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Chapter 1

Introduction

These notes arose out of a series of research papers completed by the authors
and others. This volume is devoted to recent developments in some topics of
analytic Hilbert modules.

In the last decades, the study of nonself-adjoint operator algebras has en-
joyed considerable success, but the development has largely excluded spectral
theory. Multi-variable spectral theory can be viewed by analogy as “non-
commutative algebra geometry,” and such a development was the goal of the
module approach to the multi-variable operator theory presented in Hilbert
Modules over Function Algebras by Douglas and Paulsen [DP].

The theory of Hilbert modules over function algebras, largely due to
R. Douglas, provides an appropriate framework to the multi-variable oper-
ator theory. In this module context, function algebras play important roles
rather than “n-tuples,” and one considers Hilbert spaces as modules over it.
The change of viewpoint has some remarkable consequences. At the very least,
it facilitates the introduction of techniques and methods drawn from algebraic
geometry, homology theory and complex analysis in one variable and several
variables, etc.

Now we will simply describe the background and developments of ana-
lytic Hilbert modules; of course, the description is never complete. Let T be
the unit circle in the complex plane and let L2(T) be the Hilbert space of
square integrable functions, with respect to arc-length measure. Recall that
the Hardy space H2(D) over the open unit disk D is the closed subspace of
L2(T) spanned by the nonnegative powers of the coordinate function z. In
the language of the Hilbert module [DP], the Hardy space H2(D) is a module
over the disk algebra A(D) with multiplication defined pointwise on T. If M
is a submodule of H2(D) (which means that M is invariant for the multiplica-
tion by polynomials), then Beurling’s theorem [Beu] says that there exists an
inner function η such that M = η H2(D). Therefore, each submodule M of
the Hardy module H2(D) has the form M = η H2(D). For the Hardy module
H2(Dn) in the multi-variable version, a natural problem is to consider the
structure of submodules. However, one quickly sees that a Beurling-like char-
acterization is impossible [Ru1]. Perhaps the earliest results showing that a
straightforward generalization of Beurling’s theorem fails in H2(Dn) involve
considering cyclic vectors and are due to Ahern and Clark [AC].
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Theorem 1.0.1 (Ahern-Clark) If f1, ..., fk are in H2(Dn) with k < n, then
the submodule generated by f1, ..., fk is either all of H2(Dn) or is of infinite
codimension.

Therefore, in particular, no submodule of finite codimension in H2(Dn) can
be of the form ηH2(Dn). However, there are infinitely many submodules of
finite codimension. To describe these we let C denote the ring of complex
polynomials in several variables. For an ideal I in C, we set Z(I) = {z ∈ Cn :
p(z) = 0, ∀p ∈ I}, the zero variety of I. We also let [I] be the closure of I in
H2(Dn).

Theorem 1.0.2 (Ahern-Clark) Suppose M is a submodule of H2(Dn) of
codimension k < ∞. Then C ∩M is an ideal in the ring C such that

(1) C ∩M is dense in M ;

(2) dim C/C ∩M = k;

(3) Z(C ∩M) is finite and lies in Dn.

Conversely, if I is an ideal of the ring C with Z(I) being finite, and Z(I) ⊂ Dn,
then [I] is a submodule of H2(Dn) with the same codimension as I in C and
[I] ∩ C = I.

The above theorem shows that the description of finite codimensional sub-
modules is, at least conceptually, an algebraic matter. We also get our first
glimpse of the interplay between the algebra and analysis. “Algebraic reduc-
tion,” the starting point of this topic, is Theorem 1.0.2. Along these lines,
many authors, including Douglas, Paulsen, Sah and Yan [DP, DPSY], Axler
and Bourdon [AB], Bercovici, Foias and Pearcy [BFP], Agrawal and Salinas
[AS], Guo [Guo1, Guo2, Guo4, Guo12], Putinar and Salinas [PS], Putinar
[Pu1, Pu2], and Chen and Douglas [CD1, CD2], have developed a series of
techniques to investigate algebraic reduction for analytic Hilbert modules over
some domains.

For Hilbert modules in several variables, most of them arise from reproduc-
ing analytic function spaces. This leads us to introduce the notion of analytic
Hilbert modules. Let Ω be a bounded nonempty open subset of Cn, Hol(Ω)
denote the ring of analytic functions on Ω, and X be a Banach space con-
tained in Hol(Ω). We call X to be a reproducing Ω-space if X contains 1 and
if for each λ ∈ Ω the evaluation functional, Eλ(f) = f(λ), is a continuous
linear functional on X. We say X is a reproducing C-module on Ω if X is a
reproducing Ω-space, and for each p ∈ C and each x ∈ X, p x is in X. Note
that, by a simple application of the closed graph theorem, the operator Tp

defined to be multiplication by p is bounded on X. Note also that C ⊂ X
follows from the fact that 1 is in X. For λ ∈ Cn, one says that λ is a virtual
point of X provided that the homomorphism p 7→ p(λ) defined on C extends
to a bounded linear functional on X. Since X is a reproducing Ω-space, every
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point in Ω is a virtual point. We use vp(X) to denote the collection of virtual
points, then vp(X) ⊇ Ω. Finally we say that X is an analytic Hilbert module
on Ω if the following conditions are satisfied:

(1) X is a reproducing C-module on Ω;

(2) C is dense in X;

(3) vp(X) = Ω.

In Chapter 2, we give a rather extended consideration to algebraic re-
duction of analytic Hilbert modules by using the characteristic space the-
ory. The characteristic space theory in several variables, developed by Guo
[Guo1, Guo2, Guo4, Guo12], is a natural generalization of the fundamental
theorem of algebra. This theory allows us to treat algebraic reduction of
analytic Hilbert modules in several variables (see Theorem 2.2.5, Corollary
2.2.6) uniformly. In fact, for the topics discussed in Chapters 2 through 5,
our main technique is the characteristic space theory. Let X be an analytic
Hilbert module over a domain Ω. Recall that a submodule M of X is an
AF -cosubmodule if M is equal to the intersection of all finite codimensional
submodules that contain M . We found that AF -cosubmodules enjoy many
properties of submodules of finite codimension. Therefore, an algebraic re-
duction theorem for AF -cosubmodules was proved (see Theorem 2.4.2).

It is well known that “rank” is one of the important invariants of Hilbert
modules. Submodules with finite rank enjoy many algebraic properties, for
example, the Hilbert-Samuel polynomials introduced by Douglas and Yan
[DY2]. In addition, we proved that if M is a submodule of the analytic
Hilbert module X over the domain Ω generated by f1, ..., fk, then for each
f ∈ M , there are analytic functions g1, ...gk on Ω such that f =

∑k
i=1 figi

(see Theorem 2.3.3). This result will be applied to study equivalence of Hardy
submodules over the polydisk in Chapter 4.

Chapter 3 explores the topic of “rigidity” of analytic Hilbert modules in
several variables. By rigidity we mean that an analytic Hilbert module in
several variables exhibits a much more rigid structure than is expected from
the single-variable theory. This section starts by introducing the following
definitions.
Definition. Let M1, M2 be two submodules of X on Ω. We say that

1. they are unitarily equivalent if there exists a unitary module map X :
M1 → M2, that is, X is a unitary operator and for any polynomial p,
X(p h) = pX(h), ∀h ∈ M1;

2. they are similar if there exists an invertible module map X : M1 → M2;

3. they are quasi-similar if there exist module maps X : M1 → M2 and
Y : M2 → M1 with dense ranges.
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By Beurling’s theorem, submodules of H2(D) are all unitarily equivalent.
However, for the higher dimensional Hardy module H2(Dn), an earlier result
on non-unitarily equivalent submodules, due to Berger, Coburn and Lebow
[BCL], started to indicate just how much rigidity there is among those sub-
modules with finite codimension. They considered the restriction of multipli-
cation by the coordinate functions to submodules obtained as the closure of
certain ideals of polynomials in several variables having the origin as zero set.
By applying their results on commuting isometries, they showed that differ-
ent ideals yield inequivalent submodules. Almost at the same time Hastings
[Ha2] even showed that [z−w] is never quasi-similar to H2(D2), where [z−w]
denotes the submodule generated by z − w. The rigidity theorem for finite
codimensional submodules of H2(Dn) is due to Agrawal, Clark and Douglas
[ACD]. This theorem showed that two submodules of finite codimension are
unitarily equivalent only if they are equal. By using localization techniques,
Douglas, Paulsen, Sah and Yan [DPSY] gave a complete generalization of
the rigidity theorem above. Actually they obtained a stronger result [DPSY,
Corollary 2.8] than stated here.

Theorem 1.0.3 (DPSY) Let X be an analytic Hilbert module over the do-
main Ω, and let I1 and I2 be ideals of the polynomials ring C in n-complex
variables. Suppose that dim Z(Ii) ≤ n − 2, and each algebraic component of
Z(Ii) intersects Ω for i = 1, 2. Then [I1] and [I2] are quasi-similar only if
I1 = I2.

The condition dim Z(I) ≤ n−2 is sharp because there exists a unitary equiva-
lence between the submodules [z] and [w] of H2(D2) but they are never equal.
Note that this condition is also equivalent to the fact that the ideal I has the
greatest common divisor 1 (see Chapter 3). Therefore, Theorem 1.0.3 pro-
vides more examples for nonquasi-similar submodules. A simple example is
that the submodules [z1, z2] and [z1, z3] of the Hardy module H2(D3) are not
quasi-similar. By using the characteristic space theory, Guo [Guo1] obtained
a generalization for the rigidity theorem above (see Theorem 3.1.6).

Another kind of rigidity theorem closely related to the preceding considera-
tion (but different, since the submodules involved do not possess an algebraic
model) was obtained by Douglas and Yan [DY1]. Given a submodule M of
H2(Dn), let Z(M) = {z ∈ Dn : f(z) = 0, ∀f ∈ M}. For f in H2(Dn), let σf

be the unique singular measure on n-torus Tn for which Pz(log |f |−σf ) is the
least harmonic majorant of log |f |, where Pz denotes the Poisson integral.

Theorem 1.0.4 (Douglas-Yan) Let M1 and M2 be submodules of H2(Dn)
such that

(1) the Hausdorff dimension of Z(Mi) is at most n− 2, i = 1, 2;

(2) inf{σf : f ∈ M1} = inf{σf : f ∈ M2}.
Then M1 and M2 are quasi-similar if and only if M1 = M2.
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The above theorem relies heavily on the function theory of H2(Dn), and al-
though some generalizations are known [Guo8, or see Section 3.3], it is not
clear yet what a generalization of this result is to other analytic Hilbert mod-
ules.

Chapter 3 is devoted to these remarkable rigidity features of analytic Hilbert
modules in several variables. From an analytic point of view, appearance of
this feature is natural because of the Hartogs phenomenon in several variables.
From an algebraic point of view, the reason may be that submodules are not
singly generated.

The equivalence problem is, in general, quite difficult. On one hand, under
the hypotheses of Theorem 1.0.3, the equivalence necessarily preserves the
ideal. On the other hand, for the submodules [z] and [w] of H2(D2) the
unitary equivalence U : [z] → [w] defined by multiplication z̄w does not even
preserve the zero sets of the ideals. Yan has examined the case of homogeneous
principal ideals [Yan1].

Theorem 1.0.5 (Yan) Let p; q be two homogeneous polynomials. Then [p]
and [q], as the submodules of H2(Dn), are unitarily equivalent if and only if
there exists a constant c such that |p| = c|q| on Tn; similar if and only if the
quotient |p|/|q| is bounded above and below on Tn.

While in the case of the unit ball Bn, Chen and Douglas [CD1] proved that
[p] and [q] are quasi-similar only if p = cq for some constant c. From these
facts one finds that the equivalence problem depends heavily on the geometric
properties of domains.

Chapter 4 considers the equivalence problem of Hardy submodules gener-
ated by polynomials in the cases of both the polydisk and the unit ball. Let I
be an ideal of the polynomials ring C. Since C is a Noetherian ring [AM, ZS],
the ideal I is generated by finitely many polynomials. This implies that I has
a greatest common divisor p. Thus, I can be uniquely written as I = pL,
which is called the Beurling form of I. The following classification theorems
were proved in [Guo2](see Theorem 4.2.1, Corollary 4.2.2 and Theorem 4.4.2
in this volume).

Theorem 1.0.6 (Guo) Let I1 and I2 be two ideals of polynomials and let
I1 = p1L1, I2 = p2L2 be their Beurling forms. Then

(1) on the polydisk Dn, [I1] and [I2], as submodules of H2(Dn), are unitarily
equivalent if and only if there exist two polynomials q1, q2 with Z(q1) ∩
Dn = Z(q2) ∩ Dn = ∅ such that |p1q1| = |p2q2| on Tn, and [p1L1] =
[p1L2].

(2) on the unit ball Bn, [I1] and [I2], as submodules of H2(Bn), are unitarily
equivalent only if [I1] = [I2].
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As an immediate consequence, we have

Corollary 1.0.7 (Guo) Let p1, p2 be two polynomials. Then on the polydisk,
principal submodules [p1] and [p2] are unitarily equivalent if and only if there
exist two polynomials q1, q2 with Z(q1) ∩ Dn = Z(q2) ∩ Dn = ∅ such that
|p1q1| = |p2q2| on Tn.

Chapter 4 is devoted to the necessary background to understand these equiv-
alence problems, and to proofs of the above theorems.

In Chapter 5 we return to considering the case of reproducing function
spaces on Cn, and exploring the structure of such spaces. First let us examine
the Segal-Bargmann space, or the so-called Fock space. It is the analog of the
Bergman space in the context of the complex n-space Cn. Let

dµ(z) = e−|z|
2/2dv(z)(2π)−n

be the Gaussian measure on Cn (dv is the usual Lebesgue measure). The Fock
space L2

a(Cn, dµ) (in short, L2
a(Cn)), by definition, is the space of all µ-square-

integrable entire functions on Cn. It is easy to check that L2
a(Cn) is a closed

subspace of L2(Cn) with the reproducing kernel functions Kλ(z) = eλ̄z/2.
The Fock space is important because of the relationship between the operator
theory on it and the Weyl quantization [Be]. As is well known, the Fock space
preserves many properties of the Bergman space. However, the Fock space
exhibits many new features since its underlying domain is unbounded. Just as
we have shown in Proposition 5.0.1, such a space has no nontrivial invariant
subspace for the coordinate functions. Thus, an appropriate substitute for
invariant subspace, the so-called quasi-invariant subspace is needed. Namely,
a (closed) subspace M of L2

a(Cn) is called quasi-invariant if pM ∩X ⊂ M for
each polynomial p. Quasi-invariant subspaces enjoy many properties of invari-
ant subspaces which are shown in Chapter 5. However, unlike the Bergman
space L2

a(D) (or the Hardy space H2(D)), Beurling’s theorem fails in general
for the Fock space. Recall that on the Bergman space L2

a(D), Beurling’s the-
orem [ARS] says that M ª zM is a generating set of M for each invariant
subspace M . The next example shows that there are infinitely many quasi-
invariant subspaces for which Beurling’s theorem fails.

Example 1.0.8 Let α 6= 0, and let [z − α] be the quasi-invariant subspace
generated by z−α. Then [z−α]ª [z(z−α)] is not a generating set of [z−α].

In fact, it is easy to check that the subspace [z − α] ª [z(z − α)] is one
dimensional, and the function fα(z) = e|α|

2/2−eᾱz/2 is in it. Since the function
fα(z) has infinitely many zero points {α + 4nπi/ᾱ : n range over all integer}
in C, but z − α has a unique zero point α, this implies that fα(z) does not
generate the quasi-invariant subspace [z − α].

The preceding example exhibits an important difference between the Fock
space and the Bergman space on the unit disk. Just as one has seen, the
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differences arise out of the underlying domain of the Fock space being un-
bounded.

Since the Fock space and reproducing function spaces enjoy many common
properties, Chapter 5 will explore the structure of general reproducing func-
tion spaces on Cn. This requires us to introduce the following notion. Let
Hol(Cn) denote the ring of all entire functions on the complex n-space Cn,
and let X be a Banach space contained in Hol(Cn). We call X a reproducing
Banach space on Cn if X satisfies:

(a) the polynomial ring C is dense in X;

(b) the evaluation linear functional Eλ(f) = f(λ) is continuous on X for
each λ ∈ Cn.

The basic example is the Fock space mentioned above. Chapter 5 will mainly
be concerned with the following:

1. the structure of quasi-invariant subspace,

2. algebraic reduction of quasi-invariant subspaces, and

3. the equivalence problem of quasi-invariant subspaces.

We refer the reader to Chapter 5 for more details on these questions.

To generalize the operator-theoretic aspects of function theory on the unit
disk to multivariable operator theory, Arveson began a systematic study for
the theory of d-contractions [Arv1, Arv2, Arv3]. This theory depends essen-
tially on a special function space on the unit ball, namely, the Arveson space
H2

d which is defined by the reproducing kernel 1/〈z, λ〉. It is not difficult to
verify that the Arveson space is an analytic Hilbert module on the unit ball.
In Chapter 6, we collect some basic results from [Arv1, Arv2] which are related
to preceding Chapters. In the preceding Chapters we are mainly concerned
with Hardy modules and Bergman modules. However, the Arveson module,
unlike Hardy modules and Bergman modules associated with some measures
on underlying domains, is not associated with any measure on Cd and it is
distinguished among all analytic Hilbert modules on the unit ball, which have
some natural property by being the largest Hilbert norm (cf. [Arv1]). Hence
the Arveson module is included in each other analytic Hilbert module on the
unit ball which has the above required property. Since the Arveson mod-
ule is never given by some measure on Cd, this leads to the fact that the
d-duple (Mz1 , · · · ,Mzd

) of the coordinate multipliers on the Arveson space
(called the d-shift) is not subnormal. Just as we will see, the d-shift plays an
essential role in this modification of dilation theory, especially in the theory
of d-contractions [Arv1, Arv2]. By the d-shift an appropriate version of Von
Neumann’s inequality was obtained by Arveson (cf. Theorem 6.1.7). The
Toeplitz algebra T d (d > 1) on the Arveson space, unlike the Toeplitz algebra
on the Hardy space H2(Bd), enjoys many interesting properties, one of which
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is that the identity representation of the T d is a boundary representation
for d + 1-dimensional space span{I, S1, · · · , Sd} (cf. [Arv1] or see Corollary
6.2.4). From this one finds that there is no nontrivial isometry that commutes
with d-shift (cf. Corollary 6.2.5). This yields that there is not a nontrivial
submodule that is unitarily equivalent to the Arveson module itself. In fact,
we see from Section 6.4 that Arveson submodules have stronger rigidity than
Hardy submodules. We call the reader’s attention to Chapter 6 for detailed
results on the Arveson submodule.

Chapter 7 turns to the extension theory of Hilbert modules over function
algebras. In view of Hilbert modules, the theory of function algebras is em-
phasized since it plays the analogous role of ring theory as in the context
of algebraic modules. In the purely algebraic setting there are two differ-
ent methods of constructing the Ext-functor. One is as a derived functor of
Hom and the other is the Yoneda approach (see [HS]), which realizes Ext
as equivalence classes of resolutions. Let A be a function algebra, and let
H(A) be the category of Hilbert modules over A together with Hilbert mod-
ule maps. What seems to make things most difficult is, in general, that the
category H(A) lacks enough projective and injective objects, and hence it is
not possible to define the functor Ext as the derived functor of Hom as in
[HS]. However, the Yoneda construction applies to our situation, as done by
Carlson and Clark in [CC1]. Since extensions have some interesting applica-
tions to operator theory and analytic Hilbert modules, Chapter 6 is mainly
concerned with a situation of extensions (i.e., 1-extensions), where we only
consider 1-extensions, but not n-extensions (n > 1). We refer the interested
reader to [Pau3, HS] for some results concerning n-extensions.

In studying Hilbert modules, as in studying any algebraic structure, the
standard procedure is to look at submodules and associated quotient mod-
ules. The extension problem then appears quite naturally: given two Hilbert
modules H, K, what module J may be constructed with submodule H and
associated quotient module K, i.e., K ∼= J/H(= J ª H)? We then have a
short exact sequence

E : 0 −→ H
α−→ J

β−→ K −→ 0

of Hilbert A-modules, where α, β are Hilbert module maps. Such a sequence
is called an extension of K by H, or simply J is called an extension of K
by H. By definition ExtA(K, H) is the extension group whose elements are
equivalence classes of K by H (defined in Chapter 7). For the purposes of this
volume we omit the superscript “1” on Ext because we shall only consider
the 1-extensions. For the analyst, the homological invariant Ext(−,−) is
important because it is closely related to function theory and operator theory.
To illustrate this connection, let us mention results obtained by Carlson and
Clark [CC1, CC2].
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Theorem 1.0.9 (Carlson-Clark) The following are true:

(1) ExtA(D)(H2(D), H2(D)) = 0;

(2) ExtA(Dn)(H2(Dn),H2(Dn)) 6= 0,if n > 1.

By a simple analysis, all extensions of the Hardy modules on the unit disk
are trivial because the resulting function theory is one dimensional and the
module is isometric. However, for nonvanishing of the extension group of
the Hardy module on the polydisk, the reason may be based on the Har-
togs phenomenon in several complex variables. Actually, Guo and Chen [GC]
obtained an explicit representation for the extension group of the Hardy mod-
ule by the restricted BMO function space introduced in [CS] (see Example
7.2.13). We mention work of Ferguson [Fe1, Fe2], where the extension theory
is applied to operator theory. To see the connection between the extension
theory and operator theory, recall that “the Halmos problem” is to ask if each
polynomially bounded operator is similar to a contraction. Pisier has pro-
duced examples of polynomially bounded operators which are not similar to
contractions [Pi2]. We say that a Hilbert module over A(D) is cramped if it
is similar to a contractive Hilbert module. In [CCFW], Carlson, Clark, Foias
and Williams introduced the category C of all cramped Hilbert modules over
A(D), and proved that in the category C, a module is projective if and only
if it is similar to an isometric module. Hence, the Hardy module H2(D) is
projective in the category C. A natural problem is: is H2(D) projective in the
category H(A(D))? Although this problem remains open, a negative answer
for this problem will lead to negation of “the Halmos problem.” Applications
of extension theory to rigidity of analytic Hilbert modules are presented in
[CG, GC, Guo3] (see Chapter 7 for more details).

Finally, we should mention the book of Helemskii [Hel], and the paper of
Paulsen [Pau3], which reported a systematic study of the homology of Banach
and topological algebras, and of operator spaces, respectively. The ideals
of the homology in [Hel, Pau3], of course, can be adapted to study Hilbert
modules over function algebras.

This volume is mainly based on our work. Therefore there are many im-
portant works in Hilbert modules that are not included here, for example, the
geometric invariants on quotient modules by Douglas, Misra and Varughese
[DM1, DM2, DMV], and curvature invariants on Hilbert modules by Arveson
[Arv1, Arv2, Arv3]. We refer the interested reader to these works for more
topics related to Hilbert modules.
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Chapter 2

Characteristic spaces and algebraic
reduction

In this chapter, we first introduce a notion of characteristic spaces for ideals of
the polynomial ring, and we use the characteristic space theory to study the
structure of ideals. Then we extend the method to the case of analytic Hilbert
modules. This allows us to obtain results on algebraic reduction of analytic
Hilbert modules. The characteristic space theory is essential for the study of
rigidity of analytic Hilbert modules. This will be discussed in Chapter 3.

2.1 Characteristic spaces for ideals of polynomials

Algebra fundamental theorem says that a polynomial p in one variable is
completely determined by its zeros (counting multiplicities). We state this
fact in the following manner. Set I = p C, where C is the polynomial ring in
one variable. For λ ∈ C, define

Iλ = {q ∈ C : q(D)r|λ = 0, ∀r ∈ I},

where q(D) =
∑n

i=1 ai
di

dzi if q =
∑n

i=1 aiz
i. Notice that for any analytic

function f in some neighborhood of λ, one easily verifies the equality

q(D)(zf)|λ = λq(D)f |λ +
dq

dz
(D)f |λ.

Therefore, the space Iλ is invariant under d
dz . Furthermore, we have the

following observations:

1. λ is the zero of p if and only if dim Iλ > 0, and in this case;

2. multiplicity of λ, as a zero point of p, is equal to dim Iλ.

Based on the above observations, one finds that the space Iλ carries key
information of the multiplicity of p at λ.

We will generalize this idea to an ideal of the polynomial ring in several
variables by introducing the characteristic spaces of the ideal.
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We also let C denote the ring of all polynomials on Cn, and let

q =
∑

am1...mnzm1
1 zm2

2 · · · zmn
n

be a polynomial. We use q(D) to denote the linear partial differential operator

q(D) =
∑

am1···mn

∂m1+m2+···+mn

∂zm1
1 ∂zm2

2 · · · ∂zmn
n

.

Let I be an ideal of C, and Z(I) be the zero variety of I, that is,

Z(I) = {λ ∈ Cn : q(λ) = 0, ∀q ∈ I}.

For λ ∈ Cn, set
Iλ = {q ∈ C : q(D)p|λ = 0, ∀p ∈ I},

where q(D)p|λ denotes (q(D)p)(λ). Just as in the case of one variable, a
careful verification shows that for any polynomial q and analytic function f ,

q(D)(zjf)|λ = λjq(D)f |λ +
∂q

∂zj
(D)f |λ, j = 1, 2, · · · , n.

Therefore Iλ is invariant under the action of the basic partial differential
operators { ∂

∂z1
, ∂

∂z2
· · · , ∂

∂zn
}, and Iλ 6= 0 if and only if λ ∈ Z(I). We call Iλ

the characteristic space of I at λ. The envelope, Ie
λ, of I at λ is defined as

Ie
λ = {q ∈ C : p(D)q|λ = 0, ∀p ∈ Iλ}.

The preceding equalities imply that Ie
λ is an ideal of C and it contains I.

For the next results we need to recall some concepts from commutative
algebra. General references on commutative algebra are [AM, ZS]. For the
polynomial ring C, a basic fact is that it is Noetherian. This means that
each ideal of C is finitely generated. An ideal Q of C is called primary if the
conditions p, q ∈ C, pq ∈ Q and p /∈ Q imply the existence of an integer m
such that qm ∈ Q. For a primary ideal Q, its radical ideal P , which is defined
by

P = {p ∈ C : pl ∈ Q for some positive integer l},
is prime, and it is called the associated prime ideal of Q, while Q is said to
be P -primary. In general, for an ideal of C, the most important thing is the
following Lasker-Noether decomposition theorem[ZS]. For this theorem, the
following definition is needed: a primary decomposition I = ∩m

j=1Ij of an
ideal I, as an intersection of finitely many primary ideals Ij , is said to be
irredundant if it satisfies the following conditions:

(a) no Ij contains the intersection of the other ones;

(b) the Ij have distinct associated prime ideals.
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We can now state the Lasker-Noether decomposition theorem for the polyno-
mial ring: let I be an ideal of polynomial ring on Cn, then I has an irredundant
primary decomposition,

I =
m⋂

j=1

Ij ,

where each Ij is Pj-primary for some prime ideal Pj . While the set {Ij : 1 5
j 5 m} is not uniquely determined by I, the set {Pj : 1 5 j 5 m} is, and
these are the associated primes of I. Note that

Z(I) =
m⋃

j=1

Z(Pj),

and we will call each Z(Pj) = Z(Ij) an algebraic component of I.

Now let A be an ideal of C. Then one can define the A–adic topology on
C by the powers of A. This means that the closure of a subset E of C in the
A-adic topology is

Ē =
⋂

j≥1

(E +Aj).

By Krull’s theorem (see [ZS, Vol(I), p. 217, Theorem 13]), if I =
⋂m

j=1 Ij

is an irredundant primary decomposition, then the closure of I in the A-adic
topology is equal to the intersection of those Ij with Ij + A 6= C. This fact
will be used in the proof of the following theorem.

Motivated by polynomials in one variable, Guo proved the following theo-
rem in [Guo1].

Theorem 2.1.1 Let I =
⋂m

j=1 Ij be an irredundant primary decomposition
of the ideal I, and λ ∈ Z(I). Setting

∑
λ = {j : λ ∈ Z(Ij)}, we then have

that
Ie
λ =

⋂

j∈Pλ

Ij .

Proof. For λ ∈ Z(I), let Uλ denote the maximal ideal of polynomials that
vanish at λ, that is, Uλ = {q ∈ C : q(λ) = 0}. We claim

Ie
λ =

⋂

j≥1

(I + Uj
λ).

In fact, the inclusion ⊇ is straightforward and the reverse inclusion goes as
follows: for each polynomial p ∈ C, let Lλ(p) denote the linear functional on
C defined by

〈q, Lλ(p)〉 = q(D)p|λ.
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Fix j ≥ 1 and let p̂ ∈ Ie
λ. To see that p̂ ∈ I +Uj

λ, we need to find a polynomial
p ∈ I such that the linear functional Lλ(p̂) agrees with Lλ(p) on Pj , the space
of polynomials of degree less than j. Since p̂ is in Ie

λ, Iλ ⊆ Ker(Lλ(p̂)) and so

Iλ ∩ Pj ⊆ Ker(Lλ(p̂)) ∩ Pj = Ker(Lλ(p̂)|Pj).

By definition, Iλ ∩ Pj = ∩Ker(Lλ(p)|Pj) where the intersection is over all
p ∈ I. Now the map defined on I by p 7→ Lλ(p)|Pj has finite dimensional
range and so there exist polynomials p1, · · · , pl contained in I, such that

⋂

p∈I

Ker(Lλ(p)|Pj) =
l⋂

k=1

Ker(Lλ(pk)|Pj).

Hence,
l⋂

k=1

Ker(Lλ(pk)|Pj) ⊆ Ker(Lλ(p̂)|Pj).

It follows that there exist constants αk such that

Lλ(p̂)|Pj =
∑

k

αkLλ(pk)|Pj = Lλ(
∑

k

αkpk)|Pj .

Since the polynomial p =
∑

k αkpk is in I, the claim follows immediately.
Note that the above claim means that the envelope of I at λ, Ie

λ, equals the
closure of I in the Uλ–adic topology. The preceding statements immediately
imply that

Ie
λ =

⋂

j∈Pλ

Ij

and hence Theorem 2.1.1 follows.

Applying Theorem 2.1.1 gives the following.

Corollary 2.1.2 Let Ω be a subset of Cn. If each algebraic component of the
ideal I meets Ω nontrivially, then

I =
⋂

λ∈Ω

Ie
λ.

In particular, if P is a primary ideal and λ ∈ Z(P ), then P = P e
λ .

The next corollary generalizes Theorem 2.7 in [DPSY], and it will be used
in the study of algebraic reduction of analytic Hilbert modules.

Corollary 2.1.3 Let Ω be a subset of Cn, and I, J be two ideals of C. If each
algebraic component of I meets Ω nontrivially, and for each λ ∈ Ω, Iλ ⊆ Jλ,
then J ⊆ I.
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Proof. Write J = J1 ∩ J2 such that each algebraic component of J1 meets Ω
nontrivially, and each of J2 does not. From J1 J2 ⊆ J ⊆ J1, one obtains that
Jλ = J1λ for every λ ∈ Ω. By Corollary 2.1.2, it follows that

I =
⋂

λ∈Ω

Ie
λ ⊇

⋂

λ∈Ω

Je
λ =

⋂

λ∈Ω

Je
1λ = J1 ⊇ J,

which completes the proof of Corollary 2.1.3.

Remark 2.1.4 Corollary 2.1.2 shows that every primary ideal is completely
determined by its characteristic space at any zero point. This is a very useful
localization property which says that if P1, P2 are primary ideals such that
Z(P1) ∩ Z(P2) 6= ∅, then P1 6= P2 if and only if for each λ ∈ Z(P1) ∩ Z(P2),
P1λ 6= P2λ, if and only if for some λ ∈ Z(P1) ∩ Z(P2) P1λ 6= P2λ. In an
attempt to generalize this result to an ideal of polynomial ring, we introduce
terminology about the characteristic set of the ideal. For a finite set Ω of Cn

such that each algebraic component of the ideal I meets Ω nontrivially, we
use |Ω| to denote the cardinality of Ω. The minimum cardinality of such a
set is called the characteristic cardinality of I and is denoted by C(I). For
such a set Ω with |Ω| = C(I), we call Ω a characteristic set of I. It is easy
to see that the characteristic cardinality C(I) of I is less than the cardinality
of the algebraic components of I unless the algebraic components of I do not
mutually intersect. Moreover, for two ideals I1 and I2, we have that

C(I1 ∩ I2) 5 C(I1) + C(I2).

For the ideal I, Corollary 2.1.2 implies that I is completely determined by a
characteristic set.

From Remark 2.1.4, one sees that a prime ideal P is completely deter-
mined by characteristic space at any zero point. Then we want to know how
characteristic space of P at any zero point behaves.

Theorem 2.1.5 Let P be a prime ideal. Then the following statements are
equivalent:

(1) for λ ∈ Z(P ), the ideal P has the same characteristic space at any zero
point in some neighborhood of λ;

(2) the ideal P is generated by polynomials with degree 1, i.e., by linear
polynomials;

(3) the ideal P has the same characteristic space at any point in Z(P ).

Before proving Theorem 2.1.5, let us translate the theorem into geometric
language. Let V be an algebraic variety and λ ∈ V . The characteristic space
of V at λ is defined as that of I(V ) at λ, here I(V ) = {p ∈ C : p|V = 0}.
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Hence, the theorem says that for an irreducible algebraic variety V , V has the
same characteristic space at any point if and only if V is a linear variety.
Proof. For simplicity, all proofs are sketched for the prime ideal of polyno-
mials in two variables, while the conclusions hold in several variables.
(1)⇒(2). Without loss of generality we may assume that λ = 0 and O is a
neighborhood of 0 such that for any µ ∈ O ∩ Z(P ), Pµ = P0. By Corollary
2.1.2, we have that

P = P e
0 = P e

µ.

From the definition of the envelope and the equality P = P e
0 = P e

µ, one
immediately obtains that

P = {p(z − µ1, w − µ2) : p ∈ P} for µ = (µ1, µ2) ∈ O ∩ Z(P ).

For any q ∈ P , since there exists a polynomial p ∈ P such that q(z, w) =
p(z − µ1, w− µ2), it follows that for each natural number n, nµ = (nµ1, nµ2)
is in Z(P ). Let F ∈ P , and let F = F0 + F1 + · · ·+ Fd be the decomposition
of F into homogeneous polynomials Fk of degree k. Note that

F (nµ) =
d∑

i=0

Fi(nµ) =
d∑

i=0

niFi(µ) = 0, n = 1, 2, · · · .

Thus, for any µ ∈ O ∩ Z(P ),

Fi(µ) = 0, i = 0, 1, · · · , d.

Since P is prime, applying [Ken, Theorem 2.11] gives that Fi is in P for
i = 0, 1, · · · , d. The above discussion thus shows that the ideal P is generated
by homogeneous polynomials. Since any homogeneous polynomial p in z and
w has the decomposition

p(z, w) =
∏

k

(αkz + βkw),

and P is prime, we conclude that the ideal P is generated by polynomials
with degree 1, i.e., by linear polynomials.
(2)⇒(3). We may assume that P is generated by α1z+β1w+γ1, α2z+β2w+
γ2. One immediately finds that for any µ ∈ Z(P ), Pµ = I0, where I is the
ideal generated by α1z + β1w, α2z + β2w.
(3)⇒(1). Trivially.

We now return to the comparison between ideals of polynomials by using
characteristic space theory. Actually, arising from the observation for poly-
nomials in one variable, for an ideal I of polynomial ring in several variables
we define the multiplicity of I at λ ∈ Cn by the dimension of characteristic
space, dim Iλ. Of course, we allow the case that the multiplicity is infinite.
Let I1, I2 be ideals of polynomial ring, and λ ∈ Cn. We say that I1 and I2
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have the same multiplicity at λ if I1λ = I2λ, and use the symbol Z(I2)\Z(I1)
to denote the set {λ ∈ Z(I2) : I2λ 6= I1λ}. If I1 ⊇ I2 and λ ∈ Z(I2)\Z(I1),
the multiplicity of I2 relative to I1 at λ is defined by dim I2λ/I1λ. In this way,
the cardinality, card (Z(I2)\Z(I1)) of Z(I2)\Z(I1), is defined by the equality

card (Z(I2)\Z(I1)) =
∑

λ∈Z(I2)\Z(I1)

dim I2λ/I1λ.

The following theorem was proved originally in [Guo4]. Here, its proof is
based on characteristic space theory.

Theorem 2.1.6 Let I1, I2 be ideals in C, and I1 ⊇ I2. If the set Z(I2)\Z(I1)
is bounded, then dim I1/I2 < ∞, that is, I2, is finite codimensional in I1.

Proof. First note that the Lasker-Noether decomposition theorem implies
that any ideal J can be uniquely decomposed into J1 ∩ J2 such that Z(J1) is
bounded, and each algebraic component of J2 is unbounded. Let

Ij = I ′j ∩ I ′′j , j = 1, 2

be the decompositions of Ij as mentioned above. Set

Σ = Z(I ′1) ∪ Z(I ′2) ∪ (Z(I2)\Z(I1)).

Since I ′j meets Cn\Σ trivially, and

I ′jI
′′
j ⊂ Ij ⊂ I ′′j for j = 1, 2,

one obtains that
Ijλ = I ′′jλ for each λ ∈ Cn\Σ.

By the assumption and Corollary 2.1.2, we have

I ′′1 =
⋂

λ∈Cn\Σ
I ′′e1λ =

⋂

λ∈Cn\Σ
Ie
1λ =

⋂

λ∈Cn\Σ
Ie
2λ =

⋂

λ∈Cn\Σ
I ′′e2λ = I ′′2 .

Let L = I ′′1 = I ′′2 . Therefore

I1 = I ′1 ∩ L, I2 = I ′2 ∩ L.

Since an ideal is of finite codimension in C if and only if its zero variety is
bounded (see [AC] or [ZS]), I ′1, I ′2 are finite codimensional. Define a linear
map σ by

σ : I1/I2 → (I ′1 + I ′2)/I ′2; σ(p + I2) = p + I ′2, ∀p ∈ I1.

By the above equalities, it is easy to check that σ is injective. Because I ′2 is
of finite codimension in C, hence I ′2 is of finite codimension in I ′1 + I ′2. This
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implies that I2 is of finite codimension in I1, that is, dim I1/I2 < ∞. The
proof is complete.

Now suppose that I1 ⊇ I2. Let {Mz1 ,Mz2 , · · · ,Mzn} be the n-tuple of
operators that are defined on the quotient module I1/I2 over the ring C by

Mzi f̃ = ˜(zif), i = 1, · · · , n.

We use σp(Mz1 , Mz2 , · · · ,Mzn) to denote the joint eigenvalues for the tuple
{Mz1 , Mz2 , · · · ,Mzn}. This means that

λ = (λ1, λ2, · · · , λn) ∈ σp(Mz1 ,Mz2 , · · · , Mzn)

if and only if there exists a q ∈ I1 but q /∈ I2 such that

(zi − λi)q ∈ I2, i = 1, 2, · · · , n.

We will now give the following theorem due to Guo [Guo4].

Theorem 2.1.7 Let I1, I2 be ideals in C, I1 ⊇ I2 and dim I1/I2 = k < ∞.
Then we have

(1) Z(I2)\Z(I1) = σp(Mz1 ,Mz2 , · · · ,Mzn);

(2) I2 = {q ∈ I1 : p(D)q|λ = 0, p ∈ I2λ, λ ∈ Z(I2)\Z(I1)};
(3) dim I1/I2 =

∑
λ∈Z(I2)\Z(I1)

dim I2λ/I1λ = card(Z(I2)\Z(I1)).

It is worth noting that (3) of Theorem 2.1.7 says the codimension dim I1/I2

of I2 in I1 is equal to the cardinality of zeros of I2 relative to I1. In this way,
the equality (3) is an interesting codimension formula whose left side is an
algebraic invariant, but right side is geometric invariant.
Proof. (1) Write

I1 = I2+̇R

where R is a linear space of polynomials with dim R = dim I1/I2. We may
consider the n-tuple {Mz1 , Mz2 , · · · ,Mzn} being defined on R by

Mziq = decomposition of ziq

on R for any q ∈ R. By [Cur1], they can be simultaneously triangularized as

Mzi =




λ
(1)
i ?

. . .
λ

(k)
i


 .

Here i = 1, 2, · · · , n and k = dim I1/I2, so that σp(Mz1 ,Mz2 , · · · ,Mzn
) is

equal to {λ(1), · · · , λ(k)}. Then we have

Uλ(k) · · · Uλ(2)Uλ(1) I1 ⊆ I2 ⊆ I1
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This implies
Z(I2)\Z(I1) ⊆ σp(Mz1 ,Mz2 , · · · ,Mzn).

Let λ ∈ σp(Mz1 ,Mz2 , · · · , Mzn), that is, λ is a joint eigenvalue of the operator
tuple {Mz1 ,Mz2 , · · · , Mzn}. This means that there is a polynomial q in R such
that q Uλ ⊆ I2. Setting I†2 to be the ideal generated by I2 and q, then for any
λ′ 6= λ, it holds that

(I†2)λ′ = I2λ′ .

Therefore, by Corollary 2.1.2, we have that

(I†2)λ $ I2λ.

Since (I†2)λ ⊇ I1λ, this yields that

I1λ $ I2λ,

that is, λ is in Z(I2)\Z(I1). The above discussion gives that

Z(I2)\Z(I1) = σp(Mz1 ,Mz2 , · · · ,Mzn).

(2) Set

I\
2 = {q ∈ I1 : p(D)q|λ = 0, p ∈ I2λ, λ ∈ Z(I2)\Z(I1)}.

Then I\
2 is an ideal which contains I2. It follows that

(I\
2)λ ⊆ I2λ, for all λ ∈ Cn.

By the representation of I\, we have that

(I\
2)λ ⊇ I2λ, for all λ ∈ Cn.

According to Corollary 2.1.2, we obtain that I\
2 = I2. The proof of (2) is

complete.

(3) The proof is by induction on numbers of points in Z(I2)\Z(I1). If
Z(I2)\Z(I1) contains only a point λ, then by (2), I2 can be written as

I2 = {q ∈ I1 : p(D)q|λ = 0, p ∈ I2λ}.

We define the pairing

[−,−] : I2λ/I1λ × I1/I2 → C

by [p̃, q̃] = p(D)q|λ. Clearly, this is well defined. From this pairing and the
representation of I2, it is not difficult to see that

dim I1/I2 = dim I2λ/I1λ = card (Z(I2)\Z(I1)).
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Now let l > 1, and assume that (3) has been proved for Z(I2)\Z(I1) con-
taining different points less than l. Let Z(I2)\Z(I1) = {λ1, · · · , λl}, here
λi 6= λj for i 6= j. Writing

I?
2 = {q ∈ I1 : p(D)q|λ1 = 0, p ∈ I2λ1},

then I?
2 is an ideal, and (I?

2 )λ1 = I2λ1 . Just as the above proof, we have that

dim I1/I?
2 = dim I2λ1/I1λ1

Set
I2λ1 = I1λ1+̇R, where dim R = dim I2λ1/I1λ1 .

Let R̂ denote linear space of polynomials generated by R that is invariant
under the action of { ∂

∂z1
, · · · , ∂

∂zn
}. Put

QR = {p ∈ C : q(D)p|λ1 = 0, q ∈ R̂}.

Then it is easily verified that QR is a finite codimensional ideal of C with only
zero point λ1 because R̂ is finite dimensional. Thus

QRI1 ⊆ I?
2 ⊆ I1.

From the above inclusions, we see that

I1λ = (I?
2 )λ if λ 6= λ1,

and hence
Z(I2)\Z(I?

2 ) = {λ2, · · · , λl}.
By the induction hypothesis, we have

dim I?
2/I2 =

l∑

j=2

dim I2λj /(I?
2 )λj =

l∑

j=2

dim I2λj /I1λj .

This gives that

dim I1/I2 = dim I1/I?
2 + dim I?

2/I2

=
l∑

j=1

dim I2λj /I1λj

= card(Z(I2)\Z(I1)).

The proof is thus completed.

Combining Theorem 2.1.6 and Theorem 2.1.7 gives the following corollary.

Corollary 2.1.8 Let I1, I2 be ideals in C, and I1 ⊇ I2. Then the following
are equivalent:
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(1) I2 is finite codimensional in I1,

(2) Z(I2)\Z(I1) is a bounded subset of Cn,

(3) Z(I2)\Z(I1) is a finite set,

and in the above case, we have

dim I1/I2 = card (Z(I2)\Z(I1)).

In particular, we have the following.

Corollary 2.1.9 Let I be an ideal in C. Then the following are equivalent:

(1) I is finite codimensional,

(2) Z(I) is a bounded subset of Cn,

(3) Z(I) is a finite set,

and in the above case, we have

codim I = dim C/I = card (Z(I)).

As an application of Corollary 2.1.9, it will be shown that for a finite codi-
mensional ideal I of the polynomial ring C on Cn, the cardinality of zeros of
Ik is of polynomial growth as k is large enough. We assume that I =

⋂m
j=1 Ij

is an irredundant primary decomposition of I, where Ij is primary for a maxi-
mal ideal of evaluation at some point λj . Since Ii + Ij = C for i 6= j, it follows
that

I =
m∏

j=1

Ij .

This gives that for any natural number k,

Ik =
m∏

j=1

Ik
j =

m⋂

j=1

Ik
j .

Thus,

codim Ik =
m∑

j=1

codim Ik
j .

It is well known that for large integer k, codim(Ik
j ) is a polynomial of k with

the degree n which is called the Hilbert-Samuel polynomial of Ij (see [AM, ZS]
or [DY2]). Therefore, for each finite codimensional ideal I, the codimension
of Ik in C, codim(Ik), is a polynomial of k with the degree n, and denoted by
PI(k). The leading coefficient of PI(k) thus is directly related to the number
of zeros of I. By Corollary 2.1.9, it holds that

card
(
Z(I)

)
= codim I.

This gives the following.
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Proposition 2.1.10 Let I be a finite codimensional ideal of C. Then for
large integer k, the cardinality of zeros of Ik, card

(
Z(Ik)

)
, is a polynomial of

k with the degree n; more precisely,

card
(
Z(Ik)

)
= PI(k).

2.2 Algebraic reduction for analytic Hilbert modules

Let T be the unit circle in the complex plane, and let L2(T) be the Hilbert
space of square integrable functions with respect to arc-length measure. Recall
that the Hardy space H2(D) over the open unit disk D is the closed subspace
of L2(T) spanned by the nonnegative powers of the coordinate function z.
If M is a (closed) subspace of H2(D) that is invariant for the multiplication
operator Mz, then Beurling’s theorem [Beu] says that there exists an inner
function η such that M = η H2(D). In terms of the language of Douglas’s
Hilbert module [DP], each submodule M of Hardy module H2(D) over the
disk algebra A(D) has the form M = η H2(D). For the Hardy module H2(Dn)
in the multi-variable version, a natural problem is to consider the structure of
submodules of H2(Dn). However, one quickly sees that a Beurling-like char-
acterization is not possible (see [AC, Ru1]). Now we again return to the case
of the Hardy module H2(D) and consider finite codimensional submodules. A
routine verifying shows that M is a finite codimensional submodule if and only
if there is a polynomial p whose zeros lie in D such that M = pH2(D), and
the codimension of M in H2(D) equals the degree of p. At this point, Ahern
and Clark [AC] first obtained the following characterization of submodules of
H2(Dn) having finite codimension.

Theorem 2.2.1 (Ahern-Clark) Suppose M is a submodule of H2(Dn) of
codimension k < ∞. Then C ∩M is an ideal in the ring C such that

(1) C ∩M is dense in M ;

(2) dim C/C ∩M = k;

(3) Z(C ∩M) is finite and lies in Dn.

Conversely, if I is an ideal of the ring C with Z(I) being finite, and Z(I) ⊂ Dn,
then [I], the closure of I in H2(Dn), is a submodule of H2(Dn) with the same
codimension as I in C, and [I] ∩ C = I.

The above theorem shows that the description of finite codimensional sub-
modules is, at least conceptually, an algebraic matter. Along this line, many
authors, including Douglas, Paulsen, Sah and Yan [DP, DPSY], Axler and
Bourdon [AB], Bercovici, Foias and Pearcy [BFP], Agrawal and Salinas [AS],
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Guo [Guo1, Guo2, Guo4], Putinar and Salinas [PS], Putinar [Pu1, Pu2] and
Chen and Douglas [CD1, CD2], have developed a series of techniques to inves-
tigate algebraic reduction for Hilbert modules consisting of analytic functions
on domains.

To provide an appropriate framework for study of algebraic reduction of
analytic Hilbert modules on domains, we introduce some terminologies and
notations that will be used throughout this chapter and the next chapter.

Let Ω be a bounded nonempty open subset of Cn, Hol(Ω) denote the ring of
analytic functions on Ω, and X be Banach space contained in Hol(Ω). We call
X a reproducing Ω-space if X contains 1 and if for each λ ∈ Ω the evaluation
functional, Eλ(f) = f(λ), is a continuous linear functional on X. We say X
is a reproducing C-module on Ω if X is a reproducing Ω-space, and for each
p ∈ C and each x ∈ X, p x is in X. Note that, by a simple application of
the closed graph theorem, the operator Tp defined to be multiplication by p
is bounded on X. Note also that C ⊂ X follows from the fact that 1 is in
X. For λ ∈ Cn, one says that λ is a virtual point of X provided that the
homomorphism p 7→ p(λ) defined on C extends to a bounded linear functional
on X. Since X is a reproducing Ω-space, every point in Ω is a virtual point.
We use vp(X) to denote the collection of virtual points, then vp(X) ⊇ Ω.
Finally we say that X is an analytic Hilbert module on Ω if the following
conditions are satisfied:

(1) X is a reproducing C-module on Ω;

(2) C is dense in X;

(3) vp(X) = Ω.

Remark 2.2.2 Note that the above conditions (2) and (3) are equivalent to
the following statement: for each λ /∈ Ω, Uλ, the maximal ideal of C that
vanishes at λ, is dense in X. In fact, if for each λ /∈ Ω, Uλ is dense in X.
Then condition (2) is immediate. If there is a λ0 /∈ Ω, while λ0 ∈ vp(X), then
there exists a constant c0 such that for any polynomial p, |p(λ0)| ≤ c0 ‖p‖. By
the assumptions, the maximal ideal Uλ0 is dense in X. It follows that there
exists a sequence {pn}(⊂ Uλ0) converges to 1 in the norm of X. Note the
inequality

1 = |pn(λ0)− 1| ≤ c0 ‖pn − 1‖.
This contradiction says that vp(X) = Ω. In the opposite direction, suppose
that there is a λ0 /∈ Ω such that Uλ0 is not dense in X. Then there exists
a bounded linear functional x∗ on X that annihilates Uλ0 . Therefore for any
polynomial p,

x∗(p) = x∗(p− p(λ0)) + p(λ0)x∗(1) = p(λ0)x∗(1).

By the condition (2), x∗(1) 6= 0. This ensures that there exists a constant
c0 such that |p(λ0)| ≤ c0 ‖p‖ for each polynomial p. This is contradictory to
condition (3). We thus achieve the opposite direction.
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For most “natural” reproducing Ω-spaces, they are analytic Hilbert modules
on Ω. The basic examples are the Hardy modules, the Bergman modules and
the Ditchless modules on both the ball and the polydisk. Especially, we will
also study the Arveson module on the unit ball in Chapter 6. In the following
we will use submodule to mean a closed subspace of X that is invariant under
the multiplications of polynomials. For an ideal I of polynomials, we let [I]
denote the closure of I in X; then [I] is a submodule of X. Let M be a
submodule of analytic Hilbert module X on Ω. The zero variety of M is
defined by

Z(M) = {z ∈ Ω : f(z) = 0, ∀f ∈ M}.
We are now in a position to give a complete generalization of Ahern-Clark’s
result. The next theorem is due to Douglas, Paulsen, Sah and Yan [DPSY].
Actually they obtained a stronger result in [DPSY, Corollary 2.8] than stated
here.

Theorem 2.2.3 (DPSY) Let X be an analytic Hilbert module on Ω. Then
the maps I 7→ [I] and M 7→ M ∩ C define bijective correspondence between
the ideal I of C of finite codimension with Z(I) ⊂ Ω and the submodule M
of X of finite codimension. These maps are mutually inverse and preserve
codimension.

Given submodules M1, M2 of X, and M1 ⊇ M2, we can define a canonical
module homomorphism over the ring C,

τ : M1 ∩ C/M2 ∩ C → M1/M2,

by τ(p̃) = p̃. If M1 ∩ C is dense in M1, and M2 is finite codimensional in M1,
then it is not difficult to verify the following proposition.

Proposition 2.2.4 Under the above assumption, we have

(1) M2 ∩ C is dense in M2,

(2) the canonical homomorphism τ : M1 ∩ C/M2 ∩ C → M1/M2 is an
isomorphism.

To obtain further generalization for Theorem 2.2.3, we will be concerned
with the following problems:

1. How do we describe the structure of Z(M2) relative to Z(M1)?

2. How is the submodule M2 represented by M1 and the zeros of M2 via
considering multiplicity?

3. How is codimension dim M1/M2 relative to the zeros and their multi-
plicities of M1, M2 ?

4. Conversely, if I1, I2 are ideals of C, I1 ⊇ I2 and the set Z(I2)\Z(I1) is
bounded. We want to know how [I2] is related to [I1].
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Based on the characteristic space theory of analytic Hilbert modules, we
will completely answer the problems mentioned above. First, as in the case of
polynomials, we introduce the concepts of characteristic space and envelope
of a submodule.

Let M be a submodule of X on Ω. For λ ∈ Ω, set

Mλ = {q ∈ C : q(D)f |λ = 0, ∀f ∈ M}.
Then as in the case of polynomials, Mλ is invariant under the action by the
basic partial differential operators { ∂

∂z1
, ∂

∂z2
· · · , ∂

∂zn
}, and Mλ is called to be

the characteristic space of M at λ. The envelope of M at λ, Me
λ, is defined

by
Me

λ = {f ∈ X : q(D)f |λ = 0, ∀q ∈ Mλ}.
The same reasoning as in the case of polynomials shows that Me

λ is a submod-
ule of X, and Me

λ ⊇ M . We now define the multiplicity of M at λ to be the
dimension of characteristic space, dim Mλ. Let M1, M2 be submodules, and
λ ∈ Ω. We say that M1 and M2 have the same multiplicity at λ if M1λ = M2λ.
The symbol Z(M2)\Z(M1) denotes the set {λ ∈ Z(M2) : M2λ 6= M1λ}. If
M1 ⊇ M2 and λ ∈ Z(M2)\Z(M1), the multiplicity of M2 relative to M1 at λ is
defined by dim M2λ/M1λ. In this way, the cardinality, card (Z(M2)\Z(M1)),
of Z(M2)\Z(M1) is defined by the equality

card (Z(M2)\Z(M1)) =
∑

λ∈Z(M2)\Z(M1)

dim M2λ/M1λ.

The next theorem strengthens the conclusions of Theorem 3.1 in [Guo4].
In [Guo4], we deal only with the case of the Hardy module on the polydisk.

Theorem 2.2.5 Let X be an analytic Hilbert module on Ω. Suppose M2 is
finite codimensional in M1, and M1 ∩ C is dense in M1. Then we have

(1) M2 ∩ C is dense in M2,

(2) the canonical homomorphism τ : M1 ∩ C/M2 ∩ C → M1/M2 is an iso-
morphism,

(3) Z(M2 ∩C)\Z(M1 ∩C) = Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , · · · , Mzn) ⊂ Ω,

(4) M2 = {f ∈ M1 : p(D)f |λ = 0, p ∈ M2λ, λ ∈ Z(M2)\Z(M1)},
(5) dim M1/M2 = dim M1 ∩ C/M2 ∩ C = card(Z(M2 ∩ C)\Z(M1 ∩ C)) =

card(Z(M2)\Z(M1)).

Conversely, if I1, I2 are ideals in C, I1 ⊇ I2 and Z(I2)\Z(I1) ⊂ Ω. Then

dim [I1]/[I2] = dim I1/I2,

that is, the canonical homomorphism τ : I1/I2 → [I1]/[I2] is an isomorphism.
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Notice that (5) of the theorem says that the codimension of M2 in M1 equals
the cardinality of zeros of M2 relative to M1 by counting multiplicities. This
is an interesting codimension formula whose left side is an algebraic invariant,
while the right side is a geometric invariant.
Proof. We first claim that M1 can be expressed as

M1 = M2+̇R

where R is a linear space of polynomials with dim R = dim M1/M2. In fact,
since M1 ∩ C is dense in M1, there exists a polynomial q in M1 ∩ C, q /∈ M2.
Let Σ be the collection

{L : L is linear space of polynomials, L ⊆ M1 ∩ C, and L ∩M2 = {0}}.
Then Σ is not empty. If

· · · ⊆ Φα ⊆ Φβ ⊆ Φγ ⊆ · · ·
is an ascending chain in Σ, then

⋃
α Φα is a linear space of polynomials, and⋃

α Φα is in Σ. It follows that there exists a maximal element R in Σ such
that M2 ∩ R = {0}. Since M2+̇R ⊆ M1, and M2 is finite codimensional in
M1, R is finite dimensional, and hence M2+̇R is closed. If M2+̇R 6= M1,
then there is a polynomial p ∈ M1, but p /∈ M2+̇R. This yields that the
linear space {R, p} spanned by R and p satisfies {R, p} ∩M2 = {0}. This
is impossible, and it follows that M1 = M2+̇R with dim R = dim M1/M2.
From this assertion we immediately obtain

M1 ∩ C = M2 ∩ C+̇R.

By the above equality, M2∩C is dense in M2, and the canonical homomorphism
τ : M1 ∩ C/M2 ∩ C → M1/M2 is an isomorphism. This completes the proofs
of (1) and (2).

To prove (3), pick any λ ∈ Z(M1 ∩ C)\Z(M2 ∩ C). By Theorem 2.1.7 (1),
we see that λ = (λ1, λ2, · · · , λn) is a joint eigenvalue of {Mz1 ,Mz2 , · · · ,Mzn

}
on M1 ∩ C/M2 ∩ C, that is, there is q ∈ M1 ∩ C, but q /∈ M2 ∩ C such that
(zi − λi)q ∈ M2 ∩ C for i = 1, 2, · · · , n. If λ /∈ Ω, then by Remark 2.2.2,
Uλ is dense in X. This implies that there exists a sequence of polynomials,
{∑n

i=1(zi − λi)p
(i)
m }m, such that {∑n

i=1(zi − λi)p
(i)
m }m converges to 1 in the

norm of X as m → ∞, and therefore {∑n
i=1(zi − λi)q p

(i)
m }m converges to q.

Therefore,
q ∈ M2 ∩ C = M2,

and hence q ∈ M2 ∩ C. This contradiction shows that λ ∈ Ω. Thus,

Z(M2 ∩ C)\Z(M1 ∩ C) ⊂ Ω.

By (1),(2) and Theorem 2.1.7 (1), we immediately obtain that

Z(M2 ∩ C)\Z(M1 ∩ C) = Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , · · · , Mzn) ⊂ Ω.
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We notice that (4) is from (1) and Theorem 2.1.7 (2), and (5) is from (2),
(3) and Theorem 2.1.7 (3).

Conversely, assume that I1, I2 are ideals in C, I1 ⊇ I2 and Z(I2)\Z(I1) ⊂ Ω.
Then by Corollary 2.1.8, I2 is finite codimensional in I1, and by Theorem 2.1.7
(2),

I2 = {q ∈ I1 : p(D)q|λ = 0, p ∈ I2λ, λ ∈ Z(I2)\Z(I1) ⊂ Ω}.
Now write

I1 = I2+̇R

where R is a linear space of polynomials with dim R = dim I1/I2. Since each
function f in [I2] satisfies that

p(D)f |λ = 0, p ∈ I2λ, λ ∈ Z(I2)\Z(I1),

this ensures that
[I2] ∩R = {0}.

By the fact that [I2]+̇R contains I1, and [I2]+̇R is closed, we obtain that

[I2]+̇R = [I1].

Therefore, it holds that

I1/I2
∼= [I1]/[I2] ∼= R.

The proof of Theorem 2.2.5 is complete.

Applying Theorem 2.2.5 and Corollary 2.1.9, we have

Corollary 2.2.6 Let M be a finite codimensional submodule of X. Then we
have the following.

(1) Z(M) = σp(Mz1 ,Mz2 , · · · , Mzn) ⊂ Ω,

(2) M =
⋂

λ∈Z(M)

Me
λ,

(3) codim M = card
(
Z(M)

)
=̂

∑
λ∈Z(M)

dim Mλ.

Remark 2.2.7 Notice that (3) of Corollary 2.2.6 shows that the codimension
codim M of M in X equals the cardinality of zeros of M by counting multi-
plicities. Corollary 2.2.6 can be considered as a generalization of the case of
the plane. In fact, let L2

a(D) be the Bergman module. Then M is a finite codi-
mensional submodule of L2

a(D) if and only if there exists a polynomial p with
Z(p) ⊂ D such that M = pL2

a(D). It is easy to check that the codimension
of M equals the number of zeros of p (counting multiplicities). We refer the
reader to the case of domains on the plane considered by Axler and Bourdon
[AB].
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Recall that the most simple submodules of H2(D) are pH2(D), where p
are polynomials with Z(p) ⊂ D. Since each ideal I of polynomials in one
variable is principal, this implies that [I] = pH2(D) for some polynomial
p with Z(p) ⊂ D. The above view suggests that we consider submodules of
analytic Hilbert module generated by ideals of polynomials. Equivalently, can
we characterize submodule M which has the property that the ideal M ∩C is
dense in M [DPSY, Pau1]? Note that if M is as above and we let I = M ∩C,
then [I]∩ C = I. Thus the problem is to characterize those ideals I for which
[I] ∩ C = I. For the ideal I, we call I contracted if [I] ∩ C = I.

The next theorem is due to Douglas and Paulsen [DP]. We refer the reader
to [DPSY] for considering a general case.

Theorem 2.2.8 (Douglas-Paulsen) Let X be an analytic Hilbert module
on Ω. If every algebraic component of Z(I) has a nonempty intersection with
Ω, then I is contracted.

Proof. If J = [I] ∩ C, then J is an ideal in C which contains I. For each
λ ∈ Ω, since Iλ = [I]λ ⊂ Jλ, Corollary 2.1.3 implies that J ⊂ I, and hence
J = I. The proof is complete.

For various analytic Hilbert modules it would be interesting to classify
the contracted ideals. In particular, for H2(Dn), Douglas and Paulsen [DP,
DPSY, Pau1] conjectured that the contracted ideals are precisely the ideals
given by Theorem 2.2.8, that is, those ideals for which every algebraic compo-
nent of their zero varieties meets Dn nontrivially. We record this conjecture
here.

Douglas-Paulsen Conjecture: For the Hardy module H2(Dn), if an ideal
I of C is contracted, then each algebraic component of its zero variety Z(I)
intersects Dn.

Clearly, for the Hardy module H2(D), the problem is trivial. In the case
of n = 2, Gelca [Ge1] affirmatively answered this problem. However, the
problem remains unknown for n ≥ 3.

Now let I be an ideal of the ring C. Since C is a Noetherian ring [AM, ZS],
the ideal I is generated by finitely many polynomials. This implies that I has
a greatest common divisor p. Thus, I can be uniquely written as

I = pL,

which is called the Beurling form of I.

Before going on let us present several preliminary lemmas. First we give a
lemma, due to Yang [Ya1].

Lemma 2.2.9 (Yang) Let I be an ideal of polynomials in two variables, and
let I = pL be the Beurling form of I. Then the ideal L is of finite codimension
in C.
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Proof. First of all, the ring C in two variables is a unique factorization domain
of Krull dimension 2. We claim: if p1, p2, · · · , pk are polynomials in two vari-
ables such that the greatest common divisor GCD{p1, p2, · · · , pk} = 1, then
the ideal (p1, p2, · · · , pk) generated by p1, p2, · · · , pk is of finite codimension.
Let

(p1, p2, · · · , pk) = ∩n
s=1Is

be an irredundant primary decomposition with the associated prime ideals
J1, J2, · · · , Jn. Note that each Js is prime and it is either maximal or mini-
mal since the Krull dimension of the ring of polynomials in two variables is 2.
In a unique factorization domain, every minimal prime ideal is principal [ZS,
Vol(I) p. 238]. Since GCD{p1, p2, · · · , pk} = 1, the associated prime ideals
J1, J2, · · · , Jn must all be maximal, and hence each Js must have the form
(z− zs, w−ws) with (zs, ws) ∈ C2, s = 1, 2, · · · , n mutually different. There-
fore we can choose an integer, say m, sufficiently large such that

Jm
s = (z − zs, w − ws)m ⊂ Is

for each s. Then

∩n
s=1J

m
s ⊂ ∩n

s=1Is = (p1, p2, · · · , pk).

Obviously, the ideal ∩n
s=1J

m
s is of finite codimension, and hence (p1, p2, · · · , pk)

is of finite codimension. The claim is proved. Now for the ideal L, since it
is generated by finitely many polynomials, say p1, p2, · · · , pk. Then clearly
GCD{p1, p2, · · · , pk} = 1. The preceding claim implies that L is finite codi-
mensional ideal. This completes the proof.

The next three lemmas are from [Ge1].

Lemma 2.2.10 If |β| ≤ |α| 6= 0 and 0 < r < 1, then

|β − α|/|rβ − α| ≤ 1/r.

Proof. Lemma follows from |β − α| ≤ |β − α/r|. The last inequalities are
obvious since the triangles formed by the points β, α/r and α and the angles
at α are obtuse.

From Lemma 2.2.10, we immediately obtain

Lemma 2.2.11 Let p(z) = an(z−z1)(z−z2) · · · (z−zn). If 1/2 < r < 1 then
for any z with |z| ≤ min{|z1|, |z2|, · · · , |zn|}, |p(z)/p(rz)| ≤ 2n. Consequently,
for a polynomial p with the degree n, if p has no zero points in a disk V with
the center 0, then for any z ∈ V , and 1/2 < r < 1, |p(z)/p(rz)| ≤ 2n.

Let Ω be a bounded complete Reinhardt domain (i.e., a bounded domain
with the property that for λ = (λ1, λ2, · · · , λn) ∈ Ω, if |zi| ≤ 1, i = 1, 2 · · · , n,
then (z1λ1, z2λ2, · · · , znλn) ∈ Ω). For a polynomial p, we denote by d(p) the
sum of the degrees of p in each variable.
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Lemma 2.2.12 Let p be a polynomial having no zeros in Ω. Then for every
(z1, z2, · · · , zn) ∈ Ω and 1/2 < r < 1,

|p(z1, z2, · · · , zn)/p(rz1, rz2, · · · , rzn)| ≤ 2d(p).

Proof. The proof will be done by induction on the number of variables. By
Lemma 2.2.11, Lemma 2.2.12 is true for n = 1.

Fix (z1, z2, · · · , zn) ∈ Ω. Let U = {z : (z, z2, · · · , zn) ∈ Ω}. Then U is a
disk with the center 0 and p(z, z2, · · · , zn) has no zero in U . Thus

|p(z1, z2, · · · , zn)/p(rz1, z2, · · · , zn)| ≤ 2d1 ,

where we denote by d1 the degree of p in the variable z1. Applying the induc-
tion hypothesis to p(z1, · · · ) we obtain that

|p(rz1, z2, · · · , zn)/p(rz1, rz2, · · · , rzn)| ≤ 2d2+···+dn ,

that is,
|p(z1, z2, · · · , zn)/p(rz1, rz2, · · · , rzn)| ≤ 2d(p).

The following result was proved by Gelca [Ge1] for n = 2. Here the proof
comes from [Guo2].

Proposition 2.2.13 Let p be a polynomial having no zero in Dn. Then p C
is dense in H2(Dn).

Proof. Set

fr(z1, z2, · · · , zn) = p(z1, z2, · · · , zn)/p(rz1, rz2, · · · , rzn).

Then for 1/2 < r < 1, fr ∈ pH2(Dn). Let {rn}n be a sequence of positive
real numbers such that rn → 1 as n →∞. Now by Lemma 2.2.12, the family
frn

is uniformly bounded, and frn
→ 1 almost everywhere as n →∞. By the

Dominated Convergence theorem, frn converges to 1 in the norm of H2(Dn).
The conclusion follows by using the fact that the ring of polynomials is dense
in H2(Dn).

Remark 2.2.14 Using the proof of Proposition 2.2.13, we see that if Z(p) ∩
Bn = ∅, then p C is dense in the Hardy space H2(Bn) on the unit ball Bn.
Furthermore, if Ω is a bounded complete Reinhardt domain and Z(p)∩Ω = ∅,
then p C is dense in the Bergman space L2

a(Ω) on the domain Ω (see [Ge2]).

The next theorem comes from [Ge1].

Theorem 2.2.15 (Gelca) Let I be an ideal of polynomials in two variables.
Then I is contracted in H2(D2) if and only if every algebraic component of
Z(I) has a nonempty intersection with D2.
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Proof. We shall merely indicate that if I is contracted in H2(D2), then
every algebraic component of Z(I) has a nonempty intersection with D2. Let
I = pL be the Beurling form of I. We decompose p as the product of the
powers of irreducible polynomials, say,

p = pk1
1 · · · pkl

l .

By Lemma 2.2.9, L is of finite codimension and, hence, L has finitely many
zeros, say, λ1, · · · , λs. Therefore the algebraic components of I are Z(pj) for
j = 1, · · · , l, and zero points λ1, · · · , λs of L. Now we apply Proposition 2.2.13
to obtain the desired conclusion. The proof is complete.

Theorem 2.2.15 relies heavily on the ideal structure of polynomials in two
variables. Hence it extends with essentially no change to the Hardy mod-
ule H2(B2) and Bergman modules on bounded complete Reinhardt domains
[Ge2]. However, for general analytic Bergman modules, little is known about
the classification of contracted ideals. Some related results have been ob-
tained by Putinar and Salinas [PS]. However, we notice that Theorem 3.1
and Corollary 3.3 in [PS] are not valid in general for strongly pseudoconvex
domains because such domains are not necessarily so-called α-domains. An
example is the unit ball B2. Let p(z, w) = z2 + w2 − 1; then Z(p) ∩ B2 = ∅,
but Z(p)∩ ∂B2(⊇ {(cos θ, sin θ)}) is a infinite set, and hence by the definition
of α-domains, B2 is not a α-domain.

Finally, we wish to record here the following result.

Proposition 2.2.16 Let I be an ideal of polynomials on C2. If Z(I)∩D2 = ∅,
then there exists a polynomial q ∈ I such that Z(q) ∩ D2 = ∅.
Proof. Let I = pL be the Beurling form of I. Obviously, Z(p) ∩ D2 = ∅. To
complete the proof, we will find a polynomial h in L such that Z(h)∩D2 = ∅.
By Lemma 2.2.9, L is of finite codimension and Z(L) ∩ D2 = ∅. Thus there
exist finitely many zeros λ1, λ2, · · · , λk of L for which they lie in C2 \ D2. It
follows that L is decomposed as

L = ∩k
i=1Lk

where Li are Uλi-primary for i = 1, 2, · · · , k. From [AM] or [ZS], we see that
there is a positive integer number m such that

Um
λi
⊂ Li, i = 1, 2, · · · , k.

Note that λi = (λ′i, λ
′′
i ) /∈ D2 for i = 1, · · · , k. This means that for each i,

|λ′i| ≥ 1 or |λ′′i | ≥ 1. Now for each i, we may suppose that |λ′i| ≥ 1. This yields
that

∏k
i=1(z−λ′i)

m has no zero in D2, and obviously
∏k

i=1(z−λ′i)
m ∈ L. Set

q = p
k∏

i=1

(z − λ′i)
m,
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which gives the desired conclusion.

However, for n > 2, we do not know if the same conclusion is true.

Conjecture 2.2.17 Let n > 2 and I be an ideal of polynomials on Cn. If
Z(I)∩Dn = ∅, then there exists a polynomial q in I such that Z(q)∩Dn = ∅.
Note that Conjecture 2.2.17 is equivalent to: for each prime ideal P , if Z(P )∩
Dn = ∅, does there exist a polynomial q in P such that Z(q) ∩ Dn = ∅? It is
also equivalent to: for each irreducible variety V , if V ∩ Dn = ∅, does there
exist an irreducible variety V ′ such that V ′ ) V and V ′ ∩Dn = ∅? Of course,
Conjecture 2.2.17 can be stated for general domains. Let I be an ideal of
polynomials on Cn. If Z(I)∩Ω = ∅, does there exist a polynomial q in I such
that Z(q) ∩ Ω = ∅?

Remark 2.2.18 If we assume Conjecture 2.2.17, then Douglas-Paulsen’s con-
jecture is immediate. That is, if I is contracted in H2(Dn) (i.e., [I]∩ C = I),
then each algebraic component of I meets Dn nontrivially. In fact, first let
I = ∩m

j=1Ij be an irredundant primary decomposition of I. We may suppose
that there are I1, I2 · · · , Ik such that Z(Ij) ∩ Dn = ∅ for j = 1, 2, · · · , k, and
Z(Ij) ∩ Dn 6= ∅ for j = k + 1, · · · ,m. By Conjecture 2.2.17, there exists a
polynomial q ∈ I1I2 · · · Ik such that Z(q)∩Dn = ∅. Therefore, by Proposition
2.2.13,

H2(Dn) = [qC] = [I1I2 · · · Ik].

Note that
I1I2 · · · Ik (∩m

j=k+1Ij) ⊂ I ⊂ ∩m
j=k+1Ij .

Thus,
[I] = [∩m

j=k+1Ij ].

By Theorem 2.2.8, we see that

[I] ∩ C = ∩m
j=k+1Ij .

This contradicts the contractness of I. From the above discussion, we see that
if one assumes Conjecture 2.2.17, then Douglas-Paulsen’s conjecture can be
answered affirmatively.

2.3 Submodules with finite rank

It is well known that “rank” is one of the important invariants of Hilbert
modules. Recall that a submodule M of the analytic Hilbert module X is
finitely generated if there exists a finite set of vectors x1, x2, · · · , xn in M
such that C x1 + C x2 + · · ·+ C xn is dense in M . The minimum cardinality of
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such a set is called the rank of M and denoted by rank(M). If rank(M) = 1,
we call M a principal submodule. By Beurling’s theorem, each submodule
of H2(D) is principal. Even more generally, for any analytic Hilbert module
X on a domain in the complex plane C, a submodule generated by some
polynomials is principal because every ideal of polynomials in one variable is
principal. However for the Hardy module H2(Dn) in several variables, there
exist submodules with any rank [Ru1, p. 72].

Let λ ∈ Cn. We denote by Oλ the ring of all germs of analytic functions
at λ. For detailed information about Oλ we refer the reader to [DY1, Kr].
We summarize some properties of Oλ. First Oλ is a unique factorization
domain (UFD), and the units of Oλ are those germs that are nonvanishing at
λ. Second, Oλ is a Noetherian local ring of Krull dimension n.

Let I be an ideal of Oλ. As in the case of analytic submodules, we define
the characteristic space of I by

Iλ = {q ∈ C : q(D)f |λ = 0, ∀f ∈ I}.

The envelope of I, Ie
λ, is defined by

Ie
λ = {f ∈ Oλ : q(D)f |λ = 0, ∀q ∈ Iλ}.

It is easy to check that Ie
λ is an ideal of Oλ, and Ie

λ ⊇ I. Furthermore, by the
reasoning as in the proof of Theorem 2.1.1, we have

Ie
λ =

⋂

j≥1

(I +Mj
λ),

where Mλ is the maximal ideal of Oλ, that is, Mλ = {f ∈ Oλ : f(λ) = 0}.
By using Krull’s theorem [ZS, Vol(I), p. 217, Theorem 12’] or Lemma 2.11 in
[DPSY], we have the following proposition [Guo2].

Proposition 2.3.1 Let I be an ideal of Oλ. Then

I = Ie
λ.

Hence I is completely determined by its characteristic space.

Let X be an analytic Hilbert module on Ω(⊂ Cn), and let λ ∈ Ω. For
f ∈ X we denote by fλ the element of Oλ defined by the restriction of f
to a neighborhood of λ. For a submodule M of X, we denote by M (λ) the
ideal of Oλ generated by {fλ : f ∈ M}. Let f1, f2, · · · , fm be in X. Write
[f1, f2, · · · , fm] for the submodule generated by f1, f2, · · · , fm.

Lemma 2.3.2 Let λ ∈ Ω. Then

[f1, f2, · · · , fm](λ) = f1λOλ + f2λOλ + · · ·+ fmλOλ.
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Proof. From the inclusion

f1λOλ + f2λOλ + · · ·+ fmλOλ ⊂ [f1, f2, · · · , fm](λ),

we see that

{[f1, f2, · · · , fm](λ)}λ ⊂ (f1λOλ + f2λOλ + · · ·+ fmλOλ)λ.

For f ∈ [f1, f2, · · · , fm], there exist polynomials p
(1)
n , p

(2)
n , · · · , p

(m)
n such that

f = lim
n→∞

(p(1)
n f1 + p(2)

n f2 + · · ·+ p(m)
n fm)

in the norm of X. It is easy to check that for every polynomial q and each
w ∈ Ω, the linear functional on X, f 7→ q(D)f |w, is continuous. Let q be in
(f1λOλ + f2λOλ + · · ·+ fmλOλ)λ. Since

q(D)(p(1)
n f1 + p(2)

n f2 + · · ·+ p(m)
n fm)|λ = 0,

this gives that
q(D)f |λ = 0.

It follows that

(f1λOλ + f2λOλ + · · ·+ fmλOλ)λ ⊂ [f1, f2, · · · , fm]λ.

It is easy to see that

[f1, f2, · · · , fm]λ = {[f1, f2, · · · , fm](λ)}λ,

and hence

{[f1, f2, · · · , fm](λ)}λ = (f1λOλ + f2λOλ + · · ·+ fmλOλ)λ.

Applying Proposition 2.3.1, we obtain that

[f1, f2, · · · , fm](λ) = f1λOλ + f2λOλ + · · ·+ fmλOλ.

The next result states an important property of submodules with finite
rank, due to Guo [Guo2].

Theorem 2.3.3 Let M be the submodule of X generated by f1, f2, · · · , fm.
Then for each f ∈ M , there are g1, g2, · · · , gm in Hol(Ω) such that

f = f1g1 + f2g2 + · · ·+ fmgm.

Proof. The proof of Theorem 2.3.3 is based on the sheaf theory (see [Kr,
Chapters 6, 7]). Let O denote the sheaf of germs of analytic functions on
Ω. The sheaf F = F(M) generated by M is defined as follows: for λ ∈ Ω,
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Fλ = M (λ). From Lemma 2.3.2, we see that F is the subsheaf of O generated
by f1, f2, · · · , fm. Consider the exact sequence of sheafs

0 −→ R i−→ Om α−→ F−→0

where α(g1λ, g2λ, · · · , gmλ) =
∑m

i=1 fiλgiλ, R is the kernel sheaf and i is the
inclusion. The Oka Coherence theorem [Kr, Theorem 7.1.8] implies that R
is coherent, so by Theorem B of Cartan [Kr, Theorem 7.1.7], H1(Ω,R) = 0.
Now the long exact cohomology sequence [Kr, Theorem 6.2.22] gives

H0(Ω,Om) α∗−→ H0(Ω,F) δ∗−→ H1(Ω,R) = 0.

Thus, α∗ is a surjective map. This shows that for every f ∈ M , there exist
g1, g2,· · · , gm in Hol(Ω) such that

f = f1g1 + f2g2 + · · ·+ fmgm.

The proof is complete.

In Douglas-Paulsen’s book [DP, p. 42, Problem 2.23], it is asked when
a principal submodule of H2(Dn) is the closure of an ideal of polynomials.
Combining Theorem 2.3.3 with the characteristic space theory of ideals of
polynomials, Guo [Guo2] characterized that a principal submodule is gener-
ated by polynomials.

Theorem 2.3.4 Let I = p L be the Beurling form of I. If [I] is principal,
then Z(L) ∩ Ω = ∅. Equivalently, if Z(L) ∩ Ω 6= ∅, then rank([I]) ≥ 2.

Proof. Let {p1, p2, · · · , pk} be a set of generators of L. Then the greatest
common divisor GCD{p1, p2, · · · , pk} = 1. Now suppose that there exists
λ ∈ Ω such that pi(λ) = 0 for i = 1, 2, · · · , k. Decompose pi = p′i p′′i such that
each prime factor of p′i vanishes at λ, and p′′i (λ) 6= 0 and p = q1 q2 such that
each prime factor of q1 vanishes at λ and q2(λ) 6= 0. Since [I] is principal, this
says that there exists some f in X such that

[f ] = [pp1, pp2, · · · , ppk].

By Theorem 2.3.3, there exist analytic functions on Ω, g1, g2, · · · , gk and
h1, h2, · · · , hk such that

pp1 = fg1, pp2 = fg2, · · · , ppk = fgk, and f =
k∑

i=1

hippi.

Therefore,
k∑

i=1

higi = 1.
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Therefore, the functions g1, g2, · · · , gk have no common zero in Ω. This implies
that there is some gs such that gs(λ) 6= 0. From the equality pps = fgs one
has

[pps]λ = [f ]λ.

According to Theorem 2.1.1,

[f ]eλ = [pps]eλ = q1p
′
sC.

However, for each i, [f ]λ ⊂ [ppi]λ and hence for every i,

[f ]eλ ⊃ [ppi]eλ = q1p
′
iC.

Thus, for every i,
q1p

′
sC ⊃ q1p

′
iC.

Thus each p′i is divisible by p′s. Thus, every pi is divisible by p′s. This is
impossible. Therefore, p1, p2, · · · , pk have no common zero in Ω, that is,

Z(L) ∩ Ω = ∅.

The proof is complete.

Corollary 2.3.5 Let I = pL be the Beurling form of the ideal I. If every
algebraic component of Z(I) has a nonempty intersection with Ω, then [I] is
principal if and only if I = pC. In particular, if I is prime, and Z(I)∩Ω 6= ∅,
then [I] is principal if and only if I = pC and p is prime.

Proof. If [I] is principal, then by Theorem 2.3.4,

Z(L) ∩ Ω = ∅.

So for each λ ∈ Ω,
[I]λ = [pC]λ.

From Corollary 2.1.3 we see that I ⊃ pC, and hence I = pC. The opposite
direction is obvious.

When n = 2, one can obtain a more detailed result.

Corollary 2.3.6 Let X be an analytic Hilbert module on Ω(⊂ C2), and let
I = pL be the Beurling form of I. Then [I] is principal if and only if [I] = [p].

Proof. Let [I] be principal. By Theorem 2.3.4, Z(L)∩Ω = ∅. Using Lemma
2.2.9, we see [L] = X. Thus [I] = [p].

In commutative algebra it is shown in the presence of certain finiteness
hypotheses that the Hilbert-Samuel polynomial can be defined for a module,
thus providing an invariant for the module. However, the story does not stop
here. One seeks to interpret the coefficients and degree of the polynomial in
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terms of algebraic and geometric properties of the modules and algebra. In the
context of Hilbert modules, Douglas and Yan [DY2] established the existence
of a Hilbert-Samuel polynomial for a Hilbert module and showed the power
of the polynomial for the study of Hilbert modules. For analytic Hilbert
modules, we will establish the existence of a Hilbert-Samuel polynomial that
is a special version of Hilbert-Samuel polynomials in [DY2].

We need the following lemma which first was proved by Douglas and Yang
[DYa1], where proof is different to that of [DYa1].

Lemma 2.3.7 Let M be a submodule of an analytic Hilbert module X with
finite rank and let I be a finite codimensional ideal of C. Then

dim M/[IM ] ≤ codim(I) rank(M).

Proof. We assume rank(M) = m with a generating set {f1, f2, · · · , fm}.
Now let P : M → M ª [IM ] be the orthogonal projection. We write f̃i = Pfi

for i = 1, 2, · · · ,m. Since I annihilates the quotient module M/[IM ], one
can consider M/[IM ] as a C/I-module with a generating set {f̃1, f̃2, · · · , f̃m}.
Since C/I is finite dimensional, this ensures dim M/[IM ] < ∞, and actually

dim M/[IM ] ≤ codim(I) rank(M).

Theorem 2.3.8 Let M be a finitely generated submodule of an analytic Hilbert
module X, and let I be a finite codimensional ideal of C. Then there exists a
polynomial pI,M with rational coefficients such that

pI,M (k) = dim M/[IkM ]

for large integer k. Moreover, the degree of pI,M is less than or equal to
rank(I).

Proof. Set

gr I =
⊕

k≥0

Ik/Ik+1, and gr M =
⊕

k≥0

[IkM ]/[Ik+1M ].

From Lemma 2.3.7, we see that gr M is a finitely generated graded module
on Noether graded ring gr I. Let rank(I) = l and let {p1, p2 · · · , pl} be a
generating set of I. Then gr I, as a C/I-algebra, is generated by the images
p̃i of pi in I/I2 for i = 1, 2, · · · , l. Since deg(p̃i) = 1 for i = 1, 2, · · · , l,
Hilbert’s original results (cf. [AM, Chapter 11]) imply that for large integer k,
dim [IkM ]/[Ik+1M ] is a polynomial of k with rational coefficients. Moreover,
the degree of the polynomial is less than or equal to rank(I)− 1. Since

dim M/[IM ] =
k∑

i=0

dim [IiM ]/[Ii+1M ],
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this implies that there exists a polynomial pI,M with rational coefficients such
that

pI,M (k) = dim M/[IkM ] and deg pI,M ≤ rank(I).

For an ideal I, recall that the radical ideal
√

I of I is
√

I = {p ∈ C : pm ∈ I for some positive integer m}.

If I is finite codimensional, then by [AM], there exists a positive integer m
such that

(
√

I)m ⊆ I ⊆
√

I.

Corollary 2.3.9 Let I1, I2 be finite codimensional ideals with
√

I1 =
√

I2.
Then

deg pI1,M = deg pI2,M .

Proof. Obviously, we only need to prove that for any finite codimensional
ideal I, deg pI,M = deg p√I,M . Since there exists a positive integer m such
that

(
√

I)m ⊆ I ⊆
√

I,

we have
p√I,M (k) ≤ pI,M (k) ≤ p(

√
I)m,M (k) = p√I,M (mk)

for large integer k. From the above inequalities, the desired result follows.

2.4 AF-cosubmodules

Recall that each submodule BH2(D) (where B is a Blaschke product) of the
Hardy module H2(D) is equal to the intersection of all finite codimensional
submodules that contain BH2(D). Also, for any submodule M of H2(D), it
is easy to check that M can be uniquely decomposed into

M = ηH2(D)
⋂

BH2(D),

where η is a singular inner function and B a Blaschke product. One can
show that BH2(D) is just equal to the intersection of all finite codimensional
submodules that contain M . Motivated by these observations we introduce
the following notions. Let X be an analytic Hilbert module on Ω, and let M be
a submodule of X. We call M approximately finite codimensional (in short, an
AF-cosubmodule) if M is equal to the intersection of all finite codimensional
submodules which contain M . Therefore when M is an AF-cosubmodule, M
is just the limit of decreasing net (⊇) of all finite codimensional submodules
containing M . For a submodule M , the AF-envelope of M is defined by the
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intersection of all finite codimensional submodules containing M , and denoted
by Me. Clearly, by the definition, the envelope of a submodule M is an AF-
cosubmodule.

The following theorem is from [Guo1].

Theorem 2.4.1 Let X be an analytic Hilbert module and M a submodule of
X. Then we have

(1) if Z(M) = ∅, then Me = X;

(2) if Z(M) 6= ∅, then M ⊆ Me 6= X, (Me)e = Me, and Z(M) = Z(Me);

(3) if Z(M) 6= ∅, then Me =
⋂

λ∈Z(M) Me
λ.

In particular, if M1,M2 are two submodules of X, then Me
1 = Me

2 if and only
if Z(M1) = Z(M2), and for every λ ∈ Z(M1), M1λ = M2λ.

Note that (3) says that the AF-envelope of M is equal to the intersection
of envelopes of M at all zero points.
Proof. Clearly, both (1) and (2) are true. We give the proof of (3). We define
the degree of a monomial zm1

1 · · · zmn
n to be m1 + · · ·+ mn, and the degree of

a polynomial p to be maximum of the degrees of the monomials that occur in
p with nonzero coefficients, and denoted by deg(p). For every λ ∈ Z(M) and
each natural number k, set

M
(k)
λ = {f ∈ X : p(D)f |λ = 0, p ∈ Mλ and deg(p) ≤ k}.

Then M
(k)
λ is a finite codimensional submodule and it contains M . Since

Me
λ = {f ∈ X : p(D)f |λ = 0, ∀p ∈ Mλ} =

⋂

k=1

M
(k)
λ ,

this gives
Me ⊆

⋂

λ∈Z(M)

Me
λ.

Let N be a finite codimensional submodule of X, and N ⊇ M . Then by
Corollary 2.2.6, it is easily verified that

N =
⋂

λ∈Z(N)

Ne
λ.

Let λ ∈ Z(N). Then λ also is in Z(M). From the inclusion N ⊇ M , we have
that Nλ ⊆ Mλ. Consequently, Me

λ ⊆ Ne
λ. Therefore,

⋂

λ∈Z(N)

Me
λ ⊆ N.
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This deduces the inclusion
⋂

λ∈Z(M)

Me
λ ⊆ N

and hence ⋂

λ∈Z(M)

Me
λ = Me.

For each λ ∈ Z(M), it is not difficult to verify that Mλ = (Me)λ. From (2)
and (3), one easily deduces that for any two submodules M1, M2, Me

1 = Me
2

if and only if Z(M1) = Z(M2) and M1λ = M2λ for each λ ∈ Z(M1). This
completes the proof of Theorem 2.4.1.

Now let {Mz1 ,Mz2 , · · · ,Mzn} be the n-tuple of operators that are defined
on the quotient module M1/M2 by Mzi f̃ = ˜(zif) for i = 1, · · · , n, and
σp(Mz1 , · · · ,Mzn) denotes the joint eigenvalues of {Mz1 , Mz2 , · · · ,Mzn}.

We will now generalize Theorem 2.2.5 to AF-cosubmodules. By modifying
the proof of Theorem 2.2.5, we have the following.

Theorem 2.4.2 Let M1, M2 be submodules of X such that M1 ⊇ M2 and
dim M1/M2 = k < ∞. If M2 is an AF-cosubmodule, then we have

(1) Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , · · · , Mzn) ⊂ Ω,

(2) M2 = {h ∈ M1 : p(D)h|λ = 0, p ∈ M2λ, λ ∈ Z(M2)\Z(M1)},
(3) dim M1/M2 =

∑
λ∈Z(M2)\Z(M1)

dim M2λ/M1λ = card
(
Z(M2)\Z(M1)

)
.

Remark 2.4.3 It is worth noticing that the condition is necessary in the
above theorem that M2 is approximately finite codimensional. In fact, by
[Hed] we know that there exists a submodule M of the Bergman module L2

a(D)
such that dim M/zM = 2, but Z(zM)\Z(M) = {0} and dim (zM)0/M0 = 1.

Proof. (1) Write
M1 = M2 ⊕R

and restrict {Mz1 ,Mz2 , · · · , Mzn
} on R. By [Cur1], they can be simultane-

ously triangularized as

Mzi
=




λ
(1)
i ?

. . .
λ

(k)
i


 ,

where i = 1, 2, · · · , n, and k = dim M1/M2, so that σp(Mz1 ,Mz2 , · · · ,Mzn)
is equal to {λ(1), · · · , λ(k)}. Similarly to the proof of Theorem 2.2.5, we have
that

σp(Mz1 ,Mz2 , · · · ,Mzn) ⊂ Ω.
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Writing
Uλ(i) = {p : p are polynomials, and p(λ(i)) = 0}

i = 1, · · · , k, then

Uλ(k) · · · Uλ(2)Uλ(1)M1 ⊆ M2 ⊆ M1.

Therefore, for λ ∈ Ω, but λ /∈ σp(Mz1 ,Mz2 , · · · ,Mzn), one sees that M1λ =
M2λ. This implies that

Z(M2)\Z(M1) ⊆ σp(Mz1 ,Mz2 , · · · ,Mzn).

Let λ ∈ σp(Mz1 ,Mz2 , · · · ,Mzn). Since λ is a joint eigenvalue of the operator
tuple {Mz1 ,Mz2 , · · · ,Mzn}, there is a function h in M1 such that

Uλh ⊆ M2.

Setting M†
2 to be the submodule generated by M2 and h, then for λ′ 6= λ and

λ′ ∈ Ω it holds that
(M†

2 )λ′ = M2λ′ .

If (M†
2 )λ = M2λ, then by Theorem 2.4.1(4) we have that

M†e
2 = Me

2 = M2.

This is impossible. Hence,

M2λ % (M†
2 )λ ⊇ M1λ.

It follows that λ belongs to Z(M2)\Z(M1). We thus conclude that

Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , · · · , Mzn) ⊂ Ω.

(2) Set

M \
2 = {h ∈ M1 : p(D)h|λ = 0, p ∈ M2λ, λ ∈ Z(M2)\Z(M1)}.

Then M \
2 is a submodule that contains M2. It is easy to see that for every

λ ∈ Ω,
(M \

2)λ = M2λ.

By Theorem 2.4.1(4), we have that

(M \
2)

e = Me
2 = M2.

This implies that M \
2 = M2. The proof of (2) is complete.

(3) The proof is by induction on numbers of points in Z(M2)\Z(M1). If
Z(M2)\Z(M1) contains only a point λ, then by (2), M2 can be written as

M2 = {h ∈ M1 : p(D)h|λ = 0, p ∈ M2λ}.
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We define the pairing

[−,−] : M2λ/M1λ ×M1/M2 → C

by [p̃, h̃] = p(D)h|λ. Clearly, this is well defined. From this pairing and the
representation of M2, it is not difficult to see that

dim M1/M2 = dim M2λ/M1λ.

Now let l > 1, and assume that (3) has been proved for Z(M2)\Z(M1)
containing points less than l. Let Z(M2)\Z(M1) = {λ1, · · · , λl} where λi 6= λj

for i 6= j. Writing

M?
2 = {h ∈ M1 : p(D)h|λ1 = 0, p ∈ M2λ1},

then
(M?

2 )λ1 = M2λ1 .

Just as in the above proof, we have

dim M1/M
?
2 = dim M2λ1/M1λ1 .

Write M2λ1 = M1λ1+̇R with dim R = dim M2λ1/M1λ1 . Let ]R denote linear
space of polynomials generated by R which is invariant under the action by
{ ∂

∂z1
, · · · , ∂

∂zn
}. Put

QR = {p ∈ C : q(D)p|λ1 = 0, q ∈ ]R}.
Then it is easily verified that QR is a finite codimensional ideal of C with only
zero point λ1 because ]R is finite dimensional. Thus

QRM1 ⊆ M?
2 ⊆ M1.

From the above inclusions, we see that for λ 6= λ1, M1λ = (M?
2 )λ. Therefore

Z(M2)\Z(M?
2 ) = {λ2, · · · , λl}.

By the induction hypothesis, we have that

dim M?
2 /M2 =

l∑

j=2

dim M2λj
/(M?

2 )λj
=

l∑

j=2

dim M2λj
/M1λj

.

We thus obtain that

dim M1/M2 = dim M1/M
?
2 + dim M?

2 /M2

=
l∑

j=1

dim M2λj /M1λj

= card(Z(M2)\Z(M1)).

The proof of the theorem is thus completed.

Moreover, the same argument as the above proof enables us to obtain the
following.
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Theorem 2.4.4 Let both M1 and M2 be submodules of X. If M1 ⊇ M2 and
dim M1/M2 = k < ∞, then we have

(1) Z(M2)\Z(M1) ⊆ σp(Mz1 ,Mz2 , · · · , Mzn) ⊂ Ω,

(2) dim M1/M2 ≥ ∑
λ∈Z(M2)\Z(M1)

dim M2λ/M1λ = card(Z(M2)\Z(M1)),

and “equal” if and only if M2 is an AF-cosubmodule.

We end with two examples.

Example 2.4.5 Let f be analytic on a neighborhood of the origin in Cn, and
let f(z) =

∑
m fm(z) be the homogeneous expansion of f at the origin. Then

there is the smallest m such that fm is not the zero-polynomial. This m is
called the order of the zero which f has at the origin.

Recall that Rudin’s submodule M [Ru1, p. 71] of H2(D2) over the bidisk
is defined as the collection of all functions in H2(D2) that have a zero of
order greater than or equal to n at (0, 1 − n−3) for n = 1, 2, · · · . Douglas
and Yang [DYa1] showed that M ª (zM + wM) is finite dimensional, while
M ª (zM + wM) is not a generating set of M . A natural problem is what
dim

(
M ª (zM + wM)

)
is equal to. It is easy to check that both M and

zM + wM are AF-cosubmodules, and

Z(zM + wM) \ Z(M) = {(0, 0)} and card
(
Z(zM + wM) \ Z(M)

)
= 2.

By Theorem 2.4.2, we get immediately that

dim
(
M ª (zM + wM)

)
= 2.

Example 2.4.6 Let M be a submodule of the Bergman module L2
a(D). By

Aleman, Richter and Sundberg’s work [ARS], we know that M ª zM is a
generating set for M . By Lemma 2.3.7,

dim(M ª zM) ≤ rank(M),

and it follows that
dim(M ª zM) = rank(M).

Notice that for any natural number n, unlike the Hardy module H2(D), the
Bergman module L2

a(D) has a submodule M with rank n [Hed]. Now let M
be an AF-cosubmodule of L2

a(D) with rank(M) < ∞. Then zM also is an
AF-cosubmodule and rank(zM) = rank(M). It is easy to check that

card
(
Z(zM) \ Z(M)

)
= 1,

and hence by Theorem 2.4.2, dim(M ª zM) = 1. Thus, rank(M) = 1. This
shows that every AF-cosubmodule of the Bergman module with finite rank is
generated by a single function.
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2.5 Finite codimensional submodules of Bergman
modules

In this section, we will let domain Ω be the unit ball Bn or the unit poly-
disk Dn. For a submodule M of Bergman module L2

a(Ω), our interest is to
study the structure of M⊥ when M is of finite codimension. In [GZ], Guo
and Zheng completely characterized orthogonal complements of finite codi-
mensional submodules of Bergman modules on bounded symmetric domains.
Here we present a special case of this general result, but the idea is completely
the same.

Let Ω be the unit ball or the unit polydisk in Cn and let Aut(Ω) be the
automorphism group of Ω (all biholomorphic mappings of Ω onto Ω). Here
we collect some properties of the automorphism group of Ω. First we can
canonically define (cf. [Ru2]) for each λ ∈ Ω, an automorphism φλ in Aut(Ω),
such that

1. φλ ◦ φλ(z) = z;

2. φλ(0) = λ, φλ(λ) = 0;

3. φλ has a unique fixed point in Ω;

4. if φ ∈ Aut(Ω) and λ = φ−1(0), then there is a unique operator U on Cn

such that φ = Uφλ.

Let M be a finite codimensional submodule of L2
a(Ω). Then by Corollary

2.2.6, the submodule M has only finitely many zero points λ1, λ2, · · · , λl in
Ω, such that M can be uniquely represented as

M =
l⋂

i=1

Mi,

where each Mi is a finite codimensional submodule having a unique zero λi.
Since Ω is circular, the functions zα, α ranging over all nonnegative multi-

indices, are orthogonal in L2
a(Ω). Also, the uniqueness of the Taylor expansion

implies that {zα : α ≥ 0} is a complete set. Thus {zα/‖zα‖ : α ≥ 0} is an
orthonormal basis for L2

a(Ω). This implies that for any polynomial p, the
Toeplitz operator Tp̄ maps C to C. Now let P be a linear space consisting
of polynomials. We say that P is an invariant polynomial space, if for any
polynomial p, P is invariant under the action of Tp̄. It is easy to see that
in the case of n = 1, an invariant polynomial space with the dimension m
(1 ≤ m ≤ ∞) is the linear space with the basis {1, z1, · · · , zm}.
Lemma 2.5.1 Let M be a finite codimensional submodule with a unique zero
λ = 0. Then M⊥ is a finite dimensional invariant polynomial space.
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Proof. Since M is a submodule of L2
a(Ω), M is invariant under the action

of the Toeplitz operator Tp for any polynomial p. Hence M⊥ is invariant
under the action of Tp̄. To complete the proof, we need the characteristic
space theory. Let M0 be the characteristic space of M at λ = 0, that is,
M0 = {p ∈ C : p(D)f |λ=0 = 0, ∀f ∈ M}. Since {zα/‖zα‖ : α ≥ 0} is the
orthonormal basis for L2

a(Ω), the Taylor expansion gives that

[∂αf ](0) =
α!

‖zα‖2 〈f, zα〉,

for each f ∈ L2
a, where α! =

∏n
i=1 αi!. Let p(z) =

∑
aαzα be a polynomial.

Then

p(D)f |λ=0 =
∑

aα[∂αf ](0)

=
∑

aα
α!

‖zα‖2 〈f, zα〉

= 〈f,
∑

āα
α!

‖zα‖2 zα〉.

Define the conjugate linear map γ : C → C by

γ(
∑

aαzα) =
∑

āα
α!

‖zα‖2 zα.

It is easy to verify that γ is one to one, and onto. Thus the image of M0 under
the conjugate linear operator γ is a subspace of M⊥. By Corollary 2.2.6,

codim M = dim M0.

Therefore, we get that M⊥ = γ(M0). Hence M⊥ is a finite dimensional
invariant polynomial space, completing the proof.

Let M be a finite codimensional submodule of L2
a(Ω). Then M has finitely

many zero points λ1, λ2, · · · , λl in Ω such that M can be uniquely represented
as

M =
l⋂

i=1

Mi,

where Mi is a finite codimensional submodule and has a unique zero λi.
For λ ∈ Ω, let Kλ(z) be the reproducing kernel of L2

a(Ω) at λ. This means
that f(λ) = 〈f,Kλ〉 for each f ∈ L2

a(Ω). Let kλ(z) be the normalized re-
producing kernel, that is, kλ = Kλ/‖Kλ‖. On the Bergman space L2

a(Ω), we
define the operator Uλ by

Uλf = f ◦ φλkλ,

where φλ is an element in Aut(Ω). Note that det[∂φλ(z)] = (−1)nkλ(z).
Hence Uλ is a unitary operator from L2

a(Ω) onto L2
a(Ω).
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Theorem 2.5.2 Under the above assumption, there are invariant polynomial
spaces Pi, i = 1, 2, · · · , l, such that

M⊥ =
l∑

i=1

Pi ◦ φλi kλi .

Proof. Let N be a submodule. We claim that UλN = {f ◦ φλkλ : f ∈ N} is
also a submodule. It is not difficult to verify kλ kλ ◦ φλ = 1. We thus get

UλN = { f

kλ
◦ φλ : f ∈ N} = {f ◦ φλ : f ∈ N}.

From the equation
φλ ◦ φλ(z) = z,

we see that each coordinate function zi = φ
(i)
λ ◦ φλ(z), where φ

(i)
λ is the ith

argument of φλ. This ensures that UλN is invariant under the multiplication
by all polynomials, and hence UλN is a submodule. Now let N be a submodule
of finite codimension with a unique zero point λ. Since

L2
a = N ⊕N⊥ = UλN ⊕ UλN⊥,

the submodule UλN is of the same codimension as N . Note that UλN has
only the zero point 0. Thus from Lemma 2.5.1, UλN⊥ is a finite dimensional
invariant polynomial space. We denote UλN⊥ by P, thus,

N⊥ = UλP = P ◦ φλ kλ.

Since M = ∩l
i=1Mi, we have

M⊥ =
k∑

i=1

Mi
⊥.

Thus there are finite dimensional invariant polynomial spaces Pi, i = 1, 2, · · · , l
such that

M⊥ =
l∑

i=1

Pi ◦ φλi kλi .

This completes the proof of the theorem.

Let A(Ω) be the so-called Ω-algebra, that is, A(Ω) consists of all functions
f that are analytic on Ω and continuous on the closure Ω of Ω.

Corollary 2.5.3 Let M be a submodule of L2
a(Ω). Then M is of finite codi-

mension if and only if M⊥ ⊂ A(Ω).
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Proof. The necessity is given by Theorem 2.5.2. The sufficiency of the
corollary comes essentially from the proof of Theorem 5.2 in [Ru5]. Indeed,
by the assumption M⊥ ⊂ A(Ω) each f ∈ M⊥ is a bounded analytic function
on Ω. From the inequality ‖f‖2 ≤ ‖f‖∞ it is easy to verify that M⊥ is
complete under the L∞–norm. By the open mapping theorem, there exists a
constant γ such that ‖f‖∞ ≤ γ ‖f‖2 for each f ∈ M⊥. Let {f1, f2, · · · , fl} be
a unit orthogonal set in M⊥. On Ω\∩l

k=1Z(fk), we define functions rk(z) by

rk(z) =
fk(z)

(
∑l

i=1 |fi(z)|2)1/2
, k = 1, 2, · · · , l,

where Z(f) = {λ ∈ Ω : f(λ) = 0}. For every w ∈ Ω\∩l
k=1Z(fk), since

‖
l∑

k=1

rk(w)fk‖2 = 1,

we get

|
l∑

k=1

rk(w)fk(z)| ≤ γ, ∀z ∈ Ω.

Consequently, for each w ∈ Ω\∩l
k=1Z(fk),

|
l∑

k=1

rk(w)fk(w)| = (
l∑

k=1

|fk(w)|2)1/2 ≤ γ.

Thus,
l∑

k=1

|fk(w)|2 ≤ γ2, ∀w ∈ Ω\∩l
k=1Z(fk).

Since ∩l
k=1Z(fk) is a null-measurable set, integrating the above inequality

gives l ≤ γ2. We conclude that dim M⊥ is finite. This completes the proof of
the corollary.

In the cases of both the unit ball Bn and the unit polydisk Dn, their au-
tomorphisms and reproducing kernels are rational functions. This gives the
following result.

Corollary 2.5.4 Let Ω be the unit ball Bn or the unit polydisk Dn, and let
M be a submodule of L2

a(Ω). Then M is of finite codimension if and only if
M⊥ consists of rational functions.

Remark 2.5.5 As the reader has seen, the results in this section are easily
generalized to the case of the Hardy modules on the unit ball and the unit
polydisk.

©2003 CRC Press LLC



2.6 Remarks on Chapter 2

This chapter is mainly based on Guo’s papers [Guo1, Guo2, Guo4, Guo6].
The starting point for algebraic reduction is Theorem 2.2.1 of Ahern-Clark,
which characterized submodules of H2(Dn) of finite codimension as closures of
ideals. Significant generalization and simplification of this result to reproduc-
ing Banach modules were done by Douglas, Paulsen et al. [DP, DPSY, Pau1].
There are numerous references concerning this topic. Here we have made no
attempt to compile a comprehensive list of references. We call the reader’s
attention to [AB, AS, Ber, CD2, CDo2, DPSY, DY3, JLS, Ri2] for more infor-
mation. We also refer the reader to the references [Cur1, Cur2, Guo11, ?, Jew]
for index theory of the tuple of the coordinate multipliers associated with an
analytic Hilbert module.

For the research of analytic Hilbert modules, part of the difficulty lies in the
analysis of zero varieties of submodules. Douglas’s localization technique has
always played an important role (see Douglas’s survey paper [Dou]). Another
technique developed by Guo, so-called “characteristic space theory for ana-
lytic Hilbert modules,” has exhibited its power, just as we have seen in this
chapter. In fact, Chapters 2 through 5 in this monograph are mainly devoted
to analytic Hilbert modules and reproducing analytic Hilbert spaces on Cn

by using characteristic space theory. We also notice that Bercovici have even
used a similar method to the characteristic space theory to deal with finite
codimensional invariant subspaces of Bergman spaces [Ber].

In [Guo1], Guo introduced the notion of analytic Hilbert modules and estab-
lished the characteristic space theory for analytic Hilbert modules. Theorems
2.1.1, 2.1.5 and 2.4.1 and Corollaries 2.1.2 and 2.1.3 were proved in [Guo1].
For the notion of multiplicity of zero variety of an analytic submodule, it was
introduced by Guo [Guo4]. In that paper he obtained Theorems 2.1.6, 2.1.7
and 2.2.5 and Corollaries 2.1.8 and 2.2.6. The extension of Theorem 2.2.5 to
AF-cosubmodules was considered in [Guo6]. Theorems 2.4.2 and 2.4.4 and
Examples 2.4.5 and 2.4.6 appeared in [Guo6]. In the case of Hilbert mod-
ules with finite rank, Douglas and Yan [DY2] first established the existence
of a Hilbert-Samuel polynomial for such a module. We presented Theorem
2.3.8 for analytic submodules as a special version of the result of Douglas and
Yan. Related to the research of submodules with finite rank, Theorems 2.3.3
and 2.3.4 and Proposition 2.3.1 are due to Guo [Guo2]. Concerning orthog-
onal complements of finite codimensional submodules of Bergman modules,
Lemma 2.5.1, Theorem 2.5.2 and Corollaries 2.5.3 and 2.5.4 appeared in [GZ].
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Chapter 3

Rigidity for analytic Hilbert modules

The classic paper of Beurling [Beu] led to a spate of research in operator
theory, Hp-theory and other areas which continues to the present. His explicit
characterization for all submodules of the Hardy module H2(D), in terms of
the inner–outer factorization of analytic functions, has had a major impact.
Since the Hardy module over the unit disk is the primary nontrivial example
for so many different areas, it is not surprising that this characterization has
proved so important.

Almost everyone who has thought about this topic must have considered
the corresponding problem for higher dimensional Hardy module H2(Dn).
Although the existence of inner functions in the context is obvious, one quickly
sees that a Beurling-like characterization is not possible [Ru1], and hence this
directs one’s attention to investigating equivalence classes of submodules of
analytic Hilbert modules in reasonable sense.

Let M1, M2 be two submodules of the analytic Hilbert module X. We say
that A : M1 → M2 is a module map if A is a bounded linear operator, and
for any polynomial p, A(ph) = pA(h), h ∈ M1. Furthermore, we say that

1. they are unitarily equivalent if there exists a unitary module map
A : M1 → M2, that is, A is both a unitary operator and a module
map;

2. they are similar if there exists an invertible module map A : M1 → M2;

3. they are quasi-similar if there exist module maps A : M1 → M2 and
B : M2 → M1 with dense ranges.

From the Beurling theorem, any two submodules of the Hardy module
H2(D) are unitarily equivalent. However, for higher dimensional Hardy mod-
ule H2(Dn), an earlier result on nonunitarily equivalent submodules is due to
Berger, Coburn and Lebow [BCL], who considered the restriction of multi-
plication by the coordinate functions to invariant subspaces obtained as the
closure of certain ideals of polynomials in two variables having the origin as
zero set. By applying their results on commuting isometries, they showed
that different ideals yield inequivalent submodules. Almost at the same time
Hastings [Ha2] even showed that [z −w] is never quasi-similar to H2(D2). In
[ACD], Agrawal, Clark and Douglas introduced the concept of unitary equiv-
alence of Hardy-submodules. In particular, they showed that two submodules
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of finite codimension are unitarily equivalent if and only if they are equal.
Furthermore, Douglas and Yan [DY1] proved that under some technical hy-
potheses on the zero varieties, two submodules that are quasi-similar must be
equal. More recently, Douglas, Paulsen, Sah and Yan [DPSY] showed that
under mild restrictions, submodules obtained from the closure of ideals are
quasi-similar if and only if the ideals coincide. From an analytic point of
view, appearance of this phenomenon, the so-called “rigidity phenomenon,”
is natural because of the Hartogs phenomenon in several variables. From an
algebraic point of view, the reason may be that the submodules are not singly
generated.

The present chapter is devoted to these remarkable features of analytic
Hilbert modules in several variables to understand the connection between
function theory, operator theory and some related fields.

3.1 Rigidity for analytic Hilbert modules

In this section, we will use the characteristic space theory to obtain general
results of rigidity. This section is mainly based on Guo’s paper [Guo1]. Now
we suppose that X is an analytic Hilbert module over Ω in Cn (n > 1). Let
M1 and M2 be two submodules of X, and σ : M1 → M2 be a module map.
We say that the map σ is canonical if

σ(M (z)
1 ) ⊆ σ(M (z)

2 ), for any z ∈ Ω \ Z(M1),

where M
(z)
i = {h ∈ Mi : h(z) = 0} for i = 1, 2. An equivalent description is

given by the following proposition.

Proposition 3.1.1 Let M1 and M2 be submodules of X, and σ : M1 → M2

be a module map. Then the map σ is canonical if and only if there exists an
analytic function φ on Ω\Z(M1) such that for any h ∈ M1 and z ∈ Ω\Z(M1),
σ(h)(z) = φ(z)h(z).

Proof. For h1 ∈ M1, we define an analytic function on Ω \ Z(h1) by

φh1(z) =
σ(h1)(z)

h1(z)
, ∀z ∈ Ω \ Z(h1).

For another h2 ∈ M1, we also define an analytic function on Ω \ Z(h2) by

φh2(z) =
σ(h2)(z)

h2(z)
, ∀z ∈ Ω \ Z(h2).

Since σ is canonical, we have that

φh1(z) = φh2(z), ∀z ∈ Ω \ (Z(h1) ∪ Z(h2)).

©2003 CRC Press LLC



The above argument shows that for any z ∈ Ω \ Z(M1), we can define

φ(z) =
σ(h)(z)

h(z)

for any h ∈ M1 with h(z) 6= 0. Clearly, φ is independent of h and is analytic
on Ω \ Z(M1). It follows that

σ(h)(z) = φ(z)h(z)

for any h ∈ M1 and z ∈ Ω \ Z(M1), completing the proof of necessity. Suffi-
ciency is obvious.

Using the proof of Proposition 3.1.1, we can prove the following.

Corollary 3.1.2 If there exists an open set O contained in Ω \ Z(M1) such
that for each z ∈ Ω \Z(M1), σ(M (z)

1 ) ⊆ (M (z)
2 ), then the map σ is canonical.

Equivalently, if there exists an analytic function φ on O such that for any
h ∈ M1 and z ∈ O, σ(h)(z) = φ(z)h(z), then the map σ is canonical.

For most “natural” function spaces, module maps are canonical.

Example 3.1.3 Let X be the Hardy module H2(Dn) (or H2(Ω) where Ω is
a strongly pseudoconvex domain in Cn with smooth boundary). Then each
module map σ : M1 → M2 is canonical.

In fact, from [DY1], one knows that there exists a function φ ∈ L∞(Tn) (or
φ ∈ L∞(∂Ω)) such that for each h ∈ M1, σ(h) = φh. One can extend φ
to a meromorphic function φ̃ on Dn (or Ω) and φ̃ is analytic on Dn \ Z(M1)
(or Ω \ Z(M1)) such that for each z ∈ Dn \ Z(M1) (or z ∈ Ω \ Z(M1)),
σ(h)(z) = φ̃(z)h(z). From the above discussion one sees that the map σ is
canonical.

Example 3.1.4 Recall that a submodule M of X is said to have the codi-
mension 1 property if dim M/[UzM ] = 1 for each z ∈ Ω \ Z(M), where
Uz = {p ∈ C : p(z) = 0}. It is easy to check that if a submodule M
contains a dense linear manifold Λ with the Gleason property, then M has
the codimension 1 property, where the Gleason property means that for each
λ = (λ1, · · · , λn) ∈ Ω \ Z(M) if h(λ) = 0 (here h ∈ Λ), then there exist
h1, · · · , hn ∈ Λ such that h =

∑n
i=1(zi − λi)hi. Let σ : M1 → M2 be a mod-

ule map and M1 have the codimension 1 property. Then it is easy to verify
that the map σ is canonical.

For the analytic Hilbert module X, we let A(Ω) denote the closure of all
polynomials in the operator norm. Then A(Ω) is a Banach algebra consisting
of analytic functions in X. It is easy to know that each C-module map extends
uniquely to an A(Ω)-module map.
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Example 3.1.5 Let M1, M2 be submodules of X, and M1 ∩ A(Ω) 6= {0}. If
σ : M1 → M2 is a module map, then the map σ is canonical.

In fact, taking a nonzero p ∈ M1 ∩A(Ω), we define an analytic function φ̃ on
Ω \ Z(p) by

φ̃(z) =
σ(p)(z)

p(z)
, ∀z ∈ Ω \ Z(p).

For any h ∈ M1, there exists a sequence of polynomials {pn} such that {pn}
converges to h in the norm of X. It follows that ppn → ph in the norm of X.
This implies that for each z ∈ Ω \ Z(p),

σ(ppn)(z) = pn(z)σ(p)(z) → σ(ph)(z) = p(z)σ(h)(z).

Since pn(z) → h(z), one concludes easily that for any h ∈ M1 and every
z ∈ Ω \ Z(p),

σ(h)(z) = φ̃(z)h(z).

Now let z be any point in Ω \ Z(M1). Then there exists a function h ∈ M1

such that h(z) 6= 0. We can define an analytic function ψ̃ on Ω \ Z(h) by

ψ̃(z) =
σ(h)(z)

h(z)
.

The preceding discussion implies that

φ̃(z) = ψ̃(z), z ∈ Ω \ (Z(p) ∪ Z(h)).

This means that φ̃ analytically extends to Ω \ Z(M1), and for each h ∈ M1

σ(h)(z) = φ̃(z)h(z), ∀z ∈ Ω \ Z(M1).

Therefore, by Proposition 3.1.1, the map σ is canonical.

For two submodules M1 and M2 of X, we say that M1 and M2 are subsimilar
if there exist two canonical module maps σ1 : M1 → M2 and σ2 : M2 → M1

with dense ranges.

The following is the main result in this section.

Theorem 3.1.6 Let M1 and M2 be two submodules of X. If M1 and M2

are subsimilar, and h2n−2(Z(M1)) = h2n−2(Z(M2)) = 0, then Me
1 = Me

2 . In
particular, if M1 and M2 are AF-cosubmodules, then M1 = M2.

Remark 3.1.7 For a submodule M of X, the condition h2n−2(Z(M)) = 0
simply says that the complex dimension of the analytic variety is less than
n−1, or equivalently that the codimension of this variety is at least 2. It is well
known that analytic varieties in Cn of codimension at least 2 are removable
singularities for analytic functions [KK]. We use the notion of the Hausdorff
measure to avoid the dimension theory of analytic varieties.
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The proof of Theorem 3.1.6 From Proposition 3.1.1, one sees that there
exist analytic functions φ1 on Ω \ Z(M1) and φ2 on Ω \ Z(M2) such that for
each f ∈ M1 and each g ∈ M2,

σ1(f)(z) = φ1(z)f(z), z ∈ Ω\Z(M1), and σ2(g) = φ2(z)g(z), z ∈ Ω\Z(M2).

Since
h2n−2(Z(M1)) = h2n−2(Z(M2)) = 0,

the theorem [KK] on the removability of singularities implies that φ1 and φ2

can be analytically continued onto Ω. Therefore, on Ω, we have that

σ1(f) = φ1f and σ2(g) = φ2g

for any f ∈ M1 and g ∈ M2. From the above equalities and Leibnitz’s rule, it
is easy to check that Z(M1) = Z(M2), and for each λ ∈ Z(M1)

M1λ = M2λ.

Hence, by Theorem 2.4.1, it holds that

Me
1 = Me

2 .

In particular, if M1 and M2 are AF-cosubmodules, then M1 = M2. This
completes the proof of the theorem.

We are now in a position to give some examples to illustrate applications
of Theorem 3.1.6.

Example 3.1.8 Let X be the Hardy module H2(Dn) (or H2(Ω), where Ω is
a strongly pseudomonades domain in Cn with a smooth boundary). If the sub-
modules M1 and M2 are quasi-similar and h2n−2(Z(M1)) = h2n−2(Z(M2)) =
0, then Me

1 = Me
2 . In particular, if M1 and M2 are AF-cosubmodules, then

M1 = M2.

Example 3.1.9 Let the submodules M1 and M2 of X have the codimension 1
property. If they are quasi-similar and h2n−2(Z(M1)) = h2n−2(Z(M2)) = 0,
then Me

1 = Me
2 . In particular, if M1 and M2 are AF-cosubmodules, then

M1 = M2.

Example 3.1.10 Assume that the submodules M1 and M2 of X have the
properties

M1 ∩A(Ω) 6= 0, M2 ∩A(Ω) 6= 0, and h2n−2(Z(M1)) = h2n−2(Z(M2)) = 0.

Then their quasi-similarity implies Me
1 = Me

2 . In particular, if M1 and M2

are AF-cosubmodules, then M1 = M2.
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To obtain the next example let us first state a theorem on ideals of polyno-
mials whose proof will be placed in the end of this section.

Let P be a prime ideal. The height of P , denoted by height(P ), is defined
as the maximal length l of any properly increasing chain of prime ideals

0 = P0 ⊂ P1 · · · ⊂ Pl = P.

Since the polynomial ring C is Noetherian, every prime ideal has finite height
and the height of an arbitrary ideal is defined as the minimum of the heights
of its associated prime ideals. For an ideal I, one has

dimC Z(I) = n− l,

where l = height(I) is the height of I, and dimC Z(I) the complex dimension
of the zero variety of I (cf. [DPSY, KK] or [ZS]). When ideals are a height
of at least 2, this condition guarantees that the zero variety of the ideal is a
h2n−2 null set, and hence removable singularity for analytic functions [KK].

The following theorem was proved by Guo.

Theorem 3.1.11 Let I be an ideal of the polynomial ring C and I = pL be
its Beurling form. If p = ps1

1 ps2
2 · · · pst

t is the product of its prime factors, and
L = ∩l

i=1Li a primary decomposition with their associated primes P1, · · · , Pl,
then there exists an irredundant primary decomposition of I,

I = ∩t+l
j=1Ij ,

such that
√

Ik = pkC for k = 1, 2, · · · t, and
√

Ik = Pk for k > t.

Note that height of a prime ideal P equals 1 if and only if P is principal.
Theorem 3.1.11 thus implies the following.

Corollary 3.1.12 Let I = pL be its Beurling form. Then height(I) = 1 if
and only if p is not a constant. Equivalently, height(I) ≥ 2 if and only if the
greatest common divisor GCD(I) = 1. In particular, height(L) ≥ 2.

Remark. From Corollary 3.1.12, we see that Z(I) is a removable singularity
for analytic functions if and only if GCD(I) = 1.

The following example will show that one can reobtain the main result in
[DPSY] by using the characteristic space theory.

Example 3.1.13 Let I1 and I2 be ideals of polynomials with GCD(I1) =
GCD(I2) = 1. If each algebraic component of their zero varieties meets Ω
nontrivially, then [I1] and [I2] are quasi-similar if and only if I1 = I2.

In fact, by Corollary 3.1.12, we see that the ideals are a height of at least 2.
Note that the algebraic condition on the height of the ideals just guarantees
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that the zero varieties of the ideals are h2n−2 null sets. From Example 3.1.10,
we see that

[I1]e = [I2]e.

Setting
J = [I1]e ∩ C,

then for each λ ∈ Ω,

I1λ = [I1]λ =
(
[I1]e

)
λ
⊆ (

[I1]e ∩ C
)
λ

= Jλ.

By Corollary 2.1.3, J ⊆ I1. This implies that I1 = J . The same reasoning
shows that I2 = J , and hence I1 = I2, completing the proof.

The proof of Theorem 3.1.11 Let I = ∩N
j=1Ij be an irredundant primary

decomposition of I. For each k(1 ≤ k ≤ t), we claim that there is some
positive integer m such that every element of Im is divisible by pk. In fact, if
for each m there exists some element qm of Im that is not divisible by pk, then
q = q1q2 · · · qN ∈ I is not divisible by pk. This is not possible, and therefore
there is some m such that every element of Im is divisible by pk. Note that
pk is a prime polynomial, and hence each element of

√
Im is divisible by pk.

Since
√

Im is prime, this ensures that
√

Im = pkC.

Now we may rearrange the order of I1, I2, · · · , IN such that
√

Ik = pkC, k = 1, 2, · · · t.

Now suppose that there is some k(> t) such that
√

Ik is principal. Since
√

Ik

is prime, there is a prime polynomial p0 such that
√

Ik = p0C. It follows that
each element of Ik is divisible by p0, and hence every element of I is divisible
by p0. Since GCD(L) = 1, this means that p is divisible by p0. Hence there
exists an i such that p0 = pi. This contradicts the fact that the primary
decomposition I = ∩N

j=1Ij is irredundant. Therefore,
√

Ik is not principal if
k > t. Let J be an ideal of polynomials. Then by [ZS, Vol(I), p. 210, Theorem
6] or [AM, Theorem 4.5], a prime ideal P is the associated prime ideal of J
if and only if there exists an element x of C such that P =

√
J : x. Now for

each associated prime ideal Pi of L, there exists an element xi ∈ C such that
Pi =

√
L : xi. From the equality

√
L : xi =

√
pL : pxi,

Pi are the associated prime ideals of I for i = 1, · · · , l. Furthermore, assume
that Q is an associated prime ideal of I, and Q is not principal; then there
exists an element x ∈ C such that

Q =
√

I : x =
√

pL : x.
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Since Q is not principal, there is a set {q1, · · · , qr} of generators of Q such
that GCD{q1, · · · , qr} = 1 and r ≥ 2. Consequently, for each qi, there is a
positive integer ki such that qki

i x ∈ pL for i = 1, 2, · · · , r. Since

GCD(qk1
1 , · · · , qkr

r ) = 1,

this ensures that x is divisible by p. Thus, there exists an element y ∈ C such
that x = py. We thus have that

Q =
√

pL : x =
√

pL : py =
√

L : y.

Therefore, Q is equal to some Pi. From the above discussion, there exists an
irredundant primary decomposition of I,

I = ∩t+l
j=1Ij ,

such that
√

Ik = pkC for k = 1, 2, · · · t, and
√

Ik = Pk for k > t. The proof of
the theorem is complete.

3.2 Rigidity for quotient modules

While the study of canonical models for contraction operators on Hilbert
space has been fruitful and useful [NF] this can be said for multi-variate analo-
gies. Besides the troubling existence problem, there is also the nonuniqueness
of models when they do exist. Douglas and Paulsen’s module theoretic ap-
proach [DP] provided, in part, multi-variate analogies. In this section, we will
examine some special cases in which the canonical model is unique. Using
module theoretic language, this means that quotient modules are necessarily
equal if they are unitarily equivalent (similar or quasi-similar).

Let M1 and M2 be two submodules of analytic Hilbert module X, and
M1 ⊇ M2. Then we form the quotient module M1/M2 on the ring C. The
module action is given by p · (h + M2) = ph + M2. It is easy to see that
this action is bounded. In the following we will give a coordinate free method
to deal with rigidity of quotient modules. The next theorem is due to Guo
[Guo1].

Theorem 3.2.1 Let M1 and M2 be two submodules of X. If X/M1 and
X/M2 are quasi-similar, then Me

1 = Me
2 . In particular, if M1 and M2 are

AF-cosubmodules, then M1 = M2.

Proof. Let {Mα
1 }α∈Λ be the collection of all finite codimensional submodules

containing M1. If σ : X/M1 → X/M2 is a C-module quasi-similarity, then
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there exists a collection of submodules of X, {Mα
2 }α∈Λ, each of which contains

M2, so that σ induces the following quasi-similarity:

σ : Mα
1 /M1 → Mα

2 /M2, α ∈ Λ.

This implies that σ induces again a C-module quasi-similarity for each α:

σα : X/Mα
1 → X/Mα

2 .

Since Mα
1 is of finite codimension, Mα

2 is finite codimensional.
For a submodule M of X, let Ann(X/M) denote the annihilator of X/M ,

that is,
Ann(X/M) = {p ∈ C : p · x̃ = 0, ∀x̃ ∈ X/M}.

Then Ann(X/M) is an ideal of C. In particular, if M is of finite codimension,
then by Theorem 2.2.3 Ann(X/M) is of the same codimension as M , and
[Ann(X/M)] = M.

Since each σα is quasi-similar, this gives

Ann(X/Mα
1 ) = Ann(X/Mα

2 ),

and hence
Mα

1 = Mα
2 , α ∈ Λ.

This implies that Me
1 ⊃ Me

2 . The same reasoning shows that Me
2 ⊃ Me

1 , and
hence we have Me

1 = Me
2 .

In particular, if M1 and M2 are AF-cosubmodules, then clearly M1 = M2.
This completes the proof of the theorem.

By Theorem 3.2.1 and the proof of Example 3.1.13, we immediately get the
following.

Corollary 3.2.2 Let I1 and I2 be ideals of polynomials such that each alge-
braic component of their zero varieties meets Ω nontrivially. If X/[I1] and
X/[I2] are quasi-similar, then I1 = I2.

For the analytic Hilbert module X, we define the multiplier ring M(Ω) of
X by

M(Ω) = {f ∈ Hol(Ω) : f x ∈ X, ∀x ∈ X}.
It is easily checked that

X ⊇ M(Ω) ⊇ A(Ω) ⊇ C.

Theorem 3.2.3 Let M1 and M2 be two M(Ω)-submodules of X generated by
multipliers. If X/M1 and X/M2 are quasi-similar over M(Ω), then M1 = M2.
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Proof. By quasi-similarity, the equality Ann(X/M1) = Ann(X/M2) is im-
mediate, where Ann(X/Mi) denote annihilator of X/Mi, that is,

Ann(X/Mi) = {f ∈ M(Ω) : f · x̃ = 0, ∀x̃ ∈ X/Mi}, i = 1, 2.

By the assumption it follows easily that

M1 = [Ann(X/M1)] = [Ann(X/M2)] = M2.

The proof is thus completed.

Let M1 and M2 be two submodules of H2(Dn). Douglas and Foias [DF]
proved that H2(Dn)/M1 and H2(Dn)/M2 are unitarily equivalent only if M1

and M2 are equal. The techniques used in the proof of this result are strictly
restricted to the polydisk since they depend on the fact that the coordinate
functions are inner, which implies that the operators defined by the coordinate
multipliers are isometries. Up to similarity or quasi-similarity, uniqueness of
Hardy-quotient module remains unknown. Moreover, although there exist a
lot of inner functions in the unit ball Bn of Cn [Ru4], it is never obvious to
extend Douglas-Foias’s result to H2(Bn).

Below we present Douglas and Foias’s result.

Theorem 3.2.4 (Douglas-Foias) Let M1 and M2 be submodules of H2(Dn).
Then H2/M1 and H2/M2 are unitarily equivalent only if M1 = M2.

Proof. For a submodule M of H2, we identify H2/M with H2 ªM . Then
the action of the ring C on H2 ªM is given by

p · h = PH2ªMph,

where PH2ªM is the orthogonal projection from H2 onto H2 ªM .
Set

N1 = H2 ªM1, N2 = H2 ªM2.

We let V : N1 → N2 be a unitary equivalence. To obtain the desired result
we will proceed by induction on n recalling first the proof for the case n = 1.
If we set K1 = ∨mzmN1, then we can extend V to K1 by defining

V ′(
∑

zmhm) =
∑

zmV (hm).

This is the fundamental construction [NF]. It is clear that V ′ takes K1 onto
K2, the corresponding space defined using N2, and both K1 and K2 are re-
ducing subspaces for Mz since

M∗
z (

∑
zmhm) = M∗

z h0 +
∑

zmhm+1,

which is in K1 because M∗
z h0 is in N1 ⊂ K1. The analogous argument holds

for K2. Moreover, it follows that V ′ is a unitary operator on H2(D) which
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extends V . Finally, since

(V ′Mz)Mm
z h = V ′Mm+1

z h = Mm+1
z V h

= Mz(Mm
z V h) = (MzV

′)Mm
z h

for h in N1, we see that
V ′Mz = MzV

′

and hence V ′ = µ I for a complex number µ, |µ| = 1, and M1 = M2.

Now suppose n = 2 and we have extended V to V ′ , a unitary operator
from K1 onto K2. This time K1 and K2 need not be all of H2(D2). Again K1

and K2 are reducing subspaces for Mz. Moreover, K1 and K2 are invariant
subspaces for M∗

w. This follows for K1 because

M∗
w(

∑
Mm

z hm) =
∑

Mm
z M∗

whm

is in K1 since MzM
∗
w = M∗

wMz and N1 is invariant for M∗
w. The proof for K2

is the same. We now repeat the previous construction to extend V ′ : K1 → K2

to a unitary operator V ′′ on H2(D2) by setting

V ′′(
∑

Mm
w hm) =

∑
Mm

w V ′hm

for {hm} ⊂ K1 for m = 0, 1, · · · .

Since ∨Mm
w K1 and ∨Mm

w K2 are reducing subspaces for both Mz and Mw,
it follows that each is equal to H2(D2). That V ′′ extends V is obvious. Finally
we have

(V ′′Mw)Mm
w h = V ′′Mm+1

w h = Mm+1
w V ′h

= Mw(Mm
w V ′h) = (MwV ′′)Mm

w h

and

(V ′′Mz)Mm
w h = V ′′Mm

w Mzh = Mm
w V ′Mzh

= Mm
w MzV

′h = MzM
m
w V ′h = (MzV

′′)Mm
w h

for h in K1. Therefore, we see that V ′′ commutes with both Mz and Mw,
which implies that V ′′ = µ I for some complex number µ with |µ| = 1, and
that M1 = M2. This completes the proof for the case n = 2.

The preceding is the induction step necessary to establish the result for
all n. To see that, suppose V has been extended to V (k) from the re-
ducing subspaces for k-tuple {Mz1 ,Mz2 , · · · , Mzk

} generated by N1 to the
corresponding space generated by N2. Then we repeat the above construc-
tion to obtain V (k+1), where the k-tuple {Mz1 ,Mz2 , · · · , Mzk

} is replaced by
{Mz1 , Mz2 , · · · ,Mzk

,Mzk+1}. This proves the theorem.
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3.3 Rigidity for Hardy submodules on the polydisk

In the preceding sections, we studied rigidity of general analytic submod-
ules. In this section we will concentrate attention on the case of Hardy sub-
modules on the polydisk. As we have previously seen, rigidity depends heavily
on properties of zero varieties. When zero varieties meet domains nontrivially,
then the problem can be solved by using characteristic space theory. However,
when the common “zeros” of submodules lie on boundary of domain, the prob-
lem becomes quite complex. Results in this section are restricted to Hardy
submodules on the polydisk. By the same reasoning, the results are also valid
for Hardy submodules on the ball. However, for general domains, the diffi-
culty lies with the lack of corresponding results on the boundary behavior for
analytic functions.

First we begin with the following observation. By the Beurling theorem,
each nontrivial submodule M of the Hardy module H2(D) has a unique rep-
resentation

M = ηBH2(D) = ηH2(D) ∩BH2(D),

where η is the singular inner function and B the Blaschke product. The “ze-
ros” of the submodule lying on the boundary T depend on the singular com-
ponent ηH2(D). From [Gar] or [Hof], we see that the singular inner function
η is determined by a singular measure ση on T. Although higher dimensional
Hardy submodules have no Beurling form, we can define the relevant analogue
of the singular component of submodules.

Let N(Dn) denote the Nevanlinna class defined in [Ru1]. Then for each
f ∈ N(Dn), f has radial limits f∗ on Tn a.e. Moreover, there is a real
singular measure dσf on Tn determined by f such that the least harmonic
majorant u(f) of log |f | is given by

u(f) = Pz(log |f∗|+ dσf ),

where Pz denotes Poisson integration. Use N∗(Dn) to denote the class of
all f ∈ N(Dn) for which the functions log+ |fr| form a uniformly integrable
family. Therefore

Hp(Dn) ⊂ N∗(Dn)

for any p > 0. Furthermore, by [Ru1, Theorem 3.3.5],

N∗(Dn) = {f ∈ N(Dn) : dσf ≤ 0}.

For M a submodule of H2(Dn), let Z∂(M) be the singular component of
M on Tn, defined by

Z∂(M) = inf{−dσf : f ∈ M, f 6= 0}.
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As shown by Douglas and Yan [DY1], the singular component Z∂ is directly
related to rigidity of Hardy submodules.

We recall that a submodule M of H2(Dn) satisfies the condition (?), if

(1) h2n−2(Z(M)) = 0 and

(2) Z∂(M) = 0.

Remark 3.3.1 From [Ru1, Theorem 3.3.6], we see that for a function
f ∈ H2(Dn), dσf = 0 if and only if for almost all w ∈ Tn, the inner fac-
tor of the slice function fw(z) = f(zw) is a Blaschke product. Hence if there
is such a function in M , then Z∂(M) = 0. In particular, if M ∩ A(Dn) 6= ∅,
then Z∂(M) = 0, where A(Dn) is the polydisk algebra.

We can now state Douglas and Yan’s technical result [DY1], whose proof can
be found in [DY1].

Theorem 3.3.2 (Douglas-Yan) If M satisfies the condition (1) in (?), and
φ ∈ L∞(Tn), then φM ⊆ H2(Dn) if and only if φ ∈ N(Dn) ∩ L∞(Tn) and
dσφ ≤ Z∂(M). Moreover, if M satisfies (?), then φM ⊆ H2(Dn) if and only
if φ ∈ H∞(Dn).

Before giving applications of Theorem 3.3.2, we need a lemma.

Lemma 3.3.3 If M1 and M2 are submodules of H2(Dn) and A : M1 → M2 is
a module map, then there exists a function φ ∈ L∞(Tn) such that A(h) = φh.

Proof. Set

D = {η̄h : η are inner functions and h ∈ M1}.
It is easy to check that D is a dense linear subspace of L2(Tn). We define a
map

Â : D → L2(Tn)

by
Â(η̄h) = η̄A(h).

Since A is a module map, the definition is well defined. From the relation

‖Â(η̄h)‖ = ‖A(h)‖ ≤ ‖A‖‖η̄h‖,
we can extend Â to a bounded map from L2(Tn) to L2(Tn). Also, we denote
this extension by Â. It is obvious that Â satisfies

ÂMg = MgÂ

for any g ∈ L∞(Tn), and hence there exists a function φ ∈ L∞(Tn) such that

Â = Mφ.

This ensures that A(h) = φh for any h ∈ M1.

As direct consequences of Theorem 3.3.2, Douglas and Yan [DY1] obtained
the following.
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Corollary 3.3.4 If M and N are quasi-similar and M satisfies (?), then
N ⊆ M . Furthermore, If M and N satisfy (?), then M and N are quasi-
similar only if M = N.

Proof. Since M and N are quasi-similar, there exists a function φ ∈ L∞(Tn)
such that φM is dense in N . By Theorem 3.3.2, φ ∈ H∞(Dn). It follows that

N = φM ⊆ M.

The remaining case is obvious.

Corollary 3.3.5 Let M, N be submodules of H2(Dn) satisfying

(1) h2n−2(Z(M)) = h2n−2(Z(N)) = 0;

(2) Z∂(M) = Z∂(N).

If M and N are quasi-similar, then M = N .

Proof. From Theorem 3.3.2, there exists a function φ in N(Dn) ∩ L∞(Tn)
such that φM is dense in N . For any f ∈ M , φf = g in N , and hence we
have

dσφ + dσf = dσg,

that is,
dσφ + (−dσg) = −dσf .

It follows easily that
dσφ + Z∂(N) ≤ Z∂(M).

This implies that dσφ ≤ 0. From [Ru1, Theorem 3.3.5], it follows that

log |φ(z)| ≤ Pz(log |φ∗|).

This yields φ ∈ H∞(Dn). Thus,

N = φM ⊆ M.

Using the same reasoning we conclude M ⊆ N , and hence M = N , completing
the proof.

From Corollary 3.3.4, one sees that when M satisfies (?), each submodule
which is quasi-similar to M is necessarily contained in M . Hence before
continuing we will introduce some concepts for submodules. Let M be a
submodule of H2(Dn). We recall that

(1) M is podal if each submodule that is unitarily equivalent to M is a
submodule of M ;

(2) M is s-podal if each submodule that is similar to M is a submodule of
M ;
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(3) M is quasi-podal if each submodule that is quasi-similar to M is a
submodule of M .

By the definitions, podal submodule, s-podal submodule and quasi-podal
submodule are the maximum in their unitary orbit, similarity orbit and quasi-
similarity orbit, respectively. The reader easily verifies that the following
inclusions are true:

{all quasi-podals} ⊂ {all s-podals} ⊂ {all podals}.

Now by Corollary 3.3.4, one sees that if M satisfies (?), then M is quasi-podal,
that is, M is the maximum in its quasi-similarity orbit. Although each podal
submodule M is the maximum in its unitary orbit orbu(M), the next example
will show that not every unitary orbit has the maximum.

Example 3.3.6 Considering the Hardy module H2(D2), it is easy to verify
that the submodules [z + 1

2w] and [w + 1
2z] are unitarily equivalent because

|z +
1
2
w| = |w +

1
2
z|

on T2. Assume that there is the podal submodule M in the unitary orbit
orbu([z + 1

2w]). Then

[z +
1
2
w] ⊆ M and [w +

1
2
z] ⊆ M

and therefore the functions z and w are in M. Thus,

M ⊇ M0.

where M0 = {f ∈ H2(D2) : f(0, 0) = 0}. This means that M = M0, or
M = H2(D2). Note that rank([z + 1

2w]) = 1, but rank(M0) = 2. This implies
that M 6= M0. Since both [z + 1

2w] and H2(D2) are homogeneous principal
submodules, by Theorem 2 in [Yan1] or Corollary 4.2.7 in Chapter 4, we see
that [z+ 1

2w] and H2(D2) are not unitarily equivalent, and hence M 6= H2(D2).
This shows that the unitary orbit orbu([z + 1

2w]) has no maximum. Notice the
inclusion

orbu([z +
1
2
w]) ⊂ orbs([z +

1
2
w]),

where orbs denotes the similarity orbit. This example also shows that the
inclusion is strict because H2(D2) is the s-podal point in orbs([z + 1

2w]).

Proposition 3.3.7 Let M be a submodule of H2(Dn), and φ ∈ L∞(Tn). If
φM ⊆ M , then φ ∈ H∞(Dn).

Proof. By using an idea of Schneider [Sch], as done in the proof of Proposition
3 in [ACD], one can show that φ ∈ H∞(Dn). Here we give a proof that is
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slightly different to that. First we may assume |φ| ≤ 1 and pick a nonzero
f ∈ M . For every natural number k, set gk = φkf. Then we extend φk to
those z in Dn where f(z) 6= 0 by defining

φk(z) = gk(z)/f(z).

Since
gk+1/gk = gk/gk−1 = · · · = g2/g1 = g1/f = φ,

this implies that for any z /∈ Z(f),

φk(z) = (φ1(z))k.

Since
(φkf)(z) = φk(z)f(z) = Pz[φkf ]

for z /∈ Z(f), one sees that

|(φ1(z))kf(z)| ≤ Pz[|φkf |] ≤ Pz[|f |]
for each natural number k. This implies that |φ1(z)| ≤ 1 for each z /∈ Z(f).
Now the fact that φ(z) = φ1(z) is analytic in Dn follows from Hartogs’ the-
orem, and hence φ is a bounded analytic function in Dn. The proof is com-
pleted.

Applying Proposition 3.3.7, we can modify an example given in [DY1] to
show that not every quasi-similarity orbit has a quasi-podal point.

Example 3.3.8 From [Ru3], there exist two functions f, g in H2(D2) such
that

(1) |f | = |g| a.e. on T2;

(2) f/g is not the quotient of two H∞ functions.

Then, obviously, [f ] and [g] are quasi-similar. However, there exists no maxi-
mum in the quasi-similarity orbit orbq([f ]). If there were one, say M , then M
is principal. This means that there is a function h ∈ H2(D2) such that M =
[h]. Now applying Proposition 3.3.7, there exist functions φ1; φ2 ∈ H∞(D2)
such that

φ1[h] = [φ1h] = [f ] and φ2[h] = [φ2h] = [g].

Since
φ2[φ1h] = φ2[f ] and φ1[φ2h] = φ1[g],

this gives
[φ1φ2h] = [φ2f ] = [φ1g].

Then by Proposition 4.4.1 in Chapter 4, or [Yan1], there is a Nevanlinna class
function r without zeros in D2 such that

φ2f = φ1g r.
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Because 1
r φ2f = φ1g this shows that 1/r is in the Nevanlinna class. Since

r 1
r = 1, this means that

dσr ≤ 0 or dσ 1
r
≤ 0.

Therefore we may assume dσr ≤ 0. Now combining the equalities |f | = |g|,
φ2f = φ1gr and Proposition 2 in [DY1] give that φ1r is in H∞. This thus
implies that f/g is the quotient of two H∞ functions. This contradiction
shows that the quasi-similarity orbit orbq([f ]) has no maximum, that is, there
exists no quasi-podal submodule in orbq([f ]).

Before going on, recall that a function f in the Hardy module H2(D) is outer
if and only if |g| ≤ |f | a.e. on T, then f |g, that is, there exists a function
h ∈ H2(D) such that g = fh. Equivalently, f is outer if and only if for any
φ ∈ L∞(T), the relation φf ∈ H2(D) implies φ ∈ H∞(D). Motivated by this
observation, we say that a function f ∈ H2(Dn) is quasi-outer if |g| ≤ |f | a.e.
on Tn, then f |g, that is, there exists a function h ∈ H2(Dn) such that g = fh.
Then by the definition, f is quasi-outer if and only if for any φ ∈ L∞(Tn),
the relation φf ∈ H2(Dn) implies φ ∈ H∞(D).

This is different from the concept of outer function in the sense of Rudin
[Ru1]. A function f is outer in the sense of Rudin if

log |f(z)| = Pz[log |f |]

for some z ∈ Dn and hence for all z ∈ Dn (we call it R-outer). For conve-
nience, we say that a function f ∈ H2(Dn) is outer separately if for each i,
f(z1, · · · , zi−1, z, zi+1, · · · , zn) is outer in H2(D) for a. e. fixed

(z1, · · · , zi−1, zi+1, · · · , zn) ∈ Tn−1.

Obviously, in the case of n = 1, these concepts are identical. In the case
of n > 1, from the proof of Theorem 2 in [Izu], one sees that every R-outer
function is outer separately. In fact, R-outer functions are actually a sub-class
of separately outer functions; for example, z + w is outer separately, but not
R-outer. More general, by Sarason [Sar], for two inner functions η1, η2 in the
unit disk, η1(z) + η2(w) is outer separately, but, in general, not R-outer.

The following proposition says that if a function is outer separately, then it
necessarily is quasi-outer.

Proposition 3.3.9 Let f in H2(Dn) be outer separately. Then f is quasi-
outer.

Proof. For simplicity, we only prove the case in two variables. Let φ ∈
L∞(T2) such that φf ∈ H2(D2). For a. e. fixed w ∈ T, since f(·, w) is outer
in H2(D) and φ(·, w)f(·, w) ∈ H2(D), it follows that φ(·, w) is in H∞(D).
By the same argument, for a. e. fixed z ∈ T, φ(z, ·) is in H∞(D). Therefore,
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for any z̄nwm (n > 0) and w̄nzm (n > 0),

〈φ, z̄nwm〉 =
1

(2π)2

∫∫

T2
φznw̄mdθ1dθ2

=
1

(2π)2

∫

T
w̄mdθ2

∫

T
φ(z, w)zndθ1

= 0

and

〈φ, w̄nzm〉 =
1

(2π)2

∫∫

T2
φwnz̄mdθ1dθ2

=
1

(2π)2

∫

T
z̄mdθ1

∫

T
φ(z, w)wndθ2

= 0.

It follows that φ ∈ H2(D2) and hence φ ∈ H∞(D2). This shows that f is
quasi-outer, completing the proof.

Proposition 3.3.10 Let p be a polynomial in two variables. Then p is outer
separately if and only if Z(p) ∩ (D× T ∪ T× D) = ∅.
Proof. In fact, if the condition is satisfied by p, then obviously p is outer
separately. Now assume that p is outer separately. If there is some point
(z0, w0) ∈ D× T such that p(z0, w0) = 0, by slightly perturbing w0 on T and
using the continuous dependence of the roots on the coefficients, one deduces
that for each w near w0, there exists z ∈ D such that p(z, w) = 0. This shows
that p is not outer separately. Therefore,

Z(p) ∩ D× T = ∅.
The same reasoning shows that

Z(p) ∩ T× D = ∅.
This completes the proof.

Below we will see that quasi-outer functions play an important role in the
study of rigidity of Hardy submodules.

Theorem 3.3.11 Assume that a submodule M satisfies the condition (?).
Then the submodule [fM ] is quasi-podal if and only if f is quasi-outer.

Proof. First assume that f is quasi-outer, and a submodule N is quasi-
similar to [fM ]. Then there exists a function φ ∈ L∞(Tn) such that φ[fM ]
is dense in N . Then by Theorem 3.3.2, φf ∈ H2(Dn). Thus, φ ∈ H∞(Dn).
This ensures that N is a submodule of [fM ]. We thus conclude that if f is
quasi-outer, then [fM ] is quasi-podal.
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Now let [fM ] be quasi-podal, and φ ∈ L∞(Tn) such that φf ∈ H2(Dn).
Our aim is to prove that φ is in H∞(Dn). We may assume that 1 ≤ |φ| on
Tn; otherwise, we replace φ by φ adding a large positive constant. One can
thus establish a quasi-similarity:

Mφ : [fM ] → [φfM ]; Y : Mφ−1 : [φfM ] → [fM ].

Since [fM ] is quasi-podal, we see that

φ[fM ] ⊆ [fM ].

Applying Proposition 3.3.7 gives that φ is in H∞(Dn). This proves that f is
quasi-outer.

Corollary 3.3.12 A principal submodule [f ] is quasi-podal if and only if f
is quasi-outer.

Combining Theorem 3.3.11 with Corollary 3.1.12, we have the following.

Corollary 3.3.13 Let I be an ideal of polynomials and I = pL be its Beurling
form. Then [I] is quasi-podal if and only if p is quasi-outer. In particular, if
GCD(I) = 1, then [I] is quasi-podal.

Corollary 3.3.14 Let polynomial p be quasi-outer, and let the zero variety of
each prime factor of p meet Dn nontrivially. If [p] and [q] are quasi-similar,
then p|q. Furthermore, if the polynomial q also satisfies these conditions, then
there exists a constant c such that p = cq.

Similar to the proof of Theorem 3.3.11, we have the following.

Proposition 3.3.15 Let M be a submodule of H2(Dn). If M contains a
quasi-outer function, then M is quasi-podal.

Before ending this section, we will look at the connection between Hankel
operators and s-podal submodules. For φ ∈ L∞(Tn), the Hankel operator
Hφ : H2(Dn) → L2(Tn)ªH2(Dn) with symbol φ is defined by

Hφf = (I − P )φf, ∀f ∈ H2(Dn),

where P is the orthogonal projection from L2(Tn) onto H2(Dn). It is easy to
see that the kernel, kerHφ, of Hφ is a submodule. By the Beurling theorem
[Beu], each submodule of H2(D) is a kernel of some Hankel operator. However,
in the case of n > 1, there is a submodule that is not contained in the kernel
of any Hankel operator. An example is to pick the s-podal submodule M =
[z +w], then M is not contained in the kernel of any Hankel operator. In fact,
if there exists some Hankel operator Hφ such that M ⊆ kerHφ, then

φ(z + w) ∈ H2(D2).
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Since z + w is quasi-outer, φ is in the H∞(D2), and hence Hφ = 0. This
means that the s-podal submodule [z + w] is not contained in the kernel of
any Hankel operator.

This example, in fact, gives a general conclusion.

Proposition 3.3.16 Let M be a submodule. Then M is s-podal if and only
if M is not contained in the kernel of any Hankel operator.

Proof. Assume that M is s-podal, and M ⊂ kerHφ. We may suppose that
|φ| ≥ 1 on Tn; otherwise, we replace φ by φ adding a large positive constant.
Then φM is similar to M . Since M is s-podal, φM ⊆ M. Applying Proposi-
tion 3.3.7 gives φ ∈ H∞(Dn), and hence Hφ = 0. Thus, M is not contained
in the kernel of any Hankel operator.

To prove the opposite direction we may assume that M is not contained in
the kernel of any Hankel operator, and a submodule N is similar to M . Then
there exists an invertible function φ ∈ L∞(Tn) such that N = φM . This
deduces that M ⊂ kerHφ, and hence Hφ = 0. Therefore, φ is in H∞(Dn).
We thus obtain that N ⊂ M . This shows that M is s-podal.

Corollary 3.3.17 Let M = kerHφ. If the similarity orbit orbs(M) of M
contains the s-podal point N , then N = H2(Dn).

Proof. Let N be the s-podal point in the orbs(M). Then there is an invertible
function ψ in L∞(Tn) such that M = ψN . Since M ⊂ N , using Proposition
3.3.7 gives ψ ∈ H∞(Dn). Note that N = ker Hφψ. By Proposition 3.3.16, we
see that φψ ∈ H∞(Dn). The relation φψ ∈ H∞(Dn) implies that ψ ∈ kerHφ,
that is, ψ ∈ M . This ensures 1 ∈ N , and hence N = H2(Dn).

The next example shows that not each similarity orbit has the maximum.

Example 3.3.18 Let f ; g be as in Example 3.3.8, that is, |f | = |g| a.e. on
T2, and f/g is not the quotient of two H∞ functions. Take M = kerHf/g.
Then orbs(M) contains no s-podal point. If there is the s-podal point N in
orbs(M), then by Corollary 3.3.17, N = H2(D2). Since M is similar to
H2(D2), there is a function φ ∈ L∞(Tn) such that M = φH2(D2), and hence
φ ∈ M. Thus,

f

g
φ ∈ H∞(D2).

This contradicts the fact that f/g is not the quotient of two H∞ functions.
Therefore, orbs(M) contains no s-podal point. By a similar reason, one sees
that orbu(M) contains no podal point.
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3.4 Rigidity for Bergman modules

Let Ω be a bounded domain in Cn. Recall that the Hilbert space L2(Ω)
consists of all square integrable functions on Ω with respect to the volume
measure. The Bergman module L2

a(Ω) on Ω is the closed subspace of L2(Ω)
which is spanned by all square integrable analytic functions.

For a bounded domain Ω on the complex plane, Richter proved that two
submodules of the Bergman module L2

a(Ω) are unitarily equivalent only if
they are equal (in fact, Richter proved a stronger conclusion than stated here
[Ri1]). Putinar proved an analogue of this result in the case of bounded
pseudoconvex domains in Cn [Pu2]. In fact, this result is easily generalized
to general bounded domains in Cn.

Theorem 3.4.1 Let M1 and M2 be two submodules of L2
a(Ω). Then M1 is

unitarily equivalent to M2 only if M1 = M2.

Proof. Let U : M1 → M2 be a unitary equivalence. Suppose f ∈ M1. We
have to show that f ∈ M2. This will imply that M1 ⊂ M2. By symmetry we
shall then have proved that M1 = M2.

We may assume that f 6= 0. Set g = Uf. Then we have that

‖qf‖2 = ‖qg‖2
for any polynomial q, and it follows that

∫

Ω

|q(z)|2(|f(z)|2 − |g(z)|2)dv(z) = 0.

By the equality

pq̄ =
1
2
(|p + q|2 + i|p + iq|2 − (i + 1)|p|2 − (i + 1)|q|2)

we get ∫

Ω

p(z)q(z)(|f(z)|2 − |g(z)|2)dv(z) = 0

for any polynomials p and q. Note that (|f(z)|2 − |g(z)|2)dv(z) is a regular
Borel measure on Ω, and it annihilates p(z)q(z) for any polynomials p and q.
It follows from the Stone-Weierstrass theorem that it annihilates C(Ω), the
algebra of all continuous functions on Ω. Now applying the Riesz Represen-
tation theorem gives that

(|f(z)|2 − |g(z)|2)dv(z) = 0,

and thus f(z) = γg(z) for some constant γ with |γ| = 1. This gives the desired
result.
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From Theorem 3.4.1, one sees that there is not a multiplier φ of L2
a(Ω)

such that M∗
φMφ = I (except constants). Indeed, if there is a multiplier φ

satisfying the condition mentioned above, then it is easy to see that φL2
a(Ω)

and La(Ω) are unitarily equivalent, and hence L2
a(Ω) = φL2

a(Ω). From this it
is easy to deduce that φ is an invertible function in H∞(Ω). By the condition
mentioned above we have the equality M∗

φ = Mφ−1 , and hence

φ(λ)Kλ = M∗
φKλ = Mφ−1Kλ = φ−1Kλ

for each λ ∈ Ω, where Kλ is the reproducing kernel of L2
a(Ω). The above

equality ensures that φ is a constant. However, in the case of the Hardy space
H2(Bn) we have M∗

η Mη = I for each inner function η.

In fact, for the Bergman space L2
a(Ω), we have a more general conclusion.

Proposition 3.4.2 If φ1, φ2, · · · is a finite or infinite sequence of multipliers
of L2

a(Ω) satisfying

M∗
φ1

Mφ1 + M∗
φ2

Mφ2 + · · · = I,

then each φk is a scalar constant.

Proof. For each λ ∈ Ω, we have (φk − φk(λ))kλ ⊥ φk(λ)kλ for all k, where
kλ = Kλ/‖Kλ‖ is the normalized reproducing kernel of L2

a(Ω). Consequently,

‖Mφk
kλ‖2 = ‖(φk − φk(λ))kλ‖2 + |φk(λ)|2 ≥ |φk(λ)|2.

We thus conclude that
∑

k

|φk(λ)|2 ≤
∑

k

‖Mφk
kλ‖2 = 1.

By the assumption we have

〈1, 1〉 =
∫

Ω

dV =
∑

k

〈M∗
φk

Mφk
1, 1〉 =

∫

Ω

∑

k

|φk(z)|2 dV,

and hence ∫

Ω

(1−
∑

k

|φk(z)|2)dV = 0.

The preceding reasoning implies that
∑

k |φk(z)|2 = 1 for each z ∈ Ω. Thus,
for i = 1, · · · , n we have

∂2|φ1(z)|2
∂zi∂z̄i

+
∂2|φ2(z)|2

∂zi∂z̄i
+ · · · = |∂φ1(z)

∂zi
|2 + |∂φ2(z)

∂zi
|2 + · · · = 0

for z ∈ Ω. This means that each φk is a scalar constant on Ω, completing the
proof.
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This proposition is sharp in some sense. To show this we consider the Hardy
space H2(Bn), as one knows, on this space,

M∗
z1

Mz1 + · · ·+ M∗
zi

Mzi + · · ·+ M∗
zn

Mzn = I.

In general, characterizing the similarity of submodules seems a little diffi-
cult. Now we proceed in the case of the classical Bergman module L2

a(D). Let
M be a submodule of L2

a(D). If M contains a Nevanlinna function, then from
Theorem 13 [Zhu3], M is generated by an inner function. This means that
there is an inner function ψ such that

M = ψH∞(D).

Now we assume that M contains a Nevanlinna function, and N is a sub-
module that is contained in M .

Proposition 3.4.3 If M and N are similar, then under the above assump-
tion, there exists an inner function η such that N = ηM .

Proof. Let A : M → N be a similarity. Note that there is an inner function
ψ such that

M = ψH∞(D).

Set G = Aψ. Then it is easy to see that

Af =
G

ψ
f, for all f ∈ M.

Set G′ = G/ψ. Then
N = G′M.

For λ ∈ D, we denote the reproducing kernel of M at λ by K
(M)
λ , and the

normalized reproducing kernel by k
(M)
λ . For λ /∈ Z(ψ), Since

〈G′k(M)
λ , k

(M)
λ 〉 = G′(λ),

we get
|G′(λ)| ≤ ‖A‖.

This implies that G′ is analytic and bounded on D. We decompose G′ = ηF ,
where η is the inner part of G′, and F , the outer part of G′. It follows that
there exists a positive constant µ such that

µ‖f‖ ≤ ‖G′f‖ ≤ ‖Ff‖ for every f ∈ M.

This says that the multiplication operator MF is bounded below on M , and
hence the space FM is closed. Since F is outer, there exists a sequence of
polynomials, {pn}, such that, in the norm of H2(D),

Fpn → 1, as n →∞.
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Also note that the inequality

‖f‖ ≤ ‖f‖′

for every f ∈ H2(D), where ‖ · ‖′ is the norm of H2(D). Therefore, in the
norm of L2

a(D),
Fpnψf → ψf, as n →∞,

for each f ∈ H∞(D). Thus,
FM = M.

From this it is easy to derive that F is an invertible function in H∞(D). The
above discussion gives that

N = ηM.

Combining Proposition 3.4.3 and Proposition 22 in [MSu], we can deduce
the following result which first appeared in [Bou].

Corollary 3.4.4 Let M be a submodule of L2
a(D). Then M is similar to

L2
a(D) if and only if there exists the product of finitely many interpolating

Blaschke products, B, such that M = BL2
a(D).

3.5 Remarks on Chapter 3

“Rigidity phenomenon” appear in the study for analytic Hilbert modules
in several variables. From an analytic point of view, appearance of these phe-
nomenon is natural because of the Hartogs phenomenon in several variables.
From an algebraic point of view, the reason may be that the submodules are
not singly generated.

Two earlier results on inequivalent submodules of the higher dimensional
Hardy module appeared in [BCL] and [Ha2]. Agrawal, Clark and Douglas
introduced the notion of unitary equivalence of Hardy submodules [ACD] and
made a deep investigation. There is an extensive literature on “rigidity”; cf.
[AS, CD1, CDo2, Dou, DP, DPSY, DPY, DY1, Guo1, Guo2, Guo4, Guo8,
HG, HKZ, Pu2, Yan2].

Section 3.1 is mainly based on Guo’s paper [Guo1], except Theorem 3.1.11
and Corollary 3.1.12. Theorem 3.1.11 is due to K. Y. Guo (an unpublished
result). Corollary 3.1.12 was proved in [Guo8]. Concerning Example 3.1.13, it
was first obtained by Douglas, Paulsen, Sah and Yan [DPSY], where its proof
is based on the characteristic space theory (see [Guo1]).

Theorem 3.2.1, Corollary 3.2.2 and Theorem 3.2.3 are all from [Guo1]. For
Theorem 3.2.3, Yang proved the case of the Hardy module over the polydisk
[Ya5]. Theorem 3.2.4, including its proof, comes from [DF].
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Theorem 3.3.2, Corollary 3.3.4 and Corollary 3.3.5 appeared first in [DY1].
For Lemma 3.3.3 and Proposition 3.3.7, there are several different proofs; here,
the proofs are given by us. Example 3.3.6 is due to Guo [Guo8]. Proposition
3.3.9 appeared in [Guo1]. Proposition 3.3.10 seems to be new. Theorem 3.3.11
and Corollaries 3.3.12, 3.3.13 and 3.3.14 were obtained in [Guo8]. In [Guo8],
Propositions 3.3.15, 3.3.16 and Corollary 3.3.17 were also proved. Example
3.3.8 (Example 3.3.18) is a modification of an example given in [DY1] to show
that not each quasi-similarity (similarity) orbit contains the maximum.

In the case of domains in the complex plane, Theorem 3.4.1 is a special case
of the rigidity theorem by Richter [Ri1]. In the case of bounded pseudoconvex
domains, this theorem appeared in [Pu2]. A more general rigidity theorem
for Bergman submodules was proved in [GHX]. Proposition 3.4.2 is a special
case of a general result in [GHX]. Although Proposition 3.4.3 is new, its
proof comes essentially from [Bou]. Corollary 3.4.4 was given in [Bou]. For
a different proof of Corollary 3.4.4, see [Zhu2]. We refer the reader to [Zhu1]
for operator theory in function spaces.
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Chapter 4

Equivalence of Hardy submodules

In this chapter we will give a complete classification under unitary equivalence
for Hardy submodules on the polydisk which are generated by polynomials.
Furthermore, we consider classification under similarity for homogeneous sub-
modules. We note that the techniques used for the polydisk are also available
for the ball. This chapter is mainly based on Guo’s paper [Guo2].

Hastings’s example shows that the submodule [z + w] is not quasi-similar
H2(D2) [Ha2]. Therefore, deciding when the principal ideals {p} = pC and
{q} = qC give equivalent submodules must involve more analysis since all
principal ideals are isomorphic as modules. Douglas, Paulsen and Yan also
point out that the equivalence problem is, in general, quite difficult [DPY].

Let us recall Yan’s work [Yan1]. Let p; q be two homogeneous polynomials.
Yan proved that [p]; [q], as the submodules of H2(Dn), are unitarily equivalent
if and only if there exists a constant c such that |p| = c|q| on Tn; similar if
and only if the quotient |p|/|q| is bounded above and below on Tn. While in
the case of the unit ball Bn, Chen and Douglas [CD1] proved that [p] and [q]
are quasi-similar only if p = cq for some constant c. From the fact mentioned
above one finds that the classification of submodules depends heavily on the
geometric properties of domains.

To exhibit main results let us begin with preliminaries associated with func-
tion theory in polydisks.

4.1 Preliminaries

The Nevanlinna class N(Dn) consists of all f ∈ Hol(Dn) that satisfy the
growth condition

sup
0<r<1

∫

Tn

log+ |fr|dmn < ∞,

where, as usual, fr(w) = f(rw) for w ∈ Tn. That is, the functions log+ |fr|
are required to lie in a bounded subset of L1(Tn). Recall that the function
log+ x = log x if x ≥ 1, and log+ x = 0 if x < 1.

The Smirnov class N∗(Dn) consists of all f ∈ N(Dn) for which the functions
log+ |fr| form a uniformly integrable family. This means that each ε > 0
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should correspond with a δ > 0 such that mn(E) < δ implies

sup
0<r<1

∫

E

log+ |fr|dmn < ε.

As shown by [Ru1], for each f ∈ N(Dn) and f 6= 0, log |f | has a least n-
harmonic majorant which will be denoted by u(f). From [Ru1, Theorem
3.3.5], every f in N(Dn) has radial limits f∗ defined on Tn a.e. Moreover,
there is a real singular measure σf on Tn determined by f such that the least
harmonic majorant u(f) is given by

u(f)(z) = Pz(log |f∗|+ dσf ),

where Pz denotes Poisson integration. In particular, f ∈ N∗(Dn) if and only
if

dσf ≤ 0.

Proposition 4.1.1 Let f ; g ∈ H2(Dn), and f 6= 0. If there is an analytic
function h such that f = gh, then h ∈ N(Dn). In particular, if g ∈ A(Dn),
then h ∈ N∗(Dn).

Proof. Since f, g ∈ H2(Dn), we see that log |fr| and log |gr| lie in a bounded
set in L1(Tn) for 0 < r < 1. From the equalities

log |fr| = log |gr|+ log |hr|,

one derives
| log |hr|| ≤ | log |fr||+ | log |gr||.

Thus,

sup
0<r<1

∫

Tn

| log |hr||dmn < ∞,

and therefore, h ∈ N(Dn).

When g ∈ A(Dn), then the slice function gw has no singular inner factor,
and hence from Theorem 3.3.6 [Ru1], we have that dσg = 0. Since

dσf = dσg + dσh,

this ensures that
dσh = dσf ≤ 0.

Applying Theorem 3.3.5 (2) in [Ru1], we see that h ∈ N∗(Dn). The proof is
complete.

Let f ∈ N∗(Dn). We say that f is R-outer (in Rudin’s sense) if

log |f(0)| =
∫

Tn

log |f∗|dmn.
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From the definition, f is R-outer if and only if

log |f(z)| = Pz(log |f∗|).

The importance of R-outer functions is based on the following proposition.

Proposition 4.1.2 Let f, g ∈ N∗(Dn), and g be R-outer. If |f | ≤ |g| a.e. on
Tn, then |f(z)| ≤ |g(z)| for each z ∈ Dn.

Proof. Applying inequalities

log |f(z)| ≤ u(f) ≤ Pz(log |f |)
≤ Pz(log |g|) = log |g(z)|,

the proposition follows.

Proposition 4.1.3 Let f ∈ A(Dn). If g is a cyclic vector in [f ], the submod-
ule of H2(Dn) generated by f , then there is R-outer functions r1 and r2 such
that

g = r1f, f = r2g.

Proof. Since the submodule [f ] is also generated by g, that is, [f ] = [g], then
by Theorem 2.3.3, there are analytic functions r1 and r2 such that

g = r1f, f = r2g.

By Proposition 4.1.1, r1 ∈ N∗(Dn). Defining the functional, ∆, on H2(Dn) by

∆(h) =
∫

Tn

log |h∗|dmn − log |h(0)|,

then
∆(hp) = ∆(h) + ∆(p) ≥ ∆(h)

for each polynomial p. If h ∈ [f ], then there exists a sequence {pm} of poly-
nomials such that h = lim fpm in the norm of H2(Dn). According to Lemma
4.4.5 in [Ru1], ∆ is upper semicontinuous on H2(Dn), and hence

∆(h) ≥ ∆(f)

for each h ∈ [f ]. Therefore,
∆(g) ≥ ∆(f).

The same reasoning shows
∆(f) ≥ ∆(g).

Therefore we get that
∆(f) = ∆(g).
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Note that
∆(g) = ∆(f) +

∫

Tn

log |r∗1 |dmn − log |r1(0)|.
This gives that

log |r1(0)| =
∫

Tn

log |r∗1 |dmn,

and hence r1 is R-outer.
Applying Proposition 4.1.1, we see that r2 ∈ N(Dn). From the equality

r1(z)r2(z) = 1 and the fact dσr1 = 0, one gets

dσr2 = 0,

and hence r2 ∈ N∗(Dn). Since r1 is R-outer, it is easy to derive that r2 is
R-outer from the equality r1r2 = 1.

The following theorem comes from [Guo2].

Theorem 4.1.4 Let f = p/q be a rational function on a domain Ω(⊂ Cn),
where p and q are without common factors. If f is analytic on Ω, then we
have Z(q) ∩ Ω = ∅.
Proof. In fact, if there is a λ ∈ Ω such that q(λ) = 0, then

p(λ) = f(λ)q(λ) = 0.

Let pmi
i be the primary factors of p with λ ∈ Z(pi), i = 1, 2, · · · , s. Then by

Theorem 2.1.1 and Theorem 3.1.11, we see

{p}e
λ = pm1

1 pm2
2 · · · pmi

i · · · pms
s C,

where {p} is the ideal of C generated by p, and {p}e
λ is the envelope of {p}

at λ. Let {p}λ and {fp}λ be the characteristic spaces of {p} and {fp} at λ,
respectively, where {fp} is the ideal of Hol(Dn) generated by fp. Since

{p}λ = {fq}λ ⊃ {q}λ,

we have
{p}e

λ ⊂ {q}e
λ.

Thus,
pm1
1 pm2

2 · · · pmi
i · · · pms

s C ⊂ qn1
1 qn2

2 · · · qni
i · · · qnt

t C,
where qni

i are the primary factors of q with λ ∈ Z(qi), i = 1, 2, · · · , t. Therefore
there exists a polynomial r such that

pm1
1 pm2

2 · · · pmi
i · · · pms

s = r qn1
1 qn2

2 · · · qni
i · · · qnt

t .

This is contradictory to our assumption. This completes the proof.

Let f ∈ Hol(Dn). For each w ∈ Tn, the slice function fw on D is defined
by fw(z) = f(zw), ∀z ∈ D.

The next theorem appeared in [Guo2]. It is a modification of Theorem 5.2.2
in Rudin’s book [Ru1].
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Theorem 4.1.5 Let f be in the Nevanlinna class on Dn, and let the slice
functions fw be rational (in one variable) for almost all w ∈ Tn. Then f is a
rational function (in n variables).

Proof. First of all, for a rational function r = p/q in one variable, we define
the degree of r to be the maximum of deg p, deg q, provided that the common
factors of p, q have first been cancelled. If for almost all w ∈ Tn, deg fw = 0,
it is easy to verify that f = c for some constant c. Thus, without a loss of
generality, we assume that there exist a subset E of Tn with mn(E) > 0 and
a natural number k such that deg fw = k for each w ∈ E. This means that
fw(z) is uniquely written as

fw(z) =
βk(w)zk + βk−1(w)zk−1 + · · ·+ β0(w)

αk(w)zk + αk−1(w)zk−1 + · · ·+ 1

for every w ∈ E. Let f =
∑∞

i=0 Fi be the homogeneous expansion of f . Hence
for every w ∈ E, the infinite system of linear equations

Fm(w) + Fm−1(w)x1 + · · ·+ Fm−k(w)xk = 0, (m > k)

has a unique solution (α1(w), α2(w), · · · , αk(w)). This uniqueness ensures
that the vectors

vm(w) = (Fm−1(w), · · · , Fm−k(w)), (m > k)

span all of Ck for each w ∈ E. Now let w0 ∈ E. It follows that there
exist vectors vm1(w0), vm2(w0), · · · , vmk

(w0) which are linearly independent.
Consider the determinant r(w) of these k vectors vm1(w), vm2(w), · · · , vmk

(w).
Then r(w) is a polynomial and r(w0) 6= 0. Notice that Z(r) ∩ Tn is a null-
measurable subset of Tn. If we write E′ for E − Z(r) ∩ Tn, then

mn(E′) = mn(E) > 0.

On E′, we can use the corresponding k equations

Fmt
(w) + Fmt−1(w)x1 + · · ·+ Fmt−k(w)xk = 0, (t = 1, 2, · · · , k),

to solve for the αi. By Cramer’s rule, there are rational functions h1, h2, · · · , hk,
whose denominators have no zero on E′, such that αi(w) = hi(w) for all
w ∈ E′, i = 1, 2, · · · , k. The equalities

h′i = Fi + Fi−1h1 + · · ·+ F0hi, (i = 0, 1, · · · , k),

then define rational functions h′0, h
′
1, · · · , h′k, whose denominators have no zero

on E′, such that

fw(z) = f(zw) =
h′0(w) + h′1(w)z + · · ·+ h′k(w)zk

1 + h1(w)z + · · ·+ hk(w)zk
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for w ∈ E′. Since f is in the Nevanlinna class, f(w) = limr→1 f(rw) exist for
almost all w ∈ Tn. It follows that there exists a subset E′′ of E′ such that
mn(E′′) > 0, and on E′′,

f(w)(1 + h1(w) + · · ·+ hk(w)) = h′0(w) + h′1(w) + · · ·+ h′k(w).

Since hi, h′j are rational functions for all i and j, we multiply the two sides of
the above equality by a polynomial p so that the functions p(w)(1 + h1(w) +
· · · + hk(w)) and p(w)(h′0(w) + h′1(w) + · · · + h′k(w)) become polynomials.
Therefore, there exist polynomials q1 and q2 such that on E′′,

f(w)q1(w) = q2(w).

By [Ru1, Theorem 3.3.5], we see that E′′ is a determining set for Nevanlinna
functions. Therefore, for almost all w ∈ Tn,

f(w)q1(w) = q2(w).

Thus, for every z ∈ Dn, we have

f(z)q1(z) = q2(z).

Now assume that the common factors of q1 and q2 have been cancelled, and
hence by Theorem 4.1.4, f(z) = q2(z)/q1(z) is a rational function and the
intersection Z(q1) ∩ Dn = ∅, completing the proof.

The following is the polynomial version of Theorem 4.1.5; it was first proved
in [Guo1] (see also [Guo2]).

Theorem 4.1.6 Let f ∈ Hol(Dn). If for almost all w ∈ Tn, the slice function
fw(z) = f(zw) are polynomials, then f is a polynomial.

Proof. Let f = F0 + F1 + · · · be f’s homogeneous expression. For almost all
w ∈ Tn, since

fw(z) =
∑

n=0

Fn(zw) =
∑

n=0

Fn(w)zn,

there exists a measurable subset E of Tn with mn(E) = 1 such that, for each
w ∈ E, there is a natural number n(w) which satisfies Fn(w) = 0 if n = n(w).
Assume that there exist infinitely many Fk1 , · · · , Fkn , · · · that are not zero.
Since

E ⊆
∞⋃

i=1

(
Z(Fki) ∩ Tn

)

and each Z(Fki)∩Tn is null-measurable on Tn, this leads to a contradiction.
We therefore conclude that there exist only finitely many F ′is with Fi 6= 0 ,
that is, f is a polynomial. This completes the proof.

Remark 4.1.7 Let E be a subset of Tn with positive measure. Then for
Theorems 4.1.5 and 4.1.6, we can change condition “for almost all w ∈ Tn”
into “for almost all w ∈ E”; the conclusions remain true.
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4.2 Unitary equivalence of Hardy submodules on the
unit polydisk

In this section we will prove the following classification theorem that was
given by Guo [Guo2].

Theorem 4.2.1 Let I1 and I2 be two ideals of polynomials, and let I1 =
p1L1, I2 = p2L2 be their Burling forms. Then [I1] and [I2], as submodules
of H2(Dn), are unitarily equivalent if and only if there exist two polynomials
q1, q2 satisfying Z(q1)∩Dn = Z(q2)∩Dn = ∅ such that |p1q1| = |p2q2| on Tn,
and [p1L1] = [p1L2].

As an immediate consequence of Theorem 4.2.1, we have the following.

Corollary 4.2.2 Let p1, p2 be two polynomials. Then principal submodules
[p1] and [p2] are unitarily equivalent if and only if there exist two polynomials
q1, q2 satisfying Z(q1)∩Dn = Z(q2)∩Dn = ∅ such that |p1q1| = |p2q2| on Tn.

To prove Theorem 4.2.1, we need a lemma.

Lemma 4.2.3 Let I = pL be the Beurling form of the ideal I. If there is a
function ϕ ∈ L∞(Tn) such that ϕ I ⊂ H2(Dn), then ϕp belongs to H∞(Dn).

Proof. By Corollary 3.1.12, we see that the submodule [L] satisfies the con-
dition (?) in Section 3.3. Since ϕp[L] ⊂ H2(Dn), using Theorem 3.3.2 gives
that ϕp ∈ H∞(Dn).

The proof of Theorem 4.2.1.
(⇒) By assumption, there is a unimodular function η such that

p1q1 = ηp2q2.

Since each qi is a generator of H2(Dn) (see Proposition 2.2.13), we have

[I1] = [p1L1] = [p1L2] = [p1q1L2] = η[p2q2L2]
= η[p2L2] = η[I2]

and hence [I1] and [I2] are unitarily equivalent.

(⇐) Suppose that [I1] and [I2] are unitarily equivalent. Then by Lemma 3.3.3,
there exists a unimodular function η such that

η[I1] = [I2].

Let {p2q1, · · · , p2qk} be a set of generators of I2, and hence a set of generators
of [I2]. By Theorem 2.3.3, every function g(z) in [I2] has the form

g(z) = p2(z)γ(z),
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where γ(z) is analytic on Dn. From Lemma 4.2.3, ηp1 ∈ H∞(Dn). This
implies that for each f ∈ L1, there is a unique analytic function hf on Dn

such that
(ηp1)(z)f(z) = p2(z)hf (z).

Now for f1 ∈ L1, we define an analytic function on Dn \ Z(f1) by

φf1(z) =
hf1(z)
f1(z)

.

For another f2 ∈ L1, we also define an analytic function on Dn \ Z(f2) by

φf2(z) =
hf2(z)
f2(z)

.

Since

(ηp1)(z)f1(z)f2(z) = p2(z)hf1(z)f2(z) = p2(z)hf2(z)f1(z), ∀z ∈ Dn,

we have that
φf1(z) = φf2(z), ∀z ∈ Dn \ Z(f1) ∪ Z(f2).

The above argument shows that for any z ∈ Dn \ Z(L1), we can define

φ(z) =
hf (z)
f(z)

for any f ∈ L1 with f(z) 6= 0 and φ is independent of f , and φ(z) is analytic
on Dn \ Z(L1).

From Corollary 3.1.12, height L1 ≥ 2, and hence by [KK], the zero variety
Dn ∩Z(L1) is a removable singularity for analytic functions. This shows that
φ(z) extends to an analytic function on all of Dn. Now we regard φ(z) as an
analytic function on Dn, and notice that for f ∈ L1,

(ηp1)(z)f(z) = p2(z)φ(z)f(z).

This yields that
(ηp1)(z) = p2(z)φ(z).

Also notice that
η̄[I2] = [I1].

Just as in the above discussion, there is an analytic function ψ(z) on Dn such
that

(η̄p2)(z) = p1(z)ψ(z).

Applying Proposition 4.1.1 gives that both functions φ and ψ belong to N∗(D).
By the equality

(ηp1)(η̄p2) = p2p1φψ,
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we have that φψ = 1, and hence both φ and ψ are R-outer.

Now let p(z, w) be the Poisson kernel for Dn. Then

(ηp1)(z) =
∫

Tn

p(z, w)(ηp1)(w)dmn(w).

This implies that

|(ηp1)(z)| = |
∫

Tn

p(z, w)(ηp1)(w)dmn(w)| ≤
∫

Tn

p(z, w)|p1(w)|dmn(w).

Set
p̃1(z) =

∫

Tn

p(z, w)|p1(w)|dmn(w).

Then p̃1(z) extends to a continuous function on the closure Dn of Dn, and

p̃1(w) = |p1(w)|
on Tn. For each w ∈ Tn, let (ηp1)∗w be the radial limit of the slice function
(ηp1)w(z). Thus by the above inequality, one has that

|(ηp1)∗w(eiθ)| ≤ |p1w(eiθ)|.
Now by the equality

(ηp1)(z) = p2(z)φ(z),

we get that

|φw(eiθ)| ≤ |p1w(eiθ)|
|p2w(eiθ)| .

Just as in the above discussion, by the equality

(η̄p2)(z) = p1(z)ψ(z),

one has that

|ψw(eiθ)| ≤ |p2w(eiθ)|
|p1w(eiθ)| .

Then from the equality φψ = 1, the following is immediate:

|φw(eiθ)| = |p1w(eiθ)|
|p2w(eiθ)| .

Let us observe the fact that for a polynomial q in one variable, then the outer
factor q′ of q is also a polynomial, and |q′| = |q| on T. Now by Rudin [Ru1,
Lemma 4.4.4], the slice functions φw are outer for almost all w ∈ Tn. Com-
bining the preceding observation and Proposition 4.1.2, there is a constant cw

such that

φw(z) = cw
p′1w(z)
p′2w(z)
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for almost each w ∈ Tn, where p′1w, p′2w are the outer factors of p1w, p2w,
respectively (and hence are polynomials). This means that φw is a rational
function in one variable for almost each w ∈ Tn. Applying Theorems 4.1.4 and
4.1.5, there exist polynomials q1(z), q2(z) with Z(q1) ∩ Dn = Z(q2) ∩ Dn = ∅
such that

φ(z) =
q2(z)
q1(z)

.

Since ηp1 = φp2, it follows that

|p1q1| = |p2q2|
on Tn.

Next we will show that [p1L1] = [p1L2]. By the equality

|p1q1| = |p2q2|,
there is a unimodular function η′, such that p2q2 = η′p1q1. Because each qi

is a generator of H2(Dn) for i = 1, 2 we have

[I2] = [p2L2] = [p2q2L2] = η′[p1q1L2] = η′[p1L2].

This implies that [I2] and [p1L2] are unitarily equivalent, and hence [p1L1]
and [p1L2] are unitarily equivalent. Therefore, there is a unimodular function
η such that

η[p1L1] = [p1L2].

Just as in the preceding proof, we see that there exists an R-outer function
φ(z) such that

ηp1 = φp1,

and hence η = φ. Note that

log |φ(z)| = Pz(log |φ|) = Pz(log |η|) = 0

because φ is R-outer. This means that φ(z) is a unimodular constant, and
therefore η is a constant. This gives that [p1L1] = [p1L2]. The proof is
completed.

Below is an example.

Example 4.2.4 Let

p(z, w) = z + w + 2zw, q(z, w) = z + w − 2zw

be two polynomials on C2. Since on T2,

|(z + w + 2zw)(z + w − 2)| = |(z + w − 2zw)(z + w + 2)|,
it follows that [p] and [q] are unitarily equivalent. In fact, they are all unitarily
equivalent to H2(D2) because |z +w +2zw| = |z +w +2| on T2 and z +w +2
generates H2(D2).
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Corollary 4.2.5 Let p be a polynomial and let q be a homogeneous polyno-
mial. Then [p] and [q] are unitarily equivalent if and only if there exists a
polynomial r with Z(r) ∩ Dn = ∅ such that |p| = |rq| on Tn. In particular, if
p, q are homogeneous, then [p] and [q] are unitarily equivalent if and only if
there exists a constant c such that |p| = c|q| on Tn.

Proof. By Corollary 4.2.2, the sufficiency is obvious. If [p] and [q] are uni-
tarily equivalent, then by Corollary 4.2.2, there exist two polynomials q1, q2

with Z(q1) ∩ Dn = Z(q1) ∩ Dn = ∅ such that on Tn,

|qq1| = |pq2|.
For any z ∈ Dn, set

r(z) =
q1(z)
q2(z)

.

Since the slice functions q1w, q2w are outer in H2(D), there exists a unimodular
constant cw such that for any z ∈ D,

q2w(z)p(w)(z) = cwq1w(z)q(w),

where p(w)(z) is the outer factor of pw(z). Thus,

rw(z) =
q1w(z)
q2w(z)

= c̄w
p(w)(z)
q(w)

for almost all w ∈ Tn. Note that p(w)(z) is a polynomial. Theorem 4.1.6 thus
implies that r(z) is a polynomial, and Z(r) ∩ Dn = ∅. The remaining case is
obvious. This completes the proof.

One can compare the next example with Example 3.3.6.

Example 4.2.6 In this example we will look at whether the unitary orbit of
the submodules [z + αw] has the podal point, where α is a constant.

If α = 0, then obviously [z] is unitarily equivalent to H2(D2). If |α| = 1,
then the function z + αw is outer separately, and hence by Corollary 3.3.12,
the submodule [z + αw] is podal in its unitary orbit.

Now assume |α| 6= 0, 1; then it is easy to verify that the submodules [z+αw]
and [w + ᾱz] are unitarily equivalent because

|z + αw| = |w + ᾱz|
on T2. For each such α, if there was the podal submodule M in the unitary
orbit orbu([z + αw]), then

[z + αw] ⊆ M and [w + ᾱz] ⊆ M.

Therefore, the functions z and w are in M. This shows

M ⊇ M0,
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where M0 = {f ∈ H2(D2) : f(0, 0) = 0}. Hence M = M0, or H2(D2).
Notice rank([z + αw]) = 1 and rank(M0) = 2. This implies that M 6= M0.
Because both [z + αw] and H2(D2) = [1] are homogeneous, then by Corollary
4.2.5, we see that [z+αw] and H2(D2) are not unitarily equivalent, and hence
M 6= H2(D2). This shows that for each such α, the unitary orbit orbu([z+αw])
has no maximum, that is, there exists no podal point.

Before giving the next corollary let us recall a theorem due to Rudin [Ru1,
Theorem 5.2.6]. Set

Vn = {z ∈ Cn : |zi| > 1, for i = 1, 2, · · · , n}.
Then by Theorem 5.2.6 in [Ru1], a polynomial p is the numerator of a rational
inner function in Dn if and only if p has no zero in Vn.

Let p be a polynomial with Z(p)∩Dn 6= ∅. We decompose p = p1p2 such that
zero set of each prime factor of p1 meets Dn nontrivially, and Z(p2)∩Dn = ∅.
Now define L(p) on C as follows: L(p) = 1 if Z(p) ∩ Dn = ∅; L(p) = p1 if
Z(p) ∩ Dn 6= ∅.
Corollary 4.2.7 Let I = pL be the Beurling form of the ideal I. Then [I]
and H2(Dn) are unitarily equivalent if and only if L(p) has no zero in Vn and
L is dense in H2(Dn).

In particular, when n = 2, then [I] and H2(D2) are unitarily equivalent if
and only if L(p) has no zero in V2 and L has no zero in D2.

Proof. From Proposition 2.2.13, each polynomial without zero point in Dn

is a generator of H2(Dn). This implies that

[pL] = [L(p)L].

Combining Theorem 4.2.1 with Corollary 4.2.5, we see that [L(p)L] and
H2(Dn) are unitarily equivalent if and only if there exists a polynomial r
with Z(r) ∩ Dn = ∅ such that |L(p)| = |r| on Tn and L is dense in H2(Dn).
Since Z(r) ∩ Dn = ∅, r is a generator of H2(Dn), and hence r is R-outer.
Then by Proposition 4.1.2, |L(p)(z)| ≤ |r(z)| for every z ∈ Dn. This means
that the function L(p)/r is a rational inner function, and therefore by Rudin’s
theorem mentioned above, L(p) has no zero in Vn.

Conversely, if L(p) has no zero in Vn, then Rudin’s theorem implies that
L(p) is the numerator of a rational inner function. This means that there is a
polynomial r with Z(r) ∩ Dn = ∅ such that the function L(p)/r is inner, and
hence |L(p)| = |r| on Tn.

In particular when n = 2, by Lemma 2.2.9, the following two statements
are equivalent: (1) L has no zero in D2 and (2) L is dense in H2(D2). This
completes the proof.

We have given several examples related to homogeneous principal submod-
ules. The next example will exhibit a nonhomogeneous case that seems more
interesting.
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Example 4.2.8 We consider the submodule [z1 +z2 +α] of H2(D2), where α
is constant. If α = 0, then z1 + z2 is outer separately, and hence by Corollary
3.3.12 [z1 + z2] is podal. If |α| ≥ 2, then by Proposition 2.2.13, we have
[z1 + z2 + α] = H2(D2).

Below we will show that for each α, 0 < |α| < 2, there exists no podal point
in the unitary orbit orbu([z1 + z2 + α]). For such an α, assume that there is
a podal point, say, M , in the unitary orbit orbu([z1 + z2 + α]). Since on T2,

|z1 + z2 + α| = |z1 + z2 + ᾱz1z2|,
this ensures that [z1 + z2 + α] and [z1 + z2 + ᾱz1z2] are unitarily equivalent.
From the inclusions

[z1 + z2 + α] ⊂ M, [z1 + z2 + ᾱz1z2] ⊂ M,

the function z1z2 − α/ᾱ belongs to M . By Proposition 2.2.13, M = H2(D2)
because Z(z1z2 − α/ᾱ) ∩ D2 = ∅. By unitary equivalence of [z1 + z2 + α] and
H2(D2), applying Corollary 4.2.7 gives that the function z1 + z2 + α has no
zero in V2. Clearly, this is impossible, and hence [z1+z2+α] is never unitarily
equivalent to H2(D2). We conclude that the unitary orbit orbu([z1 + z2 + α])
contains no podal point if 0 < |α| < 2.

An ideal I is said to be homogeneous if the relation p ∈ I implies that all ho-
mogeneous components of p are in I. Equivalently, an ideal I is homogeneous
if and only if I is generated by homogeneous polynomials.

Let I be homogeneous, and I = qL be the Beurling form of I. Then it is
easy to check that both q and L are homogeneous.

The next corollary generalizes Theorem 2 in [Yan1].

Corollary 4.2.9 Let I1, I2 be homogeneous, and I1 = p1L1, I2 = p2L2 be
their Beurling forms. Then [I1] and [I2] are unitarily equivalent if and only if
there exists a constant c such that |p1| = c|p2| on Tn and L1 = L2.

Proof. From Theorem 4.2.1, the sufficiency is immediate. Now assume that
[I1] and [I2] are unitarily equivalent. Then as in the proof of Corollary 4.2.5,
one sees that there exists a constant c such that |p1| = c |p2| on Tn. Note
that both p1L1 and p1L2 are homogeneous, and hence by [ZS, Vol(II), p. 153,
Theorem 9 and its corollary], each of their associated prime ideals is homo-
geneous. Now combining Theorem 2.2.8 with Theorem 4.2.1, the equality
[p1L1] = [p1L2] implies that p1L1 = p1L2, and therefore L1 = L2, completing
the proof.

Now let us endow the ring C with the topology induced by the Hardy space
H2(Dn). It is easy to see that studying the unitary equivalence of submodules
generated by ideals and by their closures is the same thing. For an ideal I,
we write Ī for the closure of I under the Hardy topology.

The following theorem is an equivalent form of Theorem 4.2.1.
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Theorem 4.2.10 Let I1,I2 be two ideals of polynomials, and let Ī1 = p1L1,
Ī2 = p2L2 be the Beurling forms of their closures. Then [I1] and [I2] are
unitarily equivalent if and only if there exist polynomials q1, q2 satisfying
Z(q1) ∩ Dn = Z(q2) ∩ Dn = ∅ such that |p1q1| = |p2q2| on Tn, and L1 = L2.

Proof. It is easy to see that the sufficiency is obvious. Now suppose that [I1]
and [I2] are unitarily equivalent. This means that [Ī1] and [Ī2] are unitarily
equivalent. By Theorem 4.2.1, there exist polynomials q1, q2 which satisfy
Z(q1) ∩ Dn = Z(q2) ∩ Dn = ∅ such that |p1q1| = |p2q2| on Tn, and

[p1L1] = [p1L2], [p2L2] = [p2L1].

Since p1L1, p2L2 are closed ideals, we have

p1L1 ⊇ p1L2, p2L2 ⊇ p2L1.

The above inclusions imply that L1 = L2.

When n = 2 we can give simpler conditions for [I1] and [I2] to be unitarily
equivalent (cf.[Guo2]).

Theorem 4.2.11 Let I1 and I2 be ideals in two variables, and let I1 = p1L1,
I2 = p2L2 be their Beurling forms. Then the submodules [I1], [I2] are unitarily
equivalent if and only if there exist polynomials q1, q2 that satisfy Z(q1)∩D2 =
Z(q2) ∩ D2 = ∅ such that |p1q1| = |p2q2| on T2, and [L1] = [L2].

Proof. It is easy to see that the sufficiency is obvious. Now we decompose p1

as the product of p′1 and p′′1 such that the zero set of each of the prime factors
of p′1 meets D2 nontrivially, and each of p′′1 does not. Then by Proposition
2.2.13,

[p1L1] = [p′1L1], [p1L2] = [p′1L2].

From Theorem 4.2.1, one has

[p′1L1] = [p′1L2].

Note that both L1 and L2 are finite codimensional by Lemma 2.2.9. Now
combining Theorem 3.1.11 with Theorem 2.2.8, we see that p′1[L1] = p′1[L2]
and hence [L1] = [L2].

4.3 Similarity of Hardy submodules on the unit polydisk

In this section, we will consider the similarity problem.
Let I1 = p1L1, I2 = p2L2 be two ideals of polynomials, and let [I1] and [I2]

be quasi-similar. This means that there exist module maps X : [I1] → [I2]

©2003 CRC Press LLC



and Y : [I2] → [I1] having dense ranges. From Lemma 3.3.3, there exist
φ, ψ ∈ L∞(Tn) such that X = Mφ, Y = Mψ. Moreover, by Lemma 4.2.3,
both f = φp1 and g = ψp2 are in H∞(Dn). As in the proof of Theorem 4.2.1,
there exist analytic functions r1 and r2 such that f = r1p2, g = r2p1.

Lemma 4.3.1 Under the above statements, both r1 and r2 are in the class
N∗(Dn) and they have no zero in Dn.

Proof. The fact that both r1 and r2 are in the class N∗(Dn) comes from
Proposition 4.1.1. Now suppose that there exists a point z0 ∈ Dn such that
r1(z0) = 0. From Lemma 2.3.2, we obtain that

[fL1](z0) = [r1p2L1](z0) = r1 z0p2 z0L
(z0)
1 = [p2L2](z0) = p2 z0L

(z0)
2

and

[gL2](z0) = [r2p1L2](z0) = r2 z0p1 z0L
(z0)
2 = [p1L1](z0) = p1 z0L

(z0)
1 ,

where L
(z0)
i denote the ideals of Oz0 generated by {pz0 : p ∈ Li}, and ri z0 , pi z0

denote the elements of Oz0 defined by the restriction of ri, pi to neighborhoods
of z0, i = 1, 2. By the above equalities, we see that

L
(z0)
2 = r1 z0r2 z0L

(z0)
2 .

This is impossible by Nakayama’s lemma (see [AM, Proposition 2.6]), and
hence r1 has no zeros in Dn. Using the same reasoning, r2 has no zero in Dn.

Now we can strengthen Theorem 3.3 in [DPSY] as follows (cf. [Guo2]).

Theorem 4.3.2 Let I1 = p1L1, I2 = p2L2 be two ideals of polynomials such
that each of their algebraic components meets Dn nontrivially. If [I1] and [I2]
are quasi-similar, then L1 = L2.

Proof. By the assumptions, there exist module maps X : [I1] → [I2] and
Y : [I2] → [I1] with dense ranges. Thus by Lemma 3.3.3, there exist functions
φ, ψ ∈ L∞(Tn) such that X = Mφ, Y = Mψ. Then by Lemma 4.3.1, there
are analytic functions r1 and r2, each of which has no zero in Dn such that

φp1 = r1p2, ψp2 = r2p1.

Note that both φp1 and ψp2 are in H∞(Dn). It follows that for λ ∈ Dn,

{p2L2}λ = [p2L2]λ = [φp1L1]λ = [r1p2L1]λ = [p2L1]λ = {p2L1}λ

and

{p1L1}λ = [p1L1]λ = [ψp2L2]λ = [r2p1L2]λ = [p1L2]λ = {p1L2}λ,
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where {p1L1}λ and {p2L2}λ are the characteristic spaces of the ideals p1L1

and p2L2 at λ, respectively (cf. Section 2.1). Using Corollary 2.1.3, we see
that

p2L2 ⊃ p2L1, p1L1 ⊃ p1L2

and hence L1 = L2, which proves the assertion.

The following theorem strengthens [Yan1, Theorem 1] which was given in
[Guo2].

Theorem 4.3.3 Let I1 = p1L1, I2 = p2L2 be homogeneous ideals. Then the
following are equivalent:

(1) [I1] and [I2] are similar;

(2) [I1] and [I2] are quasi-similar;

(3) there exists a constant c such that c < |p1|
|p2| < c−1 on Tn, and L1 = L2.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3). Because p1L1 and p2L2 are homogeneous ideals, each of their
associated prime ideals is homogeneous (cf. [ZS, Vol(II), p. 153, Theorem
9 and its corollary]). We apply Theorem 4.3.2 to obtain L1 = L2. Now we
use some techniques in [Yan1]. Let both module maps X : [I1] → [I2] and
Y : [I2] → [I1] have dense ranges. Then there exist φ, ψ ∈ L∞(Tn) such that
X = Mφ, Y = Mψ. Applying Lemma 4.2.3 gives that f = φp1, g = ψp2 are
in H∞(Dn). Since p1 is homogeneous, from the equality f = φp1, we have
that

|f(w)| ≤ ‖φ‖∞|p1(w)| a.e. on Tn.

Therefore,
|fw(eiθ)| ≤ ‖φ‖∞|p1(w)|

for almost all w ∈ Tn. This leads to the inequality

|fw(z)| ≤ ‖φ‖∞|p1(w)| ∀z ∈ D

for almost all w ∈ Tn, and hence for all w ∈ Tn, we have the inequality

|fw(z)| ≤ ‖φ‖∞|p1(w)| ∀z ∈ D.

Suppose there is a sequence wn → w0 such that

|p1(wn)|
|p2(wn)| → 0.

From Lemma 4.3.1, f = r1p2. Now for every fixed z 6= 0, z ∈ D, we have

|r1(zwn)| = |f(zwn)|
|p2(zwn)| ≤

‖φ‖∞|p1(wn)|
|p2(wn)||z|k → 0,
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where k = deg p2. This implies that r1(zw0) = 0. This contradicts Lemma
4.3.1, and hence there exists a positive constant c′ such that

c′ <
|p1|
|p2|

on Tn. Similarly, there exists a positive constant c′′ such that

c′′ <
|p2|
|p1|

on Tn. Thus, there exists a constant c such that

c <
|p1|
|p2| < c−1

on Tn.
(3) ⇒ (1). Set φ = p2/p1 and ψ = p1/p2. Then module maps

Mφ : [I1] → [I2], Mψ : [I2] → [I1]

give similarity between [I1] and [I2].

When n = 2, we can give more detailed conditions for two homogeneous
submodules to be quasi-similar. For a homogeneous polynomial p in z and w,
there is the decomposition:

p(z, w) = cwk
∏

|αi|6=1

(z − αiw)
∏

|βi|=1

(z − βiw),

where c, k, αi, βi are determined by p. Since only the last factor
∏
|βi|=1(z −

βiw) can vanish on Tn, we denote this factor by F (p).
By Theorem 4.3.3, we have the following.

Corollary 4.3.4 Let I1 = p1L1, I2 = p2L2 be homogeneous ideals on C2.
Then the following are equivalent:

(1) [I1] and [I2] are similar;

(2) [I1] and [I2] are quasi-similar;

(3) F (p1)L1 = F (p2)L2.

From Theorem 4.3.3, one sees that under the conditions of Theorem 4.3.3,
quasi-similarity implies similarity. We do not know if there exists an example
of two submodules generated by polynomials that are quasi-similar, but not
similar.

Furthermore, from Theorems 4.3.2 and 4.3.3, one sees that question about
the similarity of submodules can be reduced to question about the similar-
ity of principal submodules. Then one wants to know when two principal
submodules are similar.
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Proposition 4.3.5 Let p1 and p2 be two polynomials. If there exist polyno-
mials q1, q2 with Z(q1) ∩ Dn = Z(q2) ∩ Dn = ∅ such that c < |p1q1|

|p2q2| < c−1 for
some constant c, then [p1] and [p2] are similar.

Proof. Set φ = p1q1
p2q2

. Then c < |φ| < c−1. Since piqi is a generator of [pi] for
i = 1, 2,

φ[p2] ⊂ [p1] and φ−1[p1] ⊂ [p2].

It follows that the maps defined by

Xφ : [p2] → [p1], Xφf = φf ; Xφ−1 : [p1] → [p2], Xφ−1f = φ−1f

are module maps. It is easy to see that

XφXφ−1 = 1, Xφ−1Xφ = 1.

This implies that [p1] and [p2] are similar.

Proposition 4.3.5 and Corollary 4.2.2 thus suggest the following conjecture.

Conjecture. If [p1] and [p2] are similar, then there exist polynomials q1, q2

with Z(q1)∩Dn = Z(q2)∩Dn = ∅ such that c < |p1q1|
|p2q2| < c−1 for some constant

c. That is, the conditions in Proposition 4.3.5 are also necessary.

4.4 Equivalence of Hardy submodules on the unit ball

In this section we look at the case of Hardy submodules on the unit ball Bn.
In [CD1], Chen and Douglas proved that two homogeneous principal submod-
ules of H2(Bn) are quasi-similar if and only if the corresponding homogeneous
polynomials are equal, except a constant factor. Combining this fact with our
preceding discussion, one finds that the classification of submodules depends
heavily on the geometric properties of domains.

Based on function theory in the unit ball of Cn from Rudin [Ru2], especially
[Ru4], and techniques used in the polydisk case, we can obtain corresponding
results in the case of Hardy submodules on the unit ball Bn. However, on the
unit ball Bn, one has a special conclusion for polynomials.

Proposition 4.4.1 Let p1, p2 be two polynomials on Cn(n > 1). If |p1| = |p2|
on ∂Bn (the boundary of Bn), then there is a unimodular constant c such that
p1 = c p2.

The proof of Proposition 4.4.1 is based on the remarkable Theorem 14.3.3
in Rudin’s book [Ru2]. Assume n > 1. Let Ω be a bounded domain in Cn and
let A(Ω) = C(Ω̄)∩Hol(Ω) be the so-called Ω-algebra. If f ∈ A(Ω), g ∈ A(Ω),
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and |f(λ)| ≤ |g(λ)| for each boundary point λ of Ω, then |f(z)| ≤ |g(z)| for
every z ∈ Ω. Also notice that if p is a polynomial and Z(p) ∩ Bn = ∅, then
p is a generator of H2(Bn) (see Remark 2.2.14 following Proposition 2.2.13).
Thus, combining Proposition 4.4.1 with the techniques used in Section 4.2, in
the case of Hardy submodules on the unit ball Bn, we can prove the following
[Guo2].

Theorem 4.4.2 Let I1 = p1L1, I2 = p2L2 be the Beurling forms of I1 and
I2, respectively. Then the following are equivalent:

(1) [I1] and [I2] are unitarily equivalent,

(2) there exist polynomials q1 and q2 satisfying Z(q1)∩Bn = Z(q2)∩Bn = ∅
such that p1q1 = p2q2 and [p1L1] = [p1L2],

(3) [I1] = [I2].

Corollary 4.4.3 Let p1, p2 be two polynomials. Then [p1] and [p2] are uni-
tarily equivalent if and only if there exist polynomials q1 and q2 that satisfy
Z(q1) ∩ Bn = Z(q2) ∩ Bn = ∅ such that p1q1 = p2q2. In particular, if the zero
set of each of the prime factors of pi meets Bn nontrivially for i = 1, 2, then
[p1] and [p2] are unitarily equivalent if and only if there is a constant c such
that p1 = c p2.

From Theorem 4.4.2, one sees that there is more rigidity among submod-
ules of H2(Bn) than in the case of H2(Dn). Furthermore, from the proof of
Theorem 4.3.3 and Proposition 4.4.1, the following is immediate.

Theorem 4.4.4 Let I1, I2 be homogeneous ideals. Then the following are
equivalent:

(1) [I1] and [I2] are unitarily equivalent,

(2) [I1] and [I2] are similar,

(3) [I1] and [I2] are quasi-similar,

(4) I1 = I2.

Based on Theorems 4.4.2 and 4.4.4, one thus conjectures the following.

Conjecture. Let I1 and I2 be two ideals of polynomials. Then [I1], [I2], as
submodules of H2(Bn), are quasi-similar only if [I1] = [I2].
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4.5 Remarks on Chapter 4

In this chapter we obtain a complete classification under unitary equiva-
lence for Hardy submodules on the polydisk (and on the unit ball) which are
generated by polynomials. Furthermore, we give a complete similar classifica-
tion for submodules generated by homogeneous ideals. The chapter is mainly
based on Guo’s paper [Guo2]. The reader may see that the characteristic
space theory plays a crucial role.

Section 4.1 provides some necessary preliminaries. Propositions 4.1.1, 4.1.2
and 4.1.3 are probably well known. Theorems 4.1.4, 4.1.5 and 4.1.6 are due
to Guo [Guo2].

In [Guo2], Guo proved Theorem 4.2.1 and Corollaries 4.2.2, 4.2.5 and 4.2.9.
Theorems 4.2.10, 4.2.11 and Example 4.2.4 appeared also in [Guo2]. Corollary
4.2.7 and Examples 4.2.6 and 4.2.8 are new.

Lemma 4.3.1 and Theorems 4.3.2 and 4.3.3 come from [Guo2]. Corollary
4.3.4 and Proposition 4.3.5 were also proved in [Guo2].

Proposition 4.4.1 is an immediate result of Theorem 14.3.3 in Rudin’s book
[Ru2]. As we have seen, there exists more rigidity among Hardy submodules
on the unit ball Bn. Theorems 4.4.2, 4.4.4 and Corollary 4.4.3 appeared in
[Guo2].

Concerning the Hardy module over the bidisk we call the reader’s attention
to the following references, where operator theory and function theory on the
bidisk are presented [GM, INS, IY, JOS, Nak, Man, Ya1, Ya2, Ya3, Ya4, Ya5,
Ya6, Ya7].
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Chapter 5

Reproducing function spaces on the
complex n-space

The Fock space, or the so-called Segal-Bargmann space, is the analog of the
Bergman space in the context of the complex n-space Cn. It is a Hilbert space
consisting of entire functions in Cn. Let

dµ(z) = e−|z|
2/2dv(z)(2π)−n

be the Gaussian measure on Cn (dv is the ordinary Lebesgue measure). The
Fock space L2

a(Cn, dµ) (in short, L2
a(Cn)), by definition, is the space of all

µ-square-integrable entire functions on Cn. It is easy to check that L2
a(Cn) is

a closed subspace of L2(Cn) with the reproducing kernel

Kλ(z) = e〈z,λ〉/2, here 〈z, λ〉 =
n∑

i=1

λ̄izi.

The Fock space is important because of the relationship between the operator
theory on it and the Weyl quantization [Be].

In this chapter we will study structure of reproducing function spaces on Cn,
and especially the structure of quasi-invariant subspaces. We first establish
some terminology which will be used throughout this chapter.

Let Hol(Cn) denote the ring of all entire functions on the complex n-space
Cn, and let X be a Banach space contained in Hol(Cn). We call X a repro-
ducing Banach space on Cn if X satisfies:

(a) the polynomial ring C is dense in X;

(b) the evaluation linear functional Eλ(f) = f(λ) is continuous on X for
each λ ∈ Cn.

The basic example is the Fock space mentioned above.
For a reproducing Banach space X on Cn, the following proposition shows

that there exists no nontrivial invariant subspace for polynomials.

Proposition 5.0.1 Let X be a reproducing Banach space and let M 6= {0} be
a (closed) subspace of X. If f is an entire function on Cn such that f M ⊂ M ,
then f is a constant.
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In fact, by the assumption and the closed graph theorem, it is easy to see
the multiplication by f on M , denoted by Mf , is a bounded linear operator.
Therefore, M∗

f is bounded on M∗, the conjugate space of M . Use K̂λ to denote
the reproducing kernel functions associated with M , and k̂λ the normalized
reproducing kernel functions, where both K̂λ and k̂λ belong to M∗. Since

‖k̂λ‖ = sup
g∈M ; ‖g‖=1

|〈k̂λ, g〉| = 1,

there exists a function gλ in M with ‖gλ‖ = 1 such that

1/2 ≤ |〈k̂λ, gλ〉| ≤ 1.

From inequalities

|〈M∗
f k̂λ, gλ〉| = |〈k̂λ, fgλ〉| = |f(λ)〈k̂λ, gλ〉| ≥ |f(λ)|/2

and
|〈M∗

f k̂λ, gλ〉| ≤ ‖Mf‖‖k̂λ‖‖gλ‖ = ‖Mf‖,
we have

|f(λ)| ≤ 2‖Mf‖.
Hence f is a bounded entire function on Cn. Thus by Liouville’s theorem f
is a constant.

According to Proposition 5.0.1, there exists no nontrivial invariant subspace
for polynomials. Thus, an appropriate substitute for invariant subspace, the
so-called quasi-invariant subspace is needed. Namely, a (closed) subspace
M of X is called quasi-invariant if p M ∩ X ⊂ M for each polynomial p.
Equivalently, M is quasi-invariant if the relation pf ∈ X implies pf ∈ M for
any f ∈ M and any polynomial p.

5.1 Algebraic reduction for quasi-invariant subspaces

It is difficult to completely characterize quasi-invariant subspaces. How-
ever, using the characteristic space theory, we can obtain algebraic reduction
for finite codimensional quasi-invariant subspaces. This can be viewed as a
generalization of algebraic reduction theorem of analytic Hilbert modules on
bounded domains (see Chapter 2). This section comes from Guo and Zheng’s
paper [GZ].

Let us begin with a lemma.

Lemma 5.1.1 Let I be an ideal in the polynomial ring C and let [I] be the
closure of I in X. Then [I] ∩ C = I.
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Proof. Let Z(I) be the zero variety of I, i.e.,

Z(I) = {z ∈ Cn : p(z) = 0, ∀p ∈ I}.

For λ ∈ Z(I), Iλ denotes the characteristic space of I at λ, and Ie
λ, the

envelope of I at λ. Then by Corollary 2.1.2,

I =
⋂

λ∈Z(I)

Ie
λ.

Clearly, for each p ∈ [I] ∩ C and λ ∈ Z(I),

q(D)p|λ = 0, ∀q ∈ Iλ,

and hence p ∈ Ie
λ. This implies that p ∈ I, and hence [I] ∩ C ⊂ I. Obviously,

I ⊂ [I] ∩ C. The desired conclusion follows.

Now we can establish a canonical linear map

τ : C/I → X/[I]

by τ(p + I) = p + [I]. By Lemma 5.1.1, the map τ is injective.

Lemma 5.1.2 Let I be an ideal of finite codimension. Then [I] is a quasi-
invariant subspace of X of finite codimension. Furthermore, the canonical
map

τ : C/I → X/[I]

is an isomorphism.

Proof. We express C as
C = I+̇R

where R is a linear space of polynomials with dim R = dim C/I. Since the
polynomial ring C is dense in X, and [I] + R is closed, we have that

[I] + R = X.

By the equality
[I] ∩R = [I] ∩ C ∩R,

and Lemma 5.1.1, we get
[I] ∩R = {0}.

Thus,

X/[I] = ([I] + R)/[I] ∼= R/([I] ∩R) = R/{0} = R ∼= C/I.

It follows that
τ : C/I → X/[I]
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is an isomorphism.
Suppose that f ∈ [I] and p is a polynomial satisfying pf ∈ X. It is enough

to show pf ∈ [I]. Since X = [I]+̇R, pf can be expressed as

pf = g + h;

here g ∈ [I] and h ∈ R. Note that for each λ ∈ Z(I) and any q ∈ Iλ,

q(D)f |λ = 0 and q(D)g|λ = 0.

Since Iλ is invariant under the action by the basic partial differential operators
{∂/∂z1, ∂/∂z2, · · · , ∂/∂zn}, it follows that

q(D)pf |λ = 0.

This gives that
q(D)h|λ = 0

for each λ ∈ Z(I) and any q ∈ Iλ. By Corollary 2.1.2, h ∈ I, and hence h = 0.
It follows that pf ∈ [I]. We conclude that [I] is quasi-invariant, completing
the proof.

Lemma 5.1.3 Let M be a quasi-invariant subspace of finite codimension in
X. Then M ∩C is an ideal of C, and M ∩C is dense in M . Furthermore, the
canonical map

τ ′ : C/M ∩ C → X/M

is an isomorphism, where τ ′(p + M ∩ C) = p + M.

Proof. Obviously, M ∩ C is an ideal of C because M is quasi-invariant. It is
easy to see that the map τ ′ is injective, and hence the ideal M ∩ C is of finite
codimension and

dim C/M ∩ C ≤ dim X/M.

By Lemma 5.1.2,
dim C/M ∩ C = dim X/[M ∩ C].

Since
[M ∩ C] ⊂ M,

we have
dim X/[M ∩ C] ≥ dim X/M.

Therefore,
dim X/[M ∩ C] = dim X/M.

This implies
[M ∩ C] = M,

that is, M ∩ C is dense in M . Applying Lemma 5.1.2, the map τ ′ is an
isomorphism.

From Lemmas 5.1.1, 5.1.2 and 5.1.3, we obtain the following algebraic re-
duction theorem for finite codimensional quasi-invariant subspaces.
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Theorem 5.1.4 Let M be a quasi-invariant subspace of finite codimension.
Then C ∩M is an ideal in the ring C, and

(1) C ∩M is dense in M ;

(2) the canonical map τ : C/M ∩ C → X/M is an isomorphism, where
τ(p + M ∩ C) = p + M.

Conversely, if I is an ideal in C of finite codimension, then [I] is a quasi-
invariant subspace of the same codimension and [I] ∩ C = I.

Remark 5.1.5 For bounded domains Ω in the complex plane, which satisfy
certain technical hypotheses, Axler and Bourdon [AB] proved that each finite
codimensional invariant subspace M of L2

a(Ω) has the form M = pL2
a(Ω),

where p is a polynomial with its zeros in Ω. M. Putinar [Pu1] extended this
result to some bounded pseudoconvex domains in Cn. Namely, for such a
domain Ω, Putinar proved that every finite codimensional invariant subspace
M has the form

M =
k∑

i=1

piL
2
a(Ω),

where pi are polynomials having a finite number of common zeros, all con-
tained in Ω. However, from Proposition 5.0.1, we see that each finite codi-
mensional quasi-invariant subspace does not have the above form. This may
be an essential difference between analytic Hilbert spaces on bounded domains
and those on unbounded domains.

5.2 Some basic properties of reproducing Hilbert spaces
on the complex plane

This section is based on [CGH]. In this section we will develop some basic
properties of reproducing Hilbert spaces over the complex plane to serve the
next section.

Let X be a reproducing Hilbert space over the complex plane C. For each
λ ∈ C, we let Kλ be the reproducing kernel of X at λ, and kλ be the normalized
reproducing kernel. This means that for every f ∈ X, we have

f(λ) = 〈f, Kλ〉.
Proposition 5.2.1 For each f ∈ X, we have

lim
|λ|→∞

〈f, kλ〉 = 0,

that is, kλ converges weakly to zero as |λ| → ∞.
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Proof. Since the polynomial ring C is dense in X, it suffices to show that for
each polynomial p,

lim
|λ|→∞

〈p, kλ〉 = 0.

Indeed, noticing that the equalities

‖Kλ‖ = sup
‖f‖=1

|〈f,Kλ〉|| = sup
‖f‖=1

|f(λ)|,

and taking f = zn/‖zn‖, the above equality implies that

‖Kλ‖ ≥ |λ|n/‖zn‖

for each positive integer n. Now for any polynomial p, since

〈p, kλ〉 =
1

‖Kλ‖〈p,Kλ〉 =
1

‖Kλ‖p(λ),

combining this with a previous inequality gives

lim
|λ|→∞

〈p, kλ〉 = 0

for each polynomial p. This ensures the desired conclusion.

For a closed subspace M of X, we let K
(M)
λ be the reproducing kernel

function of M . Then it is easy to see that K
(M)
λ = PMKλ, where PM is the

orthogonal projection from X onto M .

Corollary 5.2.2 If M is of finite codimension, then

lim
|λ|→∞

‖PMkλ‖ = 1.

Proof. Notice that

‖PMkλ‖ =
‖K(M)

λ ‖
‖Kλ‖ ,

and we let f1, f2, · · · , fn be an orthonormal basis of M⊥ = X ªM . It is easy
to check that the reproducing kernel function K

(M⊥)
λ is given by

K
(M⊥)
λ (z) =

n∑

k=1

fk(λ)fk(z).

Thus,

‖K(M⊥)
λ ‖2 =

n∑

k=1

|fk(λ)|2.
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Since
∑n

k=1 |fk(λ)|2
‖Kλ‖2 =

n∑

k=1

|〈fk,Kλ/‖Kλ‖〉|2

=
n∑

k=1

|〈fk, kλ〉|2,

By Proposition 5.2.1,

lim
|λ|→∞

‖K(M⊥)
λ ‖
‖Kλ‖ = 0.

From the equality

‖K(M)
λ ‖2 = ‖Kλ‖2 − ‖K(M⊥)

λ ‖2,
the required result is deduced.

Remark. The classical Beurling’s theorem [Beu] says that for each submodule
M of the Hardy module H2(D) on the unit disk D there is an inner function
η such that M = ηH2(D). Equivalently, the orthogonal projection PM from
H2(D) onto M has the form

PM = MηM∗
η .

It follows that

‖PMkλ‖ =
‖PMKλ‖
‖Kλ‖ =

‖KM
λ ‖

‖Kλ‖ = |η(λ)|,

and hence, for almost all z ∈ T we have

lim
λ→z

‖PMkλ‖ = 1,

where Kλ and KM
λ be the reproducing kernels of H2(D) and M , respec-

tively, and kλ = Kλ/‖Kλ‖. From Corollary 5.2.2, we see that if M is a finite
codimensional quasi-invariant subspace of an analytic Hilbert space X over C,
then a modification of Beurling’s theorem is true for M . Considering the Fock
space L2

a(C), then the operator Mz defined in the Fock space is unbounded.
Therefore, by the closed graph theorem there exists a function f ∈ L2

a(C)
such that zf /∈ L2

a(C). It is easy to check that the one-dimensional subspace
Mf = {c f : c ∈ C} is quasi-invariant. However, by Corollary 5.2.2, we have

lim
|λ|→∞

‖PMf
kλ‖ = 0.

If M is an infinite dimensional quasi-invariant subspace of L2
a(C), does

lim
|λ|→∞

‖PMkλ‖ = 1 ?

Now we return to the problem of when a Hilbert space consisting of entire
functions is an analytic Hilbert space over C.
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Example 5.2.3 Let H be a Hilbert space consisting of entire functions. If
{zn : n = 0, 1, 2, · · · } is contained in H and they are mutually orthogonal,
then H is a reproducing Hilbert space over C.

By the assumption it is easy to see that the set {zn/‖zn‖ : n = 0, 1, · · · }
forms an orthonormal basis of H. Note that f(z) =

∑∞
n=1

1
n

zn

‖zn‖ ∈ H, and
hence f is an entire function. From the formula of the radius of convergence
of a power series, we have

lim
n→∞

n
√
‖zn‖ = ∞.

Therefore, for each λ ∈ C, there exists a natural number N such that

n
√
‖zn‖ ≥ 2|λ|

if n ≥ N . Now let g =
∑∞

n=0 an
zn

‖zn‖ be in H. Then

|g(λ)| ≤
N∑

n=0

|an| |λ|
n

‖zn‖ +
∞∑

n=N+1

|an| |λ|
n

‖zn‖

≤
N∑

n=0

|an| |λ|
n

‖zn‖ + (
∞∑

n=N+1

|an|2) 1
2 (

∞∑

n=N+1

|λ|2n

‖zn‖2 )
1
2

≤
N∑

n=0

|an| |λ|
n

‖zn‖ + ‖g‖.

Since
an = 〈g, zn/‖zn‖〉, n = 0, 1, · · · , N,

there is a positive constant c′ depending only on λ such that

|an| ≤ c′ ‖g‖

for n = 0, 1, · · · , N . Combining this with previous inequalities implies that
there is some positive constant c depending only on λ such that

|g(λ)| ≤ c ‖g‖, for each g ∈ H.

This means that the evaluation linear functional Eλ(f) = f(λ) is continuous
on H for each λ ∈ C. Obviously, the polynomial ring C is dense in H. We
thus conclude that H is a reproducing Hilbert space over the complex plane C,
and its reproducing kernel Kλ is given by

Kλ(z) =
∞∑

n=0

znλ̄n

‖zn‖2 .
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Remark 5.2.4 From the proof of Example 5.2.3, we see that if H is a re-
producing Hilbert space over C with the orthonormal basis {zn/‖zn‖ : n =
0, 1, · · · }, then

lim
n→∞

n
√
‖zn‖ = ∞.

Now let {γn}∞n=0 be a sequence of positive numbers, and n
√

γn →∞ as n →∞.
We set

‖zn‖ = γn, n = 0, 1, · · · .

Then the completion H of the polynomial ring C, under the orthonormal basis
{zn/γn n = 0, 1, · · · }, is a reproducing Hilbert space over the complex plane.
In fact, if f(z) =

∑∞
n=0 anzn/γn ∈ H, then by the formula of the radius of

convergence of a power series, we see that

1
R

= lim n

√
|an|
γn

= 0.

Thus, R = ∞. This says that f(z) is an entire function, and hence H consists
of entire functions. By Example 5.2.3, such an H is a reproducing Hilbert
space over the complex plane.

By Remark 5.2.4, if we take γn =
√

2nn!, then we get the Fock space L2
a(C, dµ)

with the reproducing kernel Kλ(z) = ezλ̄/2, here dµ = e−|z|
2/2dv/2π.

Let f, g be two entire functions over C; we say f ¹ g if there exist positive
constants r and M such that

|f(z)|
|g(z)| ≤ M, whenever |z| ≥ r.

A simple observation shows that ¹ is a partial order on the ring of all entire
functions. The next proposition characterizes this partial order.

Proposition 5.2.5 Let f and g be entire functions. Then f ¹ g if and only
if there exist polynomials p and q with deg p ≤ deg q such that

f

g
=

p

q
,

where “ deg ” denotes the degree of polynomial.

Proof. “ ⇒ ” Without a loss of generality, we may assume that f and g have
no common zeros. Let r, M > 0 be positive constants such that

|f(z)|/|g(z)| ≤ M

if |z| > r. Then the function f(z)/g(z) is analytic on {z ∈ C : |z| > r}. Now
let λ1, . . . , λn be zeros of g in {z ∈ C : |z| ≤ r} with corresponding degrees
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k1, . . . , kn. It follows that φ(z) = (z−λ1)k1 · · · (z−λn)knf(z)/g(z) is an entire
function on C. Hence we have

|φ(z)| ≤ M |(z − λ1)k1 · · · (z − λn)kn |

if |z| > r. Set l = k1 + · · · + kn. Then there exist positive constants r′ and
M ′ such that

|φ(z)|/|zl| ≤ M ′

for |z| > r′. Write

φ(z) = a0 + a1z + · · ·+ al−1z
l−1 + zlh,

where h is an entire function. From the above inequality, we see that h
is bounded. By Liouville’s theorem, h is a constant and hence φ(z) is a
polynomial. Set p = φ, and q = (z−λ1)k1 · · · (z−λn)kn . Then deg p ≤ deg q,
and

f(z)
g(z)

=
p(z)
q(z)

.

This gives the desired conclusion.
The opposite direction is obvious, completing the proof.

Given a reproducing Hilbert space X over C, we say that X is an ordered
reproducing Hilbert space (or a reproducing Hilbert space with order) if g ∈ X
and f ¹ g, then f ∈ X. A simple reasoning shows that the Fock space L2

a(C)
is an ordered reproducing Hilbert space.

Proposition 5.2.6 Let X be a reproducing Hilbert space over C. Then X is
an ordered reproducing Hilbert space if and only if for any polynomial p and
entire function f , the relation p f ∈ X implies f ∈ X.

Proof. To prove that X is of the desired order, we let f ¹ g and g ∈ X.
Then by Proposition 5.2.5, there exist polynomials p1 and p2 without common
zeros, which satisfy deg p1 ≤ deg p2, such that

f/p1 = g/p2.

Set h = f/p1. Then h is an entire function and g = p2h. Decomposing p2

and using the assumption gives zlh ∈ X, for l = 0, 1, 2, · · · , deg p2. Note that
f = p1h, and deg p1 ≤ deg p2. One thus obtains f = p1h ∈ X.

Conversely, suppose that X is an ordered reproducing Hilbert space, and
pf ∈ X (where p is a polynomial and f is an entire function). Applying
Proposition 5.2.5 gives

f ¹ pf

and hence f ∈ X.

The next example shows that there exist reproducing Hilbert spaces over
C without the desired order.
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Example 5.2.7 We set

‖1‖ = 1, ‖z2n‖ =
√

(2n− 2)!, ‖z2n+1‖ =
√

(2n + 1)!

for n = 1, 2, · · · . Then by Example 5.2.3 and Remark 5.2.4, the Hilbert space
H with the orthonormal basis {zn/‖zn‖} is a reproducing Hilbert space over
C. However, H is not of the desired order. In fact, it is easy to check that
the function

∑∞
n=1

1
n2

z2n+1

‖z2n‖ is an entire function, and z
∑∞

n=1
1

n2
z2n+1

‖z2n‖ ∈ H.

But
∑∞

n=1
1

n2
z2n+1

‖z2n‖ /∈ H because

∞∑
n=1

[
‖z2n+1‖
n2‖z2n‖ ]2 = ∞.

Applying Proposition 5.2.6, one sees that H is not of the desired order.

5.3 Equivalence of quasi-invariant subspaces
on the complex plane

Let X be a reproducing Hilbert space on the complex plane, and let M1

and M2 be two quasi-invariant subspaces of X. For a bounded linear operator
A : M1 → M2, we call A a quasi-module map if A(p f) = pA(f) whenever
p f ∈ M1 (here p is any polynomial and f ∈ M1). Thus by the definition,
if A is a quasi-module map, then the relation p f ∈ M1 forces pA(f) ∈ M2.
Furthermore, we say that

1. they are unitarily equivalent if there exists a unitary quasi-module map
A : M1 → M2 such that A−1 : M2 → M1 is also a quasi-module map;

2. they are similar if there exist an invertible quasi-module map A : M1 →
M2 such that A−1 : M2 → M1 is also a quasi-module map;

3. they are quasi-similar if there exist quasi-module maps A : M1 → M2

and B : M2 → M1 with dense ranges.

It is easy to check that unitary equivalence, similarity and quasi-similarity are
equivalence relations.

This section comes from [CGH]. First we recall that the polynomial ring
in one complex variable is a principal ideal domain. This means that each
ideal is principal, i.e., generated by a polynomial. Let X be the reproducing
Hilbert space on the complex plane C. Then by Theorem 5.1.4, each finite
codimensional quasi-invariant subspace M is of the form [p](here p is a poly-
nomial, and [p] is quasi-invariant subspace generated by p). Moreover, for
every polynomial p, [p] is a finite codimensional quasi-invariant subspace with
codimension deg p.
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Theorem 5.3.1 Let M be quasi-invariant. If M is similar to a finite codi-
mensional quasi-invariant subspace [p], then there is a polynomial q with
deg q = deg p such that M = [q].

Proof. Let A : [p] → M be a similarity. Set q = Ap. Since p generates [p], q

generates M , that is, M = [q]. Let K
(p)
λ and K

(q)
λ be reproducing kernels of

[p] and [q], respectively. Since A : [p] → [q] is a similarity, it is easy to verify
that for any h ∈ [p],

Ah =
q

p
h.

Thus, we have

〈Ah,K
(q)
λ 〉 =

q(λ)
p(λ)

h(λ)

for each λ /∈ Z(p), where Z(p) is the set of all zeros of p. From the inequality

|〈Ah, K
(q)
λ 〉| ≤ ‖A‖ ‖h‖ ‖K(q)

λ ‖,

we have
|q(λ)|
|p(λ)| sup

h∈[p]; ‖h‖=1

|h(λ)| ≤ ‖A‖ ‖K(q)
λ ‖.

By the equality
‖K(p)

λ ‖ = sup
h∈[p]; ‖h‖=1

|h(λ)|,

it follows that
|q(λ)|
|p(λ)| ‖K

(p)
λ ‖ ≤ ‖A‖ ‖K(q)

λ ‖.

Note that [p] is of finite codimension. Applying Corollary 5.2.2 gives that

lim
|λ|→∞

‖K(p)
λ ‖

‖Kλ‖ = 1.

By the inequality
‖K(q)

λ ‖ ≤ ‖Kλ‖,
there exist positive constants r and M such that

|q(λ)|
|p(λ)| ≤ M

if |λ| ≥ r. From Proposition 5.2.5 there exist polynomials p1 and p2 with
deg p1 ≤ deg p2 such that

q/p = p1/p2

and hence q = pp1/p2. Since q is an entire function, q is a polynomial and
deg q ≤ deg p.
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Note that A−1 : [q] → [p] is also a similarity. The same reasoning shows
that deg p ≤ deg q. It follows that deg p = deg q.

The next example shows that there is a reproducing Hilbert space H over
C such that deg p = deg q, but [p] and [q] are not similar.

Example 5.3.2 Let H be the reproducing Hilbert space given in Example
5.2.7. We claim that [z2] and [z2 + z] are not similar. Assume that they are
similar, and let A : [z2] → [z2 + z] be a similarity. Then by the proof of
Theorem 5.3.1, there exists a constant γ such that

Az2 = γ (z2 + z).

So for any natural number m, we have

Az2z2m = γ z2m(z2 + z) = γ (z2m+2 + z2m+1).

From the equalities

‖z2m+2 + z2m+1)‖2 = (2m)! + (2m + 1)!, and ‖(z2m+2)‖2 = (2m)!,

we see that
γ2((2m)! + (2m + 1)!) ≤ ‖A‖2 (2m)!

for any natural number m. This clearly is impossible and hence [z2] and
[z2 + z] are not similar.

Corollary 5.3.3 Let X be a reproducing Hilbert space over C. If a quasi-
invariant subspace M is similar to X, then M = X.

Remark 5.3.4 From Corollary 5.3.3, one sees that the structure of repro-
ducing Hilbert modules over the complex plane is completely different from
that of analytic Hilbert spaces over bounded domains. For example, for any
two submodules of the Bergman space over the unit disk, if they are of finite
codimension, then they are necessarily similar.

Corollary 5.3.5 Let X be an ordered reproducing Hilbert space. Then finite
codimensional quasi-invariant subspaces [p] and [q] are similar if and only if
deg p = deg q.

Proof. Let deg p = deg q. For f ∈ [p], it is easy to see that f/p is an entire
function, and hence q

pf is an entire function. Since deg p = deg q, applying
Proposition 5.2.5 gives q

pf ¹ f , and hence by the definition q
pf is in X for

each f ∈ [p]. Thus we can define an operator A : [p] → X by Af = q
pf for

f ∈ [p]. By a simple application of the closed graph theorem, the operator A
is bounded. Since A maps p C onto q C, this deduces that A maps [p] to [q].
Therefore, A : [p] → [q] is a bounded operator. Clearly, A(rf) = rA(f) if
rf ∈ [p] (here f ∈ [p] and r is a polynomial). Similarly, we can show that the
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operator B : [q] → [p] defined by B f = p
q f for f ∈ [q] is bounded. It is easy

to see that AB and B A are the identity operators on [q] and [p], respectively.
We thus conclude that [p] and [q] are similar if deg p = deg q.

The opposite direction is achieved by applying Theorem 5.3.1. This com-
pletes the proof.

Theorem 5.3.6 Let X be a reproducing Hilbert space over C with the or-
thonormal basis {zn/‖zn‖}. Then finite codimensional quasi-invariant sub-
spaces [p] and [q] are unitarily equivalent only if p = c q for some nonzero
constant c, and hence only if [p] = [q].

Before proving the theorem, let us note that if A : [p] → [q] is a unitary
equivalence, then from the proof of Theorem 5.3.1, there is a constant γ such
that A(p) = γ q and deg p = deg q. In what follows we always assume that
A(p) = q if A : [p] → [q] is a unitary equivalence. To prove the theorem, we
need two lemmas.

Lemma 5.3.7 Let p =
∑l

k=0 alz
l and q =

∑l
k=0 blz

l, and let both al and
bl be nonzero. If A : [p] → [q] is a unitary equivalence, and A(p) = q, then
|al| = |bl|.

Proof. Let K
(p)
λ and K

(q)
λ be reproducing kernels of [p] and [q], respectively.

Since A : [p] → [q] is a unitary equivalence, it is easy to verify that for any
h ∈ [p],

Ah =
q

p
h.

Thus, we have

〈Ah,K
(q)
λ 〉 =

q(λ)
p(λ)

h(λ)

for each λ /∈ Z(p). By

|〈Ah, K
(q)
λ 〉| ≤ ‖h‖ ‖K(q)

λ ‖,

this deduces
|q(λ)|
|p(λ)| sup

h∈[p]; ‖h‖=1

|h(λ)| ≤ ‖K(q)
λ ‖.

From the equality
‖K(p)

λ ‖ = sup
h∈[p]; ‖h‖=1

|h(λ)|,

we obtain that
|q(λ)|
|p(λ)| ‖K

(p)
λ ‖ ≤ ‖K(q)

λ ‖.

Thus,
|q(λ)|/|p(λ)| ≤ ‖K(q)

λ ‖/‖K(p)
λ ‖.
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Since A−1 : [q] → [p] is a unitary equivalence, the same reasoning shows that

|p(λ)|/|q(λ)| ≤ ‖K(p)
λ ‖/‖K(q)

λ ‖,
and therefore

|p(λ)|/|q(λ)| = ‖K(p)
λ ‖/‖K(q)

λ ‖
for λ /∈ Z(q). Since both [p] and [q] are of finite codimension, applying Corol-
lary 5.2.2 gives that

lim
|λ|→∞

|p(λ)|
|q(λ)| = lim

|λ|→∞
‖K(p)

λ ‖
‖K(q)

λ ‖
= 1.

By the equality

lim
|λ|→∞

|p(λ)|
|q(λ)| =

|al|
|bl| ,

we see that |al| = |bl|.
Lemma 5.3.8 For each fixed natural number m, the sequence {‖zn+m‖/‖zn‖}
has a subsequence {‖znk+m‖/‖znk‖} such that

lim
k→∞

‖znk+m‖
‖znk‖ = ∞.

Proof. Assume that there exists a constant γ such that

‖zn+m‖/‖zn‖ ≤ γ

for all n. Let n = kn m + sn, where sn is a nonnegative integer such that
0 ≤ sn < m. This implies that

‖zn‖ ≤ γkn max{‖1‖, ‖z‖, · · · , ‖zm‖}
for all n, and hence n

√
‖zn‖ ≤ 2γ if n is large enough. However, by Remark

5.2.4,
lim

n→∞
n
√
‖zn‖ = ∞.

This contradiction says that there exists a subsequence {‖znk+m‖/‖znk‖} such
that

lim
k→∞

‖znk+m‖
‖znk‖ = ∞.

Proof of Theorem 5.3.6. By Lemma 5.3.7, we may assume that

p = zl + al−1z
l−1 + · · ·+ a0, q = zl + bl−1z

l−1 + · · ·+ b0

and A(p) = q. Since A is a unitary equivalence of quasi-invariant subspaces,
we have

〈p zm, p zn〉 = 〈q zm, q zn〉
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for any nonnegative integer m,n. Let s1, s2 be the nonnegative integer such
that

as1 6= 0, at = 0 (t < s1) and bs2 6= 0, bt = 0 (t < s2).

We claim that s1 = s2 and as1 = bs2 . In fact, since

〈p, zl−s1p〉 = as1‖zl‖2

and
〈q, zl−s1q〉 = bs1‖zl‖2 + bl−1bs1−1‖zl−1‖2 + · · · ,

we see that s2 ≤ s1. The same reasoning implies that s1 ≤ s2 and hence
s1 = s2. Set s = s1 = s2. Since

〈p, zl−sp〉 = as‖zl‖2 and 〈q, zl−sq〉 = bs‖zl‖2,

this gives that as = bs. Now by the equality

〈znp, zn+l−(s+1)p〉 = 〈znq, zn+l−(s+1)q〉,

we have that

as+1‖zn+l‖2 + al−1as‖zn+l−1‖2 = bs+1‖zn+l‖2 + bl−1bs‖zn+l−1‖2

for any natural number n. Dividing the above equality by ‖zn+l‖2 and using
Lemma 5.3.8 gives that as+1 = bs+1, and hence also leads to the equality
al−1 = bl−1. Furthermore, from the equality

〈znp, zn+l−(s+2)p〉 = 〈znq, zn+l−(s+2)q〉,

we obtain that

as+2‖zn+l‖2 + al−1as+1‖zn+l−1‖2 + al−2as‖zn+l−2‖2
= bs+2‖zn+l‖2 + bl−1bs+1‖zn+l−1‖2 + bl−2bs‖zn+l−2‖2

and hence

as+2‖zn+l‖2 + al−2as‖zn+l−2‖2 = bs+2‖zn+l‖2 + bl−2bs‖zn+l−2‖2

for any natural number n. Dividing the above equality by ‖zn+l‖2and apply-
ing Lemma 5.3.8, we get that as+2 = bs+2 and hence also leads to the equality
al−2 = bl−2. By repeating the preceding process one gets that

a0 = b0, a1 = b1, · · · , al−1 = bl−1,

and hence p = q. This completes the proof.

From Theorems 5.3.1 and 5.3.6, we immediately obtain the following.
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Corollary 5.3.9 Let X be a reproducing Hilbert space over C with the or-
thonormal basis {zn/‖zn‖}, and let M be a quasi-invariant subspace of X. If
M is unitarily equivalent to [p] for some polynomial p, then M = [p].

Remark 5.3.10 From Proposition 5.0.1, the operator Mz is unbounded on
the Fock space L2

a(C), and hence there is a function f ∈ L2
a(C) such that

z f /∈ L2
a(C). It is easy to check that one-dimensional subspace {c f : c ∈ C}

is quasi-invariant. We choose two such functions f, g with f/g 6= constant,
then quasi-invariant subspaces {c f : c ∈ C} and {c g : c ∈ C} are unitarily
equivalent, but they are never equal.

5.4 Similarity of quasi-invariant subspaces
on the complex n-space

Let X be a reproducing Hilbert space on the complex n-space Cn. By
Theorem 5.1.4, each finite codimensional quasi-invariant subspace M has the
form

M = [I],

where I is a finite codimensional ideal with the same codimension as M .
The next theorem comes essentially from [GZ].

Theorem 5.4.1 Let M, N be quasi-invariant subspaces of X on Cn (n > 1),
and let M = [I] be finite codimensional. If there exists a quasi-module map
A : M → N , then M ⊂ N and A = γ for some constant γ.

Proof. Since for any p, q ∈ I, we have that

A(p q) = pA(q) = qA(p),

and hence
A(p)

p
=

A(q)
q

.

Thus we can define an analytic function on Cn \ Z(I) by

φ(z) =
A(p)(z)

p(z)

for any p ∈ I with p(z) 6= 0. Clearly, φ is independent of p and is analytic on
Cn \ Z(I). Since I is finite codimensional, Z(I) is a finite set. By Hartogs’
extension theorem, φ(z) extends to an analytic function on Cn, that is, φ(z)
is an entire function. It follows that

A(p) = φ p
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for any p ∈ I. Because I is dense in M , we conclude that

A(h) = φh

for any h ∈ M. Below we claim that φh ∈ M if h ∈ M. From the proof of
Lemma 5.1.3, there is a finite dimensional space R consisting of some polyno-
mials such that

X = [I]+̇R.

For h ∈ [I], φh can be expressed as

φh = g1 + g2,

where g1 ∈ [I] and g2 ∈ R. Note that for each λ ∈ Z(I) and any q ∈ Iλ,

q(D)h|λ = 0 and q(D)g1|λ = 0.

Since Iλ is invariant under the action by the basic partial differential operators
{∂/∂z1, ∂/∂z2, · · · , ∂/∂zn}, it follows that

q(D)rh|λ = 0

for any polynomial r. We choose polynomials {rn} such that rn uniformly
converge to φ on some bounded neighborhood O of λ, as n → ∞. Thus we
have that

0 = lim
n→∞

q(D)rnh|λ = q(D)φh|λ.

This yields that
q(D)g2|λ = 0

for each λ ∈ Z(I) and any q ∈ Iλ. By Corollary 2.1.2, g2 ∈ I, and hence
g2 = 0. Thus, φh ∈ [I]. Consequently, φh ∈ M if h ∈ M . Now by Proposition
5.0.1, φ is a constant γ, and hence A = γ and M ⊂ N . This completes the
proof of the theorem.

Corollary 5.4.2 Let M, N be quasi-invariant subspaces of X on Cn (n > 1),
and let M = [I] be finite codimensional. If M and N are quasi-similar, then
M = N .

Remark 5.4.3 On the bidisk D2, it is easy to check that L2
a(D2) is similar to

z1L
2
a(D2). Hence Theorem 5.4.1 again points out the difference between the

Bergman spaces and the Fock spaces.

5.5 Quasi-invariant subspaces of the Fock space

In this section we will concentrate attention on the Fock space L2
a(Cn) on

Cn. This section comes mainly from Guo’s paper [Guo7]. It is well known
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that for each analytic Hilbert module X on a bounded domain Ω, the closure
[I] of an ideal I of the polynomial ring is always a submodule of X. However,
it is never obvious if the closure [I] of I in the norm of the Fock space L2

a(Cn)
is quasi-invariant.

Here we give a proposition which shows that the closure of a homogeneous
ideal is quasi-invariant. Recall that an ideal I is homogeneous if the relation
p ∈ I implies that all homogeneous components of p are in I. Equivalently,
an ideal I is homogeneous if and only if I is generated by homogeneous poly-
nomials.

Proposition 5.5.1 Let I be a homogeneous ideal. Then the closure [I] of I
in the Fock space is quasi-invariant.

Proof. Let f ∈ [I], and f =
∑∞

k=0 fk be f ′s homogeneous expression. We
claim that every fk is in I. To prove the claim, we let Ik consist of all those
p ∈ I with homogeneous degree of p being at most k. Then Ik is of finite
dimension. From the relation f ∈ [I], there is a sequence {pn} in I such
that pn → f as n → ∞. This implies that p

(k)
n → fk, where p

(k)
n denote

homogeneous component of degree k of pn. Since I is homogeneous, p
(k)
n

belong to I, and hence they are in Ik. Because Ik is finite dimensional, and
hence closed, this forces fk ∈ I.

Assume that qf ∈ L2
a(Cn) for some polynomial q. Let q =

∑m
i=0 qi be the

homogeneous expression of q. Then the homogeneous expression of qf is given
by

qf =
∞∑

n=0

(
∑

i+j=n

qifj).

Now it is easy to derive that qf ∈ [I] by the above homogeneous expression
of qf. It follows that [I] is quasi-invariant.

Theorem 5.5.2 Let I1 and I2 be homogeneous ideals. Then [I1] and [I2] are
similar if and only if I1 = I2.

To prove this theorem, we need some preliminaries. First we give a result of
Hardy submodules on the unit ball Bn.

Proposition 5.5.3 If M1 and M2 are submodules of H2(Bn) and A : M1 →
M2 is a module map, then there exists a bounded function φ on ∂Bn such that
A(h) = φh for any h ∈ M1.

Proof. From Rudin [Ru2], we see that all inner functions on the Bn and their
adjoints generate L∞(∂Bn) in the weak*-topology. Set

D = {η̄h : η are inner functions, and h ∈ M1}.
Then D is a dense linear subspace of L2(∂Bn). We define a map

Â : D → L2(∂Bn)
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by
Â(η̄h) = η̄A(h).

Since A is a module map, the above definition is well defined. From the
relation

‖Â(η̄h)‖ = ‖A(h)‖ ≤ ‖A‖‖η̄h‖,
Â extends to a bounded map from L2(∂Bn) to L2(∂Bn), still denoted by Â.
Then, obviously, Â satisfies

ÂMg = MgÂ

for any g ∈ L∞(∂Bn), and hence there exists a function φ ∈ L∞(∂Bn) such
that

Â = Mφ.

This ensures that A(h) = φh for any h ∈ M1.

Let A(Bn) be the ball algebra, that is, A(Bn) consists of all functions f ,
which are analytic on Bn and continuous on the closure Bn of Bn.

Lemma 5.5.4 Assume n > 1. Let f ; g ∈ A(Bn), and |f(ξ)| ≤ |g(ξ)| for each
ξ ∈ ∂Bn; then also |f(z)| ≤ |g(z)| for every z ∈ Bn.

Proof. See [Ru1, Theorem 14.3.3].

For a polynomial p, if p has its homogeneous expression p = p0+p1+· · ·+pl

with pl 6= 0, we say that p is of homogeneous degree l, and denoted by degh p.

Proposition 5.5.5 Let both φ1 and φ2 be homogeneous polynomials, and
degh φ1 ≥ degh φ2. If there exists a constant γ such that on the Fock space
L2

a(Cn), ‖φ1 φ‖ ≤ γ ‖φ2 φ‖ for any homogeneous polynomial φ, then we have

φ1 = c φ2

for some constant c.

Proof. In the case of n = 1, a straightforward verification shows that the
conclusion is true. Below we may assume n > 1. First we recall that inte-
gration in polar coordinates (corresponding the volume measure) is given by
[Ru1, p. 13]:

∫

Cn

fdv =
2nπn

n!

∫ ∞

0

r2n−1dr

∫

∂Bn

f(rξ)dσ(ξ).

Then by the inequality
‖φ1 φ‖2 ≤ γ2 ‖φ2 φ‖2,
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one has that

‖φ1φ‖2 =
∫

Cn

|φ1|2|φ|2e−
|z|2
2 dv

=
2nπn

n!

∫ ∞

0

r2(n+k1+l)−1e−
|r|2
2 dr

∫

∂Bn

|φ1(ξ)φ(ξ)|2dσ(ξ)

≤ γ2

∫

Cn

|φ2|2|φ|2e−
|z|2
2 dv

=
2nπnγ2

n!

∫ ∞

0

r2(n+k2+l)−1e−
|r|2
2 dr

∫

∂Bn

|φ2(ξ)φ(ξ)|2dσ(ξ),

where k1, k2, l are the homogeneous degrees of homogeneous polynomials
φ1, φ2, φ, respectively. From the formula

∫ ∞

0

r2m+1e−
|r|2
2 dr = 2m m!

and k1 ≥ k2, we obtain that
∫

∂Bn

|φ1(ξ)φ(ξ)|2dσ(ξ) ≤ γ2

∫

∂Bn

|φ2(ξ)φ(ξ)|2dσ(ξ).

Now let r be any polynomial with its homogeneous expression

r = r0 + r1 + · · · rt.

Then on the Hardy space H2(Bn),

φ1 ri ⊥ φ1 rj ; φ2 ri ⊥ φ2 rj

if i 6= j. This gives that

∫

∂Bn

|φ1(ξ)r(ξ)|2dσ(ξ) =
∫

∂Bn

|
t∑

i=0

|φ1(ξ)ri(ξ)|2dσ(ξ)

=
t∑

i=0

∫

∂Bn

|φ1(ξ)ri(ξ)|2dσ(ξ)

≤ γ2
t∑

i=0

∫

∂Bn

|φ2(ξ)ri(ξ)|2dσ(ξ)

= γ2

∫

∂Bn

|φ2(ξ)
t∑

i=0

ri(ξ)|2dσ(ξ)

= γ2

∫

∂Bn

|φ2(ξ)r(ξ)|2dσ(ξ).
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Let [φ1]n and [φ2]n be submodules of H2(Bn) generated by φ1, φ2, respec-
tively. Then applying the preceding inequalities yields the following bounded
module map:

B : [φ2]n → [φ1]n, Bφ2r = φ1r.

By Proposition 5.5.3, there is a bounded function f on ∂Bn such that B = Mf .
This implies that fφ2 = φ1 on ∂Bn. Thus,

|φ1(ξ)| ≤ ‖f‖∞|φ2(ξ)|

for every ξ ∈ ∂Bn. By Lemma 5.5.4,

|φ1(z)| ≤ ‖f‖∞|φ2(z)|

for each z ∈ Bn. Set
ψ(z) = φ1(z)/φ2(z).

Then ψ(z) is bounded on Bn, and hence analytic. Since

φ1(z) = ψ(z) φ2(z)

and φ1, φ2 are homogeneous, the function ψ(z) is a homogeneous polynomial.
Now by the inequality ‖φ1φ‖ ≤ γ ‖φ2φ‖ and the fact that on the Fock space,

φ1 ψ1 ⊥ φ1 ψ2; φ2 ψ1 ⊥ φ2 ψ2,

for any homogeneous polynomials ψ1, ψ2 with degh ψ1 6= degh ψ2, we have
that

‖φ1r‖ ≤ γ‖φ2r‖
for each polynomial r, and hence for every entire function f with the property
φ2f ∈ L2

a(Cn). This means that the relation φ2f ∈ L2
a(Cn) implies that

φ1f belongs to L2
a(Cn). It is not difficult to check that the quasi-invariant

subspaces [φi], the closures of φiC on the Fock space, are given by

[φi] = {φif ∈ L2
a(Cn) : f ∈ Hol(Cn)}

for i = 1, 2. By the equality φ1 = ψφ2 and a simple application of the closed
graph theorem, the multiplication operator Mψ : [φ2] → [φ1] is bounded.
Since [φ1] ⊂ [φ2], Proposition 5.0.1 gives that ψ is a constant. This completes
the proof.

Proof of Theorem 5.5.2. Let A : [I1] → [I2] be a similarity. For
a homogeneous polynomial p in I1, set q = A(p). If q =

∑∞
i=0 qi is the

homogeneous expression of q, then

‖qφ‖2 =
∞∑

i=0

‖qiφ‖2 ≤ ‖A‖2‖pφ‖2
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for every homogeneous polynomial φ. We thus have that

‖qiφ‖2 ≤ ‖A‖2‖pφ‖2

for i ≥ degh p. Applying Proposition 5.5.5 gives that qi = c p if i = degh p,
qi = 0 if i > degh p. By Lemma 5.1.1, q = q0 + q1 + · · ·+ qk−1 + c p is in I2,
where k = degh p. First we claim that the constant c is never zero. In fact,
since I2 is homogeneous, this implies that qi are in I2 for i = 1, 2, · · · k − 1.
Based on the same reasoning as above, one sees that A−1(q0 + q1 + · · ·+ qk−1)
is a polynomial, and its homogeneous degree is at most k − 1. Thus,

p−A−1(q0 + q1 + · · ·+ qk−1) 6= 0.

This ensures that c 6= 0. According to the claim, I1 ⊂ I2. The same reasoning
shows that I2 ⊂ I1, and hence I1 = I2.

We note the following proposition. For a quasi-invariant subspace M , it is
easy to see that M ∩ C is an ideal.

Proposition 5.5.6 Let A : M1 → M2 be a quasi-module map. Then A maps
M1 ∩ C to M2 ∩ C.

Proof. We may assume that M1 contains a nonzero polynomial p. Set q =
A(p). We claim that degi q ≤ degi p for i = 1, 2, · · · , n, where degi p denotes
degree of p in the variable zi. Suppose that there is some i, say, 1, such that
deg1 q > deg1 p. Then we expand p and q in the variable z1 by

p = p0 + p1z1 + · · ·+ plz
l
1, q = q0 + q1z1 + · · · .

Since deg1 q > deg1 p, there exists a positive integer s(> l) such that qs 6= 0.
From the equality

‖A(zk
1p)‖2 = ‖zk

1 q‖2 =
∞∑

i=0

‖zk+i
1 qi‖2,

we have that

‖zk+s
1 qs‖2 ≤ ‖A‖2

l∑

i=0

‖zk+i
1 pi‖2.

Since
‖zk+s

1 qs‖2 = ‖zk+s
1 ‖2‖qs‖2 = 2k+s(k + s)!‖qs‖2

and
‖zk+i

1 pi‖2 = 2k+i(k + i)!‖pi‖2, i = 0, 1, 2, · · · l,
for any natural number k, we get that qs = 0. This yields the desired contra-
diction, and hence Proposition 5.5.6 follows.

We endow the ring C with the topology induced by the Fock space L2
a(Cn).

For an ideal I, we regard I as module over the ring C.
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Corollary 5.5.7 Let A : M1 → M2 be a similarity. Then A induces a
continuous module isomorphism from M1 ∩ C onto M2 ∩ C.

From Theorem 5.5.2, one sees that for homogeneous quasi-invariant sub-
spaces, similarity only appears in the case of equality. Therefore, a natural
problem is to determine the similarity orbit of quasi-invariant subspaces. Let
M be a quasi-invariant subspace. Then the similarity orbit, orbs(M), of M
consists of all quasi-invariant subspaces which are similar to M . There is no
doubt that the problem is difficult. Here we will exhibit an example to show
how to determine similarity orbits.

For a polynomial p, we let [p] denote the closure of pC on the Fock space. Us-
ing sheaf theory or by Theorem 2.3.3, one can verify that for each
g ∈ [p], there exists an entire function f such that g = p f. Moreover, if p
is homogeneous, then [p] is quasi-invariant.

Theorem 5.5.8 On the Fock space L2
a(C2), the similarity orbit orbs([zn]) of

[zn] consists of [p(z)], where p(z) range over all polynomials in the variable z
with deg p = n.

Proof. We first claim: if (z + α)f ∈ L2
a(C2), then zf ; f ∈ L2

a(C2), where α is
a constant. Let

f =
∑

n≥0

fn(z)wn

be the expansion of f relative to the variable w. Then

(z + α)f =
∑

n≥0

(z + α)fn(z)wn.

By an easy verification, there exists positive constants Cα, C ′α such that

Cα‖zg(z)‖ ≤ ‖(z + α)g(z)‖ ≤ C ′α‖zg(z)‖,
for any entire function g(z) on the complex plane C. Since

‖(z + α)f‖2 =
∑

n≥0

‖(z + α)fn(z)‖2‖wn‖2 < ∞,

this gives that and hence zf ∈ L2
a(C2). Let f =

∑
n≥0 φn(w)zn be the

expansion of f relative to the variable z. Then zf =
∑

n≥0 φn(w)zn+1, and
hence

‖zf‖2 =
∑

n≥0

‖φn(w)‖2‖zn+1‖2 ≥
∑

n≥0

‖φn(w)‖2‖zn‖2 = ‖f‖2.

This means f ∈ L2
a(Cn) and, therefore, the claim follows.

Combining the above claim with induction, we see that for a polynomial
p(z) in the variable z, the relation pf ∈ L2

a(C2) implies that znf, zn−1f, · · · , f
are in L2

a(C2), where n = deg p.
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Let p(z) be a polynomial in the variable z with deg p = n. Then we can
establish an inequality

C1‖znf‖ ≤ ‖p(z)f‖ ≤ C2‖znf‖,

where C1; C2 are positive constants only depending on p(z).
In fact, Let

f =
∑

n≥0

fn(z)wn

be the expansion of f relative to the variable w. Then

p(z)f =
∑

n≥0

p(z)fn(z)wn.

It is easy to prove that there exists positive constants C1; C2, which depend
only on p(z) such that

C1‖zng(z)‖ ≤ ‖p(z)g(z)‖ ≤ C2‖zng(z)‖

for any entire function g(z) on the complex plane. Now by the equality

‖p(z)f‖2 =
∑

n≥0

‖p(z)fn(z)‖2‖wn‖2,

we thus have the inequality

C1‖znf‖ ≤ ‖p(z)f‖ ≤ C2‖znf‖.

Note that the homogeneous quasi-invariant subspace [zn] is given by

[zn] = {znf ∈ L2
a(C2) : f are entire functions}.

The above inequality implies that

[p(z)] = {p(z)f ∈ L2
a(C2) : f are entire functions},

and hence [p(z)] is quasi-invariant.
Now we establish a map

A : [zn] → [p(z)], znf 7→ p(z)f.

Then by the preceding discussion and the closed graph theorem, A is contin-
uous. Obviously, A is injective, surjective, and both A and A−1 are quasi-
module maps. Thus, A is a similarity.

On the other hand, we let M be quasi-invariant and A : [zn] → M be a
similarity. Set q = A(zn). We claim that q is a polynomial in the variable z,
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and deg q = n. To prove the claim, we expand q relative to the variables w,
by

q = q0(z) + wq1(z) + w2q2(z) · · · .

Assume that degw q > degw zn = 0, where degw q denotes degree of q in the
variable w (allowed as ∞). Then there exists a positive integer s such that
qs(z) 6= 0. Since

‖A(wkzn)‖2 = ‖wkq‖2 =
∞∑

i=0

‖wk+iqi(z)‖2,

this implies that
‖wk+sqs(z)‖2 ≤ ‖A‖2‖wkzn‖2

for any positive integer k. Since

‖wk+sqs(z)‖2 = 2k+s (k + s)!‖qs(z)‖2 and ‖wkzn‖2 = 2k+n k! n!

for any positive integer k, this deduces qs = 0. This contradicts the assump-
tion, and hence degw q = 0. Thus, q depends only on the variable z. Now we
expand q in the variable z by

q(z) =
∑

m≥0

amzm.

If there is a positive integer l, and l > n such that al 6= 0, then the equality
A(zkzn) =

∑
m≥0 amzk+m implies that

|al|2‖zk+l‖2 ≤ ‖A‖2‖zk+n‖2.
This leads to the following:

2k+l |al|2 (k + l)! ≤ 2k+n ‖A‖2 (k + n)!

for any positive integer k. This clearly is impossible, and hence q(z) is a
polynomial in the variable z with deg q ≤ n.

Set s = deg q. Then M = [q] is similar to [zs] by the preceding discussion,
and hence [zs] is similar to [zn]. An easy verification shows s = n. This means
that q(z) is a polynomial in the variable z with degree n.

Based on the above discussion, we conclude that the similarity orbit
orbs([zn]) of [zn] consists of [p(z)], where p(z) range over all polynomials
in the variable z with deg p = n.

Remark 5.5.9 From the proof of Theorem 5.5.8, it is not difficult to see that
Theorem 5.5.8 remains true in the case of the Fock space L2

a(Cn) (all n ≥ 1).

Let p =
∑

i≤m,j≤n aijz
iwj be a polynomial in two variables. If amn 6= 0,

we say that p has a nonzero leading term amnzmwn.
We leave the following proposition as an exercise.
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Proposition 5.5.10 If p(z, w) has a nonzero leading term. Then [p] is a
quasi-invariant subspace of L2

a(C2). Furthermore, the similarity orbit of the
quasi-invariant subspace [zmwn] consists of all [p(z, w)], where p(z, w) have
nonzero leading term zmwn.

Proposition 5.5.10 has been generalized to a more general case. We refer the
reader to reference [GH].

5.6 Finite codimensional quasi-invariant subspaces

As shown in Section 5.1, there is a simple algebraic reduction theorem for
finite codimensional quasi-invariant subspaces. In this section we look at the
structure of M⊥ if M is finite codimensional quasi-invariant subspace of the
Fock space.

Let M be finite codimensional quasi-invariant subspace of L2
a(Cn). Then

by Theorem 5.1.4, there is a unique finite codimensional ideal I such that
M = [I]. Since I is of finite codimension, Z(I) is a finite set, say, Z(I) =
{λ1, λ2, · · · , λl}. The ideal I can then be uniquely decomposed as

I =
l⋂

k=1

Ik,

where each Ik is an ideal with a unique zero λk. Clearly,

[I] ⊂ ∩k
k=1[Ik].

Note that ∩k
k=1[Ik] is quasi-invariant and is of finite codimension. From Lem-

mas 5.1.1 and 5.1.3,

C ∩ (∩k
k=1[Ik]) = ∩l

k=1Ik = I,

and I is dense in ∩k
k=1[Ik]. Thus,

[I] = ∩k
k=1[Ik].

The above reasoning shows that each finite codimensional quasi-invariant sub-
space M can be uniquely decomposed as

M = ∩l
k=1Mk,

where each Mk is quasi-invariant and is of a unique zero point.

Because

{zα/‖zα‖ : α ranging over all nonnegative indices}
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is the orthonormal basis of L2
a(Cn), this means that although for each poly-

nomial p, the Toeplitz operator Tp̄ is unbounded on L2
a(Cn), Tp̄ maps C to C.

Now let P be a linear space consisting of some polynomials. We say that P is
an invariant polynomial space, if for any polynomial p, P is invariant under
the action by Tp̄.

Just as in the proof of Lemma 2.5.1, we have the following result.

Lemma 5.6.1 Let M be a finite codimensional quasi-invariant subspace with
a unique zero λ = 0. Then M⊥ is a finite dimensional invariant polynomial
space.

Consider the transformations on Cn, γλ(z) = λ − z. These maps determine
unitary operators on L2(Cn) given by

Vλf = f ◦ γλ kλ,

where kλ(z) is the normalized reproducing kernels of the L2
a(Cn), i.e.,

kλ(z) = eλ̄z/2−|λ|2/4.

It is easy to verify that Vλ commute with the Fock projection P (here P is
the orthogonal projection from L2(Cn) onto L2

a(Cn)), and V 2
λ = I.

Let M be a finite codimensional quasi-invariant subspace. Then M has
finitely many zero points λ1, λ2, · · · , λl such that M can uniquely be repre-
sented as

M =
l⋂

i=1

Mi,

where each Mi is quasi-invariant and has a unique zero λi.
The following theorem was contributed by Guo and Zheng [GZ].

Theorem 5.6.2 Under the above assumption, there are finite dimensional
invariant polynomial spaces Pi with dim Pi = codim Mi for i = 1, 2, · · · , l
such that

M⊥ =
l∑

i=1

+̇Pi ◦ γλi kλi .

Furthermore, we have

codim M = dim M⊥ =
l∑

i=1

dim Pi.

Proof. Let N be a quasi-invariant subspace of finite codimension with a
unique zero point λ. We claim that VλN = {f ◦ γλ kλ : f ∈ N} is quasi-
invariant. In fact, if there is a polynomial q and some f ∈ N such that
q(z)Vλf(z) ∈ L2

a(Cn), then q(z)f(λ− z)kλ(z) ∈ L2
a(Cn). It is easy to see that
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q(z) can be written as q(z) = p(λ − z) + c for some polynomial p and some
constant c. Since

q(z)f(λ− z)kλ(z) = Vλ((p + c)f)(z),

we have
(p + c)f = VλVλ((p + c)f) ∈ L2

a(Cn).

Hence pf ∈ L2
a(Cn). Since N is quasi-invariant, pf ∈ N . It follows that

(p + c)f ∈ N , and hence

q(z)f(λ− z)kλ(z) = Vλ((p + c)f)(z) ∈ VλN.

This ensures that VλN is quasi-invariant. From the equality,

L2
a(Cn) = N ⊕N⊥ = VλN ⊕ VλN⊥,

VλN is a finite codimensional quasi-invariant subspace, and VλN is of the
same codimension as N . Note that VλN has only zero point 0. Thus from
Lemma 5.6.1, VλN⊥ is a finite dimensional invariant polynomial space. We
denote VλN⊥ by P. Thus,

N⊥ = VλP = P ◦ γλ kλ.

Since M = ∩l
i=1Mi, this gives that

M⊥ =
l∑

i=1

+̇ Mi
⊥.

Thus, there are finite dimensional invariant polynomial spaces Pi, i = 1, 2, · · · , l
such that

M⊥ =
l∑

i=1

+̇Pi ◦ γλi kλi .

The rest of the theorem comes from Corollary 2.2.6. This completes the proof
of the theorem.

In the case of the Fock space L2
a(C), Theorem 5.6.2 has a simple corollary.

To see this, we let πn denote the linear space spanned by {1, z, ..., zn} for
each nonnegative integer n. Then it is easy to verify that P is an invariant
polynomial space in the variable z with dimension n+1 if and only if P = πn.
Note that each finite codimensional quasi-invariant subspace M of L2

a(C) has
its unique form M = [p], where p is a polynomial with deg p = codimM . Let
p(z) = (z−λ1)k1+1(z−λ2)k2+1 · · · (z−λm)km+1 be the irreducible decompo-
sition of p. Then we have the following.

Corollary 5.6.3 Under the above assumption, it holds that

[p]⊥ =
l∑

i=1

+̇πki eλ̄iz/2.

©2003 CRC Press LLC



5.7 Beurling’s phenomenon on the Fock space

Beurling’s classical theorem [Beu] says that each submodule M of the Hardy
module H2(D) has the form η H2(D), where η is an inner function. Equiva-
lently, the subspace M ª zM = Cη is one dimensional, and it generates M ,
i.e., M = [η] = ηH2(D). Beurling’s theorem has played an important role
in operator theory, function theory and their intersection, function-theoretic
operator theory. However, despite the great development in these fields over
the past fifty years, it is only recently that progress has been made in proving
the analogue for the Bergman module L2

a(D) on the unit disk. The analogue
of Beurling’s theorem on the Bergman module L2

a(D) was made by Aleman,
Richter and Sundberg [ARS]. They proved that any submodule M of the
Bergman module L2

a(D) also has the form M = [M ª zM ], that is, M , as a
submodule of L2

a(D), is generated by M ª zM . However, unlike the Bergman
space (or the Hardy space), an analogue of Beurling’s theorem fails in general
for the Fock space. The next example shows that there are infinitely many
quasi-invariant subspaces for which Beurling’s theorem fails.

Example 5.7.1 Let α 6= 0, and let [z − α] be the quasi-invariant subspace
generated by z−α. Then [z−α]ª [z(z−α)] is not a generating set of [z−α].

In fact, it is easy to check that the subspace [z − α] ª [z(z − α)] is one
dimensional, and the function fα(z) = e|α|

2/2−eᾱz/2 is in it. Since the function
fα(z) has infinitely many zero points {α + 4nπi/ᾱ : n range over all integer}
in C, but z − α has a unique zero point α, this implies that fα(z) does not
generate the quasi-invariant subspace [z − α].

More generally, we have the following.

Theorem 5.7.2 Let p(z) be a polynomial with degree m. Then for the Fock
space L2

a(C), [p]ª[zp] is a generating set of [p] if and only if there is a constant
γ such that p(z) = γ zm.

This theorem was proved in [CH]. This section will give a more simple proof
of the theorem which is distinct from [CH]. For the theorem, we need two
lemmas.

Lemma 5.7.3 Let q1(z), · · · , ql(z) be polynomials. If f(z) =
∑l

k=1 qk(z) eµkz

has finitely many zeros on the complex plane C, say, λ1, λ2, · · · , λm (counting
multiplicities), then there are constants a, b such that

f(z) = a (z − λ1)(z − λ2) · · · (z − λm)ebz.

Proof. Set
r(z) = (z − λ1)(z − λ2) · · · (z − λm).
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Then the function f(z)/r(z) is holomorphic on the complex plane and it has
no zero on C. It follows that there exists an entire function g(z) such that
f(z) = r(z)eg(z). Since

|f(z)| ≤
l∑

k=1

|qk(z)|e|µk||z|,

there exists a positive constant R0 such that

|f(z)| ≤ e(µ+1)|z|

if |z| ≥ R0 (here µ = max{|µ1|, · · · , |µl|}), and hence there exists a large
positive constant R such that

|eg(z)| ≤ e(µ+1)|z|

if |z| ≥ R. Thus, we can find a positive constant d such that

|eg(z)| ≤ e(µ+1)|z|+d

for any z ∈ C. Write g(z) = g(0) + g′(0)z + z2h(z), where h(z) is an entire
function. Then there are positive constants d1 > 0 and d2 > 0 such that

|ez2h(z)| ≤ ed1|z|+d2

for each z ∈ C. This gives Re(z2h(z)) ≤ d1|z|+ d2, and hence

[Re(z2h(z))]2 + [Im(z2h(z))]2 ≤ [2(d1r + d2)−Re(z2h(z))]2 + [Im(z2h(z))]2

if |z| ≤ r, that is,
|z2h(z)| ≤ |2(d1r + d2)− z2h(z)|

if |z| ≤ r. The function

hr(z) = r2h(z)/[2(d1r + d2)− z2h(z)]

is holomorphic on {z : |z| ≤ 2r}, and |hr(z)| ≤ 1 if |z| = r. Applying the
maximum modulus theorem yields

|hr(z)| ≤ 1

if |z| ≤ r. Fixing z and letting r → ∞ give h(z) = 0. It follows that there
exist constant a, b such that

f(z) = a (z − λ1)(z − λ2) · · · (z − λm)ebz,

completing the proof.

By induction, the following lemma is easily proved.
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Lemma 5.7.4 Let µi 6= µj (i 6= j), and let q1(z), · · · , ql(z) be polynomials.
Then

∑l
k=1 qk(z) eµkz = 0 only if q1(z) = q2(z) = · · · = ql(z) = 0.

The proof of Theorem 5.7.2. Note that finite codimensional quasi-invariant
subspaces [p] and [zp] have codimension m and m+1, respectively, and hence
the subspace [p] ª [zp] is one dimensional. Take a nonzero φ in [p] ª [zp]. If
[p] ª [zp] is a generating set of [p], then φ generates [p], and therefore φ can
be decomposed as φ(z) = p(z)ψ(z) such that ψ(z) has no zero on the complex
plane C. Since φ ∈ [zp]⊥, applying Corollary 5.6.3 and Lemma 5.7.3 gives

φ(z) = a p(z)ebz,

where a, b are constants and a 6= 0. Combining Corollary 5.6.3, Lemma 5.7.4
and the equality [p] ª [zp] = [zp]⊥ ª [p]⊥, we obtain b = 0. Since [zp]⊥ is
invariant for Tz̄, and p ∈ [zp]⊥, we deduce zk ∈ [zp]⊥ for k = 0, 1, · · · ,m.
It follows that there exists a constant γ such that p(z) = γ zm because
dim [zp]⊥ = deg p + 1 = m + 1. This completes the proof.

5.8 Remarks on Chapter 5

The concept of quasi-invariant subspace was first introduced by Guo and
Zheng [GZ]. Proposition 5.0.1 and results in Sections 5.1, 5.4 and 5.6 were
basically contributed by Guo and Zheng [GZ]. Sections 5.2 and 5.3 are mainly
based on the paper [CGH] by Chen, Guo and Hou. Section 5.5 comes basically
from Guo’s paper [Guo7]. Proposition 5.5.10 appeared in [GH]. The Beurling
problem for the Fock space was raised by Zheng. Theorem 5.7.2 was proved
by Chen and Hou [CH]. The present proof was given by Guo and it is distinct
from [CH]. We also mention a work [GY] by Guo and Yan, where they studied
reproducing Hilbert spaces with U -invariant kernels on the complex plane.
Concerning reproducing kernels, a general theory is presented in [Ar].
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Chapter 6

The Arveson module

To generalize the operator-theoretic aspects of function theory on the unit disk
to multivariable operator theory, Arveson investigated a new function space
H2

d on the unit ball Bd in the d-dimensional complex space Cd (cf. [Arv1, Arv2,
Arv3, Arv6]) (for convenience, we call H2

d the Arveson space). Indeed, the
Arveson space plays an important role in the multi-variable operator theory as
shown by Arveson [Arv1, Arv2, Arv3]. Recall that the Arveson space H2

d on
the unit ball Bd is defined by the reproducing kernel Kλ(z) = 1/(1− 〈z, λ〉),
where 〈z, λ〉 =

∑d
j=1 zj λ̄j , and it is easy to verify that the space is invariant

under multiplication by polynomials. Therefore, we will regard the Arveson
space H2

d as a module over the polynomial ring C. Unlike Hardy modules and
Bergman modules, the Arveson module H2

d(d ≥ 2) is never associated with
some measure on Cd as shown by [Arv1]. Therefore, the Arveson module
enjoys many properties distinct from those of the Hardy module and the
Bergman module.

6.1 Some basic results on the Arveson module

First we give the following proposition.

Proposition 6.1.1 The Arveson space has a canonical orthonormal basis

{ [
(j1 + j2 + · · ·+ jd)!

j1!j2! · · · jd!
]1/2zj1

1 zj2
2 · · · zjd

d },

where J = (j1, j2, · · · , jd) run over all multi-indexes of nonnegative integers.

Proof. Let H be the Hilbert space with an orthonormal basis given by this
proposition. For convenience, we set eJ = [ (j1+···+jd)!

j1!···jd! ]1/2zj1
1 · · · zjd

d . Then for
any f ∈ H, f has the expression f =

∑
J aJeJ with

∑
J |aJ |2 < ∞. For any

λ ∈ Bd, the evaluation Eλ(f) of f at λ satisfies
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|Eλ(f)| = |
∑

J

aJeJ(λ)| ≤ (
∑

J

|aJ |2)1/2(
∑

J

|eJ(λ)|2)1/2

= (
∑

J

|aJ |2)1/2/(1− |λ|2)1/2 = ‖f‖/(1− |λ|2)1/2.

This means that Eλ is continuous; we thus think of Eλ as an element in H.
Then it is easy to see that Eλ =

∑
J eJ(λ)eJ . Furthermore, if Eλ(f) = 0 for

each λ ∈ Bd, then f = 0. Indeed, from the following expression

∂j1+···+jdf

∂λ1
j1 · · · ∂λd

jd
|λ=0 = 0,

the equality aJ = 0 is easily deduced, and hence f = 0. This shows that the
set of all Eλ is dense in H. Notice that for any λ, µ ∈ Bd, we have

〈Eλ, Eµ〉H = 〈Kλ,Kµ〉H2
d

= 1/(1− 〈µ, λ〉).

The proposition follows.

By a multiplier of H2
d we mean a complex-valued function f on Bd with

the property f H2
d ⊂ H2

d . It is easy to see that a multiplication operator Mf

on H2
d defined by a multiplier f is bounded. From Proposition 6.1.1, for any

polynomial p, pH2
d ⊂ H2

d . Therefore, we will regard the Arveson space H2
d as

a module over the polynomial ring C.
In fact, the Arveson space is an analytic Hilbert module on the unit ball

Bd (for the definition, see Section 2.2 of Chapter 2). For this assertion it
is enough to show that each point µ, |µ| ≥ 1 is not a virtual point of H2

d ,
where |µ| = (

∑d
i=1 |µi|2)1/2. Suppose that there is a virtual point µ such that

|µ| ≥ 1. Then there exists a constant Cu such that for any λ, |λ| < 1/|µ| we
have

| 1
1− 〈λ, µ〉 |

2 ≤ Cu‖Kλ‖2 =
Cu

1− |λ|2 .

Taking λ = tµ with 0 ≤ t < 1/|µ|2 we then obtain

1− t2|µ|2
(1− t|µ|2)2 ≤ Cu.

When |µ| = 1, the left side of the above inequality tends to +∞ as t → 1− .
Similarly, when |µ| > 1, the left side of the inequality tends to +∞ as t →
1/|µ|2−. This contradiction shows that µ is not the virtual point of H2

d if
|µ| ≥ 1. Therefore, the Arveson space is an analytic Hilbert module on the
unit ball.

Before going on we give the following proposition (see [Arv1]).
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Proposition 6.1.2 Let Mzi be the multiplications given by the coordinate
multipliers zi for i = 1, 2, · · · , d. Then

Mz1M
∗
z1

+ · · ·+ Mzd
M∗

zd
= I − 1⊗ 1.

Proof. Since H2
d is spanned by {Kλ : λ ∈ Bd}, it is enough to show that for

all λ, µ ∈ Bd we have

〈Mz1M
∗
z1

Kλ,Kµ〉+ · · ·+ 〈Mzd
M∗

zd
Kλ,Kµ〉 = 〈Kλ,Kµ〉 − 〈(1⊗ 1)Kλ,Kµ〉.

Since
M∗

zi
Kλ = λiKλ, i = 1, 2, · · · , d

and
〈(1⊗ 1)Kλ,Kµ〉 = 〈Kλ, 1〉〈1, Kµ〉 = 1,

a simple computation gives the desired conclusion.

Arveson [Arv1] called the d-duple of operators (Mz1 , · · · ,Mzd
) the d-shift.

For convenience, we will write (S1, · · · , Sd) for the d-shift (Mz1 , · · · ,Mzd
).

The d-shift plays the important role in the theory of d-contraction (cf. [Arv1]).
A commuting d-tuple T̄ = (T1, · · · , Td) acting on a common Hilbert space H
is called a d-contraction if the following condition is satisfied:

‖T1ξ1 + · · ·+ Tdξd‖2 ≤ ‖ξ1‖2 + · · ·+ ‖ξd‖2.

It is easy to verify that a commuting d-tuple T̄ is a d-contraction if and only
if

T1T
∗
1 + · · ·+ TdT

∗
d ≤ 1.

To see this we let d · H denote the direct sum of d copies of H, and let
T̄ ∈ B(d ·H, H) be the operator defined by T̄ (ξ1, · · · , ξd) = T1ξ1 + · · ·+ Tdξd.
Then the adjoint of T̄ , T̄ ∗ : H → d ·H is given by

T̄ ∗ξ = (T ∗1 ξ1, · · · , T ∗d ξd).

This implies that
T̄ T̄ ∗ = T1T

∗
1 + · · ·TdT

∗
d ,

and hence the equivalence follows.
A simple verification shows that the d-tuples (Mz1 , · · · ,Mzd

) of coordinate
multipliers on both the Hardy module and the Bergman module of the unit
ball are d-contractions. The next theorem will show that the Arveson module
H2

d is distinguished among all analytic Hilbert modules on the unit ball by
being the largest Hilbert norm. As a consequence, the Arveson module is
contained in every other analytic Hilbert module on the unit ball that has
some natural properties.

The following theorem is due to Arveson [Arv1].
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Theorem 6.1.3 Let H be an analytic Hilbert module on the unit ball Bd such
that 1 ⊥ H0, where H0 = {f ∈ H : f(0) = 0}. If the d-tuple of the coordinate
multipliers M̄ = (Mz1 , · · · ,Mzd

) is a d-contraction, then for each polynomial
p we have

‖p‖ ≤ ‖1‖ ‖p‖H2
d
.

The theorem shows that the H2
d norm is the largest Hilbert norm among

all Hilbert modules on Bd which have the properties desired as the theorem.
Furthermore, applying the closed graph theorem gives that if an analytic
Hilbert module H on the Bd has the properties desired as the theorem, then
H contains H2

d , and the inclusion map of H2
d to H is a bounded operator.

For the proof of Theorem 6.1.3, let us first recall some operator theoretic re-
sults which are important in themselves. Each d-contraction T̄ = (T1, · · · , Td)
in B(H) gives a completely positive map P on B(H) by way of

P (A) = T1AT ∗1 + · · ·+ TdAT ∗d , A ∈ B(H).

(We refer the interested reader to an appendix at the end of this section for
the definition and some basic properties of completely positive maps.) Notice
that since P (I) = T1T

∗
1 + · · ·+ TdT

∗
d ≤ I we have

‖P‖ = ‖P (I)‖ ≤ 1,

and hence the sequence of positive operators

I ≥ P (I) ≥ P 2(I) ≥ · · ·

converges strongly to a positive operator T∞ = lim Pn(I). Obviously,

0 ≤ T∞ ≤ I.

A d-contraction is called null if T∞ = 0. For a d-contraction T̄ = (T1, · · · , Td),
its defect operator ∆ is defined as

∆ = (I − T1T
∗
1 − · · · − TdT

∗
d )1/2.

The next dilation theorem, due to Arveson [Arv1], will serve us to prove
theorem 6.1.3.

Theorem 6.1.4 Let T̄ = (T1, · · · , Td) be a d-contraction on a Hilbert space
H. Then there is a unique bounded linear operator L : H2

d ⊗ ∆H → H
satisfying

L(p⊗ ξ) = p(T̄ )∆ξ,

and we have
LL∗ = I − T∞.

In particular, the operator L is a contraction.
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Proof. For each η ∈ H, define Aη as a sequence of vectors (ξ0, ξ1 · · · ) where

ξn =
∑

j1+···+jd=n

n!
j1! · · · jd!

zj1
1 · · · jjd

d ⊗∆T j1∗
1 · · ·T jd∗

d η.

Then we have

‖ξn‖2 =
∑

j1+···+jd=n

[
n!

j1! · · · jd!
]2‖zj1

1 · · · jjd

d ‖2‖∆T j1∗
1 · · ·T jd∗

d η‖2

=
∑

j1+···+jd=n

n!
j1! · · · jd!

‖∆T j1∗
1 · · ·T jd∗

d η‖2

=
∑

j1+···+jd=n

n!
j1! · · · jd!

〈T j1
1 · · ·T jd

d ∆2T j1∗
1 · · ·T jd∗

d η, η〉

= 〈Pn(∆2)η, η〉
= 〈(Pn(I)− Pn+1(I))η, η〉.

Therefore we obtain

‖Aη‖2 =
∞∑

n=0

‖ξn‖2 = ‖η‖2 − 〈T∞η, η〉.

Now the linear operator A : H → H2
d ⊗∆H given by the above reasoning is

well defined and bounded. Notice that for any ξ ∈ ∆H and η ∈ H,

〈zj1
1 · · · zjd

d ⊗ ξ,Aη〉

=
(j1 + · · ·+ jd)!

j1! · · · jd!
〈zj1

1 · · · zjd

d ⊗ ξ, zj1
1 · · · zjd

d ⊗∆T j1∗
1 · · ·T jd∗

d η〉

=
(j1 + · · ·+ jd)!

j1! · · · jd!
‖zj1

1 · · · zjd

d ‖2〈ξ,∆T j1∗
1 · · ·T jd∗

d η〉

= 〈ξ,∆T j1∗
1 · · ·T jd∗

d η〉 = 〈T j1
1 · · ·T jd

d ∆ξ, η〉
= 〈L(zj1

1 · · · zjd

d ⊗ ξ), η〉.

From the above reasoning we see that the desired operator L is given by A∗,
and it satisfies

LL∗ = A∗A = I − T∞.

Obviously, such an operator L is unique, completing the proof.

The proof of Theorem 6.1.3. Let ∆ = (I−Mz1M
∗
z1
−· · ·−Mzd

M∗
zd

)1/2 be
the defect operator for the d-tuple of the coordinate multipliers (Mz1 , · · · ,Mzd

).
We claim that ∆1 = 1. In fact, since 1 ⊥ H0, we obtain that M∗

zk
1 = 0 for

k = 1, 2, · · · , d. It follows that

‖∆1‖2 = 〈∆21, 1〉 = ‖1‖2,
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and hence ∆1 = 1 because 0 ≤ ∆ ≤ I. In particular, 1 = ∆1 ∈ ∆H. Applying
Theorem 6.1.4 we see that L(p ⊗ 1) = p for any polynomial p. Since L is a
contraction we have

‖p‖ ≤ ‖1‖ ‖p‖H2
d

for any polynomial p, completing the proof.

Another application of Theorem 6.1.4 is that an appropriate version of Von
Neumann’s inequality for d-contraction can been deduced from it. Recall the
following classical von Neumann’s inequality satisfied by any contraction T
on a Hilbert space H.

Proposition 6.1.5 (Von Neumann’s inequality) For any contraction T
(i.e., ‖T‖ ≤ 1) on a Hilbert space H and for any polynomial p in one variable,
we have

‖p(T )‖ ≤ ‖p‖∞,

where ‖p‖∞ is defined by ‖p‖∞ = supz∈D |p(z)|.
We refer the interested reader to [Pi1] for many different proofs of the von
Neumann’s inequality. Perhaps most natural generalization of von Neumann’s
inequality for d-contraction would make the following assertion. Let T̄ =
(T1, · · · , Td) be a d-contraction, and let p be a polynomial in d-complex vari-
ables. Then

‖p(T1, · · · , Td)‖ ≤ ‖p‖∞ 4
= sup

z∈Bd

|p(z)|.

The next example shows that this inequality fails for d-shift, in that there is
no constant K for which

‖p(S1, , · · · , Sd)‖ ≤ K sup
z∈Bd

|p(z)|,

for any polynomial p.

Example 6.1.6 This example comes from [Arv1]. Assume d ≥ 2. Let
{c0, c1, · · · } be a sequence of complex numbers with properties

∑
n

|cn| = 1,
∑

n

|cn|2n(d−1)/2 = ∞.

The existence of such a sequence is obvious; for example, take cn = c/n(d−1)/4

if n = m8 for some positive integer m and cn = 0 otherwise, where c =
1/

∑∞
m=1

1
m2(d−1) . We define a sequence of polynomials, p0, p1, · · · , as follows:

pN =
N∑

n=0

cn

sn
(z1 · · · zd)n,

where s = supz∈Bd
|z1 · · · zd| = d−d/2. Then we have ‖pN‖∞ ≤ 1 for every

N , and the sequence {pN} converges uniformly on the closed unit ball to a
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function f satisfying ‖f‖∞ ≤ 1; but f /∈ H2
d , where f =

∑∞
n=0

cn

sn (z1 · · · zd)n.
Furthermore, we have

lim
N→∞

‖pN (S1, · · · , Sd)‖ = ∞.

In fact, notice that

‖pN‖∞ ≤
N∑

n=0

|cn|
sn
‖(z1 · · · zd)n‖∞ =

N∑
n=0

|cn|,

and hence by the assumption we obtain that ‖pN‖∞ ≤ 1, and the sequence
{pN} converges uniformly on the closed unit ball to a function f satisfying
‖f‖∞ ≤ 1. By Stirling’s formula n! v

√
2πnn+1/2e−n and Proposition 6.1.1,

there exists a positive constant C such that

‖(z1 · · · zd)n‖ ≥ C d−dnn(d−1)/2, n = 1, 2, · · · .

This implies that

‖pN‖2 =
N∑

n=0

|cn|2
s2n

‖(z1 · · · zd)n‖2 ≥ C
N∑

n=0

|cn|2n(d−1)/2 →∞

as N →∞. It follows that f /∈ H2
d . Since

‖pN (S1, · · · , Sd)‖ ≥ ‖pN (S1, · · · , Sd)1‖ = ‖pN‖,
this gives

lim
N→∞

‖pN (S1, · · · , Sd)‖ = ∞.

However, using Theorem 6.1.4, Arveson obtained an appropriate version of
von Neumann’s inequality for d-contraction as follows (cf. [Arv1]).

Theorem 6.1.7 Let T̄ = (T1, · · · , Td) be a d-contraction on a Hilbert space
H. Then for every polynomial p in d-complex variables we have

‖p(T1, · · · , Td)‖ ≤ ‖p(S1, · · · , Sd)‖.
Proof. Let ∆ = (I−T1T

∗
1 −· · ·−TdT

∗
d )1/2 be the defect operator for d-tuple

T̄ , and let K = ∆H. By Theorem 6.1.4, we see that for any polynomial p,

Lp(S1, · · · , Sd)⊗ IK = p(T1, · · · , Td)L.

We first show that for each null d-contraction T̄ , the theorem is true. Indeed,
if T̄ is a null d-contraction, then Theorem 6.1.4 implies that L is a coisometry,
that is, LL∗ = I. In this case, we have

Lp(S1, · · · , Sd)⊗ IK L∗ = p(T1, · · · , Td),
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and hence
‖p(T1, · · · , Td)‖ ≤ ‖p(S1, · · · , Sd)‖.

The general case is deduced from this by simple reasoning. Let T̄ be any
d-contraction. For 0 < r < 1, set T̄r = (rT1, · · · , rTd). Then T̄r is a null
d-contraction. Applying the preceding conclusion to the tuple T̄r gives

‖p(rT1, · · · , rTd)‖ ≤ ‖p(S1, · · · , Sd)‖.
Since

‖p(T1, · · · , Td)‖ = lim
r→1

‖p(rT1, · · · , rTd)‖,
the desired conclusion follows.

The two most common analytic Hilbert modules on the unit ball are the
Hardy module H2(Bd) and the Bergman module L2

a(Bd). Their multiplier
algebras are all H∞(Bd). However, Example 6.1.6 shows that there exist func-
tions in the ball algebras A(Bd) which are not multipliers of H2

d . Furthermore,
the following is deduced from Example 6.1.6. (cf. [Arv1]).

Proposition 6.1.8 There is no positive measure µ on Cd, d ≥ 2, such that
on the Arveson module H2

d

‖f‖2 =
∫

Cd

|f(z)|2dµ

for all polynomial f .

Proof. Suppose that such a measure µ did exist; then µ must be a probability
measure because ‖1‖ = 1. For any e = (e1, · · · , ed) ∈ ∂Bd, set fe = e1z1 +
· · · + edzd. Then by Proposition 6.1.1, ‖fn

e ‖ = 1 for each natural number n.
Therefore ∫

Cd

|fe(z)|2ndµ = 1.

Let X be the closed support of the measure µ. We find that

sup
z∈X

|fe(z)| = lim
n→∞

(
∫

Cd

|fe(z)|2ndµ)1/2n = 1.

This proves that for each z ∈ X and e in the unit sphere of Bd we have

|〈z, e〉| ≤ 1,

and it follows that X must be contained in the closed unit ball of Cd. Since
the polynomial ring is dense in the ball algebra A(Bd) in the sup norm, this
forces A(Bd) ⊂ H2

d . However, Example 6.1.6 shows that this is impossible,
and hence the proposition follows.

As a consequence of Proposition 6.1.8, we will see that the d-shift is not
a subnormal d-tuple. More earlier examples for non-subnormal commuting
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d-tuple appeared in [Lu]. Recall that a d-tuple of commuting operators
T̄ = (T1, · · · , Td) on a Hilbert space H is said to be subnormal if there is a
commuting d-tuple of normal operators N̄ = (N1, · · · , Nd) on a larger Hilbert
space K ⊃ H such that Tk = Nk|H for k = 1, 2, · · · , d.

The following corollary appeared in [Arv1]; here the proof is similar to
that of [CSa, Theorem 2.1], which is different from the proof in [Arv1]. We
also point out a recent work of Arazy and Zhang [AZ], which gives an exact
condition for the d-tuple being non-subnormal concerning bounded symmetric
domains.

Corollary 6.1.9 For each d ≥ 2 the d-shift is not subnormal.

Proof. Suppose that the d-shift is subnormal. Then there is a normal ex-
tension N̄ for the d-shift such that 1 is a cyclic vector for the commuting
C∗-algebra C∗(N̄) generated by I and N1, · · · , Nd. Notice that there is a
unique ∗-isomorphism τ : C∗(N̄) → C(σ(N̄)), τ(Ni) = zi for i = 1, · · · , d,
where σ(N̄) is the Taylor spectrum for the d-tuple N̄ = (N1, · · · , Nd). A
functional φ : C(σ(N̄)) → C is given by

φ(f) = 〈f(N̄)1, 1〉.

It is easy to see that φ is positive and φ(1) = 1, hence there is a probability
measure µ supported on σ(N̄) such that

φ(f) =
∫

σ(N̄)

fdµ.

From this it is deduced that for any polynomial p

φ(|p|2) = ‖p‖2H2
d

=
∫

σ(N̄)

|p(z)|2dµ.

This contradicts Proposition 6.1.8, and hence the corollary follows.

Appendix. In this section we have used the notion of completely positive
maps, and we will use this notion in subsequent sections. In this appendix
we will give a brief remark on completely positive maps for the reader’s con-
venience. We refer the interested reader to Paulsen’s book [Pau4] or Pisier’s
book [Pi1] for the more detailed materials.

For a C∗-algebra A we form a new ∗-algebra Mn(A), the algebra of all n×n
matrices with entries in A, and the adjoint of an element of Mn(A) is defined
as the transpose of the matrix whose entries are the adjoints of the original
entries. To define the norm on Mn(A) we take a faithful representation ρ :
A → B(H), and define ρn : Mn(A) → B(n · H) by ρn([aij ]) = [ρ(aij)],
where n · H denotes the direct sum of n copies of H. Then it is easy to
check that ρn is a ∗-isomorphism from the ∗-algebra Mn(A) to B(n ·H), and
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ρn(Mn(A)) = Mn(ρ(A)) is closed in B(n · H). Now defining the norm on
Mn(A) by

‖[aij ]‖ = ‖ρn([aij ])‖,
Mn(A) is then a C∗-algebra in this norm. By the uniqueness of C∗-norm (see
[Co, Corollary 1.8]), one sees that the definition of the norm does not depend
on the choice of representation, and the above norm on Mn(A) is the unique
norm that makes Mn(A) into a C∗-algebra.

Let A,B be C∗-algebras, and let φ : A → B be a linear map. We call
that the map φ is positive if φ maps positive elements to positive elements.
Define the linear maps φn : Mn(A) → Mn(B) by φn([aij ]) = [φ(aij)] for
n = 1, 2, · · · . We say

1. the map φ is completely bounded (c.b.) if each φn is bounded and
‖φ‖cb = supn ‖φn‖ < ∞, in this case, ‖φ‖cb, is called the completely
bounded norm of φ;

2. the map φ is completely positive (c.p.) if each φn is positive;

3. the map φ is completely isometric (c.i.) if φn is isometric for each n ≥ 1;

4. the map φ is completely contractive (c.c.) if φn is contractive for each
n ≥ 1.

For completely positive maps, a basic result is the following Stinespring’s
theorem whose proof can be found in [Arv4, Pau4, Pi1].

Theorem 6.1.10 (Stinespring’s theorem) Let A be a C∗-algebra, and let
φ : A → B(H) be a completely positive map for some Hilbert space H. Then
there exists a Hilbert space K, a representation π : A → B(K) and a bounded
linear operator V : H → K such that

φ(a) = V ∗π(a)V, a ∈ A.

Moreover, if A is unital and φ(1) = 1, then V is an isometry and we can
assume, identifying H with its image V H in K, that H ⊂ K, V = PH .

Because each C∗-algebra has a faithful representation the following properties
for a completely positive map are easily deduced from Stinespring’s theorem.

Proposition 6.1.11 Let A,B be C∗-algebras, and let φ : A → B be a com-
pletely positive map. Then we have

1. the map is completely bounded and

‖φ‖cb = ‖φ‖ = ‖φn‖, n = 1, 2, · · · ;

2. if A has a unit, then ‖φ‖ = ‖φ(1)‖.
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The following proposition is frequently used in this chapter.

Proposition 6.1.12 Let T1, T2, T3, · · · be a (finite or infinite) sequence of
bounded linear operators on a Hilbert space H which satisfies that sum

∑
k T ∗k Tk

converges in the strongly operator topology. If A is a C∗-subalgebra of B(H),
then the map φ : A → B(H) defined by φ(A) =

∑
k T ∗k ATk is completely

positive.

Proof. Indeed, for each A ∈ B(H), the sum
∑

k T ∗k ATk converges in the
strongly operator topology because the sum strongly converges for each pos-
itive A. Let l be the number of operators in the sequence T1, T2, · · · and let
V be the linear operator from H to l ·H defined by

V h = (T1h, T2h, · · · ).
By the assumption the operator V is bounded and V ∗V =

∑
k T ∗k Tk. Letting

π be the representation of B(H) on l ·H defined by

π(A) = A⊕A⊕ · · · ,

then it is easy to check that

φ(A) = V ∗π(A)V.

Now observe that for every n ≥ 1,

φn([A[ij ]) = V ∗
n πn([Aij ])Vn,

where Vn : n · H → nl · H is defined as Vn(h1, · · · , hn) = (V h1, · · · , V hn).
From the above observation we see that each φn is positive, and hence φ is
completely positive.

Concerning completely positive maps, another very useful result is the Arve-
son extension theorem. For the proof of this theorem the reader is advised to
consult [Arv4].

Theorem 6.1.13 (Arveson extension theorem) Let B be a C∗-algebra
with identity and let A be a self-adjoint closed subspace of B containing the
identity. If φ : A → B(H) is a completely positive map, then there exists a
completely positive map ψ : B → B(H) such that φ = ψ|A.

6.2 The Toeplitz algebra on the Arveson space

The Toeplitz algebra Td on the Arveson space is defined as

Td = C∗{Mf : f belong to the polynomial ring C}.

©2003 CRC Press LLC



However, the next proposition will show that the Toeplitz algebra Td is gener-
ated by the d-shift (S1, · · · , Sd). Let En denote the space of all homogeneous
polynomials with degree n. Define the number operator N in H2

d as follows:

N =
∑

n≥0

nEn,

where En also denote the orthogonal projection from H2
d onto En. Then we

have the following proposition (cf. [Arv1]).

Proposition 6.2.1 Let d ≥ 1 and let (S1, · · · , Sd) be the d-shift. Then for
all i, j = 1, · · · , d we have

1. S∗1S1 + · · ·+ S∗dSd = (d + N)(1 + N)−1;

2. S∗i Sj − SjS
∗
i = (1 + N)−1(δijI − SjS

∗
i ).

Proof. By Proposition 6.1.1, for each monomial zα1
1 · · · zαd

d , an easy compu-
tation shows that

S∗i zα1
1 · · · zαd

d = 0

if αi = 0, and

S∗i zα1
1 · · · zαd

d =
αi

α1 + · · ·+ αd
zα1
1 · · · zαi−1

i · · · zαd

d

if αi 6= 0. Also notice that

(d + N)(1 + N)−1 =
∑

n≥0

d + n

1 + n
En, (1 + N)−1 =

∑

n≥0

1
1 + n

En.

By considering two sides of equalities acting on monomials, a simple compu-
tation gives the desired conclusion.

Observe that the operator (d + N)(1 + N)−1 is invertible, and its inverse is
given by

(d + N)−1(1 + N) =
∑

n≥0

1 + n

d + n
En.

We therefore conclude that the Toeplitz algebra Td is generated by the d-shift
(S1, · · · , Sd).

The following theorem contains some basic information of the Toeplitz al-
gebra. The theorem and its proof come from [Arv1].

Theorem 6.2.2 Let K be all compact operators on H2
d . Then we have a short

exact sequence of C∗-algebras

0 → K ↪→ Td
π→ C(∂Bd) → 0

where π is the unital ∗-homomorphism defined by π(Sj) = zj for j = 1, · · · , d.
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Proof. By Proposition 6.1.2, the rank operator 1⊗1 = I−∑d
j=1 SjS

∗
j belongs

to Td, and hence for any polynomials p, q, the rank one operator p ⊗ q =
Mp(1 ⊗ 1)M∗

q is in Td. This implies that Td contains all compact operators.
By Proposition 6.2.1 (2), we see that the quotient Td/K is a commutative
C∗-algebra. It is obvious that the quotient Td/K is generated by commuting
normal elements Zj = π(Sj), j = 1, · · · , d satisfying

Z1Z
∗
1 + · · ·+ ZdZ

∗
d = 1.

Let X be the Taylor spectrum of the d-tuple (Z1, · · · , Zd). Then X is a
nonvoid subset of the unit sphere ∂Bd (see [Cur1]). We claim X = ∂Bd. In
fact, since the unitary group U(Cd) acts transitively on the unit sphere it is
enough to show that for every unitary d × d matrix u = (uij), there exists a
∗-automorphism θu such that

θu(Zi) =
d∑

j=1

ūjiZj .

To achieve this we consider the unitary operator U acting on Cd by Uei =∑d
j=1 ūjiej , where e1, · · · , ed are the coordinate vectors of Cd. Then Γ(U) is

a unitary operator on H2
d which is defined by Γ(U)f(z) = f(U−1z), and it

satisfies

Γ(U)SiΓ(U)∗ =
d∑

j=1

ūjiSj .

It follows that θu can be obtained by promoting the spatial automorphism
T 7→ Γ(U)TΓ(U)∗ of Td to the quotient Td/K. Now the identification of Td/K
with C(∂Bd) asserted by π(Si) = zi, i = 1, · · · , d is obvious, completing the
proof.

The Toeplitz algebra on the Arveson space enjoys many important proper-
ties. One of the properties is that the identity representation of the Toeplitz
algebra Td is a boundary representation for the d + 1-dimensional operator
space span{I, S1, · · · , Sd}. For this assertion we recall some facts from the
theory of boundary representations [Arv4, Arv5]. Let B be a C∗-algebra with
the identity and let S be a linear subspace of C∗-algebra B, which contains
the identity of B and generates B as a C∗-algebra, B = C∗(S). An irreducible
representation π : B → B(H) is said to be a boundary representation for S if
π|S has a unique completely positive linear extension to B, namely, π itself.

In the theory of boundary representations, a basic result is the following
Boundary theorem, due to Arveson [Arv5, Theorem 2.1.1].

Theorem 6.2.3 Let S be a irreducible linear subspace of operators on a
Hilbert space H, such that S contains the identity and C∗(S) contains the
ideal K(H) of all compact operators on H. Then the identity representation
of C∗(S) is a boundary representation for S if and only if the quotient map
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Q : B(H) → B(H)/K(H) is not completely isometric on the linear span of
S ∪ S∗.

The following corollary, including the proof, appeared in [Arv1].

Corollary 6.2.4 Suppose d ≥ 2. Then the identity representation of the
Toeplitz algebra Td is a boundary representation for the d + 1-dimensional
operator space S = span{I, S1, · · · , Sd}.

Proof. By Theorem 6.2.3, it suffices to show that the Calkin map is not
isometric when promoted to the space Md ⊗ S of d × d matrices over S.
Considering the operator A ∈ Md ⊗ S defined by

A =




S1 0 . . . 0
S2 0 . . . 0
...

...
...

...
Sd 0 . . . 0


 ,

then by Proposition 6.2.1, we have

‖A∗A‖ = ‖S∗1S1 + · · ·+ S∗dSd‖ = d,

and hence ‖A‖ =
√

d. On the other hand, by Theorem 6.2.2, the image of A
under the Calkin map is the matrix function on the unit sphere

F (z) =




z1 0 . . . 0
z2 0 . . . 0
...

...
...

...
zd 0 . . . 0


 .

It is easy to see that supz∈∂Bd
‖F (z)‖ = 1 <

√
d = ‖A‖. Applying the

Boundary theorem gives the desired conclusion.
As a consequence of the above corollary, we obtain the following whose

proof is different from the original one [Arv1].

Corollary 6.2.5 Let φ1, φ2, · · · be a finite or infinite sequence of multipliers
on H2

d , d ≥ 2, which satisfy

M∗
φ1

Mφ1 + M∗
φ2

Mφ2 + · · · = 1.

Then each φj is a scalar constant.

Proof. Consider the completely positive map Φ defined on the Toeplitz al-
gebra Td by

Φ(A) = M∗
φ1

AMφ1 + M∗
φ2

AMφ2 + · · · .
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Clearly, the sum converges strongly for each operator A because for each
positive operator B we have

∑

k

M∗
φk

BMφk
≤ ‖B‖ I.

Obviously, we have Φ(Si) = Si for i = 1, · · · , d. It follows that Φ(A) = A for
each A ∈ Td by Corollary 6.2.4. Since Td contains all compact operators, this
means that for any λ ∈ Bd, we have

M∗
φ1

(Kλ ⊗Kλ)Mφ1 + M∗
φ2

(Kλ ⊗Kλ)Mφ2 + · · · = Kλ ⊗Kλ.

A simple reasoning gives that

|φ1(λ)|2 + |φ2(λ)|2 + · · · = 1.

Thus, for i = 1, · · · , d we have

∂2|φ1(λ)|2
∂λi∂λ̄i

+
∂2|φ2(λ)|2

∂λi∂λ̄i
+ · · · = |∂φ1(λ)

∂λi
|2 + |∂φ2(λ)

∂λi
|2 + · · · = 0,

and hence each φj is a constant.

Concerning the Hardy space H2(Bd) one has

T ∗z1
Tz1 + · · ·+ T ∗zd

Tzd
= I.

Applying the reasoning as in Corollary 6.2.5, we see that the identity represen-
tation of the Toeplitz algebra on the Hardy space H2(Bd) is not the boundary
representation for the d + 1-dimensional space span{I, Mz1 , · · · ,Mzd

} gener-
ated by the coordinate multipliers.

As an immediate consequence of Corollary 6.2.5, we can verify that if a
submodule M of H2

d(d ≥ 2) is unitarily equivalent to H2
d , then M = H2

d .
Indeed, if U : H2

d → M is a unitary equivalence, then it is easy to see that
there is a multiplier φ on H2

d such that U = Mφ. Since U is unitary, this
implies that M∗

φMφ = I, and hence φ is a nonzero constant. The assertion is
proved.

As one of applications of Theorem 6.2.2, a conclusion is presented at the
end of this section.

Proposition 6.2.6 Let r be a rational function with pole points off Bd. Then
r is a multiplier of H2

d .

Proof. It suffices to show that for every polynomial p with Z(p) ∩ Bd = ∅,
the function 1/p is a multiplier of H2

d . Considering the multiplication operator
Mp on the Arveson space, then Mp is Fredholm by Theorem 6.2.2. Therefore,
the space pH2

d is closed and it is finite codimensional in H2
d . Since the space

pH2
d is a submodule, applying Theorem 2.2.3 gives that pH2

d = H2
d , and hence

1
pH2

d = H2
d . The desired result follows.
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6.3 Submodules of the Arveson module

By a submodule M of H2
d we mean that M is closed and invariant under

action of the d-shift. The next proposition shows that a submodule is invariant
under action of multipliers of H2

d (cf.[GRS]).

Proposition 6.3.1 Let M be a submodule, and let φ be a multiplier of H2
d .

Then φM ⊂ M .

Proof. Let

Fn(eit) =
sin2 nt/2
n sin2 t/2

for n = 1, 2, · · · , be the Fejér kernel. Define pn(z) =
∫ 2π

0
φ(eitz)Fn(eit)dt;

then from the well-known properties of the Fejér kernel [Hof], each pn is a
polynomial, and pn(λ) → φ(λ) for each λ ∈ Bd. We claim

‖pnf‖ ≤ ‖Mφ‖ ‖f‖, f ∈ H2
d .

For any real number t and f ∈ H2
d , set ft(z) = f(eitz). Then ft ∈ H2

d , ‖ft‖ =
‖f‖ and ft → ft0 in the norm as t → t0. The reader easily checks that for any
real number t, φt is a multiplier of H2

d , and it satisfies that ‖Mφt
‖ = ‖Mφ‖

and φtf → φt0f for any f ∈ H2
d . Therefore, for each natural n the integral

pnf =
∫ 2π

0
φtfFn(eit)dt converges in the norm of H2

d , and it follows that

‖pnf‖ ≤ ‖Mφ‖ ‖f‖.
Since {Mpn

} is uniformly bounded, this implies that there exists a subnet of
{Mpn}, {Mpnµ

}, which converges in the weak operator topology. It is easy to
see that such a subnet converges to Mφ in the weak operator topology. Now
for any f ∈ M and any g ∈ M⊥, we have

0 = 〈pnµ
f, g〉 → 〈φf, g〉.

The desired conclusion follows.

Let M be a submodule of H2
d , and let SM = (S1|M , · · · , Sd|M ) be the

restriction of the d-shift to M . It is obvious that the d-tuple SM is a d-
contraction, and hence

S1PMS∗1 + · · ·+ SdPMS∗d ≤ PM ,

where PM is the orthogonal projection from H2
d onto M . Furthermore, one

easily verifies that the d-shift (S1, · · · , Sd) is a null d-contraction, and it follows
that the d-tuple SM is null for any submodule M . For a submodule M , its
defect operator ∆M is defined as

∆M = [PM − S1PMS∗1 − · · · − SdPMS∗d ]1/2.
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A simple reasoning gives that

PMKλ = Kλ ∆2
MKλ.

Hence a submodule is uniquely determined by its defector operator. This
means that if ∆M = ∆N , then M = N. When d = 1, H2

d is the classical
Hardy module H2(D), and in this case there is an inner function η such that
PM = MηM∗

η , and hence

∆M = [PM −MzPMM∗
z ]1/2 = η ⊗ η.

This shows that in the case of the classical Hardy module, the inner function
can be recovered by the defect operator.

The following Theorems 6.3.2 and 6.3.4 can be regarded as an analogue of
Beurling’s theorem in the case of Arveson submodules.

Theorem 6.3.2 Let M be a submodule of H2
d . Then there exists a (finite or

infinite) sequence of multipliers, {φn} ⊂ ∆MH2
d such that

PM = Mφ1M
∗
φ1

+ Mφ2Mφ2 + · · · (SOT ) (?)

and M is generated by {φn}.
This theorem appeared in [Arv1]. In a more general setting, for example,
spaces of vector-valued analytic functions with completely Nevanlinna-Pick
kernels, McCullough and Trent [MT] proved an analogous theorem.

The proof of Theorem 6.3.2. Since the tuple SM = (S1|M , · · · , Sd|M ) is
a null d-contraction, we apply Theorem 6.1.4 to the d-tuple SM . Then there
is a unique bounded linear operator L : H2

d ⊗∆MH2
d → H2

d satisfying

L(p⊗ ξ) = p ∆Mξ,

and LL∗ = PM . Let e1, e2, · · · be an orthogonal basis for ∆MH2
d and define

φk = L(1 ⊗ ek) for k = 1, 2 · · · . Since L is a homomorphism of Hilbert
modules of norm at most 1 we find that the φk are multipliers of H2

d , and
obviously, φk ∈ ∆MH2

d . It is easy to see that there are bounded linear operator
Ak : H2

d → H2
d ⊗∆MH2

d for k = 1, 2, · · · such that

L∗f =
∑

k

Akf ⊗ ek.

Notice that ∑

k

‖Akf‖2 = ‖L∗f‖2 ≤ ‖f‖2, f ∈ H2
d ,

and it follows that the sum
∑

k A∗kAk converges in the strongly operator topol-
ogy. Furthermore, for any polynomial p and any f ∈ H2

d we have

〈p,Akf〉 = 〈p⊗ ek, L∗f〉
= 〈L(p⊗ ek), f〉 = 〈Mφk

p, f〉
= 〈p,M∗

φk
f〉
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Thus, Ak = M∗
φk

for k = 1, 2, · · · . Now we have

PMf = LL∗f =
∑

k

L(M∗
φk

f ⊗ ek) = (
∑

k

Mφk
M∗

φk
)f, f ∈ H2

d .

We therefore conclude that PM =
∑

k Mφk
M∗

φk
(SOT ). To prove that M is

generated by {φk}, we write N for the submodule generated by {φk}, then
N ⊂ M . Now we assume ξ ∈ M, ξ ⊥ N . Then we have M∗

φk
ξ = 0 for

k = 1, 2, · · · , and hence

PMξ =
∑

k

Mφk
M∗

φk
ξ = 0.

Thus, ξ = 0, and it follows that M = N. This completes the proof.

In dimension d = 1 the Beurling’s theorem implies that there is a single
inner function φ satisfying equation (?), PM = MφMφ. However, when di-
mension d > 1 we have the following proposition.

Proposition 6.3.3 Let M be a proper submodule of H2
d , d ≥ 2. The cardinal

number of {φn} which satisfies (?) is at least 2.

Proof. Clearly, the cardinal number card{φn} ≥ 1. If card{φn} = 1, then we
have PM = MφM∗

φ . Thus, M = φH2
d . For each f ∈ H2

d , since

MφM∗
φφf = PMφf = φf,

this gives
M∗

φMφ = the identity operator.

Now by Corollary 6.2.5, we see that φ is a constant, and hence M = H2
d . This

contradiction leads to the desired conclusion.

In fact, the sequence of (?) in Theorem 6.3.2 is typically infinite, and we
will turn to this problem later in this section.

For λ ∈ Bd we define the normalized reproducing kernel kλ of H2
d at λ as

follows:
kλ = Kλ/‖Kλ‖ = (1− |λ|2)1/2Kλ.

Considering (?) we have

‖PMkλ‖2 =
∑

k

|φk(λ)|2 ≤ 1.

Because each φk belongs to H∞(Bd) we will identify φk with its boundary
function on ∂Bd. Therefore we have

∑

k

|φk(z)|2 ≤ 1, z ∈ ∂Bd

almost everywhere with respect to the natural normalized measure σ on ∂Bd.
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Theorem 6.3.4 Let M be a submodule of H2
d , and let {φk} satisfy (?) in

Theorem 6.3.2. Then we have
∑

k

|φk(z)|2 = 1, z ∈ ∂Bd

almost everywhere with respect to the measure σ. Equivalently, for almost all
z ∈ ∂Bn, ‖PMkλ‖ → 1 as λ → z nontangentially.

When M contains a nonzero polynomial, Arveson [Arv2] proved this theorem.
The general case was proved by Greene, Richter and Sundberg [GRS]. We
will present the proof that appeared in [GRS]. The following two propositions
are needed.

Proposition 6.3.5 For any polynomial p and each z ∈ ∂Bd we have

lim
λ→z

‖pkλ‖ = |p(z)|.

Proof. First we claim that kλ
w→ 0 as |λ| → 1. In fact, since the polynomial

ring C is dense in H2
d , it is enough to show that for each polynomial q,

lim
|λ|→1

〈q, kλ〉 = 0.

Indeed, note that
〈q, kλ〉 = (1− |λ|2)1/2q(λ) → 0

as |λ| → 1. The claim follows.
To reach our goal we consider

‖pkλ‖2 = 〈M∗
p Mpkλ, kλ〉

= 〈(M∗
p Mp −MpM

∗
p )kλ, kλ〉+ |p(λ)|2.

By Theorem 6.2.2, the operator M∗
p Mp−MpM

∗
p is compact, and hence using

the claim gives the desired conclusion.

The next proposition, due to Greene, Richter and Sundberg [GRS], is es-
sential for completing the proof of the theorem.

Proposition 6.3.6 Let f be a multiplier of H2
d . Then we have

1. |f(λ)|2 ≤ ‖f kλ‖2 ≤ 2 Re〈f, fKλ〉 − ‖f‖2;

2. for almost all z ∈ ∂Bn, ‖fkλ‖ → |f(z)| as λ → z nontangentially.

In fact, Greene, Richter and Sundberg [GRS] proved that (2) of the proposi-
tion is true for any f ∈ H2

d . We will not need this stronger conclusion.

Proof. (1) Noticing that f(λ)kλ and fkλ − f(λ)kλ are orthogonal, we see
that

‖fkλ‖2 = ‖(fkλ − f(λ)kλ) + f(λ)kλ‖2
= ‖fkλ − f(λ)kλ‖2 + |f(λ)|2 ≥ |f(λ)|2,
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and hence reach the left side of (1).
To achieve the right inequality of (1) we define Hλ = {f ∈ H2

d : f(λ) = 0}
for each λ ∈ Bd. Then Hλ is a submodule of H2

d . Write Pλ for PHλ
. Observing

the proof of Theorem 6.3.2 we see that

Pλ =
∑

k

Mφk
M∗

φk
,

where φk = L(1⊗ek), and {ek} is an orthogonal basis for ∆Hλ
H2

d . Therefore,
for any f ∈ H2

d we have

‖(Pλ1)f‖2 = ‖
∑

k

φk(0)φkf‖2

= ‖
∑

k

L(φk(0)f ⊗ ek)‖2 = ‖L(
∑

k

φk(0)f ⊗ ek)‖2

≤
∑

k

|φk(0)|2 ‖f‖2 = (Pλ1)(0)‖f‖2.

Since Pλ = I − kλ ⊗ kλ, this gives that

Pλ1 = 1−Kλ/‖Kλ‖2.
We therefore conclude that when λ 6= 0, the function

ψλ =
Pλ1√

(Pλ1)(0)
=

‖Kλ‖2 −Kλ

‖Kλ‖
√
‖Kλ‖2 − 1

is a contractive multiplier of H2
d , that is, ‖ψλf‖2 ≤ ‖f‖2 for any f ∈ H2

d .
Using this inequality, a short calculation leads to the right inequality of (1).

(2) For α > 1 and z ∈ ∂Bd we define

Ωα(z) = {λ ∈ Bd : |1− 〈λ, z〉| < α

2
(1− |λ|2)}.

Recall that a function h : Bd → C has a limit A as λ → z nontangentially if
for any α > 1 and for each sequence {λn} ⊂ Ωα(z) that converges to z, we
have h(λn) → A as n → ∞. Now we turn to the proof of (2). For α > 1 we
define the maximal function

Mαf(z) = sup{‖fkλ‖ : λ ∈ Ωα(z)}.
Noticing that the right-hand side of (1), the function

2Re〈f, fKλ〉 − ‖f‖2 = 2ReM∗
f f(λ)− ‖f‖2,

is positive and the real part of an analytic function, and hence it can be
represented as the invariant Poisson integral of a positive measure µ on ∂Bd

(see [Ru2]),
Pµ(λ) = 2Re〈f, fKλ〉 − ‖f‖2.
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Furthermore, we observe that

‖µ‖ = Pµ(0) = ‖f‖2.
Now combining Theorem 5.2.4 and Theorem 5.4.5 in Rudin’s book [Ru2] we
see that for all α > 1 the Ωα-maximal function of Pµ satisfies a weak-type
estimate with constant Cα, that is, for any ε > 0,

σ({z ∈ ∂Bd : sup
λ∈Ωα(z)

Pµ(λ) > ε}) ≤ Cα
‖µ‖
ε

= Cα
‖f‖2

ε
.

By the right-hand side of (1) we obtain the weak-type estimate

σ({z ∈ ∂Bd : Mαf(z) > ε}) ≤ Cα
‖f‖2

ε
.

By the left-hand side of (1), for any polynomial p we have

‖(f − f(λ))kλ‖ ≤ ‖(f − p)kλ‖+ ‖(p− p(λ))kλ‖+ |f(λ)− p(λ)|
≤ 2‖(f − p)kλ‖+ ‖(p− p(λ))kλ‖.

Noticing the equality

‖(p− p(λ))kλ‖2 = ‖pkλ‖2 − |p(λ)|2,
applying Proposition 6.3.5 leads to the following:

lim sup
λ∈Ωα(z); λ→z

‖(f − f(λ))kλ‖ ≤ 2Mα(f − p)(z).

Therefore, the weak-type estimate implies that for any ε > 0 and each poly-
nomial p we have

σ({z ∈ ∂Bd : lim sup
λ∈Ωα(z); λ→z

‖(f − f(λ))kλ‖ > ε}) ≤ 2Cα
‖f − p‖2

ε
.

Since the polynomial ring C is dense in H2
d we obtain

σ({z ∈ ∂Bd : lim sup
λ∈Ωα(z); λ→z

‖(f − f(λ))kλ‖ > ε}) = 0.

Next, a simple reasoning gives that

σ({z ∈ ∂Bd : lim sup
λ∈Ωα(z); λ→z

‖(f − f(λ))kλ‖ = 0}) = 1.

Since ‖(f − f(λ))kλ‖2 = ‖fkλ‖2 − |f(λ)|2 and f ∈ H∞(Bd), this leads to the
desired conclusion.

The proof of Theorem 6.3.4. By Theorem 6.3.2 there exists a nonzero
multiplier φ in M . We let [φ] be the submodule generated by φ, then [φ] ⊂ M .
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To complete the proof, it is enough to show that for almost all z ∈ ∂Bd,
‖P[φ]kλ‖ → 1 as λ → z nontangentially because

1 ≥ ‖PMkλ‖ ≥ ‖P[φ]kλ‖.

First one checks that

1 ≥ ‖P[φ]kλ‖2 =
‖P[φ]Kλ‖2
‖Kλ‖2

=
1

‖Kλ‖2 sup
‖pφ‖≤1

|〈P[φ]Kλ, pφ〉|2

≥ 1
‖Kλ‖2 |〈P[φ]Kλ,

φkλ

‖φkλ‖〉|
2

=
1

‖Kλ‖2 |〈Kλ,
φkλ

‖φkλ‖〉|
2

=
|φ(λ)|2
‖φkλ‖2 .

Using Proposition 6.3.6 (2) leads to the desired conclusion.

Now we return to the problem of when the sequence appearing in Theorem
6.3.2 (?) is finite. In the case of the classical Hardy module H2(D), each
submodule M corresponds to an inner function φ such that PM = MφM∗

φ .
When d ≥ 2, Proposition 6.3.3 says that the cardinal number of the sequence
is at least 2. In fact, we have the following proposition.

Proposition 6.3.7 For a submodule M of H2
d , d ≥ 2, the sequence associated

with M in Theorem 6.3.2 is finite if and only if the defect operator ∆M is
of finite rank, and in this case the cardinal number of the sequence equals
rank∆M .

Proof. First assume that the sequence {φk}l
k=1 associated with M is finite,

and PM =
∑l

k=1 Mφk
M∗

φk
. Then we get

∆2
M = PM −

d∑
s=1

MzsPMM∗
zs

=
l∑

k=1

Mφk
M∗

φk
−

l∑

k=1

d∑
s=1

MzsMφk
M∗

φk
M∗

zs

=
l∑

k=1

Mφk
(I −

d∑
s=1

Mzs
M∗

zs
)M∗

φk

=
l∑

k=1

Mφk
(1⊗ 1)M∗

φk
=

l∑

k=1

φk ⊗ φk.
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Since ∆M is positive, this means that ∆M is of finite rank, and

rank∆M = rank∆2
M .

To reach the opposite direction we first claim that each function from
∆2

MH2
d is a multiplier of H2

d . Indeed, we recall that the d-tuple SM =
(S1|M , · · · , Sd|M ) is a null d-contraction, and hence Theorem 6.1.4 can be
applied in this case. This means that there exists a unique bounded module
homomorphism

L : H2
d ⊗∆MH2

d → M

satisfying
L(p⊗ ξ) = p ∆Mξ, p ∈ C, ξ ∈ ∆MH2

d .

For each h ∈ H2
d , noticing ∆Mh ∈ ∆MH2

d we have

L(1⊗∆Mh) = ∆2
Mh.

Setting φh = ∆2
Mh we get that for any polynomial p,

‖φhp‖ = ‖L(p⊗∆Mh)‖ ≤ ‖∆Mh‖‖p‖.
This implies that φh is a multiplier of H2

d because the polynomial ring is dense
in H2

d . The claim follows.
Now assume that ∆M is of finite rank; then ∆2

M is also of finite rank, and
in this case we have

∆MH2
d = ∆2

MH2
d .

Letting l = dim ∆2
MH2

d , then one easily checks that there are φ1, · · · , φl in
∆2

MH2
d such that

∆2
M =

l∑

k=1

φk ⊗ φk.

This leads to the fact

〈∆2
MKλ,Kµ〉 = 〈(PM −

d∑

i=1

SiPMS∗i )Kλ,Kµ〉

= (1−
d∑

i=1

λiµi)〈PMKλ,Kµ〉 = 〈(
l∑

k=1

φk ⊗ φk)Kλ,Kµ〉

=
l∑

k=1

φk(λ)φk(µ),

and hence we obtain that

〈PMKλ, Kµ〉 =
l∑

k=1

φk(λ)φk(µ)Kλ(µ).
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By the preceding claim that each φk is a multiplier of H2
d , the above equality

can be represented as

〈PMKλ, Kµ〉 = 〈
l∑

k=1

Mφk
M∗

φk
Kλ,Kµ〉.

We are therefore led to the desired conclusion

PM =
l∑

k=1

Mφk
M∗

φk
.

The remains of the proof is obvious.

To study when the sequence appeared in Theorem 6.3.2 is finite, we are
naturally concerned with studying when the corresponding defect operator is
of finite rank. Arveson [Arv2] proved the following.

Theorem 6.3.8 Suppose that M is a homogeneous submodule of H2
d . Then

its defect operator ∆M is of finite rank if and only if M has finite codimension
in H2

d .

Proof. Notice that a submodule is homogeneous if and only if the sub-
module is generated by homogeneous polynomials. By the fact that M is
homogeneous, one easily verifies that M has an orthonormal basis consisting
of homogeneous polynomials, and hence PM maps polynomials to polynomi-
als. This implies that the operator ∆2

M maps polynomials to polynomials. If
∆M is of finite rank, then ∆2

M is of finite rank. This ensures that there exist
polynomials p1, · · · , pl such that

∆2
M =

l∑

k=1

pk ⊗ pk.

This leads to the following

Kλ ∆2
MKλ =

l∑

k=1

Mpk
M∗

pk
Kλ.

Because of the equality
PMKλ = Kλ ∆2

MKλ,

we get that

PM =
l∑

k=1

Mpk
M∗

pk
,

and hence

PH2
dªM = I −

l∑

k=1

Mpk
M∗

pk
.
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From Theorem 6.3.4 we have
l∑

k=1

|p(ξ)|2 = 1, ξ ∈ ∂Bd.

Applying Theorem 6.2.2 shows that the projection PH2
dªM is compact, and

hence M is of finite codimension in H2
d . The opposite direction is obvious.

Because defect operators of Arveson submodules play an important role in
multi-variable operator theory, a natural problem was asked by Arveson in
[Arv2, Arv6].

Arveson’s problem. In dimension d ≥ 2, the defect operator for a nonzero
submodule of H2

d is of finite rank only if the submodule is of finite codimension
in H2

d .

Recently, Guo made some progress in this direction [Guo10] and proved that
if the defect operator for a submodule generated by polynomials is of finite
rank, then this submodule has only finitely many zeros in the unit ball Bd. In
particular, in the case of two variables, the defect operator for a submodule
generated by polynomials is of finite rank if and only if this submodule is
finite codimensional. We also point out some recent work of Guo and Yang
[GYa] relating to defect operators for Hardy submodules over the bidisk, and
some work of Yang and Zhu [YZ] concerning defect operators for Bergman
submodules.

6.4 Rigidity for Arveson submodules

As shown in Section 6.2, if a submodule of H2
d , d ≥ 2 is unitarily equivalent

to H2
d , then such a submodule must be H2

d itself. In fact, in this section we will
see that Arveson submodules have stronger rigidity than Hardy submodules
on the unit ball. This section comes mainly from the paper by Guo, Hu and
Xu [GHX]. First we give the following proposition.

Proposition 6.4.1 Let M be a submodule of H2
d . Suppose that the operator

∆2
M can be represented as

∆2
M =

∑

k

φk ⊗ φk.

Then φk ∈ H∞(Bd) ∩M , and
∑

k |φk(ξ)|2 = 1 for almost all ξ ∈ ∂Bd.

Proof. Noticing that

‖PMkλ‖2 = (1− |λ|2)‖PMKλ‖2
= 〈∆2

MKλ,Kλ〉 =
∑

k

|φk(λ)|2,
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Theorem 6.3.4 implies that
∑

k |φk(ξ)|2 = 1 for almost all ξ ∈ ∂Bd and, clearly,
each φk ∈ H∞(Bd). Since φk ⊗ φk ≤ ∆2

M , this ensures that

Cφk = range φk ⊗ φk

= (kerφk ⊗ φk)⊥ ⊆ (ker∆2
M )⊥ = range∆2

M ⊆ M.

This completes the proof.

As we have seen in previous sections, H2
d ⊆ H2(Bd). Thus, we will fre-

quently identify functions from H2
d with their boundary functions on the unit

sphere ∂Bd.

Proposition 6.4.2 Let M and N be two submodules of H2
d . If U : M → N

is a unitary equivalence, then there is a function η ∈ L∞(∂Bd) that satisfies
|η(ξ)| = 1 for almost all ξ ∈ ∂Bd such that Uf = η f for any f ∈ M .

Proof. From Theorem 6.3.2 there is a sequence of multipliers of H2
d , {φk}

such that

1. PM =
∑

k Mφk
M∗

φk
;

2. the submodule M is generated by {φk}.
By the proof of Proposition 6.3.1, for each multiplier φ of H2

d there exists a
net of polynomials {pα} such that Mpα converges to Mφ in the weak operator
topology. It follows that for any f ∈ M we have Uφkf = φkUf for each k;
especially, we have Uφkφl = φkUφl = φlUφk for any k, l. This ensures that

η =
Uφk

φk
=

Uφl

φl
, k; l = 1, 2, · · · .

Just as shown in the proof of Proposition 6.3.7, from the equality

PM =
∑

k

Mφk
M∗

φk
,

the following is easily deduced:

∆2
M =

∑

k

φk ⊗ φk.

Since U is a unitary module homomorphism this implies that

U∆2
MU∗ = ∆2

N =
∑

k

Uφk ⊗ Uφk =
∑

k

ηφk ⊗ ηφk.

Applying Proposition 6.4.1 and Theorem 6.3.4 gives η ∈ L∞(∂Bd) satisfying
|η(ξ)| = 1 for almost all ξ ∈ ∂Bd. Since the submodule M is generated by {φk},
this says that the space {∑finite sum psφs : ps are polynomials} is dense in
M . Notice that for each g in this space we have Ug = ηg. Now for any f ∈ M ,
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there exists a sequence {gn} contained in this space that converges to f in the
norm of H2

d . By Theorem 6.1.3 we get

‖ηgn − Uf‖H2(Bd) ≤ ‖Ugn − Uf‖H2
d

= ‖gn − f‖H2
d
→ 0

as n → ∞. Combining the above with the fact that ‖gn − f‖H2(Bd) → 0 as
n →∞, we have that

Uf = ηf, f ∈ M.

Lemma 6.4.3 Let M be a submodule of the Hardy module H2(Bd), and let
φ be in ÃL∞(∂Bd). If φ M ⊂ M , then φ belongs to H∞(Bd).

Proof. Follow the proof of Proposition 3.3.7, or see [Sch].

For an ideal I of polynomials we let [I]a denote the submodule of H2
d (d ≥ 2)

generated by I.

Theorem 6.4.4 Let I, J be ideals of polynomials. If [I]a is unitarily equiva-
lent to [J ]a, then [I]a = [J ]a.

Proof. Applying Proposition 6.4.2 there is a function η ∈ L∞(∂Bd) satisfying
|η(ξ)| = 1 for almost all ξ ∈ ∂Bd such that

η[I]a = [J ]a.

Notice that both [I]a and [J ]a are included in the Hardy module H2(Bd) as
sets. Taking the closures for two sides of the above equality in the Hardy
module we have

η[I] = [J ],

where [I] and [J ] denote submodules of H2(Bd) generated by I and J , re-
spectively. We apply Theorem 4.4.2 to obtain [I] = [J ]. Furthermore, by the
above lemma, both η and η̄ are inner. It follows from this that η is a constant,
and hence [I]a = [J ]a, completing the proof.

The main result of this section is the following.

Theorem 6.4.5 Let M, N be submodules of H2
d , d ≥ 2, and let M ⊇ N . If

they are unitarily equivalent, then M = N.

From this theorem we see that Arveson submodules have stronger rigidity
than Hardy submodules on the unit ball. Because there exist a lot of inner
functions on the unit ball [Ru4] this ensures that for any submodule M of
H2(Bd) and any inner function η, ηM , M , as submodules of H2(Bd), are
unitarily equivalent, but ηM $ M .

From Theorems 6.4.4 and 6.4.5 we are therefore led to ask the following
question.

Question: If two submodules of H2
d , d ≥ 2 are unitarily equivalent, must

they be equal?
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For Theorem 6.4.5 we need the following proposition.

Let M be a submodule M of H2
d . We write the d-tuple SM = (SM

1 , · · · , SM
d )

for the restriction (S1|M , · · · , Sd|M ) of the d-shift (S1, · · · , Sd) to M . Let T M
d

denote the C∗-algebra generated by the d + 1-dimensional operator space
span{I, SM

1 , · · · , SM
d }, that is, T M

d is the Toeplitz algebra on the submodule
M .

Proposition 6.4.6 Let M be submodule of H2
d , d ≥ 2. Then we have

1. the algebra T M
d is irreducible, and T M

d contains all compact operators
on M ;

2. the identity representation of the algebra T M
d is a boundary representa-

tion for the d + 1-dimensional operator space span{I, SM
1 , · · · , SM

d }.

Proof. (1) To obtain a contradiction we assume that T M
d is reducible. This

means that there exists a nontrivial projection Q on M such that QSM
i =

SM
i Q for i = 1, · · · , d. From this it is easily deduced that M can be decom-

posed as direct sum of two submodules, that is, there are two submodules
M1,M2 such that M = M1 ⊕M2. It follows that

‖PMkλ‖2 = ‖PM1kλ‖2 + ‖PM2kλ‖2

for any λ ∈ Bd. Theorem 6.3.4 shows that this is impossible as λ non-
tangentially tends to the boundary of the unit ball. This contradiction shows
that the algebra T M

d is irreducible. It remains only to show that T M
d contains

a nonzero compact operator, and hence from [Arv7], T M
d contains all compact

operators on M . Indeed, considering the operator A =
∑d

i=1 SM∗
i SM

i − IM ,
then A = PM (

∑d
i=1 S∗i Si − I)PM is compact. We claim that A 6= 0. In fact,

by Proposition 6.2.1,

A = (d− 1)PM (I + N)−1PM .

Notice that ker(I +N)−1 = {0} and (I +N)−1 ≥ 0 to show A 6= 0. The claim
follows, and hence the proof of (1) is completed.

(2) To complete the proof of (2) let us follow the proof of Corollary 6.2.4.
By Theorem 6.2.3, it suffices to show that the Calkin map is not isometric
when promoted to the space Md ⊗SM of d× d matrices over SM , where SM

denotes d + 1-dimensional operator space span{I, SM
1 , · · · , SM

d }. Consider-
ing the operator A ∈ Md ⊗ SM defined by taking the first column of A as
(SM

1 , · · · , SM
d )T and others as zeros, then by Proposition 6.2.1 we have

‖A‖2 = ‖A∗A‖ = ‖PM (S∗1S1 + · · ·+ S∗dSd)PM‖

= ‖(S∗1S1 + · · ·+ S∗dSd)1/2PM‖2 = ‖[
∞∑

n=0

(
n + d

n + 1
)1/2En]PM‖2,
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and hence

‖A‖ = ‖[
∞∑

n=0

(
n + d

n + 1
)1/2En]PM‖.

For any f ∈ M, ‖f‖ = 1, decomposing f as f =
∑∞

n=0 fn, where fn = Enf is
the n-th homogeneous component of f , we have

‖[
∞∑

n=0

(
n + d

n + 1
)1/2En]PMf‖2 =

∞∑
n=0

n + d

n + 1
‖fn‖2 >

∞∑
n=0

‖fn‖2 = 1.

From the above reasoning it is easily deduced that ‖A‖ > 1. On the other
hand, by Theorem 6.2.2, the essential norm of A, ‖A‖e, satisfies ‖A‖e ≤ 1,
and hence ‖A‖e < ‖A‖. Applying the Boundary Theorem 6.2.3 gives the
required conclusion.

Corollary 6.4.7 Let M be a submodule of H2
d , d ≥ 2, and let T1, T2, · · · be a

finite or infinite sequence of operators on M . Suppose that each Tk commutes
with the d-tuple (SM

1 , · · · , SM
d ), and the sequence satisfies

T ∗1 T1 + T ∗2 T2 + · · · = I.

Then each Tk is a scalar multiple of the identity operator.

Proof. Following the proof of [Arv1, Proposition 8.13], we consider the com-
pletely positive map Φ defined on the algebra T M

d by

Φ(A) = T ∗1 AT1 + T ∗2 AT2 + · · · .

Clearly the sum converges strongly for each operator A because for each pos-
itive operator B we have

∑

k

T ∗k BTk ≤ ‖B‖ I.

Obviously, we have Φ(SM
i ) = SM

i for i = 1, · · · , d, and Φ(I) = I. By Proposi-
tion 6.4.6 (2) it follows that Φ(A) = A for each A ∈ T M

d . Let l be the number
of operators in the sequence T1, T2, · · · and let V be the linear operator from
M to l ·M defined by

V h = (T1h, T2h, · · · ).
By the assumption it is easy to see that V is an isometry. Letting π be the
representation of T M

d on l ·M defined by

π(A) = A⊕A⊕ · · · ,

then it is easy to check that

Φ(A) = V ∗π(A)V.
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Since

(V A− π(A)V )∗(V A− π(A)V ) = A∗A− Φ(A∗)A−A∗Φ(A) + φ(A∗A) = 0

for each A ∈ T M
d , we conclude that V A = π(A)V. By examining the compo-

nents of this operator equation one sees that ATk = TkA for each k and every
A ∈ T M

d . Since T M
d is irreducible it follows that each Tk must be a scalar

multiple of the identity operator.

The proof of Theorem 6.4.5. Let U : M → N be a unitary equivalence.
Since N ⊂ M then U : M → M is an isometry, and it satisfies USM

i = SM
i U

for i = 1, · · · , d. Now applying Corollary 6.4.7 gives that there is a constant
γ, |γ| = 1 satisfying U = γ I, and hence N = U M = M , completing the
proof.

6.5 Remarks on Chapter 6

After the appearance of the dilation theory for 1-contractions [NF], dilation
theory became very important in operator theory. There are a number of posi-
tive results on dilation theories for commutative or non-commutative d-tuples.
In the case of commutative d-tuples, there are many references concerning di-
lation theories [AE, AEM, Ag1, Ag2, AM1, AM2, Arv1, Arv2, Arv3, Arv4,
Arv5, Arv6, At1, At2, BTV, CV, DP, MP, MV]. In particular, the framework
of the module developed by Douglas and Paulsen [DP] can be applied to this
case, and this module context has some remarkable consequences. At the very
least, it facilitates the introduction of techniques and methods drawn from al-
gebraic geometry, homology theory and complex analysis in one variable and
several variables. If a commutative d-tuple (T1, · · · , Td) is a d-contraction
(i.e., T1T

∗
1 + · · ·+ TdT

∗
d ≤ I), then the theory of d-contractions developed by

Arveson [Arv1, Arv2, Arv3] yields some remarkable results, and this theory
parallels some principal assertions of 1-contractions by Nagy and Foias [NF].
In the case of noncommutative d-tuples, we refer the reader to references
[Bun, Fr, Po1, Po2, Po3, Po4, Po5, Po6, Po7, Po8] for the related dilation the-
ories. Popescu has clarified that a noncommutative d-tuple can be obtained
by compressing certain natural d-tuple of isometries acting on the full Fock
space F(Cd) over Cd (the left creation operators) to a co-invariant subspace
[Po2, Po3, Po4, Po5, Po6, Po7, Po8]. Concerning the full Fock space, recently
Davidson and Pitts [DP1, DP2, DP3] have studied the Toeplitz algebra gen-
erated by the left creation operators on the full Fock space F(Cd).

Turning to some recent work of Arveson, to generalize the operator-theoretic
aspects of function theory on the unit disk to multi-variable operator theory,
Arveson began a systematic study for the theory of d-contractions [Arv1,
Arv2, Arv3]. This theory depends essentially on a special function space on
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the unit ball, namely, the Arveson space H2
d . We refer the reader to [Arv1,

Arv2] for function theory and operator theory on the Arveson space. There
also have been attempts to study interpolation and model theory relating to
the Arveson space [Ag1, AM1, AM2, BTV, GRS, MT]. We call the reader’s
attention to work of Paulsen, Popescu and Singh [PPS], where one can find
Bohr inequality and Bohr set related to the Arveson space. We also mention
Xu’s work [Xu], which has made some progress in the study of composition
operators on the Arveson space.

For a d-contraction T = (T1, · · · , Td) on a Hilbert space H, one makes H
into a Hilbert module over the polynomial ring C by p·h = p(T1, · · · , Td)h, h ∈
H, p ∈ C. For such a Hilbert module H, the curvature invariant K(H) was
introduced by Arveson [Arv2], which is analogous to the integral of the Gaus-
sian curvature over a compact oriented even-dimensional Riemann manifold.
The importance of the curvature invariant is based on the fact that this in-
variant has significant operator-theoretic implications. For a Hilbert mod-
ule, determining the best method of calculating the curvature of the mod-
ule is often difficult. We refer the reader to [Arv3, Lev, Par] for curvature
formulas of some special Hilbert modules. We wish to compare the cur-
vature theory developed by Cowen and Douglas [CDo1, CDo2] with that
developed by Arveson. Intuitively, the former is based on local properties
of modules while the latter is based on global properties of modules. The
connection between the former and latter is not completely understood, but
the two approaches are fundamentally different. Concerning the curvature
theory of Cowen and Douglas we call the reader’s attention to references
[BM1, BM2, CD2, DM1, DM2, DMV, Mc, MP, MSa, Zhu4].

We now turn to this chapter. In this chapter we collect some basic results
from [Arv1, Arv2] which are related to preceding chapters. In the preceding
chapters we are mainly concerned with Hardy modules and Bergman mod-
ules. However, the Arveson module, unlike the Hardy and Bergman modules
associated with some measures on underlying domains, is not associated with
any measure on Cd (cf. Proposition 6.1.8), and it is distinguished among all
analytic Hilbert modules on the unit ball which have some natural property by
being the largest Hilbert norm (cf. Theorem 6.1.3). Hence the Arveson mod-
ule is included in each other analytic Hilbert module on the unit ball which
has the above required property. Since the Arveson module is never given by
some measure on Cd, this leads to the fact that the d-duple (Mz1 , · · · ,Mzd

) of
the coordinate multipliers on the Arveson space (called the d-shift) is not sub-
normal. Just as we have seen, the d-shift plays an essential role in the theory
of d-contractions. By the d-shift an appropriate version of Von Neumann’s
inequality was obtained by Arveson (cf. Theorem 6.1.7). In fact, numer-
ous attempts were made to prove appropriate versions of Von Neumann’s
inequality for commuting or noncommuting d-tuples. An earlier version of
Von Neumann’s inequality for the unit ball was given by Drury [Dr]. For
noncommutative d-tuples of operators Popescu has establish various versions
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of Von Neumann’s inequality [Po1, Po3, Po6]. We refer the reader to [Pi1,
Chapter 1] for more comments and references on Von Neumann’s inequality.

The Toeplitz algebra T d(d > 1) on the Arveson space, unlike the Toeplitz
algebra on the Hardy space H2(Bd), enjoys many interesting properties, one
of which is that the identity representation of the T d is a boundary represen-
tation for d + 1-dimensional space span{I, S1, · · · , Sd} (cf. Corollary 6.2.4).
From this one finds that there are nontrivial isometries that commute with
d-shift (cf. Corollary 6.2.5). This yields that there is not a nontrivial sub-
module that is unitarily equivalent to the Arveson module itself. In fact,
we see from Section 4 that Arveson submodules have stronger rigidity than
Hardy submodules. Just as shown in Section 4, for Arveson submodules M
and N , if they are unitarily equivalent, and M ⊃ N , then M = N [GHX].
Because there are a lot of inner functions on the unit ball [Ru4], this ensures
that for any Hardy submodule M and any nonconstant inner function η, the
submodules M and ηM are unitarily equivalent and M ⊃ ηM , but M 6= ηM .
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Chapter 7

Extensions of Hilbert modules

Let H be a Hilbert space and A a function algebra. We say that H is a Hilbert
module over A if there is a multiplication (a, f) → af from A × H to H,
making H into A-module, and if, in addition, the action is jointly continuous
in the sup-norm on A and the Hilbert space norm on H. The framework of
the module developed by Douglas and Paulsen was systematically presented
in [DP]. In this module context, they began the study of applications of
homological theory in the categories of Hilbert modules. In view of Hilbert
modules, the theory of function algebras is emphasized since it plays the
analogous role of ring theory in the context of algebraic modules. Therefore, in
studying Hilbert modules, as in studying any algebraic structure, the standard
procedure is to look at submodules and associated quotient modules. The
extension problem then appears quite naturally: given two Hilbert modules
H, K, what module J may be constructed with submodule H and associated
quotient module K, i.e., K ∼= J/H(= J ª H)? We then have a short exact
sequence

E : 0 −→ H
α−→ J

β−→ K −→ 0

of Hilbert A-modules, where α, β are Hilbert module maps. Such a sequence
is called an extension of K by H, or simply J is called an extension of K by
H. The set of equivalence classes of extensions of K by H (this will be defined
in the next section), denoted by ExtA(K,H), may then be given a natural
A-module structure. The homological invariant ExtA(−,−) is important for
algebraists because in general the category of all Hilbert modules over A and
maps is nonabelian. For analysts, we expect Ext-groups to be a fruitful object
of study and useful tool in operator theory.

7.1 The basic theory of extensions

This section is mainly based on [CC1]. Our aim is to quote necessary
homological constructions and analogous results as in the pure algebraic case
that was presented in [CC1](also see [Hel]). Given a function algebra A, if
H is a Hilbert module over A, we write Tf : H → H for the multiplication
by f ∈ A, that is, Tfh = fh. Let H1, H2 be two Hilbert modules over A,
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and A : H1 → H2 be a bounded linear operator. We recall that A is a
module map if ATf = TfA for any f ∈ A. The symbol HomA(H1, H2) will
denote all module maps from H1 to H2. We will also use H(A) to denote the
category of all Hilbert modules over A together with module maps. If H is
a Hilbert module over A, then one may consider H as a Hilbert module over
Ā (adjoints of elements in A) by setting f̄h = T ∗f h. For emphasis, we denote
this Ā-module by H∗. Note that if α : H → K is a module map over A, then
naturally α induces its adjoint map α∗ : K∗ → H∗ such that α∗T ∗f = T ∗f α∗

for each f ∈ A. This means that the opposite category of H(A) is naturally
identified with H(Ā) under the above rule.

In general the category H(A) is not abelian. What seems to make things
most difficult is the category lacks enough projective or injective objects.
Hence it is not possible to define the functor Ext as the derived functor
of Hom as in [HS]. However, the standard homological construction from
homological algebra enables us to define Ext-groups as the following.

Let H, K be Hilbert modules over A and let S(K, H) be the set of all short
exact sequences

E : 0 −→ H
α−→ J

β−→ K −→ 0,

where α, β are Hilbert module maps.
We say that two elements E, E′ ∈ S(K, H) are equivalent if there exists a

Hilbert module map θ from the middle term of E to that of E′ such that the
diagram

E : 0 −→ H
α−→ J

β−→ K −→ 0
‖ ↓ θ ‖

E′ : 0 −→ H
α′−→ J ′

β′−→ K −→ 0

commutes. The set of equivalence classes of S(K, H) under this relation is
defined to be the extension group of K by H and denoted by ExtA(K, H). The
group structure on the ExtA(K, H) is naturally given in the way described
by Carlson and Clark in [CC1]. The zero element of ExtA(K, H) is the split
extension

0 −→ H −→ H ⊕K −→ K −→ 0,

where the middle term is the (orthogonal) direct sum of the two modules. Our
aim is to show that ExtA is a functor; we therefore have to define induced
maps. This will be done by showing the existence of pullbacks and pushouts
in the category H(A).

A pullback diagram in H(A) is a diagram of Hilbert A-modules and maps
of the form

H1
α1−→ K

α2←− H2.

The pullback of the diagram is a Hilbert module J together with a pair of
Hilbert module maps β1 : J → H1 and β2 : J → H2 such that

α1β1 = α2β2,
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and if, in addition, J ′ is another Hilbert module with maps γi : J ′ → Hi such
that α1γ1 = α2γ2, then there exists a unique map θ : J ′ → J with βiθ = γi

for i = 1, 2.
The definition of a pushout is the dual statement, obtained by reversing all

of the arrows.

The following proposition appeared in [CC1].

Proposition 7.1.1 Pullbacks and pushouts exist in the category H(A).

Proof. For a pullback diagram

H1
α1−→ K

α2←− H2,

the pullback J is obtained by setting

J = {(h1, h2) ∈ H1 ⊕H2 : α1(h1) = α2(h2)},
and β1 : J → H1 by β1(h1, h2) = h1, and β2 : J → H2 by β2(h1, h2) = h2.
The module structure on J is derived from that on the direct sum H1 ⊕H2.
The reader easily checks that {J, β1, β2} forms the pullback for the given
diagram.

As mentioned above the opposite category of H(A) is naturally identified
with H(Ā). Similarly, one can verify that pullbacks exist in the category
H(Ā). By duality we see that pushouts exist in the category H(A).

Following Proposition 7.1.1, one can establish the functoriality of ExtA. Let
[E] be the equivalence class of a short exact sequence

E : 0 −→ H
γ−→ J

δ−→ K −→ 0,

and if α : K ′ → K, then α∗[E] is defined as the equivalence class of Eα which
is the upper row of the following diagram:

Eα : 0 −→ H
γ′−→ J ′ δ′−→ K ′ −→ 0

‖ ↓ ψ ↓ α

E : 0 −→ H
γ−→ J

δ−→ K −→ 0

where {J ′, δ′, ψ} is the pullback of the diagram in the lower right corner and
γ′ is given by γ′(h) = (γ(h), 0), for h ∈ H.

Likewise, if β : H → H ′, then βE is obtained by taking the pushout of E
along β. Set β∗[E] to be the equivalence class of βE. As done in [CC1], the
reader should verify that if E and E′ are equivalent extensions of K by H, then
Eα and E′α are equivalent, and βE and βE′ are equivalent. Furthermore,
we have induced homomorphisms

β∗ : ExtA(K,H) → ExtA(K, H ′)
α∗ : ExtA(K,H) → ExtA(K ′,H)
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where β∗[E] = [βE] and α∗[E] = [Eα].
Using the standard methods from homological algebra (cf. [HS]), one can

prove that the induced maps α∗, β∗ satisfy the following conditions:

α∗β∗ = β∗α∗

and if α′ : K ′′ → K ′ and β′ : H ′ → H ′′ are Hilbert modules maps, then

(αα′)∗ = α′∗α∗ and (β′β)∗ = β′∗β∗.

Moreover, one naturally makes ExtA(K,H) into A-module. In fact, if Kf :
K → K and Hf : H → H are multiplications by f ∈ A, then we have the
homomorphisms K∗

f and Hf∗ from ExtA(K, H) to itself. It is easy to verify
that both actions of A are the same and that they are compatible with the
addition on ExtA(K,H). We have therefore shown the following [CC1].

Proposition 7.1.2 ExtA(−,−) is a bifunctor from H(A) to the category of
A-modules. It is contravariant in the first and covariant in the second variable.

Let B(K, H) be all bounded linear operators from K to H. Suppose a
bounded linear map D : A→ B(K, H) satisfies

D(fg) = D(f)Tg + TfD(g), ∀f, g ∈ A;

we say that D is a derivation from A to B(K, H). For a derivation D, if there
exists a bounded linear operator T : K → H such that

D(f) = DT (f) = TTf − TfT

for any f ∈ A, we say that D is an inner derivation. Let Der(K,H) denote
all derivations from A to B(K, H) and Inn(K,H) all inner derivations. As
shown in [CC1], extensions are closely related to the derivation problem. For
an extension of K by H

E : 0 −→ H
α−→ J

β−→ K −→ 0,

there exists a derivation D ∈ Der(K,H) such that E is equivalent to the
following extension ED defined by D:

ED : 0 −→ H
i−→ H⊕̃K

π−→ K −→ 0,

where H⊕̃K is Hilbert space direct sum of H and K with the A-module
structure defined by f(h, k) = (fh + D(f)k, fk). Finally, two extensions ED1

and ED2 are equivalent if and only if D1 −D2 is inner.
The next proposition is well known in the purely algebraic setting. In the

context of Hilbert modules it was first proved in [CC1].
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Proposition 7.1.3 Let H, K be Hilbert modules over A. Then

ExtA(K, H) = Der(K, H)/Inn(K, H).

We note the following facts which will be useful. If α : K ′ → K and
β : H → H ′ are Hilbert module maps, then extensions α∗[ED] and β∗[ED] are
defined by derivations Dα ∈ Der(K ′,H) and βD ∈ Der(K, H ′), respectively,
where Dα(f) = D(f) ◦ α and βD(f) = β ◦D(f) for f ∈ A.

Using Propositions 7.1.2, 7.1.3 and the facts mentioned above one can es-
tablish the following Hom-Ext-sequences [CC1]. This will be our basic tool of
computing extension groups.

Proposition 7.1.4 Let

E : 0 −→ H1
α−→ H2

β−→ H3 −→ 0

be an exact sequence of Hilbert modules over A. Then for a Hilbert module H
over A, we have the following Hom-Ext-sequences:

0 −→ HomA(H, H1)
α∗−→ HomA(H, H2)

β∗−→ HomA(H, H3)
δ−→ ExtA(H, H1)

α∗−→ ExtA(H,H2)
β∗−→ ExtA(H, H3),

where δ is the connecting homomorphism and is given by δ(θ) = [Eθ] for
θ : H → H3, and

0 −→ HomA(H3,H)
β∗−→ HomA(H2,H) α∗−→ HomA(H1, H)

δ−→ ExtA(H3,H)
β∗−→ ExtA(H2,H) α∗−→ ExtA(H1,H),

where δ(θ) = [θE] for θ : H1 → H.

7.2 Extensions of hypo-Šilov modules over unit modulus
algebras

This section is mainly based on [CG]. Let H1, H2 be two Hilbert modules
over A, and set

Hom∗
A(H1,H2) = {α∗ : α ∈ HomA(H1,H2)}.

We have the following.

Proposition 7.2.1 Under the above assumptions we have

(1) Hom∗
A(H1,H2) = HomĀ(H2∗,H1∗);
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(2) the extension group ExtA(H1,H2) is naturally isomorphic to
ExtĀ(H2∗,H1∗) by the corresponding [ED] 7→ [ED̄], where the derivation
D̄ : Ā→ B(H2∗,H1∗) is defined by D̄(f̄) = D(f)∗.

Proof. Obviously, (1) is true. For D ∈ Der(H1, H2), we define a map
D̄ : Ā → B(H2∗,H1∗) by D̄(f̄) = D(f)∗, it is easy to verify that D̄ is a
derivation from Ā to B(H2∗,H1∗) and the corresponding D 7→ D̄ is one to
one and onto. By Proposition 7.1.3, the extension group ExtA(H1,H2) is
naturally isomorphic to ExtĀ(H2∗,H1∗) by the corresponding [ED] 7→ [ED̄].

Let A be a function algebra, A ⊆ C(∂A), where ∂A is the Šilov boundary
of A. If U is a Hilbert module over C(∂A), a closed subspace M ⊆ U which is
invariant for A is called a hypo-Šilov module over A and U is called a C(∂A)-
extension of M . A hypo-Šilov module over A is reductive if it is invariant for
C(∂A) and pure if no nonzero subspace of it is reductive. Furthermore, if U
is contractive over C(∂A), then we also call M a Šilov module over A (here
by contraction we mean supf∈A, ‖f‖=1 ‖fu‖ ≤ ‖u‖ for each u ∈ U).

A function algebra A ⊆ C(∂A) is called a unit modulus algebra if the set
{f ∈ A : |f(x)| = 1, all x ∈ ∂A} generate A. The example is the polydisk
algebra A(Dn) on Tn. In the following we write AU for a fixed unit modulus
algebra.

In the present section, our interest is to study extensions of Hilbert modules
over the unit modulus algebra AU . Let U0 be a hypo-Šilov module over AU

and U be a C(∂AU )- extension of U0. It follows that we have an exact sequence
of Hilbert modules:

EU0 : 0 −→ U0
i−→ U π−→ U ª U0 −→ 0

where i is the inclusion map and π the quotient map, that is, π is the orthog-
onal projection PUªU0 from U onto U ª U0. As usual, the action of AU on
U ª U0 is given by the formula f · h = PUªU0Tfh.

To further develop the properties of hypo-Šilov modules, we need the fol-
lowing terminology. Let U be any C(∂AU )-extension of hypo-Šilov module
U0 over AU . We call U a minimal C(∂AU )-extension of U0, if C(∂AU ) · U0 is
dense in U . The next proposition shows that minimal C(∂AU )-extensions of
a hypo-Šilov module over AU are similar as C(∂AU )-Hilbert modules.

Proposition 7.2.2 Let Mi be hypo-Šilov modules over AU and Ui be C(∂AU )-
extension of Mi, i = 1, 2. Then for each θ ∈ HomAU

(M1,M2), it can lift to a
C(∂AU )-module map θ′ : U1 → U2. Furthermore, if U1 is a minimal C(∂AU )-
extension of M1, then lifting is unique.

Proof. By Proposition 2.19 in [DP], the unit modulus algebra AU is convexly
approximating in modulus on ∂AU . Applying Theorems 1.9 and 2.20 in [DP]
gives the proof of the proposition.
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From Proposition 7.2.2, one finds that it is independent on the choice of
C(∂AU )-extensions of U0 that a hypo-Šilov module U0 over AU is reductive
or pure.

Let us again consider the short exact sequence

EU0 : 0 −→ U0
i−→ U π−→ U ª U0 −→ 0

in the category H(AU ). By duality, this induces the exact sequence

E∗
U0

: 0 −→ (U ª U0)∗
π∗−→ U∗ i∗−→ U0∗ −→ 0

in the category H(ĀU ). Thus (U ª U0)∗ is a hypo-Šilov module over ĀU . We
may thus call U ªU0 a cohypo-Šilov module over AU . From Proposition 7.2.2
one sees that a hypo-Šilov module over AU is cohypo-Šilov if and only if it is
reductive.

To prove the main theorem in this section, we need the following notation.
Let G be a semigroup. An invariant mean of G is a state µ on l∞(G) such that
µ(F ) = µ(gF ) for all g ∈ G and F ∈ l∞(G), where gF (g′) = F (gg′)(recall
that a state on a C∗-algebra is a positive linear functional of norm 1). A basic
fact is that every abelian semigroup has an invariant mean (see [Pa]).

Theorem 7.2.3 Let U be a C(∂AU )-Hilbert module. Then for every Hilbert
module K over AU , ExtAU (K,U) = 0 and ExtAU (U ,K) = 0, where U is
viewed as a Hilbert module over AU .

Proof. By Proposition 7.1.3, it is enough to show that each D ∈ Der(K,U)
is inner. Equivalently, one must prove that there exists a bounded linear
operator T : K → U such that D(f) = TTf − TfT . To do this, we write
B1(U ,K) for all trace class operators from U to K, B(K,U) for all bounded
linear operators from K to U , and identify B(K,U) with B∗

1(U ,K) by setting

〈T, C〉 = tr(TC), T ∈ B(K,U), C ∈ B1(U ,K).

Let µ be an invariant mean of the multiplication semigroup UAU
, where UAU

is {η ∈ AU : |η(x)| = 1, all x ∈ ∂AU}. We define T ∈ B(K,U) = B∗
1(U ,K)

by
〈T, C〉 = µη(〈T (U)

η̄ D(η), C〉),
that is, 〈T, C〉 is the mean of the bounded complex function

η 7→ 〈T (U)
η̄ D(η), C〉,

where T
(U)
f denotes the multiplication by f on U for f ∈ C(∂AU ). For each

η′ ∈ UAU
, we have
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〈T (U)
η′ T − TT

(K)
η′ , C〉 = 〈T, CT

(U)
η′ − T

(K)
η′ C〉

= µη(〈T (U)
η̄ D(η), CT

(U)
η′ − T

(K)
η′ C〉)

= µη(〈T (U)
η̄η′ D(η)− T

(U)
η̄ D(η)T (K)

η′ , C〉)
= µη(〈T (U)

η̄η′ D(η)− T
(U)
η̄ (D(ηη′)− T (U)

η D(η′)), C〉)
= µη(〈D(η′), C〉) + µη(〈T (U)

η̄η′ D(η)− T
(U)
η̄ D(ηη′), C〉)

= 〈D(η′), C〉+ µη(〈T (U)
η̄η′ D(η), C〉)− µηη′(〈T (U)

ηη′η′
D(ηη′), C〉)

= 〈D(η′), C〉

for all C ∈ B1(U , K), so that D(η′) = T
(U)
η′ T−TT

(K)
η′ for each η′ ∈ UAU

. Since
UAU

generate AU , this implies D = DT , that is, D is an inner derivation. Thus
ExtAU (K,U) = {0}.

Since AU is the unit modulus algebra, the adjoint algebra ĀU is also unit
modulus. Now applying Proposition 7.2.1 (2) gives that ExtAU

(U ,K) = {0}.
As is well known, projective modules form the cornerstone for the study of

general modules in homological algebra. Here we introduce projective modules
in the context of Hilbert modules [DP]. Let A be a function algebra. A Hilbert
module H over A is projective if for every pair of Hilbert module H1, H2 over
A and every pair module maps ψ : H → H2 and φ : H1 → H2 with φ onto,
there exists a module map ψ̃ such that φψ̃ = ψ. Dually, a Hilbert module
H over A is called injective if for every pair H1, H2 over A and every pair of
module maps ψ : H1 → H and φ : H1 → H2, with φ one-to-one and having
closed range, there exists a module map ψ̃ : H2 → H such that ψ = ψ̃φ.

The following corollary comes immediately from Theorem 7.2.3 and Propo-
sition 7.1.4.

Corollary 7.2.4 Let AU ⊆ C(∂AU ) be the unit modulus algebra, and U be a
C(∂AU )-Hilbert module. Then U , viewed as AU -Hilbert module, is projective
and injective.

Remark 7.2.5 (1) Douglas and Paulsen [DP] asked whether there is any
function algebra, other than C(X), with any (nonzero) projective module
(see Problem 4.6 in [DP]). From Corollary 7.2.4, we see that there exist
nonzero projective modules over every unit modulus algebra. In the cases
of the disk algebra A(D) and polydisk algebra A(Dn), these results were
obtained in [CCFW, CC2].

(2) In the purely algebraic setting, one knows from [HS] that there is not a
nonzero module that is projective and injective over every principle ideal
domain (other than a field). Hence, Corollary 7.2.4 shows that Hilbert
modules are distinct from modules in the purely algebraic setting.
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Corollary 7.2.6 Let U0 be a hypo-Šilov module over AU and U be any C(∂AU )-
extension of U0. Then the following statements are equivalent:

(1) U0 is injective,

(2) U ª U0 is projective,

(3) U0 is reductive,

(4) the short exact sequence

EU0 : 0 −→ U0
i−→ U π−→ U ª U0 −→ 0

is split.

Proof. Since U is projective and injective, this implies that (1), (2) and (4)
are equivalent. From Corollary 7.2.4, it is easy to see that (3) leads to (1). If
EU0 is split, then there is a split map σ : U ª U0 → U such that

πσ = IUªU0 .

Taking any ξ ∈ U0 and each η ∈ AU with unit modulus, we write

T
(U)
η̄ ξ = ξ1 + ξ2, ξ1 ∈ U0, ξ2 ∈ U ª U0.

Hence
ξ = T (U)

η ξ1 + T (U)
η ξ2.

This implies the following:

π(T (U)
η ξ2) = T (UªU0)

η ξ2 = 0.

We have
σ(T (UªU0)

η ξ2) = T (U)
η σ(ξ2) = 0,

i.e., σ(ξ2) = 0. Since σ is an injective Hilbert module map, it follows easily
that ξ2 = 0. Thus, U0 is reductive. This completes the proof of Corollary
7.2.6.

According to Corollary 7.2.4, the following “Hom-Isomorphism” theorem
will result which states that there exists a natural isomorphism between Hom
of hypo-Šilov modules and that of the corresponding cohypo-Šilov modules.

Theorem 7.2.7 Let M1, M2 be hypo-Šilov modules over AU , with M2 being
pure. If U1 is the minimal C(∂AU )-extension of M1, and U2 a C(∂AU )-
extension of M2, then the following are isomorphic as AU -module:

HomAU (M1,M2) ∼= HomAU (U1 ªM1,U2 ªM2).

The isomorphism is given by β(θ) = PU2ªM2θ
′ |U1ªM1 for θ ∈ HomAU

(M1,M2),
where θ′ is that uniquely determined by θ using Proposition 7.2.2.
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Proof. Theorem 7.2.7 can be reduced to the following commutative diagram:

0 −→ M1
i1−→ U1

π1−→ U1 ªM1 −→ 0
↓ θ ↓ θ′ ↓ β(θ)

0 −→ M2
i2−→ U2

π2−→ U2 ªM2 −→ 0

where i1, i2 are the inclusion maps and π1, π2 the quotient Hilbert module
maps. By Proposition 7.2.2, it is easy to see that

β : HomAU
(M1,M2) → HomAU

(U1 ªM1,U2 ªM2)

is a AU -module map, where the module structure of HomAU (M1,M2) is given
by (f · θ)(h) = θ(f · h) for f ∈ AU , h ∈ M1; the definition of the module
structure of HomAU (U1ªM1,U2ªM2) is similar to that for HomAU (M1,M2).
Since M2 is pure, Proposition 7.2.2 implies that β is injective. Since U1 is
projective, this ensures that β is surjective. The proof is complete.

Note that the polydisk algebra A(Dn) is a unit modulus algebra. Let us
turn to extensions of Hilbert modules over the polydisk algebra. To do this,
let Γ be a subset of L2(Tn,mn) (in short, L2(Tn), where mn is the measure
1/(2π)ndθ1dθ2 · · · dθn on Tn). We say that a Borel set E ⊆ Tn is the support
of Γ, and denoted by S(Γ), if each function from Γ vanishes on Tn−E, and for
any Borel subset E′ of E with mn(E′) > 0, there exists a function f ∈ Γ such
that f |E′ 6= 0. For a submodule M of L2(Tn) over A(Dn), it is not difficult to
prove that χS(M)L

2(Tn) is its minimal C(Tn)-extension, where χS(M) is the
characteristic function of S(M). We also note that a submodule N of L2(Tn)
is pure if and only if mn(S(N⊥)) = 1. Then from Theorem 7.2.7 we derive
the following.

Corollary 7.2.8 Let M1 and M2 be submodules of L2(Tn), and mn(S(M1)) =
mn(S(M⊥

2 )) = 1. Then

HomA(Dn)(M1,M2) ∼= HomA(Dn)(L2(Tn)ªM1, L
2(Tn)ªM2).

The isomorphism is given by ϕ 7→ H
[M2]
ϕ |L2(Tn)ªM1 , where H

[M2]
ϕ is defined

by H
[M2]
ϕ f = PL2(Tn)ªM2(ϕf) for all f ∈ L2(Tn).

Example 7.2.9 Let H2(Dn) be the usual Hardy module, and H2(Dn)⊥ be the
corresponding quotient module L2(Tn) ª H2(Dn). Then by Corollary 7.2.8,
we have

HomA(Dn)(H2(Dn)
⊥

, H2(Dn)
⊥

) ∼= H∞(Dn).

If we define a Hankel-type operator Af for f ∈ L∞(Tn) by

Af (h) = PH2(Dn)⊥(fh), h ∈ H2(Dn)
⊥

,

then the commutators of {Az1 , · · · , Azn
} are equal to {Af : f ∈ H∞(Dn)}.
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Before going on we deduce a homological formula to compute extension
groups over unit modulus algebras. Let U0 be a hypo-Šilov module over AU

and U be any C(∂AU )-extension of U0. If M is a Hilbert module over AU and
θ ∈ HomAU (M,U ª U0), then we define a derivation Dθ ∈ Der(M,U0) by

Dθ(f) = PU0T
(U)
f θ,

where PU0 is the orthogonal projection from U onto U0. Furthermore, for
every θ ∈ HomAU

(U0,M), we define a derivation Dθ ∈ Der(U ª U0, M) by

Dθ(f) = θPU0T
(U)
f .

Combining the exact sequence

EU0 : 0 −→ U0
i−→ U π−→ U ª U0 −→ 0

with the Hom-Ext-sequence (see Proposition 7.1.4), we see that the connecting
homomorphism

δ1 : HomAU
(M,U ª U0) → ExtAU

(M,U0)

is given by δ1(θ) = [Dθ], and

δ2 : HomAU
(U0, M) → ExtAU

(U ª U0,M)

is given by δ2(θ) = [Dθ]. Since U is projective, applying Proposition 7.1.4
gives the following.

Theorem 7.2.10 We let U0 be a hypo-Šilov module and U any C(∂AU )-
extension of U0. Then for each Hilbert module M over AU , we have

(1) ExtAU
(M,U0) ∼= coker(π∗ : HomAU

(M,U) → HomAU
(M,U ª U0)).

The correspondence is given by δ1(θ) = [Dθ] for θ ∈ HomAU
(M,UªU0).

(2) ExtAU
(U ª U0,M) ∼= coker(i∗ : HomAU

(U ,M) → HomAU
(U0,M)).

The correspondence is given by δ2(θ) = [Dθ] for θ ∈ HomAU
(U0,M).

Remark 7.2.11 Theorem 7.2.10 provides us a very valid method to calculate
extension groups of Hilbert modules over AU . In particular, if one of M , U0

or U ª U0 is cyclic or co-cyclic, then the characterization of ExtAU
-groups

may be summed up as the actions of module maps on cyclic vectors, or co-
cyclic vectors, where we use the concept of co-cyclic Hilbert modules, which
means that M is a co-cyclic Hilbert module over A if and only if M∗ is a cyclic
Hilbert module over Ā.

Below are several examples to show applications of Theorem 7.2.10.
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Example 7.2.12 Let H2(D) be the usual Hardy module over A(D). Then for
any Hilbert module K over A(D), ExtA(D)(K, H2(D)) is characterized as an
A(D)-module by the following:

ExtA(D)(K, H2(D)) ∼= K1/K0,

where K1 is given by {θ∗(z̄) : θ ∈ HomA(D)(K, L2(T) ªH2(D))}, and K0 =
{L∗(z̄) : L ∈ HomA(D)(K, L2(Tn))}. The action of A(D) on K1 is given by
f · θ∗(z̄) , θ∗(fz); the action of A(D) on K0 is similar to that of A(D) on
K1.

Remark. This example first appeared in [CC1]. If K is a weighted Hardy
module on the unit disk, Ferguson obtained an explicit characterization for
the extension group ExtA(D)(K,H2(D)) [Fe1].

In what follows we will verify this example. First notice that every deriva-
tion D : A(D) → B(K, H2(D)) is completely determined by D(z). For each
θ ∈ HomA(D)(K, L2(Tn)ªH2(D)), one sees that δ1(θ) is the extension deter-
mined by Dθ. Note

Dθ(z) = PH2(D)T
(L2(Tn))
z θ = 〈·, θ∗(z̄)〉.

Suppose that there exists a Hilbert module map L : K → L2(Tn) such that
θ∗(z̄) = L∗(z̄). Then it is easy to see that Dθ is inner. Conversely, if Dθ is
inner, then there is a bounded linear operator A : K → H2(D) such that

Dθ(f) = PH2(D)T
(L2(Tn))
f θ = AT

(K)
f − T

(H2(D))
f A.

Define an operator L : K → L2(Tn) byLk = Ak + θk, k ∈ K. Since

fLk = T
(H2(D))
f Ak + T

(L2(Tn))
f θk

= T
(H2(D))
f Ak + PH2(D)T

(L2(Tn))
f θk + PH2(D)⊥T

(L2(Tn))
f θk

= AT
(K)
f k + θ(fk),

it follows that L is a Hilbert module map from K to L2(Tn). Moreover, for
any k ∈ K, we see

〈L(k), z̄〉 = 〈θ(k), z̄〉.
This leads to θ∗(z̄) = L∗(z̄), and thus the example is verified.

Let M be a submodule of L2(Tn), and ϕ ∈ L2(Tn). We define a Hankel
operator H

(M)
ϕ : H2(Dn) → L2(Tn)ªM with symbol φ by

H(M)
ϕ f = PL2(Tn)ªM (ϕf), f ∈ A(Dn).

Then Hankel operator H
(M)
ϕ is densely defined. We write B(M) for the

set of all ϕ ∈ L2(Tn) such that Hankel operator H
(M)
ϕ can be continu-

ously extended onto H2(Dn). It is easy to check that for every ϕ ∈ B(M),
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H
(M)
ϕ is a module map from H2(Dn) to L2(Tn) ªM , and each module map

β : H2(Dn) → L2(Tn)ªM has such a form, that is, there exists an ϕ ∈ B(M)
such that β = H

(M)
ϕ . In particular, if M = H2(Dn), then B(H2(Dn)) is

equal to BMOr + H2(Dn), where BMOr is the restricted BMO space intro-
duced in [CS]. Furthermore, for a nonzero Hardy submodule M0(⊂ H2(Dn)),
we define a function space B(M0,M) by ϕ ∈ B(M0,M) if ϕ ∈ B(M) and
kerH

(M)
ϕ ⊇ M0.

Example 7.2.13 Applying Theorem 7.2.10, we have the following.

(1) ExtA(Dn)(H
2(Dn), M) ∼= B(M)/(L∞(Tn) + M),

(2) ExtA(Dn)(H
2(Dn), H2(Dn)) ∼= (BMOr + H2(Dn))/(L∞(Tn) + H2(Dn)),

(3) ExtA(Dn)(H
2(Dn)ªM0, M) ∼= B(M0, M)/M .

Remark 7.2.14 Note that in the case n = 1,

BMOr + H2(D) = L∞(T) + H2(D).

This implies that ExtA(D)(H2(D),H2(D)) = 0. This result was first obtained
in [CC1]. However, for n > 1, by [CS], it is easy to check that

BMOr + H2(Dn) ⊃
6=

L∞(Tn) + H2(Dn),

and hence
ExtA(Dn)(H2(Dn), H2(Dn)) 6= 0.

This result first appeared in [CC2].

If two Hardy submodules M1,M2 satisfy

0 6= M1 ⊆ M2 $ H2(Dn),

then 1 ∈ B(M1,M2). This implies that

ExtA(Dn)(H2(Dn)ªM1,M2) 6= 0

by Example 7.2.13. Therefore, for Hardy submodules M1,M2 and M1 6= 0, if
ExtA(Dn)(H2(Dn)ªM1,M2) = 0, then there is not a proper Hardy submodule
M3 such that M3 ⊇ M1, and M3 is similar to M2.

The next example recaptures some information of rigidity of Hardy sub-
modules.

Example 7.2.15 Let F ∈ H∞(Dn) be quasi-outer. Then

ExtA(Dn)(H2(D2)ª [F ],H2(Dn)) = 0.

Hence there is no proper Hardy submodule M such that [F ] ⊆ M and M is
similar to H2(Dn).
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Let ϕ ∈ B([F ],H2(Dn)). Then ϕF ∈ H2(Dn). Since F is quasi-outer, the
relation ϕF ∈ H2(Dn) implies ϕ ∈ H2(Dn). Thus by Example 7.2.13 (3),

ExtA(D2)(H2(D2)ª [F ],H2(D2)) = 0.

Moreover, we shall prove the following by using the techniques in [ACD].

Proposition 7.2.16 For n > 1, let M1 be of finite codimension in H2(Dn)
and M2 ⊆ H2(Dn). Then

M2 ⊆ B(M1, M2) ⊆ H2(Dn).

In particular, if M1 ⊆ M2, then B(M1, M2) = H2(Dn).

Proof. For any ϕ ∈ B(M1,M2), write

ϕ =
+∞∑

s=−∞
fs(z2, · · · , zn)zs

1.

Since M1 has finite codimension in H2(Dn), for sufficiently large integer l,
some nonzero linear combination

∑l
j=0 cjz

j
2 of the functions 1, z2, z

2
2 , · · · , zl

2

belongs to M1. Thus, ϕ
∑l

j=0 cjz
j
2 is in M2. Since

ϕ
l∑

j=0

cjz
j
2 =

+∞∑
s=−∞

[fs

l∑

j=0

cjz
j
2]z

s
1 ∈ M2,

this yields fs = 0 for s < 0. Treating the expansion of ϕ relative to the other
variables z2, z3, · · · , zn shows that ϕ is in H2(Dn). Note that the inclusion
M2 ⊆ B(M1,M2) is clear. Thus we have

M2 ⊆ B(M1, M2) ⊆ H2(Dn).

In particular, if M1 ⊆ M2, then H∞(Dn) ⊆ B(M1,M2). Since M2 is of
finite codimension in H2(Dn), by Remark 2.5.5 H2(Dn)ªM2 is contained in
H∞(Dn). We thus conclude that B(M1,M2) = H2(Dn).

Corollary 7.2.17 Let M1 be of finite codimension in H2(Dn) and M1 ⊆
M2 ⊆ H2(Dn). If n > 1, then

ExtA(Dn)(H2(Dn)ªM1,M2) ∼= H2(Dn)ªM2.

From Corollary 7.2.17, one finds that for n > 1, a finite codimensional Hardy
submodule M(6= H2(Dn)) is never similar to H2(Dn). The reason is

ExtA(Dn)(H2(Dn)ªM, H2(Dn)) = 0,

but
ExtA(Dn)(H2(Dn)ªM,M) ∼= H2(Dn)ªM.

Of course, this is not new observation; we may compare it with that in [ACD].
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7.3 Extensions of Hilbert modules and Hankel operators

In this section we will concentrate attention on studying extensions of the
Hardy module H2(D) and the Bergman module L2

a(D) on the disk algebra
A(D). This section is based mainly on Guo’s paper [Guo5]. When one studies
the Hardy module and Bergman module over the disk algebra, Hankel op-
erators will play an important role in this context. In almost all cases, one
must investigate the symbol spaces of corresponding Hankel operators. On
one hand, by using such symbol spaces, one can give the explicit expressions
of Ext-groups. On the other hand, by the Hom-Ext sequences, one can de-
termine when a Hankel operator is bounded. We say that a Hilbert module
H over the disk algebra A(D) is cramped if the multiplication by z on H is
similar to a contraction. Let H(A(D)) be the category of all Hilbert modules
over A(D) together with module maps, and C the category of all cramped
Hilbert modules over A(D) and module maps. It is easy to check that C
is a subcategory of H(A(D)) and is full in H(A(D)). This means that for
H1, H2 ∈ C, the set of maps from H1 to H2 is the same as in H(A(D)), i.e.,
HomC(H1,H2) = HomA(D)(H1,H2).

As we have seen, what seems to make things most difficult is that the
category H(A(D)) lacks enough projective or injective objects. If one replaces
H(A(D)) by the category C, Carlson, Clark, Foias and Williams [CCFW]
proved that the category C has enough projective and injective objects, and
the Šilov resolution [DP] of a contractive module gives a projective resolution.
From [CCFW, DP], it is not difficult to see that a Hilbert module in C is
projective if and only if it is similar to isometric Hilbert module; a Hilbert
module is both projective and injective if and only if it is similar to a unitary
Hilbert module; by an isometric (unitary) Hilbert module H we mean that the
operator of multiplication by z on H is an isometry (a unitary operator). In
[CCFW], the concept of extension in the category C was introduced, and this
concept is completely analogous to that in the category H(A(D)). It is easy
to see that for H1 and H2 in C, there is a canonically injective A(D)-module
map

i : ExtC(H1, H2) → ExtA(D)(H1,H2).

One thus often works in the category C instead of the category H(A(D). In
the category C, it is easy to prove the following proposition [CCFW].

Proposition 7.3.1 ExtC(−,−) is a bifunctor from C to the category of A-
modules. It is contravariant in the first and covariant in the second variable.

Similar to the category H(A(D)), in the category C, we have Hom-Ext
sequences [CCFW].

Proposition 7.3.2 Let

E : 0 −→ H1
α−→ H2

β−→ H3 −→ 0
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be an exact sequence of cramped Hilbert modules. Then for each cramped
Hilbert module H we have the following Hom-Ext sequences:

0 −→ Hom(H, H1)
α∗−→ Hom(H, H2)

β∗−→ Hom(H,H3)
δ−→ ExtC(H, H1)

α∗−→ ExtC(H,H2)
β∗−→ ExtC(H, H3),

where δ is the connecting homomorphism and is given by δ(θ) = [Eθ] for
θ : H → H3, and

0 −→ Hom(H3,H)
β∗−→ Hom(H2,H) α∗−→ Hom(H1,H)

δ−→ ExtC(H3,H)
β∗−→ ExtC(H2, H) α∗−→ ExtC(H1,H),

where δ(θ) = [θE] for θ : H1 → H.

From the above Hom-Ext sequences, we immediately obtain the following
proposition which generalizes Proposition 3.2.6 in [CC1]. The next proposition
was first proved in [Fe2].

Proposition 7.3.3 If H1, H2 are similar to isometric Hilbert modules, then

ExtC(H1,H2) = ExtA(D)(H1,H2) = 0.

Proof. By the Wold decomposition, we may suppose H2 = H2(H) for some
finite or infinite dimensional Hilbert space H. One thus has the exact sequence
of Hilbert modules:

E : 0 → H2(H)
i→ L2(H)

π→ H2(H)⊥ → 0.

Since H1 is projective in C, this forces the sequence

0 → Hom(H1,H
2(H)) i∗→ Hom(H1, L

2(H)) π∗→ Hom(H1,H
2(H)⊥) → 0

to be exact. From this fact and L2(H) being projective in H(A(D)), applying
the Hom-Ext sequences gives

ExtA(D)(H1,H
2(H)) = 0, and hence ExtC(H1,H

2(H)) = 0.

The desired conclusion follows, completing the proof.

In studying extensions of the Hardy and the Bergman modules, we will
be concerned with the following four kinds of Hankel operators: from H2(D)
to H2(D)⊥; from H2(D) to L2

a(D)⊥; from L2
a(D) to H2(D)⊥; from L2

a(D) to
L2

a(D)⊥. For their definitions, we only see the case from H2(D) to L2
a(D)⊥. Let

φ be in L2(D). A densely defined Hankel operator Hφ : H2(D) → L2
a(D)⊥ is

defined by Hφh = (I−P )φh, h ∈ A(D), where P is the orthogonal projection
from L2(D) to L2

a(D). Therefore, Hankel operator Hφ is bounded if and only
if Hφ in H2(D) can be continuously extended onto H2(D).
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Let µ be a positive finite measure on D. The measure µ is called an i-th
(i = 1, 2) Carleson measure if there is a constant c such that µ(S) ≤ c hi

for each Carleson square S = {z = reiθ| 1 − h ≤ r ≤ 1; θ0 ≤ θ ≤ θ0 + h}.
For φ ∈ L2(D), we say that φ is an i-th Carleson function if |φ|2dA is an
i-th Carleson measure (i = 1, 2), where dA is the usual normalized area
measure on the unit disk. Write Si(D) for the set of all i-th Carleson functions
(i = 1, 2). Then it is easily seen that Si(D) are A(D)–modules. It is well
known that a Hankel operator Hφ from H2(D) to H2(D)⊥ is bounded if and
only if φ ∈ L∞(T) + H2(D). This fact, translated into homological language,
is equivalent to the exactness of the following sequence:

0 → Hom(H2(D), H2(D))
i∗→ Hom(H2(D), L2(T))

π∗→ Hom(H2(D), H2(D)
⊥

) → 0.

It is easily verified that each bounded Hankel operator Hφ from H2(D) to
L2

a(D)⊥ is a Hilbert module map, and every Hilbert module map from H2(D)
to L2

a(D)⊥ is a bounded Hankel operator. Since H2(D) is projective in the
category C, one thus obtains

Proposition 7.3.4 A Hankel operator Hφ from H2(D) to L2
a(D)⊥ is bounded

if and only if φ ∈ S1(D) + L2
a(D).

Proof. Since H2(D) is projective in the category C (see [CCFW]), we have
the following exact Hom sequence:

0 → Hom(H2(D), L2
a(D))

i∗→ Hom(H2(D), L2(D))
π∗→ Hom(H2(D), L2

a(D)⊥) → 0.

Assume that Hφ is bounded. Hence, the above exact sequence ensures that
there is an α ∈ Hom(H2(D), L2(D)) such that Hφ = π∗(α). It is easily seen
that there exists a φ0 ∈ L2(D) such that for any f ∈ H2(D), α(f) = φ0f .
This induces that φ0 is a 1-th Carleson function by Theorem 9.3 in [Dur]. We
conclude thus that φ − φ0 ∈ L2

a(D). The opposite direction is achieved by
considering the above exact sequence and Theorem 9.3 in [Dur], completing
the proof.

“The Halmos problem” asks: whether each polynomially bounded operator
is similar to a contraction [Hal]. Pisier’s recent example [Pi2] gives a negative
answer for “the Halmos problem.” Equivalently, the category C is a proper
subcategory of H(A(D)). An interesting question is whether the category
H(A(D)) has enough projectives in the sense that every object in H(A(D)) is
a quotient of some projective module.

Theorem 7.3.5 Let H be similar to a nonunitarily isometric module. Then

ExtC(L2
a(D), H) = ExtA(D)(L2

a(D), H) 6= 0.

Proof. If H is similar to a unitary module, then H is injective in H(A(D))
by Corollary 7.2.4, and therefore

ExtC(L2
a(D), H) = ExtA(D)(L2

a(D), H) = 0.
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Now by the Wold decomposition of an isometry, we only need to prove

ExtC(L2
a(D), H2(H)) = ExtA(D)(L2

a(D),H2(H)) 6= 0

for some finite or infinite dimensional Hilbert space H. Consider the exact
sequence

E : 0 → H2(H) i→ L2(H) π→ H2(H)⊥ → 0.

Since L2(H) is projective in H(A(D)) (also in C), applying the Hom-Ext
sequences gives the following:

0 → Hom(L2
a(D),H2(H)) i∗→ Hom(L2

a(D), L2(H))
π∗→ Hom(L2

a(D),H2(H)⊥) δ→ ExtA(D)(L2
a(D),H2(H)) → 0

0 → Hom(L2
a(D),H2(H)) i∗→ Hom(L2

a(D), L2(H))
π∗→ Hom(L2

a(D),H2(H)⊥) δ→ ExtC(L2
a(D), H2(H)) → 0.

We claim
Hom(L2

a(D), L2(H)) = 0.

In fact, for any α ∈ Hom(L2
a(D), L2(H)), since

‖α(zn)‖ = ‖znα(1)‖ = ‖α(1)‖ ≤ ‖α‖[
∫
|zn|2dA]

1
2 → 0

as n → ∞, it follows that α(1) = 0. This means that

α(f) = fα(1) = 0, ∀f ∈ A(D).

The claim follows. Combining the above exact sequences with the claim im-
mediately shows that

ExtC(L2
a(D),H2(H)) = ExtA(D)(L2

a(D),H2(H)) = Hom(L2
a(D), H2(H)⊥).

For φ ∈ L2(H), a densely defined Hankel operator Hφ : L2
a(D) → H2(H)⊥ is

defined by Hφh = (I−P )φh; h ∈ A(D), where P is the orthogonal projection
from L2(H) onto H2(H)⊥. If the densely defined operator Hφ in L2

a(D) can
be continuously extended onto L2

a(D), then it is easy to check that Hφ is a
Hilbert module map from L2

a(D) to H2(H)⊥, and each Hilbert module map
from L2

a(D) to H2(H)⊥ has such a form. Writing S(L2
a(D),H2(H)) for the

set of all such φ, then

ExtC(L2
a(D),H2(H)) = Ext(A(D)(L2

a(D),H2(H))
= S(L2

a(D),H2(H))/H2(H) .

Taking any h ∈ H with ‖h‖ = 1, it is easy to prove that φ = z̄h is in
S(L2

a(D),H2(H)), but φ is not in H2(H). This gives the desired conclusion,
completing the proof.
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Remark 7.3.6 From the proof of Theorem 7.3.5, one can deduce the follow-
ing explicit formula for ExtC(L2

a(D),H2(H)) = ExtH(A(D)(L2
a(D),H2(H)),

that is,
ExtC(L2

a(D),H2(H)) = ExtA(D)(L2
a(D),H2(H))

= S(L2
a(D),H2(H))/H2(H) .

Let CH(T) be the set of all continuous functions φ on the unit circle T such
that Hankel operator Hφ : L2

a(D) → H2(D)⊥ is bounded. Obviously, CH(T)
is an A(D)–module.

Corollary 7.3.7 We have

ExtC(L2
a(D),H2(D)) = ExtA(D)(L2

a(D),H2(D)) = CH(T)/A(D).

Proof. Let φ be in L2(T) and Hφ : L2
a(D) → H2(D)⊥ be a bounded Hankel

operator. Since H2(D) is contractively contained in L2
a(D), one concludes that

Hφ : H2(D) → H2(D)⊥ is a bounded Hankel operator. This shows that there
is a φ0 ∈ L∞(T) such that φ−φ0 ∈ H2(D). Suppose that {hk} ⊂ H2(D), and
{hk} weakly converge to 0 in H2(D). Let

hk =
∑

n≥0

a(k)
n zn

be h′ks power series expansion. Since {‖hk‖H2(D)} is bounded, there exists a
constant c1 such that

∑
n≥0 |a(k)

n |2 < c1 for all k. On the other hand, since
Hφ : L2

a(D) → H2(D)⊥ is bounded, there exists a constant c2 such that

‖Hφhk‖2L2(T) = ‖Hφ0hk‖2L2(T) ≤ c2

∫

D
|hk|2dA = c2[

∑

n≥0

|a(k)
n |2

n + 1
].

For each fixed n, since a
(k)
n → 0 as k → ∞, the above discussion implies

that ‖Hφ0hk‖2L2(T) → 0 as k → ∞, and therefore Hφ0 is a compact Hankel
operator from H2(D) to H2(D)⊥. Thus φ0 is in H∞(D) + C(T), where C(T)
is the set of all continuous functions on T. It now follows that the operator
Hφ : L2

a(D) → H2(D)⊥ is bounded if and only if there is a ψ ∈ CH(T) such
that φ− ψ ∈ H2(D). Hence from Remark 7.3.6, we have

ExtC(L2
a(D),H2(D)) = ExtA(D)(L2

a(D), H2(D))
∼= [CH(T) + H2(D)]/H2(D)
∼= CH(T)/A(D).

This completes the proof.

Remark 7.3.8 From the proof of Corollary 7.3.7, we observe that a Hankel
operator

Hφ : L2
a(D) → H2(D)⊥

is bounded if and only if φ ∈ CH(T) + H2(D).
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From the Hom-Ext sequences, it is easy to see that a Hilbert module H
in H(A(D)) (resp. in C) is injective if and only if ExtA(D)(H̃, H) = 0 (resp.
ExtC(H̃, H) = 0) for each Hilbert module H̃ in H(A(D)) (resp. in C). The
question naturally arises as to whether it is necessary to use all Hilbert mod-
ules H̃ in Ext(H̃,H) to test whether H is injective; might it not happen that
there exists a small family of Hilbert modules Hλ such that if Ext(Hλ,H) = 0
for each Hλ in the family, then H is injective? By Theorem 7.3.5, when
H is similar to an isometric module, then H is injective in H(A(D) if and
only if ExtA(D)(L2

a(D),H) = 0. Hence the Bergman module L2
a(D) seems

to play a role to test injective modules. In the following we shall show that
ExtC(L2

a(D), L2
a(D)) 6= 0, and therefore ExtA(D)(L2

a(D), L2
a(D)) 6= 0.

Consider the exact sequence

E : 0 → L2
a(D) i→ L2(D) π→ L2

a(D)⊥ → 0.

Hence it induces the following Hom-Ext sequence:

0 → Hom(L2
a(D), L2

a(D)) i∗→ Hom(L2
a(D), L2(D)) π∗→ Hom(L2

a(D), L2
a(D)⊥)

δ→ ExtC(L2
a(D), L2

a(D)) i∗→ ExtC(L2
a(D), L2(D)) π∗→ ExtC(L2

a(D), L2
a(D)⊥).

To prove ExtC(L2
a(D), L2

a(D)) 6= 0, it suffices to show that the map

π∗ : Hom(L2
a(D), L2(D)) → Hom(L2

a(D), L2
a(D)⊥)

is not surjective. To get the desired conclusion, we first give the descriptions of
Hom(L2

a(D), L2(D)) and Hom(L2
a(D), L2

a(D)⊥). Let α ∈ Hom(L2
a(D), L2(D)).

It is easy to check that α is a multiplier from L2
a(D) to L2(D), that is, there is

a φ ∈ L2(D) such that α = Mφ. According to [Ha1], Mφ is a multiplier from
L2

a(D) to L2(D) if and only if φ is a 2-th Carleson function. We thus have

Hom(L2
a(D), L2(D)) = S2(D).

Write B(D) for all those φ ∈ L2(D) such that Hφ : L2
a(D) → L2

a(D)⊥ is
bounded. Clearly, B(D) is an A(D)-module, and

Hom(L2
a(D), L2

a(D)⊥) ∼= B(D)/L2
a(D).

The above observations lead to the conclusion

cokerπ∗ = B(D)/[S2(D) + L2
a(D)].

Theorem 7.3.9 B(D) % S2(D) + L2
a(D)

Before proving this theorem we give the following corollary and remark.

Corollary 7.3.10 The following are true:
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(1) ExtC(L2
a(D), L2

a(D)) 6= 0, and

(2) ExtA(D)(L2
a(D), L2

a(D)) 6= 0.

Remark 7.3.11 Let B be a Banach A(D)-bimodule. A derivation δ from
A(D) to B, by definition, is a continuously linear map such that δ(ab) =
aδ(b) + δ(a)b for all a, b ∈ A(D). Let B(L2

a(D)) (resp., B(H2(D))) denote
the set of all bounded linear operators on L2

a(D) (resp., H2(D)) with natural
A(D)-bimodule structure. By Remark 7.2.14, we see that each derivation from
A(D) to B(H2(D)) is inner. However, Corollary 7.3.10 indicates that there
is some derivation from A(D) to B(L2

a(D)) that is not inner. This may be an
essential difference between the Hardy module and the Bergman module over
A(D).

The proof of Theorem 7.3.9. To prove this theorem, it is enough to find
a function b such that b ∈ B(D), but b /∈ S2(D) + L2

a(D). First note that the
analytic function f(z) =

∑∞
n=0 z2n

is in L2
a(D). We claim that f(z) is in the

Bloch space. This claim is easily from the theorem on Madamard power series
[Dur]. For the reader’s convenience, we give the proof’s details here. That is,
we must prove the following:

sup{(1− |z|2)|f ′(z)| : z ∈ D} < +∞.

Since f ′(z) =
∑∞

n=0 2nz2n−1, one needs to show

∞∑
n=0

2nr2n−1 = O(
1

1− r
)

for 0 < r < 1. This is equivalent to estimating the integral
∫ ∞

0

2xr2x−1dx =
1

ln 2

∫ ∞

1

rt−1dt (t = 2x).

Since ln r < r − 1, the second integral is majorized by
∫ ∞

1

rt−1dt =
∫ ∞

1

e(t−1) ln rdt ≤
∫ ∞

1

e(r−1)(t−1)dt =
1

1− r

which proves the claim, and hence f(z) is in the Bloch space. It follows by
[Axl, Theorem 6] that Hankel operator Hf̄ is bounded. The rest of the proof
is to check f̄ /∈ S2(D) + L2

a(D).
For any z ∈ D, let kz be the normalized Bergman-reproducing kernel at z

(i.e., ‖kz‖ = 1). If there is a φ ∈ S2(D) and a ψ ∈ L2
a(D) such that φ = f̄ +ψ,

then

|f̄(z) + ψ(z)| = |
∫

(f̄ + ψ)|kz|2dA| = 〈φkz, kz〉 ≤ ‖Mφ‖.
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This implies that φ(z) = f̄(z) + ψ(z) is a bounded harmonic function. Since
f̄(reiθ)− f̄(0) and ψ(reiθ) + f̄(0) are orthogonal in L2(Tn), it follows that

‖φ(reiθ)‖2L2(Tn) = ‖f(reiθ)− f(0)‖2H2(D) + ‖ψ(reiθ) + f̄(0)‖2H2(D).

Since φ is bounded, the above equality shows that there exists some positive
constant c such that ‖f(reiθ) − f(0)‖H2(D) ≤ c for any r. Thus, f is in
H2(D). This is impossible and hence S2(D) + L2

a(D) is a proper subset of
B(D), completing the proof.

7.4 Extensions of normal Hilbert module over the ball
algebra

Let Bn be the unit ball of Cn and A(Bn) be the so-called ball algebra, i.e.,
the set of all functions continuous on the closure Bn of Bn and holomorphic on
Bn. A Hilbert module H over A(Bn) is called normal if for every h ∈ H, the
map f 7→ fh is continuous from weak*-topology of L∞(∂Bn, dσ) restricted to
A(Bn) to the weak-topology on H, where dσ is the normalized sphere area
measure on the boundary ∂Bn ({ξ ∈ Cn : ‖ξ‖ = 1}) with σ(∂Bn) = 1.
Some obvious facts are that the category N of all normal Hilbert modules
over A(Bn) is a proper subcategory of the category H(A(Bn)) of all Hilbert
modules, and N is full in H(A(Bn)) which means that if N1, N2 ∈ N , then
the set of all module maps from N1 to N2 in N is the same as in H(A(Bn)),
that is, HomN (N1, N2) = HomA(Bn)(N1, N2).

The present section comes from [Guo3]. In this section, we shall work in
the category N . For N1, N2 in N , a normal extension of N2 by N1 is an exact
sequence of normal Hilbert modules, which begins by N1 and ends by N2:

E : 0 −→ N1
α−→ N

β−→ N2 −→ 0,

where α, β are Hilbert module maps and N is normal. Under the equivalence
relation described as in Section 7.1, the set of equivalence classes of all normal
extensions of N2 by N1, denoted by ExtN (N2, N1), is called normal extension
group of N2 by N1. Similar to extensions in Section 7.1, we can verify the
following proposition.

Proposition 7.4.1 ExtN (−,−) is a bifunctor from N to the category of
A(Bn)-modules. It is contravariant in the first and covariant in the second
variable.

Let B(N2, N1) be all bounded linear operators from N2 to N1. If a bounded
derivation D : A(Bn) → B(N2, N1) satisfies that for each h ∈ N2, the
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map f 7→ D(f)h is continuous from the weak*-topology of L∞(∂Bn, dσ) re-
stricted to A(Bn) to the weak-topology on N1, then we call D normal. Let
Dern(N2, N1) denote all normal derivations from A(Bn) to B(N2, N1) and
Inn(N2, N1) all inner derivations. Just as in Section 7.1, normal extensions
are closely related to the derivation problem. For a normal extension of N2

by N1

E : 0 −→ N1
α−→ N

β−→ N2 −→ 0,

there exists a normal derivation D ∈ Dern(N2, N1) such that E is equivalent
to the following extension ED defined by D:

ED : 0 −→ N1
i−→ N1⊕̃N2

π−→ N2 −→ 0,

where N1⊕̃N2 is Hilbert space direct sum of N1 and N2 with the A(Bn)-
module structure defined by f(h1, h2) = (fh1 + D(f)h2, fh2). It is easy to
check that such a module is normal. Finally, two extensions ED1 and ED2 are
equivalent if and only if D1 −D2 is inner.

Proposition 7.4.2 Let N1, N2 be normal. Then

ExtN (N2, N1) = Dern(N2, N1)/Inn(N2, N1).

Moreover, if α : N1 → N ′
1 and β : N ′

2 → N2 are Hilbert module maps, with
regard to pullbacks and pushouts in the category N , the extensions αED and
EDβ are defined by derivations αD ∈ Dern(N2, N

′
1) and Dβ ∈ Dern(N ′

2, N1),
respectively, where αD(f) = α(D(f)) and Dβ(f) = D(f)β for f ∈ A(Bn).

Now it is time to establish the following Hom-Ext sequences in N whose
proof is similar to the preceding sections. This will be our basic tool of
computing normal extension groups.

Proposition 7.4.3 Let

E : 0 −→ N1
α−→ N2

β−→ N3 −→ 0

be an exact sequence of normal Hilbert modules over A(Bn). Then for each
normal Hilbert module N , we have the following Hom-Ext sequences:

0 −→ Hom(N,N1)
α∗−→ Hom(N,N2)

β∗−→ Hom(N,N3)
δ−→ ExtN (N, N1)

α∗−→ ExtN (N, N2)
β∗−→ ExtA(N,N3),

where δ is the connecting homomorphism and is given by δ(θ) = [Eθ] for
θ : N → N3, and

0 −→ Hom(N3, N)
β∗−→ Hom(N2, N) α∗−→ Hom(N1, N)

δ−→ ExtN (N3, N)
β∗−→ ExtN (N2, N) α∗−→ ExtN (N1, N),

where δ(θ) = [θE] for θ : N1 → N .

©2003 CRC Press LLC



Let H be a normal Hilbert module over C(∂Bn) (⊂ L∞(∂Bn, dσ)), where
C(∂Bn) is the algebra consisting of all continuous functions on ∂Bn. By
Kaplansky’s density theorem [Arv7] and a simple continuity argument, H
can be extended into a normal Hilbert module over L∞(∂Bn, dσ) without
change of module bound. Moreover, from [DP] one sees that H is similar to
a normally contractive Hilbert module over C(∂Bn). Hence we concentrate
attention on normally contractive Hilbert modules over C(∂Bn). Let N be a
normally contractive Hilbert module over C(∂Bn). A closed subspace M ⊆ N
which is invariant for A(Bn) is called a normal Šilov module for A(Bn) and
N is called a normally contractive C(∂Bn)-extension of M . A normal Šilov
module for A(Bn) is reductive if it is invariant for C(∂Bn) and pure if no
nonzero subspace of it is reductive.

The following proposition is basic for our analysis. It can help us to calculate
ExtN -groups of some normal Hilbert modules over A(Bn).

Proposition 7.4.4 For any N in N , the module action of A(Bn) on N can
be uniquely extended to H∞(Bn) without change of the module bound of N ,
making N into a normal H∞(Bn)-Hilbert module, where H∞(Bn) denotes the
set of all bounded and holomorphic functions on Bn.

Proof. By [CGa, Corollary 2.3], the unit ball of A(Bn) is weak*-dense in
the unit ball of H∞(Bn). Also, since H∞(Bn) is weak*-closed and the unit
ball of H∞(Bn) is weak*-compact and weak*-metrizable, a simple continuity
argument implies that Proposition 7.4.4 is true.

According to Proposition 7.4.4, it is easily seen that the category N is
essentially the same as the category N∞, where N∞ is the category of all
normal Hilbert modules over H∞(Bn). This thus implies that Propositions
7.4.1, 7.4.2 and 7.4.3 are valid in the category N∞. For N1, N2 ∈ N , since
ExtN (N2, N1) is isomorphic to ExtN∞(N2, N1) as A(Bn)-modules, this en-
sures that ExtN (N2, N1) can be extended into H∞(Bn)-module. Note that
all inner functions generate H∞(Bn) in the weak*-topology [Ru4]. Hence just
as the proof of Theorem 7.2.3, if N is a normal C(∂Bn)-Hilbert module, then
for every normal Hilbert module K over A(Bn), we have

ExtN∞(K, N) = 0, ExtN∞(N, K) = 0.

Thus, we get the following theorem.

Theorem 7.4.5 Let N be a normal C(∂Bn)-Hilbert module (of course, N ∈
N ). Then for every normal Hilbert module K over A(Bn), we have

ExtN (K, N) = 0, ExtN (N, K) = 0.

For P ∈ N , we say that P is normally projective if for each pair N1, N2 ∈ N ,
and every pair Hilbert module maps ψ : P → N2 and φ : N1 → N2 with φ
onto, there exists a Hilbert module map ψ̃ : P → N1 such that ψ = φψ̃. Also,
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for I ∈ N , I is called normally injective if for every pair N1, N2 ∈ N and every
pair Hilbert module maps ψ : N1 → I, and φ : N1 → N2 with φ one-to-one
and having closed range, there exists a Hilbert module map ψ̃ : N2 → I such
that ψ = ψ̃φ.

Now applying Theorem 7.4.5 we have the following.

Corollary 7.4.6 Let N be a normal Hilbert module over C(∂Bn). Then N
(viewed as A(Bn)-Hilbert module) is both normally projective and normally
injective.

Remark 7.4.7 Although we do not know if there is any nonzero projective
module over the ball algebra A(Bn)(n > 1), Corollary 7.4.6 guarantees that
there exist normal projective modules and normal injective modules.

Similar to the proof of Corollary 7.2.6, we have the following.

Corollary 7.4.8 Let N0 be a normal Šilov module over A(Bn) and N be a
normally contractive C(∂Bn)-extension of N0. Then the following statements
are equivalent:

(1) N0 is normally injective,

(2) N ªN0 is normally projective,

(3) N0 is reductive,

(4) the short exact sequence

EN0 : 0 −→ N0
i−→ N

π−→ N ªN0 −→ 0

is split,

where i is the inclusion map and π the quotient map, that is, π is the orthog-
onal projection PNªN0 from N onto N ªN0. As usual, the action of A(Bn)
on N ª N0 is given by the formula f · h = PNªN0T

(N)
f h for f ∈ A(Bn) and

h ∈ N ªN0.

For a normal Šilov module M , let N be any normally contractive C(∂Bn)
-extension of M . We say that N is minimal if C(∂Bn) ·M is dense in N . From
[DP, Corollary 2.14], one can show that the minimal normally contractive
C(∂Bn)-extension of M is essentially unique.

Lemma 7.4.9 Let Mi be normal Šilov modules over A(Bn) and Ni be nor-
mally contractive C(∂Bn)-extensions of Mi, i = 1, 2. Then for each θ ∈
Hom(M1,M2), it can lift to a C(∂Bn)-Hilbert module map θ′ : N1 → N2.
Furthermore, if N1 is minimal, then lifting is unique.
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Proof. By Proposition 7.4.4, we may regard Mi as normally contractive
Hilbert modules over H∞(Bn) and Ni as normally contractive Hilbert modules
over L∞(∂Bn, dσ) for i = 1, 2. Set

D = {η̄h : h ∈ M1, η are inner functions}.
It is easy to check that D is a linear subspace of N1. Because all inner functions
and their adjoints generate L∞(∂Bn, dσ) in the weak*-topology (see [Ru4]),
it follows that the closure D of D is an L∞(∂Bn, dσ)-Hilbert submodule of
N1. If we set θ′′(η̄h) = η̄θ(h) for inner function η and h ∈ M1, then it is
easy to check that θ′′ is well defined and θ′′ can be continuously extended
into an L∞(∂Bn, dσ)-Hilbert module map from D to N2. Hence, if we use
θ′ to denote an L∞(∂Bn, dσ)-Hilbert module map from N1 to N2 by setting
θ′(h) = θ′′(h), h ∈ D; θ′(h) = 0, h ∈ N1 ªD, then the map θ′ is a C(∂Bn)-
lifting of θ. In particular, if N1 is minimal, then lifting is unique.

Applying Lemma 7.4.9 and the proof of Theorem 7.2.7 gives the following.

Theorem 7.4.10 Let M1, M2 be normal Šilov modules over A(Bn), and N1

be a minimal normally contractive C(∂Bn)-extension of M1. If N2 is a nor-
mally contractive C(∂Bn)-extension of M2 and M2 is pure, then the following
are isomorphic as A(Bn)-modules:

HomN (M1,M2) ∼= HomN (N1 ªM1, N2 ªM2).

The isomorphism is given by

β(θ) = PN2ªM2θ
′ |N1ªM1 , θ ∈ HomN (M1,M2),

where θ′ is one given by Lemma 7.4.9, and PN2ªM2 is the orthogonal projection
from N2 onto N2 ªM2.

For Hardy submodules, Theorem 7.4.10 has a natural form. To see this, let
Γ be a subset of L2(∂Bn, dσ). A Borel set E ⊆ ∂Bn is said to be the support of
Γ (denoted by S(Γ)) if each function from Γ vanishes on ∂Bn−E; and for any
Borel subset E′ of E with σ(E′) > 0, there exists a function f ∈ Γ such that
f |E′ 6= 0. For a submodule M of L2(∂Bn, dσ) over A(Bn), it is not difficult to
prove that χS(M)L

2(∂Bn, dσ) is its minimal C(∂Bn)-extension, where χS(M)

is the characteristic function of S(M). We also note that a submodule N
of L2(∂Bn, dσ) is pure if and only if σ(S(N⊥)) = 1. By Theorem 7.4.10 we
immediately obtain the following.

Corollary 7.4.11 Let M1 and M2 be submodules of L2(∂Bn, dσ) over A(Bn),
and σ(S(M1)) = σ(S(M⊥

2 )) = 1. Then

HomN (M1,M2) ∼= HomN (L2(∂Bn, dσ)ªM1, L
2(∂Bn, dσ)ªM2).

The isomorphism is given by ϕ 7→ H
[M2]
ϕ |L2(∂Bn,dσ)ªM1 , where H

[M2]
ϕ is

defined by H
[M2]
ϕ f = PL2(∂Bn,dσ)ªM2(ϕf) for all f ∈ L2(∂Bn, dσ).
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Example 7.4.12 Let H2(Bn) be the Hardy module over A(Bn) and
H2(Bn)⊥(= L2(∂Bn, dσ) ª H2(Bn)) be the corresponding quotient module.
By Corollary 7.4.11, one obtains that

HomN (H2(Bn)
⊥

,H2(Bn)
⊥

) ∼= H∞(Bn).

If we define a Hankel-type operator Af for f in L∞(∂Bn, dσ) by

Af (h) = PL2(∂Bn,dσ)ªH2(Bn)(fh), h ∈ L2(∂Bn, dσ)ªH2(Bn),

then the commutator of {Az1 , . . . , Azn} is equal to {Af : f ∈ H∞(Bn)}.

Now let N0 be a normal Šilov module and N be any normally contractive
C(∂Bn)-extension of N0. It follows that we have a normally injective presen-
tation of N0:

EN0 : 0 −→ N0
i−→ N

π−→ N ªN0 −→ 0.

By Proposition 7.4.3 and Theorem 7.4.5, we have the following proposition.

Proposition 7.4.13 The following are true:

(1) ExtN (M,N0) ∼= coker(π∗ : HomN (M, N) → HomN (M, N ª N0)).
The correspondence is given by δ1(θ) = [Dθ] for θ ∈ Hom(M, N ªN0),
where Dθ is the normal derivation defined by Dθ(f) = PN0T

(N)
f θ; also

PN0 is the orthogonal projection from N to N0.

(2) ExtN (N ª N0,M) ∼= coker(i∗ : HomN (N, M) → HomN (N0,M)).
The correspondence is given by δ2(θ) = [Dθ], where Dθ is the normal
derivation defined by Dθ(f) = θPN0T

(N)
f .

Proposition 7.4.13 provides a very valid method to calculate normal exten-
sion groups of Hilbert modules in N . In particular, if M (or N0) is cyclic, then
the characterizations of ExtN (M, N0) ( ExtN (N ªN0,M )) may be summed
up as the action of module maps on cyclic vectors.

We now turn to the calculating of ExtN -groups of Hardy submodules over
the ball algebra. For a submodule N of L2(∂Bn, dσ), we define a func-
tion space B(N) in the following manner. For ϕ ∈ L2(∂Bn, dσ), the func-
tion ϕ is said to be in B(N) if densely defined Hankel operator H

(N)
ϕ :

H2(Bn) → L2(∂Bn, dσ) ª N can be continuously extended onto H2(Bn),
where H

(N)
ϕ f = PL2(∂Bn,dσ)ªN (ϕf), f ∈ A(Bn). It is easy to check that for

every ϕ ∈ B(N), H
(N)
ϕ is a module map from H2(Bn) to L2(∂Bn, dσ)ªN , and

each module map β from H2(Bn) to L2(∂Bn, dσ) ªN has such a form, that
is, there exists an ϕ ∈ B(N) such that β = H

(N)
ϕ . Furthermore, for a nonzero

Hardy submodule N0(⊆ H2(Bn)), another function space B(N0, N) is defined
by ϕ ∈ B(N0, N) if ϕ ∈ B(N) and ker H

(N)
ϕ ⊇ N0. From Proposition 7.4.13

and Lemma 7.4.9, the following are immediate.
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Proposition 7.4.14 The following hold:

(1) ExtN (H2(Bn), N) ∼= B(N)/(L∞(∂Bn, dσ) + N);

(2) ExtN (H2(Bn)ªN0, N) ∼= B(N0, N)/N.

Remark 7.4.15 From Proposition 7.4.14, if n > 1, then one can check that
ExtN (H2(Bn),H2(Bn)) 6= 0. This says that H2(Bn) is never normally pro-
jective. In the case of n = 1, it holds that

ExtN (H2(D),H2(D)) = 0

from Remark 7.2.14. However, we do not know if H2(D) is normally projec-
tive.

Let Hardy submodules N1, N2 satisfy

0 6= N1 ⊆ N2 $ H2(Bn).

Then 1 is in B(N1, N2) and hence

ExtN (H2(Bn)ªN1, N2) 6= {0}.

This indicates that for Hardy submodules N1 and N2, if N1 6= 0 and

ExtN (H2(Bn)ªN1, N2) = 0,

then there is not a proper Hardy submodule N3 such that N3 ⊇ N1, and N3

is similar to N2. The next proposition may give us some information of the
rigidity of Hardy submodules.

Proposition 7.4.16 Let N be of finite codimension in H2(Bn), n > 1. Then
the following is true:

ExtN (H2(Bn)ªN, H2(Bn)) = 0.

Proof. By Theorem 2.2.3 we see that C ∩ N is dense in N , and the set of
common zeros (in Cn) of the members of C ∩N is finite and lies in Bn, where
C is the ring of all polynomials on Cn. For φ ∈ B(N, H2(Bn)), since

φ (C ∩N) ⊆ H2(Bn),

using the harmonic extension of φ and the removable singularities theorem
[KK] gives φ ∈ H2(Bn). Proposition 7.4.14 thus implies

ExtN (H2(Bn)ªN, H2(Bn)) = {0}.

The proof is complete.
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Let N be a submodule of H2(Bn), n > 1, and let N be of finite codimension
in H2(Bn). Since

ExtN (H2(Bn)ªN, N) 6= {0},
it follows that N is never similar to H2(Bn) by Proposition 7.4.16. We refer the
reader to [CD1] for a further consideration of the rigidity of Hardy submodules
over the ball algebra.

Remark 7.4.17 The main results in the present section also are valid for
the Hardy modules on strongly pseudoconvex domains with smooth boundary
because inner functions generate H∞ in the weak*-topology on these domains
[Eri].

7.5 Remarks on Chapter 7

The extension theory of Hilbert modules over function algebras was first
explored by Carlson and Clark [CC1]. Section 7.1 is mainly based on [CC1].
Section 7.2 basically comes from the paper by Chen and Guo [CG]. Section 7.3
basically arises from Guo [Guo5]. The results in Section 7.4 were contributed
by Guo [Guo3]. For applications of the extension theory to operator theory
we refer the reader to [Fe1, Fe2] and the references therein. In [Guo9], Guo
developed extension theory of Hilbert modules over semigroups, and obtained
applications to operator theory and representations of semigroups. We refer
the reader to [Hel, MS, Pau2, Pau3] for more topics along this line.
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