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Preface

The MAT-TRIAD 2015, sixth in the series of international conferences on matrix
analysis and its applications, was held at the Department of Mathematics,
University of Coimbra, Portugal, during 7-11 September. Following the tradition of
its predecessors, this meeting gathered researchers around topics in matrix theory
and its role in theoretical and numerical linear algebra, numerical and functional
analysis, graph theory and combinatorics, coding theory and statistical models with
matrix structure. A total of 170 participants from 39 countries, from Europe, North
and South America, Africa and Asia, have attended the conference in the University
of Coimbra, UNESCO World Cultural Heritage since 2013. The audience was
multidisciplinary allowing the participants to exchange diversified ideas and to
show the wide applicability of different methods. There were two kinds of lectures:
invited talks of one hour presented by distinguished experts and half an hour
contributions. The winners of the Young Scientists Award of MAT-TRIAD 2013
presented invited talks. The conference included two lectures specially dedicated to
young participants.

MAT-TRIAD 2015 was sponsored by the International Linear Algebra Society
(ILAS), Department of Mathematics, University of Coimbra (DMUC), Center of
Mathematics, University of Coimbra (CMUC), Center for R&D in Mathematics
(IDMA), Center for Mathematical Analysis, Geometry and Dynamical Systems
(CAMGSD), Center for Functional Analysis, Linear Structures and Applications
(CEAFEL), Polytechnic Institute of Tomar (IPT), Fundag¢do para a Ciéncia e
Tecnologia (FCT), Programa Operacional Factores de Competitividade
(COMPETE), Quadro de Referéncia Estratégica Regional (QREN), Fundo Europeu
de Desenvolvimento Regional—Unido Europeia.

The Conference Scientific Committee consisted of Tomasz Szulk (Poland)—
Chair, Natalia Bebiano (Portugal), Ljiljana Cvetkovic¢ (Serbia), Heike FaBbender
(Germany) and Simo Putanen (Finland). The Organizing Committee was consti-
tuted by Natdlia Bebiano—Chair, Francisco Carvalho, Susana Furtado, Celeste
Gouveia, Rute Lemos and Ana Nata, all from Portugal.

We would like to publicly acknowledge the financial support of the sponsors, as
well as the hospitality of the Department of Mathematics of the University of
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Coimbra, and the strong encouragement of its Center of Mathematics. We are also
very grateful for the secretarial help of Dra. Rute Andrade.

Selected papers of MAT-TRIAD 2015 are presented in the volume Applied and
Computational Matrix Analysis in the series Proceedings of Mathematics &
Statistics published by Springer Verlag. With the publication of these proceedings,
we hope that a wider mathematical audience will benefit from the conference
research achievements and new contributions to the field of matrix theory and its
applications.

More details of the program and the book of abstracts can be found at http://
www.mattriad.ipt.pt.

Coimbra, Portugal Natalia Bebiano
August 2016
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Birkhoff Polynomial Basis

Amir Amiraslani, Heike FaBbender and Nikta Shayanfar

Abstract The Birkhoff interpolation problem is an extension of the well-known
Lagrange and Hermite interpolation problems. We propose a new set of basis poly-
nomials for representing the Birkhoff interpolation polynomial. The proposed basis
extends the definition of the Newton basis for non-distinct interpolation nodes. This
approach allows to determine the Birkhoff interpolation polynomial via a special
linear system of equations. When applied to the special cases of Taylor, Lagrange
and Hermite interpolations, this approach reduces to the well-known solutions of
these problems expressed in the Newton basis. A number of examples are studied.

Keywords Polynomial bases - Polynomial interpolation - Differentiation matrix -
Birkhoff matrix

1 Introduction

The following general interpolation problem [18, 24], known as the Birkhoff inter-
polation problem, will be considered:

Let{z; };;0 be aset of distinct interpolationnodes and { f; ;} beasetofn + 1 data values where
n > kand f; ; is seen as the jth derivative of a function f atnode z;, thatis, f; ; = FP@).

Find P € P, suchthat PY(z) = fi;,

where [P, is the set of complex polynomials of degree at most 7.
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2 A. Amiraslani et al.

Note that it is not required that at each node z; a complete sequence of derivatives
fij = fY) for j =0,1,...,1t; for some t; € Ny is given. It is sufficient that
some of this information is given; that is, derivatives of f at z; may be given without
specifying all lower order derivatives (or f(z;) itself). The total number of derivatives
given at a node z; is referred to as the confluency s; of thenode z;,i =0, .. ., k, using
the standard notation ¥ (z) = f(z). However, for each z; at least one f; ; must be
given. Hence, more precisely, for the nodes z;,i = 0, ..., k, with the confluency s;,
we are looking for a polynomial of degree n = 59 + - - - 4+ s — 1, such that it satisfies
the interpolation conditions PY)(z;) = f;. -

Example 1 Suppose that the following information about the function f(x) at the
distinct nodes zg, z1, 22 is given:

f@o) = foo, f"(z0) = for, f'(z)=fir, [f(z2)= fro
The corresponding sequence of s; is as follows:
so=2, s1=1, s,=1.
We seek the polynomial P(x) € IPj satisfying the interpolation data:

P(20) = foo. P"(z0) = fo2, P'(z1) = fi1. P(z2) = fro.

The more well-known Lagrange and Hermite interpolation problems are special
cases of the Birkhoff interpolation problem. Results on the existence and uniqueness
of a solution of these interpolation problems are given in [7] which is an easily read-
able account of several different interpolation schemes. For ease of further reference,
we briefly review both interpolation problems.

Definition 1 (Lagrange interpolation problem)

Given n + 1 distinct nodes z;,i =0, ...,n and the associated functional values
fi,i =0,...,n of the function f(x) at these points, we seek a polynomial P(x) €
P, satisfying

Piz)=/fi, i=0,...,n.

It is immediate that s;, = 1 fori =0, ..., n.

The Hermite interpolation matches an unknown function not only at observed
values (z;, f;), but also at observed values of consecutive sequences of derivatives at
z;. That is, at a node z; not only f;, but also the sequential derivatives of up to order
si — 1, thatis fU(z;), j =0,...,s; — 1, are given. Our definition of the Hermite
interpolation problem makes use of repeated nodes (as needed, e.g., for determining
the interpolation polynomial via divided differences).
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Definition 2 (Hermite interpolation problem)
Consider n + 1 interpolation nodes zg, ..., 20, - - - » Zk» - - - » Zk» Where
—_—— ———

so times Sk times

k
Zs,- =n+1.
i=0

Let us assume that we are given n + 1 specified values f)(z;) := f; ; for some
function f(x) where i =0,...,k, j=0,...,s; — 1. The Hermite interpolation
problem is to find a polynomial P(x) € IP,, that satisfies

PY(z)=fijy i=0,...k, j=0,...,5—L (1)

Clearly, s;,i =0, ..., k, gives the total number of the derivatives given at the node
Z,‘,i ZO,...,k.

Note that the orders of the derivatives in the Hermite interpolation form an
unbroken sequence, and if some (or all) of the sequences are broken, we have the
Birkhoff interpolation. In fact, the Birkhoff interpolation generalizes the Hermite
one, in the following sense: In the Hermite interpolation problem, for each node
zi,i =0, ..., k, all the functional values for @ (z;), fV(z), ..., f¥D(z;) have
to be given. The Birkhoff interpolation problem does not require all derivatives to
be given. It is possible to consider derivatives without specifying (all) lower deriv-
atives. However, we still denote the number of the given derivatives at node z;, by
S,‘,i =0,...,k.

A special case of the Hermite interpolation problem is the Taylor interpolation
problem in which just one node zy and an unbroken sequence of derivatives at that
node is given.

Definition 3 (Taylor interpolation problem)

Consider one interpolation node zo. Assume that n + 1 specified values f D (z0) 1=
fo.j» 7 =0,...,n for some function f(x) are given. The Taylor interpolation prob-
lem is to find a polynomial P(x) € IP,, that satisfies

PD(0) = foj;» Jj=0,....n.

Obviously, so = n + 1 and the usual Taylor expansion polynomial

nor() ‘
P =31 j(,z‘)) (x = 20)/. @
&)

solves the Taylor interpolation problem.

As the Lagrange and Taylor interpolation problems are special cases of the Her-
mite one, it suffices to state that there exists a unique solution to the Hermite inter-
polation problem.
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Theorem 1 ([7, P. 24]) Consider the Hermite interpolation problem defined in
Definition 2. There exists a unique polynomial P(x) € P, such that the interpo-
lation conditions (1) are held.

In contrast to the Taylor, Lagrange and Hermite interpolation problems, the addi-
tional freedom in the Birkhoff interpolation problem implies that the interpolation
problem not necessarily have a solution for every choice of data values. In this paper,
we assume that the Birkhoff interpolation problem considered does have a solution,
see e.g. [3, 17, 18, 24] for a discussion of this important aspect. The purpose of this
paper is to introduce a new approach for solving the Birkhoff interpolation problem.
We observe that the interpolating polynomial can be represented essentially via the
well-known Newton basis. The Newton polynomials are usually defined for distinct
nodes. Here we will consider this set of polynomials for non-distinct nodes and call
the so obtained set of polynomials { % (x)};_, the Birkhoff polynomials; they form
a polynomial basis of the space IP,, of complex polynomials of degree at most 7.
Our main goal is to show that, in the presence of confluent nodes, the solution of
the Birkhoff interpolation problem can be computed from an easy to set up linear
system. The resulting interpolating polynomial is expressed in the Birkhoff basis.
When applied to the special cases of Taylor, Lagrange and Hermite interpolations,
this approach reduces to the well-known solutions of these problems expressed in
Newton bases.

The Birkhoff interpolation problem has numerous applications. An equivalence
between the Birkhoff interpolation problem and a sequence of problems from linear
optimal control is studied in [29]. The Birkhoff interpolant may be useful in the devel-
opment of numerical solutions of ordinary differential equations with defect control
[16]. Moreover, they may arise when using collocation to solve two-point boundary
value problems [14]. Another problem that has been studied and was shown to be
related to Birkhoff interpolation is the study of optimal digital to analog conversion
using linear system theory [29].

In 1906, George David Birkhoff introduced the Birkhoff interpolation problem
[4], that has been studied in the literature since then. Later in 1931, the problem was
restated by Polya [20], as a differential equation in which a combination of initial and
terminal values suffice to construct a unique solution. In [26, 27], 15 open questions
on Hermite-Birkhoff interpolation problems were stated. Over 20 years later some of
these questions have been answered in [24]. A great deal of research focuses on the
Birkhoff interpolation problem for special nodes or uniform interpolation conditions,
see [8—12, 21] among others. A solution to the Birkhoff interpolation problem in a
barycentric form via a contour integral formula has been obtained in [5]. Particularly,
the specific case of prescribed function values and only first derivative values is
discussed in [13], while applying quantifier elimination to the Birkhoff interpolation
problem is presented in [15].

The organization of the paper is as follows: In Sect. 2, we recall the precise state-
ment of the problem via an incidence matrix as in the classical theory. Next, in Sect. 3,
we introduce the Birkhoff matrix which will replace the usual incidence matrix in
the statement of the Birkhoff interpolation problem in our further discussion. More-
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over, the notion of a differentiation matrix will be reviewed. Section4 presents our
new approach for solving the Birkhoff interpolation problem via a linear system of
equations. The resulting interpolating polynomial is expressed in the generalized
Newton basis, called Birkhoff basis. In Sect. 5, we discuss the Taylor, Lagrange, and
Hermite interpolation problems in the context of our new approach. Some illustrative
examples are provided in Sect. 6.

2 Statement of the Birkhoff Interpolation Problem
via an Incidence Matrix

The Birkhoff interpolation problem can be characterized with the help of incidence
matrices. In general, a (k + 1) x (t + 1) matrix J = [J;, j]f."ztoq =0 is an incidence
matrix if its entries are either O or 1. Here we let 7 be the highest order of the given
derivatives in the interpolation problem. Obviously, n + 1 < (t 4+ 1)(k + 1), as for
fixed k and fixed ¢ at each of the k + 1 nodes at most # 4 1 functional values can be
given, while k and n are as given in our initial problem statement.

Definition 4 (Birkhoff incidence matrix)

A(k+1)x (t+1) matrix J = [Ji,j]f':to,j:o is called a Birkhoff incidence matrix
for a specific interpolation problem if J; ; = 1 in case f; ; is specified and J; ; =0
otherwise.

Note that the indices of the Birkhoff incidence matrix begin with 0, since the nodes
and derivatives, z;, fi ;, start with the index 0.

Example 2 Consider the Birkhoff interpolation problem given in Example 1. The
associate Birkhoff incidence matrix is given by

101
J=1010
100
In the Birkhoff incidence matrix J, the confluency s;,i =0, ..., n is the sum of

the elements in the specific row of J corresponding to z;, and the sum of all elements
of Jequalston + 1.

In the literature, often the Birkhoff incidence matrix J is defined as a (kK + 1) x
(n 4+ 1) matrix which has exactly n 4 1 ones, while the Birkhoff incidence matrix
in Definition 4 is of size (k + 1) x (¢ + 1). Following [19], ¢ < n, one could easily
extend our Birkhoff incidence matrix to one of size (k 4+ 1) x (n 4+ 1) by adding
sufficient columns with all zero entries. In [29], the Birkhoff incidence matrix needs
to be square which is not required here. To sum up, our Birkhoff incidence matrix is
of the smallest possible size for the information encoded.

Now we rewrite the initial statement of the problem using the Birkhoff incidence
matrix:
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Definition 5 (Birkhoff interpolation problem)

Let {z; }fzo be a set of distinct interpolation nodes, { f; ;} be a set of n + 1 data values
and n > k. Let ¢ be the highest order of the given derivatives and J be the corre-
sponding (k + 1) x (¢ + 1) Birkhoff incidence matrix. The Birkhoff interpolation
problem is about finding a polynomial P (x) € IP, which satisfies the conditions

PPy = fij, if Jiyj=1 for i=0,....k j=0,....,t. (3)

Special cases of the Birkhoff interpolation problem can be identified from the
associated Birkhoff incidence matrix J as follows:

e Lagrange interpolation: The Lagrange interpolation problem is given if ¢t =
0,n =k,and Jisa (k + 1) x 1 matrix in which J; o = 1 foreveryi,i =0, ..., k;
thatis, J = (1,..., DT € R¥1,

e Taylor interpolation: The Taylor interpolation problemis givenifk = 0, = n =
so—1,and Jisa 1 x (¢ + 1) matrix in which Jo ; = 1 forevery j, j =0, ..., ¢;
thatis, J = (1,...,1) € R>*¢+D,

e Hermite interpolation: The Hermite interpolation problem is given if t — 1 =

_____ si,Jisa(k + 1) x (¢t + 1) Birkhoff incidence matrix in which each row

starts with a one in the first column and there does not exist any zero in the sequence

of consecutive ones in eachrow. Simply put, J; o = landforj =1,...,¢,J;; =1

implies that J; ; = 1, for every k < j.

3 Two Important Matrices

In this section, we introduce two important types of matrices, the Birkhoff and the
differentiation matrices, which will be of use in order to state our main result.

3.1 Birkhoff Matrix

Here, we define a new matrix called Birkhoff matrix which gives similar information
as the more compressed Birkhoff incidence matrix. Recall that we have k + 1 distinct
nodes z;, each with s; functional values f)(z;) = fi;j, j =0, ..., t,whereJ; ; = 1.
Moreover, n = sy + - - - s — 1 and ¢ is the highest order of all given derivatives.

Definition 6 (Birkhoff matrix)
Define the (n + 1) x (¢ + 1)(k + 1) block diagonal matrix
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By
B
B = ,
By
in which the block B;,i =0, ..., k of size 5; x (¢t 4+ 1) is associated with the node
zi.Let fi j, ..., fij, bethe given data for the node z; where ji < j, fork < £. Then
B, is given by
elB;, = e£+1,

Tn _ T
eBi=e¢j .,

T _ T
e&Bi__eh+P

where elf is the pth row of the identity matrix I, of size t + 1.

A more intuitive way on how to construct B;,i =0, ...,k is as follows: we
start with I, ;. The r-throw r =1, ...,¢ 4+ 1 of the identity matrix is associated
with the (r — 1)st derivative at z;,i = 0, ..., k. Hence, the rth row e,T appears in
B, forevery f;,—1,r =1,...,t+ 1 with J; ,_; = 1, in other words, it is given as
the interpolation condition (3). We simply eliminate the rows of the identity matrix
where no information is given at z;. The Maple code in Table 1 describes how to
obtain the Birkhoff matrix B from the Birkhoff incidence matrix J.

Table 1 Construction of Birkhoff matrix from Birkhoff incidence matrix

for i from 0 to k do
B[i] :=IdentityMatrix(t+1) :
u:=0:
for j from 0 to t do
if J[i+1,J+1]1=0 then
B[i] :=DeleteRow (B[i],j-u+l):
u:=u+l:
else B[i]:=B[i]
end if
end do:
end do:
i:="i’: BB:=B[0]
for i from 1 to k do
BB:=DiagonalMatrix ([BB,B[i]]):
end do:
B:=convert (BB, Matrix) ;
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Comparing the Birkhoff incidence and the Birkhoff matrices, we can see that
while each row i,i = 0, ..., k of the Birkhoff incidence matrix J contains exactly
s; entries 1, each row of the Birkhoff matrix B has exactly one 1 and each block
B;,i =0,...,khass; entries 1. In fact, each interpolation condition (3) generates
one 1 in the Birkhoff incidence matrix and one row in the Birkhoff matrix. More
precisely, the ith row, i =0, ..., k of the Birkhoff incidence matrix J corresponds
to block B; of the Birkhoff matrix.

Proposition 1 There exists an element 1 in the (j + 1)th column of B;, if and only
l.f.]i.jz 1,i=0,...,k, j:O,...,l.

Example 3 For the problem in Example 1, we have k =2,n = 3 and t = 2. The
corresponding Birkhoff matrix corresponding is the 4 x 9 block matrix B = Diag

[By, By, B,] with the blocks
100
Bo = (0 0 1) ’

B, =(010),
B,=(100).

Let us consider again the three special cases of the Birkhoff interpolation problem
reviewed in the introduction and identify their associated Birkhoff matrix B.

e Lagrange interpolation The Lagrange interpolation problem is given if r =
0, n = k, and each block B; is the 1 x 1 scalar 1. Hence, Bisan (n + 1) x (n + 1)
identity matrix.

e Taylor interpolation The Taylor interpolation problem is givenifk = 0,t =n =
so — 1, and B is the (n 4+ 1) x (n + 1) identity matrix.

e Hermite interpolation The Hermite interpolation problem is given if B is an
(n+1) x (t + 1)(k + 1) Birkhoff matrix in which each s; x (¢ + 1) diagonal
block B; contains the first s; rows of the (r + 1) x (¢ 4+ 1) identity matrix, that
isB; = [Is; 0s;><(t+1—s;)]'

3.2 Differentiation Matrix

The term differentiation matrix was used by E. Tadmor in his review on spectral
methods [28], and denotes the transformation between grid point values of a function
and its approximate derivative. In order to introduce the differentiation matrix, we
first need the notation of degree-graded polynomials.

Definition 7 Any sequence of polynomials {p; (x)}32, with p; of degree j is called
degree graded.

Degree-graded polynomials satisfy the following interesting property:
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Lemma 1 ([2]) Any sequence of degree-graded polynomials forms a linearly inde-
pendent set. These polynomials satisfy the following recurrence relation:

xpj(x) =a;pjr(x)+Bijpi(x)+vyipj1(x), j=0,1,..., 4

where o, B, v; are complex and p_1(x) := 0, po(x) := 1 and if k; is the leading
coefficient of p;(x), then

Moreover, for a finite family of degree-graded polynomials, we have the following
useful result:

Lemma 2 For the degree-graded family {p; (x)};f:() let

po(x)

p1(x)
I1(x) .= .
Pn(x)

Then there exists a nilpotent matrix D of degree n + 1, called differentiation matrix,

D= ], ®)
0

where Q is an n x n lower triangular matrix defined according to the basis of P,
such that the qth derivative of the vector Il (x) can be computed via:

I9%) =DM (x), ¢ >0.

The lower triangular matrix Q does depend on the basis used to represent the
polynomials in IP,,. The differentiation matrix has been obtained for different bases,
especially Chebyshev and Jacobi polynomials [25], Jacobi and Bernstein basis [22],
Hermite basis [6], etc.

Here we will consider the Newton basis. The differentiation matrix has been
obtained in [1].

Definition 8 (Newton basis)

Given n + 1 distinct nodes 7;,i =0, ..., n, the set of n 4+ 1 Newton polynomials
H(x), i =0,...,n with

i—1
M) =[Jac—-1). i=0.....n (6)

Jj=0
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is called the Newton basis of IP,,. By standard convention, .4)(x) = 1.

The Newton polynomials .4;,i =0, ...,n form a degree-graded sequence of
polynomials; thus according to Lemma 1 they are linearly independent, and they
satisfy the general recurrence relation of degree-graded polynomials (4) witho; = 1,
Bj =tjand y; =0, as

M(x) =1, Nip(x) =x —1))Hx), j=0,....,n—1

Lemma 3 ([1]) The qth order derivative of

o (x)
M (x)
I1(x) := .
N (x)
is given by
o(x)
A1(x)
nv9w=p | . |,
M (x)
where D is as in (5) with Q such that
i, l = j7

qi,j = i=1,...,n, @)

| e = w01+ gien o 0>
where qo ; =0, qi o := 0.

Example 4 For n = 3, the differentiation matrix D for the Newton basis has the
following form:

0 0 00
1 0 00
D= 00— T 2 00 ®)

(to—w)(to—71) 212+ 711+730

4 New Approach to the Birkhoff Interpolant

The aim of this section is to develop a new approach for computing the Birkhoff
interpolant assuming the solvability of the problem [3, 17, 18, 24].
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Consider the Birkhoff interpolation problem for the interpolation nodes z;, i =
0, ...,k with confluency s;,i =0, ..., k. For each node z;,i =0,...,k, a total
number of s; derivatives of f(x) are given. As in the Hermite interpolation problem
(see Definition 2), let us introduce repeated nodes such that we have s; nodes z;, i =
0,...,k:

=T =+ = Tgy—1 ‘= 20,
Tso = Tsohl = * 7 = Tgs =1 °= 205 )
TSU+"'+51¢71 —_ ... = ‘L’SU_,'__“_'_S,{_] = Zk'

Next, let us consider the Newton basis (6) for the above set of nodes 7, ...,
Too++s,—1 = Tn even though these nodes are not distinct. For simplicity, we will
denote the so obtained set of polynomials by Z;(x) and refer to them as Birkhoff
polynomials. They are defined recursively

Bi1(x) = (x — 11) B (x), i=0,....,n—1,

with By (x) = 1. Clearly, %;(x) € P;.

A direct consequence of (9) and Lemma 1 implies that the set of Birkhoff poly-
nomials {%;(x)}!_, be a set of linearly independent polynomials which may be a
basis of P,,.

Lemma 4 The explicit formulation for %;(x) in terms of the interpolation nodes
zi,1 =0,...,kis given by

Bo(x) =1, PBe(x)=(x—2z20" L=1,...,50,

andforj:0,...,k—2and€:p+z(izosqwithlSpgsjﬂ

J
Box) =[x = 290" - (x = 2j51)".

q=0

and for £ = p—i—zlq‘;ésq with0 < p < s

k—1

o) =[x =2 - v = 20"

q=0

These polynomials form a sequence of degree-graded polynomials, in whicha; = 1,
Bj = tj, and y; = 0, but some of the B;’s are repeated.

The following formulas clarify the explicit formulation of the Birkhoff basis:

PBo(x) =1,
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Bi(x) = (x = 20),
P (x) = (x — 20)°,

%‘vo(x) = ()C - ZO)sO»
Byr1(x) = (x — 20)™(x — 21),

Bryr2(x) = (x — 20" (x — 21)%,
Biyis (X) = (x —20)" (x —z1)",
Bigrsitts; (X) = (x —20)°(x —z)™ -+ (x — 7)Y,

BigrsittsipX) = (x —20)"(x —z)™" -+ (x — 7))V (x — zj41)".
Example 5 Consider the Birkhoff interpolation problem discussed in Example 1.
The new set of nodes

T)=T1=2, T2=21, T3=2, (10)
defines the following basis for IP53:

I, (x—z0), (x =207 (x—20)%(x—2z1).

Lemma 3 also holds for the Birkhoff basis as the gth order derivative of H{:O (x =
7;),j =0,...,n— 1does not depend on the specific values of ;.

Lemma 5 The qth order derivative of

PBo(x)
Py (x)
(x) = ) ,
B (x)
is given by
Bo(x)
P1(x)
I9(x) =D? ) ,

By(x)
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where D and Q are as in (5) and (7), respectively.

Example 6 The differentiation matrix for the Birkhoff interpolation problem con-
sidered in Example 1 is given by the matrix (8).
Hence, for the set of nodes (10) it is given by

0 0 00
1 0 00
D=1o 2 o0
0 2(Z0 —Z 1) 30
As the polynomials %;(x),i = 0, ..., n are degree-graded, they are linearly inde-

pendent. Hence they are a basis of IP,, and every polynomial p(x) € IP, can be written
as a linear combination of this basis.

Now we propose the following approach: Assume that the Birkhoff interpolation
problem has a unique solution P(x). Then P(x) can be written as

Bo(x)
B (x)
P(x)=(ao ar - ay) : ; (11)
B (x)
for certain a;, i = 0, ..., n. Hence, the gth order derivative of P(x) is given by
Bo(x)
Bi(x)
PO =(agar---a)D7| ], (12)

By(x)

where D is the differentiation matrix introduced in Lemma 5.
The interpolant (11) has to satisfy the interpolation conditions (3), i.e. for fixed
i,i=0,...,k, wehave

PY) = fij, if Jij=1 for j=0,...,1
Then, using (12) implies that
Bo(zi)

P1(zi) . ‘ .
(aoal---an)D] : =fij, if Jij=1for i=0,....k j=0,...,¢.
@n(Zi)

These equations can be summarized using the Birkhoff matrix.
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Theorem 2 The unknowns a;,i =0, ..., n, in the Birkhoff interpolation polyno-
mial (11) can be found via the (n + 1) x (n + 1) linear system

B®I'a = BF, (13)

where B is the (n + 1) x (¢t + 1)(k + 1) Birkhoff matrix, and the vector F is of size
k+D@r+1) x1

F = (foo foa - for - feo fua - fk,z)T-
The matrix ®@ is of size (t + 1)(k + 1) x (t 4+ 1)(n + 1), and is constructed as follows

A
vi
o=\ .1, (14)
Vi
where fori =0, ...,k ViT is the following (t + 1) x (¢t + 1)(n + 1) matrix
V7i(z)

. V7 ()
VI = . : (15)

VT(z)

in which the column vector of the Birkhoff polynomial basis is

HBo(x)
By (x)

Vx) = )

P (x)

Furthermore, the (t + 1)(n 4+ 1) x (n + 1) matrix I is defined as

|
DT

r=|®7"], (16)
D7

where D is the differentiation matrix given by (5), and finally the (n 4+ 1) x 1 vector
a= (ao a --- an) is the vector of unknowns.
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To sum up, the Eq. (13) is the key relation of this contribution, which leads to the
desired interpolant. Note that the vector BF in the right hand side of the equation
contains the available derivative information of the Birkhoff data.

5 Special Cases

In this section, we recover elementary but relevant results for Taylor, Lagrange and
Hermite interpolation using our results from the previous section. The existence
and uniqueness of the solution to these problems are trivial and well-studied in the
literature [7].

5.1 Taylor Interpolation

As already noted, for the Taylor interpolation problem (see Definition 3) we have
k=0,t =n =sy— 1. Itis characterized by an (n + 1) x (n + 1) Birkhoff matrix
which is identical to the (n + 1) x (n + 1) identity matrix. Hence, the system (13)
reduces to

dlra=F, 17
with the right hand side F

F= (f0,0 for .- fO,n)T c @n+1’
and
V7 (z0)
D = Vg = .. c (D(n+1)><(n+1)z’
V7 (z0)

where
V7 (z0) = (Bo(20) B1(20) ... Bu(z0)) = (10 ---0) € CH"HD,
as the %, are given here by
%j(x)z(x—zo)j, j=0,...,n.

Finally, the (n + 1) x (n + 1) differentiation matrix D as derived in Lemma 5 is
given by
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00 - 0/0
10 - 00
02"
D= ,
: “.n—100
00 --- 0 =nl0
that is, D has nonzero entries only on its first subdiagonal; D;,; =i,i =1, ..., n.

All other entries are 0. It is easy to see that D> has nonzero entries only on its second
subdiagonal, D? has nonzero entries only on its third subdiagonal, and so on, until
D"*! = 0. Hence,

V7 (z9)X
VT (z9)D?
or = | VM) | 3

V7 @)D .

Therefore, solving (17) gives

_Jos

aj=—=, j=0,...,n,
J ]'

which corresponds to (2).

5.2 Lagrange Interpolation

As already noted, for the Lagrange interpolation problem we have t = 0,n = k. It
is characterized by the Birkhoff incidence matrix J of size (k + 1) x 1 containing
only ones, while the corresponding Birkhoff matrix is a (k + 1) x (k + 1) identity.
Moreover, as t = 0, the matrix I” defined in (16) is the identity matrix of size k + 1.
Hence, the system (13) simplifies to

®a=F, (18)

with the right-hand vector F

F=(fo fi-- f),
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as in our notation f;o = f;,i =0, ..., n. The matrices V; in (15) are 1 x (k + 1)

vectors
sz(%o(Zi) PB(zi) - @k(zi))’ i=0,....k

or, more precisely, as all nodes are distinct,
V[T — (%(Zl) </V1(Zi) M((Zi)), i=0,...,k.

Hence, the elements of the (k + 1) x (k + 1) matrix @ are given by

Jj=2

&= NaG@o) =@ =2z, ij=1l..k+1

p=0

Clearly, for j — 1 > g, we have .#j_;(z,) = 0. Therefore, @ is a lower triangular

matrix
0(20) 0 0 0 0
Moz M(zn) 0 0 0
b = M) M(z) M) - 0
M0 @Zp=1) M (2p=1) N (2k=1) -+ =1 (@g=1) O
M) M) M) o M @) M)
1 0 0 e 0 0
1 21 — 20 0 R 0 0
| 22—z (22— z2)(z2 = 20) 0 0
1 zg—1 — 20 (k=1 — 20)(Zk—1 — 20) -~ H];;%)(Zkfl —2q) 0
L ze—20  @—20@—20) - [lhZo—2) [TiZoGk —z9)

As all nodes z; are distinct, @ is nonsingular and (18) has a unique solution; det®
is equal to the determinant of the Vandermonde matrix V with v;; = z/ ~!as can
be easily seen from the lower triangular structure of @. Note that (18) is just the
usual linear system one obtains when solving the Lagrange interpolation problem
with respect to the Newton basis. Typically, one does not solve the system (18), but
uses divided differences and the Aitken-Neville recursion in order to determine the

coefficients a;, j =0, ..., k.
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5.3 Hermite Interpolation

As already noted, the Hermite interpolation problem (see Definition 2) is charac-
terized by an (n + 1) x (¢ + 1)(k + 1) Birkhoff matrix in which each s; x (r + 1)
diagonal block B; = [L;; 0y« (+1—s,]- The right hand side of (13) is

BF = (foo foi --- foso—1 -+ fio fed - fesm1) -

The standard approach for solving the Hermite interpolation problem makes use
of divided differences, hence one does not solve the system B® I"a = BF in order
to determine the coefficients a;, j =0, ..., k. But, as the next example shows, the
unknowns in the linear system which needs to be solved here, are just the divided
differences.

Example 7 Consider the Birkhoff interpolation problem given by:

10/00[00
_{oo10/00 it
B=10001/00|€R ™

00/00[10

which corresponds to the Birkhoff incidence matrix:
J={11
1

A quick observation shows that this corresponds to a Hermite interpolation
problem for k = 2,¢t = 1,n = 3. Following the differentiation matrix in (8) for
To =20, T1 = T2 = 21, T3 = 22, We have

0 0 00
1 0 00
20 — 21 2 00
(zo—z1)* 20— 2130

D=

The vector basis

Bo(x) 1
Nzw] | -
VO=120| | c-wa-w |

PB3(x) (x —z0)(x — 71)?

gives Vy, V', V)l in (15) which completes the matrix @ in (14). The system (13) is
constructed as follows:
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1 0 0 0 ap fo’o
1 (z1 — 20) 0 0 ar | | fio
0 1 (z1 — z0) 0 al | fir ]’
1 (22 — 20) (22 — 20)(z2 — 21) (22 — 20)(z2 — 21)* ) \a3 2.0

and its solutions correspond to the values obtained from the divided differences.

6 Illustrative Examples

In this section, first we reconsider Example 1. Then, two other examples from the
literature are discussed.

Example 8 Suppose that the function f (x) is given by the values fy.0, f0.2, f1.1, f2.0
at the distinct nodes zg, z1, z2. Then k = 2,n =3 and ¢ = 2. The corresponding
Birkhoff matrix B has been considered in Example 3

100000000
~{o001000000 o
B={000010000 |8

000000100

We first set up the system (13). The Birkhoff matrix B has already been determined,
the right-hand side vector is given by

fo.0

foz
BF = 1,

fia

fr0

T .
as F = (foo fo1 fo2 fio fixr fiz fro far f22) . Considering Example 6,
the differentiation matrix D is given by

0 0 00
1 0 00)
D= 0 2 00 e C™, (19)
02(zo—21)30

hence
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100 0
010 0
001 0
000 1
I 010 0
r—|( pr )= 0022(z0—z1) c @24
D)7 000 3 ’
000 0
002 2(z0 — z1)
000 6
000 0
000 0
Finally, the matrix @ is given by
V7 (z0)
V7 (z0)
V7 (z0)
v Vi(z))
o=|Vl)|= Vi(z)) e ¢,
\4 Vi(z))
VT(z2)
V7(z)
VT(z)
As
V7 (z0)
V7 (z0)
Bo =
Vi) ’
V7 (z2)
and
PBo(x) 1
P1(x) (x — z0)
= = 2
VO =1 200 (x — 20)? 20
P3(x) (x —z0)*(x — z1)
we obtain
1 0 0 0 0 0 0 00000
Bo — 0 0 0 0 0 0 0 0/[1000
“lo o 0 0 1 (z1 —20) (z1 —20)>0[0000
1 (z2 — 20) (22 — 20)% (22 — 20)*(z2 — 21)|0 0 0 0/0000

Summing up, the system (13), B®I"a = BF, reads
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1 0 0 0 ao fo.o

0 0 2 2(zo0 — 1) ap | _ | foz

0 1 2(z1 — 20) (z1 — 20)* a fin

1 (22— 20) (z2 — 20)* (22 — 20)*(z2 — 21) ) \a3 f20

C
Since
det(C) = 2(z9 — Zz)((Zo — 22)2 —3(z0 — Zl)z),

the unknowns a;,i =0, ...,3 can be obtained uniquely from the above system

for the interpolation nodes which do not satisfy z, — zo = ++/3(z1 — zo). Then the
interpolation polynomial is given by

1
(x — zo)
(x — 20)?
(x —20)*(x —21)

P(x) = (ao a a a3)

The next example has been presented in [13] as a solvable Birkhoff interpolation
problem.

Example 9 Let the interpolation nodes zg, z;, z2 and the values of fy 0, f1.1, f2.1 be
given. Hence, we have k = 2, n = 2 and ¢t = 1. The Birkhoff matrix is given by

100000
B={000100],
000001
while the differentiation matrix is
0 00
D= 1 00]. 21
ZO—Z120
Moreover,
Vizg) 0 1000 O 0
Bo = 0 Vi =1(0001z —z 0 ,
as

Bo(x)
V) = | %i(x)
P (x)

(x _ZO)
(x —z0)(x — z1)

0 Vi(n) (000 120 — 20 (z2 — 20)(22 — 21)
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With
10 O
01 0
I 00 1
F_(DT)_ 01z—2 | 2
00 2
00 O
we obtain the following system
10 0 ap f0,0
01 (z1 — 20) ar | = | fi
01 (z2—z20)+@2—21)) \@ fa

C

Since det (C) = 2(z, — z1), the system has a unique solution as z, # z;. We obtain

ap f0,0

| - (f2a=f1.1)z1=20)
ap ] = |/ 2(z2—21) ’
a, Sa=fia

2(z2—21)

and the unique interpolation polynomial

P(x) = (ap a1 a2)V(x) = foo+ (f1,1 _ (o ;(i’l_)(:)_ ZO)) (x —zo)+
foa—fin, 3
+m(x z0)(x — z1).

Now, we present another example which is conditionally solvable.

Example 10 Consider the distinct interpolation nodes zg, 21, z» and the given infor-
mation f(z0) = fo.0, f'(z1) = fi.1, f(z2) = f2.0. According to [23], the interpola-
tion polynomial does not exist, when z; = (z¢ + z2)/2, and it uniquely exists for any
other choice of z;. The Birkhoff matrix is given by

100000
B=|000100
000010

Since the set of the nodes for this problem is the same as Example 9, the differentiation
matrix D is the same as (21) and I is as in (22). Hence, we obtain the following
system for the unknowns:
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1 0 0 agp fo.0

0 1 (z1 — 20) a | = | fix

1 (z2 —20) (22 —20)(z2 —21) ] \@2 f0
C

As
det (C) = (22 — z0)(z0 — 221 + 22),

the system has a unique solution for all distinct interpolation nodes with the exception
of the case z; = (z¢ + z2)/2. Thus the problem is conditionally solvable.

To conclude, the following example shows a Birkhoff interpolation problem which
is not usually solvable.

Example 11 The values of the f(z0), £®(20), f'(z1), f® (z1) for the distinct inter-
polation nodes zy, z; are given by fo.0, fo.3, f1.1, f1,3 respectively. We want to show
that this problem is not solvable for any given interpolation data. In this problem
k =1,n =3,t = 3, and the corresponding Birkhoff matrix is as follows:

10000000
00010000
00000100
00000001

The differentiation matrix remains the same as (19), and the matrix I is as follows:

100
010
001
000
010 0
002 2(z0 —21)
I 000 3
p” | looo o
O®H' ]~ 0022(z0 — 21)
(D" 000 6
000
000
000

000

000
000

- O O O

c ®16x4'

SO O O O
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The basis vector V(x) equals to the one in (20), and eventually, the system (13)

gives the following:

10 0 0 a0 foo

00 0 6 air| _ | fos

012(z1—20) (z1—z0)* | || | fin

00 0 6 as fis
C

Since clearly C is not full-rank, the system is not solvable for any given values of

fo.0, fo.3, fi1, f1.3,unless fo 3 = f1,3 in which case it has infinitely many solutions.
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On Relation Between P-Matrices
and Regularity of Interval Matrices

Milan Hladik

Abstract We explore new results between P-matrix property and regularity of
interval matrices. In particular, we show that an interval matrix is regular in and
only if some special matrices constructed from its center and radius matrices are
P-matrices. We also investigate the converse direction. We reduce the problem of
checking P-matrix property to regularity of a special interval matrix. Based on
this reduction, novel sufficient condition for a P-matrix property is derived, and
its strength is inspected. We also state a new observation to interval P-matrices.

Keywords Interval matrix + P-matrix - Interval analysis - Linear complementarity

1 Introduction

Notation. The kth row of a matrix A is denoted as Ay,. The sign of areal r is defined
as sgn(r) = 1 if r > 0 and sgn(r) = —1 otherwise; for vectors the sign is meant
entrywise. For a vector y, the diagonal matrix with entries yi, ..., y, is denoted by
D,.Eventually,e = (1, ..., 1) stands for a vector of ones and p(A) for the spectral
radius of a matrix A.

Interval computation. An interval matrix is defined as
A={AeR"™" A<A<A}

where A and A, A< A, are given matrices. The midpoint and radius matrices are
defined as

1 — 1
Ac:==(A+A), Ap:=-(A-A).
A+ A), As=5(A-4)
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The set of interval matrices of size m x n is denoted by IR"*". For definition of
interval arithmetic see [8, 10], for instance.

We say that A is regular if every A € A is nonsingular. Regularity of interval
matrices is dealt with, e.g., in [5, 15, 16]. In particular, Rohn [16] presents forty equi-
valent characterizations. NP-hardness of checking regularity was proven by Poljak
and Rohn [12, 13]. Sufficient conditions for checking regularity are surveyed in Rex
and Rohn [14]. We recall the following one, due to Beeck [1].

Theorem 1 (Beeck [11) If p(I(A0) "' |A L) < 1, then A is regular.

P-matrices. A square matrix is a P-matrix if all its principal minors are positive.
P-matrices play an important role in linear complementarity problems [9, 22]

g+Mx>0, x>0, (g+Mx)"x=0.

Such a complementarity problem has a unique solution for each ¢ if and only if M
is a P-matrix. Since linear complementarity problems appear in so many situations
(quadratic programming, bimatrix games, equilibria in specific economies, etc.),
P-matrix property is of high importance.

Unfortunately, the problem of checking whether a given matrix is a P-matrix is
known to be co-NP-hard [3, 7]. That is why diverse polynomially recognizable sub-
classes of P-matrices were studied; see [11, 24] and the references therein. Some of
them are:

e positive definite matrices;

e M-matrices (a;; < 0Vi, j and A7l > 0);

e B-matrices (3_;_, aix > 0 and % > iy ik > a;; for j #1i);

e H-matrices with positive diagonal entries (A is an H-matrix if (A) is an M-matrix,
where (A);; = |a;;| and (A);; = —la;jl, i # j).
The related problem how to generate P-matrices was considered in [18, 24].

The following characterization of P-matrices is due to Fiedler and Ptak [4].

Theorem 2 (Fiedler and Ptik [4]) A matrix A € R"*" is a P-matrix if and only if
for each vector x # O there is i such that x; (Ax); > 0.

The following relations between regularity of interval matrices and P-matrices
are by Rohn [15].

Theorem 3 (Rohn [15]) An interval matrix A € IR"™" is regular if and only if for
each y € {£1}" the matrix A — Dy A, is nonsingular and (A. — DyAA)_1 (A. +
DyA,) is a P-matrix.

Theorem 4 (Rohn [15]) Let A € IR™™" be regular. Then A]_1A2 is a P-matrix for
each Ay, A, € A.

The following reduction of P-matrix property to interval matrix regularity comes
from [19, 21].
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Theorem 5 (Rump [21]) Let A € IR"™" with A — I and A + I nonsingular. Then
A is a P-matrix if and only if (A — D)"Y A+ 1) — I, (A— D)"Y (A+ 1)+ 1] is
regular.

Similar problem with convex combinations of rows or columns instead of full
interval matrices was discussed in [6].

2 Results

Lemma 1 Ler A € IR™" with A. nonsingular. Then A is regular if and only if
I — AC_IR is a P-matrix for each R € [—Ax, Axl

Proof “Only if.” Follows from Theorem 4 by choosing A| := A..

“If.” Let A € A be singular and denote R := A, — A € [~A 4, Aa]. Then there
is x # O such that Ax = (A, — R)x = 0, from which (I — AC" R)x = 0. Therefore
I — A7'R is singular and cannot be a P-matrix. [J

Theorem 6 Let A € IR™™" with A, nonsingular. Then A is regular if and only if
I — AZ'DyA D, is a P-matrix for each y, z € {£1}".

Proof “Only if.” Follows from Lemma 1.

“If.” Suppose to the contrary that A is not regular. By Lemma 1, there is R €
[—A4, Aa] such that I — AZ!R is not a P-matrix. Hence I — RT AT is not a P-
matrix as well. By Theorem 2, there is x # 0 such that x;((I — RTAZT)x); <0
for each i. Equivalently, x? < x;(RT AT x); for each i. Define y := sgn(A_”x) and
z := sgn(x). Then

2 <xi(RTAZT ) < xi@IRITIAZ T x i < 5 (D AR 1A T x)); = xi (D AL DyAZT x);

for each i. Thus, x;((I — D,ALD,A;T)x); <0 for each i. This means that I —
D, AT D,A;T is not a P-matrix, and also I — A;7'D,A,D, is not a P-matrix. A
contradiction. [

Remark. Since P-property is not changed by multiplying from the left and from
the right by D,, we can formulate the theorem also as follows: Let A € IR"*" with
A, nonsingular. Then A is regular if and only if / — D,A;'D, A, is a P-matrix for
each y, z € {£1}".

Contrary to the characterization of regularity in Theorem 3, we have to use both
diagonal matrices D, and D.. The following example illustrates it. Let

A= ( 1 [1,2])°
This interval matrix is not regular since it contains the all-one matrix. On the

other hand, all matrices of the form I — AZ'D,A, y € {£1}", or of the form
I — AZ'AAD,, z € {£1}", are P-matrices.
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Theorem 7 Let A € R"*". Ifa > 0is sufficiently small, then P := a A is a P-matrix
if and only if [(I — Py ' =1, (I—-P) " +1]is regular.

Proof “If.” By Theorem 4, regularity of M :=[(I — P)~' = I, (I — P)"' + 1]
implies that M 'M is a P-matrix. This matrix, however, reads M. 'M = (I —
PYI-P)'—-DH=I—-U—-P)=P.

“Only if.” By Theorem 6, have to verify that I — (I — P)D,ID; is a P-matrix
for each y, z € {£1}". Obviously, is it sufficient to verify matrices I — (I — P)D,,
y e {#1}", only. Without loss of generality suppose that y = (—e”, e7)7, where the
number of minus ones is k. Then I — (I — P)Dy, = PD, + (I — D,) has the form

-+ 21 0
_|_

1) Uolo

By the column linearity of determinants (applied on the first k columns), we can
express the determinant of this matrix as

> 2=l det(A)), (1)

JEf,. k)

where A, denotes the principal submatrix of A obtained by removing the rows and
columns indexed by J. So, as « — 0, the dominant term in the summation is that
for J = {1, ..., k} and it draws

2%a" K det(A).

Since A is a P-matrix, this term is positive, as well as the whole summation. Thus,
I — (I — P)D, has the positive determinant. Its principal minors are positive for the
same reasons. Therefore, I — (I — P)D, is a P-matrix. [J

Remark 1 (Estimation of o) Here we estimate from below the sufficient value of «.
This value should be small enough to ensure that (1) is positive, where k > 0 (case
k = 0 holds trivially). That is,

Z 2= VIgk=T det(A ) > 0.
JC{L,...k}

This will be satisfied if

.....
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Denote
my = min det(Ay),
TG, k)
my, = max det(Ay).
TSk}

Now, we can write a stronger inequality

kal > mo E 2 g k=11
TGk

= my(a + 2)* — my2k.
From this, we have
(@+2)F <250 +mi/my),

or,

a < —2+291 +my/m;.

Due to overestimations, it suffices to take

o=-242J1+m/mj.

This value can be further simplified. By using concavity of log function and e* >
x + 1, we have

1
2421+ my/my = =2+ 2exp (;log(l +m1/m2))
1
> —242exp (;((1 —my/my)logl + (ml/mg)logZ))
1
= —2+2exp (—(ml/mz) logZ)
n
2 2

The minimal and maximal determinants m; and m, can be estimated as follows. By
Hadamard’s inequality, we have

n
my < [T Awl2-
i=1
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To estimate m is a more involved task. For any nonsingular matrix M € R"*" | its
determinant (and also sub-determinant) is bounded by

det(M) = detM )" > p(M™) ™ > 0pax (M~ ™" = opin(M)".

This bound, however, can be very conservative. Anyway, we arrive at the possible
value of

2log2  opin(M)"
o= e .
n [Ti=) 1Aixll2

2.1 Sufficient Conditions for P-Matrices

Characterizations of P-matrix property from the previous section enables us to derive
new sufficient conditions.

Theorem 8 The matrix A € R"" is a P-matrix provided A — I and A+ I are
nonsingular and

p((A+ D "A-D] < 1. 2)

Proof Let A — I and A + I be nonsingular. By Theorem 5, A is a P-matrix if and
only if [(A—ID)""A+1)—1, (A- DY"A+D+1]is regular. By employing
the Beeck sufficient condition for regularity (Theorem 1), we arrive at the final
form. [

Obviously, this condition is incomparable with positive definiteness. Moreover,
it is also incomparable with M-matrix and H-matrix conditions. For example, the

matrix
46 —19
—-33 14
is an M-matrix (and thus also H-matrix), but the condition (2) is not satisfied since

the spectral radius is greater than 1.084 (verified by versoft [17]). On the other

hand, the matrix
111

123
1410

is neither an M-matrix nor an H-matrix, but (2) is satisfied with the spectral radius
less than 0.955.

Theorem 9 The matrix A € R"*" is a P-matrix provided for I — « A is nonsingular
and p(|I — aA|) < 1 for some o > 0.
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Proof It follows again from the Beeck condition applied to [( — ¢ A)~' — 1, (I —
aA)~! + I] and using Theorem 7. [J

The latter condition is not new in the essence. If p(|I — a¢Al]) < 1, then [ —
|l —aA|is an M-matrix, so also I — |I — aA| — diag(I — ¢ A) + diag(|l — wAl)
is an M-matrix. The matrix I — | — ¢ A| — diag(/ — aA) + diag(]] — «A|) is the
comparison matrix of I — (I —a¢A) = a A, so« A is an H-matrix. Moreover, o A has
positive diagonal since otherwise if (¢ A);; < 0 for some i, then [/ — «aAl;; > 1 and
so p(|I — aAl) > 1. Therefore, the sufficient condition is weaker than checking if
A is an H-matrix.

2.2 Interval P-Matrices

An interval matrix A € TR™" is called an interval P-matrix if each A € A is a
P-matrix [2, 7, 20]. A more general concept of P-matrix sets was investigated by
Song and Gowda [23]. The following characterization of interval P-matrices is due
to Biatas and Garloff [2], see also [7].

Theorem 10 (Biatas and Garloff [2]) A € IR"*" is an interval P-matrix if and only
if Ac — D,A, D, is a P-matrix for each z € {£1}".

As a direct consequence we have:

Corollary 1 Let A € IR™" such that A, = D is diagonal. Then A is an interval
P-matrix if and only if A is a P-matrix.

Proof We have that A € IR"™" is an interval P-matrix if and only if for each z €
{£1}" the matrix A, — D,AxD, = D — D,;AAD, is a P-matrix. This matrix is a
P-matrix if and only if D, DD, — Ap =D — A, =Ais. [

Even though the assumption A, = D is strong, it might possibly help for che-
cking interval P-matrix property. In a similar way, interval linear equation are often
preconditioned such that the midpoint matrix becomes an identity matrix since this
case is much easier to solve.

Another special case, reducing the interval P-matrix property to P-property of A
only, is the following.

Corollary 2 Let A € IR™" such that Ay = D is diagonal. Then A is an interval
P-matrix if and only if A is a P-matrix.

Proof We have that A € IR"™" is an interval P-matrix if and only if for each z €
{£1}" thematrix A, — D,A,D, = A, — D,DD, = A. — D = AisaP-matrix. [

While Theorem 10 presents a reduction of interval to real P-matrix property, in
the theorem below, we show a direct reduction to an elementary formula.
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Theorem 11 A € IR"™" is an interval P-matrix if and only if
det(De_M + D|y|AcD|z| — DyAADZ) >0 (3)

foreach y, z € {0, £1}" such that |y| = |z|.

Proof “Only if”. This is obvious since D,_|,| + D}y AcD|; — D.;A5D; is a block
diagonal matrix with entries either ones, or a principal submatrix of some A € A.
Due to P-matrix property, this principal minor is positive.

“If”. We use the result from Rohn [16] that an interval matrix M € IR*** has
all determinants positive, that is, det(M) > 0 VM € M, if and only if det(M, —
DyAsD;) >0 forall y,z € {£1}*. Now, A is an interval P-matrix if and only if
for each A € A, each minor of A is positive. A minor of A can be expressed as
det(D,_s + DsADy) for some s € {0, 1}". Thus, we have to show that for each s €
{0, 1}", all determinants of D,_; + DA Dy are positive. By the above reasoning, this
is equivalent to det(D._; + D;A. Dy — DyD;AxDD;) > 0 for all y, z € {£1}".
When s; = 0, the values of y; and z; play no role, so we can set s = |y| and arrive at
the resulting form of (3). O

Theorem 12 The number of determinants in (3) is 5".

Proof By the binomial formula, the number of determinants in (3) is

n

n " n
2k2k — 4k1n7k = (4 D = 5”,
2 (k) 2 (k) @+

k=0

where k denotes the number of nonzero entries of y (or z), (Z) gives the number of
vectors in {0, £1}" with k nonzero entries, and 2¥ counts the number of possibilities
for y (and z) when the number of nonzero entries is k. [J

3 Conclusion

We reviewed relations between P-matrix property and regularity of interval matri-
ces. We also proposed some new observations and links. In particular, a reduction
of interval matrix regularity to P-property and vice versa. As a consequence, new
sufficient conditions for P-matrices were stated.

Some new open problems arised as well, e.g., determining a sharper estimation of
« from Remark 1. Efficient utilization of Corollary 1 for interval P-matrix property
checking is a challenging problem, too.

Acknowledgements The author was supported by the Czech Science Foundation Grant P402/13-
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Interval Linear Algebra and Computational
Complexity

Jaroslav Horadcek, Milan Hladik and Michal Cerny

Abstract This work connects two mathematical fields — computational complexity
and interval linear algebra. It introduces the basic topics of interval linear algebra —
regularity and singularity, full column rank, solving a linear system, deciding solva-
bility of a linear system, computing inverse matrix, eigenvalues, checking positive
(semi)definiteness or stability. We discuss these problems and relations between
them from the view of computational complexity. Many problems in interval linear
algebra are intractable, hence we emphasize subclasses of these problems that are
easily solvable or decidable. The aim of this work is to provide a basic insight into
this field and to provide materials for further reading and research.

Keywords Computational complexity - Interval linear algebra - Functional prob-
lems - Decision problems + NP-hardness + co-NP-hardness

1 Introduction

The purpose of this work is to emphasize relations between the two mathematical
fields - interval linear algebra and computational complexity. This is not a pioneer
work. Variety of relations between interval problems and computational complexi-
ty is covered by many papers. There are also few monographs that are devoted to
this topic [4, 23, 48]. Some questions may arise in mind while reading the previous

J. Horacek (<) - M. Hladik

Faculty of Mathematics and Physics, Department of Applied Mathematics,
Charles University, Malostranské ndm. 25, 118 00 Prague, Czech Republic
e-mail: horacek @kam.mff.cuni.cz

M. Hladik
e-mail: hladik@kam.mff.cuni.cz

M. Cerny

Faculty of Computer Science and Statistics, University of Economics,
ndm. W. Churchilla 4, 13067 Prague, Czech Republic

e-mail: cernym@vse.cz

© Springer International Publishing AG 2017 37
N. Bebiano (ed.), Applied and Computational Matrix Analysis,

Springer Proceedings in Mathematics & Statistics 192,

DOI 10.1007/978-3-319-49984-0_3



38 J. Horéagek et al.

works. Among all, it is the question about the equivalence of the notions NP-hardness
and co-NP-hardness. Some authors use these notions as synonyms. Some distin-
guish between them. Another questions that may arise touches the representation
and reducibility of interval problems in a given computational model. We would like
to shed more light (not only) on these issues.

Many well-known problems of classical linear algebra become intractable when
we introduce intervals into matrices and vectors. However, not everything is lost.
There are many interesting sub-classes of problems that behave well. We would like
to point out these feasible cases, since they are interesting either from the theoretical
or the computational point of view.

Our work does not aspire to substitute the classical monographs or handbooks.
It lacks many of their details that are cited in the text. Nevertheless, it collects even
some recent results that are missing in the monographs. It also provides links and
reductions between the various areas of interval linear algebra. It provides a necessa-
ry and compact introduction to computational complexity and interval linear algebra.
Then it considers complexity and feasibility of various well-known linear algebraic
tasks when considered with interval structures — regularity and singularity, full co-
lumn rank, solving a linear system, deciding solvability of a linear system, computing
inverse matrix, eigenvalues, checking positive (semi)definiteness or stability.

‘We hope this paper should help newcomers to this area to improve her/his orien-
tation in the field or professionals to provide a signpost to more deeper literature.

2 Interval Linear Algebra — Part [

Interval linear algebra is a mathematical field developed from classical linear algebra.
The only difference is, that we do not work with real numbers but with real closed
intervals

a=|[a,al,

where a < a. The set of all closed real intervals is denoted IR (the set of all closed
rational intervals is denoted I(Q) We can use intervals for many reasons — in applica-
tions we sometimes do not know some parameters precisely, that is why, we rather
use intervals of possible values; some real numbers are problematic (e.g., 7, \/5 ..)
because it is not easy to represent them precisely, that is why, we can represent them
with rigorous intervals containing them etc. With intervals we can define arithmetic
(there are more possible definitions, we chose one of the most basic ones).

Definition 1 Let us have two intervals x =[x, X] ay = [X’ y]. The arithmetical
operations +, x, —, / are defined as follows

Xx+y=[x+

X—y=[x—

x + v,

Y,
yvf_X:L
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X *x y = [min(S), max(S)], where § = {ﬂ, Xy, )_CX, Xy},
X /y=xx%(1/y), wherel/y=[1/3,1/y], 0¢y.

Hence, we can use intervals instead of real numbers in formulas. However, we have
to be careful. If there is a multiple occurrence of the same interval in a formula, the
interval arithmetic does see them as two different intervals and we get an overesti-
mation in the resulting interval. For example, let us have x = [—2, 1] and functions
fi(x) = x%and f>(x) = x * x. Then we get

fix) = fi(=2,1]) = [-2, 1]* = [0, 4],
LX) = fH([=2, 1) = [-2, 1] % [-2, 1] = [~2,4].

In the first case we see the optimal result, in the second case we see an overestimation.
That is why, the form of our mathematical expression matters. However, we know
the cases when the resulting interval is optimal [30].

Theorem 1 Applying interval arithmetic on expressions in which all variables occur
only once gives the optimal resulting interval.

Using intervals we can build larger structures. In the interval linear algebra the
main notion is an interval matrix. It is defined as follows:

A={A|A<A <A}

where A, A arereal m x n matrices called lower and upper bound and the relation <
is always understood componentwise. In another words, itis a matrix with coefficients
formed by real closed intervals. In the following text, we will denote every interval
structure in boldface. Since an interval vector is a special case of an interval matrix,
we define it similarly. We can see that if all intervals in the structures are degenerate,
ie, A=A, we get a classical linear algebra. Therefore, interval linear algebra is
actually a generalization of the previous one.

Another way to define an interval matrix is using its midpoint matrix A, and its
radius matrix A > 0 as

A=[A,— A A + Al

In the following text we automatically suppose that A., A represent corresponding
midpoint and radius matrix of A, and b,, § represent corresponding midpoint and
radius vector of b. When we talk about a general square matrix we automatically
assume that it is of size n.

We mention some special structures that we will use quite often. The identity
matrix is denoted /, the matrix containing only ones E and the vector containing only
ones e. Another useful matrix is D, = diag(y1, ..., y,) amatrix with the vector y as
the main diagonal. We often need to describe some properties of interval structures
vectors consisting of only 1. We denote the set of all n-dimensional £1 vectors as
Y,,. A useful concept is a matrix A, defined as
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A, =A.—D,AD,,

for some given y, z € Y,,. Each its coefficient on the positon (i, j) is an upper or
a lower bound of A;; depending on the sign of y; - z;. We will sometimes need to
check a spectral radius of a real matrix A, we denote it p(A).

Many definitions have an intuitive generalization for interval linear algebra:

An interval matrix A has a property B3 if every A € A has the property ‘8.

This applies to stability, full column rank, inverse nonnegativity, diagonally do-
minant matrices, M-matrix and H-matrix property, among others.

Many problems in interval linear algebra are very difficult to be computed exactly
(e.g., computing the tightest possible verified interval containing eigenvalues of a
general matrix). That is why we inspect the possibility of approximation of these
bounds. There are several kinds of errors when we approximate a number a —absolute,
relative [6] and inverse relative [22] approximation errors.

Definition 2 An algorithm computes a with absolute approximation error ¢ if it
computes a’ such that a° € [a — &, a + ¢].

An algorithm computes a with relative approximation error ¢ if it computes a
such that a® € (1 + [—¢, €])a.

An algorithm computes a with inverse relative approximation error ¢ if it com-
putes a° such that a € (1 + [—&, £])a’.

0

At the end we mention a very useful theorem that we will use very often in this
text. It originally comes from the area of numerical mathematics [31].

Theorem 2 (Oettli-Prager) Let us have an interval matrix and vector A, b. For a
real vector x € R" it holds Ax = b for some A € A, b € b if and only if

|[Acx —b.| < Alx| +56.

This was just a brief introduction to interval analysis. Interval linear algebra has
many important applications — system verification, model checking, handling uncer-
tain data. For a huge variety of applications see, e.g., [17—19]. For more information
or applications in nonlinear mathematics see [27].

3 Complexity Theory Background

Now, we take a small break and dig deeper into the area of computational complexity.
After that we will return to interval linear algebra and introduce some well-known
issues from the viewpoint of computational complexity.
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3.1 Binary Encoding and Size of an Instance

For complexity-theoretic classification of interval-theoretic problems, it is a standard
to use the Turing computation model. We assume that an instance of a computational
problem is formalized as a bit-string, i.e., a finite 0-1 sequence. Thus we cannot
work with real-valued instances; instead we usually restrict ourselves to rational
numbers expressed as fractions £% with ¢, € N written down in binary in the
coprime form. Then, the size of a rational number :t% is understood as the number
of bits necessary to write down the sign and both g and r (to be precise, one should
also take care of delimiters). If an instance of a problem consists of multiple rational
numbers A = (ay, ..., a,) (e.g., when the input is a vector or a matrix), we define
size(A) = Y1, size(a;).

In interval-theoretic problems, inputs of algorithms are usually interval numbers,
vectors or matrices. When we say that an algorithm is to process an m X n interval
matrix A, we understand that the algorithm is given the pair (A € Q"*", A € Q"*")
and that the size of the input is L := size(A) + size(A). Whenever we speak about
complexity of such algorithm, we mean a function ¢ (L) counting the number of
steps of the corresponding Turing machine as a function of the bit-size L of the input
(4, A).

Although the literature focuses mainly on the Turing model (and here we also do
s0), it would be interesting to investigate the behavior of interval-theoretic problems
in other computational models, such as the Blum—Shub—Smale (BSS) model for
real-valued computing [2] or the quantum model [1].

3.2 Functional Problems and Decision Problems

Formally, a functional problem F is a function F : {0, 1}* — {0, 1}*, where {0, 1}*
is the set of all finite bit-strings. A decision problem (or YES/NO problem) A is a
function A : {0, 1}* — {0, 1}.!

If there exists a Turing machine computing A(x) for every x € {0, 1}*, we say
that the problem A (either decision or functional) is computable.

It is well known that many decision problems in mathematics are uncomputable;
e.g., deciding whether a given formula is provable in Zermelo—Fraenkel Set Theory is
uncomputable by the famous Godel Incompleteness Theorem. Fortunately, a major-
ity of decision problems in interval linear algebra are computable. Such problems
can usually be written down as arithmetic formulas (i.e., quantified formulas con-
taining natural number constants, arithmetical operations +, X, relations =, < and
propositional connectives). Such formulas are decidable (over the reals) by Tarski’s
Quantifier Elimination Method [33-35].

In computer science it is sometimes emphasized that the functions are defined for each input, or
total for short. This is to distinguish them from partially defined functions which are also studied
in this area, namely within logic and recursion theory.



42 J. Horacek et al.

e Example A: Regularity of an interval matrix. Each matrix A € A is nonsingular
iff VA)J[ A <A< A — det(A) # 0]. This formula is arithmetical since det(-) is
a polynomial, and thus it is expressible in terms of 4, x.

e Example B: Isa given ). € Qthe largest eigenvalue of some symmetric A € A? This
question can be written down as (JA)[A = AT & A< A< A& (Ax # 0)[Ax =
Ax] & (VAH{(3Ax" £ 0)[Ax' = Vx'] — A < A}l

Although Quantifier Elimination proves computability, it is a highly inefficient
method from the practical viewpoint — the computation time can be doubly exponen-
tial in general. In spite of this, for many problems, reduction to Quantifier Elimination
is the only (and thus “the best”) known algorithmic result.

3.3 Weak and Strong Polynomiality

Itis a usual convention to say that a problem A is “efficiently” solvable if it is solvable
in polynomial time, i.e., in at most p(L) steps of the corresponding Turing machine,
where p is a polynomial and L is the size of the input. The class of efficiently solvable
decision problems is denoted by P.

Taking a more detailed viewpoint, this is a definition of polynomial-time solvabi-
lity in the weak sense. In our context, we are usually processing a family a4, . .., a,
of rational numbers, where L = > ", size(a;), performing arithmetical operations
+, —, X, =, < with them. The definition of (weak) polynomiality implies that an
algorithm can perform at most pi(L) arithmetical operations with numbers of size
at most p>(L) during its computation, where p;, p, are polynomials.

If a polynomial-time algorithm satisfies the stronger property that it performs at
most pi(n) arithmetical operations with numbers of size at most p,(L) during its
computation, we say that it is strongly polynomial. The difference is whether we
can bound the number of arithmetical operations only by a polynomial in L, or by a
polynomial in 7.

Example Given a rational A and b, the question (3x)[Ax = b] can be decided in
strongly polynomial time (although it is nontrivial to implement the Gaussian elim-
ination to yield a strongly polynomial algorithm). On the contrary, the question
(3x)[Ax < b] (which is a form of linear programming) is known to be solvable in
weakly polynomial time only and it is a major open question whether a strongly
polynomial algorithm exists (this is Smales’s Ninth Millenium Problem, see [54]).

The main message of the previous example is: whenever an interval-algebraic
problem is solvable in polynomial time and requires linear programming (which is
a frequent case), it is only a weakly polynomial result. This is why the rare cases,
when interval-algebraic problems are solvable in strongly polynomial time, are of
special interest.



Interval Linear Algebra ... 43

3.4 NP, coNP

Recall that NP is the class of decision problems A with the following property: there
is a polynomial p and a decision problem B(x, y), solvable in time polynomial in
size(x) + size(y), such that, for any instance x € {0, 1}*,

A(x) = 1iff Ay € {0, 1}*) size(y) < p(size(x)) and B(x, y) = 1. (1)
(%)

The string y is called witness for the 3-quantifier, or also witness of the fact that
A(x) = 1. The algorithm for B(x, y) is called verifier. For short, we often write
A(x) = (3?y)B(x, y), showing that A results from the 3-quantification of the effi-
ciently decidable question B (and the quantifier ranges over strings of polynomially
bounded size). Observe that the question (37 y)B(x, y) need not be decidable in poly-
nomial time (in fact, this is the open problem “P =’ NP”), since the quantification
range is exponential in size(x).

A lot of 3-problems from various areas of mathematics are in NP: “does a given
boolean formula x have a satisfying assignment y?”, “does a given graph x have
3-coloring y?”, “does a given system x = ‘Ay < b’ have an integral solution y?”,
and many others.

The class coNP is characterized by replacement of the quantifier in (1):

A(x) = 1iff (Vy € {0, 1}*) size(y) < p(size(x)) — B(x,y) = 1.

It is easily seen that the class coNP is formed of complements of NP-problems, and
vice versa. (Recall that a decision problem A is a 0-1 function; its complement is
defined ascoA =1—A)

The prominent example of a coNP-question is deciding whether a boolean formula
is a tautology, or in other words, “given a boolean formula x, is it true that every
assignment y makes it true?”.

It is easy to see again that deciding a coNP-question can take exponential time
since the V-quantifier ranges over a set exponentially large in size(x).

Example Interval linear algebra is not an exception: a lot of 3-questions belong
to NP, but we should be careful a bit. As an example, consider the problem
SINGULARITY: given A € IQ"*",3A € A which is singular? We could expect that
SINGULARITY € NP since the positive answer can be certified by the 3-witness
Ao = a particular singular matrix in A. Indeed, the natural verifier B(A, Ay), check-
ing whether Ap € A and Ay is singular, works in polynomial time. But a problem
is hidden in the condition (%) in (1). To be fully correct, we would have to prove:
there exists a polynomial p such that whenever A contains a singular matrix, then
it also contains a rational singular matrix Aq such that size(Ag) < p(L), where
L = size(A) + size(A). Direct proofs of such properties are “uncomfortable”. But
we can proceed in a more elegant way, using Theorem 2:
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JA € A s.t. Ais singular
& JA e A, Ix #0st. Ax =0
& dx #0s.t. — Alx| < Acx < Alx|,
& Js e {£1)" v st. — ADgx < Aex < ADgx, Dix >0, eI Dix > 1. (2)
(@)

Given s € {£1}", the relation (T) can be checked in polynomial time by linear
programming. Thus, we can define the verifier B(A, s) as the algorithm checking
the validity of (7). In fact, we have reformulated the 3-question, “is there a singular
A € A?”, into an equivalent 3-question, “is there a sign vector s € {£1}" s.t. (1)
holds true?”’, and now size(s) < L is obvious.

The method of (2) is known as orthant decomposition since it reduces the problem
to inspection of orthants Dsx > 0, for every s € {£1}", and the work in each orthant
is “easy” (here, the work in an orthant amounts to a single linear program). Many
properties with interval data are described by sufficient and necessary conditions that
use orthant decomposition.

We can also immediately see that REGULARITY = coSINGULARITY (“given
A, is every A € A nonsingular?”’) belongs to coNP.

3.5 Decision Problems: NP-, coNP-Completeness

A decision problem A is reducible to a decision problem B (denoted A < B) if there
exists a polynomial-time computable function g : {0, 1}* — {0, 1}*, called reduc-
tion, such that for every x € {0, 1}* we have

A(x) =B(g(x)). 3)

Said informally, any algorithm for B can also be used for solving A: given an instance
x of A, we can efficiently “translate” it into an instance g(x) of the problem B and
run the method deciding B(g(x)), yielding the correct answer to A(x). Thus, any
decision method for B is also a valid method for A, if we admit the polynomial time
for computation of the reduction g. In this sense we can say that if A < B, then B
“as hard as A, or harder”. If both A < B and B < A, then problems A, B are called
polynomially equivalent.

The relation < induces a partial ordering on classes of polynomially equiva-
lent problems in NP (called NP-degrees) and this ordering can be shown to have
a maximum element. The problems in the maximum class are called NP-complete
problems. And similarly, coNP has a class of coNP-complete problems. They are
complementary: a problem A is NP-complete iff its complement is coNP-complete.

Let 2 be one of the classes NP or coNP. If a problem B is 2 -complete, any
method for it can be understood as a universal method for any problem A € 2,
modulo polynomial time needed for computing the reduction. Indeed, since B is
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the maximum element, we have A < B for any A € 2 . It is generally believed
that 2~ contains problems which are not efficiently decidable. In NP, boolean sa-
tisfiability is a prominent example; in coNP, it is the tautology problem. Then, by
<-maximality, no 2 -complete problem is efficiently decidable. This shows why a
proof of 2 -completeness of a newly studied problem is often understood as proof
of its computational intractability.

Remark From a practical perspective, a proof of NP- or coNP-completeness is the
same bad news, telling us that “nothing better than superpolynomial-time algo-
rithms can be expected”. But formally we must distinguish between NP- and co-NP
completeness because it is believed that NP-complete problems are not polynomi-
ally equivalent with coNP-complete problems. (This is the “NP =’ coNP” open
problem).

NP- and coNP-complete problems in interval analysis. A survey of such prob-
lems forms the core of this paper. An important example of an NP-complete problem
is SINGULARITY of an interval matrix A. Its complement, REGULARITY, is thus
coNP-complete.

When we know that B is 2 -complete and we prove B < C for a problem C € 27,
then C is also 2 -complete. This is the method behind all £ -completeness proofs of
this paper. For example, let EIGENVALUE be the problem “given a square interval
matrix A and anumber A, decide whether A is an eigenvalue of some A € A”. Itis easy
to prove SINGULARITY < EIGENVALUE; indeed, if we are to decide whether
there is a singular matrix A € A, it suffices to use the reduction g : A — (A, A = 0).
The proof of EIGENVALUE € NP can be derived from the orthant decomposition
method; this proves that EIGENVALUE is an NP-complete problem.

3.6 Decision Problems: NP-, coNP-Hardness

We restrict ourselves to NP-hard problems; the reasoning for coNP-hard problems
is analogous.

In the previous section we spoke about NP-complete problems as the <-maximum
elements in NP. But our reasoning can be more general. We can work on the entire
class of decision problems, including those outside NP. We say that a decision prob-
lem H, not necessarily in NP, satisfying C < H for an NP-complete problem C, is
NP-hard. Clearly: NP-complete problems are exactly those NP-hard problems which
are in NP. But we might encounter a problem H for which we do not have the proof
H € NP, but still it might be possible to prove C < H. Then the bad news for practice
is again the same, that the problem H is computationally intractable. (But we might
possibly need even worse computation time than for NP-problems; recall that all
problems in NP can be solved in exponential time, not worse.)

To summarize: a proof that a decision problem is NP-hard is a weaker theoretical
result than a proof that a decision problem is NP-complete; it leads to an immediate
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research problem to inspect why it is difficult to prove the presence in NP. Usually, the
reason is that it is not easy (or impossible at all) to write down the 3-definition; recall
the example (2), where the proof of presence in NP required the aid of Theorem 2.

Remark 1f we are unsuccessful in placing the problem in NP or coNP, being unable
to write down the 3- or V-definition, it might be appropriate to place the problem
H into higher levels of the Polynomial Time Hierarchy, or even higher, such as the
PSPACE-level; for details see [1], Chap. 5.

3.7 Functional Problems: Efficient Solvability
and NP-hardness

Functional problems are problems of computing values of general functions, in con-
trast to decision problems where we expect only YES/NO answers. We also want to
classify functional problems from the complexity-theoretic perspective, whether they
are “efficiently solvable”, or “intractable”, as we did with decision problems. Efficient
solvability of a functional problem is again generally understood as polynomial-time
computability. To define NP-hardness, we need the following notion of reduction: a
decision problem A is reducible to a functional problem F, if there exist functions
g:{0,1}* - {0, 1}*and & : {0, 1}* — {0, 1}, both computable in polynomial time,
such that

A(x) = h(F(g(x))) forevery x € {0, 1}*. 4)

The role of g is analogous to (3): it translates an instance x of A into an instance
g(x) of F. What is new here is the function 4. Since F is a functional problem,
the value F(g(x)) can be an arbitrary bitstring (say, a binary representation of a
rational number); then we need another efficiently computable function % translating
the value F(g(x)) into a 1-0 value giving the YES/NO answer to A(x). A trivial
example: deciding regularity of a rational matrix (decision problem A) is reducible
to the computation of rank (functional problem F). It suffices to define g(A) = A
and h(¢) = 1 — min{n — ¢, 1}.

Now, a functional problem F is NP-hard if there is an NP-hard decision problem
reducible to F. For example, the functional problem of counting the number of ones
in the truth-table of a given boolean formula is NP-hard since this information allows
us to decide whether or not the formula is satisfiable.

Remark (It is not necessary to distinguish between NP-hardness and coNP-hardness
for functional problems) We could also try to define coNP-hardness of a functional
problem G in terms of reducibility of a coNP-hard decision problem C to G via
(4). But this is superfluous because here NP-hardness and coNP-hardness coincide.
Indeed, if we can reduce a coNP-hard problem C to a functional problem G via
(g, h), then we can also reduce the NP-hard problem coC to G via (g, 1 — h). Thus,
in case of functional problems, we speak about NP-hardness only.
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3.8 More General Reductions: Do We Indeed Have
to Distinguish Between NP-hardness and
coNP-Hardness of Decision Problems?

Inliterature, the notions of NP-hardness and coNP-hardness are sometimes used quite
freely even for decision problems. Sometimes we can read that a decision problem
is “NP-hard”, even if it would qualify as a coNP-hard problem under our definition
based on the reduction (3). This is nothing serious as far as we are aware. It depends
how the author understands the notion of a reduction between two decision problems.
We have used the many-one reduction (3), known also as Karp reduction, between
two decision problems. This is a standard in complexity-theoretic literature.

However, one could use a more general reduction between two decision problems
A, B. For example, taking inspiration from (4), we could define “A <’ Biff A(x) =
h(B(g(x))) for some polynomial-time computable functions g, #”. Then the notions
of </-NP-hardness and <’-coNP-hardness coincide and need not be distinguished.
(Observe that h must be a function from {0, 1} to {0, 1} and there are only two such
nonconstant functions : h1(§) = & and hy(§) = 1 — &. If we admit only %, we get
the many-one reduction; if we admit also the negation %,, we have a generalized
reduction under which a problem is NP-hard iff it is coNP-hard. Thus: the notions of
NP-hardness and coNP-hardness based on many-one reductions do not coincide just
because many-one reductions do not admit the negation of the output of B(g(x)).)

To be fully precise, one should always say “a problem A is 2 -hard w.r.t. a
particular reduction <”. For example, in the previous sections we spoke about 2" -
hard problems for 2" € {NP, coNP} w.r.t. the many-one reduction (3). If another
author uses 2 -hardness w.r.t. <’ (e.g., because (s)he considers the ban of negation
as too restrictive in her/his context), then (s)he need not distinguish between NP-
hardness and coNP-hardness.

For the sake of completeness, we conclude that in literature we can meet the
notions of hardness w.r.t. various types of reductions.

Logspace-computable reduction: A <, B iff there is a function g computable in
memory of size O (log size(x)), such that A(x) = B(g(x)) for every x. (This reduc-
tion in weaker than (3) since every logspace-computable function is also computable
in polynomial time.)

Truth-table reduction: A <;; B iff there is a finite number of polynomial-time
computable functions g, ..., g : {0, 1}* — {0, 1}* and a “truth-table” function 4 :
{0, 1}* — {0, 1} such that A(x) = h(B(g1(x)), ..., B(gx(x))). This reduction is a
generalization of <’; indeed, <’ is a restricted truth-table reduction with a two-line
truth table. Under <, to decide A(x) one can compute k instances of B from which
the boolean expression & combines the result A(x).

Turing reduction (or Cook reduction): A <r B iff there is a polynomial-time
algorithm (Turing machine) Q, equipped with a subroutine (an algorithm, oracle)
computing B, and the entire computation of B is counted as a single step of Q. This
is the most general type of reduction: when deciding A(x), the reduction allows for a
polynomial number of computations of B(y) with size(y) polynomially bounded in
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size(x), and the results can be combined in an arbitrary way; the only limitation is that
the overall number of steps is polynomial in size(x), assuming that one computation
of B(y) is at the unit cost.

The above mentioned reductions can be ordered in the sequence according to
their generality: A <j,, B==A<B=A<B= A<, B= A<y B,where“="
means “implies”. We know that NP-hardness and coNP-hardness coincide for </,
and thus also for the generalizations <;;, <r.

3.9 A Reduction-Free Definition of Hardness

For practical purposes, when we do not want to play with properties of particular
reductions, we can define the notion of a “hard” problem H (either decision of func-
tional) intuitively as a problem fulfilling this implication: if H is decidable/solvable
in polynomial time, then P = NP. This is usually satisfactory for the practical under-
standing of the notion of computational hardness. (Under this definition: if P = NP,
then every decision problem is hard; and if P # NP, then the class of hard decision
problems is exactly the class of decision problems not decidable in polynomial time,
including all NP-hard and coNP-hard decision problems.)

Even if we accept this definition and do not speak about reductions explicitly, all
hardness proofs (at least implicitly) contain some kinds of reductions of previously
known hard problems to the newly studied ones.

4 Interval Linear Algebra — Part I1

In the following sections we will deal with various problems in interval linear alge-
bra. There are many interesting topics that are unfortunately beyond the scope of this
work. We will at least point out some of them in Sect.4.10. We chose basic topics
from introductory courses to linear algebra — regularity and singularity of a matrix,
full column rank, solving and solvability of a system of linear equations, matrix
inverse, determinant, eigenvalues and eigenvectors, positive (semi)definiteness and
stability. The next chapters will offer a great disappointment and also a great chal-
lenge, since implanting intervals into a classical linear algebra makes solving most of
the problems intractable. That is why, we look for solving relaxed problems, special
feasible subclasses of problems or for sufficient conditions checkable in polynomial
time. Interval linear algebra still offers many open problems and a lot of place for
further research. At the end of each section we present a summary of problems and
their complexity. If we only know that a problem is weakly polynomial yet, we just
write that it belongs to the class P. When complexity of a problem is not known to
our best knowledge (or it is an open problem), we mark it with question mark.
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4.1 Regularity and Singularity

Deciding regularity and singularity of an interval matrix is an important task in linear
algebra. The definition of interval regularity (and singularity) is intuitive.

Definition 3 A square interval matrix A is regular if every A € A is nonsingular.
Otherwise, A is called singular.

Considering complexity we can find in the literature the following theorem [42]
giving NP-completeness result even for the simple case.

Theorem 3 Deciding whether an interval matrix A = [A — E, A + E] is singular
for some nonnegative symmetric positive definite rational matrix A is NP-complete.

We can prove NP-hardness of this decision problem. Moreover, we get NP-complete-
ness since we know that a singular A in this form mentioned in the theorem must
contain a singular matrix
T
PR

zZTA7 1z
for some z € {#1}" [42] which is a polynomial witness and the above mentioned
matrix is checkable in polynomial time (e.g., by Gaussian elimination). This implies
that deciding singularity of a general interval matrix is NP-hard. However, in the
Sect. 3.4 we saw the construction of a polynomial witness z € {1}" certifying that
an interval matrix is singular. Hence, we get that checking singularity of a gen-
eral interval matrix is NP-complete. Clearly, checking regularity as the complement
problem to singularity is coNP-complete.

The sufficient and necessary conditions for checking regularity are of exponential
nature. In [46] you can see 40 of them. For example, we can use the classical definition
of matrix regularity (a matrix A is regular if the system Ax = 0 has only trivial
solution) and combine it with Oettli-Prager theorem. We get that an interval matrix
is regular if and only if the inequality

|Acx| < Alx],

has only trivial solution.

Fortunately, there are some sufficient conditions that are computable in polyno-
mial time. It is advantageous to have more conditions, because some of them may suit
better to a certain class of matrices or limits of our software tools. Here we present
three sufficient conditions for checking regularity and three sufficient conditions for
checking singularity.

Theorem 4 (Sufficient conditions for regularity) An interval matrix A = [A. —
A, A. + A) is regular if at least one of the following conditions holds

1 p(JA7NA) <1 [42],

2. omax(A) < omin(Ac) [50],



50 J. Horéagek et al.

3. AZAC — ||AT A1 is positive definite for some consistent matrix norm || - || [36].

Theorem 5 (Sufficient conditions for singularity) An interval matrix A = [A. —
A, A. + A] is singular if at least one of the following conditions holds

1. max;(|A7'A);; > 1 [37],

2. (A—1AD" =0 [42],
3. ATA — AZAC is positive semidefinite [36].

In the two theorems above, the first condition in the triplet is among the most
frequently used sufficient conditions. You can find more sufficient conditions for
regularity and singularity in [36].

We can also take a look at the classes of interval matrices that are immediately
regular. These are, for example, diagonally dominant matrices [53], M-matrices and
H-matrices [30]. These properties are checkable in polynomial time.

Concerning the regularity, in applications we are sometimes interested in radius
of nonsingularity. This number describes how close is A to a singular matrix —
given an n X n matrix A we are interested in componentwise distance to the nearest
singular matrix. This problem is also NP-hard. For more information see e.g., [8, 42].

Summary

Problem Complexity
Is A regular? coNP-complete
Is A singular? NP-complete

Computing radius of nonsingularity of some A NP-hard

4.2 Full Column Rank

The definition of the full column rank is natural.

Definition 4 An m x n interval matrix A has full column rank if every A € A has
full column rank (i.e., it has rank n).

Deciding whether an interval matrix has full column rank is connected to che-
cking regularity. If an interval matrix A of size m X n, m > n, contains a regular
submatrix of size n, then obviously A has a full column rank. What is surprising
is that the implication does not hold conversely (in contrast to real matrices). The
interval matrix by Irene Sharaya (see [53]) might serve as a counterexample.

1 [0,1]
A= -1 [01]
[—1,1] 1
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It has full column rank, but contains no regular submatrix of size 2.

For square matrices, checking regularity can be polynomially reduced to che-
cking full column rank (we just check the matrix A), but the converse is not so
easy. Therefore, checking full column rank is coNP-hard. Finding a polynomial
certificate for an interval matrix not having full column rank can be done by orthant
decomposition similarly as in the case of singularity. That is why, checking full
column rank is also coNP-complete.

Again, fortunately, we have some sufficient conditions that are computable in
polynomial time.

Theorem 6 Let A =[A. — A, A, + A] be an m x n interval matrix. This matrix
has full column rank if at least one of the following conditions holds

1. A, has full column rank and p(|AI|A) < 1, [48],
2. omax(QA) < omin(AL), [53].

The symbol * stands for Moore—Penrose inverse (for more details see [26]). The first
condition is mentioned implicitly in [48], however the explicit proof can be found in
[53]. Notice that the second sufficient condition is the same as the sufficient condition
for checking regularity. Many problems can be transformed to checking full column
rank — e.g., deciding whether a given interval linear system is solvable, deciding
whether a solution set of an interval linear system is bounded.

Summary

Problem Complexity
Does A have full column rank? coNP-complete

4.3 Solving a System of Linear Equations

To be brief the title of this section contained the word “solving”. Nevertheless, this
notion could be a little misguiding. Let us explain what do we mean by solving a
system of interval linear equations (or interval linear system for short). The solution
set of an interval linear system is defined as follows.

Definition 5 Let Ax = b, where A is an m X n interval matrix and b is an m-
dimensional right-hand side vector. Then by a solution set ¥ we mean

Y ={x|Ax =bforsome A € A, b €b}.

We could imagine it as a collection of all solutions of all crisp real systems contained
within the bounds of an interval system. Unfortunately, this set is of quite a complex
shape. For its description we can use the already mentioned Oettli-Prager Theorem 2.
A vector x € R" is a solution of Ax = b (i.e., x € X) if and only if x satisfies
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|[Acx —b.| < Alx| +56.

We can see that checking whether a vector y is a solution of Ax = b is strongly
polynomial (we just check the inequality for y).

Oettli—Prager theorem implies that the set X' is generally non-convex but convex
in each orthant (for graphical examples of possible shapes of the solution set see e.g.,
[14, 27, 29]). To describe this set, we usually enclose it by an n-dimensional box
(aligned with axes). Notice that we can view an n-dimensional interval vector as an
n-dimensional box aligned with axes.

Definition 6 An n-dimensional interval vector x is called an interval enclosure of
X if ¥ C x. Ifitis the tightest possible enclosure w.r.t. inclusion (there is no interval
box y such that ¥ Cy ; x), we call x the interval hull.

By solving an interval linear system we understand computing any enclosure x of
its solution set X'. To be brief, we call that x an enclosure (or the hull) of Ax = b. The
notion of enclosure is quite intuitive because we are not always able to compute the
interval hull. In [23] we can see that computing the exact hull of Ax = b is NP-hard.

An interval a = [a — A, a + A] is absolutely §-narrow if A < § and relatively
8-narrow if A < 4§ - |a|. The problem is still NP-hard even if we limit widths of
intervals of a matrix in a system with some § > 0 [23]. We can summarize it in the
following theorem.

Theorem 7 For every 6 > 0, the problem of computing the hull of Ax = b, where
a;;, b; are both absolutely and relatively §-narrow is NP-hard.

Unfortunately, even computing various e-approximations of the hull components
is an NP-hard problem [23].

Theorem 8 Fora given ¢ > 0 computing the relative and absolute g-approximation
of the hull (its components) of Ax = b are NP-hard problems.

That is why, we are usually looking for enclosures, not the hull. Of course, the
tighter enclosure the better. For computing enclosures of square systems, there have
been various methods developed. Some of them extend the traditional algorithms for
the real systems, such as the Gaussian elimination, Jacobi or Gauss—Seidel method
[27, 30]. Some of them were designed specifically for interval systems; see for
instance [4, 9, 13, 21, 27, 30] among many others.

Overdetermined systems. For an overdetermined system (where A is an m x n
matrix withm > n) the situation is slightly more difficult. Many people automatically
think of solving overdetermined systems via least squares, i.e.,

Definition 7

>4 = (x| ATAx = ATb for some A € A, b € b}.
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Obviously, X154 ig not the same set as X. Nevertheless, it is not difficult to see that
X C X4 Hence, we can use methods computing least squares for enclosing X
[29]. The problem of computing the interval hull of X’5¢ is NP-hard, since when A
is square and regular, then X9 = ¥ and computing the exact hull of ¥ is NP-hard
even for A regular [4].

If we primarily focus on enclosing just X' there is a variety of methods — modified
Gaussian elimination for overdetermined systems [7], method developed by Rohn
[43], Popova [32], or a method using square subsystems [15].

We can try to identify some classes of systems with exact hull computation algo-
rithms that run in polynomial time. If we restrict the right hand side b to contain
only degenerate intervals, we have Ax = b. Then, this problem is still NP-hard [23].
If we, however, restricts the matrix to be consisting only of degenerate intervals A
and we have a system Ax = b, then, computing exact bounds of the solution set is
polynomial, since it can be rewritten as a linear program.

However, even if we allow at most one nondegenerate interval coefficient in each
equation, the problem becomes again NP-hard, since an arbitrary interval linear sys-
tem can be rewritten in this form [23].

Structured systems. We can also explore band and sparse matrices.
Definition 8 A matrix A is a w-band matrix if a;; = 0 for |i — j| > w.

Band matrices with d = 1 are diagonal and computing the hull is clearly strongly
polynomial. For d = 2 (tridiagonal matrix) it is an open problem. And for d > 3 it
is again NP-hard. We inspected the case of bidiagonal matrices. The result is to our
best knowledge new.

Theorem 9 For a bidiagonal matrix (the matrix with only the main diagonal and
an arbitrary neighboring diagonal) computing the exact hull of Ax = b is strongly
polynomial.

Proof Without the loss of generality let us suppose that the matrix A consists of the
main diagonal and the one beyond it. By the forward substitution, we have x; = :T‘l
and
b —a;;1Xi—1
Xi=——"—, i=2,...,n.
a;;

By induction, x;_; is optimally computed with no use of interval coefficients of the
ith equations. Since an evaluation in interval arithmetic is optimal in the case there
are no multiple occurrences of variables (Theorem 1), x; is optimal as well. O

Definition 9 A matrix A is a d-sparse matrix if in each row i at most d elements
a; # 0.

For sparse matrices with d = 1 computing the hull is clearly strongly polynomial.
For d > 2 itis again NP-hard [23]. Nevertheless, if we combine w-band matrix with
system coefficient bounds coming from a given finite set of rational numbers, then
we have a polynomial algorithm for computing the hull [23].
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If an interval system Ax = b is in a certain form, the hull can be computed in
polynomial time using some already introduced algorithms. If the matrix A has full
column rank and A, is a diagonal matrix with positive entries, then Hansen-Bliek-
Rohn prescription for enclosure gives the exact hull [4]. If A is an M-matrix, then
Gauss-Seidel iteration method converges to the exact hull [30]. And if A is an M-
matrix and b is nonnegative then the interval version of Gaussian elimination yields
the exact hull [30].

In this section we silently supposed that the solution set X is bounded. This is not
always the case. Many mentioned methods can not deal with an unbounded solution
set. That is why we usually need to check for boundedness. However, it is an coNP-
complete problem since it is identical with checking the full column rank of the
interval matrix A.

Remark A natural generalization of an interval linear system is by incorporating
linear dependencies. That is, we have a family of linear systems

A(p)x =b(p), pep, o)

where A(p) = 3.5, A*prandb(p) = 3, b* pi. Here, p is a vector of parameters
varying in p. Since this concept generalizes the standard interval systems, many
related problems are intractable. We point out one particular efficiently solvable pro-
blem. Given x € R", deciding whether it is a solution of a standard interval system
Ax = b is strongly polynomial. For systems with linear dependencies, the problem
still stays polynomial, but we can show weak polynomiality only; this is achieved
by rewriting (5) as a linear program.

Summary
Problem Complexity
Is x a solution of Ax = b? strongly P
Computing the hull of Ax = b NP-hard
Computing the hull of Ax = b NP-hard
Computing the hull of Ax =b P

Computing the hull of Ax = b, where A is regular NP-hard
Computing the hull of Ax = b, where A is M-matrix P

Computing the hull of Ax = b, where A is diagonal  strongly P
Computing the hull of Ax = b, where A is bidiagonal strongly P
Computing the hull of Ax = b, where A is tridiagonal ?

Computing the hull of Ax = b, where A is 3-band NP-hard
Computing the hull of Ax = b, where A is 1-sparse strongly P
Computing the hull of Ax = b, where A is 2-sparse ~ NP-hard
Computing the exact least squares hull of Ax = b NP-hard

Is ¥ bounded? coNP-complete
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4.4 Matrix Inverse

Computation of a matrix inverse is usually avoided in applications. Nonetheless, we
chose to mention this topic, since it holds a worthy place in interval linear algebra
theory. An interval inverse matrix is defined as follows.

Definition 10 Let us have a square regular interval matrix A. We define its interval
inverse matrix as A~! = [B, B], where B =min{A~!, A € A}and B = max{A~',
A € A}, where the min and max are understood componentwise.

As usually, the inverse matrix can be computed using knowledge of inverses of
boundary matrices A, [39].

Theorem 10 Let A be regular. Then its inverse A~ = [B, Bl is described by

B = min A

—1
] 9
y,z€Y, rz

B = max A;Zl,
y,zeY, °°

where the min and max is understood componentwise.

The maximum and minimum bound of each component of the interval inverse is
attained at one of the inverse of 2>" boundary matrices. No wonder, it can be proved
that generally computing exact inverse matrix is NP-hard [3].

When A, = I, we can compute the exact inverse in polynomial time according
to the next theorem [47].

Theorem 11 Let A be a regular interval matrix with A. = I. Let M = (I — AL
Then its inverse A~ = [B, B]is described by

B =—-M + Dy,
B=M,
2
where k; = 2;”,1/11 for j =1,...,n, withmj; being diagonal elements of M.
: 1] :

There also exists a formula for the exact matrix inverse if all intervals have uniform
widths, i.e., A =[A, — aE, A. + « E] [49].

If we wish to only compute an enclosure B of the matrix inverse we can use any
method for computing enclosures of interval linear systems. We get the i-th column
of B by solving the systems Ax = ¢;, where ¢; is i-th column of the identity matrix
of order n.

As we mentioned, computing the exact interval inverse is NP-hard. We close this
section with a surprising result on inverse nonnegativity (A~! > 0 forevery A € A).
It was first proved in slightly different form in [24]. For this form see [30]. It implies
that checking inverse nonnegativity and also computing the exact interval inverse of
an inverse nonnegative matrix is strongly polynomial.
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Theorem 12 If A, A are regular and A_l, Z71 > 0 then A is regular and

A=A " A"1>0.

Summary
Problem Complexity
Computing the exact inverse of A NP-hard
Is A inverse nonnegative? strongly P

Computing the exact inverse of inverse nonnegative A strongly P

4.5 Solvability of a Linear System

Of course, before solving a linear system we might want to know, whether it is
actually solvable. Considering solvability we should distinguish between two types
of solvability.

Definition 11 An interval linear system Ax = bis (weakly) solvable if some system
Ax = b, where A € A, b € b is solvable.

In another words, its solution set X is not empty. Otherwise, we call the system
unsolvable.

Definition 12 An interval linear system Ax = b is strongly solvable if every system
Ax = b, where A € A, b € bis solvable.

The first definition is interesting for model checking. The second for system
verification and automated proofs.

Checking whether an interval systems is solvable is an NP-hard problem [23].
The sign coordinates of the orthant containing the solution can serve as a polynomial
witness and existence of a solution can be verified by linear programming, hence this
problem is NP-complete and checking unsolvability coNP-complete. The problem
of deciding strong solvability is coNP-complete. It can be reformulated as checking
unsolvability of a certain linear system using the well known Farkas lemma, e.g., [45].

Sometimes, we look only for nonnegative solutions — nonnegative solvability.
Checking whether an interval linear system has a nonnegative solution is weakly
polynomial. We know the orthant in which the solution should lie. Therefore, we can
getrid of the absolute values in Oettli-Prager theorem and apply linear programming.
However, checking whether a system is nonnengative strongly solvable is still coNP-
complete [4]. We summarize the results in the following table.

Theorem 13 Checking various types of solvability of Ax = b is of the following
complexity.
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weak strong
solvability NP-complete coNP-complete
nonnegative solvability P coNP-complete

It is easy to see that an interval linear system Ax = b is unsolvable if the matrix
[A b] has full column rank. That is why, we can use sufficient conditions for full co-
lumn rank to check unsolvability. Moreover, we can also use methods for computing
enclosures. If we have some enclosure x, then clearly a system Ax = b is unsolvable
if Ax N'b = ¢J. Many enclosure algorithms enable detection of unsolvability. Gene-
rally speaking, they work in iterative stages and when we intersect enclosures of the
solution set from the two subsequent stages and get an empty set, we know for sure
that the system is unsolvable. These methods are, for example, Gaussian elimination
[7], Jacobi method [27], Gauss—Seidel method [27], subsquares method [15].

Linear inequalities. Just for comparison, considering systems of interval linear
inequalities, the problems of checking various types of solvability become much
easier. The results are resumed in the following table [4].

Theorem 14 Checking various types of solvability of Ax < b is of the following
complexity.

weak strong
solvability NP-complete P
nonnegative solvability P P

We also would like to mention an interesting nontrivial property of strong solvability
of systems of interval linear inequalities. When a system Ax < b is strongly solvable
(i.e., every Ax < b has a solution), then there exists a solution x satisfying Ax < b
forevery A € Aand b € b [4].

V3-solutions. Let us come back to interval linear systems. The traditional concept
of a solution (Definition 5) employs existential quantifiers: x is a solution if 3A € A,
db € b : Ax = b. Nevertheless, in some applications, another quantification makes
sense, too. In particular, Y3 quantification was deeply studied [52]. For illustration of
complexity of such solution, we will focus on two concepts of solutions — tolerance
[4] and control solution [4, 51].

Definition 13
A vector x is a folerance solution of Ax =bifVA e A, dbeb: Ax =b.
A vector x is a control solution of Ax =bif Vb e b,3JA € A: Ax = b,

Notice that a tolerance solution can equivalently be characterized as {Ax | A €
A} C b and a control solution asb C {Ax | A € A}.

Both solutions can be described by a slight modification of Oettli-Prager theorem
(one sign change in Oettli-Prager formula) [4].
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Theorem 15 Let us have a system Ax = b, then x is

e a tolerance solution if it satisfies |A.x — b.| < —A|x| + 4.

e a control solution if it satisfies |A.x — b.| < Alx| — 6.

In the case of tolerance solution, the sign change has a large impact on complexity.

Deciding whether a system has a tolerance solution is weakly polynomial. However,
checking whether a system has a control solution remains NP-complete [23].

Summary
Problem Complexity
Is Ax = b solvable? NP-complete
Is Ax = b strongly solvable? coNP-complete
Is Ax = b nonnegative solvable? P
Is Ax = b nonnegative strongly solvable? coNP-complete
Is Ax < b solvable? NP-complete
Is Ax < b strongly solvable? P
Is Ax < b nonnegative solvable? P

Is Ax < b nonnegative strongly solvable? P
Does Ax = b have a tolerance solution? P
Does Ax = b have a control solution? NP-complete

4.6 Determinant

Determinants of interval matrices are not often studied. However, we included this
section for completeness.

Definition 14 A determinant of A is defined as det(A) = [d, d], where
d = min{det(A) | A € A},
d = max{det(A) | A € A}.

Its bounds can be computed from o boundary matrices A;; € {4, A; i} fori, j =

1, ..., n. We have the following theoretical result [42].

ij
Theorem 16 Computing interval determinant of A = [A — E, A + E), where A is
rational nonnegative is NP-hard.

It is intractable even in this simplified case. For interesting relations to eigenvalues
and singularity see [42].
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Summary

Problem Complexity
Computing det(A) NP-hard
Computing det(A) NP-hard

4.7 Eigenvalues

First, we briefly start with general matrices, then we continue with the symmetric
case. Checking singularity of A can be polynomially reduced to checking whether
0 is an eigenvalue of some matrix A € A. As we saw in Sect. 3.5 checking whether
A is an eigenvalue of some matrix A € A is NP-complete problem. Surprisingly,
checking for eigenvectors can be done efficiently [38]. It is strongly polynomial.

How is it with Perron-Frobenius theory of nonnegative matrices ([26])? An inter-
val matrix A € IR"™" is nonnegative irreducible if every A € A is nonnegative irre-
ducible. For Perron vectors (positive vectors corresponding to the dominant eigen-
values), we have the following result [44].

Theorem 17 Let A be nonnegative irreducible. Then the problem of deciding
whether x is a Perron eigenvector of some matrix in A is strongly polynomial.

For the sake of simplicity we mentioned only some results considering eigenvalues
of a general matrix A. We will go into more detail with symmetric matrices, where
their eigenvalues are real.

Definition 15 Let A € IR"*" with A, A, symmetric. Then the corresponding sym-
metric interval matrix is defined as a set of symmetric matrices in A, that is,

AS:={AcA:A=AT)

Forasymmetric A € R"™", we use Anyin (A) and Ayax (A) forits smallest and largest
eigenvalue, respectively. For a symmetric interval matrix, we define the smallest and
largest eigenvalues respectively as

hmin (A®) 1= min{Anin(A) : A € A5},
Amax (A%) = max{Ama (A) : A € AS).
Even if we consider the symmetric case some problems remain intractable [23,

42]. We are yet able to prove the hardness results, since it is usually difficult to find
a proper polynomial witness.

Theorem 18 On a class of problems with A, € Q""" symmetric positive definite
and entrywise nonnegative, and A = E, the following problems are intractable
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e checking whether 0 is an eigenvalue of some matrix A € AS is NP-hard,

e checking hmax (AS) € (a, @) for a given open interval (a, @) is coNP-hard.

However, there are some known subclasses for which the eigenvalue range or at
least one of the extremal eigenvalues can be determined efficiently [11]:

o If A isessentially non-negative,i.e.,(A.);; > OVi # j,then A (AS) = Jomax (A).

o If Ais diagonal, then Amin(AS) = Amin(A) and Amax (AS) = Amax (A).

In contrast to the extremal eigenvalues Ay, (AS) and Apax (AS), the largest of the
minimal eigenvalues and the smallest of the largest eigenvalues,

max{Aimin(A) : A € AS},
min{imax(A) : A € ASY,

can be computed with an arbitrary precision in polynomial time by using semide-
finite programming [16]. As in the general case, checking whether a given vector
0 # x € R is an eigenvector of some matrix in AS is a polynomial time problem.
Nevertheless, strong polynomiality has not been proved yet.

We already know that computing exact bounds on many problems with interval
data is intractable. Since we can do no better, we can inspect the hardness of various
approximations of their solutions. While doing this we use the following assumption:
Throughout this section, we consider a computational model, in which the exact
eigenvalues of rational symmetric matrices are polynomially computable.

The table below from [11] summarizes the main results. We use the symbol co in
case there is no finite approximation factor with polynomial complexity.

Theorem 19 Approximating the extremal eigenvalues of AS is of the following com-
plexity.

abs. error rel. error inverse rel. error
NP-hard with error  any <1 1
polynomial with error co 1 2

The table below gives results for a more specific case of approximating Amax (AS)
when A, is positive semi-definite.

Theorem 20 Approximating the extremal eigenvalues of AS with A. rational posi-
tive semi-definite is of the following complexity.

abs. error rel. error inverse rel. error

NP-hard with error ~ any 1/(32n*) 1/(32n%)
polynomial with error oo 1/3 1/3
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The tables sums up the generalized idea behind several theorems on computing
extremal eigenvalues. For more information and formal details see [11].
At the end of this subsection we mention spectral radius.

Definition 16 Let A € IR"*", we define the range of spectral radius naturally as
p(A) ={p(A): A cA}

Notice that p(A) is a compact real interval due to continuity of eigenvalues.
Similarly we define spectral radius for A5.

Complexity of computing p(A) is an open problem (as Schur stability is; see
Sect.4.9), and, to the best of our knowledge, complexity of computing o (A) has not
been investigated yet. o

Anyway, the following gives polynomially solvable subclasses:

o If A > 0, then p(A) = [p(A), p(A)].
o If A is diagonal, then p(A) = [max; minge,, |al, max;{la;|, |a;|}].

Summary
Problem Complexity
Is & eigenvalue of some A € A? NP-complete
Is x eigenvector of some A € A? strongly P
Is x Perron vector of nonnegative irreducible A? strongly P
Is 0 eigenvalue of some A € AS? NP-hard
Is x eigenvector of some A € AS? P
Does Amax (AS) belong to a given open interval? coNP-hard
Computing p(A) ?
Computing p(A) ?

Computing exact bounds on p(A) with A nonnegative strongly P
Computing exact bounds on p(A) with A diagonal  strongly P

4.8 Positive Definiteness and Semidefiniteness

We should not leave out mentioning the positive definiteness and semidefiniteness.
Here without the loss of the generality symmetric matrices are of the only interest.
We distinguish between weak and strong definiteness.

Definition 17 A symmetric interval matrix AS is weakly positive (semi)definite if
some A € A’ is positive (semi)definite.

Definition 18 A symmetric interval matrix AS is strongly positive (semi)definite if
every A € AS is positive (semi)definite.

Checking strong positive definiteness [40] and semidefiniteness [28] are both
coNP-hard according to the two following theorems.
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Theorem 21 Checking strong positive semidefiniteness of AS is co-NP-hard on a
class of problems with A, € Q"*" symmetric positive definite and entrywise nonne-
gative, and A = E.

Theorem 22 Checking strong positive definiteness of AS is co-NP-hard on a class

of problems with A, € Q™" symmetric positive definite and entrywise nonnegative,
and A = E.

Considering positive definiteness, we have some sufficient conditions that can be
checked polynomially [41].

Theorem 23 An interval matrix AS is strongly positive definite if at least one of the
following condition holds

® L,(Ap) > p(4),
e A, is positive definite and p(|(A.)~'|A) < 1.

The second condition can be reformulated as AS being regular and A, positive defi-
nite. If the first condition holds with > then A is strongly positive semidefinite.

In contrast to checking strong positive definiteness, weak positive definiteness
can be checked in polynomial time by using semidefinite programming [16]; this
polynomial result holds also for a more general class of symmetric interval matrices
with linear dependencies [12]. For positive semidefiniteness it needn’t be the case
since semidefinite programming methods work only with some given accuracy.

Summary

Problem Complexity

Is AS strongly positive definite? coNP-hard
Is A’ strongly positive semidefinite? coNP-hard
Is AS weakly positive definite? P
Is AS weakly positive semidefinite? ?

4.9 Stability

The last section is dedicated to an important and more practical problem — deciding
a stability of a matrix. There are many types of stabilities. For illustration, we chose
two of them — Hurwitz and Schur.

Definition 19 An interval matrix A is Hurwitz stable if every A € A is Hurwitz
stable (i.e., all eigenvalues have negative real parts).

Similarly, we define Hurwitz stability for symmetric interval matrices. Due to their
relation to positive definiteness (A% is Hurwitz stable if —AS is positive definite) we
could presume that the problem is coNP-hard. It is so, even if we limit ourselves to
a special case [40].
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Theorem 24 Checking Hurwitz stability of a symmetric interval matrix AS is coNP-
hard on a class of problems with A, € Q"*" symmetric Hurwitz stable and entrywise
nonpositive, and A = E.

For general matrices, coNP-hardness holds as well. The problem is still coNP-hard
even if we limit the number of interval coefficients in our matrix [28].

Theorem 25 Checking Hurwitz stability of A is co-NP-hard on a class of interval
matrices with intervals in the last row and column only.

Likewise, as for checking regularity, checking Hurwitz stability of A can not be
done by checking stability of matrices of type A, (for reductions of other properties
see [5]). On the other hand, it can be checked in this way for A%, For more discussion
and historical context see [23] or [48]. As sufficient conditions we can use conditions
for positive definiteness applied to —A. For more sufficient conditions see e.g., [25].

Definition 20 An interval matrix A is Schur stable if every A € A is Schur stable
(.e., p(A) < 1).

In a similar way, we define Schur stability for symmetric interval matrices. For
general interval matrices, complexity of checking Schur stability is an open problem,
however, for the symmetric case the problem is intractable [40].

Theorem 26 Checking Schur stability of AS is coNP-hard on a class of problems
with A, € Q™" symmetric Schur stable and offdiagonal entries nonpositive, and
A=E.

Summary

Problem Complexity
Is A Hurwitz stable? coNP-hard
Is AS Hurwitz stable? ~ coNP-hard
Is A Schur stable? ?

Is AS Schur stable? coNP-hard

4.10 Further Topics

Due to the limited space, we had to omit many interesting topics. We touched only
briefly the complexity issues of interval linear inequalities, but there are more results;
see, e.g., [4, 10]. We did not discussed complexity of computing the range of poly-
nomials over intervals [23], too. In short, we mention two particular problems:

e Matrix power. Computing the exact bounds on second power of the matrix A? is
strongly polynomial (just by evaluating by interval arithmetic), but computing the
cube A3 turns out to be NP-hard [20].
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e Matrix norm. Computing the range of ||A| when A € A is a trivial task for vector
£ ,-norms applied on matrices (including Frobenius norm or maximum norm) or
for induced 1- and co-norms. On the other hand, determining the largest value of
the spectral norm || A||, (the largest singular value) subject to A € A is NP-hard
[28].

S Summary

In this work we explored the fundamental problems of interval linear algebra. Our
goal was to:

e provide a basic introduction to interval linear algebra

e answer elementary computational complexity questions linked with interval linear
algebra

e discuss the computational complexity of the basic problems

e explain the relations between these problems

e mention relaxations or special classes of these problems that are easily decidable
or there exist polynomial algorithms solving them

e provide a basis for further reading and research

At this place we also would like to apologize to those whose results are not
mentioned in this work. There are many great achievements, however this work
can unfortunately consume only limited amount of space. We provide links to the
literature, where you can find much more of them.
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On Optimal Extended Row Distance Profile

P. Almeida, D. Napp and R. Pinto

Abstract In this paper, we investigate extended row distances of Unit Memory
(UM) convolutional codes. In particular, we derive upper and lower bounds for these
distances and moreover present a concrete construction of a UM convolutional code
that almost achieves the derived upper bounds. The generator matrix of these codes
is built by means of a particular class of matrices, called superregular matrices.
We actually conjecture that the construction presented is optimal with respect to
the extended row distances as it achieves the maximum extended row distances
possible. This in particular implies that the upper bound derived is not completely
tight. The results presented in this paper further develop the line of research devoted
to the distance properties of convolutional codes which has been mainly focused on
the notions of free distance and column distance. Some open problems are left for
further research.

Keywords Convolutional codes + Superregular matrices + Unimemory convolu-
tional codes + Maximum Distance Profile (MDP) - Maximum Distance Separable
(MDS)

1 Introduction

During the last two decades, renewed efforts were made to investigate the distance
properties of convolutional codes, mainly, their free (Hamming) distance and their
column distance. In [20] a Singleton bound for convolutional codes was derived
(called generalized Singleton bound) and the codes achieving such a bound were
called maximum distance separable (MDS). In [23] the first concrete construction
of an MDS convolutional code (over the finite field IF') of rate f and degree § was
presented for every given set of parameters (n, k, §), (with the characteristic of the
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finite field [ and the length n of the code being coprime). Bounds and fundamental
properties of the column distances of convolutional codes have also been thoroughly
investigated, see for instance [7, 8, 11, 18]. Convolutional codes having the largest
columns distances for a given rate S and degree & are called maximum distance
profile (MDP). Their existence was proven in [8] and concrete constructions were
given in [7] when (n — k)|§ and in [17] for every set of given parameters (n, k, §).

In contrast to the column distances, the extended row distances grow beyond the
free distance and therefore provide additional information about the performance
of the code. Hence, the notion of (extended) row distance is often used when more
detailed knowledge of the distance structure of a convolutional code is needed [11].
One of the advantages of the row distance is that it is easy to calculate and serves as
an excellent rejection rule when encoders are tested in search for convolutional code
with large free distance. As opposed to the free distance and column distance the
notion of (extended) row distance has not been fully investigated in the literature.

In this paper we shall focus on Unit Memory (UM) convolutional codes [14].
These codes may be an interesting alternative to the usual convolutional codes as
their block length can be chosen to coincide with the word length of microprocessors,
see [14, 24] for details. Binary (partial) UM convolutional codes were investigated
in the literature by Lauer [13] and Justensen [12, 24] who showed that unit memory
codes can perform better in some situations than codes having the same rate and
degree but with memory larger than 1.

It is the aim of this work to analyze the row distances of Unit Memory (UM)
convolutional codes with finite support. In particular we derive upper bounds for
extended row distances of UM convolutional codes for a given rate ”—‘Z and degree 4.
Moreover, we show that such a bounds are tight by presenting concrete constructions
of convolutional codes achieving this bound. The encoder matrices of these codes
are built by means of a very particular type of matrices called superregular matrices.

The paper is organized as follows. In Sect.2, we introduce the basic material for
the development of the paper: it includes the necessary introductory material on UM
convolutional codes and on the class of superregular matrices. In Sect. 3, we include
the main results of the paper. In particular we establish upper and lower bounds
on the extended row distances and moreover show how to construct (n, k, §) UM
convolutional codes that have (nearly) optimal profile of extended row distances.
We conclude the paper in Sect.4 where we resume the results of the paper and
point out some aspects of this construction that can be improved in order to make
it more attractive for applications. Finally some interesting avenues for research in
this direction are indicated.

2 Distances of Convolutional Codes

This section contains the mathematical background needed for the development of
our results. First we introduce convolutional codes with finite support and in par-
ticular unit memory codes. We conclude this section by recalling the notion super-
regular matrices [2]. Such matrices have some similarities with the ones introduced
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in [3, 7]. They have similar entries and, therefore, some properties are the same but
the structure of these new matrices may be different.
Let F be a finite field and IF[ D] be the ring of polynomials with coefficients in F.

2.1 Unit Memory Convolutional Codes

A (finite support) convolutional code € of rate k/n is an IF[ D]-submodule of F[ D]"
of rank k given by a basic and minimal full-rank polynomial encoder matrix G(D) €
]F[D]kxn ,

% = Im g p)G(D) = {u(D)G(D) : u(D) € F*[D]},

where basic means that G(D) has a polynomial right inverse, and minimal means
that the sum of the row degrees of G (D) attains its minimal possible value §, called
the degree of €.! The largest row degree of G(D) is called the memory. Note that
since G (D) is basic the resulting convolutional code if noncatastrophic, and hence
we assume that only noncatastrophic codes are of interest [17, 19].

Although this is the general definition of convolutional codes with finite support, in
this paper we will focus on a particular subclass of these codes, namely, Unit Memory
(UM), i.e., when the encoder matrix G(D) is described by G(D) = Gy + G D,
G # 0 or equivalently when the memory is equal to 1. Following the notation used
in [16] a rate k/n UM convolutional code & of degree § is called an (n, k, §)-
convolutional code. Note that in thiscase 1 < § < k.

If u(D) € F[D]* has degree j > 0, u(D) = ug+u1 D+ -+ +u;—D/~!, and

G(D) =Go+GiD,
the above representation of u(D)G (D) = v(D) can be expanded as
Gy Gy
Gy G
[uoul...uj_l] . . :[Vovl...vj],

. GO G1 (1)

=G’,.

where G’ € F/**U+D" is called the sliding generator matrix.

ITherefore, the degree § of a convolutional code % is the sum of the row degrees of one, and hence
any, minimal basic encoder.



70 P. Almeida et al.

An important distance measure for a convolutional code € is its free distance
defined as

diree (€) = min {wt(v(D)) | v(D) € € and v(D) # 0},
where wt(v(D)) is the Hamming weight of a polynomial vector

v(D) = ZviDi e F[D]",
ieN

defined as
wt(v(D)) = > wt(v;),

ieN

where wt(v;) is the number of the nonzero components of v;.

The extended row distance d; is defined [11, 24] to be the minimum Hamming
weight of all paths in the minimal code trellis that diverge from the zero state and
then return for the first time back in the zero state only after j branches. An UM code
can be represented by a trellis [4—6] where the state at time ¢ is u,_;. The number
of states is |IF|* and for UM codes the zero state can always be achieved in one step
with input u, = 0. Moreover, a path in the trellis is unmerged with the zero path if
and only if each information sub-block is nonzero.

For j > 1,letI; denote thesetofallu(D) suchthatu, # OforA =0,1,...,j—1
and u; = 0. We formally define the extended row distance d’; as

d; = min wt(u(D)G(D))

u(D)el;

Thus we are considering the minimum weight of subcodewords corresponding to
paths in the trellis from the zero state which reach the zero state again for the first time
after exactly j + 1 time instances. Note that dgee < d j’ 4 =d J’ and moreover for non-

"

. . . . &
catastrophic codes it holds that dgee = d}, = minj_g 12, .. d; and o = lim;_, 7’
gives the average linear slope of d’.

2.2 Superregular Matrices

Let A = [1;¢] be a square matrix of order m over IF and S,,, the symmetric group of
order m. The determinant of A is given by

| A= Z (_I)Sgn(g)ﬂla(l) © Mmo (m) -

oSy
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A trivial term of the determinant is a term (s = [Lio(1) * * * mo(m), With at least
one component (i, equal to zero. If A is a square submatrix of a matrix B with
entries in IF, and all the terms of the determinant of A are trivial, we say that | A |
is a trivial minor of B (if B = A we simply say that | A | is a trivial minor). We say
that a matrix B is superregular if all its nontrivial minors are different from zero.

The next results were derived in [3] and they will be very useful for our purposes
in the next section.

Theorem 1 Let IF be a field and a, b € N, such thata > b and B € F**b. Suppose
that u = [u;] € F?*! is a row matrix such that u; # 0 for all 1 <i <b. If B is
a superregular matrix and every column of B has at least one nonzero entry then
wt(uB) >b —a+ 1.

Theorem 2 Let a be a primitive element of a finite field IV = I ,v and B = [v; (] be
a matrix over It with the following properties

1. ifvie # 0 then vy = aP* for a positive integer B y;

2. ifvig=0then vy, =0, foranyi’ > iorviy =0, forany ' < ¢;
3. lfﬁ < E/, Vi ;ﬁ 0 and Vi ;ﬁ 0 then 2,31‘5 < ,3,‘({/,'

4. ifi < i, vig #0andvyy #O0then2p;i¢ < Birg.

Suppose N is greater than any exponent of « appearing as a nontrivial term of any
minor of B. Then B is superregular.

We note that there exist several notions of superregular matrices in the literature.
The definition given above generalizes all these notions. Frequently, see for instance
[22], a superregular matrix is defined to be a matrix for which every square submatrix
is nonsingular. Obviously all the entries of these matrices must be nonzero. Also, in
[1, 21], several examples of triangular matrices were constructed in such a way that
all submatrices inside this triangular configuration were nonsingular. However, all
these notions do not apply to our case as they do not consider submatrices that contain
zeros. The more recent contributions [7, 9, 10, 25, 26] consider the same notion of
superregularity as us, but defined only for lower triangular matrices. Hence, many
examples can be found in these references. In the following section we will adapt
this general notion of superregularity to the case of interest in this paper, namely, the
sliding generator matrices G';.

3 Bounds and Constructions

In this section we present results of upper and lower bounds on extended row distances
of UM convolutional codes. Moreover, we show how we can use the notion of
superregular matrices to construct codes that achieve these bounds. We also provide
a concrete class of superregular matrices that can be used to build UM convolutional
codes with good design row extended distance. We point out some of the advantages
and disadvantages of this construction in terms of the size of the field IF.
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Given a generator matrix G(D) = Gy + G| D of % we shall assume without loss
of generality that the zero rows of G, are at the top, i.e.,

G’ 0
Gy = 0 G = 2
0 [G(()z) 1 G? 2
with Gf]) € Fk=8xn apd Gl@ e F%*"  where § is the degree of €. We write u =

(D
[ u@] accordingly. Note that since G (D) is basic and minimal G and [g?z) j|
1

have full row rank.
The following result establishes an upper bound for the extended row distances.

Theorem 3 Let 6 be a UM (n, k, §)-convolutional code with generator matrix given
by G(D) = Gy + G D as above. Then,

di <(n—k+1)j+n (3)
Proof We want to estimate
u(rB>121j wt(u(D)G (D)) =min wt([uouy -+ u;—11G%) 4)

where G'; is the sliding generator matrix defined in (1). Clearly
min wt(vg) = min wt(uoGo) <n —k+1
min (vo) min (uoGo) =

as n — k + 1 is the Singleton bound for (n, k)-block codes.

If uéz) # 0 then oG, # 0 and therefore [g(ﬂ has at least k + 1 rows. Thus,

exists u; such that

wt(vy) = wt ([uo up] [g;}) <n-—k. (®)]

However we may have u; = 0 which contradicts u; # 0, for all i, and u(()z) =0
which implies uoG; = 0 and therefore

wt(v)) <n—k+ 1. (6)

Hence, in any case
minwt(v)) <n —k + 1. (7)
ug;ﬁO



On Optimal Extended Row Distance Profile 73

Following the same reasoning, for any u;_; there exists u; such that

min wt(v;) = min wt ([uil u;) [Gl ]) <n—k+1.
1o 70 1o #0 Gy

fori =1,...,j— 1, since, if with uﬁ)l = 0 then wt(v;) =n — k + 1. Obviously
wt(v;) = wt(u;j_;G1) < n and hence for [vo vi --- v;] = [ug u; --- uj_l]G§ with
u; # 0, we have that

j—1
1 t e v =mi t t(v; t(v;
min wi([vo vy -+ vj) = min(w (V0)+§W(V)+W(VJ))

<mn—k+1j+n
O

Remark 1 Taking a closer look at the proof of the previous lemma we see that
between the two upper bounds (5) and (6) we had to consider the largest one (6)
in order to prove (3). However we believe that (5) will hold for a [ug uy --- u;_1]
minimizing (4). Since we failed to come up with a formal proof for this we leave
it for future research and conjecture that the actual upper bound in (3) should be
slightly smaller, namely,

di <(mn—-kj+n+1 ®)

In the next section, we will construct a code that achieves the upper bound in (8).

If € has its extended row distances achieving the bound (8) for every j € IN we
say that € has an almost optimal extended row distances profile (AOEDP). Note that
this upper-bound does not depend on the degree § of % in contrast to the generalized
Singleton bound for the free distance [20]. Also note that the bound given in (8) grows
infinitely and in practice one is interested in knowing the values of d, 1 < j < J
for same given integer J.

The assumption that the zero rows of G| are at the top implies that the matrix

Gy
|: G cannot have zero rows between two nonzero rows.
0

We will construct UM convolutional codes with designed extended row distances
and for that we will require the sliding generator matrix G’; to be superregular. Next
result characterizes and simplifies the conditions such a G; to be superregular.

Lemma 1 Let G'; be a sliding generator matrix as defined above. Then, G'; is
superregular if and only if every square submatrix of G; that does not contain zeros
in the diagonal is invertible.

Proof The proof amounts to showing that the unique nontrivial minors of G’ are
exactly the ones that do not contain zeros in their diagonal. Let A = [a;;] € F'*' be
a square submatrix of G;. Obviously, if all the elements in the diagonal of A are
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nonzero then the corresponding minor is nontrivial. Thus, it is left to prove that if
contains a zero in the diagonal, say ay,, then the corresponding minor is trivial. In
fact only two possibilities can happen due to the particular structure of blocks of
zeros of G';. Or there exists a block of zeros in the upper right corner of A, namely,
a;j =0for0 <i <sands < j <t orotherwise there exists a block o zeros in the
left bottom corner of A, namely, a;; =0 fors <i <tand 0 < j <s.Itis easy to
verify that all terms of |A| have components in both blocks which concludes the
proof. O

The next result shows how superregular matrices are related to UM convolutional
codes that have an AOEDP.

Theorem 4 Let € be a UM (n, k, §)-convolutional code generated by G(D) =
Go + G D. If all the entries of Gy and ng) are nonzero and the sliding generator
matrix G', is superregular then

djr- >mn—k)j+n+1,
i.e., € has an AOEDP.

Proof For j > 1,letu(D) € I;. Suppose that the weight of [ug u; --- uj_;]ist and
let iz be the vector formed by the nonzero components of [ug u1 - - - u;_;] and B be the
matrix formed by the 7 rows of G’; corresponding to u. Thus B has (j + 1)n columns
and ¢ rows. Since uy, # OforA =0, 1, ..., j — 1 thenthe (j + 1)n columns of B are
nonzero. The matrix B is superregular as it is assumed that G’; is superregular and
any submatrix of a superregular matrix is superregular. Then we can apply Theorem
1 to obtain,
wt(uB) = wt(v(D)) > (j+ Dn —t + 1.

Since t < jk, we have that
wtv(D) > (j+1Dn—jk+1=m—-k)j+n+1.
This concludes the proof. [J

For a given J > 1 and a set of parameters (n, k, §), with § < k < n we propose a
concrete construction of UM convolutional code constructed via the following class
of superregular regular matrices.

Let G(D) = Gog + G D, where G;, withi = 1, 2, are described by

a271+r'+l*2 ifl, — O
Gi=[yslfory,s =1 ifi=1 and r >k —3§ 9)
0 ifi=1 and r <k—9§

where « is a primitive element of the finite field I = IF ,v.
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Lemma 2 Let G(D) be as in (9). Suppose N is greater than any exponent of «
appearing as a nontrivial term of any minor of G';. Then assumptions of Theorem 4
hold for j = 1, ..., J, namely, all the entries of Gy and G(lz) are nonzero and the
sliding generator matrix G'; is superregular.

Proof The fact that the entries of Gy and Giz) are nonzero is straightforward. To
show that the sliding generator matrix G’; is superregular permutate the columns of
G'; to obtain the matrix

G Gy

G, G
A= o . (10)

G, Gy
One can check that A satisfies the conditions of Theorem 2 and therefore it is super-

regular. Since the minors of A are equal (or symmetric) to the minors of G’; this
implies that G’} is also superregular. []

We are now in a position to present a result that readily follows from Theorem 4
and Lemma 2 and states that the construction rendered in (9) gives rise to a UM con-
volutional code with a designed extended row distance and moreover has a AOEDP.

Corollary 1 Let € be a UM (n, k, 8)-convolutional code generated by G(D) =
Go + G D € F**" where Gy and G, are described above. Assume that F = Iy,
for p prime and N sufficiently large, then the sliding generator matrix G'; is super-
regular and

d]’. =mn—-k)j+n+1,

for j =,0,1,...J,ie.,d} reaches the upper-bound given in (8) for j =,0,1,...J.

4 Conclusions

A great deal of attention has been devoted in recent years to the study of convolu-
tional codes with good distance properties. In particular, Maximum Distance Profile
(MDP) or Maximum Distance Separable (MDS) have been thoroughly investigated.
In this paper we have focused our attention to the construction of unit memory con-
volutional codes with good extended row distance. It turns out that the question of
how to construct them can be related to the construction of a class of matrices, called
superregular. We have given conditions for the sliding generator matrix of a code to
yield UM convolutional codes with nearly optimal extended row distances. A con-
crete construction have been presented based on a type of superregular matrices that
had been recently used for the authors to build MDP [2]. Moreover, it was recently
shown [15] that this class of matrices perform very well when considering rank
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metric instead of the Hamming metric, producing Maximum Sum Rank Distance
convolutional codes. It is natural to ask whether also the presented codes have opti-
mal extended row distance with respect to the rank metric (to be formally defined).
This opens up a interesting avenue of future research. Finally we remark that one of
the disadvantages of the presented constructions is that they require large fields and
it would be convenient to come up with new constructions of superregular matrices
over smaller fields.
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1 Introduction

Codes play an important role in our days. They are implemented in most of all
communications systems in order to detect and correct errors that can be introduced
during the transmission of information. Convolutional codes over finite rings were
first introduced by [8] and are becoming more relevant for communication systems
that combine coding and modulation.

We will consider convolutional codes constituted by left compact sequences in
Z,, where p is a prime and r an integer, i.e., the codewords of the code will be of
the form

w:Z — Z’;,,

t > w

where w, = 0 for t < k for some k € Z. These sequences can be represented by

oo
Laurent series, w(D) = Z w,; D". Let us denote by Z,-((D)) the ring of Laurent
1=k
series over Z, . Moreover, we will represent the ring of polynomials over Z,- by
Z.,| D] and the ring of rational matrices over Z ,- by Z.,- (D). More precisely, Z ,- (D)
is the set
p(D)

D) p(D), q(D) € Z,r[D] and the coefficient of the smallest power of D in g (D) is a unit
q

modulo the equivalence relation

p(D) _ pi(D)
9(D) (D)

if and only if p(D)q;(D) = p(D)q(D).

Convolutional codes over finite rings behave very differently from convolutional
codes over finite fields due to the existence of zero divisors. One main difference is
that a convolutional code over a finite field IF' is always a free module over F'((D))
which does not happen in the ring case. In order to deal with this problem we will
consider a new type of basis, for Z [ D]-submodules of Z’;r [D], which will allow
us to define a kind of basis for every convolutional code, called p-basis, and a
related type of dimension, called p-dimension. This notions have been extensively
used in the last decade [6, 7, 10, 13, 14], extending the ideas of p-adic expansion,
p-dimension, p-basis, etc., used in the context of Z ,--submodules of Z’;’"’ [1, 11,
12, 15].

In this paper we will study the dual of a convolutional code over Z, [D]. In
particular, we will show that the dual of a convolutional code is also a convolutional
code and we will relate the p-dimensions of a convolutional code and its dual. In the
field case, this result follows immediately from matrix theory and it is mentioned in
[3, 9].
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2 The Module ZZ, [D]

Any element in ZZ, can be written uniquely as a linear combination of 1, p, pz, o

.., p"~!, with coefficients in o, =1{0,1,...,p—1} C Z, (called the p-adic
expansion of the element) [1]. Note that all elements of .7,\{0} are units. This
property provides a kind of linear independence on the elements of .«7,,. In [15], the
authors considered this property to define a special type of linear combination of vec-
tors, called p-linear combination, which allowed to define the notion of p-generator
sequence, p-basis and p-dimension for every submodule of Z', . These notions were
extended for polynomial vectors in [7] and we recall them in this section.

k

Definition 1 ([7]) Letv((D), ..., vi(D) be in Z!, [ D]. The vector z a;(Dyv;(D),
j=1

with a;(D) € 4/,[ D], is said to be a p-linear combination of v(D), ..., v (D)

and the set of all p-linear combination of v, (D), ..., v (D) is called the p-span of

{vi(D), ..., v (D)}, denoted by p-span (vi(D), ..., vi(D)).

Note that the p-span of a set of vectors is not always a module. We need to
introduce an extra condition to be fulfilled by the vectors.

Definition 2 ([7]) An ordered set of vectors (v{(D), ..., vi(D)) in 2!, D] is said
to be a p-generator sequence if p v; (D) is a p-linear combination of v; (D), ...,
w(D), i=1,...,k—1,and pv(D) =0.

Lemma 1 ([7]) If vi(D), ..., v (D)) is a p-generator sequence in Z’I’,,,[D] then

p-span(vi(D), ..., (D)) = span(vi(D), ..., v(D)).
Consequently p-span(vi(D), ..., vi(D)) is a Z., -submodule on’;),-[D].

Note that if M = span(vi(D), ..., v (D)) is a submodule of Z ,-[ D], then

vi1(D), pvi(D)...,p""'vi(D), v2(D), pva(D), ...,

r—1 r—1 (1)
P T va(D), ..., vi(D), pvi(D) ..., p" " v(D)).

is a p-generator sequence of M.

Definition 3 ([7]) The vectors v (D), ..., v (D)in Z’;,r [D] are said to be p-linearly
independent if the only p-linear combination of v{(D), ..., v¢(D) that is equal to
0 is the trivial one.

Definition 4 ([7]) An ordered set of vectors (vi(D),...,vx (D)) which is a
p-linearly independent p-generator sequence of a submodule M of Z',[D] is said
to be a p-basis of M.
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It is proved in [6] that two p-bases of a Z ,-[ D]-submodule M of Z']’,, [D] have
the same number of elements. This number of elements is called p-dimension of M
and is denoted by p-dim(M).

We recall that a free module is a module which admits a basis. The cardinality of
a basis of a free module M is called the rank of M.

Lemma 2 ([7]) Let M be a free submodule of Z,|D] of rank m. Then the p-
dimension of M is mr. If (vi(D), ..., v,y(D)) is basis of M, then, the sequence
WD), pyvi(D), ..., p""vi(D), ..., vu(D), pvu(D), ..., p' v, (D))

is a p-basis of M.

The same notions and results are satisfied for the module Z’;,, in [15]. In fact, as
mentioned before, these notions were first introduced in this paper for such modules
and later extended for the module Z",’,, [D]in [7].

Finally, we give the following definition which we need in next sections.

Definition 5 ([5]) A module M is said to be semisimple if it is a direct sum of simple
modules, where a simple module is a module that has no submodules other than itself
and {0}.

Let M be a semisimple module. Then every submodule of M is a direct summand,
i.e., for every submodule N of M, there is a complement P such that M = N @ P.
Moreover, every submodule of M is semisimple.

3 Convolutional Codes Over Z ,r

Definition 6 A convolutional code ¢ of lengthn over Z - isaZ - ((D))-submodule
of Z';,, ((D)) for which there exists a polynomial matrix G(D) € Z];,f” [D] such that

C = ImZP, ((D))a(D)
= [D)G(D) € Z3 (D) : u(D) e ZE (DY)}

The matrix 5(D) is called a generator matrix of €. If 5(D) has full row rank
then it is called an encoder of %

The notion of p-basis can be used to define a p-encoder for a convolutional code.

Definition 7 ([6]) Let ¢ be a convolutional code of length n over Z,-. Let G(D)
in Z’;,,*"[D] be a polynomial matrix whose rows are a p-linearly independent p-
generator sequence. Then G(z) is a p-encoder of ¢ if
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% = Im%((D))G(D)
= {u(D)G(D) € Z), (D)) : u(D) € &/, (D))}
The integer k is called the p-dimension of €. If there exists a constant matrix G such

that B
©+ = {u(D)G € Zy, (D) : u(D) e ZH(D))]

then € is called a block code.

Obviously, block codes are a particular case of convolutional codes. Every block
code ¥ admits a generator matrix in standard form [2]

Al ALy ALy e AL AL
0 ply pAy, PA3, -+ PA,_, pAril
~ 0 0 lekz PzA%,z PzAf—l,z PZAr,z
G=|10 0 0 pIL, - O pPPAS, |- 2
00 0 0 -opTln, prtan! |
The integers ko, k1, . .., k,—; are called the parameters of G. All encoders of % in
standard form have the same parameters ko, ki, ..., k,_.

Note that if G(D) is a generator matrix of a convolutional code ¢ and X (D) is an
invertible rational matrix such that X (D) G (D) is polynomial, then Imz , (p), G (D) =
Imz , (p)) X (D)G (D), which means that X (D)G (D) is also a generator matrix of
€ . Thus, the next straightforward result follows. We include its proof for the sake of
completeness.

Lemma 3 Let € be a submodule of 2, ((D)) given by € = Imz,, (p))N(D), where

N(D) € fo” (D). Then € is a convolutional code, and if N (D) has full row rank,
% is a free code of rank k.

Proof Write N(D) = [?{T(l)l);], where p;; (D), g;;(D) € Z,[D], and the coefficient
ij E

of the smallest power of D in ¢;;(D) is a unit. Consider the diagonal matrix
Y(D) € le‘,i(k[D] whose element of the row i is the least common multiple of
gi1(D), gi2(D), ..., q;z(D). Thus Y (D) is invertible and N (D) = Y (D)~ ' X (D) for
some polynomial matrix X (D) € Zl[‘,rx” [D]. ThenImz, , (p)y N (D)=Imz,, (p)X (D),
which means that X (D) is a generator matrix of €. The last statement of the lemma
follows from the fact that N (D) is full row rank if and only if X (D) has full row
rank. [J

Next we will consider a decomposition of a convolutional code into simpler compo-
nents. For that we need the following lemma.
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Lemmad4 Let M be a submodule of Z',, ((D)). Then, there exists a unique family
My, ..., M,_; of free submodules on’]’),((D)) such that

M=My®pM,&...®p 'M,_,. 3)

Proof Let M be the projection of M over Z »((D)) and denote its dimension by
ko(M). Let My be the free code over Z - ((D)) of rank &y satisfying M = M, and
My C M. As Z’I’,,.((D)) is a semisimple module, M, admits a complement code
M in M. Necessarily, there exists a code M| such that M, = pM|. We have M =
My @ pM;. Then by induction we have the result. [

Note that if % is a block code, this decomposition is directly derived from a generator
matrix in standard form. In fact, if G, of the form (2), isa generator matrix of & then
pi% = ImZ]),((D))piGi, where G,‘ = [0 --0 Ik,- AIZJ tee A;,i]’ i = 0, v, — 1.

Next we will show that any convolutional code ¢ can be decomposed as
C=%Dp6®---®p %,

where 6, 61, ..., €, _ are free convolutional codes.

Let G(D) be a generator matrix of €. If G (D) is full row rank then %’ is free and
E = .

Let us assume now that G (D) is not full row rank. Then the projection of G (D)
into Z,[ D], G(D) € Z’;X” [D], is also not full row rank and there exists a nonsingu-

lar matrix Fo(D) € ZX**[D] such that Fy(D)G (D) = |:G0(()D)i| modulo p, where

60(D) is full row rank with rank k. Considering Fy(D) € Z’;?k [D], it follows that
Go(D)

Fo(D)G(D) = [pGl(D)

}, where Go(D) € Z" is such that Go(D) = Go(D).

Go(D)
pGi1(D)
Let us now consider Fy(D) € Z§***=%)[D] such that Fy (D)G (D) =

Moreover, since Fy(D) is invertible, [ } is also a generator matrix of %

[GléD)] modulo p, where 61 (D) is full row rank with rank k;. Then, consider-

G (D)

ing Fi(D) € Z\ D], it follows that Fy(D)G (D) = [p 8.(D)

i|, where

G|(D) e Zi‘,xn is such that G| (D) = G (D), and therefore

Go(D)

Iko 0 _ /
[0 FI(D)}FO(D)G(D) B 52%‘2((%))
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Go(D)
It [ e

rational matrix L(D) € Zi‘,-Xk"(D) such that

Go(D)
Ll 5]
1 ki JASS sz/z(D)

i| is not full row rank, then there exists a permutation matrix P and a

where G/(D) € Z’;‘,-X"(D) and G54(D) € Z;k,‘ ~kDX" (D) are rational matrices and

[GO(D)] is a full row rank rational matrix. Note that since P |: b D ] is

G{(D) Ly(D) Iy,
nonsingular it follows that
Go(D
Go(D) ] _ o)
mz,.on | LG (py | = M2y o | PGI(D)
: p*Gy(D)

Let Gl(D)Z];‘,X"[D] and G45(D) € Zfr'_k')xn[D] be polynomial matrices (see
Lemma 3) such that

Go(D) Go(D)
Imz, (py | pG{(D) | =Imgz,py | PG1(D)
p*G5(D) p*G5(D)
Then
Go(D)
pG1(D)
p*G5(D)
p*Ga(D)

Go(D)
G1(D)
Proceeding in the same way we obtain a generator matrix of ¢ of the form

is still a generator matrix of % such that |: i| is full row rank.

Go(D)
pGi(D)

PG, 1(D)

and such that
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Go(D)
Gi(D)
Grfl (D)
is full row rank. Thus %; := Im G, (D) is a free convolutional code,i = 0,1, ..., r —
lL,and € = %6 @ p6, @ --- ® p"~'6,_,. If we denote by k; the rank of %; then the
family {ko, ..., k,_1} is a characteristic of the code. Moreover, it’s clear that € is

free if and only if k;; = Ofori =1...r — 1.
The following lemmas will be very useful for deriving the results of the remaining
sections.

Lemma 5 Let € be a free convolutional code of length n over Z,- (D)) and rank
k. Then, p-dim(p'%) = (r — i)k.

Proof Let G(D) € Z';?”[D] be an encoder of . The result follows from the fact
P'G(D)
pl+l G (D)
that . is an p-encoder of %, since G(D) is full row rank. [J
P 'G(D)
Lemma 6 Let 6| and 6, be two convolutional codes over Z,-((D)). Then we have
p-dim(é| + 6) = p-dim €] + p-dim 6, — p-dim(%6, N 6>).
If the sum is direct, we have

p-dim(%) & %) = p-dim %) + p-dim %>.

Proof Suppose that 4] and % are in direct sum, i.e., 6] + 6 = €1 ® 6.

If B; is a p-basis of %] and B, is a p-basis of %5, then (By, B;) is a p-basis of
% @ %> which gives the result.

For the general case, Let denote by A the complement of %, N %, in %, i.e.,
%) = A @ € NG, and let B such that 65 = B @ % N %>. Then we have

CQ+6C=A0C NGB

and the result is immediate. [J
Next corollary follows immediately from Lemmas 5 and 6.

Corollary 1 Let € be a convolutional code of length n such that
C=%Dpt®---®p %,

with €; a free convolutional code with rank k;, i =0, 1,...,r — 1. Then



The Dual of Convolutional Codes Over Z - 87

p-dim(%) = Z(r — i)k,

4 Dual Codes

Let € be a convolutional code of length n over Z,-((D)). The orthogonal of ¢,
denoted by €+, is defined as

:{yEZZ, :[y,x]=0forall x € ¢},

where [y, x] denotes the inner product over Z/, .

In this section we will show that the dual of a convolutional code is still a convo-
lutional code. The next theorem proves this statement for free convolutional codes,
and, as field case, the sum of the rank of the code and its dual is 7.

Theorem 1 ([4]) Let € be a free convolutional code with length n over Z,-((D))
and rank k. Then € is also a free convolutional code of length n and rank n — k.

Proof LetG(D) € ZIIE,,.X" be an encoder of ¥. Since G (D) is full row rank there exists
G(D)
L(D)
[X(D) Y(D)], with X (D) € Z"**(D) and Y (D) € Z* "~ (D), be the inverse of
[ G(D)

L(D)
volutional code. Moreover, since Y (D) is f~u11 column rank, there exists a full row rank
matrix polynomial matrix G*(D) € Z\ ™" [D]suchthat €+ = Imz,, (p) G* (D).
Thus € is a free convolutional code of rank n — k.  [J

a polynomial matrix L(D) € Zg’f’g)X”[D] such that [ ] is nonsingular. Let

j| .Then 6+ = Img,, (p))Y (D)', which means by Lemma 3 that 4" is a con-

If € is a free code of rank &, then p-dim(%) = kr. This gives us the next corollary.

Corollary 2 Let € be a free convolutional code of length n over Z.,-. Then we have
p-dim(%) + p-dim(€+) = nr.

In the sequel of this work we propose to establish this result for any code over

Zy ((D)).

The following auxiliary lemmas will be fundamental in the proof of next theorem.

Lemma 7 ([13]) Let € be a free convolutional code over Z,-((D)). For any given
integeri € {0, ...r — 1} we have

¢ Np'Z, (D)) =p'é.
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Proof The inclusion p'¢ C € N p'Z", (D)) is trivial. For the other direction, let
y€E p’Z';,,. (D)) N€.Let{xy, ..., x;}beabasis of € and its projection {x1, ..., Xz}

k
be a basis of €. Then, there exists ai,...,a € Z,y ((D))suchthaty = Zajxj. As
j=1

k
y € p'Z,((D)), wehave y = > @;x; = 0, where@; =0, ¥j = 1...k. Then, for
j=1

all j = 1...k,a; canbe written in the form pb; where b; € Z ,-((D)). By repeating
the procedure i times, we obtain a; = p'e;, Vj = 1...k, which gives

k
y=p Zajxj e p'¥.

j=1
|

Lemma 8 ([13]) Suppose that € is a free code. Let y € Z, (D))" and let i be an
integer in {0, ..., r — 1}, such that p'y € €. Then'y € € + p’fiZ;‘,,((D)).

Proof By the preceding lemma, there exists x € % suchthat p'y = p’x. This implies

that y = x. Thus there exists y; € €, y» € Z, (D)) satistfying y = y; + py,. We

have p'y = p'yi + p'*'ys, then p'y — p'yy = p*'y, € €. Then y, = y3 + pys

where y; € ¢ and y, € Z’;,,.((D)). Then y = y; + py3 +p?ys. By repeating this
€€

procedure r — i times, we obtain y = x; + p"ixz withx; €e €. O

Lemma 9 ([13]) Let € be a free convolutional code over Z, ((D)). For all integer
ie€f{0,...r — 1} we have

(P'6) =€+ p'' 7, (D))

Proof It’s clear that €+ + Pz (D)) C (p'%6)™*. For the other direction, let y €
(p'6)*, then for all x € € we have [y, p'x] =[p'y, x] =0, thus p'y € €+. As
¢ is a free code, we conclude by Lemma 8 that y € ¢+ + p"~'Z~,(D)). O

Remark I The last lemmas are given in [13] for block codes over Z,-. The proofs
here are just adapted to the ring Z ,- ((D)).

Theorem 2 Let% =6, ® p6, ® - - ® p'~'€,_1 be aconvolutional code of length
n over Z, ((D)), such that €; is free, i =0,1,....,r = 1, with 6 @ €1 @ --- @
G_1 =%+ C + -+ G _1 afree convolutional code. Then, there exists a family
of free convolutional codes of length n over Z, ((D)), Bi,i =0,...,r — 1, such
that ¢+ =By ® pB1 ®---® p'~'B,_1, and

1. By=(6o® - ®C_1)"
2. Fori e{l,...,r — 1}, rank(B;) = rank(%,_;).
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Proof Suppose that rank(%;) = k; fori =0, ...,r — 1. We first begin by looking
for the dual of 6, ® p%;.

(%o ® pG)*" =G5 N (pE)* =% N (6" +p~'Zy)
— CKOJ_ N %IJ_ + prflqgol
= (GG +p 6

By Theorem 1, we can conclude that there exists a free code B,_; such that
(G ® pe)*" =G @G @ p By
Suppose rank(B,_1) = [,_;, then we have:

p-dim[(6y @ p61) "] = p-dim(%, ® €1)" + p-dim(p" "' B,_))
=nr — (ko +k)r +1,_1.

On the other hand, p-dim[(6) ® p%€1)*] = nr — (kor + (r — 1)k;). We conclude
that rank (B,_,) = k;. We repeat the same procedure with 6, ® pé, ® p>%>.

(€ @ P61 ® P*Er)t = (6 @ pE) N (P> et
=[G @ e ®p " B 11N (& + p 2,
=GO DT ® P T B NG+ p A G @)+ p T By
=@GoCiot) e p B+ X G D) .

By Theorem 1, there exists a free convolutional code B, _; such that
(Go® P61 ® P ) = (@G @) ®p B ®p T B,s.
Suppose that rank(B,_;) = I,_,, then we have

p-dim (% @ p6 @ p*6)*t =
= p-dim[(%) ® €| ® €)1 + p-dim(p’~'B,_)) + p-dim(p" >B,_,)
=nr — (ko + ki +k)r +ky + 21,

On the other hand

p-dim(6y ® p€\ ® p*6r)*t = nr — [kor + ki(r — 1) + ka(r — 2)]
= (l’l —k() — k])r +k1 +2k2

We conclude that rank(B,_,) = k,. We repeat this procedure » — 1 times, we thus
find the desired result. [
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The following result is a consequence of this theorem and generalizes the well-known
result for the field case: if % is a convolutional code of length n over IF((D)), where
F is a finite field, then dim € + dim €+ = dim F((D)) = n.

Corollary 3 Let ¢ be a convolutional code of length n over Z\,. Then
p-dim(%) + p-dim(¢™*) = p-dim(Z}, (D)) = nr.

Proof Let€ = 6, ® p€, @ --- ® p"~'%6,_, where €, is free of rank k;,i =0, 1, ...,
r — 1. Consider also the free convolutional codes of length n over Z, ((D)),
Bi,i=0,...,r—1,suchthat ¢+ =By ® pB,®...® p"~'B,_;, and
1. Bo = (%() D... @%—I)L.
2. rank(B;) = rank(%,_;),i € {1,...,r — 1}.
r—1
Note that p-dim(%) = Z(r —i)k;. From 2. and Lemma 5, it follows that
i=0
p-dim(p’B;) = (r — i)k,_; and from 1. and Corollary 2 it follows that p-dim(By) =
nr —r(kg+ ki, -+ k,._1). Thus,

p-dim(€+) = p-dim(By) + p-dim(pB;) + - - - + p-dim(p" "' B,_))
=nr—rko+ki+-+k_)+0—-Dk_ 1+ 0T =2k 2+ +k
=nr — (kor +ki(r — 1) +---+ k1)
= nr — p-dim(%).

O

Remark 2 1In the case of block code over a finite ring, we can find this result using
the theorem of J.Wood in [16]. Indeed, if € is a block code of length n over Z. #
is a Frobenius ring and then we have

[CNEH = |%".
If p-dim(%) = k, we have |€| = p* and then |€*| = p" % which gives
p-dim(€*) = nr — k.
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On the K-Theory of the Reduced
C*-Algebras of GL(n, R) and GL(n, C)

Sérgio Mendes

Abstract Using Harish-Chandra parameter space, an explicit formula for the
K-theory of the reduced C*-algebra of GL(n, C) is obtained, in analogy with the
real case GL(n, R) [8]. Applying automorphic induction, an instance of Langlands
functoriality principle, we then relate the K-theory of CGL(2n, R) and C;GL(n, C).

Keywords K-theory + GL(n) + Functoriality

1 Introduction

The Gelfand—Naimark Theorem is a well known result in functional analysis. It
implies that the category of locally compact Hausdorff spaces and continuous proper
maps is equivalent to the opposite of the category of commutative C*-algebras and
proper C*-morphisms. The main idea of noncommutative geometry is to regard
noncommutative C*-algebras as dual of an, otherwise undefined, category of non-
commutative spaces, see [4, p. 7]. An important example of the above is group
C*-algebras.

In this note we consider the reduced C*-algebras of GL(n) over the archimedean
local fields R and C. We are mainly interested in the K-theory of these noncommu-
tative spaces. Our K-theory computation is based on a suitable parametrization of
the tempered dual.

Let G = Gr = GL(n, F) where F is a local field. The unitary dual of G is the set
of equivalence classes of irreducible unitary representations of G and is equipped
with the Fell topology. It has also a Plancherel measure p, whose support is called
the tempered dual of G and will be denoted by <7 (F).

Let v be a unitary representation of G on a Hilbert space 7. Then, 7 induces a
representation of the convolution algebra L!(G) given by
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with f € L'(G). Let A be the left regular representation of G on the Hilbert space
L*(G)
i LYG) — BALXG)), [ > (g [ *8).

The reduced group C*-algebra C(G) is the completion of L'(G) in the operator
norm of the image of A

CHG) = () € BUAG) - f €LIG)) W,

The C*-algebra C}(G) is a noncommutative space and is strong Morita equivalent
to the commutative C*-algebra Co (<7 (F)), see [6]. Since K-theory is stable under
strong Morita equivalence, we have an isomorphism

K,C*(G) =K' /! (F)), j=0, 1.

The tempered representations of G may be seen as C; (G)-modules. Hence, K -theory
of group C*-algebras is an important tool in the classification of the representations
of G. The computation of the K-theory of a group is in general a difficult problem.
A possible approach is the Baum-Connes correspondence (or Connes-Kasparov cor-
respondence in certain cases), a major achievement of noncommutative geometry.
Echteroff and Pfante [1] used precisely the Connes-Kasparov correspondence to
compute the K-theory of C}GL(n, R) via equivariant K-theory.

In [6], Plymen used a parametrization of the tempered dual due to Harish-Chandra
[2] to compute the K-theory of C'GL(n, F) when F is a nonarchimedean local
field. The same approach was used by Plymen and the author in [8] to compute the
K-theory of C}GL(n, R). This method is different from [1] since we need to keep
track of the Langlands parameters.

The case of complex semisimple Lie groups was handled by Penington and Ply-
men [9] and includes the K-theory of C*GL(n, C).

In view of class field theory and local Langlands correspondence, the K-theory
groups of C¥GL(n) over R and C are ultimately parametrized by characters of the
multiplicative group C*. However, to fully understand the parametrization, some
representation theory is required. Specifically, the parametrization is given by pairs
(M, o), where M is a Levi subgroup of GL(n) and o is a discrete series representation
of a certain subgroup of M. Such pairs are data from the Langlands classification of
the representations of GL(n).

We now give a brief description of the main results of this note. In Sect.3.3 we
compute the K-theory of C*GL(n, C), see Theorem?2. Since we are specializing to
the group GL(n, C), the computation is more explicit than the general case in [9] and
is analogous to the one obtained for CGL(n, R) in [8]. In Table 1 we verify a certain
resemblance between the K -theory of C;*GL(n, C) and the K -theory of C;GL(2n, R)
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and in Sect.4 we apply the principle of functoriality in Langlands theory [3, 5, 8] to
interpret the above mentioned similarity of the K-groups, see Theorem 3. The above
mentioned resemblance in Table 1 would probably remained unnoticed without the
explicit formulae for K;C}GL(n, R) and K;C;GL(n, R).

Although this note is only concerned with archimedean fields it should be men-
tioned that in [7] Plymen and the author investigated base change at the level of
K-theory for GL(n) over nonarchimedean local fields. The case of base change over
GL(n, R) is studied in [8]. Base change is another example of the Langlands principle
of functoriality.

2 The Harish-Chandra Space

Let Gy = GL(n, F) where F is either R or C. Let C}(Gr) denote the reduced C*-
algebra of Gr. The noncommutative space C;(Gr) is strongly Morita equivalent
to the commutative C*-algebra Co (7! (F)), where <7/ (F) is the tempered dual of
GL(n, F). The tempered dual has the structure of locally compact, Hausdorff space
and is called the Harish-Chandra parameter space. In order to compute the K-theory
of C(Gr) we need to give a precise description of this parameter space.

Let M be a standard Levi subgroup of G. Let M be the subgrouw such that

the determinant of each block-diagonal is £1. Denote by X (M) = M /M° the group
of unramified characters of M, consisting of those characters which are trivial on
MP.

The Weyl group W (M) = N(M)/M of M acts on the discrete series E,(M?)
of M° by permutations. Choose one element o € E>(MY) for each W (M)-orbit.
The isotropy subgroup of W (M) is the stabilizer W, (M) = {w € W(M) : w.0c = o}.
Now, form the disjoint union

|| xonyweony =] | || xon/w,m). )

M,0) M oeE, (M%)
The characterization of the tempered dual is due to Harish-Chandra, see [2].

Proposition 1 There exists a bijection

|—|(M,J) X(M)/WU(M) — eQ{nl(R)
x° = deLwmn (x° ® 1),

where x° (x) := x (x)o (x) for all x € M.

e The case of GL(n, R).

The discrete series of GL(n, R) are empty for n > 3. Therefore, we only need to
consider partitions of n into 1’s and 2’s. We may decompose n as n = 2q + r, where
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q is the number of 2’s and r is the number of 1’s in the partition. We associate the
Levi subgroup
M = GL(2, R)? x GL(1, R)"

and the subgroup
M° = SL*(2, R)? x SL*(1, R)",

where SL*(m, R) = {g € GL(m, R) : |det(g)| = 1} is the unimodular subgroup of
GL(m, R). In particular, SL*(1, R) = Z/27 and GL(1, R) = R*.

The representations in the discrete series of GL(2, R), denoted &, for £ € IN
(€ > 1), are induced from SL(2, R) [5, p. 399]:

. .
Dy = indsi=oRr),sLe.r)(Z;),

where Z;° acts in the space
[f : A — C|f analytic , |[f||> = // If @) 1>y Hdxdy < oo} .

Here, ¢ denotes the Poincaré upper half plane. The action of g = (ccl 2) is given
by

- +
TFE@(F (D) = bz +d)"“Vf (%) _

More generally, an element o from the discrete series E»(M°) is given by
U:.@gl®...®@8q®fl®...®1r. (2)

Here, @Z_E (¢; > 1) are the discrete series representations of SL*(2, R) and T (=
0, 1) is a representation of SL*(1, R) = Z/27Z

o =id = (x> x) and 1] = sgn = (x — x/|x|).

Now, we quote the following result:

Proposition 2 ([8]) Let M be a Levi subgroup of GL(n, R), associated to the par-
titionn = 2q + r. Then,
X(M) = RIT.

e The case of GL(n, C).

The tempered dual of GL(n, C) comprises the unitary principal series in accor-
dance with Harish-Chandra [2, p. 277]. The corresponding Levi subgroup is a max-
imal torus 7 = (C*)" and T is the compact n-torus T7° = T". The principal series
representations are given by parabolic induction
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7o = igu(0 ® 1), (3)

where 0=01 ® - -- ® 0, and 0j(z) = (if‘)eflzlg (¢jeZ,tie Rand 212 = |zlc).
We have the following result:

Proposition 3 ([8]) Denote by T the standard maximal torus in GL(n, C). Then,

X(T) = R".

3 K-Theory

The parametrization of .27/ (F') obtained in the previous section allows us to compute
the K-theory of C(Gr) for F = R and F' = C. Denote by M the Levi subgroup of
Gr. In view of the Strong Morita equivalence described in [6, Sect. 1.2] we infer that

K;C:GL(n, F) = K7 (||, .00 X (Mp)/ Wo (M)

= ®(M,:,0')Kj(RnMF/Wg (MF)), (4)

where n = 2g + r, ny, = g+ r and ny, = n. Note that M¢ = T¢ is a maximal
torus.

3.1 Closed Cones

Let M be a Levi subgroup of GL(n). The stabilizer W, (M) is a subgroup of the

symmetric group S, and acts on R™ by permutations.

Definition 1 If W, (M) # {1}, the orbit space R"™ / W, (M) is called a closed cone.
The next result shows that K-groups of closed cones both vanish.

Proposition4 Forn > 1, K/(R™/W,(M)) =0, j =0, 1.

Proof We need the following definition. A point (ay, ..., a,) € R" is called norma-
lized if a; < ajyy, forj =1,2,...,n— 1. Therefore, in each orbit there is exactly
one normalized point and R”/S,, is homeomorphic to the subset of R” consisting of
all normalized points of R”. We denote the set of all normalized points of R"” by
N(@R").

In the case of n = 2, let (ay, a,) be a normalized point of R2. Write

Xy = [0, +oo[x[1, +o0[

X, =]— 00, 0[x][0, 1]
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X3 =[—o00,0[x[—-1,0[
and form the disjoint union
R x [-1, +o0o[= X; U X3 L X;.
Clearly, the map ¢ : R x [—1, +o00[— N(R?) defined by

(aa at) 5 (aa t) S Xl |—|X2

pla, 1) = [ (a, —ar) ,(a,t) € Xs

is a homeomorphism.
If n > 2 then the map

NR"™) x [—1, +o0[— NR™), (a1, ..., an 1,0 > (a1, ..., a2, @(dn_1,1))

is a homeomorphism. Since [—1, +o0o[ has zero K-theory in all degrees, the result
follows by applying Kiinneth formula. [

3.2 GL@n, R)

The K-theory of C;GL(n, R) was computed in [8] using the Harish-Chandra para-
meter space. The following is well known:

Zifn=j mod 2

J Ry —
KI(IR') = HO otherwise .

From the above result and using (4) and Proposition 4, the K-theory of C}GL
(n, R) may be summarized as follows

Theorem 1 ([8]) Let C;GL(n, R) be the reduced C*-algebra of GL(n, R). We have:
(i) Suppose n = 2q is even. Then the K-groups are

Dronv Z ,j=q(mod?2)

C* o~ 1>

K;C:GL(n,R) = [ @el>--->£:4Z , otherwise
with £; € N. If m = 1 then K;CFGL(2,R) = Z.

(ii) Suppose n = 2q + 1 is odd. Then the K-groups are

@Z|>...>[4,5Z 1j =dq + 1(m0d2)

K;C;GL(n, R) = [ 0 ,otherwise
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with {; € Nand ¢ € 7/27. Here, we use the following convention: if g = 0 then
the direct sum is @z,,, Z =L & L.

Example 1 For GL(2, R) we have two partitions of n = 2.
To the partition 2 = 2 + 0 we associate

M =GL2,R), M"=SL*2,R), WM) = {1}, X(M) = R.

An element in the discrete series o € E,(M°) is given by
o=icp(2)), t €.

To the partition 2 = 1 4 1 associate

M= MR, M° = (Z/)272)*, WM) = Z)27Z, X(M) = R>.
In this case, an element in the discrete series o € E>(M?) is given by

o =g p(id ® sgn).
The tempered dual is parameterized as follows
AR = || x(M)/ Wy (M) = (|_| R) U (R?/S2) U (R*/S5) UR?,
M.0) LeN

and the K-theory groups are given by

KiC/GL(2, R) = K/ (4 (R)) = (P, K (R) & K/ (R?) = [ @ZEZINZ j _ (1)

3.3 GL(n, C)

The K-theory for complex semisimple Lie groups was computed by Penington and
Plymen [9]. When G = GL(n, C), the computation was recalled in [8, Theorem 3.9].
In analogy with GL(n, R) in Sect. 3.2, we are looking for a more explicit description
of the K-theory groups for CGL(n, C).

Theorem 2 Let (¢4, 4y, -+, £,) € Z". Then,

0L = [ @ i 1= 2

,  otherwise ,
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Proof Let 7! (C) denote the Harish-Chandra parameter space. We exploit the strong
Morita equivalence described in [9, Proposition4.1]. We have a homeomorphism of
locally compact Hausdorff spaces:

ZN© = || R/ Woer,

oek, (TO)

by the Harish-Chandra Plancherel Theorem for complex reductive groups [2], and
the identification of the Fell topology on the left-hand-side with the natural topology
on the right-hand-side, as in [9]. Here, T° is the maximal compact subgroup of the
maximal torus 7' of GL(n, C). Hence,

T = (C%" and T° =T".

In this case, o is a character of T" and is completely determined by an integers
£y, Loy ..., 8y €2
The Weyl group is the symmetric group S, and identifies elements

B, oy ooy ) ~ Ery, £eys - - -0 bey)

for every nontrivial T € S, since they correspond to equivalent representations. More-
over,if ¢; = {;fori # j,then W, (T) # {1} andR"/ W r) is a closed cone. Therefore,
Wy (T) = {1} if, and only if, £; > €, > --- > ¢, and the result follows. [

Example 2 The tempered dual of C'GL(2, C), represented as a lattice. Each dot e
represents a pair (£, £,) € Z2 with £; > £, which corresponds to a copy of the plane
R2. The point (0, 0) denotes the origin of the lattice Z>.

o o o o o R?
o o o e R? ¢ R?
o (0,0) eR?eR? eR?
o eR? eR? e R? & R?
eR? e R? e R? e R? ¢ R?
R? ¢ R? e R? ¢ R? ¢ R? ¢ R?

® O O O O O

4 A Functorial Map

The following table contains the K-groups of the reduced C*-algebras of GL(n, C)
and GL(2n, R), where used the convention: £; € Z and ¢; € N, for0 < k < n.

We conclude that there exists a certain resemblance between the even (respec-
tively, odd) K-groups of GL(n, C) and GL(2n, R) when n is even (respectively, odd).
In this section we aim to find an interpretation for this result based on representation
theory. In order to do that, we need to delve into the local Langlands correspondence
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for archimedean fields [5] and a particular instance of the principle of functoriality
known as automorphic induction, see [3]. We give now some background on the
local Langlands correspondence for local archimedean fields.

Let F be either R or C. The Weyl group of F is the group W that fits into the
following short exact sequence of topological groups

| — F* — Wp — Gal(F/F) — 1.

Specifically,
Weg =C* and Wg = (j)C*,

where j> = —1 € C* and jc = ¢j, for all ¢ € C*. As a disjoint set we have
Wr = C* ujC*.
An L-parameter is a continuous homomorphism
¢ : W — GL(n, C)

such that ¢ (w) is semisimple for all w € Wp. L-parameters are also called Langlands

parameters. Two L-parameters are equivalent if they are conjugate under GL(n, C).

The set of equivalence classes of L-parameters whose image is bounded is denoted

by ¢!. This is the class of L-parameters we are interested in since they parametrize

tempered representations. For that reason, they are called tempered L-parameters.
The local Langlands correspondence is a bijection

G(F) — ) (F)
which satisfies some identities on L-functions and e-factors, see [5].

Example 3 Since Wg = C*, a 1-dimensional L-parameter of W¢ is simply a unitary
quasicharacter of C*, i.e., a character:

X@ = @/Iz)" @ lzI¢
where |z|> = |z|c = 7Z, £ € Z and t € R. To emphasize the dependence on parame-

ters (€, t) we may write x = x¢, Or X = X¢. An n-dimensional L-parameter can be
written as a direct sum of n 1-dimensional characters of C*:

P=¢1 D Dy,
with ¢ (2) = (z/1zD% ® |zl b € Z, i e Ryk = 1,...,n.

For a description of the L-parameters of W and more details about the local
Langlands correspondence in the archimedean setting see [5].
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The group Gal(C/R) acts on 4] (C) =
x' @ =x@,

where 7 is generator of Gal(C/RR). It follows that Gal(C/R) acts on ¢! (C) for every
n. A simple computation shows that

X0 = X—0.(2).

Therefore,
x'=x<o=0.

Note that Wg C Wg, with index [WR : W] = 2. Hence, there is a natural induc-

tion map
Ind@/R . g,:(@) — gztn(R)

By the local Langlands correspondence for archimedean fields, there exists an auto-
morphic induction map .7 .# ¢/g such that the following diagram commutes

427’(@) 527' L(R)
a:v?ﬁxT Taﬁfzn
gt(C) gztn (R)

Example 4 (Automorphic induction for n = 1). Let x = x,, be an L-parameter of
We. If x # x© then ¢¢, > ¢_y,, see [8]. Hence,

A I¢cr(c-Li(Xer) = Do ® |det()]".
If x = x* then x = xo., and we have
A I cr(cZ (1) = rLa(p @ sgn.p) =7 (p, p71),
where m(p, p~!) is a reducible principal series and p is the character of
R* ~ W]ﬁb associated with xo, = |.|¢; via class field theory, i.e., such that pjw, = x.
As amap of topological spaces, automorphic induction for n = 1 may be described
as follows:

t,0O)eRxZ— (t,[f) e Rx N, if £ #0 (5)

(1,0) e R x Z > (t,1) — R?, if £ = 0. (6)
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Table 1 K-theory groups

KoC¥GL(n, C) KoCrGL(2n,R) | K;CFGL(n,C) K CFGL(2n,R)
neven ®(3>.,.>g;’ Z @[l>'”>ln Z 0 ®(l>”'>ln—l Z
n odd 0 @£1>~-->K,,,1 Z @Z’l>-~->(; Z @€1>~-~>Kn Z

We may now prove a result which explains the similarity between the K-theory
groups of C¥GL(n, C) and C;GL(2n, R) as shown in Table 1.

Theorem 3 Let o/ 7" : K;C;GL(2n,R) — K;CGL(n, C) denote the functor-
ial map induced by the automorphic induction map o I = o I/, with j =
n (mod 2). Then,

s~ @z

[€1]>[€2|>-->[L,]

Proof By [8, Theorem6.3], the generator ([Dlﬁ“], cel, [Dlﬁ"‘]) of the component
..... e,y of K;C*GL(2n, R) is sent to (& Z5([DIS1), ..., o Z5([D!1])) which
lies in K;C;GL(n, C) and this class is nontrivial if and only if ng # Xu,. for eve-
ry 1 <k < n. Moreover, by Theorem2 we may choose a representative such that
[€1] > |€2] > - -+ > |€,|. This concludes the proof. [

Example 5 The functorial map <7 ™ is not onto. In fact, for n = 1 we have

A5 PZ—> PL. (D [D2)...) > (... [D2]. [D1].0.[Dy]. [Da]. ..)
N Z
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Spectral Bounds for the k-Regular Induced
Subgraph Problem

Domingos Moreira Cardoso and Sofia J. Pinheiro

Abstract Many optimization problems on graphs are reduced to the determination
of a subset of vertices of maximum cardinality which induces a k-regular subgraph.
For example, a maximum independent set, a maximum induced matching and a
maximum clique is a maximum cardinality O-regular, 1-regular and (@ (G) — 1)-
regular induced subgraph, respectively, were @ (G) denotes the clique number of
the graph G. The determination of the order of a k-regular induced subgraph of
highest order is in general an NP-hard problem. This paper is devoted to the study
of spectral upper bounds on the order of these subgraphs which are determined
in polynomial time and in many cases are good approximations of the respective
optimal solutions. The introduced upper bounds are deduced based on adjacency,
Laplacian and signless Laplacian spectra. Some analytical comparisons between
them are presented. Finally, all of the studied upper bounds are tested and compared
through several computational experiments.

Keywords Spectral graph theory - Maximum k-regular induced subgraphs + Com-
binatorial optimization

1 Introduction

Throughout the paper, we deal with simple undirected graphs G, with vertex set
V(G) = {1, ...,n} and edge set E(G) # @. Since this graph has n vertices, we say
that the graph has order n. We write u ~ v whenever the vertices u and v are adjacent.
The neighborhood of a vertex i € V(G), that is, the set of vertices adjacent to i, is
denoted by N (i), the degree of i is dg (i) = [Ng(i)|, A(G) = max;ey () dc (i) and
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8(G) = min,cy () dg (i). The subgraph of G induced by the vertex subset S C V(G)
is denoted by G[S]. The graph G is p-regular when all vertices have the same degree
equal to p. A vertex subset S C V(G) is (k, t)-regular if it induces a k-regular
subgraph and ¥v ¢ S, [Ng(v) N S| = t. The adjacency matrix Ag = (a; ;) is the
n x n matrix defined by

[ rifi~
4. =1 0 otherwise.

The Laplacian matrix Lg = (l,-,j) and the signless Laplacian matrix Qg = (q,-,‘,-) of
the graph G, are the matrices L = Dg — Ag and Qg = D¢ + Ag, respectively,
where D¢ stands for the diagonal matrix of order n with the i-th entry equal to the
vertex degree dg (i). Therefore, Ag, L¢ and Qg are real symmetric matrices and then
all their eigenvalues are real. These eigenvalues are herein denoted, in nonincreasing
order, respectively by Ay > -+ > A,, uy > --- > uyandgq; > --- > g,.If G has at
least one edge, then A; > 0 > A,. From now on we consider only simple undirected
graphs with at least one edge which will be called graphs.

Each adjacency eigenvalue of a graph G is main if the corresponding eigenspace
contains an eigenvector which is not orthogonal to the all ones vector, otherwise is
non-main. From GerSgorin’s theorem, the eigenvalues of L and Q ; are nonnegative
real numbers and since the entries of each row of L sum 0, then the eigenvalue w,, =
0 is associated to the all ones eigenvector ¢. The multiplicity of 0, as an eigenvalue of
L, is equal to the number of connected components of G. Furthermore, G is bipartite
if and only if g, = 0. Further basic details about graph spectra can be found in [6, 8].
A vertex subset inducing a O-regular subgraph is called an independent (or stable)
set. A maximum independent set is an independent set of maximum cardinality and
its cardinality is called independence number and it is denoted by «(G).

In [3] it was proved that the problem of finding a maximum cardinality subset
of vertices inducing a k-regular subgraph is NP-hard. Throughout this paper, this
maximum is denoted by o (G). Note that in the particular case of k = 0, «g(G) =
a(G).

The study of spectral upper bounds on the order of k-regular induced subgraphs
(it should be noted that the independent sets are O-regular induced subgraphs)
appear in [3-5]. In [1] (see also [11]) an upper bound on the order of induced
subgraphs with average degree d (based on adjacency eigenvalues) was obtained
for regular graphs, extending the ratio bound (7) to the general case of maximum
k-regular induced subgraphs (when k = 0, this bound coincide with the ratio bound).
A similar result was obtained in [3], using convex quadratic programming techniques.
In [4, 5] the arbitrary graph case is analyzed and upper bounds on the order of k-
regular induced subgraphs are presented. In [4], the upper bounds are obtained using
adjacency eigenvalues and eigenvectors, namely the least eigenvalue (whether it is
non-main) and the corresponding eigenspace. In [5], the upper bound is obtained
using a quadratic programming technique jointly with the main angles (see [8] for
details) and the induced subgraph just must have average degree d.
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The main goal of this paper is to introduce some new spectral upper bounds on
the order of k-regular induced subgraphs, making an analytic comparison between
them when possible. These new upper bounds are based on adjacency, Laplacian
and signless Laplacian eigenvalues. Finally, a few computational experiments are
presented.

2 Concepts and Fundamental Results

In this section, we introduce some definitions and we recall the previously obtained
results needed for the deductions in the next section. In particular, we survey results
concerning to spectral upper bounds on the order of k-regular induced subgraphs.
For arbitrary graphs, consider a graph G of order n with V(G) = S U S¢, where
S C V(G) denotes a vertex subset inducing a k-regular subgraph and S¢ is its com-
plement. The set of edges with just one end vertex in S, that is, the cut set defined

by S is denoted 3(S). Hence, [3(S)| = |S|(ds — k), where dg = "le dg ().
ieS
The next result relates the cardinality of the cut set 9(S) to the largest eigenvalue
of the Laplacian matrix of a graph G.
Lemma 1 ([16]) Let G be a graph of order n and S C V(G). Then

[S|(n —1S])
T

10(S)] < n (D

Another relationship involving the largest Laplacian eigenvalue and the least adja-
cency eingenvalue of a graph G is (see [8]).

8(G) = dn = 1 = A(G) — A @)

Now we consider some relationships involving signless Laplacian eigenvalues.
Assuming that G is a connected graph of order n, according to [7], the least eigenvalue
of Qg is zeroif and only if G is bipartite and, in that case, zero is a simple eigenvalue.
They also proved that

28(G) < q1 = 2A(G). 3)

Moreover, according to [9],
qn < 8(G). “4)

From Weyl’s inequalities we have an improvement of inequalities (3) and we state
relationships between signless Laplacian and adjacency eigenvalues.

§(G)+r =q1 = AG) + M (&)

and
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3(G) + Ay < gn < A(G) + Ay (6)

We now present some spectral upper bounds on the size of k-regular induced
subgraphs starting with the particular case of k = 0, for which we consider only the
ones most related with this work.

2.1 Bounds on o(G)

In the case of regular graphs, the well known ratio bound, obtained by Hoffman
(unpublished) and presented by Lovasz in [ 14] can be stated by the following theorem
where, for the last statement, the necessary condition was proved in [12] and the
sufficient condition was proved in [2].

Theorem 1 ([2, 12, 14]) If G is a regular graph of order n, then

a(G) < nkl__"/\n. (7)

Furthermore, the cardinality of an independent set S attains the upper bound if and
only if S is (0, T)-regular, with T = —A,,.

The ratio bound (7) was extended by Haemers for arbitrary graphs, according to
the following theorem.

Theorem 2 ([11]) If G is a graph of order n, then

—n )Ln )\.1

a(G) < G — )

The next spectral upper bound based on the largest Laplacian eigenvalue was
independently deduced in [10, 15].

Theorem 3 ([10, 15]) If G is a graph of order n, then

w1 —3(G)
23 .

a(G) <n )

2.2 Bounds on o (G)

Cardoso, Kaminsky and Lozin in [3] introduced the following family of convex
quadratic programming problems:

. A
U (G) :r)r(lggZeTx— k+tXT (TG—l—In)x, (10)
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where ¢ is the all ones vector, I, the identity matrix of order n, k € N U {0} and
T = —A, and they proved that o (G) < v (G), where o (G) is the cardinality of a
vertex subset inducing a k-regular subgraph of maximum order. In fact, in [3], the
obtained result was stated as follows.

Theorem 4 ([3]) Let G be a graph and k a non-negative integer. If S C V(G)
induces a subgraph of G with average degree k, then |S| < vi(G). The equality
holds if and only if t +k < |Nc(v) N S| Vv ¢ S.

Considering the particular case of regular graphs we have the following theorem,
where the upper bound was obtained in [11] and the last statement was proved in [3].

Theorem 5 ([3, 11]) If G is a p-regular graph of order n, then

k— Ay
a(G) <n . an
p— )\‘}’l
Furthermore, the equality holds if and only if there exists S C V(G) which (k, k 4+ T)-
regular, with T = —A,,. In this case, oy (G) = |S| = f’:’}\"

In [4], considering the quadratic program not necessary convex (10), with T > 0,
it was proved that
o (G) < Amax(Age) +k+ 1, (12)

where G¢ denotes the complement of the graph G, that is, the graph such that
V(G®) = V(G) and E(G°) = {ij : ij ¢ E(G)}. Furthermore, the following upper
bound was obtained.

Theorem 6 ([4]) Consider a graph G such that Ayin(Ag) =Xy =+ = hy—(p-1)
is a non-main eigenvalue with multiplicity p. Assuming that the eigenvectors
iy, ..., U, associated to the eigenvalues Ay, ..., A,, respectively, are unitary and
pairwise orthogonal, then

—P
Mtk g
ax(G) < 25_%1+A @)’ (13)

Later, in [5], using a quadratic programming technique jointly with the main
angles of G, the upper bound (13) was improved as follows.

Theorem 7 ([5]) Let G be a graph of order n, and let S be a set of vertices which
induces a k-regular subgraph of G (0 <k <n —1). Ift > —A, then

ar(G) < h{ (1), (14)

where h (1) = (k +1) (1 = Li=r) and Po(x) = det(x] — A).



110 D.M. Cardoso and S.J. Pinheiro

3 Upper Bounds Based on the Spectrum of Ag, Lg and Q¢

Now it is worth to recall the following theorem obtained by Haemers.

Theorem 8 ([11]) Let G be a graph on n vertices of average degree d and let the
vertex set of G be partitioned into two sets such that G| and G, are the subgraphs
induced by these two sets. Fori = 1,2 let n; be the number of vertices of G;, d; be
the average of vertex degrees of G; and let d; be the average of vertex degrees in G
over the vertices of G;. Then

(i) My > 1d=md’ > 55

(ii) If the equality‘ holds on one of the sides, then G| and G, are regular and also

the degrees in G are constant over the vertices of G| and G».

As a consequence of this theorem, we have the following corollary.

Corollary 1 If G is a graph of order n, then,

2K|E(G)| — nhihn

G) <
%G = =567 Zam

15)

Proof Let us consider the vertex partition V(G) = S U S, where S induces a k
regular subgraph of G. Applying Theorem 8-(i), setting n; = |S| and d; = k, we
have,

-2
kd —d;"|S -
kd —di B 5 o dad(n— |S]) < nkd — 28]
n—|S|
&[SI = M) < nkd — niih,
nkd — niA,
&8 < ———
dl _)"1)\11

Since di > 8 and d = 2E9L the inequality (15) follows. [

Notice that, when G is p-regular, .} = §(G) and |E(G)| = % whereby the upper
bound (15) is equal to (11).

The next corollary is a consequence of Lemma 1.
Corollary 2 If G is a graph of order n, then

k + 1 — 8(G)

H1

a(G) <n (16)

Proof Considering a vertex subset S € V(G) inducing a k-regular subgraph and
taking into account that (as defined before) dg = ﬁ Zie sdg(i), it follows that

[0(S)] = |S|(d_5 — k). Then applying Lemma 1 we have
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1S1(ds — k) < 1S ISD ntds =)

n—s — M
& wilS| < npy —n(ds — k)
k —d.
<:>|S|§nL.

M1
Since ds > §(G), the inequality (16) follows. [

If a graph G is p-regular, from (2) | + A, = p and we may conclude that the
upper bound (16) is equal to (11).

Before the introduction of a new upper bound on the order of k-regular induced
subgraphs in function of the largest and the least eigenvalues of the signless Laplacian
matrix, it is worth to introduce the following lemma.

Lemma 2 Let G be a graph of order n without isolated vertices. If G is bipartite or
8(G) = 22 or gy < 48(G), then 48(G)* — gnq1 > O.

Proof Let§ = 6(G) and A = A(G).

1. If G is bipartite without isolated vertices, then g, =0, § > 0 and therefore,
482 — q,q, > 0.

2. If § > 4, we have 8% > %2 & 452 > 26 A and, taking into account (3) and (4),
since g1 < 2A and § > g, it follows 48% — qnq1 > 0.

3. Finally, if g, <48, then qiq, < 48q, < 482, that is, ¢q,q, < 48> and so
482 — q,q, > 0.

|

Notice that there are graphs G, with § = §(G), such that 482 — qnq1 <0, as
it is the case of the graph depicted in Fig.1 which has § =2, g, = 1.4991 and
q1 = 10.8517.

Theorem 9 Let G be a graph of order n such that 46*(G) — gnq1 > 0. Then

ZKIE(G)| = nhidn _ 4E(G)|(AG) +K) — ngnq1
82(G) = Mhy T 48%(G) — quq '

a7

Proof Considering ¢ = |[E(G)|, § = §(G), A = A(G) and assuming that the ine-
quality of (17) holds, we have

Fig.1 Graph G, with
48(G)* — guq1 <0
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2ke —niih, €(A +k)—n4qn

- <0
82 — Aidn 82 — g, -
¢

2kes? — ?q,,ke — 18 XA, — 82 Ae — 8%ke +n52?qn + A AnEA + Ahnek <0
¢

k(625 — q—zlqns + AAnE) — nézklkn —82Ae +n82%qn + XA eA <0

Let f(k) = k(8% — —qne + Ah,E) — n8%ah, —82A8+n82—qn + AireA.
Then,

£k = 8% — %qne + Aphe
=~ Lg, + 1.
2
From (6),
84 Ay < gn < 82484, < 8qy < 8% — 8¢, + 814, < O.
Since, from (3), % > § and, as it is well known, A; > &, it follows that 8> — %q,, +

XA, < 82 —8q, + A, < 0,thatis, f/(k) < 0. Therefore, f (k) is a decreasing func-
tion.

Considering the function f (k) and setting k = 0 and A = § + £ with £ a nonne-
gative integer we may define the function

g(8,8) = —nd* Ak, — (S +E)e + n82%qn + Aihne(S +E).

Then

ag(s, E) 2
—— = —§c+ M\,
9E + AAne
= 8(_82 + )"1)‘«/1)

< 0.

Therefore, g(5,&) is a decreasing function with respect to &. Since g(§,0) =
—n8* ik, — 83 +n8?% g, + 111,68 and § = A it follows that A; = 5. Further-
more, from (3), ‘121 = § and from (6), g, = § + A,. Therefore,

83
g(8,0) = —n&r, — 8% + nE(S + A + Ane8?
4 53
= —n53kn — 8+ nE + nz)\,, + Ansﬁz.
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Finally, since ¢ = % we obtain g(8, 0) = —n&1, — n% + n% + n%)\n + n%ln =
0 and thus, for all nonnegative integers § and &, g(8, &) < 0. Therefore, f(0) <
0 and, since f(k) is a decreasing function, we may conclude that f(k) < O for
allk. O

As immediate consequence of Corollary 1 and Theorem 9 we have the following
corollary.

Corollary 3 If G is a graph of order n, ¢ edges, A = A(G) and § = §(G), such
that 48% — qnq1 > 0, then

4e(A + k) — ngq.qi

a(G) <
482 — qnq1

(18)

According to [7], a graph G with n vertices and ¢ edges is regular if and only
if 4¢ = nq;. Furthermore, when G is regular its degree is equal to % Thus, assu-
ming that G is p-regular, has n vertices and ¢ edges, by Lemma 2 the hypothesis of
Corollary 3 is fulfilled and then we may write

nqi(p +k —qn)

2pq1 — quqi
n(p+k_qn) k_)\n .

= =n (since ¢, — A, = p).

2p—qn P— M

o (G) (since A(G) =8(G)=p = % and 4¢ = nq;)

Therefore, for regular graphs, all the upper bounds (11) (15), (16) and (18) are equal.
Notice that there are graphs for which these upper bounds are tight. For instance,
if G = K, (a complete graph of order n), then Ay =n — 1 and X, = —1. Thus, if
S C V(K,) induces a k-regular subgraph, then n f]__f\”n =k + 1 = |S|. Therefore,
when G is a complete graph, for each k, the upper bounds (15), (16) and (18) on
the cardinality of vertex subsets inducing k-regular subgraphs are all reached. More
generally, according to Theorem 5, if G is aregular graphand S C V(G)isa (k, k +
7)-regular set, with t = —A,,, then all the above referred upper bounds are reached.

Throughout the paper, in all the proofs of the presented results, only the average
degree in S is used and then, in all the obtained results we may replace k-regular
induced subgraph by induced subgraph with average degree k. Moreover, all the
obtained results remain valid when we consider positive weights on the edges, assum-
ing in that case that the degree of a vertex v is then the sum of the weights of the
edges incident to v.

4 Computational Experiments and Conclusions

In this section, several computational experiments with the upper bounds (15), (16)
and (18) are presented in Table 1. In each row of this table appears the order n, the
maximum degree A, the minimum degree §, the degree of a regular induced subgraph
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Table 1 Computational experiments with the upper bounds (15), (16) and (18)

Graph n AG) | 8(G) k (15) (16) (18)
c-fat200-1 | 200 17 14 0 74.01 8231 97.27
1 83.87 90.72 109.28
2 93.73 99.13 121.29
6 133.18 13275 169.33
7 143.04 141.16 181.34
c-fat200-2 | 200 34 32 0 55.72 57.29 63.19
1 60.28 61.75 67.86
2 64.83 66.21 72.53
16 128.65 128.65 137.88
17 133.21 133.10 142.55
c-fat200-5 | 200 86 83 0 45.85 48.56 50.10
1 47.74 50.39 52.06
2 49.64 52.21 54.01
39 119.79 119.72 126.41
40 121.69 121.55 128.36
MANN-29 45 41 40 0 3.76 4.46 423
1 4.81 547 5.32
2 5.86 6.48 6.41
18 22.69 22.70 23.84
19 23.74 23.72 24.93
MANN-a27 | 378 374 364 0 517 13.43 13.19
1 6.22 14.43 14.27
2 7.27 15.43 15.36
3 8.32 16.44 16.45
4 9.37 17.44 17.53
Keller4 171 124 102 0 34.76 45.74 109.56
1 36.20 46.96 110.51
2 37.65 48.19 111.47
51 108.46 108.37 158.11
brock200-1 | 200 165 130 0 20.25 44.83 75.10
1 21.82 46.02 77.09
2 23.40 4722 79.08
64 121.22 121.22 202.28
65 122.80 122.41 204.26
brock200-2 | 200 114 78 0 37.48 69.19 161.29
1 40.12 70.87 165.49
2 42.75 72.54 169.69
33 124.54 124.53 300.04
34 127.18 126.21 304.24

(continued)
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Table 1 (continued)

Graph n AG) | 8(G) k (15) (16) (18)
brock200-3 | 200 134 99 0 29.41 57.79 113.35
31.51 59.23 116.37

2 33.61 60.66 119.39

43 119.58 119.56 243.18

44 121.68 121.00 246.20

brock200-4 | 200 147 112 0 24.94 51.73 91.73
1 26.76 53.05 94.15

2 28.59 54.38 96.58

54 12358 123.22 22261

55 125.40 124.54 225.03

k and the computed upper bounds on the order of this induced subgraphs for some
of the graphs of the family considered in the Second DIMACS Implementation
Challenge (see [13]).

Notice that for the particular case of regular graphs the upper bounds (15), (16)
and (18) are all equal. Moreover since, according to the Theorem 9, the upper bound
(15) is less or equal than the upper bound (18), it follows that

HEGIAG) +K) —ngngr _ . { ZKIEG)| = nhihn Kkt p1 — 8 ]
45(G)2 — 4qnq1 - 82 — )‘1)\11 ’ M1 ’

Concerning the comparison between the upper bounds (15) and (16) and also
between (16) and (18), the computational results presented in the Table 1 show that
none of them is always better than the others.

In fact, regarding the upper bounds (15) and (16), for k = 0, 1, 2, the former is
better than the later. However, for much greater values of k, there are several graphs
for which the upper bound (16) is better than (15). Finally, it should be noted that for
the graphs MANN-a9 and MANN-a27 for k = 0, 1, 2 the upper bound (18) is better
than the upper bound (16).
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Multiplicities: Adding a Vertex to a Graph

Kenji Toyonaga, Charles R. Johnson and Richard Uhrig

Abstract Given an Hermitian matrix A whose graph G is a simple undirected graph
and its eigenvalues, we suppose the status of each vertex in the graph is known for each
eigenvalue of A. We investigate the change of the multiplicity of each eigenvalue,
when we add a pendent vertex with given value to a particular vertex in the graph
via an edge with given weight. It is shown how each multiplicity changes based on
this information. The results are applied to show that more than one eigenvalue may
increase in multiplicity with the addition of just one vertex. The intended focus is
trees, but the analysis is given for general graphs.

Keywords Eigenvalues - Graph - Matrix -+ Multiplicities + Symmetric

1 Introduction

If G is a simple, undirected graph on n vertices, denote by 7 (G) the set of all
n-by-n Hermitian matrices, the graph of whose off-diagonal entries is G. There is
long-standing interest in the possible lists of multiplicities for the eigenvalues of
matrices in J7(G), especially when G is a tree T. There are several papers on the
subject, including ones relating the structure of 7' to eigenvalue multiplicity, Refs.
[2, 4, 5, 7-9]. In many papers, the multiplicity of eigenvalues in a tree is considered
when a slight change occurs. Here, we deal with a general graph and consider the new,
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but natural issue of adding a single vertex. As all necessary information, particularly
multiplicities may be updated, the results could be applied sequentially.

If A is Hermitian, denote the multiplicity of an eigenvalue A of A by m 4 (). When
we remove a vertex u from G, the remaining graph is denoted by G (u). Then we
denote by A(u) the (n — 1)-by-(n — 1) principal submatrix of A € J#(G), resulting
from deletion of the row and column corresponding to u. A[S] denotes the principal
submatrix of A corresponding to the subgraph S of G. For an identified A € J#(G),
we often speak interchangeably about the graph and the matrix, for convenience.

Our interest here is in precisely what happens to the multiplicities when we add
a (pendent) vertex v to a tree 7 at an identified vertex u. Specifically, we show what
happens, for each A € J(T), to the multiplicities m 4 (1), when we pass to the new
tree T, for A € 2(T) with A(v) = A, eigenvalue by eigenvalue. Since the analysis
is only slightly more complicated when G is a general graph, we present our results
at that level of generality.

Because of the interlacing inequalities for an Hermitian matrix and a principal
submatrix of it [1], a multiplicity may change by at most 1 when we pass from G
to G. For trees, the theory of what may happen, when a particular vertex is deleted,
was summarized and further developed in [4], but the basic definitions are the same
for general graphs G. A vertex u of G is called “Parter” (respectively “neutral”
or “downer”) for an eigenvalue A of A € J#(G) if

mauy(A) =ma(d) + 1 (resp. ma(A), ma(X) — 1).

The “status” of a vertex u is discussed in [4]. It refers to which of these eventualities
occurs, and why.

2 Main Results

We denote the characteristic polynomial of a square matrix A by p4(x). Suppose
that G is a graph on n vertices, that A € 7 (G) is given, and that a new vertex v is
appended to G at the vertex u of G, resulting in the graph G with pendent vertex v. If
the weight o € IR is placed on v and the weight a,, € C is placed on the new edge,
a new matrix AeH# (G) results. Of courese A(v) A, and, we mean that the u, v
entry of Ais a,y, and a,, = «.

The function f(x) = ”;r—zg) will be important to us. After cancellation of like
terms in the numerator and denominator, because of interlacing, it will be a ratio
of two products, each of distinct linear terms. In the numerator will be terms of the
form (x — 7) for eigenvalues t for which u is Parter, along with eigenvalues of A (u)
that do not occur in A. In the denominator will be such terms for eigenvalues u for
which u is a downer. The number of s is one more than the number of 7’s, and
the 7’s strictly interlace i’s because of the interlacing inequalities. Important for us
is that f(x) will be well-defined and nonzero when evaluated at any eigenvalue for
which u is neutral.
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Lemma 1 With the conventions mentioned above, we have for any A € R:
(a) Ifuis a Parter vertex for A in G,

[ ma 41 ifa=a
m““_[mum ifa#r

(b) If u is a neutral vertex for ) in G,

myA)+1 fa=xr— |gluv|2f()‘) .
ma(A) otherwise ’

mg@)=’

and

(c) Ifuis a downer vertex for A in G,
mz(A) =ma(A) — 1.

Proof Given A € J(G),leta(A) = {A1, A2, ..., A;} be the distinct eigenvalues of
A, and their multiplicities in A be {m, m,, ..., m;}. We focus on a specified eigen-
value Ay, (1 < 115 1), and now we put A, = A and m; = m. Then, the characteristic
polynomial of A = (a;;) can be represented as follows (cf. [8]).

Pi(¥) = (x — ) pa(x) = law|* paw (), 6]

We further let the distinct eigenvalues of A(u) be o (A(u)) = {1, K42, ...}, and
their multiplicities be {m/, m/, . ..}. As we focus upon one eigenvalue A = A, p7(x)
can be written,

Pi(x) = (x —a)(x = V)" fi(x) = @ (x = 1" fo(x), @)

in which fi(x) = [ Jex — 2™, o) = [] x = )™
i#k Wi A
In (2), if X is not an eigenvalue of A or A(u), then m or m’ is 0.
If u is a Parter vertex for A in A, then m’ = m + 1 in (2). Then,

pi(x) = (x — M)™{(x — ) fi(x) — ldwl*(x — 1) L(0)}.
Here we set g1(x) = (x — ) fi(x) — || > (x — A) fr(x). When o = A, g(A) =0,

thus m3(A) = m4 (1) 4+ 1. However when o # A, g(X) # 0, then m 7(A) = ma(A).
If u is a neutral vertex for A in A, then m’ = m in (2). Then,

Pi) = (x = V)™ — @) fi(x) = law|* (0}

When we set g>(x) = (x — ) f1(x) — |@u|* fo(x), if @ and a,, has the relation
such that @ = A — |ELM|2%8§ = A%, then go(X) = 0, somz(A) = ma(A) + 1. Since
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% = [”;;“()g) 15 holds, if we put f(x) = ?g;, then the assertion holds. If o # A*,
then go(X) # 0, somz(A) = m4(X).

Lastly, If u is a downer vertex for A in A, then m’" = m — 1 in (2). Then
Pt = (x = D" Hx =) (x = 1) f1(x) = |aw* ()}

Ifwe set g3(x) = (x — @)(x — 1) f1(x) — [duw|? f2(x), then g (3) # 0, thus m5(3) =
ma(A) — 1 for any real number «. [J

When we focus on an identified real number A, if a vertex is appended to a Parter
vertex for A, the multiplicity of X in A depends only on the value on the pendent
vertex. If it is appended to a neutral vertex for A, the multiplicity of A depends only
on the relation between the value on the pendent vertex and the weight on the new
edge. If the relation @ = A — |Gy, |*> £ (1) holds, then |a,,|* = % must be positive.
So, if f(A) > 0, then o must be less than A, and if f(A) < 0, then o« must be greater
than A.

If a pendent vertex is appended to a downer vertex, the multiplicity of A decreases
whatever the value on the pendent vertex and the weight on the new edge are.

We note that it follows from the lemma that any eigenvalue of multiplicity 1 in A,
for which u is a downer, disappears when we pass to A. In particular, any multiplicity
1 eigenvalue, for which every vertex is a downer, disappears. In the case of trees, for
every eigenvalue of multiplicity 1 that has no Parter vertex(equivalently, no neutral
vertex), every vertex will be a downer [4] and, so, will disappear. Most of these
will be replaced by new eigenvalues in A that also have multiplicity 1 and no Parter
vertex. From the above lemma, we can deduce the next theorem.

Theorem 1 Let G be a general graph, A € 7°(G) and ) € R. Let u be a vertex in
G, and G bea graph obtained by adding a vertex v valued « to the vertex u of G.
Let A € #(G), such that A(v) = A. Let m be the multiplicity of A as an eigenvalue
in A, and let n be the multiplicity of A in A. Then,

(a) m —n = —1 ifand only if u is a Parter vertex for A in A and « = A, or u is a
neutral vertex in A and o = A — |dy|* f(1).

(b) m —n =0 if and only if u is a Parter vertex for A in A and o # X, or u is a
neutral vertex for  in A and o # A — |Gy |> f (M).

(c) m —n = 1ifand only if u is a downer vertex for X in A.

In Lemma 1, the status of vertex u# in A changes to that in A as follows.

Corollary 1 Let G be a general graph, A € #°(G) and ). € R. Let u be a vertex in
G and G be the graph obtained by adding a vertex v valued o to the vertex u in G.
Let A € F(G), such that A(v) =

(a) In case u is Parter for X in A, the status of u for A in A is Parter.
(b) In case u is neutral for 1 in A, if « = A — |G| f (X), then the status of u for A
in A becomes downer, if « = A, then Parter, and, otherwise, neutral.
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(c) Incase u is downer for A in A, if « = A, then the status of u for A in A becomes
Parter, and, otherwise, neutral.

Proof (a) If « = A, then m5(A) = m4 (1) 4+ 1 from Lemma 1. When u is removed
from 5, mzuy(A) = ma(X) + 2, since u is Parter for A in G and & = A, so that u is
Parter in A.

If @ # A, then m 7 (X) = m4(A). When u is removed from 5

Mmzuy (&) =mad) + 1,

so that u is Parter in A.

() If @ = A — |a@uw [ f(A), mz(k) = ma(h) + 1. When u is removed from G,
mzq,) () = m4(d), so that u is downer in A. If @ = A, then mz(%) = m4(2), and
mzq,y(A) =ma(A) + 1, so that u is Parter in A. If otherwise, m 7(A) = ma (%), and
mzq,y () = ma(X), so that u is neutral in A.

(©) mz(A) =my(X) — 1. If @ = A, then when u is removed from G, m 3, (1) =
ma(),sothatmz,,(A) = mz(A) + landuisParterin A. If & 7# A,thenm g, (1) =
ma(X) — 1, so that u is neutral in A. [

Let Ty be a branch at vertex v in tree T, and let Ag € J7(T}). Let u be the vertex
adjacenttovin Ty. If m o) (A) = ma,(A) — 1, then Ty is called a downer branch at v
for X in T relative to A. If a downer branch has eigenvalue A with multiplicity 1, then
we call it a simple downer branch for A. Next we consider the change of multiplicity
of A when we add a simple downer branch for A to a tree 7.

Let b be a simple downer branch for A. Let T be a tree obtained by adding b to the
vertex u in T inserting an edge between u and a downer vertex in b. Let A € 0(T),
A € (T) in which A is a principal submatrix of A corresponding to 7', and B €
¢ (b). Since b is adowner branch for A at u in A and u is a Parter vertex in A if we set
mz(A) = k, then mz,,(A) =k + 1. Since mp(A) = 1, maoy(A) =k +1—1=k.
Thus, m 7(X) = ma(,) (1). From this argument, the next Corollary follows.

Corollary 2 Let T be the tree obtained by adding a simple downer branch for A
to the vertex u of a tree T connecting with an edge. Let A € 7 (T), Aet (f)
in which A is a principal submatrix of A corresponding to T, Then if u is a Parter
vertex for A in A, then m3(A) = ma(A) + 1. If u is a neutral vertex for X in A, then
mz(A) = ma(A). If u is a downer vertex for A in A, then m3z(A) = ma(A) — 1.

It is well known that when T is a path, either pendent vertex is a downer for every
eigenvalue, all of which are multiplicity 1. Thus, when an end vertex is removed,
every eigenvalue disappears and all interlacing inequalities are strict. So a path is a
simple downer branch for each eigenvalue. Thus, the previous corollary is applicable
to the case that a path is appended to G. Furthermore, by Theorem 1, addition of a
new vertex at a pendent vertex also makes every original eigenvalue disappear. This
is actually a special case of something much more general that also follows from the
theorem.
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If T is a tree and A is a multiplicity 1 eigenvalue for which exactly one vertex
is Parter, and that vertex is degree 2, then upon appending a new vertex anywhere
in T, except at the Parter vertex, will make the multiplicity 1 eigenvalue disappear.
Of course any non-upward multiplicity 1 eigenvalue will disappear, as well. For an
eigenvalue A of A, if thereis a vertex such thatm 4,y (1) = ma(X) + 1, then A is called
an upward eigenvalue, and otherwise non-upward. Here is the formal statement.

Corollary 3 Suppose that T is a tree, that A € F€(T), that ) € o(A) satisfies
ma(A) = 1 and that either X is upward with exactly one Parter vertex that is degree
2, or that } is non-upward. Then, if T is the result of appending a new vertex v at
any vertex of T (or any vertex other than u in the upward case), then ) ¢ O'(A) for
any A € S(T) such that A(v) =

The multiplicity of an eigenvalue A of A is changeable by adding a pendent vertex
toagraph G as Lemma 1 and Theorem 1 show. However, by perturbing some diagonal
entries in A, the multiplicity of the eigenvalue can be preserved as it was in A. Before
showing that, we need the next lemma from [5, Theorem 5].

The lemma shows how the multiplicity of an eigenvalue A changes as a result of
perturbing the value on a vertex.

Lemma 2 ([5]) Let G be a graph, and i a vertex in G. For A € 7 (G), let A’ =
A+ tE;;, t 0, where E;; denote the same size matrix with A such that(i, i) element
is 1 and zeros elsewhere, then

(a) ma(X) =ma(X) if and only if i is Parter in A or i is neutral in A and t is a
unique t.

(b) may(X) =ma(X) + 1ifand only if i is neutral in A, and t = 1.

(c) may(A) =mus(A) — Vifand only if i is downer in A.

From Lemmas 1 and 2, we can observe the next proposition.

Proposition 1 Let G be a graph. We suppose that A € °(G) has an eigenvalue A
withmultiplicitym. Let G be the graph obtained by adding a pendent vertex v valued o
to the vertex u of G connecting with an edge weighted a, . Let the matrix Ac %(G)
such that A(v) A. Then there isa B € %”(G) such that B has eigenvalue A with
multiplicity m, and it can be obtained by changing the value on v or u in A.

Proof First, we suppose that a pendent vertex is added to a Parter vertex for X in A.
If @ # A, then the multiplicityNOf A stay same, s0 it does not matter. If « = A, then
multiplicity of A is m + 1 in A. In A, the status of vertex v is downer for A. So, if
we perturb the value on v slightly and let the matrix B, the multiplicity of A will go
down, then mpg (1) = m.
Secondly we suppose that a pendent vertex is added to a neutral vertex for A in A.

If the relation between o and dy, suchas o = A — |G |2 f (V) holds, then multiplicity
of Aism+1in A. Then the status of vertex u is downer in A. So by perturbmg the
value on u in A slightly, we get B suchthatmpg(A) = m. lf o #= X — || f (), then
mz(A) = mu(X). So we can set A = B.
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Next we suppose that a pendent vertex is added to a downer vertex for A in A. Then
mz(A) =m — 1. If @ # A, then u is neutral in A. So from Lemma 2, by perturbing
the value on u, we can get B such that mg(}) = m.

If « = A, then u and v are Parter in A. So we can not make the multiplicity of A
increase only by perturbing the value on u. Then we perturb the value on v slightly
from A, then the status of u is neutral. So, similarly by perturbing the value on u, we
can get B such that mg(A) =m. O

From the above proposition, we can observe that when we add a pendent vertex v
to the vertex u in G, even if the multiplicity of an eigenvalue changes in A, by further
perturbing the value on u or v, we can keep the multiplicity of the eigenvalue as it
was in A.

Letmy, my, ..., my be the multiplicities of the distinct eigenvalues of A € JZ(T).
Then we order them as m| > m, > --- > my. This is called the unordered multiplic-
ity list for A, because when the eigenvalues corresponding to this multiplicity list are
put in order, their multiplicities are not generally in descending order or increasing
order. Let -Z(T) be the set of unordered multiplicity lists for all A € (T). There
are some papers studying .Z(T) [3, 6] etc.; however, for trees with many vertices,
not all multiplicity lists have yet been determined. Let M (T') be the maximum mul-
tiplicity of an eigenvalue of A € 5 (T). M(T) is equal to the path cover number.
(cf. [7D).

Theorem 2 Let T be a tree, and suppose (m, 1,1,...,1) € L(Tlform > 2. When
we add a pendent vertex to a certain vertex in T and construct T, then there is an
Hermitian matrix such that (im + 1,1, 1,...,1) € L(T).

Proof Let A be an Hermitian matrix with unordered multiplicity list (m, 1, 1, ..., 1).
We suppose o (A) is ordered as

AM <A <o <A < < Apemtt

Let the multiplicity of A; be m;. We suppose m; = m for the eigenvalue Az, 2 <
k < n — m.Now we shift A as A — A/ = B. B also has an unordered multiplicity
list (m, 1, 1, ..., 1) in which m represents the multiplicity of the eigenvalue 0. Here
weordero(B)as )y <y < -+ < Uy =0 <+ < Up_ma1-

Next we add a pendent vertex v with value O to a Parter vertex u for O in B. Then
Hit1 — Hi )
—

Then we get the tree T and corresponding matrix B € (T),in Wthh B is a prin-
cipal submatrix of B.If the eigenvalues of B are ordered as A <fr<-<jy=
0<- - fp_my1,thenu; —e < ii; < u; + &, because spectral radius ,o(B —B)=z¢
and |fi; — pi| < e.So,mp(i;) =1, j # k,andmg(ity) = mp (1) + 1, because the
pendent vertex is added at a Parter vertex in B. From these, the assertion of the the-
orem holds. [

we assign the weight of edge Z;m and l;v,, tobe ¢ suchthat0 < ¢ < min{
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3 Examples

Example 1 Let A be an Hermitiam matrix as below,

f01111000]
10000000
10000000
10000000
10000111
00001300
00001030
| 00001003 |

The graph of A is represented in Fig. 1. The circled numbers correspond to the index
of the vertex. And the numbers outside of circles represent the values assigned on
the vertices. The matrix A has eigenvalues 0 and 3 with multiplicity 2 each, among
others. When we remove vertex 1 from 7', the multiplicities of eigenvalues 0 and
3 become 3 and 2 in A(1) € (T (1)), respectively. So vertex 1 is a Parter vertex
for 0 and neutral vertex for 3 in A. When we add a pendent vertex at vertex 1, we
consider the case in which the multiplicities of the eigenvalues 0 and 3 each go up
in the new graph A. To make the multiplicity of O go up in A, the value on the added
vertex 9 must be 0, because vertex 1 is Parter for 0.

Furthermore, to make the multiplicity of 3 go up, we must set the weight of the
edge a9, ag; as the next equation dictates by Lemma 1 or Theorem 1.

3 —lapl*f(3) =0, 3)

in which f(3) is the value of f(x) = p;“(’g) at 3. Since pa(x) = x*(x — 3)>(x* —

3x3 —7x% 4+ 12x +9), and pA“)(x) = x3(x — 3)%(x? — 3x — 3), the value of d9 is
V6¢! Then, A is as follows, and A has eigenvalues 0 and 3 with multiplicity 3 each.

0 3
0 0

0 @— 1 5 @ 3
]
|
|
|

0 (&)
® 3

Fig. 1 Example 1
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1111000 /667
0000000 0

0000000
0000000
0000111
0001300
0001030
0001003
| V670000000

o)
I
O OO === =0

ol oNeoBoNoRele)

Example 2 Let B be an Hermitian matrix as below,

(011110000007
10000000000
10000000000
10000000000
10000111000
B=]100001200100
00001020010
00001002001
00000100200
00000010020
100000001002 |

The graph of B is represented in Fig. 2. The values assigned to vertices are placed
outside the circles. B has eigenvalues 1 and 3 with multiplicity 2 each. And B(1)
also has eigenvalues 1 and 3 with multiplicity 2 respectively. So, vertex 1 is neutral
for both eigenvalues 1 and 3. In this example, we show that the multiplicities of 1
and 3 increase simultaneously by adding one pendent vertex to a vertex in 7 that is
neutral vertex for the two eigenvalues.

0 2
2
(6
0 0
0 3) 1 5 —/7\2*‘@2
|
| @)
) 2
0 @ @ 2

Fig. 2 Example 2
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To make the multiplicity of 1 and 3 increase simultaneously, the next equations
must hold, in which « is the value assigned to the pendent vertex,

a=3—1bilf3) =1—bil*fQ),

. . _ o) _ pry(®) x(x3—4x%+6)
in which f(x) = I We have f(x) = ) = G2 R 6D then

f3)=0.5, f(l) = —0.5. Then b] 12 = +/2¢". Therefore, B is as follows with
o =2 and bl o= b121 = /2, then the multiplicity of each eigenvalue 1 and 3
simultaneously goes up to multiplicity 3.

0111100000027
10000000000
10000000000
10000000000
10000111000
00001200100
00001020010
00001002001
00000100200
00000010020
00000001002
| V20000000000

~~H
I

N OO OO OO O
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Nonlinear Local Invertibility Preservers

M. Bendaoud, M. Jabbar and M. Sarih

Abstract Let .Z(X) be the algebra of all bounded linear operators on a complex
Banach space X. Complete descriptions are given of the nonlinear maps of .Z(X)
preserving local invertibility of 7 S for different kinds of binary operations * on
operators such as the sum 7 + S, the difference T — S, and the product 7'S. Exten-
sions of these results to the case of different Banach spaces are also established. As
application, mappings from .Z(X) onto itself that preserve the inner local spectral
radius zero of such binary operations on operators are described.

Keywords Local spectrum + Local (inner) spectral radius - Single-valued extension
property * Nonlinear preservers

1 Introduction

Throughout this paper, X and Y will denote complex Banach spaces and £ (X, Y)
will denote the space of all bounded linear operators from X into Y. As usual, when
X =Y we simply write .Z(X) for the algebra of all bounded linear operators on X
with identity operator /. The local resolvent set of an operator 7 € .Z(X) at a vector
x € X, pr(x), is the set of all A in the complex field C for which there exists an open
neighborhood Uj, of A in C and an X-valued analytic function f : U, — X such that
(u —T)f(u) = x for all u € U,. The local spectrum of T at x, denoted by o7(x), is
defined by
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or(x) :=C\ pr),

and is a compact (possibly empty) subset of the usual spectrum o (T') of 7. The local
spectral radius of T at x is given by the formula

. 1
rr(x) := limsup || T"x]|| ».
n——+00

Its counterpart the so-called inner local spectral radius of 7" at x is defined by
tr(x) :=sup{e = 0:x € Z7(C\ Dy)},

where D, denotes the open disc of radius ¢ centered at 0 and 2Z7(C \ D,) is the
glocal spectral subspace of T associated with C \ Dy, that is, the set of all x € X for
which there is an X-valued analytic function f on D, such that (A — T)f () = x for
all & € D,. The local (resp. inner local) spectral radius of 7" at x coincides with the
maximum (resp. minimum) modulus of o7 (x) provided that T has the single-valued
extension property. Recall that 7 is said to have the single-valued extension property
(or SVEP, for short) if for every open subset U of C, the equation (u — T)f (u) =
0, (u € U), has no nontrivial X-valued analytic solution f on U. Clearly, every
operator T € .Z(X) for which the interior of the set of its eigenvalues is empty
enjoys this property.

Local spectra are a useful tool for analyzing operators, furnishing information
well beyond that provided by classical spectral analysis. They play a very natural
role in automatic continuity and in harmonic analysis, for instance in connection
with the Wiener-Pitt phenomenon. For further details on the local spectral theory, as
well as investigations and applications in numerous fields, we refer to the books [1,
25, 28].

The problem of characterizing linear or additive maps on matrix or operator alge-
bras that leave invariant a given subset, function or relation defined on the underlying
algebras represents one of the most active research areas. Plenty of deep and interest-
ing results have been obtained by now and these results often reveal the algebraic or
the merely ring structure of these algebras. Recently, a more challenging approach,
attracting a lot of attention of researchers in the fields, consider the general preserver
problems with respect to various algebraic operations on .7, the algebra of n x n
complex matrices, or on operator algebras; see for instance [13, 17, 19-21, 24, 27,
29] and the references therein.

On the problem of describing mappings leaving invariant the local spectra, we
mention: [22], where linear maps on ., preserving the local spectrum at a fixed
nonzero vector are characterized, [15] concerned with the infinite dimensional case,
and in [9, 10] preserver problems that have to do with locally spectrally bounded li-
near maps or additive local spectrum compressors on the matrix spaces and on .’ (X)
are considered. While, non-linear preserver problems on the subject were studied in
[3-5, 7] where complete descriptions are given of the nonlinear transformations
of ., or of £ (X) leaving invariant the local spectra of different kinds of binary
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operations on matrices or on operators such as the sum, the difference, the product,
and the Jordan triple product. The corresponding problem for the local invertibility
has been initiated by Bendaoud et al. in [6]. Fixing a Banach space X of dimension at
least two, they proved that the only additive map ¢ from .Z(X) onto itself satisfying

0€oyr(x) = 0cor(x) (TeZLX),xeX) (1)

is the identity up a nonzero scalar. It is interesting to relax the additivity assumption
and to know what kind of nonlinear transformations ¢ on .Z(X) will leave invariant
the local invertibility property. Clearly, if one just assume (1) on ¢, the structure of
¢ can be quite arbitrary. So, it is reasonable to impose a more restrictive condition
on such transformations relating the local spectra of a pair of operators.

In this note, by strengthening the preservability condition, we consider the non-
linear preservers of local invertibility on .Z(X), and we obtain characterizations for
mappings with less smoothness assumptions on them. In the next section, we con-
sider maps on .Z(X) that preserve the local invertibility of the product of operators.
It is shown that such maps are the identity up a scalar functions, and investigation
of several extensions of these results to the case of different Banach spaces were
obtained. While, in Sect. 3 we describe nonlinear transformations on .#(X) that pre-
serve the local invertibility of the sum (difference) of operators. As application, we
describe in the last section mappings from .#(X) onto itself that preserve the inner
local spectral radius zero of operators.

2 Preservers of Local Invertibility of Operator Products

We first fix some notation. The duality between the Banach spaces X and its dual X*
will be denoted by (., .). Forx € X and f € X*, as usual we denote by x ® f the rank
at most one operator on X given by z +— (z,f)x. For T € Z(X) we will denote by
ker(T), T*, o (T),

osu(T) :={A € C: A — T is not surjective},

and r(T'), the null space, the adjoint, the spectrum, the surjectivity spectrum, and the
spectral radius of T'; respectively.

Before stating the main results of this section, we provide some elementary lem-
mas needed in the sequel. The first one relies the SVEP and the local spectrum, see
for instance [1, Theorems 2.20 and 2.22].

Lemma 1 For an operator T € £ (X), the following statements hold.

(i) Forevery A € C and every nonzero vector x inker(A — T) we have or(x) € {)\}.
(ii) T has the SVEP if and only if for every A € C and every nonzero vector x in
ker(A — T) we have or(x) = {A}.
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The second lemma is a simple consequence of [25, Proposition 1.2.16] and
[1, Theorem 2.22], and its proof is therefore omitted here.

Lemma 2 Let e be a fixed nonzero vector in X and let R = x  f be a non-nilpotent
rank one operator. Then 0 € og(e) if and only if (e,f) = 0 or e and x are linearly
independent.

The third lemma, established in [12, Proposition 3.1], gives some common local
spectral properties shared by the operators 7S and ST'.

Lemma3 Let T,S € Z(X) and let x be a nonzero vector in X. Then ors(Tx) C
os7(x) € ors(Tx) U {0}. If moreover T is one-to-one, then ors(Tx) = osr(x).

The next lemma is quoted from [23, Theorem 1.1].

Lemma 4 If ¢ is a surjective map on M, satisfying
¢(T) — ¢(S) isinvertible <= T — S is invertible (T,S € .#,), 2)

then ¢ is additive.

We will say that a map ¢ on .Z’(X) preserves the local invertibility of operators in
both directions if for every x € X and T € .Z'(X) we have 0 € o) (x) if and only
if 0 € o7 (x).

The following is one of the main results of this section. It characterizes nonlinear
maps on .Z(X) that preserve local invertibility of operator products and extends the
above mentioned result [6, Theorem 1.1] to the following more general scope.

Theorem 1 A map ¢ from £ (X) into itself satisfies
0 € oprypis)(X) &= 0 €ors(x) (T € Z(X),x €X) 3)

ifand only if there existsamap n . £ (X) — C suchthat n(T) # 0 for every nonzero
operator T and ¢(T) = n(T)T forall T € £ (X).

As variant theorems, in the case of two different Banach spaces, the followings
give similar results but at the price of the additional assumption that ¢ is surjective.

Theorem 2 Let ¢ : L (X) — ZL(Y) be a surjective map for which there exists B €
LY, X) such that for every y € Y we have

0 € 0pmps) () <= 0 €ors(By) (T,S € ZL(X)). “4)

Then B is invertible and there exists a map n : £ (X) — C such that n(T) # 0 for
every nonzero operator T and ¢(T) = n(T)B~'TB for all T € Z(X).

Theorem 3 Let ¢ : L (X) — ZL(Y) be a surjective map for which there exists A €
L (X, Y) such that for every x € X we have
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0e O’¢(T)¢(S)(Ax) < 0 € o75(x) (T,S e D?(X)) 5

Then A is invertible and there exists a map n : £ (X) — C such that n(T) # 0 for
every nonzero operator T and ¢(T) = n(T)ATA™! forall T € £ (X).

The following examples shows that the assumption “¢ is surjective” in Theorems
2 and 3 cannot be removed.

Example 1 Let E € Z(Y) be an arbitrary invertible operator, and let ¢ : . Z(X) —
ZL(Y)bedefinedby ¢(T) := E (T € Z(X)).LetB € £ (Y, X) be givenby By := 0
(yeY).Forany T,S € Z(X) andy € Y, we have

ors(By) = and o4rps)(y) € o (E*) € C\ {0},

and so (4) is satisfied. However, B is not invertible.

Example 2 LetA € £ (X, X @ X) be given by Ax := x @ x for every x € X, and set
¢(T):=T@Tforall T € £ (X). The map ¢ satisfies (5), but A is not invertible.

Proof of Theorem 2. Assume that ¢ satisfies
0 € 0pm)p(s) () <= 0 € o75(By)

forany 7,5 € Z(X)andy € Y.

We first claim that B is injective. If By = 0, then o75(By) = ¥ and 0 ¢ 0y(r)¢s)())
for any T, S € .Z(X). This together with the surjectivity of ¢ entail that 0¢ o7 (y)
for each T’ € Z(Y). Therefore y = 0, as claimed.

Next, let us prove that the operators B¢ (T) and TB are linearly dependent for
every operator 7 € £ (X). Let A be a fixed operator in .Z(X). Observe that for every
y € Y, the vectors B¢ (T)y and TBy are linearly dependent. Indeed, assume for a con-
tradiction that there exists y € Y such that B¢ (T)y and TBy are linearly independent.
Let f € X* be a linear functional such that f (B¢ (T)y) = 0 and f(7By) = 1, and set
R := By ® f. Note that, the operators TR and RT are of rank one and have the SVEP
as well as R. So, by Lemmas 1 and 3, we have

0 € orr(Bo(T)y) <= 0 € oy (@ (T)y)
= 0 € oy (V)
= 0 € ogr(By);

which contradicts the fact that ogy(By) = {1}. Its follows that for every y € Y the
vector B¢ (T')y belong to the linear span of 7By. By [16, Theorem 2.3], either B¢ (T)
and 7B are linearly dependent, or they are both of rank one with the same image.
In the first case we are done, while in the second case we have B¢ (T) = u ® f and
TB = u ® g for some nonzero u € X and some nonzero f, g € Y*. We must prove
that f and g are linearly dependent. Assume the contrary. Then we can find y € ¥
such that f(y) = 0 and g(y) = 1. The fact that B is injective implies that the operator
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¢(T) is of rank one and ¢ (T)y = 0. From this together with Lemma 1 and the fact
that ¢ (S)¢ (T) has the SVEP, we have

aps)er)¥) = {0}

forall S € Z(X).Choose S € .Z(X) with STBy = By. For such S we have os7(y) C
{1}. This contradicts (4) and shows that B¢ (T') and 7B are linearly dependent in this
case, too.

Thus, for every nonzero operator T € .Z(X), there exists a scalar A7 such that
Bp(T) = ArTB.

Now, we assert that B is surjective. Assume on the contrary that B is not surjective,
and let x be a nonzero vector in X \ range (B). Pick an arbitrary non zero vector y in
Y, and note that By # 0. Choose a linear functional f in X* and 7' € .Z'(X) such that
Tx = By and (By, f) = 1, and set R = x ® f. Firstly assume that B¢ (R)y # 0. From
Lemmas 1, 2 and 3 together with the fact that RT = x ® f o T and x and B¢ (R)y are
linearly independent, we have

0 € orr(Bp(R)y) <=0 ¢ O¢(R)¢(T) (@(R)y)
= 0 € apmpmr (¥)
= 0 € or(By) = {1},

arriving to a contradiction.

In the remainder case when B¢ (R)y = 0, we have AgRBy = 0. From this we infer
that g = 0, and so B¢ (R) = 0. Consequently, ¢(R) = 0 since B is bijective. In
particular, 0 € oy pr®) (¥) = {0}, and therefore 0 € o7x(By) = {1}; which leads to
a contradiction in this case, too.

The contradictions obtained in all cases imply that B is surjective, as asserted.

Our next step is the prove, A7 7 0 for all nonzero operator T’ € .Z°(X). Suppose by
way of contradiction that there exists a nonzero operator 7 € .2 (X) such that Ay = 0,
and let x € X be a nonzero vector such that Tx # 0. By the surjectivity of B, we can
find anonzero vectory € Y suchthat By = Tx. Choose alinear functional f € X* such
that (By,f) =1, and set R := x ® f. Note that ¢ (7)) = 0, and so o474 (y) = {0}
contradicting the fact that o7 (By) = {1}.

In order to complete the proof, let us observe that ¢(0) = 0 since otherwise we
can find a nonzero vector y € Y such that ¢ (0)y # 0. Let x € X such that B~'x =y,
andletf € Y* be a linear functional such that (B¢ (0)B~'x, f) = 1. Then the nonzero
operator T := x ® f satisfies

0 € 0p1)90)(Y) = Our5-17B8(0) V) = {271},

a contradiction. The proof is therefore complete. [
Proof of Theorem 3. Assume that ¢ satisfies

0 € 0g1)p(s) (Ax) <= 0 € o75(x)
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forany T, S € Z(X) and x € X. We first assert that A is injective. If Ax = 0, then
0¢ 04 (Ax) for every T € Z(X). So, (5) gives O¢or(x) for each T € £(X),
and consequently x = 0.

Next, we claim that A is surjective. Assume by the way of contradiction that A
is not surjective, and let y be a nonzero vector in Y \ range (A). Let g € Y* be an
arbitrary linear functional, and set R’ := y ® g. We will show that ¢ (0) = y ® g. The
surjectivity of ¢ implies that there exists R € £ (X) such that ¢ (R) = R’. For every
nonzero vector x € X and § € .Z(X), Lemma 2 tell us that

0 € oygp(s) (AX) = 0pR)p(s) (AX)

since y and Ax are linearly independent; implying that 0 € ogg(x). From this we

infer that R = 0 since otherwise we can find x € X and S € .Z(X) such that Rx # 0

and SRx = x. This shows that 0 € ogs(Rx) C osg(x), and contradicts the fact that

osr(x) C {1} since SRx = x; see Lemma 1. Hence, R =0 and ¢(0) =y ® g. The

arbitrariness of g give a contradiction, and shows that A is surjective, as claimed.
Thus, A is bijective and ¢ satisfies

0 € Tmps) (V) <= 0 € ar5(A™"y)

forany 7, S € Z(X) and y € Y. The desired conclusion follows from Theorem 2;
which achieves the proof. [

Remark 1 By inspecting the proof of Theorems 2 and 3, with no extra efforts, one
can see that Theorem 2 (resp. Theorem 3) remains valid when the assumption “¢ is
surjective” is replaced by “B is surjective (resp. A is surjective)”.

Proof of Theorem 1. The sufficiency condition is easily verified, and the necessity is
a consequence of Theorem 3 and the above remark. [

3 Preservers of Local Invertibility of Operator Sums

In this section, we describe mappings ¢ from .2 (X) onto itself that preserve the local
invertibility of operator sums. The following is one the purposes of this section. It
generalizes [6, Theorem 1.1] and gives a partial response to [6, Problem].

Theorem 4 A surjective map ¢ from £ (X) into itself satisfies
0e U¢(T)_¢(S)(X) <— 0€or_sx) (T € Z(X), xeX) (6)

if and only if there exist R € £ (X) and a map n : £ (X) — C such that n(T) # 0
for every nonzero operator T and ¢ (T) = n(T)T + R for all T € £ (X).
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Proof Checking the “if” part is straightforward, so we will only deal with the “only
if” part. So assume that (6) holds. Replacing ¢ by the mapping T +— ¢ (T) — ¢ (0),
we may assume that ¢ (0) = 0.

From the fact that

ou(T) = | Jor(x) (7)

xeX

forevery T € Z(X) (see [25, Lemma 2.3]), we have

T — S is not surjective <= Ix € X : 0 € op_s(x)
<— dIxeX:0e€ 0¢(7)_¢(5)(x)
< ¢(T) — ¢(S) is not surjective

forall T € Z(X). So, if X is an finite dimensional Banach space, then from Lemma 4
together with the fact that, in this case, an operator 7 is surjective if and only if it is
invertible one can see that ¢ is additive. In the case when X is an infinite dimensional
Banach space, the map ¢ is also additive; see [14, Theorem 4.2]. Thus, the desired
conclusion follows from [6, Theorem 1.1], and the proof is complete. [

We obtain similar conclusion when using sums in (6) instead of subtractions.

Theorem 5 A surjective map ¢ from £ (X) into itself satisfies
0e U¢,(T)+¢,(s)(x) <— 0¢e or+5(x) (T € .,%(X), xeX)

ifand only if there exists amap n : £ (X) — C such that n(T) # 0 for every nonzero
operator T and ¢(T) = n(T)T forall T € £ (X).

Proof The sufficiency condition is easily verified. To prove the necessity, assume
that
0 € 0pr)+p5 () <= 0 € o715(x)

forany T, S € Z(X) and x € X. We first claim that ¢ (0) = 0. Todoso, letA € £ (X)
such that ¢ (A) = 0, and note that for every T € .Z(X), we have

xeX:0€o0ra(x) < IxeX:0€o071ax)
= IxeX:0ea04mx)
= dx € X:0 € oym)
<= dxeX:0e€o0rk)
<= dxeX:0eco0rk).

From this together with the equality (7), we infer that

T + A isnot surjective <= T is not surjective
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forevery T € Z(X). Upon replacing T by T — X, we deduce that
ou(T +A) = 0y (T)

for all T € Z(X). As the surjectivity spectrum contains the boundary of the spec-
trum, we conclude that #(T + A) = r(T) forall T € Z(X). Thus, by the Zemdnek’s
spectral characterization of the radical, [2, Theorem 5.3.1], A = 0 as desired.

Next, we assert that ¢ is additive. Similar argument as above allows to get that

T + S is surjective <= ¢(T) + ¢ (S) is surjective

forany T, S € Z(X). So, if X is a finite dimensional Banach space, then from the
fact that Lemma 4 remains valid when using sums in (2) instead of subtractions and
¢(0) = 0, we deduce that the map ¢ is additive. In the case when X is an infinite
dimensional Banach space, by [14, Theorem 5.1], ¢ is also additive, as asserted.

Thus, the map ¢ satisfies (6), and the desired conclusion follows from Theorem
4; which concludes the proof. [

4 Preservers of the Inner Local Spectral Radius Zero

This section is devoted to deriving some consequences of the above obtained results
of this paper. These consequences describe maps from .Z (X) onto itself that preserve
the inner local spectral radius zero of operators. A map ¢ from .Z(X) into itself is
said to preserve the inner local spectral radius zero if

L¢(7‘)(x) =0« 1y (x) =0

forall T € Z(X) and x € X.
The first consequence, extending [6, Theorem 1.6], describes nonlinear mappings
that preserve the inner local spectral radius zero of operator products.

Theorem 6 A map ¢ from £ (X) into itself satisfies
L¢(T)¢(S)(X) =0 LTS(X) =0 (T S X(X),)C S X)

ifand only if there existsamap n : £ (X) — C suchthat n(T) # 0 for every nonzero
operator T and ¢(T) = n(T)T forall T € £ (X).

The second consequence extends the main results of [8, 11].

Theorem 7 Let X be a complex Banach space of dimension at least two. A surjective
map ¢ from L (X) into itself satisfies

Lo -ps) %) =0 = 17_s(x) =0 (T € L(X)).
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if and only if there exist R € £ (X) and a map n : £ (X) — C such that n(T) # 0
for every nonzero operator T and ¢ (T) = n(T)T + R for all T € £ (X).

Proof of Theorems 6 and 7. As the notion of local invertibility encompasses inner
spectral radius zero: for any x € X and T € .Z(X) we have

Oceor(x) < 17(x) =0

(see [26]), Theorems 1 and 4 remain valid when the hypothesis “0 € o (.)” is replaced
by “t.(.) = 0”; which yield the desired conclusions in Theorems 6 and 7. [J

From the above comment, Theorems 2, 3, and 5 also remain valid when the
assumption “0 € o (.)” is replaced by “¢ (.) = 07, and the obtained results in these
theorems and in Theorems 6 and 7 lead to the nonlinear inner local spectral radius
versions of the main results of [18] which describe surjective linear maps on .Z’(X)
that are local spectral radius zero-preserving.
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More on the Hankel Pencil
Conjecture—News on the Root Conjecture

Alexander Kovacec

Abstract The Hankel pencil conjecture concerns certain pencils of n xn
Hankel matrices and has a control theoretic origin; see [4]. For each specific n it
was abbreviated in [2] as HPnC and reduced to a conjecture RnC about roots of pairs
of certain polynomials of degree n — 2. To be solved, each conjecture RnC would
be laboriously translated into a system of equations for the elementary symmetric
polynomials and solved by Grobner basis methods (we stopped at n = 8). In this
paper we present conjecturally a parametrized system of equations in the symmetric
polynomials which permits to prove specific cases of the root conjecture and hence
of the Hankel pencil conjecture by much lighter computation. Other formulations of
the root conjecture are also given.

Keywords Matrix pencils + Control theory * Root conjecture + Systems of algebraic
equations

1 Introduction

The Hankel pencil conjecture is a deceptively simple looking conjecture on a certain
family of Hankel or equivalently Toeplitz matrices. It was published by Schmale
and Sharma who showed in [4] that its solution would significantly advance a 1981
conjecture by Bumby, Sontag, Sussmann, and Vasconcelos in control theory.

With x an indeterminate, and ¢; € C* = C \ {0}, define the n x n Hankel matrix
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X [(65)
X C1 C C3

H,(x) = H,(x;c1,...,ch1) =

Cl Cp ... ... Ch—1 Cp
Cr C3 ... ... Cn Cn+i

A formal definition of this matrix is H, (x) = (¢i4+j—n+1), Where cop = x is an
indeterminate, ¢; = 0 for/ < 0, and ¢; € C* forl > 1.

Conjecture (Hankel Pencil Conjecture HPnC) If det H, (x) = 0, then the last two
columns are dependent, i.e. there exists a A such that for alli ¢; = Alle.

We begin with a short outline of how we reduced in the paper [2] the Hankel pencil
conjecture to another conjecture which we called “root conjecture” and how we
proved this latter and hence the former conjecture for various special cases. We then
report on a twist we introduced in the root conjecture which led to an almost purely
combinatorial conjecture and show why its proof could mean significant progress in
the Hankel pencil conjecture.

The following facts were shown.

e Reference [2, Corollary 2.5] If HPnC is true for the subclass of admissible matrices
for which ¢c; = ¢, = 1, then HPnC is true in general.
Thus ¢; = ¢; = 1 together with det H,(x) = 0 should imply ¢c3 =--- = ¢, = 1.
e Sylvester’s identity implies that there are polynomials m;;(x), i, j € {n — 1, n},
such that there holds the formula:

Mun (X) - M1 -1 (X) — mp_y ,(x) = 8,1x" 72 - det Hy (x), (8, = (—1)"=1D/2),

Combinatorial reasoning allowed us to determine the polynomials explicitly and
for modified reciprocals of these polynomials, defined via 7;;(x) = 8, %" 2m; j
(1/x), we found the following formulae (and a similar one for 71,1 ,_;(x) which
we do not need here).

n—2
i (x) = (=1)" Z(z Ciy e cl-jc,-ﬁ,) (—x)7;

j=0 \ i
n—2
10 () = (=1)" Z(Z Ciy oo c,-lcmjﬂ)(—x)f,
j=0 \ i
where the inner sums Zi, ...changing with j, arealwaysoveralli = (iy,...,i;41) €

Z’;l for which |i| =i; +---+1i;41 =n — 1, aset of indices we designate /;, if
n is clear.

Itis easy to see thatif ¢; = ¢, = 1, then all the polynomials 771;;, i, j € {n — 1, n}
are monic and this is the reason why we preferred working with the 7, rather than
with the m,-j .
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o The above relation between the m;; and det H,, (x) and the fact that the hypothesis
of HPnC requires det H, (x) = O then led to the following

Reference [2, Proposition 5.1] HPrC, n > 3, is equivalent to the following asser-
tion for modified reciprocal polynomials.

A ~ A2 . .
My (X) - My p—1(X) =1, (x) & ¢y = cy = 1impliesc3 = -+ = ¢4 = 1.

Looking at the equation in the premisses of this implication one sees that every
root of 11,,, (x) must be a root of ﬁzfl_ 1.,(X). This observation finally led to conjecture
that this apparently weaker hypothesis already implies the conclusion and herewith
the Hankel pencil conjecture. That is, we formulated [2], Conjecture 5.3. (Root
conjecture RnC)

I froots(im,, ,) C roots(m,—1.,) & ¢; = ¢; = 1, thenroots(i,—1,) = {1}.

It is easy to show that the conclusion roots(71,_1 ,) = {1} is equivalent to ¢; =
¢, = --- =c, = 1. The discussion then shows

e Reference [2, Proposition 5.4] For every n > 3, RnC implies HPnC.

e We finally proceeded to show RnC and hence HPnC for all n < 8. We give an
example how we did this. For n = 5 and from now on always assuming ¢; = ¢, =
1, one finds

A

fss = —cq + (1 4 2¢3)x — 3x% + x3,
s = —cs + (23 + ca)x — (2 + c3)x” + x°.

These polynomials each have three not necessarily distinct roots. Let roots (r1145) =
{a, b, g}. The hypothesis of the root conjecture is roots(iiss) C roots(riys) =
{a,b, g}. Of course, if we have here equality in the sense of multisets, then
Mss = Mys, since the polynomials are monic. In this case we can do a direct com-
parison of coefficients and get c3 = ¢4 = ¢s5 = 1. Then the polynomials are equal to
(—1 4 x)* hence only admitting the root 1. If 77255 has only one root (of multiplicity
3), say a, then Viéte’s rules say 3 = 3a, so a = 1. Now assume 55 has roots we
can write roots(riss) = {a, a, b}. Then Viéte’s rules allow us to write this system
of equations as

3L2a+b 2tcs=a+b+tg
1+2031=,a2+2ab, 2C3+C4iab+ag+bg
cq ;azb (cs 2=”abg).

Using “L” one has b = 3 — 2a. Then «Lo yields ¢z = %(—3612 + 6a — 1), and then

1

by “é”, g= —%az + 4a — %, while “=" gives ¢y = —2a® + 3a”. Substituting these
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expressions in a in“zz/,”yieldsO = %(a —1)3.Hencea = 1. Thusb = 1, andg =1,
showing roots(riz4s) = {1}, hence R5C, thus HP5C.

Before solving, one may opt, alternatively, to eliminate the ¢; altogether and obtain
a homogeneous polynomial system in only the roots of m,,_; ,.

For illustration let us continue with R5C. Write ¢ i =e¢ej(a,a,b), and ¢; =
ej(a, b, g), where ¢;(...) signifies the j-th elementary symmetric function; here
of three variables. Then we could alternatively substitute the right hand side of the
left system by éy, é>, €3, respectively, and the right hand side of the right system by
e1, ez, e3 respectively. Having done this, we can eliminate c3, ¢4, ¢s and obtain the
system

0=¢ —3
0=¢)—2e+3
0=¢é3—e)+2e —4,

which is a system solely in a, b, g. In [2] we used this technique to eliminate the
¢; similarly for the cases n = 6, 7, 8. Each of these cases requires to treat a number
of subcases which correspond to the various possibilities in which roots (i, ,) C
roots(#1,_1,,) can happen.

For example in the case n = 6 supposing roots(#,_1,,) = {a, b, g, h}, one has
to examine the subcases in which roots(i, ,) is equal to {a, a, a, a}, {a, a, a, b},
{a,a,b,b},{a,a,a,b},{a,a,b,g}, or{a,b, g, h}, respectively. In the first and the
last case it is easy to show that the system of equations obtained admits only the
solutiona = b = g = h = 1, but for the other cases we solved the system computing
the solution via Grobner bases.

One of the difficulties we did not know how to overcome at the time is that the
system in the ¢; and ¢; had to be computed for every n anew and we did not see
any pattern by which these systems evolve. The principal news of the present paper
was obtained by formulating the root conjecture not for the polynomials 71, (x) and
My, —1.,(x), but rather the polynomials #1,, (1 4+ x) and 71,1 ,(1 4+ x). Using these
polynomials we are now able to conjecture a pattern according to which the system
in the ¢; and ¢; develops; these now defined w.r.t. the new polynomials analogously
as before ¢; and e; were defined w.r.t 7, (x) and 71,1 , (x). Section 3 reports these
developments. Furthermore we prove in Sect. 4 that if this conjecture is correct, then
it is equivalent to a homogeneous polynomial system which has as many equations
as it has unknowns. The Hankel pencil conjecture then follows if this latter system
of equations has only the trivial solution. The fact that in a certain sense “almost all”
systems of homogeneous equations of the referred type have only the trivial solution,
see [1, p. 80], earns the Hankel pencil conjecture well founded credibility.

Before we launch into those sections and in order to whet a reader’s appetite to
work on RnC, we present in Sect. 2 (without proofs) alternative formulations of the
root conjecture. Although we have not yet used these formulations for progress in
RnC, they merit mention since they permit to present the root conjecture from scratch
in a succinct way.
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2 Alternative Formulations of the Root Conjecture

Miguel R. Moreira [3], a medalist of the International Mathematical Olympiads,
showed that the polynomials 71,1 , (x) and 7, (x) stand in close relationship with
a simple inductively defined sequence of polynomials.

Given a sequence ¢; = ¢, = 1, ¢3, ... of nonzero complex numbers, define the
polynomials (P,), n = 1,2, 3, ... by the rules

n—1
Pl(x)zl, P2()C)=l+x, P”(X)IC” +x(zcipn—i(x))~

i=1
One then can prove the following lemma

Lemma 1 There hold the relations

i (=D " (—x) = Py (x).
ii. (=1)"yp-1(=x) = Py(x) — c1x Py (x).

Thus it is easy to see the following conjecture as being (equivalent to) RnC.
Conjecture 1 (RnC). roots(P,_;) < roots(P,) implies roots(P,_;) = {—1}.

It is in certain contexts reasonable to define “simplicity” as “having as many zeros
as possible”. From this point of view the following further formulation of RnC
may appeal to the reader. By a simple variable transformation one can introduce
polynomials of which one expects they have 0 as the only root. Since we also expect
then all ¢; will have value 1, we also put ¢; = 1 + ;. If one defines now polynomials
Q;(x) = Pj(—1 4+ x), one gets an inductively defined sequence given by

01 =1,
0>(x) = x,
0n(x)=0+)+(=14+x)(Qna1 + Qa2+ A +B)0us3+ -+ A +c,_)O).

Then the first few polynomials read

03 =cj +x%,
Q4 = (=2¢5 + cy) + 2c5x + x3,
Qs = (¢ — 2¢), + c&) + (—4ch + 2¢f)x + 3chx® 4 x*.

This way one gets:

Conjecture 2 (RnC, version Q) roots(Q,_) C roots(Q,) impliescj =c; = --- =
¢/ = 0, or equivalently, roots(Q,) = {0}.
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3 A Parametrized System of Equations for Elementary
Symmetric Functions

Instead of formulating the root conjecture for polynomials i,_1 ,(x) and A1, (x),
one can, of course, use the polynomials 772, ,, (1 + x) and 171,,,, (1 + x) and formulate
RnC this way reminiscent of Conjecture 2 above.

RnC: If ¢; = ¢; and the inclusion roots(, , (1 + x)) C roots(r,—; , (1 + x))
holds in set theoretic sense, then roots (7, ,(1 + x)) = {0}.

One can now invoke a simple lemma relating the coefficients of polynomials f(x)
and f(1 4+ x).

Lemma2 Let f(x)= fo+ fix+---+ fux" be a polynomial and let g(x) =
fl4+x)=go +g1x+-+ gnx". Then, forl =0, 1, ..., n, there holds the rela-
tion g = Z'}:l (;)fj In particular if f is monic, then g is.

Now we use the formulae in Sect.1 and name the roots of m,_1,(1 + x) by
Z1, ..., Zn—2; and similarly the roots of 7, ,(1 + x) by z}, ..., z,. We use Viete,
and getfor/ =0,1,...,n —2:

n—2

5 . / / j+n+1 -]
Gr=a@ )= ) (—1)/++(n_2_l) D i i

j=n—2-1 ieljy

Fore; = e/(z1, ..., zn—2) use the same formula, but replace ¢; ., by 14,

The first few of these formulae are the following. Again these could be simplified
somewhat introducing ¢; = —1 + ¢;, but the result in the ¢; and ¢; after elimination
of ¢; or ¢; would be the same.

ep = —1+cs,

er=4+cs+c3(=5+n)—n,

e3s = —9+cs+c3(19 —4n) + c4 (=6 +n) + c%(—S +n) + 2n,

ey = co + c4(23 —4n) + ¢s(—=7 + n) + 2c3¢4(—6 + n) + c3(—69 + 181 — n?) +
(c3(76 — 191 +n?)) /2 + (52 — 15n + n?) /2,

e1 =0

ey =3+c3(—3+n)—n,

e3 = —4—2c3(—4+n)+ca(—4+n) +n,

e4 = —2c4(=5+n)+c5(=5+n) —c3(=T+n)(=5+n) + (=6 +n)(=5+n))/2
+( (=6 +n)(=5+n))/2,

es = —2¢5(—=6+n) + c(—6 + n) — ca(—8 + n)(—6 + n) + c3c4(=7 4+ n)(—6 +n)

—(=6 +n)? — c3(=6 + n)(—13 + 2n) + ¢3(—=6 + n)(—19 + 3n).
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Curiously, although these formulas are more complicated than the corresponding
ones in [2, Lemma 6.1] the elimination of the ¢; yields relations between the ¢; and
¢; that are simpler and allow explicit parametrization. We explain the conjecture
which we came up with after a number of computer experiments.

It is not hard to show that the polynomials ¢; as symbolic expressions in n,
c3, ..., ciyp are divisible by n —i — 1 in the realm of integer coefficient polyno-
mials; that is defining

ei/n—i—1) ifi<n-2
p,~=[ / )

0 ifi >n—-2,"
the p; are polynomials in Z[n, c3, ..., ciy1].
More generally, define the abbreviations p;; = p; pj, pijx = PiPj Pk, €tc.
Recall that a finite sequence of positive integers, A = (Aq, Az, ..., Ax) isapartition

of an integer n, written A - n, if A} > Ay > A3 > .- > A, and Zi Ai =n. The
length of A, 1g(A) = k. Further we define the typenumber of A as the product of the
factorials of the multiplicities with which the positive components of A occur. Thus
for example, for A = (3,3,2,2,2,2,2,1,1, 1), we have A - 19, 1g(%) = 10, and
typenb(X) = 2!5!3!.

The mentioned conjecture is the following.

Conjecture 3 Considering the ¢; and ¢é; as polynomials in Q[n, c3, ¢4, ...], for
every j =0,1,2,...define

(—DEMTE 2 Gn = j — 1)
typenb(})

Qrej=prej+—j—Dx >

AR+
Igr>2

P

Then there hold the relations 0 = ¢; — éj —qi4+j, where j =0,1,2,....

We show the first few equations. Note that the first equation says that p; = 0, so
that all A in the sum which have a component 1 can be suppressed.

.0=¢;

0=e—¢é1—p

.0=e—¢6,— p3
0=e3—¢3—ps—(n—4)(pn/2)
0=es—e4—ps—(n—5pxn
0=e5— & — ps— (n—6) (pa+ 13 — T2 pan)

DA W= O

This conjecture which was tested up to j = 9 gives a relation between the ¢; and ¢;
in a parametrized form as desired. It is not overly difficult to obtain this conjecture -
one tries to write for sufficiently many j e; as a linear combinations of the p;, and
its products i = 1, 2, .., j, j + 1 and finds after a number of observations the above
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pattern. Unfortunately even very special cases of the conjecture, for example the one
arising when wishing to prove that the ¢;-free ‘constant’ coefficients of both sides
are equal, are hard to prove and the author has not yet succeeded in this endeavour.

However the system of equations in the elementary symmetric functions this way
obtained is considerably simpler than the previous one. While for example the sixth
equation for the case n = 8 in [2], p. 1523, involves symmetric polynomials from
degrees zero to six - it is 0 = 6392 — 2740e; + 3147 — 6¢; + 210e; — 36e;e +
e% — 18e3 + 2e1e3 + 2e4 — es + ¢, - the corresponding equation number 5 above,
involves only degrees 5 and 6 - it is (up to multiples)

0 = 3000(es — &5 — &¢) — 8008487 — 37563 4 96é3.

We see in the next section how the equations so obtained permit, by much lighter
and more insightful calculations than previously was possible, confirmation of the
root conjectures.

4 Transforming the Quasi-homogeneous Systems
into Homogeneous Ones and Solving Them

We begin by recalling a simple lemma for elementary symmetric polynomials. It
is convenient to introduce the convention to let ¢;(...) stand for the elementary
symmetric polynomial of the variables indicated in a specific case and to assume
ej(...)=01if j <0 or j >number of variables. So for example e>(xy, x2, x3) =
X1x2 + X1x3 + x2x3 but es(x1, x2, x3) = 0. Furthermore x;.; meansincase 1 <i < j
the (j —i + I)—tuple (x;, ..., x;).

Lemma 3 There holds for any integers j and 1 < k < n the identity

ej(x1y) = Zeu(xl;k)ej-v(x1+k:n),

where the sum is over the integers.

We will use this lemma in a moment only in cases in which 7 is replaced withn — 2
and the xes by zs, names for the solutions of the enumerated system of equations
above. Keep in mind that the root conjecture says that whatever choice 7}, ..., z,_, €
{z1, ..., Zn—2}, we suppose, the particular system of equations in z1, . . ., Z,—» which
arises from such a choice, will admit only the trivial solution.

The following explanations are exemplified in the example after the proposition
below.

Assume we make a choice in which certain k of the z; are not contained in the
left set. Then, by symmetry, &; = ¢;(z}, ..., z,_,) can be thought of as being &; =
ej(Uik, Zi4kn—2) Where {uy, ..., ur} S {2144, ..., Zu—2} S {21, ..., 202}, while
€; = Ej(Zl, ey Zn—2)-
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Now apply the previous lemma as well to e;(z1, ..., 2y—2) = €;(Z1:ks Z14+kn—2),
as to e (U1.x, Z14k:n—2) and define the shorthands

éj =ej(Zitin—), Ej=-ej(z1a) —ej(ur).

Note that for j > 1 +k, E; = 0. We see that the subsystem of the equations

numbered 0, 1, ..., n — 3 in Sect. 3 gains the following aspect:
0.0=¢
1.0 = E1 — {2
2.0= Elél +E2—6]3
3.0

=Eéy+ Exé) + E3 —qq

k—1.0=Ejéx—2+ Exéx—3+ Ezéj_s+---+ Ex_1 — qi
k.0 = Ejéx_1+ Exéjn + Ezéy3+ -+ Ex_1e1 + Ex — g1
k+1.0=Eé + Exéx1 + Ezépn + -+ Ex_1€2 + Eré — qigo

n—3.0=Eé_4s+ Exé,_s+ Ezépc+ -+ Er—1éy_i—2 + Exéy_r—3 — gn—

This system has furthermore the following features:

e Eaché;, ¢, E;, q; is a homogeneous polynomial of degree j (or possibly zero).
e ¢j,¢;, and g; depend only on zijk,...,2—2, i.e.,, é; = €;(Zitkm—2); qj =
q; (Z14kn—2)-

(e £; may depend on all variables.)

Proposition 1 A system of polynomial equations of this form and with these features
has a systemofn — 2 — k homogeneous equations of respective degrees 1; k + 2, k +
3,...,n—2inthen — 2 — k variables 711y, . . ., Z,—2 as a consequence.

Proof Equation 0 can be written as 0 = e (u.x) + €1(Z144:n—2). This equation is
homogeneous of degree 1 and as uy, ..., u; € {Z14k, - .., Z24n}, it iS an equation in
Z14ks - - - » Zn—2. We show now that the remaining equations 1,...,n — 3 have as a
consequence a system of n — 3 — k homogeneous equations of respective degrees
k+2,k+3,...,n—2in variables zjk, ..., Zn—2-

To see this note that equation 1 justifies to substitute g, for E; that is to do
E| — g» in all the following equations. Next equation 2 justifies the substitu-
tion E; — g3 — Ejé1, that is E, — g3 — ¢2€1, in equations 3, 4, ...Next we do
E; — q4 — q2é2 — (q3 — qa€1)é; inthe equations 4, 5, ... We see by this process that,

having substituted E4, E5, ..., E;_1, the first j — 1 terms of equation j turn into
terms of degree j + 1. In particular, when we use equation k — 1 to do a substitution
Ey_y — ...inequationsk, | + k, ..., n — 3, the firstk — 1 terms in these equations

turn into terms of degrees 1 4+ number of equation. Once more doing this, using
now equation k to substitute E; we see that equation k 4 1 turns into a homogeneous
equation of degree k + 2, and in general equation / > k + 1 into a homogeneous
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equation of degree [ 4 1. In particular equation n — 3 will turn into a homoge-
neous equation of degree n — 2. So we have at theend (n —3) —(k+ 1)+ 1=
n — 3 — k homogeneous equations. Finally observe that we have replaced the E;,

j=1,2,...,k by polynomials in ¢y, €, ..., éx—1,q2, - - -, gx+1- These polynomi-
als as well as g2, ..., qn—2 are polynomials in zj4, ..., 2,—2. The proposition
follows. [

A system of m homogeneous polynomial equations in m variables has typically
only the trivial solution. Let us assume that the homogeneous system obtained by the
process of the proof of the proposition is “typical”. Thenwe get x4 = -+ - = x,_2 =
0. This implies also that all g; are O and that u;x = 0. Then from the system we
see 0 =E; =ej(x1x) —ejuix) =ej(x1x), j =1,2,..., k. Since the map CkF >
X1k > (e1(X1k), - - -, ex(x1)) € C" defines (by the fundamental theorem of algebra
and by Viéte’s rules) a bijection from C* to C*, we find x4 = 0.

Example 1 If n =7, then we speak of variables zy, z», z3, 24, z5. Assume for ¢;
roots {z4, Zs, 25, 24, Z5}. Then the system of equations in explicit form is found to be

0 = 2z4 + 3zs,

0=z1+2+23—24 —23/4 — 225 — (32425)/2 — 322) /4,

0 ==z122+ 2123 + 22023 + 2124 + 2224 + 2324 — zﬁ + 2125 + 2225 + 2325 — 52425 — zizs
—32% - 2142% - zg/3,

0 = z12223 + 212224 + 212324 + 222324 — (322‘)/32 + 212225 + 212325 + 222325
+212425 + 222425 + 232425 — 32525 — (92325) /8 — 62423 — (872323)/16 — 23
—(35z423)/8 — (272%)/32,

0 = 21222324 + 21222325 + 21222425 + 21232425 + 22232425 — zizs - 3zﬁz§ - 8122%
—22473 — (492323)/3 — 8z4zd — 22.

In practical work it is not necessary to write this system down explicitly. In fact it
would be sufficient to use equations 0 and 4 of the last of the following four blocks
below.

We now treat the system according to the proof of the proposition. According to
the above, u;.3 = (24, 25, 25), and so k = 3, n — 3 = 4. In the form of Sect.3 the
system takes the form as shown at the left.
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Substituting E1 — ¢» the system takes the

0.0=2¢ form

1.0=Ey —a 0.0=2¢,

2.0=FE1e1+ Ey — 3 1.0=0

3.0=Eiér+ Exé1 + E3s —qa 2.0 = qoé1 + E2 — g3

4.0 = E1é3+ Eréx + Ezé; — g5 3.0 = qaés + E2é1 + Ez — qa

4.0 = qoé3 + Exér + Ezé; — g5

o . Finall ituti E
Next substituting E; — g3 — qa€é1, the naty subsfltutmg .0 3
e . q4 — q2€2 — q3e1 + qae one
system becomes
A gets
0.0= ¢ .
0.0= ¢
1.0= 0
1.0= 0
2.0=0
. L. 2.0=0
3.0 = q2é2+ (g3 — q2é1)é1 + E3 — q4 30— 0
= q2ér +q3é1 — qr€1> + Ez — q4. IO , ..
DT g — e 3T 4.0 = qé3+q3é2 — qé1é2

4.0 = q2é3+ (g3 — qé1)éx + E3é1 — g5

+(qs — q2é2 — q3é1 + @2€1H)é1 — g5
@263 + q3é2 — qaé1é2 + qaéy
—q2é2é1 — q361% + qrér’ — gs

In the case at hand é; = e;(z4, 25), SO é; = z4 + 25, €2 = 2425, and for j >
3, é; = 0; furthermore one finds

g = (zi + 62425 + 312)/4;

¢s = (37325 + 62422 +22)/3;

qs = (324 + 362325 + 1742525 + 1402423 + 2723) /32;
qs = (3zhzs + 242322 + 522223 + 247242 +322)/6;

This then leads to these equations (after multiplying equation 4 with 96):

0.0 =2z4 + 325
4.0 = 33z] + 141z4zs + 1982322 + 302322 + 1092422 + 7323,

which yields quite easily z4 = z5 = 0.

Once we knows this, we infer g, = ¢3 = g4 = g5 = 0, and hence from the original
equations 1, 2, 3, E; = E; = E3 =0. We also find u;3 = (0,0,0). Now E; =
e;j(z13) —ej(u1:3). Thus e;(z;3) =0for j =1,2,3,andsoz; =z = z3 = 0.

This case was treated in [2] (as case n = 7, subcase 32) by solving a system of
equations obtained from a Grobner basis with 6 polynomials of lengths 3, 6, 6, 13, 13
and large coefficients. Thus while the new methods are still not as light as desirable,
we see that the case n = 7 can be still be done by hand, if necessary. This was
completely out of question previously.

Note added in proof. By a variation of the reasoning above we recently establi-
shed a conjecture analogous to Conjecture 3 but directly claiming a fully homoge-
neous system. This result would make Proposition 1 superfluous.
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Componentwise Products of Totally
Non-Negative Matrices Generated
by Functions in the Laguerre-Pdlya Class

Prashant Batra

Abstract In connection with the characterisation of real polynomials which have
exclusively negative zeros Holtz and Tyaglov exposed in 2012 a new, totally non-
negative, infinite matrix. This matrix resembles the matrices considered in the sta-
bility problem, and was called a matrix of “Hurwitz-type”. No precise connection
to the Hurwitz matrices of the stability problem or structural properties could be
established. We identify those matrices as limits of Hurwitz matrices generated by
Hurwitz-stable polynomials. This allows to give a new and concise proof of the
Holtz—Tyaglov characterisation as we connect it here to the classical theorem of
Aissen, Edrei, Schoenberg and Whitney. Our approach naturally extends to entire
functions in the Laguerre—P6lya class which have exclusively non-negative Tay-
lor coefficients. Results on Hurwitz-stable polynomials are employed to show that
certain positive pairs of real functions in the Laguerre—Pdlya class generate totally
non-negative matrices. Finally, we give the first composition result on the structured,
infinite matrices considered: We show that the componentwise product of any of the
considered infinite matrices is totally non-negative.

Keywords Schur-Hadamard product - Infinite matrices « Aperiodic polynomials -
Positive pairs - Hurwitz-stability - Totally positive matrices
1 Introduction

It was shown by Holtz and Tyaglov [9] that the total non-negativity of all minors of
the infinite matrix
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dp dy d; dz a4 ds dg - --
0 ap 2612 3613 4614 5615 6616
0 ap Ay ap asz dg4 ds ---
E(f) = 00 aj 2a2 3a3 4a4 5(15 (1)
00 ap ady ap a4z dg ---
00 0 a) 2612 3613 4614

is characteristic for f (x) = ZZZO ax® € Rlx] withay > 0, ag # 0, to have all roots
exclusively on the negative real axis. Thus, a new class of totally non-negative matri-
ces was found in these “infinite matrices of Hurwitz-type”, (c¢f. [9], Definitions 1.40
and 1.42, p. 455f.). These matrices were considered as somehow related, but not
identical with, the classical Hurwitz matrices as considered in connection with the
stability problem [12].

We will show in the following that the matrix (1) is the limit of matrices pos-
sessing the classical Hurwitz structure (properly defined below cf. Definition 2),
and which matrices are generated by Hurwitz-stable polynomials or functions. This
approach allows us to extend the above characterisation of root-location to real entire
functions of low order with sufficiently separated zeros lying exclusively in the
open left half-plane, see Theorem 4. The connection to classical results via the Hur-
witz matrix-structure facilitates the independent, concise proof of the generalisation
Theorem 3 as well as of the result by Holtz and Tyaglov. The interested reader finds
a different proof of this generalisation in [5], together with the most general results.
Focussing on the Laguerre—Poly4 class, we were able to use only simple polynomial
tools besides the classical canon of results.

Moreover, our interpretation allows to use a result of Garloff and Wagner [8]
on the Hadamard product of real Hurwitz-stable polynomials, and we thus show
that the Schur—Hadamard product of matrices E(f) o E(g), generated by certain real
entire functions f and g with exclusively negative zeros, is totally non-negative,
see Proposition 3. We extend the mentioned results to generalised positive pairs of
polynomials and their uniform limits in the Laguerre—P6lya class, see Proposition 4
and Theorem 6.

Paper outline: In the following subsection, we collect a number of definitions
and facts related to Hurwitz matrices and Hurwitz-stability. In Sect.3 we use the
important result by Aissen et al. to prove our Theorem 3 generalising the characteri-
sation of exclusively negative roots via total non-negativity of (1) to entire functions.
In Sect.4 we show that this approach naturally leads to the fact that the Schur—
Hadamard product of matrices of the form (1) is totally non-negative. Moreover,
we extend these results in Theorem 6 and Proposition 4 to matrices generated from
generalised positive pairs and their uniform limits. To achieve this, we use in Sect.4
classical results on entire functions with zeros exclusively in the upper half-plane
{z € C: 3z > 0} (cf [13]) in reformulations suitable for entire functions which are
the uniform limits of Hurwitz-stable polynomials.
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Terminology: By R.( we denote the set of positive real numbers. An entire
function is a complex function analytic everywhere in C. Such functions can be
classified using order and genus of the function and the genus of its zeros, for these
notions cf., e.g., [4]. Polynomials are entire functions of order and genus zero.

For two entire functions f and g, with Taylor expansions f(x) = > ;o) ax' and
g(x) = 2.2, bix', we denote by (f o g)(x) the power series > .- (a; - b;)x". This
power series is everywhere convergent in the complex plane (as a computation of the
radius of convergence by the Cauchy—Hadamard formula [1] shows), and we denote
the corresponding function by f o g. The function f o g is called the Hadamard
product of f and g.

For two matrices A and B of identical dimensions, with entries a; and b
respectively, we denote by A o B the matrix with entries a;; - b;;. We call A o B the
Schur—-Hadamard product of A and B.

2 Hurwitz-Stability, Hurwitz Matrices and Total
Non-Negativity

In this paper, the following definitions regarding stability will be used.

Definition 1 An entire function f is said to be Hurwitz-stable if all solutions of
f(@ =0liein{z € C: Nz < 0}.

We call here quasi-stable any entire function f for which all solutions of f(z) = 0
lie in the closed left half-plane {z € C : %z < 0}.

Many authors have discussed the related questions of root-location on the real
axis, real roots of a single definite sign or the question of Hurwitz-stability using
expansions at Infinity. (The surveys [9, 12, 16] are no exception and contain refe-
rences to many more examples.) Especially, normalisations of a polynomial

would occur for the leading term gox?. But to extend a result naturally from polyno-
mials with only non-negative Taylor coefficients to transcendental entire functions
it is more convenient to consider expansions at Zero, not at Infinity. So we choose
the (in this context uncommon) expansion near the origin. (And we are but little
surprised that this is exactly the type of expansion Hurwitz had used to derive his
determinant results viz. [10, p. 281 ff.]). Moreover, we phrase here Hurwitz’ classical
stability result for polynomials in terms of an infinite matrix.

Theorem 1 (Hurwitz) Given a real polynomial p of degree d € N, positive at the
origin (p(0) > 0), with even-odd decomposition p(x) = h(x*) + xg(x*) into polyno-
mials h, g € R[x], and with Taylor expansion
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d
p(x) = h(x”) +xg(x*) = D pix' = po + p1x + pax” + - + pax € Rx].
i=0

The polynomial p is Hurwitz-stable if and only if the first d consecutive initial prin-
cipal minors of the infinite matrix

P1p3psp7 -
PoP2P4 D6 -

H(p) :=H(g, h):= | O P1P3ps- @)
0 popapa---

are positive.

While the preceding formulation of Hurwitz’ result might seem unconventional if
not unnecessary, the changed set-up allows for a smooth transition to entire functions
and totally non-negative infinite matrices as detailed further below.

The following definition of “Hurwitz matrix™ may be found in [11, p. 331] or [14,
Sect. 4.8, p. 117].

Definition 2 We call Hurwitz matrix any finite or infinite matrix M = (m;;);_,;_,
with entries m;; generated from a single fixed, finite or infinite (I < w < +00)
sequence

(mu)ﬁz()a

indexed by v € Ny with 0 < u < 400, such that we have m; ; = my;_; whenever
0 <2j—1i<u,andm;; =0 otherwise.

Thus, the matrix considered in (2) is a Hurwitz matrix. Let us additionally
point out the hitherto overlooked fact that the matrix E(f) = (e;;) defined in (1)
is a Hurwitz matrix: The matrix can be described as E(f) = H(f, id - f') (where
(id - f)(z) = id(2)f'(z) = 7zf'(z)). But the matrix E(f) is not generated by a Hurwitz-
stable polynomial. Thus, the following important non-negativity result derived inde-
pendently first by Asner, and afterwards Kemperman [3, 11] does not apply.

Proposition 1 A real polynomial p with expansion

d

px) = h(xz) + xg(xz) = Zpixi, where h, g € R[x],
i=0

which is positive at the origin, and which is Hurwitz-stable or quasi-stable, yields a
totally non-negative, infinite Hurwitz matrix H(g, h).

Although the preceding proposition cannot be applied directly to the matrix E(f),
the matrix E(f) is totally non-negative by the mentioned result of Holtz and Tyaglov
[9, Theorem 4.29, p. 503]. We will show in the following that there is a connection
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between the Hurwitz matrices in (2) and (1), and point out the common source of the
total non-negativity of both structures. To this end let us consider in the following
pairs of polynomials with exclusively real, interlacing zeros.

2.1 Hurwitz-Stability and Positive Pairs

Hurwitz-stability of a real polynomial p(x) = h(x*) + xg(x?) hinges on the follow-
ing inter-connecting properties of 4 and g (as we re-call in Proposition 2) viz. [7,
Sect. 16.14].

Definition 3 Tworeal, non-zero polynomials 4 and g constitute a positive pair (h, g),
if

(i) deg(h) > deg(g),
(i) sign(h'“s™(0)) = sign(g'**9(0)),
(iii)) h and g both have exclusively simple, negative roots, denoted by A; and y;
respectively, indexed in decreasing order and which alternate (interlace each
other) on the negative real axis beginning with the largest root of 4:

O>A>y1>A >y >---

A tuple (h, g) of real, non-zero polynomials with exclusively real, non-positive
roots A; and y; which satisfies (i) and (i) in Definition 3, is called here (comp. [8, p.
799/800]) a generalised positive pair if the weak version of (iii) holds true, i.e., for
which instead of (iii) above it holds true with root-indexing such that A; > A, > ...,
and y; >y, > ..., that

O>Az2yz2Mm=>2m>---

We have the following connection of (generalised) positive pairs to Hurwitz-
stability cf. [7], and to quasi-stability cf. [8].

Proposition 2 Two real, non-zero polynomials (h, g) generate a Hurwitz-stable
polynomial p(x) = h(x*) + xg(x*) if and only if (h, g) constitute a positive pair.

Two real, non-zero polynomials (h, g) generate a quasi-stable polynomial p(x) =
h(x?) + xg(x?) if and only if (h, g) constitute a generalised positive pair:

The sign of the Taylor coefficients of a positive pair is not necessarily positive,
but with a suitable normalisation the combination of Proposition 2 with Proposition
1 yields the following.

Corollary 1 A positive, or generalised positive, pair of real polynomials (h, g) such
that h(0) > O generates a totally non-negative infinite Hurwitz matrix H(g, h).
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The polynomial tuple (f, id - f')=(f (x), xf'(x)) € R[x] x R[x] which generates
the matrix E(f) = H(f, id - /') is not a generalised positive pair as f(0) # 0. Thus,
the preceding two results cannot directly yield the total non-negativity of the matrix
H(f,id - f") = E(f). The total non-negativity of E(f) will be shown to be a conse-
quence of a limiting process. In the next section, total non-negativity of E(f) turns
out to be characteristic due to a related characterisation of exclusively negative zeros
involving upper triangular Toeplitz matrices.

3 Characterising Exclusively Negative Zeros

Let us change our perspective on the characterisation by Holtz and Tyaglov: Percei-
ving it as a result on root-location of (rational) entire functions rather than one on total
non-negativity of structured matrices, we see that it complements the well-known
theorem for meromorphic functions by Aissen, Edrei, Schoenberg and Whitney (for
reference, cf. [2, p. 306, Theorem 5] or, e.g., [6]) in our polynomial case. Let us spell
out the restriction to entire functions of the latter theorem.

Theorem 2 (Aissen et al.) Let f be an entire function with Taylor expansion f (x) =
So aix* such that ag > 0. The function f has exclusively negative zeros and is of
the form

fx) =gx)-ef*, B >0, where g is a real entire function of genus 0, (3)
if and only if the upper triangular Toeplitz matrix

dap a) dy az d4 ds dg - -

anal ap) dz d4 ds --- .
AESW(f) = 00 ap a; a, az ag -+ | = (aiq]')i,j:o’ (4’3-)

where a;j :=01ifj —i <0, and a;j := a;_; otherwise, (4b)
is totally non-negative, i.e., every minor is non-negative.

Viewing the matrix AESW (f) as a sub-matrix of E(f) is now crucial to properly
identify the nature of E(f), and to extend the Holtz—Tyaglov result on the total non-
negativity of E(f),f € R.o[x], to entire functions. Our extension covers naturally
those real functionsf of the form (3), positive at the origin, which have exclusively
negative zeros. These functions make the essential part of the Laguerre—P6lya class
L-P* (cf. [15]) of real, entire functions with a product expansion of the form



Componentwise Products of Totally Non-Negative Matrices Generated ... 157

o0 o0
cxme’s"l_[(l +xx;) with ¢, 8>0,x >0, in <o00; meNy. (5

i=1 i=1
Regarding this class, we establish here the following characterisation.

Theorem 3 An entire real functionf of the form (3), with Taylor expansion f(x) =
Z/fio aix*, and such that f(0) = ay > 0, has exclusively negative zeros if and only
if all minors of the matrix (1), repeated here as

ap dy dp daz a4 das dg ---
0 a; 2a; 3as 4a4 Sas 6ag - - -
0 ap dy ap asz dasg ds ---
E(f) — H(f, id f/) — 00 ay 2a2 3a3 4614 5615 (6)
00 ap ady ap asz dg ---
00 0 aq 2612 3(13 4(14

are non-negative.

Remark 1 The original result by Holtz/Tyaglov (cf. [9], Theorem 4.29, p. 503, as well
as p. 423) characterising exclusively negative roots of real polynomials of degree d
had the normalisation conditions: £ (0) > 0, f(0) # 0. The normalisation assump-
tions of our Theorem 3, f @ (0) # 0, f(0) > 0, are equivalent to the former conditions
in either case of the theorem.

Proof of Theorem 3.
“«<=": If the real, entire function f with f(0) > O generates a totally non-negative
matrix (6), we take the infinite submatrix of (6) consisting of the first, third, fifth etc.
rows, and the first, second, third etc. columns. This totally non-negative submatrix
is actually the matrix AESW (f) defined in (4a), hence Theorem 2 implies that f has
exclusively negative zeros.
“=":Iff is a positive constant, the claim is trivial. Let f be a real polynomial of degree
d € N such that £(0) > 0, and with exclusively negative zeros, say ;, i = 1, ...,d.
Then f and f” have positive non-trivial Taylor coefficients. Let us assume first that f
has exclusively simple zeros. Then the ordered tuple (f, f) is a positive pair as the
leading coefficients are of the same sign, and by Rolle’s theorem the roots of f and f*
are negative as well as simple, and interlace each other - beginning with the largest
root max;—i,._ 4 ¢ = —min—;,_4|¢;| of f, the pair’s first member.

For ¢ > 0 chosen such that ¢ < min{min;—; __4 [¢], min;=; 4 1/|&]}, we define

.....

d+2
Fe(x) :=f'(x) - (x + &) - (ex + 1), with Taylor expansion, say, F,(x) = Z ﬂixi.
i=0

The choice of ¢ yields that (F, f) is a positive pair. The positive pair (F¢, f) generates
the Hurwitz matrix H(f, F.) which we write as
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dapg dyp dp a3z a4 Ads dg - -

Bo B1 B2 B3 Ba Bs Bs - - -

0 dap dy dp as a4 as - - -

H(f’F,s)Z Oﬂ0ﬂ1ﬂ2ﬂ3‘34ﬂ5...

0 0aypa ar)az ay ---

0 0 BopBiB2BspPa---

The matrix H(f, F) is totally non-negative, by Corollary 1, for all sufficiently small,
positive ¢, and hence by continuity also for ¢ = 0. With ¢ — 0+, the Taylor coeffi-
cients of F,(x) tend to those of xf’(x). Explicitly, we have that

Bo =¢ea; — 0,81 = (1 +eHay +e2ar — ay,
Br =¢tk —Dap_1+ 1+ az)kak +&2(k + Daygy — kay fork=2,...,d—1, and
By = (1 + &*)dag + e(d — ag_ — dag, Byy1 = edag — 0.

Hence, letting e—>0 we obtain H(f, Fe) — H(f,id -f) = E(f),
and our claim is proved in this case.

If f is a real polynomial of degree d > 1, with leading coefficient «, and exclusively
negative, pairwise different zeros ¢,k =1, v of arbitrary multlphcny Ui € , we

consider f,(x) := « [Tz ;L:kl(x — g1+ “" 1)). The sequence (fn),cN approximates

f (with £(0) > 0) uniformly on the unit disc. From the above, we have that the matrices E (fn
generated by f are totally non-negative, and this remains true, by continuity, for E(f).

If f is a transcendental entire, real function of the form (3) with exclusively negative
zeros, and such that £(0) > 0, then the function f may be written as f(x) = ceP H?il 1+
xx;)with > 0,c,x; >0, Zf’il x; < 00, and hence has only positive Taylor coefficients.
We have to show that any minor of E(f) is non-negative. Let us consider an arbitrary, but
fixed minor which is the determinant of / rows, indexed by rq, ..., r;, and / columns, indexed
by cq,...,c;. Let us denote the thus specified minor by . To approximate the minor u
let us define for entire functions g with g(0) # 0 the minors M (g), determinant of the / x [
submatrix of E(g), composed from the rows rq, ..., r; and the columns cy, ..., ¢;. Suppose
the minor u = M (f)) under consideration contains only rows and columns of the first k + 1 of
E(f) (i.e., max;—y, _, max{r;, ¢;} = k + 1). This implies especially that only the first k + 1
coefficients of f(x) and xf’(x) are involved in the determinant. These coefficients are less in
modulus than m := max;—¢, _x [(i + 1) - a;|. We will show for all sufficiently small & > 0
that u = M(f) > —e.

The transcendental function f can be obtained as the uniform limit of the polynomi-
als f,(x) = c(1 4 Bx/m)" [[i_; (1 + xx;) = 2"0 gzn)xi with only positive coefficients (cf:
[15], p. 96). Let b := (2k max{l, mk})fl. As f(0) > 0, and f is entire, there exists g9 > 0
such that there are no negative zeros of f smaller than &g in modulus. Let us now take ¢ > 0
such that

e <b-eg.

There exists n = n(m, k, ) such that the Taylor coefficients al@n), i=0,...,k, of the func-
tions f,, approximate the corresponding coefficients a; of f as follows:
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la; —a®™| < 6/2*1 fori=0,... k.

Thus, [M(f) — M(f2,)| < €/2. As f,, is a polynomial with exclusively negative roots it can
be uniformly approximated by polynomials fN having exclusively simple, negative roots
for which M (fN) > 0. Choosing N = N(n, m, k, €) suitably large, the estimate |M (f2,) —
M(fN)| < &/2 must eventually hold. Thus, we have for all suitably small ¢ > 0 that M (f) >
—e. This yields M (f) > 0, i.e., non-negativity of the arbitrarily chosen minor u = M(f). O

We may use the above technique for positive pairs other than (f, f/), and their polynomial
limits. We easily obtain the following via our preceding arguments.

Theorem 4 Forapositivepair (h, g) € <olx] X <qlx]theinfinite Hurwitz matrix H (h, id -
g) is totally nonnegative.

Our new approach allows to discuss in the following section the entrywise product of the
nonnegative matrices E(f;) = H(f;, id -fl.’), i=1,2, and H(h;,id - g;),i = 1,2, considered
above.

4 The Entrywise Product of the Considered Matrices

The Cauchy—Binet determinant formula (cf., e.g., [7]) implies that the matrix product of totally
non-negative (TNN) matrices is again totally non-negative. For certain classes of structured
TNN matrices, we even know that the componentwise product in the class is again a TNN
matrix (cf., e.g., [14]).

4.1 The Polynomial Case

In the class of Hurwitz matrices generated by Hurwitz-stable polynomials p(x) = h(x?) +
xg(x3) e  -olx]  we may deduce total non-negativity of the Schur—
Hadamard product from a fundamental result of Garloff and Wagner
[8, Theorem 3.b].

Theorem 5 (Garloff/Wagner) For two positive pairs (resp. generalised positive pairs) of
polynomials, (hy, g1) and (ha, g2), the componentwise Hadamard product (hy o h, g1 o g2)
is a positive pair (resp. generalised positive pair).

This implies that the Schur—-Hadamard product of two totally non-negative Hurwitz matri-
ces H(g;j, hj),i = 1, 2, generated by generalised positive pairs (4;, g;) is itself a totally non-
negative Hurwitz matrix generated by a generalised positive pair. From our approximation
approach leading to Theorems 3 and 4 we obtain
from Theorem 5 the following for the matrices H (h;, id - g;).

Proposition 3 For two quasi-stable real polynomials f| and f>, both positive at the origin
and with even-odd polynomial decomposition f;(x) = hi(xz) + xg,-(xz), i =1,2, the matrix
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H(hy,id-g1)oH(hy,id - gy) = H(hy o hy, id - (8] o &2))

is totally non-negative. Especially, we obtain for two polynomials f; €  ~glx],i =1, 2, with
exclusively negative zeros that

E(fi) o E(f) = H(fi.id - f) o H(f,id - f5) = H(fy o fa.id - (f{ o f3))

is totally non-negative.

Before we begin a discussion of Hurwitz matrices H (h, id - g) generated by transcendental
entire functions f, let us gather information on the limit of sequences of Hurwitz-stable poly-
nomials in the following sub-section.

4.2 Function-Theoretic Description and Characterisation
of the Limits of Hurwitz-Stable Polynomials

What happens to the matrices H and E discussed in Sect.3 if we consider a sequence of
Hurwitz-stable polynomials f;; with uniform limit f s 0? Let us first think of the nature of
the limit function f. In view of (1 +xB/n)" — eP* for n — oo, factors like ¢*, g > 0,
may appear in the limit function. Thus, the uniform limits of real Hurwitz-stable polynomials
with positive coefficients contain the Laguerre-Pélya class .Z- %1 of entire functions as
described above in (5). Discussion of Hurwitz-stable polynomial sequences with non-real
root pairs tending towards the imaginary axis shows that a term ew‘z, y > 0, cannot generally
be avoided in the limit function. The following description is essentially well-known (but
usually formulated for functions with zeros exclusively in Iz > 0).

Fact1 (Comp. [13, Theorem 3, p. 331], and [13, (7.23), p. 318)])

If a sequence (fy) of real Hurwitz-stable polynomials converges uniformly (on some open,
non-empty neighbourhood of the origin) to a function f # 0, it converges uniformly on every
bounded domain, and the function f is a real entire function of the form

o
fx) = cxde? B H(l — xay)e™%, @)
k=1

wherece ,q€ ;B vy >0,a; € ,Z,fil|ak|2<oo.

For sake of brevity, we introduce the following definition (compare [13, p. 334]) for entire
functions f of order and genus at most m + 1.

Definition 4 We say here that an entire function f is of lifted genus at most m, if f(x) =

1 . . .
k(x) - e** | a > 0, where k is an entire function of genus at most m.

The Hurwitz-stable entire functions of the form (7), i.e., the uniform limits of Hurwitz-
stable polynomials thus are functions of lifted genus at most one. Not all of the latter functions
can be obtained as those uniform limits, e.g., e~*. We have the following characterisation of
those uniform limits.
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Fact2 (Compare [13, Theorem 4, p. 334f. and p. 313])
An entire function f is the uniform limit of Hurwitz-stable polynomials if and only if it is of
lifted genus at most 1, with no roots in the right open half-plane and such that

@l = If(=2)| forall zwithhz <0 (®)

holds true.

For real entire functions with expansion (7) and roots lying exclusively in the left half-plane
the condition (8) obviously holds true.

4.3 Schur-Hadamard Matrix Product Arising
Jrom Hurwitz-Stable Transcendental Functions

If the real entire functionf # 0 is the uniform limit (on every bounded domain) of a sequence of
real Hurwitz-stable polynomials f;; with positive Taylor coefficients and even-odd polynomial
decomposition f;, (x) = hy (xz) + xgn (x2), we have the uniform approximations

hn(x%) — =: f¢(x?), and

fO+f(=x)
2

J) —f(=x)

_.p0..2
o =:f7(x%).

() —
As the (hy, gn) are positive pairs with exclusively positive non-trivial Taylor coefficients, the
Hurwitz matrices H (hy,, id - g,) are totally non-negative by Theorem 4. Considering individual
minors as in the proof of Theorem 3 we see that this property transfers minor-wise to the matrix
generated by the limit functions.

Proposition 4 For a real, Hurwitz-stable entire function f, positive at the origin, with product
representation (7) and even-odd decomposition f (x) = f¢ (3 + xf° (x2), where f€ andf° are
real entire functions, the Hurwitz matrix

H(f,id - f%) )
is totally non-negative.

The Schur-Hadamard product of Hurwitz matrices H (fl.e, id - fl."), i=1,2, as considered
in (9), generated by Hurwitz-stable f; of the form (7), essentially inherits totally non-negativity
from the positive pairs uniformly approximating f; as we will see next.

Theorem 6 Given two real, Hurwitz-stable entire functions f1, f> such that f1(0) > 0 and
12(0) > 0, of the form (7), and with even-odd decomposition fi(x) = ff (3 + X (x2), where
fie, fi” are real entire functions.

The matrices H(f{,id - f{) and H(fy, id - f5) as well as their product H(f{,id - f) o
H(fy,id - ff) = H(f{ ofs,id - (f{ ofy)) are totally non-negative.



162 P. Batra

Proof The real functions f; are Hurwitz-stable, of lifted genus at most one, and of the form
(7). Hence, condition (8) holds true. Thus, the functions f; can by approximated uniformly by
Hurwitz-stable polynomials f,{i], n € , with even-odd polynomial decomposition given by
A0 = ) + el

By Theorem 4, a positive pair (4, g») with non-negative, real coefficients generates a
totally non-negative, infinite Hurwitz matrix H (hy, id - gn). Thus, by Theorem 4 the matri-
ces H,[,i] =H (hE,i], id - gLi]) are totally non-negative. By Proposition 3 and Theorem 5, the
product 7, := HWL id - gy o B id - g2y = HBY o n2) id - (gl o gl2)) is a
Hurwitz matrix generated from the limit of positive pairs, and hence totally non-negative.

The total non-negativity of the minors of the matrices H,[li], i =1, 2, and of the minors of
their Schur—-Hadamard product 7, transfers to their limits as in the proof of Theorem 3. [J

Regarding function pairs with common zeros we consider here merely pairs (f, f’), where
f € L-277 is positive at the origin, i.e., f is a real entire function of lifted genus at most
0 with exclusively negative zeros and exclusively positive (non-trivial) Taylor coefficients.
From the proof of Theorem 3 we obtain mutatis mutandis the following.

Theorem 7 Given two real entire functions fi, > €.£-P which are both positive at the
origin, the Schur—Hadamard product E(f1) o E(f>) of the two matrices E(f1) = H(fi, id -
fl/), E(b)=H(f,id Afz/) (generated according to (1)) is totally non-negative, and we have

E(f1) o E(f2) = H(fi o f2.id - (f{ o f3)).
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Fields of Values of Linear Pencils
and Spectral Inclusion Regions

Natalia Bebiano, Joao da Providéncia, Ana Nata and
Joao P. da Providéncia

Abstract We propose efficient methods for the numerical approximation of the field
of values of the linear pencil A — AB, when one of the matrix coefficients A or B is
Hermitian and A € C. Our approach builds on the fact that the field of values can
be reduced under compressions to the bidimensional case, for which these sets can
be exactly determined. The presented algorithms hold for matrices both of small
and large size. Furthermore, we investigate spectral inclusion regions for the pencil
based on certain fields of values. The results are illustrated by numerical examples.
We point out that the given procedures complement the known ones in the literature.

Keywords Field of values * Linear pencil + Selfadjoint linear pencil

1 Introduction

Consider the linear pencil A — AB, where A and B are n x n complex matrices and
A € C. The study of linear pencils has a rich and long history that goes back to
Weierstrass and Kronecker in the nineteenth century, usually in the context of their
spectral analysis. A complex number A is said to be an eigenvalue of the pencil if
there exists a nonzero x € C" such that
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Ax = ABx. (D

The vector x is called an eigenvector of the pencil corresponding to the eigenvalue
A. The set of all eigenvalues is known as the spectrum of A — AB and denoted by
o(A, B).

In the present work we are particularly interested in the numerical computation
of certain fields of values, that are spectral inclusion regions for linear pencils. Moti-
vations to investigate this problem come from stability theory and from the study of
certain over-damped vibration systems, e.g. see [6].

The field of values of a linear pencil is denoted and defined as

W(A,B) ={A e C:x"(A—AB)x =0, forsome 0 # x € C"}, 2)

(cf. [8, 10, 12]). The set (2) does not contain the point at infinity. If B is singular,
then o (A, B) may have an infinite eigenvalue. Therefore, from the above definition,
W (A, B) is not necessarily a spectral inclusion region for the generalized eigenvalue
problem (1). So, we consider a slightly modified definition: if A, B have a common
null space, then W (A, B) = C U {oo}; otherwise

x*Ax

x*Bx

W(A,B):[ :O#xe@”], 3)

where 1/0 is understood as the point at infinity. When B = I, (3) reduces to the
classical field of values of the n x n matrix A,

W) = {x*Ax : x € C", ||x| = 1},

where ||x|| = (x, x)!/? = (x*x)!/? is the usual Euclidean norm in C". This concept
has been extensively investigated; see, for instance, [5, 7].

Psarrakos [12] investigated the problem of the numerical computation of W (A, B),
when one of the coefficients A or B is Hermitian. His approach uses the algorithm
of Li and Rodman [9] to compute boundary points (u, v, w) of the so-called joint
numerical range

JNR(B,H, S) = {(x*Bx, x*Hx, x*Sx) : x € C", with x*x = 1},

where A=H +iS and H and S are Hermitian. Given a point (u,v,w) of
JNR(B, H, S) the solutions of the equations uA + v +iw = 0 (u # 0) are points
of W(A, B). Psarrakos method performs specially well for matrices of small size.
So, for large matrices, there is place for improvement and this is one of our main
concerns. Our second goal is to obtain eigenvalue inclusion regions for matrix linear
pencils, based on fields of values.

If B is Hermitian positive definite, we clearly have W(A, B) = W (B~'/2AB~!/2)
and due to the convexity of the classical field of values (stated by the Toeplitz-
Hausdorff Theorem [4]), W (A, B) is a convex set. However, W (A, B) is not always
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convex and not even bounded or connected [8]. If 0 € W(B), then W(A, B) is
unbounded and consequently this set is not an informative spectral inclusion region
for the pencil. This motivated the investigation of other inclusion regions of field
of values type. If B is nonsingular, the spectrum of B~'A coincides with that of the
pencil A — AB. Henceforth, W(B~'A) and W(AB~!) are inclusion regions for the
eigenvalues of (1). Interchanging the roles of A and B and considering the gene-
ralized eigenvalue problem Bx = A~'Ax, the sets 1/ W(A~!B) and 1/ W(BA™!), for
nonsingular A, are also inclusion regions for (1). Division is interpreted elementwise.

The paper is organized as follows. In Sect. 2 we characterize the field of values of
selfadjoint linear pencils, i.e., with Hermitian matrices as coefficients. In Sect. 3, aux-
iliary background is presented. In Sect. 4 we give a method to approximate W (A, B)
for Hermitian positive semi-definite B. In Sect. 5, a procedure to numerically approx-
imate W (A, B) for indefinite invertible B is presented, based on the connection of
this set with the Krein space field of values. Finally, in Sect.6, some conclusions
are included. A few illustrative examples are provided. All images were computed
numerically using MATLAB.

The key idea behind the algorithms here proposed is the following: we use sub-
space projection methods, a line of attack exploited by Hochstenbach in [6], stressing
the fact that the field of values is often well approximated from a low dimension
Krylov space. Our attempts are in this vein, and in summary, their advantages over
the existing ones are that we perform projections on bidimensional spaces, in which
case the fields of values are easily and exactly determined.

2 Selfadjoint Linear Pencils

In the sequel, M,, denotes the algebra of n x n complex matrices. If the matrices A
and B have a common nonzero isotropic vector, i.e., x*Ax = 0 and x*Bx = 0, then
W (A, B) = C. To avoid this situation, we assume that A and B do not have a common
isotropic vector and so W(A, B) # C. For A and B Hermitian, we define

oA, By={reC:Au—ABu=0, 0 #ueC", u*Bu> 0},
0 AB)y={AeC:Au—ABu=0, 0£uecC" uBu <0}

The shape of W (A, B) when A and B are Hermitian is described in Theorem 4.1
of [8]. The statement of this theorem is not correct, and is incorrectly reproduced in
[12, Theorem 9]. Next we present the proper result and proof.

Theorem 1 Let A — AB be a n x n self-adjoint pencil with W (A, B) # C.

(a) If B is positive or negative definite, then W (A, B) is a closed interval in R.
(b) IfBis positive (or negative) semi-definite, then W (A, B) is an unbounded interval
of the form [a, +o0o[ or ] — 00, al.
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(c) If B is indefinite and A is positive (negative) definite, then W (A, B) is the union
of 2 disjoint unbounded intervals and 0 ¢ W (A, B).

(d) If B is indefinite and A is semi-definite positive (or negative), then one of the
following holds

(1) W(A, B) =] —00,a] U0, +oo[ witha < 0,
(2) WA, B) =] — 00, 0] U [b, +00[ with 0 < b.

(e) If both B and A are indefinite, then two possibilities may occur:

(1) WA, B) =] — 00, a] U [b, +ool, with0 € W(A, B) and a < b.
(2) WA,B) =R.

In all cases, the endpoints of the intervals are eigenvalues of the pencil.

Proof (a) Let B =diag(Bi,...,B,) with all B’s positive and let o(A,B) =
{ay,...an}, a1 = -+ > «,. There exists a non-singular matrix 7 such that

T*AT = diag (@181, ..., @,B8,), T*BT =B.

Letv =", yie;, where y; € C and ¢; is the column vector with 1 in place i and 0
everywhere else. Then, we have

n n
VT ATY = D |y, v'Bv = |yil’B:,
i=1

i=1

and so
VT*ATY YL yilaipi
V*By D lvlPsi
Hence,
VvIT*ATv
o = ———— = Uy,
v*By

and consequently
W(A, B) = [ay, o]

(b) If B is positive semi-definite with rank r, we can take B = diag (84, ..., B,
0,...,0). Let 6(A,B) ={ay,...a,}, o1, ..., € R. There exists a non-singular
matrix T such that

T*AT = diag (@181, .-, @ Bry Cpily ooy &), Qpil,...,0, € R, T*BT =B.
Since W(A, B) # C, the eigenvalues «,, ..., o, are non-vanishing and have all

the same sign. In fact, suppose o+ > 0, o,1» < 0. We may choose v = ye,+1 +
dert2, v, 8 € C, such that
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vk _ 2 2 —
v TATV—|V| O5r+l"}_|8| ()[r+2—0,

which is impossible because, by hypothesis, A and B do not have common isotropic
eigenvectors. Let v = er'l:l yiei, ¥i € C. Then, assuming that o, 1 > --- > o, > 0,
we get

r n r r
VT ATY = D ylPeifi+ D IvilPes = D il v By =D |vil*Bs.
i=1 i=r+1 i=1 i=1
and so we obtain , s
Vv*T*ATv 2 Zizrl |7/l| (2)[!,81 Z a,.
v*By ZiZl lvi|=B;i

On the other hand, if 0 > &, > --- > «,, we find

Vv¥T*ATv

< a.
v*By

(c) Let B be indefinite with inertia (r,n — r). Let 1 /o > 0 > 1/ be the largest
and smallest eigenvalue of the pencil (B, A), so that W(B, A) = [1/8, 1/«]. Since
W(A,B) =1/W(B, A), we have

W(As B) =] — 00, ﬂ] ) [av +OO[,

and 0 ¢ W(A, B).

(d) Similar to (c).

(e) Let A be indefinite and let B have inertia (r, n — r). As before, B may be taken
of the form

B=diag(B1,...,Bn), B1z2-=2B>0>B. 11> =B,

According to hypothesis W (A, B) # C, the eigenvalues of the pencil (A, B) are all
real and the associated eigenvectors are non-isotropic. Let us consider the matrix 7 =
(uy, ..., u,) where uy, ..., u, are B-orthogonal eigenvectors of the pencil. Clearly,
the number of columns with positive B-norm is r and the number of columns with
negative B-norm is n — r. This matrix is non-singular and may be chosen so that

T*AT = diag (1B, . .., anfy), T*BT = B.

We further assume that 6+ (A, B) = {ay,...,a,}, 01 > --- > «,, and 0~ (A, B) =
{1y oo s oy > -+ > . Forv =", yse;, with y; € C, we find

n n
VATV = |y, vVBv= D |vil*B:.
i=1

i=1
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Let z = v*T*ATv/v*Bv € W(A, B), so we may write

ap — bq
P—9q

’

where

_ ZonPaifs - SiealiPab s ae S g
i nlPBi S il 2 vl 12B;.

i=r+1

Thus, a € [a,, @] and b € [o41, @,]. Moreover, z €] — 0o, a] U [b, +o0[ if a <
b and z €] — 00, b] U [a, +o0[ if a > b. If a, > a4 it follows that ] — oo, b] U
[a, 400] €] — 00, &;4+1] U [, +00I, so that «, is the lowest value which z may
assume if p > g, while &, is the highest value which z may assume if p < ¢. Thus,

W(Aa B) =] — 00, ar-H] U [ara +OO[

It may be seen that «,«,+; > 0 sothat0 € W(A, B).
If o, > « it follows that | — oo, a] U [b, +00[C] — 00, 1] U [a,, +00], and so

W(A7 B) =] — 00, (X]] U [alh +OO[ )

with o1 > 0and so 0 € W(A, B).
If o, < @ and o, < 1 it follows that W(A, B) = R.
Next, let A be indefinite and let B have inertia (r, s — r, n — s). We may consider

Bzdiag(ﬂl’"'7/33'705"'70)’ ,31 Z"'Zﬂr>0>ﬁr+l ZZ,BS

Since by hypothesis W(A, B) # C, the eigenvalues of the pencil (A, B) are all real
and the associated eigenvectors are non-isotropic. We may assume that o™ (A, B) =
{oer, ...,y >~ >0, 07 (A, B) = {otys1, ..., 0}, €y = -+ >, SO that
there exists a non-singular 7" such that

T*AT = diag (@181, ..., AsfBs, Asi1y -+, ), Qsil,...,0, € R, T*BT =B.

Indeed, we consider the matrix T = (uy, ..., Uy, Ust1, ..., U,) Where uy, ..., u; are
B-orthogonal eigenvectors of the pencil and u., ..., u, are eigenvectors of the
projection of A to the eigenspace of B associated with the eigenvalue 0. Moreover,
the eigenvalues oy, ..., @, are non-vanishing, since W (A, B) # C, and all them
have the same sign.

Forv=>"", ye;, vi € C, we find

s n n
VT ATY = D |yl + D lvilPei. vBv= > |yl
i=1 i=1

i=s+1
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Let z = v*T*ATv/v*Bv € W(A, B). We may write

ap — bg
P—9q

+t,

where

> yilPaipi S lilaiB; SR S
= — B b= , P= |y| ﬂ.’ q=— |V\ /3'7
> 1vil?Bi i il2Bi ; o ,;H s

Thus, a € [«,, a1] and b € [®,41, @, ]. Furthermore, z €] — oo, a] U [b, +oo[+¢ if
a < b, while z €] — o0, b] U [a, +oo[+tif a > b.

Let o > ap4p and o; >0, i=s5+1,...,n Then,a> b and ¢t > 0 if p > g,
while r < 0 if p < ¢. Since (ap — bq)/(p — q) €] — 00, b] U [a, +00[, a > «, and
b < a1, it follows that

z €] — o0, blU|a, +00[C] — 00, ay41] U [a, +00],

so that «, is the lowest value which z may assume if p > ¢. Indeed, z = «, if and
only if all the y; vanish except y,. On the other hand, «, is the highest value which
zmay assume if p < g and z = «, if and only if all the y; vanish except y,41. Thus,

W(Aa B) =] — 00, ar-H] U [ara +OO[

As o041 >0, # a,11, we have 0 € W(A, B).
Similarly, if o, > ¢y ando; <0, i=s+1,...,n, we get

Z G] — 00, a] ) [b’ +OO] g] — 00, al] ) [anv +OO[,

so that
W(A, B) =] — 00, a1] U [a, +00,

with 0 € W(A, B).

If o, < @ and o, < ;4 it follows that W(A, B) = R.

fo, >0y andeo; <0, i=s+1,...,n,orife, >y and o; >0, i =5+
1,...,n, we may also conclude that W(A,B) = R. O
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3 Background
3.1 Compression of W(A, B)

The classical field of values may be characterized as a union of elliptical disks. This
result is many times referred as the Marcus—Pesce Theorem [11], although it was
already known long before. In the following, we recall the standard compression of
W (A, B) into fields of values of 2 x 2 pencils [3].

Theorem 2 (Chien and Nakazato) For any A, B € M,

WA, B) = | WAw, Bu),

u,v

where u and v vary over all pairs of orthonormal vectors in C" and

| (Au, u) (Av, u) | (Bu, u) (Bv, u)
Aw = |:(Au, V) (Av, v):| > B = [(Bu, v) (Bv, v)i| ' @

When B is Hermitian positive definite, then also B, is Hermitian positive definite,
because it is a principal submatrix of a positive definite matrix. If B is indefinite, B,,,
may be definite or indefinite. The field of values W (A, B) in the 2 by 2 case, can
be easily drawn from the entries of the matrices according to the Elliptical Range
Theorem, the Hyperbolical Range Theorem, and the Parabolical Range Theorem
(cf. [2, Sect.2]).

3.2 Connection of W (A, B) with the Krein Space Field of
Values for B Indefinite

There is an interesting relation of W (A, B) when B is indefinite Hermitian, with the
Krein space field of values [1]. Indeed, suppose that Bis ann x n indefinite Hermitian
matrix with inertia (r, n — r). Consider C" endowed with indefinite inner product
[x, y] = ¥*Bx, x,y € C". The Krein space field of values of A € M,, is defined by

[Aw, w]

WB(A)=[ [W W] .WEC”, [W,W]#O].

We easily find the connection of Wg(A) with the field of values of the pencil A — AB.
Indeed, we easily get

(BAw, w)

»mmy:wwABy:[wmw>

we C", (Bw,w);éO],

and so W(A, B) = Wg(B~'A).
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4 Approximation of W(A, B) for B Positive Semidefinite

Throughout, for A € M,, we consider the Cartesian decomposition A = H(A) +
iK(A) where H(A) = (A+ A*)/2 and K(A) = (A — A*)/(2i) are Hermitian.

4.1 Algorithm 1

Input: A matrix A € M,,, a Hermitian positive semidefinite matrix B and m angles.
Output: An approximation for W (A, B).

1. Set6y = (k— D)w/m, k =1, ..., m+ 1 for some positive integer m > 3.
2. Starting with £ = 1 and up to k = m, take the following steps:

(i) Compute an eigenvector u associated t0 Amin(H (e7%A) — AB), if
W(H (e7™A), B) = [a, +o0] (to Amax (H (e7A) — AB), if
W(H (e7™A), B) =] — 00, al).

(ii) Compute the compressions of A and B to span{uy, u1}, denoted by Az, ,,
and ng,;kﬂ .

(iii) Compute and draw the boundary of W(Azz,,,, Bi,s.,) denoted by I%.

(iv) If k < m, take next k value and return to (i). Otherwise, continue.

3. Take the convex-hull of the collection of curves I, ..., I}, as an approximation
for W(A, B).

According to the Elliptical and the Parabolical Range Theorems, the collection
of curves in Step 3 of Algorithm 1 is constituted by ellipses and parabolas.

4.2 Approximation of W (A, B) for B Positive Definite

Algorithm 1 may be applied when B is positive definite with the following replace-
ments of Sub-steps (i), (ii), (iii) of Step 2:

(i) Compute eigenvectors u; and v associated, respectively, to Amin (H (67%*A) —
AB) and Ao (H (67 A) — AB).
(i) Compute the compressions of A to span{uy, ux+1} and span{vg, v;_;}, denoted
by Az, 7,,, and A5, |, and do the same for B, notation: By, z,,, and B;5, .
(iii) Compute and draw the boundary of W(A;,z,.,, Bi,z.,) denoted by I'; and the
boundary of W(A4;,5,_,, By,5,_,) denoted by Ay,

and the following replacement of Step 3:
3. Take the convex-hull of the collection of curves I, ..., [,,, A;,..., A, as an
approximation for W (A, B).
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Fig. 1 Eigenvalues of A — AB (asterisks) and part of the boundary of W (A, B). Here, B is PSD.

(Example 1)

w(B'A)

- = w(aB™)
S 1wAT'B)
1/W(BA ")
*  cigs(B7'A)

Imaginary Axis

-3 -2 - 0 1 2 3
Real Axis

(2) A=C, BiC, B= by +0.1DD".

Imaginary Axis

S 1W(AT'B)
1/W(BA™")
*  cig(B'A)

-02 -0.1 0 0.1 0.2 0.3
Real Axis

(b) Zoom-in of (a)

Fig. 2 a Eigenvalues of A — AB (asterisks) and the boundaries of W (4, B), W (B~'A), W(AB™1),
1/W(@AB™, l/W(B‘lA), for Example 2, m = 6. b Exclusion regions for the eigenvalues of the

pencil, 1/ W(AB™ 1), 1/ W(B~'A)

Example 1 We take the matrix A = randn(20), and the positive semidefinite matrix
B = I @ 0;. We carry out Algorithm 1 with m = 6. Considered as a spectral inclu-
sion region, W (A, B) has drawbacks since it is unbounded. See Fig. 1.

Example 2 'We take the matrix A = C; @ i C, and the positive definite matrix B =
Iy + 0.1DD*, with C; = randn(10), C; = randn(10), D = randn(20) with m = 6.
See Fig.2. The Zoom shows that the bounded complements of 1/W(A~!B) and
1/ W (BA™") are spectral exclusion regions for the eigenvalues of the pencil.
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5 Approximation of W(A, B) for B Indefinite

To avoid trivial situations, assume that the matrices A and B have no common nonzero
isotropic vector. Let us define

W.(A,B)={re€C:u'Au — \*Bu =0, ue C", u*Bu > 0},
W_(A,B)={L € C:u*Au—  u*Bu=0, u e C", u*Bu < 0},

and so W(A, B) = W, (A, B) U W_(A, B). To avoid trivial cases of degeneracy of
W (A, B), we shall be specially concerned with the class of matrices in M,,, for which
there exists a real interval [0}, 6;], with O < 6, — 8; <, such that for 6 ranging over
that interval, the Hermitian pencil

H(e A) — B, (3)

has real eigenvalues satisfying simultaneously the following conditions:

(i) Ai(H(e ®A),B) > --- > A, (H(e " A),B) € o " (H(e "A), B);
(ii) Arp1(H(e ™A),B) = --- = X,(H(e ™ A), B) € 0~ (H(e™"A), B);
(iii) A,(H(e ®A),B) > A1 (H(e A), B).

For the pencils of this class, W(H (e’iQA), B) is non-degenerate, that is, it is not
a singleton, a whole line (possibly without a point), or the whole complex plane
(possibly without a line). This class of pencils is called class .42, the acronym for
non-degenerate.

When B is indefinite Hermitian nonsingular, B,, may be indefinite or definite.
If B,, is indefinite, dW (A,,, B,,), the boundary of W(A,,, B,,), is the union of
two hyperbolical arcs, one in W (A,,, B,,) and the other one in W_(A,,, B,,). If
B,, is definite, W (A,,, B,,) may be in W, (A, B) or in W_(A, B). Let the curves
Ci,Cf,....,CF (C;,C5,...,C;) denote the arcs of W (A,,, B,y) in Wi.(A, B)

(W_(A, B)). Let KT =conv (C{", Cf,...,C) and K~ =conv (C;, Cy, ..., Cy).
The pseudo-convex hull of ct, C2+, R C:r, C/,Cy,...,Cy,denoted pCOIlV(C+,
Cf,...,Cr C{,Cy,...,C7), is the union of all half-rays of the lines passing

through z+ € K*, z~ € K~ with endpoint in z* not containing z~, or with endpoint
in z~ not containing 7.

As a preliminary stage to Algorithm 2, we start by searching an admissible angle
6. If the matrix is complex, we test the angle —z /2 for this property. If the answer is
positive, we go to Step 0. If not, we test the admissibility of & = 0. In the affirmative
case, we proceed to Step 0. Otherwise, we test the admissibility of the angles

Opp = =212k + 20— D2k e =0,1,...,25, k=1,2,3,...

until an admissible angle is found, and then we proceed to Step 0. It is worth noticing
that replacing the matrix A by e %+ A, where 6y ; is admissible for the pencil H(A) —
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AB, then 6 = 0 is admissible for the rotated pencil
H(e "+A) — AB

Step 0. Choice of [Bmin, Omax] Fix a tolerance tol =m/2V, N > 4 and let & = 0 be
an admissible angle. Starting with 8y = 0, construct a set of admissible angles, as
follows. Bisect successively the interval [0, /2] until we find an admissible angle
0, = /2", the integer v; being such that the angle 8; 4+ 7 /2" is non-admissible.
Proceed in this way until we find a new admissible angle 6, = 7 /2" + 7 /2”112,
the integer v, being such that the angle 6, 4+ 7/2"'"2 is non-admissible, and so on,
until we reach the admissible angle 6, = 7 /2" + /212 ... 4 g /201 FV2 etV
such that 6 + 7 /2”12 % is non-admissible, being vi + v, +---+ vy < N.
The admissible angles 6; = — /2", 0, = — /2" — g /2" *% . 0, = —; /2" —
/202 o 2itt+i gre analogously obtained. If the matrix is real,
we obviously have éj = —0;, j=1,...k. The interval of admissible angles is
[Oin> Omax] = [Oc, Ok].

5.1 Algorithm 2

Input: A matrix A € M,,, an indefinite nonsingular matrix B and m angles.
Output: An approximation for W (A, B).

1. Set 0, = Opin + "%I(Omhlx — 6min), k=1,...,m+ 1 for some positive integer
m > 3.
2. Starting with £ = 1 and up to k = m, take the following steps:

(i) Compute eigenvectors u; and v, associated, respectively, to
max (H(e™A), B) € 0~ (H(e™™A), B)

and ' '
Amin(H (e ®A), B) € o T (H(e ™A), B).

(ii) Compute the compressions of A and B to span{uy, uy;} and span{vy, v¢4+1},
Al?kl'lu-] 4 A9k9k+1 > Bflkﬁk+1 and Bﬁkf/lu-l 4 respectively.

(iii) Compute and draw W (Ay,z,,,, Biyi,,,) and 0W (A;5,,,, By,5,.,,), denoted
by I} and Ay, respectively.

(iv) If k < m, take next k value and return to (i). Otherwise, continue.

3. Take the pseudo-convex hull of the collection of curves I, ..., [}, Ay, ..., Ay
as an approximation for W (A, B).

We now present an illustrative example.
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Fig. 3 Field of values W(A, B), eigenvalues of the pencil (asterisks), boundaries of W(B~1A4)
(green) and of 1/ W (B~'A) (blue) for A = randn(20) + 70, B = 10 ® —I19, m = 6 (Example 3)

Table 1 Performance of Algorithm 2 and Psarrakos Algorithm [12], for the matrix of Example 3.
The computed area is the one of the domain bounded by the approximation of dW (A, B) and by

the vertical lines x = —8 and x = 8

m Eigenanalyses | Area Acc. digits Seconds

Algorithm?2 |6 24 160.7854 2 0.121777
12 30 161.5071 3 0.230439
24 42 161.6953 3 0.322045
48 66 161.7327 5 0.494298
96 114 161.7378 5 1.082117
192 210 161.7391 6 2.783337

Psarrakos 6 602 159.2174 1 0.387542

algorithm
12 2354 160.6860 2 0.731580
24 9314 161.5101 3 1.967806
48 37058 161.6773 3 7.043684
96 147842 161.7255 4 27.077536
192 590594 161.7368 5 111.270553

Example 3 The fields of values W (A, B) and W(B~'A), where A = randn(20) +
Tl and B = 1,0 @ —I,0, have been obtained using Algorithm 2 and are plotted in
—0Omin = 0.5915413 and m = 6. To compare, in accu-
racy, Algorithm 2 with Psarrakos Algorithm, we have computed the area of the
domain bounded by the obtained approximation of d W (A, B) and by the lines paral-
lel to the imaginary axis with abscissas x = 8 and x = —8. We have also considered
higher values of m in order to improve the accuracy. As Table 1 shows, Algorithm
2 requires much fewer eigenanalyses and reaches faster a given number of accurate

Fig.3. We have used O, =

digits.
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6 Conclusions

We have given procedures to numerically approximate W (A, B), of which at least
one of the two matrices is Hermitian. Several matrices in [13] have been tested.
In our approach we used the key fact that the field of values of a linear pencil
is efficiently approximated by the compression into bidimensional linear pencils.
Our algorithms compute the extreme eigenvalues of a small number of rotated pen-
cils H(e7A) — AB together with the respective eigenvectors ;. In a second stage
compression matrices of size 2 for the span{u;, u;,} for eachj =2, ..., m are con-
structed. Elliptical and hyperbolical arcs generated from the compression matrices
provide a quick and quite accurate approximation of the searched boundaries. Eva-
luating eigenvalues and eigenvectors involves O(n?) operations for n sized matri-
ces. Performing 2-by-2 compressions is an O(n?) process and determining ellipses,
parabolas or hyperbolas by using the Elliptical, Parabolical and Hyperbolical Range
Theorems takes almost no time. Variations in relative speed and accuracy occur for
varying dimensions, varying matrices and obviously changing the prescribed degree
of accuracy. The preliminary stages for Algorithm 2 take negligible time. We stress
that the proposed algorithms hold for both matrices of small and large dimensions.
Psarrakos method [12] can be used for pairs of matrices of small dimension but it
appears not to be interesting for large sized matrices. In fact, his method uses a dis-
cretization of the unit sphere in IR? and for each grid point a maximum eigenvalue of a
certain associated Hermitian matrix has to be computed. Hochstenbach’s Algorithm
[6] applies only for Hermitian positive definite matrices B (or any positive definite
linear combination of A and B). We have also focused on spectral inclusion regions
for matrix pencils based on fields of values.

It would be of interest to obtain accurate and fast algorithms to plot W(A, B)
whenever neither A nor B are Hermitian.
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The Characteristic Polynomial of Linear
Pencils of Small Size and the Numerical
Range

Natalia Bebiano, Jodo da Providéncia and Fatemeh Esmaeili

Abstract The numerical range of alinear pencil (A, B) of matrices of size n, of which
either A or B is Hermitian, may be characterized in terms of a certain algebraic curve
of class n, called the boundary generating curve. This curve is explicitly given by
the characteristic polynomial of the pencil. For n = 2 and n = 3, each possible type
of boundary generating curve can be completely described. For n = 3, the curve
type is given by Newton’s classification of cubic curves. Illustrative examples of the
different possibilities are given.

Keywords Linear pencil - Numerical range - Characteristic polynomial

1 Introduction

LetA, B € M, the algebra of n x n complex matrices. The linear pencil (A, B) is the
set of matrices A — AB, where X is a real or complex parameter. A pencil is said to
be regular if the polynomial det(A — AB) does not identically vanish, otherwise it is
singular. If the matrix B is nonsingular, the spectrum of the regular pencil denoted
by o (A, B) consists of all the zeros A of the polynomial det(A — AB). The spectral
theory of pencils is an important issue in pure mathematics as well as in applications
(e.g., see [3, 8, 12, 13] and their references). An informative containment region for
the spectrum of (A, B) is the numerical range [4, 8].
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The numerical range (also called the field of values) of a linear pencil is defined
and denoted as

W(A,B) = {» € C:x*(A — AB)x = 0, for some 0 # x € C"} (1)

(cf. [10, 13]). If B is singular, then the pencil (A, B) may have an infinite eigenvalue
A, nevertheless (1) does not contain the point at infinity. So, from the above definition,
W (A, B) is not necessarily a spectral inclusion region for the generalized eigenvalue
problem Ax = ABx. Indeed, we consider a slightly modified definition: if A, B have
a common null space, then

W(A, B) = CU {oo};
otherwise
x*Ax
x*Bx

W(A,B):[ 0£xeC"}. (2)

where 1/0 is understood as the point at infinity. When B is the identity matrix, (2)
reduces to the (classical) field of values of the n x n matrix A,

W) = {x*Ax: x € C", |x|| =1},

where ||x|| = (x, x)"/? = (x*x)!/? is the usual Euclidean norm in C". This concept
has been extensively investigated; see, for instance, [7] and references therein.

Throughout, we shall be concerned with regular pencils (A, B) of which either A
or B is Hermitian. Let us assume that B is Hermitian. The characteristic polynomial
of the pencil (A, B) is defined as

f(u,v,w) =det(uH + vK + wB),
where A = H + iK, and
H=A+A"/2, K=(A—-A"/(20)

are Hermitian matrices.

The main goal of this article is to investigate connections between the charac-
teristic polynomial f («, v, w) and the shape of W (A, B). The paper is organized as
follows. In Sect.2 we recall some properties of algebraic curves used subsequently.
In Sect.3 we characterize the field of values of 2 x 2 linear pencils, distinguishing
the cases of B being definite, indefinite and singular. These results allow simple
direct proofs of the convexity of W (A, B) for B Hermitian definite or semidefinite as
well as the pseudo-convexity of W (A, B) for B indefinite. In Sect. 4, each possible
boundary generating curve is described for 3 x 3 matrices of which one of them is
Hermitian. In Sect. 5 illustrative examples are given.
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2 The Polynomial f (u, v, w) and W (A, B)

As we shall see in the sequel, the characteristic polynomial of (A, B) gives rise to
the boundary generating curve of the numerical range W (A, B). To investigate this
relation and for the sake of completeness, we present some prerequisites concerning
plane algebraic curves.

An ordered pair of complex numbers (x, y) is a (complex) point in nonhomoge-
neous point coordinates. If x and y are real numbers, (x, y) is called a real point. A
point in homogeneous point coordinates is a triple of complex numbers (x, y, z), not
all zero. If r is any non zero complex number, then (x, y, z) and (rx, ry, rz) represent
the same point. We identify the point (x, y, z) in homogeneous coordinates with the
point (x/z, y/z) in nonhomogeneous coordinates. On the other hand, the point (x, y)
becomes (x, y, 1) in homogeneous coordinates. Any point with z = 0 is a point at
infinity.

If B is Hermitian positive definite (HPD), we clearly have

W(A, B) = W(B~'2AB1/?),

and so the numerical range of the pencil reduces to the classical numerical range.
Toeplitz and Hausdorff have proven that the classical field of values is a convex set
[7]. So, assuming that B is positive definite, then W (A, B) is convex.

A supporting line of a convex set S C C is a line that intersects S at least in one
point and that defines two half-planes, such that one of them does not contain any
point of S. It can be shown, using similar reasoning to the one in [9, Theorem 10]
that

Theorem 1 Let B be positive definite and let A be arbitrary. If ux +vy +w = 0 is
the equation of a supporting line of W(A, B), then

fu,v,w) =det(uH + vK +wB) = 0. 3)
It can be easily proved that a similar result to the above one holds for B indefinite
or semi-definite. Since f(u, v, w) is a homogeneous polynomial of degree n, (3)
may be viewed as the line equation of an algebraic curve in the complex projective
plane PC?. The set of lines (u : v : w) (with equation ux + vy + wz = 0) such that

f(u,v,w) =0, may be regarded as a set of lines in the plane whose envelope is a
certain curve. Considering the dual curve, i.e., the curve in line coordinates,

I*={u:v:w)ePC* fu,v,w) =0},
by dualization, we may easily determine:
I'={(x:y:z) € PC*: xu+yv+zw=0is a tangent of I"*}.

The real affine view of I, say
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CA,B) ={(x,y) eR>: (x:y:1)eTI},

is called the associated curve or boundary generating curve of W (A, B).

For (A, B) € M,,, with B positive definite, it is a simple consequence of an exten-
sion of a result of Kippenhahn (see [9]) that the curve C(A, B) generates W (A, B) as
its convex hull.

We recall that an usual procedure to find the point equation of the boundary
generating curve C(A, B) is to eliminate one of the indeterminates, say u, from (3)
and ux + vy +w = 0, dehomogenize the result by setting w = 1, and to eliminate
the remaining parameter v from the equations

oF (v, x,y) —0

Fo,x, ) =f(=(1+vy)x~',v,1) =0 and 5
A%

The curve f(u, v, w) = 0 has class n (because the defining polynomial has degree
n), that is, through a general point in the plane there are n lines (may be complex)
tangent to the curve.

A point P, not equal to the circular points at infinity (1 :i:0) and (1 : —i : 0),
is called a focus of a curve C if the line /; through P and (1 : i : 0) and the line I,
through P and (1 : —i : 0) are tangent to C at points other than the circular points
at infinity. The coefficients of the polynomial f (u, v, w) are real, as it can be easily
seen. A curve of class n with real coefficients has n real foci, according to proper
multiplicities, and n? — n foci which are not real [14].

As a consequence of a result, independently obtained by Murnaghan [11] and
Kippenhahn [9], the real foci of the algebraic curve defined by det(uH + vK +
wB) = 0, where B is positive definite, are the eigenvalues of the matrix B~'A, with
A = H + iK. The corresponding result for B indefinite is as follows [3].

Theorem 2 Let A, B € M,,, with B indefinite nonsingular. The n real foci of the
algebraic curve defined by the equation f(u, v, w) = det(uH + vK + wB) = 0 are
the eigenvalues of the pencil (A, B), where A = H + iK with H and K Hermitian.

For details on plane algebraic curves, we refer the interested reader to [5].

3 Linear Pencils Generated by 2 x 2 Matrices

For matrices A and B of dimension two, the boundary generating curve C(A, B) is
a curve of class two, more concretely, a conic. The three theorems that characterize
the boundary of W (A, B), for B Hermitian, in terms of the invariants of the pencil
(A, B) are stated below. The case 2 by 2 is specially important, since the numerical
range of an n x n pencil may be characterized by compression to the bidimensional
setting [4, 12].
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Theorem 3 (Elliptical Range Theorem) Let A, B be 2 x 2 matrices with B positive
definite. Then W (A, B) is a (possibly degenerate) closed elliptical disc, whose foci
are the eigenvalues of B"'A, A\ and )». and the lengths of the major and minor axis
are, respectively,

M= \/Tr (A*B—'AB~1) — 2Re (A1 12),

and

N = \/Tr (A*B=1AB=1) — |02 — |2 2.

In the case of degeneracy, W (A, B) may reduce to a line segment whose endpoints
are A and X,, or to a singleton if and only if A; = A,.

Theorem 4 (Hyperbolical Range Theorem) Let A, B be 2 x 2 matrices with B indef-
inite. Then W (A, B) is bounded by a hyperbola with foci at A\ and ), the eigenvalues
of B~'A, and transverse and non-transverse axis of length

M = \/ Tr(B—'A*B~1A)—2Re(A 1 12)

and

N =M+ M2 — Te(B—'A*B'A).

If Tr(B~'A*B~'A)—2Re (X 11y) < 0, the hyperbola degenerates and W (A, B) is
the whole complex plane. In the case of degeneracy of the hyperbola, W (A, B) may
reduce to two half-lines of the line defined by A, and X,, and with these endpoints.

Now, we consider W (A, B) for A, B € M,, with B positive (negative) semidefinite.
Observing that

WA + ¢B), kB) = %e””(W(A,B) +0), k,oeR, teC,

and using the invariance of W (A, B) under unitary similarities, we may take

iy celv d
B = diag(1,0), A:["e ce } ¢

d b c,dzo,b>0,a=?, 4)
Notice that W(A,B) = Cif b = 0.

Theorem 5 (Parabolical Range Theorem) Let A, B be of the form (4). Then W (A, B)
is bounded by the (possibly degenerate) parabola with focus Ly = 0 and equation

:1,

<=

o
4p?

where
a’*b* + ¢* — 2abc* cos y

4bc?
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In the case of degeneracy of the parabola, W (A, B) reduces to one half-line with
Ao = 0 as endpoint.

We remark that for A = (a;) € M», with ay; # 0 and B = diag(1, 0), the slope
of the axis of the parabolic boundary, relatively to the positive semi real axis, is
equal to 8y = Arg(azz), and the focus of the parabola is the (finite) eigenvalue of the
pencil (A, B). The vertex of the parabola is the point ujAuo/ugBuy, where ug is an
eigenvector of the Hermitian pencil

1 , .
(E(Ae—lﬁo +A*elﬁg),B)

associated with its single (finite) eigenvalue.

4 Characterization of W (A, B) for A, B € M3 with B
Hermitian

4.1 C(A, B) for B Positive Definite and A Arbitrary

Under the present assumptions, W (A, B) is convex, bounded and closed, since it
reduces to W(B~/2AB~1/2), and so inherits the properties of the classical numerical
range. Following the arguments in [9, Theorem 10], we can prove the following

Theorem 6 The convex hull of C(A, B) is W(A, B).

Kippenhahn classified the associated curve in this context, considering the factor-
izability of the polynomial f (i, v, w). Adopting this procedure, we easily conclude
that the following possibilities may occur.

1%t Case: The polynomial f («, v, w) factorizes into three linear factors. Each one
of these factors corresponds to an eigenvalue of B~'A and C(A, B) reduces to these
eigenvalues. This property is still valid for A, B € M,, with B Hermitian positive
definite.

2" Case: Suppose that B = diag(b;, b,,b3) and that AeM; is a
B-decomposable matrix, i.e., there exists a nonsingular matrix V € M3, such that

* _ * _ Cblo
vy = vav=[ 0], ©

where ¢ € Cand A; € M. Thus, f (u, v, w) factorizes into a linear and an irreducible
quadratic factor, and so C(A, B) consists of the point ¢ and of the boundary of the
elliptical disc W (A1, diag(b,, b3)).

34 Case: The matrix A is B-indecomposable, but the polynomial f (u, v, w) factor-
izes into a linear and a quadratic factor. The linear factor corresponds to an eigenvalue
of B~'A. The quadratic factor corresponds to an ellipse. In fact, the conic can not be
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neither a parabola, because one of its real foci is a point at infinity and this contradicts
Theorem 2, nor an hyperbola because this curve is unbounded. Therefore, C(A, B)
consists of an ellipse and a point.

4" Case: Finally, suppose that the polynomial f (i, v, w) is irreducible. The num-
ber of real cusps of an (irreducible) class three curve is 1 or 3, and the order of the
boundary generating curve is 4 or 6. By Newton’s classification of cubic curves [1]
and dual considerations, there are the following possibilities for the associated curve:

Cl. C(A, B) is a sextic, consisting of an oval and a closed tricuspid curve lying in
its interior;

C2. C(A, B) is a quartic, with one cusp and an ordinary double tangent at two of its
points.

There are examples showing that all these types of curves appear as boundary gene-
rating curves of W (A, B).

4.2 C(A, B) for B Indefinite and A Arbitrary

A set S C C is said to be pseudo-convex if, for any x, y € S, either the line segment
px+ (1 —p)y, 0 <p <1, is contained in S, or the halflines px + (1 — p)y, with
p > 1, and px + (1 — p)y, with p < 0, are there contained.

Theorem 7 Let A, B € M,, with B indefinite. Then W (A, B) is pseudo-convex.
Proof Let us consider Ay # A, € W(A, B). Then, there exist 0 £ vy, 0# v, €
W (A, B) such that v;Av; = A;viBv;, i =1,2. Let V|, v, be orthonormal vectors
belonging to the subspace .74 spanned by vy, v,. Assume first that 77 is non degen-
erate. Let Ay, 3, and By, ;, be the compressions of A and B, respectively, to .74. Obvi-
ously, W(Aj, 5,, By, 5,) is either an elliptical, parabolical or hyperbolical domain,
depending on Bj, ;, being definite, semidefinite or indefinite. If W (A5, 5,, By, 5,) is
an elliptical or parabolical disc, it is convex. In this case, we have that

AM+x(2—21):0<x =1} € WAs,5,. By, 3,) S W(A, B).
If W (A5, 5,, By, 5,) 1s hyperbolical, it is pseudo-convex. In this case, either
M +x02—2):0=x <1} € W(A;, 5, By i) S WA, B).

or
A+ xGe—2)x =0 or x =1} € WA 5, By i) € W(A, B),

This completes the proof when 77 is non degenerate.
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If 74 is degenerate, replace v, by v, + ev3, where vs is such that the space spanned
by vy, v3, is non degenerate. For ¢ sufficiently small, the point generated by v, + €13
is in the neighborhood of A, and the result follows. (]

For B indefinite nonsingular, consider C" endowed with the B-inner product
(Bx, y) = y*Bx, and corresponding B-norm ||)c||123 = (Bx, x) [6]. For arbitrary A € M3,
W (A, B) has been characterized in [3], following Kippenhahn’s approach in the clas-
sical case.

Let us consider

(Au, u)

(Bu,u)

W(A, B) = [ e C", (Bu,u) 01 .

For convenience, we also consider the sets

A
W. (A, B) = |M ‘ueC", (Bu,u) >0\,
(Bu, u)
and
A
W_(A, B) = ’ (Au, u) cueC", (Bu,u) <0
(Bu, u)
Obviously,

W(A,B) =W, (A,B)UW_(A, B).

In our analysis, when A and B are both Hermitian, we shall consider the eigenva-
lues of positive and negative type, that is, the eigenvalues with associated eigenvec-
tors with positive and negative B-norm, respectively. We shall denote by o (A, B)
(0—(A, B)) the set of eigenvalues of positive (negative) type.

Let X (X™) be a set of points in W, (A, B) (W_(A, B)) and let £+ (Z7) be the
convex hull of X (X 7). Consider the lines defined by points z;, z_ withz, € &+
and z_ € &~ . The union of all half-lines with z as endpoint not containing z_ and
the half-lines with z_ as endpoint not containing z., is the so called pseudo-convex
hull of X*tand X~

The curve C(A, B) has branches of a well defined sign type, either positive or
negative, say C+(A, B) and C_(A, B). The sign is determined by considering for the
corresponding root w of (3), an associated eigenvector &, such that

(uH + vK +wB)é = 0.
The type of each branch of C(A, B) is characterized by the sign of the B-norm (B¢, &).

For pencils of the class .42 (see [4, Section 5]) the following holds. The proof
follows analogous steps to those in [9, Theorem 10].
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Theorem 8 Let A, B € M,, with B Hermitian indefinite non singular. If the pencil
(A, B) isin N D, then the pseudo-convex hull of C (A, B) and C_(A, B) is W (A, B).

We classify the associated curve C(A, B), considering the factorizability of the
polynomial f (u, v, w). Without loss of generality, we may assume that B = diag(b;,
by, —b3), by, by, by > 0. The following possibilities may occur.

1%t Case: The polynomial f («, v, w) factorizes into three linear factors. Each one
of these factors corresponds to an eigenvalue of B~'A and C(A, B) reduces to the
eigenvalues. This result still holds for matrices A, B of arbitrary size, under the above
conditions.

2™ Case: Suppose that A € M3 is B-decomposable, i.e., there exists a nonsingular
matrix V, such that V*BV = B = diag(b;, b,, —b3) and

* _ Cb1 0
VAV_[OAJ, (6)
or
* _ Al 0
VAV = [0 —ch : (7)

where c € Cand A| € M,.
If A is of the form (6), then C (A, diag(b,, —b3)) is an hyperbola with one branch
in W (A, B) and the other one in W_(A, B). We may write

C(Ay, diag(bs, —b3)) = C4(Ay, diag(by, —b3)) U C_(Ay, diag(b,, —b3)),

where Ci (A, diag(by, —b3)) C Wi(A,B). Clearly, c € W (A, B). Let X; =
conv(c, C1(Ay,diag(b,, —b3))). The pseudo-convex hull of X; and C_(Aj,
diag(b,, —b3)) coincides with W (A, B).

Suppose, now, that A is of the form (7). Notice that c € W_(A, B) and C(A,
diag(b, by)) C W (A, B). Then W(A, B) is the pseudo-convex hull of ¢ and an
ellipse (possibly degenerate): C(A, diag(by, b>)).

3vd Case: The matrix A is B-indecomposable, but the polynomial f («, v, w) factor-
izes into a linear and an irreducible quadratic factor. The quadratic factor corresponds
to an hyperbola or to an ellipse. The conic can not be a parabola, because one of its
real foci is a point at infinity and this contradicts Theorem 2.

Therefore, C(A, B) consists of: 1) one point, produced by vectors with a negative
B-norm, and an ellipse produced by vectors with a positive B-norm, 2) one point,
produced by vectors with a positive B-norm, and an hyperbola, with one branch
produced by vectors with a negative B-norm and the other branch produced by vectors
with a positive B-norm.

Incase 1), W(A, B) = C.Incase2), W(A, B) = C, whenever the point lies inside
the hyperbolic disc of negative type, otherwise W (A, B) is a hyperbolical disc.
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4* Case: Finally, suppose that the polynomial f (i, v, w) is irreducible. The num-
ber of real cusps of an (irreducible) class three curve is 1 or 3, and the order of the
boundary generating curve is 4 or 6. By Newton’s classification of cubic curves and
dual considerations, there are the following possibilities for the associated curve:

Cl1. C(A, B) is a sextic, with three real cusps and at least one oval component;

C2. C(A, B) is a quartic, with three real cusps and a real double tangent (at two
complex points of the curve);

C3. C(A, B) is a quartic with one real cusp and a real double tangent (at two real
points of the curve);

C4. C(A, B) is a cubic with a real cusp and a real flex;

C5. C(A, B) is a sextic, with three real cusps and not containing neither oval com-
ponents nor double tangents.

There are examples showing that all the above curves may occur as boundary ge-
nerating curves [3]. The characterization of W (A, B) requires the determination of
the signs of each branch of C(A, B), in order to obtain the pseudo-convex hull of the
boundary generating curve.

4.3 C(A, B) for B Positive Semidefinite and A Arbitrary

Theorem 9 Let A, B € M, with B positive semidefinite. Then W (A, B) is convex.

Proof Let us consider Ay # A, € W(A, B). Then, there exist 0 £ vy, 0# v, €
W (A, B) such that v/Av; = A;viBv;, i =1,2. Let ¥;, v, be orthonormal vectors
belonging to the subspace .73 spanned by v;, v,. Let A;, 5, and By, 5, be the compres-
sions of A and B, respectively, to .7%. Obviously, W (4;, 5,, By, 3,) is either a parabol-
ical or elliptical disc, so it is convex. Thus, [A, A2] € W (A3, 5,, By, 5,) € W(A, B),
which completes the proof. [

We next characterize W (A, B), for B positive semi-definite and an arbitrary A €
M3, using again Kippenhahn’s approach. We classify the associated curve C(A, B),
considering the factorizability of the polynomial f (u, v, w).

Assume that A € M3 and B is positive semidefinite. The following possibilities
for C(A, B) may occur.

1%t Case: Suppose that B = diag(by, b»,0), by,by >0, and A € M3 is a B-
decomposable matrix, i.e., there exists a nonsingular matrix V such that V*BV = B
and V*AV is asin (6). Then, W (A, B) is the convex hull of ¢ and C (A, diag(b,, 0)).

2" Cage: Suppose that B = diag(b;, b»,0), by,b, >0, and A is a 3 x 3 B-
decomposable matrix, i.e., there exists a non-singular matrix V, such that V*BV = B

and
* _ Alo
VAV—[OC], ®)



The Characteristic Polynomial ... 191

where ¢ € C and A; is a 2 x 2 matrix. Thus, W (A, B) is the convex hull of a certain
point at infinity and C(A;, diag(by, b)) (cf. Example 4).

34 Case: Suppose that B = diag(b,, by, 0), by, b, > 0, and the matrix A is B-
indecomposable, but the polynomial f (u, v, w) factorizes into a linear and an irre-
ducible quadratic factor. The linear factor corresponds to an eigenvalue of the pencil,
and the quadratic factor corresponds to a parabola. Therefore, C(A, B) consists of
one real point and a parabola (cf. Example 3), being W (A, B) its convex hull.

4th Case: Suppose that B = diag(b, b»,0), by, b, > 0, and the polynomial
f(u, v, w) isirreducible. By Newton’s classification of cubic curves and dual consid-
erations, there are the following possibilities for the associated curve:

Cl. C(A, B) is a sextic, with three real cusps and at least one oval component (cf.
Example 1);

C2. C(A, B) is a quartic, with one cusp and an ordinary double tangent at two of its
real points (cf. Example 2).

5th Case: Suppose that B = diag(b, 0, 0), by > 0. There exists a non-singular
matrix V, such that V*BV = B and

app dp a3
VAV = 0 azy a3z
0 0 ass

If the existence of vectors & # 0 such that £*A& = £*B& = 0 is excluded, it follows

that
ax a;
oew (7))

and then W (A, B) is a proper subset of the complex plane bounded by a certain
algebraic curve, which is a quartic, if the characteristic polynomial is irreducible (cf.
Example 5), and a conic if the characteristic polynomial is factorizable (cf. Example

7). However, if
0Oe W ([022 023}) i
0 asz

then W (A, B) is the whole complex plane (cf. Example 6)

4.4 C(A, B) for B Indefinite Singular and A Arbitrary

Let A be arbitrary, B = diag(b,, —b», 0), with by, b, > 0. We say that 6 € [0, 27|
is an admissible direction if the Hermitian pencil (H (e7A), B) has real eigenva-
lues with associated non-isotropic eigenvectors, and for oy (H(e A), B) = {ay},
o_(H(e A), B) = {By}, we have (g — By) u*Au > 0, where u = (0,0, 1)7. The
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condition (ag — By) u*Au > 0, ensures that W(H(e "A), B) # R. If admissible
directions do not exist, W(A, B) = C (see Theorem 2.1 of [4]).

Proposition 1 Let (A, B) be a 3 x 3 self-adjoint pencil with B = diag(b,, —b,, 0),
bi,by >0, such that W(A,B) #C. Let u=(0,0,1)", o,(A,B) ={a},
o_(A, B) = {B}.

(i) If (@ — B) u*Au > 0, then W(A, B) =] — oo, min(«, )] U [max(«, B), +o0l.
(ii) If (o — B) u*Au < 0, then W(A, B) = R.

For A € M3 and B indefinite singular, the different possibilities that may occur
for C(A, B) can be identified according with the procedures in the previous sections
(cf. Example 8).

S Examples

The figures presented in this section have been produced with Mathematica 5.1, also
used to determine the point equation of C(A, B). The associated curve is represented
in the figures. The boundaries of W (A, B) are represented by thick lines.

Example 1 Let
114/5
A=1014/5|, B=diag(l,1,0).
00 1

The characteristic polynomial of the pencil is
1 3 2 2 2 2
u,v,w) = — (71’ — 29uv u'w— 8v'w uw).
S ) 100(71 7 —29uv° 4+ 192 v w + 100uw”)

The Cartesian equation of the boundary generating curve of W (A, B) is

—1731619 + 6115752x — 6709556x> + 3123808x> — 655104x* + 51200x°
—1891452y% + 7557408xy> — 17370208x%y* 4+ 9142400xy> — 160000x*y?
—15865104y* 4+ 51091200xy* — 21320000x%y* — 21160000y° = 0.

The boundary of W (A, B) is represented in Fig. 1 by the outer curve.

Example 2 Let

Ay=|0 1 1|, B=diag(l,1,0)

The characteristic polynomial of the pencil (A4, B) is
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Fig. 1 Boundary generating LOF
curve of W(A, B)
(Example 1)
05}
0.0
05
10, ‘
0 1 2 3 4
Fig. 2 Boundary generating 2f
curve of W (A4, B)
(Example 2)
1k
0F
1Lk
20 ‘
06 08 10 12 14 16 18 20

1
fu,v,w) = E(9u3 — Tw? + 24w — 8w + 16uw2).

The Cartesian equation of the boundary generating curve of W (A4, B) is
—343 4 1176x — 1344x> 4 512x° — 592y* + 1024xy* — 256x%y* — 256y* = 0.

W (A4, B) is the convex hull of C(A4, B), represented in Fig. 2, and has a flat portion
on the boundary parallel to the imaginary axis.

Example 3 Let
111
Ay=1011], B=diag(l,]1,0).
001
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Fig. 3 Boundary of
W (A1, B) (Example 3)

The characteristic polynomial of the pencil (A}, B) is

1
flu,v,w) = E(u +w) @ — v + 2uw).
The Cartesian equation of the boundary generating curve of W(A[, B) is

0 = 2x+ D((x— D*+y*) =0.

(cf. Fig.3).
Example 4 Let
110
A=(010(, B=diag(l,1,0)
001

The characteristic polynomial of (A, B) is
1 2_ 2 2
fu,v,w) = Zu(.’au —v7 4+ 8uw + 4w”).

The Cartesian equation of C(A, B) is (x — D2 +y> = % and is represented in Fig. 4.
There are two flat portions, extending to infinity, on the boundary of W (A, B).

Example 5 Let B = diag(1, 0,0) and A = A; in Example 3. The characteristic poly-
nomial of the pencil is f(u, v, w) = 2u® — 2uv? + 3u?w — v*w) /4. The Cartesian
equation of the boundary of W (A, B) is

16 — 48x 4 48x% — 20x> + 3x* 4 36y” — 36xy* — 18x%y* +27y* =0

and is represented in Fig.5.

Example 6 Let B = diag(1, 0, 0) and
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Fig. 4 Boundary of
W (A, B) (Example 4) ol \
0.2k

04

Fig. 5 Boundary of 3
W(A, B) (Example 5) , /
1

\ 1.5 2 25 3

111
A=1011
00 -1

The characteristic polynomial of (A, B) is f(u, v, w) = 1/4(—4143 — 5uPw — vw).
The Cartesian equation of C(A, B) is the deltoid

—4x% + 5x* 4+ 108y* — 180xy* + 50x%y* + 125y* = 0.

oew((521)):

Example 7 Let B = diag(1, 0, 0), and

Since

it follows that W(A, B) = C.

111
A=1010
001
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Fig.6 C(A, B)forExample 8 ‘ w w ; ‘ : : :
F 1
e R

The characteristic polynomial of (4, B) is given by f(u, v, w) = 1/2u(u® — v> +
2uw). The boundary of W (A, B) is parabolic and its Cartesian equation is

w

[S]

=)

[S)

w

V' —2x+1=0.
Example 8§ Let B = diag(1, —1, 0), and
221
A=1022
001

The characteristic polynomial of (A, B) is given by

1 1 1
fu,v,w) = 53143 — ESMV2 — Z3u2w — Zszw — un?.

The boundary generating curve C(A, B) is represented in Fig. 6, it has Cartesian
equation

6000 — 2400x — 5080x2 + 4248x3 — 1161x* + 108x> + 2808y% + 1752xy> + 1678x%>
—2184xy? 4 36x*y? 4+ 2007y* + 2316xy* — 568x%y* + 420y° = 0

and is constituted of 2 branches, C, (A, B) for x < (3 — +/105)/8 and C_(A, B) for
x > (3 4+ +/105)/8. The pseudo-convex hull of C, (A, B) and C_(A, B) is W(A, B).
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6 Final Remarks

We presented the classification of the boundary generating curves of W (A, B) for
2 x 2 and 3 x 3 matrices A, B, following Kipenhann’s approach for the classical
numerical range of a matrix. We have considered linear pencils generated by a pair
(A, B) of which at least one of the matrices is Hermitian. It would be challenging to
drop this constraint. The systematic investigation of the existence of flat portions on
the boundary, as well as its implications on the matrix structure, are open problems
deserving the attention of researchers. The interplay between the algebraic properties
of the polynomial f (u, v, w) and the geometric properties of W (A, B) must be stressed
and deserves further investigation.
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University of Coimbra — UID/MAT/00324/2013, funded by the Portuguese Government through
FCT/MEC and co-funded by the European Regional Development Fund through the Partnership
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Integer Powers of Certain Complex
Pentadiagonal Toeplitz Matrices

Hatice Kiibra Duru and Durmus Bozkurt

Abstract In this paper, we obtain a general expression for the entries of the rth
(r € 7Z) power of a certain n x n pentadiagonal Toeplitz matrix. Additionally, we
present the complex factorizations of Fibonacci polynomials.

Keywords Pentadiagonal Toeplitz matrices - Fibonacci polynomials - Fibonacci
numbers * Pell numbers

1 Introduction

Band matrices are used in many areas and are also included in the solution of many
systems. In particular they appear in numerical analysis, differential equations, differ-
ence equations, in the solution of boundary value problems, in the numerical solution
of ordinary and partial differential equations, delay differential equations, interpola-
tion problems, and in many applied fields. Lately, the calculations of integer powers
and of the eigenvalues of band matrices have been well studied in the literature. In
[10-12] Rimas obtained the positive integer powers of certain symmetric pentadi-
agonal matrices and symmetric anti-pentadiagonal matrices in terms of the Cheby-
shev polynomials. The characteristic polynomial and eigenvectors for pentadiagonal
matrices are derived in [4]. Arslan et al. [1] investigated the general expression of the
powers of even order symmetric pentadiagonal matrices. Oteles and Akbulak [9] pre-
sented the general expression for the entries of the powers of certain n x n complex
tridiagonal matrices, in terms of the Chebyshev polynomials of the first kind and two
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complex factorizations for Fibonacci and Pell numbers. The result for all positive
integer powers of a Toeplitz matrix is restated in [13]. Duru and Bozkurt [3] obtained
the general expression of the powers of some tridiagonal matrices. The powers of
odd order circulant matrices are calculated in [6].

In this paper, we present a general expression for the entries of the rth power of
a certain n x n complex pentadiagonal Toeplitz matrix.

2 Eigenvalues and eigenvectors of A,

Theorem 1 Let A, bethen x n(n = 2t,2 <t € N)pentadiagonal Toeplitz matrix

(a0 b
Oa 0 b
c0a 0°
= C'.-."..'b
.0 a 0b
c 0a0
c Oa

. 6]

wherea € Candb, c € C\ {0}. Then the eigenvalues and eigenvectors of the matrix

A, are

and

n

2k n
A =a—2~b , k=1,2,..., = 2
r=a ccos( +2) > 2)

Uy (ax)

0
w!'Uy ()
0
nU> (o)
0

p2 s (o)
0
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_ 0 _
Up (o)
0
w'2Uy ()
0

12 (o) C j=2,46,....n—2nk=12
0 2

OB (o)
0
| WO DR () |

)\,k —da

where L = 7, o = W and U, (.) is the nth degree Chebyshev polynomial of the
second kind.

Proof Let
x—a b

c x—ab

det(Qn) =

cx—a b
c x—ua

For the initial conditions det(Q¢) = 1 and det(Q) = x — a, we have

det(Q,) = (x —a) det(Qy—1) — bedet(Qy—), n=2. 3)

The solution of the difference equation in (3) is

det(Q,(x)) = (be)s U, (%) , )

where U, (.) is the nth degree Chebyshev polynomial of the second kind [8]:

sin((n + 1)0)

U = —a1®

with x = cos(f). All the roots of U, (x) are in the interval [—1, 1]. Let
|)"In - An| = AAn ()‘)

and due to (3), we have
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Aa,(A) = W —2%a +a® — bc)2 (02)?
Apg(A) = (@ — 1)*(A? = 2ha + a* — 2bc)* = (Q3)?
Ax (W) = (0 — a)* — 322bc — 3a’bc + 6)abe + b*c?)? = (Q4)?
Aa,00 = (Q: M)

Then we have

n r—a\\>
= b 2 n . 5
Aa, () = (be) (Uz (2 M)) 5)

The eigenvalues of A, are obtained as

2k
)\k:a—Z«/Ecos il , k:l,2,...,ﬁ,
n—+2 2

from (5).

The multiplicity of all the eigenvalues A (k = 1,2, ..., %) of the matrix A, are
2. Since rank(Ai I, — A,) = n — 2, to each eigenvalue A; correspond two Jordan
cells Ji(A;) in the matrix J. That is,

J,, =diag(k1,A1,A2,A2,...,)\%,k%). (6)

Considering the relations K ~' A, K = J, [5], we obtain the matrices K and K ! and

derive the expression of the matrix A} for r € N. Let us denote the j-th column of
KbyK;(j=1,...,n). Then

Ay K = (Kidi Kok K32 Kaho ... Ky—idn Kyhs). @)

From Eq. (7), we have the system of linear equations as follows:

A K1 = KA
A Ky = Ko
A K3 = Kih
A Ky = Ky
: (3)
A K3 =K, _ )»Tz
A, Ko =K, _ )\.%2
A K, 1= K, l)"i
AK, = Kuhs.

Solving the system of linear equations in (8), we obtain
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Up (o)
0
w2Uy (o)
0

K; = MUZO(“U =135 . .n-3n—lk=2"+-_ (9

O s (o)
0

and

_ 0 _
Up (o)
0
w'2Uy (o)
0

K, = 1 () L j=2,46,....n—2nmk="2% (10
! 0 2

RO
0
| 1O () |

where u = 7, o = ;f/% and U, (.) is the nth degree Chebyshev polynomial of the
second kind. [J

Theorem 2 Let A, bethen x n(n =2t + 1, t € N) pentadiagonal Toeplitz matrix
in (1). Then the eigenvalues and eigenvectors of the matrix A, are

a—2vbecos () m=1,3,5,...n
Bn = " (11)
a—2Vbccos (25),  m=2,4.6,....n—1
and B _
Uo ()
0
w!PUs (8))
0
ws (55) D j=13.5 . n-2n
0
| K0 (3)
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,uUz(Sj) ; J=2,4,6,...,n—3,n—1,

M(n—3)/4[.]% (8])
0

where = 7,8; = lji/;% and U, (.) is the nth degree Chebyshev polynomial of the

second kind.

Proof Let
|;81n - An| - AA,, (IB)

and owing to (3), we obtain

An(B) = a(@® — be) = 01 (B) 0: (B)

An(B) = a(a® — 2be)(@* — be) = 02 (B) 03 (B)

An(B) = a(@® — 2be)(a* — 3a%be — bc®) = Q3 (B) Qs (B)
24,(B) = 0wt (B) Qs (B) .

From Eq. (4), we have

An(B) = b0 U (ﬁ‘“)u (ﬂ‘“)
S = \avie) T \avie )

The eigenvalues of A, (n =2t + 1,¢ € N) are

B = a—2«/bccos(%), m=1,3,5,....n
" la—2vbecos (25), m=2,4,6,....n—1.

n+1

All the eigenvalues B, (m =1,2,...,n) of the matrix A, are simple. Since
rank(B, I, — A,) = n — 1, to each eigenvalue §,, correspond Jordan cells J,j; (Bm)
in the matrix JT. That is,

J=diag (B1, B2 Bss .- Bu) - (12)

Using the well known equality S™' A, S = J7, we obtain the matrices S and S~'. Let
us denote the j-th column of S by §; (j =1, ...,n). Then
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AnS = (8181 $282 S3B83 SaBa ... Su—1Bu=1 SuBn)-

We have the system of linear equations

Solving the system of linear equations in (14), we have

and

where 1 = %, 8
second kind. 0

>
= =
SLINE
I

3
) =
1

=
:.QJ N
I

Uo (8;)
0
u'2U1 (8))
0
U (85)

2

0
[ )

0
Uo (37)
0

WU, ()
0

/LUZ(SJ) 5 j=2,4,6,...,n—

0
WO (5;)
0

Bi—a
2+/be

S1B1
$282
$383
SaBa

Sp—3Bn-3
n—2ﬂn—2

= Sn*lﬂn*l

SuBn-

; j=13,5...,n—2,n;

3,n—

17

205

13)

(14)

15)

(16)

and U, (.) is the nth degree Chebyshev polynomial of the
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3 The Integer Powers of the Matrix A,

Firstly, we suppose n a positive even integer (n = 2¢,2 <t € IN).
Considering (9) and (10), we write the matrix K

Up (a1) 0 Up (a2)
0 Up (a1) 0
w2Uy () 0 w!2Uy (a2)
0 12Uy (@) 0
nUs (aq) 0 uUz (a2)
0 wnUs () 0
K = . .
M("74)/4U% (1) 0 M("74)/4U% (a2)
0 M<"—4>/4U,12;4 (1) 0
M(n—Z)/ztU% (Oll) 0 M()l*Z)/4U% (0[2)
0 M<"-2>/4Un2;z (a1) 0
0 ... Uy (a%) 0
Uo (a2) 0 Uo (a%)
WP @) 0 W20y (ay)
0 . nUs (Ol%) 0
(17)
0 ,1/,(”_4)/4U% oy 0
u(”*4)/4U% (2) ... 0 M<”*4)/4U% (a%)
n=2/417 .5 (an
0 ) U% “7) 0
/VL(”*Z)/“U% (2) ... 0 ;L(”*Z)MU% (a%)

Now, let us find the inverse matrix K ~! of the matrix K. If we denote the i-th row
of the inverse matrix K ~! by K l._' , then we have

qxUo (o) 17
0
g™V 2Uy ()
0
g™ Uz ()

, 0 i+1
K= i=1,3,5....n—1; k= 18
! a3 U3 (o) ' " 2 (18)

0
lef("*z)“U% (C79)
0 _

and
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_ 0 T
qrUo (o)
0
qe ™ UL ()
O .
K= | V(@) i=2,4,6,...m k==, (19)
; 0 ; ,4,6,...,n;
lef("*“)MU% (o)
0
_Qkﬂ_(”_sz% (o) |
where u = 4, qx = 4::;% and o = ng_b% fork =1,2,..., 5. Thus, we obtain
q1Up(er1) 0 g™ PU ()
0 q1Uop(a1) 0
q2Up(a2) 0 g U ()
0 QU () 0
q3Up(a3) 0 g3 U (a3)
K-l — 0 q3Uo(a3) 0
qs2Up(ar2) 0 g2 PU N (@2)
0 qn=2 Uo(ot%) 0
g2 Uo(arz) 0 gup” ' 2U (an)
L 0 g2 Uo(az) 0
qu= "D (ay) 0 ]
0 g "R 2 ()
g "0 () 0
0 go” "I 2 ()
g3~ "I (o) 0
0 g3 "I 2 () (20)

—(n-2)/4 B
e gzt U%(O{%)
0 q
qr "Iz ()
0

0
—=D/41] . 5 (e
s Ve (o)
0
gy "N (@)
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By combining (6), (17) and (20) and using the equality A) = KJ'K~'(r e N) [5],
we compute the rth powers of the matrix A,

Al=KJ'K'=W(@)= (w; (). 21)
So for i, j =1,n
0, if ()" =-1,
wii(r)=1 2 i . " (22)
! S Mg T Ussyog (@) Uiy (o), 0 (=1) =1,
k=1
| Lif =D =D =1,
= [—1, if (- = (-1 =1, 23)
[ Lif ey =D =0
i = [—n, if (=) =(=1)) =1, 24
where = £, g = %,ak = ;f/l‘;, and Ay (k=1,2,3,...,%) are the eigen-

values of the matrix A, (n = 2,2 <t € N).

Example 1 Setting n = 6 in Theorem 1, we have

J = diag(ii, A1, A2, Ao, A3, A3)
= diag(a — 1.414~/bc,a — 1.414v/bc, a, a,a + 1.414+/bc, a + 1.414+/bc)

and

AL =KJ K" =W(r)

wii (r) wiz (r) wiz (r) wig (r) wis (r) wig (1)
way (r) wap (r) waz () wag (1) was () wae (1)
w3 () waz (r) was (r) wsg (r) was (r) wse (1)
wa1 (1) waz (r) w3z (1) wag (r) was (r) wae (r)
wsi (r) wsy (r) ws3 () wsq () wss (r) wse (1)
wei (r) wez (r) wes () wea () wes () wee (1)

= (Wij (”)) =

wij (r) =0 for (1) = —1,
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wi (r) = wx (r) = wss (r) = wee (1)
~0.25 (a - 1.414~/b_c)r +0.504" +025 (a n 1.414\/E)r ;
wiz () = was (r) = wss (r) = wye (1)

—0.354 (a _ 1.414¢bc)r V2 40354 (a n 1.414«/bc)r V2

wis (r) = wog (1)
—0.25 (a _ 1.414«/%)r 1w =054 1 40.25 (a + 1.414«@)r u
w3y (r) = wap (r) = ws3 (r) = wes (1)
— 0354 (a - 1.414¢b_c)r 12 40354 (a n 1.414%)" w2
Wis (F) = was () = 0.5 (a . 1.414«/%)r 405 (a n 1.414«/%)" :
ws1 (r) = wea (1)

0.25 (a - 1.414\/%)r 1 —0.5a" 1 +0.25 (a n 1.414\@)r 1.

Example 2 Settingr =4, n =8, a=1i+1, b=2and ¢ = | in Theorem 1, we
get

J =diag(Ai, A1, Az, Az, A3, A3, A, Ag)
= diag(—1.288 + i, —1.288 +i,0.126 +i,0.126 + 1,
1.874 +i,1.874 +i,3.288 +1,3.288 + 1)

and

Ay = (wij @)

Secondly, we suppose n a positive odd integer (n = 2t + 1, t € IN). From (15)

4+ 24i
0

8+ 24i
0

6+ 12i
0

4+4i

0

0
4 +24i
0
8 +24i
0
6+ 12i
0
4+ 4

and (16) we write S as:

16 + 48i
0

16 + 48i
0

16 + 32i
0

6+ 12i
0

0

16 + 48i
0

16 + 48i
0

16 + 32i
0

6+ 12i

24 4 48i
0

32 4 64i
0

16 + 48i
0

8+ 24i
0

0

24 + 48i
0

32+ 64i
0

16 + 48i
0

8 +24i

324 32i
0

24 4 48i
0

16 4 48i
0

4+ 24i
0

0

32 +32i
0

24 + 48i
0

16 + 48i
0

4424
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Us (81) 0 Uy (83)
0 Uy (82) 0
H'20, (81) 0 WU (8)
0 w!2U, (82) 0
nU (81) 0 U2 (8s)
0 uls (82) 0
0 ,u<n~5)/4(/%é (82) 0
M(n73)/4U% (81) 0 M(n73)/4U% (83)
0 M(n—3)/4U% (62) 0
_M(nfl)/4U% (81) 0 M<n71)/4U% (83)
UO (34) e 0 UO (3n)
0 ce U() (Sn—]) 0
MI/ZUI (84) . 0 MI/ZUI (6n)
0 e WU (8amy) 0
MU2 (84) 0 MUZ (8,,)
0 e pU2 (am) 0 .05
0 ... M(”_S)MU% (6n—1) 0
WOIY s (54) - 0 w I (8,)
0 M("*”/“U% (Bn-1) 0
M(n—l)/4U% (4) - 0 M(”_W“Ug (8n)

Now let us find the inverse matrix S~! of the matrix S. If we denote the ith row

of the inverse matrix S~! by S;” 1, then we obtain

and

B yiUo (8;) 1"
0
yir~V2U (8)
0
yi ' Us (8;)

S.ﬁl =
b yin Uz (8;)
)’iM_("_3)/4U% (6:)

0
Lyin™ VAU (8) |

9 ;i=1,3,5,...,n

(26)
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— 0 T
yiUo (8;)

0
yir~PUL(8)
0
. iUz (&)

! 0

0
yilf("f‘%wU% (6:)
0

Bm—a

n
> Cad

where 1

:%’8}”:

g

4487

n+3
Yi 4487
n+1

form =1,2,...,n. Then we have

y1Uo(81) 0 yin 12U (81)
0 y2U0(82) 0
¥3U0(83) 0 yau~2UL(8s)
0 y4Uo(84) 0
ysUo (85) 0 ysu 12Uy (85)
sl = 0 y6Uo(36) 0
0 Yn—-3U0(8,-3) 0
yanUO(‘San) 0 yt172/~L71/2U] (8p—2)
0 Yn-1Uo(8n-1) 0
ynUo(8n) 0 yuit”2UL(Sy)
0 ylﬂi(nil)MUnz;l((Sl)
v~ "I (82) 0
0 yau~ VUL (83)
Y~ IR (84) 0
0 yu TR s)
y()u*("”)/“U# (86) 0
R T PSR, 0
e 0 ynlef("fl)MUg (8n—2)
R T PR 0

0

By combining (12), (25) and (28) and using the equality A}

L if i=1,3,5,
L if =246,

;1 =2,4,6,...,n—1,

...,n

o,n—1,

i~V )

(r € N) [5], we compute the rth powers of the matrix A,

211

27)

(28)

S(J7) 57!
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Al =S ST =Z @) = (z; (). (29)
Therefore
0, if (1) = —1,
aj 1) = ’ il ﬂﬁw,wijyszw,.,u% Umu;jfz (82&)*\//[]) ijzij—z (82@»71//,',-) LJif (=D =1,
| | (30)
L i =D =D =1,
Vi = {0, if (~1)i = (-1 =1, G
sif (=D = (=) = -1
Vij = ngl’ . i i ’ (32)
I | S D = =1
4-45? .
- el if i=1,3,5...,n
P 4-as2 L
Pl if i=2,4,6,...,n—1,
w= %, Sy = % and S, (m = ﬁ) are the eigenvalues of the matrix A, (n =
2t +1,t € N).

Example 3 Taking n = 5 in Theorem 2, we obtain
J'=diag (B1, B2, B3, Ba, Bs) =diag (a —2bc,a —~/be,a,a + ~/be,a + v2bc)

and

z11 (r) zia (r) 213 (r) 214 (r) z15 (1)
221 (r) 222 (1) 223 (r) 204 (1) 225 (1)
Af=S(JT) ST = (zij () = | 231 (") 232 (r) 233 () 234 (r) 235 (r) |,
241 (r) 242 (r) 243 (r) 244 (r) 245 (r)
251 (r) 252 (r) 253 (r) 254 (r) 255 (1)

2ij (r) =0 for (=) = —1,

and

(a—«/Z_bc)r—l—Za’—i-(a—i-«/Z_bC)r.

n(r) =z55(r) = ;

4
VZbe) — (a—/2be)
23 (r) = z35(r) = (a . 2b62)\/iug/az 2bc) ;

(a—\/%)r—Za’—i-(a—i-@)r.

15 (r) = m ;
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awm)#(a_m)’.
. ,

20 (r) =233(r) =244 (r) =

(a + «/Zbc)r — (a — «/Zbc)r
24 (r) = SIE ;
((a + x/2bc)r — (a — «/2bc)r) w2
231 (r) = z53(r) = ;
2V2
((a + \/Zbc)’ — (a — \/Zbc)l) w2
2 (r) = > ;
((a — \/Zbc)r —2a" + (a + \/Zbc)r) 7
751 (r) = 1 .
Example 4 Takingr =5, n=9, a=i+2; b=—i and ¢ =i in Theorem 2,
we get
J" = diag (B, B2, Bs. B Bs: Bs. B1. Bs. Bo)
= diag(0.268 +i,0.382 + i, 1 4+, 1.382 +i,2 + i,
2.6184+i,34+1i,3.618+i,3.732+1)
and

Ay =S5 = (2 (9)

[ 2+ 161i 0 200 — 30i 0
0 2+ 161i 0 200 — 30i
—200 + 30i 0 52 + 286i 0
0 —200 + 30i 0 52 + 286i
= | —50 — 125i 0 —240 + 64i 0
0 —50 — 125i 0 —240 + 63i
40 — 34i 0 —60 — 130i 0
0 40 — 33i 0 —50 — 125i
10 + 5i 0 40 — 34 0
—50 — 125i 0 —40 + 34i 0 10 + 5i
0 —50 — 125i 0 —40 + 33i 0
240 — 64i 0 —60 — 130: 0 —40 + 34i
0 240 — 63i 0 —50 — 125: 0
62 +291i 0 240 — 64i 0 —50 — 125i
0 52 + 286i 0 200 — 30i 0
—240 4 64i 0 52 + 286i 0 200 — 30i
0 —200 + 30i 0 2+ 161i 0
—=50 — 125i 0 —200 + 30: 0 2+ 161i
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Corollary 1 Let the matrix A, be the n x n pentadiagonal matrix in (1) (a, b, c €
C\ {0}), let for Theorem 1

2km
24/b —
a# ccos (n+2)

(n = 2t,2t € N), and for Theorem 2

(m+ Dm mim
a # 2v/becos (ﬁ) ,a # 2v/bccos (m)

(n =2t 4+ 1,t € N). Then, there exists the inverse of the matrix A,, and there are
negative integer powers of the matrix A,,.

Example 5 Settingr = —4, n =4, a =8, b =7and ¢ = 9 in Theorem 1, we get

J = diag(Ay, A1, Ag, A)
= diag(0.063, 0.063, 15.937, 15.937)

and
32257 0 —28448 0

0 32257 0  —28448
—-36576 0 32257 0
0 -=36576 0 32257

A= (wij (=) =

Example 6 Takingr = -3, n=7, a=1; b=1 and c =2 in Theorem 2, we
get

J' = diag (B1, Ba. B3, Ba. Bs. Be. B7)
= diag (—1.288, —1,0.126, 1, 1.874, 3, 3.288)

and B _
181 0 =79 0 —-56 0 64
0 - 0 L 0 -% o0
—-158 0 69 0 49 0 —56
AP =(z;(=3)=| 0 5 0 —3 0 £ 0
—224 0 98 0 69 0 —-79
0o —% o ¥ o L o0

27
| 512 0 —-224 0 —158 0 131 |

Remark 1 Note that our results in this paper are more general forms of the results
obtained in [1, 2]. One can easily see this, taking a :==0, b:=1 and c:=1 in
Theorem 1 and Theorem 2, respectively.
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4 Complex Factorization

The well-known Fibonacci polynomials F (x) = {F,(x)},2, are defined in [7] by the
recurrence relation
Fo(x) =xF,_1(x) + F_2(x),

where Fo(x) =0, Fi(x) = 1, F2(x) = x andn > 3.Noticethat F1(2) = 1, F,(2) =
2 and F,,(2) =2F,_1(2) + F,,_»(2), where n > 3. So P, = F,,(2) defines the well-
known Pell numbers [7].

Corollary 2 Let the matrix A, be the n x n (n =2t, 2 <t € N) pentadiagonal
matrix as in (1) witha :=x, b :=iand ¢ :=1 wherei = /—1. Then

det(A,) = (F11(x))’, (33)

where F, (x) is the nth Fibonacci polynomial.
Proof The determinant of A,, (n = 2¢,2 <t € IN) can be written as
2

det(A,) = Utridiag% (¢, a, b) H (34)

In [2], authors acquired that
Foy1 = |tridiag, (i, 1,1)|. (35)

If we choose a := x, b:=1iand c :=1in (34), and substituting (35) into (34), we
obtain

2
det(A,) = Htridiag%(i, X, i)H
= [Fia ]

O

Corollary 3 Let the matrix A, be the n x n (n =2t, 2 <t € N) pentadiagonal
matrix in (1). Then

(F%H)Z ifa=1, b=iandc=i

36
(P%H)z ifa=2 b=iandc=1, (36)

det(A,) = {

where F, and P, denote the nth Fibonacci and the nth Pell numbers, respectively.

Theorem 3 Let the matrix A, be as in (1) witha := x, b :=iand c := i. Then the
complex factorization of the generalized Fibonacci polynomial is of the following

Sform:
Fry(x) = H (x + 2 cos (nZI—Ci-HZ)) . (37)

k=1
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Proof The eigenvalues of the matrix A, in (2) are

2k n
)\, = 2 N k=1,2,...,—,
Fr =X+ cos(n+2) >

so the determinant of the matrix A, is

dt(A)—ﬁ 12 (2]‘”))2
et(A,) = X cos —— .

k=1

From Eq. (37) and Corollary 2, the complex factorization of the generalized Fibonacci
polynomial is provided. [J

Corollary 4 Let the matrix A,, n xn (n =2t + 1, t € N) be a pentadiagonal
matrix as in (1) witha ;= x, b:=iand c =1 wherei= /—1. Then

det(A,) = Fugs (¥) Fap 4 (1), (38)

where F, (x) is nth Fibonacci polynomial.

Proof The determinant of A,, (n = 2t + 1, t € IN) can be written as
det(A,) = ‘tridiagnz;l ( a, b)) ‘tridiag%l (@ a, b)) . (39)

If we choose a := x, b :=1and c :=1iin (39), and substituting (35) into (39), we
have

det(A,) = ‘tridiag%(i,x, i)’ ‘tridiag%(i,x, 0
= F%(X)F%+l(x).

O

Corollary 5 Let the matrix A,, n xn (n =2t + 1, t € N) be a pentadiagonal
matrix as in (1). Then

F%FnTH_H ifa=1, b=iandc=i

P%P%H ifa=2,b=iandc=1i, (40)

det(A,) = {

where F,, and P, denote the nth Fibonacci and the nth Pell numbers.
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Chains and Antichains in the Bruhat Order
for Classes of (0, 1)-Matrices

Ricardo Mamede

Abstract Let </ (R, S) denote the set of all matrices of zeros and ones with row sum
vector R and column sum vector S. This set can be ordered by a generalization of
the usual Bruhat order for permutations. Contrary to the classical Bruhat order on
permutations, where permutations can be seen as permutation matrices, the Bruhat
order on the class <7 (R, S) is not, in general, graded, and an interesting problem is
the determination of bounds for the maximal length of chains and antichains in this
poset. In this survey we aim to provide a self-contained account of the recent deve-
lopments involving the determination of maximum lengths of chains and antichains
in the Bruhat order on some classes of matrices in <7 (R, S).

Keywords (0, 1)-Matrices + Majorization - Bruhat order -+ Row and column sum
vector

1 Introduction

Matrices whose entries are just zeros and ones occur naturally in many different con-
texts, both in mathematics, in connection with graphs and, more generally, families
of subsets of a finite set, and in other areas including educational tests, ecological
studies, and social networks. A special class amongst these are the zero-one matrices
with a prescribed row sum vector R and a prescribed column sum vector S, denoted
by <7 (R, S). This class of zero-one matrices was object of intensive study during the
1950s and 1960s by H.J. Ryser, D.R. Fulkerson, R.M. Haber, and D. Gale (see [5-7,
16, 17, 24, 32] and the references therein), and has since then attracted the attention
of many combinatorists.

One of the fundamental results involving the class ./ (R, S) is the beautiful cha-
racterization, in terms of majorization, of the existence of a matrix in this class,
obtained independently by D. Gale [17], using the theory of network flows, and by
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H.J. Ryser [31], using induction and a direct combinatorial reasoning. An interesting
case in which the nonemptiness is guaranteed emerges when R = S = (k, ..., k) is
the constant vector having each of its n components equal to k. In this case we simply
write &7 (n, k) for &7 (R, S). In particular, <7 (n, 1) is the class of all permutation
matrices of order n, which can be identified with the symmetric group .%,.

This identification inspired Brualdi and Hwang [8] to define a Bruhat partial order
< on a nonempty class o/ (R, S), which generalizes the classical Bruhat order on the
symmetric group. Nevertheless, the characterization of this order seems much harder
than the classical order: for instance, a characterization of the cover relations for the
Bruhat order in <7 (R, S) is not known. Since, in general, this is not a graded poset, an
interesting problem is the determination of bounds for the maximal length of chains
and antichains for the Bruhat order in 7 (R, S). The aim of the present article is to
contribute to the clarification of this problem by providing a self-contained account
of the recent developments involving chains and antichains in the Bruhat order of
the matrix classes &7 (2k, k) and .« (n, 2).

2 The Class <7 (R, S)

Let IN denote the set of non-negative integers. A weak composition with sum
7 € Nis a finite sequence R = (ry, . . ., 1) of non-negative integers with >_. r; = 7.
A partition is a weakly decreasing weak composition. It is convenient to not distin-
guish between two partitions which only differ by a string of zeros at the end. We
identify a partition P = (py, ..., p,,) With its Ferrers diagram, obtained by placing
pi left justified ones in the ith row, for 1 < i < m. For example, if P = (3, 3, 2,2, 1),
its Ferrers diagram is

1
1

— = e
—

The conjugate partition P* = (p7, ..., p;) of P is the partition corresponding to the

transpose of the Ferrers diagram of P. In other words, each entry p; of P* satisfy

pi =k pe = i),

For instance, the conjugate of P = (3, 3, 2, 2, 1) is the partition P* = (5, 4, 2) and
its Ferrers diagram is

111
11

—_— =
—_— =
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The dominance or majorization order on partitions R = (ry,...,r,) and S =
(s1, ..., s,) with the same sum 7 is defined by setting R < § if

Fd S s s,

fori =1, ..., min{m, n}. The set of all partitions with sum 7 ordered by majorization
is a lattice with maximum element (n) and minimum element (1”) = (1, 1,..., 1),
and is self dual under the map which sends each partition to its conjugate. Graphically,
R < § if and only if the diagram of R is obtained by “lowering” at least one 11in the
diagram of S. Clearly R < § if and only if S* < R*. Moreover, S covers R, written
as R < §, if and only if S is obtained from R by lifting exactly one 1in the diagram
of R to the next available position such that the transfer must be from some ry to ;
with j < k and either k = j + 1 or r, = r; [9]. In this case we say that S is obtained
from R by a transfer from ry to ;.

Lemma 1 Let R and S be partitions with sum 7. Then R < S if and only if S can be
obtained from R by a finite sequence of transfers.

Let m and n be two positive integers and letR = (rq, ..., r,) and S = (sq, ..., S,)
be compositions with the same sum

rn+rn+--+rp=51+8+--+5,.

The set of all m x n matrices over {0, 1} with ith row sum equal to r;, for 1 <i < m,
and jth column sum equal to s;, for 1 <j < n, is commonly denoted by <7 (R, S).
For the characterization of %7 (R, S) we may assume that all entries r; and s; are
positive, since otherwise each matrix in <7 (R, S) has a row of 0’s or a column of 0’s.
Moreover, without loss of generality we may also assume that R and S are partitions,
since otherwise for permutation matrices P and Q of orders m and n, respectively,
we have
A (RP,SQ) = {PAQ : A € &/ (R, S)}.

When § = R* it is easy to check that the set </ (R, R*) has only one element,
namely the matrix A(R, n) of size m x n obtained by completing with zeros the Fer-
rers diagram of R, placed in the upper left corner. For instance, if R = (3, 3, 2,2, 1),
then

AR,3) = € (R, R").

The general characterization of the set o/ (R, S) was obtained independently by
D. Gale [17], using the theory of network flows, and by H.J. Ryser [31], using induc-
tion and a direct combinatorial reasoning. Since then various proofs were obtained
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[5]. The proof we present here is due to M. Krause [25] and uses properties of
dominance order (see also [3, 4, 13, 26]).

Theorem 1 (Gale-Ryser theorem) Let R and S be partitions with the same sum T.
Then, <7 (R, S) is nonempty if and only if S < R*.

Proof Assume there is a (0, 1)-matrix with row sum R and columns sum S. Since
the ones in A(R, n) are left-justified, any matrix A = [a;] € 27 (R, S) has at most as
many ones in the first k columns as A(R, n) has, for all k < n, that is,

k m k k

k m
Zsj = Zzalj =< ZZA(R’ n)jj = Zrl*
j=1

j=1 i=1 j=1 i=1 j=1

It follows that S < R*.
Reciprocally, assume that S < R*. Then, by Lemma 1, R* can be obtained from
S by a finite number of transfers

S=R <R '<...<R'=R*,

where R is obtained from R¥~! by a transfer, fori = 2, ..., t. We proceed by induc-
tionover t > 1. When t = 1 we have § = R* and in this case ./ (R, R*) is nonempty
and has only the matrix A(R, n). The conclusion follows by induction after we have
proven the following claim:

Claim: If o/ (R, P) is nonempty, and P' < P is obtained from P by a transfer, then
also o/ (R, P') is nonempty.

Proof of Claim: Let A = [a;;] € &/ (R, P) and assume that P’ is obtained from
P = (pi, ..., pn) by a transfer from p; to p;, for some i < j. Then p; > p; and there
is arow k in A where a;; = 1 and a;; = 0. Consider A" = [a;q] where a;;, = 0 and
a}cj = 1, while all other entries of A" agree with those from A. Clearly, A’ € </ (R, P’).

This proves the claim, and therefore the theorem. O

For example, by the Gale-Ryser theorem there exists a matrix A in the set &7 (R, S),
withR = (3,3,2,2,1)and S = (4,4, 2, 1), since R* = (5, 4, 2) majorizes S. Start-
ing with the matrix A(R, 4) and the sequence of cover relations

S=04,4,2,1)<(5,3,2,)<(5,4,1,1)<(5,4,2) =R",

the procedure obtained from the proof of the theorem above leads to a solution for
A as follows:

1110 1110 1110

1110 1101 1011
AR, 4)=|1100] = |1100]—=|1100}| —

1100 1100 1100

1000 1000 1000
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1110
0111
- |1100)=AcdR,S).

1100
1000

An important class of matrices in which nonemptiness is assured by the Gale—
Ryser theorem occurs when m = n, k € IN such that 0 < k < n, and

R=S=(k,....k

is the constant vector having each component equal to k: in this case we write <7 (n, k)
instead of &7 (R, S).

While the proof of the nomemptiness of the set .o (R, S) is constructive, as Ryser
predicted “the exact number of them is undoubtedly an extremely intricate function
of the row and column sums”. In 1988 Wang [33] presented such a formula which
involves 2" — 2n variables. Several improvements have since then been achieved
with a substancial reduction of the number of variables. Nevertheless, computing a
closed manageable formula for such sequence is still an open problem which looks
quite hard (cf., e.g., [1, 10, 21-23, 27, 30, 34] and the references therein for some
partial results). For the case <7 (n, k), an asymptotic formula was obtained by O’Neil
[29] (see also [15]):

#ot (n, k) ~ %f“‘*“z/z. (1)

3 The Bruhat Order on <7 (R, S)

Amongst the various ways to define a partial order on the symmetric group .#;, the
Bruhat order is the most prominent of all as it can be generalized to any Coxeter
group. Identifying permutations with permutation matrices, Brualdi and Hwang [8]
generalized further this partial order to the class of matrices .27 (R, S). In this section
we describe this process and analyse some characteristics of the Bruhat order on
2 (R, S).

An inversion of a permutation p = pp, - --p, € %, is a pair (p;, p;) such that
i < jbutp; > p;. The Bruhat order on the symmetric group .#, can then be defined
by declaring that permutation p is less than or equal to permutation ¢, denoted p < ¢,
if and only if either p = g, or p can be obtained from ¢ by a series of operations,
each of which interchanges the two entries of an inversion. An operation of this type
reduces the number of inversions in a permutation. The identity permutation 12 - - - n
is the unique minimal element in the Bruhat order on .7}, and the unique maximal
element is the permutation n(n — 1) - - - 1.

The symmetric group can be identified in a natural way with the class of per-
mutation matrices <7 (n, 1) of order n. Using this identification, an inversion on a
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permutation p € ., corresponds to a pair of ones in the corresponding permutation
matrix P, one of which is located to the top-right of the other. More precisely, if
P =[p;] € &/(n, 1), aninversion in P consists of any two entries p;; = pi¢ = 1 such
that (i — k)(j — k) < 0. We denote the total number of inversions in P by v(P) [19].

For permutation matrices P and Q of order n, corresponding to permutations p
and g, we say that P is less than or equal to Q in the Bruhat order, and write P < Q,
whenever p < q.

An alternative, but equivalent, way to define the Bruhat order on the symmetric
group is to use the Gale order [2] on subsets of a fixed size of [n] := {1, ..., n}.
Given two nonempty subsets X = {ay,...,a;}and Y = {by, ..., by} of [n], written
in increasing order, we say that X is less than, or equal to Y in the Gale order,
denoted X <¢ Y, ifand only if a; < by, ar < b,,...,ar < by. Forp =pip>---pn,
let plk] = {p1, p2, - - ., px}. The following lemma is a straightforward consequence
of the definitions [8].

Lemma 2 Let p and q be permutations in .. Then,
p = q ifand only if plk] <¢ qlk], (1 <k <n).

For a m x n matrix A = [a;], let ¥4 = (0;;(A)) denote the m x n matrix whose
(i, j)-entry equals

i
o) = D are (I<i=mls<j<n).

k=1 £=1

That is, 0, ;(A) is the sum of the entries in the leading i by j submatrix of A. Using
the Gale order, it is easy to check that for permutation matrices P and Q of order n,
one has P < Qif and only if ¥p > X, where this latter order is the entrywise order
(see [5] for a proof).

Lemma 3 [If P and Q are permutation matrices of order n, then P < Q if and only
l:fZP > EQ.

This result, which is equivalent to Lemma 2, can be used to extend to the class
< (R, S) the Bruhat order on permutation matrices. If A; and A, are matrices in the
class &7 (R, S), then we say that A is less than, or equal to A; in the Bruhat order,
denoted A| < A, if and only if X4, > X4, in the entrywise order, i.e. 0;;(A;) >
oj(Ar) foralll <i<mand1 <j<n.

It is well known that the Bruhat order on permutation matrices is graded, that is
all maximal chains have the same length, with rank function given by the number of
inversions. But in general, the Bruhat order on 7 (R, S) is not graded. For instance,
consider the following matrices in .2/ (4, 2):
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1100 1100
0011 0101
A=1o101] ™ C=11010
1010 0011,
and also
1100 1100
0101 0011
Xi=1loo11|> "=|1001]
1010 0110
1100 1100
0011 001 1
=11010 ™MY5=|1100
0101 0011,

In [7], it shown that A covers X, X; covers C, A covers Y, Y, covers Y», Y, covers
Y3, and Y3 covers C. That is, there are maximal chains from A to C of lengths 2 and
4in the Bruhat order, proving that the class <7 (4, 2), under the Bruhat order, is not
graded.

Also, as pointed before, in the Bruhat order on the class .7 (n, 1) there is a unique
minimal matrix, the identity /,, and a unique maximal matrix, the permutation matrix
D,, with 1’s in the positions (1, n), (2,n — 1), ..., (n, 1). In general, however, there
can be many minimal and maximal matrices in a nonempty class .2 (R, S). Brualdi
and Hwang showed in [8] that the following algorithm constructs a minimal matrix
in the Bruhat order on the class <7 (n, k). Note thatif A < Bin </ (n, k),and A" and B’
are obtained from A and B respectively by reversing the order of their columns, then
B’ < A’. Therefore, maximal matrices in the Bruhat order of .27 (n, k) are obtained
by reversing the order of the columns in minimal matrices.

As usual, we let J,,,, denote the m by n matrix of all 1’s, abbreviated to J, when
m=n.

Algorithm to Construct a Minimal Matrix in the Bruhat Order on ./ (n, k).

1. Letn =gk 4+ r where 0 <r < k.

2. If r=0,then A =J; @ --- ® Jy, (g Ji’s) is a minimal matrix, where @ denotes
the direct sum of matrices.

3. Else, r # 0.

a. Ifg>2,1let
A=X®J,®---DJi, (gq—1J;’s, X has order k + r),

andletn < k+r.
b. Else, g = 1, and let
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Jr,k Or
A= ( X Jk,r)’ (X has order k),

andletn < kandk <k —r.
c. Proceed recursively with the current values of n and & to determine X.

For example, with n = 9 and k = 2 the algorithm above construct the following
minimal matrix in .27 (9, 2):

Jip |01
A= : J. J J.
<J1®J1 JZ.I)@ 2 &L D)

We start by writing 9 = 4 - 2 + 1 to get, by step 3(a),A = X @ J» & J» & Jo, where
the matrix X has order 3, and we set n = 3 and k = 2. Next, since 3 =1-2+ 1, by

step 3(b), we get
(12| O
X = ( Y JZ.l) ’

where Y is of order 2, and we set n = 2 and k = 1. Finally, since 2 = 2 - 1, by step
2wegetY =J, @ J;.

If we let F, denote the matrix of order n with 0’s in positions (1, n),
2,n—2),...,(n, 1) and 1’s elsewhere, then the minimal matrix for 7 (9,2)
obtained in the example above is a direct sum of matrices equal to J, and F3 =

110

101 |. AsBrualdi and Hwang proved in [8], this is part of a general property of

011
the classes <7 (n, 2).

Theorem 2 [8] Let n be an integer greater than or equal to 2. Then a matrix in
o/ (n, 2) is a minimal matrix in the Bruhat order if and only if it is the direct sum of
matrices equal to J, and F.

Hence, when n is odd, we can construct a minimal matrix P, in <7 (n, 2) as the
direct sum of n/2 copies of J,, and the corresponding maximal matrix Q,:

Pn: .o andQn: .. .o 5 (2)
00 -/ T 00

and when 7 is odd, we construct a minimal matrix P, as the direct sum of (n — 3)/2
copies of J, and one copy of F3, and the corresponding maximal matrix Q,:
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5,000 000
0J,--0 0 00--J,0

Pp=1: 00 i landQy=1 1 ¢ Do 3)
00--J,0 0J,---00
00--0F; F;0--00

In [7] it was proved that <7 (n, k) contains a unique minimal element in the Bruhat
orderifand onlyifk € {0, 1,n — 1, n} or n = 2k. Notice also that when n = 2k, step
2 of the algorithm above produces the minimal matrix J; @ Ji, so this is the only
minimal matrix in <7 (2k, k).

Theorem 3 [7] Let n and k be integers with 0 < k < n. Then the class <7 (n, k) has
a unique minimal element in the Bruhat order if and only if k € {0, 1,n — 1, n} or
n = 2k. The unique minimal and maximal matrices in </ (2k, k) are, respectively

_ Jk Ok _ Ok Jk
Pk—(Ok Jk) anko—(Jk Ok)

Since o (n, k) ~ </ (n, n — k) (the map A — J, — A does the job), #.o7 (n, 0) =
1and &7 (n, 1) =~ §,,, the most interesting case in which there is uniqueness of minimal
and maximal matrices is .« (2k, k).

4 Chains in <7 (2k, k) and </ (n, 2)

In this section we address the problem of finding the maximum length of a chain in the
Bruhat order on the classes <7 (2k, k) and <7 (n, 2), giving algorithms to construct
such chains, following [11, 19]. We start by proving that the maximum length of
a chain in the Bruhat order on the class <7 (2k, k) is k*, giving an algorithm that
construct such a sequence.

Theorem 4 [11] For any positive integer k, the maximal length of a chain in the
Bruhat order in o/ (2k, k) equals k*.

Proof For any A, B € </ (R, S) such that A < B, as an immediate consequence of
the definition of Bruhat order, an upper bound for the length of any admissible chain
between A and B is clearly given by

P(A,B) := D > [04(A) — 0 (B)].

i=1 j=1

Since by Theorem 3 the poset (<7 (2k, k), <) admits a unique minimum P and a
unique maximum Qy, any chain between two pairwise comparable elements can be
extended to a chain between P; and Q.
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After some lengthy but rather straightforward computations we get

ij itij<k
ik ifi<k<j
i(Pr) = T,
7P =14 ifi>k>j
ij—kG+j—2k) ifi,j>k
0 ifi,j <k
00 i(j — k) ifi<k<j
gjj = . 5
T - ifi>k>j

kGi+j—2k) ifi,j>k

and @(Py, Ox) = k*.

Hence it suffices to present an instance of a chain between P; and Q; having
exactly such length. We do that in an algorithmic way, presenting a procedure to
generate an order preserving path in the Hasse diagram of .o/ (2k, k).

Procedure [Switch(r, r)] 1 <t,r <2k — 1.
Input: A = (a;) € o/ (2k, k) such that the submatrix

( agr At r+1 ) _ (1 0)
Aty Qprr41)  \O1)°

Output: B = (byj) € o/ (2k, k) such that b = a; if 1 <i,j <2k and {i,j} ¢
{{t.r}, {t,r + 1} {t + 1}, {t + 1,r + 1}}, and

b, b N _ (01
vty beyire1)  \10)°
It is easy to see that executing procedure Switch(z, r) the output covers the input
in the Bruhat order for any choice of parameters. Our chain will be made by repeated
applications of the procedure Switch(z, r).

Procedure [Switch-rows(¢)] 1 <t <2k — 1.
Input: A = (a;) € o/ (2k, k) such that rows ¢, t + 1 equal
For o = k down to 1 do

I,...,1,0,...,0
0,...,0,1,...,1)"
Begin

For § = ato o + k — 1 do Switch(z, 3).
End.
Output: B = (b;) € &/ (2k, k) such that b; ; = a; j for any 1 < i, j < 2k such that
i#t t+1,and rows t, 7+ 1 equal
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0,...,0,1,...,1
(1 1,0,...,0)'
Algorithm [Chain(k)] k € IN \ {0}.
Input: Py.
For « = k down to 1 do
Begin
For = ato o + k — 1 do Switch-rows((3).
End.
Output: Q.
We can see that, for any choice of parameters, the procedure “Switch” is invoked
k? times by procedure “Switch-rows”, and that algorithm “Chain” recalls procedure
“Switch-rows” k2 times as well, so there are k* application of procedure “Switch”.
Since, as already remarked, each time that procedure “Switch” is recalled we are
moving up (by one cover relation) in the Hasse diagram of the poset (<7 (2k, k), <),

all the constructed elements are pairwise distinct members of the desired chain, and
the result follows. O

For the sake of clarity, we present in detail our construction of the chain for the
case k = 2.

Example 1 A chain of maximal length in the class <7 (4, 2). Dots represent zeros.

11 - - 11 - - 11 - - 11 - -
P_ll»< 1-1- - -1 <11
P BTN Radl (T Rl BUEETEEN Mol IETRRNT

We turn now our attention to the problem of finding the maximum length of a chain
in the Bruhat order on the class 7 (n, 2), following closely M. Ghebleh [19]. The
key factor for the construction of such a maximal chain is the number of inversions
of a (0, 1)-matrix, which was shown by Ghebleh to be monotonic with respect to the
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Bruhat order on the class <7 (n, 2) using a variation of the Bruhat order on <7 (R, S),
called the secondary Bruhat order, which coincides with the Bruhat order on the class
o7 (n, 2).

Lemmad LetA, C € o/ (n,2). IfA 3 C, then v(A) < v(C).

Note that from this result we can conclude that if v(A) = v(C) for two distinct
A, C € @/ (n,2) then A and C are incomparable in the Bruhat order. Therefore, the
set v~ (¢) of all matrices A € o7 (n, 2) with ¥(A) = ¢ is an antichain in the Bruhat
order of <7 (n, 2), for any integers n > 2 and ¢ > 0.

In the next results, we present Ghebleh’s construction of chains of lengths 2n(n —
2)ifn > 4iseven, or 2n(n — 2) — 1 if n > 51is odd, respectively, in the Bruhat order
of &7 (n, 2), starting at the minimal matrices P,, and ending at the maximal matrices
0, given in (2) and (3), respectively.

Proposition 1 [fn > 4 is even, then there is a chain of length 2n(n — 2) from P, to
Q,, in the Bruhat order of <7 (n, 2).

Proof The chain is constructed recursively by induction on n. For n = 4 the chain
was given by Theorem 4 and presented in Example 1. So, let n > 6 be even, and note
that by (2), P, = P,—» @ J,. By the induction hypothesis, there is a chain of length
2(n —2)(n — 4) from P,_, to Q,_,. Taking the direct sum of the matrices in such
chain with J,, we obtain a chain of the same length from P, to A; = Q,,—» & J,. This
chain can be extended to one from P, to Q,, as follows. Let E| be the submatrix of A;
induced by rows 1,2,n — 1, n and columns n — 3,n — 2, n — 1, n. Then, E; = Py.
We extend the current chain by keeping all entries outside E; constant, and applying
the chain of case n = 4 in the positions corresponding to E;. This extends the current
chain by 16. Let A, denote the end of this chain. We procced by applying the same
procedure to the submatrix E; = P4of Ay inducedbyrows 3, 4, n — 1, n,and columns
n—>5,n—4,n—3,n— 2. The process is repeated for a total of n/2 — 1 times, after
which the resulting chain ends at A, » = Q,. The length of this chain is

2m—2)(n—4) +16(n/2 — 1) =2n(n — 2),

as required. O

Example 2 A chain of maximal length in the class <7 (5, 2). Dots represent zeros.

11 . - - 11 - - - 11 . - -
11 . - . 11 .- - 1.1 . -
Ps={ 11— 11 QJ=f-1-1-
P T | 11 R |
| R I | P T |
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— 1 1| = Z— 1-1-] = 11
1 11 1 1
11 1l 11
11 - 1 . 1
-1 1 -1 1 1
= 11 = B D = -1
11 11 11
11 1. - 11
1 1 - -1- 1 1
1 1 1 -1 1 1
— 11 — 1-1-] +— 1 1
11 1 11
11 T 11
1 1 -1 1 1
1 1 - -1 -1
— 1 1| — R U B SN 1.1
11 11 1 1
11 11 11
1 1 -1 1 1
-1 B 11
= 111 -1-1]+ 1 1
-1 11 11
-1 11 11
1 1 -1 -1
11 11 1 1
— L1l 11|~ 11
-1 11 11
11 11 - 11
11 N 11
-1 -1 1 1
— 11 = 11 = 11
11 1l 11
11 11 11
11 B 1
1 -1 R o011
— |1 1 [ i | -11- -] =0s
11 - 11 1.
1 1

Proposition 2 [fn > 5 is odd, then there is a chain of length 2n(n — 2) — 1 from
P, to Qy in the Bruhat order of </ (n, 2).

Proof As for the even case, the chain is constructed recursively by induction on 7.
For n = 5 the chain is shown in Example 2. Let n = 2k + 5 with k > 1. Then P, =
Py, @ Ps. By applying the chain for the case n = 5 of Example 2 to the submatrix
of P, formed by its last five rows and its last five columns, we obtain a chain of
length 29 from P, to A = Py + Qs. Let E be the 5 x 5 submatrix of A induced
by the rows 2k — 1,2k, n — 1,n — 1, n and columns 2k — 1, ...,2k + 3. Then E =
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J,» @ F}. Note that Xy > X, where Z is the seventh matrix of the chain in &7 (5, 2)
constructed in Example 2. Thus, E < Z and we may apply the subchain of Example
2 that start with Z and ends with Qs to extend the current chain by 24. We repeat this
procedure k times to obtain a chain ending at

_ 0 P,_3
C‘(Fg 0)'

Using now Proposition 1, we may extend this chain to end at

_ 0 Qn73
o= (r%):

This chain has length 29 + 24k + 2(n — 3)(n — 5) = 2n(n — 2) — 1. 0

The next result shows that the chains constructed in Propositions 1 and 2 are
indeed the longest possible chains in the Bruhat order of .o (n, 2).

Theorem 5 [19] Let n > 4 and let §(n) denote the maximum length of a chain in
the Bruhat order of <7 (n, 2). Then,
2n(n — 2), if n = 0(mod 2)
o(n) = ; .
2n(n —2) — 1, ifn= 1(mod?2)
Proof LetAy < Ay X --- <X A be achain in the Bruhat order of . (1, 2). By Lemma
4 we have v(Ay) < v(Ay) < --- < V(Ag), from which it follows that k < v(Ay) —

v(Ap). Since a chain of maximum length §(n) begins with a minimal element and
ends with a maximal element, we obtain

6(n) < max{r(Q)} — min{v(P)},

where the maximum is over all maximal matrices Q and the minimum is over all
minimal matrices P in the Bruhat order of .o7 (n, 2).

On the other hand, since by Theorem 2 any minimal matrix in <7 (n,2) is a
direct sum of matrices equal to J, and F3, and v(J;) = 1 and v(F3) = 2, a minimal
matrix with the smallest number of inversions cannot have more than one direct
sum component F3. Therefore, v(P,) is the smallest possible value of v(P), for
any P € 4/ (n, 2), and similarly, v(Q,,) is the largest possible value of v(Q), for any
Q € 4/ (n, 2). Therefore, we obtain

6(n) = v(Qy) — v(Py).

Note that there are no inversions in P, involving entries from different J, and F3
direct sum components. Thus, v(P,) = [r/2]. In the maximal matrix Q,, however,
every pair of ones in different J, and Fj sum components gives an inversion, while
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there are v(J,) = 1 and v(F%) = 7 inversions within each block. A simple calculation
gives v(Q,) = | (4n® — 7n)/2]. Hence,

2n(n—-2),  ifn=0(nod2
d(n) < |_(4n2 —7n)/2] — [n)2] = n(n ) 1 n (mod 2) .

2n(n —2) — 1, ifn= 1(mod?2)
The constructions obtained in the proofs of Propositions 1 and 2 proves the lower
bound. -

5 Antichains in </ (2k, k) and <7 (n, 2)

Dilworth’s theorem [ 14] states that the maximum number of elements in any antichain
in a partially ordered set equals the minimum number of chains into which the set may
be partitioned. Mirsky’s dual of this theorem [28] states that the maximum number
of elements in any chain in a partially ordered set equals the minimum number of
antichains into which the set may be partitioned. Denoting by h(n, k) (respectively
w(n, k)) the maximum number of elements in a antichain (respectively chain) in the
Bruhat order of <7 (n, k), Dilworth’s and Mirsky’s theorems imply

h(n, yw(n, k) = #47 (n, k). “)
By Theorems 4 and 5 we have
h(2k, k) = k* + 1 and h(n, 2) = 2n(n — 2) + &,

fork > 1,n > 4, wherecisOifnisodd, and 1 if nis even. These values, together with
Egs. (1) and (4), indicates that the maximum number of elements in any antichain on
the Bruhat order of the sets .7 (2k, k) and .<7 (n, 2) have exponentially large sizes. In
what follows we derive lower bound for the number w(n, k) of the Bruhat order on
the classes <7 (2k, k) and <7 (n, 2).

In the first result we explain the construction made in [12] of antichains of size
(%4 + 1)? on the class <7 (2k, k), a result which was improved in [20], as we will see.
Nevertheless, the constructive nature of these antichains make it worth to include it
in this survey.

Theorem 6 For any integer k > 2, let w(2k, k) be the largest size of an antichain
in the Bruhat order in </ (2k, k). Then

2
k4
w(2k, k) 3(5 +1) .
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Proof We start by proving the bound for w(2k, k) when k = 0(mod2). Recalling that
by Theorem 3, <7 (2k, k) admits a minimum Py and a maximum Qy, let us consider
the matrix

Ji Je |Ox O Jr O«
2 2 2 2 2 2
Ok Ox|Jx Ji Ox Ji
A — 2 2 2 2 2 2
Ok Ox|Jr Ji O Ji
2 2 2 2 2 2
Ji Ji |Ox Ok Jx O«
2 2 2 2 2 2
Ji o
2 P. 2
ox | s
2 2
= 5
o7 ®
Q 2
Ji |70l
2 2

which satisfies is actually the matrix generated at step by the algorithm in Theo-
rem 4. We use symbols *, ©, *, and 7 just to mark and indicate the corresponding
submatrices of A. Note that *~*~P;and O~ T~ Q:.

The Chain algorithm of Theorem 4 generates a chain of maximal length n*
between P, and Q,, for any integer n > 2, and it is straightforward to see that it
can be reverted, viz. we can consider the Rev—Chain algorithm which generates the
same chain backwards from Q, and P,.

Applying simultaneously Chain and Rev—Chain algorithms to ® and ©, and denot-
ing this operation as central-antichain algorithm, we get (§)4 + 1 incomparable
elements. In fact, let

QO ~
©

DI G g I

ca __
Af =

Q
\k‘ \\
]

~
\Q“

be the matrix obtained from A after £ > O iterations of the central-antichain algorithm,
i.e. P" is obtained from Pk after ¢ iterations of the Chain algorithm and Q" is obtained

from Q; after ¢ 1terat1ons of the Rev—Chain algorithm.
Now consider £ < t and A7 and A{® (i.e. A{“ is obtained from A¢“ after ¢ — £ ite-
rations of the central-antichain algorithm): obviously we have P{ = P’ as elements

2 2
of o (k, %), i.e. there exist (u, v) with 1 < u, v < k such that o,,, (P‘;) > O (P;)
2 2
Similarly, 0%, = Q' as elements of 7 (k, %), i.e. there exist (w,z) with1 <w,z <k
2 2
such that o, (Q k) > Oy (Qk)
Therefore, considering in .27 (2k, k) the two matrices Aj* and A{“ we have
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J
: 5 ¢
Tt (A5) =0, (oi) +ow (7))
2
‘ .
(o,) +ow(P1) = o, (45).

We now show that oy, ¢ .. (A{) < 0, 1. (A7), and therefore A and A are
incomparable in o/ (2k, k).
Note that since Pi»Ptg e . (k, ’%), forany 1 <j <k, we have
2 2

ik
o () =on ) =0 () () =

~

[Nl

> Uu,

Sl

hence

Analogously, we can apply simultaneously Chain and Rev—Chain algorithms to
the submatrices * and T in Eq. (5), denoting this operation by lateral-antichain algo-
rithm, and we get (5)4 + 1 incomparable elements, as well.

In fact, it is possible to apply independently both central-antichain and lateral-
antichain algorithms to A in Eq.(5) and still get an antichain, namely
Z={AV10<i,j< (%)4} is an antichain, where A¥ is the matrix obtained from
A applying i-times the central-antichain algorithm and j-times the lateral-antichain
algorithm; thus we get an instance of an antichain having size

AR
= ).
It is easy to see that Z is an antichain because the upper half of the matrix A is the

disjoint union of two submatrices Py, whereas the lower half is the disjoint union
of two submatrices Q £ hence for any transformation we apply, the upper half goes
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up in the Bruhat order, and the lower half goes down, and therefore the resulting
elements are incomparable.
For any integer k > 3, not necessary even, we obviously have

wQk — 1),k — 1) < w(2k, k),

and the desired result follows. O

Consider now the class o7 (n, 2). Recall that by the discussion after Lemma 4, we
know that for t > 0 and n > 2, the set v~ (¢) of all matrices A € .27 (n, 2) such that
v(A) = ¢ forms an antichain in the Bruhat order of <7 (n, 2).

Given am x n matrix A = [a;], let A" = [b;;] be the m x n matrix obtained from
A by reversing the order of their columns, i.e. with b;; = g; ,—j; forall 1 <i<m
and 1 <j < n. We say that A’ is the conjugate of A. Applying the inclusion-exclusion
principle, we find that if A € &/(R, S), withR = (ry, ..., ry) and S = (s, ..., s,),

then " .
wean=( ) £0) $0)
i=1 j=1

In particular, if A € o7 (n, 2) is such that A = A’, then we get v(A) = n> — 3n/2.
From this equality we conclude that if n is odd there is no self-conjugate matrix
in the class <7 (n, 2), but for n even self-conjugate matrices were used in [20] to
construct antichains. In the next results we describe such constructions.

Theorem 7 Ifn > 2 is an even integer, then there is an antichain of size 2% in the
Bruhat order of < (n, 2).

Proof Let n = 2k be an even integer. The first n/2 columns of any self-conjugate
matrix Ac € <7 (n, 2) induces a matrix C of size 2k x k, with columns sums equal to
2 and row sums equal to 1, such that A = [C C']. Since v(A¢) = n* — 3n/2, the set
of all self-conjugate matrices forms, an which we can identify with the set <7 (R, S),
where R = (1") and S = (2/?). In [18], the cardinal of such class .27 (R, S) was
proved to be n!/2"/?. Thus, the antichain formed by the self-conjugate matrices of
o7 (n, 2) have(2k)!/2* elements. O

The construction of an antichain in the Bruhat order of <7 (n, 2) when n is odd
follows the same lines of the even case.

Theorem 8 Ifn > 3 is an odd integer, then there is an antichain of size 2(7;—31,3; in the
Bruhat order of < (n, 2).

Proof Let n = 2k 4 1 be an odd integer and let C be an 2k x k (0, 1)-matrix with
columns sums equal to 2 and row sums equal to 1. Let Ac = [a;;] be the n x n matrix

such that its the restriction to the submatrix induced by rows 1, ..., 2k and columns
I,...,k is C, the restriction to the submatrix induced by rows 2, ...,2k + 1 and
columns k + 1, ...,2k is C, has ones in positions a;, and a,,, and zeros in the

remaining positions. The number of inversions in both A¢ and A(. is given by
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v(Ac) = V(A/C) =k(4k — 1).

Thus, the set of matrices of the form A¢ and Ay, is an antichain in the Bruhat order of
4/ (n,2). As mentioned in the proof of Theorem 7, there are (2k)!/2* such matrices
C, and each induces two matrices Ac and A’C. Thus, there are (2k)!/ 2k=1 elements
in the antichain. U

In the following theorem, whose proof we refer to M. Ghebleh [20], we present a
construction of antichains in the Bruhat order of the class <7 (R, S) that are products
of known antichains. This construction was used in [20] to improve the lower bound
for the antichains of .o (2k, k) obtained in Theorem 6. We use the notation R ® S to
denote the Kronecker product of the vectors R and S = (s, ..., s,),andletr + S =
(t+s1,....t+5,).

Theorem 9 For positive integers a, b, m, n, let Rj=(ry, ..., 1), Ro=(r{, ..., 1),
Ry=(r,....10), Si=(s1,...,8), Sa=(s),....8,), and S3 = (s],...,s)) be
nonnegative integer vectors. Letu =ry +rp, + - +rpu' =ri +ry+---+r, and
' =rl+r)+---+r,, and suppose that u' # u". If D1, D> and D5 are antichains
in the Bruhat order of the classes </ (R, S1), & (R,, S») and <7 (R3, S3) respectively,
then there is an antichain of size | 21||2:|"|25|®~" in the Bruhat order of the class
A (R, S), where R=Ri QR+ (b—R) Rz and S =S, ® S, + (a — 1) ® Ss.

Corollary 1 For any integer k > 2, let w(2k, k) be the largest size of an antichain
in the Bruhat order in </ 2k, k). Then

*kH* if k is even
WOk K > gl = | 7 if .
(2k, k) = g(k) [«Iz_lgr‘ if k is odd

Proof Consider the antichains &, = {I,} in the Bruhat order of <7 (2, 1), and 2, in
the Bruhat order of <7 (k, 2) given in Theorem 7 or 8, depending on the parity of k.
Then, 5 = {J, — X : X € %}, formed by the complements of the matrices in 2, is
also an antichain in the Bruhat order of .7 (k, 2), since matrix complements reverses
the Bruhat order. Applying Theorem 9 to the antichains 2, %, and %5 we get an
antichain of the desired length in the Bruhat order in <7 (2k, k). (I
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Iterative Method for Linear System
with Coefficient Matrix as an M -matrix

Manideepa Saha

Abstract An M, -matrix A has the form A = sI — B, with B an eventually nonneg-
ative matrix and s > p(B), the spectral radius of B. In this paper we study iterative
procedures associated with a splitting of A, to solve the linear system Ax = b, with
the coefficient matrix A an M, -matrix. We generalize the concepts of regular and
weak regular splitting of a matrix using the notion of eventually nonnegative matrix,
and term them as E-regular and weak E-regular splitting, respectively. We obtain nec-
essary and sufficient conditions for the convergence of these types of splittings. We
also discuss the convergence of Jacobi and Gauss-Seidel splittings for M, -matrices.

Keywords E-regular splitting - Weak E-regular splitting - Jacobi splitting - Gauss-
Seidel splitting

1 Introduction

Consider the linear system
Ax=b (D

where x, b € R" and A € R™", is an invertible matrix. An iterative technique to
solve the linear system (1) involves an initial approximation x( to the solution x
and determines a sequence {x;} that converges to the exact solution x. Most of these
methods reduce to the iterative scheme x**! = Hx* + ¢, withk > 0, where the matrix
H is called an iteration matrix of the system (1). It is well known that the iterative
scheme converges to the exact solution x of (1) if and only if p(H) < 1 for p(H) the
spectral radius of H.

Asitis well known with a splitting A = M — N of A, one may associate an iterative
scheme
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X =MNK M 2)

for solving the system (1) (see [2, 15]), and the convergence of such iterative scheme
depends on the spectral radius of M~!N. An M-matrix has the form A = s — B
with B a nonnegative matrix and s > p(B). To solve (1) with the coefficient matrix
A an M-matrix, deserves attention due to its occurrence in a wide variety of areas
including finite difference method for solving partial differential equations. In [8],
the authors considered such system of linear equations with A an M-matrix, and
the convergence of iterative scheme (2) was obtained via regular and weak regular
splittings of A, concept introduced in [12, 15].

Initiated by Friedland [7], attempts were made to study generalized nonnegative
matrices, called eventually nonnegative matrices (see [3, 4, 6, 9, 10]), and sub-
sequently generalized M-matrices were studied (see [5, 11]). In [11], the authors
introduced M, -matrices, which have the form A = sI — B, where B is eventually non-
negative and s > p(B). Thereafter, in [13, 14], researchers studied some combinato-
rial properties of this class of matrices. One of the reason that motivated researchers
to study this class of matrices is due to its occurrence in engineering, biological and
economic applications (see [1]).

Elhashash and Szyld in [5], generalized the concept of regular and weak regular
splitting based on Perron-Frobenius property and studied the convergence of such
splittings for another generalization of M-matrices, known as GM-matrices. In this
paper, we are concerned with the system (1), where the coefficient matrix A is an
M., -matrix. We generalize regular and weak regular splitting using the notion of even-
tually nonnegative matrices, to study the convergence of the iterative scheme (2).

The paper proceeds as follows. In Sect. 2, we consider the basic definitions and
some preliminary notations. In Sect. 3, we generalize the concept of regular and weak
regular splitting and discuss the convergence of the iterative scheme (2), when the
coefficient matrix A in (1) is a nonsingular M\, -matrix. In particular, we concern with
the convergence of Jacobi and Gauss-Seidel methods for such type of linear systems.
Lastly, in Sect.4, we consider singular linear systems and derive a necessary and
sufficient condition for semi-convergence of the linear system (1).

2 Notations and Preliminaries:

Let R™" denote the set of all m x n real matrices. We say a matrix A € R™" is
nonnegative (or positive) if a; > (or >)0, for all i, j, and we denote it by A >
0 (or A > 0). For any matrix A € R™", and for any negative integer £k with 0 <
|k| < n, tril(A, k) is the lower triangular part of A with g;; =0fori=j+r, r =
0,1,2,...,|k| — 1, and for any positive integer k with 0 < k < n, triu(A, k) is the
upper triangular part of A witha; =0forj=i+r, r=0,1,2,...,k— 1.

The spectral radius of A is denoted by p(A), and by o (A), we mean the spectrum of
A.LetX € o(A), thenindex; (A) defines the size of the largest Jordan block associated
with A. When A is singular, we simply write index(A) for index(A).

We begin with some preliminary definitions.
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Definition 1 ([11]) A matrix B is said to be an eventually nonnegative matrix if
there exists a positive integer ko such that BX > 0 for all k > ko. A matrix A which
has the form A = s/ — B, with eventually non-negative B and s > p(B), is called an
M., -matrix.

Definition 2 ([9]) A matrix B is said to possess Perron-Frobenius property if there
exists a nonnegative vector y # 0 such that By = p(B)y. By WPFn, we denote the
collection of all matrices B € R™" such that both B and BT possess Perron-Frobenious
property.

Definition 3 ([12, 15]) Recall that a splitting of a matrix A is of the form
A=M—-N 3)

with a nonsingular matrix M. Then the splitting (3) is called

(i) anonnegative splitting if M~'N > 0.
(ii) aregular splitting if M~! > 0 and N > 0.
(iii) a weak regular splitting if M~!N > 0 and M~ > 0.

Lemmal ([2]) Let A =M — N € R™" with nonsingular matrices A and M. Then
for H=M"'N and c = M~'b, the iterative method (2) converges to the solution
A7 of (1) for each x° if and only if p(H) < 1.

The following definition is due to Elhashash and Syzld, which generalized the above
definition.

Definition 4 ([6]) A splitting A = M — N is called a Perron-Frobenius splitting if
M~'N is a nonnilpotent matrix having the Perron-Frobenius property.

3 Splitting of Nonsingular M\ -matrices

In this section we generalize the concepts of regular and weak regular splitting using
the notion of eventually nonnegative matrices and call them as E-regular and weak E-
regular splitting, respectively. We study the convergence of such types of splittings for
nonsingular A. We also obtain sufficient conditions for the convergence of classical
Jacobi and Gauss-Seidel iterative methods, in case the coefficient matrix A of (1) is
a nonsingular M, -matrix. We now define the new splittings introduced in this paper.

Definition 5 For A € R™", a splitting of A is defined as A = M — N, with nonsin-
gular M. The splitting A = M — N is said to be an E-regular splitting if both M !
and N are nonnilpotent eventually nonnegative matrices.
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Definition 6 For A € R™", a splitting A = M — N is said to be a weak E-regular
splitting if both M~'N and M~' are nonnilpotent eventually nonnegative matrices.

We now consider the iterative schemes (2) starting with two different initial
approximations and show that their convex combination approximates the exact
solution A~'b of (1). We also give a sufficient condition for the existence such initial
guess.

Theorem 1 LetA = M — N withnonsingular matrices A and M, and let the iterative
matrix H = M~'N be a nonnilpotent eventually nonnegative matrix. Consider the
system (1) and the iterative scheme (2).

1 1

(i) If there exist vectors x° and y0 such that x° < x', x° < yO, yO < yl, where x
and y' are computed from the iterative scheme (2) with initial values x° and y°,
respectively, then there exists ko such that

o <xbtl < << <ATh < <y < <yt <yl (g

and for any scalar
A7'b = A lim x* + (1 — &) lim y*. (5)
k— 00 k— 00

(ii) If the iterative scheme (2) converges, then the existence of such x° and y° is
ensured.

Proof (i) As H is eventually nonnegative, so there exists a positive integer ky such
that H* > 0, for all k > k. Equation (2) implies that for any k > ky we have

X =H+ H M o+ H2M T+ + HM T b+ M)
and x*' = H*!' + H'"M~'b + H*2M~'b+ ...+ HM~'b + M~'b,
so that x*t1 — xk = H¥(x! — x0) > 0. Thus x*T! > xX, for all k > k.
Similarly it can be checked that for k > ko, y**! < y* and x* < y*. Thus for
any k we have

k k

o<t << <yt <<yt <yl
so that both sequences {x*} and {y*} are bounded and so they converge. Hence
both the iterative schemes (2) with initial values x° and y° converge to A~ b

(ii) Suppose that the iterative scheme (2) converges, say to x. Then it follows that x =
A~'band p(H) < 1.Since H is nonnilpotent eventually nonnegative, there exists
z > 0 such that Hz = p(H)z < z (see [3]). If we take xX* =A=' — z and y° =
A7'b 4z, theny? —x®=2z7>0and x' = HxX + M~'b = HA"'b — p(H)z +
M~'b. As A™' = (I — H)"'M~!, which implies that M~' = (I — H)A™', so
xXl=A"1p— p(H)z > A7p — 7 =49, Similarly, it can be verified thaty1 < yo.
g
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Our next result contains a necessary and sufficient condition for the convergence of a
weak E-regular splitting. We first state a theorem from [9], used to prove our result.

Theorem 2 ([9]) If (i) AT € R™" possesses the Perron-Frobenius property and x >
0 (x # 0) is such that Ax — ax < 0 for a constant « > 0, or, (i1)) A € R™" possesses
the Perron-Frobenius property and x > 0 (x # 0) is such that x"A — ax” < 0, fora
constant o > 0, then o < p(A).

Theorem 3 Let A = sI — B € R™", with B a nonnilpotent eventually nonnegative
matrix, be a nonsingular matrix. Then A is an M,-matrix if and only if every weak
E-regular splitting A = M — N with M > 0 is convergent.

Proof Suppose that p = p(M~'N) > 1. As M~'N is a nonnilpotent, eventually non-
negative matrix, there exists x > 0 (x # 0) such that M~!Nx = px which implies
that Nx = pMx > Mx, that is, Ax < 0 or, sx < Bx. Hence by Theorem 2 we have
that s < p(B), which is a contradiction. Hence the splitting A = M — N converges.

Conversely let every weak E-regular splitting is convergent. As A = s — Bis a
weak E-regular splitting of A, hence p(s~'B) < 1, that is p(B) < s. Thus A is an
M, -matrix. [

We now turn to the special splitting of M, -matrices, namely Jacobi and Gauss-Seidel
splittings and to their convergence.

Corollary 1 Let A = sI — B be an nonsingular M,-matrix with positive diagonals.
Ifthe Jacobi iterative matrixJ = D~ (L 4+ U), withD = diag(A) L = — tril(A, —1),
U = triu(A, 1), is a nonnilpotent eventually nonnegative matrix, then the Jacobi
splitting converges.

Similarly, if the Gauss-Seidel iterative matrix G = (D — L)~ 'U is a nonnilpotent
eventually nonnegative matrix and L > 0, then Gauss-Seidel method for solving the
system (1) converges.

In [2], the authors established that for nonsingular M-matrices, both Jacobi and
SOR(and hence Gauss-Seidel) splittings converge. But the following example shows
that neither Jacobi nor Gauss-Seidel methods may converge for M, -matrices, if the
associated iterative matrix is not a nonnilpotent eventually nonnegative matrix.

Example 1 Consider the nonsingular M, -matrix A = 12.5] — B, with

95 1 15
B=| —145 16 10.5
10.5 =3 45

Consider the Jacobi splittingA = M — N, withM = diag(A) andN =M — A.IfJ =
M~'N is the Jacobi iteration matrix, p(J) = 2.0454 and hence the Jacobi splitting
of A does not converge.

Again, if we consider the Gauss-Seidel iterative matrix G = (D — L)™' U, with
L = —tril(A, —1) and U = —triu(A, 1), p(G) = 4.248, the Gauss-Seidel splitting
of A also diverges.
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As both Jacobi and Gauss-Seidel methods converge for M -matrices, and M-matrices
have nonnegative diagonals and off-digonals are nonpositive, so one may raise the
question whether Jacobi and Gauss-Seidel methods converge for M, -matrices if
D > 0 or —L — U € WPFn or eventually nonnegative matrices. But this is not the
case as the following example shows.

Example 2 Consider the M, -matrix A = 12] — B, where

95 1 15
B=| —-14511910.5
10.5 =3 45

Let M =diag(A) and N =-L—-U, where L =tril(A,—1), U =triu
(A, 1). Note that M > 0, and the eigenvalues of N are —3.8763, — 1.9381+
6.4435i. The Jacobi iterative matrix / = M !N has eigenvalues —0.4678 4 9.9908i
so that Jacobi method does not converge, because p(J) = 10.0018 > 1.

LetM = diag(A) + Land N = —U, where L = tril(A, —1), U = triu(A, 1). Note
that the Gauss iterative matrix G = M~'N has eigenvalues 0, —65.2610, 0.9010 so
that Jacobi method does not converge, because p(G) = 65.2610 > 1.

The following example shows that there are some M., -matrices for which both Jacobi
and Gauss-Seidel methods converge, whereas the corresponding iterative matrices
are not eventually nonnegative matrices.

Example 3 Consider the M, -matrix A = 3] — B with

011 -1
101 1
B=1001 1
001 1

Consider the Jacobi splitting A = M — N, with M = diag(A) and N =M — A. If
J = M~'N is the Jacobi iteration matrix, p(J) = 0.5 < 1 and hence Jacobi splitting
of A converges. But note that the matrix

o

o O O Wi

N O Wi—w—
<

O W WI— W=

o O Wi
e

is not an eventually nonnegative matrix.

Again if we consider the Gauss-Seidel iterative matrix G = (D — L)' U, with
L = —tril(A, —1) and U = —triu(4, 1), p(G) = 0.8431, the Gauss-Seidel splitting
of A also converges, whereas the matrix
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0 0.3333 0.3333 —0.3333
G 0.6667 —0.1111 0.2222  0.4444
0 0 0 0.5
0 0 I -=0.25

is not an eventually nonnegative matrix.

Remark 1 Jacobi splitting of the matrix A in Example 3 is not an E-regular splitting,
but the splitting converges. Like with Theorem 3, it is not possible to characterize
nonsingular M, -matrices in terms of convergence of E-regular splittings.

The following theorem gives a sufficient condition for a matrix A = s — B with B
an eventually nonnegative matrix to be an M, -matrix and for the convergence of
the Jacobi method for A. But the condition is not necessary. An example has been
considered to illustrate the fact.

Lemma 2 [f M € R" and D = diag(d;), is an nonsingular diagonal matrix, then
min |d;| - p(M) < p(DM) < max |d;| - p(M).
1 L

Proof Let y be a nonzero vector such that y" DM = Ay”, where |A| = p(DM). Let
x be a nonzero vector such that Mx = px, where |p| = p(M). Then DMx = pDx
implies that Ay"x = py” Dx. But,

lol - min |d;| - [y"x| < |p| - [y"Dx| < |p| - max|d;] - [y"x]

Hence |p| - min |dj| - |y x| < [A] - [y"x] < |p| - max |di| - |y" x| Thus, if y"x # 0,
1 L

p(M) - min|d;| < p(DM) < p(M) - max |dj]. (©)

If yTx = 0, we consider a small perturbation of the matrices M and D such that
the corresponding eigenvectors X and y of M and DM, respectively, satisfy 37X #
0. Equation (6) holds for the new matrices and as the eigenvalues are continuous
functions on the matrix entries, so (6) is true for the given M and DM. [

Theorem 4 Let A=sl —B =D+ L+ U, where D = diag(A), L = tril(A, —1)
and U = triu(A, 1), and let B be an eventually nonnegative matrix. If (—L — U) €
WPFnand p(L + U) < min |a;;|, then A is a nonsingular M, -matrix and the Jacobi

splitting of A converges.

Proof If A is an M,,-matrix and p(L + U) < min |a;;|, then from the righthand side

p(L+U)
min |a;;|
i

inequality of Lemma 2, p(—D~ (L + U)) < < 1, and hence the Jacobi split-

ting converges.
Letmin |a;;| = d,andletA = p(L + U). As (=L — U) € WPFnand Bis aneven-
1

tually nonnegative matrix, we choose nonnegative vectors x,y such that



248 M. Saha

(L+U)x = —xx and yTA = 1,7, where A, = s — p(B). Now, yTAx = y" (D —
M)x > (d — M)y x. Therefore A, > (d — A), if yTx # 0. Otherwise, the statement
is also true considering perturbed matrices and using the continuity of spectral
radius on the entries of the matrix, as discussed in Lemma 2. Thus, in any case
Ay > (d — A) > 0, and hence s > B, so that A is a nonsingular M, -matrix. [J

Example 4 Consider the M,,-matrix A = 3] — B with

0 011
0 011
B= 1 11
—-1-111

Consider the Jacobi splitting A = M — N, with M = diag(A) and N =M — A. If
J = M~'N is the Jacobi iteration matrix, p(J) = 0.5 < 1 and hence Jacobi splitting
of A converges. But note that the matrix N = —L — U ¢ WPFn.

4 Splitting of Singular M, -matrices

In this section we consider singular M, -matrices and characterize an interesting

subclass of these matrices A with index(A) < 1, with the convergence of weak E-

regular splitting of A and with eventually monotone property.

Definition 7 ([2]) A matrix A € R"™" is said to be semiconvergent if lim Al exists.
J—> 00

Theorem 5 ([2]) Let A € R™". Then A is semiconvergent if and only if each of the

following conditions hold.

(i) pA) =L
(ii) if p(A) = 1, then index;(A) = 1.
(iii) if p(A) = 1, then ) € o (A) with |A| = 1, implies that > = 1.

Definition 8 LetA € R™" and § € R". Then we say that A is eventually monotone
on S, if there exists a positive integer kg, such that for any x € §, A¥x > 0, for all
k > ko, implies x > 0.

Theorem 6 Let A = pl — B be a singular M.,-matrix where p(B) = p, B is an
irreducible, nonnilpotent, eventually nonnegative matrix with index(B) < 1. Then
A is an M,-matrix with index(A) < 1 if and only if every weak E-regular splitting
A =M — N with M~" eventually monotone on range(M) is semiconvergent.

Proof Suppose that every weak E-regular splitting is semiconvergent. Note that A =
sI — B is an weak E-regular splitting of A and hence by the assumption p(s~'B) < 1
so that A is an M\, -matrix. If p(B) < s, then A is nonsingular and hence index(A) < 1.
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As the splitting A = s/ — Bis semiconvergent, so Theorem 5 implies that index(A) =
1.

Conversely, suppose that A is an M, -matrix with index(A) < 1 and choose k) > 0
such that for all k > ky, (M~'N)* > 0, M=% > 0. For k > kg, consider the series

Z(M_IN)iM_(k+l)x, where x > 0 and x € range(M*A).
i=0 -

Let S, = Z(M “INYM~* D Note that {Spx} is a monotonic increasing
sequence. If V\l/zoset x = M*Az and z > 0, then

p—1 p—1
Spr = D (MTIN)ME e = 3 (MTINMT Az = 2 — (MTINY'z
i=0 i=0

so that for a large value of p, §,x < z. Thus the sequence {S,x} converges, and hence
o0

the series Z(M N M ~kHD converges.
i=0
Assume that p = p(M~'N) and let p > 1. Let z be a nonzero nonnegative vector

such that M~!Nz = pz, so that z = (ﬁ) M~1Az. Now, if we set ¢ = (ﬁ), then

o0 o0 o0
Z(M—IN)I'Z =« Z(M_IN)iM_(k+1)MkAZ — Z(M—IN)iM—(k-H)x’
i=0 i=0 i=0

where x = (ﬁ) M*Az € range(M*) for large k, which implies that M ~*x = (ﬁ)

Az = Mz so that M~*+Dx > 0, for sufficiently large k. As M~ is eventually
o0 o0

monotone on range(M) = ﬂ range(M k) then x > 0. Hence the series Z(M Y )iz

i=0
converges, which contradlcts the fact that p > 1. Hence we have p < 1.

If p < 1, the Drazin inverse (I — M~ 'N)* = (I — M~'N)! exists. Let p = 1 so
that M—'A =1 — M~'N is an M, -matrix. As index(A) < 1 and M is nonsingular,
index(M~'A) < 1 and hence (I — M~'N)* exists. O

The following example shows that the condition index(B) < 1 in Theorem 6 can
not be relaxed.

Example 5 Consider an M, -matrix A = 2 — B, with

»—\»—-OO
»—»—AOO
—

1
1
1
1
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Consider the splitting A = M — N of A, where

2 0 00
m=wiiay=| {20 adN=m—a.

I 1-11
1000 0031
0500 0550

AsM~' = |2 andM~'N =| 22 | arebothnonnegative matrices, the

11 0012
0011 0001

splittingA = M — N is a weak E-regular splitting of A. Butindex( — M~'N) =2 >
1, and hence (I — M~'N)* does not exist, which implies that the E-regular splitting
A = M — N is not semiconvergent. Note that index(A) = | and index(B) =2 > 1
and thus the condition index(B) < 1 in Theorem 6 cannot be relaxed.

5 Conclusion

In this article, we considered splittings of M, -matrices. We introduced two types
of splittings of a matrix, named as E-regular and weak E-regular splittings. We
characterized an important subclass of M, -matrices in terms of convergence of weak
E-regular splittings. We also discussed necessary conditions for the convergence of
Jacobi and Gauss-Seidel methods for M, -matrices, and examples are considered to
illustrate that the conditions are not sufficient.

Theorems 6 and 3, respectively, characterize an important subclass of singular and
nonsingular M, -matrices in terms of weak E-regular splittings. As E-regular split-
tings generalize regular splittings using the notion of eventually nonnegative matri-
ces, and M-matrices are characterized using regular splittings (see [8]), an interesting
open problem in this context is to discuss the convergence of E-regular splittings,
in particular to develop necessary and sufficient conditions for their convergence, or
for the convergence of Jacobi and Gauss-Seidel splittings.

As in the entire work we use the Perron-Frobenius property of the matrix B, where
A = sl — B, the results obtained in the paper are also true for GM-matrices which
have the form A = sl — B, where s > p(B) and B € WPFn.
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Symmetrized Tensors and Spherical
Functions

Carlos Gamas

Abstract Let G be a subgroup of the symmetric group and ¢ a complex function
on G. A longstanding question in Multilinear Algebra is to find conditions for the
vanishing of the decomposable symmetrized tensor associated with G and ¢ (we
recall the definition below). When ¢ is an irreducible complex character of G, the
problem has been studied by several authors, see for example [1-3, 5]. In the present
paper we study and solve the vanishing problem for the case when G is the full
symmetric group and ¢ is a certain type of spherical function.

Keywords Symmetric group + Decomposable symmetrized tensor * Spherical func-
tion

1 Introduction

Let V a finite dimensional vector space over the complex numbers. Let N be a posi-
tive integer with N > 2. Let ®N V be the Nth tensor powerof V,andx; ® - - - ® xy
the tensor product of the vectors x, ..., xy. Let Sy be symmetric group of degree
N.Let G be a subgroup of Sy. For each o € G there exists a unique linear mapping
P): @YV — ®" V such that

P(G)(xl ®®x1\/) = Xo-1(1) ®“'®x(r’1(N)

forallx; e V,i =1,...,N.If ¢ is a complex valued function of G we denote by
T (G, @) the operator
e(1)
TG.p) =57 > 9(@)P0).

oeG
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The image of x; ® --- ® xy under T (G, ¢) is called decomposable symmetrized
tensor associated with G and ¢.

LetA = (Ay, ..., A,) be apartition of N. We denote the partition and the character
it induces in Sy by the same letter A. We define in the set of all partitions of N the
dominance order: If @ = («y, ..., ), 8 = (B, ..., Bs) are partitions of N then

a<Bes<tAD GO B =15 (1)
i=1

i=1

Let m and p be positive integers with m < p. We identify S, with the subgroup
fceS,:0(j)=j.Yj=m+1,...,p}of S,. Let A (respectively x) be an irre-
ducible complex character of S, (respectively S,,).

The spherical function ¢ , is a complex valued function of S, defined by

A(Dx(
@0(8) = (m),—"pf) > ighxh™h) . ges,. @

heSy

We denote by (A, x)s, the nonnegative integer

m

1
(s 105, = = > M x ()

" hes,,

and by A, the set

Ay = {x € Irr(Su) : G x)s, # O}, 3)
where Irr(S,,) denotes the set of all irreducible characters of §,,. Note that if
A=A, ...,A) and x = (x1,..., xs) then, x € A, if and only if s <7 and
Xl S)\‘ls"'v)(S S)\'S'

Let x be a minimal element of A, relatively to the partial order <. A necessary
and sufficient condition on the vectors x| ® - - - ® x,, is given for T'(S,, ¢ ,)(x1 ®
-+ ® x,) to be zero (Theorem 2).

2 Definitions

Let N be a positive integer and A = (Aq, ..., A,) a partition of N. We denote by
F;, the corresponding Young table. The Young diagram, D, ,, associated with the
partition A and p € Sy is the table F;, whose boxes are occupied by the integers
1, ..., N in the following way: The box in the ith row and jth column,i =1, ..., q,
Jj =1,...,A; is occupied by the integer

pOL+ -+ At + ).
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A standard diagram, D, ,, is one in which the integers appearing in each row and
each column increase. For a fixed A, we arrange the diagrams D, , lexicrographically,
according to the sequence (p(1), ..., p(N)).

It is well known that the number of standard diagrams is A(1) and if D, ,, D; »
are standard diagrams with D, , < D, ., there are two integers in the same column
of D, , and in the same row of D,_,,.

Let L;, 1 < j < g, denote the set of integers in the jth row of D, , and E;,
1 < j < Ay, the set of integers in its jth column. We define R(D,, ,), C(D, ,) and
&(D,. ) as follows:

R(D)L_p)Z{O'GSNIO'(Lj)ZLJ’ s j=1,...,q},

C(D)L,p)Z{O'GSNIO'(Ej)ZEj s j:l,...,)»l},

Al
0 ="0 > 3 s

" 1€R(D;,) 0eC(Dy,)

where ¢ is the alternating character. As is well known &£(D,,_,) is a primitive idem-
potent element in the group algebra CSy.

Let x = (x1, ..., xs) be an irreducible character of S,, and A = (A1, ..., A;)
an irreducible character of §,, m < p. Suppose x € A,. Then s <t and x; <
Ay oy Xs < Ag.Let N be apositive integer. We denote by < N > theset {1, ..., N}.
Leto € S,,. We define H, , C S, as follows:

Hyy=lpeS,:p+-+A+je<m>, i=l,...,s, j=1,..., x5}

We define in H, , an equivalence relation ~ putting for all p, y € H, ,

p~y & pi+---+ A1+ ))
=)/()\.1++)\-1_1+J), Vi:l,...,s, j:l,...,Xi.

Let p € H, ,. We denote by p* the element of S,, defined as follows:

P (i + -+ xict + D=pa + -+ i+ ), Vi=loos =100 0.
“)

It is not difficult to see that if, p, y € H, , belong to the same equivalence class,
then p* = y* and, for all o € S,,, there exists a p € §, such that p* = o. Thus,
there exists a bijective correspondence between S, and the set of the ~ - equivalence
classes. We denote by U, ,0 € S,,, the ~ - equivalence class such that for p € U,
we have p* = 0. We denote by Z, , the set of the elements p of H, , such that Dy ,
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is a standard table associated with A and p. Itis clear that if p € Z; , then D, ,x is
a standard table associated with x and p*. It is also clear that if D, , is a standard
table, o € S,,, there exists p € Z; , such that pX = 0.

3 Auxiliary Results

Lemma 1 ([4, Lemma 3.6]) Let Dy o, ..., Dy o, be the standard tables associ-
ated with x. We have

|Ux$(71 N Z)L,x| == |U)(,<7X(1) N ZA,)(l'
Let < g > denote the set {1, ..., p}. Leti €< g > and let

D i<-~<DX,-,(,&/_ ,w,-:xi(l), szl,...,ai e S, 5

X0 Wi
be the standard tables associated with /. Forall j =1, ..., w; let
Usiot N Zyxi = APijts -5 Pijgibs
where gi = |U,i ,i N Z; yi|. Let
Dipji < <Dip.s JE<W > (6)
be the standard tables associated with A and the elements of Ui ;i N Z; ;i
Lemma 2 ([4, Lemma 3.8]) Let p € H, ,i, i €< g >. Let w € S, be such that
TPiwi.g = P- (7

We have

(a) meS,.
(b) mpi g1 € Hy yi forall f =1,...,w;, [ =1,..., 8.

Definition 1 Foralli e<gp — 1>, f e<w; > andforalll e< g; >, let qﬁ’f and
8;, r.1 denote é(DX,»,J}) and §(D;, p, ), respectively. For all f e<p >, €< g, >,

let ¢f}) and §,, ;; denote E(wa,(n\<m>)aj’) and S(DA,,W_ /»,), respectively.
Foralli e< p > let

Vi =¢i
andfor f =2,..., w;,

Y= 0=y — - =¥ )¢
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Let ®; denote§;;.Fori e<p >, fe<w > 1=2,...,g,let

i f 1-1
Orpa = | 1= 22222 O | S

x=1 y=1 z=1
Forie<p >, f=2,...,w;,let
i f-1 g
Onpi=|1- Z Oxyz | s
x=1 y=1 z=1
Fori =2,..., p,let
i—1 wio1 gi-1
O =\|1- Zzz@x,y,z Si1,1-
x=1 y=1 z=1

Lemma 3 ([4, Lemma 3.10]) We have

(a)

(b)

(c)

(d)

(e)
)

W%, i=1,...,0, f=1,...,w,areorthogonal idempotents in the group alge-
bra CS,,.
Oirni=1,....0 f=1,...,w,1=1,...,g, are ortogonal idempotents
in the group algebra CS,,.
Foralli =1,...,p and o € S, we have

x'(0)=—— ¥+ -+ ¥,)00).

X K

Forallo € S, we have

£ Wy 8u
Ao) = A(1) (ZZZ @h) (0).

u=1 v=1 h=1
¢;w; =¢;f0ralli =1,...,0and j=1,...,w.
Letu e< p >, ve<w, > h,le<g, >withl > h. We have
Su,v,ld)\?@u,v,h = 0’
514,v,h¢3@u,v,h - MSM,V,/’H

where M is a positive rational integer.
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Lemma 4 ([4, Theorem 3.2]) Forallu e< p >, ve<w, >, h €< g, >, we have

u—1 w; g
Ouvn =D D D N 0111 ()™ Suen+
i=1 f=11=1
v h
+ Z Z T::;:lhl//?pu,f,l(pu,v,h)ilau,v,ha (8)
f=11=1

with X"}/ € C and Yy = 1.

1
Ifa= Z a(o)o € CS, let @ denote &')a.
n:

ogEeSs,
4 Results
Definition 2 Let A = (A, ..., ;) be a partition of p and (x,...,x,) be a fa-
mily of nonzero vectors of V. The collection of subfamilies of (xi,...,x,),
M1 = (Xiieas - --» Ny = (Xi)iea,), is said to be a A-coloring of (xi, ..., x,) if the

following conditions hold:

(a) M, is aset of linearly independent vectors,i =1, ..., 1.
by AinA;=0,i#j,i,j=1,...,t
© |Ail=Aii=1,...,¢t.

The collection (Ay, ..., A;) is called support of the coloring (R, ..., N;).

Definition 3 LetA = (A(, ..., A;) beapartitionof p andlet (xi, ..., x,) be afamily
of nonzero vectors of V. Let x = (x1, ..., ;) be a partition of m with m < p and
s < t. We say that a collection (N| = (x;)ica,, - .., Nt = (xi)iea,) of subfamilies of
(x1,...,xp)isa (A, x)-coloring of (xi, ..., x,) if the following conditions hold:

(a) Ny,...,N) is A-coloring of (x1, ..., x,).
(b) ((xi)ieA|ﬁ<m>a e (xi)ieAxﬂ<m>) isa X'COloring of (-xlv e xm)-

Leta=>". s, a(o)o be an element of the group algebra CS,. We denote by
P (a) the linear mapping > _ s, a(o) P (o) where P (o) is the linear mapping defined
above. Note that if a, b € CS, then P(ab) = P(a)P(b) and P(a +b) = P(a) +
P (D).

Lemma$5 Letk = (A, ..., A;) be a partition of p and let (xy, ..., x,) be a family
of nonzero vectors of V. Let D, _, be a Young table associated with A and p € §),.
Let Aj, j =1,..., A denote the set of integers in its jth column. We have
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PEWD )X Q-+ ®xp) #0,

if and only if (Ay, ..., Ay,) is the support of a A -coloring of (x1, . .., Xp), where
A denotes the conjugate partition of X.

Theorem 1 Let A = (A1, ..., A;) beapartition of p and let (x1, . .., x,) be a family
of nonzero vectors of V. Let m be a positive integer with m < p and let A; =
{x', ..., x®} with x" = (X1 ...,Xq”_),forr =1,...,%. Let x" be an element of
AL If

T(Sp, @ry )1 ® - @) #0,
then there exists a (A, (x"))-coloring of (x1, . . ., Xp).

Proof Suppose
T(Sp, (p)\’xr)(xl R--® xp) 7& 0.

From this inequality we get
Py )(x1 @~ ®x),) #0.

As @i o = X" A, from this inequality, (a), (b), (c) and (d) of Lemma 3 we obtain

Wy 8u
P((wf +m>(2220m))<x1®~--®x,,>;éo.

u=1 v=1 h=1

From this inequality we can conclude that there exist f e<w, >, u €< p >,
ve<w, > he< g, > such that

POy n)(x1 @ - ®xp) #0. ©))

From this inequality and Lemma 4 we haver < uorr =u and f <vand:ifr <u
then

P(w;@”"h) - (Z Trfl wfpr fl(pu vh) 614 v h)

ifr=u, f <vthen

P(w}@u,v,h) - (Z Tr fl Wfpl fl(pu vh) 514 vh)

From these two last equalities and (9) we can conclude that

P(W}Pr,f,l(ﬂu,v,h)_lSM_V,h)(xl ®- - ®x,) #0,
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withl e< g, >ifr<uorle<h>ifr=u, f <v.From this inequality we
derive (note that 8u,v,h = pu,v,hS(DA,l)(pu,v,h)71)

P8y, 11 0r g1 (Put) (X1 @ -+ ® ) # 0.
Putting ol = or, f,;(,ou,v,h)’1 this inequality becomes
P8 1) (K1) ® -+ ® Xo(p) # 0.
This inequality leads to
P )Xoy ® -+ ® Xo(py) # 0.
This inequality and the definition of §,. ; imply
P(ED;. p, ;) (Xo) ® -+ ® X (p)) # 0. (10)

Let A;, j=1,..., A denote the set of integers in the jth column of D p, ;1 and
let N; = (xi)ica;» j=1,..., 1. From (10) and Lemma 5

My, .., 1D
isa A’-coloring of (xi, ..., x,). By definition we have
Pr.f1 € Hy yr.
From this relation we derive
AN <m>|=(x";. j=1....x
From this last relation and (11) we can conclude that

((xi)ieAlﬁ<m>» B (xi)ieAX1ﬁ<m>)

isa (X’)/-coloring of (x1,...,x,). U

Theorem 2 Let A = (A1, ..., A;) be a partition of p and let (x1,...,x,) be a
family of nonzero vectors of V. Let m be a positive integer wih m < p and let
X = (X1, ..., Xs) be a minimal element of A;,. We have

T(Sps (p)»,x)(xl &R xp) #0,

if and only if there exists a (A, x )-coloring of (x1, . . ., Xp).
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Proof From Theorem 1 we have only to prove the sufficiency. As x is a minimal
element of A; we can assume, without lost of generality, that x = x*. Suppose

B, )

(12)

isa (A, (x*))-coloring of (xy,...,x,) with\; = (x;)iea,, j=1,..., A1 Let

Ly
A; :{a},...,aj’}, j=1,.
withaj < --- < ai’. We define p € S, as follows:

,0()»1+-'~+)»i71+j)=a;9 i=1,...

From (12) to (14) we have
p e H;\,Xp.

Let w € S, such that
TPy wo.8p = P-

From (15), (16), (a)—(d) of Lemma 3 we have

T(Sp. or)(x1® - Qxp)

Wy  8u

12
= P((wf+--~+wfp>(zzze)u,

u=1 v=1 h=1

Asy), ..., 1/;5@ are ortogonal idempotents we have

From this equality we can conclude that if
£ Wy 8u
& ()
p( (X220 ))ere
u=1 v=1 h=1

then (17) is a nonzero element of ®” V.
We prove (18) by contradiction. Suppose

£ Wy 8u
P( 5; (Zzz@u,v,h))(-xl &

u=1 v=1 h=1

~'1)"11

13)

(14)

15)

(16)

v,h)) x1®---®xp). (17)

P 4 p
PO+ +98) (® V) =PY) (® V)EB PP (® V).

...®xp)7éo7

- ®x,) =0.

(18)
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From this equality and Lemma 4 we obtain

8p
P( y{; (Z @p,wg,,h)) (xl & - ®xp) =0.
h=1

From this equality we get

8p
P (3@*‘”5”35) 5?@ E;)p (Z @K),ng,,h)) (xl ®- & xp) =0.
h=1

This equality, (f) of Lemma 3 leads to
MP g, ) (x1 @ ®x,) =0,

where M is a positive rational number. Thus we have

P(Sp.wp.g,) (X1 ® - ®x,) =0.
This equality and the definition of p lead to

PEWDy )1 ® - ®xp) =0. 19)
From (12), (14), Definition 3, and Lemma 5 we obtain

PED )1 ®---Qxp) #0,

which contradicts (19). [
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Testing Independence via Spectral Moments

Jolanta Pielaszkiewicz, Dietrich von Rosen and Martin Singull

Abstract Assume that a matrix X : p x n is matrix normally distributed and that
the Kolmogorov condition, i.e., lim, ,_.« % = ¢ > 0, holds. We propose a test for
identity of the covariance matrix using a goodness-of-fit approach. Calculations are
based on a recursive formula derived by Pielaszkiewicz et al. [19]. The test performs
well regarding the power compared to presented alternatives, forbothc < 1orc > 1.

Keywords Test of independence + Goodness of fit test - Covariance matrix « Wishart
matrix + Spectral moments

1 Introduction

Nowadays a large amount of empirical problems generate high-dimensional data
sets. We are interested in discussing an independence test for the covariance matrix
that works in the case where the dimension p exceeds, is equal or is smaller than the
sample size n,i.e., p >n, p=nor p < n.
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1.1 Notation and Assumptions

The data matrix X € R”*" follows the central matrix normal distribution, denoted
X ~ A,,(0, X, 1,), where the dispersion matrix X is assumed to be positive
definite and I, is the identity matrix of size n x n. Alternatively, one can think of a
set of n independently distributed p-dimensional column vectors X;,i =1, ..., n,
each distributed according to a multivariate normal distribution, .4,(0, ). Then,
W=XX"=>",X;X],where X = (Xi, ..., X,) and X’ denotes the transpose of
X, follows a Wishart distribution, W ~ #,(X, n).

We assume that the Kolmogorov condition holds, so that both p and n increase
with the same speed, i.e., lim,, ,_, o % =c € (0, 00).

Note also that for an arbitrary matrix A the matrix A* denotes AA - - - A, where
usual matrix multiplication is applied k times. [E[-] denotes expectation and the trace
Tr{-} is defined as the sum of the diagonal elements of a square matrix.

1.2 Stating Hypothesis and Brief Review of Historical Results

The hypothesis for testing identity of the covariance matrix is given by
Hy: X =1, against H, : ¥ # 1, (D)
which of course is the same as
Hy: XY =X, against H| : ¥ # X,

where the matrix X is a given positive definite matrix. Equivalence of both formu-

1
lations holds since we can consider the transformation X, > X instead of the data
matrix X. Given the equivalence, that case will not be discussed further.

Stated in this way the hypothesis (1) was tested for the very first time by Mauchly
in [15], using a likelihood ratio approach. Tests based on the likelihood ratio test
statistics were, for a long time, commonly applied method. As the likelihood ratio
approach is only suitable in the case p < n, see [1, 16], further results were derived.

Nagao [17] introduced a statistic based on ay = 5 >/ A anday = 5 37| A7,
where A; are eigenvalues of %X X’. Furthermore, in the paper by Ledoit and Wolf
[14] a modification of Nagao’s test statistics was suggested and given as

1 1 1 op(1 1 2 p
Ty =L 1r [(_xx _ zp) } - _(_ Tr [_XXD +2
p n n\p n n

The reason for the improvement was the lack of consistency of Nagao’s result for
p > n, with that which was obtained for Ty . The result of [14] has been further
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analyzed for lim,, ,_, o % = ¢ > 01in [4, 8]. Another modification of the result pre-
sented in [17] is a paper by Chen et al. [5] in which the normality assumption is
relaxed. Srivastava’s publication [24] also follows the paper of Nagao [17] and pro-
poses a test statistic of the form

n . ~
Ts = E(az —2a; + 1),

where

1 1,
ap = —Tr{-XX'},
P n

n? 1 2
= i ™ e (e e])
(n—1n+2)p n

are unbiased and consistent, under Kolmogorov condition, estimators of a; and a,.
Natural continuation of Srivastava’s research is given in [6, 7], where asymptoti-
cally normally distributed test statistics

T, :—(a —daz + 6a, —4a; + 1),
1 /8 4 3 2 1
n

T2 = (&4 - 2&2 + l)

V8(c2+12¢ + 8)

are based on the unbiased and consistent, under Kolmogorov condition, estimators
ofa; = Z” A forj=1,2,3,4.

The results proposed in [6, 7, 24] are based on the idea that the null hypothesis
X = I, implies, that all the eigenvalues are equal to 1. Then,

2k

p P
%Z(M—l)”‘ ZZ( 1)'( ) => (- 1>'(i)a2k ;=0
i=1

llj() Jj=0

as it is a sum of even powers of A; — 1. Moreover, keeping notation ay_; =
1 P 2k—j
n > A 7, wehave

—Z(A—I)Zk Z( 1)/(2]k)a2k,_o under  Hy.

i=1 j=0

Furthermore, other methods to test the hypothesis (1) allowing for large p are
given in, among others, [3, 9—-11, 20-22].
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1.3 Outline

The paper is organized as follows. After the introduction and brief review of the his-
torical results in Sect. 1, Sect. 2 states and discusses a new test statistic for testing (1)
based on Jonsson’s result, see [12], on joint asymptotic normality of some, specified
later, m-dimensional vector Y. The presented test statistics follows a Xz-distribution
under Hj in contrast to a number of normally distributed results. Simulations and
comparison to alternative test statistics are carried out in Sect. 3.

2 Test

Itis well known that under the assumptions given in Sect. 1.1 and under H,, the matrix
W = XX’ of size p x p follows a Wishart distribution, i.e., W = XX’ ~ #,(I, n).
Then, an asymptotic distribution of % Tr{(: X X’)'}, when a PS% ¢, is degenerated
(with variance converging to zero with increasing n and p) normal for any ¢ € N as
proven e.g. in [18].

We present recursive formula (see [19])

k k—1
E[HTr{W’""}] =(n—p+m— I)E[Tr{ka_l}HTr{Wm‘}]
i=0

i=0

k—1 k—1
+2 ZmiE[Tr{W"’”m"l} H Tr{W'"f}:|
i=1

j=0
J#i

my—1 k—1
+> E[Tr{wf}Tr{W”““"'}HTr{W'"-f}} @
i=0

j=0

where k € N, mg =0, my e N and m; e Ny fori =1,...,k — 1. Let us denote
expectation E[1 Tr{( Lx X"} by m(l) (n, p). Then, using (2) for each t € N expec-

tation m, )(n p) can be computed as a function of n and p. In particular

m" o, p) = E[l Tr {%W}] =1,

B o

o=l [+ 2) £

=) |- (£ (£ £ 3)
+2(1+2+1)(2+ %)
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Moreover, mi’) (n, p) represents the tth spectral moment of matrix %X X' and under
Kolmogorov condition converges to moments of Marchenko—Pastur distribution.
Furthermore, by the application of the result given in [12] to

¥ = V(5 (X)) = ) G

we claim the joint asymptotic multivariate normality of the vector Y = (Y1, ..., Yy,)
under Kolmogorov condition. Moreover, the random vector Y has a mean equal to
zero and covariance matrix

Xy = (Cov(Y;, Y./’))?fj:]

2 41+ 6((1+ 12+ 1) - Cou(Yy, Yim)
aa+ 1 44801+ %)2 A+ ha+H2+2) - covy, Y
s+ D2+ hna+ha+ D2+ 2+ D2+ D2+ 2a+ 12 .. cours, Yim)

Cov(Y, Y1) Cov(¥Ym, Y2) coo Var(Ym)

where ¢ stands for constant from the Kolmogorov condition, i.e., lim, ,— % =c.

The result of Jonsson, mentioned above, was inspired by [2].

Elements of the covariance matrix can be calculated analytical using (2). For illus-
tration purpose the calculations of the upper left element of the matrix are presented
below:

Var[Y] = Var[ﬁ(%Tr{%XX/} - mil)(n, p)):| = anar[%Tr{%XX’}]

(o] (Sretnn) T (e oe]))

np(E[ﬁ Tr{XX/}Tr{XX/}] - 1)

np (e (pnp +2)) — 1) =2.

Finally, we suggest new test for (1) through the goodness-of-fit approach that is
based on the result regarding multivariate normality of the vector Y. We define a test
statistic by

Ty = YT Z0'Y ~ P (m), )

where the distribution under Hy is asymptotically, lim, ,_.c % =c, x*> with m
degrees of freedom. We reject the hypothesis for large values of 7y,,, since our
test statistics, that is by construction non negative, tends to zero under H.
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3 Simulation Studies

t
Let Y = (Y), Vs, Y3, Ya), where Y, = W(% Tr [(%W) } —m"n, p)), for t =
1, 2, 3, 4. We are going to analyze the results of 2000 simulated matrices X of size
p=n,p>nand p<n witha) p=125n=125,b) p =250, n =125 and ¢)
p =125, n = 250.

3.1 On the Distribution of Y,

In the Sect.2 we claim the marginal and joint normal distribution of the vector
Y =(Yy,...,Y,) following [12] and give the recursive formula (2) for calculating
the variances and covariances of ¥;,i =1, ..., m.

In this section the test statistics and p-value of Shapiro—Wilk test of normality
will be given. Classical Shapiro—Wilk test have been introduced by [23] with test
statistics obtained by dividing the square of the linear combination of the sample
order statistics by the estimate of variance. Moreover, the comparison of empirical
and theoretical density functions, and QQ-plots are provided.

By Table I we cannot reject normal distribution of Y;, i = 1,2, 3, 4 on a signifi-
cance level of 2.5%. We see that normality is much stronger in the classical case when
the sample size is bigger than the dimension of the problem (p < n). Nevertheless,
normality holds even in the case when p > n.

Normality is also illustrated in Figs. 1 and 2 by the comparison of empirical and
theoretical distribution functions and in Figs. 3 and 4 using QQ-plots.

3.2 On the Distribution of the Test Statistics

Data simulated in Sect. 3.1 is used to analyze the distribution of test statistics 7,,,
form = 2, 3, 4. The Kolmogorov—Smirnov test (see [13]) is used to verify the x 2(m)
distribution and have been introduced by Kolmogorov in 1933.

Table 1 The results of the Shapiro—Wilk normality test for the distribution function of Y1, Y2, ¥3
and Y4, where Y; is given as (3). Values of Shapiro—Wilk test statistics and p-values for rejection
under Hy are given for particular choices of p and n in the two cases: p <nand p > n

Shapiro—Wilk test for normality

w p-value w p-value
Y 0.99952 0.9213 0.99892 0.2666
Y2 0.99949 0.8967 0.9986 0.09905
Y3 0.99931 0.6909 0.99846 0.06208
Yy 0.99907 0.3966 0.99833 0.04067

p =125n =250 p=250,n =125
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Fig. 1 Comparison of the empirical density function and theoretical asymptotic density function,
i.e., the normal distribution, of Y}, which is defined in (3)
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Fig. 2 Comparison of the empirical density function and theoretical asymptotic density function,
i.e., the normal distribution, of Y», Y3, Y4, where Y; is defined as in (3)

Following the p-values of the Kolmogorov—Smirnov test in Table2 we cannot
reject x >-distribution of test statistics for all considered values of the parameter .
Visual illustration of the comparison between the theoretical and empirical density
function is given in Fig. 5.
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Fig. 3 Normal QQ-plots for the empirical distribution of Y, which is defined in (3)
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Fig. 4 Normal QQ-plots for the empirical distribution of Y>, Y3, Y4, where Y; is defined as in (3)

3.3 Attained Significance Level and Empirical Power

To check how well the proposed test statistics 7, Ty3 and T4 perform we present
a comparison with the tests obtained by Ledoit and Wolf in [14] and Srivastava in
[24], as well as by Fisher et al. in [6, 7]. In Table 3 the significance levels are given,
while Table 4 gives empirical statistical power.
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Table 2 The results of the Kolmogorov—Smirnov test for testing x 2-distribution of, defined by (4),
test statistics 72, T3 and T4 for the particular choices of p and n in the two cases: p < n and
p>n

Kolmogorov—Smirnov test

D p-value D p-value
T;2 0.024805 0.1706 0.015531 0.7203
T3 0.01566 0.7107 0.021177 0.3311
Tja4 0.015463 0.6403 0.010643 0.9773
p =125,n =250 p =250,n =125

i \ %

7] ——— g4 4

i n s » = ]

(¢) Tyy for p=125,n =250
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(d) Ty, for p =250, n =125
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(e) T4 for p =250, n =125 (f) Tj4 for p =250, n = 125

Fig. 5 Comparison of the empirical density function of test statistics 72, 73 and T4, defined
by (4), and theoretical asymptotic density function, i.e., x2(2)-, x2(3)- and x2(4)-distribution,
respectively

Power studies are performed for the alternative hypothesis that the data comes
from a distribution with covariance matrix X = al for fixed a close to 1, for a
values following uniform distribution on the interval symmetric around 1, i.e., a ~

_ alk O _ Ip/z a]p/g
Ull—¢,1+¢),for X = ( 0 Ip—k) aswellas ¥ = ((l.lp/z 1y , where J,,

stands for matrix of ones of the size £ x £.
In Tables3 and 4, we see that this paper proposes tests which provides better
empirical power than alternative methods and keeps a similar performance with

respect to the size of the test. Already with X = 1.03%] we reject Hy : ¥ = I,
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Table3 Comparison of empirical significance levels. T2, T3, T4 are defined in (4). Test statistics
introduced by Ledoit and Wolf is denoted by Tw, Ts stands for Srivastava’s test statistics, 7 and
T, for the two test statistics introduced by Fisher, see Sect. 1.2

o Ty Alternative tests
T2 Ty3 Tya Tw Ts T T

p =125 0.1 0.097 0.093 0.0935 |0.1045 |0.104 0.097 0.0995
n =250

0.05 0.0405 |0.051 0.0515 |0.049 0.048 0.058 0.0565

0.025 0.021 0.0225 |0.028 0.024 0.023 0.0305 |0.0325

0.01 0.009 0.0075 |0.0135 [0.0095 |0.0095 |0.0155 |0.0175
p =250 0.1 0.1065 |0.098 0.0955 |0.107 0.106 0.107 0.103
n =125

0.05 0.0505 |0.0455 |0.0495 |0.053 0.0515 |0.058 0.056
0.025 0.024 0.023 0.028 0.0285 |0.028 0.0305 |0.0315
0.01 0.0085 |0.01 0.0135 |0.013 0.012 0.012 0.0135

Table 4 Comparison of empirical powers of tests for &« = 0.05. The test statistics 72, T3 are T4
are defined in (4), Tw stands for the Ledoit and Wolf test statistic, T's for Srivastava’s test statistic,
Ty and 7> for the two test statistics introduced by Fisher, see Sect. 1.2. The highest power is marked
with black

T, Alternative tests
Ty T3 Ty Tw Ts T T

p=125 | ¥ =1.005%1 0.1195 | 0.121 |0.13 | 0.0585 | 0.0585 | 0.0685 |0.0805
n=125

> =1.0121 0.2855 | 0.296 |0.2855 | 0.054 |0.0525 | 0.0705 |0.0715

> =1.0321 0.9985 | 0.9975 | 0.9935 | 0.124 | 0.1135 | 0.102 |0.1295
p=125 | ¥ =1.005%1 0.19 |0.16 |0.152 |0.0475 | 0.0465 |0.0595 |0.061
n =250

¥ =1.0121 0.5995 | 0.534 |0.504 |0.0705 | 0.069 |0.07 |0.0795

> =1.0321 1 1 1 0.175 0.159 |0.111 |0.1745
p =250 | ¥ =1.005%1 0.194 |0.171 |0.163 |0.052 |0.049 |0.0655 |0.0695
n=125

> =1.0121 0.6155 | 0.551 |0.512 |0.068 |0.064 |0.069 |0.067

> =1.0321 1 1 1 0.117 |0.1045 |0.102 |0.115
p=125 | ¥ =diag(U), 0.1405 | 0.127 |0.118 |0.059 |0.058 |0.0575 |0.063
n=125 | U~U(=+.01)?2

> =diag(U), 0.885 |0.875 |0.87 |0.2585 0.265 |0.0815 |0.142

U~U(+.1)?

> =diag(U), 0.961 |0.9575|0.956 |0.748 |0.747 |0.2715 |0.659

U~ U( +.3)?2

(continued)
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Table 4 (continued)
T Alternative tests
T2 T3 Tja Tw Ts T )
p=128 | ¥ = 0.508 |0.4215 |0.3615 [0.046 |0.047 |0.0405 | 0.048
n =128 (0~95164 0 )
0 e
2:(0‘90[64 IO) 0.99 0.9825 | 0.968 [0.065 [0.071 |0.0315 |0.0465
64
2:(0'5164 O) 1 1 1 1 1 0.321 |0.996
0 JIeg
2:(0'90132 IO) 0.531 |0.4565 | 0.3895 [ 0.065 |0.069 |0.0475 |0.054
96
2:(0'90116 [0 0.1505 | 0.1255 [ 0.1185 [ 0.069 |0.0695 | 0.0575 | 0.0545
112
Y= 0.1215 | 0.1875 | 0.2465 | 0.2085 | 0.2085 | 0.249 |0.358
( Toa 001]64)
0.01Jgqs Iga
XY= 0.7305 | 0.944 |0.9735 | 0.85 0.8495 | 0.971 |0.983
( Io4 002]64)
0.02Jgs4  Iga
Y= 1 1 1 1 1 1 1
( Io4 0.1]64)
0.1Jes  Io4

with probability 1, while the other tests reach a maximum power of 17.5%. Test
performance remains good while the elements of the diagonal covariance matrix
come from the uniform distribution on the interval surrounding 1.
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Some Further Remarks on the Linear
Sufficiency in the Linear Model

Radostaw Kala, Augustyn Markiewicz and Simo Puntanen

Abstract In this article we consider the linear sufficiency of statistic Fy when
estimating the estimable parametric function of B under the linear model &/ =
{y, XB, V}. We review some properties that have not been received much attention in
the literature and provide some new results and insight into the meaning of the linear
sufficiency. In particular, we consider the best linear unbiased estimation (BLUE)
under the transformed model <7, = {Fy, FXB, FVF'} and study the possibilities to
measure the relative linear sufficiency of Fy by comparing the BLUEs under .7 and
7. We also consider some new properties of the Euclidean norm of the distance
of the BLUEs under ¥ and 7. The concept of linear sufficiency was essentially
introduced in early 1980s by Baksalary, Kala and Drygas, but to our knowledge
the concept of relative linear sufficiency nor the Euclidean norm of the difference
between the BLUEs under .27 and .27, have not appeared in the literature. To make
the article more self-readable we go through some basic concepts related to linear
sufficiency. We also provide a rather extensive list of relevant references.

Keywords Best linear unbiased estimator - generalized inverse * linear model -
linear sufficiency - orthogonal projector + transformed linear model

1 Introduction

In this paper we consider the linear model defined by
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y = XB + e, orshortly notated <« = {y, X8, V}, (D)

where y is an n-dimensional observable response variable, X isaknownn x p matrix,
ie., X e R™*? B € RP is a vector of fixed (but unknown) parameters, and € is an
unobservable random error with a known covariance matrix cov(e) = V = cov(y)
and expectation E(¢) = 0.

Under the model o/ = {y, X8, V}, the statistic Gy, where G € R"*", is the best
linear unbiased estimator, BLUE, of X8 whenever Gy is unbiased, i.e., GX = X,
and it has the minimal covariance matrix in the Lowner sense among all unbiased
linear estimators of Xf. The BLUE of an estimable parametric function Kf, where
K € R¥*P_is defined in the corresponding way. Recall that K8 is said to be estimable
under 7 if it has a linear unbiased estimator Ly, say, so that E(Ly) = LXf = K
for all B € R?, which happens if and only if

%K') c ¢X)), (2)

where %(-) stands for the column space (range) of the matrix argument.
In what follows, we frequently refer to the following lemma; see, e.g., [18, p. 55],
[38, p. 282], and [3].

Lemma 1 Consider the general linear model <f = {y, XB, V}. Then the statistic
Gy is the BLUE for X if and only if G satisfies the equation

GX:VXH =(X:0). (3)

The corresponding condition for By to be the BLUE of an estimable parametric
function KB is
B(X: VXY =(K:0). (4)

The notation (X : VX*) refers to a columnwise partitioned matrix by juxtaposing
matrices X and VX . The matrix X+ refers to a matrix spanning the orthocomplement
of the column space % (X). One convenient choice for XtisM:=L, —Px=1, —
H, with Px = XX* =: H denoting the orthogonal projector onto %' (X) and X*
referring to the Moore—Penrose inverse of X. Of course, € (X1) = €M) = A4 (X)),
where .#(-) stands for the null space.

The solution G for (3) always exists but is unique if and only if (X : V) = R".
However, the observed value of Gy is unique (with probability 1) once the random
vector y has realized its value in the space

CX:V)=¢X)® E(VM). (5)

In (5) the symbol @ stands for the direct sum. Two estimators Gy and G,y are said
to be equal (with probability 1) whenever G1y = Gyy for ally € €(X : V). When
talking about the equality of estimators we sometimes may drop the phrase “with
probability 1”. The consistency of the model </ means that the observed y lies in
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% (X : V) which is assumed to hold whatever model we have. For the consistency
concept, see, e.g., [13].

In this paper we use the notation % for the set of nonnegative definite matrices
defined as

W ={WeR™ . W=V4+XUUX, W) =%X: V). ©6)

In (6) U can be any p x m matrix as long as (W) = ¢ (X : V) is satisfied. One
obvious choice is of course U = I,,. In particular, if €' (X) C €' (V), we can choose
U = 0. The set # appears to be a very useful class of matrices and it has numerous
applications related to linear models. For example, it is easy to confirm the following
lemma.

Lemma 2 Let W € #. Then Gy is the BLUE for XB under o/ = {y, XB, V}ifand
only if Gy is the BLUE for X under <ty = {y, X, W}.

We will later consider some interesting properties of % and the corresponding
extended set

W, = {WGR”X” W =V 4+ XTX', €(W) =‘€(X:V)}. 7
Notice that W that belongs to % is not necessarily nonnegative definite and it can

be nonsymmetric. For example, the following statements concerning W belonging
to #, are equivalent:

€X:V)=FW), (8a)

€ (X) C €(W), (8b)

XWX is invariant for any choice of W™, (8¢)
¢ (X'W™X) = ¢(X') for any choice of W™, (8d)

X(X'W™X)"X'W~X = X for any choices of W~ and (X'W~X)". (8e)

Moreover, each of these statements is equivalent also to € (X : V) = ¥ (W’), and
hence to the statements (8b)—(8e) by replacing W with W’. Notice that obviously
€ (W) = ¢(W’) and that the invariance properties in (8d) and (8e) concern also
the choice of W € %. For further properties of %%, see, e.g., [11, Theorem 1], [12,
Theorem 2], [10, Theorem 2], and [37, Sect. 12.3].

The usefulness of %, appears, e.g., from the following well-known representation
of the BLUE of Xg:

BLUE(XB | &) = XX'W™X) " X'W™y =: Cy, )
where W € #,. The general representation for the BLUE can be written as Ay,

where
A =C+ N, —Py), (10)



278 R. Kala et al.

withN € R™*" being free to vary. In this context we might mention also the following
expression:
BLUE(XB | &) = [I, — VM(MVM) Mly. (11)

For further expressions, see, e.g., [37, Sect. 10.4].
Recall that the multipliers of the random vector y in (9) and (11) are not necessarily
the same but the following holds:

X(X'WX) " XW-y = [I, - VM(MMVM) M]y forally e €(W). (12

One more property requiring attention before proceeding into the concept of
linear sufficiency is the invariance of the matrix product AB~C. According to [39,
Lemma 2.2.4], for any nonnull A and C the following holds:

AB™C = AB'C forall B~ <= %(C) Cc ¥(B)and ©¥(A) Cc €(B). (13)

We shall frequently need the invariance property (13). For example, we immediately
see that for W € %, the matrices XWX and X(X’W~X)~ X' are invariant for any
choice of W™. Similarly in (12) we can use any generalized inverses involved.

2 Definition of the Linear Sufficiency

Now we can formally define the concept of linear sufficiency as done by [7]. Actually
they talked about “linear transformations preserving best linear unbiased estimators”
and it was [19] who adopted the term “linear sufficiency”.

Definition 1 A linear statistic Fy, where F € R/ %" s called linearly sufficient for
X under the model <7 = {y, X8, V}, if there exists a matrix A € R"*/ such that
AFy is the BLUE for Xf. Correspondingly, Fy is linearly sufficient for estimable
Kg, where K € RF*P_if there exists a matrix A € R¥*f such that AFy is the BLUE
for KB.

Sometimes we may use the short notations
Fy € S(XB), Fy e S(Kp) (14)

to indicate that Fy is linearly sufficient for X or for Kf, respectively.
By definition, Fy is linearly sufficient for X8 if and only if the equation

AFX: VM) = (X:0) (15)

has a solution for A, which happens if and only if
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X’ X'F
o(¥)cr(35) o

The concept of linear minimal sufficiency, introduced by [19], is defined as fol-
lows.

Definition 2 A linear statistic Fy is called linearly minimal sufficient if for any other
linearly sufficient statistics Sy, there exists a matrix A such that Fy = ASy almost
surely.

In Lemma 3 we collect some well-known equivalent conditions for Fy being
linearly sufficient for X 8. For the proofs of parts (c) and (d), see [7]; part (e), see [8,
Corollary 2]; and part (f), [32, Proposition 3.1a]. For further related references, see
[4, 9, 19, 20, 26-28, 30].

Lemma 3 The statistic Ry is linearly sufficient for X8 under the linear model </ =
{y, XB, V} if and only if any of the following equivalent statements holds:

X’ X'F

(a) ‘5(0) C %(MVF’) ,
(b) A (FX:FVXYH) c A4(X:0),
(c) €X) Cc €(WKF), where W € ¥/,
(d) rank(X : VF') = rank(WF’), where W € ¥/,
() ¥X'F) =%F X)) and € FX) N € FVX) = {0},
6 SF)NEX:V)CEVXDh,
(g) there exists a matrix A such that AF(X : VX*) = (X : 0).
Moreover, Fy is linearly minimal sufficient for XB if and only if € (X) = € (WF'),
or equivalently, the equality holds in (a), (b) or (f).

Baksalary and Kala [8] proved the following:

Lemma 4 Let KB be an estimable parametric function under o = {y, X8, V}, i.e.,
€ (K') C €(X'). Then Fy is linearly sufficient for KB under < if and only if any of
the following equivalent statements holds:

o5 ()
(b) N (FX:FVXY) C A/ (K:0),

(c) CIXXWX) K] C €WF), where W € ¥/,

(d) there exists a matrix A such that AF(X : VX)) = (K : 0).

Moreover, ¥y is linearly minimal sufficient for KB if and only if equality (instead of
subspace inclusion) holds in (a), (b) or equivalently (c).

Suppose that Fy is linearly sufficient for X under the model .7, and F; is some
arbitrary matrix with n columns. Then it is interesting to observe that the extended

statistic
F
Foy := 17
0y (Fl)y (17



280 R. Kala et al.

is also linearly sufficient for XB. This is so because
€ (X) C €(WF) C ¢[W(F :F)] =C(WF). (18)

Similarly
Fy € S(XB) = F.,y € SXB), if €(F) =% (F,). (19)

Thus if rank (F) = r we can replace F € R/" with F,, € R"™", where r < f, i.e.,
the columns of F/, provide a spanning basis for ¢ (F').

Notice also that the linear sufficiency condition %' (X) C % (WF’) implies that we
necessarily must have

rank(anp) <p= rank(fon) </ (20)

In passing we note that X’W™y is linearly minimal sufficient for X under the
model «7; this follows from €' (X) = € [W(W~)'X].

3 The Transformed Model <7

Consider the model o7 = {y, X8, V} and let F € R/>*" be such a matrix that Fy
is linearly sufficient for Xf. Then the transformation F applied to y induces the
transformed model

@, = {Fy, FXB,FVF'}. (21)

Now, as the statistic Fy is linearly sufficient for X, it sounds intuitively believable
that both models provide the same starting point for obtaining the BLUE of Xg.
Indeed this appears to be true as proved by [7, 8]. Moreover, [40, Theorem 2.8] and
[29, Theorem 2] showed the following:

Lemma 5 Consider the model o/ = {y, XB, V} and its transformed version
o, = {Fy, FXB,FVF'}, (22)

and let KB be estimable under <f . Then the following statements are equivalent:

(a) Fy is linearly sufficient for Kf.

(b) BLUE(KB | &) = BLUE(KB | ) with probability 1.

(c) There exists at least one representation of BLUE of KB under <7 which is the
BLUE also under the transformed model <.

It is noteworthy that if Fy is linearly sufficient for X, then, in view of (16), we
have
X)) =¢XF), ie., rank(FX) = rank(X). (23)
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On the other hand, on account of (2), X is estimable under the transformed model
<, = {Fy, FXB, FVF'} if and only if

¢(X) c ¢X'F), (24)
ie., €(X') = €(X'F’), which is (23). This confirms the following:
Fy € S(XB) = X is estimable under .<7,. (25)

However, the reverse implication in (25) does not hold. In view of part (e) of Lemma 3,
we need the following two conditions for Fy € S(Xg):

CXF)=%¢(X) and €(FX)NEFVX) = {0}, (26)
which can be expressed equivalently as
X is estimable under <7, and € (FX) N € (FVX™') = {0}. 27)

Let us consider some special choices of F. For example, if F has the property
% (F') = R" (implying that the number of the rows in F € R/*" is at least n), then

€ (X) C €(W) =€ (WF), (28)

and thereby FYy is linearly sufficient for XB. In particular, for a nonsingular F € R"*",
the statistic Fy is linearly sufficient. For a positive definite V the linear sufficiency
condition becomes simply

¢ (X) C €(VF). (29)

Supposing that V!/2 is the positive definite square root of V we observe that V~!/2y
is linearly sufficient and thus the BLUE of X under the transformed model

o, = {V'%y, V'I2XB, 1} (30)

is the same as in the original model &7 = {y, X8, V}, i.e., the BLUE(Xf) under </
equals the ordinary least squares estimator of X, OLSE(Xg), under .7 :

BLUE(XB | /) = OLSE(XB | <%). 31)

This technique, sometimes referred to as the Aitken-approach, see [1], is well known
in statistical textbooks. However, usually these textbooks do not mention anything
about linear sufficiency feature of this transformation.

Consider then a more general case. By Lemma 2 we know that the BLUEs under
o/ = {y, XB, V} and oAy = {y, XB, W} are equal. Suppose that rank (W) = w and
that W has the eigenvalue decomposition W = ZAZ/', where the columns of Z €
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R™" are orthonormal eigenvectors of W with respect to nonzero eigenvalues A; >
-+ > Ay, > 00of W, and A = diag(Ay, ..., A,). Choosing

F=A"127 e R"", (32)

we observe that
€ (WF') = €(WZA™'?) = € (W) (33)

and hence ¥ (X) C ¥ (WF’') and thereby Fy is linearly sufficient in .@Ay. Thus the
BLUE of X under the original model .7 is the same as under @4y and further the
same as under the transformed model

o, ={ ALy, A7'VPZXB, 1,,). (34)
Because F'F = ZA~'Z/ = W, we have

BLUE(XB | /) = BLUE(X8 | <) = OLSE(X8 | <)
= XX'WHX)"X'Wy, (35)

where we actually can use any generalized inverses involved.

We may note that [17, p. 239] uses the transformation matrix A~'2Z when
considering the so-called weakly singular linear model, i.e., when € (X) C € (V),
and [25, Sect. 4] while comparing the BLUESs under two linear models with different
covariance matrices.

We complete this section by considering a partitioned linear model

iy ={y, XiB; + Xz, V}. (36)

Let us assume that ' (X;) N %' (X,) = {0} implying that X; 8, is estimable. Premul-
tiplying the model <7, by M, = I,, — P, yields the reduced model

o = {May, MuX;8;, MoVM,}. 37
Now the well-known Frisch—-Waugh—Lovell theorem, see, e.g., [22, 23] and
[2, Theorem 1], states that the BLUESs of X, 8, under <7, and 47, , coincide. Hence,
in view of Lemma 5, the statistic M,y is linearly sufficient for X; 8. One expression
for the BLUE of X 8, obtainable from the reduced model ¢7,.5, is
Ay = X; (XM X)X Myy, (38)

where My = My(Mo,W;M,) M, and W, = V + XU, UjX] is such that € (W) =
% (X, : V). Notice that of course the BLUE of X 8, can be written also as

By = (X; : )XW X) XWy = KXW X)" X'Wy, (39)



Some Further Remarks on the Linear Sufficiency in the Linear Model 283
where K = (X : 0) € R"*? and W € #. The equality AW = BW implies
WM, X (X|M,X;) X| = X(X'W X) K/, (40)

and it is easy to confirm that FIWM,X, (X’IM2X1)‘X’1] = ¥ (WM,X,). Thus, in
view of part (c) of Lemma 4, the statistic Fy is linearly sufficient for X; g, if and
only if

€ (WM,X,) C €(WF). (41)

From (41) we immediately see that X M,y is linearly minimal sufficient for X, 8,
as observed by [26, Theorem 2].

4 Properties of € (WF’)

Consider the linear sufficiency condition
¢ (X) Cc ¢(WF'), whereW € #'. (42)

One question: is the column space % (WF’) unique, i.e., does it remain invariant
for any choice of W € #? In statistical literature, the invariance of ¢ (WF’) is not
discussed. It might be somewhat tempting to conjecture that for a given F, the column
space ¢ (WF’) would be invariant. However, our counterexample below shows that
this is not the case. In any event, it is of interest to study the mathematical properties
of the possible invariance.

Before our counterexample, we will take a quick look at the rank of WF’ by
allowing W to belong to set %, defined as in (7),

Y/ {W ER:W=V+XTX, W) =%¢(X: V)}. (43)

Now, on account of (5) and the equality (W) = €(W’') = €(X : V), we have

C(FW') = €(FW) = €[F(X : VM)]. Using the rank rule for the partitioned matrix:
rank(A : B) = rank(A) + rank[(I — P, )B], see, e.g., [31, Theorem 19], we get

rank(WF') = rank(FW’) = rank(FW) = rank(FX) + rank(QpxFVM), (44)

where Qpx = I — Pgx. Now (44) means that rank (WF’) is invariant with respect to
W € #,. In particular, if €(X) C € (WF’), we obtain

rank(WF') = rank(X : WF') = rank(X) + rank(MWF")
= rank(X) + rank(MVF’)
=rank(X : VF). (45)
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We can summarise our observations as follows:
Theorem 1 Consider the linear model <7 = {y, X, V}. Then:

(a) The rank of WF' is invariant for any W € ¥, and it can be expressed as
rank(WF’) = rank(FX) + rank (QpxFVM). (46)
(b) Forany W € ¥, the inclusion € (X) C € (WF’) holds if and only if
rank(WF’) = rank(X) + rank(FVM) = rank(X : VF'). 47)

(¢c) Forany W € ¥, we have rank(W'F’) = rank(WF’).

Example 1 Our purpose is to confirm that the following statement is not correct:
Let Wy, W, € #. Then for any matrix F,

€ (W F) = € (W,F). (48)
Consider the model where
100 10 1
V=(010}), X={00|, F={0], 49)
000 01 0

and let UjU; =L, U,U, = (2 |). Denoting W; = V + XU, U.X’, we have

1 3
CWF)=F[0] #6W.F)=%(0], (50)
0 1

and hence the statement (48) is not correct. [

It is interesting to observe that in the above Example 1 the linear sufficiency con-
dition €' (X) C € (WF’) does not hold. Actually X is not even estimable under the
transformed model <7 since rank (X'F’) # rank(X). For Fy to be linearly sufficient
it is necessary that rank(X) < rank(F), which in this case would mean rank(F) > 2.
Consider the Example 1 by extending the matrix F’ by one column:

10
F=[00]=X. (51)
01

Then we immediately observe that (W F') = € (W,F’). Actually,

€X)=FW,F)=¢WX), i =1,2, (52)
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implying that in this situation Fy = X'y is linearly minimal sufficient for XB. This

provokes the following questions:

(A) When is X'y linearly sufficient for X?

(B) What can be said about ¥ (WF’) in such a case when rank (X'F’) = rank(X),
i.e., X is estimable under <7 ?

(C) Is €(WF') invariant for any choice of W if Fy € S(Xf)?

Let us first take a look at the problem (A). Now X'y is linearly sufficient for X
if and only if € (X) C € (WX), which, in light of rank(WX) = rank(X), becomes
equality

€ (X) = ¢ (WX). (53)

The column space equality (53) holds if and only if
HWX = WX, (54)
where H = Px. Now (54) can be equivalently expressed as
HV = VH, (55)

which is the well-known condition for the equality of the OLSE(Xf) = Hy and
BLUE(X}f) under the model «7; see, e.g., [36] and [37, Chap. 10]. We can express
our conclusion as follows:

Theorem 2 The statistic X'y is linearly sufficient for X under the model o/ =
{y, XB, V} if and only if

OLSE(Xp) = BLUE(Xp). (56)
In this situation X'y is linearly minimal sufficient.

The corresponding result as in Theorem 2, for a positive definite V, appears also
in [7, p. 913]. We recall that expression (56) is supposed to hold with probability 1,
just like any other equality between estimators.

Example 2 As a reply to question (B) above, let us consider the situation where
100 10 10
V=(000}, X=(01}), F={(01]}]. (57)
001 00 10
In this situation the estimability condition rank (FX) = rank(X) holds but Fy is not

linearly sufficient for XB. Choosing U; U} = I, U,Uj, = (§ 9), and denoting W; =
V + XU;UX’, we have

20 10
CWF)=%¢|0 1] 2#eW.F)=%(0 1]. (58)
10 10
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Thus the estimability condition is not enough for the invariance of € (WF’). O

The following theorem is a reply to question (C) above. However, we formulate
it in a more general setup by using the set #; of W-matrices defined by (7) instead
of #.

Theorem 3 Consider the linear model of = {y, X8, V}, let W € ¥, and suppose
that € (X) C € (WF'). Then the column space € (WF') is invariant for any choice
of W € W, and
C(WF) =%6X) ® ¢(MVF) = €(W'F). (59)
Proof Suppose that € (X) C € (WF’'). Then
CWF)=¢X: WF)=¢X)®ECMVF), (60)

and the proof is completed. [

Next we present the following extended version of Lemma 3:

Theorem 4 Let W € W,. Then the statistic Fy is linearly sufficient for Xf under
the linear model o/ = {y, X8, V} if and only if

¢ (X) C €(WF), (61)

or, equivalently,
EX) Cc €¢(WTF). (62)

Proof The proof is parallel to that of [7, p. 914] who utilize the fact that By is a
BLUE of estimable Kf if and only if

BW = KX'WX)"X’, where W e #. (63)

However, it is easy to confirm, using (8a)—(8e), that in this condition the set % can be

replaced with . Moreover, if W € %, then also W' € #; and (63) can be replaced
with

BW' = K[X'(W)"X]TX'. (64)

Proceeding then along the same lines as [7], we observe that AFy is the BLUE for
XB under o = {y, Xf, V} if and only if

AFW = X[X'(W)*"X]TX". (65)
Now (65) has a solution for A, i.e., Fy is linearly sufficient for X, if and only if

CIXX'WHX)TX'] C €(WF). (66)
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Using (8a)—(8e), we observe that €[X(X'WTX)TX'] = ¢ (X) and so we have
obtained (61). Notice also that in light of Theorem 3, the statements (61) and (62)
are equivalent. [

According to our knowledge, in all linear sufficiency considerations appearing in
literature, it is assumed that W is nonnegative definite. However, this is not necessary,
and W can also be nonsymmetric. Of course, sometimes it is simpler to have W from
set /.

Remark 1 There is one feature in the paper of [7] that is worth special attention.
Namely in their considerations they need the “W-matrix” in the transformed model
o, = {Fy, FXB, FVF'}. The appropriate set is the following:

W ={W,: W, =F(V +XSXF, €W, = ¢[FX:V)]}. (67)

Let W =V + XSX’ be some matrix from %, and so W may not be nonnegative
definite. We then have

€(W,) = €(FWF) C €(FW) = ¢[F(X : V)]. (68)

If W is nonnegative definite, as [7] have, then we have equality in (68). However, if
W belongs to #; and is not nonnegative definite, then we must add the condition

rank(FWF') = rank (FW) (69)
if we want to have FWF’ € 7. Thus one representation for the BLUE of FX under
a7 18

FX[X'F' (FWF) FX] X'F' (FWF') " Fy, (70)

where W € %, and W satisfies (69). O

S Comments on the Relative Linear Sufficiency

When studying the relative efficiency of OLSE versus BLUE of 8 we are dealing
with two linear models

o ={y,XB,V}, o={y XB. L}, Y]
where the corresponding BLUEs are
B=XVIX)'Xvly, B=XX)'Xy. (72)

Then it is assumed that model {y, X8, V} is correct and then the relative goodness
of }3 with respect to ﬂ is measured by various means. The most common measure is
the Watson efficiency, see [16, 41],
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_ vl XXP
lcov()] IX'VX|-[X'V'X|’

(73)

where |-| refers to the determinant. Obviously 0 < ¢ < 1 and the upper bound is

attained when 8 = .
Let us consider the models

o ={y,XB,V}, o = {Fy, FXB,FVF'}, (74)
and try to do something similar with

BLUEB | &) = B = X'V 'X)"'X'Vy, (75)
BLUEB | ) = B, = [X'F/(FVF) FX] 'X'F (FVF) Fy. (76)

Above we have some rank problems. To simplify the considerations, we have assumed
that V is positive definite. The model matrix X has to have full column rank so that
B would be estimable under <. Similarly, FX has to have full column rank for
to be estimable under .7%; using the rank rule of [31, Corollary 6.2] for the matrix
product, we must have

p = rank(X) = rank (FX) = rank(X) — dim ¢(X) N € (F)*, T7)

so that
¢ X)NEF)*: = {0). (78)

It is noteworthy that in view of € (FX) C € (FVF') = € (F) the model .« =
{Fy, FXB, FVF'} is so-called weakly singular linear, or Zyskind—Martin model, see
[42], and hence the representation (76) indeed is valid for any (FVF’)~. Moreover,
itis easy to confirm that X'F'(FVF') “FX is positive definite.

Notice that E(8) = E(8,) = B and

cov(B,) = [XF (FVF) FX]™', cov(f) = X'V 'X)~. (79)
Remark 2 The following Lowner ordering obviously holds:

cov(B) <L cov(B,), (80)

ie.,
X'VIX) < XF(FVF) FX] L 81)
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We can rewrite (81) as
X'V 12Pyinp V712X < X'VT12V-12X] (82)

where the equality is obtained if and only if €'(V~!/2X) C €(V'/’F'), i.e., € (X) C
%€ (VF’), which is precisely the condition for linear sufficiency (when V is positive
definite). [

Corresponding to Watson efficiency, we could consider the ratio

Cleov(B) . IXVIIX)
~leov(B)| XF(FVF)-FX]~|
IX'F'(FVF) FX|
T XVIX|
_ |X/V_l/2PV1/2F/V_l/2X|
IX'V-12V-172X]

(83)

Clearly
O<y=1, (84)

where the upper bound is attained if and only if Fy is linearly sufficient for 8. What
might be the lower bound? Here we now keep X and V given and try to figure out
which F yields the minimum of y subject to the condition rank(X) = rank (FX).
The lower bound for the Watson efficiency was found by [16] (actually it appeared
already in [41] but there was a flaw in the proof). However, it seems to be nontrivial to
find the lower bound for y. The (attainable) lower bound zero does not make sense,
of course.

Remark 3 Consider matrices F; and F, and the corresponding transformed models
o = {Fy, F;XB,F:VF}}, i = 1,2, (85)

and suppose that rank (F;X) = rank(F,X) = rank(X) = p, so that B is estimable
under both models. We observe that the Lowner ordering

cov(B,,) <L cov(B,,) (86)
holds if and only if
X/V_l/szl/zF/zV_WX <L X/V_l/szl/zFer_l/ZX, 87)

ie.,
XlV?l/Z(PV‘/ZF’I — Pvl/zF;)V71/2X > 0. (88)
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The matrix Pyi2p, — Pyi2p, is nonnegative definite if and only if
¢ (Fy) C € (F)). (89)

Hence we can conclude that (86) holds if €'(F,) C € (F)). In this case we can say
that in a sense Fy is “more than or equally linearly sufficient” than F,y even though
neither of them need to be “fully linearly sufficient”. Notice that if €' (F)) =
Fiisa nonsmgular n X n matrix, then cov(ﬂ (1) is the smallest in the Lowner sense
in the set of cov(ﬂ ):itis Cov(ﬂ)

However, it may well be that there is no Léwner ordering between the covariance
matrices cov(f,;) and cov(,,). Then some other criteria should be used to compare
the “linear sufficiency” of Fy and Foy. [

Bloomfield, Watson [16] introduced also another measure of efficiency of the
OLSE, based on the Frobenius norm of the commutator HV — VH:

=5 L |HV — VH|)%. = [HVM|% = r(HVMVH), (90)
where tr(-) refers to the trace. They showed that the maximum of § is attained in the
same situation as the minimum of the Watson efficiency ¢. Of course, § = 0 if and
only if OLSE(Xf) equals BLUE(Xg).

We can now try to develop something similar as the commutator criterion for the
linear sufficiency condition ¢ (X) C ¥ (WF’) which is equivalent to
PwrX =X. 91)
Hence one can wonder how “badly” (42) is satisfied by considering the difference
D :=X — PwrX. 92)
The “size” of D could be measured by the Frobenius norm as

ID|% = tr(D'D) = tr(X'X) — tr(X'Pyp X). (93)

Hence the relative linear sufficiency of Fy could be defined as

. tr(X'Pwg X)
V= tr(X'X) ©4)
Now
0=y =<1, 95)

where the lower bound is attained when %' (X) C ¢ (WF’)* and the upper bound is
attained when %' (X) C ¥ (WF’), i.e., when Fy is linearly sufficient for Xg.
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6 Euclidean Norm of the Difference Between the BLUESs
Under &/ and

In this section we will study the properties of the Euclidean norm of the difference
between the BLUEs of u := X under the models .2/ and .7;. We can denote shortly

BLUE(XB | &) = jt, and BLUEXB | «) = iL,. (96)
The corresponding considerations for OLSE(X ) — BLUE(X) have been made by
[5, 6] and for the BLUESs under two models by [25]; see also [14, 24, 33-35].
Suppose that W € #'. Then the BLUE under the original model </ can be
expressed as Gy where

G =XXWX)"XW. 97

Moreover, assuming that X is estimable under the transformed model <7, the esti-
mator BFYy is the BLUE for X under .7 if and only if B satisfies

B[FX : FVF'(FX)*] = (X : 0). (98)

One choice for B is X[X'F/(FWF)"FX]"X'F/(FWF’')~ and so the BLUE of Xf
under .7 has representation G,y, where

G, = X[X'F(FWF) FX] X'F(FWF)F. (99)
We observe that G;G = G and hence for all y € ¥ (W) we have

(G — Q)y = (G; — G,G)y

= Gt (In - G)y
= G,YM(MVM) My, (100)
where we have used (12), i.e.,
I, — G)y = VM(MVM) My forally € €(W). (101)

Notice that in view of (13), the expression VM(MVM) ™My is invariant for the
choice of MVM)~ for ally € €(W).

The Euclidean norm of vector a is of course ||all, = +/a’a and the correspond-
ing matrix norm (spectral norm) ||A||, is defined as the square root of the largest
eigenvalue of A’A. Then, for all y € € (W), we have

IG.y — Gyl3 = IG,VM(MVM) Myl
< IG, VM3 [(MVM)* |3 [IMy]3. (102)
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The inequality in (102) follows from the consistency and multiplicativity of the
matrix norm ||A||,; see, e.g., [15, pp. 19-20].

The special situation when VM = 0,i.e., € (V) C % (X), deserves some attention.
Notice also, as pointed out by [24, p. 554], thaty'My = Oforally € ¥ (X : V) holdsif
and only if VM = 0. [21, p. 317] calls a model with property VM = 0 a degenerated
model. If &7 is not a degenerated model then the right-hand side of (102) is zero if
and only if

G, VM = 0. (103)

Noticing that obviously G, satisfies G;X = X, we can conclude that (103) means
that G,y is a BLUE also under the original model 7. Thus, in light of Lemma 5,
(103) means also that Fy is linearly sufficient.

Thus we have proved the following:

Theorem 5 Suppose that p = X is estimable under the transformed model <.
Then, using the above notation,

&, — &l3 < IG,VMI}3 [(MVM) " |13 y'My

A

a !
= S yMy, (104)

where o is the smallest nonzero eigenvalue of MVM, and a is the largest eigenvalue
of G,VMVG,. Moreover, if &/ is not a degenerated model then the right-hand side
of (104) is zero if and only if Fy is linearly sufficient for Xf.

7 Conclusions

The origins of the idea of transforming .«# = {y, X8, V} by amatrix F of order f x n
follow from a desire of reduction of the initial information delivered by an observed
value of a random vector variable y in such a way that it is still possible to obtain
the BLUE of X from the transformed model <7 = {Fy, FXB, FVF'}. Hence the
concept of the linear sufficiency has an essential role when studying the connection
between o and its transformed version 7.

In the theory of linear models the classes of matrices

W ={WeR":W=V+XUUX, ¢(W)=¢X:V)}, (105a)
W.={WeR™ :W=V4+XTX, ¢(W)=¢X:V)}, (105b)

have important roles. In our paper we study in details the properties of these
W-matrices related to the concept of linear sufficiency. As far as we know, in all
linear sufficiency considerations appearing in literature, it is assumed that W is non-
negative definite, i.e., W belongs to set . We have shown that this is not necessary:
it is enough if W belongs to set 7.
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If Fy is linearly sufficient then the BLUEs of Xf under </ and under <7 are
equal (with probability 1). Hence it might be of interest to describe the relative
linear sufficiency of Fy by comparing the BLUEs under <7 and under <7 by some
means. Some suggestions on this matter are made in Sect.5. The applicability of
these measures is left for further research.
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The Exact and Near-Exact Distributions
for the Statistic Used to Test the Reality
of Covariance Matrix in a Complex
Normal Distribution

Luis M. Grilo and Carlos A. Coelho

Abstract The authors start by approximating the exact distribution of the negative
logarithm of the likelihood ratio statistic, used to test the reality of the covariance
matrix in a certain complex multivariate normal distribution, by an infinite mixture
of Generalized Near-Integer Gamma (GNIG) distributions. Based on this representa-
tion they develop a family of near-exact distributions for the likelihood ratio statistic,
which are finite mixtures of GNIG distributions and match, by construction, some of
the first exact moments. Using a proximity measure based on characteristic functions
the authors illustrate the excellent properties of the near-exact distributions. They
are very close to the exact distribution but far more manageable and have very good
asymptotic properties both for increasing sample sizes as well as for increasing
number of variables. These near-exact distributions are much more accurate than the
asymptotic approximation considered, namely when the sample size is small and the
number of variables involved is large. Furthermore, the corresponding cumulative
distribution functions allow for an easy computation of very accurate near-exact
quantiles.
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1 Introduction

Let X be arandom vector with a p-variate complex normal distribution, with variance-
covariance matrix X' = X +iX,, whichis a p x p positive Hermitian matrix, where
Y| isap x p symmetric positive-definite matrix, X5 isap x p skew-symmetric matrix
andi= (—1)"2.

The multivariate complex normal distribution we refer to is the one defined by
Wooding [27] and used in [11, 12], [20, Sect.8], [3, 22, 23], [1, Probl.2.64] and
[18], where

X =Y + iZ

P X 1) (P X1 P X 1)

Yi_ N I R >
z] \lwl2l2 o )
where X, is a skew-symmetric matrix, with X, = —X7, so that

EQ =py=p +in,

and

5 = vow =[x (77
=E [((ZHZ) — @, +iny) (=12 - @, —igz))/]
=E[(¢ = ) = p) = i(Y = )@ — 1)’
HIZ = p ) = ) P2 - p)Z - 1) ]
=Var(Y) —iCov(Y,Z) +iCov(Z,Y) + Var(Z)

1 1 1 1
=2 +i=-2+i=-2+=-X =X +12,,
) 1—i—12 2—i—12 2+2 1 1+12

the p.d.f. of X being
—(x=p )V T - py)

fx()_c) =

’

7P | X

where the overbar denotes the complex conjugate.
To test the reality of X, that is to test

Hy:X,=0 versus H;:X, #0,
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we may consider, for a sample of size n + 1, the power 2/(n + 1) of the likelihood
ratio test statistic, obtained in [22],

IS +i8y]

) 1
[S1] M

where § = §; + 15, is the maximum likelihood estimator of X .

When ¥, = 0, the statistic A in (1), is shown in [22] to be distributed as a prod-
uct of independent beta random variables (r.v.’s) with specific parameters. More
precisely, for n > p, if p is even,

r/2

st . p . p 1
ANIIY- th Y; ~ Bet - == 1,=—=), 2
o " ! ea(n 2700 2) @

1 . . .
where ‘X’ means ‘stochastically equivalent to’ and where the Y; are p/2 independent
r.v.’s, or, if p is odd,

(-1)/2

st . p+1 . p
A~ Y; th  Y; ~ Bet - — - 1,=], 3
[y vy aa(n-2 i1 ) @

where the Y; are (p — 1)/2 independent r.v.’s, or, for any p in (2) or (3), taking
q* = |p/2] and g = [p/2], where | - | denotes the floor of the argument, that is, the
largest integer that does not exceed the argument and [ - ] denotes the ceiling of the
argument, that is, the smallest integer not less than the argument, we may write

q*
1
AXT]y, with Yi~Beta(n—qg—j+1,q— - 4
[[v wi ea(nq1+,q 2), (4)
j=1
where the Y; are ¢* independent r.v.’s.
Since for a r.v. X with a Beta distribution, with parameters « and B, the h-th
moment of X is given by

Bla+hp) I'(@+p) I'(a+h)
B,p)  T'(@) T'(a+B+h’

EX" = (h > —a), )

we may write, for the r.v.’s ¥; in (4),

F(n—j+3) F'n—qg—j+1+h
Fn—q—j+1) Tr(n—j+1+n)

EY! = , with h>—-(n—qg—j+1),

so that, given the independence of the ¢* r.v.’s in (4), we may easily obtain, for
h>—-m—p+1)
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s

q
E(A") = HE(Y}’

J=1

q* . 1 .
)=H rn—j+3) I'(n—gq j+1+h)_ ©)
j=1

Fn—qg—j+1) T'(n—j+31+h)

In the next section, we will address the exact distribution of A. Based on a factori-
zation of the exact characteristic function of W = — log A, we first express the exact
distribution of W as the distribution of the sum of two independent r.v.’s, one with a
Generalized Integer Gamma (GIG) distribution and the other with a distribution of
a sum of an independent Logbeta distributions.

Then, in Sect.3, we will first approximate the exact distribution of W by an
infinite mixture of Generalized Near-Integer Gamma (GNIG) distributions and then,
based on this representation, we develop near-exact distributions for W = —log A
which are finite mixtures of GNIG distributions and which equate some of the first
exact moments of W. From these we obtain near-exact distributions for A, with
very manageable cumulative distribution functions (c.d.f.’s), much useful in practice
to compute quantiles and p-values. The concept of a near-exact distribution and
the procedure used to develop these distributions has already been introduced in a
number of papers [6, 13-17].

In Sect.4 we address the asymptotic distribution in [4, 23] and express it in a
manner that is adequate for our purpose of using it to be compared with our near-
exact distributions.

The fact that the near-exact distributions developed in Sect. 3 have a much better
performance than the asymptotic distribution used in [4, 23] is shown in Sect. 5 where
numerical studies are carried out using a measure of proximity between distributions,
based on characteristic functions. The numerical studies developed, for different
sample sizes, numbers of variables and number of moments equated, show the high
closeness of these near-exact distributions to the exact distribution and also their
excellent performance, namely when the sample size and the difference between the
sample size and the number of variables involved are small.

2 The Exact Distribution of A

Forar.v. X ~ Beta(o, B),ther.v. Y = —log X has what is called a Logbeta distribu-
tion [21], fact that is denoted by Y ~ Logbeta(c, B), and since the Gamma functions
in (5) are still valid for any strictly complex , the characteristic function (cf.) of the
r.v. Y is given by

IF'la+pB) I'(x—ip

Pr() = E(") = B ) = EX™) = — o= o

)

where t € R. Considering the independence of the g* r.v.’s ¥; in (4) and considering
(6) and (7) we may write the cf. of W = —log A as
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s

Pw(n) = E ") = E(A™) = [[EQ™)
j=1

¢ Ll . . (®)
_H n—]+—) ''n—qg—j+1—1ir
- . 1 . .
]:1F(n_q j+1 F(n—j+§—1t)
Using the identity
p—1
I'le+B)
LETR k).
@ [T@+h
k=0
for B € N and « real or complex, we may write
S —j+Y) F—g—j+1—in
own =1 (( —‘i)l) r q'jl i
pa q—j (n—j+5—1it)
_lq_[ (n—j+3) T (—j—ir) I'(n—j) T (n—g—j+1—ir)
i1 I'(n=j) T (n —j+*—1l) I'(n—q—j+1)  I'(n—j—ir)
_1‘1_[ (n—j+%) T@m—j—ir
i To=p I(n—j+ ;i)
Prw ()
q" q=2
<[T[1o-a-i+1+b@—q—j+1+k—in"!
j=1k=0
P, w ()
9)

where @y (¢) is the cf. of the sum of ¢* independent r.v.’s with Logbeta(n —
J, 1/2) distributions (j = 1, ..., g*), and @, w (¢) is the cf. of the sum of g*(g — 1)
independent r.v.’s with Exp(n —q —j 4+ 1 4+ k) distributions (k =0,...,q — 2;
j=1,...,9%.
By identifying the different Exponential distributions that occur in @, w (¢) in (9)
and using a counting technique similar to the one used by [26], we may write @5 w (¢)

as
p—1

Grw(@) = =i (n—j—iny7,

j=2

where . .
rA:I]—l, j=2,...,q
J p—Jj, j=q+1,...,p—1,
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that is, @, w (¢) is the cf. of a sum of p — 2 independent Gamma r.v.’s with integer

shape parameters r; and rate parameters n —j (j =2,...,p — 1), which is a GIG
distribution of depth p — 2 (see [5]).
Therefore, we may write the exact cf. of W = —log A as

STty ra-j-in oo
ovn === A CETr = [[e=p7@m—j=in™" (10)

j=1 j=2

¢1yw(l) Dy.w (1)

which is the cf. of the sum of a GIG distribution, of depth p — 2, with an independent
sum of ¢* independent Logbeta distributed r.v.’s.

Since from the two first expressions in Sect.5 of [25] and also expressions (11)
and (14) in the same paper, we may write

_Ta-in _ 5 o
T(a+b—in _Z;Pk(b)(a ir)

where po(b) = 1 and fork =1,2, ...,

k—1

_l F(l_b_m) _ 1 \k+mpk—m+1
pk(b)_kz(F(—b—k)(k—m+1)!+( D p )pm(b),

m=0

we may write the cf. of Y in (7) as

— (o + o
oy ()= % ’% P (o — ir) "B (11)
k=0
Py (a.p)

which is the cf. of an infinite mixture of Gamma(f + k, ) distributions with weights

pi(a, B).

But then @, w (#) may be written as

s

q 00
G w@) = [[ D Pk =i 1/2) (0= (= j =i~ (12)

j=1 k=0
oo K* q*

=22 P [T =3 = j—in= /2, (13)
k=0 v=1 j=1

with

. k+qg*—1 A
K=( L ) ;nvj=k<05m,~sk)
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and

.
pin=1]rs, (=i 17240y, (14)

j=1

where K* is the number of different partitions & . of the integer k into a sequence
of ¢* non-negative integers not larger than k and where the v-th of these partitions
is, for v € {1, ..., K*}, a list with components n,,, for j =1, ..., g*. The weights
p;w,(n —J,1/2+n,) in (14) are the weights pj(a, B) in (11) fora =n—j, B =
1/2 + n,j and k = n,;.

While the cf. in (12) is the cf. of a sum of ¢* independent infinite mixtures of
Gamma(1/2 + k, n — j) distributions j =1,...,¢*;k=0,1,...), (13) is the cf.
of an infinite mixture of sums of ¢* independent Gamma(1/2 + n,;, n — j) distrib-
utions, forj =1, ..., g%

Although this form of the exact distribution of W may seem more complicated
than the one obtained from (10), in the next section we will show how we may use
it to develop very sharp near-exact distributions for W and A.

3 A Family of Near-Exact Distributions for A

Given the fact that the rate parameters of the Gamma distributions in (13) are some-
what similar, with a constant step as a function of j and given the fact that the shape
parameters in these Gamma distributions are equal to 1/2 + ,;, with 2;1;1 mj =k
and we are just adding these ¢* Gamma distributions, a somewhat heuristic asymp-
totic approximation for @, w (¢), for increasing n would be a cf. of an infinite mixture
of Gamma(q* /2 + k, A*) distributions, where A* is the rate parameter in

() =0 =i+ (1 =) — i), (15)

which is determined together with 6, s; and s;, by solving the system of equations

h h

0 0
— P (t = —d w(t , h=1,...,4.
o ()z:() o I.W()z:()

This would yield an asymptotic distribution for W which is an infinite mixture of
GNIG distributions.

In practice, to obtain a family of near-exact distributions for W we will thus leave
@, w(t) in (10) unchanged and replace @; w (¢) by

*

m
Dy () = D (T — iR
k=0
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which is the cf. of a finite mixture of m* 4+ 1 Gamma(q*/2 + k, A*) distributions,
with weights 7y, (k =0, ..., m*), where A* will be the rate parameter in (15) above
and the weights 7y, for k =0, ..., m* — 1, are determined by solving the system of
linear equations

ah
an PLw®

h

0
= —P w()
o Oot"

t=0

with 7, = 1= 30 .
Near-exact distributions built this way will match the first m* exact moments of

W and yield near-exact cf.’s for W, @7, (1), of the form

m* p—1
@l (1) = D mAHT PO — i@ Tl — )7 (n—j—in ™

k=0 =2
Pl w () Do w (1) (16)
m* p—1
= > Ym PG i PR [T =)y (0 —j = i)
k= j=2

which is:

e for odd ¢*, the cf. of a mixture of length m* 4+ 1 of GNIG distributions of depth
p — 1 with integer shape parameters r; (j = 2, ..., p — 1) and non-integer shape
parameter ¢*/2 4+ k, and corresponding rate parameters n — j and A*;

e for even g*, the cf. of a mixture of length m* + 1 of GIG distributions of depth
p — 1 with integer shape parameters r; j =2, ...,p — 1) and ¢*/2 + k, and cor-
responding rate parameters n — j and A*.

Then, considering the cf. in (16) and the notation in Appendix B of [24], for odd g*,
the near-exact p.d.f.’s of W and A, are, respectively

Fo ) =D mf Wl 1 g2 kin =2, on—p+1,0% p— 1),
k=0

forw > 0, and

m* 1
a0 :anfGN'G(—log Llry s tpo1, ¢ 2+ ksn—2,...,n—p+1,A%p— l)z,
k=0

for 0 < ¢ < 1, while the near-exact c.d.f.’s for W and A are, respectively, given by

*

m
Fy(w) = anFGN’G(w [F2y e o1, §° 2+ ksn =2, . ,n—p+1, 1% p— 1),
k=0
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forw > 0, and

m*

F 0 = an(l—FG’V’G(—log Clra o 1o g 24K
k=0
n—2,..,n—p+1, A*;p—l)),
forO < ¢ < 1.

Foreven g*, since the GIG distributions are a particular case of GNIG distributions,
the p.d.f. and c.d.f. expressions for W and A are similar to those presented before,
but where the shape parameter g*/2 + k is an integer. For example, the near-exact
c.d.f. of A is given by,

m*

FL (@) = znk(l—FG’G(—log Clran s rpo1ag* 24k
k=0

n—2,...,n—p+1, A*;p—l)),

forO0 < ¢ < 1.

4 Asymptotic Distribution

In order to compare with the near-exact distributions developed in the previous
section, we consider here the asymptotic distribution in [4, 23]. For

m=2n—p—1/2, f=pp—-1/2 and p=pp-D)E*+@—1°—8)/9%,

it is used in [4, 23] a Box-type asymptotic distribution for mW which is a two-
component mixture of a chi-square with f degrees of freedom and another chi-square
with f + 4 degrees of freedom, with weights 1 — y,/m? and y,/m?. This yields for
mW the asymptotic cf.

e —f/2 f12+2 —(f/2-2)
V2 1 1 . V2 1 1 .
@**t:(l——) ) (=-i RN - i ,
mw (1) m? (2) (2 : ) + m? (2) (2 :

which, for W, yields the asymptotic cf.

o0 = (1-2) I (LY e (P (L ey
= -——)\lz — —1— — = - —1—
w m2/ \ 2 2 m 2\2 2 m

12 —f/2 f12+2 —(f/2-2)
(- E) () () A GG
m?/) \2 2 m? \2 2
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5 Numerical Studies

In order to assess the closeness/proximity of the exact distribution to an approximate,
near-exact or asymptotic, distribution we use the measure [13—18]

AL /+°° “P‘v(t) — @50
t

dt 18
o (18)

—00

where @y (t) represents the exact cf. of W and (D;{,(t) its approximate, near-exact or
asymptotic, cf.
The measure A in (18) is an upper bound on the difference between the exact and
the corresponding approximate c.d.f. of W, with
A = sup [Fyy(w) — Fyw)| = sup [F4(6) = F;(0)
0<t<1

w>0

’

where Fy (-) and F 4 (- ) are, respectively, the exact c.d.f.’s of W and A, and F4v1;( )
is the c.d.f. that corresponds to @},( - ), being F{ (¢) = 1 — F;,(—log £).

The measure A in (18) may be directly derived from the Gil-Pelaez inversion
formula for the c.d.f. [10] (see Appendix A) and, as noted in [14], it may also be seen
as intimately related with the Berry—Esseen upper-bound [2, 9, 19]. This measure
gives us a very accurate assessment of the quality of the approximations, as we have
seen in several studies [13—18], with smaller values of this measure showing a better
agreement with the exact distribution, both in terms of p-values and quantiles.

In Table 1 we have the results of the numerical studies conducted, using the mea-
sure A in (18) and the cf.’s in (8), (16) and (17), to assess the behavior of the asymp-
totic distribution in [4, 23] and the near-exact distributions developed in Sect.3,
for different numbers of exact moments equated (m*), number of variables (p) and
sample sizesn =p+ 1,n = 2p and n = 3p.

‘We have to point out the excellent performance of the family members of the near-
exact distributions, with very low values of the proximity measure, thus showing an
extreme closeness to the exact distribution, even for the case where only two exact
moments are equated. We can confirm that they are particularly adequate and useful
for small sample sizes, that is, for small values of n, or rather, when the values of
n and p are close. They also have an asymptotic behavior for increasing number of
variables, that is, increasing values of p, while the asymptotic distribution goes the
other way around.

One other fact to be pointed out about Table 1 is the fact that, for the two larger
values of p, that is, for p = 35 and p = 55 and the smaller sample sizes associated
with these two values of p, that is, respectively for n = 36 and n = 56, the value of
the measure A exceeds 1, which, from its definition, should never happen. However
it does happen because for these cases with quite large values of p and small sample
sizes, the asymptotic distribution is indeed not any more a distribution, with its
‘p.d.f.” assuming values below zero and above one. This is a commonly overlooked
fact which, for other asymptotic distributions of this type, was already called the
attention for in [8] and [7], and which is clearly detected by the measure A.
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Table1 Values of the measure A in (18) for the asymptotic distribution in [4, 23] and the near-exact
distributions developed in Sect. 3

p n Asymp. Near-exact distributions
distrib.
m*
2 4 6 10
5 6 |741x1073 [258x1077 [7.59 %107 |1.10x 10710 |1.14 x 10713
10 |274x107% [281x107% [3.11 x 10710 {227 x 10712 | 4.02 x 10710
15 331 x 1078 4.69x 1072 [2.26 x 10711 |7.53 x 1071* |4.51 x 1018
15 16 |243x107" [1.02x107% [1.91x107° |5.58x 10712 |1.20 x 10716
30 |344x1073 [226x 1077 [1.55x 10710 | 1.60 x 10713 | 3.65 x 10719
45 |426x107% 486 x 1078 [1.46 x 1071 [6.50 x 10°1% |2.71 x 1072!
25 26 [6.83x107" [3.38x1077 |2.61 x10710 2,96 x 10713 |9.22 x 10719
50 9.3 x 1073 |1.14x 1077 374 x 1071 |1.78 x 10714 |8.80 x 1072!
75 1.14x 1073 [2.62x 1078 [3.79 x 10712 |7.97 x 10710 [7.47 x 10~3
35 36 1.13 x 10° 149 x 1077 | 6.51 x 10~1 [3.90 x 10~1* |3.07 x 10720
70 [1.75x 1072 |7.05x 1078 | 1.42x 1071 [4.01 x 1075 |6.52 x 10722
105 220x 107 |1.70x 1078 [1.52 x 10712 [1.89 x 1071 |5.95 x 10~24
55 56 1.92x 109 4261078 [9.31 x 10712 |2.50 x 10~15 [3.27 x 10~
110 [422x1072 [3.63x 1078 [3.91x 10712 [5.61 x 1071 |2.10 x 102
165 537x 1073 1937 x 1072 [450x 10713 |2.87x 10717 |2.11 x 1072

With the near-exact distributions displaying so low values of the measure A it can
only be assured that there is a very good agreement between the exact and the near-
exact distributions throughout the whole range of the random variable and as such that
also all near-exact quantiles will display a sharp agreement with the corresponding
exact quantiles.

In Tables2 and 3 we show some near-exact quantiles for p =6 and n = 6, 7, 8§,
9, 10, since in [4] there were some problems in computing the exact 0.05 quantiles
forn = 6, 7, 8 and the 0.01 quantiles forn = 6, 7, 8, 9 not only in order to make them
available for practical use but also in order to show how by increasing the number
of exact moments matched we may obtain quantiles which indeed converge, with
convergence being assuredly towards the corresponding exact quantiles, given the
sharp decrease in the value of the measure A that may be observed in Table 1 when
the number of exact moments matched is increased.

As we may see from Tables2 and 3, there are no problems in computing the
near-exact quantiles for any combination of number of variables and sample sizes,
with the values for the near-exact quantiles for p = 6 and n = 6, 7 showing that for
small sample sizes the asymptotic quantiles show quite some deviation from the
exact value, while for n = 9 and n = 10 the near-exact quantiles match the values
presented in [4] for the exact quantiles. To show that there is no problem in computing
near-exact quantiles even for quite large numbers of variables, either with very small
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or quite large sample sizes, in those tables are also shown the 0.05 and 0.01 quantiles
for p = 35 and p = 55 for the same sample sizes that the measure A was computed in
Table 1, with the near-exact distributions that match only 4 exact moments exhibiting
quantiles that already match 8-10 significant digits.

We may see how for only 2 or 4 exact moments matched the near-exact quantiles
already display a quite large number of decimal places that match those of the corre-
sponding exact quantile, which, in all cases may be taken as the quantile displayed
for the near-exact distribution that matches 10 exact moments.

We may also see how the near-exact distributions that exhibit lower values of
the measure A displaying quantiles which have more decimal places that match the
corresponding exact quantiles.

The quantiles shown in Tables2 and 3 are the 0.05 and the 0.01 quantiles, since
the quantiles to be used in testing hypothesis with the statistic A will be the left
tail quantiles. To show that a similar behavior is displayed by all other quantiles, in
Tables B.1, B.2 and B.3 in Appendix B may be analyzed the median and the 0.95
and 0.99 quantiles for the same distributions.

6 Conclusions and Final Remarks

The near-exact distributions developed lie very close to the exact distribution, in terms
of cf.’s, moments, c.d.f.’s and quantiles, and the general expressions obtained for the
c.d.f.’s are, in fact, very manageable and easily allow the calculation of near-exact
quantiles and p-values through the use of some symbolic software. Note that even
when we have the expressions for the exact p.d.f.’s and c.d.f.’s available from the
literature, these are usually only available for specific numbers of variables and the
expressions are highly complex, which renders the computation of exact quantiles
too hard.

The comparative analysis conducted allows us to confirm and reinforce the impor-
tance of near-exact distributions over the asymptotic ones. The near-exact distribu-
tions remain very close to the exact distribution even when the difference between
the sample size and the total number of variables, that is, the value of n — p, is very
small, situation in which the usual asymptotic distributions do not work well, mainly
if p is quite large. Furthermore, the near-exact distributions developed also display
an asymptotic behavior for increasing number of variables.

Acknowledgements This work was partially supported by Fundagdo para a Ciéncia e a Tecnolo-
gia (Portuguese Foundation for Science and Technology) through project UID/MAT/00297/2013
(Centro de Matemdtica e Aplicagdes — CMA).
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Appendix A

Derivation of the Measure A in (18) from the Gil-Pelaez
Inversion Formula

The measure A in (18) may be directly derived from the Gil-Pelaez [10] inversion
formula for the c.d.f., which may be written in a number of equivalent forms, as for

example
11 [ e ™y ()
F == - — —dt.
v =5 it

Then, if we take Fy (-) and F‘;( -) as the c.d.f.’s corresponding to the cf.’s @y (-)
and <1>;{,( -) respectively, we have

1 +00 efitw
|[Fww) — F,(w)| = > / - (Pw(t)" — Dy () dt
1 jr%% efitw
< — Dy ()T — Py (1))| dt
> B (@w () w(®))
where, for any r € Rand any w € R,
e—ifw
. = 1 9
i
so that we may write
1 [T Dy () — Dt
sup |Fi (w) — Fiiy (w)| < —/ 'M dr .
w 2 —00

The measure A gives thus very sharp upper-bounds on the difference between the
cdf’sFwy(-)and F ;LV( -), indeed much sharper than any similar measure that would
be based on the more common inversion formula for the c.d.f..

The measure A clearly verifies the triangular inequality since if we take

dt

A 1 /+°° “P1(I);¢z(1)

:E .

+00 _
dr. AZ:%/ '¢1(t)t¢3(t)

—00

and oo

1 Dy (1) — DPs3(t

Ay = ’ 2(2) 3(1) dr
27 J_o t
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we have A} < A, + Az since

[@1(1) — DP2()| = |P1() — P3(t) + P3(1) — D2(D)]
< [@1(1) — D3(0)| + [D3(t) — Da(D)]

and, in a similar manner, also Ay < Ay + Az and A3 < A; 4+ A,.

Appendix B

Median, 0.95 and 0.99 Quantiles for the Statistic A
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Variance Components Estimation in Mixed
Linear Model—The Sub-diagonalization
Method

A. Silva, M. Fonseca and J. Mexia

Abstract This work aims to introduce a new method of estimating the variance
components in mixed linear models. The approach will be done firstly for models
with 3 variances components and secondly attention will be devoted to general case
of models with an arbitrary number of variance components. In our approach, we
construct and apply a finite sequence of orthogonal matrices to the mixed linear model
variance-covariance structure in order to produce a set of Gauss—Markov sub-models
which will be used to create pooled estimators for the variance components. Nume-
rical results will be given, comparing the performance of our proposed estimator to
the one based on likelihood procedure.

Keywords Mixed linear model + Variance components - Orthogonal matrices -
Simultaneous diagonalization

1 Introduction

Mixed linear models (MLM) arise due to the necessity of assessing the amount of
variation caused by certain sources in a statistical designs with fixed effects (see
Khuri [7]), for example, the amount of variations that are not controlled by the
experimenters and those whose levels are selected at random. The variances of such
sources of variation, currently refereed to as variance components, has been widely
investigated in the last fifty years of the last century (see Khuri and Sahai [8], Searle
[13, 14], among others) and during the period ranging somewhat from early 1960
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to 1990, due to the proliferation of investigation on genetic and animal breeding as
well as industrial quality control and improvement (for more details, see Anderson
[1-3], Anderson and Crump [4], Searle [13], among others), several techniques of
estimation have been proposed. Among those techniques we highlight the ANOVA
and the maximum likelihood - based methods (see, for example, Searle et al. [15] and
Casella and Berger [5]). Nevertheless, notwithstanding the ANOVA method adapt
readily to mixed models with balanced data and save the unbiasedness, it does not
adapt in situation with unbalanced data (mostly because it use computations derived
from fixed effect models rather than mixed models). On its turn, the maximum likeli-
hood - based methods, highlighting the ML and the restricted ML (REML) methods,
provide estimators with several statistical optimal properties such as consistency and
asymptotic normality either for models with balanced data, or for those with unbal-
anced data. For these optimal properties we recommend Miller [9], and for some
details on applications of such methods we recommend, for example, Anderson [2]
and Hartley and Rao [6].

This paper is organized as follows. In Sect. 2 (notation and basic concepts on
matrix theory) we review some needed notions and results on matrix theory, mainly
on matrix diagonalization. A new method to estimate the variance components in the
MLM is summarized in Sect. 3, and numerical results ensuring their optimality will
be available in Sect. 4.

2 Notation and Basic Concepts on Matrix Theory

In this section we summarize a few needed notions and results on matrix diagonal-
ization. The proofs for the results can be found in Schott [12].

Let.Z"™™and.?" = {A: A € #™", A = AT} stands for the set of the matrices
with n rows and m columns and the set of the n x n symmetric matrices, respectively.
The range and the rank of a matrix A will be respectively denoted by R(A) and r (A),
and the projection matrix onto the range space of A denoted by Pg(a (see Schott
[12, Chap. 2, Sect. 7] for projection matrix notion). We will denote by ¢r(A) the
trace of A.

If the eigenvalues Ay, ..., A, of the matrix M € .Z"*" are all distinct, it fol-
lows from the Theorem 3.6 of Schott [12] that the matrix X, whose columns
are the eigenvectors associated to those eigenvalues, is non-singular. Thus, by the
eigenvalue - eigenvector equation M X = X D or, equivalently, X "' M X = D, with
D =diag()\; ...\,), and the Theorem 3.2.(d) of Schott [12], the eigenvalues of D
are the same as those of M. Meanwhile, since M can be transformed into a diagonal
matrix by postmultiplication by the non-singular matrix X and premultiplication by
its inverse X! it is said to be diagonalizable.

If the matrix M is symmetric we will have that the eigenvectors associated to
its different eigenvalues will be orthogonal (see Schott [12]). Indeed, if we consider
two different eigenvalues A; and A; whose associated eigenvectors are x; and x;,
respectively, we see that, since M is symmetric,
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)LixiTx_, = (Mxi)ij = XiT(ij) = )‘sz‘TX.i-

So, since A; # A, we must have X;I—Xj =0.
According with Theorem 3.10 of Schott [12], without lost in generality, the
columns of the matrix X can be taken to be orthonormal so that X is an orthog-

onal matrix. Thus, the eigenvalue - eigenvector equation can now be written as
XT"MX = D or, equivalently, M = XDX',

which is known as spectral decomposition of M.
Definition 1 Let
Al ... A
A = . . .
Anl cee Ann
be a diagonal blockwise matrix. We say that a matrix T sub-diagonalizes A if the

T A produces a blockwise matrix whose matrices in the diagonal are all diagonal
matrices, that is 7' diagonalizes the matrices Ay, ..., A,, in the diagonal of A.

3 Inference

Variance components estimation in linear models (with mixed and/or fixed effects)
have been widely investigated and consequently several methods for estimation with
important properties have been derived. Some of this methods are summarized in
Searle et al. [15].

In this section we will sub-diagonalize the variance-covariance matrix

r+1

V= ZVde
d=1

in the Normal MLM

2~ My (XB, V), (1)
withy; > 0,d = 1, ..., r, unknown parameters, N; = Xa;X(;r e .S Xy € M
known matrices, and N,; = I,,, and develop optimal estimators for the variance
components i, ..., Yr41.

Since the components we want to estimate depends only on the random effect
part, it is of our interest to remove the dependence of the distribution of z on the fixed
effect part. With P, = Pg(x) denoting the projection matrix onto the column space
of the matrix X, so that I,, — P, will be the projection matrix onto its orthogonal
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complement, there is a matrix B, whose columns are the eigenvectors associated to
the null eigenvalues of P, such that

BB, =1, ,p, and B,B] = I, — P,.

Thus, instead of the model (1) we will approach the restricted model:

r+1
y=BJz~m(0,z, Zyde), )
d=1

with M, = BoTNd B,,n=m —r(P,), and 0, denotes an n x 1 vector of zeros; that
is, we will diagonalize the variance-covariance matrix

r+1
VE="yaMy
d=1

instead of V.

3.1 TheCaser =2

In this subsection we will sub-diagonalize the variance-covariance matrix in the MLM
for r = 2 (recall the general model in (2)), that is

y~ M0, yiMy + oMy + y3l,) . 3)
There exists (see Schott [12, Chap. 4, Sects. 3 and 4]) an orthogonal matrix
Aqy ,
_ . (Zi:llgi)xn ; ) gixn oo —
P = : IS4 , with Ay; € A (Q./L, g = n), such that M, =
Ay,

Pl-r D, Py, or equivalently P; M, Pl-r = D;, where

Oulg, 0 ... O
0 6Oinlg,... O
D, = : Co- : )
0 0 ...Olhllghl
is a diagonal matrix whose diagonal entries 6y;,i = 1, ..., hy, are the eigenvalues of
the matrix M; with corresponding roots g; = r(AlTi), i =1,...,hy. It must be noted

that the set of columns of each matrix A|; forms a set of g; orthonormal vectors
associated to the eigenvalue 6; of the matrix M; (Theorem 3.10. of Schott [12]
guarantees the existence of such matrix A;ri), so that Al,-AIrl. = I, and AEAU =
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Pga7)- Hence PP = I, and

PP = A A+ + A, Au,
= PR(ATI) + .- 4 PR(ATI,I)
=1, )

With

M2 Q=
AliMZAI;:[ i L K}

W2 i#s ©)

and cov(v) denoting the variance-covariance matrix of a random vector v, we will
have that

COV(Ply) = )/1P1M1P1T ~|—)/2P]M2Pl—r + )/3P1P1T

Onl, 0 ... O My Wi oo Wi
0 Ol ... 0 W3 M3, ... Wy,
=nl o S : Tl Do
0 0 ...0um1, Wi, Wiy .. M,
I, 0 ... 0
0 I,... 0
Tl
00 ...1,
=)/1D(91181...thlgh1)+]/zr+)/3D(Igl...[ghl), 7

where ) 5 5
M121 W122 leh]
W5 M, ... W2h1

r= ) . .

2 2 2
Wh]l Whl2 cee Mhlh]

It is clear that for the three matrices D(611,, ... 0n11g, ), DI, ... I, ) and I”
appearing in (7), the blockwise matrix I" is the only one which is not a diagonal
matrix.

Next we diagonalize the symmetric matrices Mizi, i=1,...,h, that appear in
the diagonal of the matrix I, i.e, we sub-diagonalize the matrix I".

Since Mizl. is symmetric there exists (see Schott [12, Chap. 4, Sects. 3 and

Agiy ,
4]) an orthogonal matrix Py; = : € ,///(z’i" g"f)Xgi, where Ay;; € /80

Adiny,
ho;
(Zj;1 gij = &), such that
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Orirlg, 0 ... 0
0 921'21,‘ 0
D2 = PyM2P] = ) .82' ) ,i=1,...,h. (8
0 0 921'1’!2,’ [8ihzi

It must be noted that the matrix AzTij, i=1,...,h,j=1,..., hy,is anorthogonal
matrix whose columns form a set of g;; = r(AzTi ) orthonormal eigenvectors asso-

ciated to the eigenvalue 6,;; of the matrix M lzl, that is, g;; is the multiplicity of the

eigenvalues 65;;, and AzTijAZij = PR(A;/) and Azl-jAzTij =1,
Thus, with
Py 0 ... 0
P, = 0 P.22 o O e ///(ZL‘I Zl;zzil g,/)X(ZL‘I gi)’
0 0 ... P

the new model w, = P, P;y will have variance-covariance matrix

cov(iwy) = X(PyP1y) = P2D(9111g1 .. .Q]hllgh])PzT + )/2P2FP2T + )/3P2D(Igl .. 'Ighl)P2T

011 P21 Py} 0 0
0 912P22P2-5 0
=Y . . .
: : . .
0 0 thlPZhIPZhl
r 2 2 pT 2 pT
D121 . P21W%2P22 P21W12h]1"2_#l
P22W21P21 D22 P22W2h1P2h1
+r2 . . .
2 pT DT 2
L Pony Wi Poy Pany Wi Py - - Dji i,
TPyPy 0 L. 0
0 P22P2T2 0
+ 73 ) _— : , )
L O 0 Pz},]Pz—;l
where
AiAl, 0 ... 0 Iy, 0 ... 0
. 0 Aw2Ag, ... 0 0 Iy ... O
P2iP2,‘ = . . . = . . s
0 0 ce. A2ih21A2Tih2i 0 0 Igi”Zi

and, with i # s,
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Asii W2 AZS1 Asit W2 AZS2 e Ao WP AMZS

A2’2WUA251 A212‘/IIISA252 AZ’ZW A2sh2-

PyWEP) =

AZihZIW A2s‘l Az’hZIW A2v2 s A2ih21 W AZshzg

The matrix D, = Py M%P)},i = 1,..., hy, appearing in the diagonal at the right
side of (9) is defined in (8).

Note that
AanAnry

Aoty A1y
AniApy

Wy = PPy = | A2mA12y

Aop1 A1,y

_A2h1h2h.] A,y
The distribution of the sub-models
Vij = AgijAuy, i=1,..., 0, j=1,..., hy
is summarized in the following result.
Proposition 1
Vij ™~ Jlg,ij (0g,-,w kijlgij) si=1,...,hy; j=1,..., hy,
where Xij = y101; + 200 + V3.

Proof Recalling that Aj;Ay; € #%*" and g;; <n, according with Moser
[10, Theorem 2.1.2] we will have that

d=1

2
Yij ~ </Vg[,( i ZVdAzl,AnMdAl,Az,, + V3A2UA11A1,A2,])

The portions > _, yaAz;AiiMsAl, A 2” and y3A2;;A1 AL A,
covariance matrix yield:

%) in the variance-
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2
ZVdAZijAIiMdAI'A;ij = V1A2ij (elilgi) A;lj + VZAZijMiziA;rij
d=1
= )/191,']&/ + Vzezijlgi/;

and
y3haij AV AL Ay = v3Anijly Ay = ysly,
which, clearly, completes the proof. [

With 0 denoting an adequate null matrix and cov(v, v) denoting the cross-
covariance between the random vectors v and v, from (9) one might note that the
cross-covariance matrix between the sub-models y;; = A;;A;y and ys = AssAsy,
i,s=1,....h, j,k=1,..., hy is given by

0 i=sj#k
cov(yij, ysk) = y2AsijAuMyALAS, = Aij i=s;j=k (10)
72A2ijW,%A;rsk i ;ﬁ S

withi <, j < k (symmetry applies), so that, for i # s, the sub-models y;; and yg
are correlated and for i = s they are not.

3.2 Estimation forr = 2

From the Sect. 3.1 we see that (with i and j respectively replaced by i; and i, for
convenience) w, = P, P;y produces the following sub-models

Yisia ~ Ny O s Aiilge )y i1 =1, hy, i =1,... hyy, (1)
of the model y ~ .A4;,(0,, yiM; + y2 M, + y31,), where
Ay = Y101, + 20014, + V3.

An unbiased estimator of A;;, for model (11) is (one based on its maximum
likelihood estimator ):il i)

T
0 Viriy Yiria
S, =—,
12

8iiy
i1:1,...,/’l1, izZl,...,hz,'l.

Indeed (see Rencher and Schaalje [11, Theorem 5.2a]),
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E(S}) =

iy

} tr{k

= kiliz. (12)

i1iy glllz}

Thus

E(S2,) = Miiy = Y101, + vaboii, + v, i1 =1,... hy, i =1,... hy

[ St ] [611 61 17
ngzl O 621h21 1
AYY O O 1
o “ e PR “ e ‘}/l
so that, with S = S%;m ,0 = |61 Onp, 1 |,andy = |y, |, we will have
V3
'2' M “ .. e
St 91h1 O, 1
_Sf%lhzhl . 91/‘“ 92}1 hzhl 1 _
E(S) = Oy. (13)

Thus, for iy =1,...,hy, i =1, ..., hy,, equalizing the variances A;,;, to the
correspondent estimators Sizl i, it yields the following system of equations:

S% = v101 + 26011 + V3

Slhn = y1011 + 20211, + V3:
S31 = 1012 + 12021 + ¥3;

S3h = V1012 + V22, + V3

S;%Ihz,,] = Y101, + v202n,hy, + V3

which in matrix notation becomes

S =oy. (14)
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Since by construction 6;, # 0“;, i1 # i'1 =1,...,h; (they are the different
eigenvalues of M) and 6y;;, # 921.”.;, ir # i/2 =1,..., hy;, (they are the distinct
eigenvalues of Mizl. = Ay, MZAII;I), it is easily seen that the matrix @ is a full rank
one; that is r(®) = 3.

By Rencher and Schaalje [11, Theorem 2.6d] the matrix

haiy

h h hai h hoi
DD I D AP WIS I T

To hi~—h2i, hi~—h2i 52 hy ~—hoiy
CHCES Zi, Ziz 01,02, Zil Ziz 921'11'2 Zil Ziz 62i,i,
haiy haiy

hai
DD IETITREEED SAD ST YN i) S

is positive-definite, and by Rencher and Schaalje [11, Corollary 1], ®T® is non-
singular; we, thus, take its inverse to be (© T®)~!.

Now, premultiplying the system (14) in both side by @ T the resulting system of
equations will be

OTs=6Tey, (15)

whose unique solution (and therefore an estimator of y) is

p=©'0)'e’s. (16)
"
y = | v» | will bereferred to as Sub-D estimator and the underlying method referred
V3
to as Sub-D method.
Vi
Proposition 2 y is an unbiased estimator of y, withy = | v |.
V3

Proof Indeed, E(y)=E ((@T@)*IQTS) =OTO)'OTES)=©@Te)!
eTey=y. O

Proposition 3 Withi < i*, j < j* (symmetry applies),

@i=ij#jt 0,
cov (Sl-zj, Sl-z*j*) =1Bi=i%j=j"": 2%,
ij
(©)i #£i*: 2y3tr(2M>),
T AT . .
Where Q = VijMZVi*j*y Wlth VZI = M
g L ij

Proof We have that
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T T
Vi Vi Vi oow Vit j
cov (Slzl’ Sl*]*) = COV(U”, ’/l])
8ij 8i* j*

ALAL AsiiAj AT AL, . Agi v Aqje
— cov yT 104421 A2ij A i y, yT 1ix 2R j* 4227 ) i y
8ij 8i* j*

= Ccov (yTV,-jy, yTVi*j*y)
= 2tr (V,-,-VV;*j* V)

327

= Zfor(Vile Vix jx M1) + 217217 (Vij M1 Vix jx Ma) + 2y1y3tr (Vi M1 Vi jx )
+ 2ya1tr (Vij Mo Vix jx M) + 2}/22tr(VijM2Vi*j*M2) + 2y2y3tr (Vi M2 Vix jx)

+ 2y301tr (Vi Vix js M) + 2y3y2tr (Vi Vix j« Mp) + 2V32lr(vijvi*j*)

=i*j#j 0,
A2,
=1i=i*j=j*: 252,
P# it 2y2tr (Vi My Vis j« Mp).

For the case (a), thatis i = i*; j # j*, we have that

1
ViiMi Vi = s —— A Ay Avij A M A Ay Agijr Ay
ij&ij*
1
= ——A[ A Agij (01i1g,) Agy e Anije Ay
gugu

= 0,4, (see (4) for the explanation);

1
ViiMyV,je = s —— A[ A Agij AL Mo AT A Agije Ay
ij&ij*
1

= AIAZUAZU (MLZI) A;j*AZij*Ali
8ij8ij*
= 0,4, (see (8) for the explanation);

1 T
Vl]VU = A11A21] (Ogingij*)Azij*Ali
8ij8ij*
= Og, g, -

a7

(18)

19)

Therefore, (17)—(19) together with Schott [12, Theorem 1.3.(d)] proves the case

(a).

For the case (¢), thatisi # i*, the desired result becomes clear if use the Theorem

1.3.(d) of Schott [12] and note that

AiMiAy- = A Ay = Ogngi*'
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Finally, for the case (b), thatis i = i*; j = j*, recalling y;; ~ A; (0g,, Aij1y, ),
it holds

T T 2
YijYij YijVij ij o Aij A
2 t J J J J
cov (SU) =X —,— =2tr[f1gijflgij] =2—2tr {Igi,-}
8ij 8ij 8ij 8ij 8i;

=24 (20)

and therefore the proof is complete. [J

The nextresult introduce the variance-covariance matrix of the sub-diagonalization

estimator:
y=@Te)'eTs.

Proposition 4 In order to simplify the notation, let X, s, denote cov(Sizj, S,fl).
Then,

cov(y) = (©O@TO) 'O Tcov($)OOTO) !, 21
D Ap Ay ... A, 2—{2;0...
A21 D2 A23 c e A2h1 O i L
where cov(S) = | A3 A2 D3 oo Asn | yith D; =2 o . | and
SRR s
Ah11 Ah12 Ah13 Dh1 0 0... %
Esklsn ESHSu s ESkISAhZJ

Eskzsn ESkZSAZ ES/(ZSA/IZJ
Ags = . . .

Eskth Ss1 Eskth Ss2 v Eskth Ssipg

Proof The proof is a consequence of the Proposition 3. [J]

3.3 The General Case: r > 1

Now, without lost in generality, lets consider the general MLM in (2):

r+1
y~ M (on, > yde), with My = X,X] € ." and M, = I,.
d=1
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One may note that y = ;i'l BUTXd,Bd, where B; ~ MO, y,I0),d=1,...,r,

Bri1 ~ MO, yul,), and By, ..., Br41 are not correlated.
With iy =1,...,h, i;=1,..., hj,,'],___,,-,;], consider the finite sequence of r

matrices Py, P,, ..., P. defined as follow:

A
Ay o hy
P = ) e ///(Z"l b'l)xn, with Ay, € A (note:Zg,-l =n); (22)
. i
Aln,
P,y 0 ... O
0 Pp... 0 (Zf’l "2y gii )x g
= . . . . e\ Zip iz (z” l), where
LO 0 ... Py,
[ Az
Azip2 (Zflz'il 8iyi )xg; ]
Py = : AN " g Withzgiliz = gi, and Agjj, € 4811278
. in
LA2iihy,
Py 0 ... O
h ho 31 in ha
Py — 0 Pp... O . //[(zgll Zi; 1 Z,‘; 12 giliz"})x(zf’:l Zizz lgi]iz)
0 0 ...P3
Py 0 ... 0
0 P3l']2 N 0 (thvil Zhli].iz 8itini )X(thvil . )
i i ijipi i 8iyip
where P3;, = . L ) e M\"? 3 1253 2 "2/ and
0 0 ... Psiiny,
A3ijiyl
A3i1i22 (z&liliz Sitini )xg,- i fiviz
Psjyi, = . e.M\" 12 12, with Z 8i1iis = &iyip and
i3

LE i2h3i) iy

X
A3i|i2i3 c M8z 81112;

Thus, for » > 2, each matrix P, will be given by (P is given in (22)):
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Py 0 ... 0
0 Pyr... O
P=| . .. . (23)
0 0 ...Py
hy hrigsiry h R —1),i] ey _o
c %<Zil "‘Zi, gll‘,.l,)x(zil ...Z,’(’A_]) 8iyig—1) ,
where
Pin 0 ... 0
0 Pip... 0
Pril = . . .
0 0 ...Pim,
iy iy iy iy B(r=1),i1 seomip—2
e%(ziz 2y T i )X\ 2 ..AZ,»(’A_]) " iy ,
Pril...i(,,z)l O e O
0 Pril...i(,,z)Z e 0
Priy.ipey = . : .
0 0 s Pril~~~i(r—2)hr—].i1,...,i,,2
LG N ST S QU U M B =13, ooy _o
G%(Zi(r7|) > 8iyir | X Z,»(Fl) 8iy i1 ’
Avi gl
Api i ( iy iy
1ed-1)2 > 8iyir ) X8iyiry)
and Pri]...l'(,,]) = . G % N

Ari| =Dl i

Ry oy hy
: _ _ iy e X8iy i1 -
with E 8ir.ir = 8iroig_1)» E g =n, Ay € ATy,
i i

Theorem 1 Let the matrices Py, Ps, ..., P, defined above be such that:

(c1) The columns ofAlTi], iv=1,...,hy, forma set of g;, = r(AlTil) orthonormal
eigenvectors associated to the eigenvalues 6,;, of the matrix M, (0y;, has mul-
tiplicity g;,);
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(c2) The columns of AzTi,iz’ ir=1,..., hy;, form a set of gi,i, = r(A;';]iz) ortho-
normal eigenvectors associated to the eigenvalues 0y;,;, of the matrix Ml-2] 0=
T . . . .
A1,~1M2Aul (62i,i, has multiplicity g, );
T . T
(c3) The columns of Ay; ., i3 =1,..., h3;., form a set of giiiy = r(Ay; ;)
orthonormal eigenvectors associated to the eigenvalues 03;,;, of the matrix
3 4T T
Agiyiy M Agyy iy = Aziin Ariy M3 Ay Ay
(03i,i,i5 has multiplicity ;i );
(¢;) The columns OfA;El...i,’ ir=1,...,h 4 i, formasetof g i = r(A;ril...i,)
orthonormal eigenvectors associated to the eigenvalues 6,;, ;. of the matrix
T T
A(r—l)il,..i<,,1) . ..A]i]MrA LA

i) (=Dt
(0riy..., has multiplicity g;, ;. ).

Then each matrix P;, d=1,...,r, in the finite sequence of matrices
Py, P, ..., Pr will be an orthogonal matrix.

Proof By the way P, is defined (see (23)), since

Agi,.

Adi i
1ed(@—1) .
Puiy gy = : s ig-n =1, .o h@—1)iy o iaas

..l'(d,l)l

Adil~~~i(d—l)hd.i1.....id,1

and according with condition c¢; we see that the matrices Py;,..;,_, are orthog-
onal. Thus, the desired result comes if we see that PJ P; will be a diagonal
blockwise matrix whose diagonal entries are P[;[r.l Pyi,, i1 =1,..., hy. The diag-
onal entries PdT[] Py;, will be diagonal blockwise matrices whose diagonal entries
will be PJMZ Pyuiyi,, i =1,..., hy;. Proceeding this way d — 2 times, we will
find that the diagonal en'tries of the blockwise matrices P;l___l.(diz) Piiy g Ld—2) =
1, ey h(d—Z),il,...,id,p will be

T _ T L
Pdil...i(d,l) Pdil---l'(d—n = Adi1...i(d,l)lAdllml(d-nl
T
+oet Adil---i(d—])hd,i“.“idfl Adll---l(d—l)hd.i],..,,id,l
= Igi,,..i(l,,l) ’

reaching, therefore, the desired result. Proceeding in same way we would also see

that Py, P . is a Blockwise diagonal matrix whose diagonal entries are
1 diy...ig-1

Adil_,i(‘H)1A;1___i(d71)j,j =1,...,ha.,.. i, s0that PdP;— is an identity matrix. [

@1
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The model w, = P, ... P, P;y will produces the following sub - models:

Vivir = Ariy iy A=y iy - - - A2iyin ALy Vs

ip =1, ...,/’l],ij = 1""vhj,i1,...,ij71'

We summarize the distribution of each of the sub-model y;, ;. in the following
result.

Proposition 5§
Yiyoip ™ ‘/K,’il...i,- (Ogil..,i,- ’ )\'il---ir Igi]...i,) ’
where i, i, = D 1_1 Yabiy..ig + Vrt1-

Proof The proof becomes obvious after looking to the proofs of the Proposition 1.
O

From the results about cross-covariance on the preceding sections we easily con-
clude that the cross-covariance matrix between the sub-models y;, _;, and y;:_;, with

i, iy =1,..., hy; iy, ;= 1,..., hj,,-],m,i/,f,, is given by
0 i =1y,
Ai.i ij=1i"j
j
CoV(Yiy.ip> Vit..ip) = ' j=1 [
=L By
r T ; ;
2a=a VaAriy iy - AiMaAye Ay i1 #if

so that, for i # i}, the sub-models y;, ; and y;;. ;. are correlated and for i; = if
they are not.

3.4 Estimation for the General Case: r > 1

Recalling that for the MLM in (1), P, ... P, P,y produces the following sub-models

Yirig.ip ™ Ji/é’ilizu.i, (Ogil..j,’ )”l']iz---ir Igiliz..jr)’
bh=1....h,i;=1,....hj i, 24)

where

.
Airiy..iy = E YaOaiy..ig + Vrt1-
d=1

The matrices P;,d =1, ..., r, are defined in the Sect. 3.3.



Variance Components Estimation in Mixed Linear Model ... 333

An unbiased estimator of A;;, ;. in the sub-model (24) is (the one based on its
maximum likelihood estimator A;,;, ;)
2 :

111'2...1, - yzlzz z,ylllz Ay

8iyip...ir

Indeed (see Rencher and Schaalje [11], Theorem 5.2(a), and the explanation for
(12)),

A i
E (Sizliz...i,) = g;liz z tr [Igi]iz.“ir]
102.0:0p

= A 25)

ipip...dy

For convenience, in what follows, instead of S?. _i,» We may sometimes use the

i1is.
notation S?,
Vi2edr—nyir*
Thus

,
E(Sizliz..‘i(,,l)i,) = z Yabai..i, + Vr1
d=1

= Y101, + V2000, + + + VeOrirsia.ie_ri, T Vel

il = 1,...,h1;ij = 1,...,]’lj’il,___yij71

— 2 -
Slzl...ll
Sll...12

2
Sl] Ahy
Sll 21

L
Sn...zhm
so that, with S = - ,

2
Shll...ll

2
L= hiho g heny oy <
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611 O 03111 Or11..11 1
O 6n O3111 Or11..12 1
011 O 03111 . Ot i, 1
O a1 O3111 e Or11..21 1
O 6 03111 .. Or11. 21, 1
e = ,
O1h, Oon O3, 11 Orp1..11 1
__elhl 92ﬁ1h2./x] 93h1h2.h|h3.h|./xz s el‘hlhzhl---h(r—l).hl.,.4./1,,2/’1»'.!1[.4.,,h,,,| _
Y1
V2
V3
andy = | ... [, we will have
Vr
LYe+1)
E(S) = Oy. (26)

Thus, fori; =1,...,h,i;=1,. ..,hj,,-,,___,,'jfl,j > 1, equalizing the variances
Aiyiy..i, to the correspondent estimators Sizli it yields the following system of
equations (in matrix notation)

2.0y

S=0y. 27)

Since by construction 6y;, # 6, i (they are the different eigenvalues of M), 62;,i, #
0,,,;; (they are the distinct eigenvalues of M7 = Ay, MyAY, ), 63,1, # 03i,,i, (they
are the distinct eigenvalues of Ay; ;, A1;, MQAII.] A;liz), coos Oriviy i onyiv G,i],-z___i(ri”i:
(they are the distinct eigenvalues of A(—1)i,i,...i¢_y - - - Al M,AlTi] ... Ag—l)iliz...i(,.,”)
where i; #i i j=1,...,r,itis easily seen that the matrix @ is of full rank; that
isr(®)=r+1.

According with Theorem 2.6d (Rencher and Schaalje [11]), with > denoting

), hy hyi R .
> the matrix

i i :
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i 2912,-1 > 01,6210, D01, 03iyini5 > 01 Oriyir - 201 ]
> 01,021y 2922,-1,-2 02i1ir03ivinis -+ 2. 02i1inOriyir D 02iris
20ty 20 iinis O3 e 2 OiisisOriyir 2630
e'e=
201 0riyir 202002 6riy.ir D OirinisOriy.ir - - - 0% i 2 Orivir
L 26 > 0iiy 2 03iriniz 2 Oriy_ir >

is positive-definite, and according with Corollary 1 of (Rencher and Schaalje [11],
p.27) © T @ is non-singular; that s, it is invertible. We denote its inverse by (@ T @)~
Now, premultiplying the system (27) in both side by ® T the resulting system of

equations will be

O's=0Toy,

(28)

whose unique solution (and therefore an estimator of y) will be the Sub-D estimator

y=@©"e)'e’s.

Proposition 6 y = (O 0)~ '@ 7S is an unbiased estimator of

(29)

71 Y1
V2 )
v3 V3
y = , where
Yr Vr
| Yo+ | Yo+

Indeed, E(7) = E (©70)7'0TS) = (©T0)'OTES) =@ T0)'0TOy =
Y-

4 Numerical Results

In this section we carry numerical tests to the sub-diagonalization method for the
case r = 2, that is for a model with 3 variances components. For this case we pick
the particular model z ~ 51 (XB, yiN1 + y2 N> + y31»1), where N; = XjX].T, j=
1, 2, with design matrices
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1 0; 02
15 05 Os 04 14 04
X1 =1001909 | , X, =05 05 1 |,
07 07 157 14 04 O4
03 13 03

and X = 1,;. 1; and Oy denote, respectively, k x 1 vectors of 1 and 0.

Let B, be a matrix whose columns are the eigenvectors associated to the null
eigenvalues of %le. Then B,B, = I — %Jﬂ and B B, = I, and so the new
model will be

y =Bz~ N0 (020, yiM; + y2Ms + y310)

where M; = BOTNdBo.

Since r(N;) =3 we have that (see Schott [12, Theorem 2.10c]) r(M;) =
r(BJNl By) = 3. The eigenvalues of M are 0;; = 7.979829, 6;, = 5.639219, and
013 =0 (613 with multiplicity (root) equal to 18). Thus we have that Mlz1 =
A11M2A1T] = 5.673759 and M222 = A12M2A]T2 = 0.6246537 will be 1 x 1 matrices,
and M3, = A;3M>A]; an 18 x 18 matrix.

We have the following: M?, has eigenvalue 6;; = 5.673759; M3, has eigen-
value 65,1 = 0.6246537; M323 has 3 eigenvalues: 631 = 6.390202; 6,3, = 1.216148;
0233 = 0 (6233 with multiplicity equal to 16).

Finally we found that

ST =[190.779246 8.866357 5.234293 53.654627 1.334877]

7.979829 5.6737590 1
5.639219 0.6246537 1

and © = 0 6.3902016 1
0 1.2161476 1
0 0 1

With B ~ A2 (03, yiI3), k = 1,2, and e ~ A50(029, y3120), and taking y3 = 1,
the model can be rewritten as y = BoTXl,Bl + BOTXZ,BQ + B;re.

We consider y; and y, taking values in {0.1, 0.25,0.5,0.75, 1, 2, 5, 10}. Thus,
for each possible combination of y; and y», the model y is observed 1000 time,
and for each observation the sub-diagonalization method is applied and the variance
components estimated for each observed y. The Tables 1 and 3 present the ave-
rage of the estimated values of y; and y», respectively. In order to compare the sub-
diagonalization method performance with the REML, for the same 1000 observations
of y, the REML method is applied and the results presented in both Tables 2 and 4.

Taking alook at tables, and comparing the averages estimated values from the sub-
diagonalization method to the ones of the REML methods (see Tables 1, 2, 3, and 4),
the reader may easily concludes that the results provided by the sub-diagonalization
method are in general slightly more realistic. In other hand, the averages variability
of the sub-diagonalization methods is relatively higher than those of REML method
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(see Tables 5, 6, 7, and 8); this is because of the correlation between the sub-models.
This gap will be fixed in future works.

5 Concluding Remarks

Besides its simple and fast computational implementation once it depends only on
the information retained on the eigenvalues of the design matrices and the quadratic
errors of the model, Sub-D provides centered estimates whether for balanced or
unbalanced designs, which is not the case of estimators based on ANOVA methods.
As seen at Sect. 4, Sub-D provides a slightly more realistic estimates than the REML
estimator, but with more variability (when the model is balanced they have a compa-
rable variability). However, since in any computational program (source code) when
we are interested in share the code, create package or use it repeatedly, we might
consider its efficiency and, for this matter, the code run-time constitutes a good start
point. Doing so, to compute the estimates and the corresponding variance for each
pair y; and y, taking values in {0.25, 0.5, 1, 2, 5, 10}, for 1000 observations of the
model, we found that the Sub-D run-time is about 0.25 s while the REML estimator
run-time is about 35.53 s, which means that the code for Sub-D is more than 70 times
faster than the one for REML. The code was run using R software.

It seems that the problem of the little higher variability in Sub-D comparing to
REML estimator is due to the correlation between the sub-models (for the case

of models with three variance components, for example) y;;, i =1,...,h, j =
1,..., ho,. From (10) we see that the variance components matrix of the model
wy = P, Pyy is a blockwise matrix whose diagonal matrices are D;,.. ., Dy,, where
D; =diag(Xi, ..., Ainy,), corresponding to cov(y;j, ysx) fori =s, j =k, and the

off diagonal matrices are the non-null matrices y>Ay;; W,'25A2sk’ corresponding to
cov(yij, ysk) for i #s. This problem will be handled in future work. Confidence
region will be obtained and tests of Hypothesis for the variance components will be
derived in future works.
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Appendix

Table 1 Sub-diagonalization method - average estimate for y;

n/y: 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.0917 | 0.0984 | 0.0828 | 0.1162 |0.0833 |0.1052 | 0.1102 |0.1053
0.25 02716 | 02954 | 02698 | 0.2538 [0.3041 [0.2882 | 0.1993 |0.3322
0.5 0.5010 | 05127 | 0.4929 | 05088 |0.5297 |0.4613 | 0.5314 |0.5569
0.75 0.7279 | 0.7683 | 0.7685 | 0.7755 |0.7693 |0.7504 | 0.6982 |0.8215
1 1.0305 | 1.0293 | 1.0143 | 09971 [1.0309 |1.0013 | 1.0046 |1.0809
2 19844 | 2.0004 | 2.0032 | 1.9702 [2.0827 [2.0893 | 2.0643 |2.2640
5 51864 | 5.0386 | 49128 | 5.0722 |52111 |5.0170 | 4.8472 |5.1269
10 9.6167 |10.1588 |10.2468 | 10.1263 |9.6940 |9.9046 | 10.0246 |9.8474

Table 2 REML method - average estimate for y;

niva 01 0.25 0.5 0.75 1 2 5 10

0.1 0.1431 | 0.1683 | 0.1779 | 0.1884 [0.1975 [0.2154 |0.2189 |0.2156
0.25 02872 | 03157 | 03379 | 03286 |0.3416 03316 |0.3740 |0.3480
0.5 0.5191 | 0.5546 | 0.5244 | 0.5637 |0.6110 |0.5897 |0.6469 | 0.6281
0.75 07271 | 07620 | 0.7587 | 0.7908 |0.8159 |0.8245 |0.8373 |0.8241
1 1.0300 | 1.0026 | 1.0245 | 1.0172 |1.0138 |1.0726 |1.0352 |1.0515
2 19343 | 1.9884 | 1.9565 | 2.0178 |2.1510 |2.1482 |2.0774 |2.2323
5 5.1267 | 49747 | 47743 | 50955 |5.1395 |4.9907 |4.8066 |4.8150
10 9.5043 | 10.0881 |10.1912 |10.0269 |9.4706 |9.7784 |9.9445 |9.6754

Table 3 Sub-diagonalization method - average estimate for y»

niva ol 0.25 0.5 0.75 1 2 5 10

0.1 01026 |0.2643 [0.5147 [0.7147 [1.0286 |1.9595 |4.9390 | 9.9718
0.25 0.1051 |0.2589 |0.4918 |0.7827 |1.0172 |2.0427 48713 | 9.7690
0.5 0.0903 [0.2323 |0.5043 |0.7865 |1.0117 |1.9496 |4.8136 | 9.8913
0.75 0.0855 |0.3068 |0.5144 |0.7676 |1.1207 |2.0762 |4.7910 | 9.7847
1 00581 [0.2746 |0.5052 |0.7969 |1.0035 |2.1009 |5.0871 |10.2702
2 0.0902 |0.2966 |0.6198 |0.7870 |0.9909 |1.9605 |5.217 9.7318
5 0.1759 |0.3403 |0.5565 |0.7276 |1.0007 |2.036 | 4.8617 | 9.7160
10 0.1614 02562 |0.5649 |0.7481 |0.9934 |2.1402 |5.1631 |10.1369
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Table 4 REML method - average estimate for y»

vi/v2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1539 |0.2701 |0.5143 |0.7095 |0.9992 |1.9007 |4.9153 9.9579
0.25 0.1630 |0.2965 |0.5165 |0.7840 |1.0271 |2.0990 |4.7929 9.5820
0.5 0.1867 [0.3061 |0.5490 |0.7964 |1.0400 |1.9358 |4.7022 9.6481
0.75 0.1976 |0.3501 |0.5480 |0.8079 |1.0678 |2.1196 |4.6759 9.7793

1 0.2008 |0.32890 |0.5488 |0.8134 |1.0282 |2.0205 |5.0126 |10.3663
2 0.2186 [0.3379 |0.5703 |0.8469 |1.0249 |1.9900 |5.4291 9.5900
5 0.2198 |0.3799 |0.5603 |0.7773 |1.0027 |2.0142 |4.7727 9.6886
10 0.2284 |0.3551 |0.5906 |0.7792 |1.1087 |2.0735 |4.9235 |10.0843
Table 5 Sub-diagonalization method - variation of the estimated y;

yi/v2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1264| 0.2253| 0.4626| 0.8296| 1.2005| 4.3832| 19.6631| 83.6993
0.25 0.2637| 0.3814| 0.6248| 1.0775| 1.5931| 4.7676| 20.1332| 72.7948
0.5 0.5737| 0.7863| 1.1830| 1.7217| 23142 4.7103| 22.8545| 78.2997
0.75 0.9224| 1.2110| 1.5779| 2.0896, 3.3078 7.4140| 20.7793| 77.7225
1 77.7225| 1.8328| 2.4022| 2.9417| 3.8380| 7.6562| 27.1356|101.9337
2 4.8401| 5.6613| 6.9492| 6.8652| 8.4356| 13.2666| 37.4524|107.8436
5 30.5767| 31.3904| 34.2362| 36.0102| 36.5273| 43.1085| 72.8085|157.0055
10 111.1505| 117.9503 | 114.2234 | 120.8808 | 124.3445 | 138.0213 | 192.7288 | 288.9592
Table 6 Sub-diagonalization method - variation of the estimated y»

yi1/v2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1532 | 02972 | 0.6524 | 1.1154 | 2.0379 | 6.4364 | 33.8728|138.7916
0.25 0.2379 | 0.4537 | 0.7838 | 1.3616 | 2.0686 | 7.7435 | 32.4170|112.701
0.5 0.5232 | 0.7162 | 1.1545 | 1.7515 | 2.7932 | 6.1609 | 31.2810|117.2392
0.75 0.7703 | 1.0841 | 1.4314 | 1.9380 | 3.3226 | 7.6266 | 35.7370|139.0834
1 1.1496 | 1.4291 | 1.8988 | 2.6630 | 3.6221 | 8.7960 | 39.6377|159.5489
2 3.8362 | 4.5207 | 4.6976 | 5.5365 | 6.9396 |11.6933 | 47.5170|140.7587
5 21.0152 |22.2408 |24.2194 |24.0984 |29.4643 |34.2175 | 65.9059|176.7041
10 81.3183 | 82.3035 |89.9235 |85.9040 |85.1849 |93.4313 |153.1855|265.6179
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Table 7 REML method - variation of the estimated y;
Y1/v2 0.1 0.25 0.5 0.75 1 2 5 10

0.1

0.07807 0.0880, 0.1324| 0.1579| 0.1801| 0.2524| 0.2679| 0.2052

0.25 0.20365 02229 0.2729| 0.2676| 0.3350, 0.3365| 0.4485| 0.3235

0.5

0.4747 0.6030| 0.5822| 0.7576| 0.8165| 0.7607| 0.8321| 0.9255

0.75 0.8896 09458 1.0035| 1.1702| 1.2667 1.2627| 1.2131 1.4153

1

1.4500 1.4368| 1.7622| 1.7407| 1.8813| 1.9144| 1.8597| 1.9659

2 4.6049 4.9522| 4.8249| 5.6586| 6.0638| 6.3735| 6.0565| 7.8698
5 28.4367 | 29.6686| 29.0413| 32.1312| 29.1439| 28.4656| 28.1731| 29.3058
10 106.6903 | 108.3732| 106.734 | 105.7222|106.4887 | 101.2775| 111.1112 | 104.9005

Table 8 REML method - variation of the estimated y»

n/y: 0.1 0.25 0.5 0.75 1 2 5 10

0.1

0.0833 |0.1798 |0.5192 |0.7836 |1.4306 |4.8877 |27.2749 |100.2321

0.25 0.0914 02295 |0.5842 |0.9688 |1.5517 |6.1586 |25.9314 | 92.9996

0.5

0.1260 | 0.2744 |0.5607 |1.2902 |1.8142 |4.4948 |23.3488 | 94.9688

0.75 0.1534 |0.3081 |0.6120 |1.2712 |1.6747 |5.9940 |26.5791 |110.6777

1

0.1732 03270 |0.6852 |1.2331 |1.8197 |5.2857 |29.3231 | 126.1761

2

0.2289 |0.3608 |0.7416 |1.5226 |1.7834 |5.7763 |31.7812 |101.8187

5

0.2399 ]0.4452 |0.8946 |1.2738 |1.6384 |5.2879 |26.9691 | 97.7408

10

02280 |0.4149 |0.7789 |1.2234 |2.1941 |5.7251 |31.2616 | 98.4346
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