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Preface 

As our title reveals, we focus on optimal control methods and applications 
relevant to linear dynamic economic systems in discrete-time variables. We 
deal only with discrete cases simply because economic data are available in 
discrete forms, hence realistic economic policies should be established in 
discrete-time structures. Though many books have been written on optimal 
control in engineering, we see few on discrete-type optimal control. More
over, since economic models take slightly different forms than do engineer
ing ones, we need a comprehensive, self-contained treatment of linear 
optimal control applicable to discrete-time economic systems. The present 
work is intended to fill this need from the standpoint of contemporary 
macroeconomic stabilization. 

The work is organized as follows. In Chapter 1 we demonstrate instru
ment instability in an economic stabilization problem and thereby establish 
the motivation for our departure into the optimal control world. Chapter 2 
provides fundamental concepts and propositions for controlling linear 
deterministic discrete-time systems, together with some economic applica
tions and numerical methods. Our optimal control rules are in the form of 
feedback from known state variables of the preceding period. When state 
variables are not observable or are accessible only with observation errors, 
we must obtain appropriate proxies for these variables, which are called 
"observers" in deterministic cases or "filters" in stochastic circumstances. 
In Chapters 3 and 4, respectively, Luenberger observers and Kalman filters 
are discussed, developed, and applied in various directions. Noticing that a 
separation principle lies between observer (or filter) and controller (cf. 
Sections 3.5 and 5.2), we are concerned in Chapter 5 with stochastic control 
methods in three types of uncertain environments and with the certainty 
equivalence principle. Existing macroeconomic applications of our control 
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rules are examined in Section 5.5. Our main application, an economlC 
stabilization problem, is found in Chapter 6. 

Alternative routes for the journey through this book are shown in the 
following flow chart, where the reader will find the convenient short cut: 
Ch. 1 ~ Ch. 2 ~ Ch. 5 ~ Ch. 6. Whether the short or long course is taken, 
we hope that those readers with intermediate knowledges of economics, 
mathematics, and statistics will find few obstacles. 

Ch.l ( Instrument) 
Instability 

Ch.6 ( Macroeconomic) 
Stabilization 

J., t 
Ch.2 ( Deterministic) ~ Ch.5 ( Stochastic) 

Control Control 
J., t 

Ch.3 (Observers) ~ Ch.4 (Filters) 

The author appreciates the suggestions concerning related literature 
made by Associate Professor Shin-ichi Kamiyama, my colleague. I also 
express my thanks to Miss Y oshie Mizutori for her careful typing of my 
cumbersome manuscripts and Miss Mariko Akiyama for her efficient 
programming of computations. 

Nagoya, Japan 
July, 1982 

Y ASUO MURATA 
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CHAPTER 1 

Macroeconomic Policies 
and Instrument Instability 

The typical macroeconomic stabilization problem presented in this chapter 
will serve as a motivation for our later discussion of optimal control 
methods. When, in a dynamic economic system, one tries to minimize the 
deviation in national income from its target value, one often finds an 
ever-increasing need to adjust policy instruments in order to offset the 
effects of past policies. This phenomenon was first recognized as an 
instrument instability by Holbrook (1972). We demonstrate this type of 
instability in a two-target-two-instrument setting, as an extension of Cur
rie's article (1976) for a one-target-two-instrument setting. After presenting 
a Keynesian IS-LM framework for stabilization in Section 1.1, we perform 
optimal policies which result in the instrument instability (Section 1.2). To 
avoid the instability, we first propose a combination policy (Section 1.3) 
and then an alternative objective function involving an instrument cost 
(Section 1.4). Finally, in Section 1.5, we modify the optimization problem 
into a standard control problem so that we come naturally to the subse
quent chapters. 

1.1. A Keynesian Economy under the Government 
Budget Constraint 

Currie (1976) presented optimal stabilization policies for one target (na
tional income) in an IS-LM economy with three alternative instruments 
(money, government expenditure, and bonds). We shall extend his analysis 
to a two-target setting (national income and price level). That is, our 
objective is to minimize the expectation of a weighted sum of squared 
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deviations of target variables from their equilibrium values, i.e., 

minE(y,2+ wp;), (1) 

where y, and p, denote the deviations in real national income Y and price 
level P in period t from their equilibrium values Y and ii, respectively; w 
stands for some weight attached to p,2. 

Our basic model is composed of Currie's equations «2), (3), and (4» and 
price determination equation (5) in addition: 

[Budget] 6.M, + R,-'6.B, + 'TP, Y, - P,G, - (I - 'T)B, = ° (2) 

[IS] Y, = Y( G, ,R" M" B, ,uY') (3) 

[LM] M,/P,=M(Y"R"B"um ,) (4) 

[Price] 

where 

G real government expenditure, 
M stock of high-powered money, 

(5) 

B interest payments on government bonds outstanding, in money 
terms, 

R nominal rate of interest, 
'T tax rate, 
Ui random disturbances, (i = y, m, p). 

6. symbolizes a change in variable from one period to another. 
Innovation is found in (5) where P is assumed to depend on Y and M in 

the following manner: 

y, = ap /a Y > 0, 

The other equations are the ones expounded in Currie's paper; we briefly 
explain the equations here and define new notations. (Note that, since 
Currie assumes fixed price, his equations do not contain price P, as 
compared with equations (2) and (3).) Equation (2) shows the government 
budget constraint. In (3), which represents the IS curve, impact effects on Y 
with respect to instruments are 

(\',=aY/aG>o, 

By the negative slope of the IS curve, we have 

(\'2= -(ay/aR),s>O. 

It follows from the LM curve (equation (4» that 

/3, = aM /a Y = I/(a Y /aM)LM > 0, 
/32 = - aM jaR = -1/(aR/aM)LM > 0, 

and portfolio balance implies 

/33=aM/aB >0. 
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Let Y, G, R, M, and if be some equilibrium values of the corresponding 
variables Y, G, R, M, and B, at which the government budget is balanced 
and goods and money markets are cleared. The associated price level ji is 
taken to be one. Thus we have 

TY-G-(l-T)B=O 

Y = Y(G,R,M,if) 

M = M(Y,R,if) 

ji = P( Y, M) = 1. 

(2') 

(3') 

(4') 

(5') 

Consider a situation where variables deviate from the equilibrium values, 
and denote the deviations by the corresponding lower-case letters: 

g, == G,- G, 

b, == B, - if, 

Recall that Il symbolizes a change in variable from one period to another, 
e.g. 

IlM, = M, - M,_, = m, - m,_, = Ilm,. 

Hence (2) in deviation form is' 

We assume that the present situation is such that Y, M, and P in equations 
(3), (4), and (5), respectively, can be described in linearly approximated 
deviation forms2 : 

y, = a, g, - a2r, + a3m, + a4b, + uY' 

m, = Mp, + 13,y, - 132r, + 133b, + urn' 

p, = y,y, + Y2m, + uP" 

Combining (7) with (8) to eliminate r, yields 

y, = -aop, + aIm, - a2b, + a3g, + vY' 

1 The deviation forms of R -1f1B and TP, Y, - P,G, about the equilibrium are 

d(R -1f1B) = d(f1B)IR + MJd(R -I) = (M - MJ)IR = /!;bIR, 

and in view of (2') and (5') 

d( T P, Y, - P, G,) = ( T Y - G) p, + Ty, - g, = (I - T )Bp, + Ty, - g, . 

2 The deviation form of M,p,-I about the equilibrium is 

d(M,P,-I) = dM, + Md(P,-I) = m,- Mp,. 

(7) 

(8) 

(9) 

(10) 
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ao == a4(X2M > 0 

a l == a4((X2 + (X3132) > 0 

a2 == a4( (X2 133 - (X4 (32) 

a3 == a4(XI 132 > 0 

a4 == (132 + (X2 (31) -I > 0 

Vvt == a4( 132U.vt - (X2 UmJ 
Substitution of (10) for y, into (9) then yields 

where 

p, = Clmt - c2bt + c3g, + vP' 

co==(1 + aOYI)-1 > 0 

CI == co(alYI + Y2) > 0 

c2 == coa2YI 

C3 == coa3YI > 0 

vP' == CO(YIVvt + upt )· 

(11) 

Finally, following Currie (1976), we assume that vY' and vP' obey the 
first-order autoregressive schemes: 

for i = y, P ( l2a) 

where 

E(ei~) = a? > 0, (12b) 

for s =1= t, 

and 

E( ey,ep') = O. (12c) 

Our problem is to control the system of equations (6), (10), and (11) by 
means of instruments gl' m" and b, so as to accomplish the minimum loss 
in (1). In the next section, we consider first an optimal policy with g, and m, 
chosen as policy instruments and, secondly, one with g, and b, chosen as 
control variables. Both policies prove to incur instrument instability. 

1.2. Optimal Policies by Means of Two Instruments 

When we control the system by government expenditure and money, the 
rest instrument, bonds, becomes a residual. In this case, variable b must be 
eliminated from the system. Substituting (10) for b, and bt _ 1 in (6), with 



1.2. Optimal Policies by Means of Two Instruments 5 

(12) taken into account, yields 

(k - Rra2)Yt + (kao - (1 - k)a2B )Pt 

= Yt-l + aOPt-l + (ka 1 + Ra2)mt - (a 1 + Ra2)mt_ 1 

+ (ka3 - Ra2) gt - a3 gt- 1 - (1 - khy)v.Vt-l + keyt ' (13) 

where 

(0 < k < 1). 

Similarly, substituting (11) for bt and bt - 1 in (6) and taking account of (12), 
we have 

+ (kc3 - Rc2)gt - c3 gt- 1 - (1 - khp)vpt _ 1 + kept· (14) 

The system of equations (13) and (14) is solved for (YI' pJ as follows: 

( Yt) = AJ(Yt-l) + AL( gt) _ AM( gt-l) _ AN(Vy1 - 1 ) + kA(eyt ) 
Pt Pt-l ml mt- 1 Vpt-l ept 

where 

= [1 ao] J- , 
o 1 

kao - (1 - k)a~]-l 
k - (1 - k)c2B 

N = [1 -Okhy I _OkhJ 

(15) 

and D == k - (1 - k)c2B - RTa2cO since aOc2 - a2 = - a2cO. Then, from the 
calculation of 
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we can derive the optimal policy: 

The expected loss in deviations from targets E(y; + wp;) is now computed 
as follows by inserting (16) into (15) and by taking (12) into account: 

E(Yt2 + WPt2) = ~2 [ (( k - (I - k)c2Ji / + w( R'TC2na} 

+ (( kao - (I - k)a2B)2 + w( k - R'Ta2na; l (17) 

If national income is the sole target, then w in (17) is eliminated: 

E(Yt2) = ~2[(k-(I-k)c2Ji/a;+(kao-(I-k)a2Ji)2a;l (17') 

Thus, even if price deviation is deleted from our loss function (I), the 
evaluated optimal objective is related to the disturbance term in our price 
equation. 

We now examine whether the optimal policy (16) follows a stationary 
process. This depends on the matrix L - 1M which is found to be 

o 

(I - k- I )Ra2 

ka3 - Ra2 
k- I 

where q == a3/(ka3 - Ra2). Thus the characteristic equation 

o = IAl - L - 1M I = A 2 - (q + k - I)A + qk - I ( 18) 

has two real roots: AI = k- I and A2 = q. Since AI is larger than unity, our 
policy (16) follows an expansive process, meaning an instrument instability 
in the sense of Holbrook (1972). The dynamic behavior of bonds follows a 
similar unstable process, as seen from (6'): 

bt = k-lbt_ 1 + k-IR(gt - t::.mt - 'TYt - (I - 'T)JiPt). (6') 

An intuitive way to prevent such an instrument instability is to include in 
our objective function the costs associated with instrument deviations. 

Next, we consider the case where government expenditure and bonds are 
control instruments and money is a residual instrument. Hence, as w was in 
the previous case, the variable m will be eliminated: 

= AJ + AL - AM - AN + A ( Yt) - (Yt - I ) - - ( gt) - - ( gt - I ) - - ( Vyt - I ) - ( e"t) 
Pt Pt-I bt bt- I vpt - I ept 

(19) 
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where J is the same J as in equation (15), 

A = [1 + 'Tal ao + (1 - T)al~]-l 
TCI 1 + (1 - T)clB 

= ~ [1 + (1 + T)cJi 
D -TC I 

- ao - (1 - T)aJi], 

1 + 'Tal 

- a2 - ka l/ ~], 
- c2 - kc l/ R 

i/ = [1 - ~v 0], 
o 1 - hp 

and 15 = 1 + 'Tal + ((1 - T)B - 'TaO)c l , Then, from the calculation of 

3E(Yt2 + wpt2)/3(gt ,bt) = 0, 

we get the optimal policy 

7 

( gt) = i-lM( gt-l) _ i-lJ(Yt-l) + i-li/(Vyt - l ) (20) 
bt bt- l Pt-l Vpt-l 

and the corresponding expected value of the objective 

E(y; + WPt2) = l2 [{ (1 + (1 - T)c lB)2 + wr2d}a} 

+ {(ao + (1- T)a lB)2 + w(I + Ta l)2}a; l (21) 

In the present case as in the previous one, we see that the optimal policy 
(20) does not follow a stationary process, since the associated characteristic 
equation 

(22) 

where q = a3/(ka3 - &2)' yields two real roots, one of which is equal to 
unity and the other equals q. 

Concluding this section, we make one remark. In (2), the government's 
bond interests are supposed to be prepaid. If their payment lags by one 
period, the equation will change to 

!:::.Mt + Rt-l!:::.Bt + rPtYt - PtGt - (1- T)Bt_ l = 0, (2t) 

and our optimal policies will be modified accordingly. Similarly, though, we 
can show that this model change does not affect the unstable properties of 
optimal instrument behaviors discussed earlier. (Note that this type of 
government budget constraint (2t) will be adopted in Section 1.5 and 
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throughout Chapter 6 because one-period lagged payment of bond interests 
seems a reasonable and tractable assumption for discrete-time control 
system formation.) 

1.3. A Combination Policy 

In the preceding section, we considered optimal policies of two control 
instruments chosen out of three, gp mp and br• Now we combine all three 
basic control instruments and manipulate two independent "combined" 
control variables to achieve the objective (1). Our combined control vari
ables are Zr and Xr, defined as 

Zr = 1TI gr + 1T2mr + 1T)br 

Xr = 11 I gr + 112m r + l1)br 

(23a) 

(23b) 

where weight vectors 1T == (1T I,1T2,1T3) and 11 == (111,112,113) are orthonormal, 
i.e., denoting transposition by superscript T, 

1T1T T = 1, 1111 T = 1, 1T1J T = 0, (24) 

from which we obtain a relationship between basic instruments and com
bined control variables: 

(25) 

which, in turn, implies the linear dependence among 1T, 11, and the vector of 
basic instruments (gl' mp br)' Hence we have 

1TI 1T2 1T) 

111 112 11) = 0 (26) 

or, equivalently, 

(1T1112 - 1T211I)br + (1T)111 - 1T1113)mr + (1T2113 - 1T3112)gt = O. (26') 

Thus, given two of the three basic instruments, the rest follows from (26'). 
Hence our combination policy is essentially of the same idea as the 
previous two-control-variable policies. 

The system of equations (6), (10), (11) is represented in matrix form as 

'T (1 - 'T)B (~;) ~ [;, - 1 -k/Rrl aD a l -a2 mr 

0 c) CI -C2 br 

[ 1 1/ R 1 c' -, ) [ 0 1 (27) + 0 0 b + Vyr 
o 0 r-I vpr 
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into which (25) and (12) are substituted, and the result is premultiplied by 

yielding the solution of the system in terms of the combined control 
variables: 

where 

Denoting 

III 112 
121 122 
13, 132 

(28) 

- 1 -kjR 

(29) 

F =- [T-1(JI' - (1 - T)BI3') T- 1(J'2 - (1 - T)BI32)1, (30) 

131 132 

and C =- 2(1 - T)coc,"y,B, we get 

7T, 7T2 7T3 

1)1 1)2 1)3 

iFi= 
c2 +c,kjR-a2C c2 - c3kjR c,+C3- a3C (31 ) 

T T T 

Since iFi =1= 0 in view of (26), we derive the optimal policy of the combined 
control variables by calculating 

aE(y; + wp;)ja(zr ,xr) = O. 

That is, 

The corresponding minimal loss of objective (1) becomes 

2 2 (-' _)2 2 2 E(Yr + wPr) = T (1 - T)B ap + wap . (33) 
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The optimal policy in ten1'3 of basic control instruments is obtained by 
substituting (32) into (25): 

(34) 

where 

Thus the characteristic roots associated with the optimal policy (34) are 
composed of two zero roots and the third one .\3: 

Hence, if and only if 

(35) 

our optimal policy (34) will follow a stationary process. However, the 
inequality requirement (35) is not easy to check as we can see from the 
following relation: 

RTIFI = R1/;2 + 1/;3 + R {('IT(TI2 - 'lT211,)(C, - a3C) 

+ ('lT311, - 'IT,113)(C2 + (I - T)C3) 

- ('lT2113 - 'lT3112)(1 - T)C, + a2C)}. 

In any case, instrument stability is guaranteed only by inequality (35), 
which in turn depends on the initial selection of weight vectors 'IT and 11. 

1.4. The Case Allowing Instrument Cost 

So far we have studied the cases where our objective function contains the 
deviation losses associated with national income and price level only and 
not those associated with policy instruments. One main reason the optimal 
policies did not follow stationary processes is that objective (1) does not 
contain any costs associated with policy instrument. Here we propose to 
include in our objective the deviation loss associated with bond issuance. In 
order to avoid complexities of computation, we exclude p; instead from our 
objective function, and thus the new objective is set up as 

(36) 

We want to manipulate control instruments gt and mt to achieve objective 
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(36), leaving price PI as a residual. Thus, substituting (10) and (11), 
respectively, for PI into (6), we solve the resulting equations for (Yt' bl ) as 
follows, with (12a) taken into account. 

( YI) = A * L * ( gl) + A * J* ( YI - I) - A * M* ( gl - 1 ) - A * N* ( Vyl - 1 ) 
bl m l bl _ 1 ml _ 1 Vpl_1 

where 

D* == {((1- T)Jhl + T)a2cO - k/ R }(l- T)B/ aD, 

A*==_I [-(I-T)BC2 -k/R (I-T)Ba2/ao-k/Rj 
D* - , 

-T T-(I-T)B/ao 

(37) 

L * == [1 - (1 - T)Ba~/ aD - 1 - (1 - T)Ba~/ aoj, 

1 - (1 - T)Bc3 - 1 - (1 - T)Bc 1 

M* ==(~ - 1) 
- 1 ' 

N* == [(1 - T)Bhy / aD 0 _ ]. 
o (1 - T)Bhp 

The corresponding optimal policy is derived from the calculation of 

as 

Notice that the optimal policy is not affected by gl_1 and YI_I in (38). The 
associated characteristic equation 

(39) 

yields two roots: 

smce 

where 
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For the optimal policy to follow a stationary process, therefore, an inequal
ity requirement 

(40) 

is sufficient, since then we have 0 < '\2 < 1. Thus the optimal policy (38) is 
admissible with respect to the stable movement of instruments, provided 
(40) is valid. 

We have demonstrated that the instrument instability phenomenon could 
be avoided by adopting either a combination policy or a loss function 
containing instrument costs in our one-period optimal control. For a 
long-span economic stabilization problem, incorporating instrument costs 
into our objective function is inevitable. 

1.5. Formulation of a Standard Control System 

In this section we try to reformulate the foregoing macroeconomic optimi
zation problem into a dynamic stabilization problem suited to the conven
tional systems control methods. First, we modify our basic model so that 
the government's bond interest payments lag by one time period, and thus 
Br in (2) and (3) is to be replaced by Br _ I' Accordingly, their deviation 
forms become, respectively, 

Yr = £XI gr - £X2'r + £X3 m r + £X4br -1 + uyr ' (7t) 

Combining (7t) with (8) to eliminate 'r yields 

Yr = - aOPt + almr - a 20br + a 2l br _ 1 + a 3gr + Vyr (lot) 

where a 20 == a 4£x2 f33 > 0 and a 21 == a 4£x4 f32 > O. Note that a 20 - a 21 = a 2 by 
definition. Substituting (lot) into (9) yields 

where C20 == cOa 20'YI > 0 and C21 == cOa 21 'YI > O. Note that c20 - C21 = c2 by 
definition. 

Now, as control variables, we choose government expenditure gr and the 
change in money supply t::..mr in period t, instead of the total money stock 
mr used in the previous analysis. The corresponding target variables are Yr' 

PI' and bl' while lagged variables gr-I and br- 2 are treated as residuals. 
Therefore, our new dynamic system consists of (6t ) and the first-order 
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difference forms of (lO"t) and (ll"t), as shown in matrix form (41): 

T (1 - T)B I/R 

[:: 1 1 a o a 20 

0 c20 

~ [! 0 I-T+I/R 
[Y'-' 1 [ , - ']( g, ) a o a 20 + a 21 Pt-I + a 3 ~: b.mt 

C20 + C21 
bt - I C3 

+ [ _Oa, ::~,,]( t;) + lvy' =OVy<_, 1 (41 ) 
- C3 C21 Vpt Vpt _ 1 

Pre multiplying (41) by the inverse of the matrix on the left-hand side, we 
can express the result in the following standard form: 

x(t) = Ax(t - 1) + Bv(t) + c(t) + D~(t), 

where 

x(t)=[d 

o 0 I-T+I/R 
A==D 

o 

1/ R - Ta20 

Tao - (1 - T)B 

- 1 

B == D a3 a l ' 

C3 c I 

(42) 
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The dynamic equation (42) is usually referred to as a state-space form of 
discrete type, and x(t) is called a state vector. The corresponding determin
istic state-space representation is 

x(t) = Ax(t - 1) + Bv(t) + c(t). 

In the simpler case, where we neglect c(t), (43) reduces to 

x(t) = Ax(t - I) + Bv(t). 

(43) 

(43') 

As we formulated system (42) from our Keynesian equations, any linear 
discrete-time system with distributed lags can be transformed into a one
period lagged state-space form. (Refer, for example, to Murata (1977, pp. 
386-387).) Thus we may limit our discussions to the optimal control of 
systems in state-space form. 

As for objectives to be minimized, the previous functions (1) and (36) are 
concerned with one-period optimization. Multiperiod objective functions 
are their natural extensions, and thus we adopt the following forms of 
objective functions for a finite time-horizon f3: 

minE { x T( (3)fx(f3) + I~l x T(t - I)Zx(t - I)} (44) 

or, more generally, including instrument costs, 

minE {X T(f3)fX(f3) + I~l (xT(t - I)Zx(t - I) + v T(t)<IlV(t))} , (45) 

where f, Z, and <II are assumed to be constant positive semidefinite 
symmetric matrices, with <II positive definite. The weighing matrices will 
often take the simple shapes of nonnegative diagonal matrices as is the case 
with function (I) or (36). 

For a similar formulation for stabilizing the macroeconomic instability 
problem, refer to Turnovsky (1974). Chow (1973) also argues that the 
purpose in using such a formulation for control is to solve problems 
associated with instrument instability in dynamic econom~c systems. 
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CHAPTER 2 

Optimal Control of Linear 
Discrete-Time Systems 

The aim of the basic optimal control methods for linear deterministic 
discrete-time systems provided here is to minimize quadratic costs asso
ciated with control variables (policy instruments) as well as target devia
tions. Our systems contain various sorts of exogenous variables and target 
values, particularly applicable to economic control problems. Section 2.1 
deals with fundamental concepts and propositions concerning the con
trollability of discrete-time systems. In Section 2.2 optimal control laws for 
finite time-horizon problems will be established by following the optimality 
principle in dynamic programming; the laws for infinite-time problems are 
derived by extension of the terminal time. To implement the control laws, 
we give some numerical methods for solving discrete Riccati equations in 
Section 2.3. Then we apply the above optimal control to a dynamic 
Leontief system in Section 2.4. Finally, Section 2.5 is devoted to the 
derivation of an optimal control rule for a linear discrete-time inequality 
system over a finite time-horizon. 

2.1. Fundamentals of Discrete-Time Control 

One of the most fundamental problems of dynamic economic control is 
whether or not the economic system in question will be able to attain any 
given target by the manipulation of policy instruments. The static counter
part of this problem was initiated by Tinbergen (1952), and his rule of 
policy formation is summarized in Theorem 1. 
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Theorem 1 (Tinbergen Rule of Policy Formation). Consider the static model 
represented as 

x = Fv, (1) 

where x is an n vector of target variables, v is an m vector of policy 
instruments (or control variables), and F is an n X m real constant matrix. 
System (1) has a solution v for an arbitrary target x if and only if 

rk(F) = n, (2) 

where rk(·) denotes the rank of a matrix. 

(For a proof, refer to Theorem 28 in Murata (1977, ch. 2).) 
The Tinbergen rule (2) may be termed the static controllability condition 

from the viewpoint of modem system theory. Our main concern in the 
present section is to extend the Tinbergen rule to linear discrete-time 
dynamic systems, establishing some fundamental propositions relevant to 
dynamic controllability. 

To study dynamic controllability, we shall consider the simple determin
istic system modeled as a state-space form of discrete type: 

x(t) = Ax(t - 1) + Bv(t), t = 1,2, ... , /3 (3) 

with initial condition 

x(O) = xO (constant), (4) 

where x denotes an n vector of state variables, v is an m vector of control 
variables, and A, B are real constant matrices of dimensions n X n, n X m, 
respectively. Note that, in any case, linear distributed-lag models of dis
crete-time systems can be transformed into the first-order systems of type 
(3). (Refer to Section 1.5.) 

The general solution to (3) is obtained by an iterative substitution as 
follows. 

1-\ 

x(t) = A [x (0) + 2: A 7Bv(t - T), t = 1,2, ... , /3. (5) 
7=0 

Given a fixed target x( /3) = x I at some terminal time /3 > 0, we want to 
establish some necessary and sufficient conditions of attaining this target in 
the present system. 

Definition 1. System (3) is said to be state controllable if x can reach a 
preassigned target vector x I at some time /3 > 0, starting from an arbitrary 
initial state (4), by manipulating control variables VeT) (1 < T < /3), i.e., if 

/3-\ 
x(/3)=A Px O + 2: A7Bv(/3- T )=XI. (5') 

7=0 
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First we establish a straightforward dynamic version of the Tinbergen 
policy rule. 

Theorem 2. System (3) is state controllable if and only if the n X (13m) matrix 

Pfi =[ B,AB, ... ,A fi-IB] 

has rank n. 

PROOF. Equation (5') may be rewritten as 

v(f3) 

v(f3-1) 
Pfi = Xl - A fix 0, 

v(l ) 

to which we apply Theorem 1. 

(6) 

o 

The rank requirement rk(Pfi) = n in Theorem 2 may be regarded as the 
dynamic controllability condition, as contrasted to the static controllability 
condition (2). To check the fulfillment of the rank condition, we need not 
calculate the rank of Pfi in (6) but only that of its submatrix, in view of 
Theorem 3. 

Theorem 3. Define the n X (jm) matrix 

p) =[ B,AB,A 2B, ... ,A)-IB]. (6') 

If j is the least integer such that 

rk( lj) = rk( lj+ I)' 

then rk(Pk ) = rk(P) for all integers k > j, and the j is said to be the 
controllability index of (A, B). 

(For a proof, see Murata (1977, p. 366).) 
When 13 is larger than n, Theorem 2 will be altered into Theorem 2', as 

follows. 

Theorem 2', In the case of 13 > n, system (3) is state controllable if and only 
if the n X (nm) matrix 

Pn =[ B,AB, ... ,A n-IB] (7) 

has rank nand Pn is called the state controllability matrix of system (3). 

PROOF. The "if" part of the statement is obvious, so we verify the "only if" 
part. Let system (3) be state controllable. Then rk(Pfi) = n by Theorem 2 
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and hence, by Theorem 3, an associated controllability index) exists such 
that 

n + m > )m ? n. ( * ) 

H)m> n, then [AB,A 2B, . .. , AiB] contains)m linear combinations of all 
columns of matrix A, and these combinations are linearly dependent, 
implying that rk(Pi + I) ;;;, rk(P) and that rk(Pk ) = rk(Pi + I) for k > ) + l. 
Inequalities ( * ) mean that if m = 1 then) = n and if m ? 2 then) < n for 
n ? 2 and) = 1 for n = 1. Thus rk(Pn) = rk(P) = n. . 0 

REMARKS. When f3 < n, rk(Pn) = n is only a necessary condition for system 
(3) to be state controllable. Theorem 2 holds in all cases. The state 
controllability of system (3) is alternatively referred to as the controllability 
of (A, B). In the following, we use the rank requirement rk(Pn) = n as an 
equivalent to the expression that (A, B) is controllable, since planning time 
horizon f3 will in many cases be larger than state vector dimension nand 
since otherwise we may extend terminal time freely. 

Theorem 4 (W onham, 1967). Let A and B be n X nand n X m real constant 
matrices, respectively. If (A,B) is controllable, viz., if the n X (nm) matrix 

P =[ B,AB,A 2B, ... ,A n-1B] (7') 

has full row rank, then (A - BK, B) is controllable for each m X n real 
constant matrix K. 

PROOF. 

(A - BK)B = AB - B(KB) 

= {second block of P } - {sums of columns of B }. 

Hence rk[B,(A - BK)B] = rk[B,AB]. Next, since 

(A - BK)2B = A2B - AB(KB) - B(K(A - BK)B) 

= {third block of P } - {sums of columns of A B } 

- {sums of columns of B }, 

rk[B,(A - BK)B, (A - BKiB] = rk[B,AB,A 2B]. Proceeding similarly to 
higher orders one by one, we finally have 

rk[ B,(A - BK)B,(A - BK)2B, ... , (A - BKr-1B] = rk(P). 0 

Theorem 5 (W onham, 1967). Let A and B be n X nand n X m real constant 
matrices, respectively. The assertion that, by suitable choice of an m X n real 
matrix K, the set of eigenvalues of A - BK can be made to correspond to any 
set of n distinct real scalars different from the eigenvalues of A is true if and 
only if (A, B) is controllable. 
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(The proof is omitted since it parallels that of Theorem 2 in Chapter 3, 
mutatis mutandis.) 

Another equivalence theorem of controllability is given next. 

Theorem 6 (Hautus, 1969). Let A and B be n X nand n X m real constant 
matrices, respectively. (A, B) is controllable if and only if the n X (n + m) 
matrix [A - M, B] has rank n for every eigenvalue "A of A. 

PROOF. Stating that [A - M, B] has full row rank is equivalent to stating 
that any row n vector y satisfying 

y[A -M,B] = ° 
must be null, in view of the linear independence of the rows of [A - M, B]. 

"Only if' part. Suppose y =1= ° exists such that yA = Ay, yB = 0. Then we 
have yA i ="AjJ and yA iB = "AjJB = ° (i = 0, 1, ... , n - I). Hence yP = 0, 
where P == [B,AB,A 2B, ... , A n-1B] with y =1= 0, implying that P has lin
early dependent rows, i.e., rk(P) < n. 

"If' part. Suppose rk(P) < n. Then x =1= ° exists such that 

XAiB = 0, i = 0, I, ... , n - I. (* ) 

Hence 

(* *) 

for arbitrary numbers ci(i = 0, I, ... , n - 2). Let 1f; be the minimal polyno
mial of x, i.e., 1f; be a polynomial of the least degree such that x1f;(A) = 0. 
Such a polynomial has degree d with I ,,; d,,; n - I in view of (* *). For 
some number "A and some polynomial f of degree d - I, we have 1f;(z) 
= (z - "A)f(z). Then defining y == xf(A), we have 0= x1f;(A) = yeA - M) 
and from (*) ° = xf(A)B = yB. 0 

Corollary. (A, B) is controllable if and only if any row vector y satisfying 
yA = "Ay and yB = ° is null for each eigenvalue "A of A. 

Some economic system may be described by the following state-space 
representation: 

x(t) = Ax(t - I) + Bv(t), 

yet) = Cx(t), 

with initial condition 

t = 1,2, ... , [3 

( constant), 

(8a) 

(8b) 

(4) 

where y denotes an r vector of output variables with r ,,; n, C is an r X n 
real constant matrix, and the other notations are those of (3). In the present 
system (8), we observe output vectors yet) for all t. Given an initial 
condition (4) and a preassigned target output y( [3) = / at some terminal 
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time /3 > 0, we want to select an appropriate control vector v(t) for all t to 
attain the target. The general solution to system (8) is 

(-I 

yet) = CA tx(O) + 2: CA 'Bv(t - 1"), t = 1,2, ... , /3. (9) 
,=0 

Definition 2. System (8) is said to be output controllable if output vector y 
can reach the target y( /3) = y I at some time /3 > 0, starting from an 
arbitrary initial condition yeO) = Cxo, by manipulating control vector VeT) 
(l .;;; T .;;; /3), i.e., if 

/3-1 
y( /3) = CAfJx O + 2: CA'Bv( /3 - T) = y'. (9') 

7=0 

Theorem 7. System (8) is output controllable if and only if the r X (/3m) 
matrix 

QfJ =[ CB, CAB, ... , CA fJ-IB] = CPfJ ( 10) 

has rank r. QfJ is called the output controllability matrix of system (8). 

In ordinary cases, the matrix C is supposed to have rank r. The supposi
tion is important in relation to output controllability. 

Theorem 8. Let 1) be the n X (jm) matrix in (6'), and assume that rk(P) = n 
for some j .;;; /3. Then system (8) is output controllable if and only if the r X n 
matrix C has rank r. 

PROOF. 

"If' part. The Sylvester inequality is shown as 

rk( C) + rk( PfJ ) - n .;;; rk( CPfJ ) .;;; min(rk( C), rk( PfJ )), (*) 

in which we consider rk( C) = r .;;; n = rk(P) = rk(PfJ ). Then rk( CPfJ ) = r 
follows immediately. 

"Only if' part. System (8) being output controllable implies rk(CPfJ ) = r 
by Theorem 7. This and rk(PfJ ) = rk(P) = n are taken into account in (*), 
resulting in rk( C) = r. D 

REMARK. If system (3) is state controllable and if the r X n matrix C has 
rank r, then system (8) will be output controllable by Theorem 2 and the 
Sylvester inequality ( * ). 

As a dual concept of controllability, we have "observability", which will 
be a prerequisite to the stability of optimal control system behavior dis
cussed later. 
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Definition 3. System (8) is said to be observable if x(O) is uniquely deter
mined from output datay('T) ('T = 0, I, ... , {3 - 1) for some positive inte
ger {3. 

Theorem 9. System (8) is observable if and only if the n X ({3r) matrix 

_[ T T T T f3-1 T] Rf3 = C ,A C , ... ,(A) C 

has rank n, where superscript T denotes transposition. 

PROOF. From (8b) and (9), we have 

yeO) 
y(I) - CBv(I) 

y(2) - CBv(2) - CABv(I) 

f3-2 

Y ( {3 - I) - 2: CA T Bv ( {3 - 'T - I) 
T=O 

to which we apply Theorem 1. 

C 

CA 

CA 2 

CA f3-1 

x(O), 

(11) 

o 

We can establish the following two theorems as the duals of Theorem 3 
and Theorem 2', respectively. 

Theorem 10. Define the n X (kr) matrix 

_ [ T T T T k - 1 T] Rk = C ,A C , ... , (A) C . (1 I') 

If k is the least integer such that 

rk(Rd = rk(Rk+d, 

then rk(Rh ) = rk(Rk ) for all h > k, and the k is said to be the observability 
index of (A, C). 

Theorem 9'. In the case of {3 > n, system (8) is observable if and only if the 
n X (nr) matrix 

_[ T T T T n-l T] R = C ,A C , ... , (A) C (12) 

has rank n, and R is called the observability matrix of system (8). 

For reasons similar to the remark following Theorem 2', we use the rank 
requirement rk(R) = n as an equivalent to the observability of system (8), 
which may alternatively be referred to as the observability of (A, C). In 
Chapter 3 we establish many essential propositions related to the observa-
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bility concept. Here we give only a few theorems on the relationship 
between observability and controllability. 

Theorem 6'. (A, C) is observable if and only if any column vector x satisfying 

Ax =;\x and Cx = ° 
is null for each eigenvalue A of A. 

(The proof is similar to that of Theorem 6.) 
In view of Theorem 6' and the corollary to Theorem 6, Hautus (1970) 

gives the following definition. 

Definition 4. An eigenvalue A of matrix A is called (A, B)-controllable if no 
nonzero row vector y exists such that yA = Ay and yB = 0. An eigenvalue A 
of matrix A is called (A, C)-observable if no nonzero column vector x exists 
such that Ax = ;\x and Cx = 0. 

REMARK. Clearly, (A, B) is controllable if and only if every eigenvalue of A 
is (A, B)-controllable, and (A, C) is observable if and only if every eigen
value of A is (A, C)-observable. 

Theorem 11 (Martensson, 1971). Let A,B,C be n X n, n X m, r X n real 
constant matrices, respectively, and define the square matrix of order 2n, 
called a Hamiltonian matrix: 

-BB T ). 
_AT 

(13) 

Then (1) if A is an (A, B)-uncontrollable eigenvalue of A, a row vector y =1= ° 
exists such that 

(0, y)HT = -'11.(0, y), 

where ° denotes a null row vector; (2) if A is an (A, C)-unobservable 
eigenvalue of A, a column vector x =1= ° exists such that 

where ° denotes a null column vector. 

PROOF. (1) Somey =1= ° exists such thatyA = Ay,yB = 0. For they, we have 
yA = AY, yBB T = 0, which are consistent with 

- y(BBT,A) = (0, y)HT = -?.(O, y). 

(Proceed similarly for (2).) o 

Theorem 11 means that if A is an uncontrollable or unobservable 
eigenvalue, the?. is an eigenvalue of matrix H in (13). A stronger version 
for pure imaginary?. is given next. 
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Theorem 12 (Kucera, 1972). An eigenvalue A of matrix H in (13) exists such 
that Re(A) = 0 if and only if an (A, B)-uncontrollable and/or an (A, C)
unobservable eigenvalue A of A exists such that Re(A) = O. 

PROOF. 

"If' part. Any eigenvalue of A which is (A, B)-uncontrollable and/or 
(A, C)-unobservable is an eigenvalue of H by virtue of Theorem II. 

"Only if' part. Set A = i{3, where i2 = -I, and let (x T, yf be its 
associated right eigenvalue of H, conformable with the partition of H. Then 

Ax - BByT = i{3x, (1*) 

(2*) 

Premultiply (1 *) by Y and (2*) by x T, and add the resulting equations on 
each side. Then we have 

_XTCTCX - yBBTyT = 2{3yx. (3*) 

Assuming x T = 0 and y =1= 0 in (2*) and (3*) yields 

yA = i{3y and yB = 0, 

and hence A = i{3 is an (A, B)-uncontrollable eigenvalue of A. Next, assum
ing x T =1= 0 and y = 0 in (1 *) and (3*) yields 

Ax = i{3x and Cx = 0, 

and hence A = i{3 is an (A, C)-unobservable eigenvalue of A. o 

For a further study on controllability, refer to Chapter 3 of Aoki (1976). 
Concluding this section, we provide the discrete version of Lyapunov 
stability theorem. 

Theorem 13 (Discrete Version of Lyapunov Theorem (Kalman and Ber
tram, 1960)). Every eigenvalue of a real square matrix A is less than one in 
modulus if and only if the matrix equation 

A TBA - B = - Q, (for any real symmetric positive definite Q) (14) 

has as its solution B a symmetric positive definite matrix. 

PROOF. 

"If' part. For any nonzero vector x 

0< x TA TBAx < x TBx. 

Thus a number v exists such that Ivl < I and x TA TBAx = v2x TBx. Since a 
nonsingular matrix M exists for which M TM = B, therefore, we have 
MAx = vMx or, premultiplying by M -I, [vI - A]x = O. Then for x =1= 0, 
we obtain 

IvI - AI = O. 

Hence v represents an eigenvalue of A. 
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"Only if' part. To say that all the eigenvalues of A are less than one in 
modulus is equivalent to saying that A t approaches a zero matrix as time t 

goes to infinity. Then the linear discrete-time system 

x(t + 1) = Ax(t) (15) 

is convergent into zero as t goes to infinity. 
For a symmetric positive definite matrix B, define a bounded quadratic 

form Vex) with respect to system (15) as 

V(x(t)) == x T(t)Bx(t) > 0 

and V(x(t + 1)) = X T(t + l)Bx(t + 1) = x T(t)A TBAx(t). It is necessary 
and sufficient for system (15) to be stable in the sense that the difference 
V(x(t + 1)) - V(x(t)) is negative for any nonzero x(t), viz., [A TBA - B] is 
negative definite. D 

REMARK. A bounded positive definite quadratic form V(x(t)) as defined in 
the proof is said to be a Lyapunov function in relation to discrete-time 
system (15), since if such a quadratic form exists, then the system is 
asymptotically stable. 

2.2. Controllers for One-Period Lag 
Equation Systems 

In Section 1.5, we introduced an objective loss function in quadratic cost 
form, to be minimized under some linear dynamic equation system. In 
particular, we were interested in a cost function that includes instrument 
costs together with target deviation losses. In this section we try to minimize 
the cost function of the form 

f3 
J=xT({3)fx({3)+ 2: {xT(t-1)Zx(t-1)+vT(t)lPv(t)} (16) 

(= 1 

in deterministic circumstances, with respect to v( t) subject to a linear 
discrete-time system 

x(t) = Ax(t - 1) + Bv(t) + c(t) (17) 

for t = 1, ... ,/3, with given initial value of x(O) = x o, where x is an n 
vector of state variables, v is an m vector of control variables, c is an n 
vector of exogenous variables, and A, B are constant matrices of appropri
ate dimensions. We assume in (16) that f, Z, and lP are symmetric and 
positive semidefinite matrices with lP positive definite and that superscript 
T denotes transposition. 

In order to solve this finite-horizon minimization problem, we can apply 
Bellman's principle of optimality in dynamic programming, which may be 
stated as follows. (Refer to Murata (1977, p. 380).) 
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An optimal policy has the property that, at each point in time, the 
remaining decisions must constitute an optimal policy with regard to the 
state resulting from the preceding decisions. (Refer to Bellman (1957).) 

Given p (= 1,2, ... , {3), we define 

f3 

J({3,p) = x T({3)rx({3) + 2: {XT(t - I)Zx(t - 1) + VT(t)<I>V(t)} (18) 
I=p 

with x(t) (t = {3, {3 - 1, ... , p) replaced by 

I-p 

x(t)=At-P+lx(p-I)+ 2:AT{Bv(t-T)+c(t-T)}. (19) 
1'=0 

Then J ( {3, p) is expressed only in terms of x (p - 1), v (t), and c (t) 
(t = p, ... , {3). Denoting 

ff3(x(p - 1)) == min J({3,p) 
v(t)(I=p, ... , f3) 

for p = 1,2, ... , {3, (20) 

we have 

ff3 ( x (0)) = min [ H (1) + ff3 ( x (1) ) ], 
v( I) 

(21 ) 

where 

H(I) == XT(O)ZX(O) + vT(I)<I>v(I). (22) 

The more general form of (21) will be 

ff3 (x (0)) = min [H(a) + ff3(x(a))] 
v(I)(I= I, ... , (1) 

for a=I,2, ... ,{3-I, 

(23) 

where 
<1 

H(a) == 2: {x T(t - I)Zx(t - 1) + v T(t)<I>V(t)}. (24) 
1=1 

Equation (23) is the fundamental relation representing the principle of 
optimality within the context of our problem. 

Hence we determine the optimal control vet) (t = 1,2, ... , {3) such that 
J({3,p) is minimized for all p = 1,2, ... , {3. As for the calculation of vet), 
we proceed backward from t = {3 to t = lone by one. First, differentiate 
J( {3, {3) with respect to v( {3) and set the differential equal to zero. Then 

B Tf{ Ax ( {3 - 1) + Bv ( {3 ) + c ( {3 )} + <I> v ( {3 ) = 0, (25a) 

which is solved for v( {3) as 

v ( {3) = - K ( {3 )x ( {3 - 1) - [ B Tr B + <I>] - 1 B Tr c ( {3 ), (26a) 

where 

(27a) 
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Second, differentiate J({3, f3 - I) with respect to v(f3 - I), taking account 
of 

x(f3) = A2x(f3 - 2) + ABv(f3 - I) + Bv(f3) + Ac(f3 - I) + c(f3) 

( 19a) 

x(f3 - I) = Ax(f3 - 2) + Bv(f3 - I) + c(f3 - I), (19b) 

and set the differential equal to zero via (26a). This yields 

B TS(f3 - 1){Ax(f3 - 2) + c(f3 - I)} + [B TS(f3 - I)B + <l>Jv(f3 - I) 

+ B TL( f3 )rc( f3) = 0, (25b) 

where 

S(f3-I)==ATr[A-BK(f3)J+Z, (28b) 

L( f3) ==[ A - BK(f3)r. (29b) 

Solve (25b) for v( f3 - I): 

v ( f3 - I) = - K ( f3 - I)x ( f3 - 2) - [ B T S ( f3 - I) B + <I> riB T 

X {S(f3-I)c(f3-I)+L(f3)rc(f3)}, (26b) 

where 

K(f3-I)==[ BTS(f3-I)B+<I>rIBTS(f3-I)A. (27b) 

Third, differentiate J( f3, f3 - 2) with respect to v( f3 - 2), taking account of 

x(f3) = A 3x(f3 - 3) + A2{Bv(f3 - 2) + c(f3 - 2)} 

+ A { Bv ( f3 - I) + c ( f3 - I)} + Bv ( f3 ) + c ( f3 ) ( 19c) 

x(f3 - I) = A2x(f3 - 3) + A {Bv(f3 - 2) + c(f3 - 2)} 

+ Bv ( f3 - I) + c ( f3 - I) (19d) 

x(f3 - 2) = Ax({3 - 3) + Bv(f3 - 2) + c(f3 - 2), (1ge) 

and set the differential equal to zero via (26a) and (26b). This yields 

B TS( f3 - 2){ Ax( {3 - 3) + c( f3 - 2)} + [ B TS( f3 - 2)B + <I> Jv( f3 - 2) 

+B TL(f3 -1){S(f3 -1)c(f3 - I) + L(f3)rc(f3)} = 0, (25c) 

where 

S(f3 - 2) == A TS(f3 - 1)[ A - BK(f3 - I)J + Z, (28c) 

L( f3 - I) ==[ A - BK( f3 - I) r (29c) 
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Solve (2Sc) for v( (3 - 2). 

v({3 - 2) = -K({3 - 2)x({3 - 3) - [B TS({3 - 2)B + <I>rIBT 

X {S({3 - 2)c({3 - 2) + L({3 - I)S({3 - l)c({3 - I) 

+L({3-I)L({3)rc({3)}, (26c) 

where 

K( (3 - 2) =[ B TS( {3 - 2)B + <I> riB TS( (3 - 2)A. (27c) 

The general rule of optimal control for our problem is as follows. 

Theorem 14. For the finite-horizon problem of minimizing the cost criterion 
function I in (16) subject to system (17), the optimal control vet) is determined 
as 

vet) = - K(t)x(t - I) - k(t), t=I, ... ,{3 (26) 

for t = 1,2, ... , (3, where K( t) is called the gain matrix defined as 

K(t) =[ BTS(t)B + <I> rIBTS(t)A, (27) 

k(t) =[ BTS(t)B + <I>r IBT {S(t)c(t) + L(t + I)S(t + I)c(t + I) 

+L(t + I)L(t + 2)S(t + 2)c(t + 2) + ... 

+ Xi>({3-T+ I)S({3)C({3)}, (30) 

L(t) =[ A - BK(t) r, t = 2,3, ... , {3 (29) 

and the so-called discrete Riccati equation (or Riccati difference equation) is 

(with S ( (3) = r) 

= AT[ Set) - S(t)B(BTS(t)B + <I>rIBTS(t)]A + Z. (28) 

The corresponding behavior of state variables is governed by 

x(t) = [A - BK(t) ]x(t - I) + c(t) - Bk(t), (31) 

and the associated minimum value of I becomes 

f3 
mjnl= XT(O)S(O)x(O) + 2: {kT(t)[ BTS(t)B + <I>]k(t) 

/= 1 

+cT(t)S(t)c(t) + 2c T(t)S(t) 

X [ LT(t)X(t - I) - Bk(t)]} (32) 
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PROOF. We prove (32). Eliminating rand Z in (16) and taking (28) into 
account, we have 

f3 
J=XT(O)S(O)x(O)+ 2: {XT(t)S(t)X(t)+VT(t)<I>V(t) 

1= 1 

+xT(t-I)ATS(t)[BK(t)-A]x(t-I)}. 

(4*) 

Next, we put 

A TS(t)B = KT(t)[ BTS(t)B + <I>], 

Ax(t - 1) = x(t) - Bv(t) - c(t) 

on the right-hand side of (4*), obtaining 

f3 

(5*) 

(6*) 

J = 2: {VT(t)<I>V(t) + xT(t - I)KT(t)[ BTS(t)B + <I>]K(t)x(t - 1) 
1=1 

where Z(t) == Bv(t) + c(t). Then, considering 

ZT(t)S(t)x(t) = ZT(t)S(t)Ax(t - 1) + ZT(t)S(t)Z(t) (8*) 

and (5*), we obtain 

f3 
J = 2: {( v(t) + K(t)x(t - 1 ))T[ B TS(t)B + <I>]( v(t) + K(t)x(t - 1)) 

1= 1 

+ 2c T(t)S(t)[ Ax(t - 1) + Bv(t)] + cT(t)S(t)c(t)} 

+ X T (O)S (O)x (0), (9*) 

into which we insert the optimal control vet) of (26) to yield (32). 0 

If c(t) in system (17) is zero for each t and if the time horizon is extended 
to infinity, the optimal control rule will change into Theorem 15. 

Theorem 15. For the infinite-horizon case of minimizing the cost criterion 
function 

00 

J' = 2: {x T(t - I)Zx(t - 1) + VT(t)<I>V(t)}, (16') 
1=1 

where Z and <I> are positive definite matrices, under the system 

x(t) = Ax(t - 1) + Bv(t), t = 1,2, ... 

with given initial value x(O) = X o, the optimal control rule is established as 
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(26t) on the assumption of state controllability of (17t). 

v (t) = - Kx (t - 1), (26t ) 

where K is the limit of K(t) in (27) as t --700 and is given by 

K ==[ B TSB + <I> rIB TSA, (gain matrix) (27t) 

S = A TS[ A - BK] + Z (Riccati equation) 

= [A - BKfS[ A - BK] + KT<I>K + Z. (28t) 

The corresponding behavior of state vector governed by 

x(t) = [A - BK]x(t - 1), 

is asymptotically stable, and 

minJ' = x T (O)Sx(O). 
v 

PROOF. (For the proof of the stability of (31t) in the Lyapunov sense of 
Theorem 13, see Murata (1977, p. 383).). Here we study the optimization 
over an infinite time interval by keeping terminal point [3 fixed and finite 
and by allowing time t to decrease indefinitely, following the method of 
Dorato and Levis (1971). In particular, we show that the matrix sequence 
{S(t)} is bounded above and nondecreasing (i.e., Set - 1) ;;. set)) as t goes 
to - 00, and thus the sequence has a limit S. Since system (17t) is state 
controllable, a control input always exists that makes the performance 
index J' in (16') finite by driving the state x to its preassigned target value 
in a finite number of steps and thereafter setting the input at zero. This 
reduces the infinite sum in (16') to a finite sum. Hence Set) is bounded 
above if system (17t) is controllable. 

Next we prove S(t - 1) ;;. S(t). In view of (32), if optimal control VeT) is 
defined for system (17t) over the interval t .;;; T .;;; [3, we have the following 
minimum value of performance index J( [3, t + 1) == X T( [3)fx( [3) + 
L~=I+dxT(T - l)Zx(T - 1) + VT(T)<I>V(T)}: 

minJ ( [3, t + 1) = X T (t)S (t)x (t) .;;; J ( [3, t + 1) .;;; J ( [3, t) (32t) 
v 

However, the extreme right-hand side of (32t) allows a shift from the 
interval [t, [3] to [t + 1, [3 + 1]. For the problem of minimizing J( [3 + 1, t + 
1) under system (17tt) X(T) = AX(T - 1) + BV(T), the optimal control is 
V(T) = -K(T)x(T-1). Putting S([3)=f instead of S([3+ l)=f, we 
must have 

K(T) = [BTS(T - l)B + <I>rIBTS(T - l)A, T = t + 1,t + 2, ... , [3 + I 

(27tt) 

S(T - 2) = A TS(T - 1)[ A - BK(T)] + Z, T = t + 1,t + 2, ... , [3 + 1. 

(28tt) 
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Thus, eliminating rand 2 in J(f3 + I,t + I) with (28tt) and S(f3) = r 
taken into account, we get 

J(f3 + I,t + 1) = XT(t)S(t - I)x(t) 

.8+! 

+ 2: {XT(T)S(T - I)X(T) + VT(T)4>V(T) 
T=t+! 

Then, upon substitution of (17tt) and A TS(T - I)B = KT(T)[BTS(T - 1) 
B + 4>], the terms in the braces on the right-hand side of the last equation 
will reduce to 

(VT(T) + XT(T - I)KT(T))[ BTS(T - I)B + 4>](V(T) + K(T)X(T - 1)). 

Thus the minimum value of J( f3 + 1, t + 1) corresponding to our optimal 
control becomes equal to x T(t)S(t - l)x(t). Connecting this with (32t) 
results in S(t) <; Set - 1). 0 

Now, considering the infinite-horizon counterpart under system (17) of 
the finite-horizon problem in Theorem 14, we may infer the following 
proposition from Theorems 14 and 15. 

Theorem 15'. For the infinite horizon case of minimizing the cost criterion 
function 

co 

J'= 2: {xT(t-l)2x(t-l)+vT(t)4>v(t)} (16') 
t=! 

(2 and 4> are positive definite) under system (17), which is assumed to be state 
controllable, the optimal control is determined as 

vet) = -Kx(t - I) - k(l), (26') 

where 

K =[ BTSB + 4>rIBTSA, (gain matrix) (27') 

k(t) =[ BTSB + 4>r IBT {Sc(t) + LSc(t + 1) + L 2Sc(t + 2) + ... }, 
(30') 

L=[A - BKf, (note that L 00 = 0). (29') 

The Riccati equation becomes the following algebraic equation: 

S = A TS[ A - BK] + 2 

= A T[ S - SB(B TSB + 4» -I B TS]A + 2 

= AT[ S-I + B4>-IBTrIA + 2 (28') 
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since S is positive definite and 

The corresponding behavior of state variables is governed by 

x(t) = [A - BKJx(t - 1) + c(t) - Bk(t). 

31 

(31') 

Corollary. Consider the infinite-horizon problem in Theorem IS' with exoge
nous term c(t) in (17) being constant c*. Then the optimal control vet) in (26') 
reduces to 

v(t) = - Kx(t - 1) - k*, (26") 

where 

(30") 

with K, L, and S being those in (27'), (29'), and (28'), respectively. Accord
ingly, (31') reduces to 

x(t) = [A - BKJx(t - 1) + c* - Bk*. (31") 

Next we consider the cases where variables involved in the cost criterion 
function are replaced by deviations in the variables from their target values. 
In these cases we can obtain the following propositions in the same way as 
we obtained Theorem 14. 

Theorem 16. Letting aCt) be a target value of x(t), we try to minimize the cost 
function of the form 

fa = (x(f3) - a(f3)fr(x(f3) - a(f3») 

/3 
+ 2: {(x(t-I)-a(t-I»)TZ(x(t-I)-a(t-I»)+vT(t)<I>v(t)} 

1= I 

(33) 

subject to (17), with all the notations as defined before. The optimal control 
for this problem is 

v(t) = - K(t)x(t - I) - ka(t), t = 1, ... , f3 (34) 

where 

ka(t) =[ BTS(t)B + <I>r 1BT 

X { S(t)ca(t) + L(t + I)S(t + I)ca(t + I) + L(t + I)L(t + 2) 

/3-1 } X S(t + 2)ca(t + 2) + ... + }]l L(f3 - T + I)S(f3)ca(f3) , 

(35) 
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and 

t = 1, ... , {3 

with other notations being those in Theorem 14. Accordingly, the correspond
ing behavior of state variables is 

x(t) = [A - BK(t)]x(t - 1) + c(t) - Bka(t). (36) 

Theorem 16'. Letting b(t) be a target value of v(t), we try to minimize the 
cost function of the form 

Jb = x T({3)rx({3) 

f3 
+ 2: {x T (t - 1 )Zx(t - 1) + (v(t) - b(t))T <1>( v(t) - b(t))} (33') 

/=1 

subject to (17), with all the notations as previously defined. The optimal 
control for this problem is 

v(t) = -K(t)x(t - 1) - kb(t), t = 1, ... , {3 (34') 

where 

kb(t) == k(t) + [BTS(t)B + <l>r J 

X (BT { KT(t + 1)<I>b(t + 1) + L(t + I)KT(t + 2)<I>b(t + 2) 

+ L(t + 1 )L(t + 2)KT (t + 3)<I>b(t + 3) 

+ ... + f311~IL({3-T)KT({3)<I>b({3)} -<I>b(t)), (35') 

with other notations being those in Theorem 14. Accordingly, the correspond
ing behavior of state variables becomes 

x(t) = [A - BK(t)]x(t - 1) + c(t) - Bkb(t). (36') 

Combining Theorems 16 and 16', we have the following. 

Theorem 17. Letting a(t) and b(t) be target values of x(t) and v(t), 
respectively, we try to minimize the cost function 

Jab = (x({3) - a({3))Tr(x({3) - a({3)) 

f3 
+ 2: {(x(t - 1) - a(t - 1))TZ(x(t - 1) - a(t - 1)) 

/= 1 

+ (v(t) - b(t)f <1>( v(t) - b(t))} (37) 
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subject to (17), with all the notations as defined before. The optimal control 
for this problem is 

v(t)=-K(t)x(t-l)-kab(t), t=I, ... ,/3 (38) 

where 

(39) 

with ka(t) and kb(t) as in (35) and (35'), respectively, and with other notations 
being those in Theorem 14. 

If time horizon is extended to infinity, we may infer Theorem 17' below 
from Theorem 17, just as we inferred Theorem 15' from Theorem 14. 

Theorem 17'. For the infinite-horizon problem of minimizing 
00 

J ~b = 2: {( x (t - I) - a (t - I)) T Z ( X (t - I) - a (t - 1)) 
/= I 

+ (v(t) - b(t))T<lI(v(t) - b(t))}, (37') 

where Z and <lI are positive definite, subject to (17) which is assumed to be 
state controllable, the optimal control is 

v(t) = - Kx(t - 1) - fab(t), (38') 

where 

fab(t) =[ BTSB + <lIrl( BT {Sca(t) + LSca(t + I) + L 2Sca (t + 2) + ... } 

-<lIb(t)+ BT {KT<lIb(t + I) + LKT<lIb(t + 2) 

+ L2K T<lIb(t + 3) + ... }) (39') 

with other notations being those in Theorem 15'. 

For further discussions along these lines, the reader may refer to Kwa
kernaak and Sivan (1972, Ch. 6). 

Before we apply the optimal control laws just established to economic 
control problems, we provide a practical way to obtain numerical solution 
to the discrete algebraic Riccati equation (28'). 

2.3. Solving Discrete Riccati Equations 

To implement the optimal control laws established in Section 2.2, we need 
to obtain numerical solutions to discrete Riccati equations. When terminal 
time /3 is finite, a discrete Riccati equation can be solved recursively in the 
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direction from t = (3 to t = 1; that is, starting with the terminal condition 
S( (3) = r, we solve 

S(t - 1) = A T[ S(t) - S(t)B(BTS(t)B + <I>rIBTS(t)]A + Z (40) 

for t = (3, (3 - 1, ... , 2,1. When the terminal time is infinite, we must have 
a solution S to the algebraic Riccati equation 

(41 ) 

S will be obtained as a unique steady-state solution to the difference 
equation 

S ( T) = A T[ S (T - 1) - S (T - 1) B ( B T S (T - 1) B + <I> riB T S (T - 1) ] 

xA + Z (40') 

by solving it recursively for T( == (3 - t) = 1,2,3, ... , (3, under the condi
tion S(T = 0) = r = 0, and by taking the limit of SeT) as T goes to infinity. 

Though other methods exist for evaluating the numerical solution to the 
algebraic Riccati equation (41) (see for example Pappas, et al. (1980», we 
confine ourselves here to a simple nonrecursive method (Vaughan (1970», 
which is applicable to the case of nonsingularity of matrix A in the 
equation. The method is based on the relationship between optimal state 
trajectory x(t) and its adjoint costate vector pet), so we first derive that 
relationship. 

Since we are concerned with Riccati equations only, we may consider the 
problem of minimizing cost function J in (16) subject to the state-space 
form (42): 

x(t) = Ax(t - 1) + Bv(t), t = 1,2, ... , (3 (42) 

with given initial value x(O) = X o, where x and v are nand m vectors, 
respectively. (Note that all vectors are deemed column vectors in this 
section.) The optimal control rule for the problem is given by 

v(t)= -K(t)x(t-l), (43) 

where gain matrix K(t) is defined by (27), and the corresponding Riccati 
equation is shown by (28) in Theorem 14. Now, referring to Murata (1977, 
p. 384), we know that if the input vet) and the corresponding trajectory x(t) 
are optimal, then an adjoint n vector sequence {p(t)} exists such that 

v(t) = - <I>-IB Tp(t), 

where p(t) (t = (3 - 1, f3 - 2, ... ,1,0) is determined by 

p(t) = Zx(t) + A Tp(t + 1) 

(44) 

(45) 
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and 
Ax(t) = x(t + 1) - Bv(t + 1) 

= x(t + 1) + BcI>-IBTp(t + I) (46) 

with 

p(f3) = fx(f3). (47) 

Put (46) and (45) together in matrix form as 

( A O)(X(t)) (1 Q)(X(t+I)) 
-:=: 1 pet) = OAT pet + I) (48) 

where Q == BcI>-IB T. Assuming that matrix A is nonsingular, from (48) we 
get 

( x(t)) (A-I A-1Q )(X(t+I)) 
p(t) = ZA- 1 AT +ZA-1Q p(t+ 1) , 

t = f3 - I, f3 - 2, ... , I, ° ( 49) 

smce 

( A 0)-1 (A- 1 0) 
- Z 1 = ZA -I l' 

Denoting T == f3 - t, we convert (49) to 

T = 1,2, ... , f3 (49') 

where 

_( A -I A -IQ ) H= . 
ZA - 1 A T + ZA - IQ 

(50) 

The initial state x(O) = Xo provides n boundary conditions; the remaining n 
boundary conditions are 

peT = 0) = fX(T = 0). ( 47') 

Suppose that (49') has a solution of the form 

peT) = R(T)X(T). (51 ) 

Then it follows immediately that 

X(T) = A -1(1 + QR(T - I))X(T - I) (52a) 

R(T)X(T) = [ZA -I + (AT + ZA -IQ)R(T - I)JX(T - I). (52b) 

Inserting (52a) in (52b) yields 

R(T)A -1(1 + QR(T - I)) = A TR(T - I) + ZA -1(1 + QR(T - 1)) 
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or, equivalently, 

T = 1, 2, ... , {3 (53) 

with R(T = 0) = r in view of (47'). We notice that (53) is the well-known 
discrete Riccati equation (cf. (28) and (28') in Section 2.2): 

t = {3, {3 - 1, ... , 1 (53') 

with S(t = {3) = r. Hence the limit of R(T) as T~ 00 can be taken as the 
steady-state solution S in question. 

Proceeding toward obtaining the limit of R (T), we assume for the sake of 
brevity that all eigenvalues of matrix H are real and distinct. Let A be an 
eigenvalue of H, and let x and p be n vector partitions of the associated 
eigenvector, i.e., 

Since (cf. Murata (1977, (31), Section 1.1)) 

(H- I { = (AT + ZA -IQ 
-A-IQ 

we have 

-ZA- I ), 

A-I 

implying that A is an eigenvalue of (H -If. Consequently, A is also 
an eigenvalue of H - I, and in turn A - I is an eigenvalue of H. Thus the 
eigenvalues of H are such that the reciprocal of each eigenvalue is also an 
eigenvalue of H. If W is a nonsingular Jordan transformation matrix 
composed of linearly independent eigenvectors (cf. Murata (1977, Theorem 
6, Section 3.2)), then 

W-IHW= (A 0) o A-I 
(54) 

where A is a diagonal matrix of the n eigenvalues outside the unit circle. 
Matrix W can be partitioned into four n X n matrices as follows: 

(55) 

Let (ZT(T),qT(T))T be a new state vector defined by the transformation: 

(56) 
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Then we get from (49'), (54), and (56) 

( Z(T)) = (A ~ )(Z(T - 1)), 
q(T) 0 A I q(T-l) 

T = 1,2, ... , f3 

or by iterative substitutions 

( Z(T)) = (AT 
q(T) 0 

o )( Z(O)) 
A -T q(O) , 

which is equivalent to 

( Z(O)) = (A-T 0 )(Z(T)). 
q(T) 0 A -T q(O) 

(57) 

The boundary condition (47') can be written in terms of z(O) and q(O) in 
view of (56) as 

W2IZ(0) + W22q(0) = r[ WIIZ(O) + W12q(O)], 

from which it follows that 

q(O) = Uz(O) 

where 

U == - [W22 - rWl2rl[ W21 - rWlll 
From (57) and (58), we derive 

q(t) = GTZ(T) 

where 

GT == A -TU A -T. 

Substituting (60) into (56) yields 

X(T) = [Wll + WI2GT ]Z(T) 

peT) = [W21 + W22GT]Z(T) 

(58) 

(59) 

(60) 

(61 ) 

Connecting these relations with one another, we finally obtain the form 

peT) = R(T)x(T), T = 1, 2, . . . , f3 (51 ) 

where 

(62) 

R(T) in (62) is nothing other than a solution to the Riccati difference 
equation (53'). Our present purpose is to find a nonrecursive solution for 
the limit of R(T) as T~ 00. Letting T go to infinity, GT in (61) will approach 
zero matrix, and hence from (62) we have 

(63) 
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In this computation we need only (w]~, wJ;f, the first n eigenvectors 
associated with the eigenvalues of matrix H outside the unit circle. A 
numerical example of the computation is in order here. 

EXAMPLE. Taking numerical data from an economic optimization problem 
in Section 6.5, we have the following relevant matrices (cf. (108), (90), (91) 
and (76) in Chapter 6): 

[ -20 0 - 20 ] [05 
0 

~] A = -6.4 - 0.5 -~.53 <I> = 0 1 
0 0 0 

B~ H.67 - 133.33 3333.33] 
Z ~ [~ 

0 

H -48.66 1233.33 60 
0 1 0 

Then, matrix H in (50) is calculated from these data as 

-0.05 0 -1 - 559776.59 - 207112.50 - 167.67 
0.74 -2 -2.26 -7339.95 -2727.95 -2.26 

H= 0 0 1 3333.33 1233.33 1 
-0.05 0 -1 - 559796.59 - 207119.90 - 167.67 
44.40 - 120 - 135.60 - 440397.04 - 163677.55 - 135.35 

0 0 2 6646.66 2458.13 3 

of which the eigenvalues Ai are found to be real and distinct, i.e., 

A] = -722890.875, A2 = - 583.227, 

A4 = 0.807, AS = 0.013, 

The eigenvectors ki associated with eigenvalues "A;(i = 1,2,3) outside the 
unit circle are shown next in column vectors, respectively: 

[ k] k2 k3] = 

-0.000021 0.060265 -0.054231 
} W II 0.000058 - 0.162752 0.073330 

0.000066 - 0.182808 0.993003 
........................................................ 

0.937750 0.561403 0.060621 
} W21 0.347312 - 0.788205 - 0.001165 

0.000283 - 0.004471 0.044163 

Of the above (6 X 3) matrix [k l ,k2 ,k3], the upper half (3 X 3) matrix and 
the lower half (3 X 3) matrix correspond to WI I and W 21 in (55), respec
tively. Thus S in (63) can be computed numerically using these values as 

[ 
1.305741 

S = - 0.008557 
- 0.003215 

- 4.938547 
4.853038 
0.014727 

0.000197] 
- 0.000279 . 
- 0.000002 
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2.4. Application to Control of a Dynamic 
Leontief System 

We consider a dynamic quantity system of Leontief type: 

XI = AXt + B { xt - xt- I} + Yt + C 

39 

(64) 

where A denotes the n X n nonnegative matrix whose (i, j)th component aij 
represents the quantity of good i consumed in the production of good j per 
unit of output, B = [bij] denotes the corresponding capital coefficient ma
trix, XI = {x II' ... , xnt } is the column vector of outputs in period t, and 
C = {c I , ••• , cn} and YI = {YIP' .. ,Ynt} are the column vectors of the 
constant part and the variable part of final demand, respectively. Equation 
(64) means that outputs are supplied to meet the total demand composed of 
current interindustry demand, investment (filling the gap between output 
capacity of the present period and that of the last), and final demand. (For 
the corresponding price system, refer to Murata (1977, Section 4.4).) 

Solow (1959) treated final demand as a constant, but we add to it a 
variable final demand and treat the latter as an instrument to attain an 
asymptotic stability from the dynamic systems control viewpoint. Assuming 
that [1 - A] fulfills the Hawkins-Simon conditions (cf. Murata (1977, p. 
52)), we have 

M =[ 1 - A - BrI= [I - [1 - ArIBrI[I - ArI, (65) 

and express system (64) in a state-space form 

X t = -MBxl _ I + MYI + Mc (66) 

with initial value Xo' System (66) is controllable in view of the nonsingular
ity of M. Let us adopt the quadratic loss function to be minimized: 
(denoting transportation by superscript T) 

(67) 

where Z and r are some constant symmetric positive definite matrices of 
appropriate dimensions, IX denotes a growth factor (= I + growth rate g), 
and IX tx*, IX y* are target values of XI' YI' respectively. 

In some multisectoral turnpike problems, the objective is to maximize 
output value (see Tsukui (1966)) or utility (see Tsukui (1967)) over time, 
while we intend to minimize a sort of disutility in (67) over the time of the 
output and final-demand deviations from preassigned target growth paths. 
If parameter IX is unity and if Z, r are identity matrices, our minimizing 
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objective J reduces to 
00 

J' = ~ (1Ixl -, - x*11 + IIYI - y*II), (67') 
1=1 

which is close to the objective of Radner (1961). 
By applying Theorem 17' to our problem, we obtain the optimal control 

value of Yt and the associated output vector XI for t = 1,2, ... as follows: 

(68) 

xt = rxo + Mhl + FMhl_, + F 2Mhl_2 + ... + FI-'Mh, - M(c* - c), 

(69) 
where 

G =[ MTSM + rr'MTSMB, (70) 

S = BTMTSM[ B - G] + Z = BTrG + Z, (71 ) 

hI =[ MTSM + rr '( MT[ 1+ aF + a2F2 + ... (aISx* + a/ry* 

+MT[I+aF+a2F2+ ... (al+'GTry*), (72) 

F =[Iij] = M[ G - BJ. (iij: the (i,j)th element of F) (73) 

c* =[ MTSM + rr'MT[ 1- FTr'SMc. (74) 

Premultiplying (70) by M and substituting for MG in (73) yields 

F+ MB =[MTS+ rM-'r'MTSMB 

or, equivalently, 

entailing 

F= -[MTS+rM-'r'rB, (73') 

G = B + M-'F= [I - [MTSM + rr'r]B, (70') 

S = BTr[ 1- [MTSM + rr'r]B + Z. (71') 

F is already known to be stable, i.e., 

lim FI= O. (75) 

(Refer to the proof of Theorem 15.) Our interest here is to find a sufficient 
condition for xt in (69) to converge to some growth equilibrium character
ized by a I alone. We shall show that this can be achieved if each eigenvalue 
of aF is less than unity in modulus. In fact, if 

(76) 
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is fulfilled, clearly every eigenvalue of aF is less than unity in modulus, and 
hence 

1+ aF + a 2F2 + ... = [ 1- aFr I. (77) 

Therefore, XI in (69) reduces to 

XI = Flxo + [all - PJ[ 1- a-IFrIM[ MTSM + rJ- 1 

X (MT[ 1- aFTrlSx* + [I + aMT[ 1- aFTrIGT]ry*) 

-M(c*-c). (69') 

In view of (75), XI in (69') converges to a growth equilibrium characterized 
by a l alone, as t goes to infinity. Thus we have the following. 

Proposition 1. Consider the problem of minimizing the criterion (67) for the 
system (64). If growth rate g is given to satisfy (76), the optimal control YI 
regulated by (68) will stabilize the associated output vector XI so that it 
converges to a growth equilibrium as t goes to infinity. 

By choosing appropriate positive definite matrices Z, r and nonnegative 
vectors x*, y*, obtaining nonnegative values of the optimal YI' XI for all t is 
possible. 

As an illustration, we consider the one-good economy such that the 
quantity system (64) holds as a single equation, where coefficients A, Bare 
regarded as positive scalars and set Z, r equal to unity in the criterion 
function (67). Then, utilizing (71') and (70'), we calculate the relevant 
parameters in the optimal control as follows: 

JD2+4B2 -D 
G = 2B > ° (70") 

JD2+4B2 -D-2B2 
F= 2B(I-A-B) >0, (73") 

where D == I + (l - A)(l - A - 2B), and we assume 0< I - A < B. Fi
nally, the growth equilibium value of output in period t is calculated as 

X* = 
I 

4a 1B2(1 - A - B)2[ (JD2 + 4B2 -D + 2)x* + 2(1- A + gB)y*] 

(JD2 + 4B2 +D + 2B 2)[2aB(1- A - B) + D + 2B2 -JD2 + 4B2] 

c - c* + 71-"_-A--:-"---B-=- (69") 

which takes on a positive value, as will be shown, provided g, x*, and y* 
are all positive. 

We show that c* - c > 0, viz., 

2 
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Since S =UD2 + 4B2 - D )/2 + 1, we have 

(2MS + I)-IM(I - F)-ISM 

2B(I- A - B)UD2 + 4B2 -D + 2) 

{[ UD2 + 4B2 - D + 2) + 2(1 - A - B )2] 
X [2B(I - A - B) - UD2 + 4B2 - D - 2B 2)]} 

2B(I- A - B)()D2 + 4B2 -D + 2) 

2B(I- A - B)UD2 + 4B2 -D + 2) + 4B(I- A)(I - A - B)2 

since D = 1 + (1 - A)(l - A - 2B). The denominator in the extreme right
hand side of the expression reduces to 2B(l - A - B)()D 2 + 4B2 + 1 + 
(1 - Ai). Thus 

-2B(I - A - B)(I - A) 
(2MS+I)-IM(I-F)-ISM-I= >0. 

)D2 + 4B2 + 1 + (1 - A)2 

(78) 

So far, we have considered equation systems for optimization problems, 
but we may consider inequality systems instead. Thus for our present 
application, we may consider 

Xl > AXI + B {Xl - Xl-I} + YI + C (64') 

instead of (64), meaning that total output should not be smaller than total 
demand. Accordingly, equation (66) will change into an inequality. In the 
following section we try to obtain some control rules for such an inequality 
optimization problem. 

2.5. Controller for a Dynamic Inequality System 

We are concerned with a finite-horizon minimization problem with the 
same quadratic cost criterion as (16) subject to the linear discrete-time 
inequality system 

X(t) > Ax(t - 1) + Bv(t) + c(t) (79) 

for t = 1, ... , f3 with given initial value x(O) = xo' A distinct difference 
between the present problem and the one described in Section 2.2 lies in the 
inequality sign of system (79), all the notations being the same as for system 
(17). 
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Our approach to the inequality problem is not that of dynamic program
ming but quadratic programming. For convenience, we transform the 
problem into (80), as follows. 

Minimize 

subject to 

Gz + b <: 0, 

z > 0, 

where superscript T denotes transposition, and 

xCI) -

x(f3-I) -
z= x(f3) Q= 

v( I) 

v(f3) 

-/ B 
A -/ 

A 
G= 

A -/ 
A -/ 

eel) + Axo 

e(2) 

b= 

e( f3) 

r 
<I> 

<I> 

B 

B 

(80a) 

(80b) 

(80c) 

(81 ) 

B 

(82) 

Obviously, minimizing j of (80a) is simply minimizing J of (16), and (80b) 
is equivalent to the set of inequalities (79) for t = 1, ... , f3 with x(O) = xo' 
Expression (80c) is an additional restriction specific to quadratic program
ming problem; viz., we restrict all the relevant variables (state and control 
variables) to nonnegative values. This restriction is meaningful in econom
ics because most economic level variables assume nonnegative values. Note 
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that matrix Q in (81) is symmetric and positive semidefinite, since r, Z, and 
<I> are assumed to be so (with <I> positive definite). Hence j of (80a) is a 
convex function in z (cf. Murata (1977, Theorem 11, Section 7.2». 

Now we see that (80) is a typical quadratic programming problem. Thus 
by the Kuhn-Tucker theorem (Murata (1977, Theorem 25, Section 8.4» we 
have the following necessary and sufficient condition for z to be an optimal 
solution to problem (80): a row nf3 vector 

exists such that 

P T (Gz + b) = 0, 

ZTQ + pTG ;;;. 0, 

(ZTQ + pTG)z = 0. 

(83) 

(84) 

(85) 

(86) 

(Cf. Murata (1977, Application 3, pp. 311-312).) Inequality (85) can be 
decomposed as 

p(t)<:ATp(t+I)+Zx(t) for t=I, ... ,f3-1 (85a) 

p ( f3) <: r x ( f3 ) (transversali ty condition) (85b) 

for t = 1, ... , f3. (85c) 

Assume that <I> has an inverse with all nonnegative entries. Then optimal 
control v(t) must satisfy (85'c) in view of (85c). 

v(t) ;;;. -<I>-IBTp(t) for t = I, ... ,f3. (85'c) 

Assuming further that 

A -I;;;. 0, B ;;;. 0, 

we get from (85a) 

p(t + 1);;;' (A -I{ {pet) - Zx(t)} for t = I, ... , f3 - 1. (85'a) 

Combining (85'a) with (85'c) yields for t = 2,3, ... , f3 

v(t);;;. <I>-IBT(A -1{ZX(t - 1) - <I>-IBT(A -I{ pet - I). (87) 

As for v(1), we have the following requirements in view of (79) and (85'c): 

xCI) - Axo - e(l) ;;;. Bv(l) ;;;. - B<I>-IBTp(I). (88) 

Given x o,x(1) and p(1), we choose v(1) to fulfill (88), and v(2), ... , v( f3) 
must be chosen to fulfill (87). At the same time p(2), ... ,p( f3) should 
satisfy (85'a) and (85b). Note that, by virtue of (86), if some x(t) is strictly 
positive, then the corresponding relation (85'a) holds with the equality sign. 

Now we make a specification of p(t) as 

pet) = S(t)x(t) for t = I, ... ,f3 (89) 
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with S( {3) = r. Substituting this specification into (85a) and (85'c), we get 

[S(t) - Z]x(t) « A TS(t + l)p(t + 1) for t = 1, ... , {3 - 1, 

(85"a) 

and 

for t = 1, ... , {3. (85"c) 

Substitution of v(t) from (85"c) into (79) yields, assuming (*), 

[I + BcI>-IBTS(t) ]x(t) > Ax(t - 1) + c(t) for t = 1, ... , {3, 

from which we obtain 

for t = 1, ... , {3 

(90) 

on the assumption that the relevant inverse is nonnegative: 

[I + BcI>-IBTS(t) r 1 = 1- B[ BTS(t)B + cI> r1BTS(t) > O. (91) 

If all the optimal v(t)'s are strictly positive, of if S(t) are all nonnegative, 
relations (85c) and hence (85"c) hold with equality; and thus by (90) and 
(91), the optimal v(t) is obtained as 

v(t) > -cI>-IBTS(t)[ 1- B[ BTS(t)B + cI>r IB TS(t) ]{Ax(t - 1) + c(t)}, 

or equivalently (cf. Murata (1977, p. 384)), 

v(t) > - [BTS(t)B + cI>rlBTS(t){Ax(t - 1) + c(t)} (92) 

for t = 1, ... , {3. This inequality feedback control rule (92) is comparable 
to the corresponding equality feedback control (26) in Theorem 14. 

Concluding our quadratic programming approach, we should refer to 
Tamura (1975) for a similar attempt applied to a general distributed-lag 
equation system under some inequality constraints. 
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CHAPTER 3 

Observers for Linear 
Discrete-Time Systems 

So far we have implicitly assumed that the state variables can all be 
observed in each period of time to establish control rules for linear 
discrete-time systems. However, in a real dynamic economy some of the 
variables will not be accessible in time. Section 3.2 of the present chapter is 
concerned with obtaining appropriate proxies (termed "observers") for the 
unobserved variables to be incorporated into optimal control laws and with 
the stability check of the resultant overall system. (Section 3.1 is devoted to 
preliminary propositions indispensable for constructing observers.) In Sec
tion 3.3 we show that the optimal control incorporating any observer incurs 
a cost rise, and hence in Section 3.4 we derive an observer that has the 
minimum cost performance. Finally, in Section 3.5, we examine the rela
tionship between observer and controller and establish a separation princi
ple for designing them with minimal overall associated cost. 

3.1. Preliminaries to Discrete-Time Observers 

If some state variables are not accessible (observable) in time, our optimal 
control rule must be modified so that unobserved state variables are 
replaced by their proxies. This problem is called the observer problem in 
control theory, and we consider it for the deterministic discrete-time sys
tem: 

x(t) = Ax(t - 1) + Bv(t), (1) 

where x is an n vector of state variables, v is an m vector of control 
variables, and A, B are constant matrices of appropriate dimensions. 
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In this section, we shall prove preliminary theorems indispensable to our 
observer problem. Assume hereafter, without loss of generality, that the 
first r elements of x, which will be denoted by an r vector y, are observed in 
system (1). Hence x is rewritten 

x = (~), (2) 

where w represents an (n - r) vector of unobserved state variables. We can 
express y(t) as 

y(t) = Cx(t), (3) 

where C == [Ir' 0] consists of an r X r identity matrix Ir and an r X (n - r) 
zero matrix. Accordingly, we partition A and B as 

A = (~~: ~::) and B = (!::), (4) 

and system (1) is rewritten 

y(t) = Ally(t - 1) + Al2w(t - 1) + Bllv(t) 

w(t) = A 21 y(t - 1) + A22W(t - 1) + B22v(t). 

The following is a theorem concerning observability of this system. 

(Sa) 

(5b) 

Theorem 1 (Gopinath, 1971). Let (A, C) be observable for the system 
consisting of (1) and (3) with C = [1,,0]. Then (A 22 ,A I2) is observable for 
system (5). 

PROOF. 

C Ir ° CA All AI2 

n = rk CA 2 = rk A ~I + A I2A21' AliA 12 + A 12A22 (6) 

CAn-I 

Since rank of a matrix is unaltered by adding to any row a linear 
combination of the other rows, we get from (6) 

Ir ° 
All AI2 

n = rk 
A I2A22 

A I2A~2 
(7) 

A 12A22-1 

For example, the third row block of the matrix in (7) is obtained by adding 
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to the third row block of the matrix in (6) 

- A il . (its first row block) - A II . (its second row block). 

From (7) we know that, regardless of what the first column block of the 
matrix in (7) may be, its second column block has rank n - r. In view of 
the Cayley-Hamilton theorem, therefore, we have 

AI2 
A 12A22 

= n - r. o 

In order to prove an important theorem to follow, we need a lemma. 

Lemma 1. Let A be an n X n real matrix, and assume AI - A is nonsingular. 
Then 

n 

[M-Ar l = 2: Pj(A)Aj-l, 
j=! 

where p/A) is some rational function of A. 

PROOF. Let A be an n X n real matrix. 

adj[M-A] = Bn_IA n- 1 + Bn_2An- 2+ ... +B2A2+B IA+Bo, 

where B; (i = 0, 1, ... , n - 1) are matrices not containing A. Since 

[M - A] . adj[M - A] = 1M - All 
and since 

IM-AI=An+an_IAn-l+an_2An-2+ ... +a2A2+aIA+(-If\AI, 

we have 

[M-A][Bn_IAn-I+Bn_2An-2+Bn_3An-3+ ... +B2A2+BIA+Bo] 

=AnI+an_IAn-II+an_2An-2I+··· + a2A2I+ aIM+(-If\AII. 

Comparing both sides term by term, we know that the coefficients of 
An ,A n -I,A n - 2, ... , A2,A, and the constant term have the following rela
tions: 

Bn _ 1 = I, 

Bn- 2 - ABn_ 1 = a"_II~Bn_2 = an_II + A, 

Bn- 3 - ABn_2 = an-2I~Bn-3 = an_2I + an_IA + A 2, 

BI - AB2 = a2I~BI = a2I + a3A + ... + A,,-2, 

Bo - ABI = alI~Bo = all + a2A + ... + An-I. 
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Then consider 

[AI - Ar'= adj[AI - A]/IAI - AI. o 

Theorem 2 (Luenberger, 1971). Let A and C be n X nand r X n real 
matrices, respectively. The assertion that, by the suitable choice of an n X r 
real matrix G, the set of eigenvalues of A - GC can be made to correspond to 
any set of n distinct real scalars different from eigenvalues of A is true if and 
only if (A, C) is observable. 

PROOF. 

Necessity (ef. Wonham (1967).) Let A."A.2 , ••• , A.n be any distinct real 
scalars different from eigenvalues of matrix A, so IA.J - A I =1= ° for each \ 
(i = 1, ... ,n). By our assertion, n row vectors Pi (i = 1, ... , n) and an 
n X r matric G exist such that 

Pi[\I - A + GC] = 0, i = 1, ... , n; 

and by the assumption that A.i is different from any eigenvalue of A, 

n 

= Pi 2:: Pj(\)GCAj-', 
)=1 

i = 1, ... , n 

for some rational functions Pj(\) of A.i (j = 1, ... , n) by virtue of Lemma 1 
above. We can also rewrite this set of equations in matrix form: 

P=NR, (8) 

where 

N= 

Pnp,(A.n)G, PnPiA.n)G, ... , PnPn(A.n)G 

C 
CA 

R= 

CA n -' 

Since p" ... 'Pn are linearly independent in view of the distinctness of A.i 
(i = 1, ... , n), we get 

rk(P) = n. 

On the other hand, 

rk(P)';;; min{rk(N),rk(R)} ,;;; n. (**) 

Expressions (*) and (**) imply that rk(R) = n, viz., (A, C) is observable. 
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Sufficiency (ef. Gopinath (1971).) Let ~I" .. '~n be n distinct real 
scalars. Then constants "YI' ... , "Yn exist satisfying 

(9) 

"Yn 

where we note that the determinant of the matrix on the right-hand side of 
a Vandermonde determinant equal to IIk>;(~k - ~J. In other words, there 
a real matrix M corresponds to the given ~i (i = 1, ... , n) such that 

n 

IAI - MI = ~n + L: "Yi n- j 

j=1 

with ~i as one of its eigenvalues. 

(10) 

Let G be an n X r real matrix of rank one. Then GC(AI - A)-I has rank 
one smce 

rk [ GC(AI - A) - I] = rk ( GC) .:;; min { rk ( G ), rk ( C )} = I. 

Thus 

I I + GC(AI - A) - II = 1 + tr( GC(AI - A) - I) (II) 

since, for a square matrix S, we have (cf. Murata (1977, (10), Section 1.1)) 

II + SI = III + tr(S) + (the sum of determinants involving 
no-less-than-two columns of S), 

of which the third term vanishes if S has rank one. 
For a real square matrix A, 

(AI-A)-I= l(I-IA)-I= ~Ai~-(i+I) 
~ ~ i=O 

(12) 

for ~ different from an eigenvalue of A, in view of the corollary to Theorem 
7 in Murata (1977, Section 3.3). From (11) and (12) 

IAI - A + GCI = IAI - AliI + GC(AI - A)-II 

= IAI - A 1+ IAI - A Itr( GCi~O A i~ -(i+ I)) (13) 

for ~ different from an eigenvalue of A. We consider 
n 

IAI - A I = ~ n + L: aj~ n - j 

j=1 
n 

An = - "" aA n- i L..J I , 

i=1 

and compare (13) term by term with the following: 
n 

IAI - A + GCI == ~ n + L: "Yj~ n-j. 
j=1 

(10') 
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Then 

n 
= 2: An - j [ aj + tr( GCA j - I) ] 

j=l 

+;tla;An-ttlA-itr(GCAi-l) + ... J, 
from which we have 

Yj = 0 for j < 0 

Y I = a I + tr( GC ) 

Y2 = a2 + altr(GC) + tr(GCA) 

(14) 

Yn = an + an_Itr(GC) + an_2tr(GCA) + ... + tr(GCAn-l) (15) 

for j> n. 

This proves that if G of rank one exists such that (10') is fulfilled, then G 
satisfies (15), and that (10') holds for any G of rank one satisfying (15). 

Last, we shall show that at least one matrix G of rank one exists 
satisfying (15) if (A, C) is observable. Defining 

0 

y{J a = [::J 
a l 1 

D= a2 a l 

an_ 1 an- 2 a l 

we rewrite the set of n equations of Yi (i = 1, ... , n) in (15) as 

y= a + D 

tr(GC) 

tr(GCA) 

0 
0 

( IS') 

Letting G = gh, where g and hare n X 1 and 1 X r, respectively, we get 

tr(GCA i) = tr(hCA ig) = hCA ig 

for i = 0, 1, .... Substituting (16) in (15') yields 

hnRg = D -I(y - a), 

(16) 

(17) 
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where R is that in (8) and 

h 

h= n-
h 

h 
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(n X rn). 

Equation (17) has a unique solution for g, provided the product of matrices 
on the left-hand side of (17) has full rank. This will be fulfilled if (A, C) is 
observable, i.e., R has rank n. 0 

Note that in Theorem 2 above the r X n matrix C need not be of the 
form [Ir' 0]. However, if matrix C is of full rank equal to r, and C = [C I , C2] 

where the r X r matrix C I is nonsingular, we can convert C into C* = [Ir' 0] 
by postmultiplying C by U - I where 

U =.(~I C2 ) 
In-r 

and hence 

U- I = (Cb-I 

By applying the same conversion to 

we have 

where 

x(t) = Ax(t - 1) + Bv(t) 

y(t) = Cx(t), 

x*(t) = A*x*(t - 1) + B*v(t) 

y(t) = C* x*(t) 

x*=. Ux 
A* =. UAU- I 

B*=. UB 
C* =. CU- I = [Ir,O]. 

(1) 

(3) 

(1') 

(3') 

Thus our discussion may address the system (1), (3) with C = [Ir' 0] without 
loss of generality. . 

3.2. Luenberger Observers for Discrete-Time Systems 

We are almost in a position to construct a proxy, called an observer, for 
unobserved state-variable vector w in (2). For this purpose, another lemma 
will be useful. 
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Lemma 2 (Luenberger, 1964). Consider a discrete-time system composed of 
(1) and (3), and its associated order-en - r) system: 

z(t) = Fz(t - 1) + Hy(t - 1) + TBv(t), (18) 

where T is an (n - r) X n transformation matrix satisfying 

TA - FT= He. 

Then z(t) can be expressed as 

z(t) = Tx(t) + FI(z(O) - Tx(O)). 

PROOF. From (1), (3), and (18) it follows that 

z(t) - Tx(t) = Fz(t - 1) + HCx(t - 1) - TAx(t - 1), 

into which we substitute (19) for HC, obtaining 

z(t) - Tx(t) = F(z(t - 1) - Tx(t - 1)). 

From this equation, we get (20) by iterative substitutions. 

N ow we come to the main theorem on observers. 

( 19) 

(20) 

D 

Theorem 3 (Luenberger, 1964). Consider an order-n discrete-time system (1), 
(3) with C = [Ir> 0], and assume that (A, C) is observable and that the last 
n - r components of state vector x are unobserved variables, denoted w as in 
(2). Then an observer of order n - r for the w can be constructed so that the 
involved matrix corresponds to an arbitrary set of distinct real eigenvalues, 
each of which has modulus less than unity and different from any eigenvalue of 
A22 in (4). 

PROOF. Consider the partitions in (4) and define 

T=[-G,In_r] 

F=A 22 - GA 12 

for some (n - r) X r matrix G. Then 

TB = B22 - GB ll · 

H in (19) now becomes 

H = A21 - GAIl + (A22 - GA 12)G. 

Thus (18) is expressed as 

(21 ) 

(22) 

(23) 

(24) 

Z(t)=[A22- GA 12 ]z(t-l)+[A 2I - GAIl +(A 22 - GA 12)GJy(t-l) 

+[B22- GBII]v(t). (25) 

Given the initial value z(O) as 

z(O) = w(O) - Gy(O), (26) 

we have 

w(t) = z(t) + Gy(t) == w(t) for t;;' 0, (27) 
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since in view of (20) 

w(t) = z(t) + Gy(t) + [A22 - GA12]'(W(O) - z(O) - Gy(O»). (27') 

Even if (26) does not hold, w(t) may be approximated by w(t), an observer 
for w(t), for large t provided A22 - GA 12 is a stable matrix, i.e., 

as t~ 00. (28) 

This is equivalent to saying that A22 - GA 12 has each of its eigenvalues less 
than unity in modulus. 

By Theorem I, if (A, C) is observable, so is (A 22 ,A 12)' Then, by Theorem 
2, the set of eigenvalues of A22 - GA 12 can be made to correspond to an 
arbitrary set of n - r distinct real scalars different from eigenvalues of A22 
by suitable choice of an (n - r) X r real matrix G. D 

A remaining task is to choose an (n - r) X r matrix G such that the 
above requirements are fulfilled. The procedure for computing the matrix G 
is as follows. 

Step 1. Specify a set of s (= n - r) distinct real scalars '\1' ... , \, having 
modulus less than unity and different from eigenvalues of A 22 . 

Step 2. Determine YI' ... , Ys as a unique solution of 

,\S 
I 

,\s 
s 

(9') 

Ys 

Step 3. Calculate the coefficients ai (i = I, ... , s) in the characteristic 
polynomial 

viz., 

Step 4. Define 

1=[J 

s 

1,\/ - A221 =,\ s + L: al s-j, 
j=1 

0 

a=[] 
a l I 

D= a2 a l 

as-I as - 2 

0 
0 

a l 
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Step 5. Specify a row vector h of dimension r, and define s X rs matrix ~ as 

h 

h= s-
h 

, and A=== 

h 

Step 6. Compute column s-vector g by 

g = [DhsA] -I(y - G). (17') 

Step 7. Define G, s X r matrix, as the product of gin (17') and h in Step 5: 

G ===gh. (29) 

Having obtained the matrix G, we may use w(t) in (27) as an observer 
for w(t), with z(t) substituted from (25), viz., 

w(t) === z(t) + Gy(t), (30) 

where 

z(t) = [A22 - GA 12 ]z(t - 1) + [A21 - GAil I- (A22 - GAI2)G] 

X y(t - 1) + [B22 - GBII]v(t) (25) 

with a given initial value z(O). w(t) in (30) is termed a Luenberger (minimal
order) observer for the original system (1), (3) since the z has order n - r, 
the same order as unobserved state-variable vector w. 

Our Luenberger observer w for unobserved state vector w is schematized 
in a flow chart (Fig. 1), where we see how z in (18) connects w with the 
original state-space system (1), (3). 

Here we check the stability property of the whole state variables involv
ing observers. Corresponding to (30), define an observer for the whole state 
variables as 

A (y(t)) (Ir 0 )(y(t)) 
x(t) == w(t) = G In-r z(t)' 

which may be rewritten as follows with (3) taken into account: 

x(t) = QCx(t) + Ez(t), 

where 

Q ===(~), 

(31 ) 

(31') 
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............. (Luenberger Observer)·········· 

(State-Space System) 
L......;----------,~Gf-----I 

Figure I. Luenberger Observer Connected with State-Space System 

(2: is summation, and Delay means one period delay.) 

Thus the optimal control incorporating our observer becomes 

v(t) = - Kx(t - 1) == v(t), 

and the associated behavior of state variables is governed by 

x(t)=Ax(t-l)- BKx(I-I) 

= AX(1 - 1) - BK( QCx(t - 1) + Ez(t - 1)) 

= [A - BKQC] x (I - 1) - BKEz(t - 1), 
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(32) 

(33) 

where K is the gain matrix defined by (27t) in Section 2.2. We shall show 
that the incorporation of our observers does not affect the stability property 
of the associated behavior of whole state variables. (For continuous-time 
cases, see Luenberger (1966).) 

We must consider a composite system consisting of (33) and the behavior 
of z(t) given by (25) incorporated with v(t) of (32). (Aoki and Huddle 
(1967) will be useful for the subsequent development.) Substituting (3), (32), 
and (31') into (25) with matrix notations (21)-(23) taken into consideration 
yields 

z(t) = Fz(t - 1) + TAQCx(t - 1) - TBK( QCx(t - 1) + Ez(t - 1)) 

= T[ A - BK]QCx(t - 1) + [F - TBKE]z(t - 1). (34) 

The stability property of the system composed of (33) and (34) is character
ized by its coefficient matrix, but the matrix is rather complicated. We 
therefore introduce a new variable vector e defined as 

e(t) == z(t) - Tx(t) = r(z(O) - Tx(O)). (35) 
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Then vectors z in (33) and (34) are replaced by 

z(t) = e(t) + Tx(t). 

This yields 

x(t)=[A - BKQC]x(t-l)- BKE(e(t-l)+ Tx(t-l)) 

= [A - BK]x(t - I) - BKEe(t - 1) 

since QC + ET = I, and 

e(t) = - Tx(t) + T[ A - BK]QCx(t - I) 

+[F- TBKE](e(t-l)+ Tx(t-I)) 

(20') 

(33') 

= (- T[ A - BK] + T[ A - BK] QC + [F - TBKE] T)x(t - 1) 

+ (TBKE + F - TBKE)e(t - 1) 

=Fe(t-l) 

since F = TAE. The composite system consisting of (33') and (34') 

( x(t)) = (A - BK -BKE)(X(t-I)) 
e(t) 0 F e(t - 1) 

(34') 

(36) 

inherits the same stability property as the system composed of (33) and 
(34). The eigenvalues of the system (36) are those of A - BK and of 
F == A22 - GA 12' Therefore, when G is selected so that F has all its 
eigenvalues less than unity in modulus, the stability property of system (36), 
and hence that of the optimal behavior of state variables, is not affected by 
incorporation of our observer into optimal feedback control rule. 

Concluding this section, we suggest our Luenberger observer can be 
extended to any distributed-lag system: 

k h 

x(t) = L Ajx(t - i) + L Bjv(t - j) (37) 
i=1 j=O 

with output equation 

y (t) = Cx (t), (38) 

where x(t), v(t), and y(t) are state n vector, control m vector, and output r 
vector, respectively, in period t; and Ai' Bj' C are constant matrices of 
appropriate dimensions with rk(C) = r < n. Lettingy(t) consist of the first 
r components of x(t), we have 

(39) 

and the rest of x(t) is an unobserved state-variable vector of order n - r. 
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System (37) can be rewritten 

x(t) = Ax(t - 1) + Bv(t), 

where 

v(t-h+l) 0 1m 0 0 

V(I - I) 0 1m 0 

X(I) == 
v( I) 

A== 0 0 0 0 
x(l-k+I)' 0 0 0 

x(t - I) 0 0 0 

x( I) Bh BI Ak 

Accordingly, (38) is expressed as 

with 

where r== hm + kn - n + r, and 

v(t - h + I) 

v(t - I) 

- t = v(t) 
y()- x(t- k+ 1) 

x(t - I) 

y( t) 
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(37') 

0 
0 

0 0 

0 8== 1m 

In 0 0 

0 In 0 

A2 Al 
Bo 

(38') 

(39') 

Note that the dimensions of x(t) and j(t) are ii (== hm + kn) and r 
(== ii - n + r), respectively. Clearly, rk( C) = r < ii. Thus the transformed 
state-space representation (37'), (38') is of the same form as system (l), (3). 
Hence we can follow a procedure similar to our previous steps for obtain
ing a Luenberger observer for unobserved n - r variables in x(t). 

However, dimensionality problems may occur with observer design for 
large-scale systems such as (37'), (38'). Refer to Arbel and Tse (1979) for an 
approach to reducing the computational requirements in observer design 
for large-scale linear discrete-time systems. 
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3.3. Cost Performance of Optimal Control 
Incorporating Observers 

In this section we verify a cost rise due to the introduction of a Luenberger 
observer. It is known that if state variables were all perfectly observed in 
each time, we would adopt the standard optimal feedback control rule (cf. 
Theorem 15 in Section 2.2) 

v(t+ 1)= -Kx*(t), (40) 

where x * denotes the associated state vector governed by 

x*(t) = [A - BKJx*(t - 1) (41 ) 

with x*(O) = x(O), ensuring a minimum of quadratic cost function: 
00 

J = 2: {xI(t)Zx*(t) + vT(t + l)<I>v(t + I)}. (42) 
1=0 

When state variables are not perfectly observed as we assume, we apply x 
instead of x to feedback control rule as in (32), obtaining an associated cost 
rise tlJ above the minimal value J* of J in (42): 

J* = X T (O)Sx (0) 
00 

tlJ = 1 -J*, 

with S = A TS[ A - BKJ + Z, 

(42'a) 

(42'b) 

1=2: {XT(t)ZX(t)+VT(t+ l)<I>v(t+ I)}. (42'c) 
1=0 

The vector e(t) defined in (35), an estimation error, is rewritten 

e(t) = w(t) - w(t) (35') 

since Tx(t) = - Gy(t) + w(t) and since wet) = z(t) + Gy(t). Then x(t) in 
(31) can be expressed as 

x(t) = x(t) + Ee(t), (43) 

where E is that appearing in (31'). Equation (43) means that measurement 
of the state vector involves estimation error Ee(t). x(t) itself will differ from 
the x*(t) mentioned above by e*(t), say: 

x(t) = x*(t) + e*(t) (44) 

with e*(O) = 0 since x*(O) = x(O). Hence x(t) is rewritten 

x(t) = x*(t) + e*(t) + Ee(t). (43') 

The cost criterion 1 in (42'c) becomes, by virtue of (44), (32), and (43'), 
00 

1 = 2: {(x*(t) + e*(t)fZ(x*(t) + e*(t)) 
1=0 

+ (x*( t) + e*(t) + Ee(t) fKT <I>K( x*(t) + e*( t) + Ee(t)) }. 

(42/1 c) 
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J* in (42'b) can be rewritten as 

00 

= 2: { xJ(t)Sx*(t) - xJ(t + 1 )Sx*( t + 1) } 
1=0 

00 

= 2: {xJ(t)[ S - (A - BK)TS(A - BK) ]x*(t)} (in view of (41)) 
1=0 

00 

= 2: {xJ(t)[Z + KTq,K]x*(t)} 
1=0 

(in view of (28t ) in Sec. 2.2). 

(42/1b) 

Subtracting J* in (42/1b) from j in (42/1c) yields the value of cost increase 
/1J: 

00 

/1J = 2: {2xJ(t)Ze*(t) + 2(x*(t) + e*(t)fKTq,K( e*(t) + £e(t)) 
1=0 

When feedback control incorporates a Luenberger observer as in (32), we 
have the associated behavior of state vector governed by (33') with the 
property of e(t) given by (34'). Subtracting (41) from (33') with (44) taken 
into consideration yields 

(46) 

Hence 

(46') 

On the other hand, the Riccati equation (28t) and gain matrix (27t) in 
Section 2.2 give, respectively. 

Z=S-[A-BKfSA (47) 

and 

KTq, = [A - BKfSB. (48) 

From (48) and (47) follows 

Z - KTq,K= Z - [A - BKfSBK 

= S-[A - BKfS[A + BKJ. (49) 

Substituting (47) for Z into the first term, (48) for KTq, and then (46') 
into the second term, and (49) for Z - K T q, K into the third term, respec-
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tively, in the brackets on the right-hand side of (45), we get 
00 

AJ = ~ {2x[(t) [ S - [A - BKfSA ]e*(t) 
1=0 

+ 2(x[(t) + e[(t»)[ A - BKfS(Ae*(t) - e*(t + 1») 

+ e[(t) [ S - [A - BKfS[ A + BKJ ]e*(t) 

+ e T(t)ETKTipKEe(t)} , 

which reduces to 
00 

AJ = ~ { e[(t) [ S + [A - BKJ TS[ A - BKJ ]e*(t) 
1=0 

since, in view of (41) and e*(O) = 0, 
00 

~ {x[(t)Se*(t) - X[(t) [ A - BKfSe*(t + I)} 
1=0 

00 

= ~ {x[(t)Se*(t) - x[(t + l)Se*(t + I)} 
1=0 

= x[(O)Se*(O) 

=0. 
Next, the last term in the brackets on the right-hand side of (45') IS 

rewritten as follows with (48) taken into account: 

eT(t)ETKTipKEe(t) = eT(t)ET[ A - BKfSBKEe(t) 

= eT(t)ETATSBKEe(t) - eT(t)ETKTBTSBKEe(t). 

The second term on the right-hand side of this equation is expressed as 

- e T (t)ETKTB TSBKEe( t) 

= (e[(t) [ A - BKf - e[(t + l»)S(e*(t + 1) - [A - BK]e*(t») 

in view of (46). Thus AJ in (45') is further reduced to 
00 

AJ = ~ {e[(t)Se*(t) - e[(t + l)Se*(t + 1) + eT(t)ETA TSBKEe(t)} 
1=0 

00 

= ~ {eT(t)ETKT[ip+ BTSBJKEe(t)}, 
1=0 

(50) 

where e*(O) = ° and (48) have been taken into consideration. Now (50) 
implies that the cost j resulting from the optimal control law (32) incorpo
rating a Luenberger observer will, in general, be greater than the standard 
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minimal cost J* in (42'b), provided estimation error e(t) is nonzero for 
some t. 

Finally, since e(t) = Fe(t - 1) in (34'), we have 
00 

f:,.J = e T (0) 2: (KEr {[ <I> + B TSB] KEF1e(0), (50') 
1=0 

implying that only if the initial estimation error e(O) were zero, i.e., 
W(O) = w(O), the related cost function would assume the minimum value 
J*. However, this is simply the case where all state variables are really 
accessible, so as long as we use an observer, the cost J associated with the 
optimal control (32) will be greater than J*. (For a parallel argument, refer 
to Gourishankar and Kudva(1977).) 

3.4. Recursive Minimum-Cost Observer 

In the preceding sections we know that many Luenberger observers exist 
and that they definitely incur cost increase. We shall try to obtain an 
observer which incurs the least cost increment; our approach is a recursive 
type of estimation which has some relationship to the Kalman's estimation 
developed in Chapter 4 for stochastic systems. 

We consider the system consisting of (1) and (3): 

x(t) = Ax(t - 1) + Bv(t) (1) 

yet) = Cx(t), (3) 

where A, B, and C are real constant matrices of dimensions n X n, n X m, 
and r X n, respectively, with rk(C) = r( < n). Tse and Athans (1970) give 
the following definition. 

Definition 1. Let C be an r X n real constant matrix with rank r and let T 
denote any s X n real matrix with s = n - r. The set 

T( C) = { T : N (T) n N (C) = 0} (0 denotes an empty set. ) (51) 

is called the set of complementary matrices of order n - r for C, where 
N (C) and N (T) denote the nullspaces of C and T, respectively. 

By virtue of this definition, the only vector b satisfying both Cb = 0 and 
Tb = 0 is a null vector; i.e. (denoting transposition by superscript T), n X n 
matrix [C T, TT]T is nonsingular for each T E T( C) in view of Theorem 27 
in Murata (1977, Section 2.3). Thus we have an n X r matrix Q(t) and an 
n X s matrix pet) such that 

Q(t)C + P(t)T(t) = I for T(t) E T(C), (52) 

where [Q(t),P(t)] is the inverse of [CT, TT(t)f. 
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Theorem 4 (Tse and Athans, 1970). Let {T} == {T(O), T(l), T(2), ... , 
T( oo)} be a sequence of matrices T( t) E 'T( C). Then, for system (1), (3), an 
order-s observer 

z(t) = F(t)z(t - 1) + H(t)y(t - 1) + T(t)Bv(t) (53) 

exists for t = 1,2, ... such that for some appropriate choice of z(O) 

z(t) = T(t)x(t), t = 1,2, .... 

PROOF. Pick for t = 1,2,3, ... 

F(t) = T(t)AP(t - 1) 

H(t)= T(t)AQ(t-1), 

(54) 

(55) 

(56) 

where Q(t) and pet) satisfy (52). Substituting (55), (56), and (3) into (53), 
and subtracting T(t)x(t), with (1) taken into account, from the resulting 
equation we get 

z(t) - T(t)x(t) = T(t)AP(t - l)z(t - 1) + T(t)AQ(t - l)Cx(t - 1) 

- T(t)Ax(t - 1), 

and then (52) is taken into account: 

z(t) - T(t)x(t) = T(t)AP(t - l){z(t - 1) - T(t - l)x(t - I)}. (57) 

Thus if we choose z(O) = T(O)x(O), then we obtain (54). D 

REMARK. From the above proof, we know that the observer z(t) in (53) can 
be described in terms of the sequence {T} as 

z(t)= T(t)A{P(t-l)z(t-1)+ Q(t-1)y(t-l)} + T(t)Bv(t). (58) 

Also, by definin,g 

e(t) == z(t) - T(t)x(t), 

we have from (57) 

e(t) = F(t)e(t - I). 

Combining (53) with (59) and taking (60) into account yield 

F(t)T(t - I)x(t - I) + H(t)Cx(t - I) + T(t)Bv(t) 

= T(t){ Ax(t - 1) + Bv(t)} 

or, equivalently, 

T(t)A - F(t)T(t - 1) = H(t)C 

(59) 

(60) 

(61 ) 

since x(t) is nontrivial. Equation (61) is a dynamic version of the funda
mental observer equation (19). We can easily show, in a manner similar to 
Lemma 2, that if T(t) satisfies (61) then (60) follows from (53). Therefore, 
we have the following. 
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Theorem 5. Let {T} == {T(O), T(1), T(2), ... , T( oo)} be a sequence of 
matrices T(t) ET(C). Then equations (60) and (61) hold and are equivalent 
to each other. 

The proof follows immediately from Theorem 4 and the above remark. 
Note that (52), (55), and (56) imply (61) since 

F(t)T(t - 1) + H(t)C 

= T(t)A{P(t-l)T(t-l)+ Q(t-l)C} = T(t)A, 

and that, conversely, (52) and (61) imply (55) and (56). Equation (52) 
follows from T(t) E '1'( C). Thus Theorem 5 may alternatively be stated as 
follows. 

Theorem 5'. Let {T} == { T(O), T(1), T(2), ... , T( oo)} be a sequence of 
matrices T(t) ET(C). Then (55), (56), and (60) hold, and (55), (56) are 
equivalent to (60). 

In the following, we derive an explicit form of T(t), which should belong 
to T(C) since we utilize (55), (56), and (60). 

Now we want to minimize the sum of squares of estimation error e(t) (cf. 
(35'», by which we may minimize the accompanying cost increase (cf. (50». 
The sum of the squares of the estimation error is defined as e T(t)e(t), 
which is equal to the trace of e(t)eT(t), the covariance matrix of e(t). By 
virtue of (60), the covariance matrix is written in a recursive form: 

(62) 

where 

Q(t) == AP(t)e(t)eT(t)pT(t)A T. (63) 

Conformably to the partition of A in (4), we partition Q(t) as 

Q(t) = (QIl(t) Q12(t») 
Q21(t) Q22(t) 

(64) 

where 

for i = 1,2; 

QI2(t) = Q[I( t) ==[ A II,A 12] P(t)e(t)e T (t)P T (t)[ A21,A22f. 
(65) 

(For a parallel argument on a stochastic system, refer to Leondes and 
Novak (1972).) 

Assuming that the first r vector of x is observed, we specify C as 

C = [Ir' OJ. 

Correspondingly, T(t) is partitioned as (cf. (21» 

T(t) = [ - G(t),!s], 

(66) 

(67) 
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where G(t) is an s X r matrix function of t. Then 

I.e., 

Q(t) = ( Ir ) and P(t) = ( 0) =- E. 
G(t) Is 

Hence [2ij( t) in (65) reduce to 

[2;;(t) = A;2e(t)e T(t)Al for i= 1,2; 

[2dt) = [2il(t) = A 12e(t)eT(t)Ai; , 

and the covariance matrix of e(t) is expressed as 

e(t)eT(t) = G(t)[2II(t - I)G T(t) - G(t)[2I2(t - 1) 

- [221(t - I)G T(t) + [222(t - 1). 

(68) 

(69) 

(65') 

(62') 

Thus the trace of the covariance matrix is quadratic in G(t). The extremum 
condition for the trace is given by setting its gradient with respect to G( t) 
equal to zero: 

a tr( e(t)e T(t)) 
0= aG(t) 

= 2G(t)[2I1(t - 1) - [2i2(t - 1) - [221(t - 1) 

= 2G(t)[2II(t - 1) - 2[221(t - 1), 

from which follows (for singular [211' its generalized inverse replaces [2111) 

(70) 

Note that this extremum condition is also sufficient for tr(e(t)eT(t» to 
achieve a minimum since [211 is positive semidefinite. Substituting (70) into 
(62') yields 

e(t)e T (t) = [222(t - 1) - [221(t - 1 )[2II(t - 1) -1[2li t - 1). (71) 

Formula (70) indicates a recursive procedure for obtaining an optimal 
observer. Substitution of (67) and (69) into (55) and (56) yields 

F(t) = A22 - G(t)A 12' (55') 

H(t) = A2I - G(t)A 11 + (A 22 - G(t)A I2 )G(t - 1). (56') 

Thus we reduce the explicit form of observer in (58) to 

z(t) = (A22 - G(t)AI2)Z(t - 1) + (B22 - G(t)BII)v(t) 

+ [A2I - G(t)AII + (A22 - G(t)A I2 )G(t - 1)]y(t - 1), (58') 

which may be termed a recursive observer, as compared with z(t) in (25). 
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Initiation of the observer can be done as follows. Let 

z(O) = w(O), (72) 

where w(O) is some expected value of unobserved s vector w(O) of x(O) in 
period o. Equation (72) implies 

G(O) = 0 and hence T(O) = [O'!s]. (73) 

Since e(O) = z(O) - T(O)x(O) = w(O) - w(O), 

e(O)eT(O) = (w(O) - w(O))(WT(O) - WT(O)) == Woo (74) 

Hence 

Then by (70) 

(70') 

and by (71) 

WI == e(l)e T (I) = Q22(O) - Q21(O)Qll(O)- IQ d O) 

= All Wo - WoA 12 A 12 WoA 12 A 12 Wo All· [ T( T)-I ] T (71') 

For t = 2, we substitute (71') into (65) and the result into (70) and (71) to 
obtain G(2) and e(2)e T(2), and so forth. Progressing, one by one, in a 
similar way we can calculate all G(t) and e(t)eT(t), t= 1,2, ... ; that is, 
for t = 1,2,3, ... (if A12WI _ IA?; is singular, its generalized inverse will be 
as below), 

T T -I 
G(t) = A22~-IAI2(AI2~-IA12) , 

WI == e(t)eT(t) 

Finally, it is easy to show that T(O), T(l), T(2), ... thus obtained belong 
to T( C) since for t = 0 

( C )b=(Ir O)b=O~b=O 
T(O) 0 Is ' 

and for t = 1,2,3, ... 

( C )(br) (Ir O)(br) {br=O 
T(t) b, == - G(t) Is bs = O~ b, = G(t)br = 0, 

where br and bs stand for the first r vector and the last s vector of n vector 
b, respectively. 
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Note also that in our recursive procedure 

F(O) = A22 , 

F(t) = A22 - G(t)AJ2 = A22 - Q21(t - I)Qll(t - I)-IAJ2 (76) 

T T -1 
= A22 - A22Wt-1AJ2(AI2Wt-1AI2) Al2 (77) 

for t = 1,2, . . . . If e(t) were zero for t = 0, 1,2, ... , therefore, no com
mon eigenvalue would exist for A22 and for F(t). 

As for the stability property of the system incorporating our dynamic 
observer, we may consider the composite system 

( x(t)) = (A - BK -BKE)(X(t - 1)), 
e(t) ° F(t) e(t-I) 

(78) 

which can be derived in the same way as system (36). The stability of 
system (78) depends on that of F(t) determined recursively by (77). For the 
related stability analysis, refer to Tse (1973). 

On the assumption that system (78) is stable, the observer wet) for 
unobserved state vector w(t) is defined as 

w(t) == z(t) + G(t)y(t) 

since then w(t) is expressed as 

w(t) = w(t) + F(t){w(t - 1) - w(t - I)} 

(79) 

(80) 

in view of (57) and (67). The observer x(t) for the whole state vector x(t) is 
written 

x(t) = Q(t)Cx(t) + Ez(t) (81) 

smce 

( y(t)) (Ir O)(y(t)) 
w(t) = G(t) Is z(t)' 

An apparent difference between the present minimum-cost observer and 
the Luenberger observer discussed in Section 3.3 is that, while the latter 
involves a static matrix G obtained through rather cumbersome steps, the 
corresponding matrix G(t) in the minimum-cost observer is easily calcu
lated in a recursive manner. 

Application 1. We consider a macroeconomic model in which the consump
tion is linearly dependent on permanent income and the GNP. Our model 
is as follows: 

q(t) = e(t) + i(t) + v(t) 

e(t) = lXIZ(t) + lX2q(t - 1) 

i(t) = lX3Q(t) - lX4k(t - 1) 

k(t) = k(t - 1) + i(t) 

z(t) = lXsz(t - 1) + lX6i(t), 

(82a) 

(82b) 

(82c) 

(82d) 

(82e) 
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where we denote z = permanent income, q = GNP, c = consumption, i 
= investment, v = government expenditures, k = capital stock, and a's are 
positive constants. Equations (82a) and (82d) are definitional ones, (82b) 
shows the consumption behavior, (82c) represents an acceleration principle 
of investment, and (82e) determines the movement of permanent income. 
(Constant terms are omitted for the sake of brevity.) We assume that z(t) 
cannot be directly observed and that vet) is a control variable (instrument). 
Substitutions of (82b) and (82c) into (82a) and of (82c) into (82d) and (82e) 
yield, respectively, 

(1 - (3)q(t) - alz(t) = a2q(t - 1) - a4k(t - 1) + v(t), 

k(t) - a3q(t) = (1 - (4)k(t - 1), 

z(t) - a3a6q(t) = a5z(t - 1) - a4a6k(t - 1). 

These condensed equations are expressed in matrix form 

o k(t) = 0 
-alj[q(t)j [a 2 o j Iq (t - 1) j [1 j o k(t-l) + 0 v(t). 

1 z (t) 0 a5 z(t - 1) 0 

(83) 

Premultiplying (83) by the inverse of the coefficient matrix on its left-hand 
side, we obtain the state-space form of our model corresponding to (1) 

[!~:~j = [:~: :~: :~:j !~: = ~~j + [ P:3 jv(t), 
z(t) a31 a32 a33 z(t - 1) pa3a6 

(83') 

where p == (1 - a3 - ala3(6)-1 and 

o pal 
pa la3 (84) 

o p(1 - ( 3) 

Since z(t) is the only unobserved variable, coefficient matrix C in output 
equation (3) becomes in this case 

C ==( 1 0 0). o 1 0 

Then, in view of (66), we can apply (7ot) and (58') to the present model. 
Since W;-I in (7ot) is a scalar in this example, and since A 12A;Z; is 

singular, G(t) reduces to 

T T + G(t) = A22A 12( A 12A 12) (85) 

where (A 12A I~)+ is the generalized inverse obtained by applying Theorem 
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22 in Section 6.3 of Murata (1977, p. 215), which is calculated as 

in view of the partitions 

(A : A) [aJl a12 : al3] II' 12 • ....... :....... = a21 a22 : a23 , 
A . A .................. .. 

21: 22 a31 a32 : a33 

Thus G(t) in (85) becomes a two-dimensional vector of constant compo
nents (gl' g2) such as 

( al3a33 a23a33 ) 
G(t) = 2 2' 2 2 =(gl' g2)' 

al3 + a23 a l3 + a23 

and hence we have A22 - G(t)A 12 = O. Therefore, our observer z(t) (as in 
(58'» reduces to 

z(t) = (B22 - G(t)BII)v(t) + (A21 - G(t)A 11)( ~~: = :n 
= p(a3a6 - gl - a3g2)v(t) + (a31 - allgl - a2I g2)q(t - 1) 

+ (a32 - a l2 g1 - a22 g2)k(t - 1). (86) 

Utilizing the definitions of (84) and p, we can express z(t) in (86) as 

1 a2 {I (1 - ( 4 )( 1 + ( 3) ) 
z(t)=--v(t)--q(t-I)+ -- 2 k(t-I). 

a l a l a l a l(1 + ( 3) 

(86') 

3.5. Separation of Observer and Controller 

Our objective in this chapter is to obtain observers as proxies for inaccessi
ble state variables in order to apply them to the optimal feedback control 
rules developed separately, as in Section 2.2. From this standpoint, we have 
tried to minimize the cost rise due to incorporating observers into a 
controller, assuming the controller design as given. However, since the 
controller should be designed to minimize the associated cost, it seems 
more appropriate to compute the control and observer parameters simulta
neously in such a way that the overall cost is minimized. We shall consider 
this design procedure in the present section, following Willems (1980) who 
confirms our view of the separation of observer and controller design for a 
linear discrete-time optimal control problem. 

We want to design the control input vet) to minimize the cost 
00 

J= 2: {xT(t-I)Zx(t-I)+ VT(t)Il>V(t)} 
1=1 

(87) 
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subject to the linear system 

x(t) = Ax(t - I) + Bv(t), (1) 

where x is an n vector of state variables, v is an m vector of control 
variables, Z and q, are positive definite matrices, and A, B are constant 
matrices of appropriate dimensions. We assume that only a limited number 
r « n) of state variables are measured, and we represent them by the 
output vector y as 

yet) = Cx(t) (3) 

If all the state variables were measurable, the optimal input would be (cf. 
Thoerem 15 in Section 2.2) 

v(t) = - Kx(t - I) (88) 

with 

(89) 

where K is the unique positive definite solution of the algebraic Riccati 
equation: 

S = AT[ S - SB[ BTSB + q,rlBTS]A + Z. (90) 

Substituting (89) into (90) yields 

S = A TS[ A - BK] + Z. (90') 

Also, it follows from (89) that 

BTSA = [BTSB + q,]K. (89') 

Then Z in (87) is eliminated as follows, with (90'), (I), and (89') taken into 
considera tion: 

00 

J= 2: {XT(I)SX(t)+XT(t-I)ATS[BK-A]x(t-I)+VT(t)q,V(t)} 
t= 1 

00 

= 2: {x T(l - I)A TSB(Kx(t - 1) + vet)) + v T(t)BTSAx(1 - 1) 
t= 1 

00 

= 2: {(v(t) + KX(1 - 1))T[ BTSB + q,](v(t) + Kx(t - I))} 
t= 1 

(87') 

where K is the matrix defined by (89). 
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When outputs y(r) (r = 0, 1, ... , t) only are available to us, we must 
reconstruct the state x(t). In this case the estimate is denoted by x(t). The 
design of optimal state reconstruction consists of two parts: first, to design 
the optimal control 

v(t+ 1)= -Kx(t) (91 ) 

where Kx(t) is an optimal estimate of Kx(t), using the available informa
tion as of time t; secondly, in view of the cost criterion in (87'), to design 
the estimate x(t) such that the estimation error measure 

00 

P == 2: (Kx(t) - KX(t»)T[ B TSB + <1>]( Kx(t) - Kx(t») (92) 
1=0 

is to be minimized. Of these two, the control design problem is obviously 
independent of the estimation, since the computation of the gain matrix K 
depends only on the parameters defining the system (I) and the cost 
function (87). Hence the optimal control can be expressed as 

vet + I) = - Kx(t) (91') 

instead of (91). However, the estimation of x(t) may depend on the control, 
since the estimation error criterion p in (92) involves matrices K and <1>. We 
therefore analyze the design of optimal observers with respect to the 
estimation error measure 

00 

p == 2: (x(t) - x(t»)TM(x(t) - x(t») (92') 
1=0 

where M == KT[B TSB + <I>]K, and we show that the optimal observer 
design is independent of the matrix M and thus independent of the 
controller design. 

We start with the construction of a full-order observer from the minimal
order Luenberger observer described by (25) and (30). x(t) in (31') of 
Section 3.2 can be expressed as 

x(t) = Qy(t) + r(t) (93) 

where r(t) == Ez(t), and Q, E are those in (31'). Premultiplying both sides 
of the observer equation (25) by E, and taking the partitions in (4) into 
account, we get 

r(t)=[A - QCA]r(t-I)+[A - QCA] Qy(t-I)+[B- QCB]v(t) 

(94) 

where C is that in (3). We shall try to design matrix Q in the full-order 
observer (93), (94), such that the estimation performance measure p is 
minimized. 

Defining the estimation error E of the state x as 

E(t) == x(t) - x(t), (95) 
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we can derive the following relation (96), in view of (1), (3), (93), and (94), 

f(t)=[A - QCAJE(t-l) for t = 1,2, .... (96) 

Given the initial values of state x(O) and a priori estimate x(O), the initial 
estimation error f(O) is determined as 

f(O) = x(O) - x(O) = x(O) - Qy(O) - reO), (97) 

and the initial-stage observer reO) is, in turn, assumed to be equal to 

reO) = x (0) - QY (0), (98) 

where yeO) = Cx(O). Then, substituting (98) into (97) yields 

f(O) = [I - QC](x(O) - X(O)). (97') 

By denoting 

8 ::=(x(O) - x(O))(x(O) - x(o)f, (99) 

we have 

f(O)fT(O) = [I - QCJ8[ 1- Qct::= e. (100) 

On the other hand, it follows from (96) that 

f(t)fT(t) = [I - QCJAf(t - l)fT(t - I)A T[ 1- Qct 

for t = 1,2, . ... (WI) 

The estimation performance criterion p is now expressed as 

where 

co 

p = 2: (fT(t)Mf(t)) 
1=0 

= tr( MI~O f(t)fT(t)) 

= tr(MII), (102) 

co t 

II::= 2: ([ 1- QCJA)te(A T[ 1- Qct) (103) 
1=0 

in view of (100) and (WI). Clearly, II is the symmetric positive semidefinite 
solution of the following algebraic equation: 

II = lII1T + e, (104) 

where 

1::=[ 1- QCJA. (105) 

Our problem is now reduced to choosing Q and II so as to minimize p 
under the constraint (104). This constrained problem can be reformulated 
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as the unconstrained problem of choosing Q, II, and A so as to minimize 
the Lagrangian 

L = tr( MIl) + tr( A[ AIIAT + e - II]), (106) 

where A is an n X n matrix of Lagrange multipliers. (Cf. Application 3 
Murata (1977, p. 262).) Note that as matrix [AIIAT + e - II] is symmetric, 
so is A. Necessary conditions for optimality are 

aL 
aQ = 0, 

aL 
all = 0, (107) 

and (104). More specifically, conditions (107) are expressed as follows (see 
the Appendix): 

aL _ atr(A[I - QC]AIIA T[ 1- QCf + A[ 1- QC]e[I - QCf) 

aQ - aQ 

= 2A[ QC - I] [AIIA TC T + eC T] = 0, (108) 

and 

a L _ a tr( [ M - A ] II + AAIIA T) 

all - all 

= M - A + AT AA = o. (109) 

While (109) indicates some interdependence among M, A, and Q, equation 
(108) implies that the optimal observer matrix Q is determined, as (110), 
independently of A and hence of M, provided A is nonsingular. 

Q = AIIA TC T[ CAllA TCTrl 

since ec T = 0 in view of C = [/r'O] and of 

e=(~ e(O)~T(O))' 

(110) 

(99') 

where e(O) (= w(O) - w(O)) is the estimation error of a minimal-order 
observer w. Conformably with partition A in (4), we partition II as 

II = (IIII II 12 ) with IIfl = II12' 
II21 II22 

(Ill) 

and calculate the right-hand side of (110), entailing 

Q = (~) (110') 

where 

(112) 

Substituting (99') for e and (110') for Q into (100) shows that e is equal to 
e in (99'). Similar substitutions for e and Q into (103) yield IIII = 0, 
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00 

II '" A lOT (T TAT )1 22 = L. (A22 - GA 12) e( )e (0) A22 - A 12G . 
1=0 

Hence G in (112) reduces to 
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( 113) 

A T[ TJ-I G = A 22II22A 12 AI2II22A12 , (112') 

and accordingly our full-order observer described by (93) and (94) reduces 
to a minimal-order Luenberger observer described by (93') and (94') below: 

w(t) = Gy(t) + z(t), (93') 

z(t) = [A22 - GA 12 Jz(t - 1) + [A2l - GAll + (A22 - GA 12)GJy(t - 1) 

+ [B22 - GB II] v(t). (94') 

The features of this result are enumerated here. 

I) The optimal reconstructor of inaccessible state variables is a minimal
order Luenberger observer. 

2) The optimal observer matrix G is independent of the estimation error 
weighing matrix M and thus independent of the optimal controller 
design for our linear discrete-time optimal control system. 

For an analysis similar to the above separation argument, and for the 
design of optimal controllers based on the separation principle, refer to 
O'Reilly and Newmann (1976). Furthermore, by combining the minimal
order observer (93'), (94') with a feedback controller, we recognize that the 
corresponding linear dynamical controller takes the form of 

v(t) = Rz(t - 1) + Uy(t - 1), 

z(t) = Dz(t - 1) + Vy(t - 1), z(O) = zo' 

(114) 

(115) 

Given this controller form, O'Reilly (1978) proposes to determine an 
optimal low-order controller with the dimension of z(t) set arbitrarily at s 
in the interval of 0 .;; s .;; n - r. 
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CHAPTER 4 

Filters for Linear Stochastic 
Discrete-Time Systems 

Observed variables in the real economy will be accompanied by observa
tion errors, and any assumed linear dynamic economic system must con
tain a random disturbance term unexplainable by the system scheme. 
"Filtering" here is the problem of estimating all state variables from 
hitherto available input and output data in such a system. Filtering is, of 
course, a prerequisite for providing optimal feedback control values. Fol
lowing Rhodes (1971), we verify the Kalman recursive formulas for the 
predictor and filter for our dynamic system in a tutorial manner (Section 
4.2). (Section 4.1 is devoted to a preliminary least-squares estimation.) In 
Sections 4.3 and 4.4 we are concerned with the problem of finding a 
minimal-order filter of observer type, and we rely exclusively on Tse and 
Athans (1970). Their idea is to minimize the covariance matrix of estima
tion errors and to establish a dynamic minimal-order observer-estimator. 
The estimator is also applied to a general distributed-lag system. Finally, in 
Section 4.5, related economic applications are presented and examined. 

4.1. Preliminary Least-Squares Estimators 

Economic variables in any time sequence are always accompanied by 
disturbances not explainable by a linear system scheme. Taking this fact 
into consideration, we try to estimate variables in stochastic discrete-time 
systems. In particular, in this chapter we are concerned with estimating 
state vector x in the following linear discrete-time system composed of (1) 
and (2) and containing additive disturbances and observation errors. First, 

x(t) = Ax(t - 1) + Bv(t) + D~(t), (1) 
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where ~ is the disturbance p vector, x and v are the state n vector and the 
control m vector, respectively, and A, B, D are constant matrices of 
appropriate dimensions. State vector x is accordingly stochastic, while 
control vector v is regarded as nonstochastic. (Vectors are assumed to be 
column ones.) Secondly, some state variables may not be directly observed. 
We therefore assume that r vector y with r < n is the output through which 
state vector x can be imperfectly observed, being accompanied with an 
additive observation error: 

yet) = Cx(t) + r(t), (2) 

where r stands for the r vector of observation errors and C is an r X n 
constant matrix of rank r. ~ and r are mutually independent stochastic 
vectors, not necessarily Gaussian, serially uncorrelated, with zero means 
and finite constant covariance matrices Z and 11>, respectively, viz., 

£~(t) = 0, 

cov(~(t),r(s») = 0 

cov( ~(t), ~(s» = Z 81s 

covU(t),r(s») = 11>81s 

(3) 

with 8/1 = 1, 81s = 0 (t =1= s). Further, we assume that Z is positive semidefi
nite and that 11> is positive definite. 

Kalman (1960) provided recursive formulas for optimal estimators for 
x(t) of system (1), (2) under the assumption (3) with Gaussian stochastic 
disturbance and error terms.We shall verify the Kalman recursive formulas 
in the same system with non-Guassian disturbance and error terms, follow
ing Rhodes (1971). Optimal estimation means here that the expected value 
of the squared norm of linear estimation error is to be minimized, i.e., that, 
letting x be a linear estimator for x, 

(4) 

is minimized for estimation error vector £ ( = x - x). Hence our estimators 
are linear least-squares estimators. We start by establishing (linear) least
squares estimation formulas. 

Lemma 1 (Least-Squares Estimator When Only One Explaining Variable 
Vector Exists). Let x, y be stochastic variable vectors such that the least
squares estimator x for x has a linear relation with explaining variable vector 
y: 

x = Hy + b. 

The matrix H and the vector b to minimize £(11£11 2) for 

£ == x - X = x - Hy - b 

are obtained as 

(5) 

(6) 

(7) 
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and hence 

where 

Sxy == cov(x,y) 

= E {(x - mx)(Y - my)T} 

= E(xy T) - mxm/, 

and ~vy == cov(y, y) is assumed to be positive definite. 

PROOF. Equation (4) can be expressed as 

E(llxI12) = E(XTX) = tr[ E(XXT) l 
Since 

E (xx T) = E { (x - Hy - b)( x - Hy - b) T } 
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(8) 

(9) 

(lO) 

= E(XXT) - HE(yxT) - bm; - E(xyT)HT + HE(yyT)HT 

+bmTHT - m b T + Hm b T + bb T 
y x y 

= Sxx + mxm; - H(Syx + mvmn - bm; - (Sxy + mxmyT)HT 

+ H( Syy + mym/)HT + bm/H T - mxb T + Hmyb T + bb T, 

(10) becomes 

E(llxI12) = tr(Sxx - HSyx - SxyHT + HSyyH T ) + bTb - 2b Tmx 

+m;mx + 2myTHT(b - mx) + myTHTHmy 

= tr[ (Sxx - SxySy; ISyx) + (H - SxySy; 1 )SyA HT - Sy; ISyx) ] 

+ (b - mx + Hmy)T(b - mx + Hmy). (11 ) 

Define a norm for matrix F == H - SxySy; 1 as 

IIFII ==[ tr( FSy'yFT) f/2. (12) 

It can be seen that IIFII in (12) satisfies the following four axioms for 
matrix norm: 

1) IIFII ;;. 0, and IIFII = 0 if and only if F= 0, 
2) IlaF11 = lalllFll for an arbitrary scalar a, 
3) IIF+ Gil < IIFI! + IIGII, 
4) IIFGI! < IIFIIIIGII. 

Thus (11) is rewritten 

E(llxI12) = tr( Sxx - SxySy;ISyx) + IIH - Sxy Sy;1112 + lib - mx + Hmy112, 

from which (7) follows. 0 
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Covariance matrices of the above estimation error x are given by (15) 
below. Since 

Ex = Ex - Ex = SVS}:;IE(y - my) = 0, 

(unbiasedness of x), and since 

x = (x - mx) - SxySy:; I (y - my), 

we have 

cov(x,x) = E(XXT) 

(13) 

(14) 

= Sxx - SxySy:;ISyx' (15) 

Similarly, by virtue of (13) and (14) 

cov(x, y) = E(x(y - ny)T) == Sxy - SxySy:;ISyy = O. (16) 

Hence x is uncorrelated with any linear function of y. In particular, 

cov(x,x) = O. (17) 

Lemma 2. Let y be a stochastic vector, and let x, z be stochastic vectors of the 
same dimension, linearly dependent on y. Let M be a constant matrix, and c 
be a constant vector of the same dimension as x. Then using the notation in 
(8), we get 

E*{ Mx + z + c I y} = ME*{ x I y} + E*{ z I y} + c. (18) 

PROOF. Defining 

w== Mx + z + c, 

we get from (8) 

E* {w I y} = SwySy:; I (y - my) + mw, 

into which we substitute 

Note that if we define for the w mentioned in (19) 

W == w - E* {w I y} = Mx + l (l == z - E* {z I y}), 

then immediately we have 

(19) 

cov(w, w) = M cov(X,X)MT + M cov(x,l) + cov(l,x)MT + cov(l,l). 

(20) 

Lemma 3 (Least-Squares Estimators When Two Explaining Variable Vec
tors Exist). Let y and z be stochastic vectors of appropriate dimensions, and 



4.1. Preliminary Least-Squares Estimators 81 

denote by E* { x I y, z} the least -squares estimator for x linearly dependent on 
y and z. 

a) If y is un correlated with z, we have 

E* { x I y, z} = E* { x I y} + E* { Xy I z } , (21 ) 

cov( Xyz ,xyz ) = sxx - sxys):; ISyx - sxzsz; Iszx ' (22) 

where E* { x I y} is as in (8) and 

E*{xylz}==SxzSz;l(z-mz)' (23) 

Xy == x - E* { x I y} , XYZ == x - E* { x I y, z}. (24) 

b) If Y is correlated with z, we have 

E*{xly,z} = E*{xly} + E*{xylzy}, (25) 

cov( Xyz ,xyz ) = sxx - Sxysy.; ISyx - Sxzs:ZSzx (26) 

= cov( Xy , Xy) - cov( Xy ,zy) [ cov( Zy ,zy) r I cov(.s, ,xy), (26') 

where 

Zy == z - E* { z I y }, 

E* { Xy I Zy} == Sxzs:z.s, , 

sz~ == (Szz - SzySy; ISyz r I = [ cov(.s, ,zy) r I, 

SXZ == sxz - SxySy; ISyz = cov( Xy ,zy). 

Furthermore, the estimator is unbiased, i.e., 

E(E*{ x I y,z}) = Ex, 

and 

cov( Xyz ,y) = cov( Xyz ,z) = o. 

PROOF. 

a) Using the notation 

p T ==(y T,Z T), 

we have 

(27) 

(28) 

(29) 

(13') 

(30) 

E*{ x I y,z} = E*{ x I p} = SxpSp;l(p - mp) + mx ' (31) 

into which we substitute 

Sxp == cov(x, p) = [cov(x, y), cov(x,z)] = [Sxy, Sxz], 

S = cov = (COV(y, y) 0 ) = (Syy 0) 
pp - (p, p) 0 cov(z,z) 0 Szz' 
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entailing (21). In view of (15), we have 

cov(Xyz ,xyJ = Sxx - SxpSp;ISpx ' 

into which we substitute Sxp and Spp mentioned above, yielding (22). 
b) In view of (16), Zy is un correlated with y. Hence from (21) 

E*{xIY,zy} = E*{xly} + E*{xyl.s,}. (21') 

Also from (8), with Ezy = Exy = 0 (cf. (13)) taken into account, 

E* { Xy I Zy} = cov( Xy ,zy) [ cov( Zy , .s,) r IZy . (27') 

We now show (27') to be equal to (27). In view of (15), 

cov( Zy ,zy) = Szz - Szy Sy;' I Syz . 

cov( Xy ,zy) = E(xyz/) 

= E[ (x - E* {x I y})( z - E* {z I y}) T] 

= E[ (x - mx ) - SxyS~,;I(y - my)) 

X « z - mz) - SzySy; I (y - my)) T], 
which is easily seen to be equal to (29). Next we verify that 

E* { x I y, z} = E* { x I y,.s,} . 

The left-hand side of the above is expressed as (31), into which 

Sxp=[Sxy,Sxz], and 

(15'a) 

(15'b) 

S -I = [Syy Syz] - I = [Sy;, I + S}:; ISyzSizSzySy; I 
pp Szy Szz - Sz~SzyS):; I 

- Sy; ISyzSiz] 

Siz 

are substituted to result in 

E* {x I y,z} = SxySy;' I (y - my) + mx + SxxSiz( (z - mz) - SzyS:y;' I (y - my)) 

= E* { x I y} + Sxz Size z - E* { x I z } ) 

since SxpSp; 1= [SxySy;' I - SxzSz~SzySy;' I, SxzSiz]. 
Equation (26) is proved as follows. 

cov( Xyz ' xyz ) = E ( Xyz Xy~) 

= E[ (x - E* { x Iy, z} )( x - E* { x I y, z}) T], 
in which we take account of 

x - E*{xly,z} = (x - mx) - (Sxy - SxzSizSzy)Sy;,l(y - my) 

- SxzSz~(z - mz), 
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to entail 
cov(Xyz , xyz ) 

= Sxx - (Sxy - SxzS:'zSzy )Sv;"Syx - S"S:'zSzx 

+ [ - Sxy + Sxy - SxzS:'zSzy + SxzSz~Szy JSy;" (Syx - SyzS:'zSzx) 

+ [ - Sxz + (Sxy - SxzS:'zSzy )Sy;"Syz + SxzS:'zSzz ]S:'zSzx' 

83 

The two square-bracketed terms on the right-hand side of this equation 
vanish in view of (28) and (29). 

Last we verify (30). Since 

E(xyz ) = Ex - E(E*{ x Iy,z}) 

= E (x - E* { x I y} ) - E ( E* { Xy I Zv } ) = 0 

(unbiasedness of E*{x Iy,z}), we get 

cov(Xyz, y) = E(xyz(y - my)T) 

= E[ (x - mx)(Y - my)T] 

- E[ SxySy;" (y - my)(Y - my) T 

+ SxzS:'z(z - mz) - SzySy;"(y - my))(Y - my)T] 

= Sxy - Sxy - SxzSz~( Szy - Szy) 

= O. 
Proceed similarly for cov(xyz'z) = o. o 

Lemma 3 can be generalized to the case where arbitrarily many succes
sively occurring vectors exist. 

Theorem 1 (Rhodes, 1971). Let y(l), y(2), ... , y(t) be t successively occur
ring vectors, and let x(t + 11 t) denote the least-squares estimator of x(t + 1) 
linearly dependent on these vectors, i.e., 

x(t + 11 t) == E* { x(t + l) Iy(l), y(2), ... , y(t)}. 

Then the estimator is expressed in a recursive form 

where 

x (t + lit) = x (t + lit - l) + cov( X (t + lit - l), j (t I t - l)) 

X [ cov(j (t I t - l), j (t I t - l)) r' j (t I t - l), (32) 

x (t + lit - l) == x (t + l) - x (t + lit - l), 

j (t I t - l) == y(t) - .p (t It - l), 

.P (t It - l) == E* {y(t) Iy(l), ... , y(t - l)}. 
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The estimator is unbiased, i.e., 

Ex (t + 11 t) = Ex (t + 1). (33) 

Furthermore, 

cov(x(t + 11 t),x(t + 11 t)) 

= cov( x (t + 1 I t - 1), x (t + 1 I t - 1)) 

- cov( X (t + 1 I t - 1), j ( tit - 1)) [ cov(j (t I t - 1), j (t I t - 1)) ] - I 

xcov(j(tlt-I),x(t+ lit-I)), (34) 

and 
cov(x(t + 11 t), yes)) = 0 for s = 1, 2, ... , t. 

PROOF. Define a column vector 

_ (T T T)T Y(t-I)= y (I),y (2), ... ,y (t-I) , 

and put 
x = x(t + 1), 

in equations (25)-(30). 

y = Y(t - 1), z = y(t) 

(35) 

(1*) 

o 

Theorem 1 is almost sufficient to deduce the Kalman filter. Here we note 
that the filter will be a least-squares estimator depending on the presump
tion that additive errors are simply white noises, as shown by (3), and not 
necessarily Gaussian. For the case of Gaussian white noise, the reader may 
refer to standard textbooks such as Meditch (1969), Jaswinski (1970), and 
Anderson and Moore (1979). A similar approach to our treatment in the 
following section is found in Bertsekas (1976, pp. 158-174). 

4.2. Kalman Predictor and Filter 

The so-called Kalman predictor or filter will be derived as a straightfor
ward extension of the least-squares estimator in Theorem 1. We provide a 
lemma for a slight alteration to the estimator expression. 

Lemma 4 (Matrix Inversion Lemma). Let A, B, C, and D be matrices of 
dimensions m X m, n X n, m X n, and n X m, respectively. Assuming A and B 
to be nonsingular, we have 

(A - 1 + DB - IC) - I = A - AD (B + CAD) - I CA. 

(The proof can be done by a direct multiplication: 

(A -I + DB -IC)(A - AD(B + CAD )-I CA ) = I, 

or by comparing (31) and (32) in Murata (1977, Section 1.1).) 
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We are now in a position to obtain Kalman's recursive formulas of 
optimal estimators. 

Theorem 2 (Kalman Predictor). Let x(t + 11 t) denote the linear least
squares estimator for x (t + 1) in terms of y (s), s = 0, 1,2, ... , t, for system 
(1), (2) under the assumption (3), and let x(t + 11 t) be its estimation error, 
i.e., 

x (t + 11 t) == x (t + 1) - x (t + 11 t). (36) 

The estimator, termed the Kalman perdictor, is expressed in a recursive form 

x(t + 11 t) = A[ 1- N(t)C]x(t1 t - 1) + AN(t)y(t) + Bv(t + 1), (37) 

where 

N(t) == S(t)C T[ CS(t)C T + q, r l
, 

S (t) == cov(x (t I t - 1), x (t I t - 1)), 

(38) 

(39) 

and S(t) is assumed to be positive definite for all t. The estimator is unbiased, 
i.e., 

Ex(t + 11 t) = Ex(t + 1). (33) 

Furthermore, error covariance matrices are computable in a recursive manner 
by the following Riccati difference equation (cf. (28) of Section 2.2) 

S(t + 1) = AS(t)[ 1- C T( CS(t)C T + q,f I CS(t)]A T + D'ZD T (40) 

= A[ S(t)-I + CTq,-ICrIA T + D'ZDT. 

The initial values for the recursive computation are 

x(OI-I) = Ex(O), 

S (0) = cov( x (0), x (0)). 

(41 ) 

(42a) 

(42b) 

PROOF. We apply Theorem 1 here. By an iterative substitution, (1) is 
transformed into 

t 

x(t) = A t-Sx(s) + 2: A t-k(Bv(k) + D~(k)). (2*) 
k=s+1 

Using notation (1 *) and taking Lemma 2 into consideration, we get 

x (t + 1 I t - 1) = E* { x (t + 1) I Y (t - I)} 

= E*{Ax(t) + Bv(t + 1) + D~(t + 1)1 Y(t - I)} 

=AE*{x(t)1 Y(t-I)} + Bv(t+ 1) (3*) 

In deriving (3*), we have taken account of 

E* { ~(t + 1) I Y (t - I)} = 0 (4*) 

in view of (8), EW + 1) = 0, and cov(~(t + 1), Y(t - 1)) = O. Equation (3*) 
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is rewritten 

x(t+ Ilt-I)=Ax(tlt-I)+ Bv(t+ I). (43) 

Hence by definition (36) 

x(t+ Ilt-I)=Ax(t)+ Bv(t+ 1)+ D~(t+ I) 

-Ax(tl t - I) - Bv(t + I) 
=Ax(tlt-I)+ D~(t+ I). (43') 

Similarly, 

y(tlt-I)=:E*{y(t)1 Y(t-I)} 

= E*{ Cx(t) + ~(t) I Y(t - I)} 

=Cx(tlt-I). (E~(t)=O,cov(~(t),Y(t-I»)=O) (44) 

y (t I t - I) =: y (t) - Y (t I t - I) 

=Cx(tlt-I)+~(t). (44') 

Considering (44'), (2*), and taking cov(x(t), ~(s» = 0, 

cov(v(k),x(sls-I»)=cov(~(k),x(sls-I»)=O for k>s 

into account, we calculate 

cov(x(t), y(s I s - 1») 

= COy [ x ( t), x (s I s - 1)] C T 

= COV[A t-Sx(s) + ± A t-k(Bv(k) + D~(k»),x(s I s - 1)]C T 

k=s+! 

= A t-scov [ x(s),x(s I s - I) ]C T 

=At-scov[x(sls-I)+x(sls-I),x(sls-I)]C T 

=At-scov[x(sls-I),x(sls-I)]C T (cf.(l7») 

for s < t. (45) 

As x(t I s - 1) is un correlated with x(t I s - I) and ns), so IS it with 
y(t I s - I) in view of (44'). Thus from (45) it follows that 

cov(x(t I s - I), y(s I s - I» = cov(x(t) - x(t I s - I), y(s I s - I») 

= A t-sS(s)C T for s < t. (45') 

Also, as nt) is uncorrelated with x(t) and x(t It - 1), so IS it with 
x(t It - 1). Therefore, considering (44'), we get 

cov(f(tlt-I),y(tlt-I»)= CS(t)C T +$. (46) 

Substitution of (43), (45'), (46), and (44) into (32) yields (37). 
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Next, in order to prove (40), it suffices to substitute (45'), (46) and 

cov [ x (t + 11 t - 1), x (t + 1 I t - 1)] 

= A cov [ x (t I t - 1), x (t I t - 1)]A T + D 'Z D T, (47) 

into (34). Equation (47) is obtained by considering (43') and noting that 
W + 1) is uncorrelated with Y(t - 1), hence with x(t It - 1), and that 
W + 1) is uncorrelated with x(t). 

Equation (41) is derived by applying the matrix inversion lemma 
(Lemma 4) to (40). 

Last, (42a) and (42b) follow from (8) and (15), respectively, since y(s) 
does not exist for s < O. 0 

The estimator (37) is the predictor of x(t + 1) based on information in 
period t, while the so-called Kalman filter is intended to be the least
squares estimator for x(t) based on the contemporaneous information. 

Theorem 3 (Kalman Filter). Let x(t I t) denote the linear least-squares 
estimator for x(t) in terms of y(s), s = 0, 1,2, ... , t, for system (1), (2) under 
the assumption (3), and let x(t I t) be its estimation error, i.e., 

x(t It) == x(t) - x(t It). (36') 

The estimator, termed the Kalman filter, is expressed in a recursive form 

x(t It) = [I - N(t)C](Ax(t - 11 t - 1) + Bv(t») + N(t)y(t), (48) 

where N(t) is that of (38) and the corresponding S(t) is found from the 
recursive relation (40) or (41). The estimator is unbiased, i.e., 

Ex(t It) = Ex(t). (33') 

Defining the covariance matrix of the estimation error as S (t) 
== cov(x(t I t),x(t I t», we get the recursive expression 

S (t) = S(t) - S(t)C T[ CS(t)C T + <I> r 1 CS(t), (49) 

or 

S(t) = [(AS(t - I)A T + D'ZD Tfl + CT<I>-IC r1 (49') 

provided S(t) is positive definite for all t. The initial values for the recursive 
computation are 

x(O I 0) = Ex(O), 

S(O) = [S(O)-l + CT<I>-ICr 1, 

where S(O) is that of (42b). 

(42'a) 

(42'b) 
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PROOF. We again apply Theorem 1. Using notation (1 *) and taking account 
of Lemma 2, and E*{~(t)1 y(t - I)} = ° by virtue of E~(/) = ° and 
cov(~(t), y(t - 1» = 0, we obtain 

x(tl/-l):=E*{x(t)1 Y(t-l)} 

= E*{Ax(t - 1) + Bv(t) + D~(/)I y(t - I)} 

= Ax(t - 11 I - 1) + BV(/), (50) 

and then 

X(/I/-l):=x(t)-x(ti/-l) 

= Ax(t - 1) + Bv(t) + D~(/) - Ax(t - 11 I - 1) - Bv(t) 

= AX(I - 11 I - 1) + D~(t). (51) 

Expressions (32) and (34) with time delay by one period in x and x are 

x(tI/)=x(tl/-l)+cov(x(tl/-l),y(/l/-l») 

X [ cov(Y (t I t - 1), Y (t I t - 1») r I j (t I I - 1), (32') 

and 

cov( X ( I I I), x (I I I») = cov( X (I I I - 1), x (I I I - 1») 

- cov( X (t I I - 1), Y (t I I - 1») 

X[COV(Y(tI/-l),j(tl/-l»)r 1 

xcov(Y(tI/-l),x(tlt-l»). (34') 

First, since ~(t) is uncorrelated with x(t - 11 I - 1), 

S (I) := cov( x (I I I - 1), x (I I I - 1») 

(40') 

Next for s < I, in view of cov(S(s + l),X(/» = 0, (2*), (36'), and (17), we 
have 

cov[ X(/), yes + 11 s)] = cov[ X(/),X(S + 11 s) ]e T 

= A t-s-lCOV [ Ax(s) + Bv(s + I) 

+ D~(s + 1),Ax(s I s)+ D~(s + 1) ]e T 

= A t-scov [ x(s),x(s I s)]A Te T + A t-s-lDZD Te T 

=At-S-1(AS(s)A T + DZD)Te T, 

and hence referring to (45'), we get 

cov[x(tls),j(s+ lis)] =cov[x(t)-x(tls),j(s+ lis)] 
=At-S-l(AS(s)AT + DZDT)e T. (52) 
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~(t) (State-Space System) ............. (Kalman Filter) ............ ·: 

- lit - I): 
I) 

............................................. 

Figure 2. Kalman Filter Connected with State-Space System 

(~ is summation, and Delay means one-period delay.) 

Putting s = t - 1 in (52) yields 

cov[ x(tl t - I),f(tl t - I)] = (AS(t - I)AT + DEDT)C T. (52') 

Substituting (50), (52'), (46), and (44) into (33'), with (40') taken into 
account, results in (48). A similar substitution in (34') yields (49), and 
application of the matrix inversion lemma (Lemma 4) to (40) gives 

S(t) = [S(t)-I + CTcp-1Crl, (49") 

which is nothing but (49'). Equation (42'b) follows at once from (49"). 0 

REMARK. Kalman predictors and filters are equal to the so-called minimum 
variance unbiased estimators in view of (4) and unbiasedness of the 
estimators (cf. (33) and (33'». 

Kalman filter x(t 1 t) in (48) is schematized in a flow chart (Fig. 2), in 
connection with state-space system (I), (2). Here we note that an efficient 
algorithm is proposed by Morf et al. (1974) for Kalman predictor. Next we 
verify the stability property of Kalman predictor. 

Theorem 4 (Stability of Kalman Predictor). If the system 

x(t) = Ax(t - 1) + D~(t) 
y(t) = Cx(t) 

(I') 

(2') 

is state controllable and observable, and if E, cp are positive definite, then the 
coefficient matrix A [I - N(t)C] in (37) tends asymptotically to a stable 
matrix as planning horizon is extended. 

PROOF. [All reference theorems in this proof are from Murata (1977, 
Section 9.4).] System (I'), (2') is state controllable and observable if and 
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only if the following dual system (53), (54) is observable and state controlla
ble (cf. Theorem 18): 

z(t) = -A TZ(t - 1) - C T1)(t), (53) 

(54) 

Given the final-time boundary condition z( f3), we define a cost function J 
over the periods from f3 to 0 backward in time as 

1 

J == 2: {1) T (t)<P1) (t) + w T (t)Zw (t) } + z T (O)S (O)z (0), (55) 
/= f3 

and optimize 1)(t) such that J is minimized for system (53), (54). Then, by 
virtue of an analogy to Theorem 20', a unique Set) exists satisfying the 
Riccati difference equation (40). Now, extend the initial period back to 
- 00, and minimize a modified cost 

-00 

J == 2: {1)T(t)<p1)(t) + WT(t)ZW(t)} 
/= f3 

(55') 

subject to system (53), (54). Then, by Theorem 21', the solution Set) of (40) 
becomes S given by 

S=AS[/- NCfA T + DZDT, (40") 

where 

(38') 

and each eigenvalue of A [I - NC] is less than unity in modulus, i.e., 
A [I - N(t)C] approches asymptotically to a stable matrix A [I - NC] as 
planning horizon stretches. 0 

For further studies of the asymptotic stability, see Deyst and Price 
(1968). Concluding this section, we give an application of Kalman filter to 
a macroeconomic model. 

Application 1. Our model consists of three equations (5*), (6*), and (7*), 
representing money market, the central bank's behavior, and the goods 
market, respectively: 

r(t) = f31 m (t - 1) + f32q(t - 1) + f33 S(t) + ~l(t) (5*) 

m(t) = f34r(t - 1) + f3sp(t) + ~2(t) (6*) 

q(t) = f36 r (t - 1) + ~3(t), (7*) 

where r is the nominal rate of interest, m is the banking sector's stock of 
deposit liabilities, q is the nominal GNP, s is the additional supply of 
money, p is the banking sector's desired stock of reserves, and ~i (i = 1,2,3) 
stand for mutually independent, serially uncorrelated disturbances having 
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zero means and finite variances: 

E~i(t) = 0, 

Ee(t) = Zi < 00, 

i = 1,2,3 

i=I,2,3. 
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(8*) 

(9*) 

Among the variables, sand p are supposed to be control variables (instru
ments) and the others are state variables. Thus the state-space representa
tion of the above model is 

(321l r(t - 1) j [ (33 o m(t-l) + 0 

o q( t - 1) 0 

o ]( s(t) ) l~t(t)j (3s p(t) + ~2(t) . 

o ~3( t) 

(10*) 

We assume that r(t) and m(t) are observed with observation errors rt(t) 
and rit), respectively, while q(t) is not directly observed contempora
neously. Denoting by rand m the observed values of rand m, therefore, we 
have output equation 

(11 *) 

with 

i = 1,2. (12*) 

Equations (10*) and (11 *) correspond to (1) and (2), respectively, with the 
following notations: 

l ,(t) j 
A =l;' 

(3t 
P'j r p, H l',(t) j 

x(t) == m(t) , 0 o , 
B == ~ ~(t) == ~2( t) , 

q(t) (36 0 0 ~3(t) 

v(t) == ( s(t) ), (t) ==( ret) ) 
C ==(~ 0 ~), r(t) == (rt(t)), 

p(t) Y m(t) , r2(t) 
and D = I (identity matrix). We also denote 

- 0 0 ':'t 
~==(~t ~J. Z= 0 - o , ':'2 

0 0 ':'3 
We may apply Theorem 3 (Kalman filter) to obtain x(t I t) which contains 
the estimator for q(t) as well as the estimators for ret) and met). 

Thus, on the assumption that covariances among estimation errors 
f(t It - 1), met I t - 1) and q(t It - 1) are zeros with at and a2 representing 
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the variances of F(t I I - 1) and m(1 I I - 1) respectively, we get 

'(tl I) = (I-A1){ .81 m(t -11 I -1) 

+.82Q(t-Ilt-I)+ .83S(t)} +A/(/), 

m (I I I) = (1 - A2){ .84' (t - 11 I - 1) + .8sP (I)} + A2m (t), 
Q (t I I) = .86Q (t - 1 I I - 1), 

where Ai == crj(cri + $) for i = 1,2. 
If we employ r(t) and m(t), instead of the Kalman filters of r(/) and 

m(t), for feedback optimal control rule, then the only estimator needed will 
be that of q(/) which is by no means directly measurable. 

(For other applications of Kalman filter to economic problems, see 
Section 4.5.) Our aim in the next section is to estimate only those variables 
which are not directly accessible. 

4.3. Minimal-Order Observer-Estimators: Existence 

Kalman estimators are designed to estimate all state variables, while our 
minimal-order observer-estimators are intended to estimate only those state 
variables which are not directly observable. Suppose that output vector y(/) 
in equation (2) corresponds to some r components of n vector x(t). We 
shall establish our recursive formulas to estimate the rest n - r variables, 
following Tse and Athans (1970). These formulas have a close relationship 
to the recursive minimum-cost observer (Section 3.4.). 

We continue to consider system (1), (2) under assumption (3). Besides we 
assume that for any given initial value Xo of x(O), Xo - x(O) is uncorrelated 
with disturbances ~(t) and observation error ret), and that 

E(xo - x(O)) = O. (56) 

Hence, denoting transposition by superscript T, 

E[ (xo - X(O))~T(t)] = cov(xo - x(O),~(t)) = 0, (57) 

E[ (xo - x(O))rT(t)] = cov(xo - x(O),r(t)) = o. (57') 

Definition 1. Let C be an r X n real constant matrix with rank r and let T 
denote any s X n real matrix with s = n - r. The set 

T(C) = {T: N(T) n N(C) = 0} (0 denotes an empty set) 

is called the set of complementary matrices of order n - r for C, where 
N(C) denotes the null space of C. 

By virtue of this definition, the only vector b satisfying both Cb = 0 and 
Tb = 0 is a null vector, i.e., n X n matrix [C T, TT]T is nonsingular for each 
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T E T(C) in view of Theorem 27 in Murata (1977, Section 2.3). Thus we 
have an n X r matrix Q(t) and an n X s matrix pet) such that 

Q(t)C + P(t)T(t) = I for T(t) E T(C), (58) 

where [ Q(t), pet)] is the inverse of [C T, TT (t)]T. For an estimator x( t) for 
x(t), define an order s observer-estimator as 

z(t) == T(t)x(t) (59) 

and consider 

z(t) = F(t)z(t - 1) + H(t)y(t - 1) + T(t)Bv(t) (60) 

for t = 1,2, .... (Note that the time structure of (60) is the same as of the 
Kalman predictor (37).) Substituting 

F(t) = T(t)AP(t - 1), 

H(t) = T(t)AQ(t - 1). 

(61a) 

(61b) 

and (2) into (60) and subtracting T(t)x(t) from the resultant equation, with 
(1) and (58) taken into account, we get 

e(t)= T(t)AP(t-1)e(t-1)+ T(t)AQ(t-1)~(t-1)- T(t)D~(t), 

(62) 

for t = 1,2, ... , where e(t) is an s-dimensional error: 

e(t) == z(t) - T(t)x(t). (63) 

The covariance matrix of e(t), denoted Set), is assumed to be positive 
semidefinite. Define an n-dimensional error 

(63') 

Premultiplication of (62) by pet) and consideration of (58) yield 

e(t)=[I- Q(t)C]{Ae(t-1)+AQ(t-1)~(t-1)- D~(t)} (62') 

for t = 1,2, .... Choosing, in view of (59), 

z (0) = T(O)xo, 

we have, with (58), (63), and (63') taken into account, 

x(O) = Q(O)Cx(O) + P(O)T(O)x(O) 

or equivalently 

= Q(O)Cx(O) + P(O)z(O) - P(O)e(O) 

= Q(O)Cx(O) + P(O)T(O)xo - e(O) 

= [ Q(O)C - I](x(O) - xo) + x(O) - e(O), 

e(O) = [I - Q(O)C](xo - x(O»). 

Thus by (56), we have 

Ee(O) = 0, 

(59') 

(64) 

(65a) 
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and hence in view of (62') and the assumption (3), 

Ee(t) =0 for t=I,2,... (65b) 

By virtue of (65), the covariance matrix of e(t) becomes 

SU) = cov(e(t),e(t» = E(e(t)eT(t»), t = 1,2, .. . (66) 

By virtue of (64), S(O) is written as 

S(O) = [I - Q(O)C]~(O)[ 1- Q(O)Cf, (67a) 

where 

~(O) = E[ (xo - x(O»(xo - x(O)f], (67b) 

which is assumed to be positive semidefinite. S(t) is parameterized as 
follows, by substituting (62') into (66) and taking account of assumption 
(3), for t = 1,2, ... : 

(68) 

where 

ir(Q(t+ 1),S(t») 

=[1 - Q(t + I)C][ AS(t)A T + AQ(t)<pQT(t)A T + DZDT] 

X [1 - Q(t + I)Cf, (69) 

since 

E(e(t)fT(t») = [I - Q(t)C]AE(e(t - l)fT(t») 

=[1- Q(t)C]A[I- Q(t-I)C]AE(e(t-2)fT(t») 

t 

= II ([ 1- Q(7)C]A)P(0)E[ (xo - X(O»)fT(t)] 
T=1 

=0 
in view of (64) and (57'), and since similarly 

E(e(t - I)F(t») = o. 
Now we want to find Q(t) minimizing the covariance matrix of estima

tion error e(t). Define a subset of n X r matrices 

11(S(t» = { Q(t + I) : Q(t + I)C[ AS(t)A T + AQ(t)<pQT(t)A T 

+DZDT]CT 

= [ AS (t)A T + AQ(t)<PQ T(t)A T + DZD T] C T }. (70) 
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Lemma 5 (Tse and Athans, 1970). Let Set) be positive semidefinite. If 
Q(t + 1) belongs to lI(S(t)), then 

'I'(Q(I+ 1),S(I))';;; 'I'(Q(I+ 1),S(t)) foral! Q(t+ 1). (71) 

PROOF. Define 

R( S (I)) == C[ AS (t)A T + AQ(t)<I>Q T (t)A T + DZD T]C T. (72) 

Then lI(S(t)) can be rewritten 

lI(S(t)) == { Q(t + 1) : Q(t + I)R(S(t)) 

= [AS(t)A T + AQ(t)<I>QT(t)A T + DZDT]C T }. 

We calculate 

'1'( Q(t + 1),S(t)) + (Q(t + 1) - Q(t + 1))R(S(t)) 

X(Q(t+ 1)- Q(t+ 1))T 

= {[ AS (t)A T + AQ(t)<I>Q T(t)A T + D ZD T] 

-2Q(t+ I)R(S(t))QT(t+ 1)+Q(t+ I)R(S(t))QT(t+ In 
+( Q(t + 1) - Q(t + I))R(S(t))( Q(t + 1) - Q(t + 1)( 

= [AS(t)A T + AQ(t)<I>QT(t)A T + DZDT] 

- Q(t + I)R(S(t)) QT(t + 1) 

- Q(t + I)R(S(t)) QT(t + 1) + Q(t + I)R(S(t)) QT(t + 1) 

= '1'( Q(t + 1),S(t)). (73) 

Since S(t) is positive semidefinite, (71) follows from (73). 0 

Corollary. If Q(t + 1) and Q(t + 1) belong to lI(S(t)), then 

'1'( Q(t + 1), S (t)) = '1'( Q(t + 1), S (t)). (74) 

PROOF. From (71) we have 

'1'( Q(t + 1),S(t)) ,;;; '1'( Q(t + 1),S(t)) 

and 

'1'( Q(t + 1),S(t))';;; '1'( Q(t + 1),S(t)). 0 

It is clear from (69) that if SI(t) ;;;. S2(t), then 

'1'( Q(t + 1),SI(I)) ;;;. '1'( Q(t + 1),S2(t)). (75) 
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We adopt the optimality criterion that if covariance matrices of estima
tion errors are minimized in the sense of (71) for all t, the estimator is 
optimal. 

Theorem 5 (Tse and Athans, 1970). a) An optimum class of observer
estimators is specified by a sequence 

{ Q(t)} ~=1 
such that Q(t) E 1](8*(t - I» for t = 1,2, ... , 
uniquely by 

(76) 

where 8*(t) is determined 

8*(t) = ~(t - I) - Q(t)C~(t - I) for t = 1, 2, ... , (77) 

with 8*(0) = 8(0), which is assumed to be positive semidefinite. ~(t) is defined 
as 

~(t) == A8*(t)A T + AQ(t)<I>QT(t)A T + DZD T. (78) 

b) If either <I> is positive definite or CD Z D T C T is positive definite (or both), 
then a unique optimum class of observer-estimators exists and is specified by 

Q(t)=~(t_I)CT(C~(t-I)CTrl, (79) 

where ~(t) is that of (78) and 8*(t) is determined recursively as 

8*(t)=~(t-I)-~(t-I)CT(C~(t-I)CTrlC~(t-I). (77') 

PROOF. a) Given Q(O) and S(O), we see by (78) 

~(O) = A8(0)A T + AQ(O)<I>QT(O)A T + DZD T, (78'a) 

where 8(0) is that given by (67a). Then by (68) 

8*(1) = [I - Q(I)CJ~(O)[ 1- Q(I)Cr, 

where Q(1) belongs to 1](8(0», i.e., Q(1) fulfills 

Q(I )C~(O)CT = ~(O)CT. 

Hence 8*(1) reduces to 

8*(1) = ~(O) - Q(I)C~(O). 

Next ~(1) is obtained as 

~(I) = A8*(1)A T + AQ(l)<I>QT(I)A T + DZD T, (78'b) 

and for any matrix Q(2) belonging to 1](8*(1», 

Hence we have 

Q(2)C~(I)CT = ~(l)CT. 

8*(2) = [I - Q(2)CJ~(I)[ 1- Q(2)Cr 

= ~(I) - Q(2)C~(I). 
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Proceeding this way, we get (77). By Lemma 5, S*(t) thus obtained at some 
t satisfies S*(t) <: Set). Then by (68), (75), and (71) 

S(t + I) = '1'( Q(t + 1),S(t)) 

;;;, '1'( Q(t + 1),S*(t)) 

;;;, '1'( Q(t + 1),S*(t)) 

=S*(t+I). 

Thus S*(t) <: S(t) for all t, implying optimality. 
b) In general, there are more than one optimum class of observer

estimators which yield the same performance. If II> is positive definite or 
CDZD TC T is positive definite (or both), then Cd(t - I)C T is positive 
definite. Hence from 

Q(t)Cd(t - I)C T = d(t - I)C T 

we get the unique Q(t) in (79). Substitution of (79) into (77) yields (77'). 0 

Note that (77') has the same structure as covariance error matrix (49) of 
Kalman filter. Note also that in Theorem 5 the noise covariance matrix II> 
and the initial state distribution covariance matrix S(O) are assumed to be 
positive definite and positive semidefinite, respectively. See Yoshikawa 
(1975) for the minimal-order optimal filters for linear discrete-time systems 
without these assumptions. 

4.4. Minimal-Order Observer-Estimators: 
Computation 

In order to implement the rules of Theorem 5 in the practice of estimation, 
suppose the first r variables of state vector x are observed (with or without 
observation error), i.e., matrix C in (2) is specified as (cf. the end of Section 
3.1.) 

(80) 

where Ir stands for the identity matrix of order r. Then d(t)C T and 
Cd(t)C T are reduced to 

d(t)C T = df(t) == AS*(t)A{ + AQ(t)II>QT(t)A[ + DZD{, (81) 

and 

CdC t)C T = d r( t) 

== AtS*(t)A{ + AtQ(t)II>QT(t)A[ + DtZD{, (82) 

where At and Dt denote r X n sub matrices of A and D, respectively, 
formed by their first r rows. Provided d r ( t) is positive definite, we get from 
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(79) and (77') 

(83) 

and 

S*(t + I) = .:l( t) - .:If(t).:lr(t) -I.:lt(t) = (~ as~ t) ), (84) 

where (for singular .:lrCt), its generalized inverse replaces .:lr(t)-I) 

G(t) == .:l;'(t).:lr(t)-I, (85) 

as(t) == .:lsC t ) - .:l;'(t).:lr(t)-I.:lrs(t). (86) 

.:lrs(t) is the r X s sub matrix of .:lit) formed by its last s columns, and .:ls(t) 
is the s X s submatrix of .:l(t) formed by its last s rows and columns. 

Putting 

P(t) = (f), 
we have from (58), in view of (80) and (83), 

T(t) = [- G(t),ls]. 

(87) 

(88) 

Therefore, our order s observer-estimator (60) can be written, with (61) 
taken into consideration, 

z(t) = (A22 - G(t)AI2)z(t - I) + (B22 - G(t)BII)v(t) 

+[A21- G(t)AII + (A 22 - G(t)AI2)G(t-I)]y(t-I), (89) 

where we use the following partitioned matrices: 

A=(~~: ~~:H: B=(!~~H: (90) --- ~ r s 

Under the specification (80), x(t) in (59) will be expressed as 

x(t) = ( ~~:n (91 ) 

where wet) denotes the estimator for unobserved vector wet) in a state 
vector x(t). Thus, in view of (88), we get 

w(t) = z(t) + G(t)y(t) (92) 

from (59). Substitution of (92) into (89) yields 

w(t) = (A22 - G(t)AI2)W(t - 1) + (A21 - G(t)AII)y(t - I) 

(93) 

To initiate the computation, assume 

G(O) = G(O) = 0, (94) 
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which implies, in view of (63) and (59'), that 

e(O) = [O,ls](xo - x(O», 

and in view of (67a), that 

where 

Then by (78'a) 

( 
Ar(O) 

A 0 = 
( ) - A~(O) 

- - (0 0) S*(O) = S (0) = 0 S(O) , 
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(94') 

(84'a) 

(94/1) 

= [AJ2S(O)A?~ + AII<I>AI~ AJ2S(O)AI; + A II <I>AJ;] + D'EDT 

A22S(O)A?~ + A 21 <I> A I~ A22S(O)AI; + A21<I>AJ; 

(78/1 a) 

Thus by (86) we calculate us(O) and then by (84) 

S*(l)=(~ us~O»). (84'b) 

and, by (83) and (85), we have 

_ ( Ir ) (If Ar(O) is not invertible, its 

Q (1) = A~(O)Ar(O) - I . ~:~~;:~i.~ed inverse will replace (79' a) 

Now we use (78'b) to compute A(l), and then by (85) 

G(I) = A~(l )Ar(l) -I. (85'a) 

The initial value of W(O) will be picked as 

w(O) = [O,ls]xo (93'a) 

in view of (59') and (94). Thus we get our observer-estimator in the first 
period 

w( 1) = (A22 - G( I)A J2)[O,ls]xo + (A21 - G( I)A ll)Y(O) 

+ G(I)y(l) + (B22 - G(I)Bll)V(I), 

to which the above G(l) is applied. 
Next, for t = 2, S*(2) is obtained as 

S*(2) = (~ Us~l»)' 
where 

(93'b) 

(84'c) 

(86'a) 
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Q(2) is already known in view of (83) and (85' a). Thus ~(2) is calculated 
by applying (78), and hence G(2) can be obtained by (85). So the observer
estimator w(2) will be computed as 

w(2) = (A 22 - G(2)AI2)W(I) + (A2l - G(2)A I1 )y(l) 

+ G(2)y(2) + (B22 - G(2)B ll )v(2). (93'c) 

For subsequent t = 3,4, ... , we proceed one by one in this manner. 

Application 2. Our minimal-order observer-estimator will be found useful 
for such a generalized distributed-lag system as 

k h 
x(t) = 2: A;x(t - i) + 2: Bjv(t - j) + g(t) 

;=1 )=0 
(95) 

with output system 

y(t) = Cx(t) + ret) (96) 

where x(t), v(t), and yet) are the state n vector, control m vector, and 
output r vector, respectively, in period t; get), ret) are stochastic terms 
obeying assumptions (3); and A;, Bj' C are constant matrices of appropri
ate dimensions with rk( C) = r < n. Equation (95) can be rewritten 

x(t) = Ax(t - I) + Bv(t) + jjg(t), (95') 

where 

v(t-h+l) 0 1m 0 0 0 

v(t - I) 0 1m 0 0 

x(t)= 
v(t) 

A= 0 
x(t-k+l) 0 

0 0 0 
0 0 

0 
In 0 

x(t - I) 0 0 0 0 In 

x(t) Bh Bl Ak A2 Al 

0 0 

0 

B= 1m D= 
0 

0 
Bo 
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Accordingly, (96) is expressed as 

where 

y(t) = Cx(t) + H(t), 

v(t-h+l) 

vet - 1) 

- t = v(t) 
y()- x(t-k+l)' 

(h) 

X(I - 1) 

y(/) 

c 

° 

° IT 
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(96') 

Note that the dimensions of x(t) and y(/) are n =- hm + kn and r =- hm + 
kn - n + r, respectively. Clearly, rk(C) = r < n. Thus the transformed 
state-space representation (95'), (96') is of the same structure as system (1), 
(2). If C is given by 

C = [IT ,0], (80) 

then C will become 
(80') 

and we can follow the previous procedure for obtaining the observer
estimator for the vector of unobserved n - r variables in x(t). 

We shall compute the minimal-order observer-estimator for X 2 in the 
simple system composed of the one-period lag state equation 

(x1(t») = (a l1 aI2 )(x1(1 - 1») + (b!1 )v(t) + (b~1 )V(t _ 1) + (~I(t») 
x2( I) a21 a22 x2( t - 1) b22 b22 ~2( I) 

(13*) 
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and the output equation 

y(t) = C(XI(I)) + K(t), 
x 2( I) 

with C=[I,O]. ( 14*) 

This is the special case of system (95), (96) where we set state-vector 
dimension n = 2, control-vector dimension m = I, and output-vector di
mension r = I, together with k = I and h = 1. Coefficients ai}' bi9, bi: 
(i,j, = 1,2) and variables X;(T), V(T) (T = 1,1 - I), ~i(T) (i = 1,2),y(I), nt) 
are all scalars. The state-space form of the present system is shown below in 
view of (95') and (96'): 

x(t) = Ax(t - I) + Bv(t) + D~(t), (15*) 

y(t) = Cx(t) + H(t), (16*) 
where 

r 
v (I) ] 

x(t) == XI(I) , 
x 2(1) 

(17*a) 

__ (v(t)) __ (I ° 0) _(0) _(~I(t)) Y (t) = ,C = , F = ,~(t) = . 
y(t) ° I ° I ~2(t) 

(17*b) 

Note that the dimension fi of the new state vector X(I) is equal to three, and 
that the dimension r of the new output vector y(t) is equal to two. So 
S == fi - r = I. Hereafter, the notations rand s will replace rand s, 
respectively, for the sake of brevity. We assume that the variances of 
stochastic disturbances K(t) and ~(I) are given by 

var(K(t))=<p>O, var(~(t))=Z=(Zl ~), (ZI,Z2 > 0). (18*) ° -2 

We want to obtain the observer-estimator for inaccessible variable x 2(t), 
which is formally given by w(l) in (93), by calculating w(O), w(l), w(2), and 
so on. w(O) for the present example is easily seen to be 

w(O) = xg (19*a) 

by virtue of (93'a), where xg is a given initial value of X 2 • Noticing that 
matrix A and B are partitioned as 

- b~ - (Bll) B= II = ....... , 
...... B 
bO 22 

22 

(20*) 

we can derive w(l) by (93'b) as 

w(l) = (a22 - a12q(I))w(O) + (bi2 - bilq(I))v(O) 

+ (a21 - allq(l))y(O) + q(l)y(l) + (bg2 - b?lq(I))v(I), (19*b) 
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where 

q(l) == a 21 (l)/a ll (l), 

all(l) == crs (0)(a 12)2+ <1>[ (all + a12q(0»)2 + (bI1)2] + 2 1, 
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(2l*a) 

(22*a) 

a 21 (1) == crs (O)a 12a22 + <I>[(a ll + a I2q(0»)(a21 + a22q(0») + bitbi2]' 

(22*b) 

q(O) == a 21 (0)/ all(O), 

crs(O) == a22(O) - q(0)a21(0), 

all(O) == S(0)(a 12)2 + <1>[ (a ll )2 + (bI1)2] + 2 1, 

a21(0) == S(O)a 12a22 + <1>[ all a21 + bI1bi2]' 

a22(0) == S(0)(a22)2 + <1>[ (a 21 )2 + (bi2)2] + 2 2 , 

S(O) == E(x~ - X2(0»)2, (in view of (94') and (94"»). 

(23*) 

(24*) 

(25*a) 

(25*b) 

(25*c) 

(26*) 

The derivational procedure for (19*b) is as follows. By (78"a) and (20*), we 
get 

~;';(O) = A22S(O)A?~ + A21<l>Al~ = (0,a21 (0)), 

~sCO) = A22S(O)AI; + A21<l>AJ; + 22 = a22(0). 

(27*b) 

(27*c) 

Since ~r(O) in (27*a) is not invertible, we obtain its generalized inverse as 

(28*) 

by applying the corollary to Theorem 22 of Murata (1977, p. 215). Thus we 
have 

~;';(O)~r(O)+ = (O,q(O)). (29*a) 

Hence Q(l) in (79'a) becomes 

Q(l) = [6 ~], 
o q(O) 

(30*) 

and crs(O) in (86) with t = 0 becomes 

crs(O) = ~sCO) - ~;';(O)~rCO) + ~rsCO) (31 *a) 

which is equal to (24*). Taking (84'b) into account, therefore, we get 
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by (78'b) 

<1(1) = AS*(I)f'F + AQ(I)<I>QT(I)A T + DZD T 

= 0 IXII(I) ~ IX21(1) == ... ; ...... 1 ... ~~ .... . [
0 0 ~ 01(<1(1):<1(1)) 

O···~~·;(i")T~;~·(ri <1~(l) 1 <1l 1) 
(32*) 

where IXl\(l) and IX2\(l) are given by (22*a) and (22*b) above, and 

IX22( 1) == crs(O)( a22)2 + <1>[ (a21 + a22q(0))2 + (bi2)2] + Z2 . (22*c) 

Thus G(l) in (85'a) becomes 

G(I) = <1~(I)<1rCl)+ = (O,q(I)). (29*b) 

Substituting (29*b) and (20*) into (93'b) yields (l9*b). 
In a similar manner, we get from (93'c) 

w(2) = (a22 - aI2q(2))w(l) + (bi2 - bllq(2))v(l) 

+ (a21 - all q(2))y(l) + q(2)y(2) + (b~2 - b?lq(2))v(2), (19*c) 

where 

q(2) == IX 2\ (2)/ IXII(2), 

IXl\(2) == crs(I)(a 12)2+ <1>[ (all + aI2q(I))2 + (bll)2] + ZI' 

(21 *b) 

(33*a) 

IX21(2) == crs(l)a 12a22 + <1>[ (all + aI2q(I))(a21 + a22q(l)) + bllbi2]' 

(33*b) 

crs(1) == IX2l1) - q(I)IX21(1). (31*b) 

Thus we can deduce the following iterative form of the observer
estimator for variable xit) in the present problem: 

wet) = (a22 - aI2q(t))w(t - 1) + (bi2 - bllq(t))v(t - 1) 

+ (a21 - al\q(t))y(t - 1) + q(t)y(t) + (b~2 - b?lq(t))v(t) (34*) 

for t = 1,2, ... , where 

q(t) == IX21 (t)/ IXl\(t), (35*) 

IXl\(t) == crs(t - 1)(a12)2+ <1>[ (all + al2q(t - 1))2 + (bll)2] + ZI' (36*a) 

IX21(t) == crs(t - l)a 12a22 

+ <1>[ (all + al2q(t - 1))(a21 + a22q(t - 1)) + bllbi2]' (36*b) 

crs(t) == IX22(t) - q(t)IX2\(t), (37*) 

IXdt) == crs(t - 1)(a22)2+ <1>[ (a21 + a22q(t - 1))2 + (bi2)2] + Z2. (36*c) 
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Perhaps the earliest application of the Kalman filter to economics was 
made by Taylor (1970), who introduced an optimal production rule in 
relation to inventory and production costs. In his example, the long-run 
demands x(t) for the firm's inventoried goods are unobserved, while 
observed demands yet) are perturbed from the long-run demand levels 
Cx(t) by the transitory demand component ~(t), and hence our equation 
(2) holds. The long-run demands are assumed to be stochastic such that 

x(t) = Ax(1 - 1) + D~(t). (97) 

Assuming (3) as for the stochastic components ~(/) and ~(t), therefore, we 
can directly apply the Kalman filtering algorithm (48) to estimating x(t), 
i.e., 

x(t It) = [I - N(t)C]Ax(t - 11 I - 1) + N(t)y(t), (98) 

where N(t) is that of (38), given some initial values. Taylor (1970) also gave 
a stochastic optimal control rule, as is seen in Section 5.1 in conjunction 
with estimate x(t I t). He thus demonstrated the separation principle of 
estimation and control in stochastic circumstances (cf. Section 5.2), in 
parallel with the separation of observer and controller in deterministic cases 
(Section 3.5). Here we refer to Pagan (1975) who used the Kalman filter 
formula (98) in extracting components from time series. 

Kalman filtering methods can be viewed as supplementary to economet
ric methods in the following two respects. First, as Vishwakarma (1974) 
suggested, in order to derive the future values of the exogenous variables 
needed to predict macroeconomic activities from an econometric model, 
the Kalman filter provides a convenient tool. Second, as Athans (1974) 
proposed, from a set of newly obtained values of all variables in an 
estimated econometric model, we can compute the updated estimates of 
parameters by using the Kalman filter algorithm. Since the former is clearly 
a straightforward application of the Kalman filter, we shall dwell only on 
the latter. 

Application 3 (Updating Estimates of Parameters in an Econometric 
Model). We consider a general distributed-lag model in reduced form: 

y(t) = 2: Aiy(t - i) + 2: Bjv(t - j + 1) + bo + u(t), (38*) 
i=I j=I 

where 

y column n vector of endogenous (output) variables, 
v column m vector of exogenous (input) variables, 
bo constant column n vector, 
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U column n vector of stochastic errors, each component having zero 
mean and a finite variance, 

Ai constant n X n matrix for i = 1,2, ... , r, 
Bj constant n X m matrix for j = 1,2, ... , s. 

Suppose that the parameter estimates of Ai' Bj' and bo are known by an 
econometric method but that these values are expected to vary as a set of 
new data becomes available for the variables in (38*), with the structure of 
the system remaining unchanged. Let Yk(t) and uk(t) be the kth compo
nents of vectors y(t) and u(t), respectively, let a/ and bf denote the kth 
row vectors of matrices Ai and Bj' respectively, and let bt be the kth 
element of boo Then, equation (38*) is rewritten as 

r s 

Yk(t) = 2: a/y(t - i) + 2: bfv(t - j + I) + bt + uk(t), k = 1, ... , n 
i= 1 j= 1 

or, equivalently, 

k = I, ... , n, (39*) 

where 

( ) - ( k k b k b k b k) xk t = a l ,· .• ,ar , I"'" s , 0 , (40*) 

C =(yT(t - 1), ... ,yT(t - r),vT(t), ... , vT(t - s + 1),1). (41*) 

Note that given a set of new data for C in (41 *) and for Yk(t), new 
parameters to be estimated are computed as the Kalman filter for xk(t) 
satisfying the trivial difference equation 

for all t. (42*) 

Thus, in the present problem, the Kalman filter (48) reduces to 

xk(tlt)=[I-Nk(t)C]xk(t-llt-I)+Nk(t)Yk(t), (43*) 

where 

N (t)=( I )s (t)C T 
k - CSk(t)CT + <Pk k 

Sk(t) =[ Sk(t - I)-I + CT<p;Ic]-1 

with initial values: 

xk (0 I 0) = preliminary estimate Xk (0) of ( a~, ... , ark, b~, ... , bsk ,bt), 

Sk(O) = prior covariance matrix COV(Xk(O),Xk(O)). 

Using the recursive formula (43*), we can converge to a unique vector as 
the updated estimate of xk(t) in (40*). Finally, we notice a similar applica
tion of the Kalman filter to estimating Leontief matrix in an interindustry 
demand scheme (see Chow (1975, pp. 192-193)). For a further development 
along the lines of Athans (1974), refer to Lazaridis (1980). 
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Application 4 (Optimal Short-Run Monetary Policy). LeRoy and Waud 
(1977) convince us "that the Kalman filter is an indispensable analytical 
tool for the solution of short-run monetary control problems," because the 
current demand for money is an unobservable but essential variable in their 
policy model. Though their model does not contain explicitly any lag in 
time, we shall add on a one-period lagged variable to the model, to make 
clearer their intention of showing that the central bank's reserves policy is 
optimally determined in an intimate connection with the Kalman filter for 
money demand. Thus our model consists of the following two behavioral 
equations: 

m, = ao + ali, + a2m,_1 + U I , 

" = bo + blm, + b2i, + u2" 

(44*) 

(45*) 

where m" it' and " are the money stock, interest rate, and reserves in period 
t, m,_1 is the money stock lagged by one period (which is the additional 
variable mentioned above), and U lt and U2, are normally distributed and 
mutually un correlated disturbances with zero means and finite variances: 

var(uit ) = a?, i = 1,2. (46*) 

We assume that the monetary authority has perfect knowledge of the 
parameters aj and bj (j = 0, 1,2) and the variances in (46*). Equation (44*) 
is rationalized as follows. Based on the money stock existing at the 
beginning of this period, "money holders communicate their desired money 
balances to banks in the form of loan applications contingent on the 
interest rate." Equation (45*) represents the banking system's behavior such 
that its "desired excess reserves depend exclusively on the interest rate and 
that its ability to meet the demand for money depends on the amount of 
reserves it has." 

Suppose that the objective of the present monetary policy is to minimize 
the expected squared deviation of the money stock around some target level 
m*. Assume that the current realizations of U I , and U2, have already 
occurred but that the central bank cannot observe them individually. Then, 
the desired demand for money is derived as a nonrandom value (which is 
not yet observed by the central bank) by (44*) for a given interest rate, and 
the banks in turn calculate their desired reserves and submit their demands 
for reserves contingent on the interest rate to the central bank (as (45*) 
indicates) which then, acting as the Walrasian auctioneer, can determine 
the quantity of reserves desired at the interest rate. This entire process is 
summarized mathematically by the following reduced form equation for 'I: 

" = bo + aobl + a2b lm,_1 + (b 2 + albl)i, + (u 2 , + blu l,). (47*) 

In conjunction with its acquired knowledge of " and i" the central bank 
solves (47*) for the quantity U2 , + blu l,. In order to determine an optimal 
monetary policy, the central bank must use this quantity to estimate u l " 

i.e., to construct the estimate of u lt conditional on u2, + blu l" which is 
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given byl 

b,oi(u2t + b,u lt ) 

E(u't I u2t + b,u't) = 2 2 2 
blo, + 02 

(48*) 

Using (48*), the central bank will obtain the conditional estimate of the 
unobservable value of mt as 

mt = ao + alit + a2m l _, + E(u't I u2t + b,u lt )· (49*) 

We shall show that mt in (49*) is nothing but the Kalman filter for ml 

when mt _ 1 is regarded as a known initial value. The state equation of the 
present model is 

( mt ) (a2 0) ( mt _ , ) ( a, ) . ( ao ) (1 0) ( U It ) '1 = a2b, 0 't-I + alb, + b2 It + aob, + bo + b, 1 u21 

(50*) 

which is the combination of the reduced form equations (44*) and (47*), 
and the output equation is 

(51 *) 

Denotingy(t) =='t' v(t) == it' C == (0,1), and 

x(t) == (;'). 

and setting the initial value at 

x (t - 11 t - 1) = x (t - 1), 

we apply the Kalman filter formula (48) to our problem to yield 

x(t It) = [I - N(t)C](Ax(t - 1) + Bv(t) + k) + N(t)y(t), (52*) 

where 

(53*) 

(54*) 

I Let XI and X2 be normally distributed random variables with E(x;) = iL;, var(x,) = ";; for 
i = 1,2, and COV(XI' x2) = "12' Then the distribution of XI conditional on x2 has mean and 
variance as follows: 
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Hence NT(t) = (an' 1) with 

(55*) 

Thus (52*) implies that the estimate of rt is indeed the observed rt itself and 
that the Kalman filter for mt is exactly equal to mt of (49*) in view of (47*) 
and (48*), i.e., 

mt = ao + alit + a2mt_, + an(rt - bo - aob, - a2b,mt_, - (b2 + a,b,)ir). 

(56*) 

To express the optimal monetary policy, we put mt to the target value m* in 
(56*), yielding a function linking the interest rate it and reserves rt deter
ministically as given in LeRoy and Waud (1977, eq. (14». In this case, the 
variance of mt conditional on rt (and it) becomes 

E(mt - mt)2= E(u't - E(u't 1 U2t + b,U't»)2 

= a~ - 2b,a~an + (b~a~ + ai)a; 

b~a~ 
= a~ - ---:-~""""'-----:

b2a2 + a2 ' 
" 2 

which gives the loss under the optimum combination policy. 

(57*) 

On the other hand, before observation of rr (i.e., before the current 
realizations of U lt and U2t are taken into account), the estimates of mr and r t 

are derived by applying the Kalman predictor formula (37) on the assump
tion that the initial value x(t - 1) is known and nonrandom. Then, since 
x(t-llt-2) is set at x(t-l), and in view of (51*), the formula (37) 
reduces to 

x(tl t - 1) = Ax(t - 1) + Bv(t) + k (58*) 

or, equivalently, 

mt 1 t-' = ao + alit + a2mt_, (59*a) 

'tlt-' = bo + aob, + a2b,mt_, + (b2 + a,b,)it , (59*b) 

with covariance matrix of x(t) given by Set) in (54*). Hence the optimal 
feedback rule is obtained as (60*), simply by putting mt 1 t _, in (59*a) to the 
target m*. 

(60*) 

For another interesting case, we refer the reader to Conrad and Corrado 
(1979), an application of the Kalman filter in a steady-state (i.e., in the case 
that N(t) in our formula (48) is time-invariant) to revisions in retail sales 
estimates. 
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CHAPTER 5 

Optimal Control of Linear Stochastic 
Discrete-Time Systems 

In reality, any economic phenomenon occurs in an uncertain environment. 
We now consider optimal control for such dynamic systems. General rules 
are established for finite time-horizon optimal control problems of linear 
discrete-time systems with additive random disturbances both in perfect 
information cases (Section 5.1) and in imperfect information cases (Section 
5.2). We also derive the optimal control rules for linear discrete-time 
systems with stochastic coefficients as well as additive disturbances (Section 
5.3). Our approach is based primarily on the optimality principle in 
dynamic programming, except the end of Section 5.3 where we comment 
on Lagrange multiplier methods applicable to an infinite horizon problem. 
Some stochastic optimal control rules are found to be the same as for the 
corresponding nonstochastic systems in which additive random distur
bances are suppressed. This is called the certainty equivalence, and we shall 
discuss the principle further in relation to Theil's strategy in Section 5.4. 
Finally, in Section 5.5, macroeconomic applications of our control rules will 
be presented together with other related control methodologies. 

5.1. Controllers for Linear Systems with 
Additive Disturbances 

Our concern in this section is to establish optimal control rules for linear 
discrete-time systems with additive random disturbances in perfect informa
tion cases. At first, we concentrate on a minimization problem for finite 
time horizon; in particular, we try to minimize the expected value of 
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quadratic cost function: 

J(xo)= . _E {XT({3)fX({3) + f(xT(t-I)ZX(t-I) 
~(t).t-1 .. ... /3 t=1 

+VT(t)<I>V(t»)} (1) 

with respect to instruments v(1), ... , v( {3), subject to the following state
space form of linear system: 

x(t) = Ax(t - 1) + Bv(t) + ~(t), t = 1,2, ... , {3 (2) 

for finite time-horizon {3, with given initial value x(O) = xo, where x is a 
state n vector, v is a control m vector, and ~ is a time-independent random 
n vector (not necessarily Gaussian) having zero mean and a finite constant 
covariance matrix R, i.e., 

E~(t) = 0, 

cov( ~(t), ~(s») = R8s' , 

(3a) 

(3b) 

where 811 = 1 and 8st = 0 for s -=1= t, that is, 8 is the Kronecker delta. In the 
cost function (1), we assume as usual that f, Z, and <I> are constant positive 
semidefinite symmetric matrices with <I> being positive definite. (ef. Astrom 
(1970, ch. 8), and Meier et al. (1971).) 

Objective (1), with (2) taken into consideration, is expressed as 

J(xo) = . Y { f gt(x(t - I)'V(t),~(t»)} + x;[Zxo (1') 
~(t).t-1 ..... /3 t=1 

where gt (t = 1,2, ... , {3 - 1) and g/3 are defined by (4a) and (4b) below, 
respectively. 

g,(x(t - I),v(t),~(t») =(Ax(t - 1) + Bv(t) + ~(t)fZ 

X (Ax(t - 1) + Bv(t) + ~(t» + VT(t)<I>V(t), (4a) 

g/3(x({3 - I),v({3),~({3») =(Ax({3 - 1) + Bv({3) + ~({3»Tf 

X (Ax({3 - 1) + Bv({3) + ~({3» 

(4b) 

Let J*(xo) be the optimal value of the expected cost J(xo) in (1'). Here 
we note that the probability measure characterizing ~(t) does not depend on 
prior values of disturbances ~(1), ... , ~(t - 1), and that control vector vet) 
is dependent on all the future optimization programs in view of the 
optimality principle in dynamic programming. Thus J*(xo), the optimal 
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J(xo) in (1'), can be written 

J*(Xo)=min[ E {gl(xo'V(I),~(I))+min[ E {gix(I),v(2),~(2))+'" 
v(l) W) v(2) W) 

+min[ E gfl(X(f3-1)'V(f3),~(f3))]}] ... }] +xriZxo, (5) 
v(fl) ~(f3) 

where the expectation E over ~(t) is conditional on x(t - 1) and v(t), 
t=I, ... ,f3. 

Defining 

J (13, 13) = /'f3l gfl (x ( 13 - 1), v ( 13 ), ~( 13 )), 

J(f3,f3-1)= E {gfl_l(x(f3-2),v(f3-1),~(f3-1)) 
~(f3 - I) 

+ minJ(f3, f3)}, 
v( 13) 

(6a) 

(6b) 

J(f3,t)=E{gt(x(t-l),v(t),~(t))+ minJ(f3,t+l)}, (6c) 
~(t) v(t+l) 

J(f3, 1) = E {gl(xo,v(I),~(I)) + minJ(f3,2)} + xriZxo, (6d) 
W) v(2) 

we apply Bellman's principle of optimality in dynamic programming, with 
(4) taken into consideration. Thus, in the first place, the differential of 
J( 13, 13) with respect to v( 13) is set equal to zero, i.e., 

0= aJ(f3, f3)/av(f3) 

= 2(BTfBv(f3) + BTfAx(f3 - 1) + <IIv(f3)) (7a) 

since, in view of (3a), 

E {(Ax( 13 - 1) + Bv( 13) + ~(f3 ))Tf(Ax(f3 - 1) + Bv( 13) + ~(f3))} 
~( 13) 

= (Ax(f3 - 1) + BV(f3))Tf(Ax(f3 - 1) + Bv(f3)) 

+ E( ~ T (13 )n( 13)) 

and since 

E (~T ( 13 )n( 13 )) = (E ~( 13 )) Tf( E ~( 13 )) + tr(f R ) (8) 

in view of the following lemma. 

Lemma 1. Let M be an n X n constant matrix, and let y and z be random 
column n vectors having a finite covariance matrix cov (y, z). Then 

E(z TMy) = (Ez)TM(Ey) + tr(M cov(y, z)). 
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PROOF. 

tr(Mcov(y,z)) = tr(ME(y - Ey)(z - EZ)T) 

= tr( M[ E(yz T) - (Ey)( Ez) TJ) 
= tr(ME(yzT)) - tr(M(Ey)(Ez)T) 

= E(tr(MyzT)) - tr(Ez)TM(Ey)) 

= E(tr(z TMy)) - (Ez{M(Ey) 

= E(ZTMy) - (EZ)TM(Ey) 

From (7a), the optimal control is derived as 

v ( /3) = - K ( /3 )x ( /3 - 1), 

where 

o 

(9a) 

(lOa) 

Substituting (9a) into (6a), we have the minimal value of J( /3, /3) as 

J*( /3, /3) = t.(~) { ([ A - BK (/3)] x ( /3 - 1) 

+ ~(/3))Tr([ A - BK( /3) ]x( /3 - 1) + ~(/3))} 

+x T(/3 - I)K T(/3)iPK(/3)x(/3 - 1) 

= x T(/3 - 1)[[ A - BK(/3)fr[ A - BK(/3)] 

+ K T ( /3 )iP K ( /3 ) ] x ( /3 - 1) + tr(r R ) (6' a) 

by virtue of (8). 
Second, the differential of J(/3, /3 - 1) with respect to v(/3 - 1) is equal

ized to zero. In view of (6b) and (6'a) 

J(/3,/3-1)= E {(Ax(/3-2)+Bv(/3-1)+~(/3-1))TZ 
t.(f3-1) 

X (Ax(/3 - 2) + Bv( /3 - 1) + ~(/3 - 1)) + J*(/3, /3)} 

+ v T (/3 - 1 )iPv( /3 - 1) 

= E {(Ax(/3-2)+Bv(/3-1)+~(/3-I))TS(/3-I) 
t.(f3-1) 

X(Ax(/3-2)+Bv(/3-I)+~(/3-I))} 

+ tr(r R) + V T (/3 - 1 )iPv( /3 - 1) 

= (Ax(/3 - 2) + Bv(/3 - 1))TS(/3 - I) 

X (Ax(/3 - 2) + Bv(/3 - I)) + tr(S(/3 - I)R) + tr(rR) 

+v T(/3 - l)iPv(/3 -1), (6'b) 
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where 

S(f3 - I) =[ A - BK(f3)rf[ A - BK(f3)] + K T(f3)cfJK(f3) + Z 

= A Tf(A - BK(f3») + Z 

due to (lOa). Thus 

0= al( 13,13 - l)/av(f3 - 1) 

115 

= 2(B TS(f3 - l)Bv(f3 -1) + B TS(f3 - l)Ax(f3 - 2) + cfJv(f3 - 1»), 

(7b) 

from which follows the optimal value of v( 13 - 1) 

v(f3-1)= -K(f3-1)x(f3-2), (9b) 

where 

K(f3-1)=[cfJ+ BTS(f3-1)BfIBTS(f3-1)A. (lOb) 

Substitution of (9b) into (6'b) yields the minimal value of 1(13,13 - 1) as 

1*(13,13- 1) = x T(f3 - 2)[(A - BK(f3 - l»)TS(f3 - l)(A - BK(f3 - I» 

+KT(f3- l )cfJK(f3- 1)]x(f3- 2) 

+ tr(f + S( 13 - l»)R. 

Proceeding in this manner, we get a general rule. 

Theorem 1. The optimal control of the finite time-horizon minimization 
problem that objective (1) be minimized for system (2), is given by 

v(t)=-K(t)x(t-I) for t=I, ... ,f3, (11) 

where 

K(t) =[ cfJ + BTS(t)Bf IB TS(t)A (12a) 

S(t - 1) = A TS(t) [ A - BK(t)] + Z, t = 2,3, . .. ,13 

= A T[ Set) - S(t)B[ cfJ + BTS(t)BfIBTS(t) JA + Z (12b) 

S ( 13) = f. (12c) 

The associated minimal value of the cost functional is 

1*(xo) = minl( 13, I) 
v(l) 

=x[S(O)xo+tr(S(I)+ ... +S(f3»R. (13) 

REMARK. It is important to note that the optimal control law (11) for the 
stochastic system (2) is the same as for the corresponding deterministic 
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system in which stochastic term ~(t) disappears and instead its expectation 
E ~(t) appears. This property of the present linear control system with an 
additive stochastic term is usually called the certainty equivalence principle. 
(See Section 5.4 for further discussions on the principle.) 

Corollary. Similarly, we can show that when our system contains a non
stochastic exogenous term in addition to the original ones in system (2), i.e., 

x(t) = Ax(t - 1) + Bv(t) + c(t) + ~(t), (2') 

where c(t) is a vector of nonrandom exogenous variables, the certainty 
equivalence principle still holds, and hence the optimal control is given by (cf. 
Theorem 14 in Section 2.2) 

v(t) = -K(t)x(t - 1) - k(t), t = 1, ... , [3 (11 ') 

where K(t) is that of (12a), 

k(t) ==[ BTS(t)B + <II r'B T { S(t)c(t) + L(t + I)S(I + l)c(t + 1) 

+ L(t + I)L(t + 2)S(I + 2)c(l + 2) + 

(12'a) 

S(t) and S( (3) are those of (12b) and (12c), respectively, and 

L(t) ==[ A - BK(I) r, t = 2,3, ... , [3. (12'b) 

Next, we consider the infinite time-horizon minimization problem with 
additive disturbances; that is, we minimize the expected value of cost 
functional 

00 

]t(xo) == E 2: (xT(t - I)Zx(t - 1) + VT(t)<IlV(t») (It) 
t= , 

for given x(O) = xo, with respect to vet) subject to system (2) for t = 1, 
2, ... , 00. The presupposed properties of additive disturbances in (2), as 
well as the other notations, are the same as for the finite time-horizon case. 

As Theorem 15 in Section 2.2 above suggests, by virtue of the certainty 
equivalence principle, if the deterministic system corresponding to (2) is 
state controllable, we have the optimal control law to the infinite time
horizon problem as follows, in contrast with Theorem 1. (Cf. Bertsekas 
(1976, Sec. 3.1) for this problem.) 
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Theorem 2. The optimal control to the infinite time-horizon problem of 
minimizing objective (1 t) for system (2), is given by 

where 

v(t) = - Kx(t - 1) for t = 1,2, ... 

K =[ BTSB + <prIBTSA 

S = A TS[ A - BKJ + Z. 

Furthermore, if system (2) is replaced by system (2'), the present problem is 
solved for the following optimal control rule. 

v(t) = -Kx(t - 1) - k(t) for t = 1,2, ... 

where K is that of (12ta), 

k(t) =[ BTSB + <pr IBT {Sc(t) + LSc(t + 1) + L 2Sc(t + 2) + ... }, 

(12tta) 

L=[A - BKf, (note that LOa = 0) (12ttb) 

and S is that of (12tb). 

Concluding this section, we extend control rule (11) to a distributed-lag 
system case. 

Application 1. We apply the optimal control rule (11) to the following 
distributed-lag system 

k h 

x(t) = 2:: AiX(t - i) + 2:: Bjv(t - j) + g(t) (1*) 
i=1 j=O 

with the cost functional (2*) to be minimized 

J = 1~1 {i~1 X T(t - i)Zix(t - i) 

+ j~1 V T (t - j)Zk+jV(t - j) + V T (t)<Pv(t) } + x T (f3 )fox( f3) 

(2*) 

where x(t) and v(t) are the state n vector and control m vector, respec
tively, in period t; g(t) is a stochastic term obeying assumptions (3); Ai' Bj 

are constant matrices of appropriate dimensions; and Zi (i = 1,2, ... , 
k + h), <P, fo are all constant positive definite matrices. 

Equations (1 *) and (2*) are rewritten as 

x(t) = Ax(t - 1) + Bv(t) + ng(t), (1**) 
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and 

~ ==. "... .. - d· (- - - - ) - - lag -k+h' ... , -k+1 '-k' ... , -I' (3*) 

Define 

K(t)=[BTS(t)B+$rllFs(t)A, (4*) 

S(t) = [ A - BK(t) fS(t + 1)[ A - BK(t)] + KT (t)$K(t) + Z (5*) 

for t = 1,2, ... , (3 - 1; and 

S({3)=f. (6*) 

Taking account of the definition of A, B and of the dimension of K(t), we 
partition K(t) as follows. 

K(t) = [KBh(t),KBh-I(t),···, KBI(t),KAk(t),KAk-l(t), ... , KA1(t)], 

(7*) 

where each KBlt) (j = 1, ... , h) has dimension m X m, and each KAi(t) 
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(i = 1, ... , k) has dimension m X n, defined as 

KBh (t) =[ }3TS(t)B + !I> r I U(t)Bh' 

KBh - 1 (t) =[ BTS(t)B + <I> r I [ U(t)Bh-1 + Shl(t) + B[Sk+h,I(t)], 

119 

KBI(t) =[ BTS(t)B + <l>rl[ U(t)BI + Sh,h-I(t) + B[Sk+h,h-I(t)]; (8*) 

KAk(t) =[ BTS(t)B + <I> r I U(t)Ak' 

KAk - 1 (t) =[ BTS( t)B + <I> r I [ U(t)Ak-1 + Sh,h+ I(t) + B[Sk+h,h+ l(t) ], 

KAI(t) =[ BTS(t)B + <l>rl[ U(t)AI + Sh,k+h-I(t) + B[Sk+h,k+h-I(t)], 

in which 

U(t) = Sh,k+h(t) + B[Sk+h,k+h(t)· 

The following m X (hm + kn) and n X (hm + kn) matrices 

[Shl(t), . .. , Shh(t),Sh,h+I(t),· .. , Sh,k+h(t)], 

[Sk+h,I(t), ... , Sk+h,h(t), Sk+h,h+ l(t), ... , Sk+h,k+h(t)] 

constitute, respectively, the hth row block (i.e., rows (h - l)m + I-hm) 
and the (k + h)th row block (i.e., the last n rows) of S(t). Applying the 
optimal control rule (11) with x(t - 1) replaced by x(t - I) in (I **), 
therefore, yields 

v(t) = - K(t)x(t - I) 

or, equivalently, in view of (7*) 
h k 

(9*) 

v(t) = - 2: KBj(t)V(t - j) - 2: KAi(t)X(t - i). (9**) 
)=1 i=1 

5.2. Controller in an Imperfect Information Case 

In this section, we are concerned with optimal control of linear discrete
time systems with additive disturbances in an imperfect state information 
case. Thus we consider the following system in a state-space form similar to 
that in Kalman estimation (Section 4.1): for t = I, ... ,f3 

x(t) = Ax(t - I) + Bv(t) + ~(t), 

yet) = Cx(t) + r(t), with C =[1,,0] 

(14a) 

(14b) 

where y and rare r vectors of output variables and time-independent 
non-Gaussian observation errors, respectively. (The other notations are 
those of (2) in Section 5.1.) State vector x(t) is assumed to be partially 
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observed only through a noise-spoiled output y(t) of dimension r « n). 
The corresponding cost function will become 

J = E { Y T (f3 )fy( f3) + /~I (y T (t - I )Zy(t - I) + V T (t)<I>v(t)) }, (15) 

where f, Z are positive semidefinite, and <I> is positive definite. 
Partitioning n vector x as 

(16) 

where XI has dimension r and is assumed to correspond to outputy, and X 2 

is an unobservable (n - r) vector. As in (16), we partition matrices A and 
B, and disturbance term ~ as 

B=(BIl), 
B22 

Defining 

x t =(xI(t)+r(t))=(y(t)), 
( ) xit) xit) 

we can rewrite system (14) as 

x(t) = Ax(t - I) + Bv(t) + l(t), 

and, accordingly, cost function (15) is expressed as 

(17) 

(14') 

J = E {x T(f3)[X(f3) + /~I (xT(t - I)Zx(t - 1) + vT(t)<I>v(t))} , (15') 

where 

[=(f 0) o 0' 
~ =(Z 0) - - 0 O· 

As r and ~ are non-Gaussian random vectors having zero means and finite 
covariance matrices, so l is a non-Gaussian random vector having the same 
properties. Hence we may consider, from the outset, the transformed 
system 

x(t) = Ax(t - 1) + Bv(t) + ~(t), 
with the cost functional to be minimized 

for t = 1, ... , f3 (19) 

where x is a state n vector, v is a control m vector, and ~ is assumed to be a 
non-Gaussian random n vector having the following properties: 

E~(t) = 0 for all t, 

(8/1 = 1, 8s/ = ° (s =1= t)). 

(2Ia) 

(21b) 
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Using partition (17), we divide system (19) into two subsystems: 

xl(t) = Allxl(t - 1) + A 12x2(t - 1) + BllV(t) + ~I(t), (22a) 

X2(t) = A 21 x l(t - 1) + A22xit - 1) + B22V(t) + ~2(t). (22b) 

While xl(t) corresponds directly to yet), information about xit) must be 
searched for. Subsystems (22) show that xit) is conditional on xl(O), 
x/I), ... , xl(t - 1) and v(1), ... , v(t). We find the distribution function 
of xit) when xl(t) is given, following the method developed by Root 
(1969). (ef. Aoki (1967) for related topics.) 

Let us put 

a = xl(t), 

£f = the conditional distribution of x2(t), given xl(O), 

xl(I), ... , XI(t) = a, and v(I), ... , vet). 

Assume that distribution functions of ~(t) and x(O) admit ordinary densities 
and have finite covariance matrices. The assumption implies that FI admits 
an ordinary density and has a finite covariance matrix: 

(23) 

where 
m(t)=:E{X2(t):£f}. (24) 

In this (24), the term in the braces "xit): £f" denotes xlt) whose 
distribution function is Fl. In the following, we employ this convention. 
Note that 

x(t) =: E {x(t) I xl(O), ... , xl(t) = a, v(I), ... , v(t)} 

= (met))· (25) 

Also, writing for any vector b 

F£(t) =: FI(X - b), (26) 

we know 

Q(£f)=Q(F£) for any b. (23') 

The marginal distribution function of xl(t) is 

H I(1],£f- I,a,v) =: Pr[ xl(t) < 1] I x2(t - 1) : FI-I,XI(t - 1) = a, v(t) = v] 

= Pr[ AI2xit - 1) + ~I(t) < 1] - Alla - Bllvl x 2(t - 1): 

£f- I, xl(t - 1) = a, v(t) = v] 

= Pr[ A12Xit - 1) + ~I(t) < 1] - AlIa + A I2b - Bllvl 

x 2(t - 1) : F£-I ,xl(t - 1) = a, v(t) = v] 

(27) 
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and the joint distribution function of {x l (t),X2(t)} is 

Gt(JL,F'-I,a,v) == Pr[ x(t).;; p.1 x2(t - 1) : Ft-l,xl(t - 1) = a, vet) = v] 

= pr[(AI2)Xit - 1) + ~(t) .;; p. - (AII)a - Bvl 
A22 A21 

x2(t - 1) : Ft-I, xl(t - 1) = a, v(t) = v] 

=pr[(A12)x2(t-l)+~(t).;; p._ (AII)a+ (A I2 )b 
A22 A2l A22 

- Bvlx2(t - 1) : F~-I, xl(t - 1) = a, v(t) = v] 

== G*t[ JL - (~::)a + (~::)b - BV'F~-Il (28) 

If F is a distribution function with an ordinary density, we shall denote 
the corresponding density function by its lower-case letter f. Using this 
convention, the distribution function of xit), given xl(t) = c, is written as 

Dt (w, e,c, Ft- I ,a, v) 

== Pr[ x2(t) + e .;; wi x2(t - 1) : F'-I, 

xl(t - 1) = a, v(t) = v, xI(t) = c] 

g*t[(z ~ e) - (AII)a + (A 12 )b - BV'F~-I] 
f w A21 A22 

= ~ 
-00 h*t(c - Alia + A I2b - BIIV,F~-I) 

for any b. Hence 

D t(w,A 22b - A 21 a - B22v,c,Ft- l,a,v) 

g*t[ (c + A 12b - : lI a - BIIV), F~-I] dz 

= J:oo h*t(c - Alia + A12b - BIIV,F~-I) 

(29) 

== D*t(w,c - Alia + A12b - BIIV,F~-I). (29') 

Now we are in a position to establish the optimal control law for the 
present imperfect state information case. 

Theorem 3 (Separation Theorem). The optimal control of system (19) with 
cost functional (20) to be minimized is given by 

v(t)=-K(t)x(t-l) for t=I, ... ,{3 (30) 
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where x(t) is that of (25), K(t) is that of (l2a), and the associated minimum 
expected cost from t + 1 till f3 becomes 

p+ I(a, r) = (a T,m T(t))S(t)( m(t)) + ;\1+ I(FI), (31) 

where S(t) is the positive semidefinite symmetric matrix defined in (l2b), and 

;\I+I(FI) = ;\I+I( F~) for any b and Fl. (32) 

PROOF. The proof is inductive, proceeding backward in time from the final 
period f3, by using a dynamic programming argument. In view of (20), by 
putting x l (f3 - 1) = a, 

JI\a,F,B-I) ==minE {xT(.8)fx(f3) + x T(f3 - I)Zx(f3 - 1) 
v( {3) 

+ V T (.8 )Cf>v( f3) I (a, F,B-I) }, 

in which 

x(f3) = Ax(.8 - 1) + Bv(f3) + ~(f3), 
and (21a) are taken into consideration, we have 

+ 2VT(f3)BTfAx(.8 - 1) + VT(f3)[Cf> + B TfB]v(f3) 

+ 2E(x T( f3 - I)A Tf~( f3)) 

+ E(~T( f3 )n( f3)) I (a, F,B-I)}. 

Differentiating the function in the brackets of this J,B with respect to v( f3) 
and equalizing the resultant to zero, we obtain 

0= B TfAx( f3 - 1) + [Cf> + B Tf B]v( f3), 

whence the optimal value of v( f3) is derived as 

v ( f3 ) = - K ( f3 )x ( f3 - 1), 

where 

K ( f3) == [Cf> + B Tf B rIB Tf A . 

(30') 

This K( f3) is the same as in (lOa) of the preceding section for the perfect 
state information case. Substitution of (30') into the above J ,B(a, F,B- I) 
yields its minimum value 

J,B(a,F,B-I) = x T( f3 - 1)[ Z + A T(f - f B[Cf> + B Tf Br I BTf)A] 

Xx(f3 - 1) + tr([Z + A TfA]22Q(F,B-I)) + tr(fR) (31') 
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where we have taken account of Lemma 1, of (2Ib), of the fact that 

E ( x T ( 13 - I)A Tn( 13 ») = 0 

since x( 13 - 1) is independent of ~(f3), and of the fact that 

cov[(X2(;-I»)'(xi;-I»)]=(~ Q(~fi-l»); (33) 

and [Z + A Tr AJ22 denotes the submatrix of [Z + A Tr AJ corresponding to 
Q(Ffi- 1). The matrix in the first term on the right-hand side of (31') is 
positive semidefinite since 

Z + A Tr A - A Tr B [ <I> + B Tr B rIB Tr A 

=z+ATr[A -BK(f3)] 

=Z+[A - BK(f3)fr[A - BK(f3)] + K T(f3)<I>K(f3). (34) 

Therefore, the statement in the theorem holds true for t = 13 - 1. 
Next, assuming the statement holds for an arbitrary t, we shall show that 

it also holds for t - 1. By putting x1(t - 1) = c, 

P(C'FI-l)=V(T);T~~~ ... '/3E{ x T(f3)rx(f3) + T~/xT(r-l)ZX(r-I) 

+vT(r)<I>v(r)l(c,r-l) } 

= minE[ x T(t - l)Zx(t - 1) + VT(t)<I>V(t) I (c,r- 1)] 
v( I) 

+ minE ( . _min E[x T(f3)rx(f3) V(I) V(T),T-I+l, ... ,/3 
/3 

+ 2:: (xT(r-I)Zx(r-I) 
T=I+l 

+ vT(r)<I>v(r») I (a,r)] 

la: H1(-,F1-1,c,v)}, (35) 

where we set vet) = v, x1(t) = a. The first term on the right-hand side of 
(35) is reduced to 

mjn { X T (t - 1 )Zx (t - 1) + tr(Z22 Q( r- 1») + v T <I> v }, 

where Z22 stands for the submatrix of Z corresponding to Q(F1 - 1). (ef. 
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(33).) Its second term in the braces reduces to 

[p+l(a,FI)la :HI(-,FI-I,C,V)]. 

Hence 

P(e,FI- I) = mJn {xT(t - I)Zx(t - 1) + tr(Z22 Q(FI- I)) + vT<lJv 
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+E[p+l(a,FI)la: HI(.,p-l,e,v)]}. (35') 

In (35'), note that 

FI = DI(-,O,a,P-I,c,v). (36) 

By induction hypothesis, the last term in the braces on the right-hand side 
of (35') is rewritten 

E[ (a T,m T(t))S(t)( m(t)) + AI+I(P) I a : HI( ',FI-I,C,V) l 
We examine (35') term by term. Because of (32), for any e 

E[AI+I(FI)la :HI(-,FI-I,C,V)] 

= E[AI+I(DI(-,e,a,FI-I,e,v)) I a: HI] 

= E[AI+I(D*\.,z,F~-1 ))Iz: H*I(Z,F~-I)] for any b 

= L:AI+I(D*I(-,z,F~-1 ))h*I(Z,F~-1 )dz 

='TTI(F~-I), 

where z stands for a + A12b - AIle - Bllv; and we note that 

'TTI(P-I) = 'TTI(F~-I) for any b 

and it is independent of v. Next, in view of Lemma 1, 

E[ (a T,m T(t))S(t)( m(l)) I a: HT] 

= E{[ -tr(S22(t)Q(FI )) 

(37) 

+ E(XT(t)S(t)X(t) I X2(t): FI,xl(t) = a)] I a: HI}, 

where S22 denotes the submatrix of S corresponding to Q(P). (Cf. (33).) 
Since 

E[ Q( P) I xit - 1) : F~-I ,xl(t - 1) = c, v(t) = v] 

is independent of e, v, and b, we may write 

where 

for any b 

(38) 
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and it is independent of v. Lastly, in view of (36) 

L == E {E[ x T(t)S(t)X(t) I xit) : FI,xl(t) = a] I a : HI( .,P-I,c,v)} 

= E { X T (t)S(t)x(t) I x 2(t - 1) : F I- 1, xl(t - 1) = c, v(t) = v}, 

with x(t) replaced by Ax(t - 1) + Bv(t) + W). Thus 

L = E {x T(t - I)A TS(t)Ax(t - 1) + 2v TB TS(t)Ax(t - 1) + v TB TS(t)Bv 

+~T(t)S(t)~(t)lx2(t-l) :p- I,x l(t-l)= c,v}. (39) 

The optimal control value of v is provided by differentiating the expecta
tion function on the right-hand side of (35) with (39) taken into consider
ation and by setting the resultant equal to zero, i.e., 

o = [<I> + BTS(t)B]v + BTS(t)Ax(t - 1), 

and hence optimal v is given by 

v = - K(t)x(t - 1), 

where 

K(t) ==[ <I> + BTS(t)BrIBTS(t)A. 

(3~'') 

Substituting v of (3~'') back into (35'), with (37), (38), and (39) taken into 
account, yields the minimal value of P(c,FI- 1), i.e., 

P(c,FI-I)= xT(t-l)[:::+ATS(t)[A - BK(t)]]x(t-l) 

+ tr( (:::22 + [ A TS(t)A ]22)Q( P-I») + tr( S(t)R) 

+'1TI(P-I) - MI(FI- 1). (40) 

It is easily seen that (40) is of the same form as (31). D 

Theorem 3 allows us to estimate x(t) and optimal control separately and 
independently. Thus the theorem is termed the separation theorem in 
control theory. (Cf. Witsenhausen (1971).) It can be regarded as the 
stochastic counterpart of the separation principle of observer and controller 
established in Section 3.5. 

Application 2. Consider the same distributed-lag system (1 *) with cost 
function (2*) as in Application 1, but assume imperfect state information 
for contemporaneous state variables. Then following a similar argument to 
the previous application, we have optimal control rule as 

h k 

v(t) = - 2: KB)(t)V(t - j) - 2: KAi(t)X(t - i) - KAI(t)X(t - 1), (10*) 
)=1 ;=2 

where KB/t), KAi(t) are those of (8*) and x(t - 1) is one of the Kalman 
estimators of x(t - 1). 
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Application 3. We want to apply the separation theorem (Theorem 3) to the 
optimal open market strategy problem by Kareken et al. (1973). In their 
linear economic system, discussed shortly, which holds over days, three 
variables exist: a nominal rate of interest RI' the central bank's asset 
portfolio (stock of reserves) PI' and nominal GNP Yt for day t. They 
assume that both the interest rate and the asset portfolio are observed by 
the central bank without lapse of time, but that daily GNP cannot be 
observed without lapse of time. Their model consists of two equations 
representing the goods market equilibrium (11 *) and the money market 
equilibrium (12*): 

Yt = ao + a I Rt + ayt , 

Rt = 130 + 131 Yt + f32 Pt + art' 

(11*) 

(12*) 

where the coefficients ai and f3j are assumed known, and ail (i = y, r) are 
random variables. The central bank's loss function to be minimized is 

T 

L = E 2: (Yt - y)2 (13*) 
1=1 

where T is the number of days in planning time-horizon, and Y is the target 
value of Yt • Here we shall slightly change the time structure of equation 
(11 *) as 

Yt + I = ao + a I Rt + ayt + I 

and substitute (12*) for Rt into (11 *), obtaining 

(11 * *) 

Yt+ 1= (ao + a l 130) + a l 131 Yt + a l f32 Pt + (alart + ayt + I). (14*) 

Letting P be the desired stock of reserves that equilibrates Yt and Yt + I with 
Yin (14*) without random terms, i.e., 

Y = (ao + a l 130) + a l 131 Y + a l f32P. ( 15*) 

Subtracting (15*) from (14*) yields 

(Yt + 1 - Y) = a l f3l(Yt - Y) + a l f32(Pt - P) + (alart + ayt + I ). (16*) 

Equation (16*) corresponds to (22b) with XI = O. Thus the present problem 
will be able to be solved by applying Theorem 3 above. 

5.3. Controllers for Linear Systems 
with Stochastic Coefficients 

We now turn to the perfect state information case, where a linear discrete
time system contains uncertain parameters as well as additive disturbances. 
In particular, the system in question is of the following form: 

x(t) = [A + ZtJx(t - 1) + [B + WtJv(t) + ~(t) (41) 
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for t = I, ... , f3 (f3: a terminal time period) with given initial state x(O) 
= xo, 

where 
n vector of state variables, 
m vector of control variables, 
n vector of random disturbances, 
constant coefficient matrices, 
stochastic coefficient matrices, of appropriate sizes. 

We assume: 

elements of ~(t), Z/ and ~ are all contemporaneously 
correlated with one another, 

EZ/ = 0, EW/ = 0, E~(t) = 0, 

cov( ~(t), ~(s)) = R8st' (8: Kronecker delta). 

The cost function to be minimized is the conventional one (d. (I» 

(42a) 

(42b) 

(42c) 

J(xo) == E { X T( f3 )fx( f3) + /~l (x T(t - I)Zx(t - I) + V T(t)cI>V(t)) }, 

(43) 

where E represents an expectation, and f, Z, and cI> are assumed to be 
constant positive semidefinite matrices, with cI> positive definite. 

Letting f3 be a given finite positive integer, we consider the finite 
time-horizon problem of minimizing J in (43) subject to the linear stochas
tic system (41) under assumptions (42). 

Defining 

g/(x(t - I),v(t),~(t)) ==([ A + Z/]x(t - I) + [B + ~]v(t) + ~(t))TZ 

X ([ A + Z/]x(t - I) + [B + W/]v(t) + ~(t)) 

for t=I, ... ,f3-I, (44a) 

gf3 ( x ( f3 - I), v ( f3 ), ~( f3 )) 

==([A + Zf3Jx(f3 - I) + [B + Wf3Jv(f3) + ~(f3))Tf 

X ([ A + Zf3 ] x ( f3 - I) + [ B + Wf3 ] v ( f3) + ~( f3 )) + V T ( f3 )cI>v ( f3 ) 

(44b) 

we rewrite (43) as 

J(xo) = E {/~l g/(x(t - 1)'V(t),~(t))} + x;[Zxo (43') 
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Let J*(xo) be the optimal value of the expected cost J(xo) in (43'). Here, 
note that the probability measures characterizing ~(t), Zp and WI do not 
depend on prior values of these variables and parameters. Also, control 
vector vet), to be optimal, is dependent on all the future optimization 
programs, in view of the optimality principle in dynamic programming. 
Thus J*(xo), the optimal J(xo) in (43'), may be written as 

J*(xo)=min[ E {gl(xo,V(I),~(I))+min[ E {gix(I),v(2),~(2)) 
v(l) I = I v(2) 1=2 

+ ... +min[ E gf3(X(f3-1),v(f3),~(f3))]}] ... }] 
v(f3) 1=/3 

(45) 

where the expectation E over t = r is conditional on x(r - 1) and vCr), 
r = 1, ... , f3. 

Defining 

J(f3, f3) = E gf3(x(f3 - 1),v(f3),~(f3)), 
1= /3 

(46a) 

J(f3, ~ - 1) =1=1-1 {gf3-1(x(f3 - 2),v(f3 - 1),~(f3 - 1)) 

+ minJ(f3, f3)}, (46b) 
v( /3) 

J(f3,I)= E {gl(xo,v(I),~(I))+minJ(f3,2)} +xriZxo, (46d) 
I = I v(2) 

we apply the optimality principle in dynamic programming. Thus, in the 
first place, the differential of J( f3, f3) with respect to v( f3) is set equal to 
zero, l.e., 

1 aJ(f3, f3) 
0= 2 ave f3) 

= BTrBv(f3) + B TrAx(f3 - 1) + <Pv(f3) + E(wfrwf3 )v(f3) 

+E(Wfrzf3)x(f3-1)+E(WfH(f3)) (47) 

since from (46a), (44b), and (43b) 

J(f3, f3) = (Ax(f3 - 1) + Bv(f3))Tr(Ax(f3 - 1) + Bv(f3)) 

+v T(f3)<Pv(f3) + E {(Zf3x(f3 - 1) + Wf3v(f3) + ~(f3))T 

xr(zf3x (f3- 1)+ Wf3v(f3)+~(f3))}. 

(48a) 
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It follows from (47) that the optimal control at time {3 is determined by (cf. 
Chow (1975, p. 230) for a similar derivation) 

v ( (3 ) = - K ( {3 )x ( (3 - I) - k ( (3 ) (49a) 

where 

K ( (3) == [ <I> + B Tf B + E ( W Jf Wid r I [ B Tf A + E ( W Jf Z fl ) ], (50a) 

k( (3) ==[ <I> + B Tf B + E( WJf Wfl) r I E( WJn( (3»). (5Ia) 

Substituting (49a) into (48a), we have the minimal value of J( (3, (3) as 

J*( (3, (3) = X T({3 - I){[ A - BK( (3)rf[ A - BK( (3)] + K T({3)<I>K( (3) 

+ E[(Zfl- WflK({3))Tf(Zfl- WflK({3»)]} 

X x ( (3 - I) + k T ( (3 ) [ <I> + B Tf B + E ( W Jf Wfl ) ] k ( (3 ) 

- 2kT({3)E(WJn({3»)- 2k T({3) 

X{BTf[A - BK({3)] -<I>K({3) 

+ E( WJf[ Zfl - WfJK( (3)]) }x( (3 - I) 

+ 2E(~T( (3 )f(Zfl - WflK( (3») Jx( (3 - I) + E(~T( (3 )f~( (3») 

which is reduced to 

J*({3, (3) = x T({3 - I){[ A - BK({3)rf[ A - BK({3)] + K T({3)<I>K({3) 

+ E[ (ZfJ - WflK( (3») Tf( Zfl - WflK( (3»)]} 

X x( (3 - I) + 2E[ ~T( (3)f(Zfl - WflK( (3») ]x( (3 - I) 

- E (~ T ( {3 )f Wfl )k ( (3) + tr(f R ) 

by virtue of (50a), (5Ia), and 

E(zTMy) = tr(Mcov(y,z)) 

(52a) 

(53) 

which holds in the case that y or z has zero mean. (Cf. Lemma I.) 
Secondly, the differential of J({3, (3 - I) with respect to v({3 - I) is set 

equal to zero. In view of (46b), (44a), and (52a), we get 

J({3, (3-I)= E{([A + Zfl~l]x({3-2)+[B+ Wfl~l]v({3-I) 

+ ~({3 - 1»)TS({3 - I) + 2[ E(~T({3)fZfJ) 

- E(e( (3)fWfl )K( (3) J} 
X([A + Zfl~l]x({3-2)+[B+ Wfl~l]v({3-I)+~({3-I») 

- E (~T ( {3 )f Wfl )k ( (3 ) + tr(f R ) + V T ( {3 - I ) <I> v ( (3 - I) 
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which is rewritten as 

J(f3, 13 - I) = [Ax(f3 - 2) + Bv(f3 - l)fS(f3 - I) 

X[Ax(f3-2)+ Bv(f3- I )] 
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+ E{[Z/l_lX(f3- 2)+ W/l-lv(f3-I)+~(f3-l)fS(f3-l) 

X [Z/l-lX(f3 - 2) + W/l- 1V(f3 - 1) + ~(f3 - I)J} 

+ 2[ E( ~ T (f3)r Z/l ) - E( ~ T (f3)r W/l )K( (3) ] 

X [ Ax( 13 - 2) + Bv( 13 - 1)] - E( ~ T (f3)r W/l )k( (3) 

+ tr(r R) + V T (13 - 1 )<I>v( 13 - 1), 

where 

S(f3- I )=[A - BK(f3)fr[A - BK(f3)] + K T(f3)<I>K(f3) 

+E[(Z/l- W/lK(f3))Tr(z/l- W/lK(f3))] +2 

(54) 

=ATr[A - BK(f3)] + E[z;r(Z/l- W/lK(f3))] +2 (55a) 

in view of (50a). Thus we have 

1 aJ(f3,f3- I ) o = - ----'----.:... 
2 av(f3-I) 

= [B TS(f3 - I)B + E(W;_lS(f3 - I)W/l- 1) + <I>]v(f3 - 1) 

+[ B TS(f3- I )A + E(W;_lS(f3- I )Z/l_1)]X(f3- 2) 

+E(W;_lS(f3-I)~(f3-I)) 

+BT[ E(Z;n(f3)) - KT(f3)E(W;r~(f3))]. 

from which follows the optimal control at time 13 - 1 

v(f3 - 1) = -K(f3 - I)x(f3 - 2) - k(f3 - 1) (49b) 

where 

K(f3 - 1) =[<1> + B TS(f3 -I)B + E(W;_lS(f3 -I)W/l_1)r 1 

X [B TS(f3 - I)A + E(W;_lS(f3 - I)Z/l-l)]. (50b) 

k ( 13 - 1) = [ <I> + B T S ( 13 - 1) B + E ( W;_ 1 S ( 13 - 1) W/l- 1) r 1 

X {E(W;_lS(f3-IH(f3-I)) 

+BT[ E(Z;n(f3)) - (A TrB + E(Z;rW/l ))k(f3)]} 

(5Ib) 
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in view of (SOa) and (SIa). (For simplicity, we write hereafter Et( WTS(tm 
instead of E(WtTS(t)~(t)) and the like.) 

Substituting (49b) into (S4) yields the minimal value of J (13, 13 - I) as 

J*( 13, 13 - I) 

=x T(f3- 2){[A - BK(f3- I )fS(f3- I )[A - BK(f3- I )J 

+ E [Z- WK(f3-l)fS(f3-I) 
(1-1 

X [Z - WK(f3 - I)J + K T(f3 - I)q,K(f3 - I)} 

XX(f3-2)+2[ E (~TS(f3-I)Z)+E(~TrZ)A 
(1-1 (1 

-1(~TrW)K(f3)A ]X(f3 - 2) - 2k T(f3 - 1) 

X[BTS(f3-I)A + E (WTS(f3-I)Z)]x(f3-2) 
(1-1 

-kT(f3-I)[q,+BTS(f3-I)B+ E (WTS(f3-I)W)] 
(1-1 

Xk(f3-I)-E(~TrW)k(f3)+tr(rR)+tr(S(f3-I)R) (S2b) 
(1 

by virtue of (SOa), (SOb), (SIa), and (SIb). 
Third, the differential of J( 13, 13 - 2) with respect to v( 13 - 2) is equal

ized to zero. In view of (46c), (44a), and (S2b), we have 

J( 13,13 - 2) = [Ax( 13 - 3) + Bv( 13 - 2) f 
X S(f3 - 2)[ Ax(f3 - 3) + Bv(f3 - 2)J 

+ E[ Zp_2X( 13 - 3) + Wp_2v( 13 - 2) + ~(f3 - 2) J T S( 13 - 2) 

X [ZP_2X( 13 - 3) + Wp_2V( 13 - 2) + ~(f3 - 2) J 

+ 2{ E (~TS(f3 - I)Z) + E(~TrZ)A - E(~TrW)K(f3)A 
(1- 1 (1 P 

-k T(f3 - 1)[ B TS(f3 - I)A + /-1 (WTS(f3 - I)Z)]} 

X [Ax(f3 - 3) + Bv(f3 - 2)J + v T(f3 - 2)q,v(f3 - 2) 

- E (~ Tr W) k ( 13 ) + tr(r R ) + tr( S ( 13 - I) R ) - k T ( 13 - 1) 
f! 

X[q,+BTS(f3-I)B+ E (WTS(f3-I)W)]k(f3-I) 
(1-1 
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where 

S(,8-2)=[A - BK(,8-I)fS(,8-I)[A - BK(,8-I)] 

+KT(,8-I)cI>K(,8-I) 

+ E [(Z - WK(,8 - 1))TS(,8 - I)(Z - WK(,8 - I))J + Z 
f3-1 

=A TS(,8-I)[A - BK(,8)] 

+ E [Z TS(,8-I)(Z-WK(,8-1))]+Z (55b) 
f3-1 

in view of (SOb). Thus we have 

o = 1 OJ (,8, ,8 - 2) 
2 av(,8 - 2) 

= [B TS(,8 - 2)B + E (WTS(,8 - 2) W) + cI>]V(,8 - 2) 
f3-2 

+[B TS(,8-2)A + E (W TS(,8-2)Z)]x(,8-3) 
f3-2 

+ E (WTS(,8 - 2)~) + BT[ E (Z TS(,8 - I)~) - (A TS(,8 - l)B 
f3-2 f3-1 

+ E (Z TS(,8 - l)W))k(,8 - I)] 
f3-1 

+BTAT[ ~(ZTn) - (ATrB + ~(ZTrW))k(,8)] 

from which we get the optimal control at time ,8 - 2 as 

v(,8 - 2) = - K(,8 - 2)x(,8 - 3) - k(,8 - 2), (49c) 

where 

K(,8 - 2) =[cI> + B TS(,8 - 2)B + E (WTS(,8 - 2) W)]-l 
f3-2 

X[B TS(,8-2)A + E (WTS(,8-2)Z)] (SOc) 
f3-2 

k(,8 - 3) =[cI> + B TS(,8 - 2)B + E (WTS(,8 - 2)W)]-1 
f3-2 

X {l_2(WTS(,8 - 2)~) + BT[ l-l (Z TS(,8 - I)~) 

-(A TS(,8-I)B+ E (Z TS(,8-I)W)k(,8-I)] 
f3-1 

+ B T A T[ ~ ( Z Tr~) - ( A Tr B + ~ ( Z Tr W) ) k ( ,8 ) ]}. ( 51 c) 
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Carrying out these calculations consecutively, we obtain the following 
general rule of optimal control. 

Theorem 4. The optimal feedback control to the finite time-horizon problem of 
minimizing J in (43), subject to the linear system (41) under the assumptions 
(42), is given by 

v(t) = -K(t)x(t - 1) - k(t) for t = 1,2, ... ,13 (49) 

where 

K(t) =[ <I> + B TS(t)B + E( W/S(t) W/) r 1 [ B TS(t)A + E( W/TS(t)Z/)] 

(50) 

k(t) =[ <I> + B TS(t)B + E( W/S(t) U"t) r 1 

X {E(W/TS(t)~(t)) + BT[ E(Z/~IS(t + 1)~(t + 1)) 

- (A T S (t + 1) B + E ( Z/;. 1 S (t + 1) W/ + I)) 

Xk(t+ 1)] 

+ B TA T[ E( Z/~2S(t + 2)~(t + 2)) 

- (A TS(t + 2)B + E(Z/:2S(t + 2) W/+ 2))k(t + 2)] 

+ ... +BT(AT)il-/-I[E(Z;JS(f3)~(f3)) 

- (A TS(f3)B + E(Z;JS(f3)Wil)) 

Xk(f3)J}, (51) 

S(t) is calculated backward in time, beginning from 

S(f3)=f, 

by formula (55) or (55') below for t = 13 - 1, 13 - 2, ... ,2,1, one after 
another: 

S(t) = A TS(t + 1)[ A - BK(t + 1)] + E(Z/:IS(t + I)Z/+I) + Z 

-E(Z/:IS(t + I)W/+I)K(t + 1) (55) 

or, equivalently, 

S(t) = [A - BK(t + l)fS(t + 1)[ A - BK(t + 1)] 

+ K T (t + 1)<1> K (t + 1) + Z 

+ E {[ Z/ + 1 - W/ + 1 K (t + 1) f S (t + 1) [ Z/ + 1 - W/ + 1 K (t + 1) J} 
(55') 
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Corollary. If assumption (42a) is replaced by 

~(t), Zt and Wt are contemporaneously uncorrelated with one another, 

(42ta) 

then the above optimal control reduces to 

v(t) = - K*(t)x(t - 1) for t = 1, 2, ... , f3 

where 

K*(t) =[ <P + B TS*( t)B + E( W/S*(t) Wt ) r' (B TS*( t)A), (50t) 

S*(t) = A TS*(t + 1)[ A - BK*(t + 1)] + E(Zt:.,S*(t + I)Zt+') + Z 

(55t ) 

for t = f3 - 1, ... , 2,1 with S*( f3) = r. 

Next, we consider the infinite time-horizon problem of minimizing the 
expected value of cost function 

CIJ 

j(xo) = E2: (xT(t - l)Zx(t -1) + VT(t)<pV(t)) (56) 
t=' 

for given x(O) = xo, with respect to vet) (t = 1,2, ... ), subject to system 
(41) under the assumptions (42). (Notations are the same as before.) 

We assume that all random variables have converged to their limiting 
distributions. In such a stationary state, the optimal control is deduced 
from Theorem 4 as follows. 

Theorem 5. Under stationary conditions, the optimal feedback control for the 
infinite time-horizon problem of minimizing j in (56) subject to the linear 
stochastic system (41) under the assumptions (42) is given by 

v(t) = -Kx(t - 1) - k for t = 1,2,... (57) 

where 

K =[<p + BTSB + E(WTSW)f'[ BTSA + E(WTSZ)] (58) 

k =[ <P + BTSB + E(WTSW)] -, {E(WTS~) + BTp}. (59) 

Sand p are solutions to the following equations, respectively: 

S = A TS[ A - BK] + E(ZTSZ) - E(ZTSW)K + Z (60) 

or, equivalently, 

S=[A - BKrS[A - BKJ + KT<pK+Z+ E{[Z- WKrS[Z- WKJ}; 

(60') 

P = [A - BKrp + E(ZTS~) - KTE(WTS~). (61) 
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PROOF. The result is obtainable by assuming that K(t), k(t), and Set) have 
converged to their limits K, k, and S, respectively. In particular, deriving 
(59) and (61) requires the convergence 

00 

2: A /=[I- A r l • (62) 
/=0 

Then the convergence limit of (51) can be expressed as the combination of 
(59) with 

P = [I - A Tr l {E(ZTS~) - (A TSB + E(ZTSW))k} 

= [I - A Tr I { E(ZTS~) - KT( E(WTS~) + BjJ)}, 

from which (61) follows. D 

REMARK (Turnovsky's Lagrange Multiplier Method). The result of Theorem 
5 above is alternatively derived by applying to assumed asymptotic rela
tionships the Lagrange multiplier method which was adopted by Turnovsky 
(1976). We analyze this method in detail in order to understand its 
derivational process. 

Turnovsky chooses vet) so as to minimize the asymptotic cost 

(63) 

where Z and 11> are positive definite matrices, subject to our dynamic 
equation (41) under all the conditions (42) held. He begins with the 
assumption of a feedback control law of the form 

vet) = -Kx(t - 1) - k, (64) 

where K and k remain to be determined. Substituting (64) into (41) yields 

x(t) = [A - BK + Z/ - W;KJx(t - 1) - [B + W/Jk + ~(t) (65) 

from which we determine that the asymptotic expectation of x(t), denoted 
by p" must satisfy 

(66) 

Define the asymptotic expectations E(x(t)x T(t» = X and E(~(t)~T(t» 
= R. Then (65) implies the following asymptotic relationship (note that 
E(y/w/_ I ) = 0 for any random variablesy and w): 

X = [A - BKJX[ A - BKf + E {[ Z - WKJX[ Z - WKf} 

+ BkkTBT + E(WkkTWT) + R - 2[ A - BKJ p,kTBT 

- 2E {[ Z - WKJ p,k TWT} 

+2E{[Z- WKJp,~T} -2E(WkF). (67) 
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On the other hand, by applying Lemma I, the cost expression (63) can be 
rewritten as 

(EXT(t»)Z(Ex(t» + (EVT(t»)<I>(Ev(t») + tr[Zcov(x(t») + <I>cov(v(t»)] 

(63') 

where cov(x(t)) and cov( v(t)) denote the variance-covariance matrices of 
x(t) and v(t), respectively. Taking (64) into account, we get 

cov(v(t») = E {(v(t) - Ev(t»)(v(t) - EV(t»T} 

= KE {(x(t - I) - fJ.)(x(t - I) - fJ.f }KT 

= Kcov(x(t - I»)K T. 

Since asymptotically cov(x(t)) = cov(x(t - I)) = X - fJ.fJ. T, we have 

cov( v(t») = KXK T - KfJ.fJ. TKT. 

Substituting all these asymptotic relations into (63') yields 

fJ. TZfJ. + (KfJ. + k)T<I>(KfJ. + k) + tr[Z(X - fJ.fJ. T) + <I>(KXKT - KfJ.fJ. TKT)] 

which is reduced to 

(68) 

since tr(ZfJ.fJ.T)=fJ.TZfJ. and tr(<I>KfJ.fJ.TKT)=fJ.TKT<I>KfJ.. Equation (68) is 
equivalent to 

(68') 

Thus our present problem reduces to minimizing (68') subject to (66) and 
(67). Express the corresponding Lagrangian form (cf. Murata (1977, 
p. 262)) as follows: 

L = tr[ (Z + KT <I> K)X + 2<I> KfJ.k T + <I>kk T] 

+ tr[ S {(A - BK)X(A - BK)T + R - X 

+ E[ (Z - WK)X(Z - WK)T] + Bkk TB T + E( Wkk TWT) 

-2(A - BK)fJ.kTBT -2E[(Z- WK)fJ.kTWT] 

+ 2E[ (Z - WK)fJ.~T] - 2E( Wk~T)} ] 

(69) 

where S is the matrix of Lagrange multipliers associated with (67) and 2p is 
a column vector of Lagrange multipliers associated with (66). We are 
required to choose X, K, k, fJ. to minimize L in (69). Let us assume that S is 
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symmetric, differentiate (69) with respect to X, K, Jl, k, respectively, and set 
the results equal to zero (see the Appendix): 

0= 1 aL 
2 aK 

0= aL ax 
= (2 + KTipK{ + (A - BK)TS(A - BK) - S 

+E[(Z- WK)TS(Z- WK)] (70a) 

= ip KX + ipkJl T - B TSAX + B TSBKX + B TSBkJl T - B TpJl T 

+ E( WTSWKX - WTSZX + WTSWkJl T - WTS~Jl T) 

= [ip + BTSB + E(WTSW) ]KX - [BTSA + E(WTSZ)]X 

+ [ip + BTSB + E(WTSW) ]kJl T - [ BTp + E(WTS~)] Jl T (70b) 

0= 1 aL 
2 aJl 

= KTipk - (A - BK)TSBk - E[ (Z - WK)TSWk - (Z - WK)TS~] 

+(A-BK-I)Tp 

= KT[ ip + B TSB + E( WTSW)]k - [ A TSB + E( ZSW)]k 

+ E[ (Z - WK)TS~] + (A - BK - I)T P (70c) 

0= 1 aL 
2 ak 

= ipKJl + ipk + B TSBk + E( WTSWk) - B TS(A - BK) Jl 

- E( WTS(Z - WK)Jl) - E( WTS~) - B Tp 

= [ip + BTSB + E(WTSW) ](KJl + k) - [BTSA + E(WTSZ)] Jl 

_E(WTS~) - BTp. (70d) 

Subtracting (70d) . Jl T from (70b) yields 

0= {[ ip + BTSB + E( WTSW)]K - [ BTSA + E(WTSZ)] }(X - JlJl T). 

Hence, on the assumption that X - JlJl T is nonsingular, we get 

K= [ip + BTSB + E(WTSW)r 1[ BTSA + E(WTSZ)]. (58) 

The substitution of (58) for K into (70c) yields 

E[ (Z - WK)TS~] + (A - BK)T P = P 
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which is nothing but (61) and gives the solution for p. Then, substituting 
(58) for K into (70d) yields the solution for k in form (59). Finally, we note 
that (70a) is the same as (60'). This completes the proof of Theorem 5 by 
the Turnovsky's Lagrange multiplier method. 

For further developments parallel to our discussions on this topic, refer 
to Turnovsky (1977). The above Lagrange multiplier method will be uti
lized to derive Theorem 8 in Section 5.5. 

5.4. Certainty Equivalence in Stochastic 
Systems Control by Theil 

We mentioned the certainty equivalence principle in the remark on Theorem 
I in Section 5.1, where a relevant stochastic system contains an additive 
disturbance having zero mean. This principle is also applicable to the 
imperfect state information case as seen in Theorem 3 in Section 5.2. In 
both cases, the objective cost function (1) is quadratic in state variables and 
control variables separately and does not contain either linear or bilinear 
term in these variables. However, in his original argument for the principle, 
Theil (1957) assumed an objective function of the general quadratic form 
involving linear and bilinear terms. We examine here the principle in this 
respect and clarify the relationship between his optimal rule and ours. 

We begin with the economic problem of Simon (1956), which is to 
determine at the beginning of each month the production level P(t) of a 
commodity during that month. The forecasts of sales S(t), t = I, ... , T, 
are available subject to random errors, whose joint probability distribution 
is known. The initial inventory 1(0) and production P(O) are given at some 
fixed levels, but the terminal inventory and production levels, l(T) and 
P(T), are not fixed. The definition of the inventory is 

l(t) = l(t - I) + P(t) - Set), t = I, ... , T. (17*) 

The costs in each period consist of three kinds: I) the costs of holding 
inventory and of run-outs resulting from inadequate inventory; 2) the costs 
associated with the production level; and 3) the costs associated with the 
change in level of production. Each of these three components is assumed 
to be quadratic in the cost function in question. Thus the expected value of 
total cost over the T periods we wish to minimize is expressed as 

T 

J = E 2: {u1[ l(t) - lcJ 2 + U2[ P(t) - pcJ2 + u3[ P(t) - pet - I)J2} 
S(I) 1= 1 

( 18*) 
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where ai' a2 , a3 , Ie' and Pc are known constants. Simon (1956) presup
posed pet) to be a function CPt of S(1), ... , Set - 1); and optimally 
determined by the policy are P(1) and expected values of CPt (t = 2, 
3, ... , T). 

In this example, let) is a state variable, P(t) is a control variable, and 
S(t) is a stochastic exogenous variable which may be divided into two: 
mean value S(t) and the residual €(t) = S(t) - S(t). Then (17*) becomes a 
specific representation of the state-space form (2') in the corollary to 
Theorem 1 of Section 5.1: that is, 

l(t) = l(t - 1) + P(t) - S(t) + €(t), t=l, ... ,T (17**) 

with &(t) = 0 and cov(€(t), €(s» = rOst (ost: Kronecker delta). On the other 
hand, the objective function (18*) contains linear and bilinear terms as well 
as quadratic terms in state and control variables. Hence it differs from our 
conventional quadratic cost function such as (1) in Section 5.1. Function 
(18*) can be rewritten as 

J = E {alxTx + alx + vT<1>v + a2v} + constant, (19*) 

where superscript T denotes transposition, 

1(1) - 1(0) 

1(2) - 1(0) 
v= 

P(l ) 

P(2) 

I(T)-/(O) peT) 

(20*) 

a l = -2al(( - 1(0»)(1, . .. ,1), (21*a) 

(21 *b) 

a2 + 2a3 -a3 0··············0 0 

-a3 a2 + 2a3 -a3 . . 
0 -a3 ··0 0 

<1>= (21 *c) 
0 0·. -a3 0 

.. a~ + 2a3 -a3 

0 0··············0 
. 

a2 + a3 -a3 

Employing the vector notations in (20*), the system of equations (17*), 
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after iterative substitutions for I (t - I), can be expressed as 

where 

o 

R= 

x= Rv -RS, 

o 

o 

S(I) 

S(2) 

SeT) 

141 

(22*) 

(23*) 

Theil (1957) generalized the above problem by Simon as follows. To 
minimize the objective function 

J = E {ax + bv + t(XTZX + vT<I>v + x TQv + vTQTX)}, (71) 

with respect to v, subject to the system 

x = Rv + s, (72) 

where 

xCI) XI(t) v(I) VI( t) 

x= x(t)= v= v(t)= 
x(T) veT) 

(73) 

a and b are constant row vectors, Z, <1>, and Q are constant matrices of 
appropriate sizes (Z and <I> symmetric positive definite), R is an nT X mT 
matrix of constant elements that can be partitioned as 

Rll 0 0 

R21 R22 
R= (74) 

0 

RT] RT2 RTT 

each submatrix of which has dimension n X m, and s is a column vector of 



142 5. Optimal Control of Linear Stochastic Discrete-Time Systems 

nT random elements whose joint distribution is independent of v: 

sCI) 

s= s(t)= (75) 

seT) 

Note that system (72) is general enough to include the conventional 
state-space form of equations such as 

x(t) = Ax(t - 1) + Bv(t) + get), t = 1, ... , T. 

Because iterative substitutions in (76) for x(t - 1) yield 

xCI) = Ax(O) + Bv(I) + g(1), 

x(2) = A2X(O) + ABv(I) + Bv(2) + (Ag(I) + g(2)), 

x(3) = A 3x(O) + AZBv(l) + ABv(2) + Bv(3) 

+ (Azg(I) + Ag(2) + g(3)), 

x(T)=ATx(O)+AT-IBv(I)+'" +ABv(T-I)+Bv(T) 

T 

+ ~AI-lg(T- t+ 1). 
1= 1 

Then, putting 

T 

S(T)= ~AI-lg(T- t+ I)+ATx(O), T = 1, ... , T 
1=1 

and 

Rll = B, 

RZI = AB, R22 = B 

RT] = A T-1B,RTZ = A T-zB, ... , RTT = B, 

we reach system (72). 

(76) 

(76') 

(77) 

(78) 

Following Simon's line of approach, we now establish the certainty 
equivalence principle for the stochastic control problem generalized above. 
(Refer to Theil (1961, Section 8.6) as well as Theil (1957) for the proof of 
Theorem 6 below.) 

Theorem 6 (First-Period Certainty Equivalence). Consider the problem of 
minimizing the cost function value J in (71) with respect to instruments v 
subject to the constraint (72), where s is a vector of random elements with 
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mean value s and a Jinite covariance matrix, its distribution being the same Jor 
whatever v. Suppose that an optimal strategy Jor this problem exists and that 
it can be written as 

v* = 

v*(I) 

v*(2) = </>is(I)) 

v*(3) = </>3(s(I),s(2)) 

v*(T) = </>T(s(I), . .. ,S(T - I)) 

(79) 

Then the strategy v* implies the same Jirst-period decision v*(l) as the control 
vector v, denoted V, that minimizes j deJined as 

j = ax + bv + Hx TEx + v T<i)v + x TQv + v TQTX ) (71') 

under the deterministic system 

x = Rv + s, (72') 

which is nothing but equation (72) with s replaced by s. Finally, the optimal 
strategy v* is unique. 

PROOF. Substituting (72) for x into (71) yields 

J = E(ho + hlv + !vTHv), 

where 

h - + I T-: 0= as 2S _s, 

hi == b + aR + sT(ER + Q), 

H == RTER + <i) +RTQ + QTR, 

(1 X mT) 

(mT X mT). 

(SO) 

(SIa) 

(SIb) 

(SIc) 

Note that H is a symmetric positive definite and nonstochastic matrix and 
that 

(SI'a) 

in view of Lemma I in Section 5.1, whence Eho becomes independent of v. 
Any strategy v deviating from v* can be expressed as 

v = v* + A.W, 

where A. is a scalar and w is a vector of the type 

w== 

wT(s(I), ... , s(T- 1)) 

(S2) 

(S3) 
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Substitution of (82) into (80) gives 

J = Eho + E(h,v*) + 1E(V*THv*) 

+ A[ E(h,w) + E(w THv*)] + 1A2E(w THw). (80') 

The second and third terms on the right-hand side of (80') are independent 
of A and w, and hence of v. Thus they are disregarded in the minimization 
process. The first-order condition for J to take on a minimum value at 
A = 0 is that the differential of J with respect to A evaluated at A = 0 vanish, 
i.e., 

for any w. (84) 

A sufficient condition for the extremum point to be indeed a minimum 
point is that the second-order derivative E(w THw) of J with respect to A be 
positive definite, which follows from the fact that matrix H is positive 
definite. Consider then (84) and specify w in the following mT alternative 
ways. First, choose w such that its first element equals 1 and all others 
zeros; secondly, such that its second element equals 1 and all others zeros; 
and so on. The result brings forth a system of mT equations: 

Ehr + HEv* = 0, (85) 

from which we obtain 

Ev* = - H - 'fir, (85') 

where 

(81 'b) 

Next, we consider the certainty case. Substituting (72') into (71') yields 

- - - T 
J = ho + h,v + 1v Hv, 

where ii, and H are those of (81'b) and (81c), respectively, and 

h- - - + ,-T;:-0= as 'is _so 

(86) 

(81 N a) 

The v that minimizes J of (86) is derived by setting the differential of J with 
respect to v equal to zero, i.e., 

o = in = iir + Hv. (87) 

Thus the optimal strategy v is obtained as 

v = -H-'fir (87') 

The first subvector v*(l) of v* is nonstochastic (cf. (79)), and hence it must 
be equal to the corresponding subvector of v in view of the fact that 
Ev* = v. 
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Finally, the uniqueness of the optimal strategy v* is guaranteed by the 
fact that matrix H of (81c) is positive definite, because then J of (80) is 
strictly convex in v. (Cf. Corollary to Theorem 11 in Murata (1977, Section 
7.2).) 0 

REMARK 1. By virtue of Theorem 6 above, the policy maker in the present 
stochastic situation can decide his optimal first-period strategy v(1) by 
replacing random term s by its expectation s. At the beginning of the 
second period the same situation arises, so he should apply the same 
procedure, with x(1), v(1), Rtl (t = 1, ... , T) deleted, and replace s(2), 
s(3), ... by their conditional means, given the information available at the 
end of t = 1. 

REMARK 2. In Theorem 6, we assume that the distribution of random vector 
s is the same for any strategy v. This assumption was restated by Theil 
(1964, p. 130) as "the distribution of the subvector s( t) is independent of 
v(t') for t, t' = 1, ... , T and t ;;;. t'." However, as Duchan (1974) noticed, 
the "restatement" is stronger than the former assumption of ours. "To see 
this," continued Duchan, "consider a two-period problem in which the 
only information available at the end of the first period is the realization of 
s(1) so that a strategy for v(2) is just some function of s(1). When s(1) and 
s(2) are dependent, there is no particular reason to believe that the 
certainty equivalence strategy will be such that v(2) and s(2) are indepen
dent." Based on our assumption mentioned above, he gave a new proof of 
the first-period certainty equivalence strategy together with a new optimal 
strategy formula, by proceeding backward starting from the final period. 

Now we want to clarify explicitly the relationship between the linear 
feedback control rule established in Theorem 1 (Section 5.1) and the 
first-period and other period certainty equivalence. In order to reduce 
Theil's formulation (71), (72) to the conventional optimal control scheme 
(1), (2), we set all elements of vectors a, b and matrix Q at zeros and specify 
Z and 4> as block-diagonal matrices: 

(88) 

r 
Then, recalling (77) and (78) and knowing SeT) = A TX(O), we can write out 
vector hI and matrix H as below (instead of the notation T for the final 
period, we denote f3 in the following to avoid confusion): 

- T-
hI = s 'ZR 

= x T (O)A T[ QI , Q{; , QJ;, ... , QJ-l.l ' QJI]B (89) 
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where 
13-1 

QI == 2: (A1-I{:::A 1 - I + (Af3-I)TfAfl-l, 
1=1 

13-2 
QTI== 2: (AI-T+I{ZAI+(Afl-T{fAfl-l, 

I=T-I 

where 

Hll == BTQIB + <1>, 

Hi== BT[ QJ;, QI;, ... , Q!-I,I' QJ;]B, 

H22 HL Hh 

H(I) == 
H32 H33 H;£ 

Hfl2 Hf33 Hflfl 

Q - fA fl-I fll = , (90a) 

T = 2,3, ... , f3 - 1. 

(90b) 

(91 ) 

(92a) 

(92b) 

(92c) 

T = 2, ... , f3 - 1, (92d) 

T > j; T, j = 2, ... , f3 - 1, (92e) 

H = BTfAfl-TB flT - , 

Hflfl == B Tf B + <1>. 

T = 2, . . . , f3 - I, (92f) 

(92g) 

For example, consider the case of f3 = 2, where Theil's optimal strategy 
(85') can be written as 

( v*(I) ) = -H- I- 2 [BT(Z + A TfA)AX(O)], (93) 
Ev*(2) (fl- ) B Tf A 2x(O) 
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where 

=(BT(Z + A TfA)B + III BTATfB) 
H( f3=2) - . 

B Tf A B B Tf B + III 
(94) 

Making the inverse of H( f3=2) in the form of (32) (Murata (1977, p. 9», we 
calculate v*(l) from (93) as 

(95) 

where 

f2 == Z + A rf[ A - B(BTfB + Ill) -IBTfA J. (96) 

Equation (95) can be found to be equal to the optimal control rule (11) for 
t = 1 in the case of /3 = 2. Thus the first-period certainty equivalence 
strategy in Theorem 6 coincides with the first-period optimal control rule 
established in Theorem 1 in this case. 

Next, we consider the case of /3 = 3, and the corresponding relations 
(89)-(92). Then the Theil's strategy (85') reduces to 

where 

v*(l) 

Ev*(2) = - H(-f31=3) 

Ev*(3) 

BT(Z + A T(Z + A TfA)A)A 

BT(Z + A TfA)A2 

B T fA 3 

x(O) (97) 

~.~.~:.~.~.~~: .. :'.~.?1!.1!.~.~.~.L~.~~.~.~~.~ .. 1.~.~.1:~ .. ~~.J.~ 
BT(Z + A TfA)AB 1 

(98) 

Again we apply the inverse formula (32) of Murata (1977, p. 9) to H( f3=3) 
partitioned above, and calculate v*(1) from (97) as 

(99) 

where 

f3 == Z + A Tf2[ A - B(BTf2B + Ill) -IB Tf 2A l (100) 

V*(1)f3=3 in (99) is easily found to be the same as the optimal control rule 
(11) for t = 1 in the case of /3 = 3. Proceeding this way, we may say that for 
an arbitrary finite horizon /3, the first-period optimal control rule (in 
Theorem 1) is equal to the first-period certainty equivalence strategy (in 
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Theorem 6) under the parameter specification of (88) and a, b, Q. The 
optimal strategy is given by 

v*(I)13=N= - [BTr NB + II>r'BTr NAx(O) (101) 

for an N-period horizon planning, where r t can be computed iteratively by 

t = 2, ... , N 

(102) 

with r , = r. When r t is rewritten as S(N - t + 1), (102) becomes formula 
(12b) with f3 replaced by N (in Theorem 1), and strategy (101) is nothing 
but the control rule (11) for t = 1. At the beginning of the second period, 
the same situation arises except that the planning horizon is now N - 1 and 
the known initial state vector is x(1). Thus the second-period strategy on 
the certainty equivalence principle is determined as 

v(2) = v*(1 )13= N-I = - [B TS(2)B + II>] -IB TS(2)Ax(I), (101') 

which is exactly the control rule (11) for t = 2. The same is true for the later 
periods. Thus we conclude that the optimal control rule established in 
Theorem 1 is successive applications of the first-period certainty equiva
lence strategy by Theil under the special parameter specification mentioned 
above. (For the same problem in a slightly different context, see Norman 
(1974).) 

Two final comments are in order. First, the certainty equivalence princi
ple should not be confused with the separation principle in Theorem 3, and 
a clear distinction between them is made by Bar-Shalom and Tse (1974) for 
some general discrete-time system. Secondly, when system coefficients are 
random, as in Section 5.3, the optimal control rule will not enjoy the 
certainty equivalence property. Holbrook and Howrey (1978) show that, 
except under certain special assumptions, the rule for the first period will 
differ from Theil's strategy, calling for a simple policy model in the 
presence of parameter uncertainty. 

5.5. Optimal Control of Macroeconomic Systems 

Buchanan and Norton (1971) said that applications of current optimal 
control methods in macroeconomics were just beginning, and were a long 
way from practical application in governmental policymaking. Soon after
ward three voluminous works by Pindyck (1973), Chow (1975), and Aoki 
(1976) came out on macroeconomic applications of the optimal control 
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theory. Of these, Pindyck's is an econometric study of linear systems 
control and is regarded as a straightforward extension of the pioneering 
research by Buchanan and Norton (1971). Chow (1975) and Aoki (1976) 
may be deemed the leading advocates of optimal economic control theo
ries. Though they treat some nonlinear systems control problems, they 
emphasize the linear cases, which are our present concern. On the other 
hand, the linear feedback control technique has become prevalent among 
macroeconomic theorists such as Sargent and Wallace (1975, 1976). We 
shall deduce some additional optimal control rules, rather intuitively, from 
the control theorems previously established and apply one of them to a 
macroeconomic policy problem. 

For illustrative purposes, we adopt a simple balanced-budget macroeco
nomic model described by the following three equations: 

Yt = Ct + It + Gt 

It = ao + al( Yt- I - Yt- 2) + u lt 

Ct = bo + bl(Yt_ 1 - Gt- I ) + u2t 

(24*a) 

(24*b) 

(24*c) 

where Yt is national income, Ct is consumption, It is investment, Gt is 
government expenditure, and Uit (i = 1,2) is disturbances, all in time period 
t; ao, aI' bo, and b l are constants. Equation (24*a) is a definitional identity, 
(24*b) represents an investment behavior based on the acceleration princi
ple, and (24*c) shows a consumption function in the one-period lagged 
disposable income (income minus taxes) with taxes equalized to govern
ment expenditure. Since we assume Uit (i = 1,2) to be mutually independent 
stochastic variables with zero means and finite variances, It and Ct are 
stochastic variables. Substituting (24*b) and (24*c) into (24*a) yields 

Yt = (XI Yt- I + (X2 Yt-2 + Gt - blGt _ 1 + (Xo + Ut ' (25*) 

where (XI == a l + b l , (X2 == - aI' (Xo == ao + bo, and Ut == Ult + u2t . Equation 
(25*) is easily transformed into a state-space form: 

x(t) = Ax(t - 1) + Bv(t) + c + ~(t), 

where we set v(t) == GI' 

Gt 

x(t)== Yt - I , 

Yt 

o o 0 

(103) 

(26*) 

(For a more general case of this transformation, refer to Application 1 at 
the end of Section 5.1.) 
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Noticing that the state vector x (t) as defined in (26*) includes the control 
variable Gt as a component, we may formulate the associated objective cost 
function only in terms of state vector x(t): 

f3 
W = 2: (x(t) - a (t))T:::t(X(t) - a(t)), (f3: time horizon) (104) 

1= I 

where aCt) is a vector of targets for the state vector, and :::t is a symmetric 
positive semidefinite matrix giving the relative penalties for the squared 
deviations of various variables (including control variables) from their 
targets. For the present illustrative example, if :::t and aCt) are set at 

[<P 0 0] :::t= 00 08t- l , 

00::: 
(27*) 

where <P, ::: are assumed to be some positive scalars, 8 is a time-discount 
factor (0 < 8 < 1), and Gt, Yt* are the target values of Gp Yp respectively. 
Then (104) reduces to 

f3 
W = 2: (:::( Yt - yt*)2 + <P( Gt - Gt* )2)8 t- l • (28*) 

1= I 

Total cost Win (28*) contains the penalty associated with the deviation in 
control value Gt from its target Gt*. Thus, in effect, the cost function (104) 
can be of more general form than it appears. 

Chow (1975, ch. 8) employs an objective loss function of form (104) and 
state-space system (103) with parameters A, B, and c being time-varying. 
We shall consider the case where coefficient matrices A, B are constant and 
that exogenous vector c is time-varying c(t) in system (103): i.e., 

x(t) = Ax(t - 1) + Bv(t) + c(t) + ~(t), (105) 

where ~ is a time-independent random vector having zero mean and a finite 
constant covariance matrix R: 

cov( ~(t), ~(s)) = R8st ' (8st : Kronecker delta). (106) 

The deterministic problem (with ~(t) set at zero) corresponding to the 
stochastic minimization of the expected value of the objective (104) with 
respect to control variables v(t) subject to the system (lOS) is close to that 
of Theorem 16 in Section 2.2. Hence, in view of the certainty equivalence 
property of the stochastic minimization, we can deduce the following. 

Theorem 7 (Chow, 1975). The optimal feedback control vet) to the finite 
time-horizon problem of minimizing the expectation of W in (104) subject to 
the linear time-invariant system (lOS) with known x(O) is given by 

v(t) = - K(t)x(t - I) - ka(t), t = 1,2, ... , f3 ( 107) 
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where 

K(t)=[ BTS(t)BrIBTS(t)A, 

S(f3)=Z{3' 

Set - 1) = ZI_I + L(t)S(t)A, t = 2,3, ... , f3 

L(t) =[A - BK(t)f, t = 2,3, ... , f3 

ka(f3) =[ BTS(f3)BrIBTS(f3)(c(f3) - a(f3)), 

ka(t) =[ BTS(t)Br IBT {S(t)c(t) - h(t)}, 

(108) 

(109a) 

(109b) 

(110) 

(lIla) 

t = 1, 2, . . . , f3 - 1 ( III b) 

h(t - 1) = Set - I)a(t - 1) - L(t){ S(t)c(t) - h(t)} 

with h(f3) = S(f3)a(f3). (112) 

REMARK. If we put Z{3 = rand ZI = Z for t = 1, ... , f3 - 1 in Theorem 7, 
then the optimal control vet) of (107) will be identical with that of (34) in 
Theorem 16 (in Section 2.2) provided <I> is neglected. 

When time horizon is extended to infinity, and accordingly ZI is set 
equal to Z 8 1 - 1 (0 < 8 < I) in Theorem 7 above, its companion theorem 
can be derived as follows by utilizing the Turnovsky's Lagrange multiplier 
method expounded in Section 5.3. 

Theorem 8. For the infinite-horizon problem of minimizing the expected value 
of 

00 

W= 2: 8 1 - I(X(t) - a(t))TZ(x(t) - aCt)), (104') 
1=1 

where 0 < 8 < 1, Z is a symmetric positive semidefinite constant matrix, and 
x(t), aCt) are the same as in (104), subject to (105) with known x (0), the 
optimal control is given by 

v(t)=-Kx(t-I)-k(t), for t=I,2,... (107') 

where 

K =(BTSBfIBTSA, (108') 

S = Z + LSA, (109') 

L =[ A - BKf, (110') 

k(t) =(BTSB f 1 BT[ 1- L r l {Sc(t) - Za(t)}. (Ill') 
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PROOF. Using the same Lagrange multiplier method as for Theorem 5 in 
Section 5.3, we choose v(t) so as to minimize the expected cost in any time 
t (8/- 1 can be neglected here): 

E {(x(t) - a(t»)TZ(x(t) - a(t»)}. 

Assuming a feedback control law of the form 

v(t) = -Kx(t - 1) - k(t), 

we substitute (30*) into (l05), obtaining 

(29*) 

(30*) 

x(t) = [A - BK]x(t - 1) - (Bk(t) - e(t») + ~(t), (31*) 

where we note that E(x(t - I)~T(t» = 0 in view of (106). Defining the 
asymptotic expectations Ex(t) == Il and E(x(t)x T(t» == X, we have from 
(31 *) 

Il = [A - BK] Il- (Bk(t) - e(t»), (32*) 

and 

X = [A - BK]x[ A - BKr + (Bk(t) - e(t»)(Bk(t) - e(t)f + R 

- 2[ A - BK] Il(Bk(t) - e(t»T. (33*) 

The present objective (29*), with a T(t)Za(t) being deleted, may be reduced 
to 

smce 

E( x T (t)Zx( t») = Il TZ Il + tr(Z cov( x( t»)) 

= Il TZ Il + tr(ZX) - tr(ZIlIl T) 

= tr(ZX). 

Now our problem is to minimize (29**) subject to (32*) and (33*), and 
hence the corresponding Lagrangian form becomes 

L(t) = tr(ZX) - 2a T(t)ZIl 

+ tr[ S ([ A - BK]X[ A - BKr 

+ (Bk(t) - e(t»)(Bk(t) - e(t»)T + R - X 

- 2[ A - BK] Il(Bk(t) - e(t»)T} ] 

+ 2pT(t){[A - BK] Il- (Bk(t) - e(t») - Il}, (34*) 

where S is the matrix of Lagrange multipliers associated with (33*) and p(t) 
is the column vector of Lagrange multipliers associated with (32*). We are 
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required to choose X, K, p., k(t) to minimize L(t) in (34*), assuming S to be 
symmetric. Thus differentiating (34*) with respect to X, K, p., k(t), respec
tively, and setting the results equal to zero, we have 

0= aL(t) 
ax 

= Z + [ A - BKJ T S[ A - BKJ - S, 

0=1 aL(t) 
2 aK 

= - B TS[ A - BKJX + B TS( Bk(t) - c(t») p. T 

(35*a) 

_BTp(t)p.T, (35*b) 

I aL(t) 
0=---

2 ap' 

= - [A - BKfS(Bk(t) - c(t») + [A - BK - 1fp(t) 

- Za(t), (35*c) 

I aL(t) 
0="2 ak(t) 

= BTS(Bk(t) - c(t» - BTS[ A - BKJ P. - BjJ(t). (35*d) 

Subtracting (35*d) . p. T from (35*b) yields 

0= B TS[ A - BKJ [ p.p. T - Xl (36*) 

On the assumption that p.p. T - X is nonsingular, we get from (36*) 

(36**) 

from which (l08') follows. Taking (36**) into account, we obtain (109') 
from (35*a), and reduce (35*c), (35*d) to 

0= [A - BKfSc(t) + [A - BK - 1fp(t) - Za(t), (35**c) 

0= BTS(Bk(t) - c(t») - BTp(t). (35**d) 

Then, it follows from (35**d) and (35**c), respectively, that 

(37*) 

and 

p (t) = [ 1 - L r 1 { LSc (t) - Z a (t) }. (38*) 

Finally, substituting (38*) into (37*) and considering 1 + [1 - L]-IL 
= [1 - Lr I, we reach (Ill'). 0 
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Application 4. Applying Theorem 8 above to a modified Sargent-Wallace's 
macroeconomic model with rational expectations, we examine their asser
tion on optimal money supply. The only difference between our model 
below and theirs lies in the time structure concerning interest rates. In 
particular, our investment is realized dependent on the expected real 
interest rate with a lag of one period, while theirs depends on the contem
poraneous one. Thus our modified Sargent-Wallace model, exclusive of a 
production capacity relation, is described by the following three linear 
equations: 

where 

ai' bi' ci 

Yt 
Pt 
mt 

r t 

k t 

Zt 

tPt*-1 

Yt = alkt_ 1 + a2(pt - tPt*-I) + U lt , 

Yt = blkt_ 1 - b2[ rt_ 1 - (rPt*-1 - Pt-I) ] + b3zt + U2t , 

mt = Pt + CIYt - c2rt_ 1 + U 3t , 

coefficients, assumed positive (i = 1,2) 
logarithm of real output, 
logarithm of the price of output, 
logarithm of the stock of nominal money balances, 
nominal rate of interest, 
measure of production capacity, 
vector of exogenous variables, 

(39*a) 

(39*b) 

(39*c) 

logarithm of the output price in period t expected as of the end 
of t - 1, 
stochastic disturbance having zero mean and a finite variance, 
(i = 1,2,3). 

Equation (39*a) is the aggregate supply function which is assumed to 
depend positively on the existing production capacity and the gap in the 
actual price over the expected one. Equation (39*b) is the aggregate 
demand function which depends positively on the production capacity and 
negatively on the real rate of interest expected in the preceding period, 
besides some exogenous factors. Equation (39*c) represents the money 
market equilibrium: i.e., the real money balances (mt - Pt) are equated to 
the demand for money (cIYt - c2rt_ I). All the equations mentioned above 
are subject to additive random disturbances. 

Substitution of rt _ 1 from (39*c) into (39*b) gives 

Yt = blkt_ 1 + b2[ ;2 (mt - Pt - CIYt) + tPt-1 - Pt-I] + b3zt 

+ (UZt - ~: U3t ). (39**b) 

Putting (39*a) and (39**b) together into a matrix equation, we can obtain 
the following state-space representation by premultiplying the equation by 
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the inverse of the coefficient matrix of (YI' ptf: 

where 

hyt =- ( a I b2 + a2b I c2)kt_ I + a2b3c2zt ' 

hpt =- (c2( bl - al) - alb2cl)kt_1 + b3c2Z/ , 

gyt =- b2u lt + a2c2u2t - a2b2u3t , 

gpt =- C2U 2t - b2u3t - (b2cI + C2)ult . 

Sargent and Wallace (1975) supposed a loss function of the form: 

Wo= ~ 8t- I{(Yt,pt)(K II 0 )(Yt) 
/=1 0 K22 Pt 

( KI ) ( KI)2 (K2 )2} + (Yt ,Pt) K2 + T + T 
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(40*) 

(41 *) 

with K;; > 0 (i = 1,2), and 0 < 8 < I. Equation (41*) is very close to 
00 

WI = ~ 8t- 1 {KII(Yt - y*)2 + K22(pt _ p*)2}, 
t=1 

(41**) 

where y* =- - K I/(2KII ) and P* =- - K2/(2K22). Thus we may consider the 
problem of minimizing the expected value of WI in (41 **) with respect to 
an instrument mt subject to system (40*). To this problem, we can apply 
Theorem 8, and the optimal money supply rule is obtained as follows by 
virtue of (107'): 

mt = H(Yt-l) + y(t), 
Pt-I 

(42*) 

where 

H = (0, c2), (43*) 

y(t) = Yo + YI,tPt-1 + Y2kt-1 + Y3 Zt (y;(i = 0, 1,2,3): constants), (44*) 

since, in view of (110'), 

L=-~b2((a~C2 ~)-(~)(a2,1))=(8 8) (45*) 
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and hence 

(46*) 

- [2 ] - I ( 0 a2c2 ) H = (a2) Kll + K22 (a2 ,I)S , o C2 
(43**) 

Y* 
----; - hyt - (X upt- I 

P* 
----; - hpt - (X2,tPt- I 

(44**) 

where (XI = a2bz(c2 - 1) and (X2 = a2c2 + a2b2cI + b2c2. Thus the optimal 
money supply is rewritten 

mt = Yo + C2Pt-1 + YI,tPt-1 + Y2kt-1 + Y3 Zt' (42**) 

which is dependent on the expected price tPt*- I as well as exogenous 
variables. So the money supply rule (42**) is not deterministic, contrary to 
the original Sargent-Wallace case. Assume here the public's expectation to 
be rational by requiring 

(47*) 

where Et-IPt is the mathematical expectation of Pt conditional on all 
information available at the end of period t - 1. With expectation (47*) 
and (42**) taken into account in (40*), a pseudo-reduced-form equation for 
Pt is obtained as 

Pt = J.Lb2yo + AIEt-IPt + A2kt_ 1 + A3Z t + J.Lgpt (48*) 

where A" A2 , and A3 are some constants. Computing Et-IPt from (48*), 

Et-IPt = J.Lb2yo + AIEt_IPt + A2kt_ 1 + A3Zt + J.LEt-lgpt 

and subtracting the result from (48*), we get 

Pt - Et-IPt = J.L(gpt - Et-Igpt )' (49*) 

Using (47*) and (49*), we write (39*a) as 

Yt = alkt_ 1 + a2J.L(gpt - Et-Igpt ) + u lt · (50*) 

If we substitute for Yt from (50*) into (39*b), the real interest rate will 
become a function of kt _ 1 and exogenous processes. Substituting this 
function into (39*d), determining production capacity, i.e., the Sargent
Wallace's fourth equation (modified as mentioned above): 

d2 > 0, (39*d) 

we get a difference equation in k driven by exogenous processes. This 
proves, as Sargent and Wallace assert, that k is an exogenous process, 
which in turn implies, by virtue of (50*), that Y is an exogenous process 
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having a distribution independent of the feedback control rule of the 
money supply. 

In a general control model without rational expectations, the distribution 
of endogenous variables is subject to the effect of a feedback control rule, 
as shown below. 

Application 5. (Cf. Sargent and Wallace (1976).) Consider a single differ
ence equation with an additive disturbance: 

(51 *) 

where x/ is a controlled variable, v/ is an instrument, u/ is a serially 
uncorrelated disturbance having zero mean Eu/ = ° and a finite variance 
var(u/) = a2 , and a, b, c are constants. Suppose the authority wants to set v/ 
so as to minimize the variance of x/ over time around some desired level x*. 
This is accomplished by choosing the parameters A.o and A.I in the feedback 
rule: 

v/ = A.o + A.IX/_ I . 

Substituting for v/ from (52*) into (51 *) yields 

x/ = (c + bA.o) + (a + bA.I)x/_ I + Ut ' 

which provides the mean of x t as 

Ex/ = (c + bA.o) + (a + bA.I)Ex/_ I . 

Alternatively, assuming EXt = EXt_ 1 == Ex, we have 

Ex = (c + bA.o)/(I- a - bA. I), 

(52*) 

(53*) 

(54*) 

which will be equated to x* in order to minimize the variance of x/ around 
x*. On the other hand, in view of the assumptions 

EUt = 0, var(u/) = a2 and cov(ut ,X/_I) = 0, 

we get from (53*) 

Ext2 = (c + bA.O)2+ (a + bA. I)2Ex?_1 + a2 + 2(c + bA.o)(a + bA.I)Ex/_ I . 

(55*) 

Then, it follows from (54*) and (55*) that 

var(x/) = Ex? - (EX)2 

= (a + bA. I)2[ Ext2_ 1 - (EX)2] + a2, (56*) 

since 

(1- (a + bA.I)2)(Ex)2= (c + bA.O)2+ 2(c + bA.o)(a + bA.I)Ex. 

On the assumption that var(x/) = var(xt_l) == var(x), we finally obtain 
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from (56*) 

(57*) 

This shows that the variance of XI depends on the control parameter AI. 

Concluding this section, we mention some related literature. For an 
econometric application of Theorem 7, refer to Abel (1975) who developed 
a comparison with the case of parameter uncertainty. Chow (1981) provides 
a nonlinear extension of our linear optimal feedback control. For adaptive 
control in macroeconomic systems, the reader should consult Upadhyay 
(1976), Kendrick (1979), and Bar-Shalom and Wall (1980), among others. 
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CHAPTER 6 

Stabilization of Economic Systems under 
the Government Budget Constraint 

As an important application of the optimal control methods just established 
to contemporary economic problems, we take up the stabilization problem 
of an economy with government budget deficits financed by money and 
bonds. Section 6.1 discusses the dynamic processes of an economy whose 
budget deficits are financed by money and one where they are financed by 
issuing new bonds. The dynamic property of the money-financed budget 
proves stable, while the bond-financed case is unstable. In Section 6.2, we 
examine the stability property of an economy with government budget 
deficits financed by both money and bonds and find its dynamic move
ment intrinsically unstable. In Section 6.3, the same problem is examined in 
the corresponding continuous-time economy, and then a Keynesian policy 
assignment is incorporated into the economy but fails to stabilize it. Thus in 
Section 6.4 we try to stabilize the economy by applying the optimal control 
methods established in Chapter 5, using some numerical examples. A 
similar numerical stabilization analysis is presented in Section 6.5 for an 
open economy under the government budget constraint and under fixed 
and flexible exchange rates. 

6.1. Dynamic Process of a Government-Budget 
Constrained Economy 

We began this book by introducing in Section l.l a Keynesian economy 
under the government budget constraint, where price level was treated as a 
variable and random disturbances appeared. Now we neglect price changes 
and disturbance factors and are thus concerned with the dynamic process 
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of a fixed-price economy in deterministic circumstances under the govern
ment budget constraint. Turnovsky (1977, ch. 4) also presents the dynamics 
of the government budget constraint. Our analysis is similar, emphasis 
being placed on finding some systematic formula for the dynamic process. 

Our model consists of the three Keynesian equations in period t: 

[IS] 

[LM] 

[Budget] 

Y1 = a(l - 'T)(YI + BI_1) + f(RI) + G1 

MI = L( YI'R1 ) 

/j,M1 + R1-1/j,B1 = G1 - 'TY1 + (1 - 'T)BI_I . 

( Ia) 

(1 b) 

(Ic) 

The notations, explained below, are mostly those of Section 1.1: 

RI 
f(RJ 
GI 

MI 
L( Yp R I ) 

'T 
a 
/j,B1 

national income in period t, 
interest payments on government bonds outstanding at the 
end of period t - 1, paid in period t, 
rate of interest in period t, 
private investment in period t, a function of Rp 
government expenditure in period t, 
stock of high-powered money in period t, 
demand for money, a function of Y1 and Rp 
tax rate, 
marginal propensity to consume, 
BI - B1_1, the increment of interest payments on newly is
sued government bonds in period t, 
MI - M I _ I' additional supply of money (high-powered 
money) in period t. 

A brief description of each equation is in order. Equation (1a) shows the 
equality of demand for and supply of goods, such that national income is 
equal to private consumption, a(1 - 'T)( Y1 + BI _ I)' plus investment and 
government expenditure. Equation (l b) means that money supply equals 
the demand for money, and we adopt the simplest form of demand 
function in order to minimize the later computational intricacy. Finally, 
(Ic) is the so-called government budget constraint; that is, the additional 
money supply and the issuance of new bonds, RI - 1 /j,BI , finance the 
government budget deficits. 

The first-order difference forms of (I a) and (1 b) are as follows: 

(1 - a(I - 'T))/j, Y1 + p/j,RI = a(I - 'T)/j,BI_ 1 + /j,GI (I'a) 

(3/j, YI - !L/j,RI = /j,M1 (1 'b) 

where 

p=-dfjdR>O, (3=aLjay>O, and !L=-aLjaR>O. 

(2) 
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The system of difference equations (1') is solved for 11 Yt and IlRt : 

( IlYt ) = (1 - a(1 - 'T) 
IlRt {3 

(3) 

Equivalently, 

11 Yt = (aJ-L(1 - 'T)IlBt_, + J-LIlGt + vIlMt )/ D (4) 

IlRt = (a{3(1 - 'T)IlBt_ 1 + {3IlGt - (1 - a(1 - 'T))IlMt )/ D (5) 

where 

D == aJ-L + (3v > 0, a == 1 - a(1 - 'T) > O. (6) 

Let us assume that p X 100% of the government budget deficit is fi
nanced by money supply, i.e. 

IlMt = p(Gt - 'TYt + (1 - 'T)Bt_ I ), 0 < p < 1. (7) 

Then, taking IlGt = Gt - Gt- I and the like into account, we obtain 11 Yt and 
IlRt as follows by substituting (7) into (4) and (5): 

J-L + vp J-L aJ-L + vp 
Yt = A Yt - I + A D Gt - A D Gt - I + A( I - 'T) D Bt- I 

aJ-L 
- A(1 - t) IS Bt - 2 , (8) 

D(Rt - Rt-d = mpYt + ({3 - ap)Gt - {3Gt- 1 

+ (1 - 'T)(a{3 - ap)Bt_ 1 - a{3(1 - 'T)Bt- 2 (5') 

Again, substituting (8) for Yt into (5') yields 

'Tap {3 - (a - 'T)p {3 + 'TP 
Rt = Rt_ I + AD Yt- I + A D Gt - A D Gt- I 

a{3 - (I - a)p a({3 + 'Tp) 
+ A(I - 'T) D Bt_ 1 - A(1 - 'T) D Bt - 2 (9) 

where 

A == D /(D + V'Tp), O<A<1. (10) 

We shall confine ourselves to multiplier effects on Y, though R will be 
involved via indirect effects. Applying an iterative substitution on (8), we 
get 

(11) 

We consider a once-and-for-all increase in the level of G in period I, i.e., 

G1 = Go + IlG 1 , G, = G2 = ... = Gt , IlG I > 0 (12) 
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and assume the initial government budget is balanced, i.e., 

rYo=Go+(I-r)B_I, I:1Mo= I:1Bo= 0, 

which imply 

rYo = Go + (1 - r)Bo 

since Bo - B_1 = I:1Bo = O. BI for t > 0 is expressed as 
I 

BI = 2: I:1Bj + Bo 
j=1 

for t = 1,2, ... 

Substitution of (12) and (13) into (11) yields 
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(13) 

(13') 

(14) 

y=,\ly +(I-,\I)lG +(I_,\I)I-rB +(I_,\I)l+,\IL)I:1G 
10 r O r 0 r D I 

+ (1 - r),\1-1(,\ ~ - ;; )Bo - (1 - ,\1) 1 ~ r Bo 

+ (1 _ r)'\{ ap,; vp BI _ I + (,\ ap,; vp _ ;;) 

x (BI_2 + ,\BI _3 + ... + ,\1-3BI)}. 

Then we calculate the coefficients of Bo in (11'). Since 

~+~ 1 3 D + D ('\(ap, + vp) - ap,)(1 +,\ + ... + ,\1- ) 

ap, + vp D - arp, 1 ,\1-2 
= D + rD (- ), 

we have 

,\1-1 1 (,\ ) 1 _,\1 D vp - ap, - -r-

{ ap,+vp 1 1_,\1-2} 
+,\ D + D('\(ap,+vp)-ap,) 1-,\ 

= ~ (,\ I _ ,\ I-I + ,\ - 1) + b vp(,\ I + ,\) 

= ( ,\ ~ 1 + ; vp )(,\ I-I + 1) = O. 

(11 ') 

Hence (11') reduces to the following, with (13') and (14) taken into 
account: 

( 15) 
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This is the general formula for Yt being dependent on the process of new 
bond issue which finances (I - p) X 100% of every government budget 
deficit. 

In the special case where p = 1, i.e., the case of money-financed deficit 
!J.B{ = 0 for all t, A equals Al == D I(D + TV) and (15) reduces to 

(Y{ )p~ I = Yo + ~ ( 1 - Ai D ~ TJ.L )!J.G I for t = 1,2, . ... (16) 

Since 
D - TJ.L = (I - T)(I - IX) J.L + {3v > 0, 

the level of Yt increases gradually starting from 

v+J.L 
(Y I ) -I = Yo + D !J.G I , 

p- + TV 

approaching, as time passes, 

1 (Y oo)p~ I = Yo + -:;:- !J.G I . 

(16a) 

( 16b) 

In other words, in the money-financed deficit case, the impact multiplier on 
Y of !J.G I is (v + J.L)/(D + TV), and the long-run multiplier is liT, as was 
originally shown by Christ (1968). 

Now we turn to the general case (15) where 0 ,;;; p < 1. In this case, Y{ at 
t = I is derived as 

Y I = Yo + ~ ( I - A D ~ TJ.L )!J.G I 

= Y + J.L + vp !J.G 
o D + TVP I 

This YI is smaller than (YI)p~ I in (l6a), since A> Al for p < 1. 
consecutive Y{ are obtained from (15) for t = 2, 3, and 4 as follows: 

Y = Y + 1 (I - A2 D - TJ.L )!J.G + (I - T)A IXJ.L + vp !J.B 
20 T DID I 

(17a) 

Other 

(17b) 

Y3 = Yo + ~ (I - A3 D ~ TJ.L )!J.G I + (I - T)( (A + A2) IXJ.L ~ vp - A j; )!J.BI 

+ (I - T)A IXJ.L ~ vp !J.B2 

+ (1 - T)(A + A2 + A3) IXJ.L ~ vp - (A + A2) j; )!J.BI 

+ (I - T)(A + A2) IXJ.L ~ vp - A j; )!J.B2 

+ (1 - T)A IXJ.L ~ vp !J.B3 

(17c) 

(17d) 
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We show below that these consecutive values of Y1 increase for any 
nonnegative p less than one. Letting the first difference of Y1 be ~ Y1 

== Y1 - Y1 _ 1, we have from (17) 

~Y = p.+ vp ~G (18a) 
1 D + TVP I' 

~Y2 = (1 - A}\ D ~ TP. ~GI + (1 _ T)A lXP. ~ vp ~BI' (18b) 

2 D - TP. «1 - lX)P. + f3v)vp 
~Y3=(I-A)A D ~GI+(I-T)A DD ) ~BI ( + TVP 

lXP. + VP + (1 - T)A D ~B2' (I8c) 

~Y = (1 _ A)A3 D - TP. ~G + (1 _ T)A «1 - lX)P. + f3v)vp 
4 D 1 D(D+TVp) 

( 18d) 

and in general for t = 2, 3, 4, 5, ... 

~Y = (1 _ A)A 1 - 1 D - TP. ~G + (1 _ T)A «1 - lX)P. + f3v)vp 
1 DID (D + TV p) 

x (AI-3~B + AI-4~B + ... 
\ 1 2 

+ (1- T)A lXP. ~ VP ~BI_I ( 18e) 

Thus, as long as ~GI and ~BI (for all t = 1,2,3, ... ) are positive, ~ Y1 in 
(I8) are positive for all t = 1,2,3, . .. . In particular, if P = 0, i.e., if the 
government budget deficits are all financed by bonds, then the above 
expressions (I8) reduce to 

p. 
(~YI)p=O= D ~GI (I8'a) 

for t = 2,3,4, ... , ( 18'e) 

since A equals one in view of (IO). Equation (I8'a) shows the impact 
multiplier of ~GI' and (I8'e) implies a direct dependence of ~YI upon 
~BI_I in the case of p = O. 

In order for ~BI in the above expressions to be traced back to exogenous 
variables, first we have, in view of (7) and (Ic), 

O<p<I 

and then RI must be calculated by (9) and other means. For example, 

~BI = R1(l- p)(G1 - TY1 + (1 - T)Bo), 

(19) 
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in which (17a), (12), and (13') are taken into consideration, yields 

D- Tfl 
D.B, = R,(l- p)A D D.G, > O. (20a) 

Since D.B, is positive, we can easily see that Y2 in (17b) is larger than Y, in 
(17a). Then, by setting t equal to one in (9) and by taking account of (6), 
(12), and Bo = B _" we get 

op {3-(O-T)p 
R,=Ro+A])(TYo-Go-(I-T)Bo)+A D D.G, 

{3 - (0 - T)p 
= Ro + A D D.G, . (21 ) 

Finally, substituting (21) into (20a) yields 

D.B =(1- )[RAD-TflD.G +A2 ({3-(O-T)P)(D- Tfl) (D.G)2] 
, POD' D2 ' . 

(20b) 

If p = 0, (21) and (20a) reduce to (21') and (20'a) below, respectively. 

f3 
R, = Ro + D D.G, (21') 

D- Tfl 
D.B, = R, D D.G, . (20'a) 

Similarly, D.B2 and D.B3 in the case of p = 0 are obtained as follows. 

D.B2 = RiG2 - TY2 + (I - T)B,) 

( a{3) ( D - Tfl D - aTfl ) = R,+(I-T)IiD.B, D D.G,+(I-T) D D.B, 

D.B, [ 
= D.B, + (I - T) D2 R,D(D - aTfl) + a{3(D - Tfl)D.G, 

+a{3(I- T)(D - aTfl)D.B,] 

> D.B, 

D.B3 = R3(G3 - TY3 + (I - T)B2) 

= (R2 + (I - T) ag D.B2) , 

X ( D ~ Tfl D.G, + (I - T) D -DaTfl (D.B, + D.B2)) 

D.B2 [ 2 
= D.B2 + (I - T) D2 R D(D - aTfl) + a{3(D - Tfl)D.G, 

+ a{3(1 - T)(D - aTfl)(D.B, + D.B2) ] 

(20'b) 

(20'c) 
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Thus, in the case of p = 0, tlB I < tlB2 < tlB3 < . .. holds and hence 
tlY2 < tlY3 < tlY4 < ... holds in view of (I8'e). This means that the 
aggregate effective demand increases successively over time by ever increas
ing amounts, and thus the economy is going to be explosive and unstable, 
in the case where government budget deficits are all financed by newly 
issued bonds. 

6.2. Instability of an Economy with Government 
Budget Deficits 

In Section 6.1, we demonstrated that an economy with the government 
budget deficits financed fully by issuing new bonds has an explosive and 
unstable structure, but we did not show the instability of the case where the 
budget deficits are partly financed by bonds and partly by money. We now 
prove the plausibility of the latter type of instability. 

The model we use here is the linearized form of model (I) in Section 6.1, 
I.e., 

[IS] 

[LM] 

[Budget] 

Y, = a(l- T)(Y, + B'_I) - vR, + G, 

M, = [3Y, - /LR, 

tlM, + R,-ltlB, = G, - TY, + (I - T)B'_I 

(22a) 

(22b) 

(22c) 

where v, [3, and /L are defined in (2), and the other notations are the familiar 
ones employed in model (I). When R, and G, are given constants denoted 
if and a, respectively, we let Y, M, and B be the corresponding equilibrium 
values of Y" M" and B'_l> respectively, so that tlM, = tlB, = 0 holds in 
model (22). These equilibrium values are calculated as 

_I[ -a(l-T) 0 a-v! 
o 1 -/LR 

- (1 - T) 0 a 
(23) 

where a == 1 - a(I - T) > O. In the sequence, however, this equilibrium will 
prove not to be stable. 

We consider a situation where variables Y" M" and B, deviate from the 
equilibrium values and denote the deviations by the corresponding lower
case letters: 

y, == Y, - Y, m, == M, - M, and b, == Bt - B. 
Thus, given R, = if and G, = a, the deviation form of model (22) becomes 

ay, = a(1 - T)bt _ 1 (22'a) 

In, = [3y, (22'b) 

(22'c) 
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Taking flml = ml - ml _ 1 and flbl = bl - bl_ 1 into account, we rewrite 
model (22') as 

a 0 0 YI 0 a(1 - r) 0 YI-I 

-f3 0 bl 0 0 0 bl_ 1 (22") 
I I r ml 0 1- r+- ml _ 1 
Ii Ii 

Premultiplying (22") by the inverse of the matrix on its left-hand side yields 

0 
a(1 - r) 

0 YI a YI-I 

bl 0 
(I - r)(1 - a(1 + (3» _ 

R bl_ 1 (24) 1+ R 
a 

0 
f3a(1 - r) 

0 ml a 
ml _ 1 

The stability property of the first-order difference equation (24) is depen
dent on the roots of its associated characteristic equation: 

a(1 - r) 
o 

a 

o A_I_(I-r)(I-a(I+f3»)Ii -Ii=O (25) 
a 

o 
f3a(1 - r) 

a 

which, in turn, is reduced to 

2 ( (I - r)(1 - a(1 + (3») _) f3a(1 - r) _ 
A - I + R A - R = O. 

a a 
(26) 

Here we give a useful proposition on stability conditions of the present 
problem. 

Proposition 1. Consider the equation 

A2-aA+b=0. (1*) 

In order for each root of (1 *) to be less than one in modulus, inequalities 
(2*)-(4*) must hold: 

I - a + b > 0, 

I + a + b > 0, 

b<l. 

(2*) 

(3*) 

(4*) 
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PROOF. In the case where roots A are real (a 2 ;;;, 4b), we have 

1 > IAI = :1la ± va 2 - 4b I· 
This implies 

- 2 < a ± va 2 - 4b < 2, 

which includes two inequalities: 

va2 - 4b < 2 - a and - 2 - a < - va2 - 4b . 
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These reduce, respectively, to (2*) and (3*). In the case where roots A are 
complex (a 2 < 4b), we have 

which is nothing but (4*). D 

Applying this proposition to (26), we know that inequality requirement 
(2*) is not fulfilled for the equation. Hence the difference equation (24) has 
proved not to be stable. 

6.3. Instability of an Economy with Government 
Budget Deficits and Keynesian Policy 
Assignment (Continuous-Time Case) 

When a dynamic Keynesian economy destabilizes itself, some policy pack
age is conventionally assigned to offset undesirable deviations in target 
variables, as initiated by Mundell (1962). The policy assignment problems 
have usually been worked out in continuous-time systems. We try to fix 
appropriate policy assignments to our Keynesian economy with govern
ment budget deficits in the continuous-time model, as the counterpart of 
the previous discrete-time model (22) in Section 6.2. Therefore, the con
tinuous-time system presented below is essentially of the same structure as 
the previous discrete-time system except that we now consider the wealth 
effect of the bond stock on the demand for money. Thus our model consists 
of the following three equations (a similar model is found in Scarth(1979)): 

[IS] 

[LM] 

[Budget] 

Y = £x( 1 - T)( Y + B) + I (R) + G 

M=L(Y,B,R) 

dM + R - 1 dB = G + B - T ( Y + B ) 
dt dt 

(27a) 

(27b) 

(27c) 
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where notations are the same as in the model in Section 6.1 except that no 
time subscript appears. Since t here denotes continuous time, differentials 
dM I dt and dB I dt replace differences D.Mr and D.Br in the budget equation. 
The wealth effect of the stock of bonds is indicated by the inclusion of B in 
the function of liquidity preference L with the assumption that 

LB == ~~ > O. (28) 

Assumption (28) is justified by defining our wealth as B I R. Even if wealth 
were defined as M + B I R, assumption (28) would still hold, and the 
subsequent analysis would be valid with minor amendments. 

We begin by showing the existence of a unique equilibrium solution to 
the system of equations (27). These equations make a dynamic system with 
Y, B, and M as endogenous variables for given G and R. An equilibrium of 
this system is a situation where all the endogenous variables assume 
constant values and hence dM I dt = dB I dt = 0 hold. In order to verify 
that the system has a unique set of equilibrium values Y*, B*, and M* of 
Y, B, and M, respectively, for given G and R we need only determine that 
its Jacobian matrix is a P-matrix by invoking the Gale-Nikaido global 
univalence theorem. (Refer to Murata (1977, p. 27 and p. 258) for the 
definition of a P-matrix and for the global univalence theorem, respec
tively.) By denoting 

a == I - a(1 - T) > 0 and Ly == aLia Y > 0, 

we get the Jacobian matrix as follows: 

(29) 

which is easily seen to be a P-matrix. Hence system (27) can be solved 
uniquely for Y, B, and M. 

Next we prove that system (27) behaves unstably-namely that the 
endogenous variables tend to deviate further away from the equilibrium 
values with time. In order to examine the stability property of our differen
tial system in the neighborhood of the stationary equilibrium, we follow the 
method of Sohmen and Schneeweiss (1969). First, we take the linear 
approximation of equations in model (27) about the equilibrium for given 
G and R: 

aD. Y - a(1 - T)D.B = 0 

LyD. Y + LBD.B = D.M 

-TD. Y + (1 - T)D.B = dM + R -[ dB 
dt dt ' 

(27'a) 

(27'b) 

(27'c) 

where D. Y == Y - Y*, D.B == B - B*, and D.M == M - M*. Second, we 
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obtain the differential forms of (27a) and (27b) for given G and R: 

a ~; - a(l - r) 1: = 0 (27"a) 

L dY +L dB = dM (27"b) 
y dt B dt dt' 

Third, we express these five equations altogether in matrix form: 

-a(l - r) 0 0 0 0 dB -a 

LB - 1 0 0 0 dM -Ly 
•••••••••••••••• e •••••••••••••••••••••••• ....... . 

1- r 0 0 -R- 1 - I dY/dt 
dY. 

r 
0 0 a -a(I- r) 0 dB/dt 0 

0 0 :L . y LB - I dM/dt 0 

(30) 

By decomposing (30) as separated by dotted lines and solving each decom
posed system, we get 

dB = a dY 
a(I - r) 

dM=(L y + a(I~r)LB)dY 

[
dY/dtl [ a(l- r) 1 (1- r )dB - rdY 
dB/dt = a D 
dM/dt aLB+a(I-r)Ly 

where 

D == a( LB + R -I) + a(l - r)Ly > O. 

Substitution of (31a) and (31b) into (32) yields 

dY = ydY 
dt 

dB = ydB 
dt 

dM - = ydM 
dt ' 

(31a) 

(31b) 

(32) 

(33) 

(34a) 

(34b) 

(34c) 

where y == (1 - a)(1 - r)/ D > O. Equation (34) implies that if Y, B, and M 
deviate from their respective stationary equilibrium values Y*, B*, and M*, 
then the former diverges further from the latter as time passes. 

In order to stabilize the economy around the stationary equilibrium, 
Keynesians manipulate the values of exogenous variables G and/or R, 
using them as policy instruments (or control variables). One common 
method of applying instruments to the present stationary stabilization 
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problem is the so-called policy assignment, i.e., the direct connection of the 
change in each policy instrument with the deviation of a target variable 
from its intended value. Let Y and M be target variables and G and R be 
the corresponding policy instruments, and consider the following policy 
assignments (referring to Swoboda (1972)): 

dG dt = 'IT,~ Y, 'IT, < 0, (35a) 

(35b) 

where ~ Y and ~M denote deviations from their respective target values, 
and 'IT'S are constants having the fixed signs. These assignments denote 
usual Keynesian fiscal and monetary policies. 

On the other hand, in view of (25)-(27), the comparative static effects of 
changes in the values of G and R upon Y, B, and M will be 

a 0 
Ly - 1 

T 0 

- a(1 - T)] [~Yj [1 
LB ~M = 0 

T - 1 ~B 1 

(36) 

where IR == dI j dR < 0 and LR == aLjaR < o. Equation (36) is solved for 
~Y and ~M as 

where 

_ ( T ) IR M R = LR + Ly + 1 _ T LB 1 _ a < O. 

Combining (37) with the policy assignment (35) yields 

[ 
~~] [ 'IT, 

~~ = 'lTlLy - LB) 

Since the two inequalities 

and 

(37a) 

(37b) 

(38) 

(39a) 

hold, we know that the differential system (38) is stable, i.e., G and R 
converge asymptotically to some stationary values. (For the related stability 
conditions, see for example Murata (1977, p. 93).) 
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However, as we show below, variables Y, B, and M behave in an 
unstable manner when policy assignment (35) is incorporated into our 
model. The differential forms of equations (25) and (26) are, respectively, 

dY dB dR dG a--a(I-T)-=1 -+-dt dt R dt dt' 
and 

L dY + L dB _ dM = _ L dR 
y dt B dt dt R dt ' 

into which (35) are incorporated to obtain 

dY dB a dt - a(1 - T) dt = 'TT21R!::.M + 'TT)!::' Y, 

dY dB dM LYdt +LBdt - dt = -'TT2LR!::.M. 

(40a) 

(40b) 

We put together these differential equations with the linear approximation 
(27') of equation (27) about given G and R, and express them all in matrix 
form: 

(41 ) 

The solution of (41) given below will determine the behavior of Y, B, and 
M. Denoting by A the coefficient matrix on the left-hand side of (41), we 
have 

dY/dt 

dB/dt 

dM/dt 

where 

-T 1 - T 0 !::.Y 
= A-) 'TT) 0 'TT21R !::.B 

0 0 -'TT2LR !::.M 

'TT)H - T(1 - a) (1 - a)(1 - T) 
_ 1 - aT - 'TT)L y (1 - T)a -TAT 

'TT)LyR -) - TJ (1 - T)J 

!::.Y 

X !::.B 

!::.M 

IAI =(1 - a)Ly + aH > 0 

H = LB + R -) > 0 

J =(1 - a)L y + aLB> 0 

K = LylR + aLR < O. 

'TTi1RH - (1 - a)LR) 

-'TT2K 

'TT2R -)K 

(42) 

(43) 
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System (42) is asymptotically stable if and only if the following three 
conditions are satisfied (for the related stability conditions, see Murata 
(1977, pp. 93-94»: 

(I - r)(1 - a) + ~IH 
(I - r)J 

rJ-~ILyR-I 

<0. 

(44a) 

~~IR 1 = IA 1-1(1 - r)~1~2LR < 0, 
-~2LR 

(44b) 

-~2K 

~IH + ~2R -IK - r(1 - a) 

-ar - ~ILy 

~i(1- a)LR - IRH) 

(l-a)(I-r) 

a(1 - r) + ~2R -IK 

(44c) 

Obviously, inequality (44b) does not hold, and hence (42) behaves unstably. 
For a similar analysis in an open economy, refer to Turnovsky (1979a).) 

6.4. Optimal Control of Economic Systems with 
Bond-Financed Budget Deficits 

In this section, we shall apply optimal control methods established in 
Chapter 5 to stabilizing the economy with government budget deficits 
financed by money and bonds, which was found to be intrinsically unsta
ble. The model we consider here has a discrete-time structure as employed 
in Section 6.2, that is, the following Keynesian model with additive stochas
tic disturbances: 

Y, = 0:(1- r)(Y, + B'_I) - pR, + G, + U lt (45a) 

M, = /3Y, - J.LR, + u2, (45b) 

t:.M, + R,-It:.B, = G, - rY, + (1 - r)B'_1 + U3,. (45c) 

While (45c) is a reiteration of (I c), equations (45a) and (45b) are the 
linearized forms of the nonlinear equations (la) and (lb), all with additive 
disturbances U3t' Ult' and U2t' respectively, which are assumed to be 
mutually and serially uncorrelated time-independent random variables 
having zero means and finite constant variances, i.e., 

var(uit ) = a? for i = 1,2,3; 

for all t,s; and for i =1= j. 

(46a) 

(46b) 
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Parameters v, fJ, and p. are those in (2), and the other notations are the 
same as in system (1). The one-period difference form of (45b) is 

(4S'b) 

into which (45c) is substituted for !:::..MI to result in 

(T + fJ)YI - p.RI = fJYI - I - p.RI_ I + GI + (I - T)BI_I - RI-I!:::..BI 

(45"b) 

We let (f, R, li, G) be a set of stationary values of (YI' RI' BI' GI) for system 
(45) in the case that !:::..MI = !:::..BI = 0 and disturbances are ignored, and 
denote by YI,'I' bl , gr the deviations in YI, RI , BI , GI from f, R, li, G, respec
tively. Then the deviation forms of equations (45a) and (45"b) are given as 
follows (cf. footnote 1 in Chapter I): 

YI = a(1 - T)(YI + bl-I) - V'I + gl + UII (47a) 

(T + fJ)YI - WI = fJYI-I - WI-I + gl + (1 - T)bl _1 

--I 
- R (bl - bl-I) - u21 + U21 - 1 + U 31 • (47b) 

These equations can be expressed in matrix form: 

+ ~-I+ ( a(I-T») ( u lt ) 

1 - T + R - I - u21 + u21 _ I + u31 

(48 ) 

where a = 1 - a(1 - T). Solving (48) for (YI"I)' we might obtain a stan
dard state-space form in the two state variables, but for the sake of the 
subsequent comparison, we first eliminate variable '1 from system (47). By 
substituting (47a) for '1 into (47b) we get 

YI = aYI_I + 8og1 + 81 gl-I + wobl + wlbl _ 1 + w2bl _2 + 1/1 (49) 

where 

a =(fJ + ap./v)/po, Po = T + fJ + ap./v, 

(50) 
WI =(1 - T)(1 + ap./v)/po + l/(Rpo), 
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Now we choose as our control variables the changes in GI , B, from their 
previous levels GI _ I , Bt - I : 

(51 ) 

Then equations (49) and (51) are altogether represented in matrix form: 

x(t) = Ax(t - 1) + Hv(t) + 1J(t) (52) 

where 

A =[i 
l/po wo+ WI 

~,} 
80 

Ir I 0 H= I 
0 I 0 
0 I 0 

YI 
(53) 

1J1 

gl 
v(t) =(~!J 0 x(t)= b, , 1J(t)= 

0 
b,_ 1 0 

Equation (52) is a standard state-space equation in state variable vector 
x(t). We are interested in minimizing the expected quadratic costs asso
ciated with x(t) and v(t) over a finite time period T: 

E {xT(T)fX(T) + I~l (xT(t - I)Zx(t - 1) + vT(t)<pv(t))}, (54) 

where f and e are positive semidefinite symmetric matrices and <P is a 
positive definite matrix. Our problem is to obtain an optimal control rule 
for v(t) (t = 1,2, ... , T) to minimize the cost function (54) subject to (52) 
and a given initial condition 

(55) 

The composite disturbance term 1J(t) has zero mean and a finite variance, 
and hence the problem is solved by applying Theorem 1 in Section 5.1 
above; formally speaking, the optimal control is 

where 

v(t)= -K(t)x(t-l) for t=I,2, ... ,T, 

K(t) = [<p + HTS(t)H] -IHTS(t)A 

SeT) = f, 

S(t - 1) = A TS(t) [ A - HK(t)] + Z 

(56) 

(57) 

(58a) 

= AT[ Set) - S(t)H(<P + HTS(t)HfIHTS(t) JA + Z. (58b) 
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Suppose that we levy some penalties only for deviations Yt and b" and 
hence f and E will now take the following diagonal forms: 

1 0 0 0 1 0 0 0 

f= 0 0 0 0 0 0 0 0 
y,~ > o. (59) 

0 0 0' 
::.,= 

0 0 ~ 0' y 
0 0 0 0 0 0 0 0 

As for instrument costs, we assume 

(60) 

Then, S(t) will be calculated backward in time by (58) for t = '1', '1' -
1, ... ,2,1. For example, S('1' - 1) becomes as follows: 

where 

a2 + 1/1 

S('1' - 1) = 1 a/po 
1/1 aW3 

aW2 

WOcJ>2 
w3 =w,+-

y + cJ>2 

a/po 

l/p~ 
w3/Po 

w2/Po 

aW3 aW2 

w3/Po W2/PO 
s('1' - 1)3 w2w3 

w2w3 w2w2 

_ y[ wow,cJ>,+ (cJ>, + 8g)cJ>2] 
s('1' - 1)3 =(wo + w,)w3 + ~I/I + ( 

cJ>, Y + cJ>2) 

(61 ) 

(62) 

K('1' - 1) may be calculated by inserting S('1' - 1) into (57), but with 
considerable complications. So we calculate K(t)'s numerically for a given 
set of parameter values, which are now assumed to be 

7" = 0.20, a = 0.85, f3 = 0.12, }L = P = 0.4, Ii = 0.05, (63) 

and 

y = ~ = 2, cJ>, = 0.5, '1' = 5. 

From (63), we derive the values of composite parameters 

a = 0.32, Po = 0.64, 

Wo = -31.25, w, = 33.5625, 

a = 0.6875, 

W 2 = - 1.0625, 

80 = 3.125, 

8, = - 1.5625. 

(64) 

(65) 
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Using these numerical values, we calculate K(t) for t = T, T - I, ... , 2, I 
as shown next. 

K(5) = ( 0.012 0.028 0.418 - 0.019) 
- 0.021 - 0.047 - 0.030 0.032 

K(4) = ( 0.024 0.084 0.964 - 0.037) 
- 0.020 - 0.041 0.025 0.030 

K(3) = ( 0.034 0.160 1.453 - 0.052) (66) 
- 0.019 - 0.034 0.074 0.029 

K(2) = ( 0.039 0.230 1.739 -0.061) 
- 0.018 - 0.027 0.103 0.028 

K(I)=( 0.041 0.276 1.837 - 0.064). 
- O.oI8 - 0.022 0.113 0.027 

The corresponding optimal control values v(t) will be computed by formula 
(56) if initial condition X O is given. We assume that at the beginning G(O) 
and B(O) are equal to their target values G and li, respectively, while YeO) 
is less than Y by some amount, say by 10: 

Yo -10 

go 0 
x o = bo 0 (67) 

b -, 0 

Starting from x O in (67), we compute v(l) = (Llg, , Llb,f by rule (56), and 
calculate g, and b, by 

(51') 

with t replaced by one. Then in view of (49), the computed value of y, is 
obtained as 

Yt = aYt_' + ~ogt + ~,gt-' + wObt + w,bt_, + w2bt- 2 (49') 

with t replaced by one. Thus we get x(l) = (y" g"b"bo)T and employ the 
formula (56) to have the second-period optimal control v(2). Proceeding in 
this manner, we compute all the optimal control values vet) and the 
associated Yt for t = 1,2, ... , 5 as in Table 1. 

Table I. Optimal control values Llgt , Llbt , Yt for y = g = 2 

t = 1 2 3 4 5 

!1g, 0.412 0.216 0.107 0.041 0.007 
!1b, - 0.178 0.029 0.037 0.038 0.038 
y, - 0.027 - 0.D15 - 0.009 - 0.005 - 0.001 
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Table 2. Optimal control values I1gl , I1bl , YI for y = ~ = 0 

t = 1 2 3 4 5 

!1gl 0.047 0.005 0.003 0.002 0.00\ 
!1bl - 0.215 -0.013 -0.0067 - 0.0067 - 0.0069 

YI - 0.0066 - 0.0003 - 0.0001 - 0.0001 - 0.0002 

This result may be compared with other cases in different numerical 
examples. First we see the features of the optimal values (in Table 2) 
obtained in the case where we neglect the cost associated with deviations in 
bonds BI from its target, setting y = ~ = 0, with the other numericals 
remaining unchanged. 

According to Tables I and 2, the changes in GI and BI from their 
previous levels become less drastic in the y = ~ = 0 case than in the 
y = ~ = 2 case. In either case the final-period values of I1gs and Ys seem to 
approach zeros as a whole. 

Second, we examine the case that penalty imposition on bl is shifted 
backward by one period so that f and Z now become 

I 0 0 0 I 0 0 0 

f= o 0 0 0 
o 0 0 0' 

~= 
o 0 0 0 
o 0 0 0' 

y*,~* > o. (59') 

o 0 0 y* o 0 0 ~* 

Setting y* = ~* = 2 in (59') and leaving the other numericals unchanged, we 
have the optimal values in this case (shown in Table 3) which are slightly 
different from those in Table I. 

Now, as a comparable form, we turn to our original system (48) having 'I 
as a state variable and rewrite it with the definition of I1bl as 

/I 

m~:Hg o a(1 - T) [~I-Il 
-ji I-T I-I 
o I bl _ 1 

+ [l -f ,]( fi,H ~~~'l (68) 

Table 3. Optimal control values I1gl , I1bl , YI for y* = ~* = 2 

t = 1 2 3 4 5 

!1gl 0.392 0.197 0.090 0.025 - 0.006 
!1bl - 0.180 0.026 0.033 0.033 0.032 

YI - 0.027 - 0.015 - 0.010 - 0.005 0.001 
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where Ut represents U2t - U2t - 1 - U3t • Pre multiplying (68) by the inverse of 
the coefficient matrix on the left-hand side, we get the following state-space 
form. 

x(t) = Ax(t - 1) + Hv(t) + ij(t), (69) 

where 

/3IPo - JLI Po wo + WI ~o Wo 

A== - /3IPI JLlpl (I - T)( ~ - .l ) 
P2 PI 

H== 
I 1 ---

0 0 o 

v(t) == (~t)' ij (t) == 

JL 1 -u lt - -ut 
PPo Po 
I 1 -u lt + -ut 

P2 PI 

(71 ) 

o 
(72) 

We are concerned with minimizing the expected quadratic costs associated 
with x(t) and vet) over a finite time period T: 

E {xT(T)fX(T) + t~l (xT(t - I)Zx(t - 1) + vT(t)<I>v(t))} , (73) 

where we assume 

YI 0 0 ~I 0 0 

<I> ==( ~I :J f== 0 Y2 0 2= 0 ~2 0 (74) 
0 0 Y3 0 0 ~3 

with Yi' ~i' CPi being positive scalars for i = I, 2, and Y3' ~3 being nonnega
tive. Given an initial condition X(O), we can compute the optimal control 

v(t) = - K(t)x(t - 1) (75) 

where K(t) is that given by formula (57) with A, H in (70) and f, Z ,<I> in 
(74). 

Table 4. Optimal values gl' I1bl' Yt and rt for Y2 = ~2 = 60 

t = 1 2 3 4 5 

g, 0.00109 0.03970 0.03965 0.03963 0.03964 
!::J.bt - 0.06020 - 0.00035 - 0.00039 - 0.00040 - 0.00040 
y, 0.00303 - 0.00397 - 0.00478 - 0.00560 - 0.00634 

3.06 0.91 0.46 0.004 - 0.496 r, 
10000 10000 10000 10000 10000 
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Table 5. Optimal values gt' !:::..bt , Yt and 't for Y2 = ~2 = 600 

t = 1 2 3 4 5 

gt 0.00099 0.03967 0.03964 0.03964 0.03967 
t:.b, - 0.06020 - 0.00034 - 0.00039 - 0.00039 - 0.00040 
y, 0.00305 - 0.00396 - 0.00478 - 0.00560 - 0.00635 

0.306 0.091 0.046 0.0004 - 0.0497 

" 10000 10000 10000 10000 10000 

Let us compute optimal control values v(t) by using the numerical 
example given in (63) and 

T= 5, Yl = ~l = 1, 

Y3 = ~3 = 2, 1/>2 = 1, 
(76) 

starting from the initial condition 

[YO] [ - 10.0 ] x(O) = '0 = 0.01. 
bo 0.0 

(77) 

Table 4 shows the computed optimal control values v(t) = (gl'!:::..bt) and the 
associated state variables Yt and 't. 

Note that in the above computation x(t) is iteratively calculated by 
formula (69) with its disturbance term being deleted. In a similar manner, 
we compute optimal control values for the same problem in the case of 
Y2 = ~2 = 600 with the other numericals remaining unchanged, and the 
result is shown in Table 5 where we see a significant improvement in 't in 
comparison with Table 4. 

6.5. Optimal Control of an Open Economy with 
Bond-Financed Budget Deficits 

A numerical analysis, similar to the preceding Section 6.4, is now per
formed for optimal control of an open economy under the government 
budget constraint and under fixed and flexible exchange rates. We intro
duce external transactions into the previous closed system (45). That is 

Yt = a(1 - T)(Yt + Bt- 1) - vRt + Gt + EEt - ~Yt + u1t (7Sa) 

Mt + 'TTlt = /3Yt - p,Rt + U2t (7Sb) 

!:::..Mt + Rt-1!:::..Bt = Gt - TYt + (1 - T)Bt _ 1 + u3t (7Sc) 

!:::..It = EEt - ~Yt + KRt + u4t (7Sd) 
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where new notations are as follows (the others are those in (45)): 

E, 

JI 

1- 'TT 
r 
K 

where 

exchange rate (price of foreign currency in terms of domestic 
currency), 
level of foreign reserves, 
sterilization rate of foreign reserves (0 < 'TT .;;; 1), 
marginal propensity to import (= az,;a YI > 0), 
response ratio of foreign capital inflow to domestic interest rate, 
(K ~ 0), 
random error with E(u41 ) = 0 and var(u41) = (J~( < 0), 

dX, aZ,(E" YI ) 

£ == - - ---::=---
dEl aE, 

(79) 

XI volume of exports (in terms of domestic currency), 
ZI volume of imports (in terms of domestic currency). 

Note that (79) can be arranged as 

( > 0 by the so - called Marshall- Lerner condition), 

(79') 

where 

dX E 
~ == _I --.!.. > 0 (exchange-rate elasticity of export) 

dEl XI 

a(Z,/E,) E; 
11 == - - > 0 (exchange-rate elasticity of import). 

aE, ZI 

Obviously, 4OE, - ry, is the linearized form of trade balance X,(E,)
Z,(EI' Y I ), and KR, is that of foreign capital inflow. Thus (7Sd) represents 
the overall external transactions balanced by a variation in foreign reserves 
dJ" and (7Sa) shows the Keynesian IS relation involving trade balance. 
The second term 'TTJI on the left-hand side of (7Sb) gives the foreign reserve 
component of money stock, meaning that 100 X 'TT percent of total foreign 
currency is converted into domestic currency. Hence total stock of high
powered money can be denoted as 

(SO) 

Multiplying the current external transactions equation (7Sd) by 'TT and 
adding to the government budget constraint equation (7Sc) yield 

dB, + R,-1dB, = GI - 'T'YI + (1 - 'T)B'_I + 'TTKR, + 'TT4OE, + USI (SI) 

where 'T' == 'T + 'TTr and uSI == U31 + 'TTU41. 
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Our system is now composed of three equations (78a), (7Sb), and (SI), 
which may be expressed as 

a' Y{ + vR{ = a(I - T)B{_1 + G{ + EE{ + U lt (82a) 

/3Y{ - f.LR{ = H{ - U2{ (S2b) 

T'Y{ - 'TlxR{ = G{ + (1 - T)B{_1 - R{-It::..B{ + 7TEE{ - t::..H{ + Us{ (82c) 

where a' == 1 - a(l - T) + ~ > O. In a fixed exchange rate case, E{ is given 
at E, and hence trade balance varies only through changes in Y{, and EE{ 

becomes equal to a constant, EE == & say. If E is raised by 100 X e{ percent, 
then & will also increase by 100 X e{ percent. In this manner, we may 
manipulate the dynamics of our system through control of the values of E. 
Thus our system under fixed exchange rate regime can be written as 

a'Y{ + vR{ = a(l- T)B{_1 + G{ + (I + e{)& + U lt (S3a) 

/3Y{ - f.LR{ = H{ - U2{ (83b) 

T' Y{ - 7TKR{ = G{ + (1 - T)B{_1 - R{-It::..B{ + (I + e{)7T& - t::..H{ + us{ 

(S3c) 

On the other hand, if the exchange rate floats perfectly, then current 
external balance t::..J{ will be zero and H{ may be thought to consist of only 
domestic component M{ of money stock. At the same time 7T is put to one. 
Thus, our perfect floating exchange-rate system is shown as 

a' Y{ + vR{ = a(I - T)B{_1 + G{ + EE{ + U lt (84a) 

/3Y{ - f.LR{ = M{ - U2{ (S4b) 

T'Y{ - KR{ = G{ + (I - T)B{_1 - Rt-1t::..B{ + EE{ - t::..Mt + Us{" (84c) 

In the real world, the exchange rate does not float perfectly in the above 
sense, but it floats imperfectly so that current international balance will not 
be zero; in such a case our previous system (S2) will be valid. 

We begin with the control of our fixed exchange-rate system (S3). The 
first-order difference form of (83b) is 

/3t::..y{ - f.Lt::..Rt = t::..Ht - u2t + U2{-I' 

into which (S3c) is substituted for t::..HI' yielding 

(83'b) 

(T' + /3)Yt - f.L'Rt = /3Yt- 1 - f.LR{-1 + G{ + (I - T)Bt_1 - Rt-1t::..Bt 

(S3/1b) 

where f.L' == f.L + TK and ut == U2{ - U2t - I - Us{" As we did in Section 6.4, we 
derive the following matrix form of (S3a) and (83/1b) in terms of the 
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deviations of variables from their stationary values (cf. (48)): 

( a' p) ( Yt) ( 0 0) ( Yt _ I ) ( 1 0) ( gt) 
7' + f3 - JL' rt = f3 - JL rt _ I + 1 - R - I bt 

+ ( a(1 - 7) )bt _ 1 + ( 0 )et + ( u lt ) 

1 - 7 + R -I W0 - ut 
(85) 

where we have considered the fact that exchange-rate deviation rate et 

would be zero in the stationary state. Here we select government expendi
ture gt' new issue of bonds !J.bt and exchange-rate deviation rate et as 
control variables, while state variables are national income y" interest rate 
rt and the stock of bonds b" all in terms of deviations from the initial 
stationary values. Thus, rewriting (85) as 

P 

- JL' 
o 

[
1 0 

+ 1 W0 
o 0 

a(1 - 7)][Yt_l] 
1 - 7 rt _ 1 

1 bt _ 1 

and premultiplying by the inverse of the coefficient matrix on the left-hand 
side, we get a state-space form 

x(t) = Ax(l - 1) + Hv(l) + 1)(1) (86) 

where 

Yt f3lpo - JLIPo Wo + WI 

x(t)= rt , A= - f3lp'l JLlp'l (1 - 7)( ~ - J, ) , (87a) 
P2 PI 

bt 0 0 

gt 15' 0 0( w156 - (1 - w)15;) w' 0 

v(t)= et H= I 1 0( J, - ~ ) (87b) ---
P; PI P2 PI RPI 

!J.bt 0 0 

1)(t)= (87c) 
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and 

,- '+ f3 + ' '/ Po = T a JL v, P; = vP'o/ a', P; = Vp'o/(T' + f3), 

80 =(1 + JL'/v)/p'o, w'o= -1/(RP'o), (88) 

w; =(1- T)(1 + CiJL'/V)/p'o+ 1/(Rp'o). 

We are concerned with minimizing the expected quadratic costs associated 
with x(t) and vCt) over the finite time period T: 

E {XT(T)fX(T) + I~l (xT(t - I)Zx(t - 1) + vT(t)<I>V(t))}, (89) 

where we assume for simplicity 

Y] 0 0 ~] 0 0 cJ>] 0 

JJ 
f= 0 Y2 0 Z= 0 ~2 0 <1>= 0 cJ>2 (90) 

0 0 Y3 0 0 ~3 0 0 

with Yi' ~i' cJ>i being positive scalars for all i. Given an initial condition x(O), 
we can compute the optimal control v(t) by the rule (56), where K(t) is that 
of formula (57) with A, H in (87) and f, Z, <I> in (90). 

Using the numerical data given in (63), (76) and the following additional 
data: 

r = 0.05, 7T = 0.8, K=O, ED = 1, cJ>3 = 1, (91 ) 

we obtain the numerical values of composite parameters 

T' = 0.24, JL' = 0.4, a' = 0.37, P'o = 0.73, p'] = 0.789 (92) 

p;=0.811, 80=2.740, 8;= -1.370, w'o= -27.397, w'] =29.424 

and those of matrices A and H: 

[ 
0.164 

A = -06152 
- 0.548 

0.507 
o 

[ 
2.740 2.466 

H = - 06034 0.~19 

Based upon these values and the following initial condition 

x(O) = [~:l = [- 1~:~ll 
bo 0.0 

- 27.397] 
25.349 . 

1 

(92') 

(93) 

we compute optimal control values v(t) = (gl' el' 6.bt ) and the associated 
optimal state variables Yt and rt for t = 1, 2, 3, 4, and 5, as shown in Table 
6. This table is comparable to Table 4, since the latter contains only two 
control variables, while in the former we have an additional instrument et 

that works to improve optimal state variable values as a whole. 
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Table 6. Optimal control gt' e/, !J.b/ and state Yt' '1' b/ 

t = I 2 3 4 5 

gl 0.00480 0.03004 0.02917 0.02832 0.02749 
el - 0.00476 0.00978 0.01068 0.01158 0.01250 
f:..bl - 0.06010 - 0.00044 - 0.00049 - 0.00051 - 0.00052 

YI 0.00261 - 0.00295 - 0.00366 - 0.00436 - 0.00502 
rl 0.00029 0.00012 0.00008 0.00004 - 0.00001 
hI - 0.06010 - 0.06055 - 0.06104 -0.06154 - 0.06207 

We turn now to the control of the floating exchange-rate system (84). 
Before converting the system into a control system, we add to the system a 
lagged effect of exchange rate on trade balance. That is, we replace the 
term t:E/ by t:oE/ + t:1E/- 1, where 

(94a) 

ax/ az/ 
t:1=~-~>O 

/-1 /-1 
(94b) 

and we note that X/ and Z/ are assumed to be functions of E/ and E/- 1• (Z/ 
depends on Y/ as well.) Thus we have a new flexible exchange-rate system 
(95) instead of (84). 

a'Y/ + vR/ = a(l- T)B/_l + G/ + t:oE/ + t:IE/_ 1 + u lt (95a) 

j3Y/ - /LR/ = M/ - u2/ (95b) 

T'Y/ - KR/ = G/ + (1 - T)B/_l - R/-I!J.B/ + t:oE/ + t:1E/_ I - !J.M/ + us/. 

(95c) 

In this model, the exchange rate is treated as a state variable, and we 
denote by E a target value of the exchange rate. Let Y, if, B, G, and M be a 
set of stationary values of Yt' Rt' Bt' Gt' and Mt' respectively, consistent 
with the equilibrium that E/ = E/_ I = E and !J.M/ = !J.B/ = 0 are realized in 
system (95) with Ui/ (i = 1,2,5) being neglected. 

In order to obtain the deviation form of system (95), we proceed in the 
same way as we did to reach system (85). The first-order difference form of 
(95b) is 

j3!J. Y/ - /L!J.R/ = !J.M/ - ut* 
into which (95c) is substituted for !J.Mt' yielding 

('r' + j3) Y/ - ( /L + K)R/ - t:oE/ 

(95'b) 

= j3Y/- 1 - /LR/_ I + t:IE/_ I + G/ + (1 - T)B/_l - R/-I!J.B/ - ut. 

(95"b) 
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Using the notation 

e(==(E(-E)/E, 1'9 0 == EoE, and f9 l ==E 1E (96) 

and denoting by yp rp bp and gp respectively, the deviations in variables 
Yp Rp Bp and G( from their stationary values mentioned above, we can 
express the system of equations (95a), (95"b), and a definition b( = b( _I + 
D.b( in terms of these lower-case letters as 

[ .' - 1'9 0 on 
7' ~ f3 - 1'9 0 o e( 

0 1 b( 

[0 &, 0(1-,) r-'] 
= f3 1'9 1 1 - 7 e(_1 

o 0 1 b(_1 

+ [i 

-p 

-~ ,][;;,] Jl+K 

0 1 D.b( 

+[~l-'+ "".] (97) -u( . 

0 

Selecting gp D.rl' and D.b( as control variables, and YI' el' and b( as state 
variables, we convert the above system (97) into a state-space form (98), by 
the premultiplication of the inverse of the coefficient matrix on its left-hand 
side. 

where 

x(t) = Ax(t - 1) + Bi5(t) + c(t) + 1/(t) 

a* 1 
[ 

a* 
A '" .,~, a'ai - a(l - 7)/1'9 0 

1 

[ 
0 ai 

B == - 1/1'90 a'ai + p/f9o 
o 0 

w* ] .,~, 

(98) 

(99a) 

(99b) 

(99c) 
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and 

P6 = (7"' + f3 - a')50 ' 
(100) 

of =(1 - 7")(1 - a)/P6, ~* - / * U3 = - J1. Po· 

Note that e(t) in (98) is an exogenous variable vector. 
We want to minimize the expected quadratic loss 

over a finite horizon T subject to the system (98). Matrices r, Z, and III are 
assumed to be those in (90). Given an initial condition X(O), the optimal 
control of this stochastic problem becomes (102), due to certainty equiva
lence, in view of Theorem 14 in Section 2.2. 

v(t) = -K(t)x(t - 1) - k(t) for t = 1,2, ... , T, (102) 

where 

K(t) =[ BTS(t)B + IllrIBTS(t)A (103) 

SeT) = r (104a) 

S(t - 1) = A TS(t) [ A - BK(t)] + Z (104b) 

k (T) = [ B Tr B + Ill] - I B Tr e (T) (1 05a) 

k(T - 1) =[ BTS(T - I)B + III rlBT 

X {S(T - l)e(T - 1) + [A - BK(T)fre(T)} (105b) 

k(T - 2) =[ BTS(T - 2)B + III rlBT 

X {S(T - 2)e(T - 2) + [A - BK(T - l)f 

X {S(T - l)e(T - 1) + [A - BK(T)fre(T)}}, (105c) 

and so forth. 
Using the previous numerical data in (63), (76), (91), and 

50 = 0.6 and 51 = 0.3, (106) 

we obtain the following numerical values of composite parameters: 

P6 = - 0.006, w6 = 3333.33, 06 = - 20, 

of = - 20, 01 = - 133.33, oj = 66.67 
(107) 
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and those of A, B, and e(t): 

o 
- 0.5 

o 
- 20 ] 
-~.53 , 

Then, starting from the initial conditions: 

- 133.33 3333.33] 
-~8.66 123~.33, 

(108) 

[YO] [-10 ] 
x(O) == :: = ~.01 and ro = 0, . (109) 

we can compute optimal control values and the associated state variables. 
In order to compute k(t), we need to know e(T) for T = t,t + 1, ... , T 

beforehand, and in turn rT _ I( = ro + ilr l + ... + ilrT _ I). However, since 
ilrt is to be determined as a component of optimal control vector v(t) 
whose computation involves k(t), we have a contradictory loop. To cut off 
the loop, we first set k(t) equal to zero for all t and compute vet) by 
formula (l02), say vo(t). Second, we set ilrt equal to the corresponding 
value in vo(t) and compute vet) by (102), say VI(t). Third, we set ilrt equal 
to the corresponding value in vl(t) and compute v(t) by (102); and so forth. 
Following this procedure, we can converge to a unique optimal control 
vector v(t) = (gl' ilrl' ilbt), as shown in Table 7 together with the associated 
state variable value x(t) = (Yl' el' bt), only after three or four iterations. 

In comparison with 

[1 0 0] 
S(5)= 0600, 

002 

it will be of some interest to see solutions S(t - 1) to discrete Riccati 

Table 7. Optimal control gt' ilrt , ilbt and state Yt' et , bt 

t = 1 2 3 4 5 

g, 0.00859 0.05368 0.05473 0.05381 0.05123 
I:!.rt 0.02753 0.01009 0.00430 - 0.00097 - 0.00575 
I:!.bt - 0.05890 0.00061 0.00055 0.00042 0.00021 

y, 0.00239 - 0.00402 - 0.00467 - 0.00531 - 0.00564 
et 0.00016 0.00040 0.00041 0.00040 0.00026 
bt - 0.05890 - 0.05828 - 0.05774 - 0.05731 - 0.05710 
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equation (104b) for t = 5,4, 3, and 2: 

[1.00126 -0.00002 0.01288 ! 
S(4) = 0.00011 60.04044 0.09584 

0.01346 0.09572 4.24535 

[1.00263 0.00011 0.02750] 
S(3) = 0.00022 60.04046 0.10107 

0.02840 0.10103 6.52121 
( 110) 

[1.00422 0.00018 0.03804] 
S (2) = 0.00034 60.04048 0.10626 

0.04368 0.10645 8.80860 

[0.99980 0.00022 0.05139] 
S(I) = 0.00010 60.04049 0.11148 . 

0.05212 0.11183 11.09510 

In concluding this section, we refer to some related literature. Turnovsky 
(1979b) conducts an optimal control analysis of a continuous-time open 
economy taking no account of the government budget constraint, while 
Scarth (1975) is concerned with the stability of a discrete-time open 
economy in consideration of the government budget constraint. For discus
sions on equilibrium analysis under flexible exchange-rate systems, we have 
consulted Krueger (1965), Niehans (1975), Dornbusch (1976), Kouri (1976), 
and Levin (1980), among others. 
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APPENDIX 

Differentials of Matrix Traces 

Here we assemble all the differentials of matrix traces related to operations 
conducted in Chapters 3 and 5. In the derivation of the following theorems, 
the elements of matrix A are assumed to be independent of one another. 

Theorem la. Let A = [aij] and B = [bij] be m X nand n X m matrices, 
respectively, and let Q = [wij] be an n X n symmetric matrix. Then 

a tr(AB) _--;:-__ - B T 
aA - , 

a tr(AQA T) 
aA = 2AQ. 

PROOF. Since tr(AB) = 2:.7'= t2.'j= taijbJi' we have 

atr(AB) 
aa = bji => (1). 

IJ 

Since 

we get 

(I) 

(2) 

o 
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Theorem 2a. Let A = [aij] be an m X n variable matrix, and let B, C be 
n X m, m X m constant matrices, respectively. Then 

(3) 

(4) 

PROOF. Let d represent a variation. Since 

d tr( CAB) = tr[ d( CAB)] = tr( C . dA . B) = tr( BC . dA), 

and since the only nonzero column of BC(aA /aaij) is the jth one which 
equals the ith column of BC, we have 

---::--- = tr BC-atr(CAB) ( aA ) 
aaij aaij 

= the (j, i)th element of Be. 
Hence 

a tr(CAB) T 
aA = (BC) . 

Equation (4) follows at once from (3) since 

tr(BTA TC T ) = tr(CAB). o 

Theorem 3a. Let A = [aij] be an n X n nonsingular matrix, and let B = [bij] 
be an n X n matrix. Then 

PROOF. Let Ars be the (r,s)th element of A -I. Then 

tr(A -IB) = 2: 2: Arsbsr . 
r s 

Hence 

atr(A-IB) ""aArs (aA- I ) 
--=--- = .t:..J .t:..J -- b = tr -- B aaij r s aaij sr aaij . 

Since AA - I = I, we have 

and thus 

(5) 

(6) 

(7) 
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which is substituted into (6), yielding 

atr(A -IB) = tr(-A -I MA -IB) = tr(- MA -IBA -I) 
aaij aaij aaij 

= the (j, i)th element of (- A -IBA -I), 

since the only nonzero row of (aAjaaij)C for an n X n matrix C, is the ith 
one which equals the jth row of C. 0 

Theorem 4a. Let A = [aij] be an m X n variable matrix. Let Band C be 
n X nand m X m constant symmetric matrices, respectively. Then 

atr(ABATC) 
aA = 2CAB, (8) 

atr(CABA T) atr(A TCAB) atr(BA TCA) 
aA = aA = aA = 2CAB. (9) 

PROOF. Let d represent a variation. 

dtr(ABA TC) = tr[ d(ABA TC) J. (10) 

Since 

d(ABA TC) = dA . BA TC + A . d(BA TC), 

and since 

d( BA T C) = B . dA T. C, 

we have 

tr[ d(ABA TC)] = tr(BA TC· dA) + tr(CAB· dA T) 

=tr(BATC·dA) + tr(dA ·BTATC T ). (11) 

By the symmetry of Band C and by (10) and (11), 

a tr(ABA TC) = tr(BA TC aA ) + tr( MBA TC) 
a~ a~ a~ 

= the (j, i)th element of (2BA T C). 

Hence 

a tr(ABA TC) 
aA = 2(BA TC{ = 2CAB. 

Equation (9) follows immediately from (8) by virtue of the fact that 

tr(CABA T) = tr(A TCAB) = tr(BA TCA) = tr(ABA TC). 0 (12) 
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Theorem Sa. Let A = [aij] be an m X n variable matrix. Let Band C be 
n X nand m X m, respectively, constant matrices. Then 

a tr(ABA TC) 
--.."...-:--- = cTABT + CAB (13) 

aA ' 

atr(CABA T) atr(A TCAB) atr(BATCA) 
------;0----:---- = = = CTABT + CAB (14) 

aA aA aA . 

PROOF. By (11) and (12) 

a tr(ABA TC) = tr(BA TC M) + tr(BTA TC T M .), 
aaij aaij aaij 

and hence 

a tr(ABA TC) T 
aA = (BATC)T+(BTATC T ) 

= CTABT + CAB. 
Equation (14) follows immediately from (13) by virtue of (12). D 

Theorem 6a. Let A = [aij] be an m X n variable matrix. Let B, C, and D be 
n X n, m X n, and n X m, respectively, constant matrices. Then 

a tr(DABA Td) 
aA : = CDAB + D TCTABT. (15) 

PROOF. Let d represent a variation. Since 

d tr(DABA TC) = tr[ d(DABA TC)], 

and since 

d(DABA TC) = D· dA . BA TC + DAB· dA T. C, 

we have 

dtr(DABA TC) = tr(dA . BA TCD) + tr(CDAB· dA T) 

= tr(dA· BATCD) + tr(dA· BTATDTC T ). 

Then 

= the (j, i)th element of (BA TCD + B TA TD TC T ). 

Hence 
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