand.

7.3 Perspectives and Open Problems

As the switched linear control theory is far from being well established, there
are in fact numerous important problems which are still not well understood
and open to further investigation. In the previous chapters, we mentioned
explicitly a few open problems that naturally arise from the topics under
study, while more are implicitly behind the words. Here, we highlight some
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open problems with detailed discussion whenever possible. The problems are
chosen mainly based on the following two criteria. First, to the authors’ knowl-
edge, these problems are still open and have not been solved in the literature.
Second, in the authors’ opinion, these problems have, or potentially have,
important impacts on the development of the core theory of switched linear
systems. These criteria, of course, are highly subjective and mainly reflect
the authors’ personal experience and points of view. Nevertheless, for ease of
reference, we try to describe the problems in a self-contained way, and discuss
briefly the possible tools and ideas towards the further understanding of the
problems. The discussions, however, usually are made in an elementary and
intuitive manner.

Problem 7.1. Finite representation of stabilizing switching paths
For a pointwise asymptotically stabilizable switched system

ẋ(t) = Aσx(t)

the problem is to find a set of well-defined switching paths

SJ = {σj}j∈J ⊆ S[t0,∞)

with a minimum number of elements (i.e., cardinal of J→ min), such that
∀ x0 ∈ Rn, there exists a k ∈ J , such that the solution of equation

ẋ(t) = Aσk(t)x(t) x(t0) = x0

is asymptotically convergent (to the origin).
Roughly speaking, the question is: How many switching paths do we need

to stabilize a stabilizable switched system? In other words, is it possible to
stabilize the system by means of a finite number time-driven switching paths?
This problem is crucial in many practical situations. Indeed, if we can find
a finite number of such switching paths, then, we can stabilize the system in
a ‘multi-controller’ manner: we choose, according to the initial condition, a
switching path from a number of candidates that makes the switched system
stable. In this case, the switched system is ‘reduced’ to a finite number of time-
varying systems and hence the linear time-varying system theory is applicable.

To further understand the problem, let us recall some known facts (c.f.
Section 3.2.2) related to this problem. Owing to the Finite Covering Theorem,
we can partition the unit sphere into a finite number of open (in the relative
topology) and path-connected regions

S1 = ∪l
i=1Ωi

such that each region Ωi can be assigned to a switching path θi : [0, T ] �→ M
satisfying

φ(T ; 0, x0, θi) ∈ B 1
2
∀ x0 ∈ Ωi
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where T is a finite real number. Based on this observation, we propose a
stabilizing strategy as follows. For any initial state x(0) = x0 
= 0, choose
an index i0 such that x0

‖x0‖ ∈ Ωi0 . Let the i0 subsystem be activated during
the period [0, T ), and we have x(T ) = φ(T ; 0, x0, θi0). Then, choose an index
i1 such that x(T )

‖x(T )‖ ∈ Ωi1 , and let the i1 subsystem be activated during the
period [T, 2T ). Continuing with this process, we have the sequence i0, i1, · · · .
It can be seen that, the switching path

σx0(t) =

⎧⎪⎨
⎪⎩
θi0(t) t ∈ [0, T )
θi1(t− T ) t ∈ [T, 2T )
...

makes the state exponentially convergent. Note that the switching path σx0 is
in fact a concatenation of the paths in the finite set {θi}l

i=1. This means that
we can associate each x0 with an infinite sequence Λ(x0) = {i0, i1, · · · } with

ij ∈ L
def
= {1, · · · , l}. For notational convenience, we say that the sequence

Λ(x0) stabilizes x0. Let

Υ = L∞ = {(i0, i1, · · · ) : ij ∈ L j = 0, 1, · · · }.

It is clear that each state can be stabilized by a switching path in Υ . This
means that Υ provides a universal set of switching paths for the stabilizability
of the switched system.

Unfortunately, the set Υ still contains an (uncountable) infinite number
of elements. However, if each state permits an eventually cyclic stabilizing
sequence, then we have a universal set with a countably infinite number of
elements. Furthermore, if each state permits a cyclic stabilizing sequence with
a period bounded by a known number, then we have a universal set with a
finite number of elements.

Though we do not know the general answer to the question, the above
analysis is useful in leading us to the following practically interesting conclu-
sion.

Proposition 7.2. Suppose that Ω1 is a bounded set in Rn, and Ω2 a neigh-
borhood of the origin. Then, there exists a set of switching paths, SJ , with a
finite cardinality, such that each state in Ω1 can be steered into Ω2 in a finite
time by at least one switching path in SJ .
We do not know how far the above analysis can go towards the solution of
the problem. This remains a subject for further study.

Problem 7.3. The existence of a time-invariant smooth converse Lyapunov
function
For the unforced switched system, a real-valued function V : Rn �→ R is said
to be a Lyapunov function of the system, if the function is positive definite,
and if there exists a switching signal σ0, such that the function decreases along
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each non-trivial state trajectory of the switched system under σ0. The question
is, suppose that the switched system is pointwise asymptotically stabilizable,
does a Lyapunov function for the switched system exist? If yes, does a smooth
one exist?

It is well recognized that converse Lyapunov theorems play an important
role in stability analysis and robustness design of control systems. For switched
systems, such a converse Lyapunov theorem will be useful in many situations.

Now, we present a partial solution to the problem. Suppose that there is
a pure-state feedback switching signal

σ(t) = ϕ(x(t)) ∀ t ≥ t0

which makes the switched system exponentially stabilizable. Define the func-
tion W : R×Rn �→ R+ as

W (t0, x0) =
∫ ∞

t0

‖φ(t; t0, x0, σ)‖2dt ∀ t0 ∈ R x0 ∈ Rn.

The exponential stability guarantees the well-definedness of the function. By
the time-invariance of the switching signal, it can be seen that W (t1, x) =
W (t2, x) for all t1, t2 and x. That is, the function is time-invariant.

Next, define function V : Rn �→ R+ by V (x) = W (0, x), ∀ x ∈ Rn. It
is clear that V (·) is positive definite and strictly decreasing along each state
trajectory φ(·; t0, x0, σ).

The above derivation lead to the following proposition.

Proposition 7.4. Suppose that the switched system is exponentially stabiliz-
able by a switching signal in the pure-state-feedback form. Then, the system
admits a (not necessarily smooth) Lyapunov function.

In this proposition, the pure-state-feedback requirement of the switching
signal is crucial. In fact, if the stabilizing switching signal is time-driven or
mixed time/event-driven, then the resultant system is time-varying in nature
and hence function W (t, x) may not be time-invariant.

Example 7.5. Consider the switched system with n = 2, m = 2, and

A1 =
[

2 0
0 −1

]
and A2 =

[
0 1
−1 0

]
.

This switched system is exponentially stabilizable and a stabilizing switching
law can be formulated as follows. For any initial state x(t0) = x0, first check
whether x0 is in the x2-axis, i.e., x0(1) = 0. If not, then activate the second
subsystem until the state reaches the x2-axis. This is always possible because
the second subsystem can bring a state rotating to any direction without
changing its 2-norm. Once the state reaches the x2-axis, let the first subsystem
be activated for good. Note that the the x2-axis is a stable invariant subspace
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of the first subsystem. Accordingly, the above switching strategy always makes
the switched system exponentially stable.

It can be seen that the switching signal is in the pure-state-feedback form.
Applying Proposition 7.4, the Lyapunov function can be computed to be

V (x) =
(
s(x) +

1
2

)
(x2

1 + x2
2)

where s(x) is the time needed to bring the state from x to the x2-axis. Let
θ(x) denote the angle (in [0, 2π)) between vector x and the x1-axis, i.e.,

x = [‖x‖ cos θ(x), ‖x‖ sin θ(x)]T .

By the rotative characteristic of the second subsystem, we have

s(x) =

⎧⎨
⎩
θ(x) + π

2 θ(x) ∈ [0, π/2)
θ(x)− π

2 θ(x) ∈ [π/2, 3π/2)
θ(x) + 3

2π θ(x) ∈ [3π/2, 2π).

Note that s(x) does not depend on x continuously when x is on the x2-axis.
For example, let y1 = [0, 1]T and y2 = [1, 0]T , then, we have

lim
r↓0

V (y1 + ry2) = V (y1) =
1
2

and lim
r↑0

V (y1 + ry2) = π +
1
2
.

This means that function V is not continuous at point y1.
Of course, the example itself does not exclude the possibility that there

exists a stabilizing switching law that results in a smooth Lyapunov function.

Problem 7.6. Maximal and minimal dwell times for stability and stabiliz-
ability
Given an unforced switched linear system Σ(Ai)M and a switching signal σ
with dwell time τ , if the switching signal asymptotically stabilizes the system,
then, we say that the system admits a stabilizing dwell time τ . The maximal
dwell time for stabilizability is the largest possible dwell time τsup the switched
system can possess, that is,

τsup = sup{τ : Sτ ∩ Ss 
= ∅}

where Sτ is the set of switching signals with dwell time τ , and Ss is the set
of stabilizing switching signals. Similarly, the minimal dwell time for stability
is the smallest possible dwell time τinf among the stabilizing signals, that is,

τinf = inf{τ : Sτ ⊆ Ss}.

The problem is to determine the minimum and maximum dwell times for
stability and stabilizability, respectively.
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It is clear that the minimal and maximal dwell times are defined only when
the switched system is stabilizable. For a switched unstable system where each
of the subsystems is unstable, it follows from the proofs of Theorems 3.9 and
3.11 that τsup > 0. In addition, in Section 3.5, we proposed a combined switch-
ing strategy with relatively large dwell time. However, the determination of
the exact value of τsup seems to be very difficult and no general result is
available so far.

On the other hand, for switched stable systems where all the subsystems
are stable, it is obvious that τsup = ∞, that is, any switching path with suffi-
ciently large dwell time makes the switched system stable. If the subsystems
share a common Lyapunov function, then, τinf = 0, which means that each
switching path stabilizes the switched system.

In general, to find an upper bound for τinf , the most direct way is to find,
for each matrix Ai, real constants αi and βi such that

‖eAit‖ ≤ βie
αit ∀ t ≥ 0.

Note that for each αi ∈ (ᾱi, 0), such a βi always exists, where ᾱi is the
maximum real part of the eigenvalues of Ai. It is clear that

τinf ≤ max{− lnβi

αi
: i ∈M}.

Though this upper bound is easily calculated, it is probably over conservative.
A less conservative method is to verify the norm pairwise as follows.

Consider the case that the system contains only two subsystems, A1 and
A2. For each matrix Ai and a nonnegative real number h, define

βh(Ai) = max
t≥h

{‖eAit‖e−ᾱi(t−h)}.

Take a nonsingular complex matrix Q such that J1
def
= Q−1A1Q is in the Jor-

dan form. Let J2 = Q−1A2Q. Suppose that {(1, h0), (2, h1), · · · } is a switching
duration sequence. It is clear that

eA1h0eA2h1eA1h2 · · · = Q−1eJ1h0eJ2h1eJ1h2 · · ·Q.

Let

τ1 = min{h ≥ 0: βh(J2) ≥ e−ᾱ1h}.

Then, this τ1 is an upper bound for τinf . Accordingly, we have

τinf ≤ min
Q
{h ≥ 0: βh(Q−1A2Q) ≥ e−ᾱ1h}

τinf ≤ min
R
{h ≥ 0: βh(R−1A1R) ≥ e−ᾱ2h}

where the minimum is taken over Q and R, which turn Q−1A1Q and R−1A2R
into the Jordan form, respectively.

The exact calculation of the minimal dwell time is still an open problem.



270 7 Conclusions and Perspectives

Problem 7.7. Well-definedness of pure-observer-driven stabilizing switching
signal
For the unforced switched linear system

ẋ(t) = Aσx(t)
y(t) = Cσx(t)

find, if possible, a state observer

˙̄x = Āσx̄+ B̄σy

and an observer-driven switching law

σ(t+) = ϕ(σ(t), y(t), x̄(t))

such that the overall system

ẋ(t) = Aσx

˙̄x(t) = Āσx̄(t) + B̄σy(t)
y(t) = Cσx(t)

σ(t+) = ϕ(σ(t), y(t), x̄(t))

is well-posed and asymptotically stable.
We have designed several observer-based switching laws in Sections 3.4.3,

3.5.3, and 5.2, respectively. However, the switching laws are either for practical
stabilization, or time-driven, or mixed time/event driven. In other words, none
of the switching laws are purely observer-driven. In many practical situations,
pure observer-driven switching laws are desirable when it is not appropriate
to explicitly incorporate the time factor.

The problem of pure observer-driven stabilization has been addressed in
[44] where a state-space-partition-based pure observer switching law was pro-
posed. While the stability of the overall system has been proven by the Lya-
punov approach, the well-posedness of the system was not established. In fact,
the well-posedness is exactly the core issue of the problem. As pointed out
in Section 3.4.1, even an exponentially convergent perturbation may make
a well-posed nominal system ill-posed. Accordingly, when an observer is in-
corporated into the system, the well-posedness of the overall system has to
be addressed. This brings about a challenging issue which deserves further
investigation.

Problem 7.8. Structural stability
By structural stability, we mean a ‘perturbation’ of a nominal stabilizing
switching signal and its influence in the system stability. The problem of
structural stability is to find a stabilizing switching signal such that the system
is still stable if the switching signal undergoes small perturbations.
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Intuitively, for a robust stabilizing switching signal, a small perturbed
switching signal should also make the switched system stable. A question
thus arises naturally: How should we characterize the distance between two
switching signals?

As the state transition matrix is of the form

eAik
(t−tk) · · · eAi1 (t2−t1)eAi0 (t1−t0) k = 0, 1, · · ·

which we refer to as the transition (matrix) chain. If the above matrix chain
is convergent (to the zero matrix), then, the corresponding switching path
makes the state convergent for all initial states, and vice-versa. On the other
hand, a variation of a switching path means variations of the switching time
sequence t0, t1, · · · and switching index sequence i0, i1, · · · , which can be seen
as variations of the transition chain.

Suppose that there is a time delay ε in each switching instance caused by
the switching device. It is obvious that the delayed switching path is with
switching sequence

{(t0 + ε, i0), (t1 + ε, i1), (t2 + ε, i2), · · · }.

It can be seen that the two paths have nearly the same transition sequence
but they are not equal at time intervals of an infinite length. This excludes
the reasonableness of formulating the distance between two switching paths
p1 and p2 by

meas{t : p1(t) 
= p2(t)}

where ‘meas’ denotes the Lebesgue measure, though this seems to be the most
straightforward way.

A possible way to characterize the distance is by the concatenation
of switching paths. Suppose that we have two sequences of pairs S1 =
{(i1, h1), (i2, h2), · · · } and S2 = {(j1, τ1), (j2, τ2), · · · }, a concatenation (in the
generalized sense) of them, denoted by S3 = S1 ∧ S2, is a new sequence
S3 = {(k1, µ1), (k2, µ2), · · · } with the property that, we can split the set N+

into two (monotone) sequences υ1, υ2, · · · and ν1, ν2, · · · , such that

(is, hs) = (kυs
, µυs) and (js, τs) = (kνs , µνs) s = 1, 2, · · · .

We say that S3 is a common generalized sequence of S1 and S2, if there exist
sequences S4 and S5 such that

S3 = S1 ∧ S4 = S2 ∧ S5.

The distance between S1 and S2 is defined by

inf{|S4|+ |S5| : S1 ∧ S4 = S2 ∧ S5}

where |S| =
∑

k hk for S = {(i1, h1), (i2, h2), · · · }. The distance between two
switching paths can be defined to be the distance between their switching
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duration sequences. In this way, the distance between any two switching path
is defined. It can be verified that the distance satisfies the positiveness, the
symmetry, and the triangular inequality. However, we still do not know if such
a definition can lead to reasonable structural stability analysis.

Problem 7.9. Minimum switching for controllability/reachability
LetNm

n be the minimum number of switches for controllability of switched sys-
tems, where n is the order of the systems and m is the number of subsystems.
This means that, for each nth order switched linear systemΣ(Ai, Bi)M withm
subsystems, an arbitrary given state in the controllable subspace C(Ai, Bi)M

can be transferred to the origin within Nm
n times of switching. The problem

is to formulate Nm
n in terms of n and m.

Note that Nm
n is defined over a class of systems rather than over an indi-

vidual system. It can be readily seen that the following simple properties hold
for Nm

n :

(i) N1
n = 0;

(ii) Nm
n = Nn

n , for m ≥ n;
(iii)Nm1

n1
≥ Nm2

n2
for n1 ≥ n2 and m1 ≥ m2; and

(iv) Nm
n ≤

∑n−1
k=0 m(mn)k − 1.

The last upper bound is taken from the proof of Theorem 4.17.
By (ii), we assume without loss of generality that m ≤ n.
A lower bound can be given by

Nm
n ≥ m(2n−m+ 1)

2
− 1.

This can be verified by the following example.

Example 7.10. Consider the switched system given by

A1 = 0 B1 = e1 Ai = eie
T
i−1 Bi = 0 i = 2, · · · , n

where ei is the ith unit column.
Extensive calculation shows that a controllable switching path with minimum
number of switches is with the switching index sequence

1, 2, 1, 3, 2, 1, · · · , n, n− 1, · · · , 1.

Let ki = i(i+1)
2 , i = 1, 2, · · · . Routine calculation gives

C(0) = span{e1}
C(1) = span{e1 + h1e2 : h1 > 0}
C(2) = span{e1, e2}

...
C(ki) = span{e1, · · · , ei−1, ei + hki

ei+1 : hki
> 0}

...
C(ki + i) = span{e1, · · · , ei+1}
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where C(k) is the controllable set along the switching path within k times of
switches.

It is interesting to notice that, the first new direction (e2) appears in 2
switches, the second in another 3 switches, and the n − 1th in another n
switches. Accordingly, the minimal number of switches needed for complete
controllability is

2 + 3 + · · ·+ n =
n(n+ 1)

2
− 1.

For the case where m ≤ n, by properly adding Am+1, · · · , An into A1, · · · , Am,
it can be verified that the minimal number of switches is

n+ (n− 1) + · · ·+ (n−m+ 1)− 1 =
m(2n−m+ 1)

2
− 1.

We conjecture that this is exactly the minimal number needed for control-
lability, that is

Nm
n =

m(2n−m+ 1)
2

− 1 n ≥ m ≥ 2.

However, we are still not in a position to prove (or disprove) the conjecture.
For discrete-time systems, the minimum switching problem was addressed

in [26]. Like in the continuous time case, the general problem remains a subject
for further investigation.

Problem 7.11. Path planning for local reachability
The problem of path planning for local reachability is to find a switching path
to steer the unforced switched system from a given initial state x0 to a given
target state in R(x0) in a finite time, where R(x0) denotes the reachable set
from x0.

According to Theorem 4.79, for the unforced switched linear system
Σ(Ai)M and a pathwise connected open set Ω in Rn, if

dim{A1x, · · · , Amx}LA(x) = n ∀ x ∈ Ω

then, the system is locally weakly controllable in Ω. Furthermore, if the system
is symmetric, then the system is locally reachable in Ω. However, Theorem
4.79 does not provide any constructive information on the path planning.
Besides, the general properties of the reachable set are largely unknown. These
are interesting problems deserving further study.

Problem 7.12. Decidability of discrete-time reachability/controllability
As proven in Theorem 4.31, a discrete-time switched linear system Σ(Ai, Bi)M

is reachable if and only if there exist an integer k <∞, and an index sequence
i0, · · · , ik, such that
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Aik
· · ·Ai1 ImBi0 + · · ·+Aik

ImBik−1 + ImBik
= Rn. (7.1)

If we know the upper bound of such a k, then, the reachability property
is verifiable in a finite time by exhaustively searching among the candidate
switching sequences. Accordingly, the reachability is decidable, if for a given n,
there is a number kn, such that for any reachable switched system Σ(Ai, Bi)M

of dimension n, (7.1) holds for some k ≤ kn and i0, · · · , ik ∈M . The question
is: Does such a kn exist for each n?

It can be seen that the reachability is decidable if either n = 2, or
ImAi+ImBi = Rn for all i ∈ M . In the latter case, there exist gain ma-
trices Fi such that Ai + BiFi is nonsingular for all i ∈ M , and hence the
switched system can be transformed into a reversible system by means of a
state feedback controller. Note that the property of controllability is invari-
ant under feedback transformations, and the controllability of a reversible
switched linear system is decidable. This means that the controllability of the
original non-reversible system is also decidable.

It was conjectured that the controllability/reachability is not decidable
[56]. However, no proof has been reported in the literature to the authors’
knowledge.

Problem 7.13. Nonlinear feedback design for the feedback stabilization prob-
lem
As shown in Example 5.23, piecewise linear state feedback control laws are
not sufficient for the stabilization of switched linear control systems, even if
the systems are controllable. This intrinsic phenomenon necessitates the de-
sign of (piecewise) nonlinear state feedback laws for the stabilization problem.
However, by using nonlinear state feedback controllers, a switched linear sys-
tem turns into a switched nonlinear system, for which the stability analysis is
usually very challenging which remains a subject for further study.

Problem 7.14. Flexibility of the stabilizing switching/control laws
The design of a stabilizing strategy for a general switched linear control system
can be divided into the design of the controllable part and the design of the
uncontrollable part. However, the two design schemes are not independent
as we have to use the same stabilizing switching signal for both parts. This
poses a challenging problem. To cope with the problem, we can first design
a stabilizing switching signal for the uncontrollable part. With this switching
signal being the potential switching candidate for the whole system, we then
design a feedback control input law to steer the controllable part stable.

Note that in the proposed scheme, there is some flexibility that we can
make use of. First, suppose that we have found a stabilizing switching signal
for the uncontrollable part, then, a switching signal nearby is probably also a
stabilizing switching signal. That is, we have flexibility in choosing the switch-
ing signal for stabilizing the uncontrollable part. Second, for the controllable
part, we have much flexibility in choosing the feedback controllers, such as
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high-gain feedback laws, when necessary. The exploitation of flexibility in the
design of stabilizing switching/control laws is an important subject for further
investigation.

Problem 7.15. The existence of an optimal solution
For the optimal switching/control of switched linear systems, an optimal so-
lution is the switching signal/control input that minimizes the cost function.
The existence of an optimal solution is one of the most important issues in
optimization problems, yet it also seems to be one of the most challenging
issues.

In Chapter 6, the only existence result presented is for the optimal con-
vergence rate of simultaneously triangularizable switched linear systems. In
this special case, there exists a set of optimal switching signals which are peri-
odic. In the literature, several existence results have been reported for optimal
control problems of special classes of switched systems [119, 18, 10].

For the simple quadratic cost function given by

J(x0, u, σ) =
∫ tf

t0

xT (t)Px(t) + uT (t)Qu(t)dt

where P ≥ 0 and Q > 0, and tf ≤ ∞, if the switching signal is given, then,
by conventional optimal control theory, the optimal control problem admits a
unique solution. Hence, the question is reduced to whether or not there exists
an optimal switching signal, a core issue worthy of further study.

Problem 7.16. The essential features of the optimal switching
For an infinite horizon optimal switching problem of the unforced switched
linear system, suppose that there exists an optimal switching signal. The
number of switches may be zero (no switch at all), or finite (no switch occurs
eventually) or infinite. In particular, if each subsystem is unstable, then, for
most initial states, the corresponding optimal switching paths have an infinite
number of switches. The question is: Do the optimal switching paths share
any common essential features? More concretely, are the optimal switching
index sequences eventually cyclic and/or the optimal switching time sequence
eventually synchronous or multi-rate in nature?

Problem 7.17. Various suboptimal switching/control problems
As it is usually difficult to find the optimal solution, we have to be consent
with finding a suboptimal solution. Here, sub-optimality may mean that the
cost is within a prescribed neighborhood of the optimal cost, or mean that the
solution is optimal only for a specific class of feasible design variables. For the
switched linear control system, as both the switching signal and the control
input are design variables, there are several types of suboptimal solutions
which are of interest in various theoretical and/or practical situations. Several
examples are listed below.
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(i) Optimal switching time sequence
In many practical applications, the switching index sequences are governed
by given logic-based devices. In this case, the optimal switching is to seek
the switching times that optimize a cost function. This problem is intrin-
sically discontinuous and the solution may reveal the essential nature of
switched systems.

(ii) Optimal switching index sequence
Suppose that the switching times are given in advance, then, the optimal
switching problem is reduced to seeking a switching index sequence that
optimizes the cost function. A typical example is when the switched sys-
tem is controlled by a digital device, or when the system itself is of discrete
time in nature. As discussed in Section 6.4.1, if the time horizon is finite,
the number of feasible switching index sequence is also finite, hence, an
exhaustive search is possible, at least theoretically. However, for a large
time horizon, effective pruning algorithms must be sought to prevent com-
putational exploration. For the infinite horizon, new schemes have to be
sought to address the problem.

(iii)Optimal periodic switching signal
For an infinite horizon optimization problem, a possible scheme for sub-
optimality is to seek an appropriate periodic switching signal that opti-
mizes the cost function. Referring to the discussions in Section 3.2.3, such
a suboptimal cost is finite if the switched system is consistently asymp-
totically stabilizable. The problem is to obtain an optimal period, and an
optimal switching sequence within a period.

(iv)Optimal closed-form switching/control
A switching signal is said to be in closed form if it is event-driven, and a
control input is said to be in closed form if it is piecewise (time-invariant)
state/output feedback. The problem of suboptimal closed-form switch-
ing/control is of particular interest from both the theoretical and practi-
cal points of view. An important question is: How large is the difference
between the (open-form) optimal cost and the (closed-form) suboptimal
cost? When do they coincide with each other?
A key point here is whether or not the set of closed-form switching signals
and the set of closed-form control inputs are rich enough to approximate
each of the open-form switching signals/control inputs. Indeed, if the set
of closed-form switching signals is a dense subset of the set of switch-
ing signals with respect to an appropriate functional topology, then each
switching signal can be approached by a sequence of closed-form switching
signals. A similar point holds for the control input. Alternatively, let Ω
and Ω0 be the set of state trajectories corresponding to the open-form and
closed-form switching/input, respectively. The core question is whether or
not each optimal state trajectory in Ω can be sufficiently approximated
by a state trajectory in Ω0 with respect to the cost index.
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Problem 7.18. Efficient computational algorithms for optimization
It is well recognized that the computation of the optimal solution is not easy
for most optimization problems. Hence, the reduction of computational bur-
dens becomes an important technology which motivates the rich and vast op-
timization methods and techniques in the literature. For the optimization of
switched linear systems, despite the fact that the subsystem dynamics are very
simple, the involvement of the switching signals makes exhaustively search-
ing impractical due to combinational explosion. In Section 6.4.2, numerical
algorithms were presented to search for the optimal or suboptimal strategies.
Unfortunately, the numerical algorithms either lead to local solutions or run
in exponential times. Efficient computation is still widely open for further
investigation.
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