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Foreword

In science and engineering, a proper way to master theory is to solve relevant
and meaningful problems that provide a bridge between theory and applications.
Problem solving is necessary not only as a stepping stone towards the design
of real systems and experiments, but also to reveal the scope, flexibility, and
depth of the theoretical tools available to the designer. In this book, the authors
present an excellent choice and a lucid formulation of a wide variety of problems
in control engineering. In particular, their constant reliance on MATLAB in the
problem-solving process is commendable, as this computational tool has become
a standard and globally available control design environment.

The chapter on theoretical elements of control theory, which precedes the
problem-solution part of the book, sets a proper background for problem-solving
tasks. In their presentation, the authors struck the right balance in achieving a
self-contained text without overwhelming the reader with detailed and exhaus-
tive theoretical arguments.

Finally, the opening chapter on the history of automatic control is a welcome
part of the book. The authors admirably describe the events and concepts that
have evolved over the centuries to the present-day control theory and technol-
ogy. Theoretical analysis and problem-solving processes are not only useful in
understanding what the world is, but also what it can become. In attempting
to predict future development in science and technology we are greatly aided by
the history of scientific innovations and discoveries.

The present book is an excellent piece of work and should be on the shelf of
every student and practicing engineer of automatic control.

May 2001 Dragoslav D. Siljak
Santa Clara, California
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Preface

This book is a self-contained exposition of the theory of linear control systems
and the underlying mathematical apparatus. It has more than 250 solved prob-
lems, numerous illustrative examples, and over 70 figures and diagrams. In
addition, MATLAB examples provide a good introduction to this powerful de-
sign and simulation tool. A historical overview of the original ideas in control
theory is provided to describe the evolution of the theory from its early stages
of development.

For whom is this book?

It was written for students and engineers interested in Control Systems and Sig-
nal Processing, typically the first-year graduate students of Engineering. There
is more than one way this book can be used: it contains a sufficient amount of
theory to allow its use as a textbook, it has many solved problems so it can be
a good supplement to a more advanced text, and it has enough of both to be
used as a self-study guide. A suitable choice of material can be made to fit the
format of the course and preferences of the instructor and the audience.

‘What is in the book?

The book has three major parts:

Part I is an overview of the history and theory of the subject. It consists of
Chapters 1 and 2:

e In Chapter 1 we investigate the historical development of the automatic
feedback control from the Antiquity to the present day.

e In Chapter 2 we present the fundamental concepts of control theory. We
start from the representation of systems using the states and continue
with a discussion of the most important system properties: stability, con-
trollability, and observability. We end that Chapter by discussing the
most important design techniques: state feedback, optimal control, state
observation, and state estimation (Kalman filtering).

xi



PREFACE

Part II consists of Chapters 3, 4, and 5, which contain solved problems
categorized by the basic type of systems (continuous and discrete) and by the
topic (system representations, system properties, and design techniques):

In Chapter 3 the reader will find solved problems about continuous-time
systems. It starts with simple differential equations and some matrix the-
ory and continues with matrix representation of simultaneous differential
equations and input-output representation of control systems. Then it
moves on to problems of state representation of systems, stability, con-
trollability and observability, canonical forms, and finishes with design
techniques for state feedback, optimal control, and state estimation and
observation.

Chapter 4 is very similar in format to Chapter 3 and contains solved prob-
lems on discrete-time systems. It starts with simple difference equations
and input-output representation of discrete-time systems. Then, just like
Chapter 3, it discusses problems of state representation, system properties,
and design techniques.

Chapter 5 contains several exercise problems.

Part III consists of three Appendixes:

Appendix A is a quick introduction to the basic syntax and functionality of
MATLAB, a powerful numerical and simulation tool for many engineering
disciplines, including Control Theory.

In Appendix B we review the mathematical tools and notation used in
the book: differential and difference equations, Laplace and z transforms,
and matrices and determinants. To make the exposition more interesting
we also trace the origins of these branches of mathematics.

Appendix C is a compilation of the basic notions and results in matrix
theory, the most important mathematical tool used in this book. It covers
similarity of matrices, important classes of matrices and their proper-
ties, and some important techniques such as singular value decomposition
(SVD). Most of the results are given with proofs and some are illustrated
by examples.

To make the book easier to read ...

To help the reader we included a detailed Index at the end of the book and
used standard textbook conventions. The asterisk in a subsection name de-
notes advanced material that can be skipped during the first reading. When
we reference a book or an article, we use a bracketed number, e.g., [22]. All
references are listed alphabetically in the Bibliography section towards the end
of the book. All definitions, theorems, problems, examples, and exercises are



PREFACE xiii

numerated by sections. For example, Problem 4.5.2 is the second problem in
Section 5 of Chapter 4.

In addition to that, we made numerous historical remarks throughout the
book. This should help the reader understand and adopt the material faster and,
at the same time, provide some useful information. Also, we used the inverted
pendulum on a cart to illustrate many of the concepts of modern controls. This
particular system offers the best of both worlds: it is complex enough to present
some challenge, yet simple enough to be visualized and intuitively understand-
able. Another helpful feature of the book is that most of the problems and
theorems are accompanied by detailed solutions and complete proofs. Finally,
the MATLAB programs from this book are available on the enclosed CD.

Suggestions? Comments?

If you have any suggestions or comments about the book, please e-mail them
to: b.kisacanin@ieee.org

Acknowledgments

We would like to thank the publisher, Kluwer Academic / Plenum Publishers,
and the Editor, Ana Bozicevic, for their interest and help in publishing this
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book met through the efforts of Professor Miodrag Radulovagki from the Uni-
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Chapter 1

Historical overview of
automatic control

In this Chapter we review the main results of the theory of automatic con-
trol. Our presentation follows the historical development of the control theory
and assumes at least the undergraduate level of exposure to this subject. The
material is organized as follows:

e Section 1.1: Automatic control before the telecommunications revolution
in the 1930’s

e Section 1.2: The classical period of automatic control (between the 1930’s
and the 1950’s)

¢ Section 1.3: The modern control theory (after the 1950’s)

The basic techniques of the modern control theory are presented in a greater
detail in Chapter 2.

B. Kisacanin et al., Linear Control Systems
© Springer Science+Business Media New York 2001
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1.1 Automatic control before the 1930’s

The first significant discovery in the field of feedback control was Watt’s fly-
ball governor. However, the history of the automatic feedback control systems
dates back much earlier. In this Section we describe the history of feedback
control systems from the Antiquity until the 1930’s, from ancient water-clocks
to electrical power distribution.

Antiquity and Middle Ages. According to Vitruvius’ De Architectura,
among many inventions of the first of great engineers from Alexandria, Ctesibius
(also spelled Ktesibios; fl. c. 270 BC), was a water-clock — clepsydra. According
to Vitruvius’ description, it could have looked like Figure 1.1. It used two forms
of feedback control: a siphon S to periodically recycle itself and a floating valve
F to ensure a constant water level in tank A, and thus a constant flow of water
into tank B.

Figure 1.1: Ctesibius’ clepsydra, reconstructed from a description by Vitruvius. While
the floating valve F' ensured a constant water flow into the tank B, the siphon S
periodically reset the clock from the upper level U back to the lower level L.

Three hundred years later, the last of the great Alexandrian engineers, Hero,
described a number of ingenious devices which employed feedback. His inven-
tions also included the oldest known devices powered by steam.

The Hellenistic tradition was continued in the Arabic world through the
Middle Ages. The water-clocks and other hydraulic and pneumatic devices of
this period were based on the floating valve and the siphon principle.

Renaissance in engineering. Probably the first modern invention based
on the automatic feedback was the 17th century Dutch windmill which was kept

5



6 CHAPTER 1. HISTORICAL OVERVIEW OF AUTOMATIC CONTROL

facing the wind by an auxiliary vane that rotated the entire upper part of the
mill. Later, in England, an additional speed regulation was achieved using the
shutter sails which helped compensate for the variability in the wind speed:
when the wind was stronger, the shutters were automatically opened.

Precise time-keeping was another problem which required feedback mecha-
nisms. The early clocks were driven by weights which moved under the force of
gravity. Their motion was kept constant by the rotating vanes, which used the
frictional resistance of air to provide the feedback. The constant motion was
achieved when the resistance (proportional to the speed) was in equilibrium
with the gravity.

Worth mentioning are also the 18th century Reaumur’s devices for control
of incubators: the temperature dependent level of mercury in a U-tube moved
an arm which controlled the draft to a furnace!. Reaumur described the idea
of the negative feedback as

making use of these [extra] degrees of heat against themselves, so as
to cause them to destroy themselves.

Watt’s inventions. The first steam engine was patented in England by
Savery in 1698 and improved by Newcomen in 1712 (both inventions were based
on the discoveries made by Papin), but it was only after Watt had dramatically
improved their efficiency that the revolution in automation really began. In
1765 Watt made his first and the most important invention, a separate steam
condenser, which saved the latent heat from dissipation.

In 1788, while working on the design of the throttle valve for manual regu-
lation of the engine, Watt learned from his partner, Boulton, about a method
for changing the gap between the grindstones according to their rotation speed:
the millers wanted the gap to be smaller when the stones turned faster?. He
quickly adapted this idea to control his valve and thus invented the centrifugal
governor. This invention triggered a new revolution: it was the first widely used
feedback mechanism. Figure 1.2 shows its principle: as the shaft S rotates, the
centrifugal force pulls the rotating masses A and B apart. This is translated
into the vertical motion of the ring R whose position controls the draft to the
burner via a throttle valve. This simple mechanism was used to set the steam
engine’s running speed.

Theoretical analysis. Watt’s governor had a few flaws, and many patents
were granted for attempts to correct them. But Watt’s original design was
very simple and for many applications it was a satisfactory solution. Among its
most serious flaws were the need for careful maintenance, the lack of power to
move the actuator, and “hunting,” the oscillatory motion of the fly-balls. Many
engineers of the 19th century noticed that their improvements on the Watt’s

IThis idea can be traced to the 17th century alchemist Drebbel.

2At that time Watt and Boulton were building the Albion Mills, the first steam-powered
mill, hence their interest in the milling technology. Until that time steam engines were mostly
used to pump water out of mines.
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Figure 1.2: Watt’s centrifugal governor: when the shaft S rotates, the masses A and
B are pulled apart by the centrifugal force. This causes the vertical motion of the ring
R whose position controls the draft to the burner.

design made the hunting worse, some were even saying that their governors
could easily become “mad,” i.e., unstable.

The first serious analysis of this phenomenon was given by Airy in 1840 in a
paper which analyzed the high frequency oscillations produced by the governor
which regulated the motion of a telescope. Here the problem of hunting was
serious, because it adversely affected the main purpose of the instrument: one
could see the oscillations. Airy was the first to use differential equations to
describe the behavior of the governor. In a 1851 supplement to this paper he
described the conditions for the stable motion of the telescope which led him to
use friction to eliminate the oscillations.

Much more influential was Maxwell’s 1868 paper On Governors, motivated
by his involvement in the experiments for establishment of electrical standards.
In the experiment designed by Lord Kelvin to determine the standard for the
ohm, it was important to ensure uniform motion of a coil. A governor was used
and thus Maxwell, who was interested in general dynamic systems at the time,
became interested in its dynamics. He found the stability conditions for systems
described by differential equations up to order three. Even before publishing
this paper, Maxwell asked the members of the London Mathematical Society:

if any member present could point out a method of determining in
what cases all the possible [real] parts of the impossible [complex]
roots of an equation are negative.

Clifford was the first to solve Maxwell’s problem. He proposed that

by forming an auxiliary equation whose roots are the sums of the
roots of the original equation taken in pairs and determining the
conditions of the real roots of this equation being negative we should
obtain the condition required.
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This was to be done by applying the Descartes’ rule of signs to both the orig-
inal and the auxiliary equation. Unfortunately, finding the auxiliary equation
becomes increasingly difficult as the degree of the original equation increases.

Routh’s criterion. Algorithmically more satisfactory criterion was estab-
lished by Routh in 1874 (for equations of order 5) and in 1876 (equations of
any order). In his 1877 Adams Prize winning essay A treatise on the stability
of a given state of motion, Routh uses the Cauchy index theorem and proper-
ties of polynomials discovered by Sturm to prove what we now call the Routh’s
stability criterion:

Let the characteristic polynomial of a dynamic system be given by
a(s) =aps" +a;s" ' +...+a,_18+a,

where coefficients ag, . ..,a, are real and ag > 0. All of its roots have negative
real parts if and only if

o All a;’s are positive (this alone is a necessary but not sufficient condition
for stability)

o The first-column coefficients in the following array are all positive:

Qg az a4 Qg
ax as as ar
by ) bs b4
1 Cc2 Cc3 C4

dy dp ds dy

u1 uz
1
w1
where
aiaz — apas a1a4 — apas @106 — Qoay
e
a; a a1
. biaz —aib; bias —aibs biar — a1b,
1= — g = —— 3 = —————
by b, b,
c1by — bicy c1b3 — bics c1by — bicy
d=—-" dy = ———= dg = —m8m8—
C1 C1 G
ete.
If any of the coefficients ay,...,a,,b1,...,w; is zero, then a(s) has one

or more zeros with a nonnegative real part. Further analysis is possible to
determine whether any of these zeros lies to the right of the imaginary axis
(see [1] and [41]).
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Example 1.1.1 In order to demonstrate that a; > 0 is only a necessary condition
in Routh’s analysis, let us determine a few ezamples of third order polynomials with
positive real coefficients and roots with nonnegative real parts. In general, a third
order polynomial a(s) = aos® + a18® + a2s + as with a0 > 0 has roots to the left of
the imaginary azis if and only if ap,a1,a2,a3 > 0 and aiaz — agaz > 0. Hence the
condition for a third order polynomial with positive real coefficients to have a root with
nonnegative real part is aja2 < apas. Thus, for ezample,

ai(s)=s*+5° +s+1 s1=-1 s23=42j
ax(s)=s*+8°+s5+2  s1=-13532 s;3=01766+12028] O

Vishnegradskii, Stodola, and Hurwitz. At first, the results obtained
in Britain by Airy, Maxwell, and Routh didn’t have much influence on the
practical design of governors. Much more influential among the engineers was
the work by Vishnegradskii. Around 1876 he gave a clear derivation of the third
order governor differential equation and provided a graphical stability criterion.
The fact that his work appeared in German, among other languages, was also
important, because Germany and other German-speaking countries were about
to become the main stage for developments in mechanical engineering.

In 1893 Stodola applied the techniques developed by Vishnegradskii to the
study of regulation of water turbines to obtain the seventh order equations.
He asked Hurwitz for help with the stability analysis, and as a result, Hurwitz
published his stability criterion in 1895 (with a footnote saying that the criterion
was applied at the Davos Spa Plant):

If the characteristic polynomial of a dynamic system is given by
a(s) =aps" +a18" 1 +...+ap_15+a,

where coefficients ag, . .. ,a, are real and ag > 0, all of its roots have negative
real parts if and only if

Di>0 (k=1,2,...,n)

where
a1 Qg 0 0 O 0
as az a1 Qo 0 0
Dk = as ay ag as a3 PN 0
a2k—1 G2k-2 Q2k-3 G42k—4 Q2k-5 ... QG

anda; =0 if j > n.

Like Routh, Hurwitz derived this result using Cauchy’s index theorem, but
instead of using Sturm’s properties of polynomials, he used Hermite’s quadratic
form methods. In 1911 Bompiani proved the equivalence of the two stability
criteria, while in 1921 Schur gave an elementary derivation.
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Lyapunov stability. A major breakthrough in theoretical mechanics and
stability analysis of dynamic systems was made in 1892 by Lyapunov. His
doctoral thesis The general problem of the stability of motion was based on the
theoretical mechanics of Poincare, and contains the first general stability criteria
applicable to both linear and nonlinear systems. His work remained practically
unknown outside Russia until after the World War II, and we will study it in
greater detail in Chapter 2.

Operational calculus. In his 1892 Electrical Papers, Heaviside introduced
the operational calculus as a novel method for solving differential equations
occurring in the theoretical analysis of telegraphy and electrical transmission.
Initially dismissed by many as mathematically unfounded, his operational cal-
culus was related to the mathematical theory of integral transforms through the
work of Carson and Wiener in the 1920’s. These methods are now better known
as Laplace and Fourier transforms (see Appendix B.3).

Maritime applications. Improvements of the original Watt’s governor
allowed for the explosion in the number of applications of the automatic feedback
control. To name just a few of them:

e ship steering engines (1849)

torpedo (1866)

e stabilized passenger-ship saloon (1874)
o stabilized gun platform (1889)
stabilized ship (1892)

e automatic ship-steering — gyropilot (1912)

In 1922 Minorsky published his research on ship-steering. He observed the
methods of experienced helmsmen and tried to design automatic ship-steering
with similar performance. He found that it was necessary to use the PID control,
and also maintained that it was important to ensure not only the stability of the
output variable, but also to watch the values of the internal system variables,
which could become unstable or go into saturation if the output variable was
forced to have a small time constant. His ideas were first implemented on the
battleship USS New Mezico.

Methods developed for the maritime applications were very useful in the
emerging airplane technology: the first airplane stabilizers appeared in 1914,
while the first autopilot was made in 1926.

Electricity. The wide-spread use of electrical energy for lighting and power
begun in 1870’s with the electric arc lamps, which required regulation of the
gap between the electrodes. Hence, the first electrical feedback systems were
made. For the operation of the arc lamps it was also useful to regulate the
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electrical-current, hence the 1880’s saw the first current regulators. Soon, the
arc lamps were superseded by incandescent lamps which operated best if the
voltage was constant, therefore first voltage regulators were developed. Finally,
in the 1920’s, many smaller generating plants started to merge into national
power grids, hence first frequency controllers were developed, as well as the first
systems to control the stability of these complex systems.

Remarks. Until the 1930’s, the development of feedback control systems
was facilitated by the talent of a small number of inventors. Their methods were
based mostly on practical experience from many trials, and the only available
theoretical tool was the Routh-Hurwitz stability criterion. The next period of
feedback control, its applications in communications, was characterized by the
extensive use of Nyquist criterion, which allowed engineers to determine the
stability conditions without writing differential equations.



1.2 Classical period of automatic control

The most important developments between the 1930’s and the mid 1950’s
were closely related to communications, radar, industrial process control, and
analog computing machines. Several theoretical results had a great practical
impact, among them most important were the stability criterion due to Nyquist
and graphical methods due to Bode, Nichols, and Evans.

Black, Nyquist, and Bode. During the 1920’s H. Black worked at AT&T
on the improvements of amplifiers used in long-distance telephony: the goal
was to decrease the influence of nonlinearities (and thus increase the range and
quality of phone calls) and to increase their bandwidth (to allow more channels
to be transmitted over the same physical line). His 1927 invention of the negative
feedback amplifier (see Figure 1.3) solved both problems at the same time: it
used a high-gain amplifier in the negative feedback configuration and traded a
part of its amplification for linearity, noise reduction, and bandwidth. Black
published his invention in 1934 and explained it as follows:

by building an amplifier whose gain is deliberately made, say 40
decibels higher than necessary, and then feeding the output back on
the input in such a way as to throw away the excess gain, it has been
found possible to effect extraordinary improvement in constancy of
amplification and freedom from non-linearity.

If the open-loop gain |kH (jw)] is large, then the closed-loop gain is

H(jw) 1
1+ kH(w) &k

It is a constant value, even if H(jw) varies considerably with frequency, tem-
perature, or due to variability of components.

Figure 1.3: Negative feedback amplifier.

In order to completely understand the behavior of his amplifier, Black asked
H. Nyquist for help, and as a result, in 1932 Nyquist published a general stability

12
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criterion. It uses measurements of the amplifier’s open-loop frequency charac-
teristic to determine the stability of the closed-loop system®. In our notation
the Nyquist criterion is:

Plot the measured values of —kH (jw) and their complex conjugate points in
the complex plane for all frequencies from 0 to oo. If the point —1 + jO lies
completely outside this curve the system is stable; if not it is unstable.

In the Nyquist’s original formulation the values being plotted were the values
of kH(jw) and (kH(jw))*, while the critical point was at 1+ j0. It was H. Bode
who introduced the sign change. In 1946 W. Frey extended the formulation to
cover the systems with unstable open-loop characteristics.

In 1938 A.V.Mikhailov gave a superficially similar stability criterion which
required the knowledge of the characteristic polynomial of the closed-loop sys-
tem:

For a closed-loop system with the characteristic polynomial

a(s) = ags™ + a;s" !

+...+ap_18+an

plot a(jw) in the complex plane, where w varies from 0 to co. The system is
stable if and only if this curve describes a positive angle of nw /2 radians around
the origin, without passing through it.

In further attempts to flatten frequency responses of amplifiers and sharpen
the cut-off edges in frequency responses of filters, H. Bode discovered the limits
on how far one could go. In the same 1940 paper in which he introduced
the famous Bode plots and the gain and phase margins, Bode described the
relations between the amplitude of the system’s frequency response and its phase
response:

While no unique relation between attenuation and phase can be
stated for a general circuit, a unique relation does exist between any
given loss characteristic and the minimum phase shift which must
be associated with it.

Servo-mechanisms and radars. During the 1930’s there had also been
great advances in the theory and practice of servo-mechanisms. The design
of servo-mechanisms was critical for the war effort, especially for the devel-
opment of radar-controlled anti-aircraft guns. The methods based on solving
or simulating differential equations were inadequate for this purpose and the
frequency response methods, first used by communications engineers, were in-
troduced to this field. Writing on the involvement of the Bell engineers in this
work, W. Weaver commented:

3See Problem 3.4.12 for more information about this fascinating history.
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if one applies the term “signal” to the variables which describe the
actual true motion of the target; and the term “noise” to the in-
evitable tracking errors, then the purpose of a smoothing circuit is
to minimize the noise and at the same time to distort the signal as
little as possible.

During the World War II important innovations came out of the MIT Radia-
tion Lab. They designed the first completely automated (auto-track) radar sys-
tem for the anti-aircraft gun control, the SCR-584, and introduced the Nichols
charts (decibel-phase-angle diagrams). One of the proposed methods to predict
the future target position (typically 20-30s into the future) was the theoretical
work of N. Wiener. He proposed the use of the statistical properties of the target
tracking signal to estimate its future value from imperfect measurements:

Given measurements f(t—7) for 7 > 0 and knowing that f(t—7) is a sum of
the actual target position s(t — 1) and the noise n(t — 7), the task is to estimate
s(t + At) for some At > 0. Wiener assumed a linear solution: §(t + At), the
estimate of s(t + At), was supposed to be a linear combination of the available
measurements:

§(t+ At) = /b h(r)f(t — ) dr

a

The “coefficients” h(t) in this linear combination can be viewed as the impulse
response of the predictor circuit. To further simplify the solution, the best h(t)
s assumed to be the one which minimizes the mean-square error of estimation.
The solution also assumes the knowledge of the following correlation functions:
r4(T), the auto-correlation of f(t), and r4(7), the cross-correlation of f(t) and

s(t).

The minimization of the mean-square error

T b 2
%&%KT (s(t+At)-—/a h(T)f(t—T)dT) dt

leads to the following integral equation of the Wiener-Hopf type:

/b rir(t = T)A(T) dr = r45(t + At)

The limits in the convolution integral are one of the following:

1. a = —00 and b = co (noncausal filter: interesting for image processing or
off-line filtering of data)

2. a =0 and b = oo (the case studied by Wiener: the predictor is causal and
uses measurements from a semi-infinite interval)

3. a =0 and b < oo (the case studied by N. Levinson: causal predictor with
measurements only from the recent past)
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The first case can be solved using the Wiener-Khinchin theorem, which re-
lates the correlation functions with the power spectral densities of the corre-
sponding signals via the Fourier transform. Thus, the transfer function of the
predictor is obtained as

s N Sps(Jw)
H{jw) = Syt (Gw)

where Sys(jw) is the cross-power spectral density of f(t) and s(t + At), while
Syr(jw) is the power spectral density of f(t).

The second case .is the most difficult to treat theoretically: it involves fac-
torization of functions into purely causal and stable and purely anticausal and
stable parts. The transfer function of the causal Wiener predictor is given by

+
1 [8ptw)
B9 = 5250 [S,r,(m]

where the + and — signs here denote the causal stable and the anticausal stable
parts of the function, respectively.

The third case was studied by Levinson in order to simplify the design of the
causal Wiener filter. His assumption b < oo was not only more realistic than
b = oo, but also led to a simpler derivation of the optimal filter coefficients.
Levinson first discretized the equation for the estimate as the linear combination
of the measurements:

M-1
slk+ 1= hli]flk—1]

=0
The probabilistic arguments then yielded the Yule- Walker equation
Ryth=p
where Ry; is the auto-correlation matriz of the sequence of measurements f[k,

h is the vector of predictor coefficients (in discrete-time this is the same as the
impulse response of the circuit)

h=[h[0] A[1] ... R[M ~ 1]}

while p is the cross-correlation vector of sequences f[k| and s[k+1]. The solution
is then

_ p-1
h-Rffp

The Toeplitz structure of Rys can be used to simplify its inversion (Levinson’s
algorithm).
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Wiener’s theory, when applied to actual radar-controlled guns in 1942, proved
to be only marginally better than the existing techniques, most likely due to
the lack of reliable data to calculate the correlation functions rzf(7) and rg(7)
and to the initial assumption that the solution was a linear function of mea-
surements. It was not used during the World War II, but the manual originally
written by Wiener in 1942 (declassified and published along with two explana-
tory papers by Levinson seven years later) Eztrapolation, Interpolation, and
Smoothing of Stationary Time Series, proved to be very influential among the
communications engineers. Wiener’s idea to use statistics to deal with noise
flourished in the control theory only when in 1960 R. Kalman reformulated the
problem in the language of state-space models and found a recursive solution
(more will be said in Chapter 2).

After the war. Due to the importance of the automatic control for the
design of anti-aircraft guns, torpedoes, guided missiles, and autopilots, this
discipline greatly advanced during the war, but was shrouded in a veil of secrecy.
After the war, the restrictions on publication of the war-time results and design
techniques were lifted. The frequency methods emerged as a universal technique
for design of a wide variety of systems: mechanical, electro-mechanical, and
electronic devices and quickly found new applications in industry.

In 1948 W. Evans introduced the root-locus method, which is used both as
a stability analysis tool — it graphically displays the positions of the system’s
poles — and a design tool — it also shows how the poles are shifted as the gain
changes. The root-locus method requires the knowledge of the open-loop poles
and zeros and graphically shows the positions of the closed-loop poles with the
gain as parameter.

Discrete-time systems. The need to theoretically analyze the discrete-
time techniques arose from the fact that most of the radar systems used pulse
signals. Also, as we saw with Levinson’s approach to the Wiener problem,
discretization of equations can simplify the treatment of a problem, and allow
the use of digital computers for numerical calculations.

Around 1942 W. Hurewicz showed how to apply the Nyquist stability anal-
ysis to sampled-data systems. This work led to the z-transform methods devel-
oped by J. Ragazzini and L. Zadeh in 1952.

It was quickly recognized that for a discrete-time system to be stable, all
roots of its characteristic equation had to lie inside the unit circle in the com-
plex plane. The general test for a polynomial with complex coefficients to have
all roots inside the unit circle was given independently by I. Schur in 1917 and
A. Cohn in 1922. In 1961 E. Jury gave a different criterion which becomes much
simpler than the Schur-Cohn test when applied to polynomials with real coeffi-
cients:

Let the characteristic polynomial of a discrete-time system be given by

a(z) =apz" +a2" ' +... +an_1z+ay,
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where coefficients ag, . .., a, are real and ag > 0. All of its roots lie inside the
unit circle in the complex plane if and only if

* lan| <lao|

e a(l)>0 (notethata(l)=ap+a1+...+a,)

o (=1)"a(~1) >0 (note that (~1)"a(~1)=ap —a1 +...+ (-1)"a,)

o For the first-column coefficients in the following table with 2n — 3 rows:

Qn Ap-1 Qpn—2 Qp—3 (R a3 a1 ag
Qo ay az as PN Ap—2 QAp—1 (79
b1 b2 bn_3 bn_4 e by bo
bo by ba bs R by -1
Cn—2 Cn-3 Cn-4 Cn-5 e Co
Co C1 Co Cg L. Cn—2
U3 V2 1 Yo
Vo m (%) V3
w2 w1 Wo
where
a An—1—-1 .
b = " n-l-i i=0,1,2,...,n—1
ag Ait1
bp-1 bp—o—; .
G = n-l T2 i=0,1,2,...,n—2
bo biv1
V3 V2 .
w; = * 1=0,1,2
Yo Vit1

the following inequalities hold:

[bn—1] > |bo |en—2] > [eol |w2| > |wol

Remarks. Between the 1930’s and the mid 1950’s the first great stimulus for
the development of automatic control came from the revolution in the telecom-
munications. Yet, even bigger impetus was given to this discipline by the World
War II. After the war the frequency methods became universally used, but soon
it was realized that different techniques were necessary in order to overcome
the difficulties associated with nonlinearities, model uncertainties, noise, and
the fact that many systems had multiple inputs or outputs. In addition to all
of this, for many systems it was critical that the control was achieved in an’
optimal way with respect to energy; time, or constraints on variables. Thus, in
the early 1950’s the stage was set for the modern control theory.



1.3 Beginnings of modern control theory

The First IFAC (International Federation of Automatic Control) Congress,
held in Moscow in 1960, is usually considered to be the start of the modern
era in automatic control. It brought together the researchers from many coun-
tries, both the East and the West, and allowed them to see the new research
directions that had been brewing during the 1950’s. Particularly influential was
R. Kalman’s paper [24]. In this Section we examine the development of the main
ideas of the modern control theory in their historical order. It will make a lot
of sense for the reader to revisit this Section while working on Chapter 2, where
most of these results will be derived.

State-variable approach. H.Poincare was the first to make an extensive
use of writing the higher-order differential equations as a system of first-order
equations. In 1892 he introduced the phase-plane analysis of (generally nonlin-
ear) dynamic systems:

A second-order differential equation can be rewritten as a system of two first-
order equations
z) = P(z1,12)

T2 = Q(z1,T2)

Then the system trajectories can be sketched in a phase plane (the z1-z5 plane)
from

dzy _ 23 _ Qz1,22)
d.’L'l 11,"1 P(l‘],.’l)g)

For years, the state variables were inherently used in automatic control, in
analog computer simulations. Following the suggestion made by Lord Kelvin
in 1876, the so-called Kelvin’s scheme, analog computers were made using in-
tegrators, rather than differentiators (differentiators amplify the noise, while
integrators tend to smooth it). The outputs of integrators completely deter-
mine the state of the system and are used as state variables.

In 1936 A. Turing was the first to use the states as the representation of a dy-
namic system in his automata theory. In the 1940’s the state-space concept was
introduced to control theory by M. A. Aizerman, A. A. Fel’dbaum, A. M. Letov,
and A.I Lur’e. Additionally, C.E. Shannon used this approach in his informa-
tion theory published in 1949.

The representation of dynamic systems using state variables came to promi-
nence in 1957, through the work of T. Bashkow in network theory and R. Bellman
and R.Kalman in control theory. The state-space approach quickly found ap-
plications in aero-space and military technologies, where, for example, the tra-
jectory of a guided missile can be controlled by several inputs.

18
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Usually, the notation was as follows:

i(t) = Az(t)+ Bu(t)
y(t) = Cx(t)

where u(t) is the m x 1 input to the system, y(t) is its p X 1 output, while z(t)
is an n x 1 vector whose components are the states of the system. Aisannxn
matrix, while B and C are n X m and p x n matrices, respectively. Matrix A is
usually called the system matrix, while matrices B and C are called input and
output matrices.

State-variable feedback. One of the first triumphs of the state variable
description of systems was the realization that while the output feedback, even
if its derivatives were used, could not always stabilize the system, much less put
the poles of the system to specific locations, the state-variable feedback could do
it all. In 1959 J. Bertram was the first to realize that if a system realization was
controllable and observable?, than, using an appropriate state-variable feedback,
any characteristic polynomial could be achieved. His reasoning was based on
root-locus methods.. The first direct proof of this was given by J.Rissanen
in 1960. The following is the 1965 result due to R.W.Bass and I. Gura for
the feedback gain vector which shifts the poles of a single-input system to the
desired locations:

If a system is controllable and observable, its poles can be arbitrarily relocated
using the state-variable feedback w = —k'z. If the characteristic polynomial of
the system is

a(s) =3s" 4+ alsn‘l +...+ap,18+a,
while the desired characteristic polynomial of the system is
a(s) =s"+ a1s™ .t an_18t oy

then witha' = [a1 ... an] and &' = [a1 ... ay), the feedback gain that moves
the poles to the desired locations is given by

kl — (al _ al)a:TC—-l

where the superscript “—T” indicates inverse and transpose, and

1 0 ... 0 0
ay 1 ... 0 0
a— = . . .
an-2 G@p-3 ... 1 0
an—-1 apn-2 ... ap 1
whileC=[B AB ... A" 1B] is the controllability matriz of the system.

4We shall say more about these conditions later, in Chapter 2.
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Optimal control. Another early success of the state-space approach was
Kalman’s procedure for design of optimal control systems [23]:

Consider a linear time-invariant system given by
z(t) = Az(t) + Bu(t)

with the cost function defined by
VaO.ut) = [ @r)Qan +ur)Ru(r) dr

The matriz Q 1is positive semi-definite, while R is positive definite. They
determine the relative cost of state variables and of t'.e control.
The optimal control input is given by

u(t) = —Kz(t)

with K = R™1B'P, where P is a positive definite symmetric solution of the
algebraic Riccati equation

PA+A'P-PBR'BP+Q=0
The closed-loop system with desirable properties is then given by

#(t) = (A — BK)z(t)

This result was immediately applied in the aero-space programs and the
military, like, for example, in planning of the optimal trajectories for space
vehicles.

Other important techniques in the field of optimal control were given by
R.Bellman (dynamic programming, 1952) and L.Pontryagin (the Maximum
Principle, 1956). Their study is beyond the scope of this book, but let us just
mention that all these techniques (Kalman’s, Bellman’s, and Pontryagin’s) are
dual of the calculus of variations, a mathematical discipline developed by Fer-
mat, Newton, the Bernoulli’s, Euler, Lagrange, Hamilton, Jacobi, Weierstrass,
and Bolza.

Kalman filtering. Another great contribution due to R.Kalman was the
reformulation and the solution in the framework of state-space equations of the
Wiener’s problem of signal estimation in noisy environment. His first paper on
this subject [26] dealt with discrete-time systems, while the second paper [28],
co-authored with R.Bucy, solved that problem in the continuous time. The
optimal estimators developed in these papers are called the Kalman filter and
the Kalman-Bucy filter, respectively. In [26], Kalman commented on the duality
between the optimal control and optimal estimation:
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The new formulation of the Wiener problem brings it into contact
with the growing new theory of control systems based on the “state”
point of view. It turns out, surprisingly, that the Wiener problem is
the dual of the noise-free optimal regulator problem, which has been
solved by the author, using the state-transition method to great ad-
vantage. The mathematical background of the two problems is iden-
tical — this has been suspected all along, but until now the analogies
have never been made explicit.

21

Both the optimal control and the optimal estimation reduce to the algebraic

Riccati equation.

Kalman filters were quickly implemented in aero-space and military pro-
grams, because they were perfectly suited for navigation and tracking problems.

Later developments. Since the 1960’s, optimal control, Kalman filtering,
and theory of systems in general, found numerous applications and fruitful con-
tacts with other sciences. Here we give a very brief account of these “later
developments” in the control theory. The choice of the topics presented here is

highly subjective and reflects the research interests of the present authors.

e Robust control. The optimal control problem which was reduced to the

solution of a matrix Riccati differential equation for a fixed time problem
or to a matrix Riccati algebraic equation for an infinite time problem, is
known as linear-quadratic-regulation (LQR) problem. However, the LQR
theory does not deal with two critical issues associated with the design of
feedback-control systems in industrial control problems: sensor noise and
plant uncertainty (see [13] and [34]). In 1961, Kalman and Bucy developed
a state-variable version of the Wiener filter, which allowed for the optimal
estimation of the system state variables from noisy measurements of the
system output. The optimal estimation problem (also known as linear-
quadratic-estimation (LQE) problem) was also reduced to the solution of
a Riccati equation.

Both the LQR and the LQE problems require accurate mathematical
model of the system which is not routinely available and most plant engi-
neers have no idea as to the statistical nature of the external disturbances
impinging on their plant. The H,, optimal control is a frequency-domain
optimization and synthesis theory that was developed to address the ques-
tions of plant modeling errors and unknown disturbances. The basic phi-
losophy is to treat the worst case scenario and the optimization is based on
infinite norm rather than the quadratic norm in LQR and LQE problems
(see [18]).

Biological controls. The importance of control systems engineering in med-
ical and biological applications has grown because of the inherent com-
plexity of biological systems. Although there is no formal definition of
complex systems, H. A. Simon’s concept of complexity is very appropriate
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for biological control systems (see [53]). Complex systems are composed
of subsystems that in turn have their own subsystems, and so on; and the
large number of parts interact in a complicated way so that it is some-
times impossible to infer the properties of the whole from the properties
of the parts and their laws of interaction. Indeed, the analytical models
developed, using control systems engineering tools, for the components
of a biological system have had limited success in predicting the behav-
ior of the overall system for inputs other than for which the model was
developed.

The problems in medical control systems may be classified into two groups:
(1) the physiological control systems in normal or pathological conditions
such as control of electrolytes in the body, arterial pressure, blood sugar,
body temperature, neuromuscular and motor activity, etc. and (2) the ex-
ternal (artificial) control systems that interface with physiological systems
such as artificial kidney or hemodialyzers, heart-lung machines, cardiac
pacemakers, ventilators, implantable pumps for drug delivery, etc. Regu-
lation, control, and system stability are at the heart of the survival of all
living organisms from unicellular to multicellular. W.B. Cannon (1929)
differentiated the stability properties of biological systems from those of
the physical systems, and introduced the term homeostasis to describe the
steady states in the body that are maintained by complex, coordinated
physiological reactions (see [10]). The condition of homeostasis is achieved
either by regular of the inputs (control of blood sugar) or by regular of
the processes (control of body temperature).

o Man-machine systems. Humans interact with machines in many different
situations such as driving an automobile, flying an airplane, controlling a
nuclear power plant, and numerous other activities. As designers of such
machines, we are concerned with the way in which human functions as
integral part of the man-machine system. To predict the performance of a
man-machine system, some representation of the system is required that
allows us to determine how independent variables affect the dependent
variables. To model a man-machine system, we must depict both human
and machine behavior in compatible terms. Since the tools used for such
modeling are from control engineering, it is only appropriate to represent
human behavior in machine-like terms, as opposed to vice versa. The ba-
sic idea is that the human acts as an error-nulling device when driving an
automobile, flying an -airplane, doing just about any other machine inter-
actions. Human performance in such tracking tasks has been extensively
studied and modeled using control terminology (see [52]).



Part II

Solved problems



Chapter 2

Modern control theory

Usually, when speaking about the “modern” automatic control, we think
of that part of the control theory that relies on the state-space approach to
system representation and design. This approach is particularly important for
the systems with multiple inputs and outputs and for the higher-order systems
in general. The “classical” control, characterized by the use of frequency domain
methods, is still preferable for lower-order single-input single-output systems.
Although the adjective “classical” may suggest that this approach is a matter
of the past, it is certainly not. In many cases the most effective attack on a
problem is made by a combined use of both frequency and state-space methods.
That shouldn’t be surprising, because, as T. Kailath says in [22],

transfer functions (or high-order differential equation) descriptions
and state-space (or first-order differential equation) descriptions are
only two extremes of a whole spectrum of possible descriptions of
finite-dimensional systems.

One should also keep in mind that what was modern back in the 1960’s
cannot be modern today. But the revolution caused by the introduction of the
state-space methods in control theory and the influence it still has today were
so big that the word “modern” has become a part of the name of the discipline
(“modern controls”) rather than just an adjective.

We start this Chapter by a discussion of the ways to obtain and write state-
space equations (Section 2.1). We continue by examining the most important
properties of linear control systems: stability, controllability, observability, and
others (Section 2.2). Next, we study the relocation of system poles by the state
feedback and optimal control as a special case of particular interest (Section 2.3).
Finally, we study the state observers and estimators (Section 2.4).
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2.1 State-space representation

In this Section we discuss the state equations and study several convenient
forms to write them in. State equations can be obtained from the input-output
differential equation or by a direct analysis of the system. We also describe
several important forms for state equations. Each of them has some advantage
over the others and we will outline them. We end this Section with formulas for
the system’s transfer function and impulse response in terms of the state-space
matrices and a brief discussion of discretization.

State equations. State equations provide the most complete description
of a dynamic system. They not only specify the relation between the input and
the output, but also tell us about the internal system properties. Most often
the state equations are written in the matrix form:

continuous-time: discrete-time:
z(t) = Az(t) + Bu(t) z[k + 1] = Az[k] + Bulk]
y(t) = Cz(¢) y[k] = Czlk]

where u is the m x 1 input vector to the system, y is its p x 1 output vector,
while z is an n x 1 state vector. A is an n X n matrix, while B and C are n x m
and p x n matrices, respectively. Matrix A is usually called the system matrix
(for continuous-time systems) or the state-transition matrix (for discrete-time
systems), while matrices B and C are called input and output matrices. When
m =1 and n = 1, we write b and ¢’ instead of B and C, respectively.

State-space realizations of the input-output equation. If our goal is
to write a state-space realization for a given input-output differential equation,
for example

Y + a1+ axy + asy = bt + batt + bau
or, equivalently, for a given transfer function, in this case

bls2 + bes + bs
83 +a182 +azs+as

H(s) =

we can use the following set of equations (the so-called controller form):

.’il —-a; —az —ag 1 1
fo] = 1 0 0 T2| + 0] u
:i:3 0 1 0 T3 0
x1
y=[b b b3 ||z
z3

25
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It is an easy exercise to see that this set of first-order equations reduces to the
given differential equation. There are infinitely many other state-space repre-
sentations of this differential equation, for example any other state vector given
by w(t) = Sz(t), where S is a nonsingular matrix, defines another realization.
Such transformations are called similarity transformations (see Appendix C.3).

Another popular form is the observer realization:

i‘l —ay 1 0 I1 b1
:i)z = —ag 01 T2| + bz u
:i?3 —asg 00 I3 b3
3%
y= [ 1 00 ] T2
Z3

The following is a summary of the most commonly used realizations and
their advantages:

o controller (especially useful in the design of the state feedback to place
the system poles to desired positions)

o observer (allows easy reconstruction of the system states from the inputs
and the outputs)

e controllability (particularly suitable for setting the initial states)
o observability (allows for simple determination of the initial states)

e modal or parallel (useful because modes of the system are distributed to
individual states)

We shall see later where the names of these realizations originate. We shall
also see that the controller and the controllability realizations are always control-
lable, while the observer and the observability realizations are always observable.
As always, we shall define these properties first. These realizations always ex-
ist, but unless they are both controllable and observable, there are no similarity
transformations between the controllable realizations on one side and observable
realizations on the other.

State equations of a system. In general, state equations are obtained
from the physical laws which govern the system’s dynamic behavior. Depending
on the basic nature of the system, i.e., whether it is mechanical, electrical,
hydraulic, thermal, or acoustic, we use conservation of energy, conservation of
momentum, conservation of angular momentum, Kirchoff’s laws, Bernoulli’s
law, etc.

The following example illustrates the process of obtaining state-space de-
scription of a moderately complex mechanical system, the inverted pendulum
on a cart: we start from the physical laws which govern it and then linearize
them around the desired operating point.
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Example 2.1.1 In this book we will often use the ezample of the inverted pendulum
on a cart, shown in Figure 2.1. Besides being an interesting system in itself and having
an ideal level of complerity to illustrate many important ideas presented in this book,
it is also an idealized model of several important systems, for example of a standing
human being or of a vertically launched rocket. The equations describing its behavior
are as follows:

(M +m)z + mlf cos 8 — mlé* sin 0 f

mzcos@ +mlf — mgsing = 0

where M and m are the masses of the cart and the bob, [ is the length of the pendulum
rod, z and 0 are the horizontal displacement of the cart and the angle between the
vertical and the pendulum rod (exzpressed in radians), while f is the force applied to
the cart.

Figure 2.1: The inverted pendulum on a cart. This system will be used throughout
this book to illustrate various concepts (Example 2.2.5 and Problems 3.5.11, 3.7.12,
3.9.9, 3.11.4, 3.12.2, 3.13.3, and 4.9.1).

These are two nonlinear coupled second-order differential equations. In order to
write them as four linear coupled first-order equations we need to linearize them. If the
goal is to stabilize the pendulum in the vertical position, we linearize in the neighborhood
of 6 =0, when

sinf ~ 0 and cosf =~ 1

Thus we obtain

= Az + bu
where
z 0 0 1 0 0
] 0 0 01 0
T = 2| A= 0 -me g 0| and b= 1M
é 0 ms g o ~1/M1

while u = f, the external force applied to control the cart and the inverted pendulum.
In the rest of the book we shall assume that the measured variables are z and 0, i.e.,
that

1 0 0 O
y=Cx, where C_[O 1 0 0]
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Solution of state-space equations. In Problems 3.5.4 and 4.5.1 we show
that the solution of state-space equations, the impulse response, and the transfer
function are given for continuous-time and discrete-time systems, respectively,
as follows:

state-space equations:

Az(t) + Bu(t) zlk + 1] = Ax[k] + Bulk]
Cxz(t) yk] = Cz[k]

(2)
y(t)

solution for the state vector:

z(t) = e*'z(0) + (e*'B) * u(t) z[k] = Az + (A*B) * (ulk - 1))

solution for the output:

y(t) = CeAlz(0) + (Ce*'B) * u(t) ylk] = CA*zo + (CA*B)  (u[k — 1))

impulse response:

h(t)=CeA*B  (t >0) hk]=CA*'B  (k=1,2,..)
transfer function:
H(s)=C(sI - A)'B H(z) =C(2I - A)™'B

Markov parameters. Write the transfer function of a continuous-time
system as a power series:

H(s)=Cc(sI - A) b= Zhis_i
i=1

Since

we have
hi =cA"' (i=1,2,..)

These coefficients are called the Markov parameters. Their interpretation is
as follows. Since the impulse response of the system is given by h(t) = c'e4b
and since H(s) = L{h(t)} and H(s) = c'(sI — A)~'b, we see that

di—l
;= —— i=1,2,...
hi= gEph®)| =120
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The Markov parameters are defined similarly for the discrete-time systems:

H(z)=c(zI - A) b= ihiz'i

=1

In this case also h; = ¢ A*~!b (i = 1,2,...), but their interpretation is much
easier to find. Directly from their definition and the definition of the z-transform
of the impulse response, we see that the Markov parameters of a discrete-time
system are the system’s impulse response:

hi =hli] (i=1,2,..)

The Hankel matrix of Markov parameters will often be encountered in our
later discussions:

hi hs .e. hyn
hz h3 e hn+1
hn hn+1 cen h2n—1

We shall find it interesting that this matrix can be written as a product of
two important matrices:

M=0C (2.1)

where O and C are the so-called observability and controllability matrices, re-
spectively:”

d
cdA
O=]. and C=1[b Ab A% ... A™1}
d An-
Indeed,
b cdAb ... dA™ 1

cAb dA%b ... JA™
oc . . .

GAMlh dAPh ... dA2p
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Similarity transformation. Consider a system described by {A;, By, C1 }.
If we introduce a change of variables in its state-space equations described by
a nonsingular transformation matrix S, such that xo = Sz; the new realization
is described by {Az, B, C2}, where

Ay = SAIS‘I By = SB; Cy = CIS‘I

This transformation (called similarity transformation) does not change the char-
acteristic polynomial of the system nor its transfer function. Indeed,

det(s] — As) = det(sSS™1—SA;87Y) = det(S(sI — 41)S™Y)
= det(S)det(s] — A;)det(S™') = det(sI — 4)

and

Co(sI — A3)™'By = 1S 1(sSS!-S54,57Y)"18B,
= 01.9‘15(3[— Al)_IS_ISBl
= C1(8I— Al)_lBl

Since the system’s impulse response is the inverse Laplace transform of the
transfer function, it is also invariant under similarity transformations. Hence,
so are the Markov parameters h; = ¢/A*"1b (i = 1,2,...) and the matrix M.
Another way to see that is as follows:

chAsTby = | STISAISTISh = Al

Eigenvalues, modes, and poles. If \y,..., A, are the eigenvalues of A
(some of them may be repeated) then each state is a linear combination of terms
erit or P
for continuous-time and discrete-time systems, respectively, and, if A; is a mul-
tiple eigenvalue, of terms

teMit, L pmiTlght or k/\f_l, ,k'""_l)\f"l

where m; is the multiplicity of A;. These different terms are called the modes
of oscillation or simply modes.

In general, an arbitrary initial condition will excite all modes of oscillation
(see Problem 3.5.9 for the special initial condition which excites only one mode).
Since

y() =Ca(t) or ylk| = Colk]

some of the modes may never appear in the output, regardless of the initial
conditions or the input to the system. The modes that can appear in the
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output correspond to the poles of the system. Thus, the poles of the system are
those eigenvalues of A that may appear in the output.

This is better illustrated in the transform domain. We do this only in the
continuous-time, because the terminology and ideas are identical in the discrete-
time. The transfer function is given by H(s) = C(sI — A)"'B. If a(s) =
det(sI — A) and b(s) = Cadj(s{ — A)B then

H(s) = X3 - )

T a(s) T an(s)

where a,(s) and b.(8) are coprime polynomials. The roots of a(s) are the eigen-
values of A, while the roots of a,.(s) are the poles of the system. If there are no
cancellations between a(s) and b(s), then a(s) = a.(3), and the eigenvalues of
A coincide with the system poles. Otherwise, all poles are the eigenvalues of A,
but not all eigenvalues are poles. The systems with no cancellations between
a(s) = det(sI — A) and b(s) = Cadj(s] — A)B are called minimal. We shall see
in Section 2.2 that such systems have important properties. For example, they
are both controllable and observable, and their internal and external stabilities
are equivalent.

Finally, let us just mention that one of the reasons the modal canonical
realization is so important, and certainly the reason it is called modal, is that
in this realization each state has modes of oscillation corresponding to only one
eigenvalue. If some of the eigenvalues are repeated, then some of the states
may be linear combinations of more than one mode of oscillation, but they all
correspond to the same eigenvalue.

Example 2.1.2 Given a system in the modal form with the system matriz in Jordan
form

-1 1 0 0 0
0 -1 0 0 0
J= 0 0 -1 0 0
0 0 0 -2 0
0 0 0 0o -3

the corresponding matriz exponential is found as the inverse Laplace transform of

—

1
s+1 (s+1)2 0 0 0
0 lerl 0 0 0
(sI-0)7"' = 0 0 0 o0
0 0 0 ﬁ 0
0 0 0 0 35
which is
e”t te”t 0 0 0
0 et 0 0 0
et=1] o 0 et 0 0
0 0 0 e 0
0 0 0 0 e3¢

An arbitrary initial condition therefore excites only two modes of oscillation in z1(t)
and only one mode of oscillation in each of the other states.
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Discretization. In Problem 4.5.5 we show that if a continuous-time system
given by

#(t) = Azx(t) + Bu(t)
y(t) = Cxz(t)

is discretized using the sampling period T', then its discrete-time version is given
by

z(k + 1]
y(k]

T
G=e2T and H=</ eATdT)B
0

If A is invertible (i.e., nonsingular), then

Gz[k] + Hulk]
Czl[k]

where

H= (T -NA'B
For very small values of T' these formulas can be further simplified:

G~I+AT and H =BT

Example 2.1.3 If the system matriz G of a discrete-time linear system is nilpotent,
i.e., if G™ =0 for some m < oo, then with no input to the system,

z[k] = G*z[0]
hence
zk]=0 (k>m)

Such discrete time systems are called deadbeat systems. There is nothing similar
to this in the continuous-time. If there was a continuous-time system whose discretized
version is deadbeat, it would have all eigenvalues equal to —oco. This is because (as we
show in a Note after Problem 4.7.1) all eigenvalues of nilpotent matrices are equal to
zero, and from

G = eAT
and the Cayley-Hamilton theorem we know that if A is an eigenvalue of A then
T=e

is an eigenvalue of G.
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Example 2.1.4 If a system given by

o[ 8] ]

is discretized with T = 0.5s, the corresponding discrete-time matrices are

_ar _ | 0.6065 0
G=e —[ 0 0.3679]

and (since det(A4) #0)

H=(AT—I)A"'B = [0.3935]

0.3161

The states of these systems are plotted for z(0) = [2 3] in Figure 2.2.

h—

0 0.5 1 15 2 2.5 3 35 4
t[s]
K e T T T T T T T
2 - <
[\
x
1k .
0 D - ), 2}
0 0.5 1 15 25 3 35 4

2
ts]
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Figure 2.2: Plots of both the continuous-time and the corresponding discrete-time

states.



2.2 System properties

In this Section we discuss the most important properties of linear control
systems. First we study stability, especially the stability in the sense of Lya-
punov, and then controllability, observability, and several related properties.
We describe their relation to the canonical realizations studied in Section 2.1.

Stability

Stability is the most important property of a dynamic system. From the
earliest days of control theory it has been realized that the characteristic roots
of the system’s differential equation must have negative real parts, otherwise
the system will either oscillate, go into saturation, or blow up.

External stability. We first discuss two types of external! stability: the
bounded-input bounded-output (BIBO) stability and the marginal stability.
The definitions are general enough to apply to nonlinear as well as linear sys-
tems. The BIBO stability is defined as follows:

Definition 2.2.1 (BIBO stability) A system is BIBO stable if its response
to any bounded input is also bounded.

In Problem 3.6.1 we show that a continuous linear time-invariant system is
BIBO stable if and only if its impulse response h(t) is absolutely integrable, i.e.,
if and only if

/oolh(t)ldt <o
0

In Problem 3.6.2 we show that for the systems with rational transfer func-
tions this is equivalent with the requirement that all poles of the system’s trans-
fer function H(s) must have negative real parts.

If we want to allow the oscillatory system behavior, the concept of marginal
stability becomes useful:

Definition 2.2.2 (Marginal stability) A system is marginally stable if its
impulse response is bounded.

In Problem 3.6.2 we show that the s-domain requirement for the marginal
stability of a continuous linear time-invariant system with rational H(s) is very
similar to the condition for BIBO stability, with the additional “freedom” for
its non-repeated poles, which now may lie on the imaginary axis.

Definition 2.2.3 (Instability) A system is said to be unstable if it is not
marginally stable.

1Both of these types of stability are defined in terms of the system input and the system
output, hence the name external.

34
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Internal stability. Unlike the external types of stability, defined in terms
of the input and the output of the system, the internal types of stability are
defined in terms of the states of the system. In what follows we first define
two types of internal stability. The definitions are general and apply equally to
linear and nonlinear systems. Very much like the BIBO stability, the asymptotic
stability in the sense of Lyapunov does not allow oscillatory modes in the system;
on the other hand, the Lyapunov stability allows such modes. For most practical
purposes the asymptotic stability is much more important than stability.

Consider a general nonlinear time-variable system given by the following
state equation:

&= f(z,1)

States z. for which f(z.,t) = 0 are called the equilibrium points. In general,
a system may have anywhere from one to infinitely many equilibrium points.
For example, linear systems given by & = Az have either one or infinitely many
equilibrium points: if A is nonsingular, the system has only one equilibrium
point, . = 0; if A is singular, the system has infinitely many equilibrium
points. Back to the general case, if for the initial condition z(¢y) the solution
is given by z(t) = s(¢, 0, z(¢0)) and if ||v|| denotes any vector norm of vector v,
we are ready to define the stability in the sense of Lyapunov:

Definition 2.2.4 (Lyapunov stability) An equilibrium state z. of the sys-
tem described by

is said to be stable in the sense of Lyapunov if for every to and every e > 0
there exists 6(¢) > 0 such that ||z(to)|| < 0 implies that for t > to we have
”3(t’t0az(t0)) - we” <e.

In other words, the equilibrium point z. is stable if for each e-neighborhood
S(g) of z. there exists a d-neighborhood S(8) of z, such that if the initial
condition z(tg) is in S(d) then the system trajectory remains in S(e) at all
times. ‘

For the practical purposes the notion of the asymptotic Lyapunov stability
is much more important than stability:

Definition 2.2.5 (Asymptotic Lyapunov stability) An equilibrium z. of

a system is asymptotically stable in the sense of Lyapunov if it is stable in the
sense of Lyapunov and attractive, i.e.,

Jim 8(t, o, z(to)) = z.

If s(¢,t0,xz(to)) converges to z. regardless of z(tg), then we say that z, is
globally asymptotically stable.
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A simple pendulum is an example of a system having a stable but not asymp-
totically stable equilibrium (assuming there is no friction in the system).

Note also that the attractivity of z. by itself (without stability) does not
imply the asymptotic stability [62].

Definition 2.2.6 (Instability) An equilibrium z. of a system is said to be
unstable if it is not stable in the sense of Lyapunov.

The relations between asymptotic stability, stability, and instability in the
sense of Lyapunov are illustrated in Figure 2.3.

unstable

asymptotycally
stable

Figure 2.3: The most important type of Lyapunov stability is the esymptotic Lya-
punov stability. Sometimes it is referred to as simply stebility (cf. [22]). In order to
emphasize the difference, some other authors call these two types of stability asymp-
totic and weak (cf. [44]).

It is also important to note that the trajectories of a system with an unstable
equilibrium point do not have to “blow up” (although that is exactly what
happens with unstable linear systems).

Example 2.2.1 The van der Pol oscillator is described by the following nonlinear
state equations:

i’l = T2
Ly = —a(:cf —1D)xy — 2y
Obviously, . = 0 is an equilibrium. Although the trajectories of the system do not

“blow up” (as can be inferred from the simulation in Figure 2.4), the origin is an
unstable equilibrium. If, for example, we use the Euclidean norm

[lvlle = Vo2 403+ ...+ 02

no & > 0 can be found so that if £(0) is inside the circle of radius & the trajectory
remains within the circle of radius € = 1, or any other circle within the limit cycle of
this system.
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However, the limit cycle is asymptotically stable (although we did not define this
terminology, this statement should be clear). In general it is difficult to define the
stability of nonlinear systems, because they may have a variety of equilibrium points
and limit cycles at once, some stable, others not. As we shall see next, the situation
for linear systems is much simpler.

Figure 2.4: Simulation of the phase-plane for the van der Pol oscillator with a = 0.75.
The dashed circle has radius € = 1. No matter how close the initial state to the origin,
the trajectory will leave this circle. Therefore the origin is an unstable equilibrium.

Next we examine these definitions in the world of continuous linear time-
invariant systems, i.e., for f(z,t) = Az.

Theorem 2.2.1 A continuous linear time-invariant system given by & = Ax is
(a) stable in the sense of Lyapunov if and only if all eigenvalues of A have
negative real parts, except the non-repeated eigenvalues, which may lie on the
tmaginary axis;

(b) asymptotically stable in the sense of Lyapunov if and only if A is Hurwitz,
i.e., if and only if all eigenvalues of A have negative real parts.

Proof. Since the trajectory of the system is z(t) = e4‘z(0), each component
of z(t) is a sum of terms of the form t*e*it, where k =0,1,...,m; — 1, and m;
is the multiplicity of A;, and it is easy to see that the theorem is true. O
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If the origin is asymptotically stable, than according to Theorem 2.2.1,
Re{A;} < 0, hence det(A) # 0, i.e., A is nonsingular, and the origin is the
only equilibrium point of this system. This justifies the following definition:

Definition 2.2.7 A linear time-invariant system without inputs is said to be
asymptotically stable if it has an asymptotically stable equilibrium point at the
origin.

The asymptotic Lyapunov stability is not always equivalent to BIBO stabil-
ity. Recall that BIBO stability is determined by the poles of H(s), while the
asymptotic Lyapunov stability depends on the eigenvalues of the system matrix
A. Since the poles of H(s) are also eigenvalues of A, the asymptotic Lyapunov
stability implies BIBO stability. However, unless all eigenvalues of A are poles
of H(s), including multiplicities, the BIBO stability does not imply the asymp-
totic Lyapunov stability. This happens when there are pole-zero cancellations
in ¢/(sI — A)~'b. We shall see later that no such cancellations occur if and
only if the system is both controllable and observable. Such systems are called
minimal realizations.

Lyapunov’s second method. In his 1892 doctoral thesis, A. M. Lyapunov
generalized the notion of the mechanical energy by introducing what is now
known as the Lyapunov function. Lyapunov’s “second” or “direct” method is
still the most important technique equally applicable to linear and nonlinear,
time-invariant and time-variable systems. It is based on the following theorem:

Theorem 2.2.2 (Lyapunov’s theorem) LetV(z) be a continuously differen-
tiable positive definite function of the system states x(t) defined on a neighbor-
hood D of the equilibrium point . = 0. This function may also be time-varying.
(a) If its time derivative V (z) is negative semi-definite, than this equilibrium
point is stable in the sense of Lyapunov.

(b) If V(z) is negative definite, than this equilibrium point is asymptotically
stable in the sense of Lyapunov. (Such V (z) is called the Lyapunov function.)

Proof of (a). First, we prove part (a) by showing that for any e-neighborhood
S(e) of z, there exists a 6-neighborhood S(8) of z. such that if z(t) € S(d)
then the system trajectory remains in S(¢) at all times.

Recall that “V(z) is positive definite” means V(0) = 0 and V(z) > 0 for
z # 0. Similarly, the phrase “V(x) is negative definite” means V(0) = 0 and
V(x) < 0for z #0, while “V(z) is negative semi-definite” means that V (0) = 0
and V(z) < 0 for all z.

Consider any € > 0 such that S(¢) C D. Denote by a the minimum value of
V(z) on the boundary of S(¢), i.e.,

a = min V(z)
llzll=¢

Since V(z) is positive definite and € > 0 we know that a > 0.
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Now define a new set, D,, as a connected set of states = such that V(z) < a.
If there is more than one such set, select the one containing the origin. In the
following we will show by contradiction that D, is a subset of S(g). First of all,
we know that they have at least one point in common, the origin. Now assume
D, is not completely in the interior of S(¢). Then there exists point P € D,
on the boundary of S(e). For that point we would have V(zp) > a, because a
was defined as the minimum value of V(z) on the boundary of S(¢). But this
contradicts the definition of D,, which requires that V(zp) < a. Hence, D, is
in the interior of S(g). All these sets are illustrated in Figure 2.5.

Since V(z) < 0, any system trajectory originating in D, always remains in
D, and hence in S(¢). This property of D, is very important for the rest of
the proof. Since V(z) is continuous, there exists § > O such that if ||z|| < &
(i.e., z € S(8)) then V(z) < a (i.e., x € D,). In other words, there exists &
such that S(d) C D,. Obviously, any trajectory originating in S(d) will never
leave D, and thus it will never leave S(e). We have just demonstrated that if
the conditions of part (a) of the theorem are satisfied, then for any € > 0 there
exists § > 0 such that if ||z(¢o)|| < d then ||z(t)|| < ¢, i.e., the origin is stable in
the sense of Lyapunov.

( A

L J

Figure 2.5: Ilustration of the sets used in the proof of Theorem 2.2.2. All these sets
are open, hence their boundaries, which represent the sets in this figure, touch each
other and can even completely overlap.

Proof of (b). To prove part (b) we continue exactly where we left off with
part (a). We already know that if V(z) is negative definite then the origin is
stable (this is a special case of part (a), because negative definiteness is a special
case of negative semi-definiteness). To finish part (b) we need to demonstrate
that if V(z) is negative definite then the origin is an attractive equilibrium
point, i.e.,

g7 =0
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We start by showing that under conditions of part (b) we can write
V@) =0

Since V(z) is monotone decreasing and bounded from below by zero, it is
convergent, i.e.,

lim V(z) =¢>0
t—oo

We use the method of contradiction to show that ¢ = 0. Assume that ¢ > 0.
Since V (z) is monotone decreasing, this means that V(z) cannot attain values
below ¢. But if we denote the slowest rate of decrease of V (z) between V (z(to))
and c by — (since c is assumed to be non-zero, we know that —y < 0 because
V(z) is negative definite), then

V(a(t) = V(alto)) + / V(a(r)) dr < V(a(to)) — 7t

We can see that in a finite amount of time V(z) will break the barrier and go
below c. This happens no later than at time ¢, given by

_ Vi) —c
Y

te < 00
This is a clear contradiction to the assumption that V(z) > ¢. Hence, under
the conditions of part (b) of the theorem, V' (z) converges to zero.

To show that this implies the origin is attractive, we use contradiction again.
Assume that z(t) converges to some point other than the origin or that it does
not converge at all. Then, since V(z) is continuous and V (z) = 0 only for z = 0,
this function would not converge to zero either.

Thus, the origin is not only stable, but also attractive, and hence it is an
asymptotically stable equilibrium point. m}

As we showed in part (a) of Theorem 2.2.2, if V(z) is negative semi-definite,
the origin is stable. But, if V() does not vanish along any system trajectory
z(t), the origin is asymptotically stable in the sense of Lyapunov. If V(z) is
positive (semi-)definite, we can similarly conclude that the origin is unstable. If
V(z) is indefinite, so is our knowledge of the system stability: we need to try
some other candidate for the Lyapunov function.

Lyapunov’s stability for linear systems. Let us apply Theorem 2.2.2 to
linear time-invariant systems. We shall first consider the continuous-time case
and then describe how the same ideas apply to the discrete-time case. In the
Lyapunov stability analysis it is assumed that there is no input to the system,
hence in general

T = Az
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For linear time-invariant systems it is sufficient to reduce the choice of candidate
Lyapunov functions V(z) to positive definite quadratic forms. Any positive
definite quadratic form can be written as

V(z) =z'Pzx

where P is a positive definite symmetric matrix. Then the time derivative of
V(z) is given by

V(z) =z'(A'P + PA)z

If Q = —(A'P + PA) is positive definite, then V() is negative definite, and
the system is asymptotically stable in the sense of Lyapunov. If @ is positive
semi-definite, the system is guaranteed to be stable. Since the Lyapunov’s
theorem provides only sufficient stability conditions, the system still may be
asymptotically stable. To prove this we need to find a better choice for P. An
alternative approach in cases with @ a positive semi-definite matrix is to try to
show that for any system trajectory we have V(z) Z 0. That would also prove
that the system is asymptotically stable.

Example 2.2.2 A simple pendulum with friction is described by the following two
equations (assuming small amplitude oscillations, so that sinz; = z1):

£ = 2

. g
T2 = —'l—.’tl - ‘;n—.’l.‘z

A natural candidate for the Lyapunov function V(x1,z2) is the total energy of the
system:

1 1
V(z1,22) = Emgle + Emlzxg

In that case
V (21, 22) = mglz1d1 + mlPeads = —kl2z2

Obviously, V(z1,z3) is negative semi-definite, which guarantees only stability. But
a pendulum with friction is asymptotically stable. Hence we either need a better can-
didate for the Lyapunov function or we need to show that on the system trajectories
V(x1,22) = 0 only when both £1 =0 and 22 = 0. Since V(x1,22) = —ki*z3, in order
for this time derivative to be zero and stay zero, x2 must be zero and it has to stay
there, so £2 = 0. But then the system equations imply that 1 must also be zero. This
proves the asymptotic stability of a simple pendulum with friction.

Showing that V(:c) # 0 on the system trajectories or finding an appropriate
matrix P may be difficult. Fortunately, there is also a third approach, based on
the following result due to Lyapunov:
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Theorem 2.2.3 Matriz A is Hurwitz if and only if for any given positive def-
inite symmetric matriz Q there exists a positive definite symmetric matriz P
such that A'P + PA = —Q. If A is Hurwitz, P is unique.

Proof. If A is Hurwitz, i.e., if all of its eigenvalues have negative real parts,
then the following integral exists:

o 1
P= / eAtQet di
0

It is easy to see that this P satisfies the Lyapunov equation A'P + PA = —Q:

A'P+ PA

0 I oo 1
/ A'eAtQeAt dt + / eV'QeAtAdt
0 0

- /0 w% (4 Qet) at
(eA’thAt) ':" = —Q

As long as @ is positive definite and symmetric, so is this integral. In addition,
this is the only solution of the Lyapunov equation. This can be proved in
many ways, for example by contradiction. If P, # P, are two solutions of
A'P+ PA=-Q,then A’/P, + A= ~Q = A'P, + P, A, hence

AI(Pl - Pg) + (Pl - P2)A = 0

and

d I
d_t (CA t(Pl - Pg)eA") =0

Therefore e4't(P; — P,)eAt = const. In special cases t = 0 and ¢t — 0o, since
A is Hurwitz, we have

P -P = tll)rgo eA’t(Pl —P)edt =0

This is in contradiction with the initial assumption P; # P,, so the solution
must be unique.

The fact that,the existence of positive definite solution P of A’P+PA = -Q,
where Q is any positive definite symmetric matrix, implies that A4 is Hurwitz,
follows directly from Theorems 2.2.1 and 2.2.2 with V(z) = z'Pz and V(z) =
—z'Qz. m]

In this approach we start from any positive definite matrix (). The matrix
equation we need to solve is called the Lyapunov matrix equation. Since P can
be assumed to be symmetric before we solve the equation, this matrix equation
represents a system of ﬂ%ﬂl linear equations in coefficients of P, where n is
the system order.
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Example 2.2.3 Let us apply this approach to the pendulum with friction described in
Ezample 2.2.2. If the time derivative of V(z1,x2) is given by, for ezample,
V{1, z2) = ~gklz? — kl*z3

the corresponding matriz Q) is
_ gkl O
Q= [ 0 ki? ]

With

0 1
4= [ -9/l —k/m ]

the Lyapunov equation A'P + PA = —Q has a unique symmetric solution

mgl + %‘nz Lk1?
P =

1772 2
'ikl mil
It is easy to verify that P is positive definite:
272

mgl + L >0 and det(P) = m?gl® + L >0
2m 4

Note that it is sufficient to solve the Lyapunov equation for only one positive definite
matriz Q. We shall often do that for Q = I, the identity matriz.

Stability and linearization. Historically, one of the first applications of
the Lyapunov stability theory was in the theoretical investigations of lineariza-
tion and stability. Since many linear models are actually linearized models of
nonlinear systems, this is a very important topic.

If a nonlinear system is given by

&(t) = f(z(t))
its linearized model around the equilibrium point z. is found by writing z(t) =
z. + z(t), where z(t) denotes perturbations around the equilibrium. The lin-
earized model is obtained from the Taylor series expansion of f(z(t)) around
T =T
f(2() = f(ze +2(1) = flze) + Az(t) + r(2(2))
where A is the Jacobian matrix of f(z(t))
A = 9fi(z)
B:Ej T=1e
while r(z(t)) is the linearization error such that r(z) = 0(2?), i.e.,
o @I _

m
llzli—o ||2|l
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Since 2(t) = £(t) and f(z.) = 0, neglecting any terms of second or higher orders
yields the linearized model

2(t) = Az(t)
Lyapunov and Poincare proved the following theorem:

Theorem 2.2.4 If the linearized system is asymptotically stable, then the orig-
inal nonlinear system is also asymptotically stable under sufficiently small per-
turbations.

Proof. Suppose A is a stability matrix and consider the following candidate
for the Lyapunov function of the original nonlinear system

V(z(t)) = 2/ (t)Pz(t)

where P is the unique symmetric positive definite solution of the Lyapunov
equation AP + PA' = —1. Then

V((t) = —2'(t)z(t) + 2+ (2(t)) P2(t)
2r'(z(t))Pz(t)
= -2 1- ——"
00 (1- 550
Since r(z) = O(2?), for sufficiently small perturbations z(t), this time deriva-
tive is negative, hence the nonlinear system is asymptotically stable. a

Stability of discrete-time systems. The fundamental ideas of the stabil-
ity theory are the same for the discrete-time systems as for their continuous-time
cousins. The only two differences are:

o The locations of the system eigenvalues allowed for stability. For example,
a discrete-time system is asymptotically stable if and only if all roots
of its characteristic equation lie inside the unit circle, i.e., if and only if
Al <1 (E=1,2,...,n).

o The form of the Lyapunov equation. To derive the discrete-time Lyapunov
equation, consider a discrete-time linear time-invariant system given by
zlk + 1] = Az[k]. If V(z[k]) is a positive definite quadratic form rep-
resented using a symmetric positive definite matrix P, i.e., if V(z[k]) =
z'[k] Px[k], then

AV (z[k]) = V (z[k + 1]) — V(z[k]) = 2'(A'PA — P)z

With Q = —(A'PA — P), the requirement for asymptotic stability is that
@ must be positive definite or at least positive semi-definite with the con-
dition that AV (z[k]) # 0 along any possible system trajectory. Therefore,
the discrete-time Lyapunov equation is

APA-P=-Q
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Controllability, observability, and minimallity

The most important properties of dynamical systems are stability, controlla-
bility and observability. Unlike stability, which was among the first topics to be
studied in control theory, the investigation of controllability and observability
begun only with the emergence of state-space approach, in the late 1950’s.

We start by defining controllability and observability and continue by inves-
tigation of several equivalent conditions that guarantee them. Finally we discuss
the minimallity of systems. Through these discussions we also introduce sev-
eral commonly used system realizations: controllability, controller, observability,
observer, and modal forms and explore the duality between controllability and
observability. We define these properties for both continuous- and discrete-time
systems. We will emphasize any differences, but if no special reference is made
to either type of systems, the reader may safely assume we refer to both.

State controllability. The question of whether or not we can drive a system
from any given state to any desired state, and do that in a finite amount of
time, arises in many diverse control problems: setting up the initial conditions
in simulations; determining if the system itself allows any control law to be
effective; system stabilization; optimal control; minimallity of systems.

Definition 2.2.8 (State controllability) A system is state controllable if a
proper input can drive it from any given state to any desired state in a finite
amount of time.

In Problems 3.7.1 and 4.7.3 we prove the following theorem

Theorem 2.2.5 A system described by {A,B,C} is state controllable if and
only if p(C) = n, where C is the controllability matriz given by

C=[B AB A’B ... A"'B]
and n is the order of the system.

For single-input systems this is equivalent to det(C) # 0.

Controllability-from-the-origin and controllability-to-the-origin.
A system is controllable-from-the-origin or controllable p.s.f.0. (pointwise state
from the origin) if an appropriate input can drive the system from the origin
to any desired state in a finite amount of time. This property is equivalent to
state controllability and is often called reachability.

A system is said to be controllable-to-the-origin or controllable p.s.t.o. (point-
wise state to the origin) if an appropriate input can drive all of its states to the
origin in a finite amount of time. For continuous time systems this property is
equivalent to the state controllability. For discrete-time systems (as we show in
Problems 4.7.1 and 4.7.2) state controllability is sufficient but not necessary for
this property. If det(A) # 0, these two properties are equivalent in the discrete-
time too. For historical reasons this property is often called controllability, but
we do not use this name in order to avoid any confusion.
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Controller canonical realization. The controller realization is one of
several most popular realizations, commonly called canonical forms. In order to
make our discussion definite, we shall concentrate here on the continuous-time
systems, but everything applies equally to the discrete-time systems as well.
The controller realization of

_ b(B) _ blsnm1 +b28"_2 +...+bp_18+ b,

H = —7 =
(s) a(s) s"+ars"l4a8"2+...+an-18+a,

is defined by

—a; ... —Qp_1 —an 1
1 . 0 0 0

A, = . . . . and b, =
0o ... 1 0 0

Matrix A. is a companion matrix. General properties of companion matrices
are discussed in Appendix C.3.
The components of ¢, = [cc1 Ce2 -.. Cen] are uniquely determined because

Y (s) ce1X1(8) + ccaXa(8) + ... + cenXn(8)

(ccl/s-i-ccg/s?+...+cm/s")U(3)
1+a1/s+as/s?+...+a,/s
n—1 n—2
Cc18 j—Cc23 _42'---+Ccn U(S)
"+ a18" L 4+as"2+...+ay,

therefore
c’c=[b1 by ... bn]

Example 2.2.4 In Figure 2.6 we show the signal flow diagram of the controller real-

. . 249
ization of H(s) = syrstrtars -

Figure 2.6: Controller realization of H(s) = ;ﬁ;ﬁza—”.
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Controllability canonical realization. Another canonical form is the
controllability form, defined by

o0 ... 0 =-—a, 1

1 ... 0 —Qn—1 0
Aco = .. . . and = b, =

0 ... 1 -o 0

In order to determine ¢, we first show that the controller and the control-
lability forms are similar through a transformation given by? S = a’, where

1 0 ... 0 O
a1 1 ... 0 0
a=|:
Ap—2 QAaAp-3 ... 1 0
Qpn_—1 Qp-2 ... Q1 1

Indeed, from b, = Sb. we find that the first column of Sis [1 0 ... 0]'.
Using this, from A;,S = SA. we can easily find a recursive relation for the jth
column of S in terms of the (j — 1)th column:

01,5 aj-1

02,5 01,51

035 | = | 92,41 (G=23,...,m)
On,j On—1,j-1

Then ¢, = c.S™ L =[by ... by]a=”. Since [hy ... hy]al =[by ... by is just
another way of writing the definition of Markov parameters and det(a_) #0

o

Z his_i = 9(—3)-

& T
we find that

c,co = [h1 h2 e hn] (22)

Controllability and similarity. Let us now show that if a realization
given by {Ai,B;,C1} undergoes a nonsingular similarity transformation into
{Az2, B, C2}, the (un)controllability of the system is not affected. This is be-
cause

p(C2) p((B: A:Bx ... A}7'By))
p({SB1 SAS7'SB, ... SA}'S7'SB: )

p(SC) = p(Ch) (since S is nonsingular)

I

2In order to simplify the notation, we occasionally use the superscript T' to denote the
matrix transpose (cf. Appendix B.4).
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This analysis gives us a hint on how to determine the similarity transforma-
tion between the two given order-n controllable realizations of H(s). We have
just seen that if we assume that this transformation exists, then

C,=SC e, S=0CCp!

We can show its existence for any two controllable, same order realizations
of H(s) directly, by showing that with S = CoC;! we have Ay = SA;S!, By =
SBy, and Cz = C1 571, but the following proof is simpler. In Problem 3.8.5 we
show that S¢o1 = Cf ! transforms a controllable, order-n realization {A1,B1,C1}
of

b(s)  bys™ l4+bos™2+...+by 18+ b,

H(3)=—%=
(s) a(s) s"+ais" l+as"2+...+a,-18+a,

into the controllability form. Obviously, there is only one such order-n form
for any transfer function. Therefore, any other controllable, order-n realization
{A2, B3, C>} of that transfer function will be transformed into the same control-
lability realization with Sco2 = C5 L Finally, to go directly from {4;,B;,C1}
to {Asz, B2, C2} we can use

S = 871800 = CoCi? (2.3)

Controllability matrices C. and C.,. The formula for the similarity trans-
formation between any two controllable realizations can be used to determine
the controllability matrices for the controller and the controllability forms.

e Controllability matrix of the controllability form: It is easy to see that
Cco = I, either by looking at the first column of the powers of A., or even
simpler, from the fact that the transformation into the controllability form
is given by C;! and, by the general formula we just proved, it is given by
CcoCr ', Therefore

Coo=1 (2.4)

o Controllability matrix of the controller form: Likewise, knowing that the
similarity transformation from the controller to the controllability form is
given by a’ and that by the general formula it should be C.,C.!, where
Cqo = I, we find that

c.=aT (2.5)

The similarity transformation from any controllable realization into the cor-
responding controller form is then given by

s=ccrt (c.=a")

We illustrate these relations in Example 2.2.5:



2.2. SYSTEM PROPERTIES 49

Example 2.2.5 In Problem 8.7.12 we show that the inverted pendulum on a cart
(first described in Ezample 2.1.1) with m = 0.102kg, g = 9.81m/s%, M = 1kg, and
1=0.5m, i.e., with

0 0 1 0 0
_lo o o 1 1o _[1 0 0 o
A=140 21 0o o b=} and C_[0100]
0 216 0 0 -2

1s controllable because its controllability matriz
C=[b Ab A% A% = [

has a full rank.
The characteristic polynomial of this system is

a(s) = det(sI — A) = s* —21.65°

1 0 0 0 1 0

a_ = [ ap 1 0 0 } — [ 0 1

- az Gt 1 0 —~21.6 0
ar 1 0 —21.6

The transformation into the controller form is given by

Therefore

oo 0o

-0 oo
_

s

0 0 0 —0.5000
_ a=Tp—1 _ 0 —0.5000 0 0
S=a’ic = 0 0 —0.0510 —0.0255
—0.0510 —0.0255 0 0
Indeed,
0 216 0 0 1
-1_|1 0o o0 o _]o -1_Jo 1 o -1986
SAS—OIOO,Sb—O],andCS—[O200]
0 o0 10 0
Note that

52 —19.6
—2¢2

H(S) = C(SI - A)_lb = m

Finally, we can calculate C. to verify it is equal to a-7 :

.6 0
21.6

0

1

1 2
_ 2 3 _ 0
Ce= [bc Acbe Acbc Acbc] - |: 0
0

oo
o~or

which is indeed a~ 7.
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State observability. Very much like the basic problem of controllability
(determining whether or not an input can be designed to appropriately control
the system), the question of whether or not we can determine the states from the
output measurements arises in many practical and theoretical problems: deter-
mination of initial conditions of the individual states from the initial conditions
for the system output; state observation; state estimation; minimallity.

Definition 2.2.9 (Observability) A system is said to be observable if its state
at some time to can be determined from the values of the system’s output over
a finite time interval [to,ts].

In Problem 3.7.5 we prove the following theorem

Theorem 2.2.6 The necessary and sufficient condition for observability of the
system given by {A, B,C} is p(O) = n, where O is the observability matriz
given by

CA

car
and n is the order of the system.

For single-output systems this is the same as det(O) # 0.

Duality. It is very interesting and extremely useful to note the duality
between controllability and observability.

Theorem 2.2.7 A system given by {A, B,C} is observable if and only if its
dual system, described by {A',C', B'}, is controllable.

Proof. Compare the observability and controllability conditions for systems
{A,B,C} and {A',C’, B'}, respectively. O

This theorem will allow us to prove many theorems for observability by sim-
ply noting that they are dual to the theorems already proven for controllability.

Constructibility. What is the dual property to the controllability-to-the-
origin? Recall that in the continuous-time the controllability-to-the-origin was
equivalent to p(C) = n, while in the discrete-time it was equivalent to p(C) =n
if and only if det(A) # 0. Otherwise, p(C) = n was only a sufficient condition,
it was not necessary.

It turns out that the dual to this situation in the “observability world”
is the property called constructibility. A system is said to be constructible if
its state at some time t; can be determined from the values of the system’s
output over a finite time interval [¢g,ts]. Note that for observability we must
be able to determine the states from the future values of the output, while
for constructibility this is done from the past values of the output. Relations
between these properties are illustrated in Figure 2.7.
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controllability-from-the-origin dual ,,
( (reachability) ] ——Observ ability

N NG
I I see the caption see the caption I
\/

[constructibility]

controllability-to-the-origin dual
("controllability")

Figure 2.7: Illustration of the equivalence and duality relations between various sys-
tem properties. For the discrete-time systems the equivalences hold if and only if the
system matrix is nonsingular, otherwise they are only downward oriented implications.
For continuous-time systems they are always equivalences.

Observable realizations. Just like in the case of controllability, any two
order-n observable realizations {A;, B1,C1} and {A2, By, Cs} of H(s) are simi-
lar, and the corresponding transformation is found from O, = ©; S, therefore

5 =070, (2.6)

The dual realizations to the controllability and controller realizations are the

observability and observer realizations, respectively. According to our duality
relations the observability realization is given by

Ay = Ag B, = C.

co

and Cob = B::o

o
while the observer realization is given by
A, =A, B,=C. and C,=B,.

For the observability realization we have

Op =1 (2.7)
while for the observer realization
0, =a’! (2.8)
where
1 0 0 0
ay 1 0 0
a=|:
ap_2 Qp_3 ... 1 0

Ap-1 Qp—2 ... a1 1
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Minimallity and joint controllability and observability. Up to this
point we have considered the controllability of realizations of H(s) separately
from their observability. The realizations that are both controllable and observ-
able are the most desirable and we will now explore some of their properties.
By now we have learned that for any H(s) there are infinitely many controllable
realizations and infinitely many observable realizations.

The next question is if a controllable realization of H(s) can be observable
while another is not? In general, the answer is yes, as we shall see in the next
example. However, if we limit the discussion to the realizations of the same
order, the answer is no: the set of controllable realizations of H(s) is either
identical to or completely disjoint from the set of its observable realizations.

Example 2.2.6 Consider the transfer function given by

s+5
s34+ 8s2+17s+ 10

An order 3 controller realization of H(s) is given by

L) -8 —-17 -10 T1 1
T2| = 1 0 0 z2l + |0]| u
T 0 1 0 T 0

z1
y=[0 1 5][1:2
T3]

H(s) =

The controllability matriz in this case is

1 -8 471
C=1]0 1 -8

0 0 1]

and since det(C) = 1 # 0, this realization is controllable. Its observability matriz is

0 1 5
1 5 0

-3 -17 -10

O =

and since det(O) = 0, this realization is not observable. If we note that the numerator
and the denominator of H(s) have a common factor, we can write

s+ 5 1 1

HO) = D6+ 06+9 ~ GFDG+D - P+ +2

This is the irreducible form of H(s) and the corresponding realizations are said to be
minimal realizations of H(s). The minimum order controller realization of H(s) is

AR I

v=lo 11
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The controllability and observability matrices in this case are

1 -3 0 1
C—[O 1] and (9:[10]

respectively. Since det(C) = 1 # 0 and det(Q) = —1 # 0, this realization is both
controllable and observable.

We shall soon see that there is a very tight connection between minimallity
and joint controllability and observability. In fact we shall see that they are
equivalent, but let us finish what we have already begun. In order to show that
among the realizations of H(s) having equal orders either all or none of the
controllable realizations are observable, recall the following two facts:

o All controllable realizations of H(s) with equal orders are related through
similarity transformations.

o Similarity transformations preserve observability.

Therefore, if any controllable order-n realization of H(s) is observable, so are all
other controllable order-n realizations. Also, if any controllable order-n realiza-
tion of H(s) is not observable, none of them are. By duality, if any observable
order-n realization of H(s) is controllable so are all other such realizations and
if any observable order-n realization of H(s) is not controllable, neither are the
others.

Furthermore, if there exists an order-n realization of H(s) that is both con-
trollable and observable, then any other order-n realization of H(s) is both
controllable and observable. Indeed, recall that for a given H(s) and given
order of realizations n, there is a unique Hankel matrix of Markov parameters

hi1  hs ee. hy

ha hs ver hpna
M= . . . .

hn hn+1 N h2n—1

Recall also that for any order-n realization of H(s) we have OC = M. Hence,
if {A1, By, C1} is jointly controllable and observable order-n realization of H(s)
and {Ag, By, C>} is any other order-n realization of H(s), then from

0161 = M = 020

we see that the nonsingularity of C; and O, implies the nonsingularity of C2 and
Os. Therefore, any other order-n realization of H(s) is jointly controllable and
observable if one of them is.

Are there any realizations of H(s) which are neither controllable nor observ-
able? The following example answers that question affirmatively.
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Example 2.2.7 Consider the following transfer function:

252 +125+ 16

He) = sige 105+ 12

The following realization is neither controllable nor observable:

REEEENT
-t o

Note that the irreducible form of H(s) i Griiarsy-

Let us formally define the minimallity and use the previous discussion to
prove several important results about minimallity, controllability, and observ-
ability.

Definition 2.2.10 (Minimallity) A realization is said to be minimal if no
other realization of the same transfer function has lower order.

One of the most important properties of minimal realizations is the equiv-
alence of internal types of stability to their external counterparts. This follows
from the fact that the realization {A,b,¢'} is minimal if and only if there are no
pole-zero cancellations between b(s) = c'adj(sI — A)b and a(s) = det(sI — A),
and therefore the poles and eigenvalues of the system coincide, along with their
multiplicities.

We already have one practical criterion for minimallity: Realization {A,b,c'}
is minimal if and only if there are no pole-zero cancellations between b(s) =
c' adj(sI — A)b and a(s) = det(s] — A). Another is to use the following theorem,
which establishes the second most important property of minimal realizations,
the equivalence between minimallity and joint controllability and observability.

Theorem 2.2.8 The realization {A,b,c'} of H(s) is minimal if and only if it
is both controllable and observable.

Proof. We shall prove here that the order-n controller realization {Ac, b, c.}
is observable if and only if there are no pole-zero cancellations between b(s) =
cladj(sl — A;)b. and a(s) = det(s] — A.). From what we discussed earlier, this
will mean that the set of controllable order-n realizations is equal to the set of
order-n observable realizations, and furthermore, it covers the set of all order-n
realizations of H(s).

The proof® is based on the “shifting” property of the companion matrices:

eiA. =€} ; (2<i<n)

where €} is the ith row of the identity matrix. By the way, ] A; = [—a; ... — an)].

3We shall see a different proof of this theorem in Example 2.2.9.
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This property is used to show that elb(A.) = cLA?™* (i = 1,...,n). First we
prove the special case i = n:

ehb(Ae) = bieh AT +boel, AV 4+ by_rel Ac + brel,
biey +bses + ...+ by_1€h_1 + buel,
(b1 b2 ... by bn)

/
[

= C

Using this result and the fact that A, commutes with b(A.) we find that for
k=0,...,n-1

en_kb(Ac) = €, AFb(A.) = e, b(Ac)AF = | AL
Therefore

0. = Ib(A.) (2.9)
where [ =[e, ... ei] is the flipped identity matrix.
Now, det(O.) # 0 if and only if det(b(A.)) # 0. Since the determinant of
a matrix is equal to the product of its eigenvalues and the eigenvalues of b(A;)
are b()\;) (1 =1,...,n), where )A; are the eigenvalues of A., we can write
det(b(A.)) = b(A1)...b(Ay)

Hence det(O.) # 0 if and only if b(};) # 0 (¢ = 1,...,n). By definition of

eigenvalues a(\;) = 0 (¢ = 1,...,n), therefore the controller form is observable
if and only if b(s) = cladj(sI — A;)b. and a(s) = det(sI — A;) have no common
factors. a

Example 2.2.8 Let us verify that the controller form is observable if and only if there
are no pole-zero cancellations between b(s) and a(s) for the simple case when n = 2.

In this case
—a1 —a 1 ;
Acz[ 11 02] bc={0] cc=[b1 bz]

The observability matriz is
_ b1 ba
Oc = [ —~a1by +b2 —a2b; ]

det(Oc) = —azb? + aibyby — b

On the other hand a(s) = s® +a1s + a2 and b(s) = bys + bz have a common factor
if and only if the zero of b(s)

and its determinant is

o= 22
b= "4,
is also a zero of a(s), i.e., if and only if

b3 — aibibs + a2b? =0

Obviously, then and only then det(O.) = 0.
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* Uncontrollable and unobservable realizations. Whenever we need

to analyze a general system that may be uncontrollable or unobservable, it
is useful to know that there are similarity transformations into the standard
forms which separate controllable from uncontrollable and observable from un-
observable subsystems. We first discuss the decomposition of a general system
into controllable and uncontrollable subsystems, then the dual decomposition
into observable and unobservable subsystems. There is also a general decom-
position theorem (due to Gilbert and Kalman) which allows us to identify the
following four subsystems: (1) controllable and observable; (2) controllable but
unobservable; (3) observable but uncontrollable; and (4) uncontrollable and un-
observable. We will not consider this most general case.

Let {A,b,c'} be such that p(C) = r < n. Then it can be shown (see for
example [22], p. 131) that there exists a nonsingular transformation matrix
which leads to a new realization {Ag, bz, c;} such that

Acc [ ACE bcc
Ae=| —— + — | be=|—| =lch | c]
0 | Az 0

where Ae. is r x 7, bee is 7 X 1, ¢, is 1 x r, and the subsystem {Acc, bec, ci..} is
controllable. It is easy to verify that the transfer function of this controllable
subsystem is equal to the transfer function of the original system:

(T — Ace)thec

ch(sI — Az)™tbz = [ cl. Chp ] [ =cl (s — Acc) tbee

cc 0
If we partition the state vector
zCC
rg= |——
Tze

then the r states in z.. are said to be controllable, while the n —'r states in s
are said to be uncontrollable.
The dual standard form for unobservable systems is given by

AOO I 0 bOO
Aaz —_ 4 == ba—_— —_— CI—I[CI | 0]
Az | Aso bso
where Ao, is 7 X 7, byo i T X 1, ¢, is 1 x 7, and the subsystem {Aoo, boo, €0} 18
observable. With

Ts5

the r states in ., are said to be observable, while the n — r states in z5; are
said to be unobservable.

4Titles of this and several other Subsections in this Section are marked by asterisks (*) to
let the reader know that the marked material may be skipped in the first reading.
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*PBH tests. We shall use the standard forms for uncontrollable and un-
observable systems in the proof of the PBH controllability and observability
criteria. They were first discovered by Gilbert in 1963 for the case of diagonal-
izable systems, and were later generalized by Popov (1966), Belevitch (1968),
and Hautus (1969), thus the name, PBH tests. They are very powerful theoret-
ical and numerical tool and, as T. Kailath says in [22],

In fact, when faced with problems of checking for controllability
and/or observability, it is a good heuristic rule to first try to apply
the PBH tests.

Theorem 2.2.9 (PBH eigenvector tests)

Controllability: A pair {A,b} is controllable if and only if none of the left
eigenvectors of A are orthogonal to b.

Observability: A pair {¢', A} is observable if and only if none of the right
eigenvectors of A are orthogonal to c'.

Proof. We shall give a detailed proof of the controllability test and call on
the duality to prove the observability test.

“=" If there exists ¢’ # 0 such that
dA=¢d)\ and ¢b=0
then ¢’ Ab = A\¢'b =0, ¢'A%b = A2¢'b = 0, etc., hence
¢C=0
Since ¢’ # 0 this means that C has less than a full rank.
“«<” Assume the pair {4, b} is uncontrollable and, without loss of generality,

assume it is in the standard form for uncontrollable systems (otherwise it can
be transformed into one by a nonsingular transformation)

Aee | Ae bec
A=| —— + —— | b=|-—-
0 | Ax 0

where Ag is r X 7, bee 18 7 x 1, and 7 is defined by p(C) = r < n. One possible
choice for a left eigenvector of A which is orthogonal to b is

¢ =[0]| g

where g, is any left eigenvector of Ag. ]
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Theorem 2.2.10 (PBH rank tests)

Controllability: A pair {A,b} is controllable if and only if

p([sI-A b]) =n for all s

where n is the order of A.

Observability: A pair {c', A} is observable if and only if

p([SIC_,A]) =n for all s

where n is the order of A.

Proof. Again, we shall give a detailed proof of the controllability test and
use duality to prove the observability test. Let p([sI—A b]) = n for all s.
This is equivalent to saying that there does not exist a row vector ¢’ such that
g'[sI—A b =0 for any s, ie., ¢ A = ¢'s and ¢'b = 0, and this, according to
Theorem 2.2.9, is equivalent to controllability of the pair {A,b}. O

Note that in applying the PBH rank tests it is easy to show the full rank for
all s that are not eigenvalues of A, so the main task is to show that the rank
remains n even when s takes the values of the eigenvalues of A.

*PBH tests for MIMO systems. The PBH tests presented in Theo-
rems 2.2.9 and 2.2.10 were formulated for single-input and single-output sys-
tems. The following are more general formulations, given here without a proof:

Theorem 2.2.11 (PBH eigenvector tests for MIMO systems)

Controllability: A pair {A, B} is controllable if and only if none of the
left eigenvectors of A are orthogonal to all columns of B.

Observability: A pair {C, A} is observable if and only if none of the right
eigenvectors of A are orthogonal to all rows of C.

Theorem 2.2.12 (PBH rank tests for MIMO systems)
Controllability: A pair {A, B} is controllable if and only if
p([sI-A B]) =n for all s

where n i3 the order of A.

Observability: A pair {C, A} is observable if and only if

p([SIgA]) =n for all s

where n is the order of A.
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* Applications of PBH tests. Here we show several examples of the power
of PBH tests. First we give a much shorter proof of the fact that the controller
realization is observable if and only if there are no cancellations between b(s)
and a(s) (cf. the proof of Theorem 2.2.8).

Example 2.2.9 (Observability of controller form) Let us use the PBH eigenvec-
tor test for observability to show that the order-n controller realization of H(s) is ob-
servable if and only if there are no cancellations between b(s) = c,adj(sI — Ac)be and
a(s) = det(sI — A.).

From Problem C.3.3 we know that the companion matrices have only one indepen-
dent eigenvector associated with each eigenvalue A (regardless of their muliiplicity):

p=[A"t A2 A%

Thus c’'p = 0 implies b(A) = 0, and since by definition a(A) = 0, we see that the
controller form is observable if and only if there are no common factors between b(s)
and a(s).

Let us determine the conditions for state controllability of a system in the
modal (parallel) form. The modal form is another important realization, char-
acterized by the fact that its system matrix is, in general, in the Jordan form. In
most practical cases the systems have distinct eigenvalues, so diagonal system
matrices are the most important special case. We shall consider both.

Example 2.2.10 (Controllability of modal form) First assume the system has n
distinct eigenvalues, and has only one input to i, i.e., its system matriz is diagonal

Ag = diag(A1, ..., An)

with \i # A; for i # j and the input matriz is n X 1 (hence we write by instead of Ba):

by = [ba1 ... ban]'. Then the controllability matriz is
[ bar badi ... baAT™
9 L baz  ba2A2 ... b,ﬂX';—l
C=[ba Aaba Azba ... Ag_ by] = . . . .
bdn bdn An o bdn Ag—l
Therefore

det(C) = bg1bgz - . . bng()\l, ey )\n)

where V(A1,..., ) = HJ.N.()\]' — X;) is the Vandermonde determinant. Since the
eigenvalues are distinct, V(A1,...,An) # 0, and the system is controllable if and only
if none of the components of ba are zero.

Hence, the modal realization of a single-input system with distinct eigenvalues is
controllable if and only if all components of its input vector are non-zero.

This result is consistent with the following intuitive argument: One cannot expect
to control the system unless all of its states depend on the input. However, as we shall
see in the following, this is not true in the case of multiple eigenvalues.

The previous result can be generalized in two ways: to cover the systems with
repeated eigenvalues and for multi-input systems. To attempt to prove the more general
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criteria directly, like we did with the distinct eigenvalue case, would be very complicated.
As we shall see, the PBH rank test allows a rather simple proof.

The controllability criterion for the general single-input modal form is: The modal
realization of a single-input system is controllable if and only if: (1) no two Jordan
blocks in the system matriz correspond to the same eigenvalue and (2) the elements of
the input vector corresponding to the last rows of Jordan blocks in the system matriz
are not zero.

The proof follows directly from the Corollary C.3.4 and from the PBH rank test for
controllability. The Corollary C.3.4 states that all companion matrices are similar to
Jordan matrices made of Jordan blocks having distinct eigenvalues. To prove part (2)
we use the PBH rank test. It requires that p{([ sI—-A; by ]) =n for all s, where n is
the order of Ay. This is trivially satisfied when s is not an eigenvalue of A;. When
s = Ai, where XA; is any eigenvalue of Ay, the Jordan blocks corresponding to other
eigenvalues are contributing the full rank. The critical block is the one corresponding
to A; so consider that Jordan block and the corresponding components of by (in order
to simplify the notation we assume this block is 3 x 3). For s = A; the rank of

0 -1 0 bs1
0 0 -1 by
0 0 0 bys

must be 3 and this will be true if and only if by,3 # 0. This completes the proof.
Finally, the most general formulation: The modal realization of a system is control-
lable if and only if: (1) no two Jordan blocks in the system matriz are associated with
the same eigenvalue and (2) the elements of rows of the input matriz corresponding to
the last rows of Jordan blocks in the system matriz are not all zero.
The proof also follows directly from the Corollary C.3.4 and the multi-input version
of the PBH rank test for controllability.

* Stabilizability and detectability. In the modal form each state corre-
sponds to one or more modes associated with the same eigenvalue. Since we
can classify the states in the modal form as being either controllable or uncon-
trollable and at the same time as either observable or unobservable, we can do
the same for the eigenvalues and the corresponding modes.

The PBH eigenvector tests allow us to extend this classification to any sys-
tem. Referring to the PBH eigenvector test for controllability we say: If some
left eigenvector corresponding to the eigenvalue )\ is orthogonal to the input vec-
tor b, this eigenvalue and the corresponding modes are uncontrollable. Otherwise
they are controllable. Similarly we can classify the eigenvalues as observable or
unobservable: If some right eigenvector corresponding to the eigenvalue \ is
orthogonal to the output vector ¢', this eigenvalue and the corresponding modes
are said to be unobservable. Otherwise they are observable.

All this will be very important in Sections 2.3 and 2.4, where we discuss
system stabilization using the state feedback. The main conditions for this
technique to work will be controllability (so that the control can be effective) and
observability (so that we can reconstruct the states required for state feedback)
of at least the unstable modes. If an unstable mode is controllable it is said to
be stabilizable. If an unstable mode is observable it is said to be detectable.
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*Transform domain criteria for controllability and observability.
Earlier we showed that the joint controllability and observability of the re-
alization represented by {A,b,c} is equivalent to the coprimeness of b(s) =
c'adj(sI — A)b and a(s) = det(sI — A). We can say that this is the transform
domain test for the joint controllability and observability. Here we shall derive
separate transform domain criteria for controllability and observability.

Theorem 2.2.13 Realization {A,b,c'} is controllable if and only if the ele-
ments of the vector adj(sI—A)b have no common factor with det(sI—A). Simi-
larly, it is observable if and only if the elements of the vector c'adj(sI—A) have
no common factor with det(sI— A).

Proof. Here again we give a detailed proof for the controllability test only
and call on the duality to prove the observability condition:

“=" If the system is controllable it can be transformed into the controller
form {Ac, b, c.} by a nonsingular similarity transformation. It is fairly easy to
see that the first row of adj(sI ~A.) is equal to [s"~! s"2 ... s 1]. Since
b.=[10 ... 00] we have

n—1

n—2

adj(sI—A.)b. =
8
1

The components of this vector have no common factor among themselves,
and thus no common factor with a(s). If S was the transformation from {4, b,c'}
to {Ac, b, ¢} then

adj(sI— A) = (sI — A) ta(s) = S(sI — Ac) " ta(s)S™" = Sadj(sI—A.)S™*

Therefore adj(sI—A)b = Sadj(sI—A.)b. which guarantees that the components
of adj(sI — A)b have no common factors with a(s). Indeed, if the components
of adj(sI — A)b had a common factor with a(s), so would any of their linear
combinations, and in particular the components of adj(sI—A.)b. = S~'adj(sI—
A)b would have a common factor with a(s), which is not the case.

“&” If the system is uncontrollable, it can be transformed into the standard
form for uncontrollable systems. There we can write

adj(s] — Acc)becasz(s)
adi(sl — AJbg = | - ———— and  a(s) = ace(s)ace(s)

where ac.(s) = det(sI — A..) and azz(s) = det(sI — Az). In this case there is a
common factor azz(s) between the components of adj(s] —A)b and a(s). a



2.3 State feedback and optimal control

In this Section we describe a linear controller based on the state feedback.
We show that its two main parts, the feedback gain and the state observer, can
be designed independently. The design of the observer parameters is described
in Section 2.4, while the feedback gain design is explained in this Section. Two
cases are of particular interest: moving the eigenvalues to desired locations and
choosing the optimal feedback gain to minimize the cost of the control.

System control using the state feedback

As we show in Problem 3.4.15, one of the main problems with using the
output feedback is that the poles cannot be relocated to a specific set of desired
locations, or even worse, sometimes it may be impossible to stabilize the system.
Since the states offer the most complete description of the system, we cannot
hope to achieve more than by feeding some function of the states back to the
input. It turns out that for a controllable system it is sufficient to feed back an
appropriate linear combination of the states in order to relocate the eigenvalues
to any desired set of locations. This, of course, also means that we can stabilize
the system. If the states are not directly available, we have to reconstruct them
from the system input and the output. As shown in Section 2.2, this is possible
if and only if the system is observable.

The general idea. The block diagram in Figure 2.8 depicts a typical linear
controller for a system described by its state vector z(t). Based on the knowledge
of the system parameters A, B, C, a state observer is designed to calculate r(t),

u(t) system )’(t)
x(t)

state feedback gain -k’

state observer

r(t)

r(t)

Figure 2.8: A typical configuration of a linear controller consisting of the state ob-
server and the feedback gain.
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a reconstruction of the original states z(t), using the system input u(t) and the
system output y(t). This signal is then fed back to the input using the feedback
gain k. We shall see later that if the system is controllable we can determine k
so that the eigenvalues of the system are moved to any desired locations. Also,
we shall see that k can be chosen to minimize the cost of control, typically a
quadratic function of the system states and the control input. In Section 2.4 we
shall see that the observer can be designed so that the reconstruction r(2) of the
original states z(t) converges to z(t) very rapidly, so that there are no problems
due to the fact that we are feeding back r(t) instead of z(¢). Actually, we shall
see that if the signals are noisy, we can use the estimate of the states, and still
achieve very good control. But first, let us analyze the linear controller in some
more detail.

Independence of feedback gain and observer gain design. A greater
detail of the linear controller is shown in Figure 2.9.

u® | s x(® | ()

A w(t)-y(t)

Figure 2.9: A more detailed signal flow diagram of a linear controller. The observer
consists of a system simulator and an internal feedback with gain [.

We see that the state observer is actually a simulator of the system with an
internal feedback designed to eliminate the difference between the actual system
output y(¢) and the reconstructed output w(t). The feedback gain ! determines
the rate of convergence between w(t) and y(t) and, since the system is assumed
to be observable, between r(¢) and x(¢).

In Problem 3.11.2 we show that the characteristic equation of the augmented
system is

det(A — bk')det(A —Ic') =0

This shows a complete autonomy between the controller (characterized by
the system matrix A —bk') and the observer (characterized by A —I¢'). Thus we
can separate the design of the feedback gain k from the design of the observer.
As a consequence we can assume that the states are directly available to be
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fed back and calculate k to relocate the eigenvalues or minimize the control
cost. Then we can design the observer, i.e., the observer feedback gain [, to
achieve the desired convergence rate between r(t) and z(t). This separability
of eigenvalues also guarantees that if the two subsystems are stable the whole
system will also be stable. This is very convenient, because, in general, stability
of parts of a system does not guarantee the stability of the whole system.

Properties of the state feedback

Next we briefly investigate the effects of the state feedback on the properties
of the system: controllability, observability, eigenvalues, and zeros.

Eigenvalues under state feedback. A system is said to possess modal
controllability if its eigenvalues can be moved to arbitrary new locations by the
use of the appropriate state feedback. We shall see soon that this property is
equivalent to the state controllability, i.e., that the eigenvalues of the system
can be arbitrarily relocated if and only if the system is controllable, i.e., if and
only if the controllability matrix

C=[b Ab A% ... A" ']

has a full rank. Of course, there is an implicit assumption here about the
availability of the states. In other words, the system also has to be observable,
hence its observability matrix

cl

A
O =

cIAn-—l

must also have a full rank.
This is the most useful feature of the state feedback and it is in the base of
the modern control theory.

Zeros under state feedback. Unfortunately, the state feedback does not
offer a complete design freedom. Here we show that the state feedback cannot
be used to move the zeros of the system. Not only that we cannot move them
exactly where we want them to be, but we cannot move them at all. The only
thing that can happen is the pole-zero cancellation, should some of the new
eigenvalue locations coincide with some of the zeros of the system.

To show that, consider a system in the controller form® {A,, b, c,}, where A,
is the companion matrix with —[a1 ... a,] at the top row while ¢, = [b ... by]'.
As always, the a;’s and the b;’s are the coefficients of the denominator and the

5We consider the controller form without a loss of generality, because in the context of state
feedback we usually consider controllable systems, and they can be nonsingularly transformed
into the controller form and back.



2.3. STATE FEEDBACK AND OPTIMAL CONTROL 65

numerator of the transfer function, respectively. After the feedback, the system
is still in the controller form, now given by {A. — bck., bc,c.}. Obviously, the
coefficients of the numerator of the transfer function have not changed, hence
the zeros are still exactly where they were before the application of the state
feedback.

Controllability under state feedback. In Problem 3.9.1 we show that if
a system given by {4,b,¢'} is (un)controllable than the closed-loop system is
also (un)controllable for any feedback gain vector k. The closed-loop system
matrix is given by

Ay =A—bk'

while the controllability matrix of the closed-loop system can be determined
from the following identity:

C=CsD
where
C=[bAb A% ... A" b Cr=[bAb A% ... A" b
! 1o a5 I

and .

1 kKb KAb ... KA %

0 1 Kb ... KA %

D=0 0 1 ... KA
0 0 0 ... 1

Since det(D) # 0, the controllability of the system is invariant under the
state feedback.

Observability under state feedback. Unlike controllability, observability
can be lost due to the state feedback. One example of this undesired property
of the state feedback is given in Problem 3.9.2.

If a system described by {4,b,¢'} is minimal, i.e., both controllable and ob-
servable, than after the addition of the state feedback u(t) = —k'z(t) we obtain
the system {A — bk’,b,c'}, which is controllable and has the same zeros as the
original system. Therefore, it is observable if and only if the new eigenvalues
do not coincide with any of the zeros. (Otherwise there will be pole-zero can-
cellations, and since the controllability is preserved, it is the observability that
is lost due to cancellations.)

Stabilizability. If the purpose of the state feedback is only to stabilize
the system, then the controllability is a too strong requirement. Indeed, a
system whose unstable modes are controllable, while the stable modes may or-
may not be controllable, is stabilizable, even though it may not be completely
controllable.
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Feedback gain design

In the rest of this Section we describe the design of the feedback gain k. The
first case assumes that we know where we want to move the eigenvalues of the
system. The second method allows us to determine the optimal feedback gain
which minimizes the quadratic cost function.

Relocation of eigenvalues. If our goal is to move the eigenvalues of
the system from their original values A;,..., A, to an arbitrary desired set of
locations p, ..., n We use the result of Problem 3.9.7, where we show that
this is possible if and only if the original system is controllable (again, it is
tacitly assumed that the states are either directly available or that the system
is observable):

If the characteristic polynomial of the original system is

a(8) =s"+a18" 1 +... +an_15+an

while the characteristic polynomial of the desired closed-loop system is
a(s) =s"+ a1s" M.t an_18+an
then with
a=[a1 ...an] and o' =Ja1 ... an]
we can use the Bass-Gura formula
K =(a -ad)c.Cc!
or the Ackermann formula
E=[0...01C 'a(4)
or the Mayne-Murdoch formula (valid for systems with distinct eigenvalues only)

IT; (X — ;)

kibi = =
Hi;éj()\i =)

i=1,...,n)

Optimal control. The selection of the closed-loop eigenvalues is a trade-
off between the price of control and the settling time. Indeed, as we move the
closed-loop eigenvalues py, ..., i, towards —oo, the settling times get shorter.
On the other hand, from the Mayne-Murdoch formula we see that as the differ-
ences between the open- and closed-loop eigenvalues increase, the corresponding
components of the feedback gain vector increase, hence the cost of control rises.
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To resolve this trade-off Kalman [23] introduced a quadratic cost function
to associate weights with each of the states and also with the control input:

continyous-time: discrete-time:
J= /0°° (@' (t)Qz(t) + u'(t)Ru(t))dt  J =Y (z'[k]Qz[k] + u'[k] Ru[k])
k=0

The solution of the resulting linear-quadratic-regulation (LQR) problem is de-
rived in Problems 3.10.1 and 4.10.2, where we show that the optimal feedback
is given by u*(t) = —K=z(t), i.e., u*[k] = —Fz[k], respectively, where K and F
are given by:

continuous-time: discrete-time:

K=RBP F =(B'PB+R)"'B'PA

where P’s are the positive definite solutions of the algebraic Riccati equations:

continuous-time: discrete-time:
PA+A'P-PBR'B'P+Q=0 P=A'PI-B(B'PB+R)"'BP)A+Q
The minimum cost is then given by:

continuous-time: discrete-time:

J* = 2'(0)Pz(0) J* = 2'[0] Pz[0]

For examples of optimal control design and derivations of the above results,
we refer the reader to Sections 3.10 and 4.10.



2.4 State observers and estimators

Until now, we have always assumed the states to be readily available for
feedback purposes. In cases when they are not, and if the system is observable,
we can design a state observer to reconstruct the states from the system input
and output. We start this Section by considering design methodologies for state
observers.

If the system is affected by noise with known statistical properties, we can
design an optimal state estimator. This problem is dual to that of the optimal
feedback of Section 2.3. For discrete-time systems such estimators are called
Kalman filters, while for continuous-time systems they are called Kalman-Bucy
filters. We study these techniques in the second part of this Section.

State observers

State observers are necessary in cases when the states of the system are
not directly available. For example, the sensors for some of the states are too
expensive, or the system is at a remote location and only its output can be
measured. In such cases, if the system is observable, i.e., if its states can be
determined from its input and output, we rely on a model of the system, most
likely implemented as an analog computer or a program on a digital computer.
If none of the states are available we have to use a full order observer, i.e., the
order of the observer will be equal to the order of the system. However, if some
of the states are available, we can determine the remaining states using the
so-called reduced-order observer.

Full-order observer. In Figure 2.10 we show a signal flow diagram for a
typical full-order observer. In Problem 3.11.2 we prove that the convergence to
zero of the error between the reconstructed and actual states is determined by
the roots of the observer characteristic equation

det(A—1Ic') =0

By the duality between controllability and observability we can find the dual
of the Bass-Gura formula, and use it to calculate the vector ! which puts the
eigenvalues of the observer in specified locations:

1=07"10,(a—-a)

where « is a vector of coefficients of the desired characteristic polynomial of the
observer, while a is a vector of coefficients of the characteristic polynomial of
the original system.

In the design of the feedback vector in Section 2.3 we were concerned with
the price of the states and of control signals. Here we don’t have such worries,
simply because the simulation is implemented on a computer and the fuel for
electrons is really cheap! However, putting the eigenvalues of the observer too far
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u(t)

w(t)-y(t)

Figure 2.10: A typical system observer. Vector [ is designed so that the observer
error converges to zero as fast as possible without increasing the noise sensitivity too
much.

to the left® increases its sensitivity to noise. Thus, we again have two opposing
requirements: we need the observer error to converge to zero fast, but we don’t
want to introduce too much noise by being too fast. To resolve this situation
we can use the quadratic cost function approach of Section 2.3. We shall not
pursue this issue any further in the present book.

Reduced-order observer. If some of the states are available, we can reduce
the order of the observer and reconstruct only the unavailable states. In Sec-
tions 3.13 and 4.13 we describe the design and implementation of the reduced-
order observers for continuous-time and discrete-time systems, respectively.

State estimators

Historically, the discrete-time case of the state estimation problem was solved
first. There is an almost romantic story about how Kalman got the idea for this
revolutionary discovery. After solving the problem of optimal feedback in 1958,
firmly establishing the importance of the state-space approach in the control
theory, on one snowy night in late November 1958 Kalman traveled by train
from Princeton (where he presented his work to NASA scientists), to Baltimore
(where he worked at the time, in the Research Institute for Advanced Studies).
Suddenly, the train got halted for about an hour and a question popped up in
Kalman’s mind: “Why not try the state-space approach on the Wiener’s cele-
brated problem of estimating the system dynamics from noisy measurements?”
As it often happens, asking the right question was practically a solution it-
self, because, as Kalman was soon to discover, this formulation of the Wiener’s
problem was the dual of the LQR problem he previously had solved himself!

60r too close to zero for discrete-time systems.
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Thus, the Kalman filter was born as a solution to the linear-quadratic-estimation
(LQE) problem. After that, Kalman worked with Bucy on the continuous-time
case, and the resulting estimator has become known as the Kalman-Bucy filter.
These two techniques were published in [26] and [28], respectively.

In the following we summarize the main formulas for the steady-state ver-
sions of Kalman-Bucy and Kalman filters. All derivations and several examples
are given in Sections 3.12 and 4.12.

Kalman-Bucy filter. Consider a system described by
z(t) = Az(t) + Bu(t) +w(t)
y(t) = Cz(t) +e(t)
where the system noise w(t) and the measurement noise e(t) are zero-mean,

white, and Gaussian. Furthermore, w(¢) is uncorrelated with e(t). If the noise
covariances are

E[w(t)w'(7)] Qot—r)
Ele(t)e'(r)) = R&(t—7)

the steady-state Kalman-Bucy estimator is given by
7(t) = Ar(t) + Bu(t) + L(y(t) — Cr(t))
where L = PC'R™!, and P is a solution of the algebraic Riccati equation

AP+ PA' - PC'RICP+Q=0

Kalman filter. Consider a system described by
zlk+1) = Az[k] + Bulk] + w[k]
ylk] = Cz[k] +e[k]
where the system noise w[k] and the measurement noise e[k] are zero-mean,

white, and Gaussian. Furthermore, w[k] is uncorrelated with e[k]. If the noise
covariances are

E{w[klw'[l]} = Qd[k — 1]
E{e[k]e'[l]} = Ri[k -]
and for the initial value z[0] we have E{z[0]} = z¢ and E{(z[0] — zo)(z[0] —
%0)'} = Po, then the steady-state Kalman estimator is given by
£[k] = 2[k] + Lx(y[k] — Cz[k])
where
z[k] = AZ[k — 1)+ Bulk— 1]  (2][0] = =)

and the gain L is given by L = NC'(R + CNC")~!, where N is a solution of
the algebraic Riccati equation

N=Q+ANA' - ANC'(R+CNC")"'CNA



Chapter 3

Continuous linear systems

This Chapter contains solved problems about continuous-time linear control
systems. It begins with the background material on linear differential equa-
tions and matrices (Sections 3.1, 3.2, and 3.3). It continues with a discussion
of the advantages of the state-space representation of linear systems over their
input-output representation (Sections 3.4 and 3.5). In Sections 3.6 and 3.7 we
investigate three fundamental properties of systems: stability, state controlla-
bility, and state observability. In Section 3.8 we examine the canonical forms of
linear systems and their properties. Section 3.9 shows that by using the state
feedback we can arbitrarily place the poles of the system. The condition for
this so-called modal controllability is, quite amazingly, the state controllability
and observability. Next, in Section 3.10, we describe how the feedback gain
should be picked so that the quadratic optimality is achieved. In Section 3.11
we explain the design of the state observers. In Section 3.12 we investigate how
to pick the observer gain so that the effects of noise are minimized in a mean-
square sense. The result is the Kalman-Bucy filter. Finally, in Section 3.13, we
describe the reduced-order observers.
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3.1 Simple differential equations

This Section should refresh the reader’s memory about the two most common
paths to solution of the linear differential equations with constant coefficients:
the time-domain convolution and the Laplace transform. It also describes the
usefulness of the Dirac’s delta impulse.

Problem 3.1.1 Show that the solution of the inhomogeneous differential equation
z(t) = ax(t) + f(t), with z(0) =z
is given by
x(t) = zoe®t + e x f(2)
where # denotes convolution:

t
e % f(t) = / et f(r)dr
0

Solution: If f(t) = 0 the equation is homogeneous, and the solution is clearly
z(t) = xzoe®t. Actually, it is obvious that if z(t) = zoe®® then &(t) = az(t), with
z(0) = x¢, but is the other direction as easy to see? Consider the following argument:
From %#(t) = az(t) we find:

z(t) az(t)
#t) = d’z(t)

i

hence, according to the Maclaurin series expansion of z(t),

#(0), . #(0)

l‘(t) = $(0)+'—1'—t+-—2-'——t2+
at a’t’
= 1:0(1+T!-+T+...>

¢
= zge”

In general, when f(t) # 0, introduce a change of variable:
z(t) = e*'2(t),  (2(0) = 2(0))
when
&(t) = ae® 2(t) + e 2(t)
Now we can write e®*2(t) = f(t), ie.,

#t) = e f(t)
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which finally implies

z(t) = e*2(t) = e (z(O) + /t z(7) d‘r) =e* (z(O) + /lt e (1) dr)
0 0

ie.,

¢
z(t) = zoe®t + / ea(t—")f(‘r) dr

0

~ v ~ /

homogeneous part non-homogeneous part

Note: We can differentiate this expression to convince ourselves that it is indeed
a solution:

i(t) = azoe® +a /t ea(t_f)f(r) dr + f(t) = az(t) + f(t)
)

Problem 3.1.2 Use the Laplace transform to solve the equation from the previous
problem:

(t) = az(t) + f(t), with z(0) ==
Solution: Taking the Laplace transform of both sides yields
sX(s) — o =aX(s) + F(s)
hence
To F(s)

XE)=set=a

The homogeneous part of the solution is therefore
zh(t) = zoe®
while the non-homogeneous part is:

Tan(t) = ™ % £(2)

Note: Usually we do not calculate the convolution, but rather use the tables of
Laplace transform pairs to invert fl_ial

Problem 3.1.3 For each multiplicity-m root a of the characteristic equation of the
higher order differential equation, the homogeneous part of the solution contains the
following term(s)

¢ 2 at -1 at
aoe®t + arte® + ast?e® + ...+ am_1t™ le?

where ay, ...,am_1 are constants which depend on the initial conditions.

First apply and check the above procedure and then derive it for the following
homogeneous equations:
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a) #(t) = 5z(t) — 6z(t), £(0)=5,=z(0)=0
b) £(t) = 4&(t) — 4z(t), £(0) =2, z(0) = -1
¢) Repeat part b) using the Laplace transform.
Solution: a) The characteristic equation for this equation is
r?~5r+6=0
and since its roots are
r1=2 and r2=3
the solution is of the form
z(t) = ae® + Be*
where a and 3 can be determined from the initial conditions:

0
5

a+p

2 + 38 } = a=-~5 and B=35

It is easy to verify that z(t) = —5e®* + 5¢3 satisfies both the equation and the
initial conditions.

In order to derive the “usual suspects” (ae® and Be®) we shall rewrite the equation
so that it reduces to the trivial form §(¢) = ay(t). With the characteristic equation in
mind

(r—2)(r-3)=0
which can be rewritten as
r? —3r=2(r-3)

we write
i(t) =5&(t) —6z(t) < i'i'(t) - 3:i:(tl = Z(ii:(t) - 3:c(t2)
() ¥

With a new variable: y(t) = #(t) — 3z(t) the equation becomes

9(t) =2y(t) with y(0) =£(0) —3z(0) =5
Hence
y(t) = 5e*
This now yields a non-homogeneous differential equation in z(t):
#(t) = 3x(t) + 5¢*

whose solution is (see Problem 3.1.1)
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t
z(0)e* +/ 5¢3t"e? dr
0

= —5e% +5e*

z(t)

b) This time the characteristic equation is
r2—~4r+4=0 Thence ri2 =2
and
z(t) = ae® + fte®
We can derive this as follows:

B(t) = 48(t) —dz(t) & B(t) - 25(t) = 2(&(t) — 22(t))

therefore
&(t) — 2z(t) = (£(0) — 22(0))e*
N e’
4
ie.,
t
z(t) = z(0)e* +/ 4e2t 72 dr
o
= —e 4 4t

¢) Applying the Laplace transform to the equation from part b)
Z(t) = 42(t) — 4z(t), £(0) =2,z(0) = —1

we obtain 52X (s) — sx(0) — £(0) = 4sX(s) — 4z(0) — 4X (s), hence

—s+6 -1 4
G-27 (-2 "G-22

X(s) =
and finally
z(t) = —e + 4te™

Problem 3.1.4 Consider a linear motion of a ball, whose mass is m. If the velocity
before it was hit by a hammer at t = 0 was v(t) = v1 (¢ < 0), while the velocity
afterwards was v(t) = v2 (¢ > 0), describe the forces acting on the ball as a function
of time.

Solution: If we were interested in the details of the velocity changes around
t = 0, and if we were able to measure the velocity with such a fine time resolution,
we would probably find the time dependence of p(t) = muv(t) and F(t) = f%ﬁ as in
Figure 3.1-a.
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p p
P, P2
P._ / Pl_
o0 1 2 3 4 t[ms] ol 1 2 3 4 t[ms]
F=dp/dt F=dp/dt
K&(t)
a) b)

ol 1 2 3 4 t[ms] ol 1 2 3 4 t[ms]
Figure 3.1: a) Linear momentum of the ball and the force causing these changes.

b) Due to our ignorance about the details of the event, or just for mathematical
simplicity, we often use the Dirac’s §(t) for the idealized representation of very short
events whose effects are measurable. Note that K = Ap = p2 — p1.

Note that since F(t) = d—’;(tt—), the change of the linear momentum of the ball can
be written as

o]
Ap:pz—p1=/ F(t)dt
(1)
Therefore, the area under the curve F(t) is equal to the change of the linear momentum

Ap = m{vz — v1). The importance of this remark will be clearer at the end of this
problem.

However, very often we are not interested in, or we are not able to achieve, such
a fine time resolution in measuring the velocity. Thus, in order to represent this
brief event whose consequences are measurable, we use the Dirac’s delta distribution,

defined! by

ot

5(t)=0 (t#0) and /w 6(t)dt=/ stydt=1  (3.1)

Since the hit of a hammer is indeed a very fast event with lasting consequences, it
is a good candidate for idealized description using the Dirac’s &(t) (see Figures 3.1-a
and 3.1-b). From what we said earlier, it is obvious that we can write
F(t) = K§(t), where K =Ap=m(v2—v1)
Let us check if everything agrees (recall the note about the area under F(t)):
() (2) )
/ F(t)dt= Ké(t)dt =K §t)dt=K
ey ) (1)

=1

1See Problem 3.1.5 for more about this very useful mathematical object.
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Problem 3.1.5 Describe the most important properties of the Dirac’s delta distribu-
tion.

Solution: The Dirac’s delta is not a function in the standard sense, because it
cannot be defined at t = 0. The only thing we know about it at ¢ = 0 is that it makes
the integral in equation (3.1) equal to 1, a rather remarkable property.

Its integral is an important function

/t () dr = un(t)

—00

the so-called Heaviside’s step function defined by

0, t<0
“"(t)z{ 1, t>0

This makes it plausible to write
d
é (t) = EuH (t)

although this is not mathematically correct, at least not with the standard definition
of the derivative in mind. These notions and relations are completely redefined in the
field of mathematics called the theory of distributions, so that the standard functions
and derivatives become special cases of a more general theory.

Another important property of §(¢) is that it is a neutral element (unity) for the
convolution operation:

() % 8(t) = / T fe—niryar = £

just like the Kronecker’s delta? is the unity for discrete convolution

k)« oK) = Y flk—qd]o[i] = flk]

i=—00

From the following property
(=)
RGO
—o0
it follows that the Laplace transform of the Dirac’s () is
(=)
L-{6(t)} =/ e () dt =1
o-
Note that here we used the £_ Laplace transform, which is usually used when

there are impulsive functions or its derivatives at the origin. See Problem 3.1.6 for
comparisons of the two unilateral Laplace transforms: £4 and £_.

2Kronecker’s delta, d[k], is a sequence of zeros, with the only exception at k = 0, where it
is equal to 1:

1, k=0
a[k]:{ o 2o
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Problem 3.1.6 Describe the differences between the two unilateral Laplace trans-
forms £, and L.

Solution: Recall that the definitions are as follows:
i) =[S0 a ama Lo(s) = | roetar
o+ o~

This difference in definitions can be seen only for functions whose integrals between
0~ and 07 are finite, i.e., for impulsive functions. Thus all differences between the two
transforms reduce to the following

LoB3®) = L4 { Sun®)} =557 ~un(0") =0

L_{5)} = £ {%uﬂ(t)} =55 mun(07) =1

where uy (t) is the Heaviside’s step function earlier defined by

0, t<0
“”(t)z{ 1, t>0

In applications of the Laplace transform this difference means that if the differential
equation has impulsive functions or its derivatives at ¢ = 0, and the initial conditions
are given for t = 07, then there is no need to calculate the conditions for ¢ = 0%.
Rather, we can directly proceed with the application of the £_ transform, and avoid
often very tedious calculations.

Problem 3.1.7 Solve the equation
E4+3+22=8(8)+26(t), =z(07)=1, &0 )=2

Solution: In this case we have to apply the £_ transform because of the Dirac’s
delta and its derivative at ¢ = 0:

82X (s) — sz(07) —&(07) + 3(sX(s) —z(07)) + 2X(s) =1+ 2s

Hence (s + 1)(s + 2) X (s) = 3s + 6 and finally

X(s) = =  z(t)=3e"" (t>0)

3

s+1

Matlab note: The partial fraction decomposition can be performed by equating
the coefficients of the corresponding powers of s in Tﬁ_‘ﬁ%ﬁ; = ;‘?_—f + %, or by the
residue formulas, or simply by using the MATLAB command residue. Let us mention
two other useful MATLAB commgnds for manipulating polynomials: poly and roots.

Numerical integration of ordinary differential equations (ODE) can be done through
the use of MATLAB commands ode23 and ode45.
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Problem 3.1.8 Describe the differences in applications of Fourier and Laplace trans-
forms.

Solution: Typically, Fourier analysis is used when only steady state solution is
of interest. For example, the frequency characteristics of a filter tell us how the filter
changes the amplitude and the phase of a sinusoidal signal. The implicit assumption
is that the input to the filter has been present since t = —oc0, so that all the transients
have had enough time to die out. Here we find another implicit assumption, that the
system is stable, otherwise the transients would never die out.

However, if we wish to analyze the behavior of the filter right after the sinusoidal
signal has been applied (for convenience we denote that moment ¢ = 0), we need to
use the Laplace transform. The Laplace transform is also convenient for the stability
analysis of linear systems.

Problem 3.1.9 Write the following second-order differential equation as a system of
two first-order differential equations and write them in a matrix form:

E(t) + 4i(t) + 32(t) = £(2)

Solution: If we use v(t) = (t), the above equation can be written as

z(t) = w(t)
o(t) —3z(t) — 4v(t) + f(t)

e R IR
v@t) | -3 —4 | v(@®)] " [f(®)
Note 1: In this notation the initial conditions are
z(O)] _ [
v(0)| ~ [£(0)

Note 2: The eigenvalues of this matriz are the same as the eigenvalues of the
original second-order equation. This remains true if we use any other appropriate
change of variable, for ezample with w(t) = (t) + z(t) the system becomes

#®)] | 1 1] [=@®) 0
[wm] = [ -8 -5 ] [w(t)] M [f(t)]

Much more about this will be investigated in the followirig sections.

ie.,



3.2 Matrix theory

In this Section we investigate several properties of matrices which will be used
later in this Chapter. More about matrices can be found in Appendix C.

Problem 3.2.1 Let all eigenvalues of Anxn be distinct and let g; be a right eigen-
vector (n x 1) of A associated with the i-th eigenvalue, i.e.,

Agi = Aigi
Define matrix @ as the matrix whose i-th column is the i-th eigenvector g;:

Q=lgg ... gn]

and also define P as the inverse® of Q, i.e.,

P= Q—l
If the i-th row of P is p}, i.e.,
2
U
P D2
|
LPn

show that p; is a left eigenvector (1 x n) of A corresponding to the i-th eigenvalue, i.e.,
PiA = \ip}

Solution: Since det(Q) # 0, in order to prove that pjA = \ip}, (i =1,2,...,n),
ie.,

PA=AP
where A = diag(A1, A2, ..., An), it is sufficient to prove that
PAQ=A
Indeed,
PAQ=Q 7 '[Aqi ... Agn] = Q' Miq1 - .- Andn] = Q7' Qdiag(Ar, ..., An) = A
Note: Matrices with repeated eigenvalues may or may not be diagonalizable. In
general, we can write PAQ = J, where J is a matriz in the Jordan canonical form, P
and Q are matrices of left and right principal vectors (eigenvectors and, if necessary,

generalized eigenvectors), and P = Q~!. Diagonalization is a special case of similarity
transformations (cf. Appendiz C.3).

3Since the eigenvalues of Anx, are assumed to be distinct, A has n linearly independent
eigenvectors, hence Q is invertible (cf. Appendix C.1).
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Problem 3.2.2 Determine the eigenvalues and right and left eigenvectors of a 2 x 2

matrix
1 2
+=[2 3]

Solution: From det(Al — A) = 0 we get A2 — X\ — 6 = 0, which implies A\; = —2

a.nd /\2 = 3.
From
3 01|y y
we see that for the right eigenvector corresponding to A1 = —2 we can take any non-
zero vector with components such that 3z = —2y. Thus any z # 0 is acceptable. In
order to avoid fractions, let us pick £ = 2. Then y = 3.

o-[3

Similarly, for the right eigenvector corresponding to A2 = 3 we can pick

ol

_ 2 117" 11 41
Q1=[—31] ='5'[3 2]

Let us check that the rows of P = Q™! are indeed the left eigenvectors of A:

Now

[[1/5 ~1/5][; (2)]=—2[1/5 -1/5 ]

[ 3/5 2/5][; (2)]=3[3/5 2/5 |

Matlab note: The main feature of MATLAB is the easiness of matriz calculations
and manipulations. Even its name derives from this property: MATRIX LABORATORY.
Some of the most useful matriz commands in MATLAB are inv and eig.

4The formula for the inverse of a 2 x 2 matrix is easy to remember:
d -b
a b 17t I a
c d - ad — bc

If we remember that ad — bc is the determinant of the matrix being inverted, this formula can
often help us remember how to apply the general formula for matrix inversion:
—1 _ adj(X)
det(X)
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Problem 3.2.3 Show that the state transition matrix (in mathematics called the
fundamental solution)

(A, Gany

ST

o) =T+ At + =L +...

satisfies the following matrix differential equatxon
X(t) = AX(t), with X(0)=1
where both X (¢) and A are n x n.

Solution: If n =1, obviously 1+ At + -(%ﬁ + L’%!ﬁ +...=¢% and
(—;izem =Ae** and 40=1
In general, for n > 1
d _ d (At)?
dtq&(t) = % <I+At+ T
2
= A+A%t+ Az,t +...
2
= A (I+At+ (A4t) +>
= A¢(t)

while for ¢t = 0 this series reduces to I. Hence we proved that ¢(t) is the solution of
the given matrix differential equation. This is a good motivation to formally write

(arf | (dn® |

=TI+ At+—~— T 31

o(t) = e

Note: This result and the new notation are important because if we wish to solve a
homogeneous vector differential equation (i.e., a homogeneous system of coupled scalar
differential equations) with arbitrary initial conditions

i(t) = Az(t), with z(0) =

we can use the linearity and write
z(t) = ¢(t)z(0)
This is so because ¢i(t), the i-th column of ¢(t), is a solution of
2(t) = Az(t), with z(0) = e;
wheree; =[0 ... 010 ... 0f, with the only 1 at the i-th position. Then
T(t) = T161(t) + . .. + Tadn(t) = $(t)z(0) = e**2(0)
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Problem 3.2.4 Determine et for

(3]

Solution: It is easy to prove (by mathematical induction) that

k_ 1 k
=[5 1]
Hence
A d Aktk
€ = K
k=0
Yotk Y ktE k!
0 Yotk k!

_ et tet
- 0 €
Note: The purpose of this problem was to show that
1 1 ¢ e‘ et
eld e 4]

as one might have naively suspected.
Also note that in this problem it was easy to determine et due to the simplicity of
A% Later we shall see techniques which allow us to determine e?* in other cases too.

Problem 3.2.5 Let A be nxn matrix with distinct eigenvalues. If Q is a matrix of its

right eigenvectors, and A = diag(A1, A2, ..., As) is a diagonal matrix of its eigenvalues,
then
eAt = QeMQ!
Also show that
et 0o ... 0
0 e ... 0
oM = '
0 0 ... et

Solution: With ¢(t) = et = > L’;ﬂ—)k, and A = QAQ™!, we find

() = I+At+%t!)—2+...

= I+QAQ‘1t+(Q—M22!—1—t)2-+...

-1 —1,2
= QO+ QAQlt+ QAT QAQTE gAQ LA
2
= Q<I+At+(—A;!)—+...)Q_1

— QeAtQ——l
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Now for the arbitrary initial conditions we can write

z(t) = $(t)z(0) = Qe**Q™"=(0)

Mt et Mty because

It is obvious that e = diag(e
AF = diag(A¥, 25, ... AK)

Note: In general, if A is not diagonalizable and Q™' AQ = J is its Jordan form,
then ¢(t) = Qe’tQ ™!, where e’t is in general an upper-triangular matriz.

Problem 3.2.6 Given a matrix A
-6 2
=21

calculate the eigenvalues A1 and A2, and the corresponding eigenvectors ¢ and g».
Form a matrix Q = [g1 ¢2], find Q~!, calculate Q™' AQ, and e**.

Solution: To find the eigenvalues write
det(A—-A=0 = MN+5A+6=0 = A\ =-3 da=-2
The corresponding eigenvectors are found from
(A-A)g=0
For A = Ay = —3 we have
T e R
-6 1-(-3) qo1 0
i.e., —3q11 + 2g21 = 0, so we can choose
w=l] =[5
Similarly, for A = A2 = —2 we have —4q12 + 2¢g22 = 0, and we can pick
o=[ia] = 3

Now

while

ERIREEY

Now we can calculate QL AQ:
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ER R R A | i N iy

As expected

Finally,

hence

At
e =

|: (—3e72 4 4e73) (272 —2e73) ]
(—6e™2 +6e73%)  (4e7% —3e73)

Problem 3.2.7 Describe how the Cayley-Hamilton (C-H) theorem can be used in
determination of e”*, the state transition matrix of A. This method applies to other
matrix functions as well and is often called the Sylvester interpolation.

Solution: If a(A) = 0 is the characteristic equation of an n X n matrix A, then,
according to the Cayley-Hamilton theorem,

a(A)=A"+a A" ... +ad=0

Note: a()) is a polynomial of order n. If A has repeated eigenvalues then there
may ezists a polynomial b()\) such that b(A) = 0 and deg(b) < n. Such polynomial
erists if at least one of the repeated eigenvalues appears in more than one Jordan block
in the Jordan form of A.

Using A™ = —(a1A™ ! + ... + a,I) the expression for e**

(4)? | (4n)°

At _
e =T+ At+ 21 3

+...
can be written using only n terms:
et =ao®)+o1()A+... +an 1 ()A™ !

How are the coefficients ao(t),...,an—1(t) determined? Since a(X;) = 0 for all
1=0,...,n—1, the expressions

Qut)? +...

M =1+X\+ )

can be simplified to the same form as e4*:

Mt =aglt) +or()Ai+ ... +an 1A ((=0,...,n-1) (3.2)
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If A has n distinctive eigenvalues Ai, the above represents n equations in n un-
knowns ao(t),...,an—1(t). It has a unique solution because the system determinant
is the Vandermonde determinant

VO, dn) = [TOG = 2) #£0
J>i
If A has multiple eigenvalues the corresponding equation in (3.2) can be differen-

tiated over \; to obtain new independent equations and finally a solution (see Prob-
lem 3.2.10). Is the system determinant in such cases always non-zero? Here is a

hint:
Vit ALy -3 Ar) = (H(ou!z! (R — 1)')) (H(,\, — Ag)kiki )

J>i
Problem 3.2.8 Using the C-H theorem find the state transition matrix for

-6 2
Solution: From the Cayley-Hamilton theorem we know that instead of writing
$(t) = et as an infinite series

2 3
Morya G0 G0
we can use the characteristic equation of A
AN +5A+6=0
to express A2 in terms of A and I:
A’ = —5A—6I

and therefore to eliminate second, third, and all other powers of A from the expression
for ¢(t). Thus

o) = e** = a(t)I + B(t)A

The parameters a(t) and 8(t) can be found by writing the same equations for the
eigenvalues of A:

alt)—38(t) = e

alt) - 26(t) = e
hence

Tat) = 327

Blt) = e H_e
so that

(—36-2t + 46_3t) (26—2t —_ 26_3t)
o) =(Be > —2e )+ (e ¥ —e A=
(—6e™% +6e73) (47 —3e7 )

Of course, the application of formula ¢(t) = Q@ 'e*Q yields the same result.
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Problem 3.2.9 Use the Laplace transform to determine e?? for

=% 1]
Solution: We shall show in Problem 3.3.3 that e4 and (sI — A)™', the so-called
resolvent matrix, are a Laplace transform pair:
L{e*}=(I-A4)7" e, LTH{(sI-A)7'}=e*
We obtain the same solution as in Problem 3.2.8 from the following:
% o] [Gaet Ghes

s+6 —2 ]‘1_ 3
T (s+2)(s+3) (

(sI—A)_1=[
6 s-—1 _ _
Ftin) Getas

Problem 3.2.10 Given

-1 0 0
A= 0 -1 0
1 0 -1

find its eigenvalues, eigenvectors, and the state transition matrix ¢(t) = e*’.
Solution: It is easy to see that A has a triple eigenvalue A;,2,3 = —1. Since

v(A-A)=n—-p(A-A)=3-1=2

there are only two independent eigenvectors corresponding to the eigenvalue:

0 0 0 a 0
0 0 0 bl =10 = a=0
1 0 0 c 0

hence we are free to pick b and ¢ independently, so we can find two independent

eigenvectors, for example:
0 0
q=|1 and ¢2= |0
0 1

while the third principal vector is a generalized eigenvector. To find it we write

(A- )\I)zqa =0 and (A—=A)gs = ¢q2

-

This reduces to

Note that now
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SO

and
-1 0 0
J=Q 'AQ = 0 -1 1
0 0 -1

a Jordan matrix similar to A.
Since A is 3 x 3 and A = —1 is a triple eigenvalue, in order to determine the
coefficients in

et = a(t)] + B(t)A + ~(t)A®
we form the three equations by writing
e = a(t) + BIEIA +7()N?
and the first and the second derivatives over A:
te™ = B(t) + 2v(t)A
and
t2e* = 24(t)

When we solve this system with A = ~1, we finally get
fet 0 0
et = 0 e*t 0

Note: Since

[ —1 0 o0
J= 0 -1 1
L 0 0 -1
we have
(-1)* 0 0 et 0 0
Jk = 0 (-1* (-1)* % and e’f=] 0 et tet
0 0 (-1)* 0 0 et

hence (cf. Problem 3.2.5)
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Problem 3.2.11 Show that ¢(t) is invertible for all real ¢.
Solution: Since in general ¢(t) = Qe’*Q ™!, we can write
det($(t)) = det(Q) det(e’*) det(Q ") =t ... Mt >0
Therefore ¢(t) is invertible for all real ¢.

Problem 3.2.12 Show that ¢(t1)¢(t2) = ¢(t1+t2). In particular, show that ¢~ (t) =
$(—t).

Solution: To show that ¢(t1)¢d(t2) = @(t1 + t2) we can multiply two infinite

series
Aty)? At,)?
(I+At1+( 1) +) (I+At2+( 2) +)

t
2! 2!
to get the following:

B(t1)d(t2) = Qe’1Q71Qe’2Q 7" = QT HIQT = g(ty +1t2)

The special case of this formula is ¢(t)p(—t) = ¢(0) = I, which implies ¢~1(t) =
¢(-1).

Problem 3.2.13 For the matrix differential equation
%M(t) = AM(t)+ M(#)B, M(0)=C

where A, B, and C are n X n constant matrices and M is an n X n matrix, show that
the solution is given in the form

M(t) = e?tCeP

Solution: M(t) = e4*CeP* is a solution of the given equation because it satisfies
the initial condition:

M) =e?’CeBl=1.C.I=C
and the equation itself:
%M(t) - gt_(eAtCeBt) — AeMCePt 4 A CBePt = AeMCePt + eAtCePB
We are allowed to do the last step because B and e®* commute for all B.

Problem 3.2.14 Prove, assuming all inverses exist, the following identities for resol-
vent matrices:

(sI—A)' —(sI-B) ' =(sI— A Y(A-B)(sI-B)™!
and

(sI—A) ' —(wI-A)""=(sI-A) (v -s)(vl - A"
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Solution: To get the idea for the proof of the first identity, multiply it by (sI —B)
from the right and by (sI — A) from the left to obtain the identity A — B = A — B.
Hence, we can derive the first identity as follows:

A-B=A-B
(sI-B)—(sI-A)=A-B
(sI —A) " (sI-B)—I=(sI-A)""'(A-B)

(sI—A) ' —(sI-B) ' =(sI— A" '(A- B)(sI- B)!
We can prove the second identity as follows:

v—8S=v—38
(wI—-A)y—(sI—A)=(v—-3)I
(sSI—A) ' wI—A) —T=(sI-A) " (v—s)

(sI—A)"' — (wI— A~ = (s — A) (v — 8)(wI — A)!

Problem 3.2.15 With the notation as in Problem 3.2.1, including the assumption
that A has distinct eigenvalues, prove that

1_ R ,
(sI—-A) 1 = Z s—kAk’ where Rk = qkPr

k=1

Note that Ry is n X n.

Solution I: To prove the above formula we shall need the following properties of
eigenvectors and matrices formed from them:

If Ry = qip}, then:

e From QP = I, i.e., Zk qikPrj = 6,']', and ﬁ'om (Rk),'j = QikPkj, we ﬁnd

k=1
e From
n n n n n
D MBe=) Mk =) Aqpi =AY apk =AY Ri=A
k=1 k=1 k=1 k=1 k=1
we see that

i Ax R = A
k=1
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e Since PQ = I, we have pigm = 6xm. Hence RxRm = qkpigmPhn = qkDPmkm =
R} 8km, SO we can write

RkRm = Rk(skm

Now we can proceed with the proof:
-1

i n n n R
(sI-A)~'= (Sng —;NJ&) = (;(5 - ’\k)R") = s—k/\k

The last step is justified by the following:

m=1 Iclml Rh‘sh

-1

Solution II: Multiply both sides by (sI — A),
(sI — A)qrpi
I =
Z Y

_ Z (sar — Megi)pic

s — Ak

= Z QkPk
k=1

As we saw at the beginning of Solution I, this last sum is equal to I.

Note: When A has repeated eigenvalues, it may or may not be diagonalizable.
If it is not diagonalizable, then Y ARy # A, and besides simple terms with linear
denominators (s — Ax), we also get higher-order terms, with denominators (s — Ax)2,
(s = Ak)3, ete.



3.3 Systems of linear differential equations

This Section introduces the matrix notation for the systems of linear differential
equations. The results of Section 3.1 are generalized.

Problem 3.3.1 Write the following system of equations in a matrix form:

wt) = 3u(t) - 3v(t) — 2w(t) +sint
o(t) = 2u(t) —4v(t) + 8w(t) + cost
w(t) = 2u(t)+ 3v(t) +3w(t)+1

Solution: If we write
u(t) sint
z(t) = | v(t) and  f(t) = |cost
w(t) 1
the system can be written as

#(t) = Az(t) + f(t)

3 -3 -2
A=12 —4 8

where

2 3 3
Problem 3.3.2 Show that the solution of the inhomogeneous vector differential equa-

tion

#(t) = Az(t) + f(t),  with z(0) =

Zon
where A is n x n, while z(t) and f(t) are n x 1, is given by
z(t) = ¢(t)z(0) + H(t) = £(¢)

where (as in Section 3.2) ¢(t) = I + At + %ﬁ + L%La +...1e., ¢(t) = e, and *
denotes convolution:

$(6) * £(t) = / o(t — 1) f(r) dr
0

Solution: Introduce a change of variables analogous to the change usually made
in the scalar case:

z(t) = p(1)2(t),  (x(0) = 2(0))

when we can formally write
&(t) = $(t)=(t) + $(£)3(t)

95
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This is justified by differentiation of

zi(t) = Z #ij ()2 (¢)

Since ¢(t) = A¢(t), now we can write ¢(t)z(t) = f(t), i.e.,
2(t) = ¢7 (1) f(t) = (=) f ()
This finally implies

z(t) = $(t)z(t) = ¢(t) (3(0) +/ #(r) df) =¢(t) (2(0) +/ $(=7)f(7) dT)
0 0

ie.,

)= SB)z0)  + /0¢(t—f)f(f)dr

~

homogentaous part non-homog;neous part
Problem 3.3.3 Apply the Laplace transform to the vector differential equation
To1
z(t) = Az(t) + f(t), with z(0)=
ZTon
where A is n x n, while z(t) and f(t) are n x 1.

Solution: Keeping in mind that this vector differential equation is actually a
system of scalar differential equations, we can write

sX(s) —x(0) = AX(s) + F(s)

where X (s) and F(s) are n x 1 vectors whose components are the Laplace transforms
of the corresponding components of vectors z(t) and f(t).
Now we can see that

(sI - A)X(s) = z(0) + F(s)
ie.,
X(s) = ®(s)z(0) + ®(s)F(s)
where
B(s) = (sI— A)~!

is the so-called resolvent matrix. Since the inverse Laplace transform of a product is
a time-domain convolution, taking the inverse Laplace transform we obtain

2(t) = $(H)z(0) + / o(t — 1) f(r)dr

Note: Compare these expressions to the final expressions in Problems 3.1.2
and 3.3.2. This is another justification to write

o(t) = e*
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Problem 3.3.4 Write the equation from Problem 3.1.7
E43% 420 =8(0)+26(t), x(07)=1, £(07)=2

as a system of two first-order equations, and use the formalism developed above to
solve it.

Solution: Let wi(t) = &(t) and wz(t) = z(t). Then wi1(07) = £(07) = 2 and
w2(07)=2(0")=1, and

w1 (£) + 3wy (t) + 2wa(t) = 8(t) + 26(t)

wa(t) = wi(t)

Hence, we can write

[wl(t)] _ [ -3 -2 ] [wl(t)] + [6(t)+25(t)]
wat) — | 1 0| |welt) 0

ie.,
v [ —i) —3 ]w+ [6(t)+(—)23(t)]
< T
Therefore
W(s) = (sI—A)"(w(07)+F(s))

+3 2717 /2] [+2
] ()
3 1 s -2 | Ps+3
T O GHDE+2) |1 s+3 1

i
s+1

The solution we are looking for is

3

a:(t) = 1.U2(t) = L::l {m

} =3t (t>0)

Matlab note: MATLAB commands ode23 and ode45 can be used to numerically
integrate systems of ordinary differential equations.



3.4 Input-output representation

This Section is here to refresh the reader’s memory about some of the many
transfer function techniques available in analysis and design of linear systems.
More importantly, it should illustrate some of the problems that are a lot easier
to solve using the state-space methods, or at least require some insights from
that approach.

Problem 3.4.1 Determine the output of a system described by

y(t) +2y(t) =u(t) (¢>0)

y(0) =5
when
a) u(t) = cos 3t
b) u(t) = et
c) u(t) = e~ @9 where ¢ is a small positive number
d) ut) =e %

Solution: The homogeneous part of the solution is the same for all four cases.
Since the root of the characteristic equation (also called the pole of the system) is
a=-2

yn(t) = y(0)e™ = 5e ™™

a) The non-homogeneous part (also called the particular solution) is as in Prob-
lem 3.1.1

¢ ¢
—T - T 2 . -
Yynn(t) = /0 e Nu(r)dr=e 2‘/0 e*" cos3rdr = 13 ¢08 3t + 13—3 sin 3t — %e 2

Finally, the solution is

y(t) = yr(t) + ynun(t) = %e'" + % cos 3t + 1% sin 3t
Note 1: The first term in the solution approaches zero fast, and it is often called
the transient part of the solution. The remaining terms are then called the steady-state
part of the solution. Note that both the initial conditions and the input contribute to the
transient part of y(t), through yn(t) and y.n(t)), respectively. The steady-state part,
however, comes from the input only, therefore it is often called the forced solution.

Note 2: We can solve this equation in other ways, using the Laplace transform
for ezample. Another method is attractive too: Knowing the root of the characteristic
equation and from the form of the input we can immediately write

y(t) = Ae™* + Bcos 3t + Csin 3t

If we substitute this into the original equation (not only its homogeneous part), the
initial condition gives us one of three equations for constants A, B, and C':

98
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A+B=5

The other two equations are obtained by equating the coefficients nezt to cos 3t and
sin 3t terms, respectively:

2B+3C=1 and 3B-2C=0
See also Problem 3.4.2.
b) For this input
Ynun(t) =™t — e 2

Therefore,

y(t) = de 2 4 et

c) For u(t) = e~ @~ we find

Y PRI R YR e Y
y(t)—(5 E)e +€e

Note: Ase — 0, i.e., when the input’s complez frequency approaches the system’s
pole, the forced output grows in magnitude. This is resonance. Asymptotically (as
e —= 0), the total output behaves like:

—(2~e)t __ -2t
lim ((5 - -1—) e % 4+ le‘(z_e)") = SeH*4limE— —¢
0 £ € 0 €
= Be~2 4 pe2

d) When u(t) = e~ the input’s complex frequency coincides with the pole of the
system. The convolution of two similar terms produces a new form:

¢
yan(t) = / e 2t gr = e~ M
0

Therefore

y(t) = 5e~ 2t 4 e~ 2t

Problem 3.4.2 Find the output of a system described by
a) §(t) + 3§(t) + 3y(t) + y(t) = e~ with §(0) = 1,§(0) = 2, and y(0) =3
b) ¥ (t) + 3§(t) + 4y(t) + 12y(t) = cos 2t with §(0) = 1,$(0) = 1, and y(0) = 1

Solution: a) This system has a triple pole at —1, hence the homogeneous part of
the solution is a linear combination of e %, te™*, and t?¢~* (cf. Problem 3.1.3). Since
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the input’s complex frequency coincides with this triple pole, besides these same terms
the particular solution also adds t3e~* to the solution. Hence

y(t) = Ae”! + Bte™" + Ct’e™" + Dt3e™!

Coefficients A, B, C, and D are found from the initial conditions for the whole
equation and by substitution of this expression into the equation. Generally, such
problems are easier to solve using Laplace transform method.

b) In this case poles are at £2j and —3, and the input coincides with a pair of
poles at +2j, therefore

y(t) = Acos 2t + Bsin 2t + Ct cos 2t + Dt sin 2t + Ee ™
Problem 3.4.3 What is the output of the system described by
y(t) + 3y(t) = u(t) + 2u(t)
with ¥(0) = 1 and u(t) = e~ + cos 7t.

Solution: If we try y(t) = Ae™3! + Be™2 + Ccos 7t + Dsin 7t and substitute
it into the equation we immediately find that B = 0. The input part of the equation
is responsible for this. The complex frequencies for which this happens (in this case
only —2) are called the zeros of the system. They are the roots of the characteristic
equation of the input part of the equation.

Problem 3.4.4 What is the impulse response h(t) of a system? What is the transfer
function T'(s) of a system? Show that T'(s) = £ {h(t)}.

Solution: Impulse response. The impulse response h(t) of a system is the output
of the system caused by the Dirac’s delta impulse §(t) at the input. The system is
assumed to be at rest when §(t) is applied, i.e., all initial conditions are zero.

The impulse response is important because the output of a linear time-invariant
system to any given input can be determined if we know the impulse response of the
system®: If the initial conditions are non-zero yy, is found as in Problem 3.1.3, while
ynh can be characterized in terms of the impulse response as follows.

By the linearity of the system and the decomposition of the input

u(t) = /°° u(r)é(t — 1) dr

we find (assuming the system is causal, i.e., h(t) =0 for t < 0)

Ynn(t) = / u(T)h(t — ) dr
)

In general, if a system is given by a differential equation, the impulse response is
most easily determined as the inverse Laplace transform of its transfer function. The
derivation is given below.

5Let us mention here that if we want to measure the acoustic impulse response of a concert
hall, and thus characterize its acoustic properties, firing a gun and measuring its echo is not
the best thing to do, especially since the audience should be in the hall - without the audience
the acoustics are completely different (cf. [49]).
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Transfer function. Transfer function is the ratio of the Laplace transforms of the
output and the input of the system, assuming zero initial conditions:

Y(s)

Te) = 7(s)

If a system is given by

¥ ™) +ay™ V@) + ..+ Gam19(E) + any () = bou™ () + ... + b1 8(t) + bmu(t)
with zero initial conditions, then the Laplace transform yields

_Y(s) _ b(s) _ bos™ + ... +bm_18+ b

T(s) = = =
(®) U(s) a(s) s*"+ais"'+...+an_18+an

From this expression we see that T(s) does not depend on the input u(t), only on
the coefficients of the differential equation.

Relation between h(t) and T(s). Since T(s) does not depend on the particular
choice of u(t), we can pick u(t) = §(t). Then U(s) =1, y(t) = h(t), and Y (s) = H(s).
Therefore

Y (s)
U(s)

T(s) = =H(s)=L{h(t)} = / h h(t)e™* dt

Note: This is why we often write H(s) instead of T(s). Another way to see this is
to use the convolution property of the Laplace transform: With zero initial conditions

y(t) =ht)*u(t) = Y(s)=H(s)U(s)

Note also that for causal systems (h(t) = 0 for t < 0) when s = jw the transfer
function T(s) becomes the frequency response T'(jw) and we find that h(t) and T(jw)
are a Fourier transform pair:

T(jw) = H(jw) = F {h()} = / " ht)e it dt
0

Problem 3.4.5 Find the impulse response of the system described by its transfer
function

_ s+ 10
H() = 55205 + 164

Solution: The relation between the impulse response h(t) of a linear system and
its transfer function H(s) is H(s) = L{h(t)}, i.e., h(t) = L~ '{H(s)}, therefore

- s+ 10 -
h(t)= L ! {m} =é€ 1°tcos8t
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Matlab note: Here we demonstrate how simple it is to get plots in MATLAB. In
Figure 3.2 we use the command impulse to plot the impulse response of a system given
by a rational transfer function. It can be used to obtain the inverse Laplace transform
of any rational function.

num = [1 10] % numerator
den = [1 20 164] % denominator
impulse (num,den) % does everything: calculations and plot
1 T —r ™ T T T T T T
o8r 4
0.6 1
@
2
g 041 E
0.2 J
O oo
~02 L s s s " L L 1 s
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (secs)

Figure 3.2: The plot produced by the MATLAB command impulse.

Usually, plots produced by MATLAB are quite satisfactory, but if we want to add a
“personal touch,” we can do as follows (see Figure 3.3):

num = [1 10]; % numerator
den = [1 20 164]; % denominator
t = 0:0.01:1; % time to be shown

[y,x,t] = impulse(num,den,t); % this form of the command only does calculations
% x returns the states of the system
% which we shall define later

plot(t,y), axis([0 1 -0.2 1.4])

grid, xlabel(’time [s]’), ylabel(’impulse response’)

title(’Just a little bit nicer plot’)

text(0.2,0.5,’you can even put some text inside the graph’)

Problem 3.4.6 Linear time-invariant systems are described using linear differential
equations with constant coefficients which relate the output y(t) to the input u(t):

Y ™) + a1y V@) + ..+ an19(t) + any(t) = bou™ (t) + . .. + bn—10(t) + bmu(t)

with initial conditions y(0), 9(0),...,y™ 1 (0) given. Discuss the solution y(t).
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Just a little bit nicer plot

Impulse response

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Time [s]

Figure 3.3: This plot shows how the user can add some comments and change the
ranges on the axis.

Solution: The solution of this equation can be written as

y(t) = yu(t) + ynn(t)

where yi(t) is a homogeneous part of the solution, while y.(t) is a non-homogeneous
(also known as particular) solution:

o yi(t): For each multiplicity-m root a of the characteristic equation of the dif-
ferential equation yn(t) contains the following term(s)
a0e® + arte® + ast?e® + ...+ amo 1 t™ e

where ao, ..., am—1 are constants determined from the homogeneous part of the
equation

y(")(t) + a1y("_1)(t) +...+an19(t) + any(t) =0

and the initial conditions.

® ynn(t): This part of the solution is a convolution of the input u(t) with h(t), the
impulse response of the system:

Ynn(t) = / w(T)h(t — 1) dr

The impulse response is most easily determined using the inverse Laplace trans-
form.
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Note 1: If the system is initially at rest, i.c., if all initial conditions are zero,
then obviously yn(t) = 0, hence y(t) = ynn(t). On the other hand, if u(t) = 0, then
y(t) = yn(t). We say that the non-homogeneous part of the solution is a response
to the input, while the homogeneous part of the solution is a response to the initial
conditions.

Note 2: How does this convolution formula reduce to the convolution formula
used in Section 3.12

Problem 3.4.7 Determine the impulse response of a system described by

#(t) + 29(t) + 10y(t) = w(t) + 3u(t)

Solution: Obviously

s+3 s+1 2 3

HO) = 5o y10 = GrE 3 T3GT12+3°

hence
h(t) = e tcos 3t + %e't sin3t (t > 0)

Matlab note: To plot this directly from the coefficients of the differential equation
do the following (see Figure 3.4): impulse([1 3],[1 2 10])

1.2 T T T T T T T T T

o o
=4 [+

Amplitude
(=]
S

0.2

0.4 L L L ) L L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time (secs)

Figure 3.4: The plot produced by the MATLAB command impulse.
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Problem 3.4.8 Determine the impulse response of a system described by

§(8) + 29(t) + y(8) = i(t) + 2u(t)

Solution: Obviously
s+ 2 1 1
H(s) = =
() (s+1)2 s+1 (s+1)

hence
ht)=e t+te™t (t>0)
Problem 3.4.9 Show that if u(t) = €'’ + ¢°2’, then the output contains terms
T(s1)e*t* and T(s2)e2".
Solution: To simplify the analysis, assume zero initial conditions. With this
input the Laplace transform of the output becomes

1 b(s) 1 b(s)
s—s1m 8-82m

Y(s)=

These two terms contribute A/(s — s1) and B/(s — s2) at complex frequencies s; and
82, respectively, where

A= lim (- s)¥(9) = ”H = T(s1)

and similarly B = T'(s2).

Problem 3.4.10 Why do we encounter rational transfer functions so often? Why are
these transfer functions always such that the degree of the numerator is < than the
degree of the denominator?

Solution: Linear time-invariant systems are described by linear differential equa-
tions with constant coefficients. If the corresponding equation can be written in terms
of the input and output signals and their derivatives, without any of them being de-
layed, Laplace transform yields a rational transfer function. In general, if there are
delays, we find factors e *T, and the transfer function is not rational.

If u(t) = coswt and frequency w tends to infinity, the response of any physical
system at that frequency falls to zero. To reflect this general property we require that
m < n.

Indeed, from Problem 3.4.9 and with s; = jw and s2 = —jw we find that

Jwt ~Jjwt
u(t) = coswt = e__-i_;2_e__

causes the output to be

y(t) = 3T(w)e™ + 2T (~jw)e™ +...
= Re{T(w)e™*} +...

= |T(jw)| cos(wt — arg T(jw)) + ...
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Hence we require
Jim |T(jw)| =0
Since for large w we have |T'(jw)| = |§$}d“i.—m all physical systems must have m < n.

Problem 3.4.11 Use MATLAB to plot the amplitude of the frequency response and
the locations of the poles and the zeros of the following 7th order low-pass filters with
the cut-off frequency at wn, = 100 rad/s: Butterworth, Bessel, Chebyshev Type I, and
Chebyshev Type IIL.

Solution: Figure 3.5 is easily obtained using the following MATLAB commands:
butter, besself, chebyl, cheby2, freqs, and tf2zp.

Butterworth Bessel Chebyshev | Chebyshev I
1 1 1 1
0.5 0.5 0.5 0.5
0 0 S 0 0
10° 10° 10° 10° 10° 10° 10° 10°
100 » 100 100 200
Poles X Poles x Poles * Poles  x
* *
*
0 * 0 * 0 * 0 *
* x * ”
* * *
-100 *-L100 100 200
-200 5—1 00 0 -200 5—1 00 0 -200 5—1 00 0 -400 -200 0
x 10 x 10 x 10
1 15 1 500
Zeros Zeros Zeros Zeros
o o
(o) 8
o%o o
b
o oo 0 0 80 0 o
o o
-1 - o -1 500
-1 0 S | 0 1 -1 0 1 -500 0 500
x10° x 10° x10°

Figure 3.5: Amplitudes of the frequency responses and locations of poles and zeros of
order 7 Butterworth, Bessel, Chebyshev type I, and Chebyshev type II low-pass filters
with wn = 100 rad/s.
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Problem 3.4.12 Given a stable system with frequency response H (jw) in a feedback
connection with gain —k as in Figure 3.6, derive the frequency response of a closed-loop
system. Discuss the stability of the closed-loop system if measurements of magnitude
and phase of H(jw) are given for 0 < w < co.

u(t e(t H(o) y(®)

Figure 3.6: Typical feedback system.

Solution:  This problem presents the Nyquist stability criterion, but also its
history and the profound influence it had on the control theory. The following is
loosely based on the seminal 1932 paper by H. Nyquist [39] and on the 1977 paper
by H.S.Black [5] in which he described his 1927 invention of the negative feedback
amplifier.

First, the definition of stability in Nyquist’s own words:

The circuit will be said to be stable when an impressed small disturbance,
which itself dies out, results in a response which dies out. It will be said
to be unstable when such a disturbance results in a response which goes
on indefinitely, either staying at a relatively small value or increasing until
it is limited by the non-linearity of the amplifier.

This is the so-called input-output or BIBO (bounded-input bounded-output) sta-
bility and we define it in Section 3.6.

Approach 1: Nyquist first considers the output after n “round trips” of the
input disturbance:

Yo(jw) = —kH(jw)Yn-10w),  Yo(jw) = H(jw)U(jw)

Obviously Y, (jw) = (—kH(jw))" H(jw)U(jw) and the total output is a sum of all
Y, (jw):

Y(jw) =) Yaljw)

n=0
This sum exists if and only if |kH(jw)| < 1 for all w, when

H(jw)

YU9) = 7928 G

U(jw), |kH(jw)l <1

Nyquist then comments on the limitations of this approach: If |kH (jw)| < 1 for
all w, then this result agrees with experimental evidence. But it incorrectly suggests
that if for some frequency |kH (jw)| > 1, then there must exist a “runaway condition,”
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i.e., the system must be unstable. For example, Black’s negative feedback amplifiers®
fall into this category, and are not necessarily unstable. In [5] H. S. Black wrote about
patenting his invention:

Although the invention had been submitted to the U.S. Patent Office on
August 8, 1928, more than nine years would elapse before the patent was
issued on December 21, 1937 (No. 2 102 671). One reason for the delay
was that the concept was so contrary to established beliefs that the Patent
Office initially did not believe it would work. The Office cited technical
papers, for example, that maintained the output could not be connected
back to the input unless the loop gain was less than one, whereas mine was
between 40 and 50 dB. In England, our patent application was treated in
the same manner as one for a perpetual-motion machine.

Thus Black’s invention showed that even if for some frequency |kH(jw)| > 1 the
above result may be completely valid. However, we cannot extend this result for
arbitrary kH (jw), because experiments show instability if for some frequency kH (jw)
is real and < —1. To complicate the situation further, some closed-loop systems are
unstable when kH (jw) is real and > 1. This effect too was discovered by Black and is
now called conditional stability.

Here is what Black wrote about this phenomenon in [5]:

Results of experiments, however, seemed to indicate something more was
involved and these matters were described to Mr. H. Nyquist, who devel-
oped a more general criterion for freedom from instability applicable to
an amplifier having linear positive constants.

Nyquist concluded about the “round trip” approach:

Briefly then, the difficulty with this method is that it neglects the building-
up processes.

Approach 2: In this approach Nyquist assumes that a steady state exists and
writes (his notation is slightly different than our)
Y(uw) _ H(jw)E(jw) H(jw)

U(jw) =~ E(jw)+ kH(jw)E(jw) ~ 1+ kH(jw)

Thus we know what the closed-loop transfer function is when the steady state
exists, but we know nothing about the conditions under which it does exist. Nyquist
says:

The difficulty with this method is that it does not investigate whether or
not a steady state exists.

6 After several years of attempts to reduce the nonlinearities in amplifiers used in long-
distance telephony, in 1927 II.S.Black realized that the solution to this problem was not in
perfecting the design of vacuum tubes, but in a new concept: negative feedback. Using a very
high gain amplifier in a negative feedback configuration he could trade the high gain for a
moderate gain with a very flat frequency response:

H(jw)

1
kH(j 1 —_— -
kHG)I>1 = 5Ge) " &
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Approach 3: In this approach Nyquist develops his famous stability criterion
and states it as follows (as we mentioned earlier, Nyquist used a slightly different
notation: where he wrote AJ(iw) we now write —kH (jw)):

Rule: Plot plus and minus the imaginary part of AJ(iw) against the real
part for all frequencies from 0 to co. If the point 1 + 10 lies completely
outside this curve the system is stable; if not it is unstable.

In our notation (which follows Bode) this rule is the same, except that we plot
kH (jw) and examine whether the point —1+ j0 is inside or outside the resulting curve.

The importance of the Nyquist’s criterion lies very much in the fact that H(jw)
can be obtained by measurements. Hence the closed-loop stability can be verified
without solving any equations or even having a mathematical model of the system.

The original proof given by Nyquist was not rigorous although it led to a very
important result. Today we use Cauchy’s Argument Principle (also called the Encir-
clement Property) to prove it. The same method is used to prove the more general
version of the Nyquist stability criterion, which allows the initial system to be unsta-
ble (here we assume that H(s) has neither zeros nor poles on the jw axis; a slight
modification in the formulation is necessary to include such cases as well):

If the open-loop transfer function kH(s) has M unstable poles then the closed-loop
system is stable if and only if the locus of kH(jw) for —oo < w < oo encircles the
point —1 + jO ezactly M times in the counterclockwise direction.

Note: If H(s) is unstable, then H(jw) is not defined, but is still formally used.

Problem 3.4.13 A Nyquist (polar) plot of the amplifier frequency response H (jw)
with the feedback gain k = 1 is given in Figure 3.7. Determine the range of k¥ which
guarantees the stability of the closed-loop system. Explain why the conditional sta-
bility is undesirable.

Solution: For stability, the point —% + j0 should not be enclosed by the given
curve. Since this curve intersects the real axis at approximately —0.5, —1.9, and —4.5
and from its shape we can conclude that the allowable ranges for k are approximately

0<k<022 and 053<k<2

In the latter range the system is conditionally stable. It is an undesirable property
because for large inputs the system may get saturated, which effectively reduces its
amplification and destabilizes the system.

Matlab note:  The plot in Figure 3.7 represents simulated measurements of
H(jw) of the following system
(s + 26727/3) (s + 2e7927/3)
(s +0.1)(s+4)(s + 6)(s + eI37/4)(s + e—337/4)

H(s) =100

In Figure 3.8 we show its root locus. We see that the ranges similar to those
determined above define stable operation of the system. Note again that the Nyquist
criterion required neither calculations nor explicit expressions for transfer function or
frequency response. The following code was used to obtain Figures 3.7 and 3.8:
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Figure 3.7: A polar plot of the measured open-loop amplifier frequency response
H(jw). The larger view around the origin is shown to the right.

100+[1,2,4];
poly([-0.1,-4,-6,8qrt(2)/2*(-1+j) ,8qrt(2)/2%(-1~j)1);
.25:0.01:100;

num
den
ws=

[ ]

figure(1), subplot(1,2,1)
nyquist (num,den)
grid, text(110,6,’w = 0’), axis([-30,180,-100,100])

subplot(1,2,2)
nyquist (num,den,w)
grid, axis([-6,0,-0.5,0.5])

figure(2), subplot(1,2,1)
rlocus(num,den)
grid

subplot(1,2,2)
rlocus(num,den)
grid, axis([-0.4,0.4,0,5])

[K,poles] = rlocfind(num,den)
s = num2str(K);

gtext([’k = *,s8])

[K,poles] = rlocfind(num,den)
s = num2str(K);

gtext([’k = ?,s])

[K,poles] = rlocfind(num,den)
s = num2str(K);

gtext([’k = *,s])
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Figure 3.8: A root locus plot for H(s). The larger view around the intersection points
with the imaginary axis is shown to the right.

Problem 3.4.14 Given an unstable plant with

try to stabilize it by putting a compensator in series with it. Let

s—1

Be®) =03

Explain why this technique is not satisfactory.

Solution: Although from a purely theoretical point of view this seems to be
a satisfactory compensation, and it does not make any difference whether the com-
pensator precedes or follows the plant, we shall see that in reality neither of the two
possibilities is satisfactory, and that the reasons are completely different for each of
them.

If we put the compensator between the input and the plant, ideally, the compen-
sator eliminates the component of the input signal at the unstable complex frequency
s = 1 because H.(1) = 0. The problem here is not that the cancellation cannot be
realistically achieved. Even if we could achieve the pole-zero cancellation, the slightest
amount of noise entering directly to the plant will excite the unstable response of the
plant.

If we put the compensator after the plant, and the cancellation is perfect, we won’t
see any unstable response at the output, but since the plant is unstable, its output



112 CHAPTER 3. CONTINUOUS LINEAR SYSTEMS

(i.e., the input to the compensator) will grow larger and larger, and sooner or later
some condition will change: either the plant will burn out, or the compensator or the
plant will leave the linear mode of operation.

The conclusion to be drawn here is that the external behavior of a system does not
completely describe its internal behavior. In the language of the state-space approach,
the first attempt was unsuccessful because the unstable state of the plant was not
controllable, while in the second attempt it was not observable.

Problem 3.4.15 Since the pole-zero cancellation is not a good approach, in order to
stabilize the plant with
1
H(s) = —
() =7=3
try to apply negative output feedback with gain k.
Apply the same technique to stabilize a plant with

1

H(s) = s(s—2)

Solution: The closed-loop transfer function can be found from the differential
equation of the plant § — y = u and the equation for the feedback u = —ky + v.

The new equation becomes y— (1 —k)y = v, hence the closed-loop transfer function
is 1
s+k-1

We see that the stabilization can be achieved by picking k > 1.

For a slightly more complicated plant, given by H(s) = 1/s(s — 2), this technique
doesn’t work, because the poles of the closed-loop system, i.e., the roots of s> —2s+k =
0 are unstable for any choice of k. Indeed

81,2‘—‘1:]:\/1—")

Matlab note: To plot the root locus use rlocus([1],[1,-2,0])

G(s) =

To stabilize this plant we would also need to feed back y(¢). In general, to stabilize
a plant with a characteristic polynomial of order n, we need y(t), §(t), - .., y"~1(¢),
which is not a realistic requirement, because differentiation drastically amplifies noise.
We shall see that the state-space approach offers a more elegant solution, which allows
arbitrary placement of poles of the closed-loop system.



3.5 State-space representation

In this Section we shall introduce the state-space approach to analysis and de-
sign of linear systems. The state-space (linear or nonlinear) model of a system
is often the most natural and the easiest description to determine. The impor-
tance of the state-space techniques is not only in that they provide solutions,
or at least insights, for many problems difficult to solve by the transfer function
methods. Under fairly general conditions, linearized state-space models con-
tinue to reflect the properties of nonlinear state-space models, which are many
orders of magnitude more difficult to handle.

Problem 3.5.1 Assuming that ideal differentiators are available, design an analog
computer to solve the following differential equation

§+3y+y=u
Solution: First rewrite the equation as follows
—(§+39) +u

= ——(-l—(i +3)+u
= Ta\avT

Then we can draw the analog computer as in Figure 3.9.

@
I

ddt —=g didt —P

1

Figure 3.9: The analog computer based on differentiators. This technique is not good,
because differentiation amplifies noise.

Problem 3.5.2 Assuming that ideal integrators are available, design an analog com-
puter to solve the following differential equation

T+99+3y=1u
Solution: First rewrite the equation as follows
j=-99—-3y+u

Then we can draw the analog computer as in Figure 3.10.

113
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y'(0) ¥(0)

y" i y’ S y y"

3 QPT
u

-9

Figure 3.10: The analog computer based on integrators — the Kelvin’s scheme.

Note: This technique is called the Kelvin’s scheme, after Lord Kelvin, who pro-
posed it in 1876. First practical implementations of his ideas were made in the 1930’s.

To see how to proceed if the equation also has the derivatives of the input, let
us redraw the integrator-based analog computer in a more convenient form, as in
Figure 3.11.

-3

Figure 3.11: The more convenient diagram of the Kelvin's scheme.

If the equation to be solved is

¥+ 9y + 3y = 24 + 5u
we can use linearity of the equation, and first solve the auxiliary equation
W+ 9w+ 3w=1u
whose simulation we already have in Figures 3.10 and 3.11.

Now, from linearity, y = 2w + 5w, therefore we can design the simulation as in
Figure 3.12.

Problem 3.5.3 Given a diagram in Figure 3.12, write a system of two first-order
differential equations, whose unknowns are the integrator outputs: £ = w and 22 = w.
Write the output y in terms of states z; and z».
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2
u w" w’ w y
o] ] s
oy -9

-3

Figure 3.12: The Kelvin’s scheme for § + 9y + 3y = 24 + 5u, which was rewritten as
W+ 9w + 3w = v and y = 2w + Sw.

Solution: It is easy to see that
5 = ~-9r; —3z2+u

and that y = 2z1 + 5z2.
We usually write this in a matrix form

v = L2 o]

Note: Compare the eigenvalues’ of the differential equation 4+ 99+ 3y = 24+ 5u
-9 -3

and the matriz [ 1 0

Problem 3.5.4 In the systems theory linear systems are often described using the
state-space representation:

z(t)
y(t)
where u(t) is the input to the system, y(t) is its output, while z(¢) is an n x 1 vector

whose components are the states of the system. A is an n x n matrix, while b and ¢
are n X 1 and 1 x n vectors, respectively. Matrix A is usually called the system matrix,

Az(t) + bu(t)
¢ x(t) + du(t)

7If W. Heisenberg took a piece of advice from D.Hilbert, and looked for the differential
equation with the same eigenvalues as the matrices in his matrix quantum mechanics, he
would have discovered the equation now known after E. Schrédinger [49].
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while vectors b and ¢’ are called input and output vectors. For the sake of simplicity,
we shall often assume that A has n distinct eigenvalues.

Express y(t) in terms of u(t), A, b, ¢, d, and the initial conditions £(0). Determine
the impulse response in terms of A, b, ¢, and d.

Solution: From Problem 3.3.2 we know that
t
z(t) = ¢(t)z(0) + / o(t — ) bu(r) dr
0 g
f(r)

where ¢(t) = e**, therefore we can immediately write

y(t) = ¢ p(t)x(0) + / ¢t — )bu(r)dr + du(t)
)
or
y(t) = c'¢()2(0) + (' $(t)b) * u(t) + du(t)
To determine the impulse response, put z(0) = 0 and u(t) = §(¢). Then
h(t) = y()l(z(0y=0,u(t)=5(ty) = € ()b + db(¢)

Problem 3.5.5 Solve the state-space equations

z(t) Az(t) + bu(t)

y(t) c'z(t) + du(t)

in the Laplace transform domain. Determine the transfer function in terms of A, b,
/
¢, and d.

Solution: From Problem 3.3.3 we know that
X (s) = (sI — A)~'(z(0) + bU(s))
therefore
Y(s) = (sl — A)7'x(0) 4 ('(sI — A)~'b+ d)U(s)
Hence, the transfer function is

_Y(s)

= T =c(sI-A)7'b+d

H(s)

z(0)=0

Problem 3.5.6 Consider a dynamical system given by

#(t) = [ o ]z(t) + [2] u(t)

v)=[3 4]z
with z(0) = [g] and u(t) = 1 (¢t > 0). Find the eigenvalues of the system. Find the

system response to the initial conditions, as well as the response to the input u(t).
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Add these two to obtain the total response of the system. Determine the transfer
function and the impulse response of the system.

Solution: The Laplace transform of the response to the initial conditions is

[s+2 -3 J
, B 0 s+1 4 32s—1
d(sI-A)'z(0) =3 4]—(;;L1)(3—+2)[5]=(s+1)(s+2)

Since 5T s = — 2 + &5, We find Yinie.cona () = —33¢ 7" +65e 7.

Since U(s) = L{1} = 1/s, the Laplace transform of the response to the input
u(t)=1(t>0)is

39 _ 39 3
(s+1D(5+2)  s+1 s+2

d(sI — AU (s) =

therefore Yinput(t) = 39e™* — 3972,
The total response of the system is
Y(t) = Yinit.cona. (£) + Yinpue(t) = 6e~" + 26 (t>0)

The transfer function of the system is

39s __39s + 78
(s+1D(s+2)  s+1 s+2

H(s)=c(sI— A ‘b=

hence the impulse response is

h(t) = —39¢ ¢ + 78¢%

Note: Since the derivative of u(t) =1 (t > 0), is §(t), we have
| d (ot g -2
h(t) = 7 (397" - 39¢™™)

Even if u(t) was not zero for t < 0, we consider it zero, because all its influences
on the system at times t < 0 are condensed in the initial conditions.

Matlab note: MATLAB has several very useful functions for simulation of state-
space models. See, for example, initial, impulse, step, and 1sim.

Problem 3.5.7 Check that, in matrix notation too, the impulse response h(t) and
the transfer function of a system are a Laplace transform pair.

Solution: Earlier we found that (assume, without loss of generality, d = 0)
h(t)=cp(t)b and H(s)=c (sI—A)"'d

and indeed we can write H(s) = L{h(t)}.
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Note: Like in the scalar case, $(t) = e and (sI — A)~! are a Laplace transform
pair.
Also note that

c'adj(sI — A)b

7 -1,
I - A) b= =0T A)

If the numerator b(s) = c'adj(sI — A)b and the denominator a(s) = det(sI — A)
are not coprime, then there are some pole-zero cancellations in the transfer function,
and some of the eigenvalues of A are hidden, i.e., they do not appear as the poles of
H(s).

Problem 3.5.8 For H(s) = ¢/(sI — A)~'b with no cancellations show that for any v,
which is not an eigenvalue of A, there are initial conditions z(0) such that the response
to u(t) = e** is y(t) = H(v)e" . Use the results of Problem 3.2.14.

Solution: Here Y(s) = H(v)/(s —v) = ¢/ (vI — A)"'b/(s — v), H(s) = ¢'(sI —
A)7'b, and U(s) = 1/(s — v). Since, in general,

Y(s) = ' (sI — A~ (z(0) + bU(s))
we find
(s —A) s —v)z(0) = (v — A —(sT—A)" ')
Using the identity (cf. Problem 3.2.14)
(sSI—A) ' —(wI-A)'=(sI— A) (v —s)(wl - A)!
we can write
(wI—A) ' —(sI— A = (s — A) " (s —v)(wl - A)!
therefore
c(sI — A (s —v)z(0) = ' (s — A)" (s — v)(vI ~ A)"'b
so we can pick (this solution is not unique)

z(0) = (vI—A)"'b

Note: Ifv is a zero of H(v), than the initial conditions (0) = (vI — A)~'b and
the input u(t) = e*t cause zero output: y(t) =0.

Problem 3.5.9 Assume A to have distinct eigenvalues. Let p be one of them. Find
the initial state £(0) such that the response to the zero input (i.e., the response to the
initial conditions only) is e*f. Use the result of Problem 3.2.15.

Solution: Since U(s) =0, and Y (s) = 1/(s — p), we can write

¢ (sT — A) " z(0) = ——

s—p
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Since (cf. Problem 3.2.15)

1N\~ R
(sI-A)y" = TN

i=1

where R; = ¢ip;, and ¢; and p; are the right and left eigenvectors of A, we can write

i dapiz(0) _ 1
&~ - Ai s—p

If we assume p = A1, this implies that pjz(0) = §1:. If we recall that piq; = &,
we can pick

z(0) =q
i.e., the initial state should be the right eigenvector of A corresponding to p.

Problem 3.5.10 The sources that have been switched out of the circuit shown in
Figure 3.13 prior to t = 0~ caused the following initial conditions: i(0”) = 5 A and
v(07) = 10V. An input u(t) = 105(t) V is applied.

R=7Q L=6H

i(t)

+
— v(t)

Figure 3.13: The circuit described in Problem 3.5.10.

a) Write the system equation in matrix form. Let the state variables be defined as

zi(t) = wv(t)
z2(t) i(t)

Note: Based on the equations

'UL(t) = ng";—t(t—)
io(t) = Cd—v;fi)

our best choice for the states in a circust are the currents through coils and voltages
across capacitors.

b) Use Laplace transform to calculate v(t).

¢) Find ¢(0%) and »(0%).
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Solution: We are given that
i(07)=5A4, v(07)=10V, and wu(t)=108(t)V

a) From the circuit we can write

u(t) = Rit)+ 1Y (t)+ v()
ity = ci’%

With z1(t) = v(t) and z2(t) = i(t), we can rewrite these equations as

u = Rzo+Liz+x
T2 = Cl'l

ie.,
b = Lz
1 = C 2
Ty = 1 -E +—1—u
S A AN

Therefore

: 0o 1 0
°= [ -1/6 —7/6 ]”L [1/6] v

b) To use the formalism developed earlier, let y = v = [1 0] . Then by taking the
L_ Laplace transform of

z(t) Az(t) + bu(t)
yt) = cz(t)

we obtain

sX(s)—z(07) AX(s) + bU(s)
Y(s) = cX(s)

Since U(s) = £_{104(t)} = 10, while £(0~) = [10 5]’, we see that

Y(s) =c X(s) = (sI — A~ (bU(s) + z(07))

Y(s)=[1 0] [ 1/6 s;;/s ]_1 ([1?6] 10+ [150D

Finally,

ie.,
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~10 . 20
YO =31t 5v17m

which implies

v(t) = y(t) = (=10e™" + 20e /) V

v(0%) = lim v(t) =10V
t—0t+
On the other hand
i(0%) = lim z(¢)
t—=0t+

Since

20

za(t) = Cia(t) = (10e™" — = e=t/% 4

obviously i(0%) = 6.67 A.

Problem 3.5.11 The exact equations which describe the dynamics of the inverted
pendulum on a cart are

(M +m)3 + mlfcosd —mld*sind = f
mzcos 6 + mif — mgsind = 0

where M and m are the masses of the cart and the bob, ! is the length of the pendulum
rod, z and 6 are the horizontal displacement of the cart and the angle between the
vertical and the pendulum rod (expressed in radians), while f is the force applied to
the cart (see Figure 3.14).

Linearize these equations and write the state-space representation of the system.

m
.
0
1
Z
f
] M

Figure 3.14: The inverted pendulum on a cart.
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Solution: The above equations are nonlinear, due to the presence of trigono-
metric functions. In several problems scattered throughout this chapter, we shall try
to stabilize the pendulum, i.e., to keep 6 small, thus we can write

cosf =1 and sinf ~ @

After linearization, we can write the equations in a state-space form, by first defin-
ing the vector of states:

z
[’}
r=|.
2
6
Now we can see that
T =Az+bu
where
0 0 1 0 0
10 0 0 1 _ 0
A=1lo -m g o and b= 1
0 (ms o o —~1/Ml1

while u = f, the external force applied to control the cart and the inverted pendulum.
In the following problems we shall assume that the measured variables are 2 and
9, i.e., that
y=Cz
where

1000
C‘[0100]

Problem 3.5.12 Consider a system described by

z(t) Ax(t) + bu(t)
yt) = cdz(t)

where A is an n x n matrix with distinct eigenvalues, and u(t) is the input to the
system. The Laplace transform of the output is then

Y(s) = c'(sI — A)~'bU(s)

Prove that the transfer function of the above system can be written as
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Solution: The formula for the transfer function of a system with distinct eigen-
values is a direct consequence of the result of Problem 3.2.15. This representation of
the transfer function is very important, because it provides us with its rational decom-
position in the transform domain, thus making the application of the inverse Laplace
transform easy. Really, since

—1 1 At
£ { 8 — A } =e

for the impulse response of a system with distinct eigenvalues we can write

h(t) = Zaie)"'t
i=1

where a; = (¢'q:)(pib) (1=1,2,...,n).

The general formula, for systems with multiple eigenvalues, is more complicated.
In general, matrix A is not diagonalizable, hence, Y A;R: # A (cf. Problem 3.2.15).
Then one has to use Jordan matrices instead of diagonal matrices, when the impulse
response is a linear combination of exponential functions multiplied by polynomials:

R{t) = i ai(t)er?

i=1

The degree of each a;i(t) is equal to the number of generalized eigenvectors correspond-
ing to Ay, i.e.,

deg(ai(t)) = v(MI-A)—1 = n—p(MI—-A4)-1

Problem 3.5.13 Use both the formula from Problem 3.5.12 and the Laplace trans-
form to determine the impulse response of the system given by

-1 -1 -1 1
a'c(t):[ 0 -2 -1]z(t)+[o] u(t)
0 0 -3 1

y®)=[t 0 0] =(t)

Solution: The transfer function of the system is

H(s) = J(sI-A)7"

s+1 1 1 1
moo| o s+2 -1 0
0 0 s+3 1

(s+2)(s+3)  —(s+3) —(s+1)
0 ey x|
0 0 s 8
= 100 G+ DE+GE+3) [(1’]
_ s +4s+5
T 5+ 1)(s+2)(s+3)
1 1 1

s+l s+2 1 s+3
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Since the eigenvalues of A are distinct, we can obtain the same result by applying
the formula from Problem 3.5.12. First, we need to find the matrix of right eigenvectors
and its inverse (the matrix of its left eigenvectors):

111 1 -1 0
Q=0 11 and Q'=]0 1—1]
0 0 1 0 0 1

Hence

1 (17
w = ({1 OO]H)@_I 0 0):1
0 1,
1 (17
v = ({1 OO]H)({I_I 0 0):—1
0 1]
1 M7
as = ([OI_I]H)([OO 1 0):1
1 1]

Problem 3.5.14 Signal flow graphs are a useful tool in the system analysis. In the
signal flow graph, each node presents a signal and is also a summing junction. The net
signal at a node is the sum of all the branches coming into the node. The transmission
gains are represented by a directed arrow and the gain on the branch.

The Mason’s gain formula allows us to find the transfer function of a system directly
from its signal flow graph:

H(s) = 5755 3 Pi(9)A()

where
n ... is the number of direct paths between input and output nodes
P;(s) ... isthe gain of the i-th direct path
AGS) = 1= X, L)+ Xy Li()Ls(9) = Tij i Li(9) L (5) (o) + -
where each of the above summands is a product of gains
of 1,2,3,... non-intersecting loops, respectively
Ai(s) ... is defined as A(s), but on the graph without the i-th direct path.

Use the Mason’s formula to find the transfer function of the system given by the
signal flow graph in Figure 3.15.

Note: Mason’s gain formula was first derived as ¢ method for solving systems of
linear equations in the early 1950’s. Its derivation can be found in [11] and [65].
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Figure 3.15: The signal flow graph for the illustration of the Mason’s formula.

Solution: In this problem

n =2,

P=A P=1,

Li=AB, L, =C, Ls =—-AD, Ly = -D,
A=1-AB~-C+AD+ D+ ABC - ABD - ACD,
Ay=1-C, A2 =1-AB,

therefore

A(1-C)+1-AB

H) = {_4B—C+AD+ D+ ABC - ABD — ACD

Problem 8.5.15 Use MATLAB to plot the phase-plane plot for the van der Pol oscil-
lator given by the following nonlinear state-space equations:

£ = Iz

T2 —a(x? — Dz2 — 21
Solution: Put the following code into file called vndrpol2.m:

% file vndrpol2.m - simulation of the van der Pol oscillator

%

t0 = 0;

tf = 10;

for i=1:30;
x0 = 10#(rand(2,1) - 0.5);
[t,x] = ode45(’vndrpol3’, [t0,tf],x0); % odedb numerically solves
hold on % ordinary diff.equations (ode)

plot(x0(1),x0(2), *b*’)
plot(x(:,1),x(:,2),°b-")
xlabel(’x1’)
ylabel (>x2°)
hold off
end
title(’Phase-plane plot for the van der Pol oscillator (a=0.75)°’)
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and the following code into vndrpol3.m:

% file vndrpol3.m - equation for van der Pol oscillator
function xdot = vndrpoli(t,x)

a = 0.75;

xdot = [x(2); -a*x(x(1)"2 - 1)*x(2) - x(1)];

end

Then run vndrpol.m from MATLAB to obtain the plot as in Figure 3.16. It shows
the system trajectories for 30 randomly chosen initial points. The parameter a is taken
to be a = 0.75.

Note: For the van der Pol oscillator, no matter what the initial conditions, all
trajectories converge to a curve called the limit cycle.

Phase-plane plot for the van der Pol oscillator (a=0.75)

—1F

~2F

-5 1 1 1 )
-6 -4 -2 0 2 4 6

x1

Figure 3.16: The MATLAB plot of the phase-plane for the van der Pol oscillator. In
this case a = 0.75 was used over the time interval from 0 to t; = 10s.
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If a = 0.2 is used instead, the graph in Figure 3.17 is obtained. The convergence
to the limit cycle is slower, and for some initial conditions 10s was not long enough
for the corresponding trajectories to get close to it.

Phase-plane plot for the van der Pol oscillator (a=0.2)

¥ ofF

1}

2

-3

4+
-5 L t 1 i J
6 -4 -2 0 2 4 6

Figure 3.17: The MATLAB plot of the phase-plane for the van der Pol oscillator with
a=0.2.



3.6 Stability

This Section defines various types of stability and investigates their relations.
It describes the stability in the sense of Lyapunov and the second method of
Lyapunov, which are useful not only for linear systems, but also for the stability
analysis of nonlinear systems.

Problem 3.6.1 Define BIBO (bounded-input bounded-output) stability. Give a nec-
essary and sufficient condition for BIBO stability in terms of h(t), the impulse response
of the system.

Solution: A system is said to be BIBO stable if its output to any bounded input
is also bounded. Since for any t, the output y(t) for any input u(t), ¢ > 0, and zero
initial conditions

0o
y(t) = / h(r)u(t — 7)dr
0
the condition for BIBO stability can be written in terms of the impulse response h(t):
fe )
/ |h(t)| dt < 0o
)}

Indeed, if h(t) is absolutely integrable, and C = max(|u(t)|) then

ly(®)| =

/°° h(r)u(t — 7)dr

[

< ” h(r —71)|dr
_/0 |h(r)||u(t — 7)|
Hence
<C h d 00
ly(®)] < /0 |h(r)|dr <

To show that absolute integrability of h(t) is also a necessary condition, suppose
h(t) is not absolutely integrable. Then for a particular bounded input

u(t) = sgn(h(T —t))

where T is some time instance, we find

y(T) = /occ h(r)uw(T — 7)dr = /oo |h(7)|dT

0

which does not exist. Hence, if for any bounded input the system has a bounded
output, the impulse response must be absolutely integrable.

Thus, a system is BIBO stable if and only if its impulse response is absolutely
integrable.

128
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Problem 3.6.2 Characterize the BIBO stability in terms of the poles of the system
transfer function H(s). Assume that H(s) is a rational function.

Solution: If the poles p1,p2,...,p. of H(s) are distinct, then h(t) is given by
(cf. Problem 3.5.12)

h(t) = Zaie”"t
i=1

If H(s) has repeated poles, then (again cf. Problem 3.5.12) the a; are polynomials
in ¢:

n
h(t) = Z ai(t)e”‘t
i=1
In both cases the condition for BIBO stability is given by the following requirement:
Re{pi} <0 (i=1,2,...,n)

Note: A system is said to be marginally stable if its smpulse response is bounded.
If the system has distinct poles, it is marginally stable if Re{p:} <0 (i =1,2,...,n).
If it has repeated poles, then the repeated poles must have their real parts strictly less
than 0, while the distinct poles may lie on the imaginary azis.

Problem 3.6.3 Any quadratic form Q(z) can be expressed as
Q(z) = ' Pz

where P is a symmetric matrix.
Determine P for

Q(z) = 22 + 2 + 2% + 25122 + 63123 + 4213

and determine if Q(x) (and therefore P) is positive definite, positive semi-definite
(nonnegative definite) or indefinite. (For more on quadratic forms and definiteness,
we refer the reader to Appendix C.)

a d e
P=j|d b f
e f ¢
the quadratic form is Q(z) = z' Pz = ax} 4 bzl + cx} + 2dz122 + 2ez123 + 2f 1223, in

our case we easily find
1 1 3
P=111 2
3 2 1

Since for £1 = z2 = 3 = 1 we-have Q(z) = 15 > 0, whilefor z; =z, =1, x3 = -1
we have Q(z) = —5 < 0, the quadratic form @Q(z) is indefinite. Therefore, the matrix
P is also said to be indefinite.

Solution: Since for
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Note: Of course, the Rayleigh-Ritz theorem leads to the same conclusion, because
Amin(P) = —2.2012 < 0, while Apmaz(P) = 5.1131 > 0, and so does the Sylvester’s
criterion:

11|7% =-1

=1, " 1 |

N W

1 1
11
3 2

Problem 3.6.4 Define the asymptotic Lyapunov stability for linear time-invariant
systems.

Solution: A linear time-invariant system is asymptotically stable in the sense of
Lyapunov if when there is no input, its states tend to 0 as t — oo, for arbitrary initial
conditions z(0).

Note: The non-repeated purely imaginary eigenvalues of a system are consistent
with Lyapunov stability, but not with the asymptotic Lyapunov stability. The stability
defined here is the so-called stability-in-the-large, or the global stability. For nonlinear
systems it is necessary to distinguish between the local and global stability, because
more than one equilibrium point may ezist.

Problem 3.6.5 When do the asymptotic Lyapunov stability and the BIBO stability
of a linear control system with a rational transfer function coincide.

Solution: If a linear system with rational transfer function is internally asymp-
totically stable, its poles are to the left from the imaginary axis of the s-plane. There-
fore y(t) = ¢'z(t) is bounded for any bounded input, hence the system is BIBO stable.
But as we saw in Problem 3.4.14, if the system is not controllable or not observable,
BIBO stability does not imply the internal stability, much less the asymptotic stabil-
ity. It can be shown that if there are no cancellations between c'adj(sI — A)b and
det(sI — A), i.e., if the system is both controllable and observable, these two types of
stability do coincide.

Note: The systems which are both controllable and observable are called minimal.

Problem 3.6.6 Describe the “second method” of Lyapunov.

Solution: Instead of solving the system equations (the “first method” of Lya-
punov), which can be quite a difficulty (and for some nonlinear systems even an im-
possible task), we can investigate behavior of the system’s energy. For many systems
energy cannot be defined in the standard sense, but any positive definite function V(z)
of states, such that V(0) = 0, can be used.

If for some positive definite function V(z), such that V(0) = 0, we find that it
decreases as time goes on, then we can say that the system is asymptotically stable
in the sense of Lyapunov. However, if at some times it decreases and at other times
it increases, we cannot conclude anything, only try another V(z). Indeed, finding the
appropriate generalized energy (also called the Lyapunov function), which is positive
definite and has negative definite time derivative, is often quite an art.

Problem 3.6.7 The Lyapunov stability theory applied to linear systems reduces to
investigation of candidate Lyapunov functions which are quadratic (or more generally,
Hermitian) forms.
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Let A be a system matrix of a system, and consider a function of the state vector
V(z) = z'Pz, where P is symmetric and positive definite
The time derivative of V(z) is
V(e)=2'Pr+z'Pi=2'APz+2'PAr=2'(AP+ PA)x
If matrix @ defined by
Q= ~(A'P + PA)

is positive definite, then the time derivative of V(z) becomes zero only at the origin,
therefore, the system is asymptotically stable. If @ turns out to be positive semi-
definite, and V(z) # 0 along any possible system trajectory, the system is asymp-
totically stable. If Q is positive semi-definite, and V(z) = 0 along some system
trajectories, the system is stable (we cannot say it is asymptotically stable, but some
other choice of P may show that). If Q is indefinite, we have to try another P. If Q is
negative definite, the system is unstable, and if @ is negative semi-definite, again we
have to examine V (x) along the system trajectories.

Since making a good choice of P is not trivial, for simple systems we usually begin
with any® symmetric and positive definite matrix Q, and look for the corresponding
P. Ais a Hurwitz matrix if and only if the solution of the Lyapunov equation

AP+PA=-Q

is symmetric and positive definite.

However, sometimes we can come up with a natural choice of P (i.e., V(z)), and we
can avoid solving the Lyapunov equation. For an interesting application of Lyapunov
theory, see Problem 3.10.2.

Use Lyapunov equation to determine whether the matrix A given by
3 -2

is Hurwitz. Let @ be an identity matrix. Verify your results by checking the eigenvalues
of A.

Solution: Let

D2 p3

8Indeed, we can begin with any positive definite symmetric matrix Q. This is based on
the theorem due to Lyapunov: A matriz A is Hurwitz if and only if for any given positive
definite symmetric matriz Q there exists a positive definite symmetric matriz P such that
A’P+PA = —Q. Let us mention that if A is Hurwitz, then for any positive definite symmetric
Q the solution of the Lyapunov equation P is unique and

® 1
P= / e thAt dt
0

[ 5
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3 1 prp2 | [P P2 3—2-|_ -1 0
-2 -1 p2 3 P2 Pp3 1 -1,7] 0 -1

therefore

then

_ 1/4 -5/4
P= [ —5/4 3 ]
Using the Sylvester’s criterion
1 1 5 5 13
rE I A A S TN
we see that P is not positive definite, hence A is not Hurwitz.

Indeed, the eigenvalues of A are 1 — /2 < 0 and 1 + v/2 > 0.

Matlab note: MATLAB command lyap can be used to solve for P:

A= [3-2;1 -1];
Q = eye(2); % identity matrix 2x2
P = lyap(A’,Q); % A’ because Matlab solves equation A#P + P#A’ = -Q

Problem 3.6.8 For a system given by

s 0 1
=l -6 -5 |7

use the following functions to investigate stability:

Vi(z) = 672 + 102,22 + 723
Va(z) = 6z +z3
Va(z) = zi+23—zi20

Solution: Vi(z) is a good choice, because it is positive definite (to see that note
Vi(z) = (2.521 + 2x2)% 4 60.752% + 3z3), and its time derivative is (we use £, = z2
and £ = —6z; — 5z2)

Vi(z) = 1342131 + 102122 + 102172 + 14z2d2 = ... = —60(z] + 23)

a negative definite function. Therefore, our system is asymptotically stable.
Va2(z) is also a good choice, because it is positive definite, and its time derivative
is negative semi-definite:

Va(z) = 122141 4 22282 = 12z135 — 232(671 + 572) = —10z3

Since Vz(z) is negative semi-definite, we need to examine Vz(z) along the trajectories
of the system. Vz(.’l:) = 0 only when z2 = 0, which (through the system equations)
implies £; = 0. Therefore, the generalized energy V2(z) of the system is decreasing
along any trajectory of the system. Again we see that the system is asymptotically
stable.

Va(z) is not a good choice, because, although it is positive definite, its time deriva-
tive is indefinite, Vs(z) = 627 — 5z1x2 — 11z3. Hence, Va(z) does not tell us a thing
about the stability of the system.
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Problem 3.6.9 The dynamic equations of a simple inverted pendulum are given by

. 01 0
5= [1 ! ]H[_I]u
y= [ 1 0 ].12
Use the Lyapunov equation
AP+PA=-Q

to determine whether the matrix A for the inverted pendulum is Hurwitz (i.e., if the
real parts of its eigenvalues are all negative). Let Q be an identity matrix.

Solution: The system is obviously unstable (if the description of the system as
the inverted pendulum is not enough to convince you, look at the eigenvalues of the
system), but we are asked to employ the Lyapunov function to show that A is not
Hurwitz.

The solution of the Lyapunov equation

AP+ PA=-Q  (in thiscase Q =1)
is not unique. Indeed, if
(521
D2 p3

we find that p2 = —1/2, ps = —p1, while p; is arbitrary.
Since P is not unique, A is not Hurwitz.



3.7 Controllability and observability

Illustrative examples in this Section introduce the notions of state controllability
and state observability. In later sections we shall see that these two properties
of dynamic systems are encountered as conditions for pole placement and state
observation. Several powerful tests for controllability and observability are de-
rived.

Problem 3.7.1 Consider a single-input single-output system given by

T = Az+bu
y = cdz+du

where = is n X 1, u, y, and d are scalars, while Aisn xn,bisnx1,and ¢ is1 x n.
Show that this system is state controllable if and only if

plC)=mn
where C is the controllability matrix of the system
C=[ Ab A% ... A"}
Solution: By definition, a system is state controllable if, by applying a proper

input u(t), we can change its state from any given state to any other given state in a
finite amount of time. We know that

¢
z(t) = eA':c(O) + / eA(t_T)bu(T) dr
o

Since et is always nonsingular, without any loss of generality we can consider a

case when we wish to take vector z from its arbitrary initial state z(0) to the origin
when ¢ = t;. Thus we write

ty
0=e**72(0) + / eAt ~bu(r) dr
)
ie.,

z(0) = — /t! e ATbu(r)dr
0

A

Using the Cayley-Hamilton theorem, we can write e””'" as a finite sum

n-1
e A = Z ai(T)Al
i=0

Therefore

n—1
2(0) = - ) A'bB; (3.3)

1=0

134
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where
ts
ﬂi=/ ai(thu(r)dr (i=0,1,...,n-1)
0

Note: The input u(t) can be determined from the above set of equations because
functions ai(t) are linearly independent on segment [0,tf]. This is so because of the
way we determined them (cf. Problem 3.2.7)

A At ky— — ’
Vit,onkn (AL, .., Ar) @ = [e 1togertt | gRimlehit o ghet gedet | ghe 1e)"t]

Since the functions in the array on the right-hand side are linearly independent and
the generalized Vandermonde matriz on the left-hand side is nonsingular, o;(t) are
also linearly independent. See also Problems 3.7.15 and 3.8.9.

Equation (3.3) can be viewed as a system of n equations in n unknowns 3; (i =
0,1,...,n — 1), which has a solution for any arbitrary z(0) if and only if

plC)=n
where

C=[b Ab A% ... A"}

Note: In the case of single-input systems the controllability matriz C is n X n,
therefore we could write the above condition as det(C) # 0. The reason we didn’t is that
the validity of the above condition can be extended to the systems with m-dimensional
inputs, when C is n X mn.

Thus, in general, when B is n x m, the system

& = Axz+ Bu
y = Cz+Du
is controllable if and only if
p(C)=n
where
C=[B AB A’B ... A" 'B]

Problem 3.7.2 A system is described by the transfer function

_Y(s) s+1
TUG) T s

G(s)

A first order negative feedback dynamic compensator H(s) given by

s+p
s+1

H(s)=k

is implemented to get a desired feedback system transfer function.



136 CHAPTER 3. CONTINUOUS LINEAR SYSTEMS

G(s) y

H(s)

Figure 3.18: With Problem 3.7.2.

a) Find parameters k and p in the feedback compensator such that the overall
transfer function from the reference input V' to output Y (see Figure 3.18) is given by
_Y(s) . s+1
TV(s)  s2+2s+4

T(s)

b) For the parameters chosen above, write the system state equations and discuss
the controllability and observability of the system.

Solution: Given are G(s) = X&) = 234! and H(s) = Z{) = g2t
U(s) 8 Y (s 8+1
a) In order to achieve

_Y(s) _ s+1
T V(s)  s?+2s+4

T(s)

we first write

Yy 1 1
TU+Z UY+ZIY 1/G+H

ie.,

G(s) s+1

TO) =TT GUHE ~ T+ kst hp

Therefore, we can immediately write
k=2 and p=2
b) Functions G(s) and H(s) given by

s+1 2
=2 ——
5 and H(s) +5+1

can be easily realized and connected, and then the state-space equation can be found:

-2 -2 =2 1
T = 1 0 0lz+|0}v
1 1 -1 0

y=[11 0]z

This realization is neither controllable nor observable.

G(s) =
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Problem 3.7.3 Consider a multi-input multi-output system given by

= Az + Bu
= Czx+Du

where B is n X m.

First assume A has n distinct eigenvalues, diagonalize it and find conditions for
the state controllability of the system.

Then assume A is not diagonalizable, transform it into its Jordan form, and derive
the general conditions for the system to be state controllable.

Solution: If A has n distinct eigenvalues, then it has n linearly independent
eigenvectors, which can be used to diagonalize A:

SAST'=A (A = diag(A1, ..., A2))

where the columns of S are the left eigenvectors of A (cf. Problem 3.2.1).

Since S is nonsingular, instead of states z(t) we can consider an alternative state
vector defined by z(t) = Sz(t).

Then the equations become

SAS™'z + SBu
y = CS'z+Du

and we can see that the system equations got uncoupled, therefore unless all rows of
SB are non-zero, some state will not be controllable by the input u(t). On the other
hand, if all rows of SB are non-zero, then we can design u(t) (cf. Problem 3.7.15) so
that it takes 2(0) = Sz(0) into 2(t;) = Sz(ty) = 0.

If A has repeated eigenvalues, the columns of the transformation matrix S are
the principal vectors (eigenvectors and possibly generalized eigenvectors) of A. The
similarity transformation SAS™! produces a Jordan matrix similar to A. With z(t) =
Sz(t), the equations are again as above, but the conditions for controllability are now
as follows:

1. No two Jordan blocks in J = SAS™! are associated with the same eigenvalue;

2. The elements of rows of SB corresponding to the last rows of Jordan blocks in
J are not all zero;

Problem 3.7.4 Give a few examples of the above criteria for state controllability.

Solution: Given are only matrices after similarity transformation, and brief
explanations.

-1 0 0 1
SAS™! = 0 -2 0}, SB=|4}, controllable

0o 0 -3 5
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-1 0 0 1
SAS™'=| 0 -2 o[, SB=|4], not controllable
0 0 -3 0
SAS™' = [ _(1] _(1) ] , SB= [i] , not controllable
a_[-1 1 N
SAST = [ 0 -1 ] , SB= [ 4] , controllable
SAS™! = -1 ! SB = L not controllable
0o -1’ of’
a_[-1 1 _[o
SAS™ = [ 0 -1 } , SB= [1] , controllable
-2 1 0 1 2
SAS~'=| o0 -2 o0, SB=|4 5], not controllable
0 0 -3 0 0

Problem 3.7.5 For a system given by

z(t) = Az(t)+bu(t)

y@t) = dz(t)
find the condition which guarantees that if i.c.’s y(0~), §(07), ..., y¥™"~D(07), u(07),
w(07), ..., u(®1(07), are known, then the i.c.’s 1(07), 2(07), ..., zn(07) can be

found.

Solution: If we define Y(t) and U(t) as

u(t) u(t)
a() a(t)
y(it) = . and U(t) = .
™D (8) D (8)

then we can write
Y(t) = Oz(t) + TU(t)

where
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and T is a lower triangular Toeplitz matrix with first column [0 c¢'b ... ¢/A™~%p]
(numbers h; = ¢’ A*b are called Markov parameters, cf. Problem 3.8.4).
Therefore, we can write

0z(07) = Y(07) — TU(07)

and we see that the initial conditions z(0~) can be determined from the arbitrary
given initial conditions Y(0~) and ¥(07) if and only if

p(O)=n
If p(O) = n we say that the system is observable.

Note: If the system is not observable, the i.c.’s (0™ ) can be found only for some
t.c.’s Y(07) and U(07). In that case, if i.c.’s (07) can be found, then they are not
unique. This non-uniqueness is not important if we just need to determine any i.c.’s
z(07). But if we need the actual i.c.’s, this is a problem (see Problem 3.7.6).

Problem 3.7.6 Describe the condition which guarantees that if we know A, b, ¢,
u(t) (t > 0), and y(t) (¢ > 0), then we can determine z(t).

Solution: To determine z(¢), besides the given matrices and signals, we only
need the i.c.’s 2(07). As we found in Problem 3.7.5, this can be done if and if the
observability matrix, defined by

has a full rank.

Note: If the system is not observable, there are cases when the i.c.’s z(07)
cannot be determined, and even if they can, they are not unique. Hence if p(O) < n,
the states z(t) either cannot be determined, or are not uniquely determined. Due to
the Cayley-Hamilton theorem, further derivatives y™, y**V . are of no help here.

Problem 3.7.7 Derive observability conditions analogous to the controllability con-
ditions in Problem 3.7.3. The system is given by A, B, and C matrices.

Solution: In general, when A is similar to a Jordan matrix via the similarity
transformation J = SAS™!, the conditions for observability are as follows

1. No two Jordan blocks in J = SAS™! are associated with the same eigenvalue;

2. The elements of columns of CS™! corresponding to the first columns of Jordan
blocks in J are not all zero;
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Problem 3.7.8 Describe the PBH (Popov-Belevitch-Hautus) eigenvector tests for
controllability and observability. Also describe the PBH rank tests.

Solution: PBH eigenvector tests:

o A system is controllable if and only if no left (row) eigenvector of A is orthogonal
to b, i.e., if we have

p'b#0  for all left eigenvectors of A

e A system is observable if and only if no right (column) eigenvector of A is
orthogonal to ¢, i.e., if we have

c'g#0 for all right eigenvectors of A

PBH rank tests:

o A system is controllable if and only if
plsI-A bl=n  (for all s)

e A system is observable if and only if

c/
P [sI—A} =n (for all s)

Problem 3.7.9 Describe the s-plane criteria for controllability and observability.

Solution: A system is controllable if and only if there are no cancellations in
(sI—A)™!b, or, more precisely, if there are no common pole-zero cancellations between
the elements of adj(sI — A)b and det(sI — A).

It is observable if and only if there are no cancellations in c'(sI — A)7}, i.e., if
there are no common pole-zero cancellations between the elements of c'adj(sI — A)
and det(sI — A).

Combining these two criteria, we can say that a system is both controllable and
observable if and only if there are no pole-zero cancellations in ¢’ (sI — A)~'b.

Problem 3.7.10 For the system shown in Figure 3.19 write the system equations in
the form

()
y(t)

Az(t) + bu(t)
c'z(t) + du(t)

and find the transfer function. Determine whether this system is controllable and/or
observable. Is it stable?
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Figure 3.19: Diagram of the system described in Problem 3.7.10.
Solution: Obviously

y=[-5 -1] [z;]+1u

The transfer function is found by taking the Laplace transform of the system
equations and assuming zero initial conditions:

() = Az(t) +bu(t)
y(t) = cz(t) +du(t)
sX(s) = AX(s)+bU(s)
Y(s) = dX(s)+dU(s)
which yields
Y(s)=(d(sI— A '"b+d)U(s), ie, H(s)= ZEZ; =c(sI—A)7'b+d

In our case

H(s) = [-5 —1][3;4 ;]_l[i]ﬂ

ey

-5 s+4 1

-5 -1 ]t—" 1

[ 5 ] s2+45-5 []+

_ s2—25+1 _ s-1

s2+4s—5 = s+5
This result can easily be obtained from the signal flow graph using the Mason

formula.
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The controllability matrix is

c=p Ab]=[i :g}

while the observability matrix is

o-[2]-[2 7]

Their ranks are both equal 1, which is less than the order of the system (n = 2),
hence this system is neither controllable nor observable.

Note: Another possibility was to observe that there is a zero-pole cancellation
in (sI — A)™'b, which is not consistent with controllability. Also there is a zero-pole
cancellation in ¢’ (sI — A)™Y, which is not consistent with observability.

We shall see later some special types of realizations. Using these realizations the
transfer function from this problem can be realized as controllable (but not observable)
or observable (but not controllable) system. Due to the pole-zero cancellation it can
never be realized as both controllable and observable system.

Problem 3.7.11 Consider the two feedback systems in Figure 3.20. Write a state-
space representation in each case. What can you say about the controllability, observ-
ability, and stability of these two configurations?

u s-1 y

A s+1

Figure 3.20: With Problem 3.7.11.

Solution: The two “black boxes” can be realized as in Figure 3.21.
Therefore, for the first configuration we can write:

AN R R

y=[-2 -1] [z:]-f—u
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1

A L b

N
1

-1

Figure 3.21: Possible realizations of the two “black boxes” in Problem 3.7.11

Hence

det(C) =‘ 1 :2 ‘ =0 = not controllable

-2 -1
4 2

det(0) = =0 = not observable.

Although the transfer function is
BT
-2 s+1 |1 (s —1)? s—1
— —_ -1 = 1—-2 —1|——— e = = =
H(s) =c(sI=A)"b+d=[-2 —1] s24+s5—2 [1}+ (s—1)(s+2) s+2

the system is not stable, because we had a zero-pole cancellation of an unstable pole

s=1.
We could better examine the stability by finding the eigenvalues of the system:

detAI—4)=0 = XN4+A-2=0 = A=-2 d=1

The second configuration can be realized as follows:

El =10 TR

Hence
1 0
0 1|7 1#0 = controllable

det(0) = 0 2

This time the transfer function is

1.0 ‘ =2#0 = observable.

[s+1 2]
1 s
H(s)=d(sI-A)%b=[1 0] s2+s—2 [(1)]=(3_81;£31+2)

hence the system is not stable.
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Problem 3.7.12 Let the parameters of the inverted pendulum (see Problem 3.5.11)
on a cart be as follows: m = 0.102kg, g = 9.81m/s*>, M = 1kg, and [ = 0.5m.
Write the corresponding state-space equations, and find the eigenvalues of the
system. Is the system stable, controllable, and/or observable? Simulate the system
using the MATLAB package, first for the unit step input of magnitude 0.1 and zero
initial conditions, and then for zero input and initial conditions: z'(0) = [0 0.1 0 0]'.

Solution: The system equations are now

0 0 1 0 0
o o o0 1 0
=19 -1 o0 o |TF|1|"
0 216 0 O -2
_[1 0 0 o
=lo 1 0 0 ]‘”
The eigenvalues are found from
A 0 -1 0
0 A 0o -1 | _
0 1 x o |=0
0 -21.6 0 A
2 A -1 | _
Al 216 A I =0

N(AZ-216)=0
therefore
A1=0, A2=0, A3=4.65 A= ~4.65
Since Az > 0, the system is not stable.
The system is controllable because

C=[b Ab A% A3b]=[

is a full rank matrix. Really,

2 1 0 0
—43.2 -2 0 0 | _ _/_qyi+2+1+2| 2 ' 2
S AR R CE) b b | =000
0 0 -432 -2
The system is also observable, because
c
_|ca
O_ [CA2]
cA®
is a full rank matrix. Indeed
1 0 o0 o
o 1 0 o0
o 0o 1 o0
o 0 o0 1
PO)=p| o 1 o o |=pUs)=4
0 216 0 0
0 0 0 -1
0 0 o0 216

Note: Ezamine the observability of this system if the only state available is 6(t).
What if only 2(t) is available?
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Simulation for the unit step input of magnitude 0.1 and zero initial conditions:

First create the file called pendla.m containing the following lines:

% file pendia.m
’

%
function xdot = pendia(t,x)

u=0.1;

xdot (1) = x(3);
xdot(2) = x(4);
xdot(3) = -x(2) + 1xu;
xdot(4) = 21.6#x(2) - 2%u;

end

and then create and run the following file in MATLAB to obtain Figure 3.22:

% file simulla.m

%

t0 = 0;

tf = 0.8;

x0 = [0;0;0;0];

[t,x] = ode45(’pendia’,t0,tf,x0); % ode45 numerically solves ord.diff.equations (ode)
subplot(2,1,1)

plot(t,x(:,1))

title(’Inverted Pendulum Simulation 1a’)

xlabel(’t [s]’), ylabel(’z(t) [m]’), grid

subplot(2,1,2)

plot(t,x(:,2))

xlabel(’t [s]’), ylabel(’theta(t) [rad]}’), grid

Inverted Pendulum Simulation 1a

0.04 , : . , ——— -

theta(t) [rad)

_0.2 i i i 4 1 L i
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
t(s]

Figure 3.22: The results of the MATLAB Simulation la. The results are expected
because the system is unstable.
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Simulation for the zero input and initial conditions: #'(0) =[0 0.1 0 0]

Now begin by creating the file called pend1b.m containing the following lines

% file pendib.m

13

function xdot = pendib(t,x)
xdot (1) = x(3);
xdot(2) = x(4);

xdot (3) = -x(2);
xdot(4) = 21.6%x(2);

end

and then create and run the following file in MATLAB to obtain Figure 3.23:

% file simulib.m

t0 = 0;
tf = 0.8;
x0 = [0;0.1;0;0];

[t,x] = ode45(’pendib’,t0,tf,x0);
subplot(2,1,1)

plot(t,x(:,1))

title(’Inverted Pendulum Simulation 1b’)
xlabel(’t [8]?), ylabel(’z(t) [m]’), grid
subplot(2,1,2)

plot(t,x(:,2))

xlabel(’t [s]’), ylabel(’theta(t) [rad]’), grid

{nverted Pendulum Simulation 1b

T

T

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
t[s]
25
2 .........
)
Sl A
g
s 1 .........................
£ : : : : : :
05f i JERE . : . éA e T P
o : ; ; , ; : :
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
t[s]

Figure 3.23: The results of the MATLAB Simulation 1b. Again, the results are as
expected.
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Problem 3.7.13 Consider the following dynamical system equation

-1 1 0 o 1

. 0 -1 o0 0 0

= 0 o —2 1 |FTio|¥
0 0 0 -2 1

y=[111 0]z
Is this system controllable and/or observable? Is it stable? Draw a signal flow

graph and find a transfer function, both using the Mason’s formula, and the formula
in terms of system matrices.

Solution: Since det(C) = 0 and det(Q) = 1, this system is not controllable,
but is observable. Its eigenvalues are obviously —1, —1, —2, and —2, so the system is
stable. The signal flow graph is shown in Figure 3.24.

Figure 3.24: With Problem 3.7.13. If we were allowed to add one new connection in
the graph, which nodes should we connect in order to make the system controllable?
Which output connection we can remove without destroying observability?

From the Mason’s rule, we find

6 13 12 4
=1 -_ — —
A =1+-+5+5+

84
and
Pi(s)=1/s Ai(s) =1+5/s+8/s% +4/s°
Py(s) =1/s® Az(s)=1+2/s+1/s*
so we have
. Pi(s)A; 2
H(s) = 2 POAE) - @5ats
A(s) (s+1)(s +2)?
Of course,
1 1 82+ 5545

H(s)=c(sI-—A)'b=..

Te D Gr2E - GrDEr2?
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Problem 3.7.14 For the system described in Problem 3.7.13

-1 1 o0 o 1

. 0 -1 o0 o0 0

z= 0 o0 -2 1 |TF|o|¥
0 o0 0 -2 1

y= [ 1 110 ] T
determine the controllability and observability matrices using the MATLAB commands

ctrb and obsv. Also, determine its transfer function using the command ss2tf.

Use the following code to obtain the controllability and observability matrices and
the transfer function:

A=[-1 1 0 0;
0-1 0 O;
0 0-2 1;
0 0 0-21];

b= [1; 0; 0; 1];

c = [1; 1; 1; 0];

C = ctrb(a,b)

det (C)

0 = obsv(A,c?)

det (0)

[num,den] = ss2tf(A,b,c?,0,1)
[R,P,K] = residue(num,den)

The transfer function results are as follows:
num = 0  1.0000 6.0000 10.0000  5.0000
den = 1 6 13 12 4
R = 0.0000 1.0000 1.0000 0.0000

P = -2.0000 -2.0000 -1.0000 -1.0000

K=1]

From the results of ss2tf and residue we can write

s2+5s+5 _ 1 1
HO) = 03D+~ G+D T G 2°

Note: Use MATLAB to answer the questions asked in the caption of Figure 3.24.

Problem 3.7.15 For the system with

1 2 3 2
A=]10 1 5 and b= |3
210 1

investigate its stability and controllability. Determine any input u(t) which can take
the system from z(0) =[10 5 3]’ to the origin in t; =1.2s.
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Solution: The system is unstable because one of its eigenvalues has a positive
real part:

A =4.5995, Az = —1.2998 4+ 0.51705, Az = —1.2998 — 0.5170;

If the system is to be stabilized, it should be state controllable, or at least the
unstable mode of the system should be controllable by the appropriate input u(t).

We shall see later how to stabilize systems by the appropriate state feedback. At
the moment we are interested only in its controllability. Since

2 11 48
det(C)=1[b Ab A%|=|3 8 43 |#0
1 7 30

this system is state controllable.

Now let us find some input »(t) which in finite time (t; = 1.2 s) takes the system
from £(0) =[10 5 3]’ to the origin. From what we know, such an input must satisfy
the following three equations:

ty ty ty
/ ao(t)u(t)dt = Bo / ai1(t)u(t)dt = B / az(t)u(t) dt = B2
0 o i}

where fo, 81, and 32 are the solutions (cf. Equation 3.3) of

z2(0)] = —C |A
z3(0)
In our case

Bo z1(0 [ -61 6 897r10 —20.87
[gi] =-c?! [zz(og] =1 [ —47 12 58 ] [5] = [—15.73]
23(0) 1 13 -3 -17 | |3 427

There are many different inputs which can do that. The simplest such input is a
piece-wise constant function of time. Let R;(t), Ra(t), and R3(t) be defined by the
graphs in Figure 3.25, and let

u(t) = 71 R1(t) + v2R2(t) + 71aRs(t)

This choice for u(t) greatly simplifies the above integral equations — now they
become a system of three linear equations in unknowns 71, 42, and ~s:

tf tf 3
[ astna=p = [Tt (Zw,-m) dt =
0 0 =1

3 t
= Y ( / fa,-(t)Rj(t)dt> =5
=1 0
3 t;
= Y v (/ a,-(t)dt) =B (i=0,1,2)
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2 T T
=31 N S S SRS S SR 1
o 1 1 Il 1
0 0.2 0.4 0.6 0.8 1 12
2 T T T T
] R S N S SR S ]
0 ( | |
0 0.2 0.4 0.6 0.8 1 1.2
2 T T T
it
o . . ; ;
0 0.2 0.4 0.6 0.8 1 12

tls]

Figure 3.25: Graphs defining R;(t), R2(t), and R3(t). Each is non-zero for t;/3
seconds.

Using the Cayley-Hamilton theorem (as in Problem 3.2.6) we can find the c:(t)’s.
Note that a;(t)'s were defined as coefficients next to A* (rather than next to (—A)*)
in the expansion of e~ 4%, hence we have to be careful with the signs.

ot 1 A A2 77 e
a1(t) 1 X A e~ 2t
az(t)

therefore

1 As A2 e st
ot A AT T et — ety
ai(t)| dt = 1 A2 A2 —(e2ti —eP2ti-1) /Ny (1=1,2,3)

: 1 on(t 1 A A2 —(e~Msti — e Hsti-1) /),

Denote these values for different values of j by goj, 915, and g2, then with

gol1  goz o3 0.3914 0.2725 —0.1862
G=| 911 912 @3 = —0.0889 —0.3606 —0.9040
g21 g22 923 0.0095 0.0669 0.2056

we can write

Gy=p8 ie, y=G7'8

1 —11.08
y2| = [ -37.74
: 33.55

and finally
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40 T T T T T

0.2 0.4 0.6 0.8 1 1.2

states x(t)

30 . ; : ﬁ .
0 0.2 04 0.6 0.8 1 1.2
ts)

Figure 3.26: Shown are the input u(t) and the states z1(t), z2(t), and z3(t), which
are driven by the input to the origin.

Therefore we can pick u(t) as in Figure 3.26.

Note: Since the system is unstable, if greater t; were chosen, the accumulation
of numerical errors and noise would make it very improbable that the origin would
be reached. That is why it is much better to design the state feedback, which uses
the current information (on-line or real-time calculations) than to use the predesigned
inputs, which do not account for unpredictable changes.

Problem 3.7.16 If a pair (A,b) is not controllable, can ¢’ be always chosen so that
(A,c') is observable?

Solution: No, such ¢’ cannot be found when A has two or more Jordan blocks
associated with the same eigenvalue (see Problems 3.7.3 and 3.7.7). The simplest

example is
1 0
a-[s 3]

Problem 3.7.17 If a pair (A, b) is controllable, can ¢’ be always chosen so that (4, ¢')
is observable?

Solution: Yes, any ¢’ without any zeros makes a good choice.



3.8 Canonical realizations

This Section provides an overview of five most commonly used realizations of
systems: controller, observer, controllability, observability, and modal.

Problem 3.8.1 Show that the complete state controllability (observability) or a lack
of it is preserved under a nonsingular similarity transformation.

Solution: We will show that p(Caew) = p(Cora), where

Cnew = [bnew Anewbncw e A:;vlbnew]

Cola = [bold Aciaboa . .- Aglzlbold]

while
Anew = SA0aS™",  buew = Sboa, and che, = chaS”!
Indeed, since
A¥ boew = SA bas (K=0,1,...,n—1)
we have
Chew = SCola

Since S is nonsingular, p(Cnew) = p(Cola)-
The proof of p(Onew) = p(Oaia) is completely analogous to the above derivation.

Problem 3.8.2 Given a transfer function
s2+2

H(s) = G+1)(s+2)(s+4)

develop controller, observer, controllability, and observability canonical forms of real-
ization. For each canonical realization write the system equations and draw a signal
flow graph.

After that write H(s) in partial fractions form, and draw the corresponding signal
flow graph. This is the modal canonical representation of this system.

Solution: Directly from the definitions of the controller, observer, controllability,
and observability forms, and from

s> +2 T+
+

HO) = Gine+ 26+ — 1+1

2
s
14 8
ztT

we find

152
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Controller form (Figure 3.27):

-8

Figure 3.27: Realization of H(s) in the controller form. Controller form is helpful
in pole placement, because the Bass-Gura formula becomes very simple (see Prob-

lem 3.9.4).
.il -7 —-14 -8 1 1
o = 1 0 0 z2| + [0] u
T 0 1 0 T 0

y=[1 0 2][2]

I3
In general, with

_b(s) _ bis®+bas+bs
T a(s) ~ s3+ais®+azs+as

H(s)
we can write
—-a1 —az2 —as3 1
Ac={ 1 0 0 be= (0| c=[b b bs]
0 1 0 0
In Section 2.2 we derived the following results (Equations 2.5 and 2.9),
C.=a-T and O, =IbA.)

Since a_ is lower triangular with 1’s on its main diagonal (hence det(C.) = 1), this
realization is always controllable.
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Observer form (Figure 3.28):

Figure 3.28: Realization of H(s) in the observer form. It is useful in design of the
state observer, because the dual of the Bass-Gura formula becomes very simple (see

Problem 3.11.1).
Ty -71 0 T) 1
=] -14 0 1 T2l + |0 u
z -8 0 0] |z 2

Sop:

For this realization, in general,
—a1 1 0 b1
A,=| —az 0 1 bo=|b2| co=[1 0 0]
—a3 0 O bs
By duality to the controller realization
O, =a-! and C,=0b(4,)]

therefore this realization is always observable.
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Controllability form (Figure 3.29):

Figure 3.29: Realization of H(s) in the controllability form. It is useful in partitioning
a system into controllable and uncontrollable parts. The controllable part is usually
written in the controllability form. It is also useful in determining the input necessary
to set desirable initial conditions (see Problem 3.8.9).

Z 00 -8 T1 1
2l =11 0 -14 z2l + |0]| 2
z 01 -7 T 0

where

oo -
-
~ R
———
L

i
—
—

|
-3
w
3
[a——

(o 5 11=1 0 2]

For this realization, in general,

0 0 —Q3 1
1 0 —a2 beo = |0 C::az[a B '7]
0 1 -—-a 0

Aco =

where

[a B8 v]=[b b b ]ac”

It is interesting to note that o, 3, and 7 are the first three Markov parameters (see
Equation 2.2 and Problem 3.8.4). For this realization (cf. Equations 2.1 and 2.4)

Co=I and O, =M

therefore this realization is always controllable.
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Observability form (Figure 3.30):

o

Figure 3.30: Realization of H(s) in the observability form. It is useful in partitioning a
system into observable and unobservable parts. The observable part is usually written
in the observability form. Since Qo = I, it is also useful in determining the initial
conditions z(07) from Ox(0~) = Y(0~) — TU(0™). See also Problem 3.8.10.

T1 0 1 0 T o
-l ]
T -8 -—-14 -7 T 04

where again

a 1 0 077" 17 1
HRERRINERE
P 14 7 1 2] 37

For this realization, in general,

0 1 0 o
Ao,,=[ 0 0 1 ] bob=[ﬂ co=[1 0 0]

—as —az -—Qai

-y

Op=I and Cop=M

therefore this realization is always observable.

where again

Here
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Modal form (Figure 3.31):

Figure 3.31: Realization of H(s) in the modal canonical form. This form corresponds
to the Jordan (diagonal) canonical form of the matrix. It is helpful in determining
which modes are uncontrollable and/or unobservable (see Problems 3.7.3, 3.7.7, 3.7.13,
3.7.16, 3.7.17, and 3.9.10).

To find the modal canonical form of the system, we first need the partial fraction
representation of H(s):
5?42 A B c
(s+1(s+2)(s+4)  s+1 s+2 s+4

H(s)=

S +2=A+2)(s+4)+B(s+1)(s+4)+C(s+1)(s+2)

s=-1 = A=1 1 3 3
s=-2 = B=-3 = H(s)= T~ 2+ i
s=—4 = (C=3 s+ s+ s+

The choice of vectors b and ¢’ is not unique, it is just necessary to pick them so
that b101 = 1, szz = —3, and b303 =3.

Note: As an ezercise, the reader may try to determine the eigenvalues of the
system, its impulse response, and the transfer function, both using the formula H(s) =
& (sI — A)"'b+d and the Mason’s rule, for some, or for all five realizations.
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Problem 3.8.3 Show that the product OC is invariant under a nonsingular similarity
transformation.

Solution: Ifan “old” system is transformed into a “new” system by a nonsingular
matrix S, then from Toew = SZoa, We see that
Tnew = SAoldS_l Znew + Sboia u
N’ ~—~~
Anew bnew
y= les_-l Znew
N’
Chew

Therefore Opew = OoaS and Coew = S 'Coua, and finally
Onewcnew = Ooldss—lcold = Oold old

Note:  This product is equal to the Hankel matriz of Markov coefficients M,
which is defined in Problem 3.8.4. See also Problem 3.8.11.

Problem 3.8.4 For the transfer function
s?+2 2 +2

HO = GG+ 6+ ~ S+ +14s+8

five different canonical forms were examined in Problem 3.8.2. Find the transforma-
tions to convert between different canonical forms.

Solution: If the transformation is given by matrix S, than with z... = Szoua,
we have
Fnew = SAc1aS ™" Toew + Sbowa v

N S~
Anew bnew

/ -1

Y = Co1aS  Tnew
N

7

cnew

Most of the following identities can be derived from Equations 2.3 and 2.6 and
Problems 3.8.2 and 5.1.24:

o any controllable form — controller form: § = C.C~! = a-7¢™!
e any controllable form — controllability form: S =C™!

o any observable form — observer form: S = 0;!0 =a-0O

e any observable form — observability form: S = O

e controller — observer form: § = —IBI

e controller — controllability form: § = aT

e controller — observability form: § = Ib(A.)

o controllability — observer form: S = b(A4,)1

e controllability — observability form: § = M

e observer — observability form: S = a’!

e any of the above — modal form: see Example C.3.3
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The following matrices appear in the list above:

0 ... 0 1
f=|o 10
1 ... 00

B=1I(asb_ - bya.), the so-called Bezoutian

where with

Cb(s) b8l bes™ 2+ ...+ bp1s+ by
Ta(s) T st +aishl+axs"2+... +an-18+an

H(s)

the matrices a4, a_, by, and b_ are defined by

an Gn—1 ... a2 ay T 1 1] ... 0 0
0 an ... a3 as ay 1 0 0
ay = . . Lo : a. = :
0 0 Gn Gn-1 an-2 @p-3 ... 1 0
0 0 0 an Gn-1 @Gp-2 ... a1 1
bn bn-1 ... b2 by T F 0 0 0 0
0 bn ... bz b2 by 0 0 0
by=|: Lo b_=|": : ) :
0 0 cor bn bpa bpo2 bp—3 ... O 0
0 0 .. 0 bn | L bact bp—2 ... b O

The matrices A, and A are the system matrices in observer and controller form,
respectively, while
hi ho ... hn
h2  h3 vor haga
M= . .

hn  hay1r ... h2n-a

is the Hankel matrix of Markov parameters, h;, defined by

H(s)=cd(sI-A)7 b= i his™?

i=1

Note: Since

-1 2
(ﬂ-@*:ll—ﬁ =11+é+i+”.
s s2

S S
we have
hi=d A (=1,2,..)

Since the impulse response can be written as h(t) = c'e*tb and since H(s) =
L{h(t)} and H(s) = ' (s — A)~'b, we see that

4t

h; = -crl_—l-h(t) (t=1,2,...)

t=0
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Let us see some of these transformations at work:

e Controller — observer form: S = —IBI

S=-IBl = -Il(ayb- — bya_)[ = —(a;b- — bya )i

1 1 0 o 0
0 7 1 0 0
2 14 7 1 1

oo

[=R=N
[SR—

(=N}
oo
—_—
|
—
ooN
onvo

Now we see that

. 1 o 2 -7 —14 -8 372 -12 -24
SA.S™! = 0 -12 6 1 0 0 |z -12 —2¢4 6
2 6 28 0 1 0 —24 6 12
-7 1 0
= —14 0 1 = A,
-8 0 0

o Controllability — observer form: S = b(A,)T
In this case

~ - 1 -7 37
S =b(Ao) = (b1 A2 + ba A, + b3 )T = [ 0 -12 90 ]
2 -8 56

Problem 3.8.5 Show that if a system given by {A,b,c'} is controllable, it can be
transformed into the controllability form using the following transformation matrix:

co = c_l
where C=[b Ab ... A""!}]is the controllability matrix of the original system.

Solution: We need to show that Sco ASS! = Aco, Seob = beo, and ¢'S5! = cly.
To show that S0 ASL! = Aco we will prove that AC = CAco. Indeed

AC=A]b Ab ... A" '] =[Ab A% ... A"
while
CAco =[Ab A% ... (—=anl —an_1A—...— a1 A" )]

From the Cayley-Hamilton theorem —anl ~ an—14 — ... — a1A" ! = A" and
therefore AC = CAco.
It is obvious that S.ob = bco, because

Cbeo=[b Ab ... A" ') |.| =b
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To show ¢’'S;' =[h1 hz ... hy,] observe that
¢S =[cdb dAb ... A =[h1 k2 ... hal
where h;'s are Markov parameters.
Note: Recall from Section 2.2 that

[f1 h2 ... ho]@Z =[b1 ba ... by

is just another way of writing the definition of Markov parameters
= —i_ b(s)
St = 43
; a(s)
i=1

Problem 3.8.6 Show that a controllable system given by {A,b,c'} can be trans-
formed into the controller form using

S.=CC' (C.=aT)

Solution: Using the result of Problem 3.8.5 we know that the transformation
from controller into the controllability form is given by § = ¢7' = aZ. Thus, to go
from any controllable form into the controller form we can go via the controllability
form, when we find

S.=a-Tc!

Problem 3.8.7 For the transfer function given by

s+3

H =
)= 579+ 245 718

find a controllability form of system realization.
a) Find the controllability matrix Cc,. Is the system controllable?
b) Find the observability matrix Q... Is the system observable?

Solution: If we want to use the controllability canonical form, we need to
determine the coeflicients a, 3, and v in Figure 3.32.
To do that, we can use the Mason’s formula which yields

o SOFEEH) +E (Y 4
1+2+3 4+ 13

which, when equated with the given expression for H(s), implies
a=0, =1, and y= -6

Of course, the same result is obtained using

-1

{-La 5] -1
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Figure 3.32: Realization of H(s) from Problem 3.8.7 in the controllability form.

Therefore

0 0 -18 1
=11 0 —-24 |z+|0|u
0 1 -9 0

100 0 1 —6
Co=|0 10 and O = 1 -6 30
0 0 1 -

6 30 -—154

while

Since det(Cco) # 0 and det(Oc,) = 0, we see this realization is controllable but it
is not observable. If we chose to use the observer or observability form, the realization
would be observable but not controllable.

As we saw in Problem 3.7.10 there are realizations that can be neither controllable
nor observable.

Problem 3.8.8 Show that the controller (or any controllable) realization of H(s) =
b(s)/a(s) is observable if and only if a(s) and b(s) are coprime polynomials. Similarly,
the observer (or any observable) realization of H(s) = b(s)/a(s) is controllable if and
only if a(s) and b(s) are coprime.

Solution: Use the theorem from Problem 3.7.9.

Problem 3.8.9 A system is given by

st +2 %+

2
H(s) = = a3
) =TT De+6+9 1+I+48+ 5%

Write it in any state-space representation and determine the coefficients in the
following impulsive input :
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w(t) = pob(t) + p18(t) + p28(t)

so that the initial conditions are “instantaneously” changed from z(0~) to z(0%).
What canonical form is the most convenient for these calculations? What condition
guarantees that any desired change in initial conditions can be made in this way?

Solution: In general, regardless of the form the system is given in, from Prob-
lem 3.5.4 we know

z(t) = etz (0) + /t et Dbu(r) dr

0

Using
oF
| 1086 =110
o=
with
n—1 )
u(t) =) pid®(t)
=0
we obtain
z(0Y) =z(07) +Cu
where p = [0 p1 ... pn-1], while C is the controllability matrix.

Note 1:  In the controllability canonical form Cco = I, hence the calculations
become trivial:

p = 2eo(0) = 2co(07)

Note 2: We can achieve any change in initial conditions in zero time if and only
if p(C) = n, i.e., under the same conditions as with the finite time (Problem 3.7.1).

Problem 3.8.10 Consider again Problems 3.7.5 and 3.7.6 and determine the canoni-
cal form which is most suitable for determining initial conditions and observing states.

Solution: In Problems 3.7.5 and 3.7.6 we found that
Y(t) = Oz(t) + TU(t)

In order to calculate z(t) or z(0) it is necessary to invert O, the observability
matrix. Since in the observability canonical form O,, = I that form is the most
suitable for such calculations. Even with this simplification these calculations are not
a good solution, because they involve differentiation, which amplifies any error due to
noise or round-off errors. In discrete-time systems there is no differentiation involved
and this formula can be practical.
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Problem 3.8.11 In Problem 3.8.3 we showed that the product OC is invariant under
similarity transformations. Prove that

oc=M
where
hi  hg ee. ha
e[
}1" }ln+l "121-—1

is the Hankel matrix of Markov parameters, h;, defined by

H(s)=c(sI—A)7 b= i his™

i=1

Solution: It is easy to see this because

c
cA
oc = |. b Ab A% ... A"
c.lAn—I
[ c'b dAb ... A"
c Ab dA% ... JA™
| dA™ b FA™D ... AT

Note: In the controllability canonical realization Cco = I, therefore
Oco =M

Similarly, in the observability canonical O, = I, hence
Coo =M

Problem 3.8.12 A system is given by

4[4 318
o

Use MATLAB commands to calculate Markov parameters hi, ha, ... hs. Compare
that with the result of long division of the numerator by denominator in H(s).
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Solution: Typein the following in MATLAB prompt: M = obsv(A,c’)*ctrb(4,b)

to obtain
1 -1 3
M=} -1 3 -7
3 -7 13

The transfer function can be obtained by typing the following line in MATLAB:
[num,den] = ss2tf(A,b,c’,d,1) which yields

s24+3s+4

H(s) = 53 +4s2 + 5s

The result of long division agrees with elements of M above:

82+33+4 _ -1

—2 _3 —4 -5 —6
m— —8 “4+38 " —TsT"+13877 —17s " +...



3.9 State feedback

In this Section we shall see how to move the poles to any desired position, some-
thing that was not possible by a simple output feedback (cf. Problem 3.4.15).
We shall see that the condition for this so-called modal controllability is the
state controllability and observability.

Problem 3.9.1 Consider a system given by
& = Az +bu
Let the system be controllable, i.e.,
plb Ab A% ... A" ' =n

If the state vector is observable and a state feedback is implemented using an
arbitrarily chosen gain vector as in Figure 3.33, i.e.,

u=—-kz+v

write the new system equation of the feedback system, and show that the new system
is controllable for any feedback gain vector k'.

u) | s x® 0

* x(t)

Figure 3.33: State feedback feeds back the state vector z(t) to the input. If the state

vector is not directly available, it has to be determined using the observability of the
system.

Solution: The system equation of the feedback system is found from

& = Az+bu . o
u = —k':c+v} > &=(A_bk)z+bv
As
Since
1 Kb KA ... KA
0 1 Kb ... KA
I gn—4
[bAb A% ... A"'b=[b Agb AJb ... A} [ O 0 1 . KATT
¢ € 0 o 0 1

166
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ie.,
C=CsD
we have
det(C) = det(Cy D) = det(Cy) det(D) = det(Cy)
—
Since the system is single-input-single-output,
pC0)=n = det(C)#0 = det(Cs)#0 = p{Cs)=n

Therefore, the controllability of the system is not affected by the implementation of
the state feedback. Also, if the initial system was not controllable, the state feedback
cannot make it controllable, because

pC)<n = det(C)=0 = det(Cs)=0 = p{Cs)<n

Note: In Problem 3.9.2 we shall see that the state feedback can affect the observ-
ability of the system.

Problem 3.9.2 Given a continuous-time system
&= Az + bu

y=cz

A=[; 21’] b=m, = 2

discuss its controllability and observability.
A state feedback controller is used such that

where

u=-[3 1]z+v

Find the system equation of the feedback system, and discuss its controllability
and observability.

Solution: Although the initial system is both controllable and observable:
det(C) =—-2#0 and det(0)=-19#0

the feedback system is controllable (by the previous problem it remains controllable
for any choice of k'), but is not observable:
_ |1 2 _,_ |0 P
Ay =A-bk —[0 0], by=b= [1], cg=c =[1 2

det(C;) =—-2#0 but det(Of)=0
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Problem 3.9.3 For the system given by

. 2 1 1
x—[_l 1 ]$+[2]u
y=[1 1]z
draw a signal flow graph. Find the transfer function using the Mason’s formula. Check
this result by using the formula H(s) = ¢'(sI — A)~'b+d. Find the eigenvalues of the
system. Is the system stable? Is it controllable? Is it observable? Find a gain vector
such that the state feedback system defined by

u(t) = —k'z(t) + v(t)
has eigenvalues at —1 and —2.

Solution: The signal flow graph looks as in Figure 3.34. To apply the Mason’s
formula, first write

Pi(s) =1/s, Ai(s)=1-1/s, .
Mo e awgo1 T LR@AG =222
Py(s) = 2/s?, Ag(s) =1, =t

and

A(s):l—(;-’—;——

2 1 1 2 _sz—3s+3
32)

Figure 3.34: The signal flow graph of the system in Problem 3.9.3.

Finally, with n = 4,

3s—14

H(S) = _A% Z:P,(S)Al(s) = m

The eigenvalues are found from

det(AT — A) =0
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hence

N
|

Al =—-=%j

therefore the system is not stable.
Since det(C) # 0 and det(O) # 0, the system is both controllable and observable.
To find the feedback gain vector k' which moves the eigenvalues to —1 and -2,
write

det\W— (A=bK) = A+ 1A +2)
Thus

A+k—2 k2 —1
2k +1 A +2k —

1= A+ 1(A+2)
ie.,
N (ki +2k2 — )X+ k1 — 5k +3 =27 +3A+2
which finally implies
K=k k)= 1]
Problem 3.9.4 In general, if the system is controllable, we can arbitrarily change

its eigenvalues by a proper choice of the feedback gain vector. If the characteristic
polynomial of the initial system is

a(8)=s"+a1s" ' +...+an_15+an
while the characteristic polynomial of the desired closed-loop system is

a(s) =s"+ms" ' +...+an15+an
then with

a =[a1 ... an] and o =lo1 ... an]
we can use the Bass-Gura formula
K =(a —d)CC™?
or the Ackermann formula
E=10[...01C  a4)
Note that always C. = a:T, where a_. is as defined in Problem 3.8.4.

Prove the Bass-Gura formula by transforming the original system into its controller
form, designing the feedback for that form, and transforming back to the original form.
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Solution: In Problem 3.8.6 we found that if a system given by
T = Az + bu

y=cz
is controllable then it can be transformed into a controller form by a nonsingular
transformation. The similarity transformation is given by

§=cc™t  (C.=a")
When the system is written in the controller form, it is easy to find k such that
det(sI — (A; — bekl)) = a(s)

Indeed, due to the special forms of A. and b., matrix A, — bk, is also a companion
matrix with the following characteristic polynomial

det(sI — (Ac — bekl)) = 8™+ (a1 + K§)s" ' + ... 4 (@n-1 + ko_1)s + an + kS
Hence,
k,=a —a
and, back to the original form,
¥=kS (§=ccih)

Note: In Problem 3.9.7 we show that controllability is also a necessary condition.
It is quite remarkable that the condition for arbitrary pole placement (also called modal
controllability) is the same as for state controllability: p(C) = n. The reader should
try to apply these formulas to the Problem 3.9.3.

Problem 3.9.5 Consider a system with the transfer function

(s=1)(s+2)
(s+1)(s—2)(s+3)

H(s) =

Note that H(s) is irreducible (i.e., there are no pole-zero cancellations). Is it possible
to change H(s) into

s—1

0= GF e+

by state feedback? If it is, calculate the corresponding feedback gain vector.

Solution: Yes, H(s) can be transformed into G(s) by the state feedback, because
the irreducibility of H(s) implies any of its representations is controllable, so we can
apply the Bass-Gura formula to design a feedback such that the closed-loop eigenvalues
are 1 = —2, u2 = —2, and p3 = —3. Since this technique does not affect the zeros
of the system (cf. Problem 3.9.6), we see that the new transfer function is going to be
equal to G(s).

If we write the system in the controller form
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-2 5 6 1
A= 100 b= |0 d=[11-2
010 0

we don’t need the Bass-Gura formula. Indeed, the closed-loop system will have
, —2—k; 5—ks 6—ks
A =A—-bk = 1 0 0
0 1 0
On the other hand, we want the first row of As to be [-7 —16 —12], because
s—1 _(s=D(s+2) _ 2 +s5—2

(s+2)(s+3)  (s+2)2(s+3) s +7s2+16s+12
Therefore, we just need to pick k' =[5 21 18].

G(s) =

Problem 3.9.6 Prove that the application of the state feedback does not affect the
zeros of the system.

Solution: Consider a system in the controller form given by {A.,b.,c.}, where
¢, is made up of the coefficients of b(s), the numerator of the transfer function. After
the feedback, the system is still in the controller form, now given by {A. — bk', bc, . }.
Obviously, the coefficients of the numerator of the transfer function have not changed.
Thus, the zeros are invariant under the state feedback.

Problem 3.9.7 Show that the pole placement by the state feedback is possible if and
only if the system is controllable.

Solution: This is the proof originally given by Bass and Gura:

By definition

a(s) det(sI — A+ bk')
det((sI — AY(I + (sI — A)"'BK"))
det(sI — A)det(I + (sT — A)"'bk")

= a(s)(1+K(sI—A)"'b)

therefore
a(s) —a(s) = a(s)k'(sI — A)™'b
By equating the coefficients of the powers on both sides we find

ap — ay = k'b
as—ay = KAb+ak'd
as—as = k'A% +aik Ab+axk'b

i.e.,
a —d =k'ca’

Since 3- is always nonsingular, arbitrary pole placement is possible if and only if
C has a full rank.
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Problem 3.9.8 The dynamic equations of a simple inverted pendulum are given by

NN

y= [ 10 ]a:
Design a state feedback gain vector, i.e., u(t) = —k'z + v, to move the poles of the
system to —0.5 & 0.55, assuming that both state variables are available.

Solution: To make sure we can change both poles of the system, we first check
if the system is controllable. Since det(C) # 0, we can continue:

original characteristic polynomial: A -1 = a' =1[0-1]
desired characteristic polynomial: AM+a+d = o' =[1 0.5]

Using the Bass-Gura formula we find
K =@ ~ad )l =[-15 —1]

Problem 3.9.9 For the inverted pendulum on a cart problem (analyzed in Prob-
lems 3.5.11 and 3.7.12), assume that all the system states are available. A feedback
system is to be designed to obtain the desired eigenvalues of —1, —2, —1 + j, and
-1-j.

Let u(t) = —[k1 k2 k3 k4] z(t) + v(t). Find the gain vector k' = [k1 k2 k3 k4] to
get the desired eigenvalues. (Since the system equation is quite simple with many zero
elements, it is not necessary to convert this system to a controller form to design the
feedback gain vector.)

Using this feedback gain vector repeat the simulations as in Problem 3.7.12.

Solution: The characteristic polynomial of the system is
a(s) = s* — 21.65°
therefore
a' =[0-216 0 0]
The characteristic polynomial of the desired closed-loop system is

a(s) = (s+1)(s+2)(s+1—j)(s+1+j)=s"+55° +10s% +10s + 4

hence
o' =[5 10 10 4]
Since

1 0 0o 01T 1 0 216 O
C.=a"T 0 1 0 0 _]Jo 1 o 216
¢e=¢9- T | —2126 0 1 0 “lo 0o 1 o
0 —21.6 0 1 0 0 o 1

and

0 0 2
2 3 0 -2 0 —43.2
C=[bAbAbAb]=[ R ]
43

according to the Bass-Gura formula

K =(a' —a')C.C™! =[—0.2041 —15.902 —0.5102 —2.7551]
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Simulation for the unit step input of magnitude 0.1 and zero initial conditions:

First create the file called pend2a.m containing the following lines:

% file pend2a.m

%

function xdot = pend2a(t,x)

u = 0.2041*x(1) + 16.902*x(2) + 0.5102#x(3) + 2.7561%x(4) + 0.1;

xdot(1) = x(3);
xdot(2) = x(4);
xdot(3) = -x(2) + 1su;
xdot(4) = 21.6%#x(2) - 2#u;
end

and then create and run the following file in MATLAB to obtain Figure 3.35:

% file simul?a.m
%
t0
tf = 8;

x0 = [0;0;0;0];

{t,x] = ode45(’pend2a’,t0,tf,x0);
subplot(2,1,1)

plot(t,x(:,1))

title(’Inverted Pendulum Simulation 2a’)
xlabel(’t [s]’), ylabel(’z(t) [ml’), grid
subplot(2,1,2)

plot(t,x(:,2))

xlabel(’t [s]’), ylabel(’theta(t) [rad]’), grid

0;

Inverted Pendulum Simulation 2a

oo

—0.02 i ; ; ; H
4
tis]

Figure 3.35: The results of the MATLAB Simulation 2a.
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Simulation for the zero input and initial conditions: z'(0) = [0 0.1 0 0]".

Now begin by creating the file called pend2b.m containing the following lines

% file pend2b.m

%

function xdot = pend2b(t,x)

u = 0.2041*x(1) + 15.902*x(2) + 0.5102+#x(3) + 2.7551*x(4);

xdot (1) = x(3);
xdot(2) = x(4);
xdot(3) = ~x(2) + 1%u;
xdot(4) = 21.6%x(2) - 2%u;
end

and then create and run the following file in MATLAB to obtain Figure 3.36:

% file simul2b.m

%
t0 = 0;
tf = 8;

x0 = [0;0.1;0;0];

[t,x] = ode45(’pend2b’,t0,tf,x0);
subplot(2,1,1)

plot(t,x(:,1))

title(’Inverted Pendulum Simulation 2b’)
xlabel(’t [s]’), ylabel(’z(t) [m]’), grid
subplot(2,1,2)

plot(t,x(:,2))

xlabel(’t [8]’), ylabel(’theta(t) [rad]’), grid

Inverted Pendulum Simulation 2b

0.6 T T T T T T T
'_-04_ ........... .................................................................................. -
E :
g z
0'2_ .......... .................................................................................. —
0 4[ 1 1 —_ 1 A 1
0 1 2 3 4 5 6 7 8
tis)
01 T . . r T . -
g o® -; : : : : :
g : :
£ of- : —
_0.05 i f . . i . .
0 1 2 3 4 5 6 7 8
t[s]

Figure 3.36: The results of the MATLAB Simulation 2b.
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If we use the commands from the MATLAB CONTROLS TOOLBOX such as initial
and 1sim, we can simulate continuous linear systems. These two commands give us
the response of the system to initial conditions and the controlling input, respectively.

The following program can be used instead of the previous two programs:

% file simul2c.m

A=1[0 010;
0 001;
0 -100;
021.6 0 0];
B = [0;0;1;-2];
C=[1000;
010 0];
D = [0;0];
K = [~0.2041 -15.902 -0.5102 -2.7651); Y% picked so that eig(A-B*K)
% are -1, -2, -1+j, ~1-j
t0 = 0;
tf = 8;
dt = 0.05;

t = (£0:dt:tf)?;

x0 = [0;0;0;0]; % simulation
u = 0.1l*ones(size(t)); % 2a
% x0 = [0;0.1;0;0]; % simulation

% u = zeros(size(t)); % 2b

{Yinit,Xinit] = initial (A-B#K,B,C,D,x0,t);
[(Yinp,Xinp] = 1sim(A-B+K,B,C,D,u,t);

x = Xinit+Xinp;

y = Yinit+Yinp;

subplot(2,1,1)

plot(t,x(:,1))

title(’Inverted Pendulum Simulation 2¢’)
xlabel(’t [s]’), ylabel(’z(t) [m]’), grid
subplot(2,1,2)

plot(t,x(:,2))

xlabel(’t [8]°), ylabel(’theta(t) [rad]l’), grid



176 CHAPTER 3. CONTINUOUS LINEAR SYSTEMS

Problem 3.9.10 Consider the state equation of a system given by

|

y=[1 1 1 1]z
Is this system controllable? Is it stable? Can it be stabilized by a state feedback
u=—kz?

cooN
S ON
|
-

Solution: Since det(C) = 0, this system is not controllable. It is also not stable,
because its eigenvalues are —1, —1, 2, and 2. But if we draw its signal flow graph as in
Figure 3.37, we can see that the unstable modes are controllable, therefore the system
is stabilizable.

Figure 3.37: Although this system is not controllable, it can be stabilized. This is
because all unstable modes are controllable. This system is said to be stabilizable.

If we wish to move the unstable eigenvalues from 2 to —2, and leave the stable
eigenvalues where they are, we can write k' = [k; k2 0 0]. Then from

det(sI — (A ~bk')) = (s + 1)%(s + 2)?
we find
K =[16 8 0 0]

Note 1: Can we move all eigenvalues of the system to —2¢2 Can we move the
eigenvalues from —1 at all?

Note 2: Based on the PBH controllability criterion (cf. Problem 3.7.8) we can
say that the system is stabilizable if and only if no left eigenvectors corresponding to
the unstable eigenvalues of A are orthogonal to vector b. In other words the system is
stabilizable if and only if

p'b#0  for all unstable eigenvalues of A
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Problem 3.9.11 Why is system observability important in the state feedback design?
Define and explain the system property dual to stabilizability (Problem 3.9.10), the
so-called detectability.

Solution: Throughout this Section we assumed that the states of the system
were directly available for the state feedback. In Sections 3.11, 3.12, and 3.13 we
shall learn how to design state observers. They determine (in noisy environments we
say estimate) the states z(t) from the output y(t) and the input u(t). This is why
observability is so critical in the state feedback design.

If not all modes of the system are unstable, it is not necessary to observe all
states of the system. If all unstable modes are observable, we say that the system is
detectable.

Note 1: Using the PBH observability criterion (c¢f. Problem 3.7.8) we see that the
system is detectable if and only if no right eigenvectors corresponding to the unstable
eigenvalues of A are orthogonal to vector ¢’'. In other words the system is detectable if
and only if

cq#0  for all unstable eigenvalues of A



3.10 Optimal control

In the process of stabilizing an unstable system, we must move all right-hand side
poles to the left-hand side. How far should these poles be moved? One possible
solution is to define a cost function indicating the relative cost of error versus
the cost of control. In this Section we derive the formula for the optimal linear
state feedback gain using a quadratic cost function (linear-quadratic-regulator
— LQR). These optimality requirements reduce to the algebraic Riccati equa-
tion, whose solution is used in determination of the optimal feedback gain.

Problem 3.10.1 Let the system described by
%(t) = Az(t) + Bu(t)

be disturbed at t = 0, and let us consider the problem of finding the input u(t) which
will return the system to the equilibrium at the origin.

If the system is not asymptotically stable, we need to design a negative feedback
u(t) = —Kz(t) to make sure that the system will return to the origin. If the system
is asymptotically stable, it will go back to the origin by itself, but even in that case
it is useful to design a feedback, to make the return to the origin faster, or to satisfy
some other optimality criteria.

The trade-off between the speed of return and the cost of control® is usually de-
scribed by the following index function:

J= /m(x'(t)Qx(t) + ' (t)Ru(t)) dt
0

in which matrices Q and R are chosen so that they reflect the prices (also called
penalties) associated with values of states and control. @ is positive semi-definite,
while R is positive definite. Our final goal will be to minimize the total cost of
returning the system to the origin.

Derive the formula for the feedback gain K that minimizes the total cost J.

Solution: One possible approach to solving this problem is via the Lyapunov
equation. In that approach it is shown that J = z'(0)Pz(0), where P is a positive
definite solution of the algebraic Riccati equation

PA+AP-PBR'BP+Q=0
The minimization of J with respect to K requires that
K=R'B'P

Here we shall use the calculus of variations approach, in which we wish to find u(t)
such that

J= / w(x'(t)Q:t(t) + o' (t)Ru(t)) dt

9Fast return to the origin requires the closed-loop eigenvalues far to the left, but that
implies large values of the feedback gains in K, i.e., high cost of control.

178
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is minimized under the constraints of the system equations
#(t) = Az(t) + Bu(t)
z(0) = zo

To do that we write

J = /w(f'(t)Q:c(t) + (t)Ru(tz +X (Az(t) + Bu(t) — £(t))) dt
0 ~

L

or
J:/ (H - Xz)dt
0

where H = L + X' (Az(t) + Bu(t)) is the Hamiltonian.
Hence

J= =Xz

oo oo .
+ / (H + XNz)dt
0 0
If uope (t) exists, then infinitesimal variations du cause no change in J, i.e., §J = 0.
Since
oo [eo
+ / ((6—H+A') 5.1:+6—H6u) dt
0 o oz Ou

and dz|, = 0 (because zo is specified), with a convenient choice

J = —XNéz

OH

this reduces to
8J = / a—Héudt =0
o Ou
which implies
O0H
Bu 0
Equations
. 0H ' _ 0H _
A= —-a—; A (00) =0 5; =0
are called the Euler-Lagrange equations.
Since

H=12'Qz + v'Ru+ X (Az + Bu)
the Euler-Lagrange equations become

M) = —A'A®) — Qz(¢) Aoo) =0 u(t) = —R7'B'A(t)
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We can write these equations as
[:f:(t)] _ [ A —-BR'B ] [:c(t)]
A(t) -Q -4 A(t)
with the two-point boundary condition
z(0)=xz¢ A(0)=0
It can be shown that if (A, B) is controllable (or at least stabilizable) then
A(t) = Px(t)
Then obviously u(t) = —Kz(t), where K = R"'B'P.
To learn more about P, write

A=-Qz-AX=-(Q+AP)
. = AP+PA-PBR'B'P=-Q
A=Pi=(PA- PBR'B'P)z

i.e., P must be a solution of the algebraic Riccati equation.

Note: The Riccati equation may not have a solution, or if it does, the solution
may not be unique. It can be shown that if the system is controllable and observable,
then the Riccati equation has a solution. In addition, if the solution is not unique,
then there is only one solution which corresponds to the optimal K. This solution
s the only symmetric positive definite solution of the Riccati equation. If it is too
complicated to find all solutions and check which one of them is positive definite, we
use the following MacFarlane-Potter-Fath method:

The Hamiltonian matriz

A -BR'B
S

has 2n eigenvalues symmetric with respect to the imaginary azis in the complex plane.
For the n eigenvalues in the left half-plane we can write

=~

P=GF!

and finally

Problem 3.10.2 Show that the application of the optimal input, i.e., the input u(t) =
—Kz(t) which minimizes the cost function

J(2(0), u(t)) = / " (& ()Qe(r) + RuX(r)) dr

stabilizes the system.
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Solution: In a way it is obvious that the optimal feedback stabilizes the system,
because the cost J for any stabilized system is certainly less than the cost for an
unstable system. We can give a formal proof using the following Lyapunov function:

V(z) =z'Pz

where P is the only symmetric positive definite solution of the algebraic Riccati equa-
tion

AP+PA-PBR'BP=-Q
Obviously, since P > 0, also V(z) > 0. In addition to that
V(z) =i'Pz+2 Pt =1(AP+PA-2PBR'B'P)z=2'(-Q—-PBR 'B'P)z <0
The inequality at the end is true because @ > 0 and (note that P > 0 = det(P) # 0)
S8R (any z) (@ PBR™'B'Pz) = sgn(any 4)(¥' BR™'B'y) = sgn(, _ p,,(z'R7'2) 2 0

Therefore, the system is stable in the sense of Lyapunov.

Note: To guarantee the asymptotic stability, we require V(z) £ 0 for any system
trajectory, but this part depends on the specifics of the system. If Q > 0, the optimal
system is guaranteed to be asymptotically stable.

Problem 3.10.3 Show that the minimum cost is given by
Jmin(l‘o) = £6P$0
where P is a solution of the algebraic Riccati equation

AP+PA-PBR'BP=-Q

Solution: The cost is minimized by v = —Kz, where K = R~! B’ P. Therefore

Imin(20) = /°° £ ()(Q+ K'RK)x(t)dt
0

(A-BK)t

Since z(t) = ¢ o, and A — BK is stable, we can write

o0
Jmin(zo) = xf, (/ e(A—BK) t(Q + KIRK)C(A-BK)t dt) o
0

v

Z

From the Lyapunov theory (cf. Problem 3.6.7) we know that since A — BK is
stable, matrix Z is a unique solution of the following Lyapunov equation (we also use
K =R'B'P):

(A—BK)Z + 2Z(A- BK)=—(Q+PBR™'B'P)
Since the Riccati equation A'P + PA — PBR™!B'P = ~(Q can be rewritten as
(A-BK)P+ P(A-BK)=—(Q+PBR'B'P)
and because of the uniqueness of Z, we can write Z = P, i.e.,

Imin(z0) = 2o Pxo
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Problem 3.10.4 Consider a linear time-invariant system given by
= Az + Bu

with the cost function defined by
J(2(0), u(t)) = / ” @ (1) Qe(r) + Ru*(r) dr
0

Let

A={g _}] B=m, and x(0)=|}]

and let Q = I>x2, while R is a positive scalar. Value of R is the relative cost of control
with respect to state error.
The optimal control input is given by

u(t) = —Kz(t)

with K = R™'B’'P, where P is a positive definite symmetric solution of the following
equation:

PA+ AP-PBR'BP+Q=0
The optimal cost is then

J(z(0)) = z'(0)Pz(0)

a) For R = 1 solve for P. Find K and calculate the optimal cost. Calculate the
open-loop and the closed-loop eigenvalues.

b) Repeat the above calculations for R = 0.1.
c) Repeat the above calculations for R = 10.

Solution: In all three cases we put

o[z 2]
P2 Dp3

and find exactly four solutions of the equation PA+ A'P ~ PBR™!B'P+Q =0. In
each case only one of four solutions is positive definite (of course, the symmetry is
insured by the initial choice of the elements of P).

| 7+vE 245 | _ | 924 424 _ _
a) P~l’2+\/5- 3 —[4'24 994 |’ K =[424 224], J=19.9.
The open-loop eigenvalues are Ay = 1 and A2 = —2, while the closed-loop eigenvalues
are p1 = —1 and p2 = —2.24.
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by P = (I)S;; 82; , K = [5.74 3.74], J = 3.5. The open-loop
eigenvalues are A\; = 1 and A2 = —2, while the closed-loop eigenvalues are g = —1
and pp = —3.74.

¢ P= [ Zéjg ;g:gg ] K = [402 202, J = 182. The open-loop
eigenvalues are Ay = 1 and A2 = —2, while the closed-loop eigenvalues are p1 = —1
and p2 = —2.02.

Note: Note that for large values of R unstable eigenvalues are not just moved
from the right half-plane to the left half-plane, but are moved into their mirror images
in the left half-plane. Also, note that the optimal feedback has stabilized the system.
See also Problem 3.10.2.

Problem 3.10.5 Consider a linear quadratic optimization problem

#(t) = Az(t) + Bu(t) z(0)=[1 1]

J= %/ (z'Qz + v'Ru) dt
0

In particular, consider the case when

01 0 10
a=| 48] m=[i] e=]b o] R

where ¢, is a positive number.
The optimal feedback is given by

K=R"'B'P
where P is a positive definite symmetric solution of
AP+ PA-PBR'BP=-Q

Find the open-loop eigenvalues. Let ¢, = 1, i.e., let the penalties for position and
velocity be equal. Find P, K, the closed-loop eigenvalues, and the cost function. Do
the same for ¢, = 4.

Solution: The open-loop eigenvalues are found from det{A] — A) = 0:

A2 = £2j

To solve the Riccati equation, let

Then the Riccati equation implies that

B +8~1=0
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=2+1

a=(b+4)

The only solution of the above system which yields a positive definite matrix P is
a=460,b=0.12,c=1.12 ie.,

4.60 0.12
P= [ 0.12 1.12 jl

The feedback gain is then K = R™'B'P = [0.12 1.12]. The closed-loop eigenvalues
are found from det(4 — BK) = 0:

A1z = —0.56 & 1.95j

The cost of the optimal control is

Tope(2(0)) = —;-x'(O)P:v(O) =298

For q, = 4 we find

8.50 0.12
P= [ 0.12 2.06

] , K =[012 2.06)
while
A2 =103+ 1.755, and Jope(z(0)) = 5.40
Note: Note that when the penalty for velocity is high, the cost of control is higher,
and the eigenvalues are moved further to the left. Again, note that the optimal feedback
has stabilized the system.

Problem 3.10.6 Consider a linear quadratic optimization problem

z(t) = Az(t) + Bu(t)

y(t) = Cz(t)

1

J= 5/ (='Qzx + ' Ru) dt
0

Consider a particular system

A:[““lL g} B=[(1)], c=p 1, Q=[g (1’} R=4

The optimal feedback is given by
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K=R'B'P
where P is a positive definite symmetric solution of
AP+ PA-PBR'B'P=-Q

Find the open-loop eigenvalues. Check controllability and observability of this
system. Assuming that both state variables are available, find positive definite and
symmetric P from the algebraic Riccati equation. Find the optimal feedback gains
and the closed-loop eigenvalues.

Solution: The following MATLAB commands can be used to find a solution:

OO me
wononowone

Eopen = eig(A)
Eopen =
-2
1

rank(ctrb(4,B))
ans =

2

rank(obsv(A,C))
ans =

2

[K,P,Eclosed] = 1qr(A,B,Q,R)
K
.1021 4.0616

PN B

P=
8.4085 16.2462
16.2462  33.5807
Eclosed =

-2.1378

-0.9644



3.11 State observers

In this Section the design of state observers is explained. They are used to
estimate the states for the state feedback when the original states are not directly
available or measurable.

Problem 3.11.1 A system is given by
£ 03 0 1] 2
T2| = 0 2 1 2| + 1lu
z 1 1 0] |zaf -1

y=[0 2 1]2%

Is it observable? Design a state observer such that the eigenvalues of the observer
are all at —2.

A state observer is a simulator of the original system. Usually it is designed when
the states z(t) of the original system are not directly measurable, but can be estimated
from the knowledge of the parameters of the system (A, b, and ¢'), the input u(t), and
the output y(t). From Problems 3.7.5 and 3.7.6 we know that this can be done if and
only if the original system is observable.

W s xm v

W(t)-y(t)

Figure 3.38: If the system is observable, than we can calculate the unmeasurable
states z(t) from the available information: system parameters A, b, and ¢’, the input
u(t), and the output y(t). The result of this estimation are the states r(t), which soon
after the beginning of the observation closely follow the actual states z(t).

Let us call the estimated states r(t) (see Figure 3.38). To improve the reliability
of the estimated states r(t), and their convergence to the real states z(t), we use the
difference between the estimated output w(t) = ¢'r(¢) and the actual output y(t) =
c'z(t). It is particularly important to use this difference if the system is unstable,
because for unstable systems any discrepancy between the actual initial conditions

186
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z(0) and the supposed initial conditions r(0) causes the estimation error r(t) — z(t)
to diverge. Another benefit from using this difference is the reduction of errors due to
our imperfect knowledge of the system parameters A, b, and ¢

The gain vector ! which weighs the influence of components of this difference on
the estimated states determines the eigenvalues of the observer.

If we decide to design I so that the characteristic polynomial of the observer is a(s)
(we should pick the eigenvalues of the observer to be much “faster” than those of the
system), whereas the characteristic polynomial of the original system is a(s), we can
use the dual of the Bass-Gura formula to calculate [:

I=0"'0,(a—a)

Solution: The system is observable because

c 0 2 1
det(O)=| A [=]|1 5 2 |=3#0
c A? 2 15 5

Since a(s) = det(sI — A) = s*> —2s2 —s—3 and a(s) = (s+2)® = s° + 65" +125+38,
we find the observer gain to be

01 -1/3778 9.33
1=0"'0(a—a)=(a-0) (a—a)= [ 00 1/3 ] [13] = [3.67}
1 0 -2/3)[n 0.67

Problem 3.11.2 A standard application of the state observers is in the state feed-
back design (see Figure 3.39). Assume that the system is both state controllable and
observable. Assume also that the state feedback is designed as u(t) = —k'z(t), where
k' is such that the closed-loop system has the desired eigenvalues pi,...,un. Since
the actual states are unavailable, use the observer-estimated states r(t) instead of z(t)
and show that this substitution does not affect the designed closed-loop eigenvalues.

W s x@  yo
-k b U c N
S+ S— w(d-y(®
1/s ‘r(t) 1
b ¢ w(t)
A
1

Figure 3.39: If the actual states are not measurable, the state feedback is implemented
with the states estimated by the observer.
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Solution: If instead of the actual state vector z(t) we use the estimated state
vector r(t), we can write

i(t) = Az(t) - bk'r(t) = (A — bk')z(t) + bk'e(t)

where e(t) = z(t) — r(t).
The dynamics of the estimation error vector e(t) are described by

é(t) = &(t) — r(t) = Az(t) — bk'r(t) — (A — I —bk')r(t) + I z(t)) = (A — I )e(t)

The complete system, which includes both the original system and the observer,
can be described by
() | A-bk bk’ z(t)
é(t)| — 0 A=1cd | |e(t)

The characteristic equation of the complete system is then

det[ A ] =0
ie.,
det(A — bk')det(A—1Ic) =0
Due to this uncoupling of equations the eigenvalues of the original states are as

desired, even though we used the feedback based on r(t) instead of z(t).

Note: It is also interesting that the observer eigenvalues do not depend on k'.
They are determined from det(A — Ic') = 0. This allows a complete separation of
observer and controller design processes.

Problem 3.11.3 For the system given by

-1 -2 -2 2
= 0 -1 1 |z+|0|u
1 0 -1 1

y=[11 0]z
check controllability and observability, and design the state feedback such that the

closed-loop eigenvalues are all at —2. The state feedback should be based on the
observer with all eigenvalues at —4.

Solution: It is easy to check that det(C) = —10 # 0 and det(0) = 5 # 0,
therefore we can proceed with the controller and observer design.

To find k', write a(s) = det(sI — A) = s® + 35> + 55+ 5, and a(s) = (s +2)% =
s34+ 652 + 125 +8.

Then, by the Bass-Gura formula,

K = (o' —a)CC?

In this case
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100717 1 -3 4
CG=aT=|3 10 =0 1 -3
5 3 1 0 0 1
and
2 -4 077! 05 2 0
¢cl=10 1 o0 = 0 1 0
1 1 -5 0.1 06 —0.2
hence

K=1[09 04 1.2

To determine I, the feedback vector gain for the observer, write a(s) = det(sI —
A)=35%+35 + 55 + 5, and a(s) = (s +4)% = 53 + 125° + 485 + 64.
Then, by the dual of the Bass-Gura formula,

I=07"0,(c —a)

In this case
1 00
O.,=al=c¢c=|-3 10
4 -3 1
and
1 1 o1 1 0 -02
o l'=| -1 -3 1 = 0 0 02
0 5 0 -1 -1 =04
hence

15.8
l=] —6.8
-11.4

Problem 3.11.4 For the inverted pendulum on a cart problem (Problems 3.5.11,
3.7.12, and 3.9.9), design a controller as in Problem 3.9.9, but based on the states
estimated by a state observer whose eigenvalues are —4, —4.5, —5, and —5.5.

Using MATLAB commands reg, parallel, and cloop, repeat the simulations as in
Problem 3.9.9. To do that, first augment the system matrices so that the “control”
and the “known” inputs are separated.
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! 1
input 1 (1) ! :
- 1
1
' N\ B 15 C outputs 1,2 (1,2)
' T
input 2 (2) E / u !
' A !
! 1
! plant (original system) !
-1
1
! cigs from: ALC |
input 1 (2) . '
. B !
| 1s K o
! T
inputs 2,3 (3,4) E L/ A\BE{C E output 1 (3)
T . -BK- ;
1

Figure 3.40: MATLAB commands for building systems are very easy to use when this
diagram is kept in mind. The parenthesized numbers are those applicable after the
command parallel. Note that the command reg provides the BK and the LC parts
of feedback. Hence we write reg(AA,BB,CC,DD,K,L,sensors,known,control), rather
than reg(AA-BB*K-L#CC,BB,CC,DD,K,L,sensors,known,control). Also note that the
command cloop provides a feedback gain equal to 1. This is changed to —1 by putting
a minus sign in front of the input label (cloop(Abig,Bbig,Cbig,Dbig, [1 2 31,[3 4
-11).

Solution: Figure 3.40 shows the standard diagram used in MATLAB simulations.
As we found earlier,

K =(a —d')CcC™" =[-0.2041 —15.902 —0.5102 —2.7551]

MATLAB provides two functions to do this, place and acker. For example, K =
place(A,B,P) finds the state feedback gain K such that the eigenvalues of A — BK
are those specified in P.

The observer gain L should be found such that the eigenvalues of A — LC are —4,
—4.5, —5, and —5.5. We can use the MATLAB function place again, but first we have to
adjust the input matrices to the problem — we can ask for L such that the eigenvalues
of A’ — C'L’ are as required: L = (place(A’,C’,[-4, -4.5, -5, -5.5])), which
yields

85 0
0 105
L= 18 -1

0 49.1
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The MATLAB program should look as follows (see its output in Figure 3.41):

% file simul3.m

%
A=[0 010;
0 001;
0 -100;
021.600];
B = [0; 0; 1; -2];
C=[1000;
010 0];
D = [0;0];
K = place(A,B,[-1, -2, -1+j, -1-j1);
L = (place(a’,C’,[-4, -4.5, -5, -5.5]1))7*;
AL = A; % augment B and D to separate feedback control input
BB = {B,B]; % control input from the external forcing function
CcC = ¢C;
Db = [D,D];

sensors = [1 2];

known = [2]; % info on control ul is internally fed back
control = [1];

[Ac,Bc,Cc,Dc] = reg(AA,BB,CC,DD,K,L,sensors,known,control);

[Abig,Bbig,Cbig,Dbig] = parallel(AA,BB,CC,DD,Ac,Bc,Cc,Dc,{2],011,01,00);
[Abig,Bbig,Cbig,Dbig] = cloop(Abig,Bbig,Cbig,Dbig,[1 2 3]1,[3 4 -11);

t0 = 0;
tf = §;
dt = 0.0001;

t=(t0:dt:tf)?;

% x0 = [0;0;0;0;0;0;0;0]; % simul 3a
% u2 = 0.1xcnes(size(t));

x0 = [0;0.1;0;0;0;0;0;0); Y% simul 3b

u2 = zeros(size(t));
ul = zeros(size(t));
u3 = zeros(size(t));
ud = zeros(size(t));

u = {ul u2 u3 v4l;

[y,x] = 1sim(Abig,Bbig,Cbig,Dbig,u,t,x0); % both initial and forced response

y = y(1:300:8ize(t),:); % reduce the amount of data by a factor of 300
x = x(1:300:8ize(t),:);

t = t(1:300:8ize(t),:);

subplot(2,1,1)

plot(t,y(:,1),’y-2,t,x(:,5),°w.?)
title(’Inverted Pendulum Simulation 3b’)
ylabel(’z(t) [m]’), grid

subplot(2,1,2)
plot(t,y(:,2),’y-?,t,x(:,6),’w.?)
ylabel(’theta(t) [rad]’), grid
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Inverted Pendulum Simulation 3b

04 T T T T T T T

Z(t) fm]

0.15 . , T T . T :

theta(t) rad]

01 n i i L
0 1 2 3 4 5 6 7 8

Figure 3.41: Results of MATLAB simulations of combined observer-controller applied
to the inverted pendulum on a cart problem.

Problem 3.11.5 Show that the states can be estimated by the observer if and only
if the system is state observable.

Solution: See Problems 3.7.5 and 3.7.6.

Problem 3.11.6 In the direct transfer function design procedures let the original
system transfer function be

b(s) s-—-1

HO) =36 = 56-)

Show that a simple feedback with gain k cannot stabilize this system.

Using the diagram as in Figure 3.42 derive the equation which relates the desired
characteristic polynomial a(s) to the given characteristic polynomial a(s), and the
feedback transfer functions

Fo=B3  cw-%3

Note that §(s) is determined by the desired eigenvalues of the observer error.

Find p.(s), py(s), and d(s), so that the poles of the system are moved to —1 and
—2, while the observer error eigenvalues are both at —4.
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Vv U Y
P~ HE |

Figure 3.42: State-space approach provided the background for this transfer function
design procedure.

Solution: If a feedback with gain k is applied, the new characteristic polynomial
is a(s)+ kb(s), which in our case is s>+ (k—2)s — k. To satisfy the necessary condition
(this is not a sufficient condition) for stability, we would need to have k¥ < 0 and k > 2,
which is, of course, impossible.

But with ideas and insights from the state-space approach, we can form the system
as in Figure 3.42. From

Us) = V(s) - B00(e) Py (o) and  v(s) = Xuys)

&(s) 8(s) a(s)
we find
Y(s) _ 3(s)b(s)
V(s) ~ a(s)d(s) + a(s)pu(s) + b(s)py(s)
Therefore
a(s)d(s) = a(s)8(s) + a(s)pu(s) + b(s)py(s)
In our case

a(s)y=s(s—2), b(s)=s—1, a(s)=(s+1)(s+2), and &(s)=(s+4)*

and polynomials p., (s) and py(s) are assumed to be one degree lower than the polyno-
mial §(s). Compare coefficients for the powers of s on both sides. After some algebra,
we find:

pu(8) =55 —180 and p,(s)=232s—32



3.12 Kalman-Bucy filter

When the measurements are noisy, the observer can be designed so that the
influence of noise is minimized in the mean-square sense. The optimality re-
quirements for this linear-quadratic-estimator (LQE) reduce to the algebraic
Riccati equation. The resulting optimal estimator is called the Kalman-Bucy
filter.

Problem 3.12.1 A linear time-invariant system with system and measurement noise
inputs is shown in Figure 3.43.

W w e

u 1/s 1/s y

1 x 1\ _Jx1 1
-1

Figure 3.43: LTI with system and measurement noise.

Write the system equation in the form

z(t) Az(t) + Bu(t) + w(t)
y(t) = Cz(t)+e(?)

The noises are zero-mean, white, and Gaussian. The system noise w(t) is uncorrelated
with the measurement noise e(t). Let the noise covariances be

E [w(t)w'(r)]
Ele(t)e'(7)]

Qét-r1)
Ré(t—1)

where

16 0
Q—[O 0] and R=1

The steady-state Kalman-Bucy estimator is given by (see Figure 3.44)
7(t) = Ar(t) + Bu(t) + L(y(t) — Cr(t))
where L = PC'R™}, and P is a solution of the algebraic Riccati equation
AP+PA' - PC'RT'CP+Q=0

Find the open-loop eigenvalues, and check controllability, observability, and stabil-
ity. Solve the Riccati equation, and check that P is positive definite and symmetric.
Calculate L. Find the eigenvalues of the Kalman-Bucy estimator. Draw a signal flow
graph of the combined system.

194
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Solution: Obviously

AR AR =
y=[0 1][2;]+e

and the system is controllable, observable, and marginally stable.

With P = [ Z I; ] the Riccati equation becomes a system of equations

b*’=16 a—-b—bc=0 26—2c—c’=0
whose only positive definite solution is
12 4
P=[ ¥ ]
Then

— -1 __ 4
L=PCR —-[2]

The eigenvalues of the Kalman estimator are the eigenvalues of A — LC, i.e.,
—1.5 + 1.325.

W W e

u . 1/s _ /s . y

-1

estimator output

Figure 3.44: Typical configuration of the Kalman-Bucy filter. Note that Ay = A—-LC.
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Matlab note: We can do the above calculations by a few simple MATLAB com-
mands:

A=1[00; 1-1]; % Matlab assumes model of the form
B = [1; 0]; % .
G = eye(2); % x = Ax + Bu + Gw
C=[01]; Ay=Cx+Du+e
Q= [16 0; 0 01;
R=1;
(L,P,E] = 1qe(A,G,C,Q,R)
L= % Kalman-Bucy gain
4.0000
2.0000
P = % Solution of the Riccati equation

12.0000 4.0000
4.0000 2.0000
E= % Kalman-Bucy observer eigenvalues
-1.5000 + 1.3229i
-1.5000 - 1.3229i

Problem 3.12.2 Repeat MATLAB simulations for the inverted pendulum on a cart as
in Problem 3.11.4 assuming small process and measurement noises. To account for the
noise effects, use a stationary Kalman-Bucy filter. Assume that both components of
the output vector are affected by independent zero-mean white Gaussian noises with
o, = 0.1m and o9 = 0.1rad, while the process noise has four components, all with
o = 0.2 (of respective units). Assume initial conditions for the complete system to be
[0 04000000

Solution: The MATLAB program and the plot are shown below (see Figure 3.45).

% file simuld.m

%
A=[0 010;
] 001;
0 -1 0 0;
021.6 0 0];
B = [0;0;1;-2];
C=[1000;
010 0];
D = [0;0];
K = place(A,B,[-1, -2, -1+j, -1-j1);
G = ones(size(B));
Q =0.2°2;
R = [0.1"2 0;
0 0.1°2]1;
L = 1qe(A,G,C,Q,R); % calculate Kalman gain

% augment B and D to accept noises in simulations and to
% separate feedback control input from the external forcing function

n = size(A,1);
m = size(C,1);

AA = A;

BB = [B,B,G,zeros(n,m)];

CC =C;

DD = [D,D,zeros(size(D)),eye(m)];

sensors = [1 2];
known = [2]; % info on control ul is internally fed back
control = [1];
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[Ac,Bc,Cc,Dc] = reg(AA,BB,CC,DD,K,L,sensors,known,control) ;
[Abig,Bbig,Cbig,Dbig]l = parallel(AA,BB,CC,DD,Ac,Bc,Cc,Dc,[2],01],01,00);
[Abig,Bbig,Cbig,Dbig]l = cloop(Abig,Bbig,Cbig,Dbig,[1 2 31,[6 7 ~1]);

t0 = 0;
tf = 16;
dt = 0.0001;

t=(t0:dt:tf)’;

x0 = [0;0.4;0;0;0;0;0;0];
ul = zeros(size(t));

u2 = Q.1*ones(size(t));
u3 = 0.2+*randn(size(t));
u4 = O.1xrandn(size(t));
ub = 0.1#randn(size(t));
ué = zeros(size(t));

u? = zeros(size(t));

u = [ul u2 u3 u4 ub ub u7l;

[y,x] = 1lsim(Abig,Bbig,Cbig,Dbig,u,t,x0); % both initial and forced response

y = y(1:1000:8ize(t),:);
x = x(1:1000:8ize(t),:);
t = t(1:1000:8ize(t),:);
subplot(2,1,1)

plot(t,y(:,1),%wo’,t,x(:,1),%y-?)
title(’Inverted Pendulum Simulation 4’)
ylabel(’z(t) [m]?), grid
subplot(2,1,2)
plot(t,y(:,2),%wo’,t,x(:,2),°y=?)
ylabel(’theta(t) [rad]’), grid

Inverted Pendulum Simulation 4

1 — T T T — T T
fg 0.5} ]
g
2 0
-0, i ; i ; ; i ;
) 2 4 6 8 10 12 14 16
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Figure 3.45: The results of the MATLAB Simulation 4, which uses Kalman-Bucy filter
to estimate the system states from the noisy measurements. Plots represent the actual
values of the system states (continuous lines) and only the samples of the measured
values affected by noise (circles). Kalman-Bucy filter helps stabilize the system even

when the only available measurements are very noisy.
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Problem 3.12.3 In general, for the time-variant (non-stationary) system described
by

i(t)
y(t)

A(t)z(t) + B(t)u(t) + w(t)
C(t)z(t) + e(t)

where
E[z(0)] =20, E[(2(0) - z0)(z(0) — 20)'] = Po
while the noise signals are Gaussian with

Ew®)] =0, E[wlt)w'(r))=Q(t)é(t—7) (zero-mean, white)

Ele(t))=0, Ele(t)e'(r)]=R(t)6(t —T) (zero-mean, white)
and the system noise w(t) is uncorrelated with the measurement noise e(t), i.e.,
Efw(t)e'(r)] =0

the Kalman-Bucy filter, which produces r(t), the optimal estimate'® of z() based on
the measurements of y(t), and on the available information about the system, is given
by

#(t) = A(t)r(¢) + B(H)u(t) + L(t)(y(t) — C(t)r(t))
where L(t) = P(t)C'(t)R™!(t), and P(t) is a solution of

P(t) = A(t)P(t) + P()A'(t) + Q(t) — P(t)C'(t)R™1(t)C(t) P(¢)

It can be proved that if the system is time-invariant, i.e., if A(t) = A, B(t) = B,
C(t) = C, and the noises are wide-sense-stationary (WSS), i.e.,, Q(t) = Q and R(t) =
R, and if the system is controllable and observable, then

lim P(t)= P
t—o0

and therefore lim;_, o, L(t) = L.
Derive the formulas for this case.

Solution: If P(t) & P then P(t) = 0. Therefore, P is found from the algebraic
Riccati equation AP + PA' — PC'R™'CP + Q = 0, while L = PC'R™!.

Note: The derivation of the above formulas is given in Section 4.12. Historically,
the discrete-time case was considered first by Rudolf Kalman in 1959 [26], while the
continuous-time case was described soon afterwards by Kalman and R. Bucy in their
joint paper [28]. Kalman’s seminal paper [26] also dealt with the “surprising” duality
of the problem his technique solves, the so-called Wiener problem, i.e., that of optimal
estimation of noisy signals, and the problem of the noise-free optimal regulator problem
(Section 3.10), which was solved a few years earlier, also by Kalman. This duality is
important because investigation of properties of Kalman-Bucy filters, e.g., stability,
can be conducted by methods used for optimal regulators.

10The index of performance which is minimized by the Kalman-Bucy filter is the mean-
squared-error (MSE): J(t) = E [(z(t) — r(¢))’ (x(t) — r(¢))] = tr(E [(z(t) — r(t))(z(t) — r(£))'])-



3.13 Reduced-order observers

In this Section the reduced-order observers are introduced. They are used when
some of the states are available or measurable and there is no need to estimate
all of them.

Problem 3.13.1 When estimating states x(t), we don’t need to design a simulator of
full order n, because by some appropriate linear transformation of the original states
z(t) into g(t) we can make y(t) (in general an m x 1 vector) exactly equal to some m
of those n states.

In particular, let the system be given by

z(t) Az (t) + Bu(t)
y(t) = Cz(t)

Let us pick any nonsingular matrix S such that CS = [Opmx(n—m) Imxm]. Then

§t) = S 'ASq(t)+ S 'Bu(t)
¥y = [gn-ms1(t) ... g (®))
Now it suffices to design a reduced order observer to estimate g1 (t),...,qn—m(t),

and finally to recombine the g-states back to the z-states by z(t) = Sq(t).

For the sake of simplicity assume that y(t) is a scalar, and that C = ¢’ is already
in the desirable form, i.e., ¢ =[0 ... 0 1]. Design the reduced order observer.

Solution: Since ¢ = [0 ... 0 1] we can write the system equations in the

following form
@) _ | A b #(t) .
fl=1 g o ) e

or equivalently

& (t) Arzr(t) + bry(t) + gru(t)
w(t) = cz(t)

where y-(t) = §(t) — anny(t) — gnu(t) is a measurable quantity'!.

Since it can be proved that if the pair {c’, A} is observable, so is the pair {c,., A},
now we can set up the observer for the states z,(t), whose states we shall denote by
rr(t):

fo(t) = Arrr(t) + by (t) + grult) — lr(crre(t) — yr(t))

where again y.(t) = §(t) — anay(t) — gnu(t). The gain vector !, is picked so that the
observer, i.e., the eigenvalues of the matrix A, — I ¢, are some designated numbers.

11 Certainly, it is not desirable to have a differentiation anywhere in the process of estimation,
because of the noise effects. We shall get rid of this operation later.
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The signal flow graph of this system is shown in Figure 3.46. Along with it shown
is its modification which eliminates the differentiation.

Y=Xa * Xp Y=Xa
R L d/dt R L
1/s . 1/s
u e . I, u -
T T

Figure 3.46: Signal flow graphs for two realizations of the reduced observer, one with,
and the other without differentiation. R = b, —lrann, Q = gr—lrgn,and T = A, —l,c;..

This modification in the signal flow graph is equivalent to the following change of
variables:

pr(t) =r.(t) — Ly(t)

when the observer equation becomes (Figure 3.47)

I.Jr(t) = (Ar - er:-)pr(t) + (br —lr@nn + (Ar _ er:-) lr)y(t) + (gr - lrgn) u(t)

T R T Q

Y=Xn < Xn
R+T}, k

1/s
4 Q \(/pr r
T

Figure 3.47: Implementation of the reduced observer with states p,(t) = r-(¢)—l-y(t).
Again R =b, —lrann, @ =gr —lrgn,and T = A, — l,.c,.

Problem 3.13.2 Consider a system defined by
[ 016 216 -1
() = [ ~0.16 -1.16 ]’(tH [ 1] u(t)

y)=[1 1]z@)

Find its open-loop eigenvectors, check the stability, controllability, and observabil-
ity. Determine a state feedback vector k' such that both closed-loop eigenvalues of
the system are at —1. Design a minimum-order observer for this system, with the
gain I, such that the observer has an eigenvalue at —3. What would be the observer
eigenvalue if I, = 07
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Solution: The open-loop eigenvalues are A\; = —0.2 and A2 = —0.8, therefore
the system is stable. Since

-1 2 11
o[ 2] e oei1]

the system is also controllable and observable.
The characteristic polynomials of the open-loop and the closed-loop system are

a(s)=A"+1+016 and a(s)=A+21+1

The system is simple .enough not to require the use of the Bass-Gura formula.
With or without it we find

K =[0.84 1.84]

In order to design a reduced order observer, we need to introduce a nonsingular
transformation S such that ¢S = [0 1]. This can be accomplished with e.g.,

N

ar br _ Q-1 _ -2 2.16 r| _ o-1p _ -1
[ 5 ]raee[ 2] = B[

In this case the reduced observer gain I, is a scalar, and we find it from

when

A‘_(al'f'_l'rcr)=>\"'3 = lr=—1

Note: Now it is easy to calculate the remaining parameters of the reduced order
observer, and don’t forget that the result of the observer operation is a state which
needs to be combined with y(t) using the matriz S:

z1(t)] _ sl ®
za(t) y(t)
If the observer is designed without the feedback (I» = 0), the error would still tend

to zero, but slightly slower, with eigenvalue —2, i.e., as e~ 2.

Problem 3.13.3 The design of a state feedback for the inverted pendulum on a cart
requires the complete state vector

N DN

é
In Problems 3.9.9 and 3.11.4 we assumed that all states were available, while in Prob-

lem 3.12.2 we estimated them. If we go back to the original assumption that z(t) and
0(t) are directly available:
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we see that we need to estimate only the remaining two states.
Design a reduced-order observer to estimate the two unavailable states. Why a
simple differentiation of the two available states is not a satisfactory solution?

Solution: A differentiation of the two available states is not a good idea because
even a slight noise can drastically change our estimates of the other two states.

The inverted pendulum on a cart we considered earlier (Problems 3.5.11, 3.7.12,
3.9.9, 3.11.4, and 3.12.2) was described by

0 o0 1
._lo o o
=10 -1 o

0 0

-_-[(1)

The nonsingular transformation S can be picked as

0
} when S7!= |:(1)
0

_Jo o 1 o0
CS_[ooo]

OO
—
8
+
e
.lcp-tco
[
e

- o
oo
co
[~
8

n

Il
—
~ooo
oroo
~ooo

[=N-R-N g
oo O
oo~ o
[=N=N= )
| IS |

Indeed,

1

By calculating S AS and S~'b we find

_[o o _[o 21e _[o 1 _[o o
a=o o] m=[ ] =V o] am=[5 0]

=[] i nm ]
In order for both eigenvalues of A, — L.C, to be at —4 we can pick
b=[8 4]
Therefore (cf. Problem 3.13.1)
T=4-LC=["3 ]
R+TLy =By = LyAun + (A = L)L = [ 18 %7 |

-1

Q=gr—Lrgn = [‘12]
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% file simulb.m
I3

A=

-

-
OO OOO0OOO

o Qw
n "o
-

=
n

[~0.2041 -15.902 -0.5102 -2.7551]; % picked so that eig(A-B*K)
% are -1, -2, -1+j, -1-j

size(A,1); % order of original system

n-size(C,1); % number of states to estimate

]
[ ]

w
"

L

X-X-X-]
or oo
o OO
=

1
0
0
V] B % picked so that C#S = [zeros(n-r,r),eye(r)]
= inv(S)*A+S;
= inv(S)*B;
Cnew = C*S;
= D;
= K=*§;

Anew(1:r,1:r);
Anew(1:r,r+l:n);
Cr = Anew(r+i:n,1:r);
Ann = Anew(r+l:n,r+1:m);

vE

Gr = Bnew(1:r,1);
Cn = Bnew(r+i:n,1);
Lr = [0 4;
4 0]1; % picked so that eig(Ar-Lr#Cr) are -4, -4
T = Ar-Lr*Cr;
R = Br-Lr*Ann;
Q = Gr-Lr*Gn;
Abig = [Anew, zeros(m,r);
zeros(r,r), R+Tslr, T];
Bbig = [Bnew;Q];
Cbig = [Cnew,zeros(n-r,r}];
Dbig = Dnew;

Kbig = [zeros(i,r),Kneu(i,r+1:n)+KneH(1,1:r)tLr,Kneu(1,1:r)];

t0 = 0;
tf = 8;
dt = 0.05;

t=(t0:dt:tf)’;

% q0 = [0;0;0;0;0;0]; % simulation
% u=0.1%ones(size(t)); % ba

q0 = [0;0.1;0;0;0;01; % simulation
u = zeros(size(t)); % 5b

initial(Abig-Bbig#Kbig,Bbig,Cbig,Dbig,q0,t);

(Yinit,Qinit] =
= 1sim(Abig-Bbig#Kbig,Bbig,Cbig,Dbig,u,t);

[Yinp,Qinpl
q = Qinit+Qinp;
y = Yinit+Yinp;

xtrue = (S*q(:,1:n)°)’;
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xestim = (S*[q(:,n+1l:n+r) +Lr*y’; y’1)’;

subplot(4,1,1)
plot(t,xtrue(:,1),’y-?,t,xestin(:,1),’w.?)
title(’Inverted Pendulum Simulation 6b’)
ylabel(’z(t) [m]’), grid

subplot(4,1,2)

plot (t,xtrue(:,2),’y-’,t,xestim(:,2),’w.?)
ylabel(’theta(t) [rad]?), grid
subplot(4,1,3)
plot(t,xtrue(:,3),’y->,t,xestim(:,3),’v.?)
ylabel(’z_dot(t) [m/s]’), grid
subplot(4,1,4)
plot(t,xtrue(:,4),’y-?,t,xestim(:,4),’v.?)
xlabel(’t [s]’), ylabel(’theta_dot(t) [rad/s]’), grid

Due to the identical initial conditions of the observer and the system, the two esti-
mated states are identical to the actual states. The results of the MATLAB Simulation
5a are identical to Simulation 2a.

The results of the Simulation 5b slightly differ from Simulation 2b because of
discrepancies between initial conditions of the actual and the observer states (see
Figure 3.48).

Inverted Pendulum Simulation 5b
0.2 T T T T T T T
E
=0.1F 4
1
c 1 1 1 1 'y i
0 1 2 3 4 5 6 7 8

theta(t) [rad]
o

-0.01
0
& 02 . , , . . : .
o0
E
%: 0
N‘ 1 1 1 1
_0.2 1 1 1
0 1 2 3 4 5 6 8
0.02

theta_dot(t) [rad/s)

t[s]

Figure 3.48: The results of the MATLAB Simulation 5b. Since the initial condition
for the fourth state was not identical for the observer and the system (the equations
describe the p-state, while the estimate of the z-states are the r-states; recall that
pr(t) = ro(t) — Lry(t)), there is some estimation error, which exponentially dies out.
Due to this error, there are some differences with respect to the Simulation 2b.



3.13. REDUCED-ORDER OBSERVERS 205

Problem 3.13.4 For a system given by

M_ s—1

H(s) = a(s) ~ s(s—2)

(cf. Problem 3.11.6) design a reduced order observer such that the observer error
eigenvalue is at —4. The poles of the system should be moved to —1 and —2.

Solution: With 6,(s) = s+ 4 and a(s) = (s + 1)(s + 2), the condition’
a(8)8-(s) = a(s)d-(s) + a(s)pu(s) + b(s)py(s)
implies

pu(8)=-35 and p,(s)=40s—8



Chapter 4

Discrete linear systems

In this Chapter we present solved problems about discrete-time linear con-
trol systems. For the most part it will be a reprise of Chapter 3. It will
emphasize both similarities and differences between the discrete-time and the
continuous-time systems. In particular, we shall see that many formulas, such as
the conditions for controllability and observability, remain the same, while some
others, such as the Riccati and Lyapunov equations and stability conditions are
changed.

It begins with the background material on linear difference equations and
matrices (Sections 4.1, 4.2, and 4.3). It continues with further examples of
the advantages of the state-space representation of linear systems over their
input-output representation (Sections 4.4 and 4.5). In Sections 4.6 and 4.7 we
present three fundamental properties of systems: stability, state controllability,
and state observability. We also mention a few peculiarities of discrete-time sys-
tems. In Section 4.8 we further illustrate the canonical forms of linear systems.
Section 4.9 describes how the poles of the system can be arbitrarily placed us-
ing the state feedback. The condition for this so-called modal controllability is,
again, the state controllability and observability. Next, in Section 4.10, we inves-
tigate the feedback gain which yields the quadratic optimality. In Section 4.11
we explain the design of the state observers. In Section 4.12 we investigate
the choice of the observer gain so that the effects of noise are minimized in a
mean-square sense. The result is the Kalman filter. Finally, in Section 4.13, we
describe the reduced-order observers.
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zlk +1] = Az[k] + Bulk
ylk] = Czlk

|
| S—— )

bed

+ Dulk]



4.1 Simple difference equations

This Section briefly presents the two most commonly used methods for solving
linear difference equations with constant coefficients: the time-domain convolu-
tion and the z-transform. It also describes the Kronecker’s delta sequence.

Problem 4.1.1 Show that the solution of the inhomogeneous difference equation
z[k + 1] = az[k] + flk] (k>0), with z[0] ==x0

is given by

k—1

ofk] = zoa* + Y _a'flk—1-1i]

=0

Solution: From the solutions for £ = 0,1,2,3

z[0] = =zo
z[1] = azo+ f[0]
z[2) = a’zo+af[0] + f[1]

z[3]

a®zo + a® f[0] + af[1] + f[2]

we can easily generalize
z[k] = a*zo + @™ 0] + ... +af[k — 2] + flk ~ 1]

ie.,

k-1

z[k] = zoa* + Za"f[k ~1—1
—t

S — :

homogeneous part non-homogeneous part

Note: The non-homogeneous part is a convolution of two sequences, {a*} and
{flk — 11}, a delayed version of {f[k]}. We write

k—1

a* xflk—1]=) a'flk-1-i

i=0

The nezt example will throw additional light to the solution of this problem.

Problem 4.1.2 Use the z-transform to solve the difference equation from the previous
problem:

zlk+ 1] = az[k] + flk] (k>0), with z[0]==z0

209



210 CHAPTER 4. DISCRETE LINEAR SYSTEMS

Solution: The z-transforms of sequences {z[k]}, {z[k + 1]}, and {f[k]} are

Z{z[k]} = z[0]+z[z ' +z[2z" 2 +z[3]7+... = X(2)
Z{zk+1)} = z[]+z2z7" +z[3z2 2+ 2[4z +... = 2(X(z)-z[0])
Z{fIk]} = SO+ fM=""+ f2e 7+ fBl2 P +... = F()

Take a z-transform of both sides of the equation to obtain
2(X(2) — o) = aX(2) + F(2)
Therefore

X(2) = —zzf"a + —5&)1

This form of X (z), although eye-pleasing, is not convenient for expansion into

power series of 27!, the unit-delay elements. Thus we write

o 2~1F(z)

4.1
—az"!  1—az"! @1

X(2) = T

Next, expand the right-hand side into power series:

T%z"l zo(l+az ' +a’27 2 +a®272+..)
-F - - - - -
f—_z‘(% = (f0lz7" + )72+ f[2e 2 +.. ) A +az" 40270+ )

= f0]=7" + (af[0] + f[1)2~% + (a*F[0] + af[1] + F[2)="2 + ...
Finally, by comparing coefficients next to z~* we find:
z[k] = a*zo + a* 7 f[0] + ... + af[k — 2] + flk - 1]
Note: We could write the same result directly from (4.1) because:

o the inverse z-transform of (=% is the sequence {zoa*}

-1
e the inverse of %ﬁ_ﬁl is a convolution of inverse z-transforms of z ' F(2) (i.e.,

the sequence {f[k — 1]} and of ==y (i.c., the sequence {xoa*})

Problem 4.1.3 The homogeneous part of the solution for the higher order difference
equations can be found by looking at the roots of its characteristic equation:

For each multiplicity-m root a of the characteristic equation, the homogeneous
part of the solution contains the following term(s)

ozoalc + ozlls:a,’C + 0421::2(1’C +...+ am_lkm_la,k

where ao,...,am-1 are constants which depend on the initial conditions.
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Note:  While the above form may be easy to remember, it is much easier to
determine the coefficients if one of the following forms is used:

Boa® + Prka* + Bak(k — 1)a* + ... + Bm-1k(k —1)...(k — m + 2)a"

or

(k+ l)ak

(k+1)(k+ 2)a,c
1t

(k+1)...(k+m—1) 4
2!

(m—-1)!

’)’oak+’71 + ¥2 + ...+ TYm—

These two forms are also convenient because they are easily summed during deriva-
tions (cf. Appendiz B.2). The latter form corresponds to what the z-transform method
gives as a solution (see Problem 4.1.4).

First apply and check the above procedure and then derive it for the following
homogeneous equations:

a) z[k + 2] = 5z[k + 1] — 6z[k], z[0] = zo, z[1] = =1
b) z[k + 3] = 2z[k + 2] + 4z[k + 1] — 8z[k], z[0] = o, z[1] = 21, z[2] = 2
c) zlk + 3] = 6z[k + 2] — 12z[k + 1] + 8z[k], z[0] = =m0, z[1] =21, 2[2] = 22
Solution: a) The characteristic equation for this recursion is

ré —-5r+6=0

and since its roots are
r1=2 and r;=3

the solution is of the form

z[k] = a2* + g3*

where o and 8 can be determined from the initial conditions:

k=0 = a+B=x
k=1

= Za+3ﬂ=x1} = a=3z—x1 and B =1x1 —2x

It is easy to verify that z[k] = (3z¢ — £1)2* + (z1 — 2x0)3* satisfies both the
recursion and the initial conditions.

In order to derive the “usual suspects” (a2* and 83*) we shall rewrite the recursion
so that it reduces to the trivial form y[k+ 1] = ay[k]. With the characteristic equation
in mind

(r—2)(r-3)=0
which can be rewritten as

r? —~3r =2(r —3)
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we write

alk+2) = 5ok +1] - 62(k] & alk+ 2] 3z[k + 1] = 2(z[k + 1] - 32[k])

y[l:I-IJ ylk]

With a new variable: y[k] = z[k + 1] — 3z[k] the recursion becomes
ylk+1] =2y[k] with y[0J=z1—3z0=C
Hence
y[k] = C2*
This now yields a non-homogeneous difference equation in z[k]:
z[k + 1] = 3z[k] + C2*
whose solution is (directly from this recursion or from Problem 4.1.1)

z[k) = 3Fzo+ 312043522 4 4302k ¢

gk—1 (1+§+...+‘(r§)’°‘1)=3"-2"
ie.,

z[k]) = a2* + B3*
where a = —C = 3z — z1 and 8 = z¢ + C = z1 — 2z, as before.

b) The characteristic equation is
1'3--27'2—47'+8=(r+2)(r—2)2 =0
hence the solution has the following form:
z[k] = a(-2)F + B2F + yk2*

where a, 3, and 4 can be determined from the initial conditions. The details are
omitted.

c) The characteristic equation for the recursion in this part is
(r-2°*=0
hence the solution is of the form
z[k] = a2* + Bk2* + yk?2*
Again, a, 8, and «y are constants which can be determined from the initial conditions.

In order to derive this result, we need to simplify the recursion. We first rearrange
the characteristic equation to get the idea on what to do with the recursion:

rr—2)2=2(r-2?% e, rP-arPtdr=20r"-4r+4)
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We see that with y[k] = z[k+ 2] —4z{k+ 1]+ 4z[k] the recursion becomes y[k+1] =
2y[k], with y[0] = z2 — 421 + 4x0. For the sake of simplicity denote y[0] = C. Now we
can write y[k] = C2, therefore the initial recursion can be written in the following
form:

z[k + 2] = 4z[k + 1] — 4z[k] + C2"

We see that the order of the recursion has been reduced by one. Its order can be
reduced further if we rewrite this as

ok +2) — 2z[k +1] = 2(z[k + 1] — 22[K]) + C2*

u[l:H] u‘[;]
when we find that
ulk] = B2* + %k2k
ie.,
k£, C ok
zlk + 1] = 2z[k] + B2" + —2-k2
Finally,
N k B C) £, Claok
olk] = =02 +(2 =) k2t + TH%2

= a2+ BK2* + k22"

Note: The reader is encouraged to fill in the missing steps and as a check
to compare the values of a, B, and 7 obtained through this derivation to the values
obtained directly from the initial conditions.

Problem 4.1.4 Repeat the part b) of the previous problem using the z-transform:

z[k + 3] = 2z[k + 2] + 4xlk + 1] — 8z[k], z[0] = 2o, z[1] = =1, 2[2] = 22

Solution: Take the 2-transform of the equation to obtain

2 X(z) — 2x0 — 2221 — 232 = 222X (2) — 2220 — 221) + 4(2X (2) — z30) — 8X(2)

X(2)(2® — 22° — 42 + 8) = 202® + (21 — 220)2% + (22 — 221 ~ 420)2

2022 + (x1 — 220)2% + (x2 — 221 — 420)2
(z+2)(z —2)2
(:L‘z — 21 — 41‘0)Z—2 + (1‘1 - 21:0)2_1 + xo
(14+2271)(1—2271)2
P Q R

= T3 1ot T2y

X(2)
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where P, @, and R depend on the numerator coefficients, i.e., on the initial conditions.

They can be determined using MATLAB command residue, or, in simple cases such

as this one, by equating the last two expressions for X (z). We omit the details here.
Since

1 -1 1
Gy = 44 ("(T—))
= d/dz"" (i—(l +az ' +a%272 +))

2

= 142z '+3a%27%+...
= Z{(k+1)d*}
and in general
1 -z (k+1)(k+2)...(k+m—1)a,c
(1—-az")m ~ (m-1)!

we find

z[k] P(-2)* + Q2* + R(k+ 1)2*
P(-2)* + (Q + R)2* + Rk2*
a(-2)* + 2k + yk2*
Problem 4.1.5 Solve the following difference equation

z[k] - 2z[k — 1] — 2z[k — 2] =0
with z[0] = 0 and z[1] = 1.

Solution: The characteristic equation is r? — 2r — 2 = 0 hence r1,, = 1 £ j.
Therefore, the solution is

z[k] = a(l + j)* + B - j)*

where a and B are complex constants determined from the initial conditions. Calcu-
lation of o and B can be simplified if we keep in mind that for z[k] to be real, 8 must
be equal to the complex conjugate of a.

Another way of writing this solution is derived from the polar representation of
the characteristic roots: 1+ j = V2etin/4,

z[k] = (a + 8)2"* cos %1_[ + (a— B)2"?jsin %
In this particular case o = —j/2 and 8 = j/2, hence
z[k] = 2"/ *sin n4_1r

Note: In order to use the z-transform in this problem, one must either find the
initial conditions z_, and z_» or rewrite the equation as z(k+2])—2z[k+1]—2z[k] = 0.
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Problem 4.1.6 A particle is moving in a horizontal line. The distance it travels in
each second is equal to two times the distance it travels in the previous second. Let
zi denote the position of the particle at the k-th second.

a) Find a general relation between zj, x—1, and zx—_2.

b) If zo = 3 and z3 = 10, find z.

Solution: a) Obviously zx — zx—1 = 2(xk—1 — ZTk-2), i€,
Tk —3Th_1 +2T4_2=0
b) First solve the above difference equation:

the “usual suspect”:
z =1k
the recursion:
Tk — 3Tp-1+ 2Tk—2=10

= o3 +2=0 = r=1r=2

therefore
Tk = art + ﬂr’;
ie.,
Ty = o+ ,32k
From the conditions ¢ = 3 and z3 = 10 we get a system of equations in o and g:

a+pB=3

= — — k
a+8ﬂ=10} = a=2 f=1 = z,=2+2

Problem 4.1.7 Investigate the most important properties of the Kronecker’s delta
8[k] with respect to discrete-time convolution and the z-transform.

Solution: The Kronecker’s delta impulse sequence is defined as

w={5 i7o

It is the unity for discrete convolution

flK)« oK) = Y flk—ildli] = flk]

It’s z-transform is obviously

Z{[k)} =140-271 4027240272+ ... =1
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Problem 4.1.8 Write the following third-order difference equation as a system of
three first-order difference equations and write them in a matrix form:

z[k + 3] + 5z[k + 2] + 8z[k + 1] + 4z[k] = (-1)*

Solution: Use v[k] = z[k + 1] and w[k] = v[k + 1], to obtain

zk+1] = v[k]
vk+1 = wlk]
wk+1] = —4x[k] - 8v[k] - 5w[k] + (—1)*

z[k +1] 0 1 07z 0
[v[k+1]] = [ 0 0 1 ] [v[k]] + [ 0 ]
wlk + 1] -4 -8 -5 | [w[k] (-1)*

Note: Do you recognize the companion matriz? Compare the eigenvalues (or at
least the characteristic equations) of the difference equation and the matriz. What are
the initial conditions here?



4.2 More matrix theory

In this Section we present several methods for raising a matrix to an integer
power and prove a very important result, the so-called matrix inversion lemma.
Matrices are also covered in Section 3.2 and Appendixes B.4 and C.

Problem 4.2.1 Determine A* for the following matrix
11
=[]
Solution: Calculate A* for k = 2,3,4,5 and see the regularity:
|21 s_[3 2 «_[5 3 s_[8 5
S I B I HH I

We see that the sequence of Fibonacci numbers f appears in this result. They
are defined by

free=fenn+fi fo=0, i =1
and start like this
f0=07 f1=11 f2=17 f3=2)f4=3) f5=57 f6=81

Indeed, the following can be proved by mathematical induction:

k_ | ferr  fr
4 _[ Je fk—l]

Note: Unfortunately, very rarely do we get such simple and cute results.

Problem 4.2.2 If A= QJQ™", where J is in Jordan form, then A* = (QJQ~1)* =
QJ*Q™!. In the special case when A is diagonalizable, A* = QA*Q~!, where

A =diag(A1, Az,..., M)  and  A* =diag(\F, Ak, ... AF)
Use the results obtained in Problem 3.2.6 to find A* for
-6 2
=21

Solution: In Problem 3.2.6 we found that A; = —3, A2 = ~2 and

Q=[§ ;] while Q"1=[_§ _;]
Therefore
(4(=3)* - 3(=2)") (-2(-3)* +2(-2)")
AF = QARQ ! =

(6(—3)* —6(—2)%) (-3(—3)* +4(-2)F)

217
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Problem 4.2.3 Use the Sylvester interpolation method to determine A* for
—6 2
Solution: As in Problem 3.2.7, since A is 2 x 2, we can write
A* = a(k)I + B(k)A
where o and S are found from

a(k)+ B(k)A = Ak
a(k) + B(k)A2 A5

We easily find
a(k) =3(-2)* —2(-3)* and B(k) = (-2)" - (-3)"
This agrees with the result of the previous problem. Indeed,
(“(=3)* -=3(-2)") (-2(-3)* +2(-2)")
A* = a(k)I + B(k)A =
(6(-3)* —6(=2)%) (-3(=3)" +4(-2)")

Problem 4.2.4 Use the z-transform to determine A* for

-6 2
e
Solution: ~We shall show in Problem 4.3.3 that A* and (I — 27'4)™" are a
z-transform pair:
2{A} =T -2 e, M {U-zla)y'}=4

‘We obtain the same solution as in previous problems since

146271 —2z7! -1 (1+;;3—‘+1+34:'1) (1+22z-1+1+;zz-1)

—14y-1 _
(I-274)" = 627! 1-z7!

(1+;f_1 + 1+36z—1) (1+242_1 + 1+;23_1 )
hence

(4(=3)* =3(=2)") (-2(-3)* +2(-2)")
A=z {I -4} =
(6(=3)* —6(=2)") (=3(-3)* +4(-2)")

Problem 4.2.5 Determine A* for

-1 0 0
A= 0 -1 0
1 0 -1
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Solution: The eigenvalues of A are A1,2,3 = —1. Since Ais3x3and A= —1is
a triple eigenvalue, in order to determine the coeflicients in

AF = a(k)I + B(K) A + v(k)A?
we form the three equations by writing
X = (k) + BR)A + (k)N
and the first and the second derivatives over A:
AR = B(k) + 27(k)A
and
k(k — 1)A*=2 = 2¢(k)
When we solve this system with A = —1, we finally get
(-1)* 0 0
AF = 0 (-1 0
D'k 0 (-1)*

Problem 4.2.6 Prove the following very useful result, the so-called matrix inversion
lemma: If A, B, C, and D are n X n, n X m, m X n, m X m, respectively, and all
necessary inverses exist, then

(A+BDC)"'=A"'—AT'B(D™' + CAT'B)"'CA™!
Solution: Premultiply the right-hand side of the equation by A + BDC:

(A+BDCYA ' —AT'B(D"'+CAT'B)'CA™Y =
= I+BDCA™'-B(D™'+CA™'B)"'CcA™! -
—BDCA™'B(D™' +CA™'B) 'cA™!
= I+BDCA™'—(B+BDCA'B)(D™'+CA™'B)"'CcA™!
I+BDCA™ —BD(D™' +CA'BYD '+ CA™'B)"'CA™!
I

Note: Most often we use this lemmae with A= I, and D = I'n,:
(I. + BC) ' =1I, - B(In + CB)'C

This result has been known among mathematicians, e.g., Woodbury, at least since
1950. The first to use it in the engineering community was Kailath in 1960 (cf. [19]).



4.3 Systems of linear difference equations

In this Section we solve systems of difference equations using the matrix nota-
tion.

Problem 4.3.1 Write the following system of equations in a matrix form:
uk+1) = u[k] - 2v[k] — 4w[k] + (-1)*
v[k + 1] ulk] — 3v[k] + 3w(k] + sink
wk + 1] ulk] + 4v(k] + 5w(k] + cosk

I

Solution: If we write
k] (-1
z[k] = v[k]] and f[K] = [sink
w(k] cosk

the system can be written as

z(k + 1) = Az[k] + f[k]

1 -2 -4
A={1 -3 3
1 4 5

Problem 4.3.2 Show that the solution of the system of inhomogeneous difference
equations

where

z[k + 1) = Az[k] + f[k] (k>0), with z[0] =
Zon
where A is n x n, while z[k] and f[k] are n x 1, is given by

k-1
okl = A*zo+ ) A'flk—1-1]

i=0

Solution: From the solutions for k = 0,1,2,3

1'[0] = X0

z[1] = Azo+ f[0]

z[2] = A’zo+ Af[0]+ f[1]

z[3] = Alzo+ A%F[0)+ AF[1] + £[2)

we can easily generalize

220
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zk] = Afzo + AF T F[O) + ... + Af[k — 2] + f[k — 1]

ie.,
k—1
(k] = Arz, + Y Aflk-1-1]

$=0
~ , ~ s

homogeneous part non-homogeneous part

Note: The non-homogeneous part is a convolution of two sequences, {A*} and
{f[k — 1]}. We write
k—1

A fle-1]=) A'fle-1-4

=0

Problem 4.3.3 Apply the z-transform to the vector difference equation from the
previous problem:

o[k +1] = Az[k] + flk] (k>0), with z[0] =

Zon

Solution: The z-transforms of sequences {z[k]}, {<[k + 1]}, and {f[k]} are

2{z[k]} = =z[0]+z[lz ' +22z7 + 2Bz +... = X(2)
Zzlk+1]} = z}+z22 + 2Bz + 2[4 +... = 2(X(2) —z[0])
Z{fIK} = fIO1+ ST+ fR2l T+ BT 4 = F(2)

Take a 2-transform of both sides of the equation to obtain
2(X(2) — zo) = AX(2) + F(2)
Therefore
X(z) = (2 — A lzzo + (21 — A)"1F(2)
ie.,
X@)=T-z"A o+ (I —2"4) 271 F(2)

Since 27! corresponds to a time-delay by one sample and the product in the trans-
form domain corresponds to time-domain convolution, the inverse z-transform yields

k—1
olk] = A*zo+ Y A'flk —1—1]
i=0
Note: If we compare results of Problems 4.1.2 and 4.3.2 we find that {A*} and

(I —z7'A)7! are a z-transform pair:

Z{a4)}=(T-71A)" ie, Z{I-zA)) =4k



4.4 Input-output representation

In this Section we review the use of input-output representation and transfer
function techniques to analysis of discrete-time systems. We also discuss the
discretization process, the sampling theorem in particular, and relation between
the Laplace and the z-transform.

Problem 4.4.1 Determine the output of a system described by
ol +1]- Syl =ull] (k> 0)
yl0] =5
when
a) u[k] = cos 2%k

b) ulk] = (4)"

c) ulk] = (% - e)k where ¢ is a small positive number
k
d) ulk] = (3)

Solution: The homogeneous part of the solution is the same for all four cases.
Since the root of the characteristic equation (the pole of the system) is a = % and

y[0] =5

=3 3)’

a) The non-homogeneous part (the particular solution) is as in Problem 4.1.1 (using .

cos<p—Ma.nd1+x+x +. "=”—"5¥)
S 1V m(k—1-14) ork wk k
ynh[k]=zo(§) cos-——12——=...-095005—1—2—+13051nﬁ-—095(2)
=

Finally, the solution is

y[k]=y,,[k]+y,,,,[k]=4.05(1) +0.95 cos 2% +1.30sin 7%

Note 1: The first term in the solution is often called the transient part of the
solution because it approaches zero fast. The remaining terms are then called the
steady-state part of the solution. Both the initial conditions and the input contribute
to the transient part of y(k], through ys[k] and ynn(k], respectively. The steady-state
part, however, comes from the input only and is often called the forced output.

Note 2: We can solve this equation in other ways, using the z-transform for
ezample. Another method is attractive too: Knowing the root of the characteristic
equation and from the form of the input we can immediately write

1 2nk 2k
y[k]—A(E) +BCOSH+C sin —— 13

222
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If we substitute this into the original equation (not only its homogeneous part), the
initial condition gives us one of three equations for constants A, B, and C:

A+B=5

The other two equations are obtained by equating the coefficients next to cos 2=E

12
and sin %’i terms, respectively:

B(V3-1)4+C=2 and B-CH3-1)=0
See also Problem 4.4.2.

b) Similarly, for this input

- (3)" o )’

c) For ulk] = (} — &)* we find

1 1\* 171 k
ylk] S+ e/ \2 € \2 &
Note: Ase — 0, i.e., when the input’s complex frequency approaches the system’s

pole, the forced output grows in magnitude. This is resonance. Asymptotically (as
&g — 0), the total output behaves like:

i ((+3) @) -2G-9) =) ()

d) When ulk] = (%)k, the input’s complex frequency coincides with the pole of the
system. The convolution of two similar terms produces a new form. Thus

1 k 1 k—1
k] = - k (—)
ylk] =5 (2) +tE\2
Problem 4.4.2 Find the output of a system described by

a) ylk+ 3] +3y[k+2] +3ylk+ 1]+ y[k] = (-1)F
with y[2] = 1,y[1] = 2, and y[0] =3

b)  ylk + 3] + 3y[k + 2] + 4y[k + 1] + 12y[k] = (-3)*
with y[2] =1,y[1] =1, and y[0] =1

Solution:  a) This system has a triple pole at —1 and the input’s complex
frequency coincides with this triple pole hence the solution is a linear combination of
(=1)¥, k(=1)*, k3(~1)*, and k*(—1)* (see also Problem 4.1.3):

ylk] = A(-1)* + BE(-1)* 4+ Ck*(-1)* + DK*(-1)*

Coefficients A, B, C, and D are found from the initial conditions for the whole
equation and by substitution of this expression into the equation.
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Note: Much less effort is needed if we use the following form:

ylk] = a(=1)F + Bk(=1)* + pk(k — 1)(=1)* + vk(k — 1)(k — 2)(-1)*

b) In this case poles are at +2j and —3, and the input coincides with a pole at
—3, therefore

vlk] = AR2))" + B(-2))" + C(-3)* + Dk(-3)"
Another way to write this is
& km k. km k k
y[k] = a2" cos 5t B2" sin 5+ C(-3)" + Dk(-3)

where o = A+ B and 8 = (A — B)j.
Problem 4.4.3 What is the output of the system described by

ylk + 1] + 3y[k] = u[k + 1] + 2u[k]
with y[0] = 1 and u[k] = (—2)* + cos 2Z&.

Solution: If we try y[k] = A(—3)*+B(—2)*+C cos 22k + D sin 22k and substitute
it into the equation we immediately find that B = 0. The complex frequencies for
which this happens (in this case only —2) are called the zeros of the system. They
are the roots of the characteristic equation of the input part of the equation.

Problem 4.4.4 What is the impulse response h[k] of a system? What is the transfer
function T'(z) of a system? Show that T'(z) = Z {h[k]}.

Solution: Impulse response. The impulse response h[k] of a discrete-time system
is the output of the system caused by the Kronecker's delta impulse §[k] at the input:

w={ 5 3

The system is assumed to be at rest when §[k] is applied, i.e., all initial conditions are
zero.

The impulse response h[k] is important because it completely characterizes the
output when input is known. If the initial conditions are non-zero yx [k] is found as in
Problem 4.1.3, while y,,[k] can be characterized in terms of the impulse response as
follows.

From the linearity of the system, and from the following decomposition of an
arbitrary input for k > 0

oo

ulk] = z u[i] 8]k — 1]

=0

we find (assuming the system is causal, i.e., h[k] =0 for k < 0)
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k

yonlk] = Y ufi] Ak — i]

i=0

the so-called discrete-time convolution of sequences h[k] and u[k].

In general, if a system is given by a difference equation, the impulse response is
most easily obtained as the inverse z-transform of its transfer function. The derivation
is given below.

Transfer function. Transfer function is the ratio of the z-transforms of the output
and the input of the system, assuming zero initial conditions:

-3

If a system is given by
ylk] +a1ylk — 1]+ ... + anylk — n] = boulk] + ... + bnu[k —m] (k> 0)

and the initial conditions are zero, ie., y-1 = ... = y_n = 0, then the z-transform
yields

Ty = Y _00) _ boz™ + ... + b2
U  az) 2" +taz" '+...+an12+an

or equivalently

bo+biz ...+ bnz ™
14+a1z71+...+anz—"

T(z) =

From these expressions we see that T'(z) does not depend on the input u[k], only
on the coeflicients of the difference equation.

Relation between h[k] and T'(z). Since T(z) does not depend on the particular
choice of u[k], we can pick u[k] = d[k] when U(z) = 1, y{k] = h[k], and Y (z) = H(2).
Then we find

Y(z)

T(z) = U( )

= H(z) = Z {h[k]} = Zhl"‘

k=0

Note: This is why we often write H(2) instead of T'(z). Another way to see this
is to use the convolution property of the z-transform: With zero initial conditions
y[k] = hlk] xulk] = Y(2) = H(z)U(2)

Note also that for causal systems (h[k] =0 for k < 0) when z = e the transfer
function T(z) becomes the frequency response T{(e’“) and we find that h[k] and T'(e’*)
are a discrete-time Fourier transform (DTFT) pair:

T(e'™) = H(e’™) = f: hlkle™ “*

k=0
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Problem 4.4.5 Determine the impulse response of a system described by

oK) + gy[k —1+ %y[k ) =uk—1+3uk—2 (k>0)

Solution: Obviously

z+3 —15 16 -152~1 16271
He)= 5 1= 3T sl =1 L T 1 o
2Z2+gz+5 z+3 z+3 143z + 32

Therefore

h{k] = —15 (%)H +16 (%)k—1 (> 0)

Matlab note: To plot this directly from the coefficients of the differential equation
(see Figure 4.1) do the following: dimpulse([1 3],[1 5/6 1/6])

25 T T T T T T T T T

ot 4

Y L s L 1 L
0 1 2 3 4 6 7 8 9 10

5
No. of Samples

Figure 4.1: The plot produced by the MATLAB command dimpulse.

Problem 4.4.6 Determine the impulse response of a system described by

k] + ylk — 1] + Zylk — 2] = ulk] + 2ufk ~ 1

Solution: Obviously

. - 1,-1 1,-1
__ 1427t 1432 +3 iz
1427143272 1+zl1+3272 "1+4271+ 122
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From Appendix B.3

1-az"'cosw

k
a” cos kw <
{ } 1—2az"1cosw + a2z—2

and
az lsinw
1-—~2az-lcosw +a22-2

k k
hik] = (g) cos %Tﬂ- +3 (g) sin 3km (k >0)

{ak sin kw} ©

hence

Problem 4.4.7 Determine the impulse response of a system described by

k] — ylk — 1) + Julk — 2] = ufk]  zulk — 1]

Solution: Obviously

1= 171 2/3 1/3
H = 3 =
@) (1-1z-12  1-1z1 (1-3z71)2
hence
2 71\ 1 1\*
hik = 5 (5) +3(k+D) (5) (k > 0)
ie.,

1Nk k1
=(= —-{= k>
mi=(3) +3(3) =0
Problem 4.4.8 Discrete-time linear time-invariant systems are often described using
linear difference equations with constant coefficients which relate their output y[k] to
their input u[k]:
ylk] + a1ylk — 1] + ... + any[k — n] = boulk] + ... + bnulk — m]

with initial conditions y[0], y[1], ..., y[n—1] given. Discuss the solution of this equation.

Solution: The solution of this equation can be written as

ylk] = yu[K] + yanlk]

where y,[k] is a homogeneous part of the solution, while y.x[k] is a non-homogeneous
(also known as particular) solution:

e yi[k]: For each multiplicity-m root a of the characteristic equation of the differ-
ence equation yx[k] contains the following term(s)

Boa® + Brka* + Bak(k — 1)a* +... + Bn—1k(k —1)...(k — m + 2)a*

where B, ..., Bm—1 are constants determined from the homogeneous part of the
equation

ylk] + arylk — 1]+ ...+ anylk —n] =0
and the initial conditions. See also the Note after Problem 4.1.3.
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® ynn[k]: This part of the solution is a convolution of the input u[k] with h[k], the
impulse response of the system:

k

Yonlk] = ) uli] hfk - 4]

i=0
The impulse response is most easily determined using the inverse z-transform.

Note 1: If the system is initially at rest, i.e., if all initial conditions are zero,
then obviously yn(k] = 0, hence y[k] = ynn(k]. On the other hand, if ulk] = 0, then
y[k] = ynlk]. We say that the non-homogeneous part of the solution is the response
to the input, while the homogeneous part of the solution is a response to the initial
conditions.

Note 2: Show that the convolution formula we derived in Section 4.1 is a special
case of this formula.

Problem 4.4.9 Show that if u[k] = 2& is the input and y[k] is the output of a system
described by

ylk] + a1ylk — 1]+ ... + anylk — n] = boulk] + ... + bmu[k — m]
then the output contains a term T'(zp)z{, where

bo+b1z5! +...+bmzg™ _ b(20)

1+a1z5' +...+anzg™  a(20)

T(20) =

It is assumed here that zo does not coincide with any of the poles of the system, i.e.,
roots of a(z) =1+ a1z7 ' + ...+ a.2"".

Solution: . With u[k] = z& the above equation becomes
ylkl+ayk -1+ ... +anylk —n) = 2EGo+ b1z  + ... + bm2g ™)

Its z-transform (assuming all initial conditions are zero) yields

1 b(Zo)
1— 20271 a(2)

Y(z) =

The partial fraction decomposition of this rational function contains the term
A/(1 = 202~ ') where

A= lim ((1-z202"1)¥(2)) = 220) =

z—z0 = a(Zo)

T(z0)
hence the output y[k] contains the term T'(zp)z¥.
Note: Due to linearity, if ulk] = zf + 2% then

ylk] = T("’d)zic + T(zxz)z;c +...
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Problem 4.4.10 Use MATLAB to plot the amplitude of the frequency response and
the locations of the poles and the zeros of the following 7th order discrete-time low-pass
filters with the cut-off frequency at one third of the sampling frequency: Butterworth,
Chebyshev Type I, and Chebyshev Type IIL.

Solution: Figure 4.2 is easily obtained using the following MATLAB commands:
butter, chebyl, cheby2, freqz, and tf2zp.

Butterworth Chebyshev | Chebyshev I
1 1 1
0.5 0.5 0.5
0 0 0
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
1 1 1
x  Poles * x l;oles : Poles
*
* *
0 X 0 * 0 *
x
* * *x
x % X *
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
1 1 1
Zeros Zeros o® Zeros
o
0 0% o
o
o
-1 -1 ] -
-1 0 1 -1 0 1 -1 0 1

Figure 4.2: Amplitudes of the frequency responses and locations of poles and zeros of
order 7 discrete-time Butterworth, Chebyshev type I, and Chebyshev type II low-pass
filters with wy, = w, /3.

Problem 4.4.11 Do a qualitative comparison of impulse responses of systems given
by the following three standard models:

Moving Average (MA):
ylk] = boulk] + ... + bmul[k — m]
Auto-Regressive (AR):

y[k] + ary[k — 1} +. .. + anylk — n] = boulk]
Combined (ARMA):

ylk] + a1y[k — 1} +. .. + anylk — n] = boulk] +. .. + bnulk — m]
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Solution: It is easy to see that for the MA model the impulse response is
haalk] = bod[k] + ... + bmd[k — m]

This is obviously a finite-length sequence, hence such systems are called Finite
Impulse Response (FIR) systems. Such systems are inherently stable because their
transfer functions have no poles:

HMA(Z) = bo +b11_1 +... +bmz_m

They are simple to design but for many applications they don’t offer enough flex-
ibility.

For the AR model the impulse response hur[k] can be found as the inverse 2-
transform of the transfer function
bo

Han(2) = 1+a1z27'+...+anz""

Obviously, har[k] is an infinite-length sequence, hence such systems are called
Infinite Impulse Response (IIR) systems. Since AR systems have poles, stability is a
concern here. Note that this transfer function has poles, but no zeros.

ARMA models have similar properties to AR systems, except that they do have
zeros. This provides for additional flexibility in the design, but also adds to the
complexity of theoretical analysis. ARMA systems are also IIR. In general

boz" + ... +bp2z" ™™ }

— z-1 _ -1
harmalk) = 27 {Haraa(2)} = 2 {z"+a1z"‘1+...+an_1z+an

Problem 4.4.12 Derive the Laplace transform of a signal f(¢) sampled by a train of
Dirac d-impulses.

Solution: Let the sampled signal be
gt)=f(t) Y s(t—kT)= ) F(T)s(t - kT)
k=—00 k=-—o00

where T is the sampling period. Then

/‘°° g(t)e "t dt

—0o0

/ ” ( i f(kT)J(t—kT)) e~ dt

—%® \k=-00

i ( /_ : F(kT)(t — kT)e™* dt)

k=—o00

fj FkT)e™""

k=—00

G(s)
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Note 1: Denote z = e°T and compare this last expression to the z-transform
of the sequence f[k] = f(kKT). Until now we interpreted the z-transform only as a
generating function of sequences. This derivation establishes a close analogy between
the two transforms. The relation z = e*T not only ezplains the equivalence of the jw
(frequency) azis in the s-plane and the unit circle in the z-plane, but also forms a basis
for several design methods in which the results from the continuous-time systems are
applied to the discrete-time systems via this or approzimate transformations, such as
bilinear, in which

-
+
L]
»

._.
|
Cle!
@w

Note 2: In o discussion after their 1952 paper [47] in which they first introduced
the z-transform, J. R. Ragazzini and L. A. Zadeh wrote:

+sT sT

In defining 2z as e rather than e™*", we have been motivated first
by a desire to avoid conflict with the notation used by W.Hurewicz and
others, and second by the fact that the alternative choice would make it
inconvenient to use the only extensive table of z-transforms now available,
namely, the table of so-called generalized Laplace transforms compiled by
W. M. Stone. Otherwise, we are in complete agreement with Dr. Salzer’s
suggestion that it would be preferable to define z as being equal to e*7
rather than et*T,

This was in response to what J. M. Salzer wrote:

...it may be preferable to define 2 as being equal to e™*7 rather than
et*T when dealing with sampled-data systems . .. because the latter cor-
responds to a time-advance operation, which has no physical meaning in
a real-time application. In purely mathematical work one definition is as
good as the other, and it is just unfortunate that in previous operational
and transform work with difference equations the advance .. . operator was
given a symbol.

Prior to this paper, W.Hurewicz used generating function methods to analyze
sampled-data, i.e., discrete-time systems, while W. K. Linvill applied the Laplace trans-
form to the sampled signals. Ragazzini and Zadeh were the first to unify these two
approaches.

Problem 4.4.13 Explain the role of a low-pass filter (LPF) at the input of a system
which converts continuous-time signals to discrete-time signals. Why does the sam-
pling frequency w, have to be greater than twice the maximum frequency wm in the
input signal? Derive the sampling theorem.
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Solution: The purpose of the low-pass filter is to prevent aliasing. Without the
filter or if its cut-off frequency is wm > w,/2 = 7/T, then more than one input signal
u(t) can produce the same sampled signal y(t) (see the diagram in Figure 4.3 and the
derivation below).

u® [ LpF | ™ [Sampling] YO
O <@/2 os=2r/T]

Figure 4.3: Low-pass filtering is necessary before sampling in order to avoid aliasing.

Let us assume that u(t) is filtered so that r(t) has no spectral components above
Wm, i.e., let R(jw) =0 for w > wm. Then, with

o0

sr(t)= Y d(t—kT)

k=—o00

we have y(t) = r(t)dr(t). Since

Y (ju) = 5= (R(jw) * Ar(jw))
where

Ar(jw) = F{or(t)} = 2?” 3 Sw—kws) and  we= 2?”

k=—o00

we finally find

(o)

V(o) =5 3 R(@w— kw))

Another way to derive this result is to use the Poisson summation formula:

e o] 0o

— 1 jwskt
> 5(t—kT) =7 > €
k=—o00 k=—00
Then
Y(]w)— Z / r(t)ed ket gy — T > R((w - kw,))
k——oo k=—o00

We see that Y (jw), the spectrum of the sampled signal y(t), is a sum of scaled
copies of R(jw) shifted by integer multiples of the sampling frequency ws = 27/T, as
in Figure 4.4.

Unless w,, < wy/2, these shifted copies overlap and the reconstruction of the
original signal becomes impossible. If this condition is satisfied, than the sampled
signal uniquely corresponds to the input signal. This is the sampling theorem. The
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[Y G
-0, 0 oy %}
[RGoyl

—2=<n, —30), 0 (;), ;In, [)

Figure 4.4: In the frequency domain the ideal sampling produces identical copies of
the original spectrum centered around tw,, +2ws, +3ws, ...

input signal can be reconstructed using its samples by another low-pass filter with a
cut-off frequency between wr, and ws/2.
This overlapping is called aliasing because whether

Ri(t) =coswit or Ra(t) =cos(ws —wr)t
the sampled signal y(t) is the same. We say that the higher-frequency signal has

taken on the identity (alias) of the lower-frequency signal [43]. This is illustrated in
Figure 4.5. We say that the higher-frequency signal R2(t) has been undersampled.

15 T T T T T T
19 R1() R2(t ]
[+ X1 i
yikl
o
N
-t
e s

tls]

Figure 4.5: Example of two different signals producing the same sequence of samples.
Here the sampling period is T = 1s hence the sampling frequency is ws = 6.28rad/s,
while w; = 1.32rad/s.
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Another example of aliasing is the strobe effect in the Western movies, where the
stagecoach wheels often seem to rotate slower that they naturally should, sometimes
even in the wrong direction.

Note 1: The minimum sampling frequency which guarantees no aliasing is called
the Nyquist rate:

WN = 2wm

The mazimum frequency contained in a signal before sampling, wm is sometimes
called the Nyquist frequency.

Note 2: The preceding results were known to mathematicians for years. In the
communications theory they were first used by H. Nyquist (1928), V. A. Kotelynikov
(1933), and D. Gabor (1946). The sampling and reconstruction theorems first explicitly
appeared in the communications literature in a seminal paper [50] by C.E. Shannon
(1949). That is why it is often called Shannon’s sampling theorem.



4.5 State-space representation

In this Section we review the notation and main ideas behind the state-space
representation of discrete-time systems. We find many similarities with the
continuous-time systems described in Section 3.5.

Problem 4.5.1 A discrete-time system is given by the following state-space equations

[k + 1] Az(k] + bulk]
ykl = Calk] +dulk]
where u[k] is the input to the system, y[k] is its output, while z[k] is an n x 1 state
vector of the system. A is an n x n state-transition matrix, while b and ¢’ are n x 1 and
1 X n vectors, respectively. We shall often assume that A has n distinct eigenvalues.
Express y[k] in terms of ulk], 4, b, ¢/, d, and the initial conditions £[0]. Determine
the impulse response in terms of A, b, ¢/, and d.

Solution: From Problem 4.3.2 we know that

k=1
olk] = A*zo + Yy A'bulk — 1]

Flk—1-4]
Hence
ylk] = ¢ A%zo + (¢ A¥b) * (u[k — 1]) + dulk]

The impulse response is obtained from the above formula by putting 0] = 0 and
ulk] = &(k]:

hlk] = y["’]lz[ﬂ]:o'u[k]:g[k] =cA* b+ di(k)

Note: Fork =1,2,... the impulse response coincides with the Markov parameters
of the system (cf. Problem 3.8.4):

Rk =he =A% (k=1,2,...)

Problem 4.5.2 Solve the state-space equations

z[k + 1]
ylk]

in the z-transform domain. Determine the transfer function H(z).

Az[k] + bu[k]
c'z[k] + dulk]

Solution: We know that X(z) = z(2I — A) lzg + (2 — A)~'bU(2) (cf. Prob-
lem 4.3.3), therefore

Y(z) = ¢ z(2I — A) tzo + &' (2 — A) 70U (2) + dU(2)
The transfer function is found as

= Y(2)

= 76 =cd(zI—A) " 'b+d

z[0]=0

H(z)

235
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Problem 4.5.3 Prove that the transfer function of the system given by

olk +1] Az[k] + bulk]
ylk] = cz[k]

where A has distinct eigenvalues, can be written as

H() = Z faleh)e”

Solution: This result is a direct consequence of Problem 3.2.15. This representa-
tion is very important, because it provides the rational decomposition in the transform
domain, thus making the application of the inverse z-transform easy. Since

-1 1 k
2 {I—Aiz‘l}=/\i

for the impulse response of a system with distinct eigenvalues we can write

n
Wk =D aXi™ (k> 0)
i=1
where o; = (d'q;)(pid) (:=1,2,...,n).

For systems with multiple eigenvalues the corresponding formula is more compli-
cated. In general, matrix A is not diagonalizable, hence, in notation of Problem 3.2.15,
Y~ AiR; # A. Then one has to resort to Jordan matrices instead of diagonal matrices,
when the impulse response is a linear combination of exponential functions multiplied
by polynomials:

hik] = anaf(k)xf“ (k> 0)

The degree of each ai(k) is equal to the number of generalized eigenvectors corre-
sponding to A, i.e.,

deg(ai(k)) = v(MI—A)—1 = n—p(MiI—A) -1
where p and v denote matrix rank and nullity, respectively (cf. Appendix C).

Problem 4.5.4 Derive the state-space equations for a serial, parallel, and a feedback
connection of two systems given by triples {A1, B1,C:} and {A2, B, C2}.

Solution: Let us denote by z[k] the new state vector:
= |=1[#]
z[k] = l:l'z[k]]

In the serial connection the state-space equation is
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ok +1] [ B’;‘(‘h 22 ]:l:[k]+ [’é‘} ulk]
yll] = [ O C2]zlk

In the parallel connection the state-space equation is

[ a9 ]x[k]+ [g:] ulk]
ylk] = [C1 Co |alk]

If the system {Ai,B1,C1} is in the forward loop while {A2, B2,C2} is in the
feedback loop, the new state-space equation is

z(k + 1]

ek+1 = [ B’:él “21202 ]z[k]+ [?)‘] ulk]
yk] = [0 C: ]=lK]

Note: State the conditions necessary for matriz size compatibility and verify that
in the case of single-input single-output systems the transfer functions are

H;(2) = Hi(2)H2(z)

Hy(z) = Hi(2) + Ha(?)

Hl(z)

B @) = g ome)

Problem 4.5.5 Given a continuous-time system

z(t) Ax(t) + Bu(t)
yt) = Cz(t)

derive the equations for the corresponding discrete-time system. The sampling period
is T.

Solution: We want to write the discrete-time state equations in the following
form

zfk +1]
ylk]

From the expression for z(t)

Gz[k] + Hulk]
Cz[k]

¢
z(t) = eAtz(O) +/ eA(t_T)Bu(T) dr
0
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we can directly write
(k+1)T
2k + 1] = AT gl0] 4 / eAMENT-T) By (1) dr
0
and
kT .
z[k] = e**Tz[0] + / eA(kT_T)Bu(T) dr
0

Now it is easy to write
(k+1)T
2k + 1] = e*Tz[k] + eA(k'H)T/ e~ A" Bu(r)dr
kT

If we assume u(t) = u[k] (kT <t < (k+1)T), then we see that

T
G=¢4T and H=</ eATdr>B
0

Note: If A is invertible (i.e., nonsingular), then

H=("T"-1NA"'B



4.6 Stability

This Section presents the stability conditions for discrete-time systems. Al-
though the definitions are practically identical to definitions for continuous-time
systems, the conditions are very different: the poles must be inside the unit cir-
cle in the transform domain (rather than in the left-hand-side half-plane) and
the Lyapunov equation has a different form.

Problem 4.6.1 Define BIBO (bounded-input bounded-output) stability and give the
necessary and sufficient condition for a discrete-time system to be BIBO stable.

Solution: A system is BIBO stable if its output to any bounded input remains
bounded at all times. Since

ylk] = hliJulk - 4]

and
lylkll = |3 hlilulk i) Z Imfalllulk — i < ome

where C' = max(|u[k]|), for a system to be BIBO stable it is sufficient that its impulse
response be absolutely summable:

DIkl < oo

To show that this condition is necessary, suppose h{i] is not absolutely summable.
Then for u[k] = sgn(h[K — k]) we have

o0

y[K] = Zh[z]u[K -] =" |ni]

=0 1=0

which is not defined.
Thus, absolute summability is both a necessary and a sufficient condition for BIBO
stability of discrete-time linear time-invariant systems.

Problem 4.6.2 Is a system with h(k] = %} (k > 0) BIBO stable?

Solution: No, because h[k] is not absolutely summable:

n

— ~lnn
k+1
k=0

Note: It is interesting that hlk] is summable but not sbsolutely summable:
00
> hlk} =1n2
k=0

239
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Problem 4.6.3 If a transfer function H(z) of a discrete-time system is rational, what

condition on its poles must be satisfied for BIBO stability?
,pn of H(z) are distinct, then h[k] is given by

Solution: If the poles p1,p2,..

(cf. Problem 4.5.3)
=1 (k>0)

hlk] = Z aip;
i=1

If H(z) has repeated poles, then (again cf. Problem 4.5.3) the a; are polynomials

in k:
Wkl = ei(k)pt™  (k>0)

In either case h[k] is absolutely summable if and only if

pil <1 (i=1,2,...,n)

i.e., if the poles of the system are inside the unit circle in the z-plane.

See also the note after Problem 3.6.2.
Problem 4.6.4 A system has the impulse response h(k] = 5% — 3% (k > 0). Deter-
mine the poles of the system. Is this system BIBO stable?

The poles are obviously p; = 1/2 and p2 = 1/3. We can already say

Solution:
that the system is stable because |p1,2| < 1, but let us verify that the impulse response

is absolutely summable:
1 1| _~x=y/1 1
wow s (ta) =TTt ioT
k=1 2 3

o0 oo

PILCEDD

k=0 k=1
Problem 4.6.5 Use MATLAB to determine whether or not the discrete-time system

given by the following recursion is stable:
5 1 1
ylk] + gy[k -1]+ gy[k -2] - gy[k —-3]=ulk—-1]+3uk-2] (k2>0)

The characteristic equation of this system is

Solution:
59 1 1
2 Za—2=0
zZ+ =z 3

3

2"+ 3 3

Use the following command: roots([1, 5/6, 1/6, -1/8]) to obtain
p1,2 = —0.5514 £ 0.3998; p3 = 0.2695

It is easy to see that |p1,2,3| < 1, hence this system is BIBO stable
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Problem 4.6.6 Although the asymptotic stability in the sense of Lyapunov is defined
for discrete-time systems in an analogous way as for continuous-time systems, the
Lyapunov equation differs between the two classes of systems. Derive the Lyapunov
equation for discrete-time systems.

Solution: Starting from a symmetric positive definite matrix P which determines
the Lyapunov function

V(z[k]) = «'[k] Pz[k]

for the asymptotic Lyapunov stability we require that AV (z[k]) < 0, or at least
AV (z[k]) <0 with AV (z[k]) # 0 along any possible system trajectory. Since

AV (z[k)) = V(z[k + 1)) — V(z[k]) = ' (A’ PA - P)x

with @ = —(A'PA — P), we require that Q is positive definite or at least positive
semi-definite with the above condition that AV (z[k]) # O along any possible system
trajectory.

As in continuous-time systems, we often start with any symmetric positive definite
matrix @, solve the Lyapunov equation for P, and test it for positive definiteness. The
system is stable, i.e., A is discrete-time stability matrix if and only if the solution P
of the discrete-time Lyapunov equation

Q=P—-APA
is symmetric and positive definite.

Problem 4.6.7 The state transition matrix A has all eigenvalues inside the unit
circle if and only if for an arbitrary positive definite symmetric matrix ) there exists
a positive definite symmetric matrix P such that A’PA — P = —Q.

Consider two state transition matrices:

_ 1025 05 _ |1 02
Al‘[o.s 0] A2“[0 1]
In each case find P for Q = I. Check if P is positive definite. Calculate the
eigenvalues to verify the results.
a b
P-[} ]

(note the inherent symmetry) in the first case we obtain

Solution: With

, B [ 15 o025
APA-P=-I = P‘[0.25 1.375]

Since 1.5 > 0 and det(P) > 0, P is positive definite, i.e. P > 0. This agrees with
the eigenvalues of A having magnitudes

[A1,2] =

1i8\/ﬁ|<1

In the second case matrix P does not exist, hence A is not a stability matrix for
discrete-time systems. Indeed

Al‘z =1
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Problem 4.6.8 Use MATLAB to generate a random 4 x 4 matrix and determine its
eigenvalues. Is it a stability matrix in discrete-time? Use dlyap to solve the discrete
Lyapunov equation and if MATLAB doesn’t say that the solution is not unique, inves-
tigate the positive definiteness of the solution by looking at its eigenvalues (note that
the solution is symmetric).

Solution: Do the following in MATLAB:

A = rand(4,4)

A = 0.2190 0.9347 0.0346 0.0077
0.0470 0.3836 0.0535 0.3834
0.6789 0.5194 0.6297 0.0668
0.6793 0.8310 0.6711 0.4175
eig(h)
ans =
1.4095

0.1082 + 0.4681i
0.1082 - 0.4681i
~0.0763

Since 1.4095 > 1 we already know that A is not a discrete-time stability matrix.
Therefore, the solution of the Lyapunov equation will either be non-unique or will not
be symmetric and positive definite.

P = dlyap(A’,eye(4))
P=

1.0265 -0.7360 0.0069 -0.6269
-0.7360 -0.5062 -0.7541 -1.2460
0.0069 -0.7541 1.0462 -0.4689
-0.6269 -1.2460 -0.4689 0.5550

Since P is symmetric, we can use the Rayleigh-Ritz criterion and look at its eigen-
values to see if it is positive definite.

eig(P)

-1.9091
1.6373
1.0037
1.3896

Since —1.9091 < 0 matrix P is not positive definite. Actually, since it has both
positive and negative eigenvalues, it is indefinite.
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Problem 4.6.9 The discrete-time equivalent of a continuous-time system

£(t) = Ax(t)+ Bu(t)
y(t) = Cz(t)
is given by (Problem 4.5.5)
zlk+1 = Gz[k] + Hulk]
ylk] = Cazlk]

where

T
G=e¢4T and H=(/ CATdT)B
0

Recall that if A is nonsingular then H = (e*T — I)A~'B.

Show that if the continuous-time system is asymptotically stable, then the corre-
sponding discrete-time system is also asymptotically stable. In other words if for all
eigenvalues of A

Re{\i} <0 (i=12,...,n)
then for all eigenvalues of G
il <1 (1=1,2,...,n)
Solution: From the note in Problem 3.2.5 we know that G = €47 implies
pi = eM7T. Then obviously

Re{Mi} <0 = |u|=]MT =BT <1 (1=1,2,...,n)



4.7 Controllability and observability

Although the conditions for state controllability and observability are identical
to the continuous-time case, there are some subtle differences in derivations.
These differences lead to definitions of reachability and constructibility.

Problem 4.7.1 In Section 3.7 we derived the condition for state controllability. We
said that, since e“? is always nonsingular, without loss of generality we could consider a
special case when z(t;) = 0. In discrete-time that is not so, because the corresponding
matrix A* is not necessarily nonsingular. Furthermore, if A is a nilpotent matrix, A*
could be O, a null matrix, for some k.

Show that the system given by

010 0
zk+1] = [ 0 0 1 ] z[k] + [l] ulk]
00 0 0

ykl=[1 1 0]z
can be taken from any initial state z[0] to the origin even though its controllability

matrix has rank 2.

Solution: Since, in general,

z[k] = A*z[0] + 2 AR~ pu[4)

i=0

and here A is nilpotent (because A¥ = O for k > 3; see also the note below), with
u[k] = 0 any initial state z[0] of this system goes to the origin after only 3 time units.
The controllability matrix is

01
C=110
00

(=R = )

] and p(C) =2

Note 1: Matriz A is said to be nilpotent if for some k < co we have AF = O.
We shall prove here that a matriz is nilpotent if and only if all of its eigenvalues are
zero:

e IfA\i =0 (i=1,2,...,n) then the characteristic equation of A is A\" = 0 and
according to the Cayley-Hamilton theorem we also have A™ = 0.

o If A¥ = O for some k < 0o then consider any of its eigenvalues and an eigen-
vector corresponding to it: A and p. From pA* = 0 and pA* = pA* we conclude
that X\ = 0 because, by definition, p # 0.

Note 2: Discrete-time systems with a nilpotent transition matriz A are usually
called deadbeat systems.

244
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Problem 4.7.2 Show that the transition matrix does not have to be nilpotent if
a system is to be controllable-to-the-origin but not state controllable. Do this by
considering a singular but non-nilpotent transition matrix A.

Solution: Consider the following example:
00 0
zk+1] = [ 11 ] z[k] + [1] ulk]

Any initial condition

X1 O]-
=l0) = [wz%O]_

is taken to the origin by u[0] = —(z1[0] + z2[0]). On the other hand

0 0
11 |0

det(C) = ‘
Problem 4.7.3 Consider a single-input single-output system given by

zlk +1] Az[k] + bulk]
ylk) = c'z[k] + dulk]

where z is n X 1, u, y, and d are scalars, while Aisnxn,bisnx1,and ¢ is1 x n.
We say that a system is state controllable if application of a proper input u[k] can
change its state from any given state to any other given state in a finite amount of

time.
Show that this system is state controllable if and only if

p(C) =n, where C = [b Ab Azb e An_lb]

Solution: Since
k-1
olk] = A*=[0] + D A* buli]
i=0

we can write
kg—1
AM 0] — ally] = — Y AT buli]
i=0
This vector equation is actually a system of n simultaneous equations in k; un-
knowns ufi], hence, in general, it is necessary that k; > n. Finally, the solution exists
if and only if

p(C) =n, where C=[ Ab A% ... A"
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Note 1: In the case of single-input systems the controllability matriz C isn x n,
therefore we could write the above condition as det(C) # 0. The reason we didn’t is that
the validity of the above condition can be extended to the systems with m-dimensional
inputs, when C is n X mn.

Note 2: The state controllability was first considered in connection with the
finite settling time problem in which o control input ulk] is designed to return the
perturbed system to the origin. While in continuous-time this so-called controllability-
to-the-origin' is equivalent to the state controllability, in discrete-time p(C) = n is
only a sufficient condition, as we saw in Problems 4.7.1 and 4.7.2. On the other hand,
controllability-from-the-origin® is always equivalent to the state controllability.

In discrete-time systems the controllability-to-the-origin is equivalent to the state
controllability if and only if A is nonsingular, i.e., if det(A) # 0.

Often, the word controllability is used to mean controllability-to-the-origin, while
controllability-from-the-origin is called reachability. Since a system is reachable if and
only if p(C) = n, the matriz C is sometimes called the reachability matrix instead of
controllability matrix.

Note 3: It can be shown that the condition for observability in discrete-time is
p(O) = n. The property dual to the controllability-to-the-origin is called constructibil-
ity and it refers to the ability to determine the state vector from past outputs. For a
discrete-time system with singular transition matriz A observability is sufficient but
not necessary for constructibility. If A is nonsingular than observability is equivalent
to constructibility. In continuous-time systems this distinction does not erist because
et is always nonsingular.

Problem 4.7.4 A system given by

-2 10 1
zk+1) = l: -3 01 ] z[k] + [0] ulk]
-4 -1 2 0

ykl=[1 0 0]z

is deadbeat, i.e., even with u[k] = 0 (k > 0) the state goes to the origin in at most
n = 3 steps, regardless of the initial state z[0] = zo.

a) Determine the initial conditions z¢ which guarantee that with u[k] =0 (k > 0)
the output y[k] is zero for k > 2.

b) Repeat part a) if the requirement is y[k] =0 (k > 1).

Solution: With u[k] =0 (k > 0), the expression for y[k] becomes
ylk] = ¢ A*zo

a) Since the system is deadbeat, y[k] = 0 for k > 3 for any zo. Withzo =[z y 2]’
the condition for k = 2 is

JA%zo=0 ie. z—-2y+2z=0

a plane in the 3-D space of the initial state zo.

11t is also called the controllability p.s.t.o. (pointwise state to the origin).
2Also called the controllability p.s.f.o. (pointwise state from the origin).
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b) If we require y{k] = 0 (k > 1), then in addition to the condition obtained in
part a) we also need y[1] =0, i.e.,

dAzg=0 ie. ~2z4+y=0
Combined with the previous condition x — 2y + 2 = 0, we find that z¢ must lie on
the line given by

z:-%z y:—-;-z z any real number

Note: Are the conditions any different if we required z[1] = 0 and z[2] = 07
Would the solution change if we allowed ufk] # 07

Problem 4.7.5 A system given by

1 2 2 1
z[k+1] = [ 0 2 2 ] z[k] + [0] ulk]
0 0 3 1

ylk] = [ 1 00 ]x[k]

is controllable, hence using the appropriate input u[k], any initial condition zo can be
taken to the origin in at most n = 3 steps.

a) Given the initial state zo determine the input u[k] to take the state z[k] to the
origin in n = 3 steps.

b) There are infinitely many input sequences u[k] which can drive the state from
zo to the origin in n + 1 = 4 steps. Determine the one such sequence with minimum

energy > u’[k].
¢) Find zo which can be taken to the origin in just one step using any u[k].
d) Repeat part c) if the input is restricted by |u[k]| < 1.
Solution: The expression for z[k] is
z[k] = A%zo + A 1buf0] + .. . 4+ Abulk — 2] + bulk — 1]
a) The condition z[3] = 0 becomes
A%bu[0] 4+ Abu[l] + bu[2] = — A3z,
ie.,
cl w2l wl1] wfo] |"=-A%0
Thus

, -1.50 —-9.00 —4.50
[w2] wfl] w0 ]'=-C"'A%0=| 125 1350 9.75 |xo
-0.25 -3.50 -5.75
b) With C4 = [b bA bA® bA®] we can write the condition z[4] = 0 as

Ca[ u[3] w[2] wf1] wf0] ]'=-Ao
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Since p(C4) < 4 there are infinitely many solutions [u[3] u[2] wu[l] «[0]]. To
obtain the minimum energy solution (the minimum norm solution in the language of
matrix algebra), we use the right pseudoinverse (see Section C.7):

[w'B] w2 w1 o] ] =—Ci(CaCi) " A'zo
c) From 0 = z[1] = Az[0] + bu[0] we find
zo=-AT"bul0] = [ -1 1/3 -1/3 ] u[0]
hence only the initial states zo = [t y 2] on the line given by
z=—u[0] y=u[0]/3 2z=-u[0]/3
where u[0] can be any real number, can be brought to the origin in just one sampling
peng;l‘Similarly, we obtain that the initial state must be on the line segment of the

same line as in part c), between points (—1,1/3, —1/3) and (1,—-1/3,1/3).

Problem 4.7.6 The discrete-time equivalent of a continuous-time system

#(t) = Az(t)+ Bu(t)
y(t) = Cz(t)
is given by (Problem 4.5.5)
zlk+1] = Gz[k]+ Hulk]
yik] = Cal]

where

T
G=¢e"T and H=(/ eA’dr)B
0

Recall that if A is nonsingular then
H=(""-NA"'B
If the continuous-time system is controllable (observable), then the corresponding

discrete-time system is also controllable (observable) if and only if the eigenvalues of
A satisfy the following condition:
Re{A} =Re{\;} =  Im{\-X\}# 3'12 (m=0,+1,42,...)

For a system given by

i(t) = [ o ]x(t)+ [(1)] ult)

yy=[1 1]=z@)
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determine the corresponding discrete-time system and determine the values of T' which
should be avoided in order to preserve controllability and observability.

Solution: Using the methods from Section 3.2 we find that

G = AT = cos 2T % sin 27T
—2sin2T  cos2T

while (since A is invertible)

1 .

- AT _ -1 _ 3 sin 27

Since the eigenvalues of A are Ai1,2 = +2j, with an unfortunate choice of the

sampling period T we may lose controllability or observability. According to the result
stated above, we should make sure that

Im{2j — (~2j)} # 2—"T'1r- (m=0,41,42,...)

In other words,

T;é% (m=0,%1,%2,...)

Note: To establish this result directly from the system equations the reader should
form the controllability and observability matrices and eramine their ranks with respect
toT.

Problem 4.7.7 Let the discrete-time versions of systems given by {41, B1,C1} and
{Az, B2,C2} be {G1, H1,C1} and {G2, H2,C.}, respectively. Show that if systems
{A1, B1,C1} and {As, Bz, C:} are related through a nonsingular similarity transfor-
mation S, then the same is true for the corresponding discrete-time systems.

Use this result to show that for matrices with distinct non-zero eigenvalues, control-
lability and observability are preserved under sampling if and only if the eigenvalues
of A satisfy the following condition:

2mm

Re{\:} =Re{)\;} = Im{\; — A} # 5 (m=0,%1,42,...)

Solution: If the sampling period is T, then
Gy = eA2T = eSA,s—‘T = SeM1Tg ! = 8¢, 87!

Similarly

T T
H, = (/ e“ls“fdf> SB, =S8 (/ eAlfdr) §7'$B, = SH;
1] 0

Now consider a controllable continuous-time system with distinct non-zero eigen-
values given by {4,b,c¢'}. A can be diagonalized using the matrix of its left eigenvec-
tors P. Due to the above result, we can simplify the derivation by assuming that A is
already in the diagonal form. Then, due to the assumed controllability, vector b has
no zeros. To further simplify the notation, assume b=[1 ... 1]'. Then
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C = AT — diag0n,An)T MT ,\,,T)

= diag(e™",...,e

while (recall the assumption that all eigenvalues are non-zero, hence A is invertible)

H = (*-DnNA"'B
= diag((eMT —1),..., (T —1)) diag(1/A1,...,1/A) [1 ... 1]
(€T -1/ ... (T -1/

The determinant of the controllability matrix is

n-1 (8T 1) MT AnT
det(C)=|H GH ... G H|=HTV(e1 v et

i=1
where V' denotes the Vandermonde determinant. Since
V(e’\‘T, e ,e’\"T) = H(e)“T - e’\"T)
I>k

we see that det(C) # 0 if and only if
2mnw
Re{/\k} =Re{/\1} = Im{/\z —Ak} # T (m = 0,:&1,:*:2,.4.)
The proof for observability is very similar.
Note: Although this result is true in general, this proof covers only the case when

A has distinct non-zero eigenvalues. For the proof of the general case PBH tests for
controllability and observability can be used.



4.8 Canonical realizations

All properties of canonical forms described in Section 3.8 hold for discrete-time
systems as well. In this Section we describe some further properties of canonical
forms and illustrate them through numerical examples.

Problem 4.8.1 A system is given by

154 71 14 1
ylk] = T5glk = 1+ 5gulk — 2 - 5gulk - 31+ 155

63 14 1
= uk-1]- %u[k -2]+ bﬁu[k -3] - §6u[k ~ 4]

ylk—4] =

Determine its poles and zeros. Determine its transfer function H(z). Write the
system in the order-4 canonical forms: controller, observer, controllability, observabil-
ity, and modal. Show that in this case the controllable forms are not observable and
vice versa, the observable forms are not controllable. Can this system be written in a
form which is neither controllable nor observable?

Solution: To simplify the notation we will use the following:

-1 g=-04 . o ko]
ag = a; = 120 az = 120 az = 120 4 = 120
and
63 14 1
=1 b24-——§-6 bs—% b4_—%

We can use MATLAB to determine the poles and zeros of this system:
roots([a0 al a2 a3 a4]) and roots([bl b2 b3 b4l)

tell us that the poles of the system are at

Pl——2, p2—31 p3 =

oy =

, and pg =

N

while the zeros are at

1

21=~3-,

1 1
22=g, and Z3=-é

The system is stable, but due to pole-zero cancellations it is not minimal, therefore
some of its state-space representations will not be controllable, while others will not
be observable.

The transfer function can be written directly from the equation:

b1z3 -+ bzzz + baz + by

H(z) =
(2) A+ a1z + a2 +asz+ay

251
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The following are several canonical realizations of this system:

o Controller (in MATLAB: [Ac,Bc,Cc,Dc] = tf2ss(num,den)):

—a1 —a2 —a3z —a4 1

1 0 0 0 0
4 = 0 1 0 0 be = 0

0 0 1 0 0
cc = [b1 by bz b |

This realization is always controllable. In this case it is not observable. The
modal realization similar to this realization is obtained using S = Q~!, where
(as we discussed in Problem 3.2.1) Q is the matrix of right eigenvectors of A,
(in MATLAB: [Q,D] = eig(Ac)):

/2 0 0 0 -92.2
_ 0 1/3 0 0 _ |-s727
Aa. = 0 0 1/4 0 bae = | 9015
0 0 0 1/5 -510.3
¢z, = [ -00145 0 -0.000336 0 ]

The lack of observability is obvious in this realization because of the zeros in
the output vector cy, .

e Observer:
-a1 1.0 0 b
_ —a 0 1 0 _ bz
Ao - —as 0 0 1 bo - 'b3
—as 0 0 O by
b = [1 00 0]

This realization is always observable. In this case it is not controllable. The
modal realization similar to this realization is given by

/2 0 0 0 1.7147
_ 0 1/3 0 0 _ 0
Aa, = 0 0 1/4 0 bao = | _0.492
0 0 0 1/5 0
¢, = [07776 -0.7109 06773 —0.6571 ]

The lack of controllability is obvious here because of the zeros in the input vector
ba,. These realizations are not equivalent to the controllable realizations.

o Let us construct a realization which is neither controllable nor observable. The
impulse response of the system in modal form is

RlE] = he = GAS'ba =) bicAf™' (k> 0)
i=1

If in the first of the two modal representations above we set zeros in b4, to
match the zeros in ¢;_, the products bic; remain unchanged, but the system also
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becomes uncontrollable. In addition we do some balancing between the input
and the output vector, keeping the products b;c; same as before:

/2 0 0 0 4/3
_ 0 1/3 0 0 _ 0
As = 0 0 1/4 0 ba = -1/3
0 0 0 1/5 0

g = [1 01 0]

This realization of H(s) is not similar to any of the other realizations above.

Problem 4.8.2 Show that if a system given by {A,b,c'} is observable, it can be
transformed into the observability form using the following transformation matrix:

Sob = O
where
A
O =
'CIAn_l
is the observability matrix of the original system.

Solution: We need to show that ,S’¢,¢,A.SID',,l = Aop, Sopb = bop, and c'S’o_b1 = clp-
To show that SobAS(;l = Aob we will prove that OA = A, 0. Indeed

d A
cA A2
OA= A=
cIAn—l clAn
while
A
cdA?
A0 =
d(—anl —an1A—... —a1A"Y)
From the Cayley-Hamilton theorem —anl — an—14 — ... — a1A®"! = A" and
therefore OA = A, 0.
To show Spsb = [h1 h2 ... ha] observe that
Sosb=1[cb dAb ... A" =[h1 h2 ... hg]

where h;’s are Markov parameters.
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Problem 4.8.3 Show that an observable system given by {4,b,c'} can be trans-
formed into the observer form if we use

S, =0;'0 (0,=a!)

Solution: Using the result of Problem 4.8.2 we know that the transformation
from observer into the observability form is given by S = ©, = a_'. Thus, to go from
any observable form into the observer form we can go via the observability form, when
we find

So=a_-0



4.9 State feedback

This Section illustrates the pole placement using the state feedback for discrete-
time systems. The results of Section 3.9 apply here without any changes.

Problem 4.9.1 Use MATLAB to discretize the equations for the inverted pendulum
on a cart given in Problem 3.7.12. Choose the sampling period T so that it is 5 times
smaller than the smallest time constant of the continuous-time system. Check the
stability, controllability, and observability of the discrete-time system. Determine the
feedback gain vector f so that all eigenvalues of the system are halved in magnitude.
Simulate the system under conditions set in Problem 3.9.9.

Solution: The continuous-time parameters are as follows:

0 0 1 0 0
-~ |0 0 0 1 _ 10 |1 o o o
A= 0o -1 0 0 B= 1 C—[O 100]
0 216 0 O -2

The eigenvalues are Ay = 0, A2 =0, A3z = 4.65, Ay = —4.65, hence we pick
T = 7/5 = 1/(5|A4]) = 40ms. The parameters of the discrete-time system can be
obtained using c2d, the MATLAB command for conversion from continuous-time to
discrete-time: [G, H] = c2d(4,B,T). Using this command we obtain

1 -0.0008 0.0400 0 0.0008

G = l: 0 1.0173 0 0.0402 ] H= [—0.0016]

0 —0.0402 1 —0.0008 0.0400
0 0.8690 0 1.0173 —0.0805

Using MATLAB commands abs(eig(G)), rank(ctrb(G,H)), and rank(obsv(G,C)) we
find that, just like the continuous-time system, the discretized system is controllable,
observable, and unstable, with eigenvalues at

pr=1, p2=1, ps=12043, ps =0.8304

To determine the feedback gain f so that the eigenvalues are halved in magnitude, note
that g, the vector of coefficients of the characteristic polynomial g(z), can be obtained
using g = poly(eig(G)), while v, the vector of coefficients of the desired characteristic
polynomial v(2) is obtained from gamma = poly(eig(G)/2). Be careful, however,
because the Bass-Gura formula doesn’t use the first coefficient of these polynomials.

[0010; 0001; 0-100; 0 21.6 0 01;
[o; 0; 1; ~21;

[1000; 0100];

0.04;

H] = c2d(A,B,T);

g = poly(eig(G));

gamma = poly(eig(G)/2);

CCc = inv(toeplitz([1 0 0 0],g(1:4)));

CC = ctrb(G,H);

f = ((gamma(2:5) - g(2:5))*CCc*inv(CC))’;

mH O W
[ ]

(2]

Thus
f=[-1155.9 —912.9 -310.9 —173.0]

The same result is obtained by MATLAB implementation of the Ackermann formula:

f = acker(G,H,eig(G)/2)’

255
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Let us simulate the behavior of the discretized system under the conditions given
in Problem 3.9.9. There, the desired eigenvalues were set to Ay = —1, A2 = -2,
A3 = —1+j, and Ay = —1 — j. This means that the eigenvalues of the discretized
system are p; = eXT (1=1,2,3,4).

The first simulation is for zero initial conditions and the unit step function at the
input. The graph obtained by simulation is shown in Figure 4.6. Compare this graph
to the graph obtained in Simulation 2a in Problem 3.9.9.

=[0010; 0001; 0-100; 021.6 0 0];
= [0; 0; 1; -2];

=[1000; 0100];

= 0.04;

, Hl = c2d(A,B,T);

= acker(G,H,exp([-1,-2,-1+j,-1-j1*T))*;
= 0:T:8;

= (ones(size(t)))’;

[0000]°;

sys = ss(G-H*£’,H,C,0,T);
1sim(sys,u,t,x0)

B o e QW >
«

]
(=]
"

Inverted Pendulum Simulation 6a

thetafk] {rad]

KT [s]

Figure 4.6: The results of the MATLAB Simulation 6a.
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The second simulation is for zero input and non-zero initial conditions. The graph
obtained by simulation is shown in Figure 4.7. Compare this graph to the graph
obtained in Simulation 2b in Problem 3.9.9.

[0010;0001; 0~100; 021.6 0 0];
[0; 0; 1; -2];

[(1000; 010 0];

0.04;

H] = c2d(A,B,T);
acker(G,H,exp([-1,-2,~1+j,~-1-j14T)) ?;
0:T:8;

(zeros(size(t)))’;

[0 0.1 0 01?;

sys = ss(G-H#f’,H,C,0,T);
1sim(sys,u,t,x0)

EﬁHrchm»
« H H NN

L]
o

Inverted Pendulum Simulation 6b

theta[k] [rad]

KT [s]

Figure 4.7: The results of the MATLAB Simulation 6b.
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1
] z[k] + [0] ulk)
1

y[k]:[ 1 00 ]:c[k]
check for controllability and observability and then, assuming all states are available
(we will design observers in Section 4.10, and there observability will play a critical
role, just like controllability does here), determine the feedback gain vector f so that
the closed-loop system with

Problem 4.9.2 For a system given by

SO =
o NN
W N N

zk+1] = [

ulk] = — f'z[k]

is deadbeat, i.e., its eigenvalues are p1,2,3 = 0.
Do this by writing the desired characteristic equation in terms of the feedback gain
vector f =[f1 f2 fs]'. Compare the result to the output of the MATLAB command

f = acker(4,b,[0 0 0])
Solution: It is easy to verify that the system is controllable and observable.

The desired characteristic polynomial is a(z) = 23. In terms of the feedback gain
f=1[fi f2 f3]' it can be written as

a(z) = det(zI — (A - bf"))
ie.,
a@) =2+ (i + -6+ (-3fi+2fo —3fs+11)z+6f1 — 2f2 +2f3 — 6

When we equate all coefficients in this polynomial to zero, we obtain a system of
three equations in fi, f2, and f3 whose solution is

f=[025 350 5.75)
Note: The same result is obtained using the Bass-Gura formula
f = -d)ct
or the Ackermann formula
=0 ... 01C  a(4)

Recall that C. = a—T, where a_ is as defined in Problem 3.8.4.



4.10 Optimal control

Although discrete-time systems can achieve the deadbeat response using the
feedback design techniques described in Section 4.9, the resulting system may
not be acceptable because it may require large values of input signal. The
solution is to use the quadratic cost function which weighs both the settling
time and the magnitude of the input. Thus we determine the linear feedback
gain to achieve optimal control (discrete-linear-quadratic-regulator — DLQR).

Problem 4.10.1 In Problem 4.9.2 we verified that the system given by

1 2 2 1
zk+1] = l: 0 2 2 ] z[k] + [O] ulk]
0 0 3 1

yk]=[1 0 0 ]z
is both controllable and observable. Assuming all states of the system are available
design the stationary state feedback

ulk] = —Fz[k]
which minimizes the cost function given by

J= Z '[KQz[k] + ' [k] Rulk])

k=0

where @ = Isxs and R = 1.
The optimal feedback gain is found from the following:
=(B'PB+R)"'B'PA

where P is the real symmetric positive definite solution of the matrix algebraic Riccati
equation

P=A'PU-B(B'PB+R)"'BP)A+Q

Note that the solution is guaranteed to exist if @ and R are symmetric and Q is
positive semi-definite, while R is positive definite.
The minimum cost is given by J = z’[0]Pz(0)].

Solution: To solve the Riccati equation, assume P is symmetric
P11 Pz P13
P=| pi2 ps2 p2
P13 P23 P33

and substitute that into the equation. The solution is
4.17 16.13 6.88
P=] 1613 150.84 108.09
6.88 108.09 103.22

259
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Then the optimal feedback gain is
F = (BPB+R)"'B'PA = [0.09 221 492]
The eigenvalues of the optimized closed-loop system are at
=020 p2=0394+0.295 p3=0.39—-0.29;5

Matlab note:  The above results were obtained using the following MATLAB
command: [F,P,mu] = dlqr(A,B,Q,R);

Problem 4.10.2 For a discrete-time system given by
z[k + 1] = Az[k] + Bu[k]

ylk] = Cxz[k]
the cost of control on the interval 0 < k < N is given by

In =Y (' [K]Qulk] + v'[K] Rulk))

where @ and R are symmetric and Q is positive semi-definite, while R is positive
definite. Derive the optimal control law from the Optimality Principle* which can be
paraphrased as follows:

If a system state at some time instance is on the optimal trajectory, its
motion from that point to the final state along this trajectory will be
optimal.

Solution: In the following we shall use the following identities from the matrix
calculus (Appendix C):

For M symmetric?
9, _ a ., _ 9., oA
az(ZM.’L‘)—2M.’L‘ ax(:‘!:My)-—My 6y(.1:My)—M:c

First define S; = Jyv — Jn—j, the control cost over j < k < N. Then Sj41 =
S; + AJn_j, ie,

Sj+1=8; + 2'[N — j]Qz[N — j] + «[N — j]Ru[N — j]

Note that S1 corresponds to the control cost of the last control period. As the
index of S; increases, we go back in time. The convenience of such notation will
become clear shortly.

3The importance of this principle was independently discovered and used by several math-
ematicians over the last several centuries: Jakob Bernoulli (1697), Johann Bernoulli (1706),
L. Euler (1744), C. Carathéodory (1930s), and R. Bellman (1950s). Applied to our system the
Optimality Principle states that if u*{k] = f(z[k]) is optimal over 0 < k < N, then it is also
optimal over j <k < N, where 0 < j < N.

4 Actually, only the first identity requires M = M'.
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From the Optimality Principle, Sj,, the minimum value of Sj41 is obtained by
using S; = S} and from

9Siv1_ _ o
Ou[N —j]
Consider first j = 0:
81 =Jn = Jn—1 = 2’ [N|Qz[N] + «'[N]|Ru[N]

Since z[N] depends only on ufk] for k < N, obviously S; is minimized with u*[N] = 0.
Hence

St = ='[N]Qx[N]
For j =1 and S1 = S} = £'[N]|Q=[N] we have
Sz = St + '[N — 1]Qz[N — 1] + 4[N —~ 1]Ru[N — 1]

Now use z[N] = Az[N — 1] + Bu[N — 1] in the expression for S;. Then the condition
853 /0u[N — 1] = 0 yields

2B'Q(Az[N — 1]+ Bu*[N —1]) + 2Ru’[N - 1] =0
ie.,

u'[N —1] =~ (B'QB+ R)'B'QAz[N - 1]

call this Fn_;

Substitute this back into the expression for S» to obtain the expression for its
minimum

8; = '[N —1](A'Q(A - BFy_1) + Q) z[N - 1]

call this Py _;

With this notation we have Fy =0 and Py = Q.
To derive the general recursive procedure for calculating Fxy—j for j =0,1,2,...,N
(note the sequence of calculation: Fn,Fn_1,...,Fp), consider the following. The

minimum value of S; has the following form:

8; =2'[N —j+1]Py—jp1z[N —j+1]

S; = (As[N — j]+ BulN — j]) Pu_j 41 (A2IN - j] + Bu[N - )
With Sj41 = S; + AJn—; and S; = S} the condition 8S;+1/0u[N — j] = 0 yields

2BIPN_]'+1A.’E[N - ]] + 2(B’PN_]'+1B + R)u'[N —]]) =0
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w'[N —jl =~ (B'Pv-j+1B+R)"'B'Pn_j1Az[N - j]
Fnoj
The expression for Sj;, now becomes
Si+1=2'[N = j]Pn—;z[N - j]
where Py_; is determined recursively from
Py_j=A'Pn_j1(A- BFn-;) +Q

This calculation is necessary not only to determine Sj,,, but also in the next step, in
the calculation of Fn_;_).

The recursion starts at j = 0, when, as we found in the beginning, Fx = 0 and
Py =Q.

The minimum cost of control is

Jn = Sx+Js = Syy = z'[0]Poz[0]

Note: It is important to note that the optimal control law is linear: u*[k] =
f(z[k]) = —Frzlk]. This is not because we required that condition, but it followed
directly from our derivations.

However, even though the system is stationary (i.e., matrices A, B, and C are
assumed to be constant), the optimal control law is not, i.e., the values of the feedback
gain change with time.

If the system is controllable than for large values of N the sequence {Fn_;} con-
verges (ezcept for j = 0) to a constant sequence:

im Fv_j=F (j=1,2,...)

N-— oo

This fact can be used to significantly simplify the design of the optimal controller,
because the equations simplify to

u*[k] = —Fz[k]
where
F=(B'PB+R)"'B'PA
and P is a real symmetric solution of the matriz algebraic Riccati equation
P=A'P(I-B(B'PB+R)"'B'P)A+Q
The minimum control cost is then

J* = z'[0]Pz[0)



4.11 State observers

In this Section we design state observers. The basic results are identical to
those derived for the continuous-time systems in Section 3.11. Unlike in feed-
back design, large signals are an acceptable side-effect of the deadbeat response,
because observers are usually implemented using software and computers. The
only drawback of this design is its sensitivity to noise. The solution to this is
presented in Section 4.12.

Problem 4.11.1 Consider a discrete-time system

0 3 0 2
zk+1 = [ 0 2 1 ] z[k] + [ 1] ulk)
110 -1
ylk] = [0 21 ]x[k]

Is this system observable? Rewrite system equations in observer form. Design a
state observer in observer form of the system such that all three eigenvalues of the
observer are at A = 0. Obtain the final observer equations to observe the original state

vector z[k].
4 0o 2 1
O=I|dA|=]l1 5 2
cA? 2 15 5

we have det(Q) # 0, hence this system is observable.
The characteristic equation of the system is

Solution: Since

a(z) =det(z2] —A) =2 -2 -2 -3

A,,=[

The transformation matrix is

hence

w =
oo
[ =]
e

0 2 1
Se=0;'0=a_.0=]1 1 0
0 3 0
hence
1
bo=S.b=1{ 3 ¢ =[1 0 0
3

The system in observer form is
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To[k + 1]
ylk]

The original characteristic equation is a(z) = 2® — 22% ~ z — 3, while the desired
characteristic equation is a(z) = (z — 0)® = z°. With

Aozo[k] + boulk)
C:axo [k]

a=[000' ad a=[-21 -3
the observer gain is
1=0"'0(a—a)=-S"a=[0 1 0]

The observer equation is

[k + 1) = (A — Ic)([K] + bulk] + ly[k]

A—lc'=[

where £[0] = £ and

-o o
- W

[= = ]
e

Figure 4.8: Rudolf E. Kalman at the Kyoto Prize ceremony in 1985. Photo
courtesy of the Inamori Foundation (www.inamori-f.or.jp).



4.12 Kalman filter

The discrete-time observer (the more appropriate term here is the estimator)
that minimizes the mean-squared error due to noisy measurements is called the
discrete-linear-quadratic-estimator — DLQE) or, more commonly, the Kalman
filter. In this Section we derive the Kalman filter equations. Careful reader
will notice many similarities between the derivation of Kalman filter and the
derivation of optimal controller in Section 4.10. This is due to the duality
first described by Kalman [26]). It is very similar to the duality between the
concepts of controllability and observability and to the duality of pole placement
techniques for controllers and observers. We also show that in the limit the
Kalman-Bucy filter (cf. Section 3.12) is obtained. It is interesting that unlike
most of the other results presented in this book, here the discrete-time case
{(Kalman filter) preceded the continuous-time case (Kalman-Bucy filter).

Many extensions of basic Kalman filtering are available. We cannot describe
them in the present book, but let us just mention that they deal with many
possible variations on the basic theme described here: colored and/or cross-
correlated noises, partially known system models, etc. Another reason why
this Section does not give full justice to these important techniques is that
applications of Kalman filtering rely heavily on the incredible computing power
of modern computers, and that is impossible to illustrate in a textbook. Let us
name just a few applications of Kalman filtering: satellite and rocket navigation,
automated landing of jumbo jets, Global Positioning System (GPS).

Finally, a few words about the man himself: Rudolf Emil Kalman was born
in 1930 in Budapest, Hungary. He received the bachelor’s and the master’s
degrees in electrical engineering from MIT in 1953 and 1954, respectively, and
the DSc degree from Columbia in 1957. He held research positions at IBM and
at the Research Institute for Advanced Studies in Baltimore. From 1962 to
1971, he was at Stanford. After that he worked at the University of Florida,
Gainesville, and the ETH in Zurich, Switzerland. R. E.Kalman is a member of
the U.S. National Academy of Sciences, the U.S. National Academy of Engineer-
ing, and the American Academy of Arts and Sciences. He is a foreign member
of the French, Hungarian, and Russian Academies of Sciences and a recipient
of numerous honorary doctorates. His work has been recognized by highest en-
gineering and scientific awards, including the IEEE Medal of Honor (1974), the
IEEE Centennial Medal (1984), the Steele Prize of the American Mathemati-
cal Society (1987), and the Bellman Prize of the American Automatic Control
Council (1997).

In 1985 he was awarded the Kyoto Prize in Advanced Technology® for his
fundamental contributions to modern control theory, which include the concepts
of controllability and observability and the solution to Wiener’s problem of
system dynamics estimation in a noisy environment — the Kalman filter.

5The Kyoto Prize is awarded annually since 1985 by the Inamori Foundation to honor
lifetime achievements in the fields of Advanced Technology, Basic Sciences, and Creative Arts
and Moral Sciences. It is sometimes called the Japanese Nobel Prize. It is funded from a
grant given by Dr. Kazuo Inamori, the founder of Kyocera Corporation.
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Problem 4.12.1 Consider a discrete-time system in noisy environment:

z(k +1]
y(k]

where w[k] is the system noise and e[k] is the output measurement noise.

Az[k] + Bulk] + w[k]
Cz[k] + e[k]

wik] e[k]
uk] B Z1  C ylk]
I/ x[K]
A

Figure 4.9: Discréte-time system in noisy environment.

Assume that the noises are independent of z[k] and have the following properties:
e Both w[k] and e[k] are Gaussian random signals and

E{w[k]} =0, E{w[k]w'[l]} = Q[k —1] (zero-mean, white)
E{e[k]} =0, E{e[kle'[l]} = Ré[k—1] (zero-mean, white)

o The system noise w[k] is uncorrelated with the measurement noise e[k], i.e.,
E{w[kle'[l]} =0
Additionally, assume the following for the initial value z[0]:
E{z[0]} =z0 and E{(z[0] — zo)(z[0] — z0)'} = Ps
Demonstrate that in the state estimator
&[k] = 2[k] + Li(y[k] — Cz[k])
where
z[k] = Ad[k — 1] + Bulk — 1]  (2[0] = zo)
the gain L, which minimizes the mean-squared error is given by
Lk = NyC'(R+ CN:C') 7,

where No = Py and Nj is calculated recursively from the following recursion

Nie=Q+ ANy, A' — AN;_,C'(R+ CN;,_;C") ' CNi._, A

Ly

Note: The estimator with this choice of Ly is called the Kalman filter.
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Solution: Our goal is to estimate the state of the system Z[k] so that the mean-
squared estimation error

MSE{£[k]} = E {i(fvi[k] - ii[k])z}
=1
is minimized. Since
MSE{&[k]} = tr(Px) (a scalar)

where

P. = E{Z[K]#'[K]}  (an n x n matrix)
and

#[k] = o{k] — &[k]  (estimation error)

and the fact that when Pi is minimized so is tr(Px), we will minimize P.

Note: To find the minimum matriz in a set of matrices means to find the matriz
P for which the quadratic form o' Pa is minimum for any choice of vector o. To show
that when P is minimum in some set of matrices then tr(P) is also minimum in that
set, consider the n unit vectors e; (1=1,2,...,n):

' L L
e1Pe; is mintmum = pu1 is minimum

ebPey is minimum = po» is minimum

e, Pe, is minimum = pnn is minimum

hence also tr(P) = Z’; Dii 1s minimum over that set of matrices.
It can be shown that the optimum form of the estimator is

#[k] = 2[k] + L (y[k] — C=[k])

where z[k] = A&[k — 1] + Bu[k — 1] is the estimate of z[k] based only on the previous
measurements and the system model, while £[k] takes also into account the correction
based on the latest measurement.

For k=0

£[0] = 2[0] + Lo(y[0] — C=[0])
If we choose z[0] = zo then
£(0] = zo + Lo(y[0] - C'o)

Some algebraic manipulations yields the state equation for the estimation error (de-
fined above as Z[k] = z[k] — £[k]):

Bk +1] = (I — Ly31C) AZ[K] + v[k]
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where v[k] = (I — Lx4+1C)w[k] — Ly41e[k + 1] is independent of Z[k]. Hence

E{z[k + 1]} = (I — Ly4+1C)AE{z[K]}
Since also

E{z[0]} = (LoC — I)(2[0] — x0) =0
we have

E{Z[k]} =0, i.e., this estimator is unbiased.
To determine P in terms of Ly we start from
Pyy1 = E{&[k +1]&'[k + 1]}
Using the state equation for Z[k] and since
E{v[k]v'[k]} = (I = Lk+1C)QU — Lk41C)' + Liy1RLjpy
we have
Piyy = (I — L1 C)(AP A" + Q) — Li41C) + Ly RLy

With Niy1 = AP A’ + Q (the covariance matrix of Z[k + 1]), some further algebraic
manipulation, and with a change of the time-variable (k + 1) — k we can write

P, = Ni + Tx(R+ CNC')T{ — N:C'(R + CN,C')"'CN,

where T, = Ly — N;C'(R+ CN.C’)~!. The quadratic form o/ Pa is minimized when
Ty =0, ie.,

Ly = NxC'(R+ CN,C')™!
Then
P, = N — Nx.C'(R+ CN.C')"'CN,
Since Nx4+1 = AP A’ + Q, the last recursion can be rewritten as
Niy1 = Q + AN A' — AN.C'(R+ CN,C')"'CN. A
where No = Po = E{(z[0] — zo)(z[0] — z0)'}.

Note: When the system is time-invariant and the noises are wide-sense-stationary
(i.e., Q and R do not change over time), then

lim Ny, =N
k—oco
Actually, this convergence is so fast that we can often decide to simplify the design by
using the stationary Kalman filter which is derived from the algebraic Riccati equation:
N=Q+ANA' — ANC'(R+CNC')"'CNA
and

L=NC'(R+CNC)!
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Problem 4.12.2 Given that the relation between the noise covariance matrices in the
continuous-time formulation (Q () and R(.)) and their counterparts in the discrete-time
case (Qq) and R(y)) is

R

Quy=Q@T and Rg=—7

where T is the sampling period, derive the Kalman-Bucy (continuous-time) equations
from the Kalman filter (discrete-time) equations by considering their behavior when
T—0.

Solution: When T — 0
Niyr = A(d)PkAl(d) + Q(d) - P

hence there is no need to distinguish between the a prior: and the a posteriori error
covariance matrices. Then from

Li = NxC'(Rgy + CNxC')™"  and  R(y/T > CNiC'
we have
Ly = NtC'R; T = LT
N’
call this L
We shall see shortly that L is the Kalman-Bucy filter gain because Ny — P.

When T — 0, then Ay = I + A()T so the error covariance equation becomes
(recall that Ly ~ T')

Nyt = AgPedly + Q)

Ay (I = LkC)Ni Algy + Q(a

A(d)NkA'(d) - A(d)LkCNkAI(d) + Q)

= Ni+ AyNieT + Ni A(yT — LyCNi + Qg

Finally,

lim ——-——Nkﬂ — Ni

. -1
T—0 = AN + Ne Aoy — NiC'Ri)CNi + Q)

If we denote P = N, then this becomes the familiar covariance error equation for
the Kalman-Bucy filter:

P(t) = AyP(t) + P(t) Al — P#)C'R,CP(t)+ Q)  (P(0) = P)

Finally, the state estimation equation
(k] = 2[k] + L (y[k] — C2[k])
where

oK) = Ayilk — 1] + Boulk 1] (<[0] = z0)
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becomes (With A(d) =I+ A(C)T, B(d) = B(C)T, and Ly = LT)

#{k] — 2[k — 1] = A(oyilk — 1T + By Tulk — 1] + LT (y{k] — C[k — 1) ~ By Tulk — 1)

Dividing by T, taking the limit T — 0, and denoting r(t) = £, we obtain the familiar
Kalman-Bucy estimation equation

7(t) = Ar(t) + Bu(t) + L(t)(y(t) — Cr(t))

where L(t) = P(t)C'R™", and P(t) is a solution of

P(t) = AP(t) + P(t)A’ + Q — P(t)C'R™'CP(t)

Note: To derive the relations between Q(.) and Ry on one side and Q) and
Rqy on the other, consider the following:

A(C)T

When T — 0 we can write e =1, hence

Q0 = [ Blo©umldedn = QT
T
The derivation for R(g) = R.)/T requires us to model the measurement process as
averaging, i.c., write the output sample y[k] as
1 [T 1 [T 1 [T
ylk] = --/ y(t)dt = T / (Cz(t) + e(t)) dt = Cz[k] + T/ e(t)dt
T Je-yr (k=1)T (k=1)T
Therefore we can write
1 [T
elk] = —-/ e(t)dt
T J—nyr
hence
=1 _ Eo
Ry =73 / /T Ele(§)e(n))d€ dn = —

Problem 4.12.3 The following is an example of Kalman filtering for identifying the
parameters of a communication channel.

If the channel is time-invariant (stationary) and linear, then it is modelled as

ylk] = hiulk — 4] +e[k]

=0

Assume that the sequences u[k] and y[k] are known and the channel parameters
h; (i=0,1,2,...,p— 1) are to be estimated.
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The matrix form of the above model is given by

y[0] u[0] 0 0 ... 0 ho e[0]

y[1] uf1] u[0] 0 .. 0 hy e1]

y[2] - u[2] u[l] u[0] . 0 ha + e[2]
y[N —1] ulN -1 u[N-2] «[N-3] ... ul0] hp_y e[N — 1]
v (Nx1) H (Nxp) B (px1) e (Nx1)

If e[k] is a white Gaussian noise, then the minimum variance unbiased (MVU)
estimate of the channel parameters coincides with their least squares (LS) estimate,
and is given by

h=@EHH) 'Hy

Recall that (H'H)™'H’ is the left pseudoinverse of H and that it minimizes the

magnitude of the squared error |Hh — y|* (see Appendix C.7).

Note: Obviously, H depends on the choice of the input sequence u[k] and if we
can design it, the best choice would be a pseudo-random sequence, because it has the
widest and the flattest possible spectrum.

If the channel is time-variant, i.e.,

ylkl =) halklulk — i] + e[k]

i=0

the previous approach quickly produces more unknowns than equations. If the channel
variations are slow, we can model them as

hin + 1] = Ah[n] + wn]

Write the Kalman filter equations to adaptively identify the channel parameters.

Use p = 3 with
0.99 0 0
A=1] 0 0999 0

0 0 0.997

and with
1073 0 0

Q=E{w[k]w’[k]}=[ 0 10 o ] and R=E{e[kle'[k]} =102
0 0 107!

Solution: The solution and MATLAB simulations are left to the reader. A very
useful MATLAB command for this is dlqge.



4.13 Reduced-order observers

In this Section we illustrate the concept of reduced-order observers applied to
discrete-time systems.

Problem 4.13.1 Consider a discrete-time system defined by the equations

alk+1] = [_812 _iig]z[k]+[_ll] ulk]
yk] = [11]z[k

Find the open-loop eigenvalues and check the controllability and observability of
this system. Determine a state feedback vector f' such that the closed-loop system
with u[k] = — f'z[k] + r[k] has eigenvalues at 0.6 £ 0.4j. Finally, design a minimum-
order observer for this system. Let the desired eigenvalue for the observer be equal
to zero, i.e., the observer is a deadbeat system. Note that the concept of lower or-
der observer works exactly the same way for discrete-time systems as it applies to
continuous-time systems. Rather than derivatives, we have terms at time k + 1.

Solution: It is easy to see that A\; = —0.2 and A\; = —0.2. Since [A1,2] < 1,
this system is stable. It is also controllable and observable because det(C) # 0 and
det(O) # 0.

The desired eigenvalues are p1,2 = 0.6 + 0.4j, therefore the desired characteristic
equation is g% — 1.2 + 0.52. Let us write the desired characteristic equation in terms
of the state feedback vector f' = [fi fa]:

p’ =124 +0.52 = det(ul — A;) where A;=A—bf
This reduces to
1204052 =p  +(fo— i+ D+ fL+0.16
and finally
f =[036 —1.84]

Now introduce a nonsingular transformation S such that ¢S =1[0 1], e.g.,

1 0
R
when (cf. Section 3.13)

o b _gmiggo | 72 2160 g |9 5= |
Cr Qnn -1 1 gn 0

Finally, the reduced observer gain I is found from
A=(ar ~lrer)=2-0 = [, =2

Note: . Calculate the remaining parameters of the reduced order observer. Don’t
forget that the output of the observer is a state which needs to be combinéd with y(t)

using the matriz S:
1‘1(t) _ r,(t)
[m(t)] =5 [y(t)]
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Chapter 5

Exercise problems

This Chapter contains exercise problems. They are given without solutions,
in order to challenge the reader to go through the solution process alone. If
necessary, the reader may look at derivations in Chapter 2 or similar problems
in Chapters 3 and 4.
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5.1 Miscellaneous problems

Problem 5.1.1 Given matrix A

and

b+ 1) = Az[k], 2[0] = [ h ]
we have
z[k] = A*z(0]

Calculate z[k] for k¥ = 1,2,3,4,5. Find eigenvalues A; and A2 and eigenvectors
p1 and py. Express z[5] in the form z[5] = a1 Ap1 + a2A}p2. Determine a similar
expression for z[k].

Problem 5.1.2 For the transfer function given by

s+3
83 4+ 952 4+ 245 + 18

H(s) =

find a controller realization. Determine its controllability matrix. Is the system con-
trollable? Determine its observability matrix. Is the system observable? Repeat this
problem with the observer form.

Problem 5.1.3 Consider the following state equations

0 1 0 0
T = 0 0 1 1z+10]u
-6 11 -6 1

y=[-1 0 1]z

Calculate eigenvalues and right eigenvectors of A. Form matrix P with eigenvectors
as columns. Calculate Q = P! and verify that the rows of Q are the left eigenvectors
of A. Calculate (sI — A)~' directly using matrix inversion. Compare your result to
what is obtained using

I— Ay = Digi
(s ) P

i=1

Finally, determine the transfer function from

('pi)(q:b)
Z s — Ai
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Problem 5.1.4 Given a system matrix

0 1 0
A= 0 0 1
-6 11 -6

determine its eigenvalues and eigenvectors. Calculate e’ as
et = L7(sI - )7}

Compare this result to the result of the following procedure: diagonalize A using
P (the matrix of its right eigenvectors)

A 0 0
A=] 0 X 0 |=P'AP
0 0 Az
Then
eAt — pertp-t
Finally, use Cayley-Hamilton theorem to calculate eAt.
Problem 5.1.5 Given a continuous-time system
z(t) = Az(t) + bu(t)

y(t) = c'z(t)

1 20 0
A=|0 1 0|, b=|1], =012 0
3.0 1 1

determine its eigenvalues. Determine the transfer function of this system. What are
the poles and zeros of this transfer function? Is {4, b, c'} a minimal realization of that
transfer function? With that in mind and if you are told that this system is control-
lable, is it observable? Verify your answer by direct calculation of O. Calculate the
parameters of a discretized system using sampling period T = 0.01s. Is the resulting
system controllable? Is it controllable for any other value of T'? Is it observable?

where

Problem 5.1.6 Given a continuous-time system
z(t) = Az(t) + bu(t)

y(t) = c'z(t)

2 10 1
A=|0 2 1], b=|1], =010 2]
1 0 2 1

determine its eigenvalues A1, A2, As. Design a feedback vector k such that the eigen-
values of the closed-loop system with u(t) = —k'z(t) + v(t) are the mirror images of
the open-loop eigenvalues, i.e., ui = =i (1 =1,2,3).

where
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If a cost function is given by

J= / (&' (1)Qz(r) + Ru* (7)) dr
0

where Q = I3x3, while R = 10, determine the optimal feedback k,p: to minimize the
cost of control. Compare the results of these two designs. Try to show that in general,
for large values of R, the optimal feedback moves the unstable eigenvalues of the open-
loop system to their mirror images in the left half-plane. What is the corresponding
result for discrete-time systems?

Problem 5.1.7 Discretize a continuous-time system given by
z(t) = Az(t) + bu(t)

y(t) = c'z(t)

-1 1 0 1
A= 0 -1 1], b={0], =11 2
1 0 -1 1

using the sampling period T' = 1ms. Discuss the stability of both the continuous-time
and the discrete-time systems using Lyapunov’s stability theory.

where

Problem 5.1.8 Discuss controllability and observability of a continuous-time system
given by

z(t) = Az(t) + bu(t)

y(t) = cz(t)

-1 1 0 1
A= 0 -1 11|, b=|0], =112
1 0 -1 1

Transform it into the controller form and calculate the feedback vector k. which
moves the eigenvalues of the controller form to —1, —2, and —3. Transform this
feedback gain back to the original state space. Compare the result to the result of
the Bass-Gura formula. Design the state observer with eigenvalues at —6. What are
the eigenvalues of the combined controller-observer system? Design a reduced-order
observer with eigenvalues at —6.

where

Problem 5.1.9 Solution P of the Lyapunov matrix equation
A'P+PA=-Q

for any given positive definite symmetric matrix @ is unique and symmetric positive
definite itself if and only if A is Hurwitz. Use the Lyapunov theory to discuss the
stability of the system given by
T = 12 z
131

Use @ =1
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Problem 5.1.10 Consider a discrete-time system

z[k + 1] = Gz[k] + Hulk]

oo[1 2] ne[i]. ]

Define the performance index

with

V=) (& [KQu[K] + [k Rulk])

k=0
Let @ = I and R = 1. The optimal control law is given by
u[k]) = —F'z[k]

where F' = (R+ H'PH)™'H'PGz[k] and the matrix P is given by the steady-state
discrete Riccati equation

P=Q+GPUI+HR'H'P)"'@
Since G is nonsingular in this problem, the Riccati equation may be rewritten as
(P-Q)G'I+HR 'H'P)=G'P

This is convenient because the unknown of the equation, P, is not being inverted.

Find the positive definite symmetric solution P. Calculate the feedback gain.
Determine the open-loop and the closed-loop eigenvalues. Calculate the performance
index using

v = 22/0]P2[o]
Problem 5.1.11 Consider a continuous-time system given by
z = Az + Bu y=Cz+ Du
where
-1 -2 =2 2
A=| o0 -1 1|, B=|o|, ¢c=[110, D=0
1 0 -1 1

Use MATLAB to calculate the eigenvalues and ranks of controllability and observ-
ability matrices. Plot the unit step response of this system. Design the state feedback
gain vector to move all eigenvalues to —2. Plot the unit step response of the closed-
loop system. Calculate the full-order state observer gain vector L assuming the desired
eigenvalues of the observer are at —4. Write the matrix equation for the total system,
determine its eigenvalues (there should be three of them at —2 and three of them at
—4) and plot its unit step response.
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Problem 5.1.12 Consider a discrete-time system in noisy environment:

zlk+1] = Ax[k] + bu[k] + w[k]
ylk] = czfk]+e[k]
where
1 01 0 1
A=[0 1 0.1], b=H, d=[111
01 0 1 1

while w(k] is the system noise and e[k] is the output measurement noise. Let the noises
be independent of z[k] and mutually uncorrelated. In addition, assume they are both
zero-mean, white, Gaussian random signals with covariance matrices given by

10°% o 0
Q = E{w[klw'[k]} = [ 0 107% o ] and R = E{elkle'[k]} =102
0 0o 1073

Additionally, assume the following for the initial value z[0]:
1 1072
zo = E{z[0]} = |1 and P, = E{(2[0] — zo)(z[0] — z0)'} = {1072
1 10~2

First design a state feedback vector f such that the closed-loop eigenvalues are all
stable and real, and then design the Kalman filter to estimate the states needed for
feedback control.

Problem 5.1.13 Matrix A is Hurwitz if and only if for any given positive definite
symmetric matrix () there exists a positive definite symmetric matrix P such that

AP+PA=—Q

As an extension to Lyapunov’s equation show that all eigenvalues of the matrix A have
real parts less than —p < 0 if and only if for any given positive definite symmetric
matrix @ there exists a positive definite symmetric matrix P that satisfies

A'P4+PA+2uP=—-Q

Hint: If the eigenvalue of A is X, find the eigenvalue of A+ pul.
Problem 5.1.14 The Lyapunov stability theory has been applied to study the long

term behavior of artificial neural nets [20]. In Hopfield nets the N neurons are con-
nected to each other. The dynamic equations describing the net are given by

N
dui _ Ly Wi ) -
C,E—th”‘/]_i‘i'Iz (l“1727"'7N)
i=

where u; represent the state variables of individual neurons, while V; are the neuron
outputs. This system of equations models neurons as leaky capacitances: the equation
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for neuron i expresses the total charging current of that neuron (Cidu;/dt) as a sum of
the following components: the current induced in neuron i by the output of neuron j,
summed over all j, then the leakage current due to finite input resistance R; of neuron
1, and the input current I; from other external sources. We will assume that t;; = t;;
and t;; = 0, hence the matrix T of elements ¢;; is symmetric with elements on the
main diagonal equal to zero.

In a Hopfield network, the output of a neuron V; is a characteristic of a nonlinear
amplifier associated with neuron i. It is a monotonically increasing and bounded
function of the state u;. Hopfield used —1 < V; < 1. Additionally, V; is such that

Vi=gi(u:), 9:(0)=0 (i=1,2,...,N)
and
w=g'(Vi)=£(V) (=12,...,N)

Since g; are assumed to be monotonically increasing and gi(0) = 0, f; are also
monotonically increasing, f;(0) = 0, and all g; and f; lie in the first and the third
quadrants only. Hence

' flv)dv>0
0

To prove the asymptotic stability of this system, Hopfield used the neuron outputs
V; as state variables and considered the following candidate Lyapunov function:

P=AE Swvn e T4 [ wa- v
i i 0 i

with R and C parameters positive.

To complete the proof first show that E is positive definite (or at least bounded
from below). Then calculate dE/dt and show that this quantity is negative semi-
definite. Finally, show that dE/dt = 0 happens only at the equilibrium point.

Problem 5.1.15 Consider a cart of mass M with two inverted pendulums on it. Let
their lengths be [; and l2, respectively, both with bobs of mass m. If angles 6; and
0 describe the deviation of pendulums from the vertical, then for small values of 6|
and |02| the linearized equations are (cf. [22], p. 103)

z(t) = Az(t) + bu(t)

where
6, 0 0 1 0 0
[ _ 0 0 0 1 0
= b | A= a a 0 1| ° —1/(Ml)
02 as as 0 0 —1/(M12)
while
(M +m)g mg mg (M +m)g
a) = ————— a) = — —_— —_

ML > T My BT M, M,
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Show that this system is controllable if and only if I; # 2. What does it mean for
someone trying to vertically balance two sticks on the same finger?

Hint: First show that

2af B2 a?
4et€) = 321, ~ MIE T M7

where

al a2

=4, g2 — a3 G4
a_Ml1+Mlz and f3 +

ML Ml

Problem 5.1.16 Consider a continuous-time system given by {A4,b,c'}. Write the
parameters of the corresponding discrete-time system obtained using the sampling
period T. Determine the impulse response of a discrete-time system in terms of the
parameters of the original continuous-time system.

Problem 5.1.17 Let p be a right eigenvector of an n X n matrix A and A the corre-
sponding eigenvalue, i.e.,

Ap = Ap
Show that A" is an eigenvalue of A" with eigenvector p, i.e.,
A'p=A"p

Problem 5.1.18 Show that

tr(A) = i A

and

n
tr(A%) =D AP
i=1
Problem 5.1.19 Show that polynomials

a(z) =aoz" +a12" '+ ... +an_12 +an

b(z) = bo2™ bz b 4 b1z + bm

have no common factor if and only if there exist two unique polynomials f(z) and g(z)
such that

a(2)f(2) + b(z)g(2) =1
and deg(f(2)) < m and deg(g(2)) < n.

Hint: Use the Euclidean algorithm for polynomials.
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Problem 5.1.20 Consider

a(z) =ao2" + 12" ' +... 4 an-12 +an
and

b(z) =boz™ 4+ b1z™ 4 ... 4 b1z + by

such that ao,bo # 0 and m,n > 1. Let a; : =1,...,n) and B; (j = 1,...,m) be
the roots of a(z) and b(z), respectively. The resultant of polynomials a(z) and b(z) is
defined as

R(a,b) = ag'b(c1)...b(an)

Obviously, a(z) and b(z) have no common factor if and only if R(a,b) # 0. Show
that

R(a,b) = a5'b5 [[ [J (s - 8)

i=1j=1

Problem 5.1.21 Consider the system determinant S(a,b) of the following system of

m + n linear equations in variables z"t™~! ... 21
2" la(z) =0 ... za(z)=0 a(z)=0
2(z)=0 ... 2b(z)=0 b(z)=0

For example, if n =3 and m = 2

a a1 a2 a3 O
0 ao a az as
S(a,b)=| bo b1 b2 0 0
0 b b b O
0 0 b b b
Show that
S(a,b) = R(a,b)

and conclude that a(z) and b(z) have no common factor if and only if S(a,b) # 0. This
determinant is called Sylvester’s resultant and the corresponding matrix is Sylvester’s
matriz.

Hint: Prove that both S(a,b) and R(a,b) have the following recursive properties:

S(a,0)=0 and R(a,0)=0
S(a,b) = (—-1)""S(b,a) and R(a,b) = (—1)""R(b,a)

if n > m and a(2) = q(2)b(z) + r(2) then

S(a,b) =by""S(r,b) and  R(a,b) =bg” " R(r,b)
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Problem 5.1.22 Throughout the book we considered polynomials a(z) and b(z) as
above but with m = n, ag = 1, and by = 0. Without any loss of generality we use
these conventions again. Hence, consider

a(z)=2"+a1z"" ' +... +an_12+an
and
b(z) =biz" ' +... 4+ bu_12+ b,
Then, using the notation from Problem 3.8.4, the Bezoutian matriz is defined as
B=1Ii(ayb- - bia-)
Prove that
S(a,b) #0 & det(B) # 0

hence the Bezoutian resultant, det(B), can be used as another test for common factors
of a(z) and b(z).

Hint: Show that

a. b.
S’(a_,b):det[ a, b, ]

Finally,

a- b I b ]_[a O
a4 b+ O —-a_ | | a IB
Problem 5.1.23 Show that the observability matrix of the controller form can be
written as
O. = (by —artb_ay)i

Hint: Write H(z)a(2)z™* = b(2)2z™* for k = 0,1,...,n — 1 as a single matriz
eguation, for example forn =3

0 0 0 0 o0 O 1 0 O 0 0 O
hi 0 0 0 0 O a1 1 0 b 0 O
hz h1 0 0 0 0 a2 a 1 - bz b1 0
hs ha hs 0 0 O as a2 a1 | | bs b2 by
h4 hs h2 h1 0 0 0 as a2 0 b3 bz
h5 h4 h3 hz h1 0 0 0 as 0 0 b3

and deduce that
M= (b+ - b_a:la+)a:1f

Finally, use M = OcCc and C. = a-7.
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Problem 5.1.24 Derive the following expression for the similarity transformation
from the controller to the observer form of a minimal system (cf. Problem 3.8.4):

S =—IBI

Hint: First show that
a_by+a.b_ = bia_+b_a;
Problem 5.1.25 Show that det(M) can be called Markov’s resultant.
Hint: Recall that Oco = M.
Problem 5.1.26 Show that a(z) and b(z) are coprime if and only if
det(b(A.)) # 0

where A is the top companion matrix of a(z). This resultant was discovered indepen-
dently by Barnett, Kalman, and Macdaffee (not necessarily in that order).

Hint: Recall that the top companion matriz of a(z) is the system matriz of the
controller realization.

Problem 5.1.27 Let
a(z) =det(zI —A) =2" +a12" ' +... + a1z +an
Verify that
adj(zI — A) =a(z)(zI —A) ' =Riz" ' +...+ Ran-1z+Ra

where

R =1

R, = ARi+ail = A+ai1l

Ry = AR;+as]l = A’4+a1A+asl

R, = AR, 1+an I = A" ' 404" %2+ . +an_2A+anil

Also show that
AR, +anI=0
and that
ai = —%tr(AR,-)

Show how this last formula can be included in the recursion for R; to eliminate the
need to calculate the coefficients of a(z) beforehand. This procedure for determining
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adj(zI— A) by recursively calculating matrices R; is called Leverrier-Souriau-Faddeeva-
Frame algorithm.

Hint: Compare coefficients on both sides of
a()I = (21— A(Riz" ' +...+ Re12+ Ry)
Problem 5.1.28 Let
a(z) =det(zI —A)=2"4+a1z" '+ ... +an_12+ an
Define
5(2, %) = (a(®) - a(L))(2 - )™’
and show that
853, 0) ="'+ (T +arl)®" 2+ (P2 + a1 ¥ + a2 D)®" 2+ ...
Use the following substitutions
®=2I and T=A
and then
®=A and ¥==:I

to derive the following resolvent identities

T (A+ oD P+ (A A 4t anoad)
A 4 a)A™ i 4+ a4

adj(zI — A)

Compare them to the identity in Problem 5.1.27.



Part I11

Appendixes



Appendix A

A quick introduction to
MATLAB

A.1 Introduction

MATLAB is a computer programming language whose only data types are ma-
trices® of various sizes. Many engineering problems are most concisely phrased
using the matrix notation, therefore the popularity of MATLAB among students,
engineers, and scientists should not be surprising. MATLAB is available for all
major platforms, including Unix, Mac, and Windows.

MATLAB supports all basic control structures (for loops, if - then con-
structs, etc.), but majority of its commands are calls to the state-of-the-art
routines for matrix operations?. In addition to program control commands and
mathematical commands, MATLAB has very easy-to-use commands for plotting
graphs, and many toolboxes aimed for use in various branches of science and en-
gineering. To mention just a few, available are Signal Processing, Controls, Sys-
tem Identification, Image Processing, Neural Networks, Symbolic Math, Statis-
tics, Wavelets, and many other toolboxes.

The most important commands in MATLAB are certainly help and quit.
Commands can be issued directly in MATLAB’s command prompt, but if we wish
to run a sequence of commands, frequently repeating them with possible slight
changes, it is much more convenient to create a file and name it, for example,
progrO1l.m. Then the commands from that file, i.e., the program stored in it,
can be executed by typing progr01 in MATLAB’S command prompt. Note that
the variables need not be declared or dimensioned, this job is done automatically
by MATLAB.

1Hence its name: MATRIX LABORATORY.

2MATLAB was first written as an outgrowth of LINPACK and EISPACK, the public domain,
state-of-the-art software packages for numerical analysis, written in FORTRAN. The first
version of MATLAB was written in the late 1970’s at the University of New Mexico and Stanford,
by Cleve Moler and Jack Little. In 1984 they founded The MathWorks, Inc., and since then
successfully commercialized and developed their product.

289
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A.2 Basic matrix operations

Quite informally, matrices are tables of numbers. A matrix A given by

2 45 -1
A=|T7 41 2
4 2 6 0

is said to have three rows and four columns, i.e., to be 3 x 4. We also write
A= [a,-j]3><4, with a;; =2, ag; =7, etc.

In MATLAB A can be defined as

A=[245-1;7412;4260]

A
2 4 5 -1
7 4 1 2
4 2 6 0
If we add a semicolon at the end, i.e.,
A=[245-1;7412; 4260];
the result of this command will not appear on the screen, but will be kept in
the memory. A “;” at the end of a command suppresses printing to the screen.
Elsewhere it has a different meaning.

To transpose A, we write B = A’, or in MATLAB
B =A%

In general, for complex matrices, the prime denotes the Hermitian operator, i.e.,
the conjugate transpose.

Matrices include vectors and sequences

Special cases of matrices are vectors and scalars. The element ao; can be ex-
tracted from A as follows:

a2l = A(2,1);

The first row of A can be written as

r1=[246 -11;

It can also be extracted from A directly by writing
rl = A(1,:);

Similarly, the second column of A can be written as
c2 = A(:,2);

If r1, r2, r3, and ci, c2, c3, c4 are the rows and columns of A, then A can
also be defined as A = [r1; r2; r3]; or as A = [c1, c2, c3, c4]; or just
A = [cl c2 c3 c4]; (without the commas).
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Addition

To add two matrices, they must have the same size. For example, redefine B as

B = 3%A;

This multiplication produces a matrix whose each element is three times the
corresponding element of A. Since A and B have the same sizes, now we can
add them
C=A+B
C =
8 16 20 -4

28 16 4 8
16 8 24 0

Often we need to increase all elements of A by the same amount, for example
by 2. Although mathematically this is incorrect

D=2+ A (mathematically incorrect)

the MATLAB syntax allows us to write

D=2+A;

Products

There are several types of multiplications available in MATLAB. The simplest
is the scalar product, which we already used:
B = 3%A
B =
6 12 15 -3

21 12 3 6
12 6 18 0

Its result is a matrix of the same size as A.

The scalar product of two vectors
a=[a1 a2 a3 a4] and b=[by by bs by
is a scalar calculated as
a1by + agbe + agbs + agby

In MATLAB it can be evaluated using the matrix product, which is to be pre-
sented next.

If we multiply A and B, the matrices of sizes m x n and p X ¢, respectively,
then for this product to be well defined, the inner dimensions of the two matrices
must be equal, i.e., n = p. The result of multiplication AB is a matrix C, which
is m x g, whose element c;; is equal to the scalar product of the ith row of A
and the jth column of B.

For example,
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10 11 12];
C = AsB
C =
70 80 90
158 184 210

To calculate the scalar product of two vectors, we can use the matrix product
operator, but we have to make sure that the left vector is in a row form, while
the right vector is in the column form:

b=[789 10])°
b =

c = a*b
c =

90

If we multiply these two vectors so that the left vector is column, while the
right is row, the result will be a matrix, calculated according to the rules of the
matrix product. For example

d = b#*a
d=
7 14 21 28
8 16 24 32
9 18 27 36
10 20 30 40

Sometimes we need to multiply the corresponding elements of two equally
sized matrices. This Hadamard product is denoted by “.#” in MATLAB.

A=1[123;

45 6);
B=[012;

21 0]
C=A.*B % note: .
C=

0 2 6

8 5 0

If for some reason we want to create a matrix which contains all possible
products of the elements of the two given matrices A and B, we use the Kro-
necker product C = A ® B:
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A=101234;
567 8];
B=1{12;
3 4;
6 6]
C = kron(4,B)
¢ =
1 2 2 4 3 6 4 8
3 4 6 8 9 12 12 16
5 6 10 12 15 18 20 24
5 10 6 12 7 14 8 16
16 20 18 24 21 28 24 32
25 30 30 36 35 42 40 48

To square a matrix means to multiply it by itself, hence due to the constraints
on the dimensions of matrices in a matrix product, a matrix must be square in
order for the squaring operation to be well defined.

A=112;
3 4];
B =A"2
B =
7 10
15 22

We may also need to square each element of a matrix. In this case, of course,
a matrix does not have to be square.

A=1[123;
46 6];
B =A."

NN

1 4 9
16 25 36

Functions
Similarly, we can do many other operations on the elements of matrices:

A

=[123465;
6789 10];
X = sin(A) % argument assumed to be in radians
X =
0.8415 0.9093 0.1411 -0.7668 -0.9589
-0.2794 0.6570 0.9894 0.4121  -0.5440
Y = log(d) % natural base (e)
Y=
0 0.6931 1.0986 1.3863 1.6094
1.7918 1.9459 2.0794 2.1972 2.3026
Z = 1oglO(A) % base 10
zZs=
0 0.3010 0.4771 0.6021 0.6990
0.7782 0.8451 0.9031 0.9542 1.0000

W=1./A

1.0000 0.5000 0.3333 0.2500 0.2000
0.1667 0.1429 0.1250 0.1111 0.1000
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Note that (Problem 3.2.4) exp and expm are different functions: B=exp(A)
is a matrix such that b;; = €%, while C=expm(4) is a matrix exponential of A.
For example

[11; 01];

A
B = exp(A)

L= I ]

2.7183 2.7183
1.0000 2.7183

C = expm(A)
C=
2.7183 2.7183
0 2.7183

Matrix inversion, eigenvectors, etc.

Important feature of MATLAB is its ability to-seamlessly invert large matrices,
find matrix rank, determinant, eigenvalues, eigenvectors, and singular values,
and all that using the state-of-the-art algorithms. The appropriate commands
are inv, rank, det, eig, svd. Use help for more details and various options for
using these commands.

A.3 Plotting graphs

Often we want to analyze the spectral components of a measured signal. We
can put the measured values into a vector, use the £ft command, and plot the
magnitude of the components of the resulting vector. Here we create the input
vector as a sum of few sinusoidal signals and some additive noise (the result is
shown in Figure A.1):

Ts = 0.01; % sampling interval

N = 300; % number of samples

Tf = NxTs; % final time

t = 0:Ts:Tf; % time vector

Al = 2.5; f1 = 12; % amplitudes and frequencies

A2 = 1.0; £2 = 23;

A3 = 4.0; £3 = 17;

x = Al*#sin(2+pis*flst) + A2+sin(2#pi*f2st) ... % note: ... means the command will be
+ A3*sin(2#pi*f3+t) + 0.5*randn(size(t)); % continued in the next line

X = fft(x);

subplot(2,1,1)

plot(t,x)

xlabel(’time [s]’)

ylabel(’signal’)

subplot(2,1,2)

plot ((0:1/N:1)/Ts,abs (X)/N)
xlabel(’frequency [Hz]’)
ylabel(’spectrum’)

Here are a few more useful commands when making nice plots: figure,
stem, axis, xlabel, ylabel, title, text, grid. Again, use help for more
details.

For example, we may not be satisfied by the MATLAB’s choice of the ranges
for the axis of the graph. Then we use the axis command. Commands like
xlabel, ylabel, title, and text allow us to put some words of explanation at



A4. DATA ANALYSIS 295
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Figure A.1: Plot of the signal and its spectrum.

different places on the graph, grid often makes the graph more readable, while
stem is used to draw discrete sequences.

A.4 Data analysis

To create a sequence of increasing integers, the appropriate structure is a vector.
For example

n = 4;
seq = 1:n
seq =
1 2 3 4
or
n = 4;
seq = (1:n)’
seq =
1
2
3
4

In data analysis often used commands are mean, std, min, max. For example

x = rand(1,1000); % vector of 1000 U(0,1) random numbers
mean(x)
ans =
0.4966 % theoretically 1/2
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std(x) %
ans =  meee-
0.2802 % theoretically V 1/12 = 0.2887
m=3;
v=4;

x = m + sqrt(v)*(randn(1,1000)); % vector of 1000 N(m,v) random numbers
mean (x)

ans = 2.9884 % theoretically m (=3)
std(x) % _—
ans = 2.0137 % theoretically Vv = (=2)

Note that if the argument of mean, std, min, or max is a matrix, the results
are row vectors of means, std’s, min’s, and max’s of each column. For example,
X = [1 11 56;

5 12 53;

3 10 54;

4 11 53];
mean (X)
ans =

3.2500 11.0000 54.0000
max (max (X))

ans =

56

A.5 Data management and I/O operations

Command who lists all currently used variables. Command whos does the same,
and, in addition, gives a few more details about each variable (size, dimensions,
etc.).

To remove some of the variables, type e.g., clear A B. To remove all vari-
ables, just type clear.

To save all variables to a file, type save. This creates a file called matlab.mat
on the disk. To load the values saved in it, type load. See help for further
details on how to save (load) to (from) a file with a different name, or how to
specify the variables or a format to be used.

To print the current figure to a file, type e.g., print -deps fig01.eps. See
help for more details, other formats, and options.

A.6 Exercises

1. Create a sequence of even numbers from 0 to 20.
2. Create a sequence of first 10 squares: 1,4,9,...,100.

3. Create the following length-1024 sequence: 0,1,0,-1,...,0,1,0,-1. (Use
vector concatenation.)

4. Check that forn = 1,2,...,1000 the following equality holds 14+2+...+
n = 22t (Use sum.)
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5. Check that for n = 1,2,...,1000 the following equality holds (1 + 2 +
e+ n)?=13+2% 4+ 4+ nd (Use sum.)

6. Euler found that —112- + :}; + 51; +...= "{. Calculate the sum on the left
for the first 100 terms and compare it to the value on the right. Calculate the
sum for the first n terms, where n runs from 1 to 1000, and plot the calculated
values. (Use for loop or cumsum.)

7. Construct a 7 x 7 matrix with a Pascal triangle below its main diagonal.
(Use for loop and the rule for creating the triangle: F;; = Py j—1 + P;—1,5,
with P;y =1forany i =1,2,..))

8. Calculate A" for n = 1,2, 3,4, 5,6, where
11
A1)

9. Form the Fibonacci sequence fi, fa, ..., fio. Use the following recursion:
Hi=f=1, fi=fi—2+ fi1. (Use for loop.)

10. Harmonic numbers are defined as H, = % + % +... 4+ % Find the first
harmonic number greater than 3. (Use cumsum and find.)

11. Given are points A;(—1,7), A2(2,3), A3(4,7), A4(2,4), and A5(4,3).
Form a 5 x 2 matrix A with their coordinates. Calculate a 5 x 5 matrix D
of distances between these points, ie., let d;; = d(A4;, Aj). Check that D is
symmetric, and find the two most distant points. If asked to find the two points
closest to each other, how would you avoid the presence of zeros in D? (Use
for loop and find.)

12. Write the following system of linear equations in the matrix form, and
use the inv command to solve it:

2r—y+z—w = -3
z+y+z+w = 10
r—y+z+w = 4

3z—y+2z2—w = 0.

13. Modify the system above to see how the pinv (pseudo-inverse) command
can be used to solve underdetermined and overdetermined systems.

14. Use the Sieve of Eratosthenes to generate all primes less than 10000.

15. Implement the Euclid’s algorithm.
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Solutions

2.
s = (1:10).72
8 =
1 4 9 16 25 36 49 64 81 100
3. Here are three different solutions:
a=[010-1];
b=1[aaaal;
c=[bDdbb];
d=I[ccccl;
sl = [ddddl; % first solution
size(sl)
ans =
1 1024
82 = sin(pi*(0:1023)/2); % second solution
83 = imag(j.~(0:1023)); % third solution
4.
for n = 1:1000
x = sum(1:n); fx=1+2+ _..+n
y = nx(n+1)/2;
if x"=y % if x <>y
found = n % print such n to the screen
end
end
5.
for n = 1:1000
x = (sum(1:n))"2;); hx=A+2+ ... +n)"2
y = sum((1:n)."3); 4#y=1"3+2"3+ ... +n"3
if x"=y %hifx <y
found = n % print such n to the screen
end
end
6.
s = 0;
for i = 1:100

s =8+ 1/i"2;
end
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1.6350
pi“2/6

ans =
1.6449

Much faster calculation (approximately 5 times faster) is as follows:

100;
sum(1./(1:n)."2)

1.6350

To measure the time needed for some operation, the following commands
may be used: tic, toc, cputime. For example:

t = cputime;
n = 100000;
x = sum(1./(1:n)."2)
cputime~t
ans =
0.3333 % in seconds

The plot is obtained as follows (Figure A.2)

n = 100;

plot({1i:n),cumsum(1./(i:n)."2),?.?) % cumsum is a vector of partial sums
hold on % draw over the current plot
plot((i:n),pi~2/6%ones(1,n)) % draw a horizontal line y = pi“2/6
hold off

11 S i
14¢ ° .
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Figure A.2: Convergence of the Euler’s sum.
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7.
n=7; )
P = zeros(n,n); % zero matrix nxn
P(:,1) = ones(n,1); % the left-most column is all ones
for i = 2:n
for j = 2:i % do nothing above the main diagonal
P(i,j) = P(i-1,j-1) + P(i-1,j); % recursion for binomial coefficients
end
end
P
P =
1 0 0 0 0 0 0
1 1 ] 0 0 0 ]
1 2 1 0 0 0 0
1 3 3 1 0 0 0
1 4 6 4 1 ] 0
1 5 10 10 5 1 ]
1 6 15 20 15 6 1

Try also command pascal.
8.

A=1[11;10];
for n = 1:6

n, A°n

pause % press <Enter> to continue
end

Do you recognize the Fibonacci sequence?

9.
n = 10;
f = ones(1,n); % a sequence of all ones
for k = 3:n .
£f(k) = £(k-2) + £(k-1); % apply this recursion to
end % find 3rd, 4th, ... elements
f =
1 1 2 3 5 8 13 21 34 66 % first ten Fibonacci numbers
10.
n = 20;
H = cumsum(1./(1:n)); %eg., H(6) =1+ 1/2 + 1/3 + 1/4 + 1/
I = find(H>3); % I contains indexes i for which H(i) > 3
min(I)
ans =

11 % this is the smallest among them
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11.

A= [-1,7; 2,3; 4,7; 2,4; 4,3);
D = zeros(5,5);
for i = 1:5
for j = 1:5
D(i,j) = sqrt(sum((A(i,:)-A(j,:))."2));
end

end
D
D=
0 5.0000 5.0000 4.2426
5.0000 0 4.4721 1.0000
6.0000 4.4721 0 3.6056
4.2426 1.0000 3.6056 0

6.4031 2.0000 4.0000 2.2361

max (max(D-D*))
ans =
0
max (max (D))
ans =

6.4031

[i,j] = find(D==max (max(D)))
is=

D(find(D==0)) = 1000*ones(size(find(D==0)));
min(min(D))
ans =

1

[i,j] = find(D==min(min(D)))
is=

H

% coordinates of points

% Euclidean distance

6.4031
2.0000
4.0000
2.2361

% therefore it is symmetric

% maximum distance

% the most distant are 1 and 5

% substitute all zeros by 1000°s

% minimum distance

% the closest are points 2 and 4

B = [-3; 10; 4; 0]; % equation is A*X=B, with X = [x y z w]?

X = inv(A)«B % solution
X =
1.0000
3.0000
2.0000
4.0000
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13. If the system is underdetermined, pinv gives us the solution with mini-
mum Euclidean norm: zo = AT(AAT)~1b.

A=[ ;

1
1

W .
-
N

e

w
[

= [10; 4; 0];

X = pinv(A)*B % minimum norm solution
X =
1.1154
3.0000
1.8462
4.0385

If the system is overdetermined, pinv gives us the solution which minimizes

the Euclidean norm of the error B — AX: zq = (ATA)~' ATb.
A=[2-11;
111
1-11;
3-12];

B-= [1; 6; 0; 5];

X = pinv(A)*B % this solution minimizes the norm of the error
X =

1.2000
3.0000
2.0000

14.

% begin by using only first few primes (2,3,5,7) to find all primes < 100

M = 10; % should be < 11, because at start we use only 2,3,5,7
N = M°2;

small_seq = 1:N;

small_seq(1l) = O; % 1 is not a prime

small_seq(4:2:N) = zeros(size(4:2:N)); % eliminate all divisible by 2
small_seq(6:3:N) = zeros(size(6:3:N)); % eliminate all divisible by 3
small_seq(10:5:N) = zeros(size(10:5:N)); % eliminate all divisible by 6
small_seq(14:7:N) = zeros(size(14:7:N)); ' eliminate all divisible by 7
small_primes = find(small_seq > 0);

% now use the primes in small_primes to generate primes < 1000

large_seq = 1:N°2;
large_seq(1) = O; % 1 is not a prime
for j = 1:size(small_primes,2)
eliminate = 2+#small_primes(j):small_primes(j):N"2; % eliminate all
large_seq(eliminate) = zeros(size(eliminate)); % divisible by
end % small_primes(j)

primes = find(large_seq > 0);
primes =
2 3 5 711 13 17 19 23 29 31 37 41 43 47 ... 9967 9973

size (primes)
ans =
1 1229 % there are 1229 primes < 10000
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We see there are 1229 primes < 10000. This agrees well with the Lagrange’s
approximation for m(z), the number of primes < z:

m(z) ~ = 1230.51

- r
Inz — 1.08366

15.

%

% euclid.m

% This file implements function d = euclid(a,b)
% which can be called from other programs. In

% particular, it recursively calls itself, until
% the result is O.

)

function d = euclid(a,b)

if (a==0) | (b==0)

d = a+b; % e.g., GCD(5,0) = 6
end
if a==b

d=a; % e.g., GCD(5,6) = b
end

if (a>b) & “(a*b == 0)
r = a - floor(a/b)»b;
d = euclid(b,r);

end

if (a<b) & “(a*b == 0)
r = b - floor(b/a)s*a;
d = euclid(a,r);

end

end

MATLAB has a built-in function gcd which does the same. Furthermore,
it can be used for the extended Euclid’s algorithm, i.e., not only to find d =
GCD({a, b), but also integers a and 8 such that aa + b = d:

a = 543312;
b = 65340;
[d,A,B] = gcd(a,b)
ds=
396
A=
73
B =
-607 % indeed: 73x543312 - 607%65340 = 396



Appendix B

Mathematical preliminaries

B.1 Introduction

This Appendix has a twofold purpose: first, it is a mathematical refresher for
the tools used in the rest of the book; secondly, it reviews the notation we
use with these tools. The presentation is neither complete nor tutorial, hence
the readers not already familiar with the ideas and concepts presented in this
Appendix should get better mathematically prepared. We shall discuss the
following topics:

o Differential and difference equations
o Laplace and z-transforms

e Matrices and determinants
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B.2 Differential and difference equations

The dynamic behavior of many natural phenomena, mechanical systems, or elec-
tronic circuits, can be accurately modeled using differential equations. They are,
therefore, an essential mathematical tool in physical sciences and engineering.
If the sampling interval is properly chosen, difference equations can be used
instead of differential equations, allowing for the use of digital computers in
modeling, analysis, and control.

Historical background

Calculus. Geometrical problems, such as calculation of areas and volumes
and construction of tangents, were the primary source of inspiration for what
are now the basic methods of calculus. The first such methods were developed
by the Ancient Greek geometers Eudoxus, Euclid, and Archimedes. In the early
seventeenth century Kepler, Cavalieri, Torricelli, Descartes, Fermat, Roberval,
and Wallis contributed many new ideas and discovered important pieces of what
would soon become calculus. '

The first to put all these ideas together, to unify the notation, and to apply
them to problems in kinematics, dynamics, and celestial mechanics was New-
ton in 1665. This work wasn’t published until much later, in 1736 (nine years
after his death), but some of his contemporaries were aware of it. It is quite
likely that Newton had discovered most of his revolutionary results published
in Philosophiae Naturalis Principia Mathematica in 1687 using his method of
“Huents” and “fluxions” but in that book he proved them using the traditional
Greek geometry'. Independently from Newton, in the late 1670’s, Leibniz suc-
ceeded in unifying the previous knowledge, created his own notation, and for-
mulated algorithms using the symbols d and [. He published his findings in
1684 in the article entitled A New Method for Mazima and Minima as Well as
Tangents, Which Is Impeded Neither by Fractional nor by Irrational Quantities,
and a Remarkable Type of Calculus for This.

The eighteenth century was the century of great discoveries in this field.
Calculus has been applied to various problems in geometry and mechanics with
great success. The main contributors during this period were Jakob and Johann
Bernoulli, Taylor, Maclaurin, Euler, d’Alembert, Laplace, and Lagrange. But
it was only in the nineteenth century that the rigor was brought into calculus,
mostly through the work of Cauchy and later Weierstrass and Cantor.

Today the calculus comprises the following disciplines: differential and in-
tegral calculus of real and complex variables, theory of infinite series, theory of
differential equations (ordinary and partial), theory of integral equations, and
calculus of variations.

LSimilarly, Archimedes had a method of calculating areas and volumes (basically it was
integration; he called it the “mechanical method”) but he didn’t consider it rigorous enough
for the actual proofs, so he used his method to discover new results, but proved them using
the standard geometry.
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Differential equations. Almost as soon as the new calculus was invented,
the first differential equations appeared. Newton called them “fluxional equa-
tions” and solved them using power series with indeterminate coefficients. Since
his work wasn’t published until more than seventy years later, it was the work
of Leibniz and his students and followers that laid the foundation of modern
theory of differential equations.

For example, in 1690, Jakob Bernoulli reduced the problem of determining
the isochrone (the curve in a vertical plane down which a particle, starting at
any initial point on the curve, will descend to the lowest point in the same
amount of time) to a first-order nonlinear differential equation

(b%y — a®)/2%y = a

where the prime denotes the derivative with respect to . He solved it by what
is now called the method of separation of variables.

By the end of the seventeenth century Leibniz and the Bernoulli brothers
discovered most of the methods for solving first-order ordinary differential equa-
tions. By the time Euler entered the scene, several classes of ordinary differen-
tial equations were already investigated: linear, Bernoulli, Riccati, and Clairaut
differential equations.

The eighteenth century developments were marked by the work of Euler,
who made significant contributions: new methods for lowering the order of an
equation, the concept of an integrating factor, the theory of higher-order linear
equations, early developments of the theory of elliptic functions, and application
to a wide variety of mechanical problems.

All these discoveries were finally mathematically justified in the 1820’s when
Cauchy put calculus on firm foundations. In the theory of differential equations
he established the sufficient conditions for existence and uniqueness of a solution
of a first-order differential equation

Y = f(z,y)

Since that time many mathematicians contributed to the further develop-
ment of the theory and applications of differential equations, to mention just a
few: Lie, Poincare, Picard, Lyapunov, Volterra. In 1926 Schrédinger discovered
his famous wave equation, which is a fundamental equation of quantum physics.

Difference equations. Difference equations, or the calculus of finite dif-
ferences, as this branch of mathematics is also called, were first investigated
by Gregory, Newton, and Taylor. They were never as important in theoretical
developments as in numerical calculations, where differentials are substituted
by finite differences. For example, in 1822 Babbage built a prototype of his
Difference Engine, intended to solve differential equations based on the method
of finite differences. They came to prominence with the development of digital
computers and discrete-time control and communications systems.
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Differential equations at a glance

A note on notation. In this general discussion about differential equations
we shall use the notation introduced by Leibniz, which is still in widespread use.
For example, the second-order linear differential equation in this notation is

v'(@) + f(2)y'(z) + 9(x)y(z) + h(z) = 0

where y" = :—zg and y' = % are the second and the first derivatives of y(z),
respectively.

Later, in the main body of this book, our functions will be functions of time.
This presents us with two choices: we can simply substitute ¢ for  and write

v'(®) +F(B)Y' (D) + 9)y(t) + h(t) =0

or we can use the notation used by Newton, in which a dot denotes the time
derivative:

§(®) + F(0)u(®) + 9(t)y(t) + k(1) =0

In order to avoid the confusion with matrix transposition, which is also
denoted using a prime, in the main body of this book we shall use the Newton’s
notation.

Cauchy’s theorem. The following theorem due to Cauchy provides suffi-
cient conditions for a first-order differential equation

¥y =fz,y), y®)=wo

to have a solution. Furthermore, if the conditions of the theorem are satisfied,
the solution is unique. We shall also see that this theorem can be generalized
to give the sufficient conditions for the existence and uniqueness of solutions
of higher-order differential equations. Unfortunately, this theorem doesn’t offer
much help in finding the actual solution, but knowing that the solution exists
and that it is unique is often enough, because then we can have greater con-
fidence in the numerical solutions obtained using a computer. We give this
important theorem here without a proof. Interested reader should consult any
book on differential equations.

Theorem B.2.1 Assume that a function f(z,y) satisfies the following two con-
ditions:

1. It is continuous in a closed region D of the x-y plane containing the point
(z0,Y0)-

2. In D this function satisfies the Lipshitz condition with respect to y:

|f (@, y2) = f(z,91)| < Kly2 — 1]
where (z,y,) and (z,y2) are in D and K > 0.
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Then the first-order differential equation

y' = f(z,y)
has a unique solution y = Y (z) satisfying the initial condition Y (zo) = yo. This

solution is differentiable in the neighborhood of xq.

This theorem can be generalized to a system of n first-order differential
equations. This is important, because a differential equation of order n

2™ = f(z,2,7,...,201) with z0)(z0) = 2o (j =0,1,...,n—1)
can be written as a system of n first-order equations (note that y; = 2):
V=92 - Yn1=Yn  Yn=F(@y,92-..,¥n)
with initial conditions y;+1(z0) =z (4 =0,...,n—1).

Theorem B.2.2 Assume that the functions fi, ..., fn satisfy the following two
conditions:

1. They are continuous in a closed region D containing (o, Y10, - - ,Yno)-

2. In D these functions satisfy the Lipshitz condition:
n
|fe(@, 912, ¥n2) = Fi(@, Y110 - ¥ S KD lyiz—ya| (k=1,...,n)
i=1

where (z,%12,...,Yn2) and (Z,Y11,..-,Yn1) are in D and K > 0. Then the
system of first-order differential equations

ZU'1 = fl(m’yla""yn)
y:z = fn(x,yla--',yn)
has a unique solution y,, = Yi(z) (k=1,...,n) satisfying the initial conditions

Yi(zo) =wyro (k=1,...,n). This solution is differentiable in the neighborhood
of zo.

As a special case which is of particular interest to us, consider a homogeneous
linear differential equation of order n

¥ 4+ a, @)y 4.+ anoa (@)Y + an()y =0
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In the notation of the generalized Cauchy’s theorem we have

fi=y2 . fasi=yn fa=—(a(@)yn + ...t an-1(2)y2 + an(@)y1)
and it is easy to see that as long as functions a;(z) (k = 1,...,n) are continuous,
the functions fi,..., f, satisfy the conditions of Theorem B.2.2. In this book

we shall consider only the cases in which ax(z)’s are constants, which further
simplifies the analysis.

For further results we are going to need in this book, the reader should take
a look at problems in Section 3.1.

Difference equations at a glance

Similarities with differential equations. A detailed comparison of
methods used for solution of differential and difference equations shows many
similarities. For example, in differential and integral calculus we often use the
following identities:

1
—z" = nz"! and /ac" dr = ——z"t' 4 C
n+1

The following function and associated identities are equally important in the
calculus of finite differences:

Definition B.2.1 The falling factorial power of k is

k2=k(k~1)...(k—n+1)

In the special case whenn = 0 it is defined to be 1. The symbol k2 is pronounced
“k to the n falling.”

It is easy to show that the difference of the falling factorial power is
AK2 = (k+1)% — k2 = nk2=L

while the indefinite sum of the falling factorial power is

Entl
Zkm:n—l-l +C
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Similar identities hold for the rising factorial power:

Definition B.2.2 The rising factorial power of k is
K"=k(k+1)...(k+n—1)

In the special case whenn = 0 it is defined to be 1. The symbol k™ is pronounced
“k to the n rising.”

Another important similarity is the analogy between the function e®* in the
“continuous” calculus and the sequence a* in the “discrete” calculus:

fl@)=af(z) = flz)=Ce*
while

glk+1=aglt] = g[kl=Ca*

With all these and other similarities between the differential calculus and the
calculus of finite differences, it should be no surprise that the general solution
of the order-n homogeneous linear difference equation with constant coefficients

ylkl| +aiyk—1+...+ay[k—n]=0

can be written as soon as we determine the roots of its characteristic equa-~
tion (these roots are called characteristic values or eigenvalues of the difference
equation):

1

™m+ar” T +...+a, =0

To learn more about solving difference equations the reader should refer to
Section 4.1.
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B.3 Laplace and z-transforms

Laplace transform is the most popular integral transform used for solving linear
differential equations with constant coefficients. It transforms them into alge-
braic equations, which are easier to solve. The z-transform takes the place of
the Laplace transform in the “discrete” world.

Historical background

Fourier transform. Fourier was the first to use an integral transform to
solve differential equations. In 1807, Fourier discovered that periodic functions?
can be represented using a trigonometric series®

oo
f(z) = lao + Z(ak cos kx + by, sin kz)
2 k=1

where coefficients ax and b (k =0,1,2,...) can be determined from the Euler-
Fourier formulas

1 m
ar = — f(z)coskz dz

by = % f(z)sinkz dz

In his Analytical Theory of Heat published in 1822, Fourier solved the fol-
lowing partial differential equation*

du_, (@, Pu Pu
ot \oz2 " 9y ' 827

where u = u(z, y, 2, t) was the temperature and k was a constant dependent on
the properties of the medium. In Chapter III of that book he presented “The
first example of the use of trigonometric series in the theory of heat.” There he
solved the heat equation by showing that it was satisfied by sinusoidal functions
of various frequencies. He then used the linearity of the equation to combine
them into a trigonometric series with coefficients chosen so that the boundary
conditions were satisfied as in Example B.3.1:

2To simplify the notation here we assume that the period is equal to 2.

3This is true under certain conditions, the so-called Dirichlet conditions (1829). This
representation was first used by D. Bernoulli and Euler in their work on the problem of an
oscillating chord in the 18th century, but Fourier discovered their real importance.

4This is the so-called heat equation, also known as the diffusion equation. Many unrelated
physical phenomena can be described by it.
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Example B.3.1 Consider a homogeneous solid bounded from the left and right by
vertical planes, and from above by a horizontal plane (see Figure B.1). Let the boundary
conditions be (for any z € (—d,d) and y > 0)

u(z,0) =1, u(-d,y)=0, u(d,y)=0, end lim u(z,y)=0
y—=00

y
u(-d,y)=0 u(dy)=0
-d 0 d! x
u(x,0)=1

Figure B.1: The boundary conditions in Fourier’s first example.

The heat equation in this case becomes

2 2
Ou _p(0u, O
ot dz?2  9y?
If we are interested in the stationary solution alone, then du/dt =0, so we have
?u  Bu
4= =9 B.1
Ox? + dy? (B.1)
At this point, Fourier wrote: “In order to consider the problem in its elements,
we shall in the first place seek for the simplest functions of x and.y, which satisfy

equation (B.1); we shall then generalize the value of u in order to satisfy all the stated
condsitions.”

If the solution is assumed to be of the form u(z,y) = f(z)g(y), then from (B.1)

f'ie) _ _9g"w)
f(z) 9(y)

which means that both sides are equal to some real constant m. Therefore,

u(z,y) =e " cosmz

Since u(z,y) must be bounded, m > 0. In order to simplify further analysis, set
d = w/2. Boundary conditions u(xm/2,y) = 0 imply that m can be an odd integer
only.

Since the equation (B.1) is linear, before imposing the boundary condition u(z,0) =
1, we can say that, in its most general form, the solution is a linear combination of
the solutions we have obtained earlier:

u(z,y) = ae VYcosz + be % cos 3z +ce Y cos5r + ...
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Now we use u(z,0) =1 to obtain

acosz +bcos3z+ccosbr+... = 1, —%Sxﬁ% (B.2)
The unknown constants a,b,c,... can be determined by multiplying (B.2) by cos z,
cos 3z, cos bz, ... respectively, and integrating from —m/2 to w/2 (the Euler-Fourier

formulas). In fact, that is the way Fourier did that later in the book. But here he
considered new equations, obtained from (B.2) by successive differentiations, at =0

a + b + c + ... =1
a + 3b+ 5 + ... =0
a + 3%+ 5% + ... =0
Using Wallis’ formula
224466 _m
1335 5 7 2
this system can be seen to have the following solution
4 4 4
a= '7;7 b= _3_71', c= 57

thus, the solution u(z,y) is given by

( l)k ! —(2k-1)y
u(z,y _1 E A 0s(2k — 1)z o
( ’ ) ™ ket 2k -1 ¢ ¢ S(2 1)

Laplace transform. Laplace was the first to use the following integral
transform

F(s) = /0 ” fe *tat

today called the one-sided or unilateral Laplace transform, to solve differential
equations. Most of the early work on this transform was done by Petzval®. In
the early 1900s Bromwich discovered the inversion formula
. 1 r+joo
fit) = — F(s)e**ds  (for any r in the region of convergence)
27['] r—joo
Unaware of these mathematical developments, in 1892 Heaviside introduced
his operational calculus to solve differential equations arising in electrical cir-
cuits and problems in electrical transmission and telegraphy. Heaviside wrote p
instead of d/dt, thus obtaining algebraic equations and did the inversion using
the tables. For a while Heaviside’s operational calculus was disputed as having
no mathematical foundations, but in 1926 Carson recognized the connection
between the Heaviside’s operational calculus and the Laplace transform. Like

Heaviside, he used an extra p in the definition. In our notation they used

F(s) = 8/000 f(t)e~*tdt instead of F(s) = /Ooo f(t)e"" dt

5 After a public quarrel with a student who unjustly accused Petzval of plagiarizing Laplace,
mathematicians started calling this transform the Laplace transform.
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z-transform. What the electrical engineers call the z-transform the math-
ematicians call the generating functions. Historically, de Moivre was the first
to use this method in 1718. He used it to determine the explicit formula for the
members of the famous Fibonacci sequence, as in the following.

Example B.3.2 The Fibonacci sequence 0,1,1,2,3,5,8,13,21, 34, 55,. .. is defined by
the following recursion

fa=faci+fae fo=0,fi=1

By definition, the generating function for the sequence of Fibonacci numbers is

G(@)=fo+ hz+ faz’ + ...

Note that its z-transform is given by® F(2) = Z{fs} = fo+ iz 7' + foz™2 + ...
From the recursion and the initial conditions de Moivre found the following algebraic
equation for G(z)

Cx) — 2G(x) — 2°CGx) =z
which implies

G(x):l_“’

r—2x2

This expression can be written using the partial fraction expansion as

G(z)=£ 1 ——ﬁ !
51—¢x 5 1—¢z

where ¢ = LZ,‘/E and $ = 1_2‘/3. Note that ¢ = 1.61803 ... is the so-called golden sec-
tion, a very important mathematical constant which appears not only in mathematics,
but also in astronomy, biology, psychology, art, and architecture. Now G(x) can be
rewritten as

V5 V5

G(z) = ?5(1+¢z+¢2a:2+... ) — —52(1+q§z+$21:2+‘.. )
which finally yields

G(z) =0+-‘€—5(¢—$)x+155-(¢2—q32)w2+...

Therefore, we can immediately write
f__\/_'s: 1+v5\" _ [(1-v5\" -
"7 5 2 2
Generating functions were then used by Laplace, who applied them in the

theory of probability. The first to use them in engineering related problems
were Hurewicz, Zadeh, and Ragazzini (see Problem 4.4.12).

SFor further details on this notational difference see Problem 4.4.12.
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Laplace transform at a glance

Useful properties. In the following table we summarize the most com-
monly used properties of the Laplace transform (see also Problem 3.1.5):

Fo) = @) = [ foeta
1 r+4joo

f) = LTYHF(s)} = — F(s)e® ds
27".7 r—joo

for any r in the region of convergence, i.e., to the right from all poles of F(s).

LAPLACE TRANSFORM - PROPERTIES AND PAIRS

original transform property
af(t) + Bg(t) aF(s) + BG(s) linearity
et f(t) F(s—a) s-domain shift
t"f(t) (-=1)"F™(s) s-domain deriv.
f(t—a) (a>0) e~ F(s) t-domain shift
F@) s"F(s) — 3%, 8" f=1(0) | t-domain derivative
fot f(r)dr F(s)/s time integral
[ f@—7)g(r)dr F(s)G(s) time convolution
o(t) 1 Dirac’s delta impulse
1 % Heaviside’s unit step
tnedt 1
n! (s—a)n+!
e~ coswt ﬁ%&ﬁ

—at o3 W
e~ *sinwt GGta)2+a?
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z-transform at a glance

Useful properties. The following table summarizes the properties of the

z-transform:

F(z) Z{flk} =

k=0

Fl¥]

> flkle*

- 1 -
ZYF(z)} = E;r—;ch(z)zk ldz

where C is any circle centered at the origin such that all poles of F(z)z*~! are
in its interior.

Z-TRANSFORM - PROPERTIES AND PAIRS

flk+n] (n20)

2 (Fl2) - i flile)

original transform property
aflk] + Bylk| aF(z) + BG(2) linearity
a* f[k] F(z/a) 2-domain scaling
(k +1)™ flk +m] #—)ﬁF (2) z-domain derivative
flk—n] (n>0) 2 "F(2) k-domain shift

k-domain shift

1-2q2~1 cos w+a2z—2

ZLO Ik —ig[7] F(2)G(2) k-domain convolution
8[k] 1 Kronecker’s delta
1
k 1
@ 1-az™?!
(k+1)™a* 1
m! (1—az~1)m+l
¥ cos ki 1—az"!cosw
a” cos kiw 1-2az-1lcosw+a?z—2
a¥ sin kw 6z~ sinw
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B.4 Matrices and determinants

Matrix notation and methods are the most important mathematical tool that
we use in this book. Therefore it should be no surprise that besides this brief
historical and theoretical introduction and problems in Sections 3.2 and 4.2, we
have also dedicated Appendix C to matrices. Their usefulness stems from the
compact notation they offer for many classes of problems, especially for systems
of equations and for quadratic forms.

Historical background

The need for matrices and determinants arose first in the context of systems
of linear equations, and later with investigations of quadratic forms. This same
notation became useful in other areas, e.g., in analytic geometry, functional
analysis, probability, physics, and engineering.

Systems of linear equations. A Babylonian clay tablet from around
300 BC contains the following problem:

There are two fields whose total area is 1800 square yards. One
produces 2/3 of a bushel of grain per square yard while the other
produces 1/2 a bushel of grain per square yard. If the total yield is
1100 bushels, what is the size of each field?

This is the oldest known problem which reduces to a system of simultaneous
equations. The oldest known use of matrix methods is found in the Chinese
mathematical text Nine Chapters on the Mathematical Procedures, which was
probably compiled in the 1st century AD. It contained the following problem,
whose solution used all but modern notation: the reader will recognize the
Gaussian elimination and rules to transform matrices.

Example B.4.1 There are three types of corn. Three bundles of the first, two of the
second, and one of the third make 39 measures. Two of the first, three of the second
and one of the third make 34 measures. And one of the first, two of the second and
three of the third make 26 measures. How many measures of corn are contained in one
bundle of each type?

In our modern notation we would write this as

3z+2y+2z = 39
2c+3y+2z = 34
z+2y+3z = 26

The ancient text proceeds by writing the coefficients in a form of a table

1 2 3
2 3 2
3 1 1

26 34 39
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which is then transformed using the following rule: multiply the middle column by 3
and subtract the right column from it as many times as possible. Then similar is done
with the left and the right column, which yields

0o 0 3
4 5 2
8§ 1 1
39 24 39

Finally, if the left column is multiplied by 5 and the middle column is subtracted from
it as many times as possible, the following new equivalent system is obtained

0 0 3
0o 5 2
36 1 1
99 24 39

This same method was used centuries later by Gauss when he calculated the siz orbital
elements of the asteroid Pallas. O

The rule for solving a 2 x 2 system was first given by Cardano in his Ars
Magna in 1545. Today we recognize it as the first instance of the Cramer’s rule.

Determinants were first defined by the Japanese mathematician Seki in 1683.
He was able to calculate determinants up to 5x 5 and to demonstrate the general
rules for their evaluation through examples. That same year, Leibniz was the
first to introduce determinants in Europe. He proved various results about
3 x 3 determinants, including what we now call the Cramer’s rule and Laplace
expansion. In 1750 Cramer gave the general rule for systems n x n. The first
to use the compactness of determinants to simplify the discussion was Laplace
in 1772 in a paper about the orbits of the inner planets. He also proved the
general case of the expansion rule now named after him. Gauss’ motivation
for inventing an efficient method for solving simultaneous equations was also
coming from the celestial mechanics. In 1809 he introduced the elimination
algorithm, now named after him, in his work on orbital elements of the asteroid
Pallas, where he dealt with six linear equations with six unknowns.

Quadratic forms. Gauss was the first to use the term “determinant” in his
Disquisitiones Arithmeticae in 1801. He used that name because these objects
determined the properties of the quadratic forms he was studying. In the same
context he described matrix multiplication and inversion.

In 1812 Cauchy and Binet found the rules for determinant multiplication.
In 1826 Cauchy worked on quadratic forms and in that context he calculated
the eigenvalues of the corresponding matrices, and showed that real symmetric
matrices are diagonalizable. In 1846 Finck published the rule for evaluation of
3x 3 determinants and credited Sarrus for it.

The modern notation for determinants (two vertical lines) was first intro-
duced by Cayley in 1841, while in 1850 Sylvester was the first to coin the term
“matrix.”
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Later developments. In 1858 Cayley gave the abstract definition of a ma-
trix, thus generalizing the rectangular arrays of numbers encountered in various
mathematical investigations. He proved that 2 x 2 and 3 x 3 matrices satisfy
their own characteristic equations. Hamilton proved the same result for matri-
ces 4 x 4 in his work on quaternions. The general case was proved by Frobenius
in 1878, in the same paper in which he introduced the notion of the rank. When
in 1896 he became aware of Cayley’s work, he generously attributed this impor-
tant theorem to him. Important work on matrices and determinants was also
done by Weierstrass and Kronecker.

In 1925 Heisenberg formulated his quantum theory using arrays of num-
bers describing probabilities of transitions between different quantum states.
It was Born who first recognized the matrices in Heisenberg’s work. In 1927
Schrédinger proved the equivalence of his and Heisenberg’s approach. Today
matrices are useful in many areas of science and engineering, such as signal and
image processing and control theory.

Matrices and determinants at a glance

Matriz operations. Consider the following system of m equations in n
unknowns 1,Z2,...,Zn:

anTy + a2 + ... + QpTp, = b
a1T1 + Tz + ... + agpz, = b

. (B.3)
Am1T1 + Gm2T2 + ... + ApnZn = bm

If we use the usual definition of multiplication of a matrix and a vector, we
can write this system as follows:

Az =b
where
ann @12 ... G1p T b
a1 a2 ... G2n T2 ba
A. = T = b =
Am1 AGm2 ... QGmn Tn bm

Similarly, all other basic matrix operations have interpretation, probably
even the origin, in the world of systems of linear equations. For example, to
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see why the standard” definition of matrix multiplication makes so much sense,
consider the change of variables in the system (B.3):

T3 = puwr + prpw2 + ... + PinWs
Ty = pawr + Pppewr + ... + DWWy
(B.4)
Tyn = PmtW1 + Ppowe + ... +  DPnnWn
Then the system (B.3) becomes
(@11 + ...+ @iapni)wr  + + (@u1Pin+ ...+ GinPrn)wn = b
(@1pr1 +--. +@2npmi)wr + ... + (a21Pin+ ...+ a2nPpn)Wn = by
(amlpll +...+ amnpnl)wl + ... + (amlpln +...+ amnpnn)wn = bny

which is consistent with the definition of matrix multiplication and the matrix
form of this system

APw=1"»
where
pi1 P12 ... Pin w b
P21 P22 --- Pon (1)) bo
P = . . . w=| . b= | .
Pmt Pm2 --- DPmn Wn, bm

All this is also consistent with writing the transformation equations (B.4) as
z = Pw.

7The standard matrix multiplication is named after Cayley. There are other types of matrix
multiplication, such as Kronecker (also called tensor product or direct product of matrices),
Hadamard, inner, outer, cojoint, Lie, and others (see [15]). For example, the Kronecker
product of two square matrices is defined as

un1V. w2V ... 4,V

unV w2V ... uxV
vev¥ .

umlV. urdV ... up,V

therefore, if the orders of U and V are r and s, respectively, the order of their Kronecker
product U @ V is rs.
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A note on notation. In this book we use the following notation:

o In AT the operator T denotes matrix transposition.
e In A the bar denotes the complex conjugation.

e In A¥ the operator H denotes the Hermitian operator, i.e., A# = (4)T.

Obviously, if A is real, then A = AT. We also use the prime to denote the
Hermitian operator: A' = AH. Hence, for real matrices, the prime denotes the
transpose.

The reason for this double notation is that one notation is sometimes easier
to read or use than the other. For example, MATLAB adopted the prime because
it is easier to use when typing programs. On the other hand, writing A~7 is
more elegant than the cumbersome (4')~! or (471)".

Operations on determinants. In order to illustrate the operations on
determinants we shall investigate one important class of determinants, the so-

called Vandermonde determinants.

Example B.4.2 The Vandermonde determinant of order n is defined by

1 a1 ... a’;—l
1 az af_,'_l
Vn(al, - ,a,n) =
-1
1 a, ... aj

We shall use the induction to prove that for n > 2

Va(ay,...,an) = H (a; - a:)

1<i<j<n

For example, for n = 3 we shall find

[N}

1 a a
Vala,b,e)=|1 b b |=(c—a)c—b)(b—a)
1 ¢ ¢
First step: For n = 2 we have
1 a
1 a |= a2 — a1

Second step: Let

Vk(aly"'yak)= H (a’j _a‘i)

1<i<j<k
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Third step: If in the determinant

1 ai al a’f
1 a2 a% algc
Viti(ay, ..., ar41) = :
1 a az . a’,§
2 k
1 Qk+1 Apq1 .- Oy

from the j-th column we subtract the (j — 1)th column multiplied by ax+1, for all j =
2,3,...,(k+1), end then extract (a; —ak41) from the i-th row, for everyt=1,2,...,k,
we find

11 a af~1

11 a ... af! .
Ver(ar,oyae) = 01 A RICR IR | (CHPEED)

11 a ... af! i=1

10 0 ... 0

Using the Laplace’s determinant expansion, we find
k
Virr(as,. s aen) = (“D* 1 Vi(ar, a0 - (=1)* - [[ (ar41 ~ a5)
i=1

hence, using the inductive hypothesis,

Vigi(at,. .., a541) = H {aj —a:) o

1<i<j<k+1



Appendix C

Results from advanced
matrix theory

C.1 Eigenvectors and eigenvalues

If A is a square complex matrix of order n, a function A : C™— C™ defined by
y = A(z) = Az

is linear (i.e., it is additive and homogeneous). Function A(z) is usually called

a linear transformation.

Very often it is important to determine those vectors r # 0 transformed by
A into vectors y, such that y = Ar, for some complex scalar A, i.e.,

Ar=Ar, 7#0, AeC

Such vectors are called the eigenvectors (or the characteristic vectors) of
matrix A.

Definition C.1.1 (Eigenvectors and eigenvalues) Let A be an order n
complezx square matriz. Every vector r € C" satisfying

Ar=Xr, 7#£0 (C.1)

is an eigenvector of the matriz A, and scalar A € C is the corresponding eigen-
value.

We can write (C.1) as

M-Ar=0, r#£0 (C.2)

Since eigenvectors must be non-zero, i.e., nontrivial solutions of (C.2), we see

325
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that the eigenvectors can be found if and only if

det(A\] — A) =0 (C.3)

We just proved the following theorem:

Theorem C.1.1 A complex number )\ is an eigenvalue of A if and only if it
satisfies the equation det(AI — A) = 0.

Equation (C.3) is called the characteristic equation of A. Since det(AI — A)
is a polynomial in A, and its degree is n, the Equation (C.3) has n solutions,
with some of them possibly equal to each other.

Note that, since for each eigenvalue A, (k= 1,2,...,n) we have det(A\] —
A) = 0, we can find at least one eigenvector for each distinct A;. Therefore, if
A has ¢ < n distinct eigenvalues it has at least g eigenvectors. The following
theorem tells us that these eigenvectors are linearly independent:

Theorem C.1.2 If a matriz of order n has q < n distinct eigenvalues, then it
has at least q linearly independent eigenvectors, at least one corresponding to
each distinct eigenvalue.

Proof. Denote by ri the eigenvector corresponding to the eigenvalue Ay (k =
1,2,...,q), and suppose that the theorem is not true. If eigenvectors ry are not
linearly independent, then

o +aers + ...+ agrg =0 (C.4)

where at least one of the scalar coefficients is non-zero, for example o, # 0.
From Ary = Agry it follows that APr, = /\zrk, for any nonnegative integer
p, so for any polynomial g, it is true that

g(A)ry = g(Ax)re

We will pick polynomial g such that

g(/\k) =57nk (k= 1,2,...,(1)

Note that there is exactly one such polynomial of degree (¢ — 1) (recall the
Lagrange’s method of interpolation), and infinitely many such polynomials of
higher orders.

Now premultiply Equation (C.4) by g(4). We get

q q q
gAY aure =0 = Y axg(Ari=0 = > argM)rk =0
k=1 k=1 k=1

Since we picked g so that g(Ax) = dmk, we have o, rm = 0, but since ry, is
an eigenvector, it must be non-zero, therefore o, = 0, which contradicts our
initial assumption a,,, # 0. This proves the theorem. ]
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Corollary C.1.1 If all eigenvectors of a matriz A are distinct, i.e., if
Ai#EA (@ #7)

then the eigenvectors of A corresponding to Ay (k = 1,2,...,n) are linearly
independent.

If A has repeated eigenvalues, it has < n (but > ¢) linearly independent

eigenvectors!.
-1 1 1
A= 0 0 1
0 -2 -3

It can be seen that the eigenvalues of A are A1,2 = —1 and A3 = —2, and that the
eigenvectors corresponding to them are of the form

a c
r(AL2) = [b] and r(3) = [ c ]
-b ~2¢

Obviously, we can pick two linearly independent eigenvectors corresponding to
A1,2 = —1, and one corresponding to As = —2, for ezample

1 0 1
ri= |0}, r2=1] 1}, and r3= 1 a
0 -1 -2

Example C.1.2 Let
1 1 0
A=]0 0 1
0 01

The eigenvalues of A are Ay = 0 and A2,z = 1. In this ezample, all eigenvectors
corresponding to the double eigenvalue A23 = 1 are of the form r(A23) = [b 0 0]7.
Therefore, this matriz has only two linearly independent eigenvectors, the minimum
guaranteed by Theorem C.1.2. O

Example C.1.1 Let

It is easy to see that the number of linearly independent eigenvectors corre-
sponding to the eigenvalue A\; of A is in general equal to the nullity of (A — A),
v(Agl—A) = n—p(Ax I —A), where p denotes the matrix rank. This is so because
the nullity determines the number of linearly independent nontrivial solutions
of (/\kI - A)T(/\k) =0.

More details about the number of linearly independent eigenvectors corre-
sponding to each of the distinct eigenvalues can be found in Problem C.8.4.

lFor example, normal matrices (which include real symmetric and Hermitian matrices)
have n linearly independent eigenvectors even if they have repeated eigenvalues. Furthermore,
these eigenvectors are mutually orthogonal.
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Now we shall consider several important properties of eigenvalues:

Theorem C.1.3 If A, A2, ..., A, are the eigenvalues of A, then

Mt A+...+ A= tr(A) (C5)
A1hz ... A, =det(A) (C.6)
where tr(A) = a1 + a2 + ... + any i3 the trace of A.

Proof. Consider the characteristic polynomial of A

det(AT — A) = (A = A)(A = A2) ... (A= An) (ko)

The coefficient next to A"~! on the right-hand side of (C.7) is equal to
—(A1 + A2+ ...+ Ay). On the left-hand side of (C.7) the coefficient with A"~1
comes only from the product of the elements on the main diagonal, i.e., from
(A—a11)(A—a22) ... (A —any). Therefore it is equal to —(a11 +az2 +...+anys),
and we see that (C.5) is true.

To prove (C.6) consider the value of both sides of (C.7) when A = 0. The
left-hand side is equal to det(—A) = (—1)™ det(A), while the right-hand side is
equal to (—=1)"A1)z2...A,. Hence (C.6) is true. 0

Theorem C.1.4 If ) is an eigenvalue of A, then, if A1 exists, one of its
eigenvalues is A~ 1.

Proof. First note that if A~! exists, than det(4) # 0, and from Theo-
rem C.1.3 we see that none of the eigenvalues of A can be zero.

If A is an eigenvalue of A, then it satisfies the characteristic equation of A.
Since

detOA —A) =0 ¢ Adet(A™! —A~I)det(4) =0

from X # 0 and det(A) # 0, we see that A~! satisfies the characteristic equation
of A~1, which proves the theorem. o

We noted earlier that for an arbitrary square matrix A
Ar=Ar = APr = Mr (for all nonnegative integers p)

iee., if A is an eigenvalue of A, then for any nonnegative integer p, AP is an
eigenvalue of A?.

Using the previous theorem, we can say that, if A is nonsingular, then if A
is an eigenvalue of A, AP is an eigenvalue of AP, for any integer p.

Thus we proved the following theorem:

Theorem C.1.5 If A is a nonsingular matriz, then if A is an eigenvalue of A,
AP is an eigenvalue of AP for any integer p. If A is singular, the same is true,
but for nonnegative integers p only.
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At the end of this section, we shall prove one of the most important theorems
in matrix theory, the Cayley-Hamilton (C-H) theorem:

Theorem C.1.6 (Cayley-Hamilton) Let a(A) = A" + ey A" + ... +a,, be
the characteristic polynomial of A, i.e., a(\) = det(AI — A). Then

a(A) =0

Proof. Recall that for any matrix U we can find a matrix adj(U), the
adjoint matrix of matrix U, such that

Uadj(U) = det(U)I
Let us also mention that if det(U) # 0, then Uadj(U)/ det(U) = I, therefore

_ adj(U)

det(U) #0 = U_l‘det(U)

Let B be the adjoint matrix of AJ — A:
B = adj(\I — A)

All elements of B are polynomials in A with degree less than n, therefore we
can write

B=BoA" '+ B A" %2+ .. . +B,

where matrices By (k=0,1,...,n — 1) do not depend on .
Since

(A = A)B = det(AI — A)I

we have

By = 1T
—ABy +B = al
—AB, 24+ Bn1 = anal
-—ABn_l = anI

If we multiply the first of these equations by A™, the second by A™!,
etc., and the last by I, and add them together, we get

A"+ gAY+ tan 1At a =0

ie., a(4) = 0. o
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C.2 Diagonal and Jordan forms

In many cases, properties of a square matrix are the same as those of some
diagonal matrix. For example, their eigenvalues are the same. But, in general,
we can not always find the appropriate diagonal matrix, because not all matrices
are diagonalizable. Fortunately, to cover all cases, we don’t have to go far in
generalizing the diagonal matrices, because every matrix can be transformed
into a Jordan form.

First, we shall use Corollary C.1.1 to show that if A has distinct eigenvalues,
then it can be diagonalized. If R is a matrix whose columns are the right
eigenvectors corresponding to n distinct eigenvalues of A, i.e.,

R=[r1 re ... rn]
than the equations Ary = \err (kK= 1,2,...,n) can be written as
AR = RD

where D = diag(\;, A2, .., An)-
Since rx (k=1,2,...,n) are linearly independent vectors, matrix R is non-
singular, and we can write

R 'AR=D

Before stating this result in the form of a theorem, let us define the notion
of similarity. Section C.3 is exploring matrix similarity in more details.

Definition C.2.1 Matriz F is said to be similar® to a matriz G if there ezists
a nonsingular matriz S (the similarity transformation matriz) such that

F =8GS™!

Theorem C.2.1 If A has distinct eigenvalues, then it is similar to a diagonal
matriz of its eigenvalues. The similarity transformation matriz in that case is
the matriz of right eigenvectors of A.

Theorem C.2.1 gives us a sufficient condition for a matrix to be diagonaliz-
able, but this condition is not necessary®. In the following theorem we give the
condition which is both necessary and sufficient for a matrix to be similar to a
diagonal matrix.

2Gimilarity is an equivalence relation (i.e., it is reflexive, symmetric, and transitive). Similar
matrices have many common properties, for example their eigenvalues are the same. To see
that, we can use the fact that det(S) # 0 to show that their characteristic equations are
the same: det(A\] — F) = 0 ¢ det(M — SGS™!) =0 < det(S(S™IAMS-G)S™!) =
0 & det(S)det(A\] — G)det(S~1)=0 & det(A\I - G)=0.

3A unity matrix, which is diagonal, has repeated eigenvalues (see Example C.1.1).
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Theorem C.2.2 Arbitrary matriz A of order n is similar to a diagonal matriz
if and only if it has n linearly independent eigenvectors.

Proof. If A has n linearly independent eigenvectors* ry,rs,...,r, then,
as in the derivation of Theorem C.2.1, R~!AR = diag(A1, A2,...,A,), where
R=[ri72 ... mp]

Now suppose that A is similar to some diagonal matrix D. As we noted
earlier, similar matrices have the same eigenvalues, so D must be of the form
D = diag(Xiy, Aizy-- -5 Ain ), where A (k= 1,2,...,n) are the eigenvalues of
A, and (41,13,...,1,) is some permutation of the set {1,2,...,n}. From the
definition of similarity, there exists a nonsingular matrix S such that

S7'AS =D, ie, AS=S8D

From the last relation we see that the columns of S are the eigenvectors of
A. Since S is nonsingular, A has n linearly independent eigenvectors. O

As we mentioned earlier, if A has repeated eigenvalues, it may have less
than n linearly independent eigenvectors (see Example C.1.2). If that is the
case, then by Theorem C.2.2, this means that A is not diagonalizable. In such
cases the best we can do is to transform A into a matrix in Jordan (canonical,
normal) form, which we define via Jordan blocks:

Definition C.2.2 (Jordan block) A Jordan block of order m is

A =[] (m=1)

A1 00 ... 00
0A10 ..00

In(N) = 0 0 A1 0 0 (m>1)
0 000 ... 21
0000 ... 0 A

Definition C.2.3 (Jordan form) Matriz J of order n is in Jordan form if

J = diag(Jm, (A1), Jma(A2)s- - -, Imi (Ak))

where mi+ma+. ..+my =n, and it is possible that some of the numbers A; (i =
1,2,...,k) are equal to each other.

4 As we shall see later, normal matrices (including real symmetric and Hermitian matrices)
have n mutually orthogonal (and therefore linearly independent) eigenvectors even when they
have repeated eigenvalues.
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Example C.2.1 Matriz

5 0 0 0 0 0
051000
J=005100
0 0 05 00
00 00 91
00 0 0 009

is in Jordan form, with
J = diag(J1(5), J3(5), J2(9)) O
The following important theorem is given without a proof:

Theorem C.2.3 Every complex square matriz is similar to some matriz in
Jordan form.

Example C.2.2 Matriz

5 —4 -3 6
1 3 -3 3
A= 1 -3 4 2
1 -4 -3 10
is stmilar to
4 1 0 0
0 4 00
J= 00 7 1
00 0 7
because
11 11
o=l |1 0 1 0
J=8""AS, where S= 100 1
1 01 1

Note that the columns of S are the eigenvectors and the generalized eigenvectors
of A. In the next example we show how to determine the generalized eigenvectors of a
matriz. Together, eigenvectors and generalized eigenvectors are called principal vectors
of a matriz. Also, note that the diagonal elements of J are the eigenvalues of both J
and A. ]

Example C.2.3 Consider again

110
A=]0 0 1
0 0 1

Recall that the eigenvalues of A are A1 = 0 and A2.3 = 1. All eigenvectors corre-
sponding to A1 = 0 are of the form



C.2. DIAGONAL AND JORDAN FORMS 333

a
r(A1) = |~a
1}
while all eigenvectors corresponding to A\2,3 = 1 are of the form
b
r(Ag,3) = |0
0]

Therefore, A does not have a full set of linearly independent eigenvectors, i.e., it
is not diagonalizable. But every matriz is similar to some matriz in Jordan form, the
generalization of the diagonal form. In order to transform A into its Jordan form, we
have to find the generalized eigenvector corresponding to Az23 = 1.

The generalized eigenvector rg(A2,3) can be found from

(A - A2_3I)1‘g(A2_3) = T(A2,3) (01" (A - A2,31)21‘9(A2_3) = 0)

rg(A2,3) = [g]
b

Ifweputa=>b=c=1, we have

1 1 1
ri=|-1{, r2=10|, and r3=|1
0 0 1

Note that r3 is not an eigenvector of A, it is a generalized eigenvector of A. The
purpose of introducing the generalized eigenvector was to enable us to find the Jordan
form of A:

111 0 00 A0 0
R={-1 01 = R'MR=]|01 1|=]0 xs 1 o
0 0 1 0 01 0 0 s

hence



334 APPENDIX C. RESULTS FROM ADVANCED MATRIX THEORY

C.3 Similarity of matrices

In this Section we consider the properties shared by similar matrices. Similar-
ity occurs, for example, when we consider a linear system and make a change
of variables describing it. Also, since similarity of matrices is an equivalence
relation, we can use it to simplify the study of arbitrary matrices. For exam-
ple, companion matrices are very useful in control theory, so we investigate the
conditions under which an arbitrary matrix is similar to a companion matrix.

A linear system is described by its states z;(t),z2(t), . .., Tx(t) which satisfy
the system of equations

()
y(t)

Az(t) + Bu(t)
Cz(t)

where u(t) is the input to the system, and y(t) is the system’s output.

If we decide to define the states in some other way (so that some property
of the system becomes more apparent), we may use the following change of
variables:

Zyew (t) = Sz(2)

where S is some nonsingular matrix.
Then the equations become

S—li:new(t) AS Y Zpew (t) + Bu(t)
yt) = Cs_lxnew(t)

I

or, after premultuplying the first equation by S,

Enew(t) = SAS 'Tpey(t) + SBult) -
y(t) = CS lz,.(t)

We see that the new system matrix of the system is Anew = SAS™L.

More generally, consider a linear transformation w = Av in standard basis
{e}iz1,...,n, where e = [0 ... 010 ... 0]7, with 1 at the i-th position.
If we wish to look at the same linear transformation, but using some other
basis {o("};=1,_n, we can see that wpe, = Sw and pey = Sv, where
S =[oW ¢@ ... (7). Note that S is nonsingular because {6(?};=1, , is a
basis. Now we have

—_ —1
Whew = SAS™ Vpew
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Definition C.3.1 Matriz F is said to be similar to a matriz G if there exists
a nonsingular matriz S (the similarity transformation matriz) such that

F=87'GS
In that case we write F ~ G.
Theorem C.3.1 Similarity of matrices is an equivalence relation.

Proof. Recall that a relation is an equivalence relation if it is reflexive,
symmetric and transitive.

o Reflexivity: Every matrix is similar to itself, because F = I"1FI, and
det(I) # 0.

o Symmetry: F ~ G = (35| det(S) #0) F=8"1GS = (3T =
S HYG=T'FT = G~F.

o Transitivity: (F ~G) A (G~ H) = (35,7 | det(S) #0, det(T) #
0) (F=S8"'GS) A(G=T'HT) = F=(TS)"'HTS = F~H,
because det(T'S) = det(T") det(S) # 0.

O

Theorem C.3.2 The eigenvalues of a matriz are invariant under the similarity
transformation.

Proof. We shall show that the characteristic equations of similar matrices
are the same. If F = S~1GS, where det(S) # 0, then

det(AI—F) =0 & det(A\I-S7!GS) =0 & det(S~}HSAS1-G)S)=0 &
& det(S71)det(AM — G)det(S) =0 & det(M —G) =0

Since F' and G have the same characteristic equations, they have the same
eigenvalues. O

Corollary C.3.1 The trace and the determinant of a matriz are invariant un-
der the similarity transformation.

Proof. This is a direct consequence of Theorems C.1.3 and C.3.2, because
tr(F) and det(F) depend on the eigenvalues of F' only. O

Corollary C.3.2 If F' is (non)singular, so are all matrices in its similarity
class.

Proof. This Corollary is a consequence of the previous Corollary, because
F is nonsingular if and only if det(F) # 0. O

Note that although similar matrices have the same eigenvalues, it doesn’t
mean that all matrices with the same eigenvalues are similar.



336 APPENDIX C. RESULTS FROM ADVANCED MATRIX THEORY

Example C.3.1 Both matrices

5 1 5 0
F—[O 5] and G—[O 5]

have the same eigenvalues 1,2 = 5, but if we assume that there ezists a nonsingular
matriz S such that F = S~'GS, we will find that

5 1) 1[5 0 ) e cmtya s
p=[31]=s[3 U smsssmsie

which is a contradiction. m}

Important applications of similarity of matrices are based on the following
theorem (already stated as Theorem C.2.3). For more details, see Section C.2.

Theorem C.3.3 Every complex square matriz is similar to some matriz in
Jordan form.

Another group of applications of similarity transformations is based on the
following theorem. For more details, see Section C.4.

Theorem C.3.4 Every Hermitian matriz is similar to a diagonal matriz of its
eigenvalues.

Still another group of applications of matrix similarity is based on the prop-
erties of the companion matrices.

Definition C.3.2 Matriz A is a companion matriz if

—a; -—a —ag ... =—Qp-1 —Qan
1 0 o ... 0 0
0 1 0 0 0
A= 0 0 1 0 0 (€38
0 0 0 1 0

Theorem C.3.5 The characteristic polynomial of a companion matriz given
by (C.8) is

aA) = A"+ A" M+, +a,

Proof. From the definitions we have

A+a, a2 a3 ... GQp-1 Gy

-1 A0 ... 0 0

0 -1 X ... 0 0

ad) = deaI-4) = | o A O

0 0 0 ... -1 A
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A 0 0 0 ay; as ap-1 Gp
-1 A 0 O -1 A 0 0
= (A +a)| 0 -1 0 0|+] 0 -1 0 0
0 0 ... -1 ) 0 0 -1 A
as a4 P / Y B / 7Y
-1 X ... 0 0
= A+a)\" T4+aX* 24+l 0 -1 ... 0 O
0 0o ... =1 X
= A+ I @A 4+ tan o)+ aﬁ‘ll a/\" ’

= A +a " L+ A"+ 4 an oA Fan i) +a,

Theorem C.3.6 If \ is an eigenvalue of a companion matriz A then
p(AMl-A)=n-1

Proof. The rank of the characteristic matrix is in this case

A+ar a2 az ... Gup-1 Qn

-1 A 0o ... 0 0

0 -1 X ... 0 0

PAI-A)=p| 0 -1 ... 0 0
0 0 o ... -1 A

Now let’s multiply the first column by A, and add it to the second column,
then multiply so obtained second column by A and add it to the third column,
and so on, until we finally get to the last column. The first element of the
last column now equals zero, because we made it equal to the characteristic
polynomial in Horner’s form:

(..(A\+a)A+a)r+...4+a,-1)A+a, =0

The last element of the last column also became zero in this process. Because
of the specific positions of —1’s below the main diagonal, all other columns of
AI — A are linearly independent, so that p(A] —A)=n—-1. O

Corollary C.3.3 The number of linearly independent eigenvectors correspond-
ing to )\, an eigenvalue of a companion matriz, is v(AI — A) = 1, no matter
what the multiplicity of A\ might be (see Example C.3.3).

Corollary C.3.4 All companion matrices are similar to Jordan matrices made
of Jordan blocks having distinct eigenvalues.
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Corollary C.3.5 An arbitrary matriz is similar to a companion matriz if and
only if it is similar to a Jordan matriz whose Jordan blocks have distinct eigen-
values.

Example C.3.2 No matriz similar to J = diag(J1(4), J2(4), J2(5)) can be similar to
a companion matriz. On the other hand, any matriz similar to J = diag(Jz(4), J2(5))
is similar to

22 —193 844 -—1840 1600

1 0 0 0 0
0 1 0 0 0
0 o0 1 0 0
0 0 0 1 0
because (A — 4)3(A — 5)2 = A® — 22X% + 193)3 — 844\ + 1840 — 1600. a]

Corollary C.3.6 A companion matriz is diagonalizable if and only if it has no
repeated eigenvalues.

Here we considered only the so-called top companion matrices, because the
other three varieties (bottom, left, and right) are always similar to the “top”
variety. If we denote

[ —a; —a2 ... —Qp_i —Gp | ( —ay 1 0 ... 0
1 o ... 0 0 —as 01 ...0
A = 0 ) 0 0 , A =
—an—1 0 0 ... 1
| O o ... 1 0 | | —an 00 ... 0]
) 1 ... 0 0 [-0 0 0 —a, |
1 0 0 —Qn-1
Ab= 0 0 “e 1 O ,Ar-_- e
0 0 ... 0 1 0 ... 1 0 —a
| - —anp-1 ... —a2 —ap | | 0 ... 01 —-ar |

the similarity transformation between any two of these four varieties of com-
panion matrices can be deduced from the following three relations®

Ay =T14,1 A, =a"Ta,.aT A, =147

where
0 0 01
; 00 10
f: I—l =
01 0 0
10 00

50perators T and —T denote the transpose and the transpose inverse, respectively.



C.3. SIMILARITY OF MATRICES 339
and
1 a ap Ap—2 Qp-1
0 1 ay An—3 Qp_2
aT — 0 0 1 oo Qp—4 Qp_3
0 0 0 ... 1 An—1
0o 0 0 ... 0 1

Since det(a_) = 1, so a_ is always nonsingular.

Note: In control theory A; corresponds to the system matriz of the con-
troller realization. Similarly, A, corresponds to the observer form, while Ay
corresponds to the observability form and A, to the controllability form. As
we saw, these four matrices are always similar, but that doesn’t mean the cor-
responding realizations are. This is because the similarity of systems requires
additional relations to hold between other matrices or vectors that describe the
system.

Example C.3.3 If A is an eigenvalue of a companion matrix A and if its multiplicity
is k> 1, then

An-—l
An—?
\2
A
1
is its eigenvector, and if k > 1
[ _ n—2- [((n—1 n—; [(n—1 n—k i
(rn DA 9 A (k 1 A
_ n—3 n—2 n—4 n—2 n—k~1
(n—2)A S Bt (k - 1) A
2X 1 0
1 L 0 0
L o0 ] 0 | i 0 ]

are its generalized eigenvectors.

Example C.3.4 The inverse of a companion matrix is another companion matrix.

For example

o=
(=R =N |

-0 o

-1

(=T == I = e ]

0.125 0.75 0.875

0
0
0

1
0
0

0
1
0

-0.7

0
0
1
5
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C.4 Symmetric and Hermitian matrices

Matrices appearing in the description of physical or engineering problems are
often real and symmetric with respect to the main diagonal.

Such matrices have many interesting and important properties worth ex-
ploring. For example, their eigenvalues are real, and their eigenvectors can be
chosen so that they form an orthonormal basis. But it is interesting that these
properties do not hold for complex symmetric matrices in general. We shall see
that the proper generalization are the Hermitian matrices.

Thus, with respect to the properties we are interested in, real symmetric
matrices are special cases of Hermitian matrices, which in turn are special cases
of the so-called normal matrices. For additional properties of normal matrices
see Section C.8.

We begin this Section with definitions of these important classes of matrices,
and continue with several important theorems about Hermitian matrices.

Definition C.4.1 Square matriz A is symmetric if it equals its transpose:
AT =4

Definition C.4.2 Square matriz A is Hermitian if it equals its conjugate trans-
pose:

AH =4
where A" = (A)7T is the conjugate transpose® of A.
Definition C.4.3 Square matriz A is normal if

AAH = AHA
The normal matrices are the most general of these special matrices. We

illustrate that in Figure C.1. Another important special case of the set of
normal matrices is the set of unitary matrices. Real orthogonal matrices are
special cases of unitary matrices.
Definition C.4.4 Square matriz A is orthogonal if

AAT =1
Definition C.4.5 Square matriz A is unitary if

AAR =1

61n mathematical and technical literature, * and ’ are often used instead of H.
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Hermitian:

real orthogonal:
AA™=1

Figure C.1: Some important classes of normal matrices. Operator H (Hermitian
operator) denotes the conjugate transpose: A¥ = (A)7. Operators * and ' are often
used instead of H.

Theorem C.4.1 All eigenvalues of a Hermitian matriz are real.

Proof. If A is an eigenvalue of a Hermitian matrix A, and r is the eigenvector
corresponding to A, then

Ar = Ar (C.9)
From (C.9) it follows

rHAH = \rH
or, since A is Hermitian

rHA = At {C.10)
Now, multiply (C.9) by r¥ from the left to get
rHAr = arfy (C.11)
and (C.10) by r from the right to get

rHAr = Mty (C.12)
From (C.11) and (C.12), using the fact that r # 0, we find that

A=A
which means that )\ is a real number. [}

Corollary C.4.1 All eigenvalues of a real symmetric matriz are real.
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Example C.4.1 Hankel matrices are square matrices with constant elements along
the anti-diagonals, therefore they are symmetric. If a matriz ts Hankel and its elements
are real, it is real symmetric, and therefore has real eigenvalues. For example, the

eigenvalues of
2
0
1

are 3 and /3. a

01
H=|1 2
2 0

Example C.4.2 The DFT matriz of order n (DFT stands for “Discrete Fourier
Transform”) is a matriz defined as

1 1 1 1

1 wn w? s Wit
F,=|1 & wh wff”“l)

1 wpl WD e

where wy, = e~2™/™ is the n-th primitive root of unity.

Obviously, for n > 2, the matriz F,, is complez symmetric (not Hermitian), there-
fore its eigenvalues are not necessarily real. For ezample, the eigenvalues of Fy are £2
and +2j. Can all the eigenvalues of a complex symmetric matriz be real? a

In the rest of this Section we shall prove the following important theorem
and consider some of its immediate consequences:

Theorem C.4.2 Every Hermitian matriz is similar to a diagonal matriz of its
eigenvalues via some unitary matriz.

Proof. First, we shall use induction to prove the following lemma which is
important in its own right:

Lemma C.4.1 (Schur) For any compler square matriz A of order n there ezists a
unitary matriz U such that

B=U'AU =U" AU
is an upper triangular matriz.

Proof of Lemma C.4.1. The base case n = 1 is trivially true, because any 1 x 1
matrix can be considered upper triangular. Assume correct for matrices of order < n.
Let A1 be an eigenvalue of A and r; a normalized eigenvector corresponding to Ai.
Using Gram-Schmidt orthonormalization, we can always construct a matrix

V=[7‘1p2p3 pn]=[7‘1 P]

such that its columns form an orthonormal basis. Note that P is n x (n —1). By
construction, VV¥ =1, i.e., V is unitary. Now observe that
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H H
- _H |t _{ A1 rTAP

because the columns of V form an orthonormal basis, so that rr; =1 and P¥r; = 0.
Now note that P# AP is (n—1) x (n—1), so according to the inductive hypothesis
there exists a unitary matrix W such that W~ (P¥ AP)W is upper triangular.
If we take

1 0
U_V[O W]

we can easily see that it is unitary and U AU = U¥ AU is an upper triangular
matrix. This proves the lemma. ]

Now that we have this powerful lemma, we can easily finish the proof of
Theorem C.4.2. Let A be Hermitian, i.e., A¥ = A. According to Lemma, C.4.1,
there exists a unitary matrix U such that B = U™'AU = UH AU is upper
triangular. But since A is Hermitian, B must be Hermitian too, because

BY = (UHAUH =UYAHU =UHAU =B

Thus, B is both upper triangular and Hermitian, therefore it is diagonal.
Since the similarity transformation does not change the eigenvalues and the
eigenvalues of a diagonal matrix are its diagonal elements, we see that the
theorem is indeed true. a

Corollary C.4.2 Hermitian matrices of order n have n orthonormal eigenvec-
tors.

Proof. Since every Hermitian matrix A is diagonalizable via some unitary
matrix, the columns of that unitary matrix can be taken as the orthonormal set
of eigenvectors of A. 0

This is a very important result about Hermitian matrices. Similarly, we can
prove the following theorem:

Theorem C.4.3 Every real symmetric matriz is similar to a diagonal matriz
of its eigenvalues via some real orthogonal matriz.

Corollary C.4.3 Real symmetric matrices of order n have n real orthonormal
eigenvectors.
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Some important examples of Hermitian and symmetric matrices come from
controls and signal processing.
Example C.4.83 Gram matriz of a (not necessarily square) real matriz A is
G(A) = ATA
Since
GT(A) = (ATA)T = ATA = G(A)

we see that Gram matriz is real symmetric. If A is complez, Gram matriz is defined

as G(A) = APA, and it is Hermitian. ]
Example C.4.4 Let u be the vector of samples of a signal u(t) at discrete time points
t=n,n—1,n—-2,...,n—m+1. The correlation matriz of u is
Tn,n Tn,n—1 -+ Tnn-m+1
R= E[’U/LLT] — Tn—1,n Tn—1,n—1 oo Ta—1,n—m+1
Tn—-m+1i,n Tn-m+in-1 ... Tn—-m4l,n—-m+1

where r_in—j = Efu(n — i)u(n — j)].
If u(t) is wide-sense stationary, i.e., if E[u(k)] = const and rn—in—j = 7(j — )
then

r(0) r(1) eeo. (m—1)
R= r(-1) r(0) oo T(m=—2)
r(—(m—-1)) r(—-(m-2)) ... r(0)

Since r(—k) = Eu(n — k)u(n)] = E[u(n)u(n — k)] = r(k), we see that RT = R.
Thus, the correlation matriz of a wide-sense stationary discrete-time stochastic signal
is real symmetric. If u(t) is comples, its correlation matriz is defined by R = E[uu®).
In that case R = R, i.e., R is Hermitian. ]
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C.5 Quadratic forms and definiteness

In this Section we shall see that quadratic forms can be written using matrix
notation. Also, the question of whether a certain quadratic form is definite,
semi-definite or indefinite can be answered using the tests based on the matrix
notation. Thus, the notions of definiteness, semi-definiteness and, indefiniteness
can be defined for matrices via this connection to quadratic forms. Many impor-
tant applications of linear algebra use the material contained in this Section, for
example, the Lyapunov stability theory applied to linear and linearized systems.

Definition C.5.1 Quadratic form q(zi,...,%,) is any polynomial of order 2
in n real variables x1,...,T,.

Any quadratic form ¢(z,,...,Z,) can be written as

q(z) = 2" Qz

where £ = [x; ... z,]7 and @ is any conveniently chosen matrix. To see that,
consider the following: If @ = [¢; j]nxn then

n
2Qr =) quai + Y (g +gji)ziz;
k=1 i<j

Therefore, if we are given g(z), we can pick Q so that ¢(z) = z7Qz. In
particular, we can pick @ to be real symmetric and therefore diagonalizable.

Example C.5.1 Consider
g(z) = azi + bzi + cxl + 2rz1zs + 251123 + 2x2Ts

where £ = [£1 22 z3)7 € R® and a,b,c,1,3,t € R (here R denotes the set of real
numbers).
The symmetric matriz QQ corresponding to this quadratic form is given by

a v 8
Q=|r b t
s t c

According to Theorem C.4.3, since Q is real symmetric, it can be diagonalized using
the matriz of its normalized eigenvectors U:
UTQu =D

where D = diag(A1, A2, Az), A1, A2, A3 are the eigenvalues of Q, and UTu =UUT =1.
If we put y = UTz, we can write

q(z) = z7Qz

£TUDUT

y" Dy

= Ay + Ayl + dayd
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Thus, using the change of variables described by y = UTx we have eliminated the
cross-product terms. This is quite general procedure, it can be used for quadratic forms
of arbitrary number n of real variables.

It is also a very important procedure, because we often need to know if some
guadratic form is positive for all x # 0. In this ezample, we see that the quadratic form
q(z) is positive for all z # 0 if and only if all eigenvalues of Q are positive. This is so
because real symmetric matrices have n (in this case n = 3) orthonormal eigenvectors,
so det(U) # 0, and therefore to any x # 0 corresponds ezactly one y = UTz (# 0).
Therefore, q(zx) is positive for all z # 0 if and only if it is positive for all y # 0 and
this is true if and only of A1, A2, A3 > 0. 0

Example C.5.2 Here are a few “real” examples to introduce and motivate some new
terminology:

a) q(z) =27 + 23 + % is positive for any x # 0. It is called positive definite.

b) q(x) =z} + z} is not positive for all x # 0. For example q(0,1,0) = 0. But it
is nonnegative for all x # 0. It is called nonnegative definite or positive semi-definite.

c) q(x) = ¥ — z} can be positive, negative or zero when x # 0. It is called
indefinite. [m]

Now we define the terminology used in the previous example:
Definition C.5.2 Quadratic form z' Qz is definite if

zTQr >0 (Vz#0) (positive definite)

or
zTQz <0 (Vz #£0) (negative definite)

Definition C.5.3 Quadratic form =7 Qz is semi-definite if
zTQz >0 (Vz #0) (positive semi-definite)

or
zfQz <0 (Vz #0) (negative semi-definite)

Definition C.5.4 Quadratic form 7 Qz is indefinite if it is not semi-definite.

The matrix (in)definiteness is defined via (in)definiteness of the correspond-
ing quadratic forms.

Definition C.5.5 A real square matriz Q is positive (negative) definite if t7 Qz
is positive (negative) definite. We write @ >0 (Q <0).

Definition C.5.6 A real square matriz Q) is positive (negative) semi-definite if
=T Qx is positive (negative) semi-definite. We write @ >0 (Q <0).

Definition C.5.7 A real square matriz Q is indefinite if z7 Qx is indefinite.
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Example C.5.3 Consider o differentiable function of three variables f(z1,z2,23). A
necessary condition for f(z), (z = [z1 z2 z3]7) to have an extremum atz = P =
[p1 p2 p3]T is that all three partial derivatives of f(x) at x = P be zero:

o a0
il =0 (i=1,2,3) (C.13)

To see that this condition is not sufficient, consider f(z) = 1z273.
A sufficient condition for f(x) to have a minimum at * = P can be found as
follows: Taylor expansion of f(z) around z = P is

3 3
7(z) = (P) +§j 2 (P (@i - ) %ZZ S ()@ = pi)(es = p3) +..
If (C.13) s true, then
3 3
»e

guarantees that f(P) is indeed a minimum. Note that this condition is not necessary.
With ur = zx — pr (k = 1,2,3) we can write this condition in the following form

(P)(a:, pi)(z; —p;) >0 (Vz#P)

wTHu>0 (Yu#0) (C.14)
where
h11(P) hi2(P) hi3(P) 62)’
h21(P)  haa(P) hes(P) and hi;(P) = 5.0 ——(P), (1,7=1,2,3)
h31(P) hax(P) has(P) Ti

H is often called a Hessian matriz of f(z).

In other words, if (C.13) is true and H > 0 (read: H is positive definite), then
f(z) has a minimum at x = P. Similarly, if (C.13) s true and H < 0 (read: H is
negative definite), then f(z) has a mazimum at * = P. If H is semi-definite, further
investigation is needed. If H is indefinite, f(P) is not an extremal point.

For “well-behaved” functions 0* f|0z;0z; = 8°f/0z;0z;, hence H is symmetric,
and we can use the eigenvalue test presented in Ezample C.5.1 to test H.

Just like Example C.5.1, this Example is easy to generalize to functions of n vari-
ables. Note that we don’t need the eigenvectors of H, only its eigenvalues. 0

The matrices introduced in the Examples C.4.3 and C.4.4, viz. Gram and
correlation matrices, are positive semi-definite. This is true even in the complex
case, when these matrices are Hermitian. To prove this more general statement,
we consider the Hermitian form, the complex generalization of quadratic forms.

Example C.5.4 Let A be a compler m x n (m > n) matriz and G(A) = A¥A its
Gram matriz. Then G(A) is n x n. Consider the Hermitian form z%G(A)z for all
complez vectors z # 0:

n
zHG(A)z = 27484 2 = ww = Z |wk|2 >0
k=1
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Thus, even when complez, Gram matriz is positive semi-definite, G(A) > 0. Note that
G(A) is singular if and only if A is not of full rank, i.e., if p(A) < min(m,n) =n (cf.
Problem C.8.11). Thus, G(A) is positive definite if and only if A has a full rank, and
m>n.

Example C.5.5 If R is a correlation matriz of a compler wide-sense stationary sig-
nal, then R = E[uu®]. Consider the Hermitian form z”Rz for all compler vectors
z#0:
2Rz = 2" Elun )2 = E[z"uuz]
Note that (z"u)® = u™z are scalars, therefore
:"Rz=E [|z”u|2] >0, ie,R>0

Most often however, R > 0, because R is singular if and only if the signal u(t) is
a sum of k < m sinusoids, where m is the length of vector u (cf. Problem C.8.12).

Sometimes we have to work with matrices which are not symmetric. In such
cases we can not apply the eigenvalue test of Example C.5.1 directly”.

First, observe that every matrix can be represented as a sum of two matrices,
one symmetric and the other skew-symmetric®:

1
A=%(A+AT)+§(A—AT)=A,,+A3,

Second, observe that quadratic form corresponding to a skew-symmetric
matrix is zero. To see that, use the facts that z7 A,,x is a scalar and that A,,
is skew-symmetric,

2T Agex = (:cTAs,x)T =—zTA,.z

therefore zT A,z = 0.
If we now consider a quadratic form corresponding to A:

zT Az 2T (A, + Agp)z

= zTA,z

we see that we can reduce the problem to analyzing the eigenvalues of the
symmetric part of matrix A. This proves the following theorem:

Theorem C.5.1 A real matriz A is positive (negative) definite if and only if
its symmetric part

Ay = 3(A+ A7)

is positive (negative) definite.

"Even if a matrix is diagonalizable, for the eigenvalue test to work, we need the eigenvectors
to be mutually orthogonal, which is the case only for normal matrices (see Problem C.8.9.)
8Matrix B is skew-symmetric if BT = —B.
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Similarly, we can prove the following theorem:

Theorem C.5.2 A real matriz A is positive (negative) semi-definite if and only
if its symmetric part

A, = %(A + A7)

i3 positive (negative) semi-definite.

Let us formalize the method of the Example C.5.1, commonly known as the
Rayleigh-Ritz theorem:

Theorem C.5.3 A real symmelric matriz A is positive (negative) definite if
and only if all of its eigenvalues are positive (negative).

Proof. Proof of this theorem is essentially the same as the derivation in the
Example C.5.1. |

Similarly, the following theorem is true:

Theorem C.5.4 A real symmetric matriz A is positive (negative) semi-definite
if and only if all of its eigenvalues are positive or zero (negative or zero).

The following tests are due to Sylvester. After stating them in the following
two theorems, we shall prove only the first of them, because ideas involved are
the same. Similarly to the eigenvalue test, they work for real symmetric matrices
only. If a matrix is not symmetric, the test should be applied to its symmetric
part.

Theorem C.5.5 A real symmetric matric A = [a;j]nxn i positive definite if
and only if all of its leading principal minors are positive, that is

a1 12

Ay =a;1 >0 Ay =
’ az 22

11 @12 Q13
Az =|as a as |> 0, ey, Ap = det(A) >0
a3y as2 ass

Theorem C.5.6 A real symmetric matriz A = [a;;]nxn 18 positive semi-definite
if and only if all of its principal minors (not only the leading principal minors)
are nonnegative, that is for all 1,j,k,. ..

i Qg

ai; >0 >0
AR TR T

s aji ajj ajx |[=>0, ..., det(4)>0
Gri Okj Ok

The negative (semi-) definiteness of A is tested as the positive (semi-) defi-
niteness of —A.
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Proof. We use the induction on the size of A.

(] aua:f >0 & a1 >0.

e Suppose that a matrix of size n — 1 is positive definite if and only if
A; >0,A, > 0,...,An_1‘> 0.

e Consider A, an n x n matrix.
The “only if” part. If

a1 Qi2 ... Qin I
n(Z1,T2,...,Zn) =[T1 T2 ... Tq] Gz @22 ... O2n T2
Anl Gna ... Gpn | |ZTn

is positive definite, so is gn—1(z1,Z2,...,Zn-1) = qn(21,Z2,...,Tn-1,0).

Thus, by the inductive conjecture, if A is positive definite, then A; >
0,A2 >0,...,A,—; > 0, and the only remaining thing to prove in this
part is that if A is positive definite, then A, > 0. But

An =det(A) = Aha...An >0

because according to Theorem C.5.3, if A is positive definite, each of its
eigenvalues is positive.

The “if” part. Let A; > 0,A; > 0,...,A,, > 0. Quadratic form

gn(x1,T9,...,Z,) can be written as
n—1ln-1 n
T 2
T Ar = E E a;;TiTj + 2 E AinTiTyn + AnnT;,
i=1 j=1 i=1

The term 3 3 a;jz;z; can be diagonalized and written as Y b;y2. Since
Ay >0,A5 >0,...,A,_1 >0, according to the inductive conjecture, this
term is positive definite, so we can write b; =c? >0 (i = 1,2,...,n — 1).

Thus, for some coefficients ¢; and d;

n—1 n
ZETAZ' = Z C?y? + 2 Z dinyiyn + annyz
=1 =1
n—1 n—1 2
d; d;
= Ytew+ Epp -3 (2) 2+ ot
i=1 * i=1 °*

- n—1
= Zz;" +az2 = 2Tdiag(1,...,1,0)2
=1
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where the z;’s are the linear combinations of the z;’s, and
-1 2
n dt
Q= 0nn — E —
i=1 ct

It can be seen that we can write z = Px, where P is some nonsingular
matrix. Therefore

2T Az = TP diag(1,...,1,a) Pz
Since P'diag(l,...,1,a)P is symmetric, we see that

A= PTdiag(1,...,1,0)P

and finally

det(A) = a(det(P))? = sgn(a) =sgn(A,) = a>0 >
= 2Tdiag(1,...,1,@)2 >0 (Vz#0) = A is positive definite
This concludes the proof of Theorem C.5.5. O

Let us now consider the conditions under which we can extract a “square
root” of a real matrix A, i.e., write A = BT B.

Since (BT B)T = BT B, A must be symmetric. If that is so, A is diagonaliz-
able via some orthogonal matrix U (by Theorem C.4.3), and its eigenvalues are
real:

A=U"'DU =UTDU

Now the question is when can we extract the “square root” of the diagonal
matrix D, and the answer is: only when its diagonal elements, which are at the
same time the eigenvalues of A, are nonnegative. Therefore, the necessary con-
ditions are that A is real symmetric and positive semi-definite. These conditions
are also sufficient. Thus, we proved the following theorem:

Theorem C.5.7 Ezxtracting the square root of a matriz A, i.e., writing it in
the form A = BT B is possible if and only if A is real symmetric and positive
semi-definite.

Note that this decomposition is not unique, because if B is a square root of
A, sois V B, for any orthogonal matrix V. Similar theorem holds for Hermitian
matrices.
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Quadratic forms are often used to express a cost function in the optimiza-
tion problems. It is therefore important to know how to differentiate them
with respect to vector z, or with respect to some of its components. Since ev-
ery quadratic form can be written in terms of some symmetric matrix, in the
following we assume that QT = Q.

First consider the differentiation with respect to the m-th component of z:

8(z7 Qz) 8 &
— Bz (; qkk:l:i +2 Z q,-]-a:,'a:j)

OTm i<j
n

= 2quizi = 2Q(m).’L‘
i=1

where q(,,) denotes the m-th row of Q.
If we define the differentiation with respect to a vector as

6/3:61
8/
2T99) _ yrag(aTqa) = | | 7 s)
0/dzn
we see that
d(z"Qx) _
~ oz 9=

Since @ is real-symmetric, the Hessian matrix of ¢(z) = z7Qz is H = 2Q.
Recall that in the calculus of functions of more than one variable, the Hessian
matrix takes the role the second derivative has in the “standard” calculus, just
like the gradient vector takes the role of the first derivative.
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C.6 Some special matrices

Several classes of special matrices appear frequently in applied and pure mathe-
matics. We already encountered some such classes: diagonal and Jordan matri-
ces in Section C.2, companion matrices in Section C.3, real symmetric, Hermi-
tian, normal, Gram, and some other special matrices in Section C.4, and definite
and semi-definite matrices in Section C.5. In this Section we shall define more
classes of special matrices: Hankel, Toeplitz, Vandermonde, and Hurwitz.

Hankel matrices. Matrix A is said to be a Hankel matrix if the elements
along its anti-diagonals are equal.

Example C.6.1 In linear control systems we use an n x n Hankel matrix made up
of Markov parameters hi,ha,...,hon_1

hi  ha ver ha

ho  hs vee hapr
M= . . .

hn  hny1 ... h2p-a

If the elements of a Hankel matrix are real, then it is real symmetric, and
therefore its eigenvalues are real.

Toeplitz matrices. Matrix A is said to be Toeplitz if the elements along
its diagonals are equal.

Example C.6.2 A discrete-time convolution describes the relation between the input
and the output of a discrete-time system:

okl =3 ficizli] (k=1,2,...,m)

i=1

This relation can be written using matrix notation

y=Fx
where
z=[z[1) z2] ... z[n]] y=[9[1] y2) ... yln])
and
Jo J-1 o fom-1)
| A fo cor Jo(n-2y
:fn—l ..fn—2 :f(l

is a Toeplitz matrix.

This special structure of Toeplitz matrices is used to speed-up their inversion.
An example of such algorithms is the well known Levinson algorithm which
originated in signal processing (see {19] and [46]).
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Vandermonde matrices. Matrix V is said to be a Vandermonde matrix
if it has the following form:

1 a1 ... a;"l

1 ay ... a;"‘l
Vo=

1 e, ... a?!

In Appendix B.4 (see Example B.4.2) we show that the determinant of a
Vandermonde matrix is

det(V) = J[ (aj—a)

1<i<j<n

For a useful generalization of the Vandermonde matrices and determinants
see Problem 3.2.7.

Hurwitz matrices. Matrix A is said to be Hurwitz if all of its eigenvalues
have strictly negative real parts, i.e., if they all lie in the left complex half-plane.

Such matrices are also called stability matrices, because of their role in the
theory of continuous-time linear control systems. In the realm of discrete-time
systems, such an important role is played by matrices with eigenvalues inside
the unit circle of the complex plane. Apparently they do not have a special
name, except perhaps discrete stability matrices.

The celebrated Lyapunov stability criterion states that A is Hurwitz if and
only if for any given positive definite symmetric matrix @ there exists a positive
definite symmetric matrix P such that

AP+PA=-Q

This equation is known as the Lyapunov equation.
There is an analogous criterion for discrete stability matrices in which the
Lyapunov equation is replaced by the discrete-time Lyapunov equation:

APA-P=-Q

Proofs of these criteria are given in Section 2.2 of this book. The Routh,
Hurwitz, and Jury criteria of Sections 1.1 and 1.2 can also be used. How about
the Sylvester definiteness criterion from Section C.5 of this appendix?
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C.7 Rank, pseudoinverses, SVD, and norms

In this Section we shall consider several loosely related topics, which in some
applications come together quite nicely.

Rank

This Subsection is a brief survey of some important properties of the rank of a
matrix. No proofs are given.

Definition C.7.1 If A is an m X n complez matriz, its rank, p(A), is the size
of A’s largest nonsingular submatriz. The rank of a null-matriz is 0.

Theorem C.7.1 Let A be an m x n matriz. If r = p(A), then A has ezactly r
linearly independent columns and exactly r linearly independent rows.

Theorem C.7.2 (Frobenius inequality) If P, Q, and R are rectangular ma-
trices such that the product PQR is well defined, then

p(PQ) + p(QR) < p(Q) + p(PQR)

Corollary C.7.1 (Sylvester’s law) Let A be m xn and let B ben xp. Then

p(A) + p(B) —n < p(AB) < min(p(A), p(B))

Corollary C.7.2 If P and Q are nonsingular, and C is m X n, then
p(PCQ) = p(C)

Pseudoinverses

If the number of independent equations is greater than the number of unknowns,
the system is overdetermined, and the solution to that system does not exist.
On the other hand, if there are more unknowns than the independent equations,
the system is underdetermined, and there are infinitely many solutions to that
system.

If there are dependent equations, situation becomes more complicated, but
reduces to the above.

Example C.7.1 Consider the following two systems:

1 0 - 3
01 [ ] = |4 does not have any solutions.
11 6
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z
[ i (1] (1) ] [z] = [(55] has infinitely many solutions

a

In this Subsection we shall see what we can do in such cases. If the sys-
tem is overdetermined, we can obtain some approximation to the solution. If
the system is underdetermined, we can put some additional constraints on the
solution, so that only one out of infinitely many solutions is selected.

When the system is overdetermined, we are often interested in an approxi-
mate solution which is in some sense optimal. Let the overdetermined system
be

Az =b (C.15)

where A is m x n, m > n, and p(A) = min(m,n) = n, i.e., A has a full rank®.
Often we define the optimal approximate solution of (C.15) to be the vector
T = x¢ which minimizes the Euclidean length of the error vector e = Az — b

lell = VeTe = \/(4z — 5)7 (4z ~ b)
or equivalently its square
lell? = eTe = (Az — b)T (Az — b)
In order to determine z¢, let us form the cost function
J(z) = eTe = (Az — b)T(Az — b) = 2TATAz — 26TAz + b7b
and minimize it
aJ

5 = 24TAz — (26TA)T =0 = 0= (4T4)7147b

Note that we could take the inverse of ATA, because we assumed A to have a
full rank and that m > n (cf. Problem C.8.11).
This is a minimum of J(z) because the Hessian matrix of J(z) is 2474, a

positive definite matrix. (Recall that the Gram matrices are always positive
semi-definite, and add the fact that ATA is nonsingular.)

9Later, in a Subsection about the singular value decomposition (SVD), we discuss the more
general case when p(A) < min(m,n).
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Let the system be underdetermined, i.e., let it be given by

Az =b (C.16)

where A is m x n, m < n, and p(4) = min(m,n) = m, i.e., A is of full rank!®.

Among the infinitely many solutions of this system we often wish to find the
solution closest to the origin in Euclidean distance sense. This time the cost
function is

J(z) = ||=|f?

and we have to minimize it over vectors z that satisfy the Equation (C.16). This
is a typical setup for the application of the Lagrange’s method of multipliers.
Let L(z,\) = J(z) + AT(Az — b), then

OL/0z =22+ ATA =0

— AT Ty—1
OL/OA=Az—b=0 } = zo=A"(AA7)"b

In this case, the Hessian matrix of J(z) is 2I, a positive definite matrix, so
we are sure we minimized J(z).

Matrices (ATA)~1AT (for m > n) and AT(AAT)~! (for m < n) are called
the left and the right pseudoinverses of A, respectively.
Singular value decomposition

In this Subsection we prove the singular value decomposition theorem, and see
some of its consequences.

Theorem C.7.3 Let A be a complex m x n matriz with rank p(A) = r <
min(m,n). Then A can be written as

_ H = 0
A=USV", S= [ 0 0
where U and V are some unitary matrices, ¥, = diag(oi,...,0,), and o1 >

... > o, > 0 are positive real numbers, the positive singular values of A. If

there are any zeros on the main diagonal of S, they are also singular values
of A.

Proof. The sizes of these matrices are illustrated in Figure C.2. Since
the Gram matrix A”A is Hermitian and positive semi-definite (Examples C.4.3
and C.5.4), its eigenvalues are real and nonnegative (Theorems C.4.1 and C.5.3).
According to Theorem C.4.2 we can find a unitary matrix V such that

2 0
0 0

10 Again, the more general case when p(A) < min(m,n) will be considered in a Subsection
about SVD.

VHAHAY = [
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u s v
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n m ) n n

Figure C.2: Illustration of the singular value decomposition (SVD) for the case when
m > n. In order to reduce the amount of computer memory used in computations,
matrix S is often taken to be k x k, where k = min(m, n) > r = p(A). If this “economy”
representation of S is used, then the dimensions of U and V must be adjusted too.

where ¥, = diag(sy,...,0,), and 01 > ... > o, > 0. Obviously, 0?,...,02
are the non-zero eigenvalues of A#A. Also, according to Corollary C.7.2, r =
p(AHA).

Thus

2
A’M:V[%’ g]VH

which implies (cf. Theorem C.5.7 and a comment after it) that A is of the form

_ % 0 |,H
a3 2]

where U is some unitary matrix. Again, from Corollary C.7.2, r = p(A). ]

We could prove this theorem by looking at the outer product AAH instead
of the Gram matrix A¥A (also called the inner product). To see that, note that
AAH is the Gram matrix of A#| hence it is Hermitian and positive semi-definite.
Thus, the following theorem is true:

Theorem C.7.4 Let A be a complez m xn matriz with rank p(A) < min(m,n).
Then the non-zero (i.e., positive) singular values of A are the square roots of the
non-zero eigenvalues of the Gram matriz AYA (also called the inner product),
and also of the outer product AA¥ . In addition to that, if there are r non-zero
singular values of A, then

r = p(4) = p(4"A) = p(AAH)

In the following we shall see a connection between the inverse of a nonsingular
matrix, the two pseudoinverses (left and right), and the general pseudoinverse
defined via SVD.

Definition C.7.2 Let the singular value decomposition of an m x n matriz A
be given by
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_ H 15 0
A=USV", S—[O 0]

where U and V are the corresponding unitary matrices, X, = diag(o1,...,0+),
and o1 > ... > o, > 0 are the non-zero singular values of A.
Then the general pseudoinverse of A is defined as

=0
# o r H
[0

Example C.7.2 Suppose A is an n X n nonsingular matriz. Obviously p(4) = n.
Therefore, the SVD of A is

A=USVH, §=3%,
By definition
A* =vziuf
Since U and V' are unitary matrices, we have
AA* =us Vv Ut =1
and
A*A=vE'UMUS.VE =1

Therefore, for nonsingular matrices the inverse and the general pseudoinverse are
the same. a

Example C.7.3 Consider a full rank m X n matriz A, that is ¢ matriz for which
p(A) = min(m, n).

o Ifm > n, matriz A corresponds to an overdetermined system of linear equations,
and since r = p(A) = min(m,n) =n, the SVD of A is

A=USVE, S= [’30"]

Since
(AFA) A" = (vsHurusvi)'vsHut = vz ? (s, o UY
we have
A*=v[z' o ]U¥ =4"ara"

the left pseudoinverse of A.
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e If m < n, then matriz A corresponds to an underdetermined system of linear
equations. In that case r = p(A) = min(m,n) = m, and the SVD of A is

A=USVH, §=[3z. 0]

Since
A = vsHuH wsviEvsiuf)y-t = vz, o) 5;2U¥
we have
A*=v[ B! o ]U¥ =af(aaf)?
the right pseudoinverse of A. m}

Recall that we derived the left and right pseudoinverses by minimizing the
Euclidean norms of vectors e = Az — b and z, respectively. In the previous
example we saw that they are special cases of the general pseudoinverse. It can
be shown that the general pseudoinverse minimizes these norms even in cases
when A is not of full rank, i.e., when p(A4) < min(m,n).

For much more about interpretation and applications of SVD, see [46].

Norms
If we consider a linear transformation
y= Az

we often need to know what is the maximum “amplification” done by it. In
other words, we want to know what is the value of

Az
S 7
o Tlall =% T

where ||z|| denotes the Euclidean length (Euclidean norm) of a vector z € C™

Izl = VzHz = /|z1]2 + . .. + |2n]?

In this Subsection, we show that this maximum is in fact the largest of the
singular values of A. We shall also mention other often used vector and matrix
norms.

In order to distinguish it from the other norms to be mentioned later, when
talking about the Euclidean norm, we use a subscript 2. As we shall see later,
Euclidean norm is a special case of p-norms, when p = 2.

Let us begin with a few definitions:

Definition C.7.3 The Euclidean norm of a vector z € C" is

lell = VeHz = VP + -+ [znl?
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Definition C.7.4 The induced Fuclidean norm of a matriz is

A
4Jl2 = max 12212
2 Tl

Theorem C.7.5 For any complex matriz A of sizen xn
lAll2 = 5(A4)
where T(A) is the largest singular value of A.

Proof. Consider

Azl 2
AllZ = (ma.x"—— = max ||Az||? = max [zATAz
I4lz = \ 225 e, ax, il = max | )

Since A¥A is Hermitian and positive semi-definite, all of its eigenvalues are
real and nonnegative:

A= 2220
and its eigenvectors can be chosen to form an orthonormal basis :
TlyeeosTn,  TEPj =0
Therefore, any & such that ||z|l2 = 1 can be represented as
T=0o4r1+ ...+ apry, with |lajlz =1

Using this decomposition, we see that for any x such that ||z|s = 1

zHA A = zH(AYAz)
= zH(AHA(a1r + ... + anry))
= o ir + ..o+ andarn)
= (a1r1+..-+ anrn)H(ay\lrl + ...+ apApry)
= loa|PAi+... +an*An
Therefore

max [zHAHAz] = max (Ja1|?M + ... + an>An)
|z|lz=1 [ffla=1

Since all A;’s are nonnegative, and \; is the largest among them, and since
[l]l2 = 1, so that 0 < |a;|?> < 1, we have

max [.’EHAHA-’E] = A1 = Amaz (AHA) = (F(A))2

flzllz=1
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Therefore ||A||2 = T(A). This value is achieved when a; = 1, while all other
a;’s are zero, so that = = rq, the normalized eigenvector of A”A corresponding
to its largest eigenvalue. ]

Similarly, we can show that the minimum “amplification” equals the smallest
singular value of A.

Theorem C.7.6 For any compler matriz A of sizen xn

| zls
12202 _ 54
8 el — 2

where g(A) is the minimum singular value of A.

Proof. Like in the proof of the previous theorem, we use the decomposition

T=aiM +...+Qp’n

to find that
2
(min ||A:c|]2) = min ”A-'L'”%
z#0 ||zl llzll2=1
= min [z¥A"Az)
llzlla=1
= min (JayPAL + ...+ |an?An)
llallz=1

= A = Amin(AH4) = (g(4))?

This minimum is achieved when z is the normalized eigenvector of AHA
corresponding to its smallest eigenvalue. a

Theorem C.7.7 For any complexr matriz A of sizen x n
a(4) < |A(A4)| £7(4)
for all eigenvalues of A.

Proof. Earlier we proved that for any non-zero vector

| Az]l
llll2

a(4) < <o(4)

Since for all i =1,2,...,n

[|Ar;||2

lIrll2

the magnitudes of all eigenvalues of A are bounded by o(A) and 7(A). o

= || Arill2 = [Airsllz = (Al - lirll2 = Al
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Theorem C.7.8 For any nonsingular compler matriz A

Proof. If we put z = Ay,

1A=,
el
lylla

¥#0 || Ayll2

.IMMh) 1
= 1 =
/($£|wm @A)

7(4™)

363

n

In different applications, different vector and matrix norms are used, but
they are all in a way equivalent, because they must satisfy the axioms of a

normnt.

Definition C.7.5 Any real function ||z|| of a vector z € C™ satisfying the fol-

lowing three azioms

1. 2]l >0 (Vz#0), and |0]]=0.

2. la-zll=laf izl (Va,2).

3 lle+yll <llell +liwll (vz,y)  (triangle inequality).
is called a vector norm.

Definition C.7.6 The induced matriz norm is defined as

|| Az||
Al = sup
Il = sup e

where ||z|| denotes some vector norm.
Example C.7.4 The p-norms are defined as

lzlly = (Jz1? + ...+ |2[P)" (p>0)

Important special cases are:

ep=1 = |zl =|z|+...+]|z].

ep=2 = |z|lo=+/|z1|2 +...+|2n|2. This is the Euclidean norm.

ep=0 3 |zllo =max(|z1),...,|2al).
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The corresponding induced p-norms are

4], = sup 142le
SUP Tl

For special cases when p =1,2,00 it can be shown (see Problem C.8.13, Theorem
C.7.5, and Problem C.8.14, respectively) that sup can be substituted by max, and that:

14l = max} " lass]
i=1
ll4ll2 =7(4)

n
1 4lleo = max ) las;|
j=1

At the end, let us just mention two other matrix norms:

e Frobenius norm

Allr =D layi? = tr(A%A)

i=1 j=1

e The smallest singular value g(A).
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C.8 Problems

In this Section we present a few problems and illustrations of the advanced
matrix results presented in this Appendix.

Problem C.8.1 Let Ex(A) (k = 1,2,...,n) denote the sum of all order-k principal
minors of A. Then

det(AI — A) = A" = E1(AA" " ...+ (=1)"En(A)

Hint: Proof of this useful property can be found in [36, page 21]. Note that E,(A) =
a11 + @22+ ... + ann = tr(A), and E,(A) = det(A). Also note that there are (Z)
order-k principal minors of A.

Problem C.8.2 Apply the result of Problem C.8.1 to

(= ——a
CoOoONO
ocowoo
o oo

Solution: The characteristic polynomial of A is
det(AT — A) = A" — 10A3 + 3507 — 50A + 24
We can check:

1+2+3+4=10

1 0 10 1 0 2 0 2 0 30
o af+fa slefa dled aff a]+]0 &f-e
1 0 0 1 0 0 1 00 2 00
0 2 0(|+|0 2 O}+]0 3 0|+]0 3 0]|=50
0 0 3 0 0 4 0 0 4 0 0 4
1 0 0 O
0 2 00
003 ¢0|H
0 0 0 4
Problem C.8.3 Matrices of the form
D = ab?

where a and b are vectors of size n, are called the dyads. Use the result of Problem C.8.1
to show that the eigenvalues of D are A1 =a®band i =0 (i =2,...,n—1). What
are the corresponding eigenvectors?
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Problem C.8.4 Prove that if A; is a multiplicity r eigenvalue of an n X n matrix A,
then v(A1I — A), the number of linearly independent eigenvectors corresponding to A,
satisfies

1<v(Ar—A)<r

Thus, for example, if the eigenvalues of A are 1,1,1,7,7, at most three linearly
independent eigenvectors corresponding to the triple eigenvalue 1 can exist.

Solution: Since det(A1f — A) = 0, there is at least one eigenvector corresponding
to A1.
On the other hand, w = 0 is a multiplicity r root of

det(A — (A +w)l) =
hence this equation must have w" as a factor:
)" —aw™ .+ (1) Tan—w”) =0

with ap—r # 0.
Since an—r # 0 is a sum of all principal minors of order n—r of the matrix A— A1,
we see that at least one of them is # 0. Therefore

pMmI—-A)>n—r, ie, v(MI-A)<r

Problem C.8.5 Prove that tr(AB) = tr(BA). Use this fact and the fact that ev-
ery square matrix is similar to some Jordan matrix to give an alternative proof for
Formula (C.5):

A+ A2+ ...+ Ay =tr(A)

Solution: Let C = AB and D = BA. Then ¢i; = Ek aikbr; and di; = Zk birari,
hence

tr(AB) = Zcu = Zzazkbkz Z za:kbm = zzbzkakz = tr(BA)
i=1 k=1 k=1 i=1 i=1 k=1

Since for any A we can write A = SJS™!, where J is in Jordan form, we can write
tr(A) = tr(SIS™ N =tr(JST'8) =tr(J) = A1+ Ao+ ...+ An

Problem C.8.6 Prove that if A is normal, than B = U1 AU, where U is a unitary
matrix, is also normal. Also prove that if B is both upper triangular and normal then
it is diagonal. Use these results to generalize Theorem C.4.2 to normal matrices.

Problem C.8.7 Square matrix A is skew-Hermitian if A¥ = —A.
a) Prove that the skew-Hermitian matrices are normal.
b) Prove that the eigenvalues of the skew-Hermitian matrices are imaginary.

Problem C.8.8 Prove that the unitary matrices are normal. Also, prove that all
eigenvalues of the unitary matrices lie on the unit circle in a complex plane.
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Problem C.8.9 Prove that the set of eigenvectors of a matrix forms an orthonormal
basis if and only if the matrix is normal.

Problem C.8.10 Generalize Theorems C.5.3, C.54, and C.5.7 to Hermitian matri-
ces.

Problem C.8.11 Let A be m X n (m > n). Show that the Gram matrix G(A) is
singular if and only if A is not of full rank. Try a direct proof. Try also a proof using
the Theorem C.7.4.

Problem C.8.12 Show that the correlation matrix R = E[u"u] is singular if and
only if the signal u(t) is a sum of k < m sinusoids, where m is the length of vector u.

Problem C.8.13 Show that
n
14l = max Z_j Jass

Solution: If y = Az then y; = Z;.':l aijzj, and

m

Azl =iyl =) sl ="

n

E a;;x;

i=1 |j=1
Therefore
Az
fal = supl2elt g yag,
z#0 ||x||1 fzlly=1
m n
4l = sup D" I> ayz| < sup ZZIaullx]I
lall=1 =7 | 527 llall=1 {5 =7
m m
1Al < <||s|1]lplz|z1|) (mfoIGijl = m?.xZ|aij|
=l i=1 i=1
Nr—— e —

1

Since this upper bound is actually achieved for x = ¢®*), where k is such that
Yoie i laik] = max; 3" |aiji, we can write

A A
”Alll = sup I 1:”1 _ a‘x” xlll _m Zlau|

a0 Nzl z#0 ||zl

Problem C.8.14 Show that
n
[[Alloo = max’y " lass|.
ji=1

Hint: This upper bound is achieved for z =[1 1 ... 1}7, so we can write

m

|Az || Az

”A”oo=sup T ”(1:’ = max Hx”(i:" =m?nglaij|
=
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Problem C.8.15 Prove that
lAll2 < [|Allx - [| Alloo

Solution:
14113 = (F(A))® = Amaz(A7A)

For any square matrix B we can write
|| Bz
) < ma L = m Z s

Therefore, for B = AYA, when b;; = Z;"zl ariakj, we have

llAllz < maxZ 1bij| = maxZ Y awian

i=1 | k=1

Finally we see that

Al < (m?XZIaHI) (m,?XZIijl)
k=1 i=1

Problem C.8.16 Prove that
F(A) -1<FI +A) <F(A)+1

Solution: The right-hand side inequality is a simple consequence of the triangle
inequality:

oI+ A) <F(A)+5(I) <7(A)+1

The left-hand side inequality is also a consequence of the triangle inequality:

F(A)~1 FI+A-1)—1

gl +A)+o(-I)—-1 = g(I+A)

IA

Problem C.8.17 Prove the following property:
a(I+ A)>1-5(A4)

Solution: Since the smallest singular value of a matrix is a norm, we can use the
triangle inequality:

l=g(I)=g(I+A-A)<g(I+A)+a(A) <ol +A)+7(A4)

Problem C.8.18 Prove the Cauchy-Schwarz-Buniakowski inequality:

(&en) < (57) (£7)

which can also be written as

27yl < llzll2llyll2
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Solution: For any scalar ¢ and vectors z and y
llaz + yli3 > 0
ie.,
llzll3a® + 22" ya + |jyll; > 0
therefore for any a the discriminant of this quadratic trinomial must be < 0:
(227y)* — 4lj=li3llyliz <0
ie.,
lz"y| < lizl2llyll2

The equality is satisfied if and only if az + y = 0, i.e, if z and y are linearly
dependent.
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Ackermann formula, see formulas
Adams Prize, 8

Adjoint matrix, see matrices

Airy, 7,9

Aizerman, 18

Albion Mills, 6n

Alexandria, 5

Aliasing, 232, 233, 234

Analog computer, 12

Analytical Theory of Heat, 312
Arc lamp, 10

Archimedes, 306, 306n

Ars Magna, 319

Asympt. Lyapunov stability, see stability
Attractivity, see system properties
AT&T, 12

Autopilot, 10

Babbage, 307
Bashkow, 18
Bass, 19, 171
Bass-Gura formula, see formulas
Belevitch, 57
Bell, 13
Bellman, 18, 20, 260n
Bernoullis, 20, 260n, 306, 307, 312n
Bertram, 19
Bessel filter, see filters
Bezoutian
matrix, see matrices
resultant, see resultants
BIBO stability, see
Binet, 319
Biological control, 21
Black, 12, 107, 108, 108n
Bode, 12, 13, 109
Bolza, 20
Bompiani, 9
Born, 320
Boulton, 6
Bromwich, 314
Bucy, 20, 21, 70, 198
Butterworth filter, see filters

Calculus, 306
matrix, 352
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Calculus, continued
operational, 10, 314
of variations, 178
Canonical realizations
controllability, 26, 47, 155, 339
controller, 25, 26, 46, 153, 339
modal (parallel), 26, 31, 59, 157
observability, 26, 51, 156, 339
observer, 26, 51, 154, 339
uncontrollable, 56
unobservable, 56
Cannon, 22
Cantor, 306
Caratheodory, 260n
Cardano, 319
Carson, 10, 314
Cauchy, 8, 9, 109, 306, 307, 308, 319
Cauchy-Schwarz-Bunyakowski inequality,
368
Cawvalieri, 306
Cayley, 319, 320
Cayley-Hamilton theorem, see theorems
Characteristic
equation, see equations
roots, see eigenvalues
values, see eigenvalues
vectors, see eigenvectors
Chebyshev filter, see filters
Clepsydra, see water clock
Clifford, 7
Clocks, 6
Cohn, 16
criterion, see stability criteria
Communications, 12
Companion matrix, see matrices
Comparison of internal and external sta-
bility, see stability
Complexity, see system properties
Concert hall, 100
Conditional stability, see stability
Constructibility, see system properties
Controllability, 19, 31, 38, 45, 130, 134,
152, 244, 245, 246
duality with observ., see duality
form, see canonical realizations
from-the-origin, 45, 246, 246n
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Controllability, continued
joint with observability., see joint con-
trollability and observability
matrix, see matrices
modal, 166, 170
of modal form, 59, 137
PBH criteria, see PBH criteria
state, 45, 134, 152, 170, 244
to-the-origin, 45, 245, 246, 246n
transform domain criteria, see trans-
form domain criteria
under discretization, 248
under similarity transformation, 47,
152
under state feedback, 65, 166
Controller form, see canonical realizations
Convolution, 75, 80, 95, 209, 215, 316, 317
Correlation matrix, see matrices
Cramer, 319
Ctesibius, 5

D’Alembert, 306
Davos Spa plant, 9
De Architectura, 5
De Moivre, 315
Deadbeat system, 32, 244, 246
Definiteness, 38, 129, 345
Delta impulse, 75, 79, 100, 230, 318
Descartes, 8, 306
Detectability, see system properties
Determinant, 318, 319
Vandermonde, see Vandermonde de-
terminant
Diagonal matrix, see matrices
Difference equation, see equations
Differential equation, see equations
Diffusion equation, see equations
Dirac’s delta distribution, see delta im-
pulse
Dirichlet, 312n
Discrete Fourier transf. (DFT), see trans-
form(ation)s
Discrete-time Fourier transf. (DTFT), see
transform(ation)s
Discretization, 32, 237
& controllability, see controllability
& observability, see observability
& similarity, see similarity
& stability, see stability
Disquisitiones Arithmeticae, 319
Drebbel, 6n
Duality
of controllability and observability, 50
of LQR and LQE, 68, 69, 198, 265n
Dyad, 365
Dynamic programming, 20

Eigenvalues, 30, 38, 66, 275, 281, 319, 325

INDEX

Eigenvalues, continued
relocation, 66, 255
under similarity, 30, 330n, 335
under state feedback, 64
Eigenvectors, see principal vectors
Electrical Papers, 10
Electrical standards, 7
Electrical transmission, 10
Equations
characteristic, 326
difference, 209, 306, 307
differential, 75, 306, 307
diffusion, 312n
Euler-Lagrange, 179
heat, 312n
Lyapunov
continuous-time, 42, 178, 181, 354
discrete-time, 44, 239, 241, 354
extended, 279
Riccati, 20, 21, 67, 70, 180, 181, 194,
259, 262, 268, 307
state, 25, 28
Wiener-Hopf, 14
Yule-Walker, 15
Equilibrium point, 35, 37
Estimator, see state
Euclid, 306
Euclid’s algorithm, 281, 297, 303
Euclidean norm, 302, 361
Eudoxus, 306
Euler, 20, 260n, 297, 306, 307, 312n
Euler-Fourier formulas, see formulas
Euler-Lagrange equation, see equations
Evans, 12, 16
External stability, see stability
Eztrapolation, Interpolation, and Smooth-
ing of Stationary Time Series,
16

Feedback, see state feedback
Fel’dbaum, 18
Fermat, 20, 306
Fibonacci numbers, 217, 297, 315
Filters
Bessel, 106
Butterworth, 106, 229
Chebyshev, 106, 229
Kalman, 20, 21, 69, 70, 265, 266, 269
Kalman-Bucy, 20, 70, 194, 265, 269
low-pass, 231
Finck, 319
Formulas
Ackermann, 66, 169, 255, 258
Bass-Gura, 66, 153, 169, 171, 255,
258
dual of, 68, 154, 187
Euler-Fourier, 312
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Formulas, continued
Mason, 124, 147, 157
Mayne-Murdoch, 66
Poisson, 232
Sylvester, 88, 218
Wallis, 314

Fourier, 10, 312

Fourier transform, see transform(ation)s

Frequency response, 101

Frey, 13

Frobenius, 320, 355, 364

Gabor, 234

Gain margin, 13

Gauss, 318, 319

The general problem of the stability of mo-
tion, 10

Generalized eigenvectors, see principal vec-
tors

Generating functions, 231, 315

Gilbert, 56, 57

Global stability, see stability

Golden section, 315

Governor, 5, 6

GPS, 265

Gram matrix, see matrices

Gram-Schmidt orthonormalization, 342

Gregory, 307

Gura, 19, 171

Gyropilot, 10

Hamilton, 20, 320
Hamiltonian, 179
Hamiltonian matrix, see matrices
Hammer, 78
Hankel matrix, see matrices
Harmonic numbers, 297
Hautus, 57
Heat equation, see equations
Heaviside, 10, 314
Heaviside’s step fn., see step function
Heisenberg, 115n, 320
Hermite, 9
Hermitian
form, 130
matrix, see matrices
operator, 322
Hero, 5
Hessian matrix, see matrices
Hilbert, 115n
Homeostasis, 22
Hopfield, 279, 280
Horner, 337
Hunting, 6
Hurewicz, 16, 231, 315
Hurwitz, 9
criterion, see stability criteria
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Hurwitz, continued
matrix, see matrices
IBM, 265
IFAC, 18
Impulse response, 28, 100, 117, 224, 225,

230, 235
Inamori, 265n
Incandescent lamp, 11
Incubator, 6
Industrial process control, 12
Input-output representation, 98, 222
Instability, see system properties
Internal stability, see stability
Inverted pendulum
double, 280
on a cart, 26, 27, 49, 121, 144, 172,
189, 196, 201, 255
simple, 133, 172
Isochrone, 307

Jacobi, 20
Joint controllability and observability, 52,
54
Jordan matrix, see matrices
Jury, 16
criterion, see stability criteria

Kailath, 23, 57, 219

Kalman, 16, 18, 20, 21, 56, 67, 69, 198,
265, 284

Kalman filter, see filters

Kalman-Bucy filter, see filters

Kelvin, Lord, 7, 18, 114

Kelvin scheme, 18, 114

Kepler, 306

Kotelynikov, 234

Kronecker, 320

Kronecker delta, 80, 209, 215, 224, 317

Ktesibios, see Ctesibius

Kyocera, 265n

Kyoto Prize, 265

Lagrange, 20, 303, 306, 326, 357
Laplace, 10, 306, 314, 315, 319, 323
Laplace transform, see transform(ation)s
Leibniz, 306, 307, 308, 319
Letov, 18
Leverrier et al. algorithm, 285
Levinson, 14, 15, 16
Levinson’s algorithm, 15, 353
Lie, 307
Limit cycle, 37, 126
Linearization, 43

and stability, see stability
Linvill, 231
Lipshitz, 308, 309
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Little, 289n

London Mathematical Society, 7

Lord Kelvin, see Kelvin, Lord

Low-pass filter, see filters

LQE, 21, 69, 194, 265

LQR, 21, 67, 69, 178, 259

Lur’e, 18

Lyapunov, 10, 38, 44, 131n, 307
criterion, see stability criterion
equation, see equations
function, 38, 130, 181, 280
second (direct) method, 38, 130
stability, see stability

MacFarlane-Potter-Fath method, 180
Maclaurin, 306
Man-machine systems, 22
Marginal stability, see stability
Markov
parameters, 28, 53, 139, 155, 158,
159, 161, 164, 235, 253, 353
resultant, see resultants
Mason’s formula, see formulas
MathWorks, 289n
MATLAB, 289
Matrices, 83, 217, 318, 325
adjoint, 284, 329
Bezoutian, 159
companion, 54, 59, 334, 336, 338
controllability, 29, 45, 134
correlation, 344, 347, 348
DFT, 342
diagonal, 330, 342
Gram, 344, 347, 348, 356
Hamiltonian, 180
Hankel, 29, 53, 158, 159, 164, 342,
353
Hermitian, 327n, 331n, 340, 342, 344,
367
Hessian, 347, 352, 356, 357
Hurwitz, 37, 42, 131, 131n, 132, 279,
354
Jordan, 31, 59, 83, 87, 88, 91, 137,
157, 236, 330, 331
nilpotent, 32, 244
normal, 327n, 331n, 340, 366
observability, 29, 50, 139
orthogonal, 340
reachability, 246
real symmetric, 327n, 331n, 340, 344
resolvent, 90, 96
skew-symmetric, 348, 348n
skew-Hermitian, 348, 348n, 366
Sylvester, 282
Toeplitz, 15, 139, 353
unitary, 340, 342, 366
Vandermonde, 135, 354

INDEX

Matrix
differentiation, see calculus
inversion lemma, 219
norms, 361
products, 292, 321, 358
Maximum Principle, 20
Maxwell, 7, 9
Mayne-Murdoch formula, see formulas
Mikhailov, 13
criterion, see stability criteria
Minimallity, 31, 38, 52, 54, 130
transform domain criteria, see trans-
form domain criteria
Minimum norm solution, 248
Minimum phase, 13
Minorsky, 10
Modal controllability, see controllability
Modal form, see canonical realizations
Modes, 30
Moler, 289n

NASA, 69
Navigation, 21, 265
Negative feedback amplifier, 12
Neural network, 279, 280
Newcomen, 6
Newton, 20, 306, 307, 308
Nichols, 12, 14
Nilpotent matrix, see matrices
Nine Chapters on the Mathematical Pro-
cedures, 318
Normal matrix, see matrices
Nullity, 327
Nyquist, 12, 107, 108, 109, 234
criterion, see stability criteria
frequency, 234
plot, 109
rate, 234

Observability, 19, 31, 38, 45, 50, 130, 152,
244, 246
duality with contr., see duality
form, see canonical realizations
joint with controllability, see joint
controllability and observability
matrix, see matrices
of controller form, 54, 59
of modal form, 139
PBH criteria, see PBH criteria
transform domain criteria, see trans-
form domain criteria
under state feedback, 65, 167
under similarity transformation, 152
Observer, see state
Observer form, see canonical realizations
On Governors, 7
Operational calculus, see calculus
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Optimal control, 20, 66
Optimality Principle, 262
Orthogonal matrix, see matrices

Pallas, 319
Papin, 6
Parallel form, see canonical realizations
Partial fraction decomposition, 81, 148,
157
Pascal triangle, 297
PBH criteria, 57, 58, 59, 60, 140, 250
Pendulum
inverted, see inverted pendulum
simple, 36
with friction, 41, 43
Petzval, 314, 314n
Phase margin, 13
Phase-plane, 18 ]
Philosophiace Naturalis Principic Mathe-
matica, 306
Picard, 307
PID control, 10
Placement of eigenvalues, see eigenvalues
Poincare, 10, 18, 44, 307
Poisson formula, see formulas
Pole placement, see eigenvalues
Pole-zero cancellation, 118
Poles, 30, 31, 38, 98, 129, 222
Pontryagin, 20
Popov, 57
Power grid, 11
Principal vectors, 90, 332
eigenvectors, 90, 275, 281, 325, 332
generalized eigenvectors, 90, 236, 332
Pseudoinverses
general, 358, 359, 360
left, 357, 359
right, 357, 360

Quadratic form, 41, 129, 130, 319, 345

Radar, 12, 14
Ragazzini, 16, 231, 315
Rank, 320, 327, 355
Rayleigh-Ritz theorem, see theorems
Reachability, see system properties
Reachability matrix, see matrices
Real symmetric matrix, see matrices
Reaumur, 6
Reduced-order observer, see state observer
Relocation of eigenvalues, see eigenvalues
Resolvent
matrix, see matrices
identities, 285
Resonance, 99, 223
Resultants, 282
Barnett-Kalman-Macduffee, 284
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Resultants, continued
Bezoutian, 283
Markov, 284
Sylvester, 282
RIAS, 69, 265
Riccati equation, see equations
Rissanen, 19
Roberval, 306
Robust control, 21
Root-locus method, 16, 109
Routh, 8, 9
criterion, see stability criteria

Salzer, 231
Sampling, 230
Sampling theorem, see theorems
Sarrus, 319
Savery, 6
Schrédinger, 115n, 307, 320
Schur, 9, 16, 342
criterion, see stability criteria
Seki, 319
Separability of eigenvalues in controller-
observer design, 63, 64, 188
Servo-mechanism, 13
Shannon, 18, 234
Ship-steering, 10
Sieve of Eratosthenes, 297
Signal-flow graph, 124
Similarity, 26, 30, 83, 249, 330n, 334
& controllability, see controllability
& discretization, 249
& eigenvalues, see eigenvalues
& observability, see observability
Simon, 21
Singular value decomposition (SVD), 356n,
357
Skew-symmetric matrix, see matrices
Skew-Hermitian matrix, see matrices
Stability, 34, 44, 152, 239
comparison of internal and external,
38, 54
external, 31, 34, 54
BIBO, 34, 38, 107, 128, 130, 239
conditional, 108, 109
marginal, 34, 129
internal, 31, 35, 54
asymptotic Lyapunov stability, 35,
36, 37, 38, 130, 241
global asymptotic, 35, 130
Lyapunov stability, 35, 36, 37, 130,
241, 277, 279, 345
under discretization, 243
under linearization, 43
Stability criteria
BIBO, 128, 129, 239, 240
Cohn, 16
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Stability criteria, continued
Hurwitz, 9, 11, 354
Jury, 16, 354
Lyapunov, 38, 42, 354
marginal, 129, 239, 240
Mikhailov, 13
Nyquist, 11, 12, 16, 107, 109
Routh, 8, 11, 354
Schur, 16
transform domain, see transform do-
main criteria
Stabilizability, see system properties
State
controllability, see controllability
equations, see equations
estimator, 68, 69, 265
observer, 68, 186, 263
reduced-order, 69, 199, 272
State feedback, 19, 62, 166, 255
& controllability, see controllability
& eigenvalues, see eigenvalues
& observability, see observability
& zeros, see zeros
State-space methods, 113, 235
Steam, 5
engine, 6
Step function, 80, 316
Stodola, 9
Stone, 231
Sturm, 8
Sylvester, 282, 319, 349, 355
definiteness criterion, 130, 132, 354
interpolation, see formulas
matrix, see matrices
resultant, see resultants
System properties
attractivity, 35, 36
complexity, 21
constructibility, 50, 244, 246
controllability, see controllability
detectability, 60, 177
instability, 34, 36
minimallity, see minimallity
observability, see observability
reachability, 45, 244, 246
stability, see stability
stabilizability, 60, 65, 176

Taylor, 306, 307
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Tracking, 21, 265
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similarity, see similarity
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Uncontrollable form, see canonical realiza-
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Unitary matrix, see matrices
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Water turbines, 9
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‘Western movies, 234
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Wiener-Hopf equation, see equations
Wiener-Khinchin theorem, see theorems
Wiener’s problem, 69, 198
Windmill, 5
Woodbury, 219

Yule-Walker equation, see equations
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