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Foreword 

In science and engineering, a proper way to master theory is to solve relevant 
and meaningful problems that provide a bridge between theory and applications. 
Problem solving is necessary not only as a stepping stone towards the design 
of real systems and experiments, but also to reveal the scope, flexibility, and 
depth of the theoretical tools available to the designer. In this book, the authors 
present an excellent choice and a lucid formulation of a wide variety of problems 
in control engineering. In particular, their constant reliance on MATLAB in the 
problem-solving process is commendable, as this computational tool has become 
a standard and globally available control design environment. 

The chapter on theoretical elements of control theory, which precedes the 
problem-solution part of the book, sets a proper background for problem-solving 
tasks. In their presentation, the authors struck the right balance in achieving a 
self-contained text without overwhelming the reader with detailed and exhaus­
tive theoretical arguments. 

Finally, the opening chapter on the history of automatic control is a welcome 
part of the book. The authors admirably describe the events and concepts that 
have evolved over the centuries to the present-day control theory and technol­
ogy. Theoretical analysis and problem-solving processes are not only useful in 
understanding what the world is, but also what it can become. In attempting 
to predict future development in science and technology we are greatly aided .by 
the history of scientific innovations and discoveries. 

The present book is an excellent piece of work and should be on the shelf of 
every student and practicing engineer of automatic control. 

May 2001 

ix 

Dragoslav D. Siljak 
Santa Clara, California 



Preface 

This book is a self-contained exposition of the theory of linear control systems 
and the underlying mathematical apparatus. It has more than 250 solved prob­
lems, numerous illustrative examples, and over 70 figures and diagrams. In 
addition, MATLAB examples provide a good introduction to this powerful de­
sign and simulation tool. A historical overview of the original ideas in control 
theory is provided to describe the evolution of the theory from its early stages 
of development. 

For whom is this book? 

It was written for students and engineers interested in Control Systems and Sig­
nal Processing, typically the first-year graduate students of Engineering. There 
is more than one way this book can be used: it contains a sufficient amount of 
theory to allow its use as a textbook, it has many solved problems so it can be 
a good supplement to a more advanced text, and it has enough of both to be 
used as a self-study guide. A suitable choice of material can be made to fit the 
format of the course and preferences of the instructor and the audience. 

What is in the book? 

The book has three major parts: 

Part I is an overview of the history and theory of the subject. It consists of 
Chapters 1 and 2: 

• In Chapter 1 we investigate the historical development of the automatic 
feedback control from the Antiquity to the present day. 

• In Chapter 2 we present the fundamental concepts of control theory. We 
start from the representation of systems using the states and continue 
with a discussion of the most important system properties: stability, con­
trollability, and observability. We end that Chapter by discussing the 
most important design techniques: state feedback, optimal control, state 
observation, and state estimation (Kalman filtering). 

xi 
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Part II consists of Chapters 3, 4, and 5, which contain solved problems 
categorized by the basic type of systems (continuous and discrete) and by the 
topic (system representations, system properties, and design techniques): 

• In Chapter 3 the reader will find solved problems about continuous-time 
systems. It starts with simple differential equations and some matrix the­
ory and continues with matrix representation of simultaneous differential 
equations and input-output representation of control systems. Then it 
moves on to problems of state representation of systems, stability, con­
trollability and observability, canonical forms, and finishes with design 
techniques for state feedback, optimal control, and state estimation and 
observation. 

• Chapter 4 is very similar in format to Chapter 3 and contains solved prob­
lems on discrete-time systems. It starts with simple difference equations 
and input-output representation of discrete-time systems. Then, just like 
Chapter 3, it discusses problems of state representation, system properties, 
and design techniques. 

• Chapter 5 contains several exercise problems. 

Part III consists of three Appendixes: 

• Appendix A is a quick introduction to the basic syntax and functionality of 
MATLAB, a powerful numerical and simulation tool for many engineering 
disciplines, including Control Theory. 

• In Appendix B we review the mathematical tools and notation used in 
the book: differential and difference equations, Laplace and z transforms, 
and matrices and determinants. To make the exposition more interesting 
we also trace the origins of these branches of mathematics. 

• Appendix C is a compilation of the basic notions and results in matrix 
theory, the most important mathematical tool used in this book. It covers 
similarity of matrices, important classes of matrices and their proper­
ties, and some important techniques such as singular value decomposition 
(SVD). Most of the results are given with proofs and some are illustrated 
by examples. 

To make the book easier to read 

To help the reader we included a detailed Index at the end of the book and 
used standard textbook conventions. The asterisk in a subsection name de­
notes advanced material that can be skipped during the first reading. When 
we reference a book or an article, we use a bracketed number, e.g., [22). All 
references are listed alphabetically in the Bibliography section towards the end 
of the book. All definitions, theorems, problems, examples, and exercises are 



PREFACE xiii 

numerated by sections. For example, Problem 4.5.2 is the second problem in 
Section 5 of Chapter 4. 

In addition to that, we made numerous historical remarks throughout the 
book. This should help the reader understand and adopt the material faster and, 
at the same time, provide some useful information. Also, we used the inverted 
pendulum on a cart to illustrate many of the concepts of modern controls. This 
particular system offers the best of both worlds: it is complex enough to present 
some challenge, yet simple enough to be visualized and intuitively understand­
able. Another helpful feature of the book is that most of the problems and 
theorems are accompanied by detailed solutions and complete proofs. Finally, 
the MATLAB programs from this book are available on the enclosed CD. 

Suggestions? Comments? 

If you have any suggestions or comments about the book, please e-mail them 
to: b.kisacanin~ieee.org 
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Chapter 1 

Historical overview of 
automatic control 

In this Chapter we review the main results of the theory of automatic con­
trol. Our presentation follows the historical development of the control theory 
and assumes at least the undergraduate level of exposure to this subject. The 
material is organized as follows: 

• Section 1.1: Automatic control before the telecommunications revolution 
in the 1930's 

• Section 1.2: The classical period of automatic control (between the 1930's 
and the 1950's) 

• Section 1.3: The modern control theory (after the 1950's) 

The basic techniques of the modern control theory are presented in a greater 
detail in Chapter 2. 
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1.1 Automatic control before the 1930's 

The first significant discovery in the field of feedback control was Watt's fly­
ball governor. However, the history of the automatic feedback control systems 
dates back much earlier. In this Section we describe the history of feedback 
control systems from the Antiquity until the 1930's, from ancient water-clocks 
to electrical power distribution. 

Antiquity and Middle Ages. According to Vitruvius' De Architectura, 
among many inventions of the first of great engineers from Alexandria, Ctesibius 
(also spelled Ktesibios; fl. c. 270 BC), was a water-clock - clepsydra. According 
to Vitruvius' description, it could have looked like Figure 1.1. It used two forms 
of feedback control: a siphon S to periodically recycle itself and a floating valve 
F to ensure a constant water level in tank A, and thus a constant flow of water 
into tank B. 

u 
s 

L 

Figure 1.1: Ctesibius' clepsydra, reconstructed from a description by Vitruvius. While 
the floating valve F ensured a constant water flow into the tank B, the siphon S 
periodically reset the clock from the upper level U back to the lower level L. 

Three hundred years later, the last of the gn~at Alexandrian engineers, Hero, 
described a number of ingenious devices which employed feedback. His inven­
tions also included the oldest known devices powered by steam. 

The Hellenistic tradition was continued in the Arabic world through the 
Middle Ages. The water-clocks and other hydraulic and pneumatic devices of 
this period were based on the floating valve and the siphon principle. 

Renaissance in engineering. Probably the first modern invention based 
on the automatic feedback was the 17th century Dutch windmill which was kept 

5 
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facing the wind by an auxiliary vane that rotated the entire upper part of the 
mill. Later, in England, an additional speed regulation was achieved using the 
shutter sails which helped compensate for the variability in the wind speed: 
when the wind was stronger, the shutters were automatically opened. 

Precise time-keeping was another problem which required feedback mecha­
nisms. The early clocks were driven by weights which moved under the force of 
gravity. Their motion was kept constant by the rotating vanes, which used the 
frictional resistance of air to provide the feedback. The constant motion was 
achieved when the resistance (proportional to the speed) was in equilibrium 
with the gravity. 

Worth mentioning are also the 18th century Reaumur's devices for control 
of incubators: the temperature dependent level of mercury in a U-tube moved 
an arm which controlled the draft to a furnace l . Reaumur described the idea 
of the negative feedback as 

making use of these [extra] degrees of heat against themselves, so as 
to cause them to destroy themselves. 

Watt's inventions. The first steam engine was patented in England by 
Savery in 1698 and improved by Newcomen in 1712 (both inventions were based 
on the discoveries made by Papin), but it was only after Watt had dramatically 
improved their efficiency that the revolution in automation really began. In 
1765 Watt made his first and the most important invention, a separate steam 
condenser, which saved the latent heat from dissipation. 

In 1788, while working on the design of the throttle valve for manual regu­
lation of the engine, Watt learned from his partner, Boulton, about a method 
for changing the gap between the grindstones according to their rotation speed: 
the millers wanted the gap to be smaller when the stones turned faster2 • He 
quickly adapted this idea to control his valve and thus invented the centrifugal 
governor. This invention triggered a new revolution: it was the first widely used 
feedback mechanism. Figure 1.2 shows its principle: as the shaft S rotates, the 
centrifugal force pulls the rotating masses A and B apart. This is translated 
into the vertical motion of the ring R whose position controls the draft to the 
burner via a throttle valve. This simple mechanism was used to set the steam 
engine's running speed. 

Theoretical analysis. Watt's governor had a few flaws, and many patents 
were granted for attempts to correct them. But Watt's original design was 
very simple and for many applications it was a satisfactory solution. Among its 
most serious flaws were the need for careful maintenance, the lack of power to 
move the actuator, and "hunting," the oscillatory motion of the fly-balls. Many 
engineers of the 19th century noticed that their improvements on the Watt's 

IThis idea can be traced to the 17th century alchemist Drebbel. 
2 At that time Watt and Boulton were building the Albion Mills, the first steam-powered 

mill, hence their interest in the milling technology. Until that time steam engines were mostly 
used to pump water out of mines. 
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s 
Figure 1.2: Watt's centrifugal governor: when the shaft S rotates, the masses A and 
B are pulled apart by the centrifugal force. This causes the vertical motion of the ring 
R whose position controls the draft to the burner. 

design made the hunting worse, some were even saying that their governors 
could easily become "mad," i.e., unstable. 

The first serious analysis of this phenomenon was given by Airy in 1840 in a 
paper which analyzed the high frequency oscillations produced by the governor 
which regulated the motion of a telescope. Here the problem of hunting was 
serious, because it adversely affected the main purpose of the instrument: one 
could see the oscillations. Airy was the first to use differential equations to 
describe the behavior of the governor. In a 1851 supplement to this paper he 
described the conditions for the stable motion of the telescope which led him to 
use friction to eliminate the oscillations. 

Much more influential was Maxwell's 1868 paper On Governors, motivated 
by his involvement in the experiments for establishment of electrical standards. 
In the experiment designed by Lord Kelvin to determine the staridard for the 
ohm, it was important to ensure uniform motion of a coil. A governor was used 
and thus Maxwell, who was interested in general dynamic systems at the time, 
became interested in its dynamics. He found the stability conditions for systems 
described by differential equations up to order three. Even before publishing 
this paper, Maxwell asked the members of the London Mathematical Society: 

if any member present could point out a method of determining in 
what cases all the possible [real] parts of the impossible [complex] 
roots of an equation are negative. 

Clifford was the first to solve Maxwell's problem. He proposed that 

by forming an auxiliary equation whose roots are the sums of the 
roots of the original equation taken in pairs and determining the 
conditions of the real roots of this equation being negative we should 
obtain the condition required. 
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This was to be done by applying the Descartes' rule of signs to both the orig­
inal and the auxiliary equation. Unfortunately, finding the auxiliary equation 
becomes increasingly difficult as the degree of the original equation increases. 

Routh'8 criterion. Algorithmically more satisfactory criterion was estab­
lished by Routh in 1874 (for equations of order 5) and in 1876 (equations of 
any order). In his 1877 Adams Prize winning essay A treatise on the stability 
of a given state of motion, Routh uses the Cauchy index theorem and proper­
ties of polynomials discovered by Sturm to prove what we now call the Routh's 
stability criterion: 

Let the characteristic polynomial of a dynamic system be given by 

a(s) = aosn + alSn- 1 + ... + an-1S + an 

where coefficients ao, ... ,an are real and ao > O. All of its roots have negative 
real parts if and only if 

• All ai's are positive (this alone is a necessary but not sufficient condition 
for stability) 

• The first-column coefficients in the following array are all positive: 

ao a2 a4 
al a3 as 
bl b2 b3 
Cl C2 C3 

dl d2 d3 

where 

etc. 

a6 
a7 
b4 
C4 
d4 

b alaO - aoa7 
3= 

al 

b1a7 - a1b4 
C3 = b1 

H any of the coefficients al, ... , an, b1 , ... ,Wl is zero, then a( s) has one 
or more zeros with a· nonnegative real part. Further analysis is possible to 
determine whether any of these zeros lies to the right of the imaginary axis 
(see [1] and [41]). 
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Example 1.1.1 In order to demonstrate that ai > 0 is only a necessary condition 
in Routh's analysis, let us determine a few examples of third order polynomials with 
positive real coefficients and roots with nonnegative real parts. In general, a third 
order polynomial a(s) = aos3 + a1s2 + a2S + a3 with ao > 0 has roots to the left of 
the imaginary axis if and only if ao, a 1, a2, a3 > 0 and a 1 a2 - aOa3 > 0 . Hence the 
condition for a third order polynomial with positive real coefficients to have a root with 
nonnegative real part is a1a2 ~ aOa3. Thus, for example, 

a1(s)=s3+ s2+ s + 1 

a2(s) = s3 + S2 + s + 2 

s1=-1 S2,3=±j 

S1 = -1.3532 S2,3 = 0.1766 ± 1.2028j o 

Vishnegradskii, Stodola, and Hurwitz. At first, the results obtained 
in Britain by Airy, Maxwell, and Routh didn't have much influence on the 
practical design of governors. Much more influential among the engineers was 
the work by Vishnegradskii. Around 1876 he gave a clear derivation of the third 
order governor differential equation and provided a graphical stability criterion. 
The fact that his work appeared in German, among other languages, was also 
important, because Germany and other German-speaking countries were about 
to become the main stage for developments in mechanical engineering. 

In 1893 Stodola applied the techniques developed by Vishnegradskii to the 
study of regulation of water turbines to obtain the seventh order equations. 
He asked Hurwitz for help witli the stability analysis, and as a result, Hurwitz 
published his stability criterion in 1895 (with a footnote saying that the criterion 
was applied at the Davos Spa Plant): 

If the characteristic polynomial of a dynamic system is given by 

a(s) = aosn + alSn - 1 + ... + an-IS + an 

where coefficients ao, ... , an are real and ao > 0, all of its roots have negative 
real parts if and only if 

(k=1,2, ... ,n) 

where 

al ao 0 0 0 0 
a3 a2 al ao 0 0 

Dk = as a4 a3 a2 al 0 

a2k-1 a2k-2 a2k-3 a2k-4 a2k-5 ak 

and aj = 0 if j > n. 

Like Routh, Hurwitz derived this result using Cauchy's index theorem, but 
instead of using Sturm's properties of polynomials, he used Hermite's quadratic 
form methods. In 1911 Bompiani proved the equivalence of the two stability 
criteria, while in 1921 Schur gave an elementary derivation. 
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Lyapunov stability. A major breakthrough in theoretical mechanics and 
stability analysis of dynamic systems was made in 1892 by Lyapunov. His 
doctoral thesis The general problem of the stability of motion was based on the 
theoretical mechanics of Poincare, and contains the first general stability criteria 
applicable to both linear and nonlinear systems. His work remained practically 
unknown outside Russia until after the World War II, and we will study it in 
greater detail in Chapter 2. 

Operational calculus. In his 1892 Electrical Papers, Heaviside introduced 
the operational calculus as a novel method for solving differential equations 
occurring in the theoretical analysis of telegraphy and electrical transmission. 
Initially dismissed by many as mathematically unfounded, his operational cal­
culus was related to the mathematical theory of integral transforms through the 
work of Carson and Wiener in the 1920's. These methods are now better known 
as Laplace and Fourier transforms (see Appendix B.3). 

Maritime applications. Improvements of the original Watt's governor 
allowed for the explosion in the number of applications of the automatic feedback 
control. To name just a few of them: 

• ship steering engines (1849) 

• torpedo (1866) 

• stabilized passenger-ship saloon (1874) 

• stabilized gun platform (1889) 

• stabilized ship (1892) 

• automatic ship-steering - gyropilot (1912) 

In 1922 Minorsky published his research on ship-steering. He observed the 
methods of experienced helmsmen and tried to design automatic ship-steering 
with similar performance. He found that it was necessary to use the PID control, 
and also maintained that it was important to ensure not only the stability of the 
output variable, but also to watch the values of the internal system variables, 
which could become unstable or go into saturation if the output variable was 
forced to have a small time constant. His ideas were first implemented on the 
battleship USS New Mexico. 

Methods developed for the maritime applications were very useful in the 
emerging airplane technology: the first airplane stabilizers appeared in 1914, 
while the first autopilot was made in 1926. 

Electricity. The wide-spread use of electrical energy for lighting and power 
begun in 1870's with the electric arc lamps, which required regulation of the 
gap between the electrodes. Hence, the first electrical feedback systems were 
made. For the operation of the arc lamps it was also useful to regulate the 
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electrical,current, hence the 1880's saw the first current regulators. Soon, the 
arc lamps were superseded by incandescent lamps which operated best if the 
voltage was constant, therefore first voltage regulators were developed. Finally, 
in the 1920's, many smaller generating plants started to merge into national 
power grids, hence first frequency controllers were developed, as well as the first 
systems to control the stability of these complex systems. 

Remarks. Until the 1930's, the development of feedback control systems 
was facilitated by the talent of a small number of inventors. Their methods were 
based mostly on practical experience from many trials, and the only available 
theoretical tool was the Routh-Hurwitz stability criterion. The next period of 
feedback control, its applications in communications, was characterized by the 
extensive use of Nyquist criterion, which allowed engineers to determine the 
stability conditions without writing differential equations. 



1.2 Classical period of automatic control 

The most important developments between the 1930's and the mid 1950's 
were closely related to communications, radar, industrial process control, and 
analog computing machines. Several theoretical results had a great practical 
impact, among them most important were the stability criterion due to Nyquist 
and graphical methods due to Bode, Nichols, and Evans. 

Black, Nyquist, and Bode. During the 1920's H. Black worked at AT&T 
on the improvements of amplifiers used in long-distance telephony: the goal 
was to decrease the influence of nonlinearities (and thus increase the range and 
quality of phone calls) and to increase their bandwidth (to allow more channels 
to be transmitted over the same physical line ). His 1927 invention of the negative 
feedback amplifier (see Figure 1.3) solved both problems at the same time: it 
used a high-gain amplifier in the negative feedback configuration and traded a 
part of its amplification for linearity, noise reduction, and bandwidth. Black 
published his invention in 1934 and explained it as follows: 

by building an amplifier whose gain is deliberately made, say 40 
decibels higher than necessary, and then feeding the output back on 
the input in such a way as to throwaway the excess gain, it has been 
found possible to effect extraordinary improvement in constancy of 
amplification and freedom from non-linearity. 

If the open-loop gain IkH(jw)1 is large, then the closed-loop gain is 

H(jw) 1 
1 + kH(jw) ~ k 

It is a constant value, even if H(jw) varies considerably with frequency, tem­
perature, or due to variability of components. 

Figure 1.3: Negative feedback amplifier. 

In order to completely understand the behavior of his amplifier, Black asked 
H. Nyquist for help, and as a result, in 1932 Nyquist published a general stability 

12 
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criterion. It uses measurements of the amplifier's open-loop frequency charac­
teristic to determine the stability of the closed-loop system3 . In our notation 
the Nyquist criterion is: 

Plot the measured values ol-kH(jw) and their complex conjugate points in 
the complex plane lor all frequencies from 0 to 00. II the point -1 + jO lies 
completely outside this curve the system is stable; il not it is unstable. 

In the Nyquist's original formulation the values being plotted were the values 
of kH(jw) and (kH(jw»*, while the critical point was at 1 + jO. It was H. Bode 
who introduced the sign change. In 1946 W. Frey extended the formulation to 
cover the systems with unstable open-loop characteristics. 

In 1938 A. V. Mikhailov gave a superficially similar stability criterion which 
required the knowledge of the characteristic polynomial of the closed-loop sys­
tem: 

For a closed-loop system with the characteristic polynomial 

plot a(jw) in the complex plane, where w varies from 0 to 00. The system is 
stable il and only il this curve describes a positive angle 01 mr /2 radians around 
the origin, without passing through it. 

In further attempts to flatten frequency responses of amplifiers and sharpen 
the cut-off edges in frequency responses of filters, H. Bode discovered the limits 
on how far one could go. In the same 1940 paper in which he introduced 
the famous Bode plots and the gain and phase margins, Bode described the 
relations between the amplitude of the system's frequency response and its phase 
response: 

While no unique relation between attenuation and phase can be 
stated for a general circuit, a unique relation does exist between any 
given loss characteristic and the minimum phase shift which must 
be associated with it. 

Servo-mechanisms and radars. During the 1930's there had also been 
great advances in the theory and practice of servo-mechanisms. The design 
of servo-mechanisms was critical for the war effort, especially for the devel­
opment of radar-controlled anti-aircraft guns. The methods based on solving 
or simulating differential equations were inadequate for this purpose and the 
frequency response methods, first used by communications engineers, were in­
troduced to this field. Writing on the involvement of the Bell engineers in this 
work, W. Weaver commented: 

3See Problem 3.4.12 for more information a.bout this fascinating history. 
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if one applies the term "signal" to the variables which describe the 
actual true motion of the target; and the term "noise" to the in­
evitable tracking errors, then the purpose of a smoothing circuit is 
to minimize the noise and at the same time to distort the signal as 
little as possible. 

During the World War II important innovations came out of the MIT Radia­
tion Lab. They designed the first completely automated (auto-track) radar sys­
tem for the anti-aircraft gun control, the SCR-584, and introduced the Nichols 
charts (decibel-phase-angle diagrams). One of the proposed methods to predict 
the future target position (typically 20-30 s into the future) was the theoretical 
work of N. Wiener. He proposed the use of the statistical properties of the target 
tracking Signal to estimate its future value from imperfect measurements: 

Given measurements f(t-r) forr > 0 and knowing that f(t-r) is a sum of 
the actual target position s(t - r) and the noise n(t - r), the task is to estimate 
s(t + ~t) for some ~t > O. Wiener assumed a linear solution: s(t + ~t), the 
estimate of s(t + ~t), was supposed to be a linear combination of the available 
measurements: 

s(t + ~t) = 1b h(r)f(t - r) dr 

The "coefficients" h(t) in this linear combination can be viewed as the impulse 
response of the predictor circuit. To further simplify the solution, the best h(t) 
is assumed to be the one which minimizes the mean-square error of estimation. 
The solution also assumes the knowledge of the following correlation functions: 
rf/(r), the auto-correlation of f(t), and r,.(r), the cross-correlation of f(t) and 
s(t) . 

The minimization of the mean-square error 

T ( b ) 2 .)~moo 2~ iT s(t + ~t) -1 h(r)f(t - r) dr dt 

leads to the following integral equation of the Wiener-Hopf type: 

1b rf/(t - r)h(r) dr = r,.(t + ~t) 
The limits in the convolution integral are one of the following: 

1. a = -00 and b = 00 (noncausal filter: interesting for image processing or 
off-line filtering of data) 

2. a = 0 and b = 00 (the case studied by Wiener: the predictor is causal and 
uses measurements from a semi-infinite interval) 

3. a = 0 and b < 00 (the case studied by N. Levinson: causal predictor with 
measurements only from the recent past) 
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The first case can be solved using the Wiener-Khinchin theorem, which re­
lates the correlation functions with the power spectral densities of the corre­
sponding signals via the Fourier transform. Thus, the transfer function of the 
predictor is obtained as 

H(jw) = S,.(jw) 
Sff(jw) 

where S,.(jw) is the cross-power spectral density of f(t) and s(t + ~t), while 
Sff(jw) is the power spectral density of f(t). 

The second case is the most difficult to treat theoretically: it involves fac­
torization of functions into purely causal and stable and purely anticausal and 
stable paris. The transfer function of the causal Wiener predictor is given by 

[ ] 
+ 

H( ' ) _ 1 S,.(jw) 
JW - + 

Sff(jw) Sff(jw) 

where the + and - signs here denote the causal stable and the anticausal stable 
parts of the function, respectively. 

The third case was studied by Levinson in order to simplify the design of the 
causal Wiener filter. His assumption b < 00 was not only more realistic than 
b = 00, but also led to a simpler derivation of the optimal filter coefficients. 
Levinson first discretized the equation for the estimate as the linear combination 
of the measurements: 

M-l 

s(k + lJ = L h(iJf(k - iJ 
i=O 

The probabilistic arguments then yielded the Yule- Walker equation 

Rffh = P 

where Rff is the auto-correlation matrix of the sequence of measurements f(kJ, 
h is the vector of predictor coefficients (in discrete-time this is the same as the 
impulse response of the circuit) 

h = [h[OJ h[l] ... h[M - I]]' 

while p is the cross-correlation vector of sequences f[k] and s[k+l]. The solution 
is then 

h = Ri/p 
The Toeplitz structure of Rff can be used to simplify its inversion (Levinson's 
algorithm). 
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Wiener's theory, when applied to actual radar-controlled guns in 1942, proved 
to be only marginally better than the existing techniques, most likely due to 
the lack of reliable data to calculate the correlation functions rff(r) and rfs(r) 
and to the initial assumption that the solution was a linear function of mea­
surements. It was not used during the World War II, but the manual originally 
written by Wiener in 1942 (declassified and published along with two explana­
tory papers by Levinson seven years later) Extrapolation, Interpolation, and 
Smoothing of Stationary Time Series, proved to be very influential among the 
communications engineers. Wiener's idea to use statistics to deal with noise 
flourished in the control theory only when in 1960 R. Kalman reformulated the 
problem in the language of state-space models and found a recursive solution 
(more will be said in Chapter 2). 

After the war. Due to the importance of the automatic control for the 
design of anti-aircraft guns, torpedoes, guided missiles, and autopilots, this 
discipline greatly advanced during the war, but was shrouded in a veil of secrecy. 
After the war, the restrictions on publication of the war-time results and design 
techniques were lifted. The frequency methods emerged as a universal technique 
for design of a wide variety of systems: mechanical, electro-mechanical, and 
electronic devices and quickly found new applications in industry. 

In 1948 W. Evans introduced the root-locus method, which is used both as 
a stability analysis tool - it graphically displays the positions of the system's 
poles - and a design tool - it also shows how the poles are shifted as the gain 
changes. The root-locus method requires the knowledge of the open-loop poles 
and zeros and graphically shows the positions of the closed-loop poles with the 
gain as parameter. 

Discrete-time systems. The need to theoretically analyze the discrete­
time techniques arose from the fact that most of the radar systems used pulse 
signals. Also, as we saw with Levinson's approach to the Wiener problem, 
discretization of equations can simplify the treatment of a proplem, and allow 
the use of digital computers for numerical calculations. 

Around 1942 W. Hurewicz showed how to apply the Nyquist stability anal­
ysis to sampled-data systems. This work led to the z-transform methods devel­
oped by J. Ragazzini and L. Zadeh in 1952. 

It was quickly recognized that for a discrete-time system to be stable, all 
roots of its characteristic equation had to lie inside the unit circle in the com­
plex plane. The general test for a polynomial with complex coefficients to have 
all roots inside the unit circle was given independently by I. Schur in 1917 and 
A. Cohn in 1922. In 1961 E. Jury gave a different criterion which becomes much 
simpler than the Schur-Cohn test when applied to polynomials with real coeffi.., 
cients: 

Let the characteristic polynomial of a discrete-time system be given by 
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where coefficients ao, ... , an are real and ao > O. All of its roots lie inside the 
unit circle in the complex plane if and only if 

• lanl < laol 
• a(l) > 0 (note that a(l) = ao + al + ... + an) 

• (-I)na(-I) > 0 (note that (-I)na(-I) = ao - al + ... + (-I)nan ) 

• For the first-column coefficients in the following table with 2n - 3 rows: 

an an-l an-2 an-3 a2 al ao 
ao al ~ a3 a n-2 an-l an 
bn- 1 bn-2 bn- 3 bn- 4 b1 bo 
bo b1 b2 b3 bn- 2 bn- 1 
Cn-2 Cn-3 Cn-4 Cn-5 eo 
eo Cl C2 C3 Cn-2· 

V3 V2 VI Vo 
Vo VI V2 V3 
W2 WI Wo 

where 

bi 
an an-l-i i = 0,1,2, ... , n - 1 = ao ai+1 

Ci = bn-I bn-2-i i = 0,1,2, ... , n - 2 
bo bi+! 

Wi = I V3 V2-i 

I i = 0,1,2 
Vo Vi+l 

the following inequalities hold: 

Ibn-II> lbol ICn-21 > leol IW21 > Iwol 

Remarks. Between the 1930's and the mid 1950's the first great stimulus for 
the development of automatic control came from the revolution in the telecom­
munications. Yet, even bigger impetus was given to this discipline by the World 
War II. After the war the frequency methods became universally used, but soon 
it was realized that different techniques were necessary in order to overcome 
the difficulties associated with nonlinearities, model uncertainties, noise, and 
the fact that many systems had multiple inputs or outputs. In addition to all 
of this, for many systems it was critical that the control was achieved in an' 
optimal way with respect to energy; time, or constraints on variables. Thus, in 
the early 1950's the stage was set for the modern control theory. 



1.3 Beginnings of modern control theory 

The First IFAC (International Federation of Automatic Control) Congress, 
held in Moscow in 1960, is usually considered to be the start of the modern 
era in automatic control. It brought together the researchers from many coun­
tries, both the East and the West, and allowed them to see the new research 
directions that had been brewing during the 1950's. Particularly influential was 
R. Kalman's paper [24]. In this Section we examine the development of the main 
ideas of the modern control theory in their historical order. It will make a lot 
of sense for the reader to revisit this Section while working on Chapter 2, where 
most of these results will be derived. 

State-variable approach. H. Poincare was the first to make an extensive 
use of writing the higher-order differential equations as a system of first-order 
equations. In 1892 he introduced the phase-plane analysis of (generally nonlin­
ear) dynamic systems: 

A second-order differential equation can be rewritten as a system 0/ two first­
order equations 

Xl = P(Xll X2) 

X2 = Q(Xll X2) 

Then the system tmjectories can be sketched in a phase plane (the Xl -X2 plane) 
from 

dx2 X2 Q(Xl, X2) 
dxl Xl P(Xl' X2) 

For years, the state variables were inherently used in automatic control, in 
analog computer simulations. Following the suggestion made by Lord Kelvin 
in 1876, the so-called Kelvin's scheme, analog computers were made using in­
tegrators, rather than differentiators (differentiators amplify the noise, while 
integrators tend to smooth it). The outputs of integrators completely deter­
mine the state of the system and are used as state variables. 

In 1936 A. Turing was the first to use the states as the representation of a dy­
namic system in his automata theory. In the 1940's the state-space concept was 
introduced to control theory by M. A. Aizerman, A. A. Fel'dbaum, A. M. Letov, 
and A.1. Lur'e. Additionally, C. E. Shannon used this approach in his informa­
tion theory published in 1949. 

The representation of dynamic systems using state variables came to promi­
nence in 1957, through the work ofT. Bashkow in network theory and R. Bellman 
and R. Kalman in control theory. The state-space approach quickly found ap­
plications in aero-space and military technologies, where, for example, the tra­
jectory of a guided missile can be controlled by several inputs. 

18 
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Usually, the notation was as follows: 

:i:(t) = Ax(t) + Bu(t) 

y(t) Cx(t) 

where u(t) is the m x 1 input to the system, y(t) is its p x 1 output, while x(t) 
is an n x 1 vector whose components are the states of the system. A is an n x n 
matrix, while B and C are n x m and p x n matrices, respectively. Matrix A is 
usually called the system matrix, while matrices B and C are called input and 
output matrices. 

State-variable feedback. One of the first triumphs of the state variable 
description of systems was the realization that while the output feedback, even 
if its derivatives were used, could not always stabilize the system, much less put 
the poles of the system to specific locations, the state-variable feedback could do 
it all. In 1959 J. Bertram was the first to realize that if a system realization was 
controllable and observable4 , than, using an appropriate state-variable feedback, 
any characteristic polynomial could be achieved. His reasoning was based on 
root-locus methods .. The first direct proof of this was gi~en by J. Rissanen 
in 1960. The following is the 1965 result due to R. W. Bass and I. Gura for 
the feedback gain vector which shifts the poles of a single-input system to the 
desired locations: 

If a system is controllable and observable, its poles can be arbitrarily relocated 
using the state-variable feedback u = -k'x. If the chamcteristic polynomial of 
the system is 

a(s) = sn + alSn-1 + ... + an-IS + an 

while the desired chamcteristic polynomial of the system is 

a(s) = sn + alSn-1 + ... + an-IS + an 

then with a' = [al ... an] and a' = [al ... an], the feedback gain that moves 
the poles to the desired locations is given by 

k' = (a' - a')a:T C-1 

where the superscript "-T" indicates inverse and transpose, and 

[ 1 

0 0 

; 1 
al 0 

a -- -
~n-2 an-3 1 
an-l an-2 al 

while C = [B AB ... An-l B] is the controllability matrix of the system. 

4We shall say more about these conditions later, in Chapter 2. 
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Optimal control. Another early success of the state-space approach was 
Kalman's procedure for design of optimal control systems [23]: 

Consider a linear time-invariant system given by 

x(t) = Ax(t) + Bu(t) 

with the cost function defined by 

V(x(O),u(t» = lX) (x' (r)Qx(r) + u'(r)Ru(r» dr 

The matrix Q is positive semi-definite, while R is positive definite. They 
determine the relative cost of state variables and of fJ,e control. 

The optimal control input is given by 

u(t) = -Kx(t) 

with K = R-1 B' P, where P is a positive definite symmetric solution 0/ the 
algebraic Riccati equation 

PA+A'P -PBR-1B'P+Q =0 

The closed-loop system with desirable properties is then given by 

x(t) = (A - BK)x(t) 

This result was immediately applied in the aero-space programs and the 
military, like, for example, in planning of the optimal trajectories for space 
vehicles. 

Other important techniques in the field of optimal control were given by 
R. Bellman (dynamic programming, 1952) and L. Pontryagin (the Maximum 
Principle, 1956). Their study is beyond the scope of this book, but let us just 
mention that all these techniques (Kalman's, Bellman's, and Pontryagin's) are 
dual of the calculus of variations, a mathematical discipline developed by Fer­
mat, Newton, the Bernoulli's, Euler, Lagrange, Hamilton, Jacobi, Weierstrass, 
and Bolza. 

Kalman filtering. Another great contribution due to R. Kalman was the 
reformulation and the solution in the framework of state-space equations of the 
Wiener's problem of signal estimation in noisy environment. His first paper on 
this subject [26] dealt with discrete-time systems, while the second paper [28], 
co-authored with R. Bucy, solved that problem in the continuous time. The 
optimal estimators developed in these papers are called the Kalman filter and 
the Kalman-Bucy filter, respectively. In [26], Kalman commented on the duality 
between the optimal control and optimal estimation: 
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The new formulation of the Wiener problem brings it into contact 
with the growing new theory of control systems based on the "state" 
point of view. It turns out, surprisingly, that the Wiener problem is 
the dual of the noise-free optimal regulator problem, which has been 
solved by the author, using the state-transition method to great ad­
vantage. The mathematical background of the two problems is iden­
tical - this has been suspected all along, but until now the analogies 
have never been made explicit. 

21 

Both the optimal control and the optimal estimation reduce to the algebraic 
Riccati equation. 

Kalman filters were quickly implemented in aero-space and military pro­
grams, because they were perfectly suited for navigation and tracking problems. 

Later developments. Since the 1960's, optimal control, Kalman filtering, 
and theory of systems in general, found. numerous applications and fruitful con­
tacts with other sciences. Here we give a very brief account of these "later 
developments" in the control theory. The choice of the topics presented here is 
highly subjective and reflects the research interests of the present authors. 

• Robust control. The optimal control problem which was reduced to the 
solution of a matrix Riccati differential equation for a fixed time problem 
or to a matrix Riccati algebraic equation for an infinite time problem, is 
known as linear-quadratic-regulation (LQR) problem. However, the LQR 
theory does not deal with two critical issues associated with the design of 
feedback-control systems in industrial control problems: sensor noise and 
plant uncertainty (see [13] and [34]). In 1961, Kalman and Bucy developed 
a state-variable version of the Wiener filter, which allowed for the optimal 
estimation of the system state variables from noisy measurements of the 
system output. The optimal estimation problem (also known as linear­
quadratic-estimation (LQE) problem) was also reduced to the solution of 
a Riccati equation. 

Both the LQR and the LQE problems require accurate mathematical 
model of the system which is not routinely available and most plant engi­
neers have no idea as to the statistical nature of the external disturbances 
impinging on their plant. The Hoo optimal control is a frequency-domain 
optimization and synthesis theory that was developed to address the ques­
tions of plant modeling errors and unknown disturbances. The basic phi­
losophy is to treat the worst case scenario and the optimization is based on 
infinite norm rather than the quadratic norm in LQR and LQE problems 
(see [18]). 

• Biological controls. The importance of control systems engineering in med­
ical and biological applications has grown because of the inherent com­
plexity of biological systems. Although there is no formal definition of 
complex systems, H. A. Simon's concept of complexity is very appropriate 
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for biological control systems (see [53]). Complex systems are composed 
of subsystems that in turn have their own subsystems, and so on; and the 
large number of parts interact in a· complicated way so that it is some­
times impossible to infer the properties of the whole from the properties 
of the parts and their laws of interaction. Indeed, the analytical models 
developed, using control systems engineering tools, for the components 
of a biological system have had limited success in predicting the behav­
ior of the overall system for inputs other than for which the model was 
developed. 

The problems in medical control systems may be classified into two groups: 
(1) the physiological control systems in normal or pathological conditions 
such as control of electrolytes in the body, arterial pressure, blood sugar, 
body temperature, neuromuscular and motor activity, etc. and (2) the ex­
ternal (artificial) control systems that interface with physiological systems 
such as artificial kidney or hemodialyzers, heart-lung machines, cardiac 
pacemakers, ventilators, implantable pumps for drug delivery, etc. Regu­
lation, control, and system stability are at the heart of the survival of all 
living organisms from unicellular to multicellular. W. B. Cannon (1929) 
differentiated the stability properties of biological systems from those of 
the physical systems, and introduced the term homeostasis to describe the 
steady states in the body that are maintained by complex, coordinated 
physiological reactions (see [10]). The condition of homeostasis is achieved 
either by regular of the inputs (control of blood sugar) or by regular of 
the processes (control of body temperature) . 

• Man-machine systems. Humans interact with machines in many different 
situations such as driving an automobile, flying an airplane, controlling a 
nuclear power plant, and numerous other activities. As designers of such 
machines, we are concerned with the way in which human functions as 
integral part of the man-machine system. To predict the performance of a 
man-machine system, some representation of the system is required that 
allows us to determine how independent variables affect the dependent 
variables. To model a man-machine system, we must depict both human 
and machine behavior in compatible terms. Since the tools used for such 
modeling are from control engineering, it is only appropriate to represent 
human behavior in machine-like terms, as opposed to vice versa. The ba­
sic idea is that the human acts as an error-nulling device when driving an 
automobile, flying an airplane, doing just about any other machine inter­
actions. Human performance in such tracking tasks has been extensively 
studied and modeled using control terminology (see [52]). 



Part II 

Solved problems 



Chapter 2 

Modern control theory 

Usually, when speaking about the "modern" automatic control, we think 
of that part of the control theory that relies on the state-space approach to 
system representation and design. This approach is particularly important for 
the systems with multiple inputs and outputs and for the higher-order systems 
in general. The "classical" control, characterized by the use of frequency domain 
methods, is still preferable for lower-order single-input single-output systems. 
Although the adjective "classical" may suggest that this approach is a matter 
of the past, it is certainly not. In many cases the most effective attack on a 
problem is made by a combined use of both frequency and state-space methods. 
That shouldn't be surprising, because, as T. Kailath says in [22], 

transfer functions (or high-order differential equation) descriptions 
and state-space (or first-order differential equation) descriptions are 
only two extremes of a whole spectrum of possible descriptions of 
finite-dimensional systems. 

One should also keep in mind that what was modern back in the 1960's 
cannot be modern today. But the revolution caused by the introduction of the 
state-space methods in control theory and the influence it still has today were 
so big that the word "modern" has become a part of the name of the discipline 
("modern controls") rather than just an adjective. 

We start this Chapter by a discussion of the ways to obtain and write state­
space equations (Section 2.1). We continue by examining the most important 
properties of linear control systems: stability, controllability, observability, and 
others (Section 2.2). Next, we study the relocation of system poles by the state 
feedback and optimal control as a special case of particular interest (Section 2.3). 
Finally, we study the state observers and estimators (Section 2.4). 
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2.1 State-space representation 

In this Section we discuss the state equations and study several convenient 
forms to write them in. State equations can be obtained from the input-output 
differential equation or by a direct analysis of the system. We also describe 
several important forms for state equations. Each of them has some advantage 
over the others and we will outline them. We end this Section with formulas for 
the system's transfer function and impulse response in terms of the state-space 
matrices and a brief discussion of discretization. 

State equations. State equations provide the most complete description 
of a dynamic system. They not only specify the relation between the input and 
the output, but also tell us about the internal system properties. Most often 
the state equations are written in the matrix form: 

continuous-time: 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) 

discrete-time: 

x[k + 1] = Ax[k] + Bu[k] 
y[k] = Cx[k] 

where u is the m x 1 input vector to the system, y is its p x 1 output vector, 
while x is an n x 1 state vector. A is an n x n matrix, while Band C are n x m 
and p x n matrices, respectively. Matrix A is usually called the system matrix 
(for continuous-time systems) or the state-transition matrix (for discrete-time 
systems), while matrices B and C are called input and output matrices. When 
m = 1 and n = 1, we write band d instead of B and C, respectively. 

State-space realizations of the input-output equation. If our goal is 
to write a state-space realization for a given input-output differential equation, 
for example 

or, equivalently, for a given transfer function, in this case 

H(s) = b1s2 + b2 s + b3 

s3+als2+a2s+a3 

we can use the following set of equations (the so-called controller form): 

Tl ~:l+m· 
~ ~ 1 ~:l 
25 
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It is an easy exercise to see that this set of first-order equations reduces to the 
given differential equation. There are infinitely many other state-space repre­
sentations of this differential equation, for example any other state vector given 
by w(t) = Sx(t), where S is a nonsingular matrix, defines another realization. 
Such transformations are called similarity transformations (see Appendix C.3). 

Another popular form is the observer realization: 

1 0] o 1 
o 0 [::] + [~] u 

The following is a summary of the most commonly used realizations and 
their advantages: 

• controller (especially useful in the design of the state feedback to place 
the system poles to desired positions) 

• observer (allows easy reconstruction of the system states from the inputs 
and the outputs) 

• controllability (particularly suitable for setting the initial states) 

• observability (allows for simple determination of the initial states) 

• modal or parallel (useful because modes of the system are distributed to 
individual states) 

We shall see later where the names of these realizations originate. We shall 
also see that the controller and the controllability realizations are always control­
lable, while the observer and the observability realizations are always observable. 
As always, we shall define these properties first. These realizations always ex­
ist, but unless they are both controllable and observable, there are no similarity 
transformations between the controllable realizations on one side and observable 
realizations on the other. 

State equations 0/ a system. In general, state equations are obtained 
from the physical laws which govern the system's dynamic behavior. Depending 
on the basic nature of the system, i.e., whether it is mechanical, electrical, 
hydraulic, thermal, or acoustic, we use conservation of energy, conservation of 
momentum, conservation of angular momentum, Kirchoff's laws, Bernoulli's 
law, etc. 

The following example illustrates the process of obtaining state-space de­
scription of a moderately complex mechanical system, the inverted pendulum 
on a cart: we start from the physical laws which govern it and then linearize 
them around the desired operating point. 
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Example 2.1.1 In this book we will often use the example of the inverted pendulum 
on a cart, shown in Figure 2.1. Besides being an interesting system in itself and having 
an ideal level of complexity to illustrnte many important ideas presented in this book, 
it is also an idealized model of severnl important systems, for example of a standing 
human being or of a vertically launched rocket. The equations describing its behavior 
are as follows: 

(M +m)z + mlecos8 - ml82 sin 8 f 
mz cos 8 + mle - mgsin8 0 

where M and m are the masses of the cart and the bob, I is the length of the pendulum 
rod, z and 8 are the horizontal displacement of the cart and the angle between the 
vertical and the pendulum rod (expressed in rndians), while f is the force applied to 
the cart. 

Figure 2.1: The inverted pendulum on a cart. This system will be used throughout 
this book to illustrate various concepts (Example 2.2.5 and Problems 3.5.11, 3.7.12, 
3.9.9, 3.11.4, 3.12.2, 3.13.3, and 4.9.1). 

These are two nonlinear coupled second-order differential equations. In order to 
write them as four linear coupled first-order equations we need to linearize them. If the 
goal is to stabilize the pendulum in the vertical position, we linearize in the neighborhood 
of8 = 0, when 

sin 8 ~ 8 and cos 8 ~ 1 

Thus we obtain 

x=Ax+bu 

where 

[ij. A~ [! 0 1 n [ 0 ] 
0 0 

and 0 
x= _!!!:II. 0 b= 11M 

M 
(M+m)s 0 -I/MI Ml 

while u = f, the external force applied to control the cart and the inverted pendulum. 
In the rest of the book we shall assume that the measured variables are z and 8, i.e., 
that 

y=Ox, where 0=[1000] o 100 
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Solution of state-space equations. In Problems 3.5.4 and 4.5.1 we show 
that the solution of state-space equations, the impulse response, and the transfer 
function are given for continuous-time and discrete-time systems, respectively, 
as follows: 

state-space equations: 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) 

solution for the state vector: 

x(t) = eAtx(O) + (eAt B) * u(t) 

solution tor the output: 

y(t) = CeAtx(O) + (Ce At B) * u(t) 

impulse response: 

h(t) = CeAtB (t > 0) 

transfer function: 

H(s) = C(sl - A)-l B 

x[k + 1] = Ax[k] + Bu[k] 
y[k] = Cx[k] 

x[k] = Akxo + (Ak B) * (u[k - 1]) 

y[k] = CAkxo + (CAk B) * (u[k - 1]) 

h[k] = CAk-l B (k = 1,2, ... ) 

H(z) = C(zl - A)-l B 

Markov parameters. Write the transfer function of a continuous-time 
system as a power series: 

00 

H(s) = c'(sl - A)-lb = LhiS-i 
i=l 

Since 

1 ( A) -1 1 ( A A2 ) (sl - A)-l = - 1 - - = - 1 + - + - + ... 
s s s S s2 

we have 

hi=C'Ai-lb (i=I,2, ... ) 

These coefficients are called the Markov parameters. Their interpretation is 
as follows. Since the impulse response of the system is given by h(t) = deAtb 
and since H(s) = C{h(t)} and H(s) = d(sl - A)-lb, we see that 

di - l I hi = d i-I h(t) 
t t=o 

(i = 1,2, ... ) 



2.1. STATE-SPACE REPRESENTATION 29 

The Markov parameters are defined similarly for the discrete-time systems: 

00 

H(z) = c'(zI - A)-1b = E hiZ- i 

i=1 

In this case also hi = d Ai-1b (i = 1,2, ... ), but their interpretation is much 
easier to find. Directly from their definition and the definition of the z-transform 
of the impulse response, we see that the Markov parameters of a discrete-time 
system are the system's impulse response: 

hi = h[i] (i = 1,2, ... ) 

The Hankel matrix of Markov parameters will often be encountered in our 
later discussions: 

We shall find it interesting that this matrix can be written as a product of 
two important matrices: 

M=OC (2.1) 

where 0 and C are the so-called obsenJability and controllability matrices, re­
spectively: ~ 

[
d 1 dA 

0= 

;An-l 
Indeed, 
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Similarity trans/ormation. Consider a system described by {Al, B 1 , C1 }. 

If we introduce a change of variables in its state-space equations described by 
a nonsingular transformation matrix S, such that X2 = SX1 the new realization 
is described by {A2' B2, C2}, where 

This transformation (called similarity transformation) does not change the char­
acteristic polynomial of the system nor its transfer function. Indeed, 

and 

det(s1 - A2 ) = det(sSS-l - SA1S-1) = det(S(s1 - AdS-I) 

det(S) det(sI - Ad det(S-l) = det(sI - Ad 

C1S-1(SSS-1 - SA1S-1)-lSB1 
C1S-1S(s1 - Ad-1S-1SB1 
C1(sI-Ad- 1B1 

Since the system's impulse response is the inverse Laplace transform of the 
transfer function, it is also invariant under similarity transformations. Hence, 
so are the Markov parameters hi = c' Ai- 1b (i = 1,2, ... ) and the matrix M. 
Another way to see that is as follows: 

Eigenvalues, modes, and poles. If AI, . .. ,An are the eigenvalues of A 
(some ofthem may be repeated) then each state is a linear combination of terms 

or 

for continuous-time and discrete-time systems, respectively, and, if Ai is a mul­
tiple eigenvalue, of terms 

or 

where mi is the multiplicity of Ai. These different terms are called the modes 
of oscillation or simply modes. 

In general, an arbitrary initial condition will excite all modes of oscillation 
(see Problem 3.5.9 for the special initial condition which excites only one mode). 
Since 

y(t) = Cx(t) or y[k] = Cx[k] 

some of the modes may never appear in the output, regardless of the initial 
conditions or the input to the system. The modes that can appear in the 
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output correspond to the poles of the system. Thus, the poles of the system are 
those eigenvalues of A that may appear in the output. 

This is better illustrated in the transform domain. We do this only in the 
continuous-time, because the terminology and ideas are identical in the discrete­
time. The transfer function is given by H(s) = C(sI - A)-l B. If a(s) = 
det(sI - A) and b(s) = Cadj(sI - A)B then 

H(s) = b(s) = br(s) 
a(s) ar(s) 

where ar(s) and br(s) are coprime polynomials. The roots of a(s) are the eigen­
values of A, while the roots of ar (s) are the poles of the system. If there are no 
cancellations between a(s) and b(s), then a(s) = ar(s), and the eigenvalues of 
A coincide with the system poles. Otherwise, all poles are the eigenvalues of A, 
but not all eigenvalues are poles. The systems with no cancellations between 
a(s) = det(sI - A) and b(s) = Cadj(sI - A)B are called minimal. We shall see 
in Section 2.2 that such systems have important properties. For example, they 
are both controllable and observable, and their internal and external stabilities 
are equivalent. 

Finally, let us just mention that one of the reasons the modal canonical 
realization is so important, and certainly the reason it is called modal, is that 
in this realization each. state has modes of oscillation corresponding to only one 
eigenvalue. If some of the eigenvalues are repeated, then some of the states 
may be linear combinations of more than one mode of oscillation, but they all 
correspond to the same eigenvalue. 

Example 2.1.2 Given a system in the modal form with the system matrix in Jordan 
form 

J = [-g -i J ~ ~] 
o 0 0 -2 0 
o 0 0 0-3 

the corresponding matrix exponential is found as the inverse Laplace transform of 

[ 
1 1 0 0 

.U 
S+T ('V)2 

0 0+1 0 0 
(sl - J)-1 = 0 0 1 0 S+T 

0 0 0 1 
0+2 

0 0 0 0 

which is 

[T 
te-' 0 0 

1] eJt = 
e-' 0 0 

0 e- t 0 
0 0 e-2t 

0 0 0 

An arbitrary initial condition therefore excites only two modes of oscillation in X1(t) 
and only one mode of oscillation in each of the other states. 
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Discretization. In Problem 4.5.5 we show that if a continuous-time system 
given by 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) 

is discretized using the sampling period T, then its discrete-time version is given 
by 

where 

x[k + 1] = Gx[k] + Hu[k] 

y[k] = Cx[k] 

G = eAT and H = (loT eAT dr) B 
H A is invertible (Le., nonsingular), then 

For very small values of T these formulas can be further simplified: 

G ~ I + AT and H ~ BT 

Example 2.1.3 If the system matrix G of a discrete-time linear system is nilpotent, 
i.e., ifGm = 0 for some m < 00, then with no input to the system, 

hence 

x[k] == 0 (k ~ m) 

Such discrete time systems are called deadbeat systems. There is nothing similar 
to this in the continuous-time. If there was a continuous-time system whose discretized 
lIersion is deadbeat, it would halle all eigenllalues equal to -00. This is because (as we 
show in a Note after Problem 4.7.1) all eigenllalues of nilpotent matrices are equal to 
zero, and from 

and the Cayley-Hamilton theorem we know that if ~ is an eigenllalue of A then 

'Y = e)"T 

is an eigenllalue of G. 
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Example 2.1.4 If a system given by 

[ -1 0 ] 
A= 0-2 and B= [~] 

is discretized with T = 0.58, the coJTesponding discrete-time matrices are 

G = AT = [ 0.6065 0 ] 
e 0 0.3679 

and (since det(A) #: 0) 

H - ( AT _ I)A- 1 B _ [0.3935] 
- e - 0.3161 

The states of these systems are plotted for x(O) = [2 3]' in Figure 2.2. 
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Figure 2.2: Plots of both the continuous-time and the corresponding discrete-time 
states. 



2.2 System properties 

In this Section we discuss the most important properties of linear control 
systems. First we study stability, especially the stability in the sense of Lya­
punov, and then controllability, observability, and several related properties. 
We describe their relation to the canonical realizations studied in Section 2.1. 

Stability 

Stability is the most important property of a dynamic system. From the 
earliest days of control theory it has been realized that the characteristic roots 
of the system's differential equation must have negative real parts, otherwise 
the system will either oscillate, go into saturation, or blow up. 

External stability. We first discuss two types of external l stability: the 
bounded-input bounded-output (BIBO) stability and the marginal stability. 
The definitions are general enough to apply to nonlinear as well as linear sys­
tems. The BIBO stability is defined as follows: 

Definition 2.2.1 (BIBO stability) A system is BIBD stable if its response 
to any bounded input is also bounded. 

In Problem 3.6.1 we show that a continuous linear time-invariant system is 
BIBO stable if and only if its impulse response h(t) is absolutely integrable, i.e., 
if and only if 

LX) Ih(t)1 dt < 00 

In Problem 3.6.2 we show that for the systems with rational transfer func­
tions this is equivalent with the requirement that all poles of the system's trans­
fer function H(s) must have negative real parts. 

H we want to allow the oscillatory system behavior, the concept of marginal 
stability becomes useful: 

Definition 2.2.2 (Marginal stability) A system is marginally stable if its 
impulse response is bounded. 

In Problem 3.6.2 we show that the s-domain requirement for the marginal 
stability of a continuous linear time-invariant system with rational H(s) is very 
similar to the condition for BIBO stability, with the additional "freedom" for 
its non-repeated poles, which now may lie on the imaginary axis. 

Definition 2.2.3 (Instability) A system is said to be unstable if it is not 
marginally stable. 

1 Both of these types of stability are defined in terms of the system input and the system 
output, hence the name external. 

34 
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Internal stability. Unlike the external types of stability, defined in terms 
of the input and the output of the system, the internal types of stability are 
defined in terms of the states of the system. In what follows we first define 
two types of internal stability. The definitions are general and apply equally to 
linear and nonlinear systems. Very much like the BIBO stability, the asymptotic 
stability in the sense of Lyapunov does not allow oscillatory modes in the system; 
on the other hand, the Lyapunov stability allows such modes. For most practical 
purposes the asymptotic stability is much more important than stability. 

Consider a general nonlinear time-variable system given by the following 
state equation: 

x = f(x,t) 

States Xe for which f(x e , t) = 0 are called the equilibrium points. In general, 
a system may have anywhere from one to infinitely many equilibrium points. 
For example, linear systems given by x = Ax have either one or infinitely many 
equilibrium points: if A is nonsingular, the system has only one equilibrium 
point, Xe = 0; if A is singular, the system has infinitely many equilibrium 
points. Back to the general case, if for the initial condition x(to) the solution 
is given by x(t) = s(t, to, x(to)) and if Ilvll denotes any vector. norm of vector v, 
we are ready to define the stability in the sense of Lyapunov: 

Definition 2.2.4 (Lyapunov stability) An equilibrium state Xe of the sys­
tem described by 

x = f(x, t) 

is said to be stable in the sense of Lyapunov if for every to and every c > 0 
there exists 8 (c) > 0 such that Ilx( to) II < 8 implies that for t > to we have 
Ils(t, to, x(to)) - Xe II < c. 

In other words, the equilibrium point Xe is stable if for each c-neighborhood 
5(c) of Xe there exists a 8-neighborhood 5(8) of Xe such that if the initial 
condition x(to) is in 5(8) then the system trajectory remains in 5(c) at all 
times. 

For the practical purposes the notion of the asymptotic Lyapunov stability 
is much more important than stability: 

Definition 2.2.5 (Asymptotic Lyapunov stability) An equilibrium Xe of 
a system is asymptotically stable in the sense of Lyapunov if it is stable in the 
sense of Lyapunov and attractive, i.e., 

lim s(t,to,x(to)) = Xe 
t-+oo . 

If s(t,to,x(to)) converges to Xe regardless of x(to), then we say that Xe is 
globally asymptotically stable. 
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A simple pendulum is an example of a system having a stable but not asymp­
totically stable equilibrium (assuming there is no friction in the system). 

Note also that the attractivity of Xe by itself (without stability) does not 
imply the asymptotic stability [62]. 

Definition 2.2.6 (Instability) An equilibrium Xe of a system is said to be 
unstable if it is not stable in the sense of Lyapunov. 

The relations between asymptotic stability, stability, and instability in the 
sense of Lyapunov are illustrated in Figure 2.3. 

stable 

asymptotycally 
stable 

unstable 

Figure 2.3: The most important type of Lyapunov stability is the asymptotic Lya­
punov stability. Sometimes it is referred to as simply stability (cf. [22]). In order to 
emphasize the difference, some other authors call these two types of stability asymp­
totic and weak (cf. [44]). 

It is also important to note that the trajectories of a system with an unstable 
equilibrium point do not have to "blow up" (although that is exactly what 
happens with unstable linear systems). 

Example 2.2.1 The van der Pol oscillator is described by the following nonlinear 
state equations: 

Xl X2 

X2 -a(x~ - I)X2 - Xl 

Obviously, Xe = 0 is an equilibrium. Although the trajectories of the system do not 
"blow up" (as can be inferred from the simulation in Figure 2.4), the origin is an 
unstable equilibrium. If, for example, we use the Euclidean norm 

no d > 0 can be found so that if x(O) is inside the circle of radius d the trajectory 
remains within the circle of radius <: = 1, or any other circle within the limit cycle of 
this system. 
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However, the limit cycle is asymptotically stable (although we did not define this 
terminology, this statement should be clear). In general it is difficult to define the 
stability 01 nonlinear systems, because they may have a variety 01 equilibrium points 
and limit cycles at once, some stable, others not. As we shall see next, the situation 
lor linear systems is much simpler. 

x1 

Figure 2.4: Simulation of the phase-plane for the van der Pol oscillator with a = 0.75. 
The dashed circle has radius E = 1. No matter how close the initial state to the origin, 
the trajectory will leave this circle. Therefore the origin is an unstable equilibrium. 

Next we examine these definitions in the world of continuous linear time­
invariant systems, i.e., for f(x, t) = Ax. 

Theorem 2.2.1 A continuous linear time-invariant system given by x = Ax is 
(a) stable in the sense of Lyapunov if and only if all eigenvalues of A have 
negative real parts, except the non-repeated eigenvalues, which may lie on the 
imaginary axis; 
(b) asymptotically stable in the sense of Lyapunov if and only if A is Hurwitz, 
i.e., if and only if all eigenvalues of A have negative real parts. 

Proof. Since the trajectory of the system is x(t) = eAtx(O), each component 
of x(t) is a sum of terms of the form tke).,t, where k = 0,1, ... , mi - 1, and mi 

is the multiplicity of Ai, and it is easy to see that the theorem is true. 0 
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If the origin is asymptotically stable, than according to Theorem 2.2.1, 
Re{A;} < 0, hence det(A) i= 0, i.e., A is nonsingular, and the origin is the 
only equilibrium point of this system. This justifies the following definition: 

Definition 2.2.7 A linear time-invariant system without inputs is said to be 
asymptotically stable if it has an asymptotically stable equilibrium point at the 
origin. 

The asymptotic Lyapunov stability is not always equivalent to BIBO stabil­
ity. Recall that BIBO stability is determined by the poles of HCs), while the 
asymptotic Lyapunov stability depends on the eigenvalues of the system matrix 
A. Since the poles of H(s) are also eigenvalues of A, the asymptotic Lyapunov 
stability implies BIBO stability. However, unless all eigenvalues of A are poles 
of H(s), including multiplicities, the BIBO stability does not imply the asymp­
totic Lyapunov stability. This happens when there are pole-zero cancellations 
in d(sI - A)-lb. We shall see later that no such cancellations occur if and 
only if the system is both controllable and observable. Such systems are called 
minimal realizations. 

Lyapunov's second method. In his 1892 doctoral thesis, A. M. Lyapunov 
generalized the notion of the mechanical energy by introducing what is now 
known as the Lyapunov function. Lyapunov's "second" or "direct" method is 
still the most important technique equally applicable to linear and nonlinear, 
time-invariant and time-variable systems. It is based on the following theorem: 

Theorem 2.2.2 (Lyapunov's theorem) Let Vex) be a continuously differen­
tiable positive definite function of the system states x(t) defined on a neighbor­
hood D of the equilibrium point Xe = O. This function may also be time-varying. 
(a) If its time derivative Vex) is negative semi-definite, than this equilibrium 
point is stable in the sense of Lyapunov. 
(b) If Vex) is negative definite, than this equilibrium point is asymptotically 
stable in the sense of Lyapunov. (Such Vex) is called the Lyapunov function.} 

Proof of (a). First, we prove part (a) by showing that for anye-neighborhood 
See) of Xe there exists a 5-neighborhood S(5) of Xe such that if x(to) E 8(5) 
then the system trajectory remains in See) at all times. 

Recall that "V(x) is positive definite" means V(O) = 0 and Vex) > 0 for 
x i= O. Similarly, the phrase "V(x) is negative definite" means V(O) = 0 and 
Vex) < 0 for x i= 0, while "V(x) is negative semi-definite" means that V(O) = 0 
and Vex) ::; 0 for all x. 

Consider anye > 0 such that See) cD. Denote by a the minimum value of 
Vex) on the boundary of see), i.e., 

a = min Vex) 
IIzll=o 

Since Vex) is positive definite and e > 0 we know that a > O. 
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Now define a new set, D a , as a connected set of states x such that Vex) < a. 
If there is more than one such set, select the one containing the origin. In the 
following we will show by contradiction that Da is a subset of S(c). First of all, 
we know that they have at least one point in common, the origin. Now assume 
Da is not completely in the interior of S(c). Then there exists point P E Da 
on the boundary of S (c). For that point we would have V (x p) ?: a, because a 
was defined as the minimum value of Vex) on the boundary of S(c). But this 
contradicts the definition of Da, which requires that Vexp) < a. Hence, Da is 
in the interior of S(c). All these sets are illustrated in Figure 2.5. 

Since Vex) :s 0, any system trajectory originating in Da always remains in 
Da and hence in S(c). This property of Da is very important for the rest of 
the proof. Since Vex) is continuous, there exists 6 > 0 such that if Ilxll < 6 
(i.e., x E S(6)) then Vex) < a (i.e., x E Da). In other words, there exists 6 
such that S(6) £: Da. Obviously, any trajectory originating in S(6) will never 
leave D a , and thus it will never leave S(c). We have just demonstrated that if 
the conditions of part (a) of the theorem are satisfied, then for any c > 0 there 
exists 6 > 0 such that if Ilx(to)11 < 6 then Ilx(t)11 < c, i.e., the origin is stable in 
the sense of Lyapunov. 

D 
S(e) 

Figure 2.5: Illustration of the sets used in the proof of Theorem 2.2.2. All these sets 
are open, hence their boundaries, which represent the sets in this figure, touch each 
other and can even completely overlap. 

Proof of (b). To prove part (b) we continue exactly where we left off with 
part (a). We already know that if Vex) is negative definite then the origin is 
stable (this is a special case of part (a), because negative definiteness is a special 
case of negative semi-definiteness). To finish part (b) we need to demonstrate 
that if Vex) is negative definite then the origin is an attractive equilibrium 
point, i.e., 

lim x(t) = 0 
t-+oo 
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We start by showing that under conditions of part (b) we can write 

lim V(x) = 0 
t~oo 

Since V (x) is monotone decreasing and bounded from below by zero, it is 
convergent, Le., 

lim V(x) = c ~ 0 
t~oo 

We use the method of contradiction to show that c = O. Assume that c > O. 
Since V(x) is monotone decreasing, this means that V(x) cannot attain values 
below c. But if we denote the slowest rate of decrease of V(x) between V(x(to)) 
and c by -')' (since c is assumed to be non-zero, we know that -')' < 0 because 
V(x) is negative definite), then 

V(x(t)) = V(x(to)) + (t V(x(T))dT:::; V(x(to)) - ')'t 
1to 

We can see that in a finite amount of time V(x) will break the barrier and go 
below c. This happens no later than at time tc given by 

V(x(to)) - c 
tc = < 00 

')' 

This is a clear contradiction to the assumption that V(x) ~ c. Hence, under 
the conditions of part (b) of the theorem, V(x) converges to zero. 

To show that this implies the origin is attractive, we use contradiction again. 
Assume that x(t) converges to some point other than the origin or that it does 
not converge at all. Then, since V(x) is continuous and V(x) = 0 only for x = 0, 
this function would not converge to zero either. 

Thus, the origin is not only stable, but also attractive, and hence it is an 
asymptotically stable equilibrium point. 0 

As we showed in part (a) of Theorem 2.2.2, if V(x) is negative semi-definite, 
the origin is stable. But, if V(x) does not vanish along any system trajectory 
x(t), the origin is asymptotically stable in the sense of Lyapunov. If V(x) is 
positive (semi-)definite, we can similarly conclude that the origin is unstable. If 
V(x) is indefinite, so is our knowledge of the system stability: we need to try 
some other candidate for the Lyapunov function. 

Lyapunov's stability lor linear systems. Let us apply Theorem 2.2.2 to 
linear time-invariant systems. We shall first consider the continuous-time case 
and then describe how the same ideas apply to the discrete-time case. In the 
Lyapunov stability analysis it is assumed that there is no input to the system, 
hence in general 

x=Ax 
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For linear time-invariant systems it is sufficient to reduce the choice of candidate 
Lyapunov functions V(x) to positive definite quadratic forms. Any positive 
definite quadratic form can be written as 

V(x) = x'px 

where P is a positive definite symmetric matrix. Then the time derivative of 
V(x) is given by 

V(x) =xl(A'p+PA)x 

If Q = -(A'P + P A) is positive definite, then V(x) is negative definite, and 
the system is asymptotically stable in the sense of Lyapunov. If Q is positive 
semi-definite, the system is guaranteed to be stable. Since the Lyapunov's 
theorem provides only sufficient stability conditions, the system still may be 
asymptotically stable. To prove this we need to find a better choice for P. An 
alternative approach in cases with Q a positive semi-definite matrix is to try to 
show that for any system trajectory we have V(x) ~ O. That would also prove 
that the system is asymptotically stable. 

Example 2.2.2 A simple pendulum with friction is described by the following two 
equations (assuming small amplitude oscillations, so that sinxl ~ xt): 

X2 

9 k 
-,Xl - ;:nX2 

A natuml candidate for the Lyapunov function V(Xl, X2) is the total energy of the 
system: 

In that case 

Obviously, V(Xl, X2) is negative semi-definite, which guamntees only stability. But 
a pendulum with friction is asymptotically stable. Hence we either need a better can­
didate for the Lyapunov function or we need to show that on the system tmjectories 
V(Xl, X2) == 0 only when both Xl = 0 and X2 = O. Since V(Xl, X2) = -kl2xt in order 
for this time derivative to be zero and stay zero, X2 must be zero and it has to stay 
there, so X2 = O. But then the system equations imply that Xl must also be zero. This 
proves the asymptotic stability of a simple pendulum with friction. 

Showing that V(x) ~ 0 on the system trajectories or finding an appropriate 
matrix P may be difficu.It. Fortunately, there is also a third approach, based on 
the following result due to Lyapunov: 
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Theorem 2.2.3 Matrix A is Hurwitz if and only if for any given positive def­
inite symmetric matrix Q there exists a positive definite symmetric matrix P 
such that A' P + P A = -Q. If A is Hurwitz, P is unique. 

Proof. If A is Hurwitz, i.e., if all of its eigenvalues have negative real parts, 
then the following integral exists: 

P = 100 eA'tQeAt dt 

It is easy to see that this P satisfies the Lyapunov equation A'P + P A = -Q: 

A'p+PA 100 A'eA'tQeAt dt + 100 eA'tQeAt Adt 

100 :t (eA'tQeAt) dt 

(eA'tQeAt) I~ = _ Q 

As long as Q is positive definite and symmetric, so is this integral. In addition, 
this is the only solution of the Lyapunov equation. This can be proved in 
many ways, for example by contradiction. If PI :f. P2 are two solutions of 
A'P + PA = -Q, then A'PI + PtA = -Q = A'P2 + P2 A, hence 

and 

! (eA't(PI - P2 )eAt ) = 0 

Therefore eA't(PI - P2 )eAt = const. In special cases t = 0 and t -+ 00, since 
A is Hurwitz, we have 

This is in contradiction with the initial assumption PI :f. P2 , so the solution 
must be unique. 

The fact that-the existence of positive definite solution P of A' P+P A = -Q, 
where Q is any positive definite symmetric matrix, implies that A is Hurwitz, 
follows directly from Theorems 2.2.1 and 2.2.2 with Vex) = x' Px and Vex) = 
-x'Qx. 0 

In this approach we start from any positive definite matrix Q. The matrix 
equation we need to solve is called the Lyapunov matrix equation. Since P can 
be assumed to be symmetric before we solve the equation, this matrix equation 
represents a system of n("2+ I ) linear equations in coefficients of P, where n is 
the system order. 
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Example 2.2.3 Let us apply this approach to the pendulum with friction described in 
Example 2.2.2. If the time derivative of V(Xl, X2) is given by, for example, 

V(Xl,X2) = -gklx~ - kz2x~ 

the corresponding matrix Q is 

With 

A-[ 0 1] 
- -gil -kim 

the Lyapunov equation A'p + P A = -Q has a unique symmetric solution 

It is easy to verify that P is positive definite: 

and 

Note that it is sufficient to solve the Lyapunov equation for only one positive definite 
matrix Q. We shall often do that for Q = I, the identity matrix. 

Stability and linearization. Historically, one of the first applications of 
the Lyapunov stability theory was in the theoretical investigations of lineariza­
tion and stability. Since many linear models are actually linearized models of 
nonlinear systems, this is a very important topic. 

If a nonlinear system is given by 

x(t) = f(x(t)) 

its linearized model around the equilibrium point Xe is found by writing x(t) = 
Xe + z(t), where z(t) denotes perturbations around the equilibrium. The lin­
earized model is obtained from the Taylor series expansion of f(x(t)) around 
x =Xe: 

f(x(t)) = f(xe + z(t)) = f(xe) + Az(t) + r(z(t)) 

where A is the Jacobian matrix of f(x(t)) 

A .. _ 8Ji(x) I 
" - 8xj :1:=:1:. 

while r(z(t)) is the linearization error such that r(z) = 0(Z2), i.e., 

lim IIr(z)1I = 0 
liz 11--+0 IIzll 
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Since i(t) = x(t) and f(x e ) = 0, neglecting any terms of second or higher orders 
yields the linearized model 

i(t) = Az(t) 

Lyapunov and Poincare proved the following theorem: 

Theorem 2.2.4 If the linearized system is asymptotically stable, then the orig­
inal nonlinear system is also asymptotically stable under sufficiently small per­
turbations. 

Proof. Suppose A is a stability matrix and consider the following candidate 
for the Lyapunov function of the original nonlinear system 

V(z(t)) = z'(t)pz(t) 

where P is the unique symmetric positive definite solution of the Lyapunov 
equation AP + P A' = -I. Then 

V(z(t)) -z'(t)z(t) + 2r'(z(t))Pz(t) 

_ '( ) ( ) (1- 2r'(Z(t))PZ(t)) 
z t z t z'(t)z(t) 

Since r(z) = O(Z2), for sufficiently small perturbations z(t), this time deriva-
tive is negative, hence the nonlinear system is asymptotically stable. 0 

Stability of discrete-time systems. The fundamental ideas of the stabil­
ity theory are the same for the discrete-time systems as for their continuous-time 
cousins. The only two differences are: 

• The locations of the system eigenvalues allowed for stability. For example, 
a discrete-time system is asymptotically stable if and only if all roots 
of its characteristic equation lie inside the unit circle, i.e., if and only if 
IAil < 1 (i = 1,2, ... , n). 

• The form of the Lyapunov equation. To derive the discrete-time Lyapunov 
equation, consider a discrete-time linear time-invariant system given by 
x[k + 1] = Ax[k]. If V(x[k]) is a positive definite quadratic form rep­
resented using a symmetric positive definite matrix P, i.e., if V(x[k]) = 
x'[k]Px[k], then 

LlV(x[k]) = V(x[k + 1]) - V(x[k]) = x'(A'PA - P)x 

With Q = -(A' P A - P), the requirement for asymptotic stability is that 
Q must be positive definite or at least positive semi-definite with the con­
dition that LlV(x[k]) 'I- 0 along any possible system trajectory. Therefore, 
the discrete-time Lyapunov equation is 

A'PA-P =-Q 
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Controllability, observability, and minimallity 

The most important properties of dynamical systems are stability, controlla­
bility and observability. Unlike stability, which was among the first topics to be 
studied in control theory, the investigation of controllability and observability 
begun only with the emergence of state-space approach, in the late 1950's. 

We start by defining controllability and observability and continue by inves­
tigation of several equivalent conditions that guarantee them. Finally we discuss 
the minimallity of systems. Through these discussions we also introduce sev­
eral commonly used system realizations: controllability, controller, observability, 
observer, and modal forms and explore the duality between controllability and 
observability. We define these properties for both continuous- and discrete-time 
systems. We will emphasize any differences, but if no special reference is made 
to either type of systems, the reader may safely assume we refer to both. 

State controllability. The question of whether or not we can drive a system 
from any given state to any desired state, and do that in a finite amount of 
time, arises in many diverse control problems: setting up the initial conditions 
in simulations; determining if the system itself allows any control law to be 
effective; system stabilization; optimal control; minimallity of systems. 

Definition 2.2.8 (State controllability) A system is state controllable if a 
proper input can drive it from any given state to any desired state in a finite 
amount of time. 

In Problems 3.7.1 and 4.7.3 we prove the following theorem 

Theorem 2.2.5 A system described by {A,B,C} is state controllable if and 
only if p(C) = n, where C is the controllability matrix given by 

C = [B AB A2B ... An-IB] 

and n is the order of the system. 

For single-input systems this is equivalent to det(C) =1= o. 

Control'ability-from- the-origin and controllability- to- the-origin. 
A system is controllable·from-the-origin or controllable p.s.f.o. (pointwise state 
from the origin) if an appropriate input can drive the system from the origin 
to any desired state in a finite amount of time. This property is equivalent to 
state controllability and is often called reachability. 

A system is said to be controllable-to-the-origin or controllable p.s.t.o. (point­
wise state to the origin) if an appropriate input can drive all of its states to the 
origin in a finite amount of time. For continuous time systems this property is 
equivalent to the state controllability. For discrete-time systems (as we show in 
Problems 4.7.1 and 4.7.2) state controllability is sufficient but not necessary for 
this property. If det(A) =1= 0, these two properties are equivalent in the discrete­
time too. For historical reasons this property is often called controllability, but 
we do not use this name in order to avoid any confusion. 
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Controller canonical realization. The controller realization is one of 
several most popular realizations, commonly called canonical forms. In order to 
make our discussion definite, we shall concentrate here on the continuous-time 
systems, but everything applies equally to the discrete-time systems as well. 
The controller realization of 

H(s) = b(s) = blsn- l + b:2sn- 2 + ... + bn-lS + bn 
a(s) sn + alsn- l + a2sn- 2 + ... + an-ls + an 

is defined by 

1 

Matrix Ae is a companion matrix. General properties of companion matrices 
are discussed in Appendix C.3. 

The components of de = [Cel Ce2 ••• cenl are uniquely determined because 

therefore 

Y(s) = CclXl (s) + Ce2X2(S) + ... + cenXn(s) 

(cet/s + Ce2/S2 + ... + cen/sn) U(s) 
1 + at/s + a2/s2 + ... + an/sn 

n-l + n-2 + + CelS Ce2S ... Cen U(s) 
sn + alSn- l + a2sn- 2 + ... + an = 

Example 2.2.4 In Figure 2.6 we show the signal flow diagram 0/ the controller real-
o to ,IH() _ .2+2 
Iza Ion oJ S - .3+7.2+14.+80 

-8 

Figure 2.6: Controller realization of H(s) = .3+7~;t~4.t8 0 
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Controllability canonical realization. Another canonical form is the 
controllability form, defined by 

[ ~ ~ -~::1 1 -- [~l Aco = . . and beo . .. . .. . 
o 1 -a1 0 

In order to determine Ceo we first show that the controller and the control­
lability forms are similar through a transformation given by2 S = a~, where 

1 0 0 0 
a1 1 0 0 

a_ = 

an-2 an-3 1 0 
an-1 an-2 a1 1 

Indeed, from beo = Sbc we find that the first column of S is [1 0 ... 0]'. 
Using this, from AcoS = SAc we can easily find a recursive relation for the jth 
column of S in terms of the (j - l)th column: 

O'l,j 
0'2,j 
0'3,j 

O'n,j 

[

aj _1 

0'1,j-1 
= 0'2,j-1 

~n-1,j-1 
(j = 2, 3, ... , n) 

Then c~o = C~S-l = [b1 ... bnla=T. Since [h1 ... hnla~ = [b1 '" bnl is just 
another way of writing the definition of Markov parameters and det(a_) f. 0 

f: his-i = b(s) 
i=l a(s) 

we find that 

(2.2) 

Controllability and similarity. Let us now show that if a realization 
given by {A1' B 1, C1} undergoes a nonsingular similarity transformation into 
{A2' B 2, C2}, the (un)controllability of the system is not affected. This is be­
cause 

p(c2) = p ([ B2 A2B2 ... A~-l B2 ]) 

P ([ SB l SA1S-1 SB1 ... SA~-l S-l SB1 ]) 

p(SCt} = p(Ct} (since S is nonsingular) 

2In order to simplify the notation, we occasionally use the superscript T to denote the 
matrix transpose (cf. Appendix B.4). 
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This analysis gives us a hint on how to determine the similarity transforma­
tion between the two given order-n controllable realizations of H(s). We have 
just seen that if we assume that this transformation exists, then 

i.e., 

We can show its existence for any two controllable, same order realizations 
of H(s) directly, by showing that with S = C2Cl 1 we have A2 = SA1S-1, B2 = 
SB1, and C2 = C1S- 1, but the following proof is simpler. In Problem 3.8.5 we 
show that Seo1 = Cl 1 transforms a controllable, order-n realization {A1' B1, C1} 
of 

H(s) = b(s) = b1 Sn- 1 + b2sn- 2 + ... + bn- 1s + bn 
a(s) sn + a1 Sn 1 + a2 Sn 2 + ... + an-1S + an 

into the controllability form. Obviously, there is only one such order-n form 
for any transfer function. Therefore, any other controllable, order-n realization 
{A2' B2 , C2 } of that transfer function will be transformed into the same control­
lability realization with Seo2 = Ci 1. Finally, to go directly from {A1,B1,Cd 
to {A2' B2, C2} we can use 

(2.3) 

Controllability matrices Ce and Ceo. The formula for the similarity trans­
formation between any two controllable realizations can be used to determine 
the controllability matrices for the controller and the controllability forms . 

• Controllability matrix of the controllability form: It is easy to see that 
Ceo = I, either by looking at the first column of the powers of Aeo or even 
simpler, from the fact that the transformation into the controllability form 
is given by Cl 1 and, by the general formula we just proved, it is given by 
CeoCl 1. Therefore 

Ceo = I (2.4) 

• Controllability matrix of the controller form: Likewise, knowing that the 
similarity transformation from the controller to the controllability form is 
given by a~ and that by the general formula it should be CeoC;;l, where 
Ceo = I, we find that 

(2.5) 

The similarity transformation from any controllable realization into the cor­
responding controller form is then given by 

We illustrate these relations in Example 2.2.5: 
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Example 2.2.5 In Problem 9.7.12 we show that the inverted pendulum on a cart 
(first described in Example 2.1.1) with m = 0.102 kg, g = 9.81 m/s2, M = 1 kg, and 
1= 0.5 m, i.e., with 

A 0 0 [ 
0 0 

= 0 -1 
o 21.6 

1 0] o 1 
o 0 
o 0 

b= [lJ and C=[~ ~ ~~] 

is controllable because its controllability matrix 

has a full ronk. 

C = [b Ab A2b A3b] = [ ~ 
-2 

1 
-2 

o 
o 

o 
o 
2 

-43.2 

The charocteristic polynomial of this system is 

Therefore 

a(s) = det(sI - A) = S4 - 21.6s2 

o 
o 
1 
al 

~ ] = [ 
1 
o 

-21.6 
o 

o 
1 
o 

-21.6 

The tronsformation into the controller form is given by 

S= a-T C-1 = [ ~ - 0 
-0.0510 

Indeed, 

o 
-0.5000 

o 
-0.0255 

o 
o 

-0.0510 
o 

-o.~ooo ] 
-0.0255 

o 

SAS- 1 - [ ~ - 0 
o 

21.6 
o 
1 
o 

Sb= [~l and OS-1 = [ ~ 1 0 
-2 0 

Note that 

[ 
82 - 1~.6 ] 

-1 -28 
H(s) = C(sI - A) b = S4 _ 21.6s2 

Finally, we can calculate Cc to verify it is equal to a:T : 

which is indeed a:T • 

21.6 
o 
1 
o 

-19.6 
o 
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State observability. Very much like the basic problem of controllability 
(determining whether or not an input can be designed to appropriately control 
the system), the question of whether or not we can determine the states from the 
output measurements arises in many practical and theoretical problems: deter­
mination of initial conditions of the individual states from the initial conditions 
for the system output; state observation; state estimation; minimallity. 

Definition 2.2.9 (Observability) A system is said to be observable if its state 
at some time to can be determined from the values of the system's output over 
a finite time interval [to, tlj. 

In Problem 3.7.5 we prove the following theorem 

Theorem 2.2.6 The necessary and sufficient condition for observability of the 
system given by {A, B, C} is p( 0) = n, where 0 is the observability matrix 
given by 

and n is the order of the system. 

For single-output systems this is the same as det(O) :10. 

Duality. It is very interesting and extremely useful to note the duality 
between controllability and observability. 

Theorem 2.2.7 A system given by {A, B, C} is observable if and only if its 
dual system, described by {A', C' , B'}, is controllable. 

Proof. Compare the observability and controllability conditions for systems 
{A,B,C} and {A',C',B'}, respectively. D 

This theorem will allow us to prove many theorems for observability by sim­
ply noting that they are dual to the theorems already proven for controllability. 

Constructibility. What is the dual property to the controllability-to-the­
origin? Recall that in the continuous-time the controllability-to-the-origin was 
equivalent to p(C) = n, while in the discrete-time it was equivalent to p(C) = n 
if and only if det(A) :I O. Otherwise, p(C) = n was only a sufficient condition, 
it was not necessary. 

It turns out that the dual to this situation in the "observability world" 
is the property called constructibility. A system is said to be constructible if 
its state at some time tl can be determined from the values of the system's 
output over a finite time interval [to,t,j. Note that for observability we must 
be able to determine the states from the future values of the output, while 
for constructibility this is done from the past values of the output. Relations 
between these properties are illustrated in Figure 2.7. 
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controllability-from-the-origin 
(reachabili ty) 

~ I I see the caption 

"-../ 

controllability-to-the-origin 
(" controllability") 

51 

dual [ observability J 

~ 
see the caption I I 

"-../ 

dual 
[constructibility 1 

Figure 2.7: Illustration of the equivalence and duality relations between various sys­
tem properties. For the discrete-time systems the equivalences hold if and only if the 
system matrix is nonsingular, otherwise they are only downward oriented implications. 
For continuous-time systems they are always equivalences. 

Observable realizations. Just like in the case of controllability, any two 
order-n observable realizations {AI' B 1 , Cd and {A2 ,B2 ,C2 } of H(s) are simi­
lar, and the corresponding transformation is found from O2 = 0IS-I, therefore 

(2.6) 

The dual realizations to the controllability and controller realizations are the 
observability and observer realizations, respectively. According to our duality 
relations the observability realization is given by 

while the observer realization is given by 

Bo = C~ and Co = B~ . 

For the observability realization we have 

Oob = I (2.7) 

while for the observer realization 

(2.8) 

where 
1 0 0 

f I 
al 1 0 

a_ = 

an -2 an -3 1 
an -l an -2 al 
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Minimallity and joint controllability and observability. Up to this 
point we have considered the controllability of realizations of H(s) separately 
from their observability. The realizations that are both controllable and observ­
able are the most desirable and we will now explore some of their properties. 
By now we have learned that for any H(s) there are infinitely many controllable 
realizations and infinitely many observable realizations. 

The next question is if a controllable realization of H (s) can be observable 
while another is not? In general, the answer is yes, as we shall see in the next 
example. However, if we limit the discussion to the realizations of the same 
order, the answer is no: the set of ·controllable realizations of H(s) is either 
identical to or completely disjoint from the set of its observable realizations. 

Example 2.2.6 Consider the transfer function given by 

H(s) _ s +5 
- 83 + 882 + 178 + 10 

An order 3 controller realization of H(8) is gillen by 

r!~l = [-~ -1~ 
li:~ 0 1 

-10 ] ~Xj [1] o X2 + 0 u 
o x 0 

The controllability matrix in this case is 

[ 
1 -8 

C = 0 1 
o 0 

47 ] -8 
1 

and since det(C) = 1 f. 0, this realization is controllable. Its observability matrix is 

0= 1 5 0 [ 
0 1 5 ] 

-3 -17 -10 

and since det(O) = 0, this realization is not observable. If we note that the numerator 
and the denominator of H(s) have a common factor, we can write 

H(s) _ s+ 5 
- (8 + 1)(8 + 2)(s + 5) 

This is the irreducible form of H(s) and the corresponding realizations are said to be 
minimal realizations of H(s). The minimum order controller realization of H(8) is 

[!~] = [-~ -~] [:~] + [~] u 
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The controllability and observability matrices in this case are 

and 0 = [~ ~] 
respectively. Since det(C) = 1 '" 0 and det(O) = -1 '" 0, this realization is both 
controllable and observable. 

We shall soon see that there is a very tight connection between minimallity 
and joint controllability and observability. In fact we shall see that they are 
equivalent, but let us finish what we have already begun. In order to show that 
among the realizations of H (s) having equal orders either all or none of the 
controllable realizations are observable, recall the following two facts: 

• All controllable realizations of H(s) with equal orders are related through 
similarity transformations. 

• Similarity transformations preserve observability. 

Therefore, if any controllable order-n realization of H(s) is observable, so are all 
other controllable order-n realizations. Also, if any controllable order-n realiza­
tion of H(s) is not observable, none of them are. By duality, if any observable 
order-n realization of H(s) is controllable so are all other such realizations and 
if any observable order-n realization of H(s) is not controllable, neither are the 
others. 

Furthermore, ifthere exists an order-n realization of H(s) that is both con­
trollable and observable, then any other order-n realization of H(s) is both 
controllable and observable. Indeed, recall that for a given H(s) and given 
order of rel'llizations n, there is a unique Hankel matrix of Markov parameters 

[ h, 
h2 ... 

~ 1 h2 ha ... hn+1 
M= 

h n hn+l ... ~2n-l 
Recall also that for any order-n realization of H(s) we have OC = M. Hence, 
if {AI, B1 , Cd is jointly controllable and observable order-n realization of H(s) 
and {A2 , B2 , C2 } is any other order-n realization of H (s), then from 

we see that the nonsingularity of C1 and 01 implies the nonsingularity of C2 and 
O2 • Therefore, any other order-n realization of H (s) is jointly controllable and 
observable if one of them is. 

Are there any realizations of H(s) which are neither controllable nor observ­
able? The following example answers that question affirmatively. 
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Example 2.2.1 Consider the following transfer function: 

H(s) _ 2S2 + 12s + 16 
- s3 + 8s2 + 19s + 12 

The following realization is neither controllable nor observable: 

l~j [-1 
X2 = 0 
± 0 -~ J J [~j + [iJ u 

1 0] [~j y = [ 1 

Note that the irreducible form of H(s) is (8+~1<~+3)' 

Let us formally define the minimallity and use the previous discussion to 
prove several important results about minimallity, controllability, and observ­
ability. 

Definition 2.2.10 (Minimallity) A realization is said to be minimal if no 
other realization of the same transfer function has lower order. 

One of the most important properties of minimal realizations is the equiv­
alence of internal types of stability to their external counterparts. This follows 
from the fact that the realization {A, b, c/} is minimal if and only if there are no 
pole-zero cancellations between b(s) = c'adj(sI - A)b and a(s) = det(sI - A), 
and therefore the poles and eigenvalues of the system coincide, along with their 
multiplicities. 

We already have one practical criterion for minimallity: Realization {A, b, c'} 
is minimal if and only if there are no pole-zero cancellations between b(s) = 
c' adj(sI - A)b and a(s) = det(sI - A). Another is to use the following theorem, 
which establishes the second most important property of minimal realizations, 
the equivalence between minimallity and joint controllability and observability. 

Theorem 2.2.8 The realization {A, b, c/} of H(s) is minimal if and only if it 
is both controllable and observable. 

Proof. We shall prove here that the order-n controller realization {Ae, be, c~} 
is observable if and only if there are no pole-zero cancellations between b( s) = 
c~adj(sI - Ae)be and a(s) = det(sI - Ae). From what we discussed earlier, this 
will mean that the set of controllable order-n realizations is equal to the set of 
order-n observable realizations, and furthermore, it covers the set of all order-n 
realizations of H(s). 

The proof! is based on the "shifting" property of the companion matrices: 

e;Ae = e;_l (2::; i ::; n) 

where e~ is the ith row of the identity matrix. By the way, e~ Ae = [-al ... - an]. 

3We shall see a different proof of this theorem in Example 2.2.9. 
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This property is used to show that e~b(Ac) = c~A~-i (i = 1, ... , n). First we 
prove the special case i = n: 

e~b(Ac) = ble~A~-l + b:ze~A~-2 + ... + bn-le~Ac + bne~ 
= ble~ + b2e~ + ... + bn-le~_l + bne~ 
= [b1 b:z ... bn-l bnl 

= c~ 

Using this result and the fact that Ac commutes with b(Ac) we find that for 
k= O, ... ,n-l 

Therefore 

(2.9) 

where i = [en ed is the flipped identity matrix. 
Now, det(Oc) =f. 0 if and only if det(b(Ac)) =f. O. Since the determinant of 

a matrix is equal to the product of its eigenvalues and the eigenvalues of b(Ac) 
are b(Ai) (i = 1, ... , n), where Ai are the eigenvalues ofAc, we can write 

det(b(Ac)) = b(At} ... b(An) 

Hence det(Oc) =f. 0 if and only if b(Ai) =f. 0 (i = 1, ... ,n). By definition of 
eigenvalues a(Ai) = 0 (i = 1, ... , n), therefore the controller form is observable 
if and only if b(s) = ~adj(sl - Ac)bc and a(s) = det(sl - Ac) have no common 
factors. 0 

Example 2.2.8 Let us verify that the controller form is observable if and only if there 
are no pole-zero cancellations between b(s) and a(s) for the simple case when n = 2. 
In this case 

Ac = [-;1 -;2] be = [~] c~ = [bl b2 1 

The observability matrix is 

Oe = [ -ali: +b2 
and its determinant is 

det(Oc) = -a2bi + alblb2 - b~ 
On the other hand a(s) = S2 + als + a2 and b(s) = blS + b2 have a common factor 

if and only if the zero of b(s) 
b2 

Sb = -bl 

is also a zero of a(s), i.e., if and only if 

b~ - alblb2 + a2bi = 0 

Obviously, then and only then det(Oc) = O. 
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* Uncontrollable and unobservable realizations4 • Whenever we need 
to analyze a general system that may be uncontrollable or unobservable, it 
is useful to know that there are similarity transformations into the standard 
forms which separate controllable from uncontrollable and observable from un­
observable subsystems. We first discuss the decomposition of a general system 
into controllable and uncontrollable subsystems, then the' dual decomposition 
into observable and unobservable subsystems. There is also a general decom­
position theorem (due to Gilbert and Kalman) which allows us to identify the 
following four subsystems: (1) controllable and observable; (2) controllable but 
unobservable; (3) observable but uncontrollable; and (4) uncontrollable and un­
observable. We will not consider this most general case. 

Let {A, b, e/} be such that p(C) = r < n. Then it can be shown (see for 
example [22], p. 131) that there exists a nonsingular transformation matrix 
which leads to a new realization {Ac,bc,ea such that 

I 
+ 
I 

~~ 1 bc = [~e~] 
Acc 0 

I e~c 1 

where Ace is r X r, bee is r X 1, e~e is 1 X r, and the subsystem {Aee,bee,e~e} is 
controllable. It is easy to verify that the transfer function of this controllable 
subsystem is equal to the transfer function of the original system: 

If we partition the state vector 

(sf - Aee)-lbee 
o 

Xc = [~e~] 
Xcc 

then the r states in Xee are said to be controllable, while the n - 'r states in Xcc 
are said to be uncontrollable. 

The dual standard form for unobservable systems is given by 

Ao= [~: 
Aoo 

e~ = [e~o I 01 

where Aoo is r X r, boo is r X 1, e~o is 1 x r, and the subsystem {Aoo,boo,e~o} is 
observable. With 

Xo = [~o~] 
Xoo 

the r states in Xoo are said to be observable, while the n - r states in Xoo are 
said to be unobservable. 

4Titles of this and several other Subsections in this Section are marked by asterisks C*) to 
let the reader know that the marked material may be skipped in the first reading. 
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* P BH tests. We shall use the standard forms for uncontrollable and un­
observable systems in the proof of the PBH controllability and observability 
criteria. They were first discovered by Gilbert in 1963 for the case of diagonal­
izable systems, and were later generalized by Popov (1966), Belevitch (1968), 
and Hautus (1969), thus the name, PBH tests. They are very powerful theoret­
ical and numerical tool and, as T. Kailath says in [22], 

In fact, when faced with problems of checking for controllability 
and/or'observability, it is a good heuristic rule to first try to apply 
the PBH tests. 

Theorem 2.2.9 (PBH eigenvector tests) 

Controllability: A pair {A, b} is controllable if and only if none of the left 
eigenvectors of A are orthogonal to b. 

Observability: A pair {c' , A} is observable if and only if none of the right 
eigenvectors of A are orthogonal to c' . 

Proof. We shall give a detailed proof of the controllability test and calIon 
the duality to prove the observability test. 

":::}" If there exists q' =I- 0 such that 

Since q' =I- 0 this means that C has less than a full rank. 

"¢:" Assume the pair {A, b} is uncontrollable and, without loss of generality, 
assume it is in the standard form for uncontrollable systems (otherwise it can 
be transformed into one by a nonsingular transformation) 

[
ACC I Acc] 

A= -- + --
o I Ace 

where Acc is r x r, bcc is r x 1, and r is defined by p(C) = r < n. One possible 
choice for a left eigenvector of A which is orthogonal to b is 

where q~c is any left eigenvector of Acc. o 
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Theorem 2.2.10 (PBH rank tests) 

Controllability: A pair {A, b} is controllable if and only if 

p([ sI -A b]) == n 

where n is the order of A. 

for all s 

Observability: A pair {d, A} is observable if and only if 

for all s 

where n is the order of A. 

Proof. Again, we shall give a detailed proof of the controllability test and 
use duality to prove the observability test. Let p( [sI - A b]) == n for all s. 
This is equivalent to saying that there does not exist a row vector q' such that 
q'[sI - A b] == 0 for any s, i.e., q' A == q's and q'b == 0, and this, according to 
Theorem 2.2.9, is equivalent to controllability of the pair {A, b}. 0 

Note that in applying the PBH rank tests it is easy to show the full rank for 
all s that are not eigenvalues of A, so the main task is to show that the rank 
remains n even when s takes the values of the eigenvalues of A. 

• PBH tests for MIMO systems. The PBH tests presented in Theo­
rems 2.2.9 and 2.2.10 were formulated for single-input and single-output sys­
tems. The following are more general formulations, given here without a proof: 

Theorem 2.2.11 (PBH eigenvector tests for MIMO systems) 

Controllability: A pair {A, B} is controllable if and only if none of the 
left eigenvectors of A are orthogonal to all columns of B. 

Observability: A pair {C, A} is observable if and only if none of the right 
eigenvectors of A are orthogonal to all rows of C. 

Theorem 2.2.12 (PBH rank tests for MIMO systems) 

Controllability: A pair {A, B} is controllable if and only if 

p([sI-A B]) == n for all s 

where n is the order of A. 

Observability: A pair {C, A} is observable if and only if 

for all s 

where n is the order of A. 
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• Applications of PBH tests. Here we show several examples of the power 
of PBH tests. First we give a much shorter proof of the fact that the controller 
realization is observable if and only if there are no cancellations between b( s) 
and a(s) (cf. the proof of Theorem 2.2.8). 

Example 2.2.9 (Observability of controller form) Let us use the PBH eigenvec­
tor test for observability to show that the order-n controller realization of H(s) is ob­
servable if and only if there are no cancellations between b(s) = c~adj(sI - Ac)bc and 
a(s) = det(sI - Ac). 

From Problem C.3.3 we know that the companion matrices have only one indepen­
dent eigenvector associated with each eigenvalue A (regardless of their multiplicity): 

p = [An - 1 An - 2 ... A2 A 1]' 

Thus c'p = ° implies b(A) = 0, and since by definition a(A) = 0, we see that the 
controller form is observable if and only if there are no common factors between b(s) 
and a(s). 

Let us determine the conditions for state controllability of a system in the 
modal (parallel) form. The modal form is another important realization, char­
acterized by the fact that its system matrix is, in general, in the Jordan form. In 
most practical cases the systems have distinct eigenvalues, sci diagonal system 
matrices are the most important special case. We shall consider both. 

Example 2.2.10 (Controllability of modal form) First assume the system has n 
distinct eigenvalues, and has only one input to it, i.e., its system matrix is diagonal 

with Ai =I- Aj for i =I- j and the input matrix is n x 1 (hence we write bd instead of Bd): 
bd = [bdl ... bdn]'. Then the controllability matrix is 

r bd1 

2 n-l l bd2 
C = [bd Adbd A,jbd ... Ad bd] = : 

bdn 

bdlA~-l 1 
bd2A~-1 

bdnA;:-l 

Therefore 

where V(Al, ... , An) = ITj>i(Aj - Ai) is the Vandermonde determinant. Since the 
eigenvalues are distinct, V(Al, ... , An) =I- 0, and the system is controllable if and only 
if none of the components of bd are zero. 

Hence, the modal realization of a single-input system with distinct eigenvalues is 
controllable if and only if all components of its input vector are non-zero. 

This result is consistent with the following intuitive argument: One cannot expect 
to control the system unless all of its states depend on the input. However, as we shall 
see in the following, this is not true in the case of multiple eigenvalues. 

The previous result can be generalized in two ways: to cover the systems with 
repeated eigenvalues and for multi-input systems. To attempt to prove the more general 
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criteria directly, like we did with the distinct eigenvalue case, would be very complicated. 
As we shall see, the PBH rank test allows a rather simple proof. 

The controllability criterion for the general single-input modal form is: The modal 
realization of a single-input system is controllable if and only if: (1) no two Jordan 
blocks in the system matrix correspond to the same eigenvalue and (2) the elements of 
the input vector corresponding to the last rows of Jordan blocks in the system matrix 
are not zero. 

The proof follows directly from the Corollary C.3.4 and from the PBH rank test for 
controllability. The Corollary C.3.4 states that all companion matrices are similar to 
Jordan matrices made of Jordan blocks having distinct eigenvalues. To prove part (2) 
we use the P BH rank test. It requires that p( [ sI - AJ bJ 1 ) = n for all s, where n is 
the order of A J . This is trivially satisfied when s is not an eigenvalue of A J . When 
s = Ai, where Ai is any eigenvalue of AJ, the Jordan blocks corresponding to other 
eigenvalues are contributing the full rank. The critical block is the one corresponding 
to Ai so consider that Jordan block and the corresponding components of bJ (in order 
to simplify the notation we assume this block is 3 x 3). For s = Ai the rank of 

[ ~ -1 
o 
o 

must be 3 and this will be true if and only if bJ,3 t= O. This completes the proof. 
Finally, the most general formulation: The modal realization of a system is control­

lable if and only if: (1) no two Jordan blocks in the system matrix are associated with 
the same eigenvalue and (2) the elements of rows of the input matrix corresponding to 
the last rows of Jordan blocks in the system matrix are not all zero. 

The proof also follows directly from the Corollary C.3.4 and the multi-input version 
of the PBH rank test for controllability. 

• Stabilizability and detectability. In the modal form each state corre­
sponds to one or more modes associated with the same eigenvalue. Since we 
can classify the states in the modal form as being either controllable or uncon­
trollable and at the same time as either observable or unobservable, we can do 
the same for the eigenvalues and the corresponding modes. 

The PBH eigenvector tests allow us to extend this classification to any sys­
tem. Referring to the PBH eigenvector test for controllability we say: If some 
left eigenvector corresponding to the eigenvalue A is orthogonal to the input vec­
tor b, this eigenvalue and the corresponding modes are uncontrollable. Otherwise 
they are controllable. Similarly we can classify the eigenvalues as observable or 
unobservable: If some right eigenvector corresponding to the eigenvalue A is 
orthogonal to the output vector c', this eigenvalue and the corresponding modes 
are said to be unobservable. Otherwise they are observable. 

All this will be very important in Sections 2.3 and 2.4, where we discuss 
system stabilization using the state feedback. The main conditions for this 
technique to work will be controllability (so that the control can be effective) and 
observability (so that we can reconstruct the states required for state feedback) 
of at least the unstable modes. If an unstable mode is controllable it is said to 
be stabilizable. If an unstable mode is observable it is said to be detectable. 
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* Transform domain criteria for controllability and observability. 
Earlier we showed that the joint controllability and observability of the re­
alization represented by {A, b, c} is equivalent to the coprimeness of b( s) = 
dadj(sI-A)b and a(s) = det(sI-A). We can say that this is the transform 
domain test for the joint controllability and observability. Here we shall derive 
separate transform domain criteria for controllability and observability. 

Theorem 2.2.13 Realization {A, b, d} is controllable if and only if the ele­
ments of the vector adj(sI -A)b have no common factor with det(sI -A). Simi­
larly, it is observable if and only if the elements of the vector c'adj(sI -A) have 
no common factor with det(sI -A). 

Proof. Here again we give a detailed proof for the controllability test only 
and calIon the duality to prove the observability condition: 

"~" H the system is controllable it can be transformed into the controller 
form {Ae, be, c~} by a nonsingular similarity transformation. It is fairly easy to 
see that the first row of adj(sI -Ae) is equal to [sn-l sn-2 ... s 1]. Since 
be = [1 0 ... 0 0]' we have 

s 
1 

The components of this vector have no common factor among themselves, 
and thus no common factor with a(s). H S was the transformation from {A, b,e'} 
to {Ae,be,c~} then 

Therefore adj(sI-A)b = Sadj(sI-Ae)be which guarantees that the components 
of adj(sI -A)b have no common factors with a(s). Indeed, if the components 
of adj(sI - A)b had a common factor with a(s), so would any of their linear 
combinations, and in particular the components of adj(sI-Ae)be = S-ladj(sI­
A)b would have a common factor with a(s), which is not the case. 

"~" H the system is uncontrollable, it can be transformed into the standard 
form for uncontrollable systems. There we can write 

. [adj(SI - Aee)beeacc(s)] 
adJ(sI - Ac)bc = - - - - -

o 
and a(s) = aee(s)acc(s) 

where aee(S) = det(sI -Ace) and acc(s) = det(sI -Ace). In this case there is a 
common factor acc(s) between the components of adj(sI -A)b and a(s). 0 



2.3 State feedback and optimal control 

In this Section we describe a linear controller based on the state feedback. 
We show that its two main parts, the feedback gain and the state observer, can 
be designed independently. The design of the observer parameters is described 
in Section 2.4, while the feedback gain design is explained in this Section. Two 
cases are of particular interest: moving the eigenvalues to desired locations and 
choosing the optimal feedback gain to minimize the cost of the control. 

System control using the state feedback 

As we show in Problem 3.4.15, one of the main problems with using the 
output feedback is that the poles cannot be relocated to a specific set of desired 
locations, or even worse, sometimes it may be impossible to stabilize the system. 
Since the states offer the most complete description of the system, we cannot 
hope to achieve more than by feeding some function of the states back to the 
input. It turns out that for a controllable system it is sufficient to feed back an 
appropriate linear combination of the states in order to relocate the eigenvalues 
to any desired set of locations. This, of course, also means that we can stabilize 
the system. If the states are not directly available, we have to reconstruct them 
from the system input and the output. As shown in Section 2.2, this is possible 
if and only if the system is observable. 

The general idea. The block diagram in Figure 2.8 depicts a typical linear 
controller for a system described by its state vector x( t). Based on the knowledge 
of the system parameters A, B, C, a state observer is designed to calculate r( t), 

u(t) system y(t) 

x(t) 

state feedback gain -k' 

~ 
state observer 

r(t) ---
I r(t) 

Figure 2.8: A typical configuration of a linear controller consisting of the state ob­
server and the feedback gain. 
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a reconstruction of the original states x(t), using the system input u(t) and the 
system output y(t). This signal is then fed back to the input using the feedback 
gain k. We shall see later that if the system is controllable we can determine k 
so that the eigenvalues of the system are moved to any desired locations. Also, 
we shall see that k can be chosen to minimize the cost of control, typically a 
quadratic function of the system states and the control input. In Section 2.4 we 
shall see that the observer can be designed so that the reconstruction r(t) of the 
original states x(t) converges to x(t) very rapidly, so that there are no problems 
due to the fact that we are feeding back r(t) instead of x(t). Actually, we shall 
see that if the signals are noisy, we can use the estimate of the states, and still 
achieve very good control. But first, let us analyze the linear controller in some 
more detail. 

Independence of feedback gain and observer gain design. A greater 
detail of the linear controller is shown in Figure 2.9. 

u(t) 1/s x(t) : y(t) 

c' ~ -1 

A ....................... 

1/s r(t) 

b c' 

-/ 

Figure 2.9: A more detailed signal flow diagram of a linear controller. The observer 
consists of a system simulator and an internal feedback with gain I. 

We see that the state observer is actually a simulator of the system with an 
internal feedback designed to eliminate the difference between the actual system 
output y(t) and the reconstructed output w(t). The feedback gain I determines 
the rate of convergence between w(t) and y(t) and, since the system is assumed 
to be observable, between r(t) and x(t). 

In Problem 3.11.2 we show that the characteristic equation ofthe augmented 
system is 

det(A - bk') det(A -Ie') = 0 

This shows a complete autonomy between the controller (characterized by 
the system matrix A - bk') and the observer (characterized by A -ld). Thus we 
can separate the design of the feedback gain k from the design of the observer. 
As a consequence we can assume that the states are directly available to be 
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fed back and calculate k to relocate the eigenvalues or minimize the control 
cost. Then we can design the observer, Le., the observer feedback gain l, to 
achieve the desired convergence rate between r(t) and x(t). This separability 
of eigenvalues also guarantees that if the two subsystems are stable the whole 
system will also be stable. This is very convenient, because, in general, stability 
of parts of a system does not guarantee the stability of the whole system. 

Properties of the state feedback 

Next we briefly investigate the effects of the state feedback on the properties 
of the system: controllability, observability, eigenvalues, and zeros. 

Eigenvalues under state feedback. A system is said to possess modal 
controllability if its eigenvalues can be moved to arbitrary new locations by the 
use of the appropriate state feedback. We shall see soon that this property is 
equivalent to the state controllability, Le., that the eigenvalues of the system 
can be arbitrarily relocated if and only if the system is controllable, i.e., if and 
only if the controllability matrix 

has a full rank. Of course, there is an implicit assumption here about the 
availability of the states. In other words, the system also has to be observable, 
hence its observability matrix 

[
C

I 1 c'A 
0= 

c~ An-i 

must also have a full rank. 
This is the most useful feature of the state feedback and it is in the base of 

the modern control theory. 

Zeros under state feedback. Unfortunately, the state feedback does not 
offer a complete design freedom. Here we show that the state feedback cannot 
be used to move the zeros of the system. Not only that we cannot move them 
exactly where we want them to be, but we cannot move them at all. The only 
thing that can happen is the pole-zero cancellation, should some of the new 
eigenvalue locations coincide with some of the zeros of the system. 

To show that, consider a system in the controller form5 {Ae, be, c:,}, where Ae 
is the companion matrix with -[ai ... anI at the top row while c:, = [bi ... bnJ'. 
As always, the ai's and the bi'S are the coefficients of the denominator and the 

5We consider the controller form without a loss of generality, because in the context of state 
feedback we usually consider controllable systems, and they can be nonsingularly transformed 
into the controller form and back. 
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numerator of the transfer function, respectively. After the feedback, the system 
is still in the controller form, now given by {Ac - bck~,bc,c~}. Obviously, the 
coefficients of the numerator of the transfer function have not changed, hence 
the zeros are still exactly where they were before the application of the state 
feedback. 

Controllability under state feedback. In Problem 3.9.1 we show that if 
a system given by {A,b,c'} is (un)controllable than the closed-loop system is 
also (un)controllable for any feedback gain vector k. The closed-loop system 
matrix is given by 

AI = A - bk' 

while the controllability matrix of the closed-loop system can be determined 
from the following identity: 

where 

and 
k'Ab 
k'b 
1 

o 

k' A n - 2b 
k' A n - 3 b 
k' A n - 4 b 

1 

Since det(D) =1= 0, the controllability of the system is invariant under the 
state feedback. 

Observability under state feedback. Unlike controllability, observability 
can be lost due to the state feedback. One example of this undesired property 
of the state feedback is given in Problem 3.9.2. 

If a system described by {A, b, e'} is minimal, Le., both controllable and ob­
servable, than after the addition of the state feedback u(t) = -k'x(t) we obtain 
the system {A - bk', b, e'}, which is controllable and has the same zeros as the 
original system. Therefore, it is observable if and only if the new eigenvalues 
do not coincide with any of the zeros. (Otherwise there will be pole-zero can­
cellations, and since the controllability is preserved, it is the observability that 
is lost due to cancellations.) 

Stabilizability. If the purpose of the state feedback is only to stabilize 
the system, then the controllability is a too strong requirement. Indeed, a 
system whose unstable modes are controllable, while the stable modes mayor 
may not be controllable, is stabilizable, even though it may not be completely 
controllable. 
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Feedback gain design 

In the rest of this Section we describe the design of the feedback gain k. The 
first case assumes that we know where we want to move the eigenvalues of the 
system. The second method allows us to determine the optimal feedback gain 
which minimizes the quadratic cost function. 

Relocation of eigenvalues. If our goal is to move the eigenvalues of 
the system from their original values AI, ... , An to an arbitrary desired set of 
locations J.l.l, •.. , J.l.n we use the result of Problem 3.9.7, where we show that 
this is possible if and only if the original system is controllable (again, it is 
tacitly assumed that the states are either directly available or that the system 
is observable): 

If the characteristic polynomial of the original system is 

while the characteristic polynomial of the desired closed-loop system is 

0(8) = 8 n + 0lSn-l + ... + On-IS + On 

then with 

we can use the Bass-Gura formula 

or the Ackermann formula 

or the Mayne-Murdoch formula (valid for systems with distinct eigenvalues only) 

(i=l, ... ,n) 

Optimal control. The selection of the closed-loop eigenvalues is a trade­
off between the price of control and the settling time. Indeed, as we move the 
closed-loop eigenvalues J.l.l, ••• , J.l.n towards -00, the settling times get shorter. 
On the other hand, from the Mayne-Murdoch formula we see that as the differ­
ences between the open- and closed-loop eigenvalues increase, the corresponding 
components of the feedback gain vector increase, hence the cost of control rises. 
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To resolve this trade-off Kalman [23] introduced a quadratic cost function 
to associate weights with each of the states and also with the control input: 

continuous-time: discrete-time: 

J = LOO 
(xl(t)Qx(t) + u'(t)Ru(t)) dt 

00 

J = L (x'[k]Qx[k] + u'[k]Ru[k]) 
k=O 

The solution of the resulting linear-quadratic-regulation (LQR) problem is de­
rived in Problems 3.10.1 and 4.10.2, where we show that the optimal feedback 
is given by u*(t) = -Kx(t), i.e., u*[k] = -Fx[k], respectively, where K and F 
are given by: 

continuous-time: discrete-time: 

where P's are the positive definite solutions of the algebraic Riccati equations: 

continuous-time: discrete-time: 

PA + AlP - PBR-1BIP + Q = d P = A'P(I - B(B'PB + R)-lB'P)A + Q 

The minimum cost is then given by: 

continuous-time: discrete-time: 

J* = Xl (O)Px(O) 

For examples of optimal control design and derivations of the above results, 
we refer the reader to Sections 3.10 and 4.10. 



2.4 State observers and estimators 

Until now, we have always assumed the states to be readily available for 
feedback purposes. In cases when they are not, and if the system is observable, 
we can design a state observer to reconstruct the states from the system input 
and output. We start this Section by considering design methodologies for state 
observers. 

If the system is affected by noise with known statistical properties, we can 
design an optimal state estimator. This problem is dual to that of the optimal 
feedback of Section 2.3. For discrete-time systems such estimators are called 
Kalman filters, while for continuous-time systems they are called Kalman-Bucy 
filters. We study these techniques in the second part of this Section. 

State observers 

State observers are necessary in cases when the states of the system are 
not directly available. For example, the sensors for some of the states are too 
expensive, or the system is at a remote location and only its output can be 
measured. In such cases, if the system is observaQle, i.e., if its states can be 
determined from its input and output, we rely on a model of the system, most 
likely implemented as an analog computer or a program on a digital computer. 
If none of the states are available we have to use a full order observer, i.e., the 
order of the observer will be equal to the order of the system. However, if some 
of the states are available, we can determine the remaining states using the 
so-called reduced-order observer. 

Full-order observer. In Figure 2.10 we show a signal flow diagram for a 
typical full-order observer. In Problem 3.11.2 we prove that the convergence to 
zero of the error between the reconstructed and actual states ~s determined by 
the roots of the observer characteristic equation 

det(A - le') = 0 

By the duality between controllability and observability we can find the dual 
of the Bass-Gura formula, and use it to calculate the vector l which puts the 
eigenvalues of the observer in specified locations: 

where 0: is a vector of coefficients of the desired characteristic polynomial of the 
observer, while a is a vector of coefficients of the characteristic polynomial of 
the original system. 

In the design of the feedback vector in Section 2.3 we were concerned with 
the price of the states and of control signals. Here we don't have such worries, 
simply because the simulation is implemented on a computer and the fuel for 
electrons is really cheap! However, putting the eigenvalues of the observer too far 
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u(t) y(t) 
~~~~~-4~~~ 

-1 

A 
w(t)-y(t) 

lis r(t) 

b c' 

-/ 

Figure 2.10: A typical system observer. Vector I is designed so that the observer 
error converges to zero as fast as possible without increasing the noise sensitivity too 
much. 

to the left6 increases its sensitivity to noise. Thus, we again have two opposing 
requirements: we need the observer error to converge to zero fast, but we don't 
want to introduce too much noise by being too fast. To resolve this situation 
we can use the quadratic cost function approach of Section 2.3. We shall not 
pursue this issue any further in the present book. 

Reduced-order observer. If some of the states are available, we can reduce 
the order of the observer and reconstruct only the unavailable states. In Sec­
tions 3.13 and 4.13 we describe the design and implementation of the reduced­
order observers for continuous-time and discrete-time systems, respectively. 

State estimators 

Historically, the discrete-time case of the state estimation problem was solved 
first. There is an almost romantic story about how Kalman got the idea for this 
revolutionary discovery. After solving the problem of optimal feedback in 1958, 
firmly establishing the importance of the state-space approach in the control 
theory, on one snowy night in late November 1958 Kalman traveled by train 
from Princeton (where he presented his work to NASA scientists), to Baltimore 
(where he worked at the time, in the Research Institute for Advanced Studies). 
Suddenly, the train got halted for about an hour and a question popped up in 
Kalman's mind: "Why not try the state-space approach on the Wiener's cele­
brated problem of estimating the system dynamics from noisy measurements?" 
As it often happens, asking the right question was practically a solution it­
self, because, as Kalman was soon to discover, this formulation of the Wiener's 
problem was the dual of the LQR problem he previously had solved himself! 

6 Or too close to zero for discrete-time systems. 



70 CHAPTER 2. MODERN CONTROL THEORY 

Thus, the Kalman filter was born as a solution to the linear-Quadratic-estimation 
(LQE) problem. After that, Kalman worked with Bucy on the continuous-time 
case, and the resulting estimator has become known as the Kalman-Bucy filter. 
These two techniques were published in [26J and [28], respectively. 

In the following we summarize the main formulas for the steady-state ver­
sions of Kalman-Bucy and Kalman filters. All derivations and several examples 
are given in Sections 3.12 and 4.12. 

Kalman-Bucy jilter. Consider a system described by 

x(t) = Ax(t) + Bu(t) + w(t) 

y(t) = Cx(t) + e(t) 

where the system noise w(t) and the measurement noise e(t) are zero-mean, 
white, and Gaussian. Furthermore, w(t) is uncorrelated with e(t). If the noise 
covariances are 

E[w(t)w'(r)J = Qc5(t-r) 

E[e(t)e'(r)J = Rc5(t-r) 

the steady-state Kalman-Bucy estimator is given by 

r(t) = Ar(t) + Bu(t) + L(y(t) - Cr(t)) 

where L = PC' R- I , and P is a solution of the algebraic Riccati equation 

AP + PA' - PC'R-ICP + Q = 0 

Kalman jilter. Consider a system described by 

x[k + 1J = Ax[kJ + Bu[kJ + w[kJ 

y[kJ = Cx[kJ + e[kJ 

where the system noise w[kJ and the measurement noise e[kJ are zero-mean, 
white, and Gaussian. Furthermore, w[kJ is uncorrelated with e[kJ. If the noise 
covariances are 

E{w[kJw'[l]} = Qc5[k -lJ 

E{ e[k]e'[l]} = Rc5[k - l] 

and for the initial value x[O] we have E{x[O]} = Xo and E{(x[O] - xo)(x[O] -
xo)'} = Po, then the steady-state Kalman estimator is given by 

x[k] = z[k] + Lk(y[k]- CZ[kJ) 

where 
z[k] = Ax[k - 1] + Bu[k - 1] (z[O] = xo) 

and the gain L is given by L = NC'(R + CNC,)-l, where N is a solution of 
the algebraic Riccati equation 

N = Q + ANA' - ANC'(R+CNC,)-ICNA 



Chapter 3 

Continuous linear systems 

This Chapter contains solved problems about continuous-time linear control 
systems. It begins with the background material on linear differential equa­
tions and matrices (Sections 3.1, 3.2, and 3.3). It continues with a discussion 
of the advantages of the state-space representation of linear systems over their 
input-output representation (Sections 3.4 and 3.5). In Sections 3.6 and 3.7 we 
investigate three fundamental properties of systems: stability, state controlla­
bility, and state observability. In Section 3.8 we examine the canonical forms of 
linear systems and their properties. Section 3.9 shows that by using the state 
feedback we can arbitrarily place the poles of the system. The condition for 
this so-called modal controllability is, quite amazingly, the state controllability 
and observability. Next, in Section 3.10, we describe how the feedback gain 
should be picked so that the quadratic optimality is achieved. In Section 3.11 
we explain the design of the state observers. In Section 3.12 we investigate how 
to pick the observer gain so that the effects of noise are minimized in a mean­
square sense. The result is the Kalman-Bucy filter. Finally, in Section 3.13, we 
describe the reduced-order observers. 
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x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t) 



3.1 Simple differential equations 

This Section should refresh the reader's memory about the two most common 
paths to solution of the linear differential equations with constant coefficients: 
the time-domain convolution and the Laplace transform. It also describes the 
usefulness of the Dirac's delta impulse. 

Problem 3.1.1 Show that the solution of the inhomogeneous differential equation 

:t(t) = ax(t) + I(t), with x(O) = Xo 

is given by 

x(t) = xoeat + eat * I(t) 

where * denotes convolution: 

eat * I(t) = /at ea(t-T)/(T)dT 

Solution: If J(t) == 0 the equation is homogeneous, and the solution is clearly 
x(t) = xoeat . Actually, it is obvious that if x(t) = xoeat then :t(t) = ax(t), with 
x(O) = Xo, but is the other direction as easy to see? Consider the following argument: 
From :t(t) = ax(t) we find: 

:t(t) = ax(t) 

x(t) a2x(t) 

hence, according to the Maclaurin series expansion of x(t), 

x(t) 
:teO) X(O) 2 = x(O) + lit + '2!t + ... 

= Xo (1+ ~~ + a;~2 + .. ) 

xoeat 

In general, when I(t) t:. 0, introduce a change of variable: 

(x(O) = z(O» 

when 

:t(t) = aeat z(t) + eat z(t) 

Now we can write eatz(t) = I(t), i.e., 

z(t) = e-at I(t) 

75 
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which finally implies 

i.e., 

x(t) = 
"-v--' 

homogeneous part 

+ lt ea(t-T) f(r) dr 

... , 
non-homogeneous part 

Note: We can differentiate this expression to convince ourselves that it is indeed 
a solution: 

x(t) = axoeat + a lt ea(t-T) f(r) dr + f(t) = ax(t) + f(t) 

Problem 3.1.2 Use the Laplace transform to solve the equation from the previous 
problem: 

x(t) = ax(t) + f(t), with x(O) = Xo 

Solution: Taking the Laplace transform of both sides yields 

sX(s) - Xo = aX(s) + F(s) 

hence 

X(s) = ~ + F(s) 
s-a s-a 

The homogeneous part of the solution is therefore 

while the non-homogeneous part is: 

Xnh(t) = eat * f(t) 

Note: Usually we do not calculate the convolution, but rather use the tables of 
Laplace transform pairs to invert ~. 

Problem 3.1.3 For each multiplicity-m root a of the characteristic equation of the 
higher order differential equation, the homogeneous part of the solution contaius the 
following term(s) 

where 00, ... , Om-l are constants which depend on the initial conditions. 

First apply and check the above procedure and then derive it for the following 
homogeneous equations: 
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a) x(t) = Sx(t) - 6x(t), X(O) = S, x(O) = 0 

b) x(t) = 4x(t) - 4x(t), X(O) = 2, x(O) = -1 

c) Repeat part b) using the Laplace transform. 

Solution: a) The characteristic equation for this equation is 

r2 - Sr+6 = 0 

and since its roots are 

rl = 2 and r2 = 3 

the solution is of the form 

x(t) = oe2t + {JeSt 

where 0 and {J can be determined from the initial conditions: 

0+{J = O} 
20 + 3{J = S :::> 0 = -S and {J = S 

It is easy to verify that x(t) = _Se2t + SeSt satisfies both the equation and the 
initial conditions. 

In order to derive the "usual suspects" (oe2t and {JeSt) we shall rewrite the equation 
so that it reduces to the trivial form yet) = ay(t). With the characteristic equation in 
mind 

(r - 2)(r - 3) = 0 

which can be rewritten as 

r2 - 3r = 2(r - 3) 

we write 
x(t) = Sx(t) - 6x(t) <=> x(t) - 3i;(t) = 2(x(t) - 3x(t» 

... ... ' .. ... ' 
y(t) lI(t) 

With a new variable: yet) = x(t) - 3x(t) the equation becomes 

yet) = 2y(t) with yeO) = x(O) - 3x(O) = S 

Hence 

yet) = Se2t 

This now yields a non-homogeneous differential equation in x{t): 

x(t) = 3x(t) + Se2t 

whose solution is (see Problem 3.1.1) 
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and 

x(t) x(0)e3t + it 5e3(t-r) e2r dT 

_5e2t + 5e3t 

b) This time the chaxacteristic equation is 

r2 - 4r + 4 = 0 hence rl,2 = 2 

x(t) = ae2t + f3te 2t 

We can derive this as follows: 

x(t) = 4i(t) - 4x(t) <=} x(t) - 2i(t) = 2(i(t) - 2x(t» 

therefore 

i.e., 

i(t) - 2x(t) = (i(O) - 2x(0»e2t 

"--v--' 

x(t) x(0)e2t + it 4e2(t-r) e2r dT 

_e2t + 4te2t 

c) Applying the Laplace transform to the equation from paxt b) 

x(t) = 4i(t) - 4x(t), itO) = 2, x(O) = -1 

we obtain S2 Xes) - sx(O) - itO) = 4sX(s) - 4x(0) - 4X(s), hence 

-s+6 -1 4 
Xes) = (s _ 2)2 = (s - 2) + (8 - 2)2 

and finally 

x(t) = _e2t + 4te2t 

Problem 3.1.4 Consider a lineax motion of a ball, whose mass is m. If the velocity 
before it was hit by a hammer at t = 0 was vet) = Vl (t < 0), while the velocity 
afterwaxds was vet) = V2 (t > 0), describe the forces acting on the ball as a function 
of time. 

Solution: If we were interested in the details of the velocity changes axound 
t = 0, and if we were able to measure the velocity with such a fine time resolution, 
we would probably find the time dependence of pet) = mv(t) and F(t) = ~ as in 
Figure 3.1-a. 



3.1. SIMPLE DIFFERENTIAL EQUATIONS 79 

p p 

P2 
f-----

o 2 3 4 t[ms] o 2 3 4 t [ms] 

F=dp/dt F=dp/dt 

K 
Ko(t) 

a) o 234 t [ms] 
b) o 234 t [ms] 

Figure 3.1: a) Linear momentum of the ball and the force causing these changes. 
b) Due to our ignorance about the details of the event, or just for mathematical 
simplicity, we often use the Dirac's 5(t) for the idealized representation of very short 
events whose effects are measurable. Note that K = IIp = P2 - Pl. 

Note that since F(t) = d~~t), the change of the linear momentum of the ball can 
be written as 

f (2) 

IIp=P2 -P1 = F(t)dt 
(1 ) 

Therefore, the area under the curve F(t) is equal to the change of the linear momentum 
IIp = m(v2 - vt}. The importance of this remark will be clearer at the end of this 
problem. 

However, very often we are not interested in, or we are not able to achieve, such 
a fine time resolution in measuring the velocity. Thus, in order to represent this 
brief event whose consequences are measurable, we use the Dirac's delta distribution, 
defined1 by 

5(t) = 0 (t # 0) and 100 r+ 
-00 5(t) dt = 1

0
- J(t) dt = 1 (3.1) 

Since the hit of a hammer is indeed a very fast event with lasting consequences, it 
is a good candidate for idealized description using the Dirac's 5(t) (see Figures 3.1-a 
and 3.1-b). From what we said earlier, it is obvious that we can write 

F(t) = KJ(t), where K = IIp = m(v2 - V1) 

Let us check if everything agrees (recall the note about the area under F(t»: 

f (2) f(2) f(2) 
F(t) dt = K5(t) dt = K 5(t) dt = K 

(1) (I) (1) 
~ 

=1 

1 See Problem 3.1.5 for more about this very useful mathematical object. 
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Problem 3.1.5 Describe the most important properties of the Dirac's delta distribu­
tion. 

Solution: The Dirac's delta is not a function in the standard sense, because it 
cannot be defined at t = O. The only thing we know about it at t = 0 is that it makes 
the integral in equation (3.1) equal to 1, a rather remarkable property. 

Its integral is an important function 

the so-called Heaviside's step function defined by 

This makes it plausible to write 

t~O 

t>O 

although this is not mathematically correct, at least not with the standard definition 
of the derivative in mind. These notions and relations are completely redefined in the 
field of mathematics called the theory of distributions, so that the standard functions 
and derivatives become special cases of a more general theory. 

Another important property of 8(t} is that it is a neutral element (unity) for the 
convolution operation: 

I(t} * 8(t} = [: I(t - T}8(T}dT = I(t} 

just like the Kronecker's delta2 is the unity for discrete convolution 

00 

I[k] * 8[k] L f(k - i] 8[i] = f(k] 
i=-oo 

From the following property 

[: I(T}8(T} dT = I(O} 

it follows that the Laplace transform of the Dirac's 8(t} is 

L{8(t)} = l~ e-st8(t} dt = 1 

Note that here we used the L_ Laplace transform, which is usually used when 
there are impulsive functions or its derivatives at the origin. See Problem 3.1.6 for 
comparisons of the two unilateral Laplace transforms: L+ and L_. 

2Kronecker's delta, a[k], is a sequence of zeros,. with the only exception at k = 0, where it 
is equal to 1: 

a[k] = { 1, 
0, 
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Problem 3.1.6 Describe the differences between the two unilateral Laplace trans­
forms C+ and C_. 

Solution: Recall that the definitions are as follows: 

C+{f(t)} = roo f(t)e-· t dt 
Jo+ 

and C{f(t)} = 1~ f(t)e- st dt 

This difference in definitions can be seen only for functions whose integrals between 
0- and 0+ are finite, i.e., for impulsive functions. Thus all differences between the two 
transforms reduce to the following 

where UH(t) is the Heaviside's step function earlier defined by 

{ 0, t ~ 0 
UH(t) = 1, t > 0 

In applications of the Laplace transform this difference means that if the differential 
equation has impulsive functions or its derivatives at t = 0, and the initial conditions 
are given for t = 0-, then there is no need to calculate the conditions for t = 0+. 
Rather, we can directly proceed with the application of the C_ transform, and avoid 
often very tedious calculations. 

Problem 3.1.7 Solve the equation 

Solution: In this case we have to apply the C_ transform because of the Dirac's 
delta and its derivative at t = 0: 

S2 X(s) - sx(O-) - 2:(0-) + 3(sX(s) - x(O-» + 2X(s) = 1 + 2s 

Hence (s + 1)(s + 2)X(s) = 3s + 6 and finally 

Xes) = _3_ => x(t) = 3e-t (t > 0) 
s+1 

Matlab note: The partial fraction decomposition can be performed by equating 
the coefficients of the corresponding powers of s in (S+~n~+2) = '!1 + '!2' or by the 
residue formulas, or simply by using the MATLAB command residue. Let us mention 
two other useful MATLAB commands for manipulating polynomials: poly and ~oots. 

Numerical integration of ordinary differential equations (ODE) can be done through 
the use of MATLAB commands ode23 and ode45. 
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Problem 3.1.8 Describe the differences in applications of Fourier and Laplace trans­
forms. 

Solution: Typically, Fourier analysis is used when only steady state solution is 
of interest. For example, the frequency characteristics of a filter tell us how the filter 
changes the amplitude and the phase of a sinusoidal signal. The implicit assumption 
is that the input to the filter has been present since t = -00, so that all the transients 
have had enough time to die out. Here we find another implicit assumption, that the 
system is stable, otherwise the transients would never die out. 

However, if we wish to analyze the behavior of the filter right after the sinusoidal 
signal has been applied (for convenience we denote that moment t = 0), we need to 
use the Laplace transform. The Laplace transform is also convenient for the stability 
analysis of linear systems. 

Problem 3.1.9 Write the following second-order differential equation as a system of 
two first-order differential equations and write them in a matrix form: 

i.e., 

x(t) + 4x(t) + 3x(t) = f(t) 

Solution: If we use v(t) = x(t), the above equation can be written as 

x(t) v(t) 

v(t) -3x(t) - 4v(t) + f(t) 

rX(t)] = [ 
lv(t) 

o 
-3 

1 ] rx(t)l [0 ] 
-4 lv(t)j + f(t) 

Note 1: In this notation the initial conditions are 

rx(o)l _ rx(O)l 
lv(O)j - lx(O)j 

Note 2: The eigenvalues of this matrix are the same as the eigenvalues of the 
original second-orner equation. This remains true if we use any other appropriate 
change of variable, for example with w(t) = x(t) + x(t) the system becomes 

rX(t)] [ 1 
ltiJ(t) - -8 

1 ] r X(t)] [0] 
-5 lw(t) + f(t) 

Much more about this will be investigated in the following sections. 



3.2 Matrix theory 

In this Section we investigate several properties of matrices which will be used 
later in this Chapter. More about matrices can be found in Appendix C. 

Problem 3.2.1 Let all eigenvalues of Anxn be distinct and let qi be a right eigen­
vector (n x 1) of A associated with the i-th eigenvalue, i.e., 

Aq; = >'iq; 

Define matrix Q as the matrix whose i-th column is the i-th eigenvector qi: 

and also define P as the inverse3 of Q, i.e., 

p=Q-1 

If the i-th row of Pis P:, i.e., 

show that P: is a left eigenvector (1 x n) of A corresponding to the i-th eigenvalue, i.e., 

Solution: Since det(Q) #; 0, in order to prove that p:A = >';P:, (i = 1,2, ... , n), 
i.e., 

PA=AP 

where A = diag(>'1, >'2, ... , >'n), it is sufficient to prove that 

PAQ=A 

Indeed, 

Note: Matrices with repeated eigenvalues mayor may not be diagonalizable. In 
general, we can write P AQ = J, where J is a matrix in the Jordan canonical form, P 
and Q are matrices of left and right principal vectors (eigenvectors and, if necessary, 
generalized eigenvectors), and P = Q-1. Diagonalization is a special case of similarity 
transformations (cf. Appendix C.3). 

3Since the eigenvalues of Anxn are assumed to be distinct, A has n linearly independent 
eigenvectors, hence Q is invertible (cf. Appendix C.I). 
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Problem 3.2.2 Determine the eigenvalues and right and left eigenvectors of a 2 x 2 
matrix 

Solution: From det(AI - A) = 0 we get A2 - A - 6 = 0, which implies Ai = -2 
and A2 = 3. 

From 

we see that for the right eigenvector corresponding to Ai = -2 we can take any non­
zero vector with components such that 3x = -2y. Thus any x f. 0 is acceptable. In 
order to avoid fractions, let us pick x = 2. Then y = -3. 

Similarly, for the right eigenvector corresponding to A2 = 3 we can pick 

q2 = [n 
Now4 

Q-l = [ 2 ! r1 

= ~ [ 1 -~ ] -3 3 

Let us check that the rows of P = Q-l are indeed the left eigenvectors of A: 

[1/5 -1/5] [! ~] = -2 [1/5 -1/5] 

[3/5 2/5] [! ~] = 3 [3/5 2/5] 

Matlab note: The main feature of MAT LAB is the easiness of matrix calculations 
and manipulations. Even its name derives from this property: MATRIX LABORATORY. 
Some of the most useful matrix commands in MATLAB are inv and eig. 

4The formula for the inverse of a 2 x 2 matrix is easy to remember: 

[ ~ 
[ d -b] 

b ] -1 _ -e a 
d - ad-be 

If we remember that ad - be is the determinant of the matrix being inverted, this formula can 
often help us remember how to apply the general formula for matrix inversion: 

X- 1 = adj(X) 
det(X) 
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Problem 3.2.3 Show that the state transition matrix (in mathematics called the 
fundamental solution) 

(At)2 (At)3 
cJ>(t) = I +At + 2r- + 3'! + ... 

satisfies the following matrix differential equation 

.K(t) = AX(t), with X(O) = I 
where both X(t) and A are n x n. 

Solution: If n = 1, obviously 1 + At + (~t + (A;?" + ... = eAt and 

~eAt = AeAt and eA.O = 1 
dt 

In general, for n ~ 1 

d 
dt cJ>(t) 

d ( (At)2) 
dt I+At+2r-+'" 

2 A3t2 

A+A t+T+'" 

( (At)2) 
A I+At+2r-+'" 

AcJ>(t) 

while for t = 0 this series reduces to I. Hence we proved that cJ>(t) is the solution of 
the given matrix differential equation. This is a good motivation to formally write 

At (At)2 (At)3 
e =I+At+2r-+3'!+'" 

i.e., 

cJ>(t) = eAt 

Note: This result and the new notation are important because if we wish to solve a 
homogeneous vector differential equation (i.e., a homogeneous system of coupled scalar 
differential equations) with arbitrary initial conditions 

x(t) = Ax(t), [
XOl] 

with x(O) = : 
XOn 

we can use the linearity and write 

x(t) = cJ>(t)x(O) 

This is so because rP;(t), the i-th column of rP(t) , is a solution of 

z(t) = Az(t), with z(O) = e; 

where e; = [0 ... 0 1 0 ... 0]', with the only 1 at the i-th position. Then 

x(t) = XlrPl(t) + ... + XnrPn(t) = rP(t)x(O) = eAtx(O) 
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Problem 3.2.4 Determine eAt for 

A=[~ ~] 
Solution: It is easy to prove (by mathematical induction) that 

Ak = [~ ~] 
Hence 

[ E:O:'/k! E~ ktk/k! 

1 E~tk/k! 

[ ~ tet ] et 
Note: The purpose of this problem was to show that 

e[ ~ :Jt;f[e: e' ] e' 
as one might have naively suspected. 

Also note that in this problem it was easy to determine eAt due to the simplicity of 
Ak. Later we shall see techniques which allow us to determine eAt in other cases too. 

Problem 3.2.5 Let A be n x n matrix with distinct eigenvalues. If Q is a matrix of its 
right eigenvectors, and A = diag(.X1, A2, ... , An) is a diagonal matrix of its eigenvalues, 
then 

Also show that 

,:., 1 
Solution: With t/>(t) = eAt = E (Akf, and A = QAQ-1, we find 

t/>(t) 
(At)2 

I+At+""2!+ ... 

1+ QAQ-1 t + (QA~!-lt)2 + ... 

QQ-1 + QAQ-1 t + QAQ-1~AQ-1t2 + ... 

( (At)2)_1 
Q I+At+"'2!+ ... Q 

QeAtQ-1 
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Now for the arbitrary initial conditions we can write 

x(t) = 4J(t)x(O) = QeAtQ-ix(O) 

Ak = diag(A~, A~, ... , A~) 

Note: In general, if A is not diagonalizable and Q-i AQ = J is its Jordan form, 
then 4J(t) = QeJtQ-i, where eJt is in general an upper-triangular matrix. 

Problem 3.2.6 Given a matrix A 

A=[ -6 
-6 ~ ] 

calculate the eigenvalues Ai and A2, and the corresponding eigenvectors qi and q2. 
Form a matrix Q = [qi q2j, find Q-i, calculate Q-i AQ, and eAt. 

Solution: To find the eigenvalues write 

det(A - AI) = 0 => A2 + 5A + 6 = 0 => Ai = -3, A2 =-2 

The corresponding eigenvectors are found from 

(A - AI)q = 0 

For A = Ai = -3 we have 

[ -6 - (-3) 
-6 

2 
1- (-3) ] [::~] = [~] 

i.e., -3q1l + 2q2i = 0, so we can choose 

Similarly, for A = A2 = -2 we have -4q12 + 2q22 = 0, and we can pick 

Now 

while 

Now we can calculate Q-i AQ: 

-1 
2 
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[ 2 -~ ] [ -6 2 ] [ 2 1 
] = [ 

2 -1 ] [ -6 =~ ] = [ -3 -6 1 3 2 -3 2 -9 

As expected 

Q-1 AQ = diag(A1, A2) 

Finally, 

eAt = QeAtQ-1 = [ ~ 1 ] [ e~3t 
2 

hence 

0 ] [ 2 
e- 2t -3 

(2e- 2t _ 2e-3t ) ] 

(4e- 2t _ 3e-3t ) 

-~ ] 

-3 0 ] 0 -2 

Problem 3.2.7 Describe how the Cayley-Hamilton (C-H) theorem can be used in 
determination of eAt, the state transition matrix of A. This method applies to other 
matrix functions as well and is often called the Sylvester interpolation. 

Solution: If a(A) = 0 is the characteristic equation of an n x n matrix A, then, 
according to the Cayley-Hamilton theorem, 

Note: a(A) is a polynomial of order n. If A has repeated eigenvalues then there 
may exists a polynomial b(A) such that b(A) = 0 and deg(b) < n. Such polynomial 
exists if at least one of the repeated eigenvalues appears in more than one Jordan block 
in the Jordan form of A. 

Using An = -(a1An-1 + ... +anI) the expression for eAt 

(At)2 (At)3 
eAt =I+At+-- + __ + 2! 3! ... 

can be written using only n terms: 

How are the coefficients Go(t), ... , G n -1 (t) determined? Since a(Ai) = 0 for all 
i = 0, ... , n - 1, the expressions 

(Aot)2 
e).i t = 1 + Ai + -~- + ... 

can be simplified to the same form as eAt: 

(i = 0, ... , n - 1) (3.2) 
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If A has n distinctive eigenvalues ).;, the above represents n equations in n un­
knowns oo(t), ... ,On-let). It has a unique solution because the system determinant 
is the Vandermonde determinant 

V().l, ... , ).n) = II ().j - ).i) ;I: 0 
j>i 

If A has multiple eigenvalues the corresponding equation in (3.2) can be differen­
tiated over ).i to obtain new independent equations and finally a solution (see Prob­
lem 3.2.10). Is the system determinant in such cases always non-zero? Here is a 
hint: 

Vkl, ... ,kr ().l, ... ,).r) = ( IJ (O! I! 2! ... (ki - I)!») (1l ().j - ).i)k,kj ) 

Problem 3.2.8 Using the C-H theorem find the state transition matrix for 

A=[=: ~] 
Solution: From the Cayley-Hamilton theorem we know that instead of writing 

,pet) = eAt as an infinite series 

At (At)2 (At)3 
e =1+At+~+3!+'" 

we can use the characteristic equation of A 

).2 + S)' + 6 = 0 

to express A 2 in terms of A and 1: 

A2 = -SA-61 

and therefore to eliminate second, third, and all other powers of A from the expression 
for ,pet). Thus 

,pet) = eAt = o(t)1 + f3(t)A 

The parameters oCt) and f3(t) can be found by writing the same equations for the 
eigenvalues of A: 

hence 

oCt) - 3f3(t) 

oCt) - 2f3(t) 

e-3t 

-2t = e 

oCt) 
f3(t) 

3e-2t _ 2e-3t 

-2t -3t e -e 

(2e-2t _ 2e-3t ) ] 

(4e- 2t _ 3e-3t ) 

Of course, the application of formula ,pet) = Q-leAtQ yields the same result. 
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Problem 3.2.9 Use the Laplace transform to determine eAt for 

A = [-6 2] 
-6 1 

Solution: We shall show in Problem 3.3.3 that eAt and (sl - A}-l, the so-called 
resolvent matrix, are a Laplace transform pair: 

We obtain the same solution as in Problem 3.2.8 from the following: 

[ s-1 2 ] 

sl-A - - --1 [S+6 -2] -1 -6 s+6 [ 
( ) - 6 s-1 - (s+2)(s+3) -

Problem 3.2.10 Given 

[ 
-1 

A= ~ -! J] 

(.!2 + .+23) 1 
(.!2 + .+33) 

find its eigenvalues, eigenvectors, and the state transition matrix cp(t} = eAt. 

Solution: It is easy to see that A has a triple eigenvalue >'1,2,3 = -1. Since 

v(A - >.1} = n - peA - >.1} = 3 - 1 = 2 

there are only two independent eigenvectors corresponding to the eigenvalue: 

hence we are free to pick b and c independently, so we can find two independent 
eigenvectors, for example: 

while the third principal vector is a generalized eigenvector. To find it we write 

and (A - >.I}Q3 = Q2 

This reduces to 

Q3 = [~] 
Note that now 
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[ 0 0 1] 
Q::. 1 0 0 

010 

so 

[ 0 1 0] 
Q-l = 0 0 1 

100 

and 

a Jordan matrix similar to A. 
Since A is 3 x 3 and A ::. -1 is a triple eigenvalue, in order to determine the 

coefficients in 

eAt = aCt)! + ,B(t)A + ,(t)A2 

we form the three equations by writing 

and the first and the second derivatives over A: 

te>.t = ,B(t) + 2,(t)A 

and 

ee>.t ::. 2,(t) 

When we solve this system with A = -1, we finally get 

Note: Since 

we have 

[ 

-t 

and eJt = e~ 
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Problem 3.2.11 Show that t/J(t) is invertible for all real t. 

Solution: Since in general t/J(t) = QeJtQ-l, we can write 

Therefore t/J(t) is invertible for all real t. 

Problem 3.2.12 Show that t/J(h)t/J(t2) = t/J(h +h). In particular, show that r 1 (t) = 
t/J( -t). 

Solution: To show that t/J(h)t/J(t2) = t/J(h + h) we can multiply two infinite 
series 

( (Ah)2) ( (Ah)2) I+Ah+-2-!-+... I+At2+~+ ... 

to get the following: 

t/J(h)t/J(h) = QeJtlQ-1QeJt2Q-l = QeJ(t 1 +t2)Q-l = t/J(h + h) 

The special case of this formula is t/J(t)t/J( -t) = t/J(O) = I, which implies rl(t) = 
t/J( -t). 

Problem 3.2.13 For the matrix differential equation 

:t M(t) = AM(t) + M(t)B, M(O) = C 

where A, B, and C are n x n constant matrices and M is an n x n matrix, show that 
the solution is given in the form 

Solution: M(t) = eAtCeBt is a solution of the given equation because it satisfies 
the initial condition: 

and the equation itself: 

!!.M(t) = !!.(eAtCeBt ) = AeAtCeBt + eAtCBeBt = AeAtCeBt + eAtCeBt B 
dt dt 

We are allowed to do the last step because B and eBt commute for all B. 

Problem 3.2.14 Prove, assuming all inverses exist, the following identities for resol­
vent matrices: 

(81 - A)-l - (81 - B)-l = (81 - A)-l(A - B)(8I - B)-l 

and 

(81 - A)-l - (vI - A)-l = (81 - A)-l(V - 8)(vI _ A)-l 
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Solution: To get the idea for the proof of the first identity, multiply it by (sl - B) 
from the right and by (sl - A) from the left to obtain the identity A - B = A-B. 
Hence, we can derive the first identity as follows: 

A-B=A-B 

(sl - B) - (sl - A) = A - B 

(sl - A)-I(sl - B) - I = (sl - A)-I(A - B) 

(sl- A)-1 - (sl - B)-I = (sl - A)-I(A - B)(sl _ B)-1 

We can prove the second identity as follows: 

v-s=v-s 

(vI - A) - (sl - A) = (v - s)1 

(sl - A)-I(vl - A) - I = (sl - A)-I(V - s) 

(sl - A)-1 - (vI - A)-1 = (sl - A)-I(V - s)(vl _ A)-1 

Problem 3.2.15 With the notation as in Problem 3.2.1, including the assumption 
that A has distinct eigenvalues, prove that 

(sl - A)-1 = ~ ~, where Ric = qlcp~ 
L..J s - Alc 
1c=1 

Note that Ric is n x n. 

Solution I: To prove the above formula we shall need the following properties of 
eigenvectors and matrices formed from them: 

• From 
n n n n n 

LAkRk = LAkqIcP~ = LAqkP~ =ALqlcp~ =ALRk =A 
"=1 k=1 k=1 k=1 1c=1 

we see that 
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• Since PQ = 1, we have Pkqm = Okm. Hence RkRm = qkp"qmP;" = qkp;"Okm = 
Rkokm , so we can write 

Now we can proceed with the proof: 

The last step is justified by the following: 

Solution II: Multiply both sides by (sl - A), 

1 

As we saw at the beginning of Solution I, this last sum is equal to I. 

Note: When A has repeated eigenvalues, it mayor may not be diagonalizable. 
If it is not diagonalizable, then E AkRk =f A, and besides simple terms with linear 
denominators (s - Ak), we also get higher-order terms, with denominators (s - Ak)2, 
(s - Ak)3, etc. 



3.3 Systems of linear differential equations 

This Section introduces the matrix notation for the systems of linear differential 
equations. The results of Section 3.1 are generalized. 

Problem 3.3.1 Write the following system of equations in a matrix form: 

u(t) 

vet) = 
wet) 

3u(t) - 3v(t) - 2w(t) + sin t 

2u(t) - 4v(t) + 8w(t) + cost 

2u(t) + 3v(t) + 3w(t) + 1 

Solution: If we write 

[U(t)] 
x(t) = vet) 

wet) 
and [

sin t] 
J(t)= co;t 

the system can be written as 

:i:(t) = Ax(t) + J(t) 

where 

[ 3 -3 -2] 
A= 2 -4 8 

2 3 3 

Problem 3.3.2 Show that the solution of the inhomogeneous vector differential equa­
tion 

:i:(t) = Ax(t) + J(t), [X01] 
with x(O) = : 

XOn 

where A is n x n, while x(t) and J(t) are n x 1, is given by 

x(t) = ¢(t)x(O) + ¢(t) * J(t) 

where (as in Section 3.2) ¢(t) = I + At + (A2f + (A~)3 + ... Le., ¢(t) ~ eAt, and * 
denotes convolution: 

¢(t) * J(t) = lt ¢(t - r)J(r) dr 

Solution: Introduce a change of variables analogous to the change usually made 
in the scalar case: 

x(t) = ¢(t)z(t), (x(O) = z(O» 

when we can formally write 

:i:(t) = ~(t)z(t) + ¢(t)z(t) 

95 
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This is justified by differentiation of 

Xi(t} = L .pij(t}Zj(t} 
j 

Since ~(t) = A.p(t}, now we can write .p(t}i(t} = f(t}, i.e., 

i(t} = .p-l(t}f(t} = .p( -t}f(t} 

This finally implies 

Le., 

x(t} = .p(t}z(t} = .p(t} (Z(O) + 1t i(r} dr) = .p(t} (Z(O) + 1t.p( -r}f(r} dr) 

x(t} = .p(t}x(O} 

'"-v--' 
homogeneous part 

+ l.p(t - r}f( r} dr 

" ' .. 
non-homogeneous part 

Problem 3.3.3 Apply the Laplace transform to the vector differential equation 

i:(t} = Ax(t} + f(t}, with x(O} = [X~ll 
XOn 

where A is n x n, while x(t} and f(t} are n x 1. 

Solution: Keeping in mind that this vector differential equation is actually a 
system of scalar differential equations, we can write 

sX(s} - x(O} = AX(s} + F(s} 

where X(s} and F(s} are n x 1 vectors whose components are the Laplace transforms 
of the corresponding components of vectors x(t} and f(t}. 

Now we can see that 

(sI - A)X(s} = x(O} + F(s} 

i.e., 

X(s} = <p(s}x(O} + <p(s}F(s} 

where 

<p(s} = (sI - A}-l 

is the so-called resolvent matrix. Since the inverse Laplace transform of a product is 
a time-domain convolution, taking the inverse Laplace transform we obtain 

x(t) = .p(t}x(O} + 1t .p(t - r}f(r}dr 

Note: Compare these expressions to the final expressions in Problems 3.1.2 
and 3.3.2. This is another justification to write 

.p(t} = eAt 
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ProbleDl 3.3.4 Write the equation from Problem 3.1.7 

as a system of two first-order equations, and use the formalism developed above to 
solve it. 

Solution: Let Wl(t) = x(t) and W2(t) = x(t). Then Wl(O-) = x(O-) = 2 and 
W2(0-) = x(O-) = 1, and 

i.e., 

WI (t) + 3Wl(t) + 2W2(t) = ~(t) + 25(t) 

W2(t) = WI (t) 

Hence, we can write 

Therefore 

r~l(t)l = [-3 -2] rWl(t)l + r~(t) + 25(t)l 
lW2(t)j 1 0 lW2(t)j l 0 j 

. _ [-3 -2] + r~(t) + 25(t)l 
w- 1 0 W l 0 j 

--------- ---------A f(t) 

W(s) (s1 - A)-I(W(O-) + F(s» 

[s~13 ~ r1 ([~] + [1~2S]) 
1 [ s 

(s + 1)(s + 2) 1 
-2 ] [28 + 31 s+3 1 j 

[2:ill] 
8+1 

The solution we are looking for is 

x(t) = W2(t) = C 1 L! 1} = 3e- t (t > 0) 

Matlab note: MATLAB commands ode23 and ode45 can be used to numerically 
integmte systems of ordinary differential equations. 



3.4 Input-output representation 

This Section is here to refresh the reader's memory about some of the many 
transfer function techniques available in analysis and design of linear systems. 
More importantly, it should illustrate some of the problems that are a lot easier 
to solve using the state-space methods, or at least require some insights from 
that appro,!-ch. 

Problem 3.4.1 Determine the output of a system described by 

when 

a) u(t) = cos 3t 
b) u(t) = e- t 

iJ(t) + 2y(t) = u(t) (t > 0) 

y(O) = 5 

c) u(t) = e-(2-e)t where € is a small positive number 
d) u(t) = e- 2t 

Solution: The homogeneous part of the solution is the same for all four cases. 
Since the root of the characteristic equation (also called the pole of the system) is 
a= -2 

a) The non-homogeneous part (also called the particular solution) is as in Prob­
lem 3.1.1 

Finally, the solution is 

y(t) = Yh(t) + Ynh(t) = ~~ e-2t + 123 cos 3t + 133 sin 3t 

Note 1: The first term in the solution approaches zero fast, and it is often called 
the transient part of the solution. The remaining terms are then called the steady-state 
part of the solution. Note that both the initial conditions and the input contribute to the 
transient part of y(t), through Yh(t) and Ynh(t)), respectively. The steady-state part, 
however, comes from the input only, therefore it is often called the forced solution. 

Note 2: We can solve this equation in other ways, using the Laplace transform 
for example. Another method is attractive too: Knowing the root of the characteristic 
equation and from the form of the input we can immediately write 

y(t) = Ae-2t + Bcos3t + Csin3t 

If we substitute this into the original equation (not only its homogeneous part), the 
initial condition gives us one of three equations for constants A, B, and C: 

98 
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The other two equations are obtained by equating the coefficients next to cos 3t and 
sin 3t terms, respectively: 

2B + 3C = 1 and 3B - 2C = 0 

See also Problem 3.4.2. 

b) For this input 

Therefore, 

c) For u(t) = e-(2-e)t we find 

yet) = (5 -D e-2t + ~e-(2-e)t 

Note: As e -+ 0, i. e., when the input's complex frequency approaches the system's 
pole, the forced output grows in magnitude. This is resonance. Asymptotically (as 
e -+ 0), the total output behaves like: 

1· ((5 1) -2t 1 -(2-e)t) 1m - - e +-e 
-(2-£)t -2t 

5e-2t+lime -e 
£-+0 e e e-+O € 

5e- 2t + te- 2t 

d) When u(t) = e-2t the input's complex frequency coincides with the pole of the 
system. The convolution of two similar terms produces a new form: 

(t) -1t -2(t-T) -2T d - t -2t 
Ynh - e e T - e 

o 

Therefore 

yet) = 5e-2t + te- 2t 

Problem 3.4.2 Find the output of a system described by 

a) ri(t) + 3y(t) + 3y(t) + yet) = e-t with yeO) = 1, yeO) = 2, and yeO) = 3 

b) "ii(t) + 3y(t) + 4y(t) + 12y(t) = cos 2t with yeO) = 1, yeO) = 1, and yeO) = 1 

Solution: a) This system has a triple pole at -1, hence the homogeneous part of 
the solution is a linear combination of e- t , te-t, and t 2e- t (cf. Problem 3.1.3). Since 
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the input's complex frequency coincides with this triple pole, besides these same terms 
the particular solution also adds t 3e-t to the solution. Hence 

yet) = Ae-t + Bte-t + Ct2e-t + Dt3e-t 

Coefficients A, B, C, and D are found from the initial conditions for the whole 
equation and by substitution of this expression into the equation. Generally, such 
problems are easier to solve using Laplace transform method. 

b) In this case poles are at ±2j and -3, and the input coincides with a pair of 
poles at ±2j, therefore 

yet) = A cos 2t + Bsin 2t + Ctcos 2t + Dt sin 2t + Ee-3t 

Problem 3.4.3 What is the output of the system described by 

yet) + 3y(t) = -aCt) + 2u(t) 

with yeO) = 1 and u(t) = e- 2t + cos 7t. 

Solution: If we try yet) = Ae-3t + Be-2t + Ccos7t + Dsin 7t and substitute 
it into the equation we immediately find that B = O. The input part of the equation 
is responsible for this. The complex frequencies for which this happens (in this case 
only -2) are called the zeros of the system. They are the roots of the characteristic 
equation of the input part of the equation. 

Problem 3.4.4 What is the impulse response h(t) of a system? What is the transfer 
function T(s) of a system? Show that T(s) = .c{h(t)}. 

Solution: Impulse response. The impulse response h(t) of a system is the output 
of the system caused by the Dirac's delta impulse 6(t) at the input. The system is 
assumed to be at rest when 6(t) is applied, i.e., all initial conditions are zero. 

The impulse response is important because the output of a linear time-invariant 
system to any given input can be determined if we know the impulse response of the 
system5 : If the initial conditions are non-zero Yh is found as in Problem 3.1.3, while 
Ynh can be characterized in terms of the impulse response as follows. 

By the linearity of the system and the decomposition of the input 

u(t) = 100 
u( r)6(t - r) dr 

we find (assuming the system is causal, i.e., h(t) == 0 for t < 0) 

Ynh (t) = It u( r)h(t - r) dr 

In general, if a system is given by a differential equation, the impulse response is 
most easily determined as the inverse Laplace transform of its transfer function. The 
derivation is given below. 

5Let us mention here that if we want to measure the acoustic impulse response of a concert 
hall, and thus characterize its acoustic properties, firing a gun and measuring its echo is not 
the best thing to do, especially since the audience should be in the hall - without the audience 
the acoustics are completely different (cf. [49]). 
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Transfer function. Transfer function is the ratio of the Laplace transforms of the 
output and the input of the system, assuming zero initial conditions: 

If a system is given by 

T( ) = Yes) 
s U(s) 

with zero initial conditions, then the Laplace transform yields 

From this expression we see that T(s) does not depend on the input u(t), only on 
the coefficients of the differential equation. 

Relation between h(t) and T(s). Since T(s) does not depend on the particular 
choice of u(t), we can pick u(t) = 6(t). Then U(s) = 1, yet) = h(t), and Yes) = H(s). 
Therefore 

T(s) = ~~:~ = H(s) = C {h(t)} = 100 
h(t)e-st dt 

Note: This is why we often write H(s) instead ofT(s). Another way to see this is 
to use the convolution property of the Laplace transform: With zero initial conditions 

yet) = h(t) * u(t) => Yes) = H(s)U(s) 

Note also that for causal systems (h(t) == 0 for t < 0) when s = jw the transfer 
function T(s) becomes the frequency response T(jw) and we find that h(t) and T(jw) 
are a Fourier transform pair: 

T(jw) = H(jw) = F {h(t)} = 100 
h(t)e-iwt dt 

Problem 3.4.5 Find the impulse response of the system described by its transfer 
function 

H s _ s+ 10 
( ) - S2 + 20s + 164 

Solution: The relation between the impulse response h(t) of a linear system and 
its transfer function H(s) is H(s) = C{h(t)}, i.e., h(t) = C-1{H(s)}, therefore 

-1 { S + 10 } -lOt 
h(t) = C (s + 10)2 + 82 = e cos8t 
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Matlab note: Here we demonstrate how simple it is to get plots in MATLAB. In 
Figure 3.2 we use the command impulse to plot the impulse response of a system given 
by a rational transfer fv.nction. It can be used to obtain the inverse Laplace transform 
of any rational fv.nction. 

nllll • [1 10] 
den • [1 20 164] 
iapulse (num. den) 

0.6 

! 
"li. 0.4 

~ 

0.2 

o 

" nllllerator 
X denominator 
X does ev.rything: calculationa aDd plot 

-0.2'---':-::---'-----'---'---':-::---'::--':--'---':-::----' 
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

TIme (secs) 

Figure 3.2: The plot produced by the MATLAB command impulse. 

Usually, plots produced by MATLAB are quite satisfactory, but if we want to add a 
"personal touch," we can do as follows (see Figure 3.3): 

nllll • [1 10]; 
d.n = [1 20 164]; 
t • 0:0.01:1; 
[y.x.t] = impula.( .. um.d .... t); 

X DUllerator 
X denominator 
" tim. to b. shoWD 
" this fora of the CODlllaDd o .. ly do.s calculatio .. s 
" x r.turns the states of the syat.m 
X which w. shall d.fi ... lat.r 

plot(t.y). axi.([O 1 -0.2 1.4]) 
grid. xlabal('till. [a]'). ylabal('impulae response') 
titl.('Just a little bit nic.r plot') 
text(0.2.0.6. 'you can evan put som. text inside the graph') 

Problem 3.4.6 Linear time-invariant systems are described using linear differential 
equations with constant coefficients which relate the output y(t) to the input u(t): 

y(n) (t) + aly(n-l) (t) + ... + an-ly(t) + any(t) = bou(m) (t) + ... + bm-l u(t) + bm u(t) 

with initial conditions y(O), y(O), ... ,y(n-l) (0) given. Discuss the solution y(t). 
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Just a litHe bit nicer plot 

Figure 3.3: This plot shows how the user can add some comments and change the 
ranges on the axis. 

Solution: The solution of this equation can be written as 

yet) = Yh(t) + Ynh(t) 

where Yh(t) is a homogeneous part of the solution, while Ynh(t) is a non-homogeneous 
(also known as particular) solution: 

• Yh(t): For each multiplicity-m root a of the characteristic equation of the dif­
ferential equation Yh(t) contains the following term(s) 

where O!o, ••• , O!m-l are constants determined from the homogeneous part of the 
equation 

and the initial conditions . 

• Ynh (t): This part of the solution is a convolution of the input u(t) with h(t), the 
impulse response of the system: 

Ynh(t) = lt u(r)h(t - r) dr 

The impulse response is most easily determined using the inverse Laplace trans­
form. 
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Note 1: If the system is initially at rest, i.e., if all initial conditions are zero, 
then obviously Yh(t) == 0, hence yet) = Ynh(t). On the other hand, if u(t) == 0, then 
yet) = Yh(t). We say that the non-homogeneous part of the solution is a response 
to the input, while the homogeneous part of the solution is a response to the initial 
conditions. 

Note 2: How does this convolution formula reduce to the convolution formula 
used in Section 3.1? 

Problem 3.4.7 Determine the impulse response of a system described by 

yet) + 2y(t) + lOy(t) = u(t) + 3u(t) 

Solution: Obviously 

H(8) _ 8 + 3 8 + 1 + 2 3 
- 8 2 + 2s + 10 (8 + 1)2 + 32 3 (8 + 1)2 + 32 

hence 

h(t) = e-tcos3t + ~e-tsin3t (t > 0) 

Matlab note: To plot this directly from the coefficients of the differential equation 
do the following (see Figure 3.4): impulse ([1 3]. [1 2 10]) 

1.2~--~--~----~--~----~--~--~----~--~--~ 

0.8 

0.6 

Q) 

" :::> 

"" 0.4 a. 
E 
c( 

0.2 

0 

-0.2 

-0.4 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 

Time (sees) 

Figure 3.4: The plot produced by the MATLAB command impulse. 
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Problem 3.4.8 Determine the impulse response of a system described by 

yet) + 2y(t) + yet) = 'Ii(t) + 2u(t) 

Solution: Obviously 

s+2 1 1 
H(s) = (s + 1)2 = s + 1 + (s + 1)2 

hence 

h(t) = e-t + te- t (t > 0) 

Problem 3.4.9 Show that if u(t) = es,t + e82t , then the output contains terms 
T(s1)e8 ,t and T(s2)eB2t • 

Solution: To simplify the analysis, assume zero initial conditions. With this 
input, the Laplace transform of the output becomes 

Yes) = _1_ b(s) + _1_ b(s) 
s-s1a(s) s-s2a(s) 

These two terms contribute AI(s - S1) and BI(s - S2) at complex frequencies 81 and 
82, respectively, where 

and similarly B = T(82). 

Problem 3.4.10 Why do we encounter rational transfer functions so often? Why are 
these transfer functions always such that the degree of the numerator is < than the 
degree of the denominator? 

Solution: Linear time-invariant systems are described by linear differential equa­
tions with constant coefficients. If the corresponding equation can be written in terms 
of the input and output signals and their derivatives, ~thout any of them being de­
layed, Laplace transform yields a rational transfer function. In general, if there are 
delays, we find factors e-BT , and the transfer function is not rational. 

If u(t) = coswt and frequency w tends to infinity, the response of.any physical 
system at that frequency falls to zero. To reflect this general property we require that 
m<n. 

Indeed, from Problem 3.4.9 and with S1 = jw and S2 = -jw we find that 

eiOlt + e-iwt 
u(t) = coswt = 2 

causes the output to be 

yet) 1 T(' )dwt 1 T( . ) -jOlt '2}W + '2 -}W e + ... 

Re{T(jw)ejOlt } + ... 

IT(jw)1 cos(wt - argT(jw» + ... 
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Hence we require 

lim IT(jw)1 = 0 
w-+oo 

Since for large w we have IT(jw) I R: I b"w":,m I all physical systems must have m < n. 

Problem 3.4.11 Use MATLAB to plot the amplitude of the frequency response and 
the locations of the poles and the zeros of the following 7th order low-pass filters with 
the cut-off frequency at Wn = 100 rad/s: Butterworth, Bessel, Chebyshev Type I, and 
Chebyshev Type II. 

Solution: Figure 3.5 is easily obtained using the following MATLAB commands: 
butter, besself, chebyl, cheby2, freqs, and tf2zp. 

Butterworth Bessel Chebyshev I Chebyshev II 

1~ 

0.5 0.5 0.5 0.5 

0 '" 0 0 0 hIv-
10° 102 10° 102 10° 102 10° 102 

100 - 100 100 200 
Poles lIE Poles Poles lIE Poles lIE lIE ~ lIE 

lIE 
lIE 

0 lIE 0 lIE 0 lIE 0 lIE 

lIE 
lIE 

lIE 
lIE 'fI. lIE 

lIE lIE 
-100 '" 100 100 200 

-200 -100 0 -200 -100 o -200 -100 o -400 -200 0 
105 105 1 X 105 1 x 1 x 

0 500 
Zeros Zeros 

° 
Zeros Zeros 

° 
0°0 0°0 

@ 
0 Op 0 0 

°0° °00 @ 

0 0 

-1 -1 0 -1 500 
-1 0 -1 0 -1 0 1 -500 0 500 

x 105 X 105 X 105 

Figure 3.5: Amplitudes of the frequency responses and locations of poles and zeros of 
order 7 Butterworth, Bessel, Chebyshev type I, and Chebyshev type II low-pass filters 
with Wn = 100 rad/s. 
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Problem 3.4.12 Given a stable system with frequency response H(jw) in a feedback 
connection with gain -k as in Figure 3.6, derive the frequency response of a closed-loop 
system. Discuss the stability of the closed-loop system if measurements of magnitude 
and phase of H(jw) are given for 0 ::; w < 00. 

Figure 3.6: Typical feedback system. 

Solution: This problem presents the Nyquist stability criterion, but also its 
history and the profound influence it had on the control theory. The following is 
loosely based on the seminal 1932 paper by H. Nyquist [39] and on the 1977 paper 
by H. S. Black [5] in which he described his 1927 invention of the negative feedback 
amplifier. 

First, the definition of stability in Nyquist's own words: 

The circuit will be said to be stable when an impressed small disturbance, 
which itself dies out, results in a response which dies out. It will be said 
to be unstable when such a disturbance results in a response which goes 
on indefinitely, either staying at a relatively small value or increasing until 
it is limited by the non-linearity of the amplifier. 

This is the so-called input-output or BIBO (bounded-input bounded-output) sta­
bility and we define it in Section 3.6. 

Approach 1: Nyquist first considers the output after n ''round trips" of the 
input disturbance: 

Yn(jW) = -kH(jw)Yn-l(jW), Yo(jw) = H(jw)U(jw) 

Obviously Yn (jw) = (-kH(jw)t H(jw )U(jw) and the total output is a sum of all 
Yn(jW): 

00 

Y(jw) = LYn(jW) 
n=O 

This sum exists if and only if IkH(jw)1 < 1 for all w, when 

Y(j ) H(jw) U(') 
w = l+kH(jw) JW, IkH(jw)1 < 1 

Nyquist then comments on the limitations of this approach: If IkH(jw)1 < 1 for 
all w, then this result agrees with experimental evidence. But it incorrectly suggests 
that iffor some frequency IkH(jw)1 > 1, then there must exist a ''runaway condition," 



108 CHAPTER 3. CONTINUOUS LINEAR SYSTEMS 

i.e., the system must be unstable. For example, Black's negative feedback amplifiers6 

fall into this category, and are not necessarily unstable. In [5] H. S. Black wrote about 
patenting his invention: 

Although the invention had been submitted to the U.S. Patent Office on 
August 8, 1928, more than nine years would elapse before the patent was 
issued on December 21, 1937 (No.2 102 671). One reason for the delay 
was that the concept was so contrary to established beliefs that the Patent 
Office initially did not believe it would work. The Office cited technical 
papers, for example, that maintained the output could not be connected 
back to the input unless the loop gain was less than one, whereas mine was 
between 40 and 50 dB. In England, our patent application was treated in 
the same manner as one for a perpetual-motion machine. 

Thus Black's invention showed that even if for some frequency IkH(jw)1 > 1 the 
above result may be completely valid. However, we cannot extend this result for 
arbitrary kH(jw), because experiments show instability iffor some frequency kH(jw) 
is real and < -1. To complicate the situation further, some closed-loop systems are 
unstable when kH(jw) is real and> 1. This effect too was discovered by Black and is 
now called conditional stability. 

Here is what Black wrote about this phenomenon in [5]: 

Results of experiments, however, seemed to indicate something more was 
involved and these matters were described to Mr. H. Nyquist, who devel­
oped a more general criterion for freedom from instability applicable to 
an amplifier having linear positive constants. 

Nyquist concluded about the "round trip" approach: 

Briefly then, the difficulty with this method is that it neglects the building­
up processes. 

Approach 2: In this approach Nyquist assumes that a steady state exists and 
writes (his notation is slightly different than our) 

Y(jw) _ H(jw)E(jw) H(jw) 
U(jw) E(jw) + kH(jw)E(jw) 1 + kH(jw) 

Thus we know what the closed-loop transfer function is when the steady state 
exists, but we know nothing about the conditions under which it does exist. Nyquist 
says: 

The difficulty with this method is that it does not investigate whether or 
not a steady state exists. 

6 After several years of attempts to reduce the nonlinearities in amplifiers used in long­
distance telephony, in 1927 H. S. Black realized that the solution to this problem was not in 
perfecting the design of vacuum tubes, but in a new concept: negative feedback. Using a very 
high gain amplifier in a negative feedback configuration he could trade the high gain for a 
moderate gain with a very flat frequency response: 

IkH(jw)1 » 1 => H(jw) ~.!. 
-:""1-+-=k-'::H::-:CJ'":..· w""7) k 
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Approach 3: In this approach Nyquist develops his famous stability criterion 
and states it as follows (as we mentioned earlier, Nyquist used a slightly different 
notation: where he wrote AJ(iw) we now write -kH(jw»: 

Rule: Plot plus and minus the imaginary part of AJ(iw) against the real 
part for all frequencies from 0 to 00. If the point 1 + iO lies completely 
outside this curve the system is stable; if not it is unstable. 

In our notation (which follows Bode) this rule is the same, except that we plot 
kH(jw) and examine whether the point -1+ jO is inside or outside the resulting curve. 

The importance of the Nyquist's criterion lies very much in the fact that H(jw) 
can be obtained by measurements. Hence the closed-loop stability can be verified 
without solving any equations or even having a mathematical model of the system. 

The original proof given by Nyquist was not rigorous although it led to a very 
important result. Today we use Cauchy's Argument Principle (also called the Encir­
clement Property) to prove it. The same method is used to prove the more general 
version of the Nyquist stability criterion, which allows the initial system to be unsta­
ble (here we assume that H(s) has neither zeros nor poles on the jw axis; a slight 
modification in the formulation is necessary to include such cases as well): 

If the open-loop transfer junction kH(s) has M unstable poles then the closed-loop 
system is stable if and only if the locus of kH(jw) for -00 < w < 00 encircles the 
point -1 + jO exactly M times in the counterclockwise direction. 

Note: If H(s) is unstable, then H(jw) is not defined, but is still formally used. 

Problem 3.4.13 A Nyquist (polar) plot of the amplifier frequency response H(jw) 
with the feedback gain k = 1 is given in Figure 3.7. Determine the range of k which 
guarantees the stability of the closed-loop system. Explain why the conditional sta­
bility is undesirable. 

Solution: For stability, the point -t + jO should not be enclosed 'by the given 
curve. Since this curve intersects the real axis at approximately -0.5, -1.9, and -4.5 
and from its shape we can conclude that the allowable ranges for k are approximately 

o < k < 0.22 and 0.53 < k < 2 

In the latter range the system is conditionally stable. It is an undesirable property 
because for large inputs the system may get saturated, which effectively reduces its 
amplification and destabilizes the system. 

Matlab note: The plot in Figure 3.7 represents simulated measurements of 
H(jw) of the following system 

(s + 2ei2 ... / S )(s + 2e-i2 ... / S ) 

H(8) = 100 (8 + 0.1)(8 + 4)(8 + 6)(s + eiS,../4)(s + e ;3"./4) 

In Figure 3.8 we 8how its root locus. We see that the ranges similar to those 
determined above define stable operation of the system. Note again that the Nyquist 
criterion required neither calculations nor explicit expressions for transfer junction or 
frequency response. The following code was used to obtain Figures 3.7 and 3.8: 
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Figure 3.7: A polar plot of the measured open-loop amplifier frequency response 
H(jw). The larger view around the origin is shown to the right. 

Dum = 100.[1,2,4]; 
den = poly( [-0.1,-4,-6,sqrt(2)/2.(-1+j) ,sqrt(2)/2.(-1-j)]); 
w = 1.75:0.01:100; 

figure (1) , subplot(1,2,1) 
nyquist (num ,den) 
grid, text(110,6,'w = 0'), uia([-30,180,-100,100]) 

aubplot(1,2,2) 
nyquist (num")lden, w) 
grid, axia([-6,O,-0.5,O.5]) 

figure (2) , aubplot(i,2,1) 
rlocuB(num,den) 
grid 

aubplot(1,2,2) 
rlocus(num,den) 
grid, axia([-0.4,O.4,O,6]) 

[X ,poles] = rlocfind(num,den) 
s = num2str(K); 
gtext(['k = ',a]) 
[K,poles] = rlocfind(num,den) 
s = num2str (K) ; 
gtext(['k = ',a]) 
[K,poles] = rlocfind(num,den) 
a = nwu2str (K) ; 
gtext(['k = ',a]) 

o 



3.4. INPUT-OUTPUT REPRESENTATION 111 
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Figure 3.8: A root locus plot for H(s). The larger view around the intersection points 
with the imaginary axis is shown to the right. 

Problem 3.4.14 Given an unstable plant with 

1 
H(s) = s -1 

try to stabilize it by putting a compensator in series with it. Let 

s-l 
HeCs) = --1 s+ 

Explain why this technique is not satisfactory. 

Solution: Although from a purely theoretical point of view this seems to be 
a satisfactory compensation, and it does not make any difference whether the com­
pensator precedes or follows the plant, we shall see that in reality neither of the two 
possibilities is satisfactory, and that the reasons are completely different for each of 
them. 

If we put the compensator between the input and the plant, ideally, the compen­
sator eliminates the component of the input signal at the unstable complex frequency 
s = 1 because He(1) = O. The problem here is not that the cancellation cannot be 
realistically achieved. Even if we could achieve the pole-zero cancellation, the slightest 
l!JIlount of noise entering directly to the plant will excite the unstable response of the 
plant. 

If we put the compensator after the plant, and the cancellation is perfect, we won't 
see any unstable response at the output, but since the plant is unstable, its output 
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(i.e., the input to the compensator) will grow larger and larger, and sooner or later 
some condition will change: either the plant will burn out, or the compensator or the 
plant will leave the linear mode of operation. 

The conclusion to be drawn here is that the external behavior of a system does not 
completely describe its internal behavior. In the language of the state-space approach, 
the first attempt was unsuccessful because the, unstable state of the plant was not 
controllable, while in the second attempt it was not observable. 

Problem 3.4.15 Since the pole-zero cancellation is not a good approach, in order to 
stabilize the plant with 

1 
H(s) = --1 

s-

try to apply negative output feedback with gain k. 
Apply the same technique to stabilize a plant with 

1 
H(s) = s(s _ 2) 

Solution: The closed-loop transfer function can be found from the differential 
equation of the plant y - y = u and the equation for the feedback u = -ky + v. 

The new equation becomes y- (1-k)y = v, hence the closed-loop transfer function 
is 

1 
G(s) = k 1 s+ -

We see that the stabilization can be achieved by picking k > 1. 
For a slightly more complicated plant, given by H(s) = l/s(s - 2), this technique 

doesn't work, because the poles of the closed-loop system, i.e., the roots of 8 2 - 28+k = 
o are unstable for any choice of k. Indeed 

SI,2 = 1 ± v'f=k 

Matlab note: To plot the root locus use rlocus ([1] , [1, -2,0] ) 

To stabilize this plant we would also need to feed back yet). In general, to stabilize 
a plant with a characteristic polynomial of order n, we need yet), yet), ... , y(n-i)(t), 
which is not a realistic requirement, because differentiation drastically amplifies noise. 
We shall see that the state-space approach offers a more elegant solution, which allows 
arbitrary placement of poles of the closed-loop system. 



3.5 State-space representation 

In this Section we shall introduce the state-space approach to analysis and de­
sign of linear systems. The state-space (linear or nonlinear) model of a system 
is often the most natural and the easiest description to determine. The impor­
tance of the state-space techniques is not only in that they provide solutions, 
or at least insights, for many problems difficult to solve by the transfer function 
methods. Under fairly general conditions, linearized state-space models con­
tinue to reflect the properties of nonlinear state-space models, which are many 
orders of magnitude more difficult to handle. 

Problem 3.5.1 Assuming that ideal differentiators are available, design an analog 
computer to solve the following differential equation 

y+3y+y=u 

Solution: First rewrite the equation as follows 

y = -(jj + 3y) + u 

-~ (~Y+3Y) +u 
dt dt 

Then we can draw the analog computer as in Figure 3.9. 

y y 

u 

Figure 3.9: The analog computer based on differentiators. This technique is not good, 
because differentiation amplifies noise. 

Problem 3.5.2 Assuming that ideal integrators are available, design an analog com­
puter to solve the following differential equation 

y+9y+3y=u 

Solution: First rewrite the equation as follows 

y = -9y - 3y + u 

Then we can draw the analog computer as in Figure 3.10. 

113 
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y'(O) y(O) 

y" 

u 

Figure 3.10: The analog computer based on integrators - the Kelvin's scheme. 

Note: This technique is called the Kelvin's scheme, after Lord Kelvin, who pro­
posed it in 1876. First practical implementations of his ideas were made in the 1930's. 

To see how to proceed if the equation also has the derivatives of the input, let 
us redraw the integrator-based analog computer in a more convenient form, as in 
Figure 3.11. 

u y" y 

Figure 3.11: The more convenient diagram of the Kelvin's scheme. 

If the equation to be solved is 

jj + 9y + 3y = 2ti. + 5u 

we can use linearity of the equation, and first solve the auxiliary equation 

w+9w+3w=u 

whose simulation we already have in Figures 3.10 and 3.11. 
Now, from linearity, y = 2w + 5w, therefore we can design the simulation as in 

Figure 3.12. 

Problem 3.5.3 Given a diagram in Figure 3.12, write a system of two first-order 
differential equations, whose unknowns are the integrator outputs: Xl = wand X2 = W. 
Write the output y in terms of states Xl and X2. 
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u w" y 

Figure 3.12: The Kelvin's scheme for ii + 9y + 3y = 2iL + 5u, which was rewritten as 
ill + 9tb + 3w = u and y = 2tb + 5w. 

Solution: It is easy to see that 

Xl -9Xl - 3X2 + u 

X2 Xl 

and that y = 2Xl + 5X2. 

We usually write this in a matrix form 

[!~] [-i -~] [:~] + [~] u 

y [2 5] [~~] 

Note: Compare the eigenvalues7 o/the differential equation ii+9y+3y = 2iL+5u 

and the matrix [-i -~] . 
Problem 3.5.4 In the systems theory linear systems are often described using the 
state-space representation: 

X(t) Ax(t) + bu(t) 

yet) c' x(t) + duet) 

where u(t) is the input to the system, yet) is its output, while x(t) is an n x 1 vector 
whose components are the states of the system. A is an n x n matrix, while b and c' 
are n x 1 and 1 x n vectors, respectively. Matrix A is usually called the system matrix, 

7If W. Heisenberg took a piece of advice from D. Hilbert, and looked for the differential 
equation with the same eigenvalues as the matrices in his matrix quantum mechanics, he 
would have discovered the equation now known after E. Schriidinger [49]. 
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while vectors b and c' are called input and output vectors. For the sake of simplicity, 
we shall often assume that A has n distinct eigenvalues. 

Express yet) in terms of u(t), A, b, c', d, and the initial conditions x(O). Determine 
the impulse response in terms of A, b, c', and d. 

Solution: From Problem 3.3.2 we know that 

x(t) = </>(t)x(O) + 1t </>(t - r)bu(r) dr 
o '-v-' 

f(T) 

where </>(t) = eAt, therefore we can immediately write 

yet) = c'</>(t)x(O) + it c'</>(t - r)bu(r) dr + duet) 

or 

yet) = c'</>(t)x(O) + (c'</>(t)b) * u(t) + duet) 

To determine the impulse response, put x(O) = 0 and u(t) = 8(t). Then 

h(t) = y(t)l[x(O)=o,u(t)=c5(t)] = c'</>(t)b + d8(t) 

Problem 3.5.5 Solve the state-space equations 

x(t) Ax(t) + bu(t) 

yet) c' x(t) + duet) 

in the Laplace transform domain. Determine the transfer function in terms of A, b, 
c', and d. 

Solution: From Problem 3.3.3 we know that 

Xes) = (s1 - A)-l(X(O) + bU(s)) 

therefore 

yes) = c' (s1 - A)-lX(O) + (c' (s1 - A)-lb + d)U(s) 

Hence, the transfer function is 

H(s) = ~~:~I =c'(s1-A)-lb+d 
x(O)=O 

Problem 3.5.6 Consider a dynamical system given by 

x(t) = [-~ =~] x(t) + [~] u(t) 

yet) = [3 4] x(t) 

with x(O) = [:] and u(t) = 1 (t > 0). Find the eigenvalues of the system. Find the 

system response to the initial conditions, as well as the response to the input u(t). 
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Add these two to obtain the total response of the system. Determine the transfer 
function and the impulse response of the system. 

Solution: The Laplace transform of the response to the initial conditions is 

[ 
S + 2 -3] 

'-1 0 S + 1 [4] 32s - 1 
c (s1 - A) x(O) = [3 4] (s + l)(s + 2) 5 = (s + l)(s + 2) 

Since (8~~)~~2) = - 8~1 + 8~2' we find Y;n;teond(t) = -33e- t + 65e- 2t • 

Since U(s) = £{1} = l/s, the Laplace transform of the response to the input 
u(t) = 1 (t> 0) is 

c'(s1 - A)-1bU(s) = (s + l~~S + 2) s ~ 1 - s ~ 2 

therefore Y;nput(t) = 3ge-t - 3ge-2t • 

The total response of the system is 

yet) = Y;n;t.eond.(t) + Y;nput(t) = 6e- t + 26e-2t (t> 0) 

The transfer function of the system is 

R(s) = c'(s1 _ A)-1b = 39s = _ 39s + ~ 
(s + l)(s + 2) s + 1 s + 2 

hence the impulse response is 

h(t) = -3ge- t + 78e-2t 

Note: Since the derivative ofu(t) = 1 (t > 0), is 8(t), we have 

Even if u(t) was not zero for t < 0, we consider it zero, because all its influences 
on the system at times t < 0 are condensed in the initial conditions. 

Matlab note: MATLAB has several very useful functions for simulation of state­
space models. See, for example, initial, impulse, step, and Isim. 

Problem 3.5.7 Check that, in matrix notation too, the impulse response h(t) and 
the transfer function of a system are a Laplace transform pair. 

Solution: Earlier we found that (assume, without loss of generality, d = 0) 

h(t) = c'q,(t)b and R(s) = c'(s1 - A)-1b 

and indeed we can write R(s) = £(h(t)}. 
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Note: Like in the scalar case, cjJ(t) = eAt and (sI _A)-l are a Laplace transform 
pair. 

Also note that 

c'(sI _ A)-lb = c'adj(sI - A)b 
det(sI - A) 

If the numerator b(s) = c'adj(sI - A)b and the denominator a(s) = det(sI - A) 
are not coprime, then there are some pole-zero cancellations in the transfer /unction, 
and some of the eigenvalues of A are hidden, i.e., they do not appear as the poles of 
H(s). 

Problem 3.5.8 For H(s) = c'(sI - A)-lb with no cancellations show that for any v, 
which is not an eigenvalue of A, there are initial conditions x(O) such that the response 
to u(t) = evt is y(t) = H(v)evt . Use the results of Problem 3.2.14. 

Solution: Here Y(s) = H(v)/(s - v) = c'(vI - A)-lb/(s - v), H(s) = c'(sI­
A)-lb, and U(s) = l/(s - v). Since, in general, 

Y(s) = c'(sI - A)-l(X(O) +bU(s» 

we find 

c' (sI - A)-I(S - v)x(O) = c' «vI - A)-l - (sI - A)-l)b 

Using the identity (cf. Problem 3.2.14) 

(sI - A)-l - (vI - A)-l = (sI - A)-I(V - s)(vI _ A)-l 

we can write 

(vI - A)-l - (sI - A)-l = (sI - A)-I(S - v)(vI - A)-l 

therefore 

c'(sI - A)-l(S - v)x(O) = c'(sI - A)-I(S - v)(vI - A)-lb 

so we can pick (this solution is not unique) 

x(O) = (vI - A)-lb 

Note: If v is a zero of H(v), than the initial conditions x(O) = (vI - A)-lb and 
the input u(t) = evt cause zero output: y(t) == O. 

Problem 3.5.9 Assume A to have distinct eigenvalues. Let I-' be one of them. Find 
the initial state x(O) such that the response to the zero input (Le., the response to the 
initial conditions only) is ept • Use the result of Problem 3.2.15. 

Solution: Since U(s) = 0, and Y(s) = l/(s - 1-'), we can write 

c'(sI _ A)-IX(O) = _I_ 
s-I-' 
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Since (cf. Problem 3.2.15) 

1 n Hi 
(sI-A)- = "'­~ s->.; 

1=1 

119 

where Hi = q;pi, and q; and pi are the right and left eigenvectors of A, we can write 

~ c' qipix{O) = _1_ 
~ s->.; s-I-' 
;=1 

If we assume I-' = >'1, this implies that pix{O) = .hi. If we recall that pirn = 5ij, 
we can pick 

i.e., the initial state should be the right eigenvector of A corresponding to 1-'. 

Problem 3.5.10 The sources that have been switched out of the circuit shown in 
Figure 3.13 prior to t = 0- caused the following initial conditions: i{O-) = 5A and 
v{O-) = 10 V. An input u{t) = 105{t) V is applied. 

R=7n L=6H 

u{t) v(t) 

Figure 3.13: The circuit described in Problem 3.5.10. 

a) Write the system equation in matrix form. Let the state variables be defined as 

Xl{t) = v{t) 

X2{t) = i{t) 

Note: Based on the equations 

VL{t) 
L diL{t) 

dt 

ic{t) = Cdvc{t) 
dt 

our best choice for the states in a circuit are the currents through coils and voltages 
acro~s capacitors. 

b) Use Laplace transform to calculate v{t). 
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i.e., 

Solution: We are given that 

i(0-)=5A, v(O-) =10 V, and u(t)=106(t)V 

a) From the circuit we can write 

u(t) 

i(t) 

Ri(t) + L d~~) + v(t) 

edv(t) 
dt 

With XI(t) = v(t) and X2(t) = i(t), we can rewrite these equations as 

U Rx2+Lx2+XI 

X2 eXI 

Therefore 

b) To use the formalism developed earlier, let y = v = [1 0] x. Then by taking the 
C- Laplace transform of 

x(t) Ax(t) + bu(t) 

y(t) c' x(t) 

we obtain 

i.e., 

sX(s) - x(O-) = AX(s) + bU(s) 

Y(s) = c'X(s) 

Since U(s) = L{106(t)} = 10, while x(O-) = [10 5]', we see that 

Y(s) = c' X(s) = c'(sI - A)-I(bU(s) + x(O-» 

Finally, 
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which implies 

Ys _ -10 ~ 
( ) - s + 1 + s + 1/6 

vet) = yet) = (-lOe- t + 20e- t / 6 ) V 

c) 

v(O+) = lim vet) = lO V 
t~O+ 

On the other hand 

Since 

obviously i(O+) = 6.67 A. 
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Problem 3.5.11 The exact equations which describe the dynamics of the inverted 
pendulum on a cart are 

(M + m)z + ml9 cos 9 - ml92 sin 9 f 
mzcos 9 + ml9 - mg sin 9 0 

where M and m are the masses of the cart and the bob, I is the length of the pendulum 
rod, z and 9 are the horizontal displacement of the cart and the angle between the 
vertical and the pendulum rod (expressed in radians), while f is the force applied to 
the cart (see Figure 3.14). 

Linearize these equations and write the state-space representation of the system. 

m 

z 

Figure 3.14: The inverted pendulum on a cart. 
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Solution: The above equations are nonlinear, due to the presence of trigono­
metric functions. In several problems scattered throughout this chapter, we shall try 
to stabilize the pendulum, i.e., to keep 8 small, thus we can write 

cos 8 ~ 1 and sin 8 ~ 8 

After linearization, we can write the equations in a state-space form, by first defin­
ing the vector of states: 

Now we can see that 

where 

o 
o 

_!!!!l 
M 

(M+m)g 
Ml 

x=Ax+bu 

and [ 0 ] o 
b= 11M 

-l/Ml 

while u = /, the external force applied to control the cart and the inverted pendulum. 
In the following problems we shall assume that the measured variables are z and 

8, i.e., that 

where 

y=Cx 

C=[1000] o 1 0 0 

Problem 3.5.12 Consider a system described by 

x(t) Ax(t) + bu(t) 

yet) c' x(t) 

where A is an n x n matrix with distinct eigenvalues, and u(t) is the input to the 
system. The Laplace transform of the output is then 

Yes) = c' (sl - A)-lbU(s) 

Prove that the transfer function of the above system can be written as 

H(s) = yes) = ~ (c'qi)(p:b) 
U(s) ~ S-~i 

1=1 
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Solution: The formula for the transfer function of a system with distinct eigen­
values is a direct consequence of the result of Problem 3.2.15. This representation of 
the transfer function is very important, because it provides us with its rational decom­
position in the transform domain, thus making the application of the inverse Laplace 
transform easy. Really, since 

£-1 {_1_} = eA't 
8 -Ai 

for the impulse response of a system with distinct eigenvalues we can write 

h(t) = L QieA;t 

i=l 

where Qi = (c l qi)(p;b) (i = 1,2, ... , n). 
The general formula, for systems with multiple eigenvalues, is more complicated. 

In general, matrix A is not diagonalizable, hence, E AiR; f. A (cf. Problem 3.2.15). 
Then one has to use Jordan matrices instead of diagonal matrices, when the impulse 
response is a linear combination of exponential functions multiplied by polynomials: 

h(t) = L Qi(t)eA,t 

i=l 

The degree of each Qi(t) is equal to the number of generalized eigenvectors correspond­
ing to Ai, i.e., 

deg(Qi(t)) = V(Ail - A) - 1 = n - p(A;l- A) - 1 

Problem 3.5.13 Use both the formula from Problem 3.5.12 and the Laplace trans­
form to determine the impulse response of the system given by 

x(t) = [-~ =~ =i] x(t) + [~] u(t) 

yet) = [1 0 0] x(t) 

Solution: The transfer function of the system is 

H(8) = cl (8l - A)-lb 

[ 8 + 1 1 

1 rTl [1 0 0] 0 8+2 8~13 ~ 0 0 

[1 0 0] [ 

(8+2)(8+3) -(8 + 3) -(8 + 1) 

1m 
0 (8+1)(8+3) -(8 + 1) 
0 0 (s+ 1)(8+2) 

(8 + 1)(8 + 2)(8 + 3) 

82 +48 + 5 
(8 + 1)(8 + 2)(8 + 3) 

1 1 1 
-----+--
8+1 8+2 8+3 
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Since the eigenvalues of A are distinct, we can obtain the same result by applying 
the formula from Problem 3.5.12. First, we need to find the matrix of right eigenvectors 
and its inverse (the matrix of its left eigenvectors): 

[1 1 ~ ] Q-1 = [ ~ 
-1 -! ] Q= 0 1 and 1 

o 0 0 

Hence 

a1 ([1 0 0) [~]) ([1 -1 0) [~]) = 1 

a2 = ([1 0 0) u]) ([1 -1 0) [~]) =-1 

a3 ([0 1 -1) [!]) ([0 0 1) [~]) = 1 

Problem 3.5.14 Signal flow graphs are a useful tool in the system analysis. In the 
signal flow graph, each node presents a signal and is also a summing junction. The net 
signal at a node is the sum of all the branches coming into the node. The transmission 
gains are represented by a directed arrow and the gain on the branch. 

The Mason's gain formula allows us to find the transfer function of a system directly 
from its signal flow graph: 

1 n 

H(s) = .1.(s) ?: P;(S).1.;(s) 
1=1 

where 

n is the number of direct paths between input and output nodes 

P;(S) is the gain of the i-th direct path 

.1.(s) 1 - E; L;(s) + E;<j L;(s)Lj(s) - E;<j<k L; (s)Lj (S)Lk(S) + ... 
where each of the above summands is a product of gains 
of 1,2,3, ... non-intersecting loops, respectively 

.1.;(S) is defined as .1.(s), but on the graph without the i-th direct path. 

Use the Mason's formula to find the transfer function of the system given by the 
signal flow graph in Figure 3.15. 

Note: Mason's gain formula was first derived as a method for solving systems of 
linear equations in the early 1950's. Its derivation can be found in [11) and [65). 
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u A y 

Figure 3.15: The signal flow graph for the illustration of the Mason's formula. 

Solution: In this problem 

n=2, 

P1 = A, P2 = 1, 

L1 = AB, L2 = C, L3 = -AD, L4 = -D, 

~ = 1 - AB - C + AD + D + ABC - ABD - ACD, 

~1 = 1 - C, ~2 = 1 - AB, 

therefore 

H s _ A(I - C) + 1 - AB 
( ) - l-AB-C+AD+D+ABC-ABD-ACD 

Problem 3.5.15 Use MATLAB to plot the phase-plane plot for the van der Pol oscil­
lator given by the following nonlinear state-space equations: 

Xl = X2 

X2 -a(x~ - l)x2 - Xl 

Solution: Put the following code into file called vndrpo12.m: 

" file vndrpo12.a - siaulation of the van der Pol oscillator 

" to = O. 
tf • 10; 
for i=1:30; 

,,0 • 10.(rand(2,1) - 0.5); 
[t,,,] • ode45('vnc!rpo13', [to ,tfl, ,,0) ; " ode45 nuaerically solv •• 
hold on " ordinary diff. equations (ode) 
plot(,,0(1) ,,,0(2), 'b.') 
plot(,,(: ,1) ,,,(: ,2), 'b-') 
xlabel ( 'xl' ) 
ylabel(',,2') 
hold off 

end 
title('Phase-plans plot for the van der Pol oscillator (a-0.75)') 
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and the following code into vndrpo13.m: 

X file vndrpolS.m - equation for van der Pol oscillator 
Yo 
function xdot = vndrpol1(t,x) 
a=O.75; 
xdot = [x(2); -a*(x(1)-2 - 0*x(2) - x(1)]; 
end 

Then run vndrpol.m from MATLAB to obtain the plot as in Figure 3.16. It shows 
the system trajectories for 30 randomly chosen initial points. The parameter a is taken 
to be a = 0.75. 

Note: For the van der Pol oscillator, no matter what the initial conditions, all 
trajectories converge to a curve called the limit cycle. 

Phase-plane plot for the van dar Pol oscillator (a=O.75) 
5 

4 

3 

2 

):i 0 

-1 

-2 

-3 

-4 

-5 
-6 -4 -2 0 2 4 6 

x1 

Figure 3.16: The MATLAB plot of the phase-plane for the van der Pol oscillator. In 
this case a = 0.75 was used over the time interval from 0 to tf = lOs. 
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If a = 0.2 is used instead, the graph in Figure 3.17 is obtained. The convergence 
to the limit cycle is slower, and for some initial conditions lOs was not long enough 
for the corresponding trajectories to get close to it. 

Phase-plane plot for the van der Pol oscillator (a=O.2) 
5 

_5L-------~-------L--~==~=-------L-~~ __ ~ ______ ~ 
-6 -4 -2 o 

x1 
2 4 6 

Figure 3.17: The MATLAB plot of the phase-plane for the van der Pol oscillator with 
a=0.2. 



3.6 Stability 

This Section defines various types of stability and investigates their relations. 
It describes the stability in the sense of Lyapunov and the second method of 
Lyapunov, which are useful not only for linear systems, but also for the stability 
analysis of nonlinear systems. 

Problem 3.6.1 Define BIBO (bounded-input bounded-output) stability. Give a nec­
essary and sufficient condition for BIBO stability in terms of h(t), the impulse response 
of the system. 

Solution: A system is said to be BIBO stable if its output to any bounded input 
is also bounded. Since for any t, the output y(t) for any input u(t), t ~ 0, and zero 
initial conditions 

y(t) = 100 
h(r)u(t-r)dr 

the condition for BIBO stability can be written in terms of the impulse response h(t): 

100 
Ih(t)1 dt < 00 

Indeed, if h(t) is absolutely integrable, and C = max(lu(t)l) then 

ly(t)1 = 1100 
h(r)u(t - r)drl ::;100 Ih(r)lIu(t - r)ldr 

Hence 

ly(t)1 ::; C 100 
Ih(r)ldr < 00 

To show that absolute integrability of h(t) is also a necessary condition, suppose 
h(t) is not absolutely integrable. Then for a particular bounded input 

u(t) = sgn(h(T - t» 
where T is some time instance, we find 

y(T) = 100 
h(r)u(T - r) dr = 100 

Ih(T)1 dT 

which does not exist. Hence, if for any bounded input the system has a bounded 
output, the impulse response must be absolutely integrable. 

Thus, a system is BIBO stable if and only if its impulse response is absolutely 
integrable. 

128 
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Problem 3.6.2 Characterize the BIBO stability in terms of the poles of the system 
transfer function H(s). Assume that H(s) is a rational function. 

Solution: If the poles Pl,P2, ... ,pn of H(s) are distinct, then h(t) is given by 
(cf. Problem 3.5.12) 

n 

h(t) = L aiel',t 
;=1 

If H(s) has repeated poles, then (again cf. Problem 3.5.12) the ai are polynomials 
in t: 

n 

h(t) = L ai(t)el',t 
;=1 

In both cases the condition for BIBO stability is given by the following requirement: 

Re{pi} <0 (i=I,2, ... ,n) 

Note: A system is said to be marginally stable il its impulse response is bounded. 
II the system has distinct poles, it is marginally stable il Re{pi} ~ ° (i = 1,2, .. .', n). 
II it has repeated poles, then the repeated poles must have their real parts strictly less 
than 0, while the distinct poles may lie on the imaginary axis. 

Problem 3.6.3 Any quadratic form Q(x) can be expressed as 

Q(x) = X'pX 

where P is a symmetric matrix. 
Determine P for 

Q(x) = x~ + x~ + x~ + 2X1X2 + 6X1X3 + 4X2X3 

and determine if Q(x) (and therefore P) is positive definite, positive semi-definite 
(nonnegative definite) or indefinite. (For more on quadratic forms and definiteness, 
we refer the reader to Appendix C.) 

Solution: Since for 

[
ad e] 

P= d b I 
e I c 

the quadratic form is Q(x) = x' Px = ax~ + bx~ + cx~ + 2dx1X2 + 2ex1x3 + 21x2x3, in 
our case we easily find 

1 3] 
1 2 
2 1 

Since for Xl = X2 = X3 = 1 we· have Q(x) = 15 > 0, while for Xl = X2 = 1, X3 = -1 
we have Q(x) = -5 < 0, the quadratic form Q(x) is indefinite. Therefore, the matrix 
P is also said to be indefinite. 
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Note: Of course, the Rayleigh-Ritz theorem leads to the same conclusion, because 
Amin(P) = -2.2012 < 0, while Amax(P) = 5.1131 > 0, and so does the Sylvester's 
criterion: 

111 = 1, I ~ ! 1=0, I i 
1 
1 
2 ~ 1=-1 

Problem 3.6.4 Define the asymptotic Lyapunov stability for linear time-invariant 
systems. 

Solution: A linear time-invariant system is asymptotically stable in the sense of 
Lyapunov if when there is no input, its states tend to 0 as t -+ 00, for arbitrary initial 
conditions x(O). 

Note: The non-repeated purely imaginary eigenvalues of a system are consistent 
with Lyapunov stability, but not with the asymptotic Lyapunov stability. The stability 
defined here is the so-called stability-in-the-large, or the global stability. For nonlinear 
systems it is necessary to distinguish between the local and global stability, because 
more than one equilibrium point may exist. 

Problem 3.6.5 When do the asymptotic Lyapunov stability and the BIBO stability 
of a linear control system with a rational transfer function coincide. 

Solution: If a linear system with rational transfer function is internally asymp­
totically stable, its poles are to the left from the imaginary axis of the s-plane. There­
fore yet) = c' x(t) is bounded for any bounded input, hence the system is BIBO stable. 
But as we saw in Problem 3.4.14, if the system is not controllable or not observable, 
BIBO stability does not imply the internal stability, much less the asymptotic stabil­
ity. It can be shown that if there are no cancellations between c'adj(sI - A)b and 
det(sI - A), i.e., if the system is both controllable and observable, these two types of 
stability do coincide. 

Note: The systems which are both controllable and observable are called minimal. 

Problem 3.6.6 Describe the "second method" of Lyapunov. 

Solution: Instead of solving the system equations (the ''first method" of Lya­
punov), which can be quite a difficulty (and for some nonlinear systems even an im­
possible task), we can investigate behavior of the system's energy. For many systems 
energy cannot be defined in the standard sense, but any positive definite function Vex) 
of states, such that V(O) = 0, can be used. 

If for some positive definite function Vex), such that V(O) = 0, we find that it 
decreases as time goes on, then we can say that the system· is asymptotically stable 
in the sense of Lyapunov. However, if at some times it decreases and at other times 
it increases, we cannot conclude anything, only try another Vex). Indeed, finding the 
appropriate generalized energy (also called the Lyapunov function), which is positive 
definite and has negative definite time derivative, is often quite an art. 

Problem 3.6.7 The Lyapunov stability theory applied to linear systems reduces to 
investigation of candidate Lyapunov functions which are quadratic (or more generally, 
Hermitian) forms. 
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Let A be a system matrix of a system, and consider a function of the state vector 

V(x) = x' Px, where P is symmetric and positive definite 

The time derivative of V(x) is 

V(x) = z'Px + x'pz = x'A'px + x'PAx = x'(A'P+ PA)x 

If matrix Q defined by 

Q=-(A'P+PA) 

is positive definite, then the time derivative of V(x) becomes zero only at the origin, 
therefore, the system is asymptotically stable. If Q turns out to be positive semi­
definite, and V(x) t; 0 along any possible system trajectory, the system is asymp­
totically stable. If Q is positive semi-definite, and V(x) == 0 along some system 
trajectories, the system is stable (we cannot say it is asymptotically stable, but some 
other choice of P may show that). If Q is indefinite, we have to try another P. If Q is 
negative definite, the system is unstable, and if Q is negative semi-definite, again we 
have to examine V(x) along the system trajectories. 

Since making- a good choice of P is not trivial, for simple systems we usually begin 
with anys symmetric and positive definite matrix Q, and look for the corresponding 
P. A is a Hurwitz matrix if and only if the solution of the Lyapunovequation 

A'P+PA=-Q 

is symmetric and positive definite. 
However, sometimes we can come up with a natural choice of P (i.e., V(x», and we 

can avoid solving the Lyapunov equation. For an interesting application of Lyapunov 
theory, see Problem 3.10.2. 

Use Lyapunov equation to determine whether the matrix A given by 

A = [3 -2] 
1 -1 

is Hurwitz. Let Q be an identity matrix. Verify your results by checking the eigenvalues 
of A. 

Solution: Let 

P=[:~ ::] 
--~------------------sIndeed, we can begin with any positive definite symmetric matrix Q. This is based on 
the theorem due to Lyapunov: A matrix A is Hunoitz if and only if for any gillen positille 
definite symmetric matrix Q there exists a positille definite symmetric matrix P such that 
A'P+PA = -Q. Let us mention that if A is Hurwitz, then for any positive definite symmetric 
Q the solution of the Lyapimov equation P is unique and 

P = 1"" eA'tQeAt dt 
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then 

[ 3 1 ] [ :~ P2 ] + [PI P2] [ 3 
-2 

J = [ -2 -I P3 P2P3 1 -I 

therefore 

p=[ 1/4 -5/! ] 
-5/4 

Using the Sylvester's criterion 

1 
4 >0, 

1 5 5 13 
- ·3- - . - = -- < 0 
4 4 4 16· 

we see that P is not positive definite, hence A is not Hurwitz. 

Indeed, the eigenvalues of A are 1 -.,j2 < 0 and 1 +.,j2 > o. 

-I -~ ] 0 

Matlab note: MATLAB command lyap can be used to solve for P: 

A. [3 -2;1 -1]; 
Q = eye(2); X identity matrix 2,,2 
P = lyap(A' .Q); X A' because Matlab solves equation A*P + P*,' • -Q 

Problem 3.6.8 For a system given by 

. [0 I] x = -6 -5 x 

use the following functions to investigate stability: 

Vl(X) = 67x~ + lOXIX2 + 7x~ 
V2(X) 6x~ + X~ 
VJ(x) X~ + X~ - XIX2 

Solution: VI(X) is a good choice, because it is positive definite (to see that note 
VI(X) = (2.5xI + 2X2)2 + 60.75x~ + 3x~), and its time derivative is (we use Xl = X2 
and X2 = -6XI - 5X2) 

Vl(x) = 134xIXI + lOXIX2 + lOXIX2 + 14x2X2 = ... = -60(x~ + x~) 
a negative definite function. Therefore, our system is asymptotically stable. 

V2(X) is also a good choice, because it is positive definite, and its time derivative 
is negative semi-definite: 

V2(X) = 12xIXl + 2X2X2 = 12xIX2 - 2X2(6xl + 5X2) = -lOx~ 
Since V2(X) is negative semi-definite, we need to examine V2(X) along the trajectories 
of the system. V2(X) == 0 only when X2 == 0, which (through the system equations) 
implies Xl == O. Therefore, the generalized energy V2(X) of the system is decreasing 
along any trajectory of the system. Again we see that the system is asymptotically 
stable. 

V3 (x) is not a good choice, because, although it is positive definite, its time deriva­
tive is indefinite, V3(X) = 6x~ - 5XIX2 - llx~. Hence, V3(X) does not tell us a thing 
about the stability of the system. 
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Problem 3.6.9 The dynamic equations of a simple inverted pendulum are given by 

y=[10]x 
Use the Lyapunov equation 

A'P+P'A= -Q 

to determine whether the matrix A for the inverted pendulum is Hurwitz (i.e., if the 
real parts of its eigenvalues are all negative). Let Q be an identity matrix. 

Solution: The system is obviously unstable (if the description of the system as 
the inverted pendulum is not enough to convince you, look at the eigenvalues of the 
system), but we are asked to employ the Lyapunov function to show that A is not 
Hurwitz. 

The solution of the Lyapunov equation 

A'P+PA= -Q (in this case Q = I) 

is not unique. Indeed, if 

P = [Pl P2] 
P2 P3 

we find that P2 = -1/2, P3 = -Pl, while Pl is arbitrary. 
Since P is not unique, A is not Hurwitz. 



3.7 Controllability and observability 

Illustrative examples in this Section introduce the notions of state controllability 
and state observability. In later sections we shall see that these two properties 
of dynamic systems are encountered as conditions for pole placement and state 
observation. Several powerful tests for controllability and observability are de­
rived. 

Problem 3.7.1 Consider a single-input single-output system given by 

X Ax+bu 

y c'x + du 

where x is n x 1, u, y, and d are scalars, while A is n x n, b is n x 1, and c' is 1 x n. 
Show that this system is state controllable if and only if 

p(C) = n 

where C is the controllability matrix of the system 

Solution: By definition, a system is state controllable if, by applying a proper 
input u(t), we can change its state from any given state to any other given state in a 
finite amount of time. We know that 

x(t) = eAtx(O) + it eA(t-T)bu(T)dT 

Since eAt is always nonsingular, without any loss of generality we can consider a 
case when we wish to take vector x from its arbitrary initial state x(O) to the origin 
when t = tf. Thus we write 

i.e., 

Using the Cayley-Hamilton theorem, we can write e- AT as a finite sum 

n-l 

e- AT = L O!i(T)Ai 

i=O 

Therefore 

n-l 

x(O) = - L Aib{3i (3.3) 
i=O 

134 
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where 

tl 
{3i = 10 Qi(T)u(T)dT (i = 0, 1, ... , n - 1) 

Note: The input u(t) can be determined from the above set of equations because 
functions Qi(t) are linearly independent on segment [0, tIl. This is so because of the 
way we determined them (cf. Problem 3.2.7) 

Since the functions in the array on the right-hand side are linearly independent and 
the generalized Vandermonde matrix on the left-hand side is nonsingular, Qi(t) are 
also linearly independent. See also Problems 3.7.15 and 3.8.9. 

Equation (3.3) can be viewed as a system of n equations in n unknowns {3i (i = 
0,1, ... , n - 1), which has a solution for any arbitrary x(o) if and only if 

p(C) = n 

where 

Note: In the case of single-input systems the controllability matrix C is n x n, 
therefore we could write the above condition as det(C) #- 0. The reason we didn't is that 
the validity of the above condition can be extended to the systems with m-dimensional 
inputs, when C is n x mn. 

Thus, in general, when B is n x m, the system 

:i; Ax+Bu 

y Cx+Du 

is controllable if and only if 

p(C) = n 

where 

Problem 3.1.2 A system is described by the transfer function 

G(s) = Yes) = s+l 
U(s) S2 

A first order negative feedback dynamic compensator B(s) given by 

B(s)=k s + P 
s+l 

is implemented to get a desired feedback system transfer function. 
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t----,,---y 

z 

Figure 3.18: With Problem 3.7.2. 

a) Find parameters k and p in the feedback compensator such that the overall 
transfer function from the reference input V to output Y (see Figure 3.18) is given by 

T 8 _ Yes) _ 8 + 1 
( ) - V(s) - 82 + 28 + 4 

b) For the parameters chosen above, write the system state equations and discuss 
the controllability and observability of the system. 

Solution: Given are G(8) = ~ = W and H(8) = m = k$. 
a) In order to achieve 

T s _ Yes) _ s + 1 
( ) - V(s) - S2 + 28 + 4 

we first write 

i.e., 

Y Y 1 
T = V = U + Z = U/Y + Z/Y 

1 

l/G+H 

T 8 _ G(s) s + 1 
( ) - 1 + G(s)H(s) 8 2 + k8 + kp 

Therefore, we can immediately write 

k=2 and p=2 

b) Functions G(s) and H(8) given by 

G(s) = 8 + 1 
8 2 

and 
2 

H(8) = 2+--
8+1 

can be easily realized and connected, and then the state-space equation can be found: 

x= [ 
-2 -2 

~~ ] x+ [~] v 
1 0 
1 1 

Y = [ 1 1 o ] x 

This realization is neither controllable nor observable. 
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Problem 3.7.3 Consider a multi-input multi-output system given by 

:i: Ax+Bu 

y Cx+Du 

where B is n x ffl. 
First assume A has n distinct eigenvalues, diagonalize it and find conditions for 

the state controllability of the system. 
Then assume A is not diagonalizable, transform it into its Jordan form, and derive 

the general conditions for the system to be state controllable. 

Solution: IT A has n distinct eigenvalues, then it has n linearly independent 
eigenvectors, which can be used to diagonalize A: 

SAS-1 =A 

where the columns of S are the left eigenvectors of A (cl. Problem 3.2.1). 
Since Sis nonsingular, instead of states x(t) we can consider an alternative state 

vector defined by z(t) = Sx(t). 
Then the equations become 

Z SAS-1 Z + SBu 
y CS-1z+Du 

and we can see that the system equations got uncoupled, therefore unless all rows of 
SB are non-zero, some state will not be controllable by the input u(t). On the other 
hand, if all rows of SB are non-zero, then we can design u(t) (cf. Problem 3.7.15) so 
that it takes z(O) = Sx(O) into z(t,) = Sx(t,) = O. 

IT A has repeated eigenvalues, the columns of the transformation matrix S are 
the principal vectors (eigenvectors and possibly generalized eigenvectors) of A. The 
similarity transformation SAS-1 produces a Jordan matrix similar to A. With z(t) = 
Sx(t), the equations are again as above, but the conditions for controllability are now 
as follows: 

1. No two Jordan blocks in J = SAS- 1 are associated with the same eigenvalue; 

2. The elements of rows of SB corresponding to the last rows of Jordan blocks in 
J are not all zero; 

Problem 3.7.4 Give a few examples of the above criteria for state controllability. 

Solution: Given are only matrices after similarity transformation, and brief 
explanations. 

SAS-1 = [ -~1 o 
-2 
o 

~ ] , 
-3 

SB = [:J ' controllable 
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SAS- 1 = [-~ _~], SB = [!] , not controllable 

SAS- 1 = [-~ _~], SB = [!] , controllable 

SAS- 1 = [-~ _~], SB = [~] , not controllable 

SAS- 1 = [-~ _~], SB = [~] , controllable 

SAS- 1 = [-~ -~ j], SB = [~ ~], not controllable 

Problem 3.7.5 For a system given by 

x(t) = Ax(t) + bu(t) 

yet) = c' x(t) 

find the condition which guarantees that if Lc.'s y(O-), y(O-), ... , y(n-1)(0':'), '1£(0-), 
u(O-), ... , u(n-1)(0-), are known, then the Lc.'s X1(0-), X2(0-), ... , Xn(O-) can be 
found. 

Solution: If we define yet) and U(t) as 

[ 
yet) 1 yet) 

yet) = . 
y(n-·1)(t) 

[ 
u(t) 1 u(t) 

and U(t) = . 
u(n-·1) (t) 

then we can write 

yet) = Ox(t) + TU(t) 

where 
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and T is a lower triangular Toeplitz matrix with first column [0 c'b 
(numbers hi = c' Aib are called Markov parameters, cf. Problem 3.8.4). 

Therefore, we can write 

139 

and we see that the initial conditions x(O-) can be determined from the arbitrary 
given initial conditions Y(O-) and U(O-) if and only if 

p(O) = n 

If p(O) = n we say that the system is observable. 

Note: If the system is not obsenJable, the i.c. 's x(O-) can be found only for some 
i.c. 's Y(O-) and U(O-). In that case, if i.c. 's x(O-) can be found, then they are not 
unique. This non-uniqueness is not important if we just need to determine any i.c. 's 
x(O-). But if we need the actual i.c. 's, this is a problem (see Problem 3.7.6). 

Problem 3.7.6 Describe the condition which guarantees that if we know A, b, c', 
u(t) (t ~ 0), and yet) (t ~ 0), then we can determine x(t). 

Solution: To determine x(t), besides the given matrices and signals, we only 
need the i.c.'s x(O-). As we found in Problem 3.7.5, this can be done if and if the 
observability matrix, defined by 

has a full rank. 

Note: If the system is not obsenJable, there are cases when the i.c. 's x(O-) 
cannot be determined, and even if they can, they are not unique. Hence if p(O) < n, 
the states x(t) either cannot be determined, or are not uniquely determined. Due to 
the Cayley-Hamilton theorem, further derivatives y(n), y(n+1), ... are of no help here. 

Problem 3.7.7 Derive observability conditions analogous to the controllability con­
ditions in Problem 3.7.3. The system is given by A, B, and C matrices. 

Solution: In general, when A is similar to a Jordan matrix via the similarity 
transformation J = SAS- 1 , the conditions for observability are as follows 

1. No two Jordan blocks in J = SAS- 1 are associated with the same eigenvalue; 

2. The elements of columns of CS- 1 corresponding to the first columns of Jordan 
blocks in J are not all zero; 
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Problem 3.7.8 Describe the PBH (Popov-Belevitch-Hautus) eigenvector tests for 
controllability and observability. Also describe the PBH rank tests. 

Solution: PBH eigenvector tests: 

• A system is controllable if and only if no left (row) eigenvector of A is orthogonal 
to b, Le., if we have 

p' b :F 0 for all left eigenvectors of A 

• A system is observable if and only if no right (column) eigenvector of A is 
orthogonal to c', i.e., if we have 

c' q :F 0 for all right eigenvectors of A 

PBH rank tests: 

• A system is controllable if and only if 

p[sl-A b] = n (for all s) 

• A system is observable if and only if 

(for all s) 

Problem 3.7.9 Describe the s-plane criteria for controllability and observability. 

Solution: A system is controllable if and only if there are no cancellations in 
(al -A)-lb, or, more precisely, if there are no common pole-zero cancellations between 
the elements of adj(sl - A)b and det(sl - A). 

It is observable if and only if there are no cancellations in c'(sl - A)-I, i.e., if 
there are no common pole-zero cancellations between the elements of c'adj(sl - A) 
and det(sl - A). 

Combining these two criteria, we can say that a system is both controllable and 
observable if and only if there are no pole-zero cancellations in c' (sl - A) -1 b. 

Problem 3.7.10 For the system shown in Figure 3.19 write the system equations in 
the form 

x(t) = Ax(t) + bu.(t) 

yet) = c' x(t) + duet) 

and find the transfer function. Determine whether this system is controllable and/or 
observable. Is it stable? 
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-1 lis 

~ 

Figure 3.19: Diagram of the system described in Problem 3.7.10. 

Solution: Obviously 

[~:] = [=! -~ ] [::] + [~] u 

y = [-5 -1] [::] + 1 . u 

The transfer function is found by taking the Laplace transform of the system 
equations and assuming zero initial conditions: 

which yields 

x(t) = Ax(t) + bu(t) 

y(t) = c' x(t) + du(t) 

8X(8) AX(8) + bU(8) 

Y(8) = C' X(8) + dU(8) 

Y(8) = (c'(81 - A)-lb + d)U(8), i.e., H(8) = ~~:~ = c' (81 - A)-lb + d 

In our case 

H(8) 

= 

[ -5 

[ -5 

8 2 - 28 + 1 
82 +48-5 

8-1 = 8+5 

This result can easily be obtained from the signal flow graph using the Mason 
formula. 
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The controllability matrix is 

C = [b Ab) = [ ~ -5 ] 
-5 

while the observability matrix is 

[ c' ] [-5 -1] 
0= c'A 25 5 

Their ranks are both equal 1, which is less than the order of the system (n = 2), 
hence this system is neither controllable nor observable. 

Note: Another possibility was to obsertle that there is a zero-pole cancellation 
in (sl - A)-lb, which is not consistent with controllability. Also there is a zero-pole 
cancellation in c'(sl - A)-l, which is not consistent with obsertlability. 

We shall see later some special types of realizations. Using these realizations the 
transfer /unction from this problem can be realized as controllable (but not obsertlable) 
or obsertlable (but not controllable) system. Due to the pole-zero cancellation it can 
never be realized as both controllable and obsertlable system. 

Problem 3.7.11 Consider the two feedback systems in Figure 3.20. Write a state­
space representation in each case. What can you say about the controllability, observ­
ability, and stability of these two configurations? 

u t---r--Y 

u 

Figure 3.20: With Problem 3.7.11. 

Solution: The two "black boxes" can be realized as in Figure 3.21. 
Therefore, for the first configuration we can write: 

[~~] = [=~ -~] [~~] + U] II. 

y=[-2 -1][~~]+U 
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lis 
• !IE • 

Figure 3.21: Possible realizations of the two "black boxes" in Problem 3.7.11. 

Hence 

det{C) = 1 ~ -21 -2 =0 => not controllable 

1
-2 -1 1 det{O) = 4 2 = 0 => not observable. 

Although the transfer function is 

[ s -1 ] 
I -1 -2 s + 1 [1] (s - 1)2 S - 1 

H{s)=c{sl-A) b+d=[-2 -1] s2+s-2 1 +1= (s-I){s+2) = s+2 

the system is not stable, because we had a zero-pole cancellation of an unstable pole 
s = 1. 

We could better examine the stability by finding the eigenvalues of the system: 

det{AI - A) = 0 >..2 +>"_ 2 = 0 

The second configuration can be realized as follows: 

rX1] _ [ 0 2] rX1J + [1] u 
lX2 - 1 -1 lX2 0 

y = [1 0] [:~] 
Hence 

det{C) = 1 ~ ~ 1 = 1 oF 0 => controllable 

det{O) = 1 ~ ~ 1 = 2 oF 0 => observable. 

This time the transfer function is 

[8+12] 
I -1 [ ] 1 s [1] s + 1 

H(8) = C (sl - A) b = 1 0 82 + 8 _ 2 0 = (8 _ l)(s + 2) 

hence the system is not stable. 
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Problem 3.7.12 Let the parameters of the inverted pendulum (see Problem 3.5.11) 
on a cart be as follows: m = 0.102 kg, g = 9.81 m/s2 , M = 1 kg, and 1= 0.5 m. 

Write the corresponding state-space equations, and find the eigenvalues of the 
system. Is the system stable, controllable, and/or observable? Simulate the system 
using the MATLAB package, first for the unit step input of magnitude 0.1 and zero 
initial conditions, and then for zero input and initial conditions: x/(O} = [0 0.1 0 OJ'. 

Solution: The system equations are now 

:i; = [g 11 ~ 
o 21.6 0 

y=[~ ~ g 
The eigenvalues are found from 

therefore 

>. 
o 
o 
o 

o 
>. 
1 

-21.6 

-1 
o 
>. 
o 

-~ 1 =0 

Ai = 0, A2 = 0, A3 = 4.65, A4 = -4.65 

Since A3 > 0, the system is not stable. 
The system is controllable because 

C = [b Ab A 2b A 3b] = [ ~ 
-2 

is a full rank matrix. Really, 

1 0 
-2 0 

o 2 
o -43.2 

1-1.2 

1 
-2 

o 
o 

o 
o 
2 

-43.2 

~ 1= -(-1}1+2+1+21 
-2 

2 
-43.2 

The system is also observable, because 

0= 

is a full rank matrix. Indeed 

010 

-1.2 
] 

_~ 1 = -(39.2}2 =I 0 

~ g g 1 
~1 g ~ = p(I4) = 4 

21.6 0 0 
o 0 -1 
o 0 21.6 

Note: Examine the observability of this system if the only state available is B(t}. 
What if only z(t} is available? 
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Simulation for the unit step input of magnitude 0.1 and zero initial conditions: 

First create the file called pendla.m containing the following lines: 

% file pendla.1I 
X 
function "dot. pendla(t,,,) 
u·0.1; 
"dotU) ~ ,,(3); 
"dot(2) • ,,(4); 
"dot(3) • -,,(2) + lou; 
xdot(4) • 21.6*,,(2) - 2*u; 
end 

and then create and run the following file in MATLAB to obtain Figure 3.22: 

X file simulla ... 
X 
to • 0; 
tf = 0.8; 
,,0 = [0;0;0;0]; 
[t,,,] = ode45('pendla' ,to,tf,,,O); X ode45 numerically solves ord.diff . equations (ode) 
subplot (2 ,1,1) 
plot(t,,,(: ,1» 
title ( 'Inverted Pendulum SillUlation la') 
xlabel('t [s]'), ylabel('z(t) [m]'), grid 
subplot(2,l,2) 
plot(t,,,(: ,2» 
xlabelC't [s]'), ylabel('theta(t) [rad]'), grid 

Inverted Pendulum Simulalion 1 a 
0.04~--~--~--~--~--~--..---..-----, 

0.03 

I 
~0.02 

0.Q1 

0.1 0.2 0.3 0.4 
I [s] 

0.5 0.6 0.7 0.8 

Or---~--====~'---'----'----'---'---, 

'6'-0.05 

£. 
S -0.1 

! 
-0.15 

_0.2L.---''-------'----'-----'---...L..---'----.l...---.l 
o ~ ~ U M U U U U 

I[S] 

Figure 3.22: The results of the MATLAB Simulation 1a. The results are expected 
because the system is unstable. 
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Simulation for the zero input and initial conditions: x/CO) = [0 0.1 0 0)'. 

Now begin by creating the file called pendlb.m containing the following lines 

" file pendlb .• 

" function xdot = pendlb(t,x) 
xdot(l) = x(3); 
xdot(2) x(4); 
xdot (3) = .-x (2) ; 
xdot(4) = 21.6;',,(2); 
end 

and then create and run the following file in MATLAB to obtain Figure 3.23: 

" file simullb.m 

" to = 0; 
tf = 0.8; 
xO = [0;0.1;0;0]; 
[t,x] = ode45('pendlb',tO,tf,,,0); 
subplot(2,l,l) 
plot(t,,,(: ,1» 
title('Inverted Pendulum Simulation lb') 
xlabel('t [s]'), ylabel('z(t) [m)'), grid 
Bubplot(2,l,2) 
plot(t,x(: ,2» 
xlabel('t [s]'), ylabel('theta(t) [rad]'), grid 

~nverted Pendulum Simulation 1 b 

°r---'---====~c=--.----r--~----'---I 

-0.02 

I-O.04 
~-O.06 

-0.08 

2.5r----,----r-----,----,----.,---,---..-----, 

0.5 

0.1 0.2 0.3 0.4 
I[s] 

0.5 0.6 0.7 0.8 

Figure 3.23: The results of the MATLAB Simulation lb. Again, the results are as 
expected. 
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Problem 3.7.13 Consider the following dynamical system equation 

x = [-~ -~ _~ J] x + [~] u 

y=[1 1 10]x 

Is this system controllable and/or observable? Is it stable? Draw a signal flow 
graph and find a transfer function, both using the Mason's formula, and the formula 
in terms of system matrices. 

Solution: Since det(C) = 0 and det(O) = 1, this system is not controllable, 
but is observable. Its eigenvalues are obviously -1, -1, -2, and -2, so the system is 
stable. The signal flow graph is shown in Figure 3.24. 

u y 

Figure 3.24: With Problem 3.7.13. If we were allowed to add one new connection in 
the graph, which nodes should we connect in order to make the system controllable? 
Which output connection we can remove without destroying observability? 

From the Mason's rule, we find 

and 

6 13 12 4 
~(s) = 1 + - + - + - + -S S2 S3 S4 

Pl(S) = l/s 

P2(S) = l/s2 

~l(S) = 1 + 5/s + 8/s2 + 4/s3 

~2(S) = 1 + 2/s + 1/s2 

so we have 

H( ) _ Ei Pi(S)~i(S) _ _ S2 + 5s + 5 
s - ~(s) - ... - (s + l)(s + 2)2 

Of course, 

() '( -1 1 1 s2+5s+5 
H s = c sl - A) b = ... = (s + 1) + (s + 2)2 = (s + l)(s + 2)2 
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Problem 3.7.14 For the system described in Problem 3.7.13 

[ 

-1 

X= ~ 
1 

-1 
o 
o 

o 
o 

-2 
o 

y=[11 10]x 

determine the controllability and observability matrices using the MATLAB commands 
ctrb and obsv. Also, determine its transfer function using the command ss2tf. 

Use the following code to obtain the controllability and observability matrices and 
the transfer function: 

A = [-1 1 0 0; 
o -1 0 0; 
o 0 -2 1; 
o 0 0 -2 ]; 

b = [1; 0; 0; 1]; 
c = [1; 1; 1; 0]; 

C = ctrb(A,b) 
det(C) 
o = obsv(A,c') 
det(O) 
[num,den] = ss2tf(A,b,c' ,0,1) 
[R,P,K] = residue(num,den) 

The transfer function results are as follows: 

Dum = o 1.0000 6.0000 10.0000 5.0000 

den = 6 13 12 4 

R = 0.0000 1. 0000 1. 0000 0 . 0000 

P = -2.0000 -2.0000 -1.0000 -1.0000 

K = [] 

From the results of ss2tf and residue we can write 

H(8) _ 82 +58+5 = _1_ + __ 1_ 
- (8 + 1)(8 + 2)2 (s + 1) (8 + 2)2 

Note: Use MATLAB to answer the questions asked in the caption of Figure 3.24. 

Problem 3.7.15 For the system with 

A=[~ 
2 
1 
1 ~ ] and b= [n 

investigate its stability and controllability. Determine any input u(t) which can take 
the system from x(O) = [10 5 3]' to the origin in t, = 1.28. 
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Solution: The system is unstable because one of its eigenvalues has a positive 
real part: 

~l = 4.5995, ~2 = -1.2998 + 0.5170j, A3 = -1.2998 - 0.5170j 

If the system is to be stabilized, it should be state controllable, or at least the 
unstable mode of the system should be controllable by the appropriate input u(t). 

We shall see later how to stabilize systems by the appropriate state feedb~k. At 
the moment we are interested only in its controllability. Since 

det(C) = Ib Ab A 2bl = 3 8 43 '" 0 1
211481 

1 7 30 

this system is state controllable. 
Now let us find some input u(t) which in finite time (tt = 1.28) takes the system 

from x(O) = [10 5 3]' to the origin. From what we know, such an input must satisfy 
the following three equations: 

i t! 

o oo(t)u{t) dt = (3o i t! 

o 02 (t)u{t) dt = {32 

where {3o, {3l, and {32 are the solutions (cf. Equation 3.3) of 

In our case 

r~~l = _C l r:~~~n = _ -1 [=~~ 1~ ~~] [1~] = [=~~:~;] 
~~ l~3(0)J 15 13 -3 -17 3 4.27 

There are many different inputs which can do that. The simplest such 'input is a 
piece-wise constant function of time, Let Rl{t), R2{t), and R3(t) be defined by the 
graphs in Figure 3.25, and let 

This choice for u{t) greatly simplifies the above integral equations - now they 
become a system of three linear equations in unknowns 'Yl, 'Y2, and 'Y3: 

it! 

o Oi{t)U{t) dt = (3i => it! Oi{t) (~'YiRi{t») dt = {3i 

=> ~ 'Yi (it! Oi(t)Ri(t)dt) = {3i 

=> t'Yi (lt~l Oi(t)dt) ={3i (i=0,1,2) 
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~] i 11111 
o 0.2 0.4 0.6 0.8 1 1.2 

fll····j , iLl 
o 0.2 0.4 0.6 0.8 1 1.2 

~JtmJ'i ' I 
o 0.2 0.4 0.6 0.8 1 1.2 

t[s) 

Figure 3.25: Graphs defining Rl(t), R2(t), and R3(t). Each is non-zero for tJ/3 
seconds. 

Using the Cayley-Hamilton theorem (as in Problem 3.2.6) we can find the Oi(t)'S. 
Note that Oi(t)'S were defined as coefficients next to Ai (rather than next to (_A)i) 
in the expansion of e- At , hence we have to be careful with the signs. 

therefore 

(j=1,2,3) 

Denote these values for different values of j by 90j, 91j, and 92j, then with 

[ 
901 902 903] [ 0.3914 0.2725 -0.1862] 

G = 911 912 913 = -0.0889 -0.3606 -0.9040 
921 922 923 0.0095 0.0669 0.2056 

we can write 

G'Y = (3 i.e., 'Y = G- 1(3 

and finally 

['Y~ [-11.08] 'Y2 = -37.74 
':Y 33.55 
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~ 0 

-20 

-40 
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111-IO 

-20 

-30 
0 

Figure 3.26: Shown are the input u(t) and the states Xl (t), X2(t), and X3(t), which 
are driven by the input to the origin. 

Therefore we can pick u(t) as in Figure 3.26. 

Note: Since the system is unstable, if greater t f were chosen, the accumulation 
of numerical errors and noise would make it very improbable that the origin would 
be reached. That is why it is much better to design the state feedback, which uses 
the current information {on-line or real-time calculations} than to use the predesigned 
inputs, which do not account for unpredictable changes. 

Problem 3.7.16 If a pair (A, b) is not controllable, can c' be always chosen so that 
(A, c') is observable? 

Solution: No, such c' cannot be found when A has two or more Jordan blocks 
associated with the same eigenvalue (see Problems 3.7.3 and 3.7.7). The simplest 
example is 

A=[~ ~] 
Problem 3.7.17 If a pair (A, b) is controllable, can c' be always chosen so that (A, c') 
is observable? 

Solution: Yes, any c' without any zeros makes a good choice. 



3.8 Canonical realizations 

This Section provides an overview of five most commonly used realizations of 
systems: controller, observer, controllability, observability, and modal. 

Problem 3.8.1 Show that the complete state controllability (observability) or a lack 
of it is preserved under a nonsingular similarity transformation. 

Solution: We will show that p(Cn ... ) = P(Cold ), where 

while 

Indeed, since 

we have 

Cne .. = SCOld 

Since S is nonsingular, p(Cnew) = P(Cold ). 

The proof of p(On ... ) = P(Oold) is completely analogous to the above derivation. 

Problem 3.8.2 Given a transfer function 

8 2 + 2 
H( 8) = 7( 8~+~1:7)7( 8~+--:2:-:-) (7""8""-:+-4:-:-) 

develop controller, observer, controllability, and observability canonical forms of real­
ization. For each canonical realization write the system equations and draw a signal 
flow graph. 

After that write H(8) in partial fractions form, and draw the corresponding signal 
flow graph. This is the modal canonical representation of this system. 

Solution: Directly from the definitions of the controller, observer, controllability, 
and observability forms, and from 

2 1 + 2 
H(8) _ 8 + 2 _ .. 83" 

- (8+1)(8+2)(8+4) -1+~+*+:;\ 

we find 

152 
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Controller form (Figure 3.27): 

----'0 ... -

-8 

Figure 3.27: Realization of H(s) in the controller form. Controller form is helpful 
in pole placement, because the Bass-Gura formula becomes very simple (see Prob­
lem 3.9.4). 

In general, with 

we can write 

-7 -14 
1 0 
o 1 

-a3 ] [1] 
~ be = ~ 

In Section 2.2 we derived the following results (Equations 2.5 and 2.9), 

Since a_ is lower triangular with l's on its main diagonal (hence det(Ce ) = 1), this 
realization is always controllable. 
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Observer form (Figure 3.28): 

-8 

Figure 3.28: Realization of H(s) in the observer form. It is useful in design of the 
state observer, because the dual of the Bass-Gura formula becomes very simple (see 
Problem 3.11.1). 

-7 1 
-14 0 
-8 0 

For this realization, in general, 

[ 
-al 1 0] 

Ao = -a2 0 1 
-a3 0 0 

By duality to the controller realization 

therefore this realization is always observable. 

c~=[1 00] 
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Controllability form (Figure 3.29): 

-8 

Figure 3.29: Realization of H(s) in the controllability form. It is useful in partitioning 
a system into controllable and uncontrollable parts. The controllable part is usually 
written in the controllability form. It is also useful in determining the input necessary 
to set desirable initial conditions (see Problem 3.8.9). 

where 

[ 
1 7 14]-1 

[0 {3 -y]=[1 0 2] ~ ~ I =[1 

For this realization, in general, 

where 

[ 
0 0 

Aeo= 1 0 
o 1 

beo = [~] 

-7 37] 

It is interesting to note that 0, {3, and'Y are the first three Markov parameters (see 
Equation 2.2 and Problem 3.8.4). For this realization (cf. Equations 2.1 and 2.4) 

Ceo = 1 and Oeo = M 

therefore this realization is always controllable. 
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Observability form (Figure 3.30): 

a 

-8 

Figure 3.30: Realization of H(s) in the observability form. It is useful in partitioning a 
system into observable and unobservable parts. The observable part is usually written 
in the observability form. Since Oob = I, it is also useful in determining the initial 
conditions x(O-) from Ox(O-) = Y(O-) - TU(O-). See also Problem 3.8.10. 

where again 

o 
o 

-8 

1 
o 

-14 

o 0 
1 0 
7 1 

For this realization, in general, 

Aob= [ ~ 
-a3 

where again 

Here 

1 
o 

o 
1 

] bob = [~] 

Oob=I and Cob=M 

therefore this realization is always observable. 

o 0] 
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Modal form (Figure 3.31): 

1 

lis 

Figure 3.31: Realization of H(8) in the modal canonical form. This form corresponds 
to the Jordan (diagonal) canonical form of the matrix. It is helpful in determining 
which modes are uncontrollable and/or unobservable (see Problems 3.7.3,3.7.7,3.7.13, 
3.7.16,3.7.17, and 3.9.10). 

To find the modal canonical form of the system, we first need the partial fraction 
representation of H(8): 

8 2 +2 A B G 
H(8) = (8 + 1)(8 + 2)(8 + 4) = 8 + 1 + 8 + 2 + 8 + 4 

82 + 2 = A(8 + 2)(8 + 4) + B(8 + 1)(8 + 4) + G(8 + 1)(8 + 2) 

8 = -1 => A = 1 } 
8 = -2 => B =-3 
8 = -4 => G = 3 

133 
=> H(8) = 8+1 - 8+2+ 8+4 

The choice of vectors b and c' is not unique, it is just necessary to pick them so 
that blcl = 1, b2c2 = -3, and baca = 3. 

Note: As an exercise, the reader may try to determine the eigenvalues of the 
system, its impulse response, and the transfer junction, both using the formula H (s) = 
d(sl - A)-lb + d and the Mason's rule, for some, or for all five realizations. 
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Problem 3.8.3 Show that the product OC is invariant under a nonsingular similarity 
transformation. 

Solution: If an "old" system is transformed into a "new" system by a nonsingular 
matrix S, then from Xnew = SXold, we see that 

Anew bnew 

Therefore Onew = OoidS and Cnew = S-lCold , and finally 

Note: This product is equal to the Hankel matrix of Markov coefficients M, 
which is defined in Problem 3.8.4. See also Problem 3.8.11. 

Problem 3.8.4 For the transfer function 

8 2 +2 
H(8) = (8 + 1)(8 + 2)(8 + 4) 83 + 782 + 148 + 8 

five different canonical forms were examined in Problem 3.8.2. Find the transforma­
tions to convert between different canonical forms. 

Solution: If the transformation is given by matrix S, than with Xnew = SXold, 
we have 

Anew bnew 

Most of the following identities can be derived from Equations 2.3 and 2.6 and 
Problems 3.8.2 and 5.1.24: 

• any controllable form -+ controller form: S = CcC-1 = a=Tc-1 

• any controllable form -+ controllability form: S = C- 1 

• any observable form -+ observer form: S = 0;;10 = a_O 

• any observable form -+ observability form: S = 0 

• controller -+ observer form: S = -iBi 

• controller -+ controllability form: S = a: 
• controller -+ observability form: S = ib(Ac) 

• controllability -+ observer form: S = b(Ao)i 

• controllability -+ observability form: S = M 
• observer -+ observability form: S = a=l 
• any of the above -+ modal form: see Example C.3.3 
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The following matrices appear in the list above: 

i=[~ ::: ~~] 
1 ... 0 0 

the so-called Bezoutian 

where with 

H(s) = b(s) = blSn-l+b2Sn-2+ ... +bn_lS+bn 
a(s) sn + alsn - l + a2sn- 2 + ... + an-IS + an 

the matrices a+, a_, b+, and b_ are defined by 

[ 
an -1 a2 al 

1 
[ , 0 0 

n 
a .. as a2 al 1 0 

a+ = a_ = 
~n-2 0 a .. an-l an -3 1 

0 0 a .. a,,-1 4,..-2 al 

[ .. bn_l b2 

" 1 [ , 0 0 

~ 1 
b+ ~ l b .. bs 

~:_l 
bl 0 0 

b - . 
0 b .. - - ~"-2 b .. _s 0 
0 0 b .. b .. _l bn -2 bl 

The matrices Ao and Ac are the system matrices in observer and controller form, 
respectively, while 

h.. 1 h .. +l 

~2n-l 
is the Hankel matrix of Markov parameters, hi, defined by 

00 

H(s) = c'(sl - A)-lb = Lhis-i 
;=1 

Note: Since 

-1 1 ( A) -1 1 ( A A2 ) (sl - A) = - 1 - - = - 1 + - + - + ... S S S S S2 

we have 

hi = c' Ai-lb (i = 1,2, ... ) 

Since the impulse response can be written as h(t) = c'eAtb and since H(s) 
.c{hJt)} and H(s) = c'(sl - A)-lb, we see that 

~-l I 
hi = dt;-l h(t) 

t=o 
(i = 1,2, ... ) 
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Let us see some of these transformations at work: 

• Controller -+ observer form: S = -iBi 

14 
8 
o 

Now we see that 

SAcS- 1 [ 
[ 

1 
0 
2 

-7 
-14 
-8 

0 

o 
o 
1 

-12 
6 

1 
0 
0 

S=[~ 

~ ] [ ~7 
28 0 

~ ] =Ao 

o 
2 
o 

o 
-12 

6 

-14 
0 

• Controllability -+ observer form: S = b(Ao)i 
In this case 

2 
6 

28 

-8 
0 
0 

S = b(Ao)i = (blA~ + b2Ao + b3 I)i = 

o 
1 
7 ~ ]) [ ~ 

] 3~4 [ 

372 -12 
-12 -24 
-24 6 

[ ~ -7 
37 ] -12 90 

-8 56 

o 
1 
o 

1 
o 
o 

-24 
6 

12 

Problem 3.8.5 Show that if a system given by {A, b, c'} is controllable, it can be 
transformed into the controllability form using the following transformation matrix: 

Sco = C- 1 

where C = [b Ab ... An-1bj is the controllability matrix of the original system. 

Solution: We need to show that ScoAS;;;,! = Aco, Scob = bco, and c'S;'/ = c~o. 
To show that ScoAS;;} = Aco we will prove that AC = CAcao Indeed 

while 

CAco=[Ab A 2b ... (-anI-an_1A- ... -alAn-l)bj 

From the Cayley-Hamilton theorem -anI - an-1A - ... - a1An- 1 

therefore AC = CAco. 
It is obvious that Scob = bco, because 
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To show c'S;;} = [hI h2 ... hnl observe that 

c's;,I = [c'b c' Ab ... c' An-Ibl = [hI h2 ... hnl 

where hi's are Markov parameters. 

Note: Recall from Section 2.2 that 

is just another way of writing the definition of Markov parameters 

~h. -; _ b(s) 
~ ,s - a(s) 
,=1 
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Problem 3.8.6 Show that a controllable system given by {A,b,c'} can be trans.. 
formed into the controller form using 

Solution: Using the result of Problem 3.8.5 we know that the transformation 
from controller into the controllability form is given by S = C;;I = a:'. Thus, to go 
from any controllable form into the controller form we can go via the controllability 
form, when we find 

Problem 3.8.7 For the transfer function given by 

H(s)- s+3 
- S3 + 9s2 + 24s + 18 

find a controllability form of system realization. 
a) Find the controllability matrix Ceo. Is the system controllable? 
b) Find the observability matrix Oeo. Is the system observable? 

Solution: If we want to use the controllability canonical form, we need to 
determine the coefficients a, (3, and'Y in Figure 3.32. 

To do that, we can use the Mason's formula which yields 

H(s) = ;-(I+~+~)+~(I+n+s1r·l 
1+~+~+~ 

which, when equated with the given expression for H(s), implies 

a = 0, {3 = 1, and 'Y = -6 

Of course, the same result is obtained using 
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a. 

-18 

Figure 3.32: Realization of H(s) from Problem 3.8.7 in the controllability form. 

Therefore 

[ 0 0 -18] [1] 
:i; = 1 0 -24 x + 0 u 

o 1 -9 0 

y = [0 1 -6] x 

while 

[ 1 0 0] 
Ceo = 010 

001 
and Oeo = [ ~ -! ~~ ] 

-6 30 -154 

Since det(Ceo) i- 0 and det(Oeo) = 0, we see this realization is controllable but it 
is not observable. If we chose to use the observer or observability form, the realization 
would be observable but not controllable. 

As we saw in Problem 3.7.10 there are realizations that can be neither controllable 
nor observable. 

Problem 3.8.8 Show that the controller (or any controllable) realization of H(s) = 
b(s)/a(s) is observable if and only if a(s) and b(s) are coprime polynomials. Similarly, 
the observer (or any observable) realization of H(s) = b(s)/a(s) is controllable if and 
only if a(s) and b(s) are coprime. 

Solution: Use the theorem from Problem 3.7.9. 

Problem 3.8;9 A system is given by 

212 
H(s) _ s + 2 _ .. + 8!" 

- (s + 1)(s + 2)(s + 4) - 1 + ~ + ~ + !s-
Write it in any state-space representation and determine the coefficients in the 

following impulsive input 
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so that the initial conditions are "instantaneously" changed from x(O-) to x(O+). 
What canonical form is the most convenient for these calculations? What condition 

guarantees that any desired change in initial conditions can be made in this way? 

Solution: In general, regardless of the form the system is given in, from Prob­
lem 3.5.4 we know 

Using 

with 

n-l 

u(t) = Llli8(i)(t) 
;=0 

we obtain 

where Il = [IlO III ... Iln-d', while C is the controllability matrix. 

Note 1: In the controllability canonical/orm Ceo = I, hence the calculations 
become trivial: 

Note 2: We can achieve any change in initial conditions in zero time i/ and only 
i/ pee) = n, i.e., under the same conditions as with the finite time (Problem 3.7.1). 

Problem 3.8.10 Consider again Problems 3.7.5 and 3.7.6 and determine the canoni­
cal form which is most suitable for determining initial conditions and observing states. 

Solution: In Problems 3.7.5 and 3.7.6 we found that 

yet) = Ox(t) + TU(t) 

In order to calculate x(t) or x(O) it is necessary to invert 0, the observability 
matrix. Since in the observability canonical form Oob = I that form is the most 
suitable for such calculations. Even with this simplification these calculations are not 
a good solution, because they involve differentiation, which amplifies any error due to 
noise or round-off errors. In discrete-time systems there is no differentiation involved 
and this formula can be practical. 
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Problem 3.8.11 In Problem 3.8.3 we showed that the product OC is invariant under 
similarity transformations. Prove that 

OC=M 

where 

[ h. 
h2 h" 

1 
h2 h. h,,+l 

M= . 

h" h,,+l h2n-l 

is the Hankel matrix of Markov parameters, hi, defined by 

00 

H(s) = c'(sI - A)-ib = L hiS-i 

;=1 

Solution: It is easy to see this because 

OC [
C' 1 c'A 
: [b Ab 

c' An - i 

[ 

c'b 
c'Ab 

~, An-ib 

c' An-ib 1 
c'Anb 

~, A 2n - 2b 

Note: In the controllability canonical realization Ceo = I, therefore 

Oco=M 

Similarly, in the obsenJability canonical Oob = I, hence 

Cob=M 

Problem 3.8.12 A system is given by 

~~j [-1 X2 = 1 
x 0 

Use MATLAB commands to calculate Markov parameters hi, h2, ... hs. Compare 
that with the result of long division of the numerator by denominator in H(s). 
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Solution: Type in the following in MATLAB prompt: M = obsv(A,c')*ctrb(A,b) 
to obtain 

M = [ -i 
The transfer function can be obtained by typing the following line in MATLAB: 

[num,den] = ss2tf(A,b,c' ,d,l) which yields 

H(5) = 52 + 38 + 4 
53 + 452 + 58 

The result of long division agrees with elements of M above: 

82 +38+4 _ -1 -2 3 -3 7 -4 13 -5 17-6 
8 3 + 482 + 58 - 8 - 8 + 5 - 8 + 8 - 8 + ... 



3.9 State feedback 

In this Section we shall see how to move the poles to any desired position, some­
thing that was not possible by a simple output feedback (cf. Problem 3.4.15). 
We shall see that the condition for this so-called modal controllability is the 
state controllability and observability. 

Problem 3.9.1 Consider a system given by 

x=Ax+bu 

Let the system be controllable, i.e., 

p[b Ab A 2b ... An-1bj = n 

If the state vector is observable and a state feedback is implemented using an 
arbitrarily chosen gain vector as in Figure 3.33, i.e., 

u = -k'x+v 

write the new system equation of the feedback system, and show that the new system 
is controllable for any feedback gain vector k'. 

f··································; 

u(t) lis x(t) : yet) 

-k 
x(t) 

Figure 3.33: State feedback feeds back the state vector x(t) to the input. If the state 
vector is not directly available, it has to be determined using the observability of the 
system. 

Solution: The system equation of the feedback system is found from 

Since 

x = AX+bU} 
u = -k'x+v 

=> x = (A - bk' )x + bv 
'-v-' 

AI 

k'b k'Ab 
1 k'b 
0 1 

0 0 
... 
D 
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k' A
n

-
2

b 1 k' An-Sb 
k' A n - 4 b 

1 
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i.e., 

we have 

det(C) = det(C,D) = det(C,)det(D) = det(C,) 
~ 

Since the system is single-input-single-output, 

p(C) = n => det(C) =f. 0 => det(C,) =f. 0 => p(C,) = n 
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Therefore, the controllability of the system is not affected by the implementation of 
the state feedback. Also, if the initial system was not controllable, the state feedback 
cannot make it controllable, because 

p(C) < n => det(C) = 0 => det(C,) = 0 => p(C,) < n 

Note: In Problem 3.9.2 we shall see that the state feedback can affect the observ­
ability of the system. 

Problem 3.9.2 Given a continuous-time system 

x=Ax+bu 

y=c'x 

where 

A = [! ~], b = [~], c' = [1 2] 

discuss its controllability and observability. 
A state feedback controller is used such that 

u= -[3 1] x+v 

Find the system equation of the feedback system, and discuss its controllability 
and observability. 

Solution: Although the initial system is both controllable and observable: 

det(C) = -2 =f. 0 and det(O) = -19 =f. 0 

the feedback system is controllable (by the previous problem it remains controllable 
for any choice of k'), but is not observable: 
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Problem 3.9.3 For the system given by 

Y==[ll]x 
draw a signal flow graph. Find the transfer function using the Mason's formula. Check 
this result by using the formula H(s) == c'(sI - A)-lb+d. Find the eigenvalues of the 
system. Is the system stable? Is it controllable? Is it observable? Find a gain vector 
such that the state feedback system defined by 

u(t) == -k' x(t) + v(t) 

has eigenvalues at -1 and -2. 

Solution: The signal flow graph looks as in Figure 3.34. To apply the Mason's 
formula, first write 

and 

P1(s) == l/s, 
P2(S) == 2/s, 
P3(S) == -1/s2, 
P4(S) == 2/ s2, 

u 

~l(S) == 1 -l/s, } 
~2(S) = 1 - 2/s, 
~3(S) == 1, 
~4(S) = 1, 

4 3s _ 4 
~ L Pi(S)~i(S) = -82-

i=l 

y 

Figure 3.34: The signal flow graph of the system in Problem 3.9.3. 

Finally, with n = 4, 

1 ~ 3s-4 
H(s) = ~(s) ~ Pi(S)~i(S) = S2 - 3s + 3 

1=1 

The eigenvalues are found from 

det(>.I - A) == 0 
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hence 

therefore the system is not stable. 

\ 3±.v'3 
1\1,2 = '2 'T 
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Since det(C) I- 0 and det(O) I- 0, the system is both controllable and observable. 
To find the feedback gain vector k' which moves the eigenvalues to -1 and -2, 

write 

det(M - (A - bk'» = (~+ 1)(~ + 2) 

Thus 

Le., 

~2 + (k1 + 2k2 - 3)~ + k1 - 5k2 + 3 = ~2 + 3~ + 2 

which finally implies 

Problem 3.9.4 In general, if the system is controllable, we can arbitrarily change 
its eigenvalues by a proper choice of the feedback gain vector. If the characteristic 
polynomial of the initial system is 

a(s) = sn + a1Sn - 1 + ... + an-1S + an 

while the characteristic polynomial of the desired closed-loop system is 

a(s) = sn + a1Sn - 1 + ... + an-1S + an 

then with 

a' = [a1 •.• an] and a' = [a1 ••• an] 

we can use the Bass-Gura formula 

k' = (a' - a')CcC- 1 

or the Ackermann formula 

k' = [0 ... 0 1]C-1a(A) 

Note that always Cc = a:T , where a_ is as defined in Problem 3.S.4. 

Prove the Bass-Gura formula by tr8.nsforming the original system into its controller 
form, designing the feedback for that form, and transforming back to the original form. 
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Solution: In Problem 3.8.6 we found that if a system given "by 

x=Ax+bu 

y=c'x 

is controllable then it can be transformed into a controller form by a nonsingular 
transformation. The similarity transformation is given by 

When the system is written in the controller form, it is easy to find k~ such that 

det(81 - (Ac - bck~» = a(8) 

Indeed, due to the special forms of Ac and be, matrix Ac -bck~ is also a companion 
matrix with the following characteristic polynomial 

Hence, 

k~ = a' -a' 

and, back to the original form, 

k' = k~S 

Note: In Problem 3.9.7 we show that controllability is also a necessary condition. 
It is quite remarkable that the condition for arbitrary pole placement (also called modal 
controllability) is the same as for state controllability: p(C) = n. The reader .should 
try to apply these formulas to the Problem 3.9.3. 

Problem 3.9.5 Consider a system with the transfer function 

H 8 _ (8 - 1)(8 + 2) 
( ) - (8 + 1)(8 - 2)(8 + 3) 

Note that H(8) is irreducible (i.e., there are no pole-zero cancellations). Is it possible 
to change H(8) into 

8-1 
G(8) = (8 + 2)(8 + 3) 

by state feedback? If it is, calculate the corresponding feedback gain vector. 

Solution: Yes, H(s) can be transformed into G(8) by the state feedback, because 
the irreducibility of H(8) implies any of its representations is controllable, so we can 
apply the Bass-Gura formula to design a feedback such that the closed-loop eigenvalues 
are 1'1 = -2, 1'2 = -2, and 1'3 = -3. Since this technique does not affect the zeros 
of the system (cf. Problem 3.9.6), we see that the new transfer function is going to be 
equal to G(8). 

If we write the system in the controller form 
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c' = [1 1 -2] 

we don't need the Bass-Gura formula. Indeed, the closed-loop system will have 

[ 
-2 - kl 5 - k2 6 -gk3 ] 

AI = A - bk' = ~ ~ 

On the other hand, we want the first row of Af to be [-7 -16 -12], because 

G(8) _ 8 - 1 _ (8 - 1)(8 + 2) _ 82 + 8 - 2 
- (8+2)(8+3) - (8+2)2(8+3) - 83 +782 +168+12 

Therefore, we just need to pick k' = [5 21 18]. 

Problem 3.9.6 Prove that the application of the state feedback does not affect the 
zeros of the system. 

Solution: Consider a system in the controller form given by {Ae, be, c~}, where 
c~ is made up of the coefficients of b(s), the numerator of the transfer function. After 
the feedback, the system is still in the controller form, now given by {Ae - bk', be, c~}. 
Obviously, the coefficients of the numerator of the transfer function have not changed. 
Thus, the zeros are invariant under the state feedback. 

Problem 3.9.7 Show that the pole placement by the state feedback is possible if and 
only if the system is controllable. 

Solution: This is the proof originally given by Bass and Gura: 

By definition 

0(8) det(s1 - A + bk') 

det((81 - A) (I + (s1 - A)-lbk'» 

det(s1 - A) det(1 + (s1 - A)-lbk') 

a(s)(1 + k'(s1 - A)-lb) 

therefore 

o(s) - a(8) = a(8)k'(81 - A)-1b 

By equating the coefficients of the powers on both sides we find 

01 - a1 k'b 

k'Ab+a1k'b 

k' A 2b + a1k' Ab + a2 k'b 

i.e., 

a' - a' = k'Ca: 

Since a_ is always nonsingular, arbitrary pole placement is possible if and only if 
C has a full rank. 
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Problem 3.9.8 The dynamic equations of a simple inverted pendulum are given by 

x=[~ ~]x+[_~]u 
y=[10]x 

Design a state feedback gain vector, i.e., u( t) = - k' x + v, to move the poles of the 
system to -0.5 ± 0.5j, assuming that both state variables are available. 

Solution: To make sure we can change both poles of the system, we first check 
if the system is controllable. Since det(C) :f= 0, we can continue: 

original characteristic polynomial: >,.2 - 1 => 
desired characteristic polynomial: oX 2 + oX + t => 

Using the Bass-Gura formula we find 

k' = (a' - a')CcC- 1 = [-1.5 -1] 

a' = [0 -1] 
a' = [1 0.5] 

Problem 3.9.9 For the inverted pendulum on a cart problem (analyzed in Prob­
lems 3.5.11 and 3.7.12), assume that all the system states are available. A feedback 
system is to be designed to obtain the desired eigenvalues of -1, -2, -1 + j, and 
-1·- j. 

Let u(t) = -[kl k2 k3 k4] x(t) + vet). Find the gain vector k' = [k1 k2 k3 k4] to 
get the desired eigenvalues. (Since the system equation is quite simple with many zero 
elements, it is not necessary to convert this system to a controller form to design the 
feedback gain vector.) 

Using this feedback gain vector repeat the simulations as in Problem 3.7.12. 

Solution: The characteristic polynomial of the system is 

a(s) = S4 - 21.6s2 

therefore 

a' = [0 -21.6 0 0] 

The characteristic polynomial of the desired closed-loop system is 

a(s) = (s + 1)(s + 2)(s + 1 - j)(s + 1 + j) = s4 + 5s3 + 10s2 + lOs + 4 

hence 

Since 

[ 
1 

Cc = a=T = 0 
-21.6 

0 

and 

a' = [5 10 10 4] 

0 
1 
0 

-21.6 

0 
0 
1 
0 ~ rT 

1 
-2 
o 
o 

according to the Bass-Gura formula 

[ ~ 
o 
o 
2 

-43.2 

0 21.6 

2~.6 ] 
1 0 
0 1 
0 0 

-1.2 
] 

k' = (a' - a')CcC- 1 = [-0.2041 -15.902 -0.5102 -2.7551] 
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Simulation for the unit step input of magnitude 0.1 and zero initial conditions: 

First create the file called pend2a.m containing the following lines: 

X file pend2a .• 
X 
function xdot = pend2a(t,x) 
u = 0.2041.x(1) + 15.902.x(2) + 0.51020x(S) + 2.75510x(4) + 0.1; 
xdot(1) • x(S); 
xdot(2) = x(4); 
xdot(S) = -x(2) + lou; 
xdot(4) = 21.60x(2) - 20u; 
end 

and then create and run the following file in MATLAB to obtain Figure 3.35: 

X file aimu12a .• 
X 
to = Oi 
tf = 8; 
xO = [0;0;0;0); 
[t,x) = ode45('pend2a' ,to,tf,xO); 
aubplot (2 ,1,1) 
plot(t,x(: ,1» 
title('Inverted Pendulua Siaulation 2a') 
xlabel('t [a)'), ylabel('z(t) [.)'), grid 
aubplot (2 ,1, 2) 
plot(t,x(: ,2» 
xlabal('t [8)'), ylabel('theta(t) [rad)'), grid 

Or---"-",," 

:[ 
~-O.2 

-0.4 

o 

Inverted Pendulum Simulation 2a 

8 

0.01 r---r---r---r---r------,r------,r-----,r-----, 

8 

Figure 3.35: The results of the MATLAB Simulation 2a. 
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Simulation for the zero input and initial conditions: x'(O) = [00.1 00]'. 

Now begin by creating the file called pend2b.m containing the following lines 

% file pend2b.1l 
% 
function ",dot = pend2b(t,,,,) 
u • 0.204h",(1) + 15.9020",(2) + 0.51020",(3) + 2.75510",(4); 
",dot(l) • ",(3); 
",dot(2) = ",(4); 
",dot(3) • -",(2) + hu; 
",dot(4) • 21.60",(2) - 20u; 
end 

and then create and run the following file in MATLAB to obtain Figure 3.36: 

% file SillUl2b.1l 
% 
to • 0; 
tf • 8; 
",0 = [0;0.1;0;0]; 
[t,"'] = ode45('pend2b',tO,tf,,,,0); 
subplot (2 ,1,1) 
plot(t,,,,(:,l» 
title('Inverted Pendulum Simulation 2b') 
dabel('t [sl'), ylabel( 'z(t) [II] '), grid 
subplot(2,l,2) 
plot(t,,,,(: ,2» 
dabel('t [8]'), ylabel('theta(t) [rad]'), grid 

Inverted Pendulum Simulation 2b 

8 

0.1~----~----~----'------r-----r-----r-----.-----' 

2 3 4 
t[5) 

5 6 7 

Figure 3.36: The results of the MATLAB Simulation 2b. 

8 
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If we use the commands from the MATLAB CONTROLS TOOLBOX such as initial 
and lsim, we can simulate continuous linear systems. These two commands give us 
the response of the system to initial conditions and the controlling input, respectively. 

The following program can be used instead of the previous two programs: 

7. file simu12c.m 
:< 
A = [0 0 1 0; 

o 00 1; 
o -1 0 0; 
021.60 OJ; 

B = [0;0;1;-2J; 
C = [1 0 0 0; 

o 1 0 OJ; 
D = [O;OJ; 
K = [-0.2041 -15.902 ~0.6102 -2. 7661J; :< picked so th .. t eig(A-B*K) 

:< are -1, -2, -l+j, -l-j 
to = 0; 
tf = 8; 
dt = 0.05; 
t = (to:dt:tf)'; 

xO = [O;O;O;OJ; 
u = O.l*ones(size(t»; 

:< xO = [O;O.l;O;OJ; 
X u = zeros (size (t» ; 

1. simulation 
1. 2a 

Y. simulation 
:< 2b 

[Yinit,Xinit] = initial(A-B*K,B,C,D,xO,t); 
[Yinp,XinpJ = Isim(A-B*K,B,C,D,u,t); 
x = Xinit+Xinpi 
y = Yinit+Yinp; 

subplot (2 ,1,1) 
plot(t,x(: ,1» 
ti tIe ( , Inverted Pendulum Simulation 2c') 
xlabel('t [sJ'), ylabel('z(t) [mJ'), grid 
subplot(2,l,2) 
plot(t,x(: ,2» 
xlabel('t [sJ'), ylabel('theta(t) [radJ'), grid 
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Problem 3.9.10 Consider the state equation of a system given by 

[ ~ 
1 
2 
o 
o 

o 
o 

-1 
o 

Y=[1 1]X 
Is this system controllable? Is it stable? Can it be stabilized by a state feedback 
u = -k'x? 

Solution: Since det(C) = 0, this system is not controllable. It is also not stable, 
because its eigenvalues are -1, -1,2, and 2. But if we draw its signal flow graph as in 
Figure 3.37, we can see that the unstable modes are controllable, therefore the system 
is stabilizable. 

lis 

u y 

Figure 3.37: Although this system is not controllable, it can be stabilized. This is 
because all unstable modes are controllable. This system is said to be stabilizable. 

If we wish to move the unstable eigenvalues from 2 to -2, and leave the stable 
eigenvalues where they are, we can write k' = [k1 k2 0 0]. Then from 

det(81 - (A - bk'» = (8 + 1)2(8 + 2)2 

we find 

k' = [16 8 0 0] 

Note 1: Can we move all eigenvalues of the system to -2? Can we move the 
eigenvalues from -1 at all? 

Note 2: Based on the PBH controllability criterion (cf. Problem 3.7.8) we can 
say that the system is stabilizable if and only if no left eigenvectors corresponding to 
the unstable eigenvalues of A are orthogonal to vector b. In other words the system is 
stabilizable if and only if 

p'b i- 0 for all unstable eigenvalues of A 
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Problem 3.9.11 Why is system observability important in the state feedback design? 
Define and explain the system property dual to stabilizability (Problem 3.9.10), the 
so-called detectability. 

Solution: Throughout this Section we assumed that the states of the system 
were directly available for the state feedback. In Sections 3.11, 3.12, and 3.13 we 
shall learn how to design state observers. They determine (in noisy environments we 
say estimate) the states x(t) from the output y(t) and the input u(t). This is why 
observability is so critical in the state feedback design. 

If not all modes of the system are unstable, it is not necessary to observe all 
states of the system. If all unstable modes are observable, we say that the system is 
detectable. 

Note 1: Using the PBH observability criterion (cf. Problem 3.7.8) we see that the 
system is detectable if and only if no right eigenvectors corresponding to the unstable 
eigenvalues of A are orthogonal to vector c'. In other words the system is detectable if 
and only if 

c'q#O for all unstable eigenvalues of A 
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In the process of stabilizing an unstable system, we must move all right-hand side 
poles to the left-hand side. How far should these poles be moved? One possible 
solution is to define a cost function indicating the relative cost of error versus 
the cost of control. In this Section we derive the formula for the optimal linear 
state feedback gain using a quadratic cost function (linear-quadratic-regulator 
- LQR). These optimality requirements reduce to the algebraic Riccati equa­
tion, whose solution is used in determination of the optimal feedback gain. 

Problem 3.10.1 Let the system described by 

x(t) = Ax(t) + Bu(t) 

be disturbed at t = 0, and let us consider the problem of finding the input u(t) which 
will return the system to the equilibrium at the origin. 

If the system is not asymptotically stable, we need to design a negative feedback 
u(t) = -Kx(t) to make sure that the system will return to the origin. If the system 
is asymptotically stable, it will go back to the origin by itself, but even in that case 
it is useful to design a feedback, to make the return to the origin faster, or to satisfy 
some other optimality criteria. 

The trade-off between the speed of return and the cost of control9 is usually de­
scribed by the following index function: 

J = [~' (x'(t)Qx(t) + u'(t)Ru(t))dt 

in which matrices Q and R are chosen so that they reflect the prices (also called 
penalties) associated with values of states and control. Q is positive semi-definite, 
while R is positive definite. Our final goal will be to minimize the t-otal cost of 
returning the system to the origin. 

Derive the formula for the feedback gain K that minimizes the total cost J. 

Solution: One possible approach to solving this problem is via the Lyapunov 
equation. In that approach it is shown that J = x'(O)Px(O), where P is a positive 
definite solution of the algebraic lliccati equation 

PA+A'P -PBR-1B'P+Q = 0 

The minimization of J with respect to K requires that 

K=R-1B'P 

Here we shall use the calculus of variations approach, in which we wish to find u(t) 
such that 

J = 100 
(x' (t)Qx(t) + u' (t)Ru(t)) dt 

--~--------------~~ 
9Fast return to the origin requires the closed-loop eigenvalues far to the left, but that 

implies large values of the feedback gains in K. i.e .• high cost of control. 
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is minimized under the constraints of the system equations 

or 

To do that we write 

x(t) = Ax(t) + Bu(t) 

x(O) = xo 

J = 100 
(;:' (t)Qx(t) ~ u' (t)Ru(t~ +,X' (Ax(t) + Bu(t) - x(t») dt 

L 

J= 100(H-,XIX)dt 

where H = L + 'x' (Ax(t) + Bu(t» is the Hamiltonian. 
Hence 
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If uopt(t) exists, then infinitesimal variations 8u cause no change in J, i.e., 8J = O. 
Since 

J = I 100 roo ((OH ") OH) - ,X 8x 0 + 10 ox +,X 8x + OU 8u dt 

and 8xlo = 0 (because Xo is specified), with a convenient choice 

'1 oH ,X =-­
ox 

'x/(00) = 0 

this reduces to 

which implies 

Equations 

'1 oH 
,X =-­

ox 

roo oH 
8J= 10 ou 8udt =0 

oH =0 
ou 

,X' (00) = 0 

are called the Euler-Lagrange equations. 
Since 

oH =0 
ou 

H = X'QX + u' Ru + ,X' (Ax + Bu) 

the Euler-Lagrange equations become 

~(t) = -A' ,X(t) - Qx(t) ,X(oo) = 0 u(t) = _R- 1 B' ,X(t) 
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We can write these equations as 

r:~(t}l [A 
l~(t}J = -Q 

with the two-point boundary condition 

] rx(t}l 
l>'(t)J 

x(O} = Xo >.(oo) = 0 

It can be shown that if (A,B) is controllable (or at least stabilizable) then 

>.(t) = Px(t} 

Then obviously u(t} = -Kx(t}, where K = R-1 B' P. 

To learn more about P, write 

~ = -Qx - A' >. = - (Q + A' P}x } 

~ = P:i; = (PA- PBR-1B'P}x 

i.e., P must be a solution of the algebraic Rkcati equation. 

Note: The Riccati equation may not have a solution, or if it does, the solution 
may not be unique. It can be shown that if the system is controllable and observable, 
then the Riccati equation has a solution. In addition, if the solution is not unique, 
then there is only one solution which corresponds to the optimal K. This solution 
is the only symmetric positive definite solution of the Riccati equation. If it is too 
complicated to find all solutions and check which one of them is positive definite, we 
use the following MacFarlane-Potter-Fath method: 

The Hamiltonian matrix 

has 2n eigenvalues symmetric with respect to the imaginary axis in the complex plane. 
For the n eigenvalues in the left half-plane we can write 

1£ [~:] = >'i [~:] 
and finally 

Problem 3.10.2 Show that the application of the optimal input, i.e., the input u(t) = 
-Kx(t} which minimizes the cost function 

J(x(O}, u(t» = 100 
(x' (T}QX(T) + RU2(T» dT 

stabilizes the system. 
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Solution: In a way it is obvious that the optimal feedback stabilizes the system, 
because the cost J for any stabilized system is certainly less than the cost for an 
unstable system. We can give a formal proof using the following Lyapunov function: 

Vex) = x'Px 

where P is the only symmetric positive definite solution of the algebraic Riccati equa­
tion 

A'P+PA-PBR-1B'P= -Q 

Obviously, since P > 0, also Vex) > o. In addition to that 

Vex) = :i;'Px+x'px = x'(A'P+PA-2PBR-1B'P)x = x'(-Q-PBR-1B'P)x:S 0 

The inequality at the end is true because Q ~ 0 and (note that P > 0 => det(P) #- 0) 

sgn(any zj(x' PBR- 1 B' Px) = sgn(any yj(Y' BR-1 B'y) = sgn(z = B'y)(Z' R-1z) ~ 0 

Therefore, the system is stable in the sense of Lyapunov. 

Note: To guarantee the asymptotic stability, we require Vex) t: 0 for any system 
trajectory, but this part depends on the specifics of the system. If Q > 0, the optimal 
system is guaranteed to be asymptotically stable. 

Problem 3.10.3 Show that the minimum cost is given by 

Jmin(XO) = x~Pxo 
where P is a solution of the algebraic Riccati equation 

A'P+PA-PBR-1B'P= -Q 

Solution: The cost is minimized by u = -Kx, where K = R- 1 B' P. Therefore 

Jmin(XO) = 1'>0 x' (t)(Q + K'RK)x(t)dt 

Since x(t) = e(A-BK)txo , and A - BK is stable, we can write 

Jmin(XO) = x~ (100 e(A-BK)'t(Q + K'RK)e(A-BK)t dt) Xo 
... , 

'" z 

From the Lyapunov theory (cf. Problem 3.6.7) we know that since A - BK is 
stable, matrix Z is a unique solution of the following Lyapunovequation (we also use 
K=R-1B'P): 

(A - BK)' Z + Z(A - BK) = -(Q + PBR-1 B' P) 

Since the Riccati equation A' P + P A - PBR-1 B' P = -Q can be rewritten as 

(A - BK)' P + peA - BK) = -(Q + PBR-1 B' P) 

and because of the uniqueness of Z, we can write Z = P, i.e., 

Jmin(XO) = x~Pxo 
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ProbleDl 3.10.4 Consider a linear time-invariant system given by 

x=Ax+Bu 

with the cost function defined by 

J(x(O),u(t» = 100 
(x' (T)QX(T) + RU2 (T»dT 

Let 

and let Q = 12x2 , while R is a positive scalar. Value of R is the relative cost of control 
with respect to state error. 

The optimal control input is given by 

u(t) = -Kx(t) 

with K = R- 1 B' P, where P is a positive definite symmetric solution of the following 
equation: 

PA+A'P-PBR- 1B' p+Q = 0 

The optimal cost is then 

J(x(O» = x' (O)Px(O) 

a) For R = 1 solve for P. Find K and calculate the optimal cost. Calculate the 
open-loop and the closed-loop eigenvalues. 

b) Repeat the above calculations for R = 0.1. 

c) Repeat the above calculations for R = 10. 

Solution: In all three cases we put 

p=[P1 P2] P2 P3 

and find exactly four solutions of the equation P A + A' P - P B R- 1 B' P + Q = O. In 
each case only one of four solutions is positive definite (of course, the symmetry is 
insured by the initial choice of the elements of P). 

) P = [ 7 + v'5 2 + v'5 ] = [9.24 4.24] K [4 24 2 24] J 19 9 a 2 + v'5 v'5 4.24 2.24' =. ., = .. 
The open-loop eigenvalues are >'1 = 1 and >'2 = -2, while the closed-loop eigenvalues 
are P.1 = -1 and P.2 = -2.24. 
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b) P = [~:;~ ~:~~], K = [5.74 3.74], J = 3.5. The open-loop 

eigenvalues are >'1 = 1 and >'2 = -2, while the closed-loop eigenvalues are jJ.1 = -1 
and jJ.2 = -3.74. 

c) P = [~~:;~ :~:;~], K = [4.02 2.02], J = 182. The open-loop 

eigenvalues are >'1 = 1 and >'2 = -2, while the closed-loop eigenvalues are jJ.1 = -1 
and jJ.2 = -2.02. 

Note: Note that for large values of R unstable eigenvalues are not just moved 
from the right half-plane to the left half-plane, but are moved into their mirror images 
in the left half-plane. Also, note that the optimal feedback has stabilized the system. 
See also Problem 3.10.2. 

Problem 3.10.5 Consider a linear quadratic optimization problem 

x(t) = Ax(t) + Bu(t) x(O) = [1 1]' 

J = ~ 1"" (x'Qx + u'Ru) dt 

In particular, consider the case when 

B = [~] , Q_ [ 1 - 0 R=1 

where qv is a positive number. 
The optimal feedback is given by 

K=R- 1B'P 

where P is a positive definite symmetric solution of 

A'P+PA -PBR- 1B'P =-Q 

Find the open-loop eigenvalues. Let qv = 1, i.e., let the penalties for position and 
velocity be equal. Find P, K, the closed-loop eigenvalues, and the cost function. Do 
the same for qv = 4. 

Solution: The open-loop eigenvalues are found from det(>.I - A) = 0: 

>'1,2 = ±2j 

To solve the Riccati equation, let 

P=[~ ~] 
Then the Riccati equation implies that 

b2 +8b -1 = 0 
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c2 =2b+l 

a = (b+4)c 

The only solution of the above system which yields a positive definite matrix P is 
a = 4.60, b = 0.12, c = 1.12, i.e., 

P = [4.60 0.12] 
0.12 1.12 

The feedback gain is then K = R-1 B' P = [0.12 1.12). The closed-loop eigenvalues 
are found from det(A - BK) = 0: 

>'1,2 = -0.56 ± 1.95j 

The cost of the optimal control is 

JOl't(X(O» = ~x'(O)Px(O) = 2.98 

For qv = 4 we find 

P = [8.50 0.12] 0.12 2.06 ' K = [0.12 2.06) 

while 

>'1,2 = -1.03 ± 1.75j, and JOl't(x(O» = 5.40 

Note: Note that when the penalty for velocity is high, the cost of control is higher, 
and the eigenvalues are moved further to the left. Again, note that the optimal feedback 
has stabilized the system. 

Problem 3.10.6 Consider a linear quadratic optimization problem 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

1 roo 
J = 210 (x'Qx + u'Ru)dt 

Consider a particular system 

[ -1 2] 
A= 1 0 ' C= [0 1), Q=[~ ~], R=4 

The optimal feedback is given by 
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K=R-1B'P 

where P is a positive definite symmetric solution of 

A'P+PA - PBR-1B'P =-Q 

Find the open-loop eigenvalues. Check controllability and observability of this 
system. Assuming that both state variables are available, find positive definite and 
symmetric P from the algebraic Riccati equation. Find the optimal feedback gains 
and the closed-loop eigenvalues. 

Solution: The following MATLAB commands can be used to find a solution: 

A = [-1 2 ; 1 0 ]; 
B=[1;0]; 
C=[O 1]; 
Q=[20;01]; 
R = 4; 

Eopen = eig(A) 
Eopen = 

-2 
1 

rank(ctrb(A,B» 
ans= 

2 

rank(obsv(A ,C» 
ans= 

2 

[K,P,Eclosed] = lqr(A,B,Q,R) 
K = 

2.1021 4.0616 
p = 

8.4085 16.2462 
16.2462 33.5807 

Eclosed = 
-2.1378 
-0.9644 



3.11 State observers 

In this Section the design of state observers is explained. They are used to 
estimate the states for the state feedback when the original states are not directly 
available or measurable. 

Problem 3.11.1 A system is given by 

o 3 
o 2 
1 1 

Is it observable? Design a state observer such that the eigenvalues of the observer 
are all at -2. 

A state observer is a simulator of the original system. Usually it is designed when 
the states x(t} of the original system are not directly measurable, but can be estimated 
from the knowledge of the parameters of the system (A, b, and c'), the input u(t}, and 
the output yet}. From Problems 3.7.5 and 3.7.6 we know that this can be done if and 
only if the original system is observable . 

....................................... 

u(t) I lis x(t) . yet) 

b A C'! 
•..................................... ! w(t)-y(t) 

lis r(t) 

b c' 

-/ 

Figure 3.38: If the system is observable, than we can calculate the unmeasurable 
states x(t} from the available information: system parameters A, b, and c', the input 
u(t}, and the output yet}. The result of this estimation are the states ret}, which soon 
after the beginning of the observation closely follow the aetual states x(t}. 

Let us call the estimated states ret} (see Figure 3.38). To improve the reliability 
of the estimated states ret}, and their convergence to the real states x(t}, we use the 
difference between the estimated output wet} = c'r(t} and the actual output yet} = 
c' x(t}. It is particularly important to use this difference if the system is unstable, 
because for unstable systems any discrepancy between the actual initial conditions 
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x(O) and the supposed initial conditions reO) causes the estimat,ion error ret) - x(t) 
to diverge. Another benefit from using this difference is the reduction of errors due to 
our imperfect knowledge of the system parameters A, b, and c'. 

The gain vector 1 which weighs the influence of components of this difference on 
the estimated states determines the eigenvalues of the observer. 

If we decide to designl so that the characteristic polynomial of the observer is a(s) 
(we should pick the eigenvalues of the observer to be much ''faster'' than those of the 
system), whereas the characteristic polynomial of the original system is a(s), we can 
use the dual of the Bass-Gura formula to calculate I: 

Solution: The system is observable because 

det( 0) = I ~: A I = I ~ 
C'A2 2 

2 
5 
15 

Since a(s) = det(sI -A) = S3 - 2S2 -s - 3 and a(s) = (s+2? = S3 +6s2 + 12s+8, 
we find the observer gain to be 

1 
o 
o 

-1/3 ] [8] [9.33] 1/3 13 = 3.67 
-2/3 11 0.67 

Problem 3.11.2 A standard application of the state observers is in the state feed­
back design (see Figure 3.39). Assume that the system is both state controllable and 
observable. Assume also that the state feedback is designed as u(t) = -k' x(t), where 
k' is such that the closed-loop system has the desired eigenvalues 1'1, . .. ,p.n' Since 
the actual states are unavailable, use the observer-estimated states ret) instead of x(t) 
and show that this substitution does not affect the designed closed-loop eigenvalues. 

u(t) 

-k' 

1/s r(t) 

b c' w(t) 

-/ 

Figure 3.39: If the actual states are not measurable, the state feedback is implemented 
with the states estimated by the observer. 
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Solution: If instead of the actual state vector x(t) we use the estimated state 
vector ret), we can write 

x(t) = Ax(t) - bk'r(t) = (A - bk')x(t) + bk' e(t) 

where e(t) = x(t) - ret). 
The dynamics of the estimation error vector e(t) are described by 

e(t) = x(t) - ret) = Ax(t) - bk'r(t) - «A - lc' - bk')r(t) + lc' x(t» = (A -lc')e(t) 

The complete system, which includes both the original system and the observer, 
can be described by 

rX(t)] = [ A - bk' 
le(t) 0 

bk' ] rx(t)l 
A -lc' le(t)J 

The characteristic equation of the complete system is then 

det [ A -obk' bk' ] 
A -lc' = 0 

i.e., 

det(A - bk') det(A - lc') = 0 

Due to this uncoupling of equations the eigenvalues of the original states are as 
desired, even though we used the feedback based on ret) instead of x(t). 

Note: It is also interesting that the observer eigenvalues do not depend on k'. 
They are determined from det(A - lc') = O. This allows a complete separation of 
observer and controller design processes. 

Problem 3.11.3 For the system given by 

x = [ 
-1 -2 -2 

] x + [~] u 0 -1 1 
1 0 -1 

Y = [ 1 1 o ] x 

check controllability and observability, and design the state feedback such that the 
closed-loop eigenvalues are all at -2. The state feedback should be based on the 
observer with all eigenvalues at -4. 

Solution: It is easy to check that det(C) = -10 =f. 0 and det(O) = 5 =f. 0, 
therefore we can proceed with the controller and observer design. 

To find k', write a(8) = det(8I - A) = 83 + 3s2 + 58 + 5, and a(8) = (8 + 2)3 = 
83 + 682 + 128 + 8. 

Then, by the Bass-Gura formula, 

k' = (a' - a')CcC- 1 

In this case 
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Cc = a=T = [ ~ 
0 or [' -3 

-~ ] 1 o = 0 1 
3 1 0 0 

and 

c- 1 = [ ~ 
-4 or [05 2 

-o.~ ] 1 o = 0 1 
1 -5 0.1 0.6 

hence 

k' = [0.9 0.4 1.2) 

To determine I, the feedback vector gain for the observer, write a(8) = det(81 -
A) = 83 + 382 + 58 + 5, and 0(8) = (8 + 4)3 = 83 + 1282 + 488 + 64. 

Then, by the dual of the Bass-Gura formula, 

In this case 

and 

hence 

[ 
15.8] 

1= -6.8 
-11.4 

Problem 3.11.4 For the inverted pendulum on a cart problem (Problems 3.5.11, 
3.7.12, and 3.9.9), design a controller as in Problem 3.9.9, but based on the states 
estimated by a state observer whose eigenvalues are -4, -4.5, -5, and -5.5. 

Using MATLAB commands reg, parallel, and cloop, repeat the simulations as in 
Problem 3.9.9. To do that, first augment the system matrices so that the "control" 
and the "known" inputs are separated. 
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----------------------
I 

eigs from: A-BK input I (I) 

I 
I 

B I/s C outputs 1,2 
I 

(1,2) 

input 

I 

V 2 (2) 
I 
I 
I A 
I , 
I plant (original system) 
1 ______ ----------------

-I 

I 

---------------------
eigs from: A-LC 

input 1(2) 
B 

lis K 

s 2,3 (3,4) L 
V output I ( 

A-BK-LC 
input 3) 

observer I controller 
1 ______ ----------------

Figure 3.40: MATLAB commands for building systems are very easy to use when this 
diagram is kept in mind. The parenthesized numbers are those applicable after the 
command parallel. Note that the command reg provides the BK and the LO parts 
of feedback. Hence we write reg(AA,BB,CC ,DD ,K,L,sensors ,knolln, control), rather 
than reg(AA-BB*K-L*CC,BB,CC,DD,K,L,sensors ,knolln, control). Also note that the 
command cloop provides a feedback gain equal to 1. This is changed to -1 by putting 
a minus sign in front of the input label (cloop(Abig,Bbig,Cbig,Dbig, [1 2 3], [3 4 
-1]) ). 

Solution: Figure 3.40 shows the standard diagram used in MATLAB simulations. 
As we found earlier, 

K = (a' - a')CcC- 1 = [-0.2041 -15.902 -0.5102 -2.7551] 

MATLAB provides two functions to do this, place and acker. For example, K 
place(A,B,P) finds the state feedback gain K such that the eigenvalues of A - BK 
are those specified in P. 

The observer gain L should be found such that the eigenvalues of A - LO are -4, 
-4.5, -5, and -5.5. We can use the MATLAB function place again, but first we have to 
adjust the input matrices to the problem - we can ask for L such that the eigenvalues 
of A' - O'L' are as required: L = (place(A',C',[-4, -4.5, -5, -5.5]»', which 
yields 

L= 
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The MATLAB program should look as follows (see its output in Figure 3.41); 

1. file simu13.m 
1. 

A (0 0 1 0; 
o 00 1; 
o -1 0 0; 
o 21.6 0 0]; 

B = (0; 0; 1; -2]; 
C = (1 0 0 0; 

o 1 0 0]; 
D • (0;0]; 

K = place(A,B,(-l, -2, -l+j, -l-j]); 
L = (place(A',C',(-4, -4.5, -5, -5.5]»'; 

AA = A; 
BB = (B,B]; 
CC C; 

1. augment B and D to separate feedback control input 
1. control input from the external forcing function 

DD = (D,D]; 

sensors :;;;: [1 2] j 

known = (2]; 
control = (1]; 
(Ac,Bc,Cc,Dc] = 

1. info on control ul is internally fed back 

reg(AA,BB,CC,DD ,K,L, sensors ,known, control) ; 

(Abig,Bbig,Cbig,Dbig] = parallel(AA,BB,CC,DD,Ac,Bc,Cc,Dc, (2], (1], (], (]); 
(Abig,Bbig,Cbig,Dbig] = cloop(Abig,Bbig,Cbig,Dbig, (1 2 3], (3 4 -1]); 

to 0; 
tf 8; 
dt 0.0001; 
t=(tO:dt:tf)' ; 

1. xO = (0;0;0;0;0;0;0;0]; 1. simul 3a 
:.: u2 = O.l*ones(size(t»; 

xO (0;0.1;0;0;0;0;0;0]; :.: simul 3b 
u2 zeros(size(t»; 

ul zeros(size(t»; 
u3 zeros(size(t» j 
u4 zeros(size(t»; 
u = [ul u2 u3 u4]; 

[y,x] = lsim(Abig,Bbig,Cbig,Dbig,u,t,xO) j 1. both initial and forced response 

y = y(1:300:size(t),:); 
x = x(1:300:size(t),:); 
t = t(1:300:size(t),:); 

subplot (2 ,1,1) 

1. reduce the amount of data by a factor of 300 

plot(t,y(:, 1) J 'y-', t ,x(: ,5), 'v. ') 
ti tle ( J Inverted Pendulum Simulation 3b J) 
ylabel('z(t) (m]'), grid 
subplot (2 ,1, 2) 
plot(t,y(: ,2), 'y-', t,x(: ,6), 'We ') 

ylabel('theta(t) (rad] '), grid 
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Inverted Pendulum Simulation 3b 

8 

O.15~--r---r---r---r---r---r---r-----" 

8 

Figure 3.41: Results of MATLAB simulations of combined observer-controller applied 
to the inverted pendulum on a cart problem. 

Problem 3.11.5 Show that the states can be estimated by the observer if and only 
if the system is state observable. 

Solution: See Problems 3.7.5 and 3.7.6. 

Problem 3.11.6 In the direct transfer function design procedures let the original 
system transfer function be 

H b(s) s - 1 
(s) = a(s) = s(s - 2) 

Show that a simple feedback with gain k cannot stabilize this system. 
Using the diagram as in Figure 3.42 derive the equation which relates the desired 

characteristic polynomial a(s) to the given characteristic polynomial a(s), and the 
feedback transfer functions 

F( ) = p,,(s) 
s 15(s) 

G(s) = py(s) 
15(s) 

Note that 15(s) is determined by the desired eigenvalues of the observer error. 

Find p,,(s), py(s), and 15(s), so that the poles of the system are moved to -1 and 
-2, while the observer error eigenvalues are both at -4. 
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v y 

Figure 3.42: State-space approach provided the background for this transfer function 
design procedure. 

Solution: If a feedback with gain k is applied, the new characteristic polynomial 
is a(s)+kb(s), which in our case is s2+(k-2)s-k. To satisfy the necessary condition 
(this is not a sufficient condition) for stability, we would need to have k < 0 and k > 2, 
which is, of course, impossible. 

But with ideas and insights from the state-space approach, we can form the system 
as in Figure 3.42. From 

u(s) = V(s) - Pu(s)U(s) - py(s)y(s) and Y(s) = ab((ss»U(s) 
8(s) 8(s) 

we find 

Y(s) 8(s)b(s) 
V(s) a(s)8(s) + a(s)pu(s) + b(s)py(s) 

Therefore 

0:(s)8(s) = a(s)8(s) + a(s)pu(s) + b(s)py(s) 

In our case 

a(s) = s(s - 2), b(s) = s - 1, o:(s) = (s + 1)(s + 2), and 8(s) = (s + 4)2 

and polynomials pu (s) and py (s) are assumed to be one degree lower than the polyno­
mial 8(s). Compare coefficients for the powers of s on both sides. After some algebra, 
we find: 

Pu(s) = 5s - 180 and py(s) = 232s - 32 



3.12 Kalman-Bucy filter 

When the measurements are noisy, the observer can be designed so that the 
influence of noise is minimized in the mean-square sense. The optimality re­
quirements for this linear-quadratic-estimator (LQE) reduce to the algebraic 
Riccati equation. The resulting optimal estimator is called the Kalman-Bucy 
filter. 

Problem 3:12.1 A linear time-invariant system with system and measurement noise 
inputs is shown in Figure 3.43. 

e 

-1 

Figure 3.43: LTI with system and measurement noise. 

Write the system equation in the form 

x(t) Ax(t) + Bu(t) + wet) 

yet) Cx(t) + e(t) 

The noises are zero-mean, white, and Gaussian. The system noise wet) is uncorrelated 
with the measurement noise e(t). Let the noise covariances be 

E [w(t)w' (T)] Q6(t - T) 

E[e(t)e'(T)] R6(t - T) 

where 

Q _ [ 16 
- 0 ~ ] and R=1 

The steady-state Kalman-Bucy estimator is given by (see Figure 3.44) 

ret) = Ar(t) + Bu(t) + L(y(t) - Cr(t)) 

where L = PC' R- l , and P is a solution of the algebraic lliccati equation 

AP + PA' - PC'R-lCP + Q = 0 

Find the open-loop eigenvalues, and check controllability, observability, and stabil­
ity. Solve the lliccati equation, and check that P is positive definite and symmetric. 
Calculate L. Find the eigenvalues of the Kalman-Bucy estimator. Draw a signal flow 
graph of the combined system. 
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Solution: Obviously 

y = [0 1] [:~] + e 

and the system is controllable, observable, and marginally stable. 

With P = [: ~] the Riccati equation becomes a system of equations 

b2 = 16 a - b - bc = 0 2b - 2c - c2 = 0 

whose only positive definite solution is 

Then 

The eigenvalues of the Kalman estimator are the eigenvalues of A - LC, i.e., 
-1.5 ± 1.32;. 

e 

b estimator output 

r 

Figure 3.44: Typical configuration of the Kalman-Bucy filter. Note that A I = A - LC. 
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Matlab note: We can do the above calculations by a few simple MATLAB com­
mands: 

A- [00: 1-1]: 
B= [1: 0]: 
G = eye (2) : 
C = [0 1]; 
Q = [16 0; 0 0]; 
R -= 1; 

X Matlab assumes lIodel of the f011ll 
X • 
X,,·Ax+Bu+Gv 
Xy·C,,+Du+e 

[L,P,E] = lqe(J.,G,C,Q,R) 
L = X Kalman-Bucy gain 

4.0000 
2.0000 

P = X Solution of the Riccati equation 
12.0000 4.0000 
4.0000 2.0000 

E = X Kalman-Buey observer eigenvalue. 
-1.5000 + 1.3229i 
-1. 5000 - 1. 3229i 

Problem 3.12.2 Repeat MATLAB simulations for the inverted pendulum on a cart as 
in Problem 3.11.4 assuming small process and measurement noises. To account for the 
noise effects, use a stationary Kalman-Bucy filter. Assume that both components of 
the output vector are affected by independent zero-mean white Gaussian noises with 
u. = 0.1 m and us = 0.1 rad, while the process noise has four components, all with 
u = 0.2 (ofrespective units). Assume initial conditions for the complete system to be 
[0 0.4 0 0 0 0 0 0]'. 

Solution: The MATLAB program and the plot are shown below (see Figure 3.45). 

X file .i.,u14.11 
X 

A- [0 o 1 0; 
0 00 1; 
0 -1 0 0: 
o 21.6 0 0]; 

B - [0;0;1;-2] ; 
C = [1 0 0 0; 

o 1 0 0]; 
D = [0:0] : 

K - place(A,B, [-1, -2, -l+j, -l-j]): 

G = one. (.ize (B» ; 
Q = 0.2-2: 
R = [0.1-2 0: 

o 0.1-2]: 

L - lqe(A,G,C,Q,R): X calculate Kaban gain 

X aupent B and D to accept Doi... in simulations and to 
X .eparate feedback control input froll the external forcing function 

n = size(A,l): 
•• Bize(C,l); 
J.A = A; 
BB = [B,B,G,zero.(n,.,)]: 
CC - C: 
DD - [D,D,zero.(size(D» ,.ye(II)]: 

•• nsora • [1 2]; 
knovn • [2]; 
control - [1]; 

X info on control ul is internally fed back 
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[lc,Bc,Cc,Dc] =:II: reg(AA,BB,CC,DD,K,L, •• D.or.,moVD,coDtrol); 
[Abig,Bbig,Cbig,Dbig] = paraUel(AA,BB,CC,DD,Ac,Bc,Cc,Dc, [2], [1], [], []); 
[Abig,Bbig,Cbig,Dbig] a cloop(Abig,Bbig,Cbig,Dbig, [1 2 3], [6 7 -1]); 

to· 0; 
tf a 16; 
dt - 0.0001; 
t-(tO:dt:tf)' ; 
,,0 - [0;0.4;0;0;0;0;0;0]; 
u1 - zeros (aize (t» ; 
u2 = O.l*ones(aize(t»; 
u3 - 0.2*randn(.ize(t»; 
u4 - O.l*randn(size(t»; 
u5 = O.l*randn(size(t»; 
u6 = zeros(size(t»; 
u7 = zeros (size (t» ; 
u = [ul u2 u3 u4 u5 u6 u7]; 

[y,,,] = laia(Abig,Bbig,Cbig,Dbig,u,t,,,O); X both initial and forced re.ponse 
y - y(1:1000:Bize(t),:); 
x • x(1:1000:Bize(t),:); 
t • t(1:1000:size(t),:); 

8ubplot(2,l,l) 
plot(t,y(: J 1). 'va', t,lt(: ,1), 'y-') 
title('Inverted Pendulum SillUlation 4') 
ylabel( 'z(t) [a]'), grid 
Bubplot(2,l,2) 
plot(t,y(: ,2), 'wo' ,t,x(: ,2), 'y-') 
ylabel('theta(t) [r&d]'), grid 

Inverted Pendulum Simulalion 4 
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Figure 3.45: The results of the MATLAB Simulation 4, which uses Kalman-Bucy filter 
to estimate the system states from the noisy measurements. Plots represent the actual 
values of the system states (continuous lines) and only the samples of the measured 
values affected by noise (circles). Kalman-Bucy filter helps stabilize the system even 
when the only available measurements are very noisy. 
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Problem 3.12.3 In general, for the time-variant (non-stationary) system described 
by 

x(t) A(t)x(t) + B(t)u(t) + w(t) 

y(t) C(t)x(t) + e(t) 

where 

E [x(O)] = Xo, E [(x(O) - xo)(x(O) - xo)'] = Po 

while the noise signals are Gaussian with 

E [w(t)] = 0, E [w(t)w' (r)] = Q(t) 8(t - r) (zero-mean, white) 

E[e(t)] = 0, E[e(t)e'(r)] = R(t)8(t - r) (zero-mean, white) 

and the system noise w(t) is uncorrelated with the measurement noise e(t), i.e., 

E [w(t)e'(r)] = 0 

the Kalman-Bucy filter, which produces r(t), the optimal estimatelO of x(t) based on 
the measurements of y(t), and on the available information about the system, is given 
by 

r(t) = A(t)r(t) + B(t)u(t) + L(t)(y(t) - C(t)r(t» 

where L(t) = P(t)C'(t)R-1(t), and P(t) is a solution of 

P(t) = A(t)P(t) + P(t)A' (t) + Q(t) - P(t)C' (t)R- 1 (t)C(t)P(t) 

It can be proved that if the system is time-invariant, i.e., if A(t) = A, B(t) = B, 
C(t) = C, and the noises are wide-sense-stationary (WSS), i.e., Q(t) = Q and R(t) = 
R, and if the system is controllable and observable, then 

lim P(t) = P 
t-+oo 

and therefore limt-+oo L(t) = L. 
Derive the formulas for this case. 

Solution: If P(t) --+ P then P(t) --+ O. Therefore, P is found from the algebraic 
Riccati equation AP + P A' - PC' R-1CP + Q = 0, while L = PC'R- 1. 

Note: The derivation of the above formulas is given in Section 4.12. Historically, 
the discrete-time case was considered first by Rudolf Kalman in 1959 [26], while the 
continuous-time case was described soon afterwards by Kalman and R. Bucy in their 
joint paper [28]. Kalman's seminal paper [26] also dealt with the "surprising" duality 
of the problem his technique solves, the so-called Wiener problem, i.e., that of optimal 
estimation of noisy signals, and the problem of the noise-free optimal regulator problem 
(Section 3.10), which was solved a few years earlier, also by Kalman. This duality is 
important because investigation of properties of Kalman-Bucy filters, e.g., stability, 
can be conducted by methods used for optimal regulators. 

lOThe index of performance which is minimized by the Kalman-Buey filter is the mean­
squared-error (MSE): J(t) = E [(x(t) - r(t»'(x(t) - ret»~] = treE [(x(t) - r(t»(x(t) - r(t»']). 



3.13 Reduced-order observers 

In this Section the reduced-order observers are introduced. They are used when 
some of the states are available or measurable and there is no need to estimate 
all of them. 

Problem 3.13.1 When estimating states x(t), we don't need to design a simulator of 
full order n, because by some appropriate linear transformation of the original states 
x(t) into q(t) we can make yet) (in general an m x 1 vector) exactly equal to some m 
of those n states. 

In particular, let the system be given by 

x(t) Ax(t) + Bu(t) 

yet) = Ox(t) 

Let us pick any nonsingular matrix S such that OS = [Omx(n-m) Imxm]. Then 

q(t) = 
yet) = 

S-1 ASq(t) + S-1 Bu(t) 

[qn-m+l (t) ... qn (t)]' 

Now it suffices to design a reduced order observer to estimate ql (t), ... ,qn-m (t), 
and finally to recombine the q-states back to the x-states by x(t) = Sq(t). 

For the sake of simplicity assume that yet) is a scalar, and that C = c' is already 
in the desirable form, i.e., c' = [0 ... 0 1]. Design the reduced order observer. 

Solution: Since c' = [0 ... 0 1] we can write the system equations in the 
following form 

or equivalently 

Xr(t) Arxr(t) + bry(t) + 9rU(t) 

yr(t) C~Xr(t) 

where yr(t) = yet) - anny(t) - 9nU(t) is a measurable quantityll. 
Since it can be proved that if the pair {c', A} is observable, so is the pair {c~, Ar }, 

now we can set up the observer for the states xr(t), whose states we shall denote by 
Tr(t): 

where again yr(t) = yet) - anny(t) - 9nU(t). The gain vector lr is picked so that the 
observer, i.e., the eigenvalues of the matrix Ar -lrc~, are some designated numbers. 

11 Certainly, it is not desirable to have a differentiation anywhere in the process of estimation, 
because of the noise effects. We shall get rid of this operation later. 
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The signal flow graph of this system is shown in Figure 3.46. Along with it shown 
is its modification which eliminates the differentiation. 

y=x..------..----

R 

u 
Q 

T T 

Figure 3.46: Signal flow graphs for two realizations of the reduced observer, one with, 
and the other without differentiation. R = br-lrann , Q = 9r-lr9n, and T = Ar-lrc~. 

This modification in the signal flow graph is equivalent to the following change of 
variables: 

when the observer equation becomes (Figure 3.47) 

Pr(t) = ~Pr(t) + (!1r - ~rann, +,(Ar ~ lrc~).'r)y(t) + ~u(t) 
T R T Q 

y=x.. ------<0---......,. .... x.. 

u 
Pr 

T 

Figure 3.47: Implementation of the reduced observer with states Pr(t) = rr(t)-lry(t). 
Again R = br -lrann, Q = 9r -lr9n, and T = Ar -lr~. 

Problem 3.13.2 Consider a system defined by 

x(t) = [_~:!~ _~:!~] x(t) + [ -!] u(t) 

yet) = [1 1] x(t) 

Find its open-loop eigenvectors, check the stability, controllability, and observabil­
ity. Determine a state feedback vector k' such that both closed-loop eigenvalues of 
the system are at -1. Design a minimum-order observer for this system, with the 
gain lr such that the observer has an eigenvalue at :-3. What would be the observer 
eigenvalue if lr = O? 
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Solution: The open-loop eigenvalues are Ai = -0.2 and A2 = -0.8, therefore 
the system is stable. Since 

c = [-1 2 ] 
1 -1 and O=[~!] 

the system is also controllable and observable. 
The characteristic polynomials of the open-loop and the closed-loop system are 

a(s}=A2 +A+0.16 and a(s}=A2 +2A+l 

The system is simple .enough not to require the use of the Bass-Gura formula. 
With or without it we find 

k' = [0.84 1.84] 

In order to design a reduced order observer, we need to introduce a nonsingular 
transformation S such that c's = [0 1]. This can be accomplished with e.g., 

S=[ 10] -1 1 

when 

[ ar br] = S-lAS= [-2 2.16] 
Cr ann -1 1 

In this case the reduced observer gain lr is a scalar, and we find it from 

Note: Now it is easy to calculate the remaining pammeters of the reduced order 
observer, and don't forget that the result of the observer opemtion is a state which 
needs to be combined with y(t} using the matrix S: 

If the observer is designed without the feedback (lr = O), the error would still tend 
to zero, but slightly slower, with eigenvalue -2, i.e., as e-2t . 

Problem 3.13.3 The design of a state feedback for the inverted pendulum on a cart 
requires the complete state vector 

In Problems 3.9.9 and 3.11.4 we assumed that all states were available, while in Prob­
lem 3.12.2 we estimated them. If we go back to the original assumption that z(t} and 
8(t} are directly available: 
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we see that we need to estimate only the remaining two states. 
Design a reduced-order observer to estimate the two unavailable states. Why a 

simple differentiation of the two available states is not a satisfactory solution? 

Solution: A differentiation of the two available states is not a good idea because 
even a slight noise can drastically change our estimates of the other two states. 

The inverted pendulum on a cart we considered earlier (Problems 3.5.11, 3.7.12, 
3.9.9, 3.11.4, and 3.12.2) was described by 

[ 
0 0 
o 0 
o -1 
o 21.6 

y = [~ ~ ~ nx 
The nonsingular transformation S can be picked as 

Indeed, 

[ 
0 0 

S= 0 0 o 1 
1 0 

1 0] o 1 
o 0 
o 0 

when 

CS = [~ ~ ~ ~ 
By calculating S~l AS and S-lb we find 

Ar = [~ ~] , Br = [~ 2~n ' Cr = [~ ~] , Ann = [~ ~ 

In order for both eigenvalues of Ar - LrCr to be at -4 we can pick 

Lr=[~ ~] 
Therefore (cf. Problem 3.13.1) 

T = Ar - LrCr = [-~ _~] 
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X file Bimul6.11 
X 

A • [0 0 1 0; 
o 00 1; 
o -1 0 0; 
o 21.6 0 0]; 

B = [0;0;1;-2]; 
C = [1 0 0 0; 

o 1 0 0]; 
D= [0;0]; 

K = [-0.2041 -16.902 -0.6102 -2.7661]; X picked BO that eig(A-BoK) 
X are -1, -2, -1+j, -l-j 

D • Biz.(A,l); X order of original BYBtem 
r • n-size(C,l); X number of states to estimate 

S = [ 0 0 1 0; 
00 0 1; 
o 1 0 0; 
1 0 0 0]; X picked BO that CoS a [zeroe(n-r,r) ,eye(r)] 

Anew • inv (S) oAoS; 
Bnew = inv(S)oB; 
en.v a e_s; 
nnev • Dj 
Knew· 1*8; 

Ar = Anev<1:r,l:r); 
Br = Anew(1:r,r+1:n) 
Cr = Anev(r+1:n,l:r) 
Ann • Anew(r+l:n,r+l n); 
Gr • Bnew(l:r,l); 
an • Bnev(r+1:n,l); 

Lr - [0 4; 
40]; X picked BO that eig(Ar-Lr*Cr) are -4, -4 

T = Ar-LroCr; 
R = Br-Lr*Ann; 
Q - Gr-Lr*an; 

Abig = [Anev, zeroB(n,r); 
zero8(r,r), R+T*Lr, T]; 

Bbig = [Bnew;Q]; 
Cbig = [Cnew,zeros(n-r,r)] j 
Dbig • Dnevi 

Kbig • [zeroB(l,r) ,Knev<1,r+l:n)+Knew<1,l:r)*Lr,Knew<1,l:r)]; 

to = 0; 
tf • 8; 
dt = 0.06; 
t-(tO:dt:tf)' ; 

x qO = [0;0;0;0;0;0]; 
X u=O.1*oneB(size(t»; 

qO = [0;0.1;0;0;0;0]; 
u = zeroB(Bize(t»; 

X sillulation 
X 6a 

X simulation 
X 6b 

[yinit,Qinit] = initial(Abig-Bbig*Kbig,Bbig,Cbig,Dbig,qO, t); 
[Yinp,Qinp] • lsill(Abig-Bbig*Kbig,Bbig,Cbig,Dbig,u,t); 

q - Qini t+Qinp; 
Y - Yinit+Tinp; 

xtrue = (S*q(: ,l:n)')'; 
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,.esti .. • (S*[q(:,D+1:D+r)'+Lr*y'; y'])'; 

8ubplot(4,l,l) 
plot (t,,.true( : ,1), 'y-' ,t,,.e.till(: ,1), 'v. ') 
title (' Inverted Pendul". SiaulatioD 6b') 
ylabel( 'z(t) em] '), grid 
.ubplot(4,l,2) 
plot(t,xtrue(: ,2), ',-' ,t,x •• time: ,2). 'v. ') 
ylabel( 'theta(t) [rad]'), grid 
8ubplot(4,l,3) 
plot(t,xtrue(: ,3), ',-' ,t,x •• time: ,3). 'v.'} 
ylabel('z_dot(t) [a/s] '), grid 
8ubplot(4,l,4) 
plot (t,xtrue ( : ,4), ',_. ,t,z •• tim(: ,4). 'v.') 
ltlabel( 't [s]'), ylabel('theta_dot(t) [rad/s]'), grid 

Due to the identical initial conditions of the observer and the system, the two esti­
mated states are identical to the actual states. The results of the MATLAB Simulation 
5a are identical to Simulation 2a. 

The results of the Simulation 5b slightly differ from Simulation 2b because of 
discrepancies between initial conditions of the actual and the observer states (see 
Figure 3.48). 

Inverted Pendulum Simulation 5b 

tIs] 

Figure 3.48: The results of the MATLAB Simulation 5b. Since the initial condition 
for the fourth state was not identical for the observer and the system (the equations 
describe the p-state, while the estimate of the x-states are the r-states; recall that 
Pr(t) = rr(t) - Lry(t», there is some estimation error, which exponentially dies out. 
Due to this error, there are some differences with respect to the Simulation 2b. 
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Problem 3.13.4 For a system given by 

Hs _b(s)_~ 
( ) - a(s) - s(s - 2) 

205 

(cf. Problem 3.11.6) design a reduced order observer such that the observer error 
eigenvalue is at -4. The poles of the system should be moved to -1 and -2. 

Solution: With 6r (s) = s + 4 and o(s) = (s + 1)(s + 2), the condition; 

0(s)6r (s) = a(s)6r (s) + a(s)p,,(s) + b(s)plI(s) 

implies 

p,,(s) = -35 and PlI(S) = 40s - 8 



Chapter 4 

Discrete linear systems 

In this Chapter we present solved problems about discrete-time linear con­
trol systems. For the most part it will be a reprise of Chapter 3. It will 
emphasize both similarities and differences between the discrete-time and the 
continuous-time systems. In particular, we shall see that many formulas, such as 
the conditions for controllability and observability, remain the same, while some 
others, such as the Riccati and Lyapunov equations and stability conditions are 
changed. 

It begins with the background material on linear difference equations and 
matrices (Sections 4.1, 4.2, and 4.3). It continues with further examples of 
the advantages of the state-space representation of linear systems over their 
input-output representation (Sections 4.4 and 4.5). In Sections 4.6 and 4.7 we 
present three fundamental properties of systems: stability, state controllability, 
and state observability. We also mention a few peculiarities of discrete-time sys­
tems. In Section 4.8 we further illustrate the canonical forms of linear systems. 
Section 4.9 describes how the poles of the system can be arbitrarily placed us­
ing the state feedback. The condition for this so-called modal controllability is, 
again, the state controllability and observability. Next, in Section 4.10, we inves­
tigate the feedback gain which yields the quadratic optimality. In Section 4.11 
we explain the design of the state observers. In Section 4.12 we investigate 
the choice of the observer gain so that the effects of noise are minimized in a 
mean-square sense. The result is the Kalman filter. Finally, in Section 4.13, we 
describe the reduced-order observers. 
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x[k + 1] == Ax[k] + Bu[k] 
y[k] == Cx[k] + Du[k] 



4.1 Simple difference equations 

This Section briefly presents the two most commonly used methods for solving 
linear difference equations with constant coefficients: the time-domain convolu­
tion and the z-transform. It also describes the Kronecker's delta sequence. 

Problem 4.1.1 Show that the solution of the inhomogeneous difference equation 

x[k + 1] = ax[k] + I[k] (k ~ 0), with x[O] = Xo 

is given by 

k-l 

x[k] = xoak + L ai I[k - 1 - i] 
i=O 

Solution: From the solutions for k = 0,1,2,3 

x [0] Xo 

x[l] axo + f[0] 

x [2] a2xo + af[O] + 1[1] 
x [3] a3xo + a2/[0] + af[l] + f[2] 

we can easily generalize 

i.e., 

x[k] = akxo + an - 1 f[0] + ... + af[k - 2] + f[k - 1] 

x[k] = k xoa 
k-l 

+ L ai f[k - 1 - i] 
i=O , .. 

homogeneous part non-homogeneous part 

Note: The non-homogeneous part is a convolution of two sequences, {ak } and 
{I[k - I]}, a delayed version of {I[k]}. We write 

k-l 

ak * f[k - 1] = L ai f[k - 1- i] 
i=O 

The next example will throw additional light to the solution of this problem. 

Problem 4.1.2 Use the z-transform to solve the difference equation from the previous 
problem: 

x[k + 1] = ax[k] + I[k] (k ~ 0), with x[O] = Xo 
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Solution: The z-transforms of sequences {x[kn, {x[k + 1]}, and {I[k]} are 

= x[O] + X[l]Z-l + X[2]Z-2 + X[3]Z-3 + .. . X(z) Z{x[k]} 

Z{x[k + 1n 
Z{I[k]} 

x[l] + X[2]Z-1 + X[3]Z-2 + X[4]Z-3 + .. . 
frO] + f[l]z-l + f[2]z-2 + f[3]z-3 + .. . 

z(X(z) - x[O]) 
F(z) 

Take a z-transform of both sides of the equation to obtain 

z(X(z) - xo) = aX(z) + F(z) 

Therefore 

X(z) = zXo + F(z) 
z-a z-a 

This form of X(z), although eye-pleasing, is not convenient for expansion into 
power series of Z-l, the unit-delay elements. Thus we write 

X(z) = Xo + Z-l F(z) 
1 - az 1 1- az 1 

Next, expand the right-hand side into power series: 

Xo 
1- az 1 

(4.1) 

z-lF(z) 
1- z la 

(f[O]Z-l + /[1]z-2 + f[2]z-3 + ... )(1 + az-1 + a2z-2 + ... ) 

f[O]z-l + (af[O] + f[l])z-2 + (a2 frO] + af[l] + /[2])z-3 + ... 

Finally, by comparing coefficients next to z-k we find: 

x[k] = akxo + ak- 1 /[0] + ... + af[k - 2] + f[k - 1] 

Note: We could write the same result directly from (4.1) because: 

• the inverse z-transform of l-~~la is the sequence {xoak} 

• the inverse of ~~~~f:i is a convolution of inverse z-transforms of Z-l F(z) (i.e., 
the sequence {I[k - In and of l_a1.- t (i.e., the sequence {xoak}) 

Problem 4.1.3 The homogeneous part of the solution for the higher order difference 
equations can be found by looking at the roots of its characteristic equation: 

For each multiplicity-m root a of the characteristic equation, the homogeneous 
part of the solution contains the following term(s) 

where 00, ... , Om-l are constants which depend on the initial conditions. 
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Note: While the above form may be easy to remember, it is much easier to 
determine the coefficients if one of the following forms is used: 

or 

k (k + 1) k (k + 1)(k + 2) k (k + 1) ... (k + m - 1) k 
,oa + /l--l!-a + /2 2! a + ... + /m-l (m _ I)! a 

These two forms are also convenient because they are easily summed during deriva­
tions (cf. Appendix B.2). The latter form corresponds to what the z-transform method 
gives as a solution (see Problem 4.1.4). 

First apply and check the above procedure and then derive it for the following 
homogeneous equations: 

a) x[k + 2] = 5x[k + 1]- 6x[k], x[O] = Xo, x[l] = Xl 

b) x[k + 3] = 2x[k + 2] + 4x[k + 1]- 8x[k], x[O] = Xo, x[l] = Xl, x[2] = X2 

c) x[k + 3] = 6x[k + 2]-12x[k + 1] + 8x[k], x[O] = Xo, x[l] = Xl, x[2] = X2 

Solution: a) The characteristic equation for this recursion is 

r2 - 5r+ 6 = 0 

and since its roots are 

the solution is of the form 

where 0 and {3 can be determined from the initial conditions: 

k=O 
k=1 

=> 0+ {3 = Xo } 
=> 20 + 3{3 = Xl 

o = 3xo - Xl and {3 = Xl - 2xo 

It is easy to verify that x[k] (3xo - xl)2k + (Xl - 2xo)3k satisfies both the 
recursion and the initial conditions. 

In order to derive the "usual suspects" (02k and (33k ) we shail rewrite the recursion 
so that it reduces to the trivial form y[k+ 1] = ay[k]. With the characteristic equation 
in mind 

(r - 2)(r - 3) = 0 

which can be rewritten as 

r2 - 3r = 2(r - 3) 
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we write 

x[k + 2] = 5x[k + 1]- 6x[k] <=> x[k + 2]- 3x[k + 1] = 2(x[k + 1]- 3x[k]) 
, .. '-"'-

y~+ij y~ 

With a new variable: y[k] = x[k + 1]- 3x[k] the recursion becomes 

y[k + 1] = 2y[k] with y[O] = Xl - 3xo = 0 

Hence 

y[k] = 02k 

This now yields a non-homogeneous difference equation in x[k]: 

x[k + 1] = 3x[k] + 02k 

whose solution is (directly from this recursion or from Problem 4.1.1) 

x[k] = 3k xo + (3 k - 1 .20 + 3k - 2 . 21 + ... + 30 • 2k - 1 ) 0 , , .. 
3.-1 (1+f+ ... +(f)·-1 )=3L 2" 

i.e., 

where a = -0 = 3xo - Xl and (3 = Xo + 0 = Xl - 2xo, as before. 

b) The characteristic equation is 

r3 - 2r2 - 4r + 8 = (r + 2)(r - 2)2 = 0 

hence the solution has the following form: 

where a, (3, and 'Y can be determined from the initial conditions. The details are 
omitted. 

c) The characteristic equation for the recursion in this part is 

hence the solution is of the form 

Again, a, (3, and'Y are constants which can be determined from the initial conditions. 

In order to derive this result, we need to simplify the recursion. We first rearrange 
the characteristic equation to get the idea on what to do with the recursion: 

r(r - 2)2 = 2(r - 2)2 i.e., r3 - 4r2 + 4r = 2(r2 - 4r + 4) 
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We see that with y[k] = x[k+2]-4x[k+ 1]+4x[k] the recursion becomes y[k+l] = 
2y[k], with y[O] = X2 - 4X1 + 4xo. For the sake of simplicity denote y[O] = C. Now we 
can write y[k] = C2k, therefore the initial recursion can be written in the following 
form: 

x[k + 2] = 4x[k + 1]- 4x[k] + C2k 

We see that the order of the recursion has been reduced by one. Its order can be 
reduced further if we rewrite this as 

x[k + 2] - 2x[k + 1] = 2(x[k + 1] - 2x[k]) + G2k 
, .. ' '-v--' 

u[k+1] u[k] 

when we find that 

Le., 

Finally, 

Note: The reader is encouraged to fill in the missing steps and as a check 
to compare the values of el, (3, and I obtained through this derivation to the values 
obtained directly from the initial conditions. 

Problem 4.1.4 Repeat the part b) of the previous problem using the z-transform: 

x[k + 3] = 2x[k + 2] + 4x[k + 1]- 8x[k], x[O] = xo, x[l] = Xl, x[2] = X2 

Solution: Take the z-transform of the equation to obtain 

X(z) = 

= 

= 

xoz3 + (Xl - 2XO)Z2 + (X2 - 2X1 - 4xo)z 
(z + 2)(z - 2)2 

(X2 - 2X1 - 4XO)Z-2 + (Xl - 2XO)Z-1 + Xo 
(1 +2Z-1)(1- 2z 1)2 

P + Q + R 
1 + 2z 1 1 - 2z 1 (1 - 2z 1)2 
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where P, Q, and R depend on the numerator coefficients, i.e., on the initial conditions. 
They can be determined using MAT LAB command residue, or, in simple cases such 
as this one, by equating the last two expressions for X(z). We omit the details here. 

Since 

and in general 

we find 

1 
(1 - az-1)2 

d / d -1 ( 1 ) 
z a(l- az-1) 

; 

d / d Z-1 (~(1 + az- 1 + a2 z- 2 + ... ») 

1 = Z { (k + 1)(k + 2) ... (k + m - 1) ak} 
(1 - az-1)m (m - I)! 

x[k] P( _2)k + Q2k + R(k + 1)2k 

p(_2)k + (Q + R)2k + Rk2k 

0:( _2)k + f32k + '"(k2k 

Problem 4.1.5 Solve the following difference equation 

x[k]- 2x[k - 1] - 2x[k - 2] = 0 

with x[O] = 0 and x[l] = 1. 

Solution: The characteristic equation is r2 - 2r - 2 = 0 hence rl,2 = 1 ± j. 
Therefore, the solution is 

x[k] = 0:(1 + j)k + 13(1 _ j)k 

where 0: and 13 are complex constants determined from the initial conditions. Calcu­
lation of (} and 13 can be simplified if we keep in mind that for x[k] to be real, 13 must 
be equal to the complex conjugate of 0:. 

Another way of writing this solution is derived from the polar representation of 
the characteristic roots: 1 ± j = ../2e±i7r / 4 : 

x[k] = (0: + f3)2n / 2 cos n41r + (0: - f3)2n / 2 j sin n41r 

In this particular case 0: = -jf2 and 13 = jf2, hence 

x[k] = 2n / 2 sin ~ 
4 

Note: In order to use the z.tmnsform in this problem, one must either find the 
initial conditions X-I and X-2 or rewrite the equation as x[k+2]-2x[k+l]-2x[k] = O. 



4.1. SIMPLE DIFFERENCE EQUATIONS 215 

Problem 4.1.6 A particle is moving in a horizontal line. The distance it travels in 
each second is equal to two times the distance it travels in the previous second. Let 
Xk denote the position of the particle at the k-th second. 

a) Find a general relation between Xk, Xk-l, and Xk-2. 

b) If Xo = 3 and Xs = 10, find Xk. 

Solution: a) Obviously Xk - Xk-l = 2(Xk-l - Xk-2), i.e., 

b) First solve the above difference equation: 

the ''Usual suspect": } 
Xk = rk '* r2 - 3r + 2 = 0 '* rt = 1, r2 = 2 the recursion: 
Xk - 3Xk-l + 2Xk-2 = 0 

therefore 

Xk = ar~ + {3r~ 

i.e., 

From the conditions Xo = 3 and Xs = 10 we get a system of equations in a and {3: 

a + {3 = 3 } => a = 2, {3 = 1 '* Xk = 2 + 2k 
a +8{3 = 10 

Problem 4.1.7 Investigate the most important properties of the Kronecker's delta 
5[k] with respect to discrete-time convolution and the z-transform. 

Solution: The Kronecker's delta impulse sequence is defined as 

5[k] = { 1, 
0, 

It is the unity for discrete convolution 

00 

k=O 
k:j:O 

f[k] * 5[k] = L I[k - i]5[i] I[k] 
i=-oo 

It's z-transform is obviously 

Z{c5[k]} = 1 + O· Z-l + O· Z-2 + O· z-2 + ... = 1 
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Problem 4.1.8 Write the following third-order difference equation as a system of 
three first-order difference equations and write them in a matrix form: 

i.e., 

x[k + 3] + 5x[k + 2] + 8x[k + 1] + 4x[k] = (_1)k 

Solution: Use v[k] = x[k + 1] and w[k] = v[k + 1], to obtain 

x[k+1] 
v[k+ 1] 

w[k+1] 

[
X[k + 1]] [ 
v[k+1] = 
w[k+1] 

v[k] 
w[k] 
-4x[k]- 8v[k]- 5w[k] + (_1)k 

~ ~ ~] [:fZl] + [ ~ ] 
-4 -8 -5 w[k] (_1)k 

Note: Do you recognize the companion matrixq Compare the eigenvalues (or at 
least the characteristic equations) of the difference equation and the matrix. What are 
the initial conditions here 'I 



4.2 More matrix theory 

In this Section we present several methods for raising a matrix to an integer 
power and prove a very important result, the so-called matrix inversion lemma. 
Matrices are also covered in Section 3.2 and Appendixes BA and C. 

Problem 4.2.1 Determine Ak for the following matrix 

A_[II] 
- 1 ° 

Solution: Calculate Ak for k = 2,3,4,5 and see the regularity: 

We see that the sequence of Fibonacci numbers /k appears in this result. They 
are defined by 

1k+2 = Ik+l + Ik 10 = 0, /1 = 1 

and start like this 

10 = 0, /1 = 1, /2 = 1, fa = 2, 14 = 3, 15 = 5, 16 = 8, 

Indeed, the following can be proved by mathematical induction: 

Note: Unfortunately, very mrely do we get such simple and cute results. 

Problem 4.2.2 If A = QJQ-I, where J is in Jordan form, then Ak = (QJQ-I)k = 
QJkQ-I. In the special case when A is diagonalizable, Ak = QAkQ-I, where 

A = diag('x1,'x2, ... ,'xn) and Ak = diag('x~,'x;, ... ,,x~) 

Use the results obtained in Problem 3.2.6 to find Ak for 

A = [-6 2] 
-6 1 

Solution: In Problem 3.2.6 we found that 'xl = -3, 'x2 = -2 and 

Therefore 
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(-2( _3)k + 2( _2)k) 1 
(-3( _3)k + 4( _2)k) 



218 CHAPTER 4. DISCRETE LINEAR SYSTEMS 

Problem 4.2.3 Use the Sylvester interpolation method to determine Ak for 

A = [-6 2] 
-6 1 

Solution: As in Problem 3.2.7, since A is 2 x 2, we can write 

Ak = a(k)I + .8(k)A 

where a and .8 are found from 

a(k) + .8(k)A1 A~ 
a(k) + .8(k)A2 A~ 

We easily find 

a(k) = 3( _2)k - 2( _3)k and .8(k) = (_2)k - (_3)k 

This agrees with the result of the previous problem. Indeed, 

Problem 4.2.4 Use the z-transform to determine Ak for 

A = [-6 2] 
-6 1 

Solution: We shall show in Problem 4.3.3 that Ak and (I - Z-1 A)-1 are a 
z-transform pair: 

We obtain the same solution as in previous problems since 

(1- -1 A)-1 = [ 1+6z-1 
z 6z- 1 

hence 

-2Z=~ ] -1 = [ (1+;;-1 + 1+3~-1) 
l-z (6 6) 

1+;z-1 + 1+3.-1 

(1+22._1 + 1+;;-1) 1 
(l+2~-1 + 1+;;-1) 

[ 
(4( _3)k - 3( _2)k) 

(6( _3)k - 6( _2)k) 

(-2( _3)k + 2( _2)k) 1 
(-3( _3)k + 4( _2)k) 

Problem 4.2.5 Determine Ak for 
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Solution: The eigenvalues of A are ~1.2.3 = -1. Since A is 3 x 3 and ~ = -1 is 
a triple eigenvalue, in order to determine the coefficients in 

Ak = o:(k)I + ,8(k)A + 'Y(k)A2 

we form the three equations by writing 

and the first and the second derivatives over ~: 

and 

When we solve this system with ~ = -1, we finally get 

o 
(_I)k 

o 

Problem 4.2.6 Prove the following very useful result, the so-called matrix inversion 
lemma: If A, B, C, and D are n x n, n x m, m x n, m x m, respectively, and all 
necessary inverses exist, then 

Solution: Premultiply the right-hand side of the equation by A + BDC: 

(A+ BDC)(A-1 - A-1 B(D- 1 + CA-1B)-lCA- 1) = 
= 1+ BDCA-1 - B(D-1 + CA-1B)-lCA- 1 _ 

-BDCA-1B(D-1 +CA-1B)-lCA-1 

= 1+ BDCA-1 - (B + BDCA-1 B)(D-1 + CA-1 B)-lCA-1 

= I +BDCA-1 - BD(D-1 + CA-1B)(D-1 +CA-1B)-lCA-1 

= I 

Note: Most often we use this lemma with A = In and D = 1m: 

(In + BC)-l = In - B(Im + CB)-lc. 

This result has been known among mathematicians, e.g., Woodbury, at least since 
1950. The first to use it in the engineering community was Kailath in 1960 (ef. [19]). 



4.3 Systems of linear difference equations 

In this Section we solve systems of difference equations using the matrix nota­
tion. 

Problem 4.3.1 Write the following system of equations in a matrix form: 

u[k + 1] 
v[k+l] 
w[k+l] 

Solution: If we write 

u[k] - 2v[k] - 4w[k] + (_I)k 

u[k]- 3v[k] + 3w[k] + sink 

= u[k] + 4v[k] + 5w[k] + cos k 

[
U[k]] 

x[k] = v[k] [
( _I)k] 

and I[k] = sin k 
cosk w[k] 

the system can be written as 

x[k + 1] = Ax[k] + I[k] 

where 

[ 1 -2 -4] 
A = 1 -3 3 

145 

Problem 4.3.2 Show that the solution of the system of inhomogeneous difference 
equations 

x[k + 1] = Ax[k] + I[k] (k ~ 0), with x[O] = rX~ll 
lxon 

where A is n x n, while x[k] and I[k] are n x 1, is given by 

1:-1 

x[k] = AkXO + LAil[k -1- i] 
i=O 

Solution: From the solutions for k = 0, 1, 2,3 

x[O] 
x[l] 
x[2] = 
x[3] = 

we can easily generalize 

Xo 
Axo +/[0] 
A2xo + AI[O] + 1[1] 
A3XO + A2 /[0] + AI[I] + 1[2] 

220 
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x[k] = Alexo + A Ie - 1/[O] + ... + AI[k - 2] + I[k - 1] 

i.e., 

Ie-I 

x[k] = + LAi/[k-I-i] 
i=O 

~ ....... 
homogeneous part non-homogeneous part 

Note: The non-homogeneous part is a convolution of two sequences, {Ale} and 
{I[k - I]}. We write 

Ie-I 

A" */[k -1] = LAi/[k -I-i] 
i=O 

Problem 4.3.3 Apply the z-transform to the vector difference equation from the 
previous problem: 

x[k + 1] = Ax[k] + I[k] (k ~ 0), with x[O] = rX~ll 
lxon 

Solution: The z-transforms of sequences {x[k]}, {x[k + I]}, and {I[k]} are 

Z{x[k]} 

Z{x[k+ I]} 

Z{I[k]} 

= x[O] + X[I]Z-1 + X[2]Z-2 + X[3]Z-3 + .. . 
= x[I] + X[2]z-1 + X[3]Z-2 + X[4]Z-3 + ... = 

1[0] + I[I]z-1 + 1[2]z-2 + 1[3]z-3 +... = 

X(z) 

z(X(z) - x[O]) 

F(z) 

Take a z-transform of both sides of the equation to obtain 

z(X(z) - xo) = AX(z) + F(z) 

Therefore 

X(z) = (zl - A)-1 zxo + (zl - A)-1 F(z) 

i.e., 

X(z) = (1- Z-1 A)-lxo + (1- z-1 A)-IZ-IF(z) 

Since Z-1 corresponds to a time-delay by one sample and the product in the trans­
form domain corresponds to time-domain convolution, the inverse z-transform yields 

Ie-I 

x[k] = A"xo + LAi/[k -I-i] 
i=O 

Note: II we compare results 01 Problems 4.1.2 and 4.3.2 we find that {Ale} and 
(I - Z-1 A)-1 are a z-tmnslorm pair: 

Z {A"} = (I - Z-1 A)-1 i.e., Z-1 {(I _ Z-1 A)-I} = A" 



4.4 Input-output representation 

ill this Section we review the use of input-output representation and transfer 
function techniques to analysis of discrete-time systems. We also discuss the 
discretization process, the sampling theorem in particular, and relation between 
the Laplace and the z-transform. 

Problem 4.4.1 Determine the output of a system described by 

1 
y[k + 1] - '2 y [k] = u[k] (k ~ 0) 

y[O] = 5 

when 

a) u[k] = cos 2~k 

b) u[k] = (t)k 
c) u[k] = (t - c)k where c is a small positive number 

d) u[k] = (!)k 

Solution: The homogeneous part of the solution is the same for all four cases. 
Since the root of the characteristic equation (the pole of the system) is a = t and 
y[O] = 5 

a) The non-homogeneous part (the particular solution) is as in Problem 4.1.1 (using 
i¥'+ -ill' 2 n+l 1 COS<p=e; and1+x+x + ... +Xn=xx_;) 

k-l . k ,,(I)' 27l'(k-1-i) 27l'k. 27l'k (1) 
Ynh [k] = L '2 cos 12 = ... = 0.95 cos 12 + 1.30 sm 12 - 0.95 '2 

i=O 

Finally, the solution is 

(l)k 27l'k . 27l'k 
y[k] = Yh [k] + Ynh [k] = 4.05 '2 + 0.95 cos 12 + 1.30 sm 12 

Note 1: The first term in the solution is often called the transient part of the 
solution because it approaches zero fast. The remaining terms are then called the 
steady-state part of the solution. Both the initial conditions and the input contribute 
to the transient part of y[kJ, through Yh[k] and Ynh[kJ, respectively. The steady-state 
part, however, comes from the input only and is often called the forced output. 

Note 2: We can solve this equation in other ways, using the z-transform for 
example. Another method is attractive too: Knowing the root of the characteristic 
equation and from the form of the input we can immediately write 

(l)k 27l'k . 27l'k 
y[k] =A '2 +Bcos 12 +Csm 12 
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If we substitute this into the original equation (not only its homogeneous part), the 
initial condition gives us one of three equations for constants A, B, and 0: 

A+B=5 

The other two equations are obtained by equating the coefficients next to cos 2r2k 

and sin 2:;2k terms, respectively: 

BeVa-l)+O=2 and B-OeVa-l)=O 

See also Problem 4.4.2. 

b) Similarly, for this input 

c) For u[k] = et - e)k we find 

Note: As e -+ 0, i.e., when the input's complex frequency approaches the system's 
pole, the forced output grows in magnitude. This is resonance. Asymptotically (as 
e -+ 0), the total output behaves like: 

d) When u[k] = (t)k, the input's complex frequency coincides with the pole of the 
system. The convolution of two similar terms produces a new form. Thus 

( l)k (l)k-l 
y[k] = 5 2' +k 2' 

Problem 4.4.2 Find the output of a system described by 

a) y[k + 3] + 3y[k + 2] +3y[k + 1] + y[k] = (_I)k 
with y[2] = 1, y[l] = 2, and y[O] = 3 

b) y[k + 3] + 3y[k + 2] +4y[k + 1] + 12y[k] = (_3)k 
with y[2] = 1, y[l] = 1, and y[O] = 1 

Solution: a) This system has a triple pole at -1 and the input's complex 
frequency coincides with this triple pole hence the solution is a linear combination of 
(_I)k, k(-I)k, k2(_I)k, and k3 (_I)k (see also Problem 4.1.3): 

y[k] = A( _1)k + Bk( _1)k + Ok2( _1)k + Dk3 ( _1)k 

Coefficients A, B, 0, and D are found from the initial conditions for the whole 
equation and by substitution of this expression into the equation. 
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Note: Much less effort is needed if we use the following form: 

y[k] = 0« _l)k + {3k( _l)k + p,k(k - 1)( _l)k + IIk(k - l)(k - 2)( _l)k 

b) In this case poles are at ±2j and -3, and the input coincides with a pole at 
-3, therefore 

y[k] = A(2j)k + B( _2j)k + C( _3)k + Dk( _3)k 

Another way to write this is 

] k k7r k. k7r k k 
y[k = 0<2 cos 2"" + {32 sm 2"" + C( -3) + Dk( -3) 

where 0< = A + Band {3 = (A - B)j. 

Problem 4.4.3 What is the output of the system described by 

y[k + 1] + 3y[k] = u[k + 1] + 2u[k] 

with y[O] = 1 and u[k] = (_2)k + cos 2;k. 

Solution: If we try y[k] = A(-3)k+B(-2)k+CcoS 2;k+Dsin 2;k and substitute 
it into the equation we immediately find that B = O. The complex frequencies for 
which this happens (in this case only -2) are called the zeros of the system. They 
are the roots of the characteristic equation of the input part of the equation. 

Problem 4.4.4 What is the impulse response h[k] of a system?' What is the transfer 
function T(z) of a system? Show that T(z) = Z {h[k]}. 

Solution: Impulse response. The impulse response h[k] of a discrete-time system 
is the output of the system caused by the Kronecker's delta impulse d[k] at the input: 

d[k] = {I, k = 0 
0, k =1= 0 

The system is assumed to be at rest when d[k] is applied, i.e., all initial conditions are 
zero. 

The impulse response h[k] is important because it completely characterizes the 
output when input is known. If the initial conditions are non-zero Yh[k] is found as in 
Problem 4.1.3, while Ynh[k] can be characterized in terms of the impulse response as 
follows. 

From the linearity of the system, and from the following decomposition of an 
arbitrary input for k :::>: 0 

00 

u[k] = L uri] d[k - i] 
i=O 

we find (assuming the system is causal, i.e., h[k] == 0 for k < 0) 
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k 

Ynh[k] = L uri] h[k - i] 
i=O 

the so-called discrete-time convolution of sequences h[k] and u[k]. 
In general, if a system is given by a difference equation, the impulse response is 

most easily obtained as the inverse z-transform of its transfer function. The derivation 
is given below. 

Transfer function. Transfer function is the ratio of the z-transforms of the output 
and the input of the system, assuming zero initial conditions: 

T( ) = Y(z) 
z U(z) 

If a system is given by 

y[k] + aly[k - 1] + ... + any[k - n] = bou[k] + ... + bmu[k - m] (k ~ 0) 

and the initial conditions are zero, Le., y-l = ... = y-n = 0, then the z-transform 
yields 

T(z) = Y(z) = b(z) = bozn + ... + bmzn- m 

U(z) a(z) zn + alzn 1 + ... + an-lz + an 

or equivalently 

T(z) = bo + b1z-1 + ... + bmz-m 

1+alz-1+ ... +anz n 

From these expressions we see that T(z) does not depend on the input u[k], only 
on the coefficients of the difference equation. 

Relation between h[k] and T(z). Since T(z) does not depend on the particular 
choice of u[k], we can pick u[k] = 8[k] when U(z) = 1, y[k] = h[k], and Y(z) = H(z). 
Then we find 

T(z) = ~~:~ = H(z) = Z {h[k]} = f h[k]z-k 
k=O 

Note: This is why we often write H(z) instead ofT(z). Another way to see this 
is to use the convolution property of the z-transform: With zero initial conditions 

y[k] = h[k] * u[k] => Y(z) = H(z)U(z) 

Note also that for causal systems (h[k] == 0 for k < 0) when z = eiw the transfer 
function T(z) becomes the frequency response T(eiw ) and we find that h[k] and T(eiw ) 
are a discrete-time Fourier transform (DTFT) pair: 

00 

T(eiw ) = H(eiW ) = L h[k]e-iwk 

k=O 
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Problem 4.4.5 Determine the impulse response of a system described by 

5 1 
y[k] + 6y[k - 1] + 6y[k - 2] = u[k - 1] + 3u[k - 2] (k ~ 0) 

Solution: Obviously 

H(z) = z + 3 = -15 + ~ = -15z-1 + 16z-1 

Z2 + ~z + 1 z + t z + i 1 + tz-1 1 + iz-1 
Therefore 

Matlab note: To plot this directly from the coefficients of the differential equation 
(see Figure 4.1) do the following: dimpulse([l 3]. [1 5/6 1/6]) 

2.5.--,...---r--,--,---,-----.----r--.-----r----, 

2 

1.5 

~ 0.5 
:> 

'" 'i5. 
.!( 0 

-0.5 

-1 

-1.5 

-2 
0 2 3 4 5 6 7 8 9 10 

No. of Samples 

Figure 4.1: The plot produced by the MATLAB command dimpulse. 

Problem 4.4.6 Determine the impulse response of a system described by 

1 
y[k] + y[k - 1] + 2y[k - 2] = u[k] + 2u[k - 1] 

Solution: Obviously 

H . 1 + 2z-1 1 + 1Z - 1 tz- 1 

(z) = 1 + Z-1 + tz-2 = 1 + Z-12+ tz-2 + 3 1 + z-l + tz-2 
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From Appendix B.3 

1 - az- 1 cosw 

1 - 2az-1 cosw + a2z-2 

and 

az- 1 sinw 
1 - 2az-1 cosw + a2z-2 

hence 

h[k] = ( ~) kcos 3~7r + 3 ( ~) ksin 3~7r (k ~ 0) 

Problem 4.4.7 Determine the impulse response of a system described by 

1 1 
y[k]- y[k - 1] + 4y[k - 2] = u[k]- "3u[k -1] 

Solution: Obviously 

1 ".;.c lz-1 _ 2/3 + 1/3 
H(z) = ( 13 -1)2 - 1 1 ( 1 1)2 1 - 2"z 1 - 2"z- 1 - 2"z-

hence 

2 (1)k 1 (l)k h[k]=- - +-(k+l)-
3 2 . 3 2 

(k ~ 0) 

Le., 

(1)k k (l)k 
h[k] = 2 +"3 2 (k ~ 0) 

Problem 4.4.8 Discrete-time linear time-invariant systems are often described using 
linear difference equations with constant coefficients which relate their output y[k] to 
their input u[k]: 

y[k] + a1y[k - 1] + ... + any[k - n] = bou[k] + ... + bmu[k - m] 

with initial conditions y[O], y[l], ... , y[n-l] given. Discuss the solution of this equation. 

Solution: The solution of this equation can be written as 

y[k] = Yh[k] + Ynh[k] 

where Yh[k] is a homogeneous part of the solution, while Ynh[k] is a non-homogeneous 
(also known as particular) solution: 

• Yh[k]: For each multiplicity-m root a of the characteristic' equation of the differ­
ence equation Yh [k] contains the following term(s) 

(3oa k + (31ka k + (32k(k - l)a k + ... + (3m-1k(k -1) ... (k - m + 2)ak 

where (30, ... , (3m-1 are constants determined from the homogeneous part of the 
equation 

y[k] + a1y[k - 1] + ... + any[k - n] = 0 

and the initial conditions. See also the Note after Problem 4.l.3. 
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• Ynh[k): This part of the solution is a convolution of the input u[k) with h[k), the 
impulse response of the system: 

k 

Ynh[k) = L uri) h[k - i) 
.=0 

The impulse response is most easily determined using the inverse z-transform. 

Note 1: If the system is initially at rest, i.e., if all initial conditions are zero, 
then obviously Yh[k) == 0, hence y[k) = ynh[k). On the other hand, if u[k) == 0, then 
y[k) = Yh[k). We say that the non-homogeneous part of the solution is the response 
to the input, while the homogeneous part of the solution is a response to the initial 
conditions. 

Note 2: Show that the convolution formula we derived in Section 4.1 is a special 
case of this formula. 

Problem 4.4.9 Show that if u[k) = z3 is the input and y[k) is the output of a system 
described by 

y[k) + aly[k -1) + ... + any[k - n) = bou[k) + ... + bmu[k - m) 

then the output contains a term T(zo}z3, where 

T(zo} = bo + b1zO: + ... + bmzom = b(zo} 
1 + alzo + ... + anzo n a(zo} 

It is assumed here that z~ does not coincide with any of the poles of the system, i.e., 
roots of a(z} = 1 + alz- 1 + ... + anz-n. 

Solution: . With u[k) = z3 the above equation becomes 

Its z-transform (assuming all initial conditions are zero) yields 

y z _ 1 b(zo} 
( ) - 1 - ZOZ-l a(z} 

The partial fraction decomposition of this rational function contains the term 
AI(l - ZOZ-l} where 

A = lim ((1- zoz-l}y(Z}) = b«zo}} = T(zo} 
%-"0 a Zo 

hence the output y[k) contains the term T(zo}z3. 

Note: Due to linearity, if u[k) = zf + z~ then 

y[k) = T(Zl}Z~ + T(Z2}Z~ + ... 
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Problem- 4.4.10 Use MATLAB to plot the amplitude of the frequency response and 
the locations of the poles and the zeros of the following 7th order discrete-time low-pass 
filters with the cut-off frequency at one third of the sampling frequency: Butterworth, 
Chebyshev Type I, and Chebyshev Type II. 

Solution: Figure 4.2 is easily obtained using the following MATLAB commands: 
butter, chebyl, cheby2, freqz, and tf2zp. 

0.5 

o 

Butterworth 

0.2 

lIE 
lIE 
lIE 
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-1 '--_____ ...J 
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Figure 4.2: Amplitudes of the frequency responses and locations of poles and zeros of 
order 7 discrete-time Butterworth, Chebyshev type I, and Chebyshev type II low-pass 
filters with Wn = w./3. 

Problem 4.4.11 Do a qualitative comparison of impulse responses of systems given 
by the following three standard models: 

Moving Average (MA): 

y[k] = bou[k] + ... + bmu[k - m] 

Auto-Regressive (AR): 

y[k] + aly[k -1] + ... + any[k - n] = bou[k] 

Combined (ARMA): 

y[k] + aly[k -1] +, .. + any[k - n] = bou[k] + ... + bmu[k- m] 
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Solution: It is easy to see that for the MA model the impulse response is 

hMA[k] = bo6[k] + ... + bm 6[k - m] 

This is obviously a finite-length sequence, hence such systems are called Finite 
Impulse Response (FIR) systems. Such systems are inherently stable because their 
transfer functions have no poles: 

They are simple to design but for many applications they don't offer enough flex­
ibility. 

For the AR model the impulse response hAR[k] can be found as the inverse z­
transform of the transfer function 

Obviously, hAR[k] is an infinite-length sequence, hence such systems are called 
Infinite Impulse Response (IIR) systems. Since AR systems have poles, stability is a 
concern here. Note that this transfer function has poles, but no zeros. 

ARMA models have similar properties to AR systems, except that they do have 
zeros. This provides for additional flexibility in the design, but also adds to the 
complexity of theoretical analysis. ARMA systems are also 1m. In general 

Problem 4.4.12 Derive the Laplace transform of a signal I(t) sampled by a train of 
Dirac 6-impulses. 

Solution: Let the sampled signal be 

00 00 

get) = I(t) L 6(t - kT) = L l(kT)6(t - kT) 

k=-oo k=-oo 
where T is the sampling period. Then 

G(8) I: g(t)e-6t dt 

= I: (too l(kT)6(t - kT») e-·t dt 

= ktoo (I: l(kT)6(t - kT)e-·t dt) 

00 

= L l(kT)e-·kT 

k=-oo 
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Note 1: Denote z = eBT and compare this last ezpression to the z-transform 
of the sequence f[k] = f(kT). Until now we interpreted the z-transform only as a 
generating /unction of sequences. This derivation establishes a close analogy between 
the two transforms. The relation z = eaT not only ezplains the equivalence of the jw 
(frequency) axis in the s-plane and the unit circle in the z-plane, but also forms a basis 
for several design methods in which the results from the continuous-time systems are 
applied to the discrete-time systems via this or approximate transformations, such as 
bilinear, in which 

1 + 1:. s z= __ 2_ 

I-t s 

Note 2: In a discussion after their 1952 paper [47] in which they first introduced 
the z-transform, J. R. Ragazzini and L. A. Zadeh wrote: 

In defining z as e+BT rather than e-BT, we have been motivated first 
by a desire to avoid conflict with the notation used by W. Hurewicz and 
others, and second by the fact that the alternative choice would make it 
inconvenient to use the only extensive table of z-transforms now available, 
namely, the table of so-called generalized Laplace transforms compiled by 
W. M. Stone. Otherwise, we are in complete agreement with Dr. Salzer's 
suggestion that it would be preferable to define z as being equal to e-BT 
rather than e +BT. 

This was in response to what J. M. Salzer wrote: 

... it may be preferable to define z as being equal to e-sT rather than 
e+sT , when dealing with sampled-data systems ... because the latter cor­
responds to a time-advance operation, which has no physical meaning in 
a real-time application. In purely mathematical work one definition is as 
good as the other, and it is just unfortunate that in previous operational 
and transform work with difference equations the advance ... operator was 
given a symbol. 

Prior to this paper, W. Hurewicz used generating /unction methods to analyze 
sampled-data, i.e., discrete-time systems, while W. K. Linvill applied the Laplace trans­
form to the sampled signals. Ragazzini and Zadeh were the first to unify these two 
approaches. 

Problem 4.4.13 Explain the role of a low-pass filter (LPF) at the input of a system 
which converts continuous-time signals to discrete-time signals. Why does the sam­
pling frequency Ws have to be greater than twice the maximum frequency Wm in the 
input signal? Derive the sampling theorem. 



232 CHAPTER 4. DISCRETE LINEAR SYSTEMS 

Solution: The purpose of the low-pass filter is to prevent aliasing. Without the 
filter or if its cut-off frequency is Wm ~ w./2 = 1r/T, then more than one input signal 
u(t) can produce the same sampled signal yet) (see the diagram in Figure 4.3 and the 
derivation below). 

4 LPF H Sampling ~ 
COm<cos/2 COs= 21t I T 

Figure 4.3: Low-pass filtering is necessary before sampling in order to avoid aliasing. 

Let us assume that u(t) is filtered so that ret) has no spectral components above 
wm , i.e., let R(jw) == 0 for w > wm . Then, with 

00 

6T(t) = L 6(t - kT) 
k=-oo 

we have yet) = r(t)6T(t). Since 

Y(jw) = :1r(R(jw) * ~T(jW» 

where 

00 

~T(jW) = F{6T(t)} = ~ L 6(w - kw.) and 
k=-oo 

we finally find 

00 

Y(jw) = ~ L R(j(w - kw.» 
k=-oo 

21r 
w.='F 

Another way to derive this result is to use the Poisson summation formula: 

00 00 

L 6(t - kT) = ~ L ejw• kt 

k=-oo k=-oo 

Then 

00 roo 00 

Y(jw) = ~ L 1- r(t)ei(w-kw.)t dt = ~ L R(j(w - kw.» 
k=-oo -00 k=-oo 

We see that Y(jw), the spectrum of the sampled signal yet), is a sum of scaled 
copies of R(jw) shifted by integer multiples of the sampling frequency w. = 21r/T, as 
in Figure 4.4. 

Unless Wm ~ w./2, these shifted copies overlap and the reconstruction of the 
original signal becomes impossible. If this condition is satisfied, than the sampled 
signal uniquely corresponds to the input signal. This is the sampling theorem. The 
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OJ 

Figure 4.4: In the frequency domain the ideal sampling produces identical copies of 
the original spectrum centered around ±Ws, ±2ws , ±3ws , ... 

input signal can be reconstructed using its samples by another low-pass filter with a 
cut-off frequency between Wm and ws/2. 

This overlapping is called aliasing because whether 

RI(t) = COSWlt or R2(t) = cos(ws - WI)t 

the sampled signal y(t) is the same. We say that the higher-frequency signal has 
taken on the identity (alias) of the lower-frequency signal [43]. This is illustrated in 
Figure 4.5. We say that the higher-frequency signal R2(t) has been undersampled. 

1.5r---r---r--~.------r---r-----'---, 

-1.50'----'----'-----'~--4.1.----L--..... 6----' 

t[8] 

Figure 4.5: Example of two different signals producing the same sequence of samples. 
Here the sampling period is T = 1 s hence the sampling frequency is Ws = 6.28 rad/s, 
while Wl = 1.32rad/s. 
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Another example of aliasing is the strobe effect in the Western movies, where the 
stagecoach wheels often seem to rotate slower that they naturally should, sometimes 
even in the wrong direction. 

Note 1: The minimum sampling frequency which guarantees no aliasing is called 
the Nyquist rate: 

The maximum frequency contained in a signal before sampling, Wm is sometimes 
called the Nyquist frequency. 

Note 2: The preceding results were known to mathematicians for years. In the 
communications theory they were first used by H. Nyquist {1928}, V. A. Kotelynikov 
(1933), and D. Gabor {1946}. The sampling and reconstruction theorems first explicitly 
appeared in the communications literature in a seminal paper [50] by C. E. Shannon 
{1949}. That is why it is often called Shannon's sampling theorem. 



4.5 State-space representation 

In this Section we review the notation and main ideas behind the state-space 
representation of discrete-time systems. We find many similarities with the 
continuous-time systems described in Section 3.5. 

Problem 4.5.1 A discrete-time system is given by the following state-space equations 

x[k + 1] = Ax[k] + bulk] 

y[k] = c' x[k] + du[k] 

where u[k] is the input to the system, y[k] is its output, while x[k] is an n x 1 state 
vector of the system. A is an n x n state-transition matrix, while b and c' are n x 1 and 
1 x n vectors, respectively. We shall often assume that A has n distinct eigenvalues. 

Express y[k] in terms of u[k], A, b, c', d, and the initial conditions x[O]. Determine 
the impulse response in terms of A, b, c', and d. 

Solution: From Problem 4.3.2 we know that 
k-l 

x[k] = Akxo + L Ai ~u[k - 1 - il 
i=O /[k~l-i] 

Hence 

y[k] = c' AkxO + (c' Akb) * (u[k - 1]) + du[k] 

The impulse response is obtained from the above formula by putting x[O] = 0 and 
u[k] =8[k]: 

h[k] = y[k]I.'[01=o,u[k1=6[k1 = c' Ak-1b + d8[k] 

Note: For k = 1,2, ... the impulse response coincides with the Markov parameters 
of the system (cf. Problem 3.8.4): 

(k = 1,2, ... ) 

Problem 4.5.2 Solve the state-space equations 

x[k + 1] = Ax[k] + bulk] 
y[k] = c' x[k] + du[k] 

in the z-transform domain. Determine the transfer function H(z). 

Solution: We know that X(z) = z(zl - A)-lXO + (zl - A)-lbU(z) (cf. Prob­
lem 4.3.3), therefore 

Y(z) = c' z(zl - A)-lXO + c' (zl - A)-lbU(z) + dU(z) 

The transfer function is found as 

H(z) = ~~;~ I = c' (zl - A)-lb + d 
.,[01=0 

235 
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Problem 4.5.3 Prove that the transfer function of the system given by 

x[k+l] 
y[k] 

Ax[k] + bulk] 
c'x[k] 

where A has distinct eigenvalues, can be written as 

H(z} = ~ (c'qi}(p:b}z-I 
~ l-AiZ I 
i=1 

Solution: This result is a direct consequence of Problem 3.2.15. This representa­
tion is very important, because it provides the rational decomposition in the transform 
domain, thus making the application of the inverse z-transform easy. Since 

for the impulse response of a system with distinct eigenvalues we can write 

n 

h[k] = L QiA~-1 (k > O) 
1=1 

WhereQi=(c'qi}(P:b} (i=I,2, ... ,n). 
For systems with multiple eigenvalues the corresponding formula is more compli­

cated. In general, matrix A is not diagonalizable, hence, in notation of Problem 3.2.15, 
LAiR; =1= A. Then one has to resort to Jordan matrices instead of diagonal matrices, 
when the impulse response is a linear combination of exponential functions multiplied 
by polynomials: 

n 

h[k] = L Qi(k}A7- 1 (k > O) 
i=1 

The degree of each Qi(k} is equal to the number of generalized eigenvectors corre­
sponding to Ai, i.e., 

deg(Qj(k» = v(A;1 - A} - 1 = n - p(A;1- A} - 1 

where p and v denote matrix rank and nullity, respectively (cf. Appendix C). 

Problem 4.5.4 Derive the state-space equations for a serial, parallel, and a feedback 
connection of two systems given by triples {AI, BI, Cd and {A2 , B 2 , C2 }. 

Solution: Let us denote by x[k] the new state vector: 

x[k] = [Xl[k]] 
x2[k] 

In the serial connection the state-space equation is 
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x[k + 1] = [B~~l f2] x[k] + [~] u[k] 

y[k] [ 0 C2 ] x[k] 

In the parallel connection the state-space equation is 

x[k+l] [~~ ]X[k]+[:~]U[k] 
y[k] = [C1 C2 ] x[k] 

IT the system {A1, B1, Cd is in the forward loop while {A2, B2, C2} is in the 
feedback loop, the new state-space equation is 

x[k + 1] = [A1 -B1C2] x[k] + [B1] u[k] 
B2C1 A2 0 

y[k] = [0 C2 ] x[k] 

Note: State the conditions necessary for matrix size compatibility and verify that 
in the case of single-input single-output systems the tmnsfer functions are 

Problem 4.5.5 Given a continuous-time system 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

derive the equations for the corresponding discrete-time system. The sampling period 
is T. 

Solution: We want to write the discrete-time state equations in the following 
form 

x[k+l] 
y[k] 

From the expression for x(t) 

Gx[k] + HU[k] 

= Cx[k] 

x(t) = eAtx(O) + lt eA(t-'T)Bu(T)dT 
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we can directly write 

tk+1)T 
x[k + 1] = eA(k+1)T x [0] + Jo eA«k+l)T-T) BU(T)dT 

and 

rT . 
x[k] = e AkT x [0] + Jo eA(kT-T) BU(T) dT 

Now it is easy to write 

l (k+l)T 

x[k + 1] = eAT x[k] + eA(k+l)T e- AT BU(T) dT 
kT 

If we assume u(t) = u[k] (kT::; t ::; (k + I)T), then we see that 

G = eAT and H = (IT 
eAT dT) B 

Note: If A is invertible (i.e., nonsingular), then 

H = (eAT - I)A- 1 B 



4.6 Stability 

This Section presents the stability conditions for discrete-time systems. Al­
though the definitions are practically identical to definitions for continuous-time 
systems, the conditions are very different: the poles must be inside the unit cir­
cle in the transform domain (rather than in the left-hand-side half-plane) and 
the Lyapunov equation has a different form. 

Problem 4.6.1 Define BIBO (bounded-input bounded-output) stability and give the 
necessary and sufficient condition for a discrete-time system to be BIBO stable. 

Solution: A system is BIBO stable if its output to any bounded input remains 
bounded at all times. Since 

00 

y[k] = L h[i]u[k - i] 
i=O 

and 

ly[k]1 = I~ h[i]u[k - i]1 :5 ~ Ih[illlu[k - ill :5 G ~ Ih[ill 

where G = max(lu[kJl), for a system to be BIBO stable it is sufficient that its impulse 
response be absolutely summable: 

00 

Llh[i]1 <00 
i=O 

To show that this condition is necessary, suppose h[i] is not absolutely summable. 
Then for u[k] = sgn(h[K - k]) we have 

00 00 

y[K] = L h[i]u[K - i] = L Ih[i] I 
;=0 ,=0 

which is not defined. 
Thus, absolute summability is both a necessary and a sufficient condition for BIBO 

stability of discrete-time linear time-invariant systems. 

Problem 4.6.2 Is a system with h[k] = <k!ik (k > 0) BIBO stable? 

Solution: No, because h[k] is not absolutely summable: 

n 1 
"'- -Inn L..Jk+l 
k=O 

Note: It is interesting that h[k] is summable but not absolutely summable: 

00 

Lh[k] =ln2 
k=O 

239 
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Problem 4.6.3 If a transfer function H(z) of a discrete-time system is rational, what 
condition on its poles must be satisfied for BIBO stability? 

Solution: If the poles P1,P2, ... ,pn of H(z) are distinct, then h[k) is given by 
(cf. Problem 4.5.3) 

n 

h[k) = L O;p~-l (k > 0) 
;=1 

If H(z) has repeated poles, then (again cf. Problem 4.5.3) the 0i are polynomials 
in k: 

n 

h[k) = LOi(k)p~-l (k > 0) 
i=l 

In either case h[k) is absolutely summable if and only if 

IPil<1 (i=I,2, ... ,n) 

i.e., if the poles of the system are inside the unit circle in the z-plane. 
See also the note after Problem 3.6.2. 

Problem 4.6.4 A system has the impulse response h[k) = f,; - ire (k > 0). Deter­
mine the poles of the system. Is this system BIBO stable? 

Solution: The poles are obviously P1 = 1/2 and P2 = 1/3. We can already say 
that the system is stable because IP1.21 < 1, but let us verify that the impulse response 
is absolutely summable: 

L
OO Loo 11 1 I Loo (1 1 ) 1/2 1/3 1 3 Ih[k)l= --- < -+- =--+--=1+-=-

2k 3k - 2k 3k 1 - 1. 1 - 1. 2 2 
k=O k=l k=l 2 3 

Problem 4.6.5 Use MATLAB to determine whether or not the discrete-time system 
given by the following recursion is stable: 

y[k) + ~Y[k - 1) + ~Y[k - 2)- ~Y[k - 3) = u[k - 1) + 3u[k - 2) (k ~ 0) 

Solution: The characteristic equation of this system is 

3 5 2 1 1 
z + -z + -z - - = 0 

6 6 8 

Use the following command: roots([l, 5/6, 1/6, -1/8]} to obtain 

P1,2 = -0.5514 ± 0.3998j P3 = 0.2695 

It is easy to see that IP1,2.31 < 1, hence this system is BIBO stable. 
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Problem 4.6.6 Although the asymptotic stability in the sense of Lyapunov is defined 
for discrete-time systems in an analogous way as for continuous-time systems, the 
Lyapunov equation differs between the two classes of systems. Derive the Lyapunov 
equation for discrete-time systems. 

Solution: Starting from a symmetric positive definite matrix P which determines 
the Lyapunov function 

V(x[k]) = x' [k]Px[k] 

for the asymptotic Lyapunov stability we require that ~V(x[k]) < 0, or at least 
~V(x[k]) ~ 0 with ~V(x[k]) t. 0 along any possible system trajectory. Since 

~V(x[k]) = V(x[k + 1]) - V(x[k]) = x' (A' PA - P)x 

with Q = -(A' P A - P), we require that Q is positive definite or at least positive 
semi-definite with the above condition that ~V(x[k]) ~ 0 along any possible system 
trajectory. 

As in continuous-time systems, we often start with any symmetric positive definite 
matrix Q, solve the Lyapunov equation for P, and test it for positive definiteness. The 
system is stable, i.e., A is discrete-time stability matrix if and only if the solution P 
of the discrete-time Lyapunov equation 

Q=P-A'PA 

is symmetric and positive definite. 

Problem 4.6.7 The state transition matrix A has all eigenvalues inside the unit 
circle if and only if for an arbitrary positive definite symmetric matrix Q there exists 
a positive definite symmetric matrix P such that A' P A - P = -Q. 

Consider two state transition matrices: 

A = [0.25 0.5] 
1 0.5 0 

In each case find P for Q = I. Check if P is positive definite. Calculate the 
eigenvalues to verify the results. 

Solution: With 

P=[: :] 

(note the inherent symmetry) in the first case we obtain 

A'PA-P=-I => P= [ 1.5 
0.25 

Since 1.5 > 0 and det(P) > 0, P is positive definite, i.e. 
the eigenvalues of A having magnitudes 

1.\ 1=11±v'i71 1 1,2 8 < 

0.25 ] 
1.375 

P > o. This agrees with 

In the second case matrix P does not exist, hence A is not a stability matrix for 
discrete-time systems. Indeed 

'\1,2 = 1 
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Problem 4.6.8 Use MATLAB to generate a random 4 x 4 matrix and determine its 
eigenvalues. Is it a stability matrix in discrete-time? Use dlyap to solve the discrete 
Lyapunov equation and if MATLAB doesn't say that the solution is not unique, inves­
tigate the positive definiteness of the solution by looking at its eigenvalues (note that 
the solution is symmetric). 

Solution: Do the following in MATLAB: 

A = rand(4,4) 

A = 0.2190 
0.0470 
0.6789 
0.6793 

eig(A) 

ans= 

1.4096 

0.9347 
0.3836 
0.6194 
0.8310 

0.1082 + 0.4681i 
0.1082 - 0.4681i 

-0.0763 

0.0346 
0.0535 
0.6297 
0.6711 

0.0077 
0.3834 
0.0668 
0.4176 

Since 1.4095 > 1 we already know that A is not a discrete-time stability matrix. 
Therefore, the solution of the Lyapunov equation will either be non-unique or will not 
be symmetric and positive definite. 

P = dlyap (A ' ,eye (4» 

P = 

1.0265 
-0.7360 
0.0069 

-0.6269 

-0.7360 0.0069 
-0.5062 -0.7641 
-0.7641 1.0462 
-1.2460 -0.4689 

-0.6269 
-1.2460 
-0.4689 
0.6660 

Since P is symmetric, we can use the Rayleigh-Ritz criterion and look at its eigen­
values to see if it is positive definite. 

eig(P) 

ans = 

-1. 9091 
1.6373 
1.0037 
1.3896 

Since -1.9091 < 0 matrix P is not positive definite. Actually, since it has both 
positive and negative eigenvalues, it is indefinite. 
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Problem 4.6.9 The discrete-time equivalent of a continuous-time system 

is given by (Problem 4.5.5) 

where 

x(t) = 
yet) 

x[k+ 1] 

y[k] 

Ax(t) + Bu(t) 

Cx(t) 

Gx[k] + HU[k] 
Cx[k] 

G = eAT and H = (IT eAr dT) B 

Recall that if A is nonsingular then H = (eAT -1)A-1 B. 
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Show that if the continuous-time system is asymptotically stable, then the corre­
sponding discrete-time system is also asymptotically stable. In other words if for all 
eigenvalues of A 

Re{~i} < 0 (i = 1,2, ... , n) 

then for all eigenvalues of G 

Il'il<1 (i=I,2, ... ,n) 

Solution: From the note in Problem 3.2.5 we know that G = eAT implies 
Pi = e>-;T. Then obviously 

Re{~i} < 0 => IPil = le>-;TI = eRe{>-;}T < 1 (i = 1,2, ... , n) 



4.7 Controllability and observability 

Although the conditions for state controllability and observability are identical 
to the continuous-time case, there are some subtle differences in derivations. 
These differences lead to definitions of reachability and constructibility. 

Problem 4.7.1 In Section 3.7 we derived the condition for state controllability. We 
said that, since eAt is always nonsingular, without loss of generality we could consider a 
special case when x(t f) = O. In discrete-time that is not so, because the corresponding 
matrix A k is not necessarily nonsingular. Furthermore, if A is a nilpotent matrix, Ak 
could be 0, a null matrix, for some k. 

Show that the system given by 

y[k] = [1 1 0] x[k] 

can be taken from any initial state x[O] to the origin even though its controllability 
matrix has rank 2. 

Solution: Since, in general, 

k-l 

x[k] = Akx[O] + L Ak-1-ibu[i] 
i=O 

and here A is nilpotent (because Ak = 0 for k ~ 3; see also the note below), with 
u[k] == 0 any initial state x[O] of this system goes to the origin after only 3 time units. 

The controllability matrix is 

and p(C) = 2 

Note 1: Matrix A is said to be nilpotent if for some k < 00 we hatJe Ak = O. 
We shall protJe here that a matrix is nilpotent if and only if all of its eigentJalues are 
zero: 

• If Ai = 0 (i = 1,2, ... ,n) then the characteristic equation of A is An = 0 and 
according to the Cayley-Hamilton theorem we also hatJe An = O. 

• If A k = 0 for some k < 00 then consider any of its eigentJalues and an eigen­
tJector corresponding to it: A and p. From pAk = 0 and pAk = PAk we conclude 
that A = 0 because, by definition, p i- O. 

Note 2: Discrete-time systems with a nilpotent transition matrix A are usually 
called deadbeat systems. 

244 
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Problem 4.7.2 Show that the transition matrix does not have to be nilpotent if 
a system is to be controllable-to-the-origin but not state controllable. Do this by 
considering a singular but non-nilpotent transition matrix A. 

Solution: Consider the following example: 

Any initial condition 

is taken to the origin by '1£[0] = -(xt[O] + X2[0]). On the other hand 

det(C) = I ~ ~ I = 0 

Problem 4.7.3 Consider a single-input single-output system given by 

x[k+1] 
y[k] 

Ax[k] + bu[k] 
c' x[k] + du[k] 

where x is n xl, '1£, y, and d are scalars, while A is n x n, b is n x 1, and c' is 1 x n. 
We say that a system is state controllable if application of a proper input u[k] can 

change its state from any given state to any other given state in a finite amount of 
time. 

Show that this system is state controllable if and only if 

p(C) = n, where 

Solution: Since 

we can write 

"'-1 
x[k] = Akx[O] + LAk-l-ibu[i] 

i=O 

"',-I 
Ak'x[O]-x[k,] = - L A",,-l-ibu[i] 

;=0 

This vector equation is actually a system of n simultaneous equations in k, un­
knowns u[~, hence, in general, it is necessary that k, ~ n. Finally, the solution exists 
if and only if 

p(C) = n, where 
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Note 1: In the case of single-input systems the controllability matrix C is n x n, 
therefore we could write the above condition as det(C) #= O. The reason we didn't is that 
the validity of the above condition can be extended to the systems with m-dimensional 
inputs, when C is n x mn. 

Note 2: The state controllability was first considered in connection with the 
finite settling time problem in which a control input u[k] is designed to return the 
perturbed system to the origin. While in continuous-time this so-called controllability­
to-the-origin1 is equivalent to the state controllability, in discrete-time p(C) = n is 
only a sufficient condition, as we saw in Problems 4.7.1 and 4.7.2. On the other hand, 
controllability-from-the-origin2 is always equivalent to the state controllability. 

In discrete-time systems the controllability-to-the-origin is equivalent to the state 
controllability if and only if A is nonsingular, i.e., if det(A) #= o. 

Often, the word controllability is used to mean controllability-to-the-origin, while 
controllability-from-the-origin is called reachability. Since a system is reachable if and 
only if p(C) = n, the matrix C is sometimes called the reachability matrix instead of 
controllability matrix. 

Note 3: It can be shown that the condition for observability in discrete-time is 
p(O) = n. The property dual to the controllability-to-the-origin is called constructibil­
ity and it refers to the ability to determine the state vector from past outputs. For a 
discrete-time system with singular transition matrix A observability is sufficient but 
not necessary for constructibility. If A is nonsingular than observability is equivalent 
to constructibility. In continuous-time systems this distinction does not exist because 
eAt is always nonsingular. 

Problem 4.7.4 A system given by 

[ 
-2 

x[k+l]= -3 
-4 

j !] x[k] + [~] u[k] 

y[k] = [1 0 0] x[k] 

is deadbeat, i.e., even with u[k] = 0 (k ~ 0) the state goes to the origin in at most 
n = 3 steps, regardless of the initial state x[O] = Xo. 

a) Determine the initial conditions Xo which guarantee that with u[k] = 0 (k ~ 0) 
the output y[k] is zero for k ~ 2. 

b) Repeat part a) if the requirement is y[k] = 0 (k ~ 1). 

Solution: With u[k] = 0 (k ~ 0), the expression for y[k] becomes 

y[k] = c' Akxo 

a) Since the system is deadbeat, y[k] = 0 for k ~ 3 for any Xo. With Xo = [x y zl' 
the condition for k = 2 is 

x-2y+z=0 

a plane in the 3-D space of the initial state Xo. 

1 It is also called the controllability ,.s.t.o. (pointwise state to the origin). 
2 Also called the controllability,.s./.o. (pointwise state from the origin). 
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b) If we require y[k] = 0 (k ~ 1), then in addition to the condition obtained in 
part a) we also need y[l] = 0, i.e., 

c' Axo = 0 i.e. -2x+y=0 

Combined with the previous condition x - 2y + z = 0, we find that Xo must lie on 
the line given by 

z any real number 

Note: Are the conditions any different if we required x[l] = 0 and x[2] = Oq 
Would the solution change if we allowed u[k] =F Oq 

Problem 4.7.5 A system given by 

x[k + 1] = [~ ~ ~] x[k] + [~] u[k] 

y[k] = [1 0 0] x[k] 

is controllable, hence using the appropriate input u[kJ, any initial condition Xo can be 
taken to the origin in at most n = 3 steps. 

a) Given the initial state Xo determine the input u[k] to take the state x[k] to the 
origin in n = 3 steps. 

b) There are infinitely many input sequences u[k] which can drive the state from 
Xo to the origin in n + 1 = 4 steps. Determine the one such sequence with minimum 
energy L u2 [k]. 

c) Fiild Xo which can be taken to the origin in just one step using any u[k]. 
d) Repeat part c) if the input is restricted by lu[k]1 ~ 1. 

Solution: The expression for x[k] is 

x[k] = Akxo + Ak-1bu[0] + ... + Abu[k - 2] + bulk - 1] 

a) The condition x[3] = 0 becomes 

Le., 

C [u[2J u[l] u[O]], = -A3xo 

Thus 

[ 
-1.50 -9.00 -4.50] 

[u[2] u[l] u[O]], = _C- 1 A3XO = 1.25 13.50 9.75 Xo 
-0.25 -3.50 -5.75 

b) With C4 = [b bA bA2 bA3] we can write the condition x[4] = 0 as 

C4 [u[3] u[2] u[l] u[O]], = _A4XO 
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Since p(C4) < 4 there are infinitely many solutions [u[3] u[2] u[l] u[O]l'. To 
obtain the minimum energy solution (the minimum norm solution in the language of 
matrix algebra), we use the right pseudoinverse (see Section 0.7): 

[u*[3] u*[2] u*[l] u*[O]], = -C~ (C4C~rl A4XO 

c) From 0 = x[l] = Ax[O] + bu[O] we find 

Xo = -A-1bu[O] = [-1 1/3 -1/3]' u[O] 

hence only the initial states Xo = [x y z] on the line given by 

x = -u[O] y = u[O]/3 z = -u[O]/3 

where u[O] can be any real number, can be brought to the origin in just one sampling 
period. 

d) Similarly, we obtain that the initial state must be on the line segment of the 
same line as in part c), between points (-1,1/3, -1/3) and (1, -1/3, 1/3). 

Problem 4.1.6 The discrete-time equivalent of a continuous-time system 

is given by (Problem 4.5.5) 

where 

i:(t) Ax(t) + Bu(t) 

yet) = Cx(t) 

x[k+1] 

y[k] 
Gx[k] + HU[k] 

Cx[k] 

G = eAT and H = (IT 
eAT dT) B 

Recall that if A is nonsingular then 

If the continuous-time system is controllable (observable), then the corresponding 
discrete-time system is also controllable (observable) if and only if the eigenvalues of 
A satisfy the following condition: 

Re{'xi} = Re{'xj} => 
2m1l" 

Im{'xi -'xj} 1= T (m=O,±1,±2, ... ) 

For a system given by 

i:(t) = [_~ ~] x(t) + [~] u(t) 

yet) = [1 1] x(t) 
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determine the corresponding discrete-time system and determine the values of T which 
should be avoided in order to preserve controllability and observability. 

Solution: Using the methods from Section 3.2 we find that 

G=eAT = [ cos2T 
-2sin2T 

~ sin2T ] 
cos2T 

while (since A is invertible) 

[ ~sin2T ] 
-2sin2 T 

Since the eigenvalues of A are Al,2 = ±2j, with an unfortunate choice of the 
sampling period T we may lose controllability or observability. According to the result 
stated above, we should make sure that 

In other words, 

Im{2j - (-2j)} # 2m1l" (m = 0, ±1, ±2, ... ) 
T 

T # ";11" (m = 0,±1,±2, ... ) 

Note: To establish this result directly from the system equations the reader should 
form the controllability and observability matrices and examine their ronks with respect 
to T. 

Problem 4.7.7 Let the discrete-time versions of systems given by {A" B"Cd and 
{A2, B2, C2} be {G"H"Cd and {G2,H2,C2}, respectively. Show that if systems 
{A" B" Cd and {A2, B2, C2} are related through a nonsingular similarity transfor­
mation S, then the same is true for the corresponding discrete-time systems. 

Use this result to show that for matrices with distinct non-zero eigenvalues, control­
lability and observability are preserved under sampling if and only if the eigenvalues 
of A satisfy the following condition: 

2m1l" 
Im{Ai-Aj}#T (m=0,±1,±2, ... ) 

Solution: If the sampling period is T, then 

G2 = eA2T = eSA,S-'T = SeA,T S-l = SG, S- ' 

Similarly 

H2 = (IT 
eSA,S-'T dr) SB, = S (IT 

eA, T dr) S-l SB, = SH, 

Now consider a controllable continuous-time system with distinct non-zero eigen­
values given by {A,b,c'}. A can be diagonalized using the matrix of its left eigenvec­
tors P. Due to the above result, we can simplify the derivation by assuming that A is 
already in the diagonal form. Then, due to the assumed controllability, vector b has 
no zeros. To further simplify the notation, assume b = [1 ... 1]'. Then 
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while (recall the assumption that all eigenvalues are non-zero, hence A is invertible) 

H (eAT - I)A-1B 

= diag«e.\,T - 1), ... , (e.\n T -1» diag(I/~I, ... , 1/~n) [1 ... 1]' 
[(e.\,T -1)/>"1 ... (e.\n T -1)/~n]' 

The determinant of the controllability matrix is 

n (.\.T ) 
det(C) = IH GH ... Gn - 1 HI = II e' -1 V(e.\,T, ... ,e.\nT ) 

>"i 
i=l 

where V denotes the Vandermonde determinant. Since 

V(e.\,T, ... ,e.\nT) = II(e.\,T _e'\~T) 

I>k 

we see that det(C) -:f:. 0 if and only if 

2m7r 
Im{>"I->"d -:f:. T (m=O,±l,±2, ... ) 

The proof for observability is very similar. 

Note: Although this result is true in general, this proof covers only the case when 
A has distinct non-zero eigenvalues. For the proof of the general case PBH tests for 
controllability and observability can be used. 



4.8 Canonical realizations 

All properties of canonical forms described in Section 3.8 hold for discrete-time 
systems as well. In this Section we describe some further properties of canonical 
forms and illustrate them through numerical examples. 

Problem 4.8.1 A system is given by 

154 n 14 1 
y[k)- 120 y [k -1) + 120 y[k - 2)- 120 y[k - 3) + 120 y [k - 4) 

= u[k - 1) - :~ u[k - 2) + !~ u[k - 3) - 910 u[k - 4J 

Determine its poles and zeros. Determine its transfer function H(z). Write the 
system in the order-4 canonical forms: controller, observer, controllability, observabil­
ity, and modal. Show that in this case the controllable forms are not observable and 
vice versa, the observable forms are not controllable. Can this system be written in a 
form which is neither controllable nor observable? 

Solution: To simplify the notation we will use the following: 

ao = 1 

and 

n 
az = 120 

14 
as = -120 

63 
b2'=--

90 
14 

bs = 90 

We can use MATLAB to determine the poles and zeros of this system: 

roots([aO a1 a2 a3 a4]) and roots([bl b2 b3 b4]) 

tell us that the poles of the system are at 

while the zeros are at 

111 1 
P1 = 2' P2 = 3' ps = 4' and P4 = 5 

111 
Zl = 3' Z2 = 5' and Zs = 6" 

The system is stable, but due to pole-zero cancellations it is not minimal, therefore 
some of its state-space representations will not be controllable, while others will not 
be observable. 

The transfer function can be written directly from the equation: 

H(z) = b1Z3 + b2Z2 + b 3z + b4 

Z4 + a1z3 + a2z2 + asz + a4 

251 
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The following are several canonical realizations of this system: 

• Controller (in MATLAB: [Ae,Be,Ce,De] = tf2ss(num,den»): 

-a2 -a3 T] 0 0 
be 1 0 

0 1 

b2 b3 b4 ] 

This realization is always controllable. In this case it is not observable. The 
modal realization similar to this realization is obtained using S = Q-1, where 
(as we discussed in Problem 3.2.1) Q is the matrix of right eigenvectors of Ae 
(in MATLAB: [Q ,0] = eig(Ae»): 

['1' 
o 

1/3 
o 
o 

[ -0.0145 o 

o 
o 

1/4 
o 
-0.000336 o ] 

[ 
-92.2] 

-572.7 
991.5 

-510.3 

The lack of observability is obvious in this realization because of the zeros in 
the output vector c~c . 

• Observer: 

c~ 1 0 0 0 

This realization is always observable. In this case it is not controllable. The 
modal realization similar to this realization is given by 

[T 
[ 0.7776 

o 0 
1/3 0 
o 1/4 
o 0 

-0.7109 

1] [ 
1.7~47] 

bdo -0.492 
o 

0.6773 -0.6571 ] 

The lack of controllability is obvious here because of the zeros in the input vector 
bdo • These realizations are not equivalent to the controllable realizations. 

• Let us construct a realization which is neither controllable nor observable. The 
impulse response of the system in modal form is 

h[k] = hk = C~A~-lbd = L biCi.x:- 1 (k > 0) 
i=l 

If in the first of the two modal representations above we set zeros in bdc to 
match the zeros in cdc' the products bici remain unchanged, but the system also 
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becomes uncontrollable. In addition we do some balancing between the input 
and the output vector, keeping the products biCi same as before: 

[T 
[1 0 

o 0 
1/3 0 
o 1/4 
o 0 

1 0] 

o 
o 
o 

1/5 

This realization of H(s) is not similar to any of the other realizations above. 

Problem 4.8.2 Show that if a system given by {A, b, c/} is observable, it can be 
transformed into the observability form using the following transformation matrix: 

Sob = 0 

where 

[
C

I 1 c'A 
0= 

~, A n - l 

is the observability matrix of the original system. 

Solution: We need to show that SobAS;;'/ = Aob, Sobb = bob, and c'S;;,} = C~b' 
To show that SobAS;;'/ = Aob we will prove that OA = AobO. Indeed 

[
C
I 1 [CIA 1 c'A c' A2 

OA= A= 

~/An-l ~/An 

while 

[
cIA 1 c' A2 

AobO = . 

c'(-anI -an-1A- ... -alAn- l ) 

From the Cayley-Hamilton theorem -anI - an-1A - ... - alAn- l 

therefore OA = AobO. 
To show Sobb = [hl h2 ... hnl' observe that 

where hi'S are Markov parameters. 
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ProbleDl 4.8.3 Show that an observable system given by {A,b,c'} can be trans­
formed into the observer form if we use 

Solution: Using the result of Problem 4.8.2 we know that the transformation 
from observer into the observability form is given by S = 0 0 = a=l. Thus, to go from 
any observable form into the observer form we can go via the observability form, when 
we find 



4.9 State feedback 

This Section illustrates the pole placement using the state feedback for discrete­
time systems. The results of Section 3.9 apply here without any changes. 

Problem 4.9.1 Use MATLAB to discretize the equations for the inverted pendulum 
on a cart given in Problem 3.7.12. Choose the sampling period T so that it is 5 times 
smaller than the smallest time constant of the continuous-time system. Check the 
stability, controllability, and observability of the discrete-time system. Determine the 
feedback gain vector f so that all eigenvalues of the system are halved in magnitude. 
Simulate the system under conditions set in Problem 3.9.9. 

Solution: The continuous-time parameters are as follows: 

A-[~ - 0 
o 

o 1 
o 0 

-1 0 
21.6 0 

~ ] B = [lJ c- [ 1 - 0 
o o 

o ~ ] 
The eigenvalues are Al = 0, A2 = 0, A3 = 4.65, A4 = -4.65, hence we pick 
T = T/5 = 1/(51)'41) = 40ms. The parameters of the discrete-time system can be 
obtained using c2d, the MATLAB command for conversion from continuous-time to 
discrete-time: [G. H] = c2d(A.B.T). Using this command we obtain 

G-[~ - 0 
o 

-0.0008 
1.0173 

-0.0402 
0.8690 

0.0400 
o 
1 
o 

0.040~ ] 
-0.0008 

1.0173 

[ 
0.0008] 

H = -0.0016 
0.0400 

-0.0805 

Using MATLAB commands abs(eig(G», rank(ctrb(G.H», and rank (obsv (G.C» we 
find that, just like the continuous-time system, the discretized system is controllable, 
observable, and unstable, with eigenvalues at 

PI = 1, P2 = 1, P3 = 1.2043, P4 = 0.8304 

To determine the feedback gain f so that the eigenvalues are halved in magnitude, note 
that g, the vector of coefficients of the characteristic polynomial g(z), can be obtained 
using g = poly(eig(G», while 'Y, the vector of coefficients of the desired characteristic 
polynomial 'Y(z) is obtained from gamma = poly(eig(G)/2). Be careful, however, 
because the Bass-Gura formula doesn't use the first coefficient of these polynomials. 

A = [0 0 1 0; 0 0 0 1; O· -1 0 0; 0 21.6 0 0]; 
B = [0; 0; 1; -2]; 
C = [1 0 0 0; 0 1 0 0]; 
T = 0.04; 
[G, R] = c2d(A,B,T); 
g = poly(eig(G»; 
gamma = poly(eig(G)/2); 
CCc = inv(toeplitz([l 0 0 0],g(1:4»); 
CC = ctrb(G ,R); 
f = «gamma(2:5) - g(2:5» oCCcoinv(CC»'; 

Thus 
f = [-1155.9 -912.9 -310.9 -173.0]' 

The same result is obtained by MATLAB implementation of the Ackermann formula: 

f = acker(G.H.eig(G)/2)' 
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Let us simulate the behavior of the discretized system under the conditions given 
in Problem 3.9.9. There, the desired eigenvalues were set to A1 = -1, A2 = -2, 
A3 = -1 + j, and A4 = -1 - j. This means that the eigenvalues of the discretized 
system are J-ti = e>-;T (i = 1,2,3,4). 

The first simulation is for zero initial conditions and the unit step function at the 
input. The graph obtained by simulation is shown in Figure 4.6. Compare this graph 
to the graph obtained in Simulation 2a in Problem 3.9.9. 

A = [0 0 1 0; 0 0 0 1; 0 -1 0 0; 0 21.6 0 0]; 
B = [0; 0; 1; -2]; 
C = [1 0 0 0; 0 1 0 0]; 
T = 0.04; 
[G. B] = c2cHA.B.T); 
f = acker(G.B.exp([-1.-2.-1+j .-l-j)*T»·; 
t = 0:T:8; 
U· (ones(size(t»)'; 
xO= [0 0 0 0)'; 
.YB "" BB(G-B.f' ,H,C,O,T); 
lBim(sys,u, t,xO) 

01---__ 

-1 

-4 

-s 

Inverted Pendulum Simulation 6a 

~L-__ ~ __ ~L-___ ~ ____ ~ ______ ~ ____ ~ ______ L-____ _ 

0.15r------,----,------.----.----.------,r-------.---~ 

0.1 

0.05 

~ 
f ..{j.OS 
s 

..{j.1S 

-0.2 L-__ -'-___ -'-__ ---' ___ ~ ___ _'__ __ ~ ___ ..L __ ___J 

o 4 6 7 

kT[s] 

Figure 4.6: The results of the MATLAB Simulation 6a. 
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The second simulation is for zero input and non-zero initial conditions. The graph 
obtained by simulation is shown in Figure 4.7. Compare this graph to the graph 
obtained in Simulation 2b in Problem 3.9.9. 

A ; [0 0 1 0; 0 0 0 1; 0 -1 0 0; 0 21.6 0 0]; 
B ; [0; 0; 1; -2]; 
C ; [1 0 0 0; 0 1 0 0]; 
T ; 0.04; 
[G. H] ; c2d(A.B.T); 
f ; acker(G.H.exp([-1.-2.-1+j.-l-j]oT»'; 
t ; 0:T:8; 
u; (zeros(size(t»)'; 
xO; [00.100]'; 
8}a = as(G-B.f' ,B,C,O, T); 
lsim(sys, u, t,xO) 

Inverted Pendulum Simulation 6b 

0.7r------,-------r-------r------.-------,------,------~------, 

0.6 

0.5 

:[0.4 

~ 
'NO.3 

0.2 

0.1 

3 4 6 7 

kT[s] 

Figure 4.7: The results of the MATLAB Simulation 6b. 
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Problem 4.9.2 For a system given by 

x[k + 1] = [~ ~ !] x[k] + [~] u[k] 

y[k] = [1 0 0] x[k] 

check for controllability and observability and then, assuming all states are available 
(we will design observers in Section 4.10, and there observability will playa critical 
role, just like controllability does here), determine the feedback gain vector f so that 
the closed-loop system with 

u[k] = -!' x[k] 

is deadbeat, i.e., its eigenvalues are 1&1,2,3 = O. 
Do this by writing the desired characteristic equation in terms of the feedback gain 

vector f = [/1 /2 fa]'· Compare the result to the output of the MATLAB command 

f s acker(A.b.[O 0 0]) 

Solution: It is easy to verify that the system is controllable and observable. 
The desired characteristic polynomial is a(z) = z3. In terms'of the feedback gain 
f = [/1 /2 fa]' it can be written as 

a(z) = det(zI - (A - b!'» 

i.e., 

a(z) = Z3 + (/1 + fa - 6)Z2 + (-3/1 + 2/2 - 3fa + 11)z + 6/1 - 2/2 + 2fa - 6 

When we equate all coefficients in this polynomial to zero, we obtain a system of 
three equations in /1, /2, and fa whose solution is 

f = [0.25 3.50 5.75]' 

Note: The same result is obtained using the Bass-Gura formula 

!' = (a' - a')CcC- 1 

or the Ackermann formula 

!' = [0 ... 0 1]C1a(A) 

Recall that Cc = a:T , where a_ is as defined in Problem 3.8.4. 



4.10 Optimal control 

Although discrete-time systems can achieve the deadbeat response using the 
feedback design techniques described in Section 4.9, the resulting system may 
not be acceptable because it may require large values of input signal. The 
solution is to use the quadratic cost function which weighs both the settling 
time and the magnitude of the input. Thus we determine the linear feedback 
gain to achieve optimal control (discrete-linear-quadratic-regulator - DLQR). 

Problem 4.10.1 In Problem 4.9.2 we verified that the system given by 

x[k + 1] = [~ ~ ~] x[k] + [~] u[k] 

y[k] = [1 0 0] x[k] 
is both controllable and observable. Assuming all states of the system are available 
design the stationary state feedback 

u[k] = -Fx[k] 

which minimizes the cost function given by 

00 

J = E (x'[k]Qx[k] + u'[k]Ru[kJ) 
k=O 

where Q = 13x3 and R = 1. 

The optimal feedback gain is found from the following: 

F = (B'PB + R)-IB'PA 

where P is the real symmetric positive definite solution of the matrix algebraic lliccati 
equation 

P = A'P(I - B(B'PB+R)-IB'P)A+Q 

Note that the solution is guaranteed to exist if Q and R are symmetric and Q is 
positive semi-definite, while R is positive definite. 

The minimum cost is given by J = x'[O]Px[O]. 

Solution: To solve the lliccati equation, assume P is symmetric 

[ 
pu Pl2 P13] 

P = Pl2 P22 P23 

PIS P23 P33 

and substitute that into the equation. The solution is 

[ 
4.17 16.13 6.88 ] 

P = 16.13 150.84 108.09 
6.88 108.09 103.22 

259 
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Then the optimal feedback gain is 

F = (B' P B + R) -1 B' P A = [0.09 2.21 4.92] 

The eigenvalues of the optimized closed-loop system are at 

/-11 = 0.20 /-12 = 0.39 + 0.29j /-13 = 0.39 - 0.29j 

Matlab note: The above results were obtained using the following MATLAB 

command: [F ,P,mu] = dlqr(A,B,Q,R); 

Problem 4.10.2 For a discrete-time system given by 

x[k + 1] = Ax[k] + Bu[k] 

y[k] = Cx[k] 

the cost of control on the interval 0 ~ k ~ N is given by 

N 

IN = L (x'[k]Qx[k] + u'[k]Ru[kJ) 
k=O 

where Q and R are symmetric and Q is positive semi-definite, while R is positive 
definite. Derive the optimal control law from the Optimality Principle3 which can be 
paraphrased as follows: 

If a system state at some time instance is on the optimal trajectory, its 
motion from that point to the final state along this trajectory will be 
optimal. 

Solution: In the following we shall use the following identities from the matrix 
calculus (Appendix C): 

For M symmetric4 

;X(X'MX) = 2Mx ;X(X'MY)=My 8 (' ) , 8y xMy = M x 

First define Sj = IN - IN-j, the control cost over j ~ k ~ N. Then Sj+l 

Sj + l:J.JN_j, i.e., 

Sj+l = Sj + x'[N - j]Qx[N - j] + u'[N - j]Ru[N - j] 

Note that SI corresponds to the control cost of the last control period. As the 
index of Sj increases, we go back in time. The convenience of such notation will 
become clear shortly. 

3The importance of this principle was independently discovered and used by several math­
ematicians over the last several centuries: Jakob Bernoulli (1697), Johann Bernoulli (1706), 
L. Euler (1744), C. Caratheodory (19308), and R. Bellman (1950s). Applied to our system the 
Optimality Principle states that if u· [k] = f(x[k]) is optimal over 0 ~ k ~ N, then it is also 
optimal over j ~ k ~ N, where 0 ~ j ~ N. 

4 Actually, only the first identity requires M = M'. 
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From the Optimality Principle, S;+1> the minimum value of Sj+1 is obtained by 
using Sj = S; and from 

Consider first j = 0: 

8Sj+1 = 0 
8u[N-j] 

Sl = IN - IN-1 = x' [N]Qx[N] + u'[N]Ru[N] 

Since x[N] depends only on u[k] for k < N, obviously Sl is minimized with u*[N] = O. 
Hence 

S; = x'[N]Qx[N] 

For j = 1 and Sl = Si = x'[N]Qx[N] we have 

S2 = S; + x'[N - I]Qx[N - 1] + u'[N - I]Ru[N - 1] 

Now use x[N] = Ax[N - 1] + Bu[N - 1] in the expression for Si. Then the condition 
8S2/8u[N - 1] = 0 yields 

2B'Q(Ax[N -1] + Bu*[N -1]) + 2Ru*[N -1] = 0 

i.e., 

u*[N -1] = - (B'QB + R)-l B'QAx[N -1] 
... , .. 

call this FN_1 

Substitute this back into the expression for S2 to obtain the expression for its 
minimum 

S; = x'[N -1] (A'Q(A - BFN-1) + Q) x[N - 1] 
... , .. 

call this PN-1 

With this notation we have FN = 0 and PN = Q. 

To derive the general recursive procedure for calculating FN _j for j = 0,1,2, ... , N 
(note the sequence of calculation: FN,FN-1, ... ,Fo), consider the following. The 
minimum value of Sj has the following form: 

S; = x'[N - j + I]PN-j+1X[N - j + 1] 

i.e., 

S; = (Ax[N - j] + Bu[N - j])' PN-j+1(Ax[N - j] + Bu[N - j]) 

With Sj+1 = Sj + dJN-j and Sj = S; the condition 8Sj+1/8u[N - j] = 0 yields 

2B' PN-j+1Ax[N - j] + 2(B' PN-j+1B + R)u*[N - j]) = 0 

i.e., 



262 CHAPTER 4. DISCRETE LINEAR SYSTEMS 

u*[N - i] = - (B' PN-i+1B + R)-1 B' PN-i+1Ax[N - i] 
" ' 

The expression for 81+1 now becomes 

8;+1 = x'[N - i]PN-jx[N - i] 

where PN - j is determined recursively from 

This calculation is necessary not only to determine S;+1, but also in the next step, in 
the calculation of FN-j-1. 

The recursion starts at i = 0, when, as we found in the beginning, FN = 0 and 
PN=Q. 

The minimum cost of control is 

J'N = S'N + J~ = S'N+1 = x' [O]Pox[O] 

Note: It is important to note that the optimal control law is linear: u*[k] = 
f(x[k]) = -FkX[k]. This is not because we required that condition, but it followed 
directly from our derivations. 

However, even though the system is stationary (i.e., matrices A, B, and C are 
assumed to be constant), the optimal control law is not, i.e., the values of the feedback 
gain change with time. 

If the system is controllable than for large values of N the sequence {FN _ j} con­
verges (except for i = 0) to a constant sequence: 

lim FN-j = F 
N~oo 

(j = 1,2, ... ) 

This fact can be used to significantly simplify the design of lhe optimal controller, 
because the equations simplify to 

u*[k] = -Fx[k] 

where 

and P is a real symmetric solution of the matrix algebraic Riccati equation 

P = A'P(I - B(B'PB + R)-1 B 'p)A + Q 

The minimum control cost is then 

J* = x'[O]Px[O] 



4.11 State observers 

In this Section we design state observers. The basic results are identical to 
those derived for the continuous-time systems in Section 3.11. Unlike in feed­
back design, large signals are an acceptable side-effect of the deadbeat response, 
because observers are usually implemented using software and computers. The 
only drawback of this design is its sensitivity to noise. The solution to this is 
presented in Section 4.12. 

Problem 4.11.1 Consider a discrete-time system 

x[k+l] [ ~ ~ ~] x[k] + [ ~] u[k] 
1 1 0 -1 

y[k] [ 0 2 1 ] x[k] 

Is this system observable? Rewrite system equations in observer form. Design a 
state observer in observer form of the system such that all three eigenvalues of the 
observer are at oX = O. Obtain the final observer equations to observe the original state 
vector x[k]. 

Solution: Since 

we have det( 0) ::f. 0, hence this system is observable. 
The characteristic equation of the system is 

a(z) = det(zI - A) = z3 - 2Z2 - Z - 3 

hence 

The transformation matrix is 

hence 

c~ = [1 0 0] 

The system in observer form is 
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xo[k + 1] = Aoxo[k] + bou[k] 

y[k] = c~xo[k] 

The original characteristic equation is a(z) = Z3 - 2Z2 - Z - 3, while the desired 
characteristic equation is a(z) = (z - 0)3 = Z3. With 

a = [0 0 0]' and a = [-2 1 - 3]' 

the observer gain is 

The observer equation is 

x[k + 1] = (A -lc')x[k] + bulk] + ly[k] 

where X[O] = Xo and 

A-lc'=[~ ~ ~] 

Figure 4.8: Rudolf E. Kalman at the Kyoto Prize ceremony in 1985. Photo 
courtesy of the Inamori Foundation ( www.inamori-f.or.j p). 



4.12 Kalman filter 
The discrete-time observer (the more appropriate term here is the estimator) 
that minimizes the mean-squared error due to noisy measurements is called the 
discrete-linear-quadratic-estimator - DLQE) or, more commonly, the Kalman 
filter. In this Section we derive the Kalman filter equations. Careful reader 
will notice many similarities between the derivation of Kalman filter and the 
derivation of optimal controller in Section 4.10. This is due to the duality 
first described by Kalman [26]. It is very similar to the duality between the 
concepts of controllabiiity and observability and to the duality of pole placement 
techniques for controllers and observers. We also show that in the limit the 
Kalman-Bucy filter (cf. Section 3.12) is obtained. It is interesting that unlike 
most of the other results presented in this book, here the discrete-time case 
(Kalman filter) preceded the continuous-time case (Kalman-Bucy filter). 

Many extensions of basic Kalman filtering are available. We cannot describe 
them in the present book, but let us just mention that they deal with many 
possible variations on the basic theme described here: colored and/or cross­
correlated noises, partially known system models, etc. Another reason why 
this Section does not give full justice to these important techniques is that 
applications of Kalman filtering rely heavily on the incredible computing power 
of modern computers, and that is impossible to illustrate in a textbook. Let us 
name just a few applications of Kalman filtering: satellite and rocket navigation, 
automated landing of jumbo jets, Global Positioning System (GPS). 

Finally, a few words about the man himself: Rudolf Emil Kalman was born 
in 1930 in Budapest, Hungary. He received the bachelor's and the master's 
degrees in electrical engineering from MIT in 1953 and 1954, respectively, and 
the DSc degree from Columbia in 1957. He held research positions at IBM and 
at the Research Institute for Advanced Studies in Baltimore. From 1962 to 
1971, he was at Stanford. After that he worked at the University of Florida, 
Gainesville, and the ETH in Zurich, Switzerland. R. E. Kalman is a member of 
the U.S. National Academy of Sciences, the U.S. National Academy of Engineer­
ing, and the American Academy of Arts and Sciences. He is a foreign member 
of the French, Hungarian, and Russian Academies of Sciences and a recipient 
of numerous honorary doctorates. His work has been recognized by highest en­
gineering and scientific awards, including the IEEE Medal of Honor (1974), the 
IEEE Centennial Medal (1984), the Steele Prize of the American Mathemati­
cal Society (1987), and the Bellman Prize of the American Automatic Control 
Council (1997). 

In 1985 he was awarded the Kyoto Prize in Advanced Technology5 for his 
fundamental contributions to modern control theory, which include the concepts 
of controllability and observability and the solution to Wiener's problem of 
system dynamics estimation in a noisy environment - the Kalman filter. 

5The Kyoto Prize is awarded annually since 1985 by the Inamori Foundation to honor 
lifetime achievements in the fields of Advanced Technology, Basic Sciences, and Creative Arts 
and Moral Sciences. It is sometimes called the Japanese Nobel Prize. It is funded from a 
grant given by Dr. Kazuo Inamori, the founder of Kyocera Corporation. 
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Problem 4.12.1 Consider a discrete-time system in noisy environment: 

x[k + 1] = Ax[k] + Bu[k] + w[k] 

y[k] = Cx[k] + elk] 

where w[k] is the system noise and elk] is the output measurement noise. 

w[k] 

u[k] B 

A 

C 

x[k] 

elk] 

y[k] 

Figure 4.9: Discrete-time system in noisy environment. 

Assume that the noises are independent of x[k] and have the following properties: 

• Both w[k] and elk] are Gaussian random signals and 

E{w[k]} = 0, E{w[k]w'[l]} = Q8[k -I] (zero-mean, white) 

E{e[k]} = 0, E{e[k]e'[I]} = R8[k -I] (zero-mean, white) 

• The system noise w[k] is uncorrelated with the measurement noise elk], i.e., 

E{w[k]e'[I]} = 0 

Additionally, assume the following for the initial value x[O]: 

E{x[O]} = Xo and E{(x[O] - xo)(x[O]- xo)'} = Po 

Demonstrate that in the state estimator 

x[k] = z[k] + Lk(y[k]- CZ[k]) 

where 

z[k] = Ax[k - 1] + Bu[k - 1] (z[O] = xo) 

the gain Lk which minimizes the mean-squared error is given by 

where No = Po and Nk is calculated recursively from the following recursion 

Nk =Q+ANk_lA'-ANk_lC'(R+CNk_lC,)-lCNk_lA .. , .. 
L~_l 

Note: The estimator with this choice of Lk is called the Kalman filter. 
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Solution: Our goal is to estimate the state of the system x[k] so that the mean­
squared estimation error 

MSE{x[k]} = E {t{Xi[k]- Xi [k])2 } 

is minimized. Since 

MSE{x[k]} = tr{Pk) (a scalar) 

where 

Pk = E{i[k]i'[k]} (an n x n matrix) 

and 

i[k] = x[k] - x[k] (estimation error) 

and the fact that when Pk is minimized so is tr{Pk), we will minimize Pk. 

Note: To find the minimum matrix in a set of matrices means to find the matrix 
P for which the quadratic form a' Pa is minimum for any choice of vector a. To show 
that when P is minimum in some set of matrices then tr{P) is also minimum in that 
set, consider the n unit vectors ei (i = 1,2, ... , n): 

e~Pel is minimum =? pu is minimum 

e~Pe2 is minimum =? P22 is minimum 

e~Pen is minimum =? Pnn is minimum 

hence also tr{P) = E~ Pii is minimum over that set of matrices. 

It can be shown that the optimum form of the estimator is 

x[k] = z[k] + Lk{y[k]- CZ[k]) 

where z[k] = Ax[k - I] + Bu[k - I] is the estimate of x[k] based only on the previous 
measurements and the system model, while x[k] takes also into account the correction 
based on the latest measurement. 

Fork=O 

x[O] = z[O] + Lo{y[O]- Cz[O]) 

If we choose z[O] = Xo then 

x[O] = Xo + Lo{y[O]- Cxo) 

Some algebraic manipulations yields the state equation for the estimation error (de­
fined above as i[k] = x[k] - x[k]): 

i[k + I] = {I - Lk+1C)Ai[k] + v[k] 
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where v[k] = (1 - Lk+IC)w[k]- Lk+Ie[k + 1] is independent of i[k]. Hence 

E{i[k + I]) = (1 - Lk+IC)AE{i[k]) 

Since also 

E{i[O]} = (LoC - 1)(z[O] - xo) = 0 

we have 

E{i[k]} = 0, Le., this estimator is unbiased. 

To determine Pk in terms of Lk we start from 

PHI = E{i[k + l]i'[k + I]} 

Using the state equation for i[k] and since 

we have 

PHI = (1 - LHIC)(APkA' + Q)(1 - LH 1C)' + LHIRL~+I 
With NHI = APkA' + Q (the covariance matrix of x[k + 1]), some further algebraic 
manipulation, and with a change of the time-variable (k + 1) t-+ k we can write 

Pk = Nk + Tk(R + CNkC')T~ - NkC'(R + CNkC')-ICNk 

where Tk = Lk -NkC'(R+CNkC')-I. The quadratic form a/POt is minimized when 
Tk = 0, Le., 

Then 

Since Nk+1 = APkA' + Q, the last recursion can be rewritten as 

NHI = Q + ANkA' - ANkC' (R + CNkC')-ICNkA 

where No = Po = E{(x[O] - xo)(x[O] - xo)'). 

Note: When the system is time-invariant and the noises are wide-sense-stationary 
(i.e., Q and R do not change over time), then 

lim Nk =N 
k--+oo 

Actually, this convergence is so fast that we can often decide to simplify the design by 
using the stationary Kalman filter which ·is derived from the algebraic Riccati equation: 

N = Q + AN A' - ANC' (R + CNC')-ICN A 

and 

L = NC' (R + CNC')-I 
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Problem 4.12.2 Given that the relation between the noise covariance matrices in the 
continuous-time formulation (Q(e) and R(e» and their counterparts in the discrete-time 
case (Q(d) and R(d» is 

where T is the sampling period, derive the Kalman-Bucy (continuous-time) equations 
from the Kalman filter (discretectime) equations by considering their behavior when 
T~O. 

Solution: When T ~ 0 

NHl = A(d)PkA(d) + Q(d) ~ Pk 

hence there is no need to distinguish between the a priori and the a posteriori error 
covariance matrices. Then from 

we have 

Lk = NkC'R~~T = LT 
"--v--"" 
call this L 

We shall see shortly that L is the Kalman-Bucy filter gain because Nk ~ P. 

When T ~ 0, then A(d) = 1+ A(e)T so the error covariance equation becomes 
(recall that Lk '" T) 

NHI = A(d)PkA(d) + Q(d) 

A(d) (I - LkC)NkA(d) + Q(d) 

= A(d)N"A(d) - A(d)L"CNkA(d) + Q(d) 

N" + A(c)NkT + NkA(c)T - LkCNk + Q(d) 

Finally, 

Hwe denote P = Nk, then this becomes the familiar covariance error equation for 
the Kalman-Bucy filter: 

Pet) = A(e)P(t) + P(t)A(c) - P(t)C' R~~CP(t) + Q(c) (P(O) = Po) 

Finally, the state estimation equation 

i[k] = z[k] + L,,(y[k]- CZ[k]) 

where 
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becomes (with A(d) = 1 + A(c)T, B(d) = B(c)T, and Lk = LT) 

x[k)- x[k -1) = A(c)x[k -I)T + B(c)Tu[k - 1) + LT(y[k)- Cx[k - 1)- B(c) Tu[k -1)) 

Dividing by T, taking the limit T --+ 0, and denoting ret) = X, we obtain the familiar 
Kalman-Bucy estimation equation 

ret) = Ar(t) + Bu(t) + L(t)(y(t) - Cr(t» 

where L(t) = P(t)C' R-1, and pet) is a solution of 

pet) = AP(t) + P(t)A' + Q - P(t)C'R-1CP(t) 

Note: To derive the relations between Q(c) and R(c) on one side and Q(d) and 
R(d) on the other, consider the following: 

When T --+ ° we can write eA(c)T = 1, hence 

The derivation for R(d) = R(c)/T requires us to model the measurement process as 
averaging, i.e., write the output sample y[k) as 

1 ikT 1 ikT 1 ikT 
y[k) = T y(t)dt = T (Cx(t) + e(t»dt = Cx[k) + T e(t)dt 

(k-1)T (k-1)T (k-1)T 

Therefore we can write 

likT 
elk) = T e(t) dt 

(k-1)T 

hence 

Problem 4.12.3 The following is an example of Kalman filtering for identifying the 
parameters of a communication channel. 

If the channel is time-invariant (stationary) and linear, then it is modelled as 

,,-1 
y[k) = L hiU[k - i) + elk) 

i=O 

Assume that the sequences u[k) and y[k) are known and the channel parameters 
hi (i = 0,1,2, ... ,p - 1) are to be estimated. 
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The matrix form of the above model is given by 

[ ,[oJ 1 [ "J'J 
0 0 

Y[I] u[I] ufO] 0 
Y[2] u[2] u[I] ufO] 

y[N:-I] U[N:-I] urN -2] u[N-3] 
.. U UJ + [<[:1: J 

---....-.- '-____________ ~------------~I~ ---....-.-.. 
y (Nxl) H (Nxp) h (pXI) e (Nxl) 

If elk] is a white Gaussian noise, then the minimum variance unbiased (MVU) 
estimate of the channel parameters coincides with their least squares (LS) estimate, 
and is given by 

Recall that (H'H)-IH' is the left pseudoinverse of H and that it minimizes the 
magnitude of the squared error IHh - Yl2 (see Appendix C.7). 

Note: Obviously, H depends on the choice of the input sequence u[k] and if we 
can design it, the best choice would be a pseudo-mndom sequence, because it has the 
widest and the flattest possible spectrum. 

If the channel is time-variant, i.e., 

p-I 

y[k] = L hi [k]u[k - i] + elk] 
i=O 

the previous approach quickly produces more unknowns than equations. If the channel 
variations are slow, we can model them as 

h[n + 1] = Ah[n] + w[n] 

Write the Kalman filter equations to adaptively identify the channel parameters. 
Use p = 3 with 

[0.99 ° 
0.g97] 

A= ° 0.999 

° ° 
and with 

[10-3 ° 1O~-4] Q = E{w[k]w'[k]} = ~ 10-4 and R = E{e[k]e'[k]} = 10-2 

° 
Solution: The solution and MATLAB simulations are left to the reader. A very 

useful MATLAB command for this is dlqe. 



4.13 Reduced-order observers 

In this Section we illustrate the concept of reduced-order observers applied to 
discrete-time systems. 

Problem 4.13.1 Consider a discrete-time system defined by the equations 

x[k + 1] [_~:!~ _~:!~] x[k] + [~1] u[k] 

y[k] [ 1 1 ] x[k] 

Find the open-loop eigenvalues and check the controllability and observability of 
this system. Determine a state feedback vector I' such that the closed-loop system 
with u[k] = -I' x[k] + r[k] has eigenvalues at 0.6 ± O.4j. Finally, design a minimum­
order observer for this system. Let the desired eigenvalue for the observer be equal 
to zero, Le., the observer is a deadbeat system. Note that the concept of lower or­
der observer works exactly the same way for discrete-time systems as it applies to 
continuous-time systems. Rather than derivatives, we have terms at time k + 1. 

Solution: It is easy to see that Al = -0.2 and Al = -0.2. Since IA1,21 < 1, 
this system is stable. It is also controllable and observable because det(C) i: 0 and 
det(O) i: O. 

The desired eigenvalues are JLl,2 = 0.6 ± O.4j, therefore the desired characteristic 
equation is JL2 - 1.2JL + 0.52. Let us write the desired characteristic equation in terms 
of the state feedback vector I' = [It h]: 

JL2 - 1.2JL + 0.52 = det(JLI - AI) where AI = A - bl' 

This reduces to 

JL2 - 1.2JL + 0.52 = JL2 + (/2 - /1 + I)JL + It + 0.16 

and finally 

!' = [0.36 - 1.84] 

Now introduce a nonsingular transformation S such that c'S = [0 1], e.g., 

when (cf. Section 3.13) 

[ ar br ] = S-1 AS = [-2 2'116 ] 
Cr ann -1 

and 

Finally, the reduced observer gain lr is found from 

A-(ar-lrcr)=A-O => lr=2 

Note: , Calculate the remaining parameters 0/ the reduced order observer. Don't 
forget that the output of the observer is a state which needs to be combined with y(t) 
using the matrix S: 
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Chapter 5 

Exercise problems 

This Chapter contains exercise problems. They are given without solutions, 
in order to challenge the reader to go through the solution process alone. If 
necessary, the reader may look at derivations in Chapter 2 or similar problems 
in Chapters 3 and 4. 
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5.1 Miscellaneous problems 

Problem 5.1.1 Given matrix A 

A=[~ ~] 
and 

x[k + 1] = Ax[k], x[O] = [ ~ ] 

we have 

Calculate x[k] for k = 1,2,3,4,5. Find eigenvalues Al and A2 and eigenvectors 
PI and P2. Express x[5] in the form x[5] = aIA~PI + a2A~p2. Determine a similar 
expression for x[k]. 

Problem 5.1.2 For the transfer function given by 

H(s) _ s + 3 
- s3 + 9s2 + 24s + 18 

find a controller realization. Determine its controllability matrix. Is the system con­
trollable? Determine its observability matrix. Is the system observable? Repeat this 
problem with the observer form. 

Problem 5.1.3 Consider the following state equations 

x = [ ~ 
-6 

1 
o 

11 

y = [-1 0 1] x 

Calculate eigenvalues and right eigenvectors of A. Form matrix P with eigenvectors 
as columns. Calculate Q = p- l and verify that the rows of Q are the left eigenvectors 
of A. Calculate (sI - A)-l directly usil!-g matrix inversion. Compare your result to 
what is obtained using 

3 

(sI _ A)-l ="'"' Piqi 
~S-Ai 
i=l 

Finally, determine the transfer function from 

H(s) = ~ (C'pi)(qi b) 
~ S-Ai 
i=l 
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Problem 5.1.4 Given a system matrix 

A= [ ~ 
-6 

1 
o 

11 
j] 

determine its eigenvalues and eigenvectors. Calculate eAt as 

Compare this result to the result of the following procedure: diagonalize A using 
P (the matrix of its right eigenvectors) 

00 ] =P-1AP 
A3 

Then 

Finally, use Cayley-Hamilton theorem to calculate eAt. 

Problem 5.1.5 Given a continuous-time system 

where 

A=[~ 
2 

o 

x(t) = Ax(t) + bu(t) 

yet) = e' x(t) 

b= [!], e' = [1 2 0] 

determine its eigenvalues. Determine the transfer function of this system. What are 
the poles and zeros of this transfer function? Is {A, b, e'} a minimal realization of that 
transfer function? With that in mind and if you are told that this system is control­
lable, is it observable? Verify your answer by direct calculation of O. Calculate the 
parameters of a discretized system using sampling period T = 0.018. Is the resulting 
system controllable? Is it controllable for any other value of T? Is it observable? 

Problem 5.1.6 Given a continuous-time system 

where 

A=[~ 
1 
2 
o 

x(t) = Ax(t) + bu(t) 

yet) = c' x(t) 

! ] , b = [t] , e' = [1 0 2] 

determine its eigenvalues AI, A2, A3. Design a feedback vector k such that the eigen­
values of the closed-loop system with u(t) = -k' x(t) + vet) are the mirror images of 
the open-loop eigenvalues, i.e., J.li = -Ai (i = 1,2,3). 
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IT a cost function is given by 

J= l""(X'(T)QX(T) + RU2 (T»dT 

where Q = 13x3, while R = 10, determine the optimal feedback kopt to minimize the 
cost of control. Compare the results of these two designs. Try to show that in general, 
for large values of R, the optimal feedback moves the unstable eigenvalues of the open­
loop system to their mirror images in the left half-plane. What is the corresponding 
result for discrete-time systems? 

Problem 5.1.7 Discretize a continuous-time system given by 

where 

[ 
-1 

A= ~ 
1 

-1 
o 

x(t) = Ax(t) + bu(t) 

y(t) = c' x(t) 

~ ] , 
-1 

b = [~] , c' = [1 1 2) 

using the sampling period T = 1ms. Discuss the stability of both the continuous-time 
and the discrete-time systems using Lyapunov's stability theory. 

Problem 5.1.8 Discuss controllability and observability of a continuous-time system 
given by 

where 

[ 
-1 

A= ~ 
1 

-1 
o 

x(t) = Ax(t) + bu(t) 

y(t) = c' x(t) 

~ ] , 
-1 

b = [~] , c' = [1 1 2) 

Transform it into the controller form and calculate the feedback vector kc which 
moves the eigenvalues of the controller form to -1, -2, and -3. Transform this 
feedback gain back to the original state space. Compare the result to the result of 
the Bass-Gura formula. Design the state observer with eigenvalues at -6. What are 
the eigenvalues of the combined controller-observer system? Design a reduced-order 
observer with eigenvalues at -6. 

Problem 5.1.9 Solution P of the Lyapunov matrix equation 

A'P+PA=-Q 

for any given positive definite symmetric matrix Q is unique and symmetric positive 
definite itself if and only if A is Hurwitz. Use the Lyapunov theory to discuss the 
stability of the system given by 

. [1 2] x = 3 1 x 

Use Q = I. 
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Problem 5.1.10 Consider a discrete-time system 

x[k + 1] = Gx[k] + HU[k] 

with 

x[O] = [ ~ ] 

Define the performance index 

00 

v = ~)x'[k]Qx[k] + u'[k]Ru[k]) 
k=O 

Let Q = J and R = 1. The optimal control law is given by 

u[k] = -F'x[k] 

where F' = (R + H' PH)-l H' PGx[k] and the matrix P is given by the steady-state 
discrete Riccati equation 

P = Q+G'P(J + HR-1H'P)-lG 

Since G is nonsingular in this problem, the Riccati equation may be rewritten as 

This is convenient because the unknown of the equation, P, is not being inverted. 
Find the positive definite symmetric solution P. Calculate the feedback gain. 

Determine the open-loop and the closed-loop eigenvalues. Calculate the performance 
index using 

v = ~x'[O]Px[O] 

Problem 5.1.11 Consider a continuous-time system given by 

:i; = Ax+Bu y = Cx+Du 

where 

[ 
-1 

A= ~ 
-2 
-1 

o 
-2 ] 

1 , 
-1 

B = [~] , C = [1 1 0], D=O 

Use MATLAB to calculate the eigenvalues and ranks of controllability and observ­
ability matrices. Plot the unit step response of this system. Design the state feedback 
gain vector to move all eigenvalues to -2. Plot the unit step response of the closed­
loop system. Calculate the full-order state observer gain vector L assuming the desired 
eigenvalues of the observer are at -4. Write the matrix equation for the total system, 
determine its eigenvalues (there should be three of them at -2 and three of them at 
-4) and plot its unit step response. 
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Problem 5.1.12 Consider a discrete-time system in noisy environment: 

where 

x[k+1] 

y[k] 
Ax[k] + bulk] + w[k] 

= c' x[k] + elk] 

279 

while w[k] is the system noise and elk] is the output measurement noise. Let the noises 
be independent of x[k] and mutually uncorrelated. In addition, assume they are both 
zero-mean, white, Gaussian random signals with covariance matrices given by 

[
10-3 

Q = E{w[k]W'[k]} = ~ 
o 

10-3 and R = E{e[k]e'[k]} = 10-2 

o 
Additionally, assume the following for the initial value x[O]: 

Xo = E{x[O]} = [~] [
10-2

] 
and Po = E{(x[O] - xo)(x[O] - xo)'} = 10-2 

10-2 

First design a state feedback vector f such that the dosed-loop eigenvalues are all 
stable and real, and then design the Kalman filter to estimate the states needed for 
feedback control. 

Problem 5.1.13 Matrix A is Hurwitz if and only if for any given positive definite 
symmetric matrix Q there exists a positive definite symmetric matrix P such that 

A'P+PA=-Q 

As an extension to Lyapunov's equation show that all eigenvalues of the matrix A have 
real parts less than - J.I. < 0 if and only if for any given positive definite symmetric 
matrix Q there exists a positive definite symmetric matrix P that satisfies 

A'P+PA+2p,P= -Q 

Hint: If the eigenvalue of A is A, find the eigenvalue of A + p,I. 

Problem 5.1.14 The Lyapunov stability theory has been applied to study the long 
term behavior of artificial neural nets [20]. In Hopfield nets the N neurons are con­
nected to each other. The dynamic equations describing the net are given by 

duo N u. 
Oi dt' = ~)ijV; - ~ +Ii (i = 1,2, ... ,N) 

j=l 

where Ui represent the state variables of individual neurons, while Vi are the neuron 
outputs. This system of equations models neurons as leaky capacitances: the equation 
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for neuron i expresses the total charging current of that neuron (Cidll.i/ dt) as a sum of 
the following components: the current induced in neuron i by the output of neuron j, 
summed over all j, then the leakage current due to finite input resistance R; of neuron 
i, and the input current Ii from other external sources. We will assume that tij = tji 
and tii = 0, hence the matrix T of elements t;j is symmetric with elements on the 
main diagonal equal to zero. 

In a Hopfield network, the output of a neuron V; is a characteristic of a nonlinear 
amplifier associated with neuron i. It is a monotonically increasing and bounded 
function of the state U;. Hopfield used -1 ~ V; ~ 1. Additionally, V; is such that 

V; = gi(U;), g;(O) = 0 (i = 1,2, ... , N) 

and 

tI.i = g;l(V;) = MV;) (i = 1,2, ... ,N) 

Since gi are assumed to be monotonically increasing and gi(O) = 0, f; are also 
monotonically increasing, 1;(0) = 0, and all g; and Ii lie in the first and the third 
quadrants only. Hence 

To prove the asymptotic stability of this system, Hopfield used the neuron outputs 
V; as state variables and considered the following candidate Lyapunov function: 

1 1 IV; 
E=-2~~t;jV;Vj+~R; 0 Mv)dv-~V;Ii 

, J' , 

with R and C parameters positive. 
To complete the proof first show that E is positive definite (or at least bounded 

from below). Then calculate dE/dt and show that this quantity is negative semi­
definite. Finally, show that dE/dt == 0 happens only at the equilibrium point. 

Problem 5.1.15 Consider a cart of mass M with two inverted pendulums on it. Let 
their lengths be It and 12, respectively, both with bobs of mass m. IT angles 91 and 
92 describe the deviation of pendulums from the vertical, then for small values of 1911 
and 1921 the linearized equations are (cf. [22], p. 103) 

x(t) = Ax(t) + bu(t) 

where 

.~ [~], [~ 
0 1 n b ~ [-lit,,)] A= 
0 0 

a2 0 
as a4 0 -1/(Mh) 

while 

(M+m)g 
al = Mit ' 

mg 
a2 = Mit' 

mg 
as = M12' 

(M+m)g 
a4= Mh 
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Show that this system is controllable if and only if II =f. b. What does it mean for 
someone trying to vertically balance two sticks on the same finger? 

Hint: First show that 

where 

and 

Problem 5.1.16 Consider a continuous-time system given by {A, b, C'}. Write the 
parameters of the corresponding discrete-time system obtained using the sampling 
period T. Determine the impulse response of a discrete-time system in terms of the 
parameters of the original continuous-time system. 

Problem 5.1.11 Let p be a right eigenvector of an n x n matrix A and A the corre­
sponding eigenvalue, i.e., 

Ap=Ap 

Show that An is an eigenvalue of An with eigenvector p, i.e., 

Problem 5.1.18 Show that 

tr(A) = LA; 
i=l 

and 

n 

i=l 

Problem 5.1.19 Show that polynomials 

a(z) = aozn + alzn - 1 + ... + an-lZ + an 

and 

b(z) = bozm + b1zm - 1 + ... + bm-lZ + bm 

have no common factor if and only if there exist two unique polynomials f(z) and g(z) 
such that 

a(z)f(z) + b(z)g(z) = 1 

and deg(f(z)) < m and deg(g(z)) < n. 

Hint: Use the Euclidean algorithm for polynomials. 
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Problem 5.1.20 Consider 

and 

such that ao,bo f. 0 and m,n ~ 1. Let a; (i = l, ... ,n) and f3j (j = l, ... ,m) be 
the roots of a(z) and b(z), respectively. The resultant of polynomials a(z) and b(z) is 
defined as 

Obviously, a(z) and b(z) have no common factor if and only if R(a, b) #: O. Show 
that 

n m 

R(a, b) = a;;'b~ II II (a; - f3j) 
;=1 j=1 

Problem 5.1.21 Consider the system determinant S(a, b) of the following system of 
m + n linear equations in variables zn+m-l, ... , Z, 1 

zm-l a(Z) = 0 za(z) = 0 a(z) = 0 

zn- 1b(z) = 0 zb(z) = 0 b(z) = 0 

For example, if n = 3 and m = 2 

ao al a2 a3 0 
0 ao al a2 a3 

S(a, b) = bo bl b2 0 0 
0 bo b1 b2 0 
0 0 bo bl b2 

Show that 

S(a, b) = R(a,b) 

and conclude that a(z) and b(z) have no common factor if and only if S(a, b) f. O. This 
determinant is called Sylvester's resultant and the corresponding matrix is Sylvester's 
matrix. 

Hint: Prove that both S(a, b) and R(a, b) have the following recursive properties: 

S(a, 0) = 0 and R(a, 0) = 0 

S(a, b) = (-l)mnS(b,a) and R(a, b) = (-l)mnR(b,a) 

if n ~ m and a(z) = q(z)b(z) + r(z) then 

S(a,b) = b~-mS(r,b) and R(a,b)=b~-mR(r,b) 
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Problem 5.1.22 Throughout the book we considered polynomials a(z) and b(z) as 
above but with m = n, ao = 1, and bo = O. Without any loss of generality we use 
these conventions again. Hence, consider 

and 

b(z) = blZn - l + ... + bn-lz + bn 

Then, using the notation from Problem 3.8.4, the Bezoutian matrix is defined as 

Prove that 

S(a, b) "# 0 det(B)"# 0 

hence the Bezoutian resultant, det(B), can be used as another test for common factors 
of a(z) and b(z). 

Hint: Show that 

S(a, b) = det [a_ bb-] 
. a+ + 

Finally, 

Problem 5.1.23 Show that the observability matrix of the controller form can be 
written as 

Hint: Write H(z)a(z)z-k = b(Z)Z-k for k = 0,1, ... , n - 1 as a single matrix 
equation, for example for n = 3 

0 0 0 0 0 0 1 0 

II 
0 0 0 

hl 0 0 0 0 0 al 1 bl 0 0 
h2 hl 0 0 0 0 a2 al b2 bl 0 
hs h2 hl 0 0 0 - ba b2 bl as a2 
h4 hs h2 hl 0 0 0 a3 a2 0 b3 b2 
h5 h4 h3 h2 hl 0 0 0 a3 0 0 b3 

and deduce that 

M = (b+ - b_a=la+)a=lj 

Finally, use M = OcCc and Cc = a=T. 
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Problem 5.1.24 Derive the following expression for the similarity transformation 
from the controller to the observer form of a minimal system (cf. Problem 3.8.4): 

s= -iBi 

Hint: First show that 

Problem 5.1.25 Show that det(M) can be called Markov's resultant. 

Hint: Recall that Oeo = M. 

Problem 5.1.26 Show that a(z) and b(z) are coprime if and only if 

det(b(Ac» f. 0 

where Ae is the top companion matrix of a(z). This resultant was discovered indepen­
dently by Barnett, Kalman, and Macdaffee (not necessarily in that order). 

Hint: Recall that the top companion matrix of a(z) is the system matrix of the 
controller realization. 

Problem 5.1.27 Let 

a(z) = det(zI - A) = zn + alzn - 1 + ... + an-lZ + an 

Verify that 

adj(zI - A) = a(z)(zI - A)-l = RlZn- l + ... + Rn-lZ + Rn 

where 

Rl = I 
R2 ARl +ad A+ad 
Ra AR2 +a2I = A2 +alA+ a2I 

Rn = ARn-l + an-d 

Also show that 

and that 

ARn +anI = 0 

1 
ai = --;-tr(AR;) 

I 

Show how this last formula can be included in the recursion for R; to eliminate the 
need to calculate the coefficients of a(z) beforehand. This procedure for determining 
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adj(zl -A) by recursively calculating matrices R; is called Leverrier-Souriau-Faddeeva­
Frame Iilgorithm. 

Hint: Compare coefficients on both sides of 

a(z)1 = (zl - A)(R1Zn-1 + ... + Rn-1Z + Rn) 

Problem 5.1.28 Let 

a(z) = det(zl - A) = zn + a1zn- 1 + ... + an-1Z + an 

Define 

6(~, lIT) = (a(~) - a(IIT»(~ _1IT)-1 

and show that 

Use the following substitutions 

~ = zl and lIT = A 

and then 

~=A and lIT=zl 

to derive the following resolvent identities 

adj(zl - A) = zn-11 + (A + ad)zn-2 + ... + (An- 1 + a1An- 2 + ... + an-d) 

An- 1 + (z + a1)A n-2 + ... + (zn-1 + a1zn- 2 + ... + zn-t}1 

Compare them to the identity in Problem 5.1.27. 
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Appendix A 

A quick introduction to 
MATLAB 

A.I Introd uction 

MATLAB is a computer programming language whose only data types are ma­
trices l of various sizes. Many engineering problems are most concisely phrased 
using the matrix notation, therefore the popularity of MATLAB among students, 
engineers, and scientists should not be surprising. MATLAB is available for all 
major platforms, including Unix, Mac, and Windows. 

MATLAB supports all basic control structures (for loops, if - then con­
structs, etc.), but majority of its commands are calls to the state-of-the-art 
routines for matrix operations2 • In addition to program control commands and 
mathematical commands, MATLAB has very easy-to-use commands for plotting 
graphs, and many toolboxes aimed for use in various branches of science and en­
gineering. To mention just a few, available are Signal Processing, Controls, Sys­
tem Identification, Image Processing, Neural Networks, Symbolic Math, Statis­
tics, Wavelets, and many other toolboxes. 

The most important commands in MATLAB are certainly help and quit. 
Commands can be issued directly in MATLAB'S command prompt, but if we wish 
to run a sequence of commands, frequently repeating them with possible slight 
changes, it is much more convenient to create a file and name it, for example, 
progr01.m. Then the commands from that file, i.e., the program stored in it, 
can be executed by typing progrOl in MATLAB'S command prompt. Note that 
the variables need not be declared or dimensioned, this job is done automatically 
by MATLAB. 

IHence its name: MATRIX LABORATORY. 
2MATLAB was first written as an outgrowth of LIN PACK and EISPACK, the public domain, 

state-of-the-art software packages for numerical analysis, written in FORTRAN. The first 
version of MATLAB was written in the late 1970's at the University of New Mexico and Stanford, 
by Cleve Moler and Jack Little. In 1984 they founded The MathWorks, Inc., and since then 
successfully commercialized and developed their product. 
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A.2 Basic matrix operations 

Quite informally, matrices are tables of numbers. A matrix A given by 

[ 
2 4 5 

A = 7 4 1 
426 

is said to have three rows and four columns, Le., to be 3 x 4. We also write 
A = [aij]ax4, with au = 2, a21 = 7, etc. 

In MATLAB A can be defined as 

A = [2 4 5 -1; 7 4 1 2; 4 2 6 0] 
A = 

2 4 6 -1 
7 4 1 2 
4 260 

If we add a semicolon at the end, Le., 

A = [2 4 5 -1; 7 4 1 2; 4 2 6 0]; 

the result of this command will not appear on the screen, but will be kept in 
the memory. A ";" at the end of a command suppresses printing to the screen. 
Elsewhere it has a different meaning. 

To transpose A, we write B = A', or in MATLAB 

B = A'; 

In general, for complex matrices, the prime denotes the Hermitian operator, Le., 
the conjugate transpose. 

Matrices include vectors and sequences 

Special cases of matrices are vectors and scalars. The element an can be ex­
tracted from A as follows: 

a21 = 1(2,1); 

The first row of A can be written as 

r1 = [2 4 6 -1]; 

It can also be extracted from A directly by writing 

r1 = 1(1,:); 

Similarly, the second column of A can be written as 

c2=A(:,2); 

If ri, r2, r3, and ei, e2, e3, e4 are the rows and columns of A; then A can 
also be defined as A = [ri; r2; r3]; or as A = [el, e2, e3, e4]; or just 
A = [el c2 c3 c4]; (without the commas). 
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Addition 

To add two matrices, they must have the same size. For example, redefine B as 

This multiplication produces a matrix whose each element is three times the 
corresponding element of A. Since A and B have the same sizes, now we can 
add them 

c = A + B 
C -

8 16 
28 16 
16 8 

20 -4 
4 8 

24 0 

Often we need to increase all elements of A by the same amount, for example 
by 2. Although mathematically this is incorrect 

D = 2 + A (mathematically incorrect) 

the MATLAB syntax allows us to write 

D ~ 2 + Ai 

Products 

There are several types of multiplications available in MATLAB. The simplest 
is the scalar product, which we already used: 

B = 3*A 
B -

6 12 
21 12 
12 6 

16 -3 
3 6 

18 0 

Its result is a matrix of the same size as A. 

The scalar product of two vectors 

a = [al a2 a3 a4] and b = [bl b2 b3 b4] 

is a scalar calculated as 

albl + a2b2 + a3b3 + a4b4 

In MATLAB it can be evaluated using the matrix product, which is to be pre­
sented next. 

H we multiply A and B, the matrices of sizes m x n and p x q, respectively, 
then for this product to be well defined, the inner dimensions of the two matrices 
must be equal, i.e., n = p. The result of multiplication AB is a matrix C, which 
is m x q, whose element Cij is equal to the scalar product of the ith row of A 
and the jth column of B. 

For example, 
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A • [1 2 3 4; 
5 8 7 8]; 

B = [1 2 3; 
4 6 8; 
7 8 9; 

10 11 12]; 
C = '*B 

C • 
70 80 90 

168 184 210 

APPENDIX A. A QUICK INTRODUCTION TO MATLAB 

To calculate the scalar product of two vectors, we can use the matrix product 
operator, but we have to make sure that the left vector is in a row form, while 
the right vector is in the column form: 

a • [1 2 3 4] 

2 

b • [7 8 9 10]' 
b· 

7 
8 
9 

10 

c • 
90 

3 4 

If we multiply these two vectors so that the left vector is column, while the 
right is row, the result will be a matrix, calculated according to the rules of the 
matrix product. For example 

d • b*. 
d· 

7 14 21 28 
8 18 24 32 
9 18 27 38 

10 20 30 40 

Sometimes we need to multiply the corresponding elements of two equally 
sized matrices. This Hadamard product is denoted by ".*" in MATLAB. 

A • [1 2 3; 
4 6 8]; 

B • [0 1 2; 
2 1 0] 

C - Aa*S X Dote: w* 
C· 

o 
8 

2 
6 

6 
o 

If for some reason we want to create a matrix which contains all possible 
products of the elements of the two given matrices A and B, we use the Kro­
necker product C = A ® B: 
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A • [1 2 3 4; 
6 6 7 8]; 

B = [1 2; 
3 4; 
6 6] 

C = kron(A,B) 
C· 

1 2 2 4 3 6 4 8 
3 4 6 8 9 12 12 16 
6 6 10 12 16 18 20 24 
6 10 6 12 7 14 8 16 

16 20 18 24 21 28 24 32 
26 30 30 36 36 42 40 48 

To square a matrix means to multiply it by itself, hence due to the constraints 
on the dimensions of matrices in a matrix product, a matrix must be square in 
order for the squaring operation to be well defined. 

A = [1 2; 
3 4]; 

B· A"2 
B = 

7 10 
16 22 

We may also need to square each element of a matrix. In this case, of course, 
a matrix does not have to be square. 

A = [1 2 3; 
46 6]; 

B = A."2 
B = 
149 

16 26 36 

Functions 

Similarly, we can do many other operations on the elements of matrices: 

A = [1 2 3 4 6; 
6 7 8 9 10]; 

I • sin (A) X argument assUiled to be in radians 
1= 

0.8416 0.9093 0.1411 -0.7668 -0.9689 
-0.2794 0.6670 0.9894 0.4121 -0.6440 

Y = 10g(A) X natural bas8 (.) 
Y· 

0 0.6931 1.0986 1.3863 1.6094 
1. 7918 1.9469 2.0794 2.1972 2.3026 

Z = 10g10U) X base 10 
Z = 

0 0.3010 0.4771 0.6021 0.6990 
0.7782 0.8461 0.9031 0.9642 1.0000 

W • 1./A 
W· 

1.0000 0.5000 0.3333 0.2600 0.2000 
0.1667 0.1429 0.1250 0.1111 0.1000 
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Note that (Problem 3.2.4) exp and expm are different functions: B=exp(A) 
is a matrix such that bij = ea'j, while C=expm(A) is a matrix exponential of A. 
For example 

A = [1 1; 0 1]; 
B = exp(A) 

B = 
2.7183 2.7183 
1.0000 2.7183 

C = expm(A) 
C = 

2.7183 
o 

2.7183 
2.7183 

Matrix inversion, eigenvectors, etc. 

Important feature of MATLAB is its ability to seamlessly invert large matrices, 
find matrix rank, determinant, eigenvalues, eigenvectors, and singular values, 
and all that using the state-of-the-art algorithms. The appropriate commands 
are inv, rank, det, eig, svd. Use help for more details and various options for 
using these commands. 

A.3 Plotting graphs 

Often we want to analyze the spectral components of a measured signal. We 
can put the measured values into a vector, use the fft command, and plot the 
magnitude of the components of the resulting vector. Here we create the input 
vector as a sum of few sinusoidal signals and some additive noise (the result is 
shown in Figure A.1): 

Ts = 0.01; % sampling interval 
II = 300; % number of samples 
Tf = II*Ts; % final time 
t = 0:T8:Tf; X time vector 
A1 = 2.6; fl = 12; X amplitudes and frequencies 
A2 = 1.0; f2 = 23; 
13 = 4.0; f3 = 17; 
x = A1*sin(2*pi*f1*t) + A2*.in(2*pi*f2*t) ... X note: ... meane the command will be 

+ A3*sin(2*pi*f3*t) + O. 5*randn(size(t»; X continued in the next line 
X = fft(x); 
subplot (2 ,1,1) 
plot(t,x) 
xlabel< 'time [s]') 
ylabel( 'signal') 
subplot(2,l,2) 
plot«O: 1/1I:1)/Ts,abs(X)/II) 
xlabel ( , frequency [Hz]') 
ylabel ( , spectrum') 

Here are a few more useful commands when making nice plots: figure, 
stem, axis, xlabel, ylabel, title, text, grid. Again, use help for more 
details. 

For example, we may not be satisfied by the MATLAB'S choice of the ranges 
for the axis of the graph. Then we use the axis command. Commands like 
xlabel, ylabel, title, and text allow us to put some words of explanation at 
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a; 
c: 
'" .;;; 

10 

5 

-5 

-10 
0 0.5 

0.5 

1.5 
time [s] 

2 2.5 3 

1 1 
~~-=1~0~~20~~3~0~~~~~~5~0~~OO~~~70~~OO~~OO~--dl00 

frequency [Hz] 

Figure A.I: Plot of the signal and its spectrum. 
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different places on the graph, grid often makes the graph more readable, while 
stem is used to draw discrete sequences. 

AA Data analysis 

To create a sequence of increasing integers, the appropriate structure is a vector. 
For example 

n = 4; 
seq = l:n 

seq = 
1 2 

or 

n = 4; 
seq = (l:n)' 

seq = 
1 
2 
3 
4 

3 4 

In data analysis often used commands are mean, std, min, max. For example 

'" = rand(1,1000); 
lIean(",) 

ans= 
0.4966 

" vector of 1000 U(O,l) random numbers 

" theoretically 1/2 



296 

.td(x) 
ans-

.-3; 
v-4; 

0.2802 

APPENDIX A. A QUICK INTRODUCTION TO MATLAB 

" " "theoretically V 1/12 = 0.2887 

x • m + 8qrt(v)*(randn(1,l000»; "vector of 1000 IHm,v) random DlIIlbers 
mean(x) 

ans • 2.9884 "theoretically m (=3) 
std(x) " 

ans • 2.0137 " theoretically V v (=2) 

Note that if the argument of mean, std, min, or max is a matrix, the results 
are row vectors of means, std's, min's, and max's of each column. For example, 

x = [1 11 66; 
6 12 63; 
3 10 64; 
41163]; 

mean(X) 
aDS = 

3.2600 11. 0000 64.0000 
max(max(X» 

ans-
66 

A.5 Data management and I/O operations 

Command who lists all currently used variables. Command whos does the same, 
and, in addition, gives a few more details about each variable (size, dimensions, 
etc.). 

To remove some of the variables, type e.g., clear A B. To remove all vari­
ables, just type clear. 

To save all variables to a file, type save. This creates a file called matlab. mat 
on the disk. To load the values saved in it, type load. See help for further 
details on how to save (load) to (from) a file with a different name, or how to 
specify the variables or a format to be used. . 

To print the current figure to a file, type e.g., print -deps fig01.eps. See 
help for more details, other formats, and options. 

A.6 Exercises 

1. Create a sequence of even numbers from ° to 20. 

2. Create a sequence of first 10 squares: 1,4,9, ... , 100. 

3. Create the following length-l024 sequence: 0,1,0, -1, ... ,0, 1,0, -1. (Use 
vector concatenation.) 

4. Check that for n = 1,2, ... , 1000 the following equality holds 1 + 2 + ... + 
n = "("2+1). (Use sum.) 
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5. Check that for n = 1,2, ... ,1000 the following equality holds (1 + 2 + 
... + n)2 = 13 + 23 + ... + n3. (Use sum.) 

6. Euler found that -b + -b + b + ... = ":. Calculate the sum on the left 
for the first 100 terms and compare it to the value on the right. Calculate the 
sum for the first n terms, where n runs from 1 to 1000, and plot the calculated 
values. (Use for loop or cumsum.) 

7. Construct a 7 x 7 matrix with a Pascal triangle below its main diagonal. 
(Use for loop and the rule for creating the triangle: Pi,i = Pi-l,i-l + Pi-l,j, 
with Pi,l = 1 for any i = 1,2, ... ) 

8. Calculate An for n = 1,2,3,4,5,6, where 

A=[! ~] 
9. Form the Fibonacci sequence ft, 12, ... , fto. Use the following recursion: 

ft = 12 = 1, It. = ik-2 + it-l. (Use for loop.) 

10. Harmonic numbers are defined as Hn = t + ~ + ... + ~. Find the first 
harmonic number greater than 3. (Use cumsum and find.) 

11. Given are points Al (-1,7), A2 (2,3), A3 (4,7), A4 (2,4), and A5(4,3). 
Form a 5 x 2 matrix A with their coordinates. Calculate a 5 x 5 matrix D 
of distances between these points, i.e., let di,i = d(Ai' Ai). Check that D is 
symmetric, and find the two most distant points. If asked to find the two points 
closest to each other, how would you avoid the presence of zeros in D? (Use 
for loop and find.) 

12. Write the following system of linear equations in the matrix form, and 
use the inv command to solve it: 

2x-y+z-w = -3 
x+y+z+w = 10 

x-y+z+w = 4 

3x -y+2z-w = o. 

13. Modify the system above to see how the pinv (pseudo-inverse) command 
can be used to solve underdetermined and overdetermined systems. 

14. Use the Sieve of Eratosthenes to generate all primes less than 10000. 

15. Implement the Euclid's algorithm. 
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Solutions 

1. 

8 = 0:2:20 
8 = 

0 2 4 6 8 10 12 14 16 

2. 

8 = (1:10). -2 
8 = 

1 4 9 16 25 36 49 64 81 

3. Here are three different solutions: 

a = [0 1 0 -1]; 
b = [a a a a]; 
c = [b b b b]; 
d = [c c c c]; 
sl = [d d d d]; 
size(s1) 

ans= 
1024 

s2 = sin(pi* (0: 1023) /2) ; 

s3 = imag(j.-(0:1023»; 

4. 

for n = 1:1000 
:z: = sum(l:n); 
y = n*(n+1)/2; 
if x-=y 

found = n 
end 

end 

5. 

for n = 1: 1000 
x = (sum(1:n»-2;); 
y = 8um«1 on). -3); 
if x-=y 

found = n 
end 

end 

6. 

s = 0; 
for i = 1:100 

s = s + l/i -2; 
end 

Y. first solution 

Y. second solution 

1. third solution 

Xx=1+2+ ... +n 

X if x <> y 
1. print such n to the screen 

x x = (1 + 2 + ... + n)-2 
X y = 1-3 + 2-3 + ... + n-3 
X if x <> y 
1. print such n to the screen 

18 20 

100 



A.6. EXERCISES 299 

• 
s = 

1.8360 

pi "2/8 
aDS-

1.8449 

Much faster calculation (approximately 5 times faster) is as follows: 

D - 100; 
S = sWI(1./(l:n). "2) 

B = 
1.8360 

To measure the time needed for some operation, the following commands 
may be used: tic, toe, eputime. For example: 

t • cputime; 
n = 100000; 
x • SWI(1./(l:n). "2) 
cputime-t 

aDS-

0.3333 " in seconds 

The plot is obtained as follows (Figure A.2) 

n = 100; 
plot((1:n) ,CUlDBWI!(1./(l:n). "2),'. ') 
hold on 
plot((l:n) ,pi "2/8oones(l,n» 
hold off 

X CUDl8um is a vector of partial sums 
X draw over the current plot 
X drav a horizontal line y • pi "2/6 

1.8r----r---,----.----r----r---.---~----~--_.--~ 

1.6 .................................................................... 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

°O~--~10----2~0----30~---40~--~50~--~60----ro~---80L----90~--1~OO 

Figure A.2: Convergence of the Euler's sum. 
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7. 

D = 7; 
P II: zeroa(n.n); 
P(:,l) .ones(n,l); 
for i • 2:n 

for j • 2:1 

·x zero IlBtrix DXD 
" the laft-.ost colllllll b all ones 

P(i,j) • P(i-l,j-l) + P(i-l,j); 
end 

X do nothing above the .ain diagonal 
X recursioD for binomial coefficients 

end 
P 

P • 
0 0 
1 0 
2 1 
3 3 
4 6 
6 10 
8 16 

0 
0 
0 
1 
4 

10 
20 

0 
0 
0 
0 
1 
6 

16 

o 0 
o 0 
o 0 
o 0 
o 0 
1 0 
8 1 

Try also command pascal. 

8. 

A= [11; 10]; 
for n = 1:6 

D, A'"'n 
pause 

end 
X pres. <Enter> to continue 

Do you recognize the Fibonacci sequence? 

9. 

D = 10; 
f • ones(l.n)j 
for lr. • 3:n 

f (k) = f (k-2) + f (k-1) ; 
end 

f = 
2 3 

10. 

D· 20; 
B = cUIIs1lII(1./(1:n»; 
I • find(B>3); 
min(I) 

ans-
11 

6 

x • ..quence of all on •• 

" apply this recUrsion to 
" find 3rd, 4th, ... elellents 

8 13 21 34 66 X first ten Fibonacci nUlbers 

" e.g., B(6) • 1 + 1/2 + 1/3 + 1/4 + 1/6 
" I contains indexas i for which B(i) > 3 

" this is the s.allest among tha., 
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11. 

A· [-1,7; 2,3; 4,7; 2,4; 4,3]. 
D • zero8(5,5); 
for i ~ 1:6 

for j - 1:6 
D(i,j) = sqrt(s1lll«(A(i,:)-ACj,:»."2»; 

end 
end 

D 
D = 

0 
6.0000 
6.0000 
4.2426 
6.4031 

max (max (D-D'» 
ans= 

o 

max (max(D» 
ans" 

6.4031 

6.0000 6.0000 
0 4.4721 

4.4721 0 
1.0000 3.6056 
2.0000 4.0000 

[i,j] " find(D==max(max(D») 
i " 

j = 

6 

1 
6 

4.2426 
1.0000 
3.6066 

0 
2.2361 

D(find(n--O» - 1000*ones(aize(find(D==0»); 

.in(min(D» 
ana = 

1 

[i,j] " find(D==-in(min(D») 
i = 

4 
2 

2 
4 

12. 

A = [ 2 -1 1 -1; 
1 1 1 1; 
1 -1 1 1; 
3 -1 2 -1]; 

X coordinates of points 

X Euclidean distance 

6.4031 
2.0000 
4.0000 
2.2361 

o 

X therefore it is Byuetric 

X maziaum distance 

X the moat diatllDt are 1 and 6 

X aub.ti tute all zeros by 1000' a 

X minimum distance 

X the closeat are points 2 and 4 

B= [-3; 10; 4; 0]; X equation is A*X=B, with I " [x y z v]' 

x " 
1.0000 
3.0000 
2.0000 
4.0000 

X solution 

301 
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13. If the system is underdetermined, pinv gives us the solution with mini­
mum Euclidean norm: Xo = AT(AAT)-lb. 

A = [1 1 1 1; 
1 -1 1 1; 
3 -1 2 -1]; 

B- [10; 4; 0]; 

x = pinv(A)*B X minimum Dorm solution 
X = 

1.1164 
3.0000 
1.8462 
4.0386 

If the system is overdetermined, pinv gives us the solution which minimizes 
the Euclidean norm of the error B - AX: Xo = (AT A)-l ATb. 

A- [ 2 -1 1; 
1 1 1; 
1 -1 1; 
3 -1 2] ; 

B-= [1; 6; 0; 6] ; 

I =. pinv(A)*B X this solution Ilinillizes the Dorll of the error 
X = 

1.2000 
3.0000 
2.0000 

14. 

X begin by using only first few primes (2,3,6,7) to find all pri .. es < 100 

M - 10; X sbould be < 11, b.caus. at Btart we UBe only 2,3,6,7 
N = M"2; 
.. all_Beq • 1:1; 

ellaU_.eq(l) = 0; 
s ... U_s.q(4:2:N) - zeroB(size(4:2:1I»; 
.... U_ •• q(6:3:N) - zeroB(Bize(6:3:1I»; 
... U_Beq(10:6:N) = z.ros(Bize(10:6:N»; 
nall_seq(14:7:N) - zeroB(Bize(14:7:N»; 

X 1 is not II. prim. 
X eliminate aU divisible by 2 
X eliminate aU divisible by 3 
X elimin.te .U divisible by 6 
11 eliminate all divisible by 7 

11 now use the primes in s ... ll_primes to generate prilles < 1000 

large_seq :1:1 1 :."2; 
large_seq(1) = 0; 
for j = 1:size(sll.1l_primes,2) 

elillinate - 2*sll.U_primes(j) :sllall_prim.B(j) :11"2; 
large_seq(elimin.te) = zeros(size(elillinate»; 

end 

prilles = find (large_seq > 0); 
prim ••• 

X 1 is not II. prille 

11 eliminate aU 
11 divisible by 
X sllaU_primes (j) 

2 3 6 7 11 13 17 19 23 29 31 37 41 43 47 ... 9967 9973 

size (prilles) 
ans-

1229 X there are 1229 prilles < 10000 
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We see there are 1229 primes < 10000. This agrees well with the Lagrange's 
apprillPmation for 7r(x), the number of primes < x: 

15. 

x 
X euclid.1I 
X 

X 

7r(x) ~ lnx -1.08366 = 1230.51 

X This file implelleDts functioD d a euclid(a,b) 
X which can be called froll other progr....... In 
X particular. it recursively calla itself. until 
X the result is O. 
X 

functioD d = euclid(a, b) 

if (a==O) I (b==O) 
d • a+bj 

end 

if a==b 
d = aj 

end 

if (a>b) l - (a*b == 0) 
r = a - floor(a/b)*b; 
d = euclid(b,r); 

end 

if (a<b) I: - (.*b .. 0) 
r • b - floor(b/a)*a; 
d • euclid(a,r); 

end 

end 

X e.g., GCD(6,0) = 6 

X e.g., GCD(6,6) = 6 

MATLAB has a built-in function gcd which does the same. Furthermore, 
it can be used for the extended Euclid's algorithm, Le., not only to find d = 
GCD(a, b), but also integers a and {3 such that aa + (3b = d: 

a = 643312; 
b = 66340; 
[d,A,B] = gcd(a,b) 
d· 

396 
A = 

73 
B = 

-607 X indeed: 73*643312 - 601*66340 = 396 



Appendix B 

Mathematical preliminaries 

B.I Introduction 

This Appendix has a twofold purpose: first, it is a mathematical refresher for 
the tools used in the rest of the book; secondly, it reviews the notation we 
use with these tools. The presentation is neither complete nor tutorial, hence 
the readers not already familiar with the ideas and concepts presented in this 
Appendix should get better mathematically prepared. We shall discuss the 
following topics: 

• Differential and difference equations 

• Laplace and z-transforms 

• Matrices and determinants 
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B.2 Differential and difference equations 

The dynamic behavior of many natural phenomena, mechanical systems, or elec­
tronic circuits, can be accurately modeled using differential equations. They are, 
therefore, an essential mathematical tool in physical sciences and engineering. 
If the sampling interval is prope~ly chosen, difference equations can be used 
instead of differential equations, allowing for the use of digital computers in 
modeling, analysis, and control. 

Historical background 

Calculus. Geometrical problems, such as calculation of areas and volumes 
and construction of tangents, were the primary source of inspiration for what 
are now the basic methods of calculus. The first such methods were developed 
by the Ancient Greek geometers Eudoxus, Euclid, and Archimedes. In the early 
seventeenth century Kepler, Cavalieri, Torricelli, Descartes, Fermat, Roberval, 
and Wallis contributed many new ideas and discovered important pieces of what 
would soon become calculus. . 

The first to put all these ideas together, to unify the notation, and to apply 
them to problems in kinematics, dynamics, and celestial mechanics was New­
ton in 1665. This work wasn't published until much later, in 1736 (nine years 
after his death), but some of his contemporaries were aware of it. It is quite 
likely that Newton had discovered most of his revolutionary results published 
in Philosophiae Natumlis Principia Mathematica in 1687 using his method of 
"fluents" and "fluxions" but in that book he proved them using the traditional 
Greek geometryl. Independently from Newton, in the late 1670's, Leibniz suc­
ceeded in unifying the previous knowledge, created his own notation, and for­
mulated algorithms using the symbols d and I. He published his findings in 
1684 in the article entitled A New Method for Maxima and Minima as Well as 
Tangents, Which Is Impeded Neither by Fractional nor by Irrational Quantities, 
and a Remarkable Type of Calculus for This. 

The eighteenth century was the century of great discoveries in this field. 
Calculus has been applied to various problems in geometry and mechanics with 
great success. The main contributors during this period were Jakob and Johann 
Bernoulli, Taylor, Maclaurin, Euler, d'Alembert, Laplace, and Lagrange. But 
it was only in the nineteenth century that the rigor was brought into calculus, 
mostly through the work of Cauchy and later Weierstrass and Cantor. 

Today the calculus comprises the following disciplines: differential and in­
tegral calculus of real and complex variables, theory of infinite series, theory of 
differential equations (ordinary and partial), theory of integral equations, and 
calculus of variations. 

lSimiiarly, Archimedes had a method of calculating areas and volumes (basically it was 
integration; he called it the "mechanical method") but he didn't consider it rigorous enough 
for the actual proofs, so he used his method to discover new results, but proved them using 
the standard geometry. 



B.2. DIFFERENTIAL AND DIFFERENCE EQUATIONS 307 

Differential equations. Almost as soon as the new calculus was invented, 
the first differential equations appeared. Newton called them "fluxional equa­
tions" and solved them using power series with indeterminate coefficients. Since 
his work wasn't published until more than seventy years later, it was the work 
of Leibniz and his students and followers that laid the foundation of modern 
theory of differential equations. 

For example, in 1690, Jakob Bernoulli reduced the problem of determining 
the isochrone (the curve in a vertical plane down which a particle, starting at 
any initial point on the curve, will descend to the lowest point in the same 
amount of time) to a first-order nonlinear differential equation 

where the prime denotes the derivative with respect to x. He solved it by what 
is now called the method of separation of variables. 

By the end of the seventeenth century Leibniz and the Bernoulli brothers 
discovered most of the methods for solving first-order ordinary differential equa­
tions. By the time Euler entered the scene, several classes of ordinary differen­
tial equations were already investigated: linear, Bernoulli, Riccati, and Clair aut 
differential equations. 

The eighteenth century developments were marked by the work of Euler, 
who made significant contributions: new methods for lowering the order of an 
equation, the concept of an integrating factor, the theory of higher-order linear 
equations, early developments of the theory of elliptic functions, and application 
to a wide variety of mechanical problems. 

All these discoveries were finally mathematically justified in the 1820's when 
Cauchy put calculus on firm foundations. In the theory of differential equations 
he established the sufficient conditions for existence and uniqueness of a solution 
of a first-order differential equation 

y' = f(x,y) 

Since that time many mathematicians contributed to the further develop­
ment of the theory and applications of differential equations, to mention just a 
few: Lie, Poincare, Picard, Lyapunov, Volterra. In 1926 Schrodinger discovered 
his famous wave equation, which is a fundamental equation of quantum physics. 

Difference equations. Difference equations, or the calculus of finite dif­
ferences, as this branch of mathematics is also called, were first investigated 
by Gregory, Newton, and Taylor. They were never as important in theoretical 
developments as in numerical calculations, where differentials are substituted 
by finite differences. For example, in 1822 Babbage built a prototype of his 
Difference Engine, intended to solve differential equations based on the method 
of finite differences. They came to prominence with the development of digital 
computers and discrete-time control and communications systems. 
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Differential equations at a glance 

A note on notation. In this general discussion about differential equations 
we shall use the notation introduced by Leibniz, which is still in widespread use. 
For example, the second-order linear differential equation in this notation is 

yl/(x) + f(x)y'(x) + g(x)y(x) + hex) = 0 

where yl/ = ~ and y' = * are the second and the first derivatives of y(x), 
respectively. 

Later, in the main body of this book, our functions will be functions of time. 
This presents us with two choices: we can simply substitute t for x and write 

yl/(t) + f(t)y'(t) + g(t)y(t) + h(t) = 0 

or we can use the notation used by Newton, in which a dot denotes the time 
derivative: 

yet) + f(t)iJ(t) + g(t)y(t) + h(t) = 0 

In order to avoid the confusion with matrix transposition, which is also 
denoted using a prime, in the main body of this book we shall use the Newton's 
notation. 

Cauchy's theorem. The following theorem due to Cauchy provides suffi­
cient conditions for a first-order differential equation 

y' = f(x,y), y(xo) = Yo 

to have a solution. Furthermore, if the conditions of the theorem are satisfied, 
the solution is unique. We shall also see that this theorem can be generalized 
to give the sufficient conditions for the existence and uniqueness of solutions 
of higher-order differential equations. Unfortunately, this theorem doesn't offer 
much help in finding the actual solution, but knowing that the solution exists 
and that it is unique is often enough, because then we can have greater con­
fidence in the numerical solutions obtained using a computer. We give this 
important theorem here without a proof. Interested reader should consult any 
book on differential equations. 

Theorem B.2.! Assume that a function f(x,y) satisfies the following two con­
ditions: 

1. It is continuous in a closed region D of the x-y plane containing the point 
(xo, yo). 

2. In D this function satisfies the Lipshitz condition with respect to y: 

If(x, Y2) - f(x, ydl ~ KlY2 - Yll 
where (x, yt} and (x, Y2) are in D and K > o. 
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Then the first-order differential equation 

Y' = f(x,y) 

has a unique solution y = Y(x) satisfying the initial condition Y(xo) = Yo. This 
solution is differentiable in the neighborhood of Xo. 

This theorem can be generalized to a system of n first-order differential 
equations. This is important, because a differential equation of order n 

z(n) = f(x, z, z', . .. , z(n-1») with z(i)(xo) = ZjO (j = 0,1, ... ,n -1) 

can be written as a system of n first-order equations (note that Y1 = z): 

y~-l = Yn 

with initial conditions Yi+1(xO) = ZjO (j = 0, ... ,n -1). 

Theorem B.2.2 Assume that the functions ft, ... , fn satisfy the following two 
conditions: 

1. They are continuous in a closed region D containing (xo, YlO,"" YnO)' 

2. In D these functions satisfy the Lipshitz condition: 

n 

1fA,(X,Y12, ... ,Yn2) - fk(X,yU, ... ,Yn1)1 $ KL IYi2 -Yill (k = 1, ... ,n) 
i=l 

where (X,Y12,'" ,Yn2) and (x,Yn, ... ,Ynt) are in D and K > O. Then the 
system of first-order differential equations 

has a unique solution Yk = Yk(X) (k = 1, ... , n) satisfying the initial conditions 
Yk(XO) = YkO (k = 1, ... , n). This solution is differentiable in the neighborhood 
ofxo. 

As a special case which is of particular interest to us, consider a homogeneous 
linear differential equation of order n 
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In the notation of the generalized Cauchy's theorem we have 

h =Y2 fn-l = Yn 

and it is easy to see that as long as functions ak(x) (k = 1, ... , n) are continuous, 
the functions h, ... , fn satisfy the conditions of Theorem B.2.2. In this book 
we shall consider only the cases in which ak(x)'s are constants, which further 
simplifies the analysis. 

For further results we are going to need in this book, the reader should take 
a look at problems in Section 3.1. 

Difference equations at a glance 

Similarities with differential equations. A detailed comparison of 
methods used for solution of differential and difference equations shows many 
similarities. For example, in differential and integral calculus we often use the 
following identities: 

and / xn dx = _l_xn+l + C 
n+l 

The following function and associated identities are equally important in the 
calculus of finite differences: 

Definition B.2.1 The falling factorial power of k is 

k!!. = k(k - 1) ... (k - n + 1) 

In the special case when n = 0 it is defined to be 1. The symbol k!!. is pronounced 
"k to the n falling. " 

It is easy to show that the difference of the falling factorial power is 

l:!.k!!. = (k + I)!!. - k!!. = nkn - 1 

while the indefinite sum of the falling factorial power is 

kn+l 
"'k!!.=-+C 
L..J n+l 
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Similar identities hold for the rising factorial power: 

Definition B.2.2 The rising factorial power of k is 

kn = k(k + 1) ... (k + n - 1) 

In the special case when n = 0 it is defined to be 1. The symbol kn is pronounced 
"k to the n rising." 

Another important similarity is the analogy between the function ea", in the 
"continuous" calculus and the sequence ak in the "discrete" calculus: 

f'(x) = af(x) =} f(x) = Cea", 

while 

g[k + 1] = ag[k] =} g[k] = Cak 

With all these and other similarities between the differential calculus and the 
calculus of finite differences, it should be no surprise that the general solution 
of the order-n homogeneous linear difference equation with constant coefficients 

y[k] + aly[k - 1] + ... + any[k - n] = 0 

can be written as soon as we determine the roots of its characteristic equa­
tion (these roots are called characteristic values or eigenvalues of the difference 
equation): 

To learn more about solving difference equations the reader should refer to 
Section 4.1. 
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B.3 Laplace and z-transforms 

Laplace transform is the most popular integral transform used for solving linear 
differential equations with constant coefficients. It transforms them into alge­
braic equations, which are easier to solve. The z-transform takes the place of 
the Laplace transform in the "discrete" world. 

Historical background 

Fourier transform. Fourier was the first to use an integral transform to 
solve differential equations. In 1807, Fourier discovered that periodic functions2 

can be represented using a trigonometric series3 

1 00 

f(x) = 2ao + ~)ak coskx + bk sin kx) 
k=l 

where coefficients ak and bk (k = 0,1,2, ... ) can be determined from the Euler­
Fourier formulas 

11" ak = - f(x) cos kx dx 
7r _" 

and 

11" bk = - f(x) sin kx dx 
7r _" 

In his Analytical Theory of Heat published in 1822, Fourier solved the fol­
lowing partial differential equation4 

where u = u(x, y, z, t) was the temperature and k was a constant dependent on 
the properties of the medium. In Chapter III of that book he presented "The 
first example of the use of trigonometric series in the theory of heat." There he 
solved the heat equation by showing that it was satisfied by sinusoidal functions 
of various frequencies. He then used the linearity of the equation to combine 
them into a trigonometric series with coefficients chosen so that the boundary 
conditions were satisfied as in Example B.3.1: 

2To simplify the notation here we assume that the period is equal to 211". 
3This is true under certain conditions, the so-called Dirichlet conditions (1829). This 

representation was first used by D. Bernoulli and Euler in their work on the problem of an 
oscillating chord in the 18th century, but Fourier discovered their real importance. 

4This is the so-called heat equation, also known as the diffusion equation. Many unrelated 
physical phenomena can be described by it. 
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Example B.a.1 Consider a homogeneous solid bounded from the left and right by 
vertical planes, and from above by a horizontal plane (see Figure B.l). Let the boundary 
conditions be (for any x E (-d, d) and y > O} 

u(x, 0) = 1, u( -d, y) = 0, u(d, y) = 0, and Jim u(x, y) = 0 

u(-d,y)=0 

-d 

y 

o 
u(x,O)=J 

y--+oo 

u(d,y)=0 

d x 

Figure B.l: The boundary conditions in Fourier's first example. 

The heat equation in this case becomes 

If we are interested in the stationary solution alone, then {}u/{}t = 0, so we have 

{}2U {}2U 

{}x2 + {}y2 = 0 (B.l) 

At this point, Fourier wrote: "In order to consider the problem in its elements, 
we shall in the first place seek for the simplest functions of x and. y, which satisfy 
equation (B.l); we shall then generalize the value of u in order to satisfy all the stated 
conditions. " 

If the solution is assumed to be of the form u(x, y) = f(x)g(y), then from (B.l) 

rex) g"(y) 
f(x) = - g(y) 

which means that both sides are equal to some real constant m. Therefore, 

u(x,y) = e-my cosmx 

Since u(x, y) must be bounded, m ~ O. In order to simplify further analysis, set 
d = 7r/2. Boundary conditions u(±7r/2, y) = 0 imply that m can be an odd integer 
only. 

Since the equation (B.l) is linear, before imposing the boundary condition u(x, 0) = 
1, we can say that, in its most general form, the solution is a linear combination of 
the solutions we have obtained earlier: 

u(x, y) = ae-Y cos x + be-3y cos3x + ce-5y cos 5x + ... 
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Now we use u(x, 0) = 1 to obtain 

acosx+bcos3x+ccos5x+ ... = 1, -~<x<~ (B.2) 2 - - 2 
The unknown constants a, b, c, ... can be determined by multiplying (B.2) by cos x, 

cos 3x, cos 5x, ... respectively, and integrating from -7r /2 to 7r /2 (the Euler-Fourier 
formulas). In fact, that is the way Fourier did that later in the book. But here he 
considered new equations, obtained from (B.2) by successive differentiations, at x = 0 

Using Wallis' formula 

a + 
a + 
a + 

2 2 4 4 6 6 7r _.-._._._._ ... =-
133 5 5 7 2 

this system can be seen to have the following solution 

4 4 4 
a =;> b = - 37r ' C = 57r' 

thus, the solution u( x, y) is given by 

1 
o 
o 

4 00 ( )k-l 
u(x,y) = - ""' -1 e-(2k-l)y cos(2k -1)x 0 

7r L 2k-l 
k=l 

Laplace transform. Laplace was the first to use the following integral 
transform 

F(s) = 100 J(t)e- st dt 

today called the one-sided or unilateral Laplace transform, to solve differential 
equations. Most of the early work on this transform was done by Petzval5 . In 
the early 1900s Bromwich discovered the inversion formula 

1 l r +joo 
J(t) ~ -2 . F(s)e st ds (for any r in the region of convergence) 

7rJ r-joo 

Unaware of these mathematical developments, in 1892 Heaviside introduced 
his operational calculus to solve differential equations arising in electrical cir­
cuits and problems in electrical transmission and telegraphy. Heaviside wrote p 
instead of d/ dt, thus obtaining algebraic equations and did the inversion using 
the tables. For a while Heaviside's operational calculus was disputed as having 
no mathematical foundations, but in 1926 Carson recognized the connection 
between the Heaviside's operational calculus and the Laplace transform. Like 
Heaviside, he used an extra p in the definition. In our notation they used 

F(s) = s 100 J(t)e- st dt instead of F(s) = 100 J(t)e- st dt 

5 After a public quarrel with a student who unjustly accused Petzval of plagiarizing Laplace, 
mathematicians started calling this transform the Laplace transform. 
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z-transform. What the electrical engineers call the z-transform the math­
ematicians call the generating functions. Historically, de Moivre was the first 
to use this method in 1718. He used it to determine the explicit formula for the 
members of the famous Fibonacci sequence, as in the following. 

Example B.3.2 The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... is defined by 
the following recursion 

fn = fn-l + fn-2 fo = 0, It = 1 

By definition, the generating function for the sequence of Fibonacci numbers is 

G(x) = fo + Itx + hx2 + ... 

Note that its z-transform is given by6 F(z) = Z{fn} = fo + Itz- 1 + hz-2 + ... 
From the recursion and the initial conditions de Moivre found the following algebraic 
equation for G(x) 

which implies 

G(x) - xG(x) - x2G(x) = x 

x 
G(x) = I-x -x2 

This expression can be written using the partial fraction expansion as 

V5 1 V5 1 
G(x) = --- - ---_ 

51-cfJx 51-cfJx 

where cfJ = 1+2\1'5 and ~ = l-l~. Note that cfJ = 1.61803 ... is the so-called golden sec­
tion, a very important mathematical constant which appears not only in mathematics, 
but also in astronomy, biology, psychology, art, and architecture. Now G(x) can be 
rewritten as 

V5( 2 2 ) V5( - -2 2 ) G(x)=Sl+cfJx+cfJ x + ... -Sl+cfJx+cfJ x + ... 

which finally yields 

Therefore, we can immediately write 

Generating functions were then used by Laplace, who applied them in the 
theory of probability. The first to use them in engineering related problems 
were Hurewicz, Zadeh, and Ragazzini (see Problem 4.4.12). 

6For further details on this notational difference see Problem 4.4.12. 
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Laplace transform at a glance 

Useful properties. In the following table we summarize the most com­
monly used properties of the Laplace transform (see also Problem 3.1.5): 

F(s) 

f(t) 

= C{f(t)} = 1~ f(t)e- st dt 

1 l r +joo = C-1{F(s)} = -. F(s)est ds 
21rJ r-joo 

for any r in the region of convergence, i.e., to the right from all poles of F(s). 

LAPLACE TRANSFORM - PROPERTIES AND PAIRS 

original transform property 

of(t) + {3g(t) of(s) + {3G(s) linearity 

eat f(t) F(s - a) s-domain shift 

tn f(t) (-l)nF(n){s) s-domain deriv. 

f{t - a) (a > 0) e-as F{s) t-domain shift 

f(n){t) snF{s) - E~=l sn-if(i-l) (0) t-domain derivative 

I~ f{r) dr F(s)/s time integral 

I~ f{t - r)g{r) dr F{s)G{s) time convolution 

6{t) 1 Dirac's delta impulse 

1 1 
S 

Heaviside's unit step 

tneat 1 
n! {s-a)n+1 

e-at coswt 
(s+a) 

{s+a}2+w2 

e-atsinwt w 
(s+a)'l+w~ 
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z-transform at a glance 

Useful properties. The following table summarizes the properties of the 
z-transform: 

00 

F(z) Z{f[k]} = L j[k]z-k 
k==O 

i[k] = Z-l{F(z)} = -21 . 1 F(z)zk-l dz 
7rJ Yo 

where C is any circle centered at the origin such that all poles of F(z)zk-l are 
in its interior. 

Z-TRANSFORM - PROPERTIES AND PAIRS 

original transform property 

ai[k] + f3g[k] aF(z) + f3G(z) linearity 

ak j[k] F(z/a) z-domain scaling 

(k + 1)m i[k + m] 
d:'" 

(dz l)m F(z) z-domain derivative 

i[k - n] (n ~ 0) z-n F(z) k-domain shift 

J[k +n] (n ~ 0) zn (F(z) - E?:Ol i[i]z-i) k-domain shift 

E~==o J[k - i]g[i] F(z)G(z) k-domain convoluti<:m 

o[k] 1 Kronecker's delta 

ak 1 
1-az-1 

(k+1)mak 1 
m! (1-az 1 )m+l 

ak coskw 
1-az-1 cosw 

1-2az 1 cosw+a2 z 2 

ak sinkw 
az-1 sinw 

1-2az lcosw+a2 z 2 
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B.4 Matrices and determinants 

Matrix notation and methods are the most important mathematical tool that 
we use in this book. Therefore it should be no surprise that besides this brief 
historical and theoretical introduction and problems in Sections 3.2 and 4.2, we 
have also dedicated Appendix C to matrices. Their usefulness stems from the 
compact notation they offer for many classes of problems, especially for systems 
of equations and for quadratic forms. 

Historical background 

The need for matrices and determinants arose first in the context of systems 
of linear equations, and later with investigations of quadratic forms. This same 
notation became useful in other areas, e.g., in analytic geometry, functional 
analysis, probability, physics, and engineering. 

Systems of linear equations. A Babylonian clay tablet from around 
300 BC contains the following problem: 

There are two fields whose total area is 1800 square yards. One 
produces 2/3 of a bushel of grain per square yard while the other 
produces 1/2 a bushel.of grain per square yard. If the total yield is 
1100 bushels, what is the size of each field? 

This is the oldest known problem which reduces to a system of simultaneous 
equations. The oldest known use of matrix methods is found in the Chinese 
mathematical text Nine Chapters on the Mathematical Procedures, which was 
probably compiled in the 1st century AD. It contained the following problem, 
whose solution used all but modern notation: the reader will recognize the 
Gaussian elimination and rules to transform matrices. 

Example B.4.1 There are three types of corn. Three bundles of the first, two of the 
second, and one of the third make 99 measures. Two of the first, three of the second 
and one of the third make 94 measures. And one of the first, two of the second and 
three of the third make 26 measures. How many measures of corn are contained in one 
bundle of each type? 

In our modem notation we would write this as 

3x + 2y + z 39 

2x + 3y+ z 34 

x + 2y + 3z 26 

The ancient text proceeds by writing the coefficients in a form of a table 

1 2 3 
2 3 2 
3 1 1 

26 34 39 
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which is then transformed using the following rule: multiply the middle column by 3 
and subtract the right column from it as many times as possible. Then similar is done 
with the left and the right column, which yields 

003 
452 
8 1 1 

39 24 39 

Finally, if the left column is multiplied by 5 and the middle column is subtracted from 
it as many times as possible, the following new equivalent system is obtained 

003 
052 

36 1 1 
99 24 39 

This same method was used centuries later by Gauss when he calculated the six orbital 
elements of the asteroid Pallas. 0 

The rule for solving a 2 x 2 system was first given by Cardano in his Ars 
Magna in 1545. Today we recognize it as the first instance of the Cramer's rule. 

Determinants were first defined by the Japanese mathematician Seld in 1683. 
He was able to calculate determinants up to 5 x 5 and to demonstrate the general 
rules for their evaluation through examples. That same year, Leibniz was the 
first to introduce determinants in Europe. He proved various results about 
3 x 3 determinants, including what we now call the Cramer's rule and Laplace 
expansion. In 1750 Cramer gave the general rule for systems n x n. The first 
to use the compactness of determinants to simplify the discussion was Laplace 
in 1772 in a paper about the orbits of the inner planets. He also proved the 
general case of the expansion rule now named after him. Gauss' motivation 
for inventing an efficient method for solving simultaneous equations was also 
coming from the celestial mechanics. In 1809 he introduced the elimination 
algorithm, now named after him, in his work on orbital elements of the asteroid 
Pallas, where he dealt with six linear equations with six unknowns. 

Quadratic forms. Gauss was the first to use the term "determinant" in his 
Disquisitiones Arithmeticae in 1801. He used that name because these objects 
determined the properties of the quadratic forms he was studying. In the same 
context he described matrix multiplication and inversion. 

In 1812 Cauchy and Binet found the rules for determinant multiplication. 
In 1826 Cauchy worked on quadratic forms and in that context he calculated 
the eigenvalues of the corresponding matrices, and showed that real symmetric 
matrices are diagonalizable. In 1846 Finck published the rule for evaluation of 
3 x 3 determinants and credited Sarrus for it. 

The modern notation for determinants (two vertical lines) was first intro­
duced by Cayley in 1841, while in 1850 Sylvester was the first to coin the term 
"matrix." 
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Later developments. In 1858 Cayley gave the abstract definition of a ma­
trix, thus generalizing the rectangular arrays of numbers encountered in various 
mathematical investigations. He proved that 2 x 2 and 3 x 3 matrices satisfy 
their own characteristic equations. Hamilton proved the same result for matri­
ces 4 x 4 in his work on quaternions. The general case was proved by Frobenius 
in 1878, in the same paper in which he introduced the notion of the rank. When 
in 1896 he became aware of Cayley's work, he generously attributed this impor­
tant theorem to him. Important work on matrices and determinants was also 
done by Weierstrass and Kronecker. 

In 1925 Heisenberg formulated his quantum theory using arrays of num­
bers describing probabilities of transitions between different quantum states. 
It was Born who first recognized the matrices in Heisenberg's work. In 1927 
Schrodinger proved the equivalence of his and Heisenberg's approach. Today 
matrices are useful in many areas of science and engineering, such as signal and 
image processing and control theory. 

Matrices and determinants at a glance 

Matrix operations. Consider the following system of m equations in n 
unknowns Xl, X2, ... ,Xn : 

allXI + al2X 2 + + alnXn bl 

a2l X I + a22 X 2 + + a2n X n = b2 
(B.3) 

amlXI + a m 2 X 2 + + amnXn = bm 

If we use the usual definition of multiplication of a matrix and a vector, we 
can write this system as follows: 

Ax =b 

where 

A= 

Similarly, all other basic matrix operations have interpretation, probably 
even the origin, in the world of systems of linear equations. For example, to 
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see why the standard7 definition of matrix multiplication makes so much sense, 
consider the change of variables in the system (B.3): 

Xl = PUWI + Pl2 W 2 + + PlnWn 

X2 = P2l W I + P22W 2 + + P2nW n 
(B.4) 

Xn = PnlWI + Pn2W 2 + + PnnWn 

Then the system (B.3) becomes 

(aupu + ... + alnPnt)WI + + (aUPln + ... + alnPnn)Wn = bl 

(a2IPU + ... + a2nPnt)W I + + (a21Pln + ... + a2nPnn)Wn = b2 

which is consistent with the definition of matrix multiplication and the matrix 
form of this system 

where 

p= [ 

Pu 

:', 
Pl2 

P22 

Pm2 

APw=b 

~: 1 W = [~~l b= [~·~l 
P~n ~n . b~ 

All this is also consistent with writing the transformation equations (B.4) as 
x=Pw. 

7The standard matrix multiplication is named after Cayley. There are other types of matrix 
multiplication, such as Kronecker (also called tensor product or direct product of matrices), 
Hadamard, inner, outer, cojoint, Lie, and others (see [15]). For example, the Kronecker 
product of two square matrices is defined as 

[ 

uuV 
def U21 V 

U®V = . 

Url V 

U12 V 
U22V 

Ur 2V 

UlrV 1 U2r V 

UrrV 

therefore, if the orders of U and V are r and s, respectively, the order of their Kronecker 
product U ® V is rs. 
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A note on notation. In this book we use the following notation: 

• In AT the operator T denotes matrix transposition. 

• In A the bar denotes the complex conjugation. 

• In AH the operator H denotes the Hermitian operator, i.e., AH = (A)T. 

Obviously, if A is real, then AH = AT. We also use the prime to denote the 
Hermitian operator: A' == AH. Hence, for real matrices, the prime denotes the 
transpose. 

The reason for this double notation is that one notation is sometimes easier 
to read or use than the other. For example, MATLAB adopted the prime because 
it is easier to use when typing programs. On the other hand, writing A -T is 
more elegant than the cumbersome (A,)-i or (A-i)'. 

Operations on determinants. In order to illustrate the operations on 
determinants we shall investigate one important class of determinants, the so­
called Vandermonde determinants. 

Example B.4.2 The Vandermonde determinant of order n is defined by 

1 al n-l a 1 
1 a2 n-l 

Vn (al, ... ,an) = 
a2 

1 an n-l an 

We shall use the induction to prove that for n ~ 2 

Vn(al, ... , an) = II (aj - ai) 
l~i<j~n 

For example, for n = 3 we shall find 

a a
2

1 b b2 = (c - a)(c - b)(b - a) 
c c2 

First step: For n = 2 we have 

Second step: Let 

Vk(al, ... ,ak)= II (aj-ai) 
l<O;i<j9 
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Third step: If in the determinant 

from the j-th column we subtract the (j - l)th column multiplied by ak+l, for all j = 
2,3, ... ,(k+ 1), and then extract (ai -ak+d from the i-th row, for every i = 1,2, ... , k, 
we find 

1 1 al k-l a l 

1 1 a2 k-l a2 k 

Vk+l (al," . ,ak+l) = . (_I)k. II(ak+l - ai) 

1 1 ak k-l ak i=l 

1 0 0 0 

Using the Laplace's determinant expansion, we find 

k 

Vk+l(al, ... ,ak+!) = (_I)k . 1 . Vk(al, ... ,ak) . (_I)k . II (ak+l - aj) 
j=l 

hence, using the inductive hypothesis, 

o 



Appendix C 

Results from advanced 
matrix theory 

C.l Eigenvectors and eigenvalues 

If A is a square complex matrix of order n, a function A : en t-t en defined by 

y = A(x) = Ax 

is linear (i.e., it is additive and homogeneous). Function A(x) is usually called 
a linear transformation. 

Very often it is important to determine those vectors r 1= 0 transformed by 
A into vectors y, such that y = Ar, for some complex scalar A, i.e., 

Ar = Ar, r 1= 0, A E e 
Such vectors are called the eigenvectors (or the characteristic vectors) of 

matrix A. 

Definition C.l.! (Eigenvectors and eigenvalues) Let A be an order n 
complex square matrix. Every vector r E en satisfying 

Ar = Ar, r 1= 0 (C.I) 

is an eigenvector of the matrix A, and scalar A E e is the corresponding eigen­
value. 

We can write (C. I) as 

(AI - A)r = 0, r 1= 0 (C.2) 

Since eigenvectors must be non-zero, i.e., nontrivial solutions of (C.2), we see 

325 
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that the eigenvectors can be found if and only if 

det(AI - A) = 0 

We just proved the following theorem: 

(C.3) 

Theorem C.l.l A complex number A is an eigenvalue 0/ A i/ and only i/ it 
satisfies the equation det(AI - A) = O. 

Equation (C.3) is called the characteristic equation of A. Since det(AI - A) 
is a polynomial in A, and its degree is n, the Equation (C.3) has n solutions, 
with some of them possibly equal to each other. 

Note that, since for each eigenvalue Ak (k = 1,2, ... , n) we have det(AkI -
A) = 0, we can find at least one eigenvector for each distinct Ale. Therefore, if 
A has q :5 n distinct eigenvalues it has at least q eigenvectors. The following 
theorem tells us that these eigenvectors are linearly independent: 

Theorem C.1.2 1/ a matrix 0/ order n has q :5 n distinct eigenvalues, then it 
has at least q linearly independent eigenvectors, at least one corresponding to 
each distinct eigenvalue. 

Proof. Denote by ric the eigenvector corresponding to the eigenvalue Ale (k = 
1,2, ... , q), and suppose that the theorem is not true. If eigenvectors rle are not 
linearly independent, then 

(C.4) 

where at least one of the scalar coefficients is non-zero, for example am :f:. O. 
From Ark = Akrle it follows that APrle = A~rle, for any nonnegative integer 

p, so for any polynomial g, it is true that 

We will pick polynomial 9 such that 

g(Ak) = amk (k = 1,2, .. . ,q) 

Note that there is exactly one such polynomial of degree (q - 1) (recall the 
Lagrange's method of interpolation), and infinitely many such polynomials of 
higher orders. 

Now premultiply Equation (C.4) by g(A). We get 

q q q 

g(A) L akrle = 0 => L aleg(A)rle = 0 => LO:k9(Ak)rk = 0 
"=1 "=1 1e=1 

Since we picked 9 so ~hat g(AIe) = amle, we have amrm = 0, but since rm is 
an eigenvector, it must be non-zero, therefore am = 0, which contradicts our 
initial assumption am :f:. O. This proves the theorem. 0 
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Corollary C.l.I If all eigenvectors of a matrix A are distinct, i.e., if 

then the eigenvectors of A corresponding to Ak (k 
independent. 

1,2, ... , n) are linearly 

If A has repeated eigenvalues, it has :::; n (but ~ q) linearly independent 
eigenvectors!. 

Example C.l.I Let 

[ 
-1 

A= ~ 
1 
o 

-2 j] 
It can be seen that the eigenvalues of A are AI,2 = -1 and Aa = -2, and that the 

eigenvectors corresponding to them are of the form 

and r(Aa) = [ ~ ] 
-2c 

Obviously, we can pick two linearly independent eigenvectors corresponding to 
AI,2 = -1, and one corresponding to Aa = -2, for example 

Example C.l.2 Let 

The eigenvalues of A are Al = 0 and A2,a = 1. In this example, all eigenvectors 
corresponding to the double eigenvalue A2,a = 1 are of the form r(A2,a) = [b 0 of. 
Therefore, this matrix has only two linearly independent eigenvectors, the minimum 
guaranteed by Theorem C.1.2. 0 

It is easy to see that the number of linearly independent eigenvectors corre­
sponding to the eigenvalue Ak of A is in general equal to the nullity of (AkI - A), 
v(AkI -A) = n-p(AkI -A), where p denotes the matrix rank. This is so because 
the nullity determines the number of linearly independent nontrivial solutions 
of (AkI - A)r(Ak) = O. 

More details about the number of linearly independent eigenvectors corre­
sponding to each of the distinct eigenvalues can be found in Problem C.8.4. 

I For example, normal matrices (which include real symmetric and Hermitian matrices) 
have n linearly independent eigenvectors even if they have repeated eigenvalues. Furthermore, 
these eigenvectors are mutually orthogonal. 
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Now we shall consider several important properties of eigenvalues: 

Theorem C.1.3 If Al, A2, ... , An are the eigenvalues of A, then 

Al + A2 + ... + An = tr(A) 

AlA2 ... An = det(A) 

where tr(A) = au + a22 + ... + ann is the trace of A. 

Proof. Consider the characteristic polynomial of A 

(C.5) 

(C.6) 

(C.7) 

The coefficient next to An - l on the right-hand side of (C.7) is equal to 
-(Al + A2 + ... + An). On the left-hand side of (C.7) the coefficient with An - l 
comes only from the product of the elements on the main diagonal, i.e., from 
(A - aU)(A - a22) ... (A - ann). Therefore it is equal to -(au + a22 + ... +ann ), 
and we see that (C.5) is true. 

To prove (C.6) consider the value of both sides of (C.7) when A = O. The 
left-hand side is equal to det(-A) = (-l)ndet(A), while the right-hand side is 
equal to (_l)n AlA2 ... An. Hence (C.6) is true. 0 

Theorem C.1.4 If A is an eigenvalue of A, then, if A-l exists, one of its 
eigenvalues is A- l . 

Proof. First note that if A-1 exists, than det(A) :/; 0, and from Theo­
rem C.l.3 we see that none of the eigenvalues of A can be zero. 

If A is an eigenvalue of A, then it satisfies the characteristic equation of A. 
Since 

det(AI - A) = 0 ¢:} A det(A-1 - A -1 I) det(A) = 0 

from A:/;O and det(A) :/; 0, we see that A -1 satisfies the characteristic equation 
of A -1, which proves the theorem. 0 

We noted earlier that for an arbitrary square matrix A 

Ar = Ar ::::} APr = APr (for all nonnegative integers p) 

i.e., if A is an eigenvalue of A, then for any nonnegative integer p, AP is an 
eigenvalue of AP. 

Using the previous theorem, we can say that, if A is nonsingular, then if A 
is an eigenvalue of A, AP is an eigenvalue of AP, for any integer p. 

Thus we proved the following theorem: 

Theorem C.1.5 If A is a nonsingular matrix, then if A is an eigenvalue of A, 
AP is an eigenvalue of AP for any integer p. If A is singular, the same is true, 
but for nonnegative integers p only. 
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At the end of this section, we shall prove one of the most important theorems 
in matrix theory, the Cayley-Hamilton (C-H) theorem: 

Theorem C.1.6 (Cayley-Hamilton) Let a(A) = An + alAn- 1 + ... + an be 
the characteristic polynomial of A, i.e., a(A) = det(AI - A). Then 

a(A) = 0 

Proof. Recall that for any matrix U we can find a matrix adj(U), the 
adjoint matrix of matrix U, such that 

Uadj(U) = det(U)I 

Let us also mention that if det(U) ¥- 0, then Uadj(U)/ det(U) = I, therefore 

det(U) ¥- 0 ::} U- I = adj(U) 
det(U) 

Let B be the adjoint matrix of AI - A: 

B = adj(AI - A) 

All elements of B are polynomials in A with degree less than n, therefore we 
can write 

B = BOAn- l + BIAn- 2 + ... + B n- I 

where matrices B" (k = 0,1, ... , n - 1) do not depend on A. 
Since 

(AI - A)B = det(AI - A)I 

we have 

Bo = I 

-ABo +BI = all 

-ABn-2 + Bn- I = an-II 

-ABn- 1 = anI 

If we multiply the first of these equations by An, the second by A n-I , 

etc., and the last by I, and add them together, we get 

i.e., a(A) = o. o 
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C.2 Diagonal and Jordan forms 

In many cases, properties of a square matrix are the same as those of some 
diagonal matrix. For example, their eigenvalues are the same. But, in general, 
we can not always find the appropriate diagonal matrix, because not all matrices 
are diagonalizable. Fortunately, to cover all cases, we don't have to go far in 
generalizing the diagonal matrices, because every matrix can be transformed 
into a Jordan form. 

First, we shall use Corollary C.l.l to show that if A has distinct eigenvalues, 
then it can be diagonalized. If R is a matrix whose columns are the right 
eigenvectors corresponding to n distinct eigenvalues of A, i.e., 

than the equations Ark = Akrk (k = 1,2, ... ,n) can be written as 

AR=RD 

where D = diag( A1, A2, ... , An). 
Since rk (k = 1,2, ... , n) are linearly independent vectors, matrix R is non-

singular, and we can write 

R-1AR = D 

Before stating this result in the form of a theorem, let us define the notion 
of similarity. Section C.3 is exploring matrix similarity in more details. 

Definition C.2.1 Matrix F is said to be similail to a matrix G if there exists 
a nonsingular matrix S (the similarity transformation matrix) such that 

F = SGS- 1 

Theorem C.2.1 If A has distinct eigenvalues, then it is similar to a diagonal 
matrix of its eigenvalues. The similarity transformation matrix in that case is 
the matrix of right eigenvectors of A. 

Theorem C.2.1 gives us a sufficient condition for a matrix to be diagonaliz­
able, but this condition is not necessary3. In the following theorem we give the 
condition which is both necessary and sufficient for a matrix to be similar to a 
diagonal matrix. 

2Similarity is an equivalence relation (Le., it is reflexive, symmetric, and transitive). Similar 
matrices have many common properties, for example their eigenvalues are the same. To see 
that, we can use the fact that det(S) # 0 to show that their characteristic equations are 
the same: det(Al - F) = 0 {o> det(Al - SGS- 1 ) = 0 {o> det(S(S-l AlS - G)S-l) = 
o {o> det(S) det(Al - G) det(S-l) = 0 {o> det(Al - G) = O. 

3 A unity matrix, which is diagonal, has repeated eigenvalues (see Example C.l.I). 
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Theorem C.2.2 Arbitrary matrix A of order n is similar to a diagonal matrix 
if and only if it has n linearly independent eigenvectors. 

Proof. If A has n linearly independent eigenvectors4 r1, r2, ... , r n then, 
as in the derivation of Theorem C.2.1, R-1AR = diag(Al,A2, ... ,An ), where 
R = [r1 r2 ... rn]. 

Now suppose that A is similar to some diagonal matrix D. As we noted 
earlier, similar matrices have the same eigenvalues, so D must be of the form 
D = diag(Ail>Ai2 , ... ,Ai,,), where Ak (k = 1,2, ... ,n) are the eigenvalues of 
A, and (i1,i2, ... ,in ) is some permutation of the set {1,2, ... ,n}. From the 
definition of similarity, there exists a nonsingular matrix S such that 

S-1 AS = D, i.e., AS = SD 

From the last relation we see that the columns of S are the eigenvectors of 
A. Since S is nonsingular, A has n linearly independent eigenvectors. 0 

As we mentioned earlier, if A has repeated eigenvalues, it may have less 
than n linearly independent eigenvectors (see Example C.1.2). If that is the 
case, then by Theorem C.2.2, this means that A is not diagonalizable. In such 
cases the best we can do is to transform A into a matrix in Jordan (canonical, 
normal) form, which we define via Jordan blocks: 

Definition C.2.2 (Jordan block) A Jordan block of order m is 

A 1 0 0 0 0 
0 A 1 0 0 0 

Jm(A) = 
0 0 A 1 0 0 

(m> 1) 

0 0 0 0 A 1 
0 0 0 0 0 A 

Definition C.2.3 (Jordan form) Matrix J of order n is in Jordan form if 

J = diag(Jm1 (Ad,Jm2(A2), ... ,Jmk (Ak» 

where m1 +m2+" .+mk =n, and it is possible that some of the numbers Ai (i = 
1,2, ... , k) are equal to each other. 

4 As we shall see later, nonnal matrices (including real symmetric and Hennitian matrices) 
have n mutually orthogonal (and therefore linearly independent) eigenvectors even when they 
have repeated eigenvalues. 
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Example C.2.1 Matrix 

5 0 0 0 0 0 
0 5 1 0 0 0 

J= 
0 0 5 1 0 0 
0 0 0 5 0 0 
0 0 0 0 9 1 
0 0 0 0 0 9 

is in Jordan form, with 

J = diag(h(5), J3(5), J2(9» 0 

The following important theorem is given without a proof: 

Theorem C.2.3 Every complex square matrix is similar to some matrix in 
Jordan form. 

Example C.2.2 Matrix 

-4 -3 
3 -3 

-3 4 
-4 -3 Jl 

is similar to 

because 

J = S- l AS, where S = 
[ ~~ o~l O~l ~~ 1 

Note that the columns of S are the eigenvectors and the generalized eigenvectors 
of A. In the next example we show how to determine the generalized eigenvectors of a 
matrix. Together, eigenvectors and generalized eigenvectors are called principal vectors 
of a matrix. Also, note that the diagonal elements of J are the eigenvalues of both J 
and A. 0 

Example C.2.3 Consider again 

Recall that the eigenvalues of A are Al = 0 and A2,3 = 1. All eigenvectors corre­
sponding to Al = 0 are of the form 
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while all eigenvectors corresponding to ~2.3 = 1 are of the form 

Therefore, A does not have a full set of linearly independent eigenvectors, i.e., it 
is not diagonalizable. But every matrix is similar to some matrix in Jordan form, the 
generalization of the diagonal form. In order to transform A into its Jordan form, we 
have to find the generalized eigenvector corresponding to ~2.a = 1. 

The generalized eigenvector rg(~2.a) can be found from 

hence 

If we put a = b = c = 1, we have 

n = [-i], r2 = [~], and r3 = [D 
Note that ra is not an eigenvector of A, it is a generalized eigenvector of A. The 

purpose of introducing the generalized eigenvector was to enable us to find the Jordan 
form of A: 

R=[-! ~ !] 
o 0 1 

=> o 
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C.3 Similarity of matrices 

In this Section we consider the properties shared by similar matrices. Similar­
ity occurs, for example, when we consider a linear system and make a change 
of variables describing it. Also, since similarity of matrices is an equivalence 
relation, we can use it to simplify the study of arbitrary matrices. For exam­
ple, companion matrices are very useful in control theory, so we investigate the 
conditions under which an arbitrary matrix is similar to a companion matrix. 

A linear system is described by its states Xl(t),X2(t), ... ,xn(t) which satisfy 
the system of equations 

X(t) ~x(t) + Bu(t) 
y(t) Cx(t) 

where u(t) is the input to the system, and y(t) is the system's output. 
If we decide to define the states in some other way (so that some property 

of the system becomes more apparent), we may use the following change of 
variables: 

Xnew(t) = Sx(t) 

where S is some nonsingular matrix. 
Then the equations become 

S-lXnew(t) = AS-lxnew(t) + Bu(t) 

y(t) = CS-1Xnew(t) 

or, after premultuplying the first equation by S, 

Xnew (t) 
y(t) 

SAS-lxnew(t) + SBu(t) 

CS-lxnew(t) 

We see that the new system matrix of the system is Anew = SAS- l . 

More generally, consider a linear transformation w = Av in standard basis 
{e(i)};=l, ... ,n, where e(i) = [0 ... 0 1 0 ... O]T, with 1 at the i-th position. 
If we wish to look at the same linear transformation, but using some other 
basis {a(i)}i=l, ... ,n, we can see that W new = Sw and Vnew = Sv, where 
S = [£1(1) £1(2) ••• u(n)]. Note that Sis nonsingular because {u(i)};=l, ... ,n is a 
basis. Now we have 
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Definition C.3.1 Matrix F is said to be similat to a matrix G if there exists 
a nonsingular matrix S (the similarity transformation matrix) such that 

F= S-lGS 

In that case we write F '" G. 

Theorem C.S.1 Similarity of matrices is an equivalence relation. 

Proof. Recall that a relation is an equivalence relation if it is reflexive, 
symmetric and transitive. 

• Reflexivity: Every matrix is similar to itself, because F = I-iFI, and 
det(I) i= O. 

• Symmetry: F '" G ::::} (3S I det(S) i:- 0) F = S-lGS ::::} (3T = 
S-l)G=T-iFT ::::} G",F. 

• Transitivity: (F '" G) 1\ (G '" H) ::::} (3S, T I det(S) i:- 0, det(T) i:-
0) (F=S-lGS) 1\ (G=T-iHT) ::::} F=(TS)-lHTS ::::} F",H, 
because det(TS) = det(T) det(S) i:- O. 0 

Theorem C.3.2 The eigenvalues of a matrix are invariant under the similarity 
transformation. 

Proof. We shall show that the characteristic equations of similar matrices 
are the same. If F = S-lGS, where det(S) i:- 0, then 

det(AI -F) = 0 # det(AI -S-lGS) = 0 # det(S-l(SAIS-i-G)S] = 0 # 

# det(S-l) det(AI - G) det(S) = 0 # det(AI - G) = 0 

Since F and G have the same characteristic equations, they have the same 
eigenvalues. 0 

Corollary C.3.1 The trace and the determinant of a matrix are invariant un­
der the similarity transformation. 

Proof. This is a direct consequence of Theorems C.1.3 and C.3.2, because 
tr(F) and det(F) depend on the eigenvalues of F only. 0 

Corollary C.3.2 If F is (non}singular, so are all matrices in its similarity 
class. 

Proof. This Corollary is a consequence of the previous Corollary, because 
F is nonsingular if and only if det(F) i:- O. 0 

Note that although similar matrices have the same eigenvalues, it doesn't 
mean that all matrices with the same eigenvalues are similar. 
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Example C.3.1 Both matrices 

F = [~ ~] and G = [~ ~] 
halle the same eigenllalues A1,2 = 5, but if we assume that there exists a nonsingular 
matrix S such that F = S-1GS, we will find that 

F = [~ ~] = S-1 [~ ~] S = 5· S-1 IS = 51 = G 

which is a contradiction. o 

Important applications of similarity of matrices are based on the following 
theorem (already stated as Theorem C.2.3). For more details, see Section C.2. 

Theorem C.3.3 Every complex square matrix is similar to some matrix in 
Jordan form. 

Another group of applications of similarity transformations is based on the 
following theorem. For more details, see Section CA. 

Theorem C.3.4 Every Hermitian matrix is similar to a diagonal matrix of its 
eigenvalues. 

Still another group of applications of matrix similarity is based on the prop­
erties of the companion matrices. 

Definition C.3.2 Matrix A is a companion matrix if 

-al -a2 -a3 -an-l -an 
1 0 0 0 0 

A= 
0 1 0 0 0 (C.S) 
0 0 1 0 0 

0 0 0 1 0 

Theorem C.3.5 The characteristic polynomial of a companion matrix given 
by (C.S) is 

a(A) = An + alAn- 1 + ... + an 

Proof. From the definitions we have 

A+al a2 a3 an-l 
-1 A 0 0 

a(A) det(AI - A) 
0 -1 A 0 

= = 0 0 -1 0 

0 0 0 -1 

an 
0 
0 
0 

A 
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A 0 0 0 a2 a3 an-l an 
-1 A 0 0 -1 A 0 0 

(A+aI) 0 -1 0 0 + 0 -1 0 0 

0 0 -1 A 0 0 -1 A 

a3 a4 an-l an 
-1 A 0 0 

(A + aI)An- 1 + a2An-2 + 0 -1 0 0 

0 0 -1 A 

= An + alAn- 1 + a2 An- 2 + ... + an_2 A2 + I an-l an 
-1 A 

= An + alAn- 1 + a2An-2 + ... + an_2A2 + an-lA + an 

D 

Theorem C.3.6 If A is an eigenvalue of a companion matrix A then 

p(M -A) = n-1 

Proof. The rank of the characteristic matrix is in this case 

A+al a2 a3 an-l an 
-1 A 0 0 0 

p(M -A) = p 0 -1 A 0 0 
0 0 -1 0 0 

0 0 0 -1 A 

Now let's multiply the first column by A, and add it to the second column, 
then multiply so obtained second column by A and add it to the third column, 
and so on, until we finally get to the last column. The first element of the 
last column now equals zero, because we made it equal to the characteristic 
polynomial in Horner's form: 

The last element of the last column also became zero in this process. Because 
of the specific positions of -1 's below the main diagonal, all other columns of 
M - A are linearly independent, so that p(AI - A) = n - 1. D 

Corollary C.3.3 The number of linearly independent eigenvectors correspond­
ing to A, an eigenvalue of a companion matrix, is v(AI - A) = 1, no matter 
what the multiplicity of A might be (see Example C.3.3). 

Corollary C.3.4 All companion matrices are similar to Jordan matrices made 
of Jordan blocks having distinct eigenvalues. 
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Corollary C.3.5 An arbitrary matrix is similar to a companion matrix if and 
only if it is similar to a Jordan matrix whose Jordan blocks have distinct eigen­
values. 

Example C.3.2 No matrix similar to J = diag(h(4),h(4),h(5» can be similar to 
a companion matrix. On the other hand, any matrix similar to J = diag(Ja(4),h(5» 
is similar to 

[ 

22 -193 844 -1840 1600 1 
1 0 0 0 0 
o 1 0 0 0 
o 0 1 0 0 
o 0 0 1 0 

o 

Corollary C.3.6 A companion matrix is diagonalizable if and only if it has no 
repeated eigenvalues. 

Here we considered only the so-called top companion matrices, because the 
other three varieties (bottom, left, and right) are always similar to the "top" 
variety. If we denote 

o 

1 

o 
o 

-an-l 
o 
o 

1 

o 

1 
o 

o 
o 

o 

1 0 ... 0 1 o 1 ... 0 

-an-l 0 0 ... 1 
o 0 ... 0 

o 1 [0 . . . 0 0 -an 1 1 ... 0 0 -an-l 
o ,Ar = ... . 
1 0 1 0 -a2 

-al 0 0 1 -al 

the similarity transformation between any two of these four varieties of com­
panion matrices can be deduced from the following three relations5 

At =i-l~i Ar = i- l A.,i 

where 

50perators T and -T denote the transpose and the transpose inverse, respectively. 
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and 

1 at a2 a n -2 an-t 
0 1 at a n -3 a n -2 

a: = 0 0 1 a n -4 a n -3 

0 0 0 1 an-t 
0 0 0 0 1 

Since det(a_} = 1, so a_ is always nonsingular. 

Note: In control theory At corresponds to the system matrix of the con­
troller realization. Similarly, AI corresponds to the observer form, while Ab 
corresponds to the observability form and Ar to the controllability form. As 
we saw, these four matrices are always similar, but that doesn't mean the cor­
responding realizations are. This is because the similarity of systems requires 
additional relations to hold between other matrices or vectors that describe the 
system. 

Example C.3.3 If A is an eigenvalue of a companion matrix A and if its multiplicity 
is k ~ 1, then 

is its eigenvector, and if k > 1 

(n - I)An - 2 

(n - 2)An - 3 

2A 
1 
o 

are its generalized eigenvectors. 

1 
o 
o 

).n-l 

An - 2 

( n -1) An - k 
k-l 

( n - 2) An - k - 1 

k-l 

o 
o 
o 

Example C.3.4 The inverse of a companion matrix is another companion matrix. 
For example 

1 
o 
o 

0.75 

o 
1 
o 

0.875 -Jl 
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CA Symmetric and Hermitian matrices 

Matrices appearing in the description of physical or engineering problems are 
often real and symmetric with respect to the main diagonal. 

Such matrices have many interesting and important properties worth ex­
ploring. For example, their eigenvalues are real, and their eigenvectors can be 
chosen so that they form an orthonormal basis. But it is interesting that these 
properties do not hold for complex symmetric matrices in general. We shall see 
that the proper generalization are the Hermitian matrices. 

Thus, with respect to the properties we are interested in, real symmetric 
matrices are special cases of Hermitian matrices, which in turn are special cases 
of the so-called normal matrices. For additional properties of normal matrices 
see Section C.8. 

We begin this Section with definitions of these important classes of matrices, 
and continue with several important theorems about Hermitian matrices. 

Definition C.4.1 Square matrix A is symmetric if it equals its transpose: 

Definition C.4.2 Square matrix A is Hermitian if it equals its conjugate trans­
pose: 

where AH = (Af is the conjugate transpose6 of A. 

Definition C.4.3 Square matrix A is normal if 

AAH = AHA 

The normal matrices are the most general of these special matrices. We 
illustrate that in Figure C.l. Another important special case of the set of 
normal matrices is the set of unitary matrices. Real orthogonal matrices are 
special cases of unitary matrices. 

Definition C.4.4 Square matrix A is orthogonal if 

AA1' = 1 

Definition C.4.5 Square matrix A is unitary if 

AAH =1 

6In mathematical and technical literature, * and I are often used instead of H. 
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Hennitian: 
A=AH 

Figure C.1: Some important classes of normal matrices. Operator H (Hermitian 
operator) denotes the conjugate transpose: AH = (A)T. Operators * and' are often 
used instead of H. 

Theorem C.4.1 All eigenvalues of a Hermitian matrix are real. 

Proof. If A is an eigenvalue of a Hermitian matrix A, and r is the eigenvector 
corresponding to A, then 

Ar = Ar 

From (C.g) it follows 

or, since A is Hermitian 

rHA= J..rH 

Now, multiply (C.g) by rH from the left to get 

and (C.lO) by r from the right to get 

rHAr = J..rHr 

From (C.lI) and (C.12), using the fact that r #- 0, we find that 

which means that A is a real number. 

Corollary C.4.1 All eigenvalues of a real symmetric matrix are real. 

(C.g) 

(C.lO) 

(C.lI) 

(C.12) 

o 
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Example C.4.1 Hankel matrices are square matrices with constant elements along 
the anti-diagonals, therefore they are symmetric. If a matrix is Hankel and its elements 
are real, it is real symmetric, and therefore has real eigenvalues. For example, the 
eigenvalues of 

are 3 and ±J3. o 

Example C.4.2 The DFT matrix of order n {DFT stands for "Discrete Fourier 
Transform"} is a matrix defined as 

F" ~ [ : 

1 1 1 

1 
Wn w2 n-l 

n Wn 

w2 w4 2(n-l) 
n n W n , 

n-l 2(n-l) (n-1)2 
Wn Wn Wn 

where Wn = e- 2"j/n is the n-th primitive root of unity. 
Obviously, for n > 2, the matrix Fn is complex symmetric {not Hermitian}, there­

fore its eigenvalues are not necessarily real. For example, the eigenvalues of F4 are ±2 
and ±2j. Can all the eigenvalues of a complex symmetric matrix be real? 0 

In the rest of this Section we shall prove the following important theorem 
and consider some of its immediate consequences: 

Theorem C.4.2 Every Hermitian matrix is similar to a diagonal matrix of its 
eigenvalues via some unitary matrix. 

Proof. First, we shall use induction to prove the following lemma which is 
important in its own right: 

Lemma C.4.1 (Schur) For any complex square matrix A of order n there exists a 
unitary matrix U such that 

B = U- 1 AU = U H AU 

is an upper triangular matrix. 

Proof of Lemma C.4.1. The base case n = 1 is trivially true, because any 1 x 1 
matrix can be considered upper triangular. Assume correct for matrices of order :os: n. 
Let ),1 be an eigenvalue of A and rl a normalized eigenvector corresponding to ),1. 

Using Gram-Schmidt orthonormalization, we can always construct a matrix 

v = [rt P2 P3 ... Pn] = [rt P] 

such that its columns form an orthonormal basis. Note that P is n x (n - 1). By 
construction, VVH = I, i.e., V is unitary. Now observe that 



CA. SYMMETRIC AND HERMITIAN MATRICES 343 

because the columns of V form an orthonormal basis, so that rf.1 rl = 1 and pH rl = O. 
Now note that pH AP is (n -1) x (n -1), so according to the inductive hypothesis 

there exists a ui'titary matrix W such that W-1(pH AP)W is upper triangular. 
If we take 

we can easily see that it is unitary and U-1 AU = UH AU is an upper triangular 
matrix. This proves the lemma. 0 

Now that we have this powerful lemma, we can easily finish the proof of 
Theorem CA.2. Let A be Hermitian, i.e., AH = A. According to Lemma CA.1, 
there exists a unitary matrix U such that B = U-1 AU = UH AU is upper 
triangular. But since A is Hermitian, B must be Hermitian too, because 

Thus, B is both upper triangular and Hermitian, therefore it is diagonal. 
Since the similarity transformation does not change the eigenvalues and the 
eigenvalues of a diagonal matrix are its diagonal elements, we see that the 
theorem is indeed true. 0 

Corollary C.4.2 Hermitian matrices of order n have n orthonormal eigenvec­
tors. 

Proof. Since every Hermitian matrix A is diagonalizable via some unitary 
matrix, the columns of that unitary matrix can be taken as the orthonormal set 
of eigenvectors of A. 0 

This is a very important result about Hermitian matrices. Similarly, we can 
prove the following theorem: 

Theorem C.4.3 Every real symmetric matrix is similar to a diagonal matrix 
of its eigenvalu.es via some real orthogonal matrix. 

Corollary C.4.3 Real symmetric matrices of order n have n real orthonormal 
eigenvectors. 
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Some important examples of Hermitian and symmetric matrices come from 
controls and signal processing. 

Example C.4.3 Gram matrix of a (not necessarily square) real matrix A is 

Since 

we see that Gram matrix is real symmetric. If A is complex, Gram matrix is defined 
as G(A) = AHA, and it is Hermitian. 0 

Example C.4.4 Let u be the vector of samples of a signal u(t) at discrete time points 
t = n, n-1, n-2, ... , n-m+1. The correlation matrix of u is 

[ 
rn,n 
Tn-l,n 

rn-m+l,R 

where rn-i,n-j = E[u(n - i)u(n - j»). 

Tn,n-l 

rn-l,n-l 

Tn-m+l,n-l 

rn,n-m+l 1 
rn-l,n-m+l 

rn-m+l,n-m+l 

Ifu(t) is wide-sense stationary, i.e., if E[u(k») = const and rn-i,n-j = r(j - i) 
then 

R= [ 
r(O) 
r(-1) 

r(-(m -1» 

r(1) 
r(O) 

r(-(m - 2» 

... r(m-1) 1 

... r(m-2) 

... r(O) 

Since r( -k) = E[u(n - k)u(n») = E[u(n)u(n - k») = r(k), we see that RT = R. 
Thus, the correlation matrix of a wide-sense stationary discrete-time stochastic signal 
is real symmetric. Ifu(t) is complex, its correlation matrix is defined by R = E[uuH ). 

In that case RH = R, i.e., R is Hermitian. 0 
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C.5 Quadratic forms and definiteness 

In this Section we shall see that quadratic forms can be written using matrix 
notation. Also, the question of whether a certain quadratic form is definite, 
semi-definite or indefinite can be answered using the tests based on the matrix 
notation. Thus, the notions of definiteness, semi-definiteness and, indefiniteness 
can be defined for matrices via this connection to quadratic forms. Many impor­
tant applications of linear algebra use the material contained in this Section, for 
example, the Lyapunov stability theory applied to linear and linearized systems. 

Definition C.5.l Quadratic form q(XI, . .. , xn) is any polynomial of order 2 
in n real variables Xl, ... , X n . 

Any quadratic form q(XI, ... , Xn) can be written as 

where X = [Xl ... xnjT and Q is any conveniently chosen matrix. To see that, 
consider the following: If Q = [qi,j]nxn then 

n 

xTQx = Lqkkx~ + L(qij +qj;}XiXj 
k=l i<j 

Therefore, if we are given q(x), we can pick Q so that q(x) = xTQx. In 
particular, we can pick Q to be real symmetric and therefore diagonalizable. 

Example C.S.l Consider 

q(x) = axI + bx~ + cx~ + 2rxlx2 + 2SXIX3 + 2tX2X3 

where x = [Xl X2 X3jT E R3 and a, b, c, r, s, t E R (here R denotes the set of real 
numbers). 

The symmetric matrix Q corresponding to this quadratic form is given by 

According to Theorem C.4.3, since Q is real symmetric, it can be diagonalized using 
the matrix of its normalized eigenvectors U: 

UTQU=D 

where D = diag(AI,A2,A3), AI,A2,A3 are the eigenvalues ofQ, and UTU= UUT = I. 
If we put y = UT x, we can write 

q(x) XTQX 

xTUDUTx 

yTDy 

AlYI + A2yi + A3Y; 
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Thus, using the change of variables described by y = UT x we have eliminated the 
cross-product terms. This is quite general procedure, it can be used for quadratic forms 
of arbitrary number n of real variables. 

It is also a very important procedure, because we often need to know if some 
quadratic form is positive for all x f O. In this example, we see that the quadratic form 
q(x) is positive for all x f 0 if and only if all eigenvalues of Q are positive. This is so 
because real symmetric matrices have n (in this case n = 3) orthonormal eigenvectors, 
so det(U) f 0, and therefore to any x f 0 corresponds exactly one y = UT x (f 0). 
Therefore, q(x) is positive for all x f 0 if and only if it is positive for all y f 0 and 
this is true if and only if Al, A2, A3 > O. 0 

Example C.S.2 Here are a few "real" examples to introduce and motivate some new 
terminology: 

a) q(x) = xi + x~ + x~ is positive for any x f O. It is called positive definite. 
b) q(x) = xi + x~ is not positive for all x f O. For example q(O, 1,0) = O. But it 

is nonnegative for all x f O. It is called nonnegative definite or positive semi-definite. 
c) q(x) = xi - x~ can be positive, negative or zero when x f O. It is called 

indefinite. 0 

Now we define the terminology used in the previous example: 

Definition C.5.2 Quadratic form xT Qx is definite if 

(positive definite) 

or 
(negative definite) 

Definition C.5.3 Quadratic form x1'Qx is semi-definite if 

(positive semi-definite) 

or 
(negative semi-definite) 

Definition C.5.4 Quadratic form xT Qx is indefinite if it is not semi-definite. 

The matrix (in)definiteness is defined via (in)definiteness of the correspond­
ing quadratic forms. 

Definition C.5.5 A real square matrix Q is positive (negative) definite if xT Qx 
is positive (negative) definite. We write Q > 0 (Q < 0). 

Definition C.5.6 A real square matrix Q is positive (negative) semi-definite if 
xTQx is positive (negative) semi-definite. We write Q ~ 0 (Q ~ 0). 

Definition C.5.7 A real square matrix Q is indefinite if xTQx is indefinite. 
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Example C.S.3 Consider a differentiable junction of three variables f(x1, X2, xa). A 
necessary condition for f(x), (x = [Xl X2 xajT) to have an extremum at x = P = 
[P1 P2 pajT is that all three partial derivatives of f(x) at x = P be zero: 

Ofl =0, (i=1,2,3) 
ox, .,=p (C.13) 

To see that this condition is not sufficient, consider f(x) = X1X2Xa. 
A sufficient condition for f(x) to have a minimum at x = P can be found as 

follows: Taylor expansion of f(x) around x = P is 

a af 1 a 3 02 f 
f(x) = f(P) + L "jJ:(P)(xi - Pi) + 2i L L ~(P)(x, - Pi)(Xj - Pi) + ... 

;=1 x, . i=l j=l x, xJ 

If (C.13) is true, then 

3 3 of L L ox; (P)(Xi - Pi)(Xj - Pj) > 0 (Yx'; P) 
;=1 j=l 

guarantees that f(P) is indeed a minimum. Note that this condition is not necessary. 
With Uk = Xk - Pk (k = 1,2,3) we can write this condition in the following form 

where 

uT Hu > 0 (Yu'; 0) (C.14) 

o2f 
and h;i(P) = -0 0 (P), (i,j = 1,2,3) 

x; Xj 

H is often called a Hessian matrix of f(x). 
In other words, if (C.13) is true and H > 0 (read: H is positive definite), then 

f(x) has a minimum at x = P. Similarly, if (C.13) is true and H < 0 (read: H is 
negative definite), then f(x) has a maximum at x = P. If H is semi-definite, jurther 
investigation. is needed. If H is indefinite, f(P) is not an extremal point. 

For "well-behaved" functions 02 !lox;OXj = 02 f /OXjOX;, hence H is symmetric, 
and we can use the eigenvalue test presented in Example C.5.1 to test H. 

Just like Example C.5.1, this Example is easy to generalize to junctions of n vari-
ables. Note that we don't need the eigenvectors of H, only its eigenvalues. 0 

The matrices introduced in the Examples C.4.3 and C.4.4, viz. Gram and 
correlation matrices, are positive semi-definite. This is true even in the complex 
case, when these matrices are Hermitian. To prove this more general statement, 
we consider the Hermitian form, the complex generalization of quadratic forms. 

Example C.S.4 Let A be a complex m x n (m ~ n) matrix and G(A) = AHA its 
Gram matrix. Then G(A) is n x n. Consider the Hermitian form zHG(A)z for all 
complex vectors z .; 0: 

n 

zHG(A)z = zHAHAz = wHw = L IWkl2 ~ 0 
k=l 
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Thus, even when complex, Gram matrix is positive semi-definite, G(A) ~ O. Note that 
G(A) is singular if and only if A is not of full rank, i.e., if peA) <: min(m, n) = n (cf. 
Problem C.8.11). ThlJ.S, G(A) is positive definite if and only if A has a full rank, and 
m~n. 

Example C.5.5 If R is a correlation matrix of a complex wide-sense stationary sig­
nal, then R = E[uuH]. Consider the Hermitian form zHRz for all complex vectors 
z# 0: 

zHRz = ZHE[uuH]z = E[ZHuuHZ] 

Note that (zHu)H = uHz are scalars, therefore 

zHRz = E [lzHuI2] ~ 0, i.e., R ~ 0 

Most often however, R > 0, becalJ.Se R is singular if and only if the signal u(t) is 
a sum of k ~ m sinlJ.Soids, where m is the length of vector 1.1. (cf. Problem C.8.12). 

Sometimes we have to work with matrices which are not symmetric. In such 
cases we can not apply the eigenvalue test of Example C.5.1 directly7. 

First, observe that every matrix can be represented as a sum of two matrices, 
one symmetric and the other skew-symmetric8 : 

Second, observe that quadratic form corresponding to a skew-symmetric 
matrix is zero. To see that, use the facts that xT Assx is a scalar and that Ass 
is skew-symmetric, 

therefore xT Assx = O. 
If we now consider a quadratic form corresponding to A: 

xT (As + Ass)x 

= xT Asx 

we see that we can reduce the problem to analyzing the eigenvalues of the 
symmetric part of matrix A. This proves the following theorem: 

Theorem C.5.1 A real matrix A is positive (negative) definite if and only if 
its symmetric part 

is positive (negative) definite. 

7Even if a matrix is diagonalizable, for the eigenvalue test to work, we need the eigenvectors 
to be mutually orthogonal, which is the case only for normal matrices (see Problem C.B.9.) 

8Matrix B is skew-symmetric if BT = -B. 
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Similarly, we can prove the following theorem: 

Theorem C.5.2 A real matrix A is positive (negative) semi-definite if and only 
if its symmetric part 

is positive (negative) semi-definite. 

Let us formalize the method of the Example C.5.I, commonly known as the 
Rayleigh-Ritz theorem: 

Theorem C.5.3 A real symmetric matrix A is positive (negative) definite if 
and only if all of its eigenvalues are positive (negative). 

Proof. Proof of this theorem is essentially the same as the derivation in the 
Example C.5.I. 0 

Similarly, the following theorem is true: 

Theorem C.5.4 A real symmetric matrix A is positive (negative) semi-definite 
if and only if all of its eigenvalues are positive or zero (negative or zero). 

The following tests are due to Sylvester. After stating them in the following 
two theorems, we shall prove only the first of them, because ideas involved are 
the same. Similarly to the eigenvalue test, they work for real symmetric matrices 
only. If a matrix is not symmetric, the test should be applied to its symmetric 
part. 

Theorem C.5.5 A real symmetric matrix A = [aij]nxn is positive definite if 
and only if all of its leading principal minors are positive, that is 

~l = au> 0, £\2=1 
au a121 > 0 
a2l a22 

au a12 a13 

~3= a2l a22 a23 >0, ... , £\n = det(A) > 0 
a3l a32 a33 

Theorem C.5.6 A real symmetric matrix A = [aij]nxn is positive semi-definite 
if and only if all of its principal minors (not only the leading principal minors) 
are nonnegative, that is for all i,j, k, . .. 

au aij aik 

aji ajj ajk ~O, ... , det(A) ~ 0 
aki akj au 

The negative (semi-) definiteness of A is tested as the positive (semi-) defi­
niteness of - A. 
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Proof. We use the induction on the size of A. 

• aux~ > 0 {:} au > O. 

• Suppose that a matrix of size n - 1 is positive definite if and only if 
~1 > 0'~2 > 0""'~n-1 > O. 

• Consider A, an n x n matrix. 

The "only if" part. If 

[

au 

qn(X1, X2, ... , xn) = [Xl X2 .•. Xn] a21 

an 1 

a1n 1 [Xl] ~n X2 

ann Xn 

is positive definite, so is Qn-1(Xt, X2,.·· ,xn-d = Qn(Xt, X2,'" ,Xn -1, 0). 

Thus, by the inductive conjecture, if A is positive definite, then ~1 > 
0, ~2 > 0, ... '~n-1 > 0, and the only remaining thing to prove in this 
part is that if A is positive definite, then ~n > O. But 

because according to Theorem C.5.3, if A is positive definite, each of its 
eigenvalues is positive. 

The "if" part. Let ~1 > 0, ~2 > 0, ... , ~n > O. Quadratic form 
Qn(X1, X2, ... ,xn ) can be written as 

n-1n-1 n 

xTAx = L L aijXiXj + 2 L ainXiXn + annx~ 
i=l j=l i=l 

The term L: L: aijXiXj can be diagonalized and written as L: biyl- Since 
~1 > 0, ~2 > 0, ... , ~n-1 > 0, according to the inductive conjecture, this 
term is positive definite, so we can write bi = if > 0 (i = 1,2, ... , n - 1). 

Thus, for some coefficients Ci and di 

n-1 n 

XT Ax = L c~y~ + 2 L dinYiYn + annY~ 
i=l i=l 
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where the z/s are the linear combinations of the Xi'S, and 

n-I (d i )2 
a = ann - E --:­

i=1 C. 

351 

It can bEl seen that we can write z = Px, where P is some nonsingular 
matrix. Therefore 

xT Ax = xT pT diag(I, ... , 1, a)Px 

Since p T diag(I, ... ,1, a)P is symmetric, we see that 

A = pT diag(l, ... , 1, a)P 

and finally 

det(A) = a (det(p))2 => sgn(a) = sgn(.:ln) => a > 0 => 

=> zT diag(I, ... ,1, a) z > 0 (Vz i= 0) => A is positive definite 

This concludes the proof of Theorem C.5.5. 0 

Let us now consider the conditions under which we can extract a "square 
root" of a real matrix A, i.e., write A = BT B. 

Since (BT B)T = BT B, A must be symmetric. If that is so, A is diagonaliz­
able via some orthogonal matrix U (by Theorem C.4.3), and its eigenvalues are 
real: 

A = U- I DU = UT DU 

Now the question is when can we extract the "square root" of the diagonal 
matrix D, and the answer is: only when its diagonal elements, which are at the 
same time the eigenvalues of A, are nonnegative. Therefore, the necessary con­
ditions are that A is real symmetric and positive semi-definite. These conditions 
are also sufficient. Thus, we proved the following theorem: 

Theorem C.5.7 Extracting the square root of a matrix A, i.e., writing it in 
the form A = BT B is possible if and only if A is real symmetric and positive 
semi-definite. 

Note that this decomposition is not unique, because if B is a square root of 
A, so is VB, for any orthogonal matrix V. Similar theorem holds for Hermitian 
matrices. 
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Quadratic forms are often used to express a cost function in the optimiza­
tion problems. It is therefore important to know how to differentiate them 
with respect to vector x, or with respect to some of its components. Since ev­
ery quadratic form can be written in terms of some symmetric matrix, in the 
following we assume that QT = Q. 

First consider the differentiation with respect to the m-th component of x: 

8 n 

8x (Lqkk X%+2L%XiXj) 
m k=l i<j 

n 

2LqmiXi 
i=l 

where q(m) denotes the m-th row of Q. 
IT we define the differentiation with respect to a vector as 

we see that 

Since Q is real-symmetric, the Hessian matrix of q(x) = xTQx is H =2Q. 
Recall that in the calculus of functions of more than one variable, the Hessian 
matrix takes the role the second derivative has in the "standard" calculus, just 
like the gradient vector takes the role of the first derivative. 
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C.6 Some special matrices 

Several classes of special matrices appear frequently in applied and pure mathe­
matics. We already encountered some such classes: diagonal and Jordan matri­
ces in Section C.2, companion matrices in Section C.3, real symmetric, Hermi­
tian, normal, Gram, and some other special matrices in Section CA, and definite 
and semi-definite matrices in Section C.5. In this Section we shall define more 
classes of special matrices: Hankel, Toeplitz, Vandermonde, and Hurwitz. 

Hankel matrices. Matrix A is said to be a Hankel matrix if the elements 
along its anti-diagonals are equal. 

Example C.6.1 In linear control systems we use an n x n Hankel matrix made up 
of Markov parameters h1,h2 , ... , h2n-1 

If the elements of a Hankel matrix are real, then it is real symmetric, and 
therefore its eigenvalues are real. 

Toeplitz matrices. Matrix A is said to be Toeplitz if the elements along 
its diagonals are equal. 

Example C.6.2 A discrete-time convolution describes the relation between the input 
and the output of a discrete-time system: 

n 

y[k] = L fk-ix[i] (k = 1,2, ... , n) 
i=l 

This relation can be written using matrix notation 

y=Fx 

where 

x = [x[I] x[2] ... x[n]]' 

and 

F= 

is a Toeplitz matrix. 

[ 

fo 

h 

~n-1 

f-1 
/0 

/n-2 

y = [y[I] y[2] ... y[n]]' 

/-(n-1) 1 
/-(n-2) 

/0 

This special structure of Toeplitz matrices is used to speed-up their inversion. 
An example of such algorithms is the well known Levinson algorithm which 
originated in signal processing (see [19] and [46]). 
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Vandermonde matrices. Matrix V is said to be a Vandermonde matrix 
if it has the following form: 

r 
1 al ... ar- l 1 
1 a2 ... a~-l 

1 an a~-l 

In Appendix B.4 (see Example B.4.2) we show that the determinant of a 
Vandermonde matrix is 

det(Vn} = II (aj - ai) 
19<j~n 

For a useful generalization of the Vandermonde matrices and determinants 
see Problem 3.2.7. 

Hurwitz matrices. Matrix A is said to be Hurwitz if all of its eigenvalues 
have strictly negative real parts, i.e., if they all lie in the left complex half-plane. 

Such matrices are also called stability matrices, because of their role in the 
theory of continuous-time linear control systems. In the realm of discrete-time 
systems, such an important role is played by matrices with eigenvalues inside 
the unit circle of the complex plane. Apparently they do not have a special 
name, except perhaps discrete stability matrices. 

The celebrated Lyapunov stability criterion states that A is Hurwitz if and 
only if for any given positive definite symmetric matrix Q there exists a positive 
definite symmetric matrix P such that 

A'P+PA =-Q 

This equation is known as the Lyapunov equation. 
There is an analogous criterion for discrete stability matrices in which the 

Lyapunov equation is replaced by the discrete-time Lyapunov equation: 

A'PA-P= -Q 

Proofs of these criteria are given in Section 2.2 of this book. The Routh, 
Hurwitz, and Jury criteria of Sections 1.1 and 1.2 can also be used. How about 
the Sylvester definiteness criterion from Section C.5 of this appendix? 
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C.7 Rank, pseudoinverses, SVD, and norms 

In this Section we shall consider several loosely related topics, which in some 
applications come together quite nicely. 

Rank 

This Subsection is a brief survey of some important properties of the rank of a 
matrix. No proofs are given. 

Definition C.7.1 If A is an m x n complex matrix, its rank, p(A), is the size 
of A 's largest nonsingular sub matrix. The rank of a null-matrix is O. 

Theorem C.7.1 Let A be an m x n matrix. Ifr = p(A), then A has exactly r 
linearly independent columns and exactly r linearly independent rows. 

Theorem C.7.2 (Frobenius inequality) If P, Q, and R are rectangular ma­
trices such that the product PQ R is well defined, then 

p(PQ) + p(QR) :5 p(Q) + p(PQR) 

Corollary C.7.1 (Sylvester's law) Let A be m x n and let B be n xp. Then 

p(A) + p(B) - n :5 p(AB) :5 min(p(A), p(B) 

Corollary C.7.2 If P and Q are nonsingular, and C is m x n, then 

p(PCQ) = p( C) 

Pseudoinverses 

If the number of independent equations is greater than the number of unknowns, 
the system is overdetermined, and the solution to that system does not exist. 
On the other hand, if there are more unknowns than the independent equations, 
the system is underdetermined, and there are infinitely many solutions to that 
system. 

If there are dependent equations, situation becomes more complicated, but 
reduces to the above. 

Example C.T.1 Consider the following two systems: 

[~ ! J [:] = [:J does not have any solutions. 



356 APPENDIX C. RESULTS FROM ADVANCED MATRIX THEORY 

[~ ~ ~] [~] = [~] has infinitely many solutions 

o 

In this Subsection we shall see what we can do in such cases. If the sys­
tem is overdetermined, we can obtain some approximation to the solution. If 
the system is underdetermined, we can put some additional constraints on the 
solution, so that only one out of infinitely many solutions is selected. 

When the system is overdetermined, we are often interested in an approxi­
mate solution which is in some sense optimal. Let the overdetermined system 
be 

Ax =b (C.15) 

where A is m x n, m > n, and peA) = min(m, n) = n, Le., A has a full rank9 • 

Often we define the optimal approximate solution of (C.15) to be the vector 
x = Xo which minimizes the Euclidean length of the error vector e = Ax - b 

Ilell = JeTe = J(Ax - b)T(Ax - b) 

or equivalently its square 

In order to determine xo, let us form the cost function 

and minimize it 

=> 

Note that we could take the inverse of AT A, because we assumed A to have a 
full rank and that m > n (cf. Problem C.8.11). 

This is a minimum of J(x) because the Hessian matrix of J(x) is 2AT A, a 
positive definite matrix. (Recall that the Gram matrices are always positive 
semi-definite, and add the fact that AT A is nonsingular.) 

9Later, in a Subsection about the singular value decomposition (SVD), we discuss the more 
general case when peA) :$ min(m,n). 
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Let the system be underdetermined, i.e., let it be given by 

Ax=b (0.16) 

where A is m x n, m < n, and p(A) = min(m, n) = m, i.e., A is of full ranklO • 

Among the infinitely many solutions of this system we often wish to find the 
solution closest to the origin in Euclidean distance sense. This time the cost 
function is 

and we have to minimize it over vectors x that satisfy the Equation (0.16). This 
is a typical setup for the application of the Lagrange's method of multipliers. 

Let L(x, oX) = J(x) + oXT(Ax - b), then 

8L/8x = 2x + AToX = O} => xo = AT(AAT)-lb 
8L/8oX = Ax -:- b = 0 

In this case, the Hessian matrix of J(x) is 21, a positive definite matrix, so 
we are sure we minimized J (x). 

Matrices (AT A)-l AT (for m > n) and AT(AAT)-l (for m < n) are called 
the left and the right pseudoinverses of A, respectively. 

Singular value decomposition 

In this Subsection we prove the singular value decomposition theorem, and see 
some of its consequences. 

Theorem C.7.3 Let A be a complex m x n matrix with rank p(A) = r < 
min(m,n). Then A can be written as 

where U and V are some unitary matrices, ~r = diag(O"!, ... , O"r), and 0"1 ~ 
••• ~ O"r > 0 are positive real numbers, the positive singular values of A. If 
there are any zeros on the main diagonal of S, they are also singular values 
ofA. 

Proof. The sizes of these matrices are illustrated in Figure 0.2. Since 
the Gram matrix AHA is Hermitian and positive semi-definite (Examples 0.4.3 
and 0.5.4), its eigenvalues are real and nonnegative (Theorems 0.4.1 and 0.5.3). 
According to Theorem 0.4.2 we can find a unitary matrix V such that 

VHAHAV = [~J ~] 
~~-------------------

10 Again, the more general case when p(A) ~ min(m, n) will be considered in a. Subsection 
a.bout SVD. 
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m 

~r_ 

-n- m -n- -n-

Figure C.2: Illustration of the singular value decomposition (SVD) for the case when 
m > n. In order to reduce the amount of computer memory used in computations, 
matrix S is often taken to be kxk, where k = min(m, n) ~ r = p(A). If this "economy" 
representation of S is used, then the dimensions of U and V must be adjusted too. 

where ~r = diag(0"1"",O"r), and 0"12:: ... 2:: O"r > O. Obviously, 0";, ... ,0"; 
are the non-zero eigenvalues of AHA. Also, according to Corollary C.7.2, r = 
p(AHA). 

Thus 

AHA = V [~ ~] VH 

which implies (cf. Theorem C.5.7 and a comment after it) that A is of the form 

where U is some unitary matrix. Again, from Corollary C.7.2, r = p(A). D 

We could prove this theorem by looking at the outer product AAH instead 
of the Gram matrix AHA (also called the inner product). To see that, note that 
AAH is the Gram matrix of AH, hence it is Hermitian and positive semi-definite. 
Thus, the following theorem is true: 

Theorem C.7.4 Let A be a complex m x n matrix with rank p(A) :::; min(m, n). 
Then the non-zero (i.e., positive) singular values of A are the square roots of the 
non-zero eigenvalues of the Gram matrix AHA (also called the inner product), 
and also of the outer product AAH. In addition to that, if there are r non-zero 
singular values of A, then 

In the following we shall see a connection between the inverse of a nonsingular 
matrix, the two pseudoinverses (left and right), and the general pseudoinverse 
defined via SVD. 

Definition C.7.2 Let the singular value decomposition of an m x n matrix A 
be given by 
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A = USVH, s - [~r 0] 
- 0 0 

where U and V are the corresponding unitary matrices, ~r = diag( 0"1, ••• , 0" r), 
and 0"1 ~ •.. ~ O"r > 0 are the non-zero singular values of A. 

Then the general pseudoinverse of A is defined as 

Example C.7.2 Suppose A is an n x n nonsingular matrix. Obviously peA) = n. 
Therefore, the SVD of A is 

By definition 

Since U and V are unitary matrices, we have 

and 

Therefore, for nonsingular matrices the inverse and the general pseudoinverse are 
the same. 0 

Example C.7.S Consider a full rank m x n matrix A, that is a matrix for which 
peA) = min(m,n) . 

• If m > n, matrix A corresponds to an overdetermined system of linear equations, 
and since r = peA) == min(m, n) = n, the SVD of A is 

Since 

we have 

the left pseudoinverse of A. 
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• If m < n, then matrix A corresponds to an underoetermined system of linear 
equations. In that case r = p(A) = min(m, n) = m, and the SVD of A is 

Since 

we have 

the right pseudoinverse of A. 0 

Recall that we derived the left and right pseudoinverses by minimizing the 
Euclidean norms of vectors e = Ax - b and x, respectively. In the previous 
example we saw that they are special cases of the general pseudoinverse. It can 
be shown that the general pseudoinverse minimizes these norms even in cases 
when A is not of full rank, i.e., when p(A) < min(m, n). 

For much more about interpretation and applications of SVD, see [46]. 

Norms 

If we consider a linear transformation 

y=Ax 

we often need to know what is the maximum "amplification" done by it. In 
other words, we want to know what is the value of 

max.lliill = max II Ax II 
#0 Ilxll #0 Ilxll 

where IIzll denotes the Euclidean length (Euclidean norm) of a vector z E cn 

In this Subsection, we show that this maximum is in fact the largest of the 
singular values of A. We shall also mention other often used vector and matrix 
norms. 

In order to distinguish it from the other norms to be mentioned later, when 
talking about the Euclidean norm, we use a subscript 2. As we shall see later, 
Euclidean norm is a special case of p-norms, when p = 2. 

Let us begin with a few definitions: 

Definition C.7.3 The Euclidean norm of a vector z E en is 
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Definition C.7.4 The induced Euclidean norm of a matrix is 

IIAxll2 
IIAII2 = max -11-11-

.,~o x 2 

Theorem C.7.5 For any complex matrix A of size n x n 

where u(A) is the largest singular value of A. 

Proof. Consider 
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Since AHA is Hermitian and positive semi-definite, all of its eigenvalues are 
real and nonnegative: 

and its eigenvectors can be chosen to form an orthonormal basis : 

Therefore, any x such that IIxll2 = 1 can be represented as 

x = a1r1 + ... + anrn, with IIall2 = 1 

Using this decomposition, we see that for any x such that IIxll2 = 1 

xHAHAx = xH(AHAx) 

Therefore 

= xH(AH A(a:lrl + ..... + onrn» 
= xH(QIAlrl + ...... + CtnAnrn} 

= (alrl + .... + anrn)H (OtAtrl + ...... + QnAnrn) 

= lal12 A1 + ... + lan l2 An 

Since all Ai'S are nonnegative, and A1 is the largest among them, and since 
IIall2 = 1, so that 0 ~ lail2 :5 1, we have 

max [xHAHAx] = A1 = Ama.,(AHA) = (u(A»2 
11.,112=1 
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Therefore IIAII2 = u(A). This value is achieved when a1 = 1, while all other 
ai's are zero, so that x = r1, the normalized eigenvector of AHA corresponding 
to its largest eigenvalue. 0 

Similarly, we can show that the minimum "amplification" equals the smallest 
singular value of A. 

Theorem C.7.6 For any complex matrix A of size n x n 

min IIAxll2 = u(A) 
#0 IIxl12 -

where ![(A) is the minimum singular value of A. 

Proof. Like in the proof of the previous theorem, we use the decomposition 

to find that 

min IIAxl122 
11"'112=1 

= min [xH AH Ax] 
11"'112=1 

= min (lall2 A1 + ... + lanl2 An) 
lIa1l2=1 

= An = Amin(AHA) = (JZ.(A») 2 

This minimum is achieved when x is the normalized eigenvector of AHA 
corresponding to its smallest eigenvalue. 0 

Theorem C.7.7 For any complex matrix A of size n x n 

![(A) ~ IA(A)I ~ u(A) 

for all eigenvalues of A. 

Proof. Earlier we proved that for any non-zero vector x 

u(A) < IIAxll2 < u(A) 
- - IIxl12 -

Since for all i = 1,2, ... , n 

II Arill2 
II r ill2 = IIArill2 = II Air il12 = IAil·llr ill2 = IAil 

the magnitudes of all eigenvalues of A are bounded by![(A) and u(A). 0 
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Theorem C.7.S For any nonsingular complex matrix A 

Proof. If we put x = Ay, 

U(A-l) IIA-1x1l2 
= max 

#0 IIxll2 

= max~ 
#0 IIAYll2 
1/ ( min IIAYll2 ) 1 

= = ![(A) #0 lIyl12 
o 

In different applications, different vector and matrix norms are used, but 
they are all in a way equivalent, because they must satisfy the axioms of a 
norm. 

Definition C.7.5 Any real function IIzll of a vector z E en satisfying the fol­
lowing three axioms 

1. IIzll > 0 (Vz::j:. 0), and 11011 = o. 
2. 110:' zll = 10:1 'lIzll (Vo:, z). 

3. !Ix + yll ::; IIxll + lIyll (Vx, y) (triangle inequality). 

is caned a vector norm. 

Definition C.7.6 The induced matrix norm is defined as 

IIAII = sup II Ax II 
"'1'0 IIxll 

where Ilzll denotes some vector norm. 

Example C. 7.4 The p-noNns are defined as 

Important special cases are: 

• p = 2 => IIz112 = Jlzl12 + ... + IZn 12. This is the Euclidean nONn. 
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The corresponding induced p-nonns are 

II Axllp 
IIAlip = sup -11-11-

.,~o x p 

For special cases when p = 1,2,00 it can be shown (see Problem C.S.13, Theorem 
C.7.5, and Problem C.S.14, respectiIJely) that sup can be substituted by max, and that: 

n 

IIAIiI =m~Lla;jl 
J ;=1 

n 

IIAlioo = mr-x L la;jl 
j=1 

o 

At the end, let us just mention two other matrix norms: 

• Frobenius norm 

n n 

IIAIIF = L L lai;12 = tr(AHA) 
i=l ;=1 

• The smallest singular value ![(A). 
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c.s Problems 

In this Section we present a few problems and illustrations of the advanced 
matrix results presented in this Appendix. 

Problem C.8.1 Let Ek (A) (k = 1,2, ... , n) denote the sum of all order-k principal 
minors of A. Then 

Hint: Proof of this useful property can be found in [36, page 21]. Note that El(A) = 
all + a22. + ... + ann = tr(A), and En(A) = det(A). Also note that there are (~) 
order-k principal minors of A. 

Problem C.8.2 Apply the result of Problem C.S.l to 

A= 0 2 0 0 [
1000] 

003 0 
000 4 

Solution: The characteristic polynomial of A is 

det(M - A) = A4 _1OA3 + 35A2 - 50A+ 24 

We can check: 

1+2+3+4=10 

100 0 
o 2 0 0 
o 0 3 0 = 24 

o 0 0 4 

Problem C.8.3 Matrices of the form 

where a and b are vectors of size n, are called the dyads. Use the result of Problem C.S.I 
to show that the eigenvalues of Dare Al = aHb and Ai = 0 (i = 2, ... jn - 1). What 
are the corresponding eigenvectors? 
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Problem C.S.4 Prove that if Al is a multiplicity r eigenvalue of an n x n matrix A, 
then v(Ad- A), the number of linearly independent eigenvectors corresponding to Al, 
satisfies 

Thus, for example, if the eigenvalues of A are 1,1,1,7,7, at most three linearly 
independent eigenvectors corresponding to the triple eigenvalue 1 can exist. 

Solution: Since det(Ad- A) = 0, there is at least one eigenvector corresponding 
to Al. 

On the other hand, w = 0 is a multiplicity r root of 

det(A - (Al + w)I) = 0 

hence this equation must have wr as a factor: 

with an-r =F O. 
Since an-r =F 0 is a sum of all principal minors of order n-r of the matrix A-Ad, 

we see that at least one of them is =F O. Therefore 

i.e., v(Ad - A) :$ r 

Problem C.S.5 Prove that tr(AB) = tr(BA). Use this fact and the fact that ev­
ery square matrix is similar to some Jordan matrix to give an alternative proof for 
Formula (C.5): 

Solution: Let C = AB and D = BA. Then Cii = Ek a.kbk. and d" = Ek bikak., 
hence 

m mn nm nm 

tr(AB) = L C,i = L L a,kbki = L L a.kbki = L L b,kaki = tr(BA) 
.=1 .=1 k=1 k=1 .=1 ,=1 k=l 

Since for any A we can write A = SJS- 1 , where J is in Jordan form, we can write 

tr(A) = tr(SJS- 1 ) = tr(JS- 1 S) = tr(J) = A1 + A2 + ... + An 

Problem C.S.6 Prove that if A is normal, than B = U- 1 AU, where U is a unitary 
matrix, is also normal. Also prove that if B is both upper triangular and normal then 
it is diagonal. Use these results to generalize Theorem C.4.2 to normal matrices. 

Problem C.S.7 Square matrix A is skew-Hermitian if AH = -A. 
a) Prove that the skew-Hermitian matrices are normal. 
b) Prove that the eigenvalues of the skew-Hermitian matrices are imaginary. 

Problem C.S.S Prove that the unitary matrices are normal. Also, prove that all 
eigenvalues of the unitary matrices lie on the unit circle in a complex plane. 
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Problem C.S.9 Prove that the set of eigenvectors of a matrix forms an orthonormal 
basis if and only if the matrix is normal. 

Problem C.S.10 Generalize Theorems C.5.3, C.5.4, and C.5.7 to Hermitian matri­
ces. 

Problem C.S.ll Let A be m x n (m ~ n). Show that the Gram matrix G(A) is 
singular if and only if A is not of full rank. Try a direct proof. Try also a proof using 
the Theorem C.7.4. 

Problem C.S.12 Show that the correlation matrix R = E[uH u] is singular if and 
only if the signal u(t) is a sum of k :::; m sinusoids, where m is the length of vector u. 

Problem C.S.13 Show that 
n 

IIAII1 = max L laijl 
J i=1 

Solution: IT y = Ax then Yi = E7=1 aijXj, and 

Therefore 

sup IIAxlh = sup II Ax II 1 
"'0#0 IIxlh 11"'111 =1 

IIAlh = su~ tltaijXjl:::; su~ ttlaijllxjl 
11"'111-1 i=1 j=1 11"'111-1 i=1 j=1 

:::; (:U~1 L.n IXil) (mr L.rn laijl) = ~ax t laijl 
II III J=1 .=1 i=1 

" .. .. 
1 

Since this upper bound is actually achieved for x = e(k), where k is such that 
E::llaikl = max; E::llaijl, we can write 

IIAIiI = sup IIAxIlI = max IIAxlh = max ~ laijl 
"'0#0 Ilxlh #0 IIxlh j ~ .=1 

Problem C.S.14 Show that 
n 

IIAlloo = m:x L laijl· 
j=1 

Hint: This upper bound is achieved for x = [1 1 ... If, so we can write 

II All 00 = sup II Ax II 00 = max II Ax II 00 = max ~ laijl 
#0 IIxlioo "'0#0 IIxlioo i ~ J=1 
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Problem C.8.15 Prove that 

Solution: 
IIAII~ = (O'(AW = Ama.,(AH A) 

For any square matrix B we can write 

II Bx II 1 Lm 
IA(B)I:5 max-II- II- = m~ Ib;jl 

.,~o x 1 1 
;=1 

IIAII~ :5 mr ~ Ibijl = mr ~ I~ ak;akj I 
Finally we see that 

Problem C.8.16 Prove that 

O'(A) - 1 :5 0'(1 + A) :5 O'(A) + 1 

Solution: The right-hand side inequality is a simple consequence of the triangle 
inequality: 

0'(1 + A) :5 O'(A) + 0'(1) :5 O'(A) + 1 

The left-hand side inequality is also a consequence of the triangle inequality: 

O'(A) - 1 = 0'(1 + A-I) - 1 

:5 0'(1 +A) +0'(-1) -1 = 0'(1 +A) 

Problem C.8.17 Prove the following property: 

~(1 + A) ~ 1 - O'(A) 

Solution: Since the smallest singular value of a matrix is a norm, we can use the 
triangle inequality: 

1 = ~(1) = ~(1 + A - A) :5 ~(1 + A) + ~(A) :5 ~(1 + A) + O'(A) 

Problem C.8.18 Prove the Cauchy-Schwarz-Buniakowski inequality: 

which can also be written as 
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Solution: For any scalar a and vectors x and y 

lIax+yll~ ~ 0 

i.e., 

therefore for any a the discriminant of this quadratic trinomial must be 5 0: 

i.e., 

The equality is satisfied if and only if ax + y = 0, i.e., if x and y are linearly 
dependent. 
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low-pass, 231 

Finck,319 
Formulas 

Ackermann, 66, 169, 255, 258 
Bass-Gura, 66, 153, 169, 171, 255, 

258 
dual of, 68, 154, 187 

Euler-Fburier, 312 
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Formulas, continued 
Mason, 124, 147, 157 
Mayne-Murdoch, 66 
Poisson, 232 
Sylvester, 88, 218 
Wallis, 314 

Fourier, 10, 312 
Fourier transform, see transform(ation)s 
Frequency response, 101 
Frey, 13 
Frobenius, 320, 355, 364 

Gabor, 234 
Gain margin, 13 
Gauss, 318, 319 
The general problem of the stability of mo­

tion, 10 
Generalized eigenvectors, see principal vec-

tors 
Generating functions, 231, 315 
Gilbert, 56, 57 
Global stability, see stability 
Golden section, 315 
Governor, 5, 6 
GPS,265 
Gram matrix, see matrices 
Gram-Schmidt orthonormalization, 342 
Gregory, 307 
Gura, 19, 171 
Gyropilot, 10 

Hamilton, 20, 320 
Hamiltonian, 179 
Hamiltonian matrix, see matrices 
Hammer, 78 
Hankel matrix, see matrices 
Harmonic numbers, 297 
Hautus,57 
Heat equation, see equations 
Heaviside, 10, 314 
Heaviside's step fn., see step function 
Heisenberg, 115n, 320 
Hermite, 9 
Hermitian 

form, 130 
matrix, see matrices 
operator, 322 

Hero, 5 
Hessian matrix, see matrices 
Hilbert, 115n 
Homeostasis, 22 
Hopfield, 279, 280 
Horner, 337 
Hunting, 6 
Hurewicz, 16, 231, 315 
Hurwitz, 9 

criterion, see stability criteria 

Hurwitz, continued 
matrix, see matrices 

IBM, 265 
IFAC,18 

377 

Impulse response, 28, 100, 117, 224, 225, 
230,235 

Inamori, 265n 
Incandescent lamp, 11 
Incubator, 6 
Industrial process control, 12 
Input-output representation, 98, 222 
Instability, see system properties 
Internal stability, see stability 
Inverted pendulum 

double, 280 
on a cart, 26, 27, 49, 121, 144, 172, 

189, 196, 201, 255 
simple, 133, 172 

Isochrone, 307 

Jacobi, 20 
Joint controllability and observability, 52, 

54 
Jordan matrix, see matrices 
Jury, 16 

criterion, see stability criteria 

Kailath, 23, 57, 219 
Kalman, 16, 18, 20, 21, 56, 67, 69, 198, 

265,284 
Kalman filter, see filters 
Kalman-Bucy filter, see filters 
Kelvin, Lord, 7, 18, 114 
Kelvin scheme, 18, 114 
Kepler, 306 
Kotelynikov, 234 
Kronecker, 320 
Kronecker delta, 80, 209, 215, 224, 317 
Ktesibios, see Ctesibius 
Kyocera, 265n 
Kyoto Prize, 265 

Lagrange, 20, 303, 306, 326, 357 
Laplace, 10, 306, 314, 315, 319, 323 
Laplace transform, see transform(ation)s 
Leibniz, 306, 307, 308, 319 
Letov, 18 
Leverrier et al. algorithm, 285 
Levinson, 14, 15, 16 
Levinson's algorithm, 15,353 
Lie, 307 
Limit cycle, 37, 126 
Linearization, 43 

and stability, see stability 
Linvill, 231 
Lipshitz, 308, 309 
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Little, 289n 
London Mathematical Society, 7 
Lord Kelvin, see Kelvin, Lord 
Low-pass filter, see filters 
LQE, 21, 69, 194, 265 
LQR, 21, 67, 69, 178,259 
Lur'e, 18 
Lyapunov, 10,38,44, 131n, 307 

criterion, see stability criterion 
equation, see equations 
function, 38, 130, 181,280 
second (direct) method, 38, 130 
stability, see stability 

MacFarlane-Potter-Fath method, 180 
Maclaurin, 306 
Man-machine systems, 22 
Marginal stability, see stability 
Markov 

parameters, 28, 53, 139, 155, 158, 
159, 161, 164, 235, 253, 353 

resultant, see resultants 
Mason's formula, see formulas 
Math Works, 289n 
MATLAB,289 
Matrices, 83, 217, 318, 325 

adjoint, 284, 329 
Bezoutian, 159 
companion, 54, 59, 334, 336, 338 
controllability, 29, 45, 134 
correlation, 344, 347, 348 
DFT,342 
diagonal, 330, 342 
Gram, 344, 347, 348, 356 
Hamiltonian, 180 
Hankel, 29, 53, 158, 159, 164, 342, 

353 
Hermitian, 327n, 331n, 340, 342,344, 

367 
Hessian, 347, 352, 356,357 
Hurwitz, 37, 42, 131, 131n, 132,279, 

354 
Jordan, 31, 59, 83, 87, 88, 91, 137, 

157, 236, 330, 331 
nilpotent, 32, 244 
normal, 327n, 331n, 340, 366 
observability, 29, 50, 139 
orthogonal, 340 
reachability, 246 
real symmetric, 327n, 331n, 340, 344 
resolvent, 90, 96 
skew-symmetric, 348, 348n 
skew-Hermitian, 348, 348n, 366 
Sylvester, 282 
Toeplitz, 15, 139, 353 
unitary, 340, 342, 366 
Vandermonde, 135, 354 

Matrix 
differentiation, see calculus 
inversion lemma, 219 
norms, 361 
products, 292, 321, 358 

Maximum Principle, 20 
Maxwell, 7, 9 
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Mayne-Murdoch formula, see formulas 
Mikhailov, 13 

criterion, see stability criteria 
Minimallity, 31, 38, 52, 54, 130 

transform domain criteria, see trans-
form domain criteria 

Minimum norm solution, 248 
Minimum phase, 13 
Minorsky, 10 
Modal controllability, see controllability 
Modal form, see canonical realizations 
Modes, 30 
Moler, 289n 

NASA, 69 
Navigation, 21, 265 
Negative feedback amplifier, 12 
Neural network, 279, 280 
Newcomen,6 
Newton, 20, 306, 307, 308 
Nichols, 12, 14 
Nilpotent matrix, see matrices 
Nine Chapters on the Mathematical Pro-

cedures, 318 
Normal matrix, see matrices 
Nullity, 327 
Nyquist, 12, 107, 108, 109,234 

criterion, see stability criteria 
frequency, 234 
plot, 109 
rate, 234 

Observability, 19,31, 38, 45, 50, 130, 152, 
244,246 

duality with contr., see duality 
form, see canonical realizations 
joint with controllability, see joint 

controllability and observability 
matrix, see matrices 
of controller form, 54, 59 
of modal form, 139 
PBH criteria, see PBH criteria 
transform domain criteria, see trans-

form domain criteria 
under state feedback, 65, 167 
under similarity transformation, 152 

Observer, see state 
Observer form, see canonical realizations 
On GOlJernors, 7 
Operational calculus, see calculus 
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Optimal control, 20, 66 
Optimality Principle, 262 
Orthogonal matrix, see matrices 

Pallas, 319 
Papin, 6 
Parallel form, Bee canonical realizations 
Partial fraction decomposition, 81, 148, 

157 
Pascal triangle, 297 
PBH criteria, 57, 58, 59, 60, 140, 250 
Pendulum 

inverted, see inverted pendulum 
simple, 36 
with friction, 41, 43 

Petzval, 314, 314n 
Phase margin,13 
Phase-plane, 18 
Phi/osophiae Natura/is Principia Mathe-

matica,306 
Picard,307 
PID control, 10 
Placement of eigenvalues, see eigenvalues 
Poincare, 10, 18, 44, 307 
Poisson formula, see formulas 
Pole placement, see eigenvalues 
Pole-zero cancellation, 118 
Poles, 30, 31, 38, 98, 129, 222 
Pontryagin, 20 
Popov,57 
Power grid, 11 
Principal vectors, 90, 332 

eigenvectors, 90, 275, 281, 325, 332 
generalized eigenvectors, 90, 236,332 

Pseudoinverses 
general, 358, 359, 360 
left, 357, 359 
right, 357, 360 

Quadratic form, 41, 129, 130, 319, 345 

Radar, 12, 14 
Ragazzini, 16, 231, 315 
Rank,320, 327, 355 
Rayleigh-Ritz theorem, see theorems 
Reachability, see system properties 
Reachability matrix, Bee matrices 
Real symmetric matrix, see matrices 
Reaumur,6 
Reduced-order observer, see state observer 
Relocation of eigenvalues, see eigenvalues 
Resolvent 

matrix, see matrices 
identities, 285 

Resonance, 99, 223 
Resultants, 282 

Barnett-Kalman-Macduffee, 284 

Resultants, continued 
Bezoutian, 283 
Markov, 284 
Sylvester, 282 

RlAS, 69, 265 
Riccati equation, see equations 
Rissanen, 19 
Roberva1, 306 
Robust control, 21 
Root-locus method, 16, 109 
Routh, 8, 9 

criterion, see stability criteria 

Salzer, 231 
Sampling, 230 
Sampling theorem, see theorems 
Sarms, 319 
Savery, 6 
Schrodinger, U5n, 307, 320 
Schur, 9, 16, 342 

criterion, see stability criteria 
Seki,319 
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Separability of eigenvalues in controller-
observer design, 63, 64, 188 

Servo-mechanism, 13 
Shannon, 18, 234 
Ship-steering, 10 
Sieve of Eratosthenes, 297 
Signal-flow graph, 124 
Similarity, 26, 30, 83, 249, 330n, 334 

& controllability, see controllability 
& discretization, 249 
& eigenvalues, see eigenvalues 
& observability, see observability 

Simon, 21 
Singular value decomposition (SVD), 356n, 

357 
Skew-symmetric matrix, see matrices 
Skew-Hermitian matrix, see matrices 
Stability, 34, 44, 152, 239 

comparison of internal and external, 
38, 54 

external, 31, 34, 54 
BIBO, 34, 38, 107, 128, 130, 239 
conditional, 108, 109 
marginal, 34, 129 

internal, 31, 35, 54 
asymptotic Lyapunov stability, 35, 

36, 37, 38, 130, 241 
global asymptotic, 35, 130 
Lyapunov stability, 35, 36, 37, 130, 

241, 277, 279, 345 
under discretization, 243 
under linearization, 43 

Stability criteria 
DIBO, 128, 129, 239, 240 
Cohn, 16 
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Stability criteria, continued 
Hurwitz, 9, 11, 354 
Jury, 16, 354 
Lyapunov, 38, 42, 354 
marginal, 129, 239, 240 
Mikhailov, 13 
Nyquist, 11, 12, 16, 107, 109 
Routh, 8, 11,354 
Schur, 16 
transform domain, see transform do­

main criteria 
Stabilizability, see system properties 
State 

controllability, see controllability 
equations, see equations 
estimator, 68, 69, 265 
observer, 68, 186; 263 

reduced-order, 69, 199, 272 
State feedback, 19, 62, 166,255 

& controllability, see controllability 
& eigenvalues, see eigenvalues 
& observability, see observability 
& zeros, see zeros 

State-space methods, 113, 235 
Steam, 5 

engine, 6 
Step function, 80, 316 
Stodola, 9 
Stone, 231 
Sturm, 8 
Sylvester, 282, 319, 349, 355 

definiteness criterion, 130, 132, 354 
interpolation, see formulas 
matrix, see matrices 
resultant, see resultants 

System properties 
attractivity, 35, 36 
complexity, 21 
constructibility, 50, 244, 246 
controllability, see controllability 
detect ability, 60, 177 
instability, 34, 36 
minimallity, see minimallity 
observability, see observability 
reachability, 45, 244, 246 
stability, see stability 
stabilizability, 60, 65, 176 

Taylor, 306, 307 
Telegraphy, 10 
Telescope, 7 
Theorems 

Cayley-Hamilton, 32, 88, 134, 139, 
160, 253, 276, 329 

Rayleigh-Ritz, 130, 242, 349 
sampling, 231, 232, 234 
Wiener-Khinchin, 15 

Time keeping, 6 
Toeplitz matrix, see matrices 
Torricelli, 306 
Torpedo, 10 
Trace, 281, 328 
Tracking, 21, 265 
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Transfer function, 28, 100, WI, 117,222, 
224, 225, 230, 235 

Transform domain criteria 
for controllability, 61, 140, 142 
for minimallity, 54 
for observability, 61, 140, 142 
for stability, 129, 240 

Transform( ation)s 
discrete Fourier (DFT), 342 
discrete-time Fourier (DTFT), 225 
Fourier, 82, 101,312 
Laplace, 75, 76, 80, 82, 90, 96, 117, 

222, 230, 312, 314, 316 
similarity, see similarity 
z, 16, 209, 215, 218, 222, 231, 312, 

315, 317 
A treatise on the stability of a gitlen state 

of motion, 8 
Turing, 18 

Uncontrollable form, see canonical realiza­
tions 

Unitary matrix, see matrices 
Unobservable form, see canonical realiza­

tions 
USS New Mezico, 10 

Van der Pol oscillator, 36, 125 
Vandermonde determinant, 59, 89, 250, 

322 
Vandermonde matrix, see matrices 
Vishnegradskii,9 
Vitruvius, 5 
Volterra, 307 

Wallis, 306 
formula, see formulas 

Weierstrass, 20, 306, 320 
Water clock, 5 
Water turbines, 9 
Watt, 5, 6, 10 
Weaver, 13 
Western movies, 234 
Wiener, 10, 14, 15, 16, 21 
Wiener-Hopf equation, see equations 
Wiener-Khinchin theorem, see theorems 
Wiener's problem, 69, 198 
Windmill,5 
Woodbury, 219 

Yule-Walker equation, see equations 
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z-transfonn, see transfonn(ation)s 
Zadeh, 16, 231, 315 
Zeros, 100, 224 

under state feedback, 64 
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