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Editors Introduction

Risk models are models of uncertainty, and therefore all risk models are an expression
of perceptions, priorities, needs and the information we have. In this sense, all risk
models are complex hypotheses we have constructed and are based on “what we have
or believe”. Risk models are then challenged by their definition. Are risk definitions
defining in fact prospective risks? How are risks estimated, what data can we apply
to estimate their parameters and how can we do so and use them to useful and
constructive ends? The purpose of this book is to provide a perspective on a number
of financial analytics models and estimation techniques. The papers assembled for
this special issue arise from inter-University collaborations between the New York
University School of Engineering, the Chinese University of Hong Kong and the
University of Paris I-Pantheon-Sorbonne. The first part of this book includes an
outline by Alain Bensoussan et al. of GLM estimation techniques combined with the
proof of fundamental results. Applications to static and dynamic models provide a
unified approach to the estimation of nonlinear risk models.

A second paper is concerned with the definition of risks and their management.
In particular, Guegan and Hassani review a number of risk models, emphasizing the
importance of bi-modal distributions for financial regulation. An additional paper
(Stress Testing Engineering: the real risk measurement?) provides a review of stress
testing and their implications. “The Skin In The Game as a Risk Filter” by Taleb, and
Sandis provide an anti-fragility approach based on “skin in the game”. To conclude
these papers Raphael Douady and Taleb (Capital Adequacy, Pro-cyclicality and Sys-
temic Risk) provide a new Fragility Theorem providing a quantitative foundation to
Fragility and Antifragility.

The third part of this book is concerned with financial modelling and in particular
a variety of financial systems seeking to model when markets are incomplete. Tapiero
and Vallois (Financial Modelling and Memory: Mathematical Systems) provide an
overview of mathematical systems and their uses in financial modelling. The intent
of this chapter is to identify a number of mathematical approaches that include as
special cases underlying financial models for complete markets. In particular, expo-
nential memory models as well as the lognormal financial pricing model. The intent
of the paper is to motivate a pricing measurement of financial assets when markets

v
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are incomplete relative to models that define complete markets. Memory based fi-
nancial models, spanning non-memory models, long run-fractional models and short
(persistent) memory models are considered. Applications of these models are used
to highlight their variety and their importance to Financial Analytics. Subsequently
Bianchi and Pianese (Asset price modeling: From Fractional to Multifractional Pro-
cesses) provide an extensive overview of multi-fractional models and their important
applications to Asset price modeling: from Fractional to Multi-fractional Processes.
The latter models assume that the fractional parameter in a stochastic system is
non-stationary. Finally, Tapiero and Jiangyi Qi (Financial Analytics and A Binomial
Pricing Model) consider the binomial pricing model by discussing the effects of
memory on the pricing of asset prices.

The papers in this book are concerned with both theoretical and practical issues.
Theoretically, financial risk models are rationally bounded models, based on infor-
mation and rules that are both available and agreed to by their user. Empirical and data
finance however, has provided a bridge between theoretical constructs of risk models
and the empirical evidence that these models entail. Numerous approaches are then
used to model financial risk models, emphasizing mathematical and stochastic mod-
els based on the fundamental theoretical tenets of finance and others departing from
the fundamental assumptions of finance. The underlying mathematical foundations
of these risks models provide a future guideline for risk modeling. Both static and
dynamic risk models are then considered. The papers in this book provide selective
insights and developments that can contribute to a greater understanding of the com-
plexity of financial modelling and its ability to bridge financial theories and their
practice. An extended outline of the papers include is given below.

Generalized Linear Models (GLM) have been introduced by J. A. Nelder and
R. W. M. Wedderburn, They describe random observations depending on unobserv-
able variables of interest, generalizing the standard Gaussian error model. Many
estimation results can be obtained in this context, which generalize with some ap-
proximation procedures from the Normal-Gaussian case. These results are important
in risk models in general and in finance in particular. Bensoussan, Bertrand and
Brouste revisit these results, providing proofs and extending the results of GLM. In
particular, they prove the Central Limit theorem for the MLE, maximum likelihood
estimator, in a general setting. They also provide a recursive estimator, similar to
the Kalman filter, thus providing a statistical approach to the estimation of dynamic
problems (many of which recur in financial modeling). Examples are used profusely.

Dominique Guégan and Bertrand K. Hassani provide two papers. The first paper,
on New Distorsion Risk measure based on Bimodal Distributions, reviews and com-
pares a number of approaches to risk management and the relevance to VaR (Value at
Risk), ES (Expected shortfall) quantile measures, spectral risk measure and distor-
tion risk measure. Knowing that quantile based risk measure cannot capture correctly
the risk aversion of risk manager and spectral risk measure can be inconsistent to
risk aversion, they propose a new distortion risk measure extending the work of
Wang (2000) and Seresda et al. (2012). In particular they demonstrate how we may
construct bi-modal risk distributions which are deemed appropriate for the kind of
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risks finance is confronted by. Finally they provide a comprehensive analysis of the
feasibility of this approach using S&P500 data from 1999 to 2011.

Guégan and Hassan’s second paper, on Stress Testing Engineering: Risk Vs In-
cident, first discusses the importance, and banks’ and regulators’ need and use, of
stress testing. Such procedures have assumed a particular importance following the
2008 financial crisis and regulators to limit systemic risks. Stress testing is used to
determine the stability or the resilience of a given financial institution by deliber-
ately submitting it to intense scenario of adverse conditions, which is not considered
a priori. These scenarios involve testing beyond the traditional capabilities – usually
to determine limits – to confirm and comply to specifications that are both accurate
and provide a greater understanding of the financial processes that underlie potential
and future failures. Stress testing is therefore quintessential to financial risk man-
agement. This paper’s focus is on two families of triggers: a first assesses the impact
of external (and/or extreme) events, the second considers the choice of models and
their fault in their predictions. Specifically, models increasing inadequacy over time
due to their inflexibility to adapt to dynamical changes. The first trigger accounts for
macro-economic data measurements or massive operational risks while the second
focuses on the limits of quantitative models for forecasting, pricing, evaluating cap-
ital or managing risks. Of course, if banks’ internal controls were to identify their
limitations, pitfalls and other models’ drawbacks, they could be prevented better.

Nassim N. Taleb and Constantine Sandis’s paper, The Skin In The Game Heuristic
for Protection Against Tail Events, addresses the standard economic theory. This
theory makes an allowance for the agency problem, but not the compounding of
moral hazard in the presence of informational opacity, particularly in what concerns
high-impact events in fat tailed domains (under slow convergence for the law of large
numbers). Skin in the game In the language of probability, skin in the game creates
an absorbing state for an agent and not just its principal. In their paper, they propose
a global and morally mandatory heuristic that anyone involved in an action which
can possibly generate harm for others, should be required to be exposed to some
damage, regardless of context. It is supposed to counter voluntary and involuntary
risk hiding—and risk transfer—in the tails. Finally, they link the rule to various
philosophical approaches to ethics and moral luck.

Raphael Douady’s and Taleb paper on “A Fragility Theorem” integrates model
error (and biases) into a fragile or antifragile context. Unlike risk, which is linked
to psychological notions such as subjective preferences, Douady and Taleb offer a
measure that is universal and concerns any object that has a probability distribution
(whether such distribution is known or, critically, unknown). The notions of fragility
and antifragility were introduced in Taleb (2012). In short, fragility is related to
how a system suffers from the variability of its environment beyond a certain preset
threshold (when threshold is K, it is called K-fragility), while antifragility refers to
when it benefits from this variability—in a similar way to “vega” of an option or a
nonlinear payoff, that is, its sensitivity to volatility or some similar measure of scale of
a distribution. To these purposes, they use measures in L2 such as standard deviations,
which restrict the choice of probability distributions. The broader measure of absolute
deviation, cut into two parts: lower and upper semi-deviation above the distribution
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centerΩ . The paper’s contributions provide a mathematical definition of fragility and
antifragility as negative or positive sensitivity to a semi-measure of dispersion and
volatility (a variant of negative or positive “vega”) and examine the link to nonlinear
effects. They also construct a measure of “vega” in the tails of the distribution that
depends on the variations of s, the semi-deviation below a certain levelΩ , chosen in
the L1 norm in order to insure its existence under “fat tailed” distributions with finite
first semi-moment. In fact s would exist as a measure even in the case of infinite
moments to the right side of Ω . Finally, the paper proposes a detection of fragility
using a single “fast-and-frugal”, model-free, probability free heuristic that also picks
up exposure to model error. The heuristic lends itself to immediate implementation,
and uncovers hidden risks related to company size, forecasting problems, and bank
tail exposures (it explains the forecasting biases). While simple to implement, it
improves on stress testing and bypasses the common flaws in Value-at-Risk.

Charles S. Tapiero and Pierre Vallois’ paper consider a number of approaches
to memory-based stochastic models. Essentially, stochastic mean reverting models,
long run and short memory models are introduced and their underlying assump-
tions specifically outlined. In particular, a family of models based on the exponential
memory Ornstein Uhlenbeck process is presented and generalized to a broad set of
memory models including extreme distribution models (such as the Weibull) as well
as long run memory models. The intent of these models is to assess the constructs
and the implications of memory within stochastic models based on previous distur-
bances. Long run memory models are also presented to emphasize their differences
from the Brownian motion based models. The essential contribution of the paper
however is a review and an application of short run (persistent) stochastic models.
These models, although not commonly used in financial modeling have a potential
contribution, providing “a recurrent bifurcation” of states evolutions as a function
of the information observed (e.g., a shift in the Federal Reserve policy or its sup-
port to financial markets). It may alter traders’ and investors’ expectations and future
probabilities of market prices. Similarly, in insurance, events such as an “accident”
may alter the probabilities that insured will claim, etc. Although, discrete random
walk and counting processes are considered, a summary of recent results based on
Hermann and Vallois’ paper are given.

The subsequent paper by Tapiero and Jiangyi Qi, consider a binomial memory
model addressing questions such as “do stock prices have memory”? How does it
affect financial models and our decisions? The binomial memory-less price model
is extended to memory prone models including Short run and Bayesian Learning
models. The implication of such models to financial pricing is also outlined.

Sergio Bianchi and Augusto Pianese address the financial modeling of Asset
prices, spanning approaches from Fractional to Multifractional Processes. Motiva-
tion for these models arose following the 2007–2009 crisis increasing the awareness
that the standard financial models used were not describing real world data. The
use of Brownian motion as paradigm and its variants are also difficult to justify in
light a tumultuous behavior of financial markets. Multifractional processes are pre-
sented as a more general approach that may account for the complexity of global
financial markets with nonlinear autocorrelations in their log-price variations and
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their slow decay in absolute (or squared) returns; the asymmetric behavior of stock
prices that produces large and sudden drawdowns, but only slow upward movements;
volatility clustering; heavy tails in the unconditional distributions of returns and the
presence of conditional heavy tails even for residuals obtained by correcting returns
for volatility clustering; “Gaussianity”, as one increases the time scale used to calcu-
late the returns; correlation between volatility and traded volumes; an asymmetry in
time scales, i.e. that fine-scale measures of volatility predict coarse-grained volatil-
ity worse than the way round, etc. The considerations above suggest that a broad
set of new stochastic models may be considered that may be able to better explain
theoretically and practically the complexity of observed financial markets behaviors.
Long run memory models and Multi-fractional processes are presented as providing
an avenue for current and future research in stochastic financial modeling.

As a whole, these papers provide a future and analytical perspective to both
risk management, estimation and future financial modelling embedded in tradi-
tional financial models and yet expanded to account to the effects of markets
incompleteness.

April 1, 2014
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1 Introduction

The GLM are a generalization of the classical linear gaussian model

z = Hx + h+ ε, x ∈ Rn, z ∈ Rd (1)

in which x are the variables of interest, H is a given matrix ∈ L(Rn;Rd ) and ε is a
gaussian variable inRd with mean 0 varianceΣ . The major generalization is in giving
up the Gaussian assumption. However, this prevents us also to write the observation
as in (1). We have to work with the conditional probability density f (z|x).We shall
in the introduction assume d = 1, to simplify the presentation.

We consider a real random variable, still denoted by z, whose range is not neces-
sarily ( − ∞, +∞) and assume that it has a probability density defined on the range,
depending on a parameter θ , also a scalar. This parameter is called the canonical
parameter. We recall that we use the same notation for the random variable z and the
argument of the probability density, called also the likelihood. So we call f (z, θ ) the
likelihood of the random variable z. In the case z is a discrete probability distribution,
we keep the notation to represent the probabilities of specific values of z.We consider
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2 A. Bensoussan et al.

the loglikelihoodL(z, θ ) = log f (z, θ ), defined on the range of values of the random
variable z.

The basic assumption is that this function has the form

L(z, θ ) = zθ − b(θ ) + c(z) (2)

Because the function L(z, θ ) is a loglikelihood, we shall see that the function b(θ )
cannot be arbitrary. If it is smooth, we shall show that it is necessarily convex. First
of all, we check the relation

μ = b′(θ ) (3)

in which μ is the mean of z. Indeed

E
∂L(z, θ )

∂θ
= 0

from which, (3) follows immediately. Assume that the function b′(θ ) is invertible,
on the range of values of z. Therefore, the canonical parameter can be expressed in
terms of the mean. Next, from the relation

∂2L(z, θ )

∂θ2
+
(
∂L(z, θ )

∂θ

)2

= 1

f (z, θ )

∂2f (z, θ )

∂θ 2
(4)

we have

E

[
∂2L(z, θ )

∂θ 2
+
(
∂L(z, θ )

∂θ

)2
]

= 0

and

V = E(z − μ)2 = b"(θ ) (5)

which proves the convexity of b(θ ).
Also

∂3L

∂θ3
+
(
∂L

∂θ

)3

+ 3
∂L

∂θ

∂2L

∂θ2
= 1

f

∂3f (z, θ )

∂θ 3

from which we deduce

E

[
∂3L

∂θ3
+
(
∂L

∂θ

)3
]

= 0

hence

E(z − μ)3 = b′′′(θ ) (6)
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The next ingredient of GLM models is the link function. It connects the canonical
parameter to the variables of interest x ∈ Rn, and uses the mean as an intermediary.
We express the link by the relation

h∗x = g(μ) (7)

where h∗ ∈ L(Rn;R) is the equivalent of matrixH in formula (1), since d = 1, with
the constant term taken as 0. The function g is a link function, defined on the range
of values of z. If g is invertible on its domain, we can express the mean as a function
of h∗x, and also the canonical parameter as a function of the variables of interest, by
inverting the relation

h∗x = g(b′(θ )) (8)

These considerations form the core of the GLM models, up to some extensions. We
will review the case of vector observations in Sect. 5.

2 Examples

2.1 Gaussian Distribution

Let

f (z) = 1√
2πσ 2

exp − (z − μ)2

2σ 2

and

log f (z) = − (z − μ)2

2σ 2
− log

√
2πσ

If we set θ = μ

σ 2
and b(θ ) = 1

2
σ 2θ2, considering σ as a fixed constant, we can write

log f (z) = L(z, θ )

with L(z, θ ) defined by (2) in which

c(z) = −1

2

z2

σ 2
− log

√
2πσ

2.2 Exponential Distribution

Let

f (z) = 1

μ
exp − z

μ
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for z ∈ R+. On the range we have

log f (z) = − logμ− z

μ

which can be written as L(z, θ ) with

θ = − 1

μ
b(θ ) = − log −θ c(z) = 0 (9)

The function b(θ ) is defined on R−.

2.3 Poisson Distribution

We have

f (z) = exp −μ μ
z

z!
with z integer. Of course f (z) is not a density. We keep this notation for convenience.
Therefore

log f (z) = z logμ− μ− log z!
= L(z, θ )

with θ = logμ, b(θ ) = exp θ , c(z) = − log z!.

2.4 Binomial Distribution

Let

f (z) = Cz
qπ

z(1 − π )q−z

and z runs from 0 to q. So

log f (z) = z log
π

1 − π + q log (1 − π ) + logCz
q

= L(z, θ )

with

θ = log
π

1 − π , b(θ ) = q log (1 + exp θ ), c(z) = logCz
q

We have

μ = qπ = q exp θ

1 + exp θ
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2.5 Gamma Distribution

We have

f (z) = 1

βα�(α)
zα−1 exp − z

β

The range is R+ and α,β are positive parameters. We have

log f (z) = − z

β
− α logβ + (α − 1) log z − log�(α)

= L(z, θ )

with

θ = − 1

β
, b(θ ) = −α log −θ , c(z) = (α − 1) log z − log�(α)

The function b(θ ) is defined on R−.

We consider α as a given number. Note that μ = αβ = −α
θ
. For α = 1, we

recover the exponential distribution.

2.6 Weibull Distribution

The Weibull distribution is defined by

ϕ(y) = k

λ

(y
λ

)k−1
exp −

(y
λ

)k

over the range y > 0. We have used different notation ϕ(y) instead of f (z)
intentionally, because this distribution does not satisfy the assumptions of GLM.

If k = 1 it reduces to the exponential distribution with mean λ. The mean is given
by

μ = λ�
(

1 + 1

k

)

The parameter k ≥ 1 is called the shape parameter and λ is called the scale parameter.
Suppose λ is linked to the variables of interest x by the relation

λ = h∗x (10)

Can we estimate x by observing the random variable y? The answer is yes, because
we can associate to y a random variable, observable when y is observed, which
belongs to the GLM family. This is done by defining

z = yk
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for which the density is given by

f (z) = 1

λk
exp − z

λk

defined onR+.Thus it is an exponential distribution, that belongs to the GLM family
with

θ = − 1

λk
, b(θ ) = − log −θ

The function b(θ ) is defined on R−. If now we introduce the link function

g(μ) = μ 1
k

we can write

h∗x = g(b′(θ )) =
(

−1

θ

) 1
k

and we are in the general framework described in the introduction.

2.7 Nonlinear Gaussian Model

Consider the following model

z = ϕ(h∗x) + ε (11)

in which ε is gaussian with mean 0 and variance σ 2. We assume ϕ invertible. It
belongs to the GLM family with

b(θ ) = σ 2θ2

2
, g(μ) = ϕ−1(μ) (12)

2.8 Canonical Links

A link function g(.) is canonical if

g(b′(θ )) = cθ (13)

where c is a constant. Therefore the following link functions are canonical for the
GLM models indicated in parenthesis

g(μ) = μ, Gaussian
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g(μ) = − 1

μ
, Exponential

g(μ) = logμ, Poisson

g(μ) = log
μ

q − μ , Binomial

g(μ) = −α
μ

, Gamma

Note that in the first case the constant is σ 2. In the other cases, the constant is 1.
For the Weibull distribution, discussed in Sect. 2.6, the link function for the

exponential variable z = yk is not canonical since

g(b′(θ )) =
(

−1

θ

) 1
k

Similarly for the nonlinear Gaussian case the link function is not canonical. For
canonical link functions, we have simply

cθ = h∗x (14)

and also

g′(b′(θ ))b"(θ ) = c (15)

Remark By changing h into h
c

it is always possible to take c = 1, which is the
more common definition of canonical link.

3 Maximum Likelihood Estimator (MLE)

3.1 Preliminaries

We begin with the general theory of MLE, which is often presented in a heuristic
way (Sorenson 1980). We follow (Ibramovic and Has’minskii 1981) with some
modifications. We shall consider a probability density f (z, θ ), in which the parameter
θ ∈ Rk . We assume necessary smoothness, without stating it explicitly. Since the
number of parameters will play a role, we do not take just k = 1. The random variable
z is inRd . We call θ0 the true value, which we want to estimate. In fact the probability
density of z is f (z, θ0).We proceed with a sample of independent random variables
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z1, · · · , zM . The joint probability density of this sample, is of course

M∏
j=1

f
(
zj , θ0

)

Assume, to simplify technicalities, that we have an open bounded subset of Rk ,
denoted �, such that θ0 ∈ �. We set

ZM(u) =
M∏
j=1

f
(
zj , θ0 + u

)
f (zj , θ0)

(16)

A maximum likelihood estimator (MLE) θ̂M = θ0 + ûM satisfies

ZM
(
ûM
) = sup

{u|θ0+u∈�}
ZM (u) (17)

Since � is open, we cannot guarantee the existence of a maximum. Thus, we will
postulate its existence, and derive properties of a MLE.

In the following, we shall omit to write explicitly the constraint θ0 +u ∈ �, unless
useful.

The consistency of θ̂M is the property that θ̂M → θ0 as M → ∞.We may have
consistency a.s. or in probability. We shall use the observation

{ ˆ|θM − θ0| > γ } = {|ûM | > γ }

=
{

sup
|u|>γ

ZM (u)| ≥ sup
|u|≤γ

ZM (u)

}

⊂
{

sup
|u|>γ

ZM(u)| ≥ ZM (0)

}

=
{

sup
|u|>γ

ZM (u)| ≥ 1

}
(18)

which will be very useful in obtaining estimates.

3.2 Consistency

Consider the quantities

πθ (γ ) = inf
θ ′ ∈ �

|θ ′ − θ | ≥ γ

∫
Rd

(f
1
2 (z, θ ′) − f 1

2 (z, θ )2dz (19)

� 2
θ (δ) =

∫
Rd

sup
|θ ′−θ |≤δ

(f
1
2 (z, θ ′) − f 1

2 (z, θ )2dz (20)
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We have the following

Theorem 1 Assume

∀θ ∈ �, γ > 0, πθ (γ ) > 0 (21)

∀θ ∈ �̄ lim
δ→0

�θ (δ) = 0 (22)

then

θ̂M → θ0 asM → ∞, a.s. (23)

Remark 2 The first assumption simply means that, for two elements θ , θ ′ ∈ � such
that |θ − θ ′| ≥ γ , then necessarily

f (z, θ ) �= f (z, θ ′), on a set of positive measure.

We begin with a Lemma

Lemma 3 The property (22) implies the stronger property

lim
δ→0

sup
θ∈�̄
�θ (δ) = 0 (24)

Proof If the property is not true, there exists a sequence θn ∈ �̄ , δn → 0 such that

�θn (δn) ≥ β > 0

We can assume that, for a subsequence

θn → θ∗

but then, using the inequality

�θn (δn) ≤ �θ∗
(|θ∗ − θn|

)+�θ∗
(|θ∗ − θn| + δn

)
and from (22) we get necessarily �θn (δn) → 0, which contradicts the assumption.
� �

Proof of Theorem 1 Consider u0 such that |u0| ≥ γ and θ0 + u0 ∈ �̄. Such points
exist for γ sufficiently small, since � is open and θ0 ∈ �. Let �0 be the sphere of
center θ0 + u0 and radius δ. We estimate

E sup
{u|θ0+u∈�0}

Z
1
2
M (u) = E sup

�0

Z
1
2
M(u)

and write

Z
1
2
M (u) =

M∏
j=1

f − 1
2
(
zj , θ0

) M∏
j=1

f
1
2
(
zj , θ0 + u

)

≤
∏M

j=1
f − 1

2
(
zj , θ0

) M∏
j=1

(
f

1
2
(
zj , θ0 + u0

)+ |f 1
2
(
zj , θ0 + u

)− f 1
2
(
zj , θ0 + u0

)|)



10 A. Bensoussan et al.

hence

sup
�0

Z
1
2
M (u) ≤

M∏
j=1

f − 1
2
(
zj , θ0

) M∏
j=1

(
f

1
2
(
zj , θ0 + u0

)

+ sup
�0

|f 1
2
(
zj , θ0 + u

)− f 1
2
(
zj , θ0 + u0

) |)

Therefore

E sup
�0

Z
1
2
M (u) ≤ (X�0

)M

with

X�0 =
∫
Rd
f

1
2 (z, θ0) f

1
2 (z, θ0 + u0)dz +

+
∫
Rd
f

1
2 (z, θ0) sup

�0

|f 1
2 (z, θ0 + u) − f 1

2 (z, θ0 + u0) |dz

We then use∫
Rd
f

1
2 (z, θ0)f

1
2 (z, θ0 + u0)dz = 1 − 1

2

∫
Rd

(
f

1
2 (z, θ0) − f 1

2 (z, θ0 + u0)
)2
dz

≤ 1 − 1

2
πθ0 (γ )

Next ∫
Rd
f

1
2 (z, θ0) sup

�0

|f 1
2 (z, θ0 + u) − f 1

2 (z, θ0 + u0)|dz ≤
√∫

Rd
sup
�0

|f 1
2 (z, θ0 + u) − f 1

2 (z, θ0 + u0)|2dz = �θ0+u0 (δ)

Collecting results we can write

X�0 ≤ 1 − 1

2
πθ0 (γ ) +�θ0+u0 (δ)

Therefore

E sup
�0

Z
1
2
M (u) ≤

(
1 − 1

2
πθ0 (γ ) +�θ0+u0 (δ)

)M

≤ exp −M
(

1

2
πθ0 (γ ) −�θ0+u0 (δ)

)
(25)
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where we have used the elementary inequality

a + 1 ≤ exp a , ∀a
applied with 1 + a > 0.

For any vector u such that |u| ≥ γ and θ0 + u ∈ �̄, we consider the ball of center
θ0 +u with radius δ. We obtain a covering of the set {θ0 +u ∈ �̄, |u| ≥ γ }. Since this
set is compact, we obtain a finite covering of this set by balls �j with center θ0 + uj
and radius δ, with j = 1, · · · J. Hence

sup
|u|>γ

Z
1
2
M(u)| ≤

J∑
j=1

sup
�j

Z
1
2
M (u)

and

E sup
|u|>γ

Z
1
2
M(u)| ≤

J∑
j=1

exp −M
(

1

2
πθ0 (γ ) −�θ0+uj (δ)

)

≤ J exp −M
(

1

2
πθ0 (γ ) − sup

θ∈�̄
�θ (δ)

)

From the property (24) we can choose δ sufficiently small so that

sup
θ∈�̄
�θ (δ) ≤ 1

4
πθ0 (γ )

hence

E sup
|u|>γ

Z
1
2
M (u)| ≤ J exp −M

(
1

4
πθ0 (γ )

)

Now, from (18) we have

P
({ ˆ|θM − θ0| > γ

})
≤ P

({
sup
|u|>γ

ZM (u)| ≥ 1

})

= P
({

sup
|u|>γ

Z
1
2
M (u)| ≥ 1

})

≤ E sup
|u|>γ

Z
1
2
M(u)|

≤ J exp −M
(

1

4
πθ0 (γ )

)
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It follows that

P
(
∪M≥M0

{ ˆ|θM − θ0| > γ
})

≤
∑
M≥M0

P
({ ˆ|θM − θ0| > γ

})

≤ J
∑
M≥M0

exp −M
(

1

4
πθ0 (γ )

)

= J
exp −M0

(
1

4
πθ0 (γ )

)

1 − exp −(
1

4
πθ0 (γ ))

→ 0, asM0 → +∞

Therefore

P
(
∩∞
M0=1 ∪M≥M0

{ ˆ|θM − θ0| > γ
})

= 0

Since γ is arbitrary, a.s. the sequence θ̂M cannot have an accumulation point different
from θ0, which implies (23), and completes the proof. �

3.3 Asymptotic Normality

Let us consider the log likelihood

L(z, θ ) = log f (z, θ )

The MLE maximizes in θ

M∑
j=1

L
(
zj , θ

)

in the open domain �. Therefore, we can write

M∑
j=1

DθL
(

zj , θ̂M
)

= 0 (26)

We assume some regularity on the derivatives of the log likelihood function. Namely,
there exists δ, 1

2 < δ < 1 such that

E|DθL(z, θ0)|1+δ < +∞ (27)

E||D2
θL(z, θ0)||1+δ < +∞ (28)

Next define

R(z, θ ) = sup
θ ′∈�

||D2
θL(z, θ ′) −D2L(z, θ )||

|θ ′ − θ |δ (29)
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and assume

ER(z, θ0) < +∞ (30)

Consider the Fisher information matrix

I (θ0) = −ED2
θL(z, θ0) (31)

It is well known that

I (θ0) = E (DθL(z, θ0)(DθL(z, θ0))∗
) ≥ 0

We assume

I (θ0) invertible (32)

and state the main result

Theorem 4 We use the assumptions of Theorem 1 and (27), (28), (30), (32). We then
have the property

√
M(θ̂M − θ0) → N (0, I−1(θ0)) (33)

the convergence being in law, and the limit is Gaussian, with mean 0 and covariance
matrix I−1(θ0).

Since Theorem 1 holds, we know that θ̂M − θ0 → 0 a.s. We will prove a stronger
result

Lemma 5 We have

M
δ

1+δ (θ̂M − θ0) → 0, a.s. (34)

Proof We note that δ
1+δ <

1
2 , since δ < 1.We recall the property

EDθL(z, θ0) = 0 (35)

From (26) we write

M∑
j=1

DθL(zj , θ0) =
M∑
j=1

(DθL(zj , θ0) −DθL(zj , θ̂M))

= −
M∑
j=1

∫ 1

0
D2
θL(zj , θ0 + λ(θ̂M − θ0))dλ (θ̂M − θ0)

= −
M∑
j=1

∫ 1

0
D2
θL(zj , θ0)(θ̂M − θ0)
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−
M∑
j=1

∫ 1

0

(
D2
θL(zj , θ0 + λ(θ̂M − θ0)) −D2

θL(zj , θ0)
)

dλ (θ̂M − θ0)

It follows

M∑
j=1

DθL(zj , θ0) = M I (θ0)(θ̂M − θ0)

−
M∑
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
)

(θ̂M − θ0)

−
M∑
j=1

∫ 1

0

(
D2
θL(zj , θ0 + λ(θ̂M − θ0)) −D2

θL(zj , θ0)
)

dλ (θ̂M − θ0)

This is an equality between vectors in Rk.We multiply to the left by the line vector

(θ̂M − θ0)∗

|θ̂M − θ0|
and obtain

M

|θ̂M − θ0|
(θ̂M − θ0)∗I (θ0)(θ̂M − θ0) = (θ̂M − θ0)∗

∑M
j=1DθL(zj , θ0)

|θ̂M − θ0|
+

+ (θ̂M − θ0)∗
∑M
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
)

(θ̂M − θ0)

|θ̂M − θ0|
+

+
(θ̂M − θ0)∗

∑M
j=1

∫ 1
0

(
D2
θL(zj , θ0 + λ(θ̂M − θ0)) −D2

θL(zj , θ0)
)
dλ (θ̂M − θ0)

|θ̂M − θ0|
Since I (θ0) is invertible, we deduce

αM|θ̂M − θ0| ≤ |
M∑
j=1

DθL(zj , θ0)| + (36)

+||
M∑
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
) |||θ̂M − θ0| + (

M∑
j=1

R(zj , θ0))|θ̂M − θ0|1+δ

where α > 0.
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We set

RM =
∑M
j=1 R(zj , θ0)

M

Since the random variables R(zj , θ0) are independent i.i.d and ER(zj , θ0) =
ER(z, θ0) < +∞, we can refer to Kolmogorov strong law of large numbers to
claim that

RM → ER(z, θ0), a.s. (37)

Therefore

RM |θ̂M − θ0|δ → 0, a.s. (38)

From the assumptions (27), (28), we can assert that

∑M
j=1DθL(zj , θ0)

M
1

1+δ
→ 0,

∑M
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
)

M
1

1+δ
→ 0, a.s. (39)

This follows from a result of Marcinkewicz, whose proof can be found in Lo-
eve (1978). The result is the following: let ξ1, · · · ξn, · · · be independent identically
distributed random variables, such that E|ξn|1+δ <∞, 0 ≤ δ < 1 then

∑n
j=1 (ξj − Eξj )
n

1
1+δ

→ 0, a.s.

From (36), we can write

M
δ

1+δ |θ̂M − θ0|(α − RM |θ̂M − θ0|δ) ≤
∣∣∣∣∣
∑M
j=1DθL(zj , θ0)

M
1

1+δ

∣∣∣∣∣
+
∣∣∣∣∣
∑M
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
)

M
1

1+δ

∣∣∣∣∣
�

and the result (34) follows immediately. �
We turn now to the

Proof of Theorem 4 We write now

√
M I (θ0)(θ̂M − θ0) = 1√

M

M∑
j=1

DθL(zj , θ0) + �M1 + �M2

with

�M1 = 1√
M

M∑
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
)

(θ̂M − θ0)
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and

�M2 = 1√
M

M∑
j=1

∫ 1

0

(
D2
θL(zj , θ0 + λ(θ̂M − θ0)) −D2

θL(zj , θ0)
)
dλ (θ̂M − θ0)

Then

|�M2 | ≤ 1√
M

M∑
j=1

R(zj , θ0)|θ̂M − θ0|1+δ

= RM

√
M|θ̂M − θ0|1+δ

Since δ > 1
2 ,M

1
2(1+δ) (θ̂M − θ0) → 0, a.s. Since RM is a.s. bounded we get �M2 → 0

a.s. Next we write

�M1 =
∑M
j=1

(
D2
θL(zj , θ0) − ED2

θL(zj , θ0)
)

M
1

1+δ
M

1−δ
2(1+δ) (θ̂M − θ0)

Since 1−δ
2 < δ, we can assert that M

1−δ
2(1+δ) (θ̂M − θ0) → 0,a.s. Thanks also to the

second part of (39) we can conclude that �M1 → 0, a.s.
Furthermore, it is standard that

1√
M

M∑
j=1

DθL(zj , θ0) → N (0, I (θ0))

in law. Hence

1√
M
I (θ0)−1

M∑
j=1

DθL(zj , θ0) → N (0, (I (θ0))−1)

in law. This implies the result (33). �

4 MLE for Generalized Linear Models

4.1 Statement of the Problem and Notation

Consider now a sequence of independent random variables z1, · · · , zM which follow
GLM distributions with canonical parameters θ 1, · · · , θM . We continue to assume
these variables scalar, to simplify. So the canonical parameters are also scalar. These
canonical parameters are linked to the variables of interest x by the relations

(hj )∗x = g(b′(θj )) (40)
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So the link function g(.) and the function b(θ ) are identical for all the variables. We
define the functions μj (x) by solving

(hj )∗x = g(μj (x)) (41)

which is possible, since g is invertible. Similarly we define the functions θj (x) by
solving

μj (x) = b′(θj (x)) (42)

and

V j (x) = b"(θj (x)) (43)

Recalling the function

f (z, θ ) = exp (zθ − b(θ ) + c(z)) (44)

then the probability density of the variable zj is f (z, θj (x0)), in which we have
denoted by x0 the true value of the parameter. We note that the variables zj are not
identically distributed, which introduces a slight difficulty with respect to the MLE
developped in the previous section. The loglikelihood function is L(z, θj (x)), where
L(z, θ ) = log f (z, θ ). The joint probability density of the sample z1, · · · , zM is

M∏
j=1

f (zj , θj (x0)) (45)

The MLE is obtained by maximizing the function of x

M∏
j=1

f (zj , θj (x)) (46)

As we have done for the MLE in general, we shall assume, to simplify technicalities
that we know a bounded convex open domain denoted X , and

x0 ∈ X

So we maximize the function (46) on X and we assume that such a maximum exists
denoted by x̂M . To prove the asymptotic properties of x̂M , we shall adapt the methods
used for the MLE in general.

We first introduce a notation. From formula (40) we can write

θj (x) = ϕ((hj )∗x) (47)

with

ϕ(η) = b′−1(g−1(η)) (48)

hence

Dxθ
j (x) = ϕ′((hj )∗x)hj
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then

DxL(z, θj (x)) = (z − b′(θj (x)))Dxθ
j (x) (49)

= (z − μj (x))ϕ′((hj )∗x)hj

= (z − b′(ϕ((hj )∗x)))ϕ′((hj )∗x)hj

= [zϕ′((hj )∗x) − (boϕ)′((hj )∗x)]hj

therefore

D2
xL(z, θj (x)) = [zϕ"((hj )∗x) − (boϕ)"((hj )∗x)

]
hj (hj )∗ (50)

Note that

ϕ′(η) = 1

g′(b′(ϕ(η)))b"(ϕ(η))

therefore

ϕ′((hj )∗x) = 1

g′(b′(θj (x)))b"(θj (x))

Recalling

μj (x) = b′(θj (x)), V j (x) = b"(θj (x))

then

ϕ′((hj )∗x) = 1

g′(μj (x))V j (x)

It is convenient to introduce the weights

Wj (x) = 1

(g′)2(μj (x))V j (x)

therefore

ϕ′((hj )∗x) = g′(μj (x))Wj (x) (51)

Also, we have

μj (x) = b′oϕ((hj )∗x)

Next, we note that

b′oϕ(η)ϕ"(η) − (boϕ)"(η) = −b"(ϕ(η))(ϕ′)2(η)
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Therefore, from (50) we get

D2
xL(z, θj (x)) = [(z − μj (x))ϕ"((hj )∗x) − V j (x)(ϕ′)2((hj )∗x)

]
hj (hj )∗

= [(z − μj (x))ϕ"((hj )∗x) −Wj (x)
]
hj (hj )∗ (52)

Considering the true value of the parameter x0, we note that

EDxL
(
zj , θj (x0)

) = 0

hence

Ezj = μj (x0) (53)

and

ED2
xL
(
zj , θj (x0)

) = −Wj (x0)hj (hj )∗ (54)

Also

ED2
xL(zj , θj (x0)) = −E (DxL(zj , θj (x0))

) (
DxL(zj , θj (x0))

)∗
= −E ((z − μj (x0))

)2 (
ϕ′((hj )∗x0)

)2
hj
(
hj
)∗

It follows

Wj (x0) = E ((z − μj (x0))
)2 (
ϕ′((hj )∗x0)

)2
= E ((z − μj (x0))

)2 1

(g′(μj (x0))V j (x0))2

1

(g′)2(μj (x0))V j (x0)
= E((z − μj (x0)))2 1

(g′(μj (x0))V j (x0))2

which implies the interpretation

E((z − μj (x0)))2 = V j (x0) (55)

We recover of course (5).

4.2 Examples

In the Gaussian case, g(μ) = μ and b(θ ) = 1
2σθ

2. We get easily

DxL(Z; x) = 1

σ

M∑
j=1

(
zj − (hj )∗x

)
hj (56)
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and thus x̂M satisfies

M∑
j=1

zj hj =
M∑
j=1

hj
(
hj
)∗
x̂M (57)

and this system has one and only one solution provided the matrix
∑M
j=1 h

j (hj )∗
which belongs to L(Rn;Rn) is invertible.

Let us consider the Weibull distribution case, with known shape k, see Sect. 2.6.
We have for the variables zj = (yj )k

g(μ) = μ 1
k , b(θ ) = − log −θ. Hence

μj (x) = ((hj )∗x)k , θj (x) = − 1

μj (x)
(58)

V j (x) = (μj (x))2, Wj (x) = k2

(μj (x))
2
k

We obtain the system

M∑
j=1

(
zj

μj (x̂M)
− 1

)
hj

(hi)∗x̂M
= 0 (59)

Let us finally consider the nonlinear Gaussian case, see Sect. 2.7. We have

g(μ) = ϕ−1(μ), b(θ ) = σ 2θ2

2

hence

μj (x) = ϕ((hj )∗x), θj (x) = μj (x)

σ 2

V j (x) = σ 2, Wj (x) = (ϕ′((hj )∗x))2

σ 2
(60)

We obtain the system

M∑
j=1

(zj − ϕ((hj )∗x̂M ))ϕ′((hj )∗x̂M)hj = 0 (61)

4.3 Consistency

We begin with consistency. We will need an assumption of linear independence of
the vectors hj .More precisely, let us consider for i = 1, · · · the n× n matrix

Hi =
⎛
⎜⎝

(h(i−1)n+1)∗
...

(hin)∗

⎞
⎟⎠
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We assume

Hi is invertible ∀i (62)

and

||Hi ||, ||(Hi)−1|| ≤ C (63)

We shall need the following assumption
∫
R

sup
θ∈�
f (z, θ )dz <∞,

∫
R

z2 sup
θ∈�
f (z, θ )dz <∞ ∀� compact interval (64)

Theorem 6 We consider the GLM defined by (44) with b(θ ) C2and strictly convex.
We assume that the link function g(μ) has an inverse and isC1. We also assume (62),
(63) and (64). Then we have the consistency property

x̂M → x0 a.s. (65)

Proof We will operate as in Theorem 1. We need to obtain properties similar to (19)
and (20). Consider the functions θj (x) and define vector functions (with values in
Rn)

θ̄ i(x) =
⎛
⎜⎝
θ (i−1)n+1(x)

...

θ in(x)

⎞
⎟⎠

We next define a sequence of probability densities in Rn, depending on the vector
θ̄ i(x), given by the formula

f̄
(
z̄, θ̄ i(x)

) =
n∏
l=1

f
(
z̄l , θ

(i−1)n+l(x)
)

(66)

where the argument z̄ ∈ Rn and z̄l , l = 1 · · · n.We define the random vector z̄i ∈ Rn,
by

z̄i =
⎛
⎜⎝

z(i−1)n+1

...

zin

⎞
⎟⎠

We notice that the sequence of scalar random variables z1, · · · , znM is equivalent to
the sequence of vector random variables z̄1, · · · , z̄M .



22 A. Bensoussan et al.

We first consider the random function

ZnM (u) =
nM∏
j=1

f
(
zj , θj (x0 + u)

)
f (zj , θj (x0)

and we can write

ZnM (u) = Z̄M (u)

=
M∏
i=1

f̄
(
z̄i , θ̄ i(x0 + u)

)
f̄ (z̄i , θ̄ i(x0))

Let u0 with |u0| ≥ γ and x0 + u0 ∈ X̄ . We consider the sphere of center x0 + u0 and
of radius δ.We call it �0.We shall estimate

E sup
�0

Z̄
1
2
M (u) = E sup

{u|x0+u∈�0}
Z̄

1
2
M (u)

Writing

sup
�0

Z̄
1
2
M (u) ≤

M∏
i=1

[f̄ − 1
2
(
z̄i , θ̄ i(x0)

)
f̄

1
2 (z̄i , θ̄ i(x0 + u0))

+ f̄− 1
2
(
z̄i , θ̄ i(x0)

)
sup
�0

|f̄ 1
2
(
z̄i , θ̄ i(x0 + u)

)− f̄ 1
2
(
z̄i , θ̄ i(x0 + u0)

) |]
we get

E sup
�0

Z̄
1
2
M(u) ≤

M∏
i=1

X̄i�0

with

X̄i�0
=
∫
Rn
f̄

1
2
(
z̄, θ̄ i(x0)

)
[f̄

1
2
(
z̄, θ̄ i(x0 + u0)

)

+ sup
�0

|f̄ 1
2 (z̄, θ̄ i(x0 + u)) − f̄ 1

2 (z̄, θ̄ i(x0 + u0))|]d z̄

We first have ∫
Rn
f̄

1
2 (z̄, θ̄ i(x0))f̄

1
2 (z̄, θ̄ i(x0 + u0))d z̄ = 1 −

− 1

2

∫
Rn

|f̄ 1
2 (z̄, θ̄ i(x0 + u0)) − f̄ 1

2 (z̄, θ̄ i(x0))|2d z̄
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Next ∫
Rn

|f̄ 1
2 (z̄, θ̄ i(x0 + u0)) − f̄ 1

2 (z̄, θ̄ i(x0))|2d z̄ ≥ (67)

inf⎧⎨
⎩

x ∈ X
|x − x0| ≥ γ

⎫⎬
⎭

∫
Rn

|f̄ 1
2 (z̄, θ̄ i(x)) − f̄ 1

2 (z̄, θ̄ i(x0))|2d z̄

We recall the relations

(h(i−1)n+l)∗x = g(b′(θ (i−1)n+l(x)))

For x ∈ X , it follows from the properties of the functions g and b, and from the
assumption (63) that θ (i−1)n+l(x) is bounded, so θ̄ i(x) lies in a compact set �̄nof Rn,
where �̄ is a compact interval. Since

(
h(i−1)n+l)∗ (x − x0) = g (b′(θ (i−1)n+l(x))

)− g (b′(θ (i−1)n+l(x0))
)

we deduce easily, using the fact that g isC1, b isC2 and the bounds on the arguments

| (h(i−1)n+l)∗ (x − x0)| ≤ c|θ (i−1)n+l(x) − θ (i−1)n+l(x0)|
This can also be written as

|Hi(x − x0)| ≤ c|θ̄ i(x) − θ̄ i(x0)|
From the assumptions (62), (63) we obtain also

|x − x0| ≤ ρ|Hi(x − x0)| ≤ cρ|θ̄ i(x) − θ̄ i(x0)|
Therefore for x ∈ X and |x − x0| ≥ γ we get

|θ̄ i(x) − θ̄ i(x0)| ≥ β = γ

cρ

Collecting results we obtain

∫
Rn

|f̄ 1
2
(
z̄, θ̄ i(x0 + u0)

)− f̄ 1
2 (z̄, θ̄ i(x0))|2d z̄ ≥

inf⎧⎨
⎩
θ̄ , θ̄ ′ ∈ �̄n

|θ̄ − θ̄ ′| ≥ β
⎫⎬
⎭

∫
Rn

|f̄ 1
2 (z̄, θ̄ ) − f̄ 1

2 (z̄, θ̄ ′)|2d z̄ = π (β)
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And we claim that π (β) > 0,for β > 0. Since �̄n is compact, it is easy to check that
if π (β) = 0, then there would exist θ̄ and θ̄ ′ in �̄n such that

|θ̄ − θ̄ ′| ≥ β, f̄ (z̄, θ̄ ) = f̄ (z̄, θ̄ ′), ∀z̄ ∈ Rn

Since

f̄ (z̄, θ̄ ) = exp
n∑
l=1

(z̄l θ̄l − b(θ̄l) + c(z̄l))

we need to have

n∑
l=1

(z̄l θ̄l − b(θ̄l)) =
n∑
l=1

(
z̄l θ̄

′
l − b(θ̄ ′

l )
)

for any real z̄l , l = 1, · · · n. Suppose there is l0 such that θ̄l0 �= θ̄ ′
l0

. We take

z̄l = b(θ̄l) − b(θ̄ ′
l )

θ̄l − θ̄ ′
l

, if θ̄l − θ̄ ′
l �= 0

z̄l0 = 0, z̄l arbitrary if θ̄l − θ̄ ′
l = 0

It clearly follows that b(θ̄l0 ) = b
(
θ̄ ′
l0

)
and from the invertibility of the function b,

θ̄l0 = θ̄ ′
l0

, which is a contradiction. Hence θ̄l = θ̄l′ which is impossible. Finally we
have obtained ∫

Rn
f̄

1
2 (z̄, θ̄ i(x0))f̄

1
2 (z̄, θ̄ i(x0 + u0))d z̄ ≤ 1 − 1

2
π (β) (68)

We next write∫
Rn
f̄

1
2 (z̄, θ̄ i(x0)) sup

�0

|f̄ 1
2 (z̄, θ̄ i(x0 + u)) − f̄ 1

2 (z̄, θ̄ i(x0 + u0))|d z̄ ≤

√∫
Rn

sup
�0

|f̄ 1
2 (z̄, θ̄ i(x0 + u)) − f̄ 1

2 (z̄, θ̄ i(x0 + u0))|2d z̄ ≤

√√√√√√
∫
Rn

sup⎧⎨
⎩

x ∈ X
|x ′ − x| ≤ δ

⎫⎬
⎭

|f̄ 1
2 (z̄, θ̄ i(x ′)) − f̄ 1

2 (z̄, θ̄ i(x))|2d z̄ ≤

√√√√√√
∫
Rn

sup⎧⎨
⎩

θ̄ ∈ x̄n
|θ̄ ′ − θ̄ | ≤ c(δ)

⎫⎬
⎭

|f̄ 1
2 (z̄, θ̄ ′) − f̄ 1

2 (z̄, θ̄ )|2d z̄ = � (δ)



Estimation Theory for Generalized Linear Models 25

and, we see easily using (64) that� (δ) → 0, as δ → 0.Therefore, we have obtained,
recalling (68) that

X̄i�0
≤ 1 − 1

2
π (β) +� (δ)

and

E sup
�0

Z
1
2
nM (u) ≤ exp −M

(
1

2
π (β) −� (δ)

)
(69)

We next write

Z
1
2
M (u) = Z̄ 1

2

n
[
M
n

](u)
M∏

j=n
[
M
n

]
+1

f (zj , θj (x0 + u))

f (zj , θj (x0)

Therefore

E sup
�0

Z
1
2
M (u) ≤ E sup

�0

Z̄
1
2

n
[
M
n

](u)
M∏

i=n
[
M
n

]
+1

∫
R

sup
�0

f
1
2 (z, θj (x0)f

1
2 (z, θj (x0 + u)dz

≤ E sup
�0

Z̄
1
2

n
[
M
n

](u)

(√∫
R

sup
θ∈�̄
f (z, θ )dz

)n

where we have used the fact √∫
R

sup
θ∈�̄
f (z, θ )dz > 1

Thanks to (64) we can assert that

E sup
�0

Z
1
2
M (u) ≤ Cn exp −

[
M

n

](
1

2
π (β) −� (δ)

)

We are then exactly in the situation of the MLE, see Theorem 1. We cover the set
{x = x0 + u| |u| ≥ γ and x0 + u ∈ X̄ } with a finite number J of balls similar to �0,
with δ chosen such that� (δ) ≤ 1

4π (β). We obtain

E sup
|u|≥γ

Z
1
2
M(u) ≤ JCn exp −

[
M

n

](
1

4
π (β)

)

and

P
({x̂M − x0| > γ }) ≤ J exp −

[
M

n

]
1

4
π

(
γ

cρ

)

As in Theorem 1we deduce

x̂M → x0 a.s. asM → +∞
which concludes the proof. �
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4.4 Further Consistency Estimates

Our objective is to prove convergence results as follows

Mβ(x̂M − x0) → 0, a.s. and in Lq , ∀1 ≤ q <∞, ∀β < 1

2
(70)

We cannot use the method of Lemma 5. This is because the Marcinkiewicz theorem
used in this Lemma, necessitates that the variables are independent, which is not the
case. We shall proceed differently, following ideas of (West et al. 1981).

It is convenient to also introduce the following notation. We know that the true
value of the parameter is x0. However, we may define the probability for which the
true value is any value x.We callPx . So the true probability isP = Px0 .With the prob-
ability P the variables zj are independent and have a marginal density f (z, θj (x)).
We shall assume that

sup
x∈X

sup
j

Ex |zj − μj (x)|m < +∞, m > n (71)

We have the

Proposition 7 We make the assumptions of Theorem 6 and (1). Then the property
(70) holds.

Proof We begin with preliminary estimates. We define

ZM (u) =
∏M
j=1 f (zj , θj (x0 + u

Mβ ))∏M
j=1 f (zj , θj (x0))

(72)

and we will consider vectors u such that x0 + u
Mβ

∈ X . We have used for ZM(u)
the same notation as in Theorem 6, but there is no risk of confusion. We recover the
notation of Theorem 6 by taking β = 0. Let u, v such that x0 + u

Mβ , x0 + v
Mβ ∈ X .

We want to estimate

E|Z 1
m

M (u) − Z 1
m

M (v)|m = E|
n∑
i=1

∫ 1

0
(vi − ui)

∂

∂ui
Z

1
m

M (u + λ(v − u))dλ|m

From Minkowsky inequality

E
1
m |

n∑
i=1

∫ 1

0
(vi − ui)

∂

∂ui
Z

1
m

M (u + λ(v − u))dλ|m ≤

n∑
i=1

E
1
m |
∫ 1

0
(vi − ui)

∂

∂ui
Z

1
m

M (u + λ(v − u))dλ|m ≤

n∑
i=1

|vi − ui |E 1
m

∫ 1

0
| ∂
∂ui
Z

1
m

M (u + λ(v − u))|mdλ ≤
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|v − u|
∫ 1

0

n∑
i=1

E
1
m | ∂
∂ui
Z

1
m

M (u + λ(v − u))|mdλ

Therefore

E|Z 1
m

M (u) − Z 1
m

M (v)|m ≤ |v − u|m
∫ 1

0

(
n∑
i=1

E
1
m | ∂
∂ui
Z

1
m

M (u + λ(v − u))|m
)m
dλ

(73)

Using the inequality
(

n∑
i=1

ai

)m
≤ nm−1

n∑
i=1

ami (74)

for numbers ai > 0,we can assert finally

E|Z 1
m

M (u) − Z 1
m

M (v)|m ≤ |v − u|mnm−1
n∑
i=1

∫ 1

0
E| ∂
∂ui
Z

1
m

M (u + λ(v − u))|mdλ (75)

To pursue the estimation, we consider

∂

∂ui
Z

1
m

M (u) = 1

mMβ
Z

1
m

M (u)
M∑
j=1

∂

∂xi
log f

(
zj , θj

(
x0 + u

Mβ

))

Therefore

E| ∂
∂ui
Z

1
m

M (u)|m = 1

mmMmβ
Ex0+ u

Mβ
|
M∑
j=1

∂

∂xi
log f

(
zj , θj

(
x0 + u

Mβ

))
|m (76)

Note that in (76), we take in the right hand side the expected value with respect to
the probability Px , with x = x0 + u

Mβ .We note also that

Ex
∂

∂xi
log f

(
zj , θj (x)

) = 0

We then use the Marcinkiewicz-Zygmund inequality. Let ξ1, · · · ξM be independent
random variables with 0 mean, then

E|
M∑
j=1

ξj |m ≤ CmE
⎛
⎝ M∑
j=1

|ξj |2
⎞
⎠

m
2

and from (74) we deduce

E|
M∑
j=1

ξj |m ≤ CmM m
2 −1E

M∑
j=1

|ξj |m
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Applying this inequality to (76), we get

E| ∂
∂ui
Z

1
m

M (u)|m ≤ Cm

mm

1

M1−m( 1
2 −β)

M∑
j=1

Ex0+ u
Mβ

| ∂
∂xi

log f
(

zj , θj
(
x0 + u

Mβ

))
|m

(77)

But, as easily seen

Ex | ∂
∂xi

log f
(
zj , θj (x)

) |m = Ex |zj − μj (x)|m|Wj (x)g′ (μj (x)
)
h
j

i |m

From the assumptions, in particular (71), we get, using Cm as a generic constant,
depending only of m and of the compact X̄

sup
j , x∈X

Ex | ∂
∂xi

log f
(
zj , θj (x)

) |m ≤ Cm

Hence also

sup⎧⎨
⎩u,v

∣∣∣∣∣∣
x0 + u

Mβ
∈ X

x0 + v
Mβ

∈ X

⎫⎬
⎭

E|Z 1
m

M (u) − Z 1
m

M (v)|m
|v − u|m ≤ Cmnm−1Mm( 1

2 −β) (78)

Note that

E|Z 1
m

M (u)|m = EZM (u) = 1 ≤ Cmnm−1Mm( 1
2 −β)

We can then use a result on the uniform continuity of stochastic processes, see (1981),
appendix I, Theorem 19, to claim that for m > n

E sup⎧⎨
⎩u,v

∣∣∣∣∣∣
x0 + u

Mβ , x0 + v
Mβ ∈ X

|u|, |v| ≤ L, |u − v| ≤ h
⎫⎬
⎭

|Z 1
m

M (u) − Z 1
m

M (v)| ≤ Bn,m|L| nm hm−n
m M

1
2 −β

(79)

where Bn,m is a constant, depending only on n,m and the compact X . We proceed
with another estimate. Consider

EZ
1
2
M (u) =

M∏
j=1

∫
f

1
2 (z, θj (x0))f

1
2 (z, θj ( ))dz

We want to prove the estimate

EZ
1
2
M (u) ≤ exp ( − |u|2αnM1−2β ), ∀u such that x0 + u

Mβ
∈ X (80)
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where the constant αn is strictly positive, and depends only on n and on the compact
X̄ . We introduce the probability f̄ (z̄, θ̄ i(x)) defined in (66) and the random function

Z̄M (u) =
∏M
i=1 f̄

(
z̄i , θ̄ i(x0 + u

Mβ )
)

∏M
i=1 f̄

(
z̄i , θ̄ i(x0)

)
with the notation of Theorem 6. We recall that

Z̄M (u) = Znm(u)

Since

EZ
1
2
M(u) ≤ EZ̄ 1

2

n
[
M
n

](u)

(√∫
R

sup
θ∈�̄
f (z, θ )dz

)n

It is sufficient to estimate EZ̄M (u).We recall that θ̄ i(x) ∈ �̄n, ∀x ∈ X , where �̄ is
a compact interval. We have

EZ̄
1
2
M (u) =

m∏
i=1

[1 − 1

2

∫
Rn

(
f̄

1
2 (z̄, θ̄ i

(
x0 + u

Mβ

))
− f̄ 1

2 (z̄, θ̄ i(x0))2d z̄] (81)

We are going to check that

inf
θ̄ ,θ̄ ′∈�̄n

∫
Rn

(f̄
1
2 (z̄, θ̄ ) − f̄ 1

2 (z̄, θ̄ ′))2d z̄

|θ̄ − θ̄ ′|2 = β > 0 (82)

Suppose that (82) is not true, then considering a minimizing sequence θ̄k , θ̄ ′
k we must

have θ̄k-θ̄ ′
k → 0. Indeed, if θ̄k− θ̄ ′

k has an accumulation point which is not 0, we may
assume, since �̄n is compact, by taking a subsequence, that θ̄k → θ̄ , θ̄ ′

k → θ̄ ′ and
|θ̄ -θ̄ ′|�= 0. By continuity

f̄
1
2 (z̄, θ̄k) − f̄ 1

2 (z̄, θ̄ ′
k) → f̄

1
2 (z̄, θ̄ ) − f̄ 1

2 (z̄, θ̄ ′)

and ∫
Rn

(
f̄

1
2 (z̄, θ̄ ) − f̄ 1

2 (z̄, θ̄ ′)
)2
d z̄ > 0

as we have seen in the proof of Theorem 6. That will lead to a contradiction since

∫
Rn

(
f̄

1
2 (z̄, θ̄k) − f̄ 1

2 (z̄, θ̄ ′
k)
)2
d z̄

|θ̄k − θ̄ ′
k|2

→ 0 (83)

Now we can write

f̄
1
2 (z̄, θ̄

′
k) − f̄ 1

2 (z̄, θ̄k) = 1

2
f̄

1
2 (z̄, θ̄k)Dθ̄L̄ (z̄, θ̄k)(θ̄

′
k − θ̄k)
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+ 1

2

∫ 1

0

∫ 1

0
λf̄

1
2 (z̄, θ̄k + λμ(θ̄

′
k − θ̄k))

[
(θ̄

′
k − θ̄k)∗D2

θ̄
L̄ (z̄, θ̄k + λμ(θ̄

′
k − θ̄k))(θ̄ ′

k − θ̄k)+

+ 1

2
((θ̄

′
k − θ̄k)∗Dθ̄L̄ (z̄, θ̄k + λμ(θ̄

′
k − θ̄k)))2

]
dμdλ

Recalling

Dθ̄L̄ (z̄, θ̄ ) =
⎛
⎜⎝

z̄1 − b′(θ̄1)
...

z̄n − b′(θ̄n)

⎞
⎟⎠

(
D2
θ̄
L̄ (z̄, θ̄ )

)
ll′ = −b"

(
θ̄l
)
δll′

we get

f̄
1
2 (z̄, θ̄

′
k) − f̄ 1

2 (z̄, θ̄k) − 1

2
f̄

1
2 (z̄, θ̄k)

n∑
l=1

(z̄l − b′(θ̄kl))(θ̄ ′
kl − θ̄kl) =

+1

2

∫ 1

0

∫ 1

0
λf̄

1
2 (z̄, θ̄k + λμ(θ̄

′
k − θ̄k))

[
−

n∑
l=1

b"(θ̄kl + λμ(θ̄
′
kl − θ̄kl))(θ̄ ′

kl − θ̄kl)2+

+1

2

(
n∑
l=1

(z̄l − b′(θ̄kl))
(
θ̄ ′
kl − θ̄kl

) )2
⎤
⎦

and thus

f̄
1
2 (z̄, θ̄

′
k) − f̄ 1

2 (z̄, θ̄k) − 1
2 f̄

1
2 (z̄, θ̄k)

∑n
l=1 (z̄l − b′(θ̄kl))(θ̄ ′

kl − θ̄kl)
|θ̄k − θ̄ ′

k|
→ 0, ∀z̄.

We can also bound this function by a fixed function, which is square integrable.
From Lebesgue’s theorem we obtain easily

∫
Rn

(
f̄

1
2 (z̄, θ̄k) − f̄ 1

2 (z̄, θ̄ ′
k)
)2
d z̄

|θ̄k − θ̄ ′
k|2

− 1

4

∫
Rn
f̄ (z̄, θ̄k)

(∑n
l=1 (z̄l − b′(θ̄kl)

)
(θ̄ ′
kl − θ̄kl))2d z̄

|θ̄k − θ̄ ′
k|2

→ 0, as k → ∞
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However

∫
Rn
f̄ (z̄, θ̄k)

(
n∑
l=1

(z̄l − b′(θ̄kl))(θ̄ ′
kl − θ̄kl)

)2

d z̄

=
n∑
l=1

∫
Rn
f̄ (z̄, θ̄k)(z̄l − b′(θ̄kl))2d z̄(θ̄ ′

kl − θ̄kl))2

Since, by (5)
∫
R

(z − b′(θ ))2f (z, θ )dz = b"(θ )

and∫
Rn
f̄ (z̄, θ̄k)(z̄l − b′(θ̄kl))2d z̄ =

∫
R

(z − b′(θkl))2f (z, θkl)dz = b"(θkl) ≥ c > 0

we deduce

∫
Rn
f̄ (z̄, θ̄k)

(
n∑
l=1

(z̄l − b′(θ̄kl))(θ̄ ′
kl − θ̄kl)

)2

d z̄ ≥ c|θ̄k − θ̄ ′
k|2

We obtain again a contradiction with (83). Therefore (82) is established. Now
from the property (see the proof of Theorem 6) we have

|θ̄ i
(
x0 + u

Mβ

)
− θ̄ i(x0)| ≥ 1

cρ

|u|
Mβ

Combining this inequality with (82) yields

∫
Rn

(
f̄

1
2 (z̄, θ̄ i

(
x0 + u

Mβ

))
− f̄ 1

2 (z̄, θ̄ i(x0))2d z̄ ≥ β

c2ρ2

|u|2
M2β

Hence from (81) we obtain

EZ̄
1
2
M(u) ≤

(
1 − δ |u|2

M2β

)M

As in Theorem 6, we conclude that (80) holds for an appropriate constant αn > 0.
We next estimate

P
({|x̂M − x0|Mβ > γ

) ≤ P
(

sup
|u|>γ

ZM(u) ≥ 1

)
(84)

Let

�r = {u| x0 + u

Mβ
∈ X , γ + r ≤ |u| < γ + r + 1}
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so

P ( sup
|u|>γ

ZM(u) ≥ 1) ≤
+∞∑
r=0

P ( sup
u∈�r

ZM (u) ≥ 1) (85)

We next estimate P ( supu∈�r ZM (u) ≥ 1). We note that �r ⊂ [ − (γ + r + 1), γ +
r + 1]n. We subdivise this cube in cubes of diameter h. The number of such cubes is

N = Bn (γ + r + 1)n

hn

where Bn is a generic constant depending only on n. We consider all the cubes of
diameter h, which have a non empty interesection with�r.The number of such cubes
is N ′ < N.We obtain a covering of �r with non overlapping cubes of diameter h.
We call �jr , j = 1, · · ·N ′ these cubes. Let ujr a point in �jr , which also belongs to
�r .

Let ûr be the point which maximizes ZM (u) over �r . This point belongs to one
and only one of the small cubes, say �jrr . We can assert that

{sup
u∈�r

ZM (u) ≥ 1} =
{

sup
u∈�r

Z
1
m

M (u) ≥ 1

}
=
{
Z

1
m

M (ûr ) ≥ 1

}

⊂
{
Z

1
m

M

(
ujrr
) ≥ 1

2

}
∪
{
|Z 1

m

M (ûr ) − Z 1
m

M

(
ujrr
) | ≥ 1

2

}

⊂
{
Z

1
m

M

(
ujrr
) ≥ 1

2

}
∪

⎧⎪⎨
⎪⎩

sup |Z 1
m

M (u) − Z 1
m

M (v)| ≥ 1
2|u − v| ≤ h

u, v ∈ �r

⎫⎪⎬
⎪⎭

⊂ ∪N ′
j=1

{
Z

1
m

M

(
ujr
) ≥ 1

2

}
∪

⎧⎪⎨
⎪⎩

sup |Z 1
m

M (u) − Z 1
m

M (v)| ≥ 1
2|u − v| ≤ h

u, v ∈ �r

⎫⎪⎬
⎪⎭

Therefore

P

⎛
⎝{sup

u∈�r
ZM(u) ≥ 1

}
≤

N ′∑
j=1

P (

{
Z

1
m

M (ujr ) ≥ 1

2

}⎞
⎠

+P
⎛
⎜⎝
⎧⎪⎨
⎪⎩

sup |Z 1
m

M (u) − Z 1
m

M (v)| ≥ 1
2|u − v| ≤ h

u, v ∈ �r

⎫⎪⎬
⎪⎭

⎞
⎟⎠ (86)

Now {
Z

1
m

M (ujr ) ≥ 1

2

}
=
{
Z

1
2
M (ujr ) ≥ (

1

2
)
m
2

}
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hence

P

({
Z

1
m

M (ujr ) ≥ 1

2

})
≤ 2

m
2 EZ

1
2
M (ujr )

and from (80)

EZ
1
2
M

(
ujr
) ≤ exp

(−|ujr |2αnM1−2β
)

≤ exp ( − (γ + r)2αnM
1−2β )

Next, from (79) we have

P ({ sup
|u − v| ≤ h

u, v ∈ �r

|Z 1
m

M (u) − Z 1
m

M (v)| ≥ 1

2
}) ≤ 2E sup

|u − v| ≤ h
u, v ∈ �r

|Z 1
m

M (u) − Z 1
m

M (v)|

≤Bn,m|γ + r + 1| nm hm−n
m M

1
2 −β

Therefore, from (86) we obtain

P ({sup
u∈�r

ZM (u) ≥ 1} ≤ N exp ( − (γ + r)2αnM
1−2β )

+ Bn,m|γ + r + 1| nm hm−n
m M

1
2 −β

≤ Bn
(
γ + r + 1

h

)n
exp

(−(γ + r)2αnM
1−2β

)

+ Bn,m|γ + r + 1| nm hm−n
m M

1
2 −β

where Bn,Bn,m are generic constants. So far h was not fixed. We choose h such that

exp ( − (γ + r)2αnM
1−2β )

hn
= hm−n

m M
1
2 −β

which means

h =
exp

(
− (γ+r)2αnM

1−2β

1+n(1− 1
m

)

)

M

1
2 −β

1+n(1− 1
m )

With this choice we can state

P ({sup
u∈�r

ZM (u) ≥ 1} ≤ Bn,m(γ + r + 1)nM
nm( 1

2 −β)
nm+m−n exp − (γ + r)2αnM

1−2β (m− n)

m− n+mn
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By changing the constant αn we have also

P ({sup
u∈�r

ZM(u) ≥ 1} ≤ Bn,mM
nm( 1

2 −β)
nm+m−n exp − (γ + r)2αnM

1−2β (m− n)

m− n+mn
Hence, from (85) it follows easily

P ({|x̂M − x0|Mβ > γ ) ≤ Bn,mM
nm( 1

2 −β)
nm+m−n exp −γ

2αnM
1−2β(m− n)

m− n+mn
and by changing αn again we get

P ({|x̂M − x0|Mβ > γ ) ≤ Bn,m exp −γ
2αnM

1−2β (m− n)

m− n+mn (87)

As in Theorem 1, we deduce

|x̂M − x0|Mβ → 0, a.s.asM → +∞ (88)

To show that the variable tends to 0 in Lq , we can write

E(|x̂M − x0|Mβ)q =
∞∑
r=0

E[(|x̂M − x0|Mβ )q1r≤|x̂M−x0|Mβ<r+1]

≤
∞∑
r=1

(r + 1)qP ({|x̂M − x0|Mβ > r)

+ E[(|x̂M − x0|Mβ)q1|x̂M−x0|Mβ<1]

≤ B
∞∑
r=1

(r + 1)q exp − r
2αnM

1−2β (m− n)

m− n+mn
+ E[(|x̂M − x0|Mβ)q1|x̂M−x0|Mβ<1]

and both terms tend to 0, asM → +∞. Therefore

E(|x̂M − x0|Mβ )q → 0, asM → ∞
�

The proof has been completed. �

4.5 Asymptotic Normality

Our objective now is to prove a result similar to that of Theorem 4, namely
asymptotic normality. Unfortunately, the method does not work, since we cannot
have Lemma 5, due to the fact that the Marcinkiewicz theorem used in this Lemma,
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necessitates that the variables are independent. We shall proceed differently, making
use of Proposition 7.

Define the matrix

�M (x) =
M∑
j=1

Wj (x)hj (hj )∗ (89)

From the assumptions of Theorem 6, it is easy to check that,Wj (x0) ≥ α > 0, hence
forM > n

M∑
j=1

Wj (x0)hj (hj )∗ ≥ α
M∑
j=1

hj (hj )∗ ≥ α

[
M
n

]
n∑

j=1

hj (hj )∗

=α

[
M
n

]
∑
i=1

(Hi)∗Hi ≥ αc
[
M

n

]
I ≥ αc

(
M

n
− 1

)
I

therefore

�M(x0)

M
≥ αc

(
1

n
− 1

M

)
I

hence

�M (x0)

M
≥ αc 1

2n
I , ∀M ≥ 2n (90)

With these preliminaries our objective is to prove the following asymptotic normality
result

Theorem 8 We make the assumptions of Theorem 6, (71) and

ϕ(η) is C2 (91)

|Wj (x ′) −Wj (x)| ≤ c|x ′ − x|β0 < β ≤ 1, ∀x, x ′ ∈ X (92)

|ϕ"(x′) − ϕ"(x)| ≤ c|x′ − x|β0 < β ≤ 1, ∀x, x ′ ∈ X

we then have

(�M(x0))
1
2 (x̂M − x0) → N (0, I ) (93)

the convergence being in law, in which N (0, I ) represents the Gaussian law in Rn,
with mean 0 and covariance matrix Identity.

Proof Since x̂M maximizes the likelihood in an open domain, we have

M∑
j=1

DxL
(
zj , θj (x̂M )

) = 0
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We can then write

M∑
j=1

DxL(zj , θj (x0)) =
M∑
j=1

(DxL(zj , θj (x0)) −DxL(zj , θj (x̂M)))

= −
M∑
j=1

∫ 1

0
D2
xL(zj , θj (x0 + λ(x̂M − x0)))dλ(x̂M − x0)

= −
M∑
j=1

D2
xL(zj , θj (x0))(x̂M − x0)

− [
M∑
j=1

∫ 1

0
(D2

xL(zj , θj (x0 + λ(x̂M − x0)))

−D2
xL(zj , θj (x0)))dλ](x̂M − x0)

Recalling (54) we get

�M (x0)(x̂M − x0) =
M∑
j=1

DxL(zj , θj (x0)) +

+ [
M∑
j=1

(D2
xL(zj , θj (x0)) − E(D2

xL(zj , θj (x0))))](x̂M − x0)

+ [
M∑
j=1

∫ 1

0
(D2

xL(zj , θj (x0 + λ(x̂M − x0)))

−D2
xL(zj , θj (x0)))dλ](x̂M − x0)

We can then write, recalling the formulas for DxL(zj , θj (x0)) and (D2
xL(zj , θj (x0))

�
1
2
M (x0)(x̂M − x0) = �− 1

2
M (x0)

M∑
j=1

Wj (x0)g′(μj (x0))(zj − μj (x0))hj +

+�− 1
2

M (x0)
M∑
j=1

(zj − μj (x0))ϕ"((hj )∗(x0))dλhj (hj )∗(x̂M − x0)

(94)

+�− 1
2

M (x0)

⎛
⎝ M∑
j=1

{zj
∫ 1

0
(ϕ"((hj )∗(x0 + λ(x̂M − x0))) − ϕ"((hj )∗x0))dλ

−
∫ 1

0
(μj (x0 + λ(x̂M − x0))ϕ"((hj )∗ (95)
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(x0 + λ(x̂M − x0))) − μj (x0)ϕ"((hj )∗x0))dλ

−
∫ 1

0
(Wj (x0 + λ(x̂M − x0)) −Wj (x0))dλ}hj (hj )∗

)

�
− 1

2
M (x0)�

1
2
M (x0)(x̂M − x0)

Define

�M = �− 1
2

M (x0)

⎛
⎝ M∑
j=1

{zj
∫ 1

0
(ϕ"((hj )∗(x0 + λ(x̂M − x0))) − ϕ"((hj )∗x0))dλ+

−
∫ 1

0
(μj (x0 + λ(x̂M − x0))ϕ"((hj )∗(x0 + λ(x̂M − x0))) − μj (x0)ϕ"((hj )∗x0))dλ

−
∫ 1

0
(Wj (x0 + λ(x̂M − x0)) −Wj (x0))dλ}hj (hj )∗

)
�

− 1
2

M (x0)

Noting that

Dxμ
j (x) = 1

g′(μj (x))
hj

hence μj (x) is C1. From the assumption (92) we can state

||�M || ≤ C
⎛
⎝ M∑
j=1

|zj |
M

+ 1

⎞
⎠ |x̂M − x0|β

Set

X3M = �M�
1
2
M(x0)(x̂M − x0)

which is the third term on the right hand side of (94). Using (90) we have

|X3M | ≤ C
⎛
⎝ M∑
j=1

|zj |
M

+ 1

⎞
⎠M 1

2 |x̂M − x0|1+β

The variable
∑M
j=1

|zj |
M

is bounded in L2. Let 1 < δ < 2. We have

E|X3M |δ ≤ C

⎛
⎜⎜⎝
⎡
⎢⎢⎣
⎛
⎝E

⎛
⎝ M∑
j=1

|zj |
M

⎞
⎠

2⎞
⎠

δ
2

+ 1

⎤
⎥⎥⎦ (E(M

1
2(1+β) |x̂M − x0|) 2δ(1+β)

2−δ )
2−δ

2

⎞
⎟⎟⎠

≤ C(E(M
1

2(1+β) |x̂M − x0|) 2δ(1+β)
2−δ )

2−δ
2
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But, from Proposition 7, we have

E(M
1

2(1+β) |x̂M − x0|) 2δ(1+β)
2−δ → 0

hence

X3M → 0, in Lδ (96)

Consider next

X2M = �− 1
2

M (x0)
M∑
j=1

(zj − μj (x0))ϕ"((hj )∗(x0))dλhj (hj )∗(x̂M − x0)

We have

|X2M | ≤ ||�− 1
2

M (x0)
M∑
j=1

(zj − μj (x0))ϕ"((hj )∗(x0))dλhj (hj )∗|| |x̂M − x0|

For 1 < δ < 2, we obtain

E|X2M |δ ≤
⎛
⎝E||�− 1

2
M (x0)

M∑
j=1

(zj − μj (x0))ϕ"((hj )∗(x0))dλhj (hj )∗||2
⎞
⎠

δ
2

(E|x̂M − x0| 2δ
2−δ )

2−δ
2

We can take as a norm of a matrix A, ||A||2 = trA∗A. Therefore

E||�− 1
2

M (x0)
M∑
j=1

(zj − μj (x0))ϕ"((hj )∗(x0))dλhj (hj )∗||2 =

M∑
j=1

V j (x0)(ϕ"((hj )∗(x0)))2trhj (hj )∗�−1
M (x0)hj (hj )∗ ≤ C

and thus also

X2M → 0, in Lδ (97)

Setting finally

X1M = �− 1
2

M (x0)
M∑
j=1

Wj (x0)g′(μj (x0))(zj − μj (x0))hj

We want to prove that

X1M → N (0, I ) (98)

for the convergence in law.
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What we must prove is

E exp iλ∗X1M → exp −1

2
|λ|2 (99)

for any λ ∈ Rn, with i = √−1.
From the independence of variables zj we have

E exp iλ∗X1M =
M∏
j=1

E exp iλ∗(�M(x0))−
1
2 hj (zj − μj (x0))Wj (x0)g′(μj (x0))

=
M∏
j=1

E exp iχMj (100)

Write

E exp iχMj = 1 − aMj
Since EχMj = 0, we can write

aMj = E [(χMj )2
∫ 1

0

∫ 1

0
u exp (iuvχMj )dudv]

Therefore

|aMj | ≤ 1

2
E (χMj )2

and from (90) we get

|E (χMj )2| ≤ C

M

hence also

|(aMj )k| = |aMj |k ≤ 1

2k
(
E (χMj )2

)k

= 1

2k
(
C

M
)k

SinceM is large, we can assume that |aMj | < 1, ∀j.We use the definition, for |η| < 1

log (1 − η) = −
∞∑
k=1

ηk

k
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therefore

logE exp iχMj = −
∞∑
k=1

(aMj )k

k

Next, we have

logE exp iλ∗X1M =
M∑
j=1

logE exp iχMj

= −
M∑
j=1

∞∑
k=1

(
aMj

)k
k

We first consider

|
M∑
j=1

∞∑
k=2

(aMj )k

k
| ≤

M∑
j=1

∞∑
k=2

|(aMj )k|
k

≤
M∑
j=1

∞∑
k=2

1

k2k

(
C

M

)k

≤
∞∑
k=2

1

k2k
Ck

Mk−1

= C2

4M

∞∑
k=0

1

(k + 2)2k

(
C

M

)k

This implies

M∑
j=1

∞∑
k=2

(aMj )k

k
→ 0, asM → +∞ (101)

Next

M∑
j=1

aMj =
M∑
j=1

E (χMj )2
∫ 1

0

∫ 1

0
u exp (iuvχMj )dudv

= 1

2

M∑
j=1

E (χMj )2 + γM

with
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γM =
M∑
j=1

E (χMj )2
∫ 1

0

∫ 1

0
u ( exp (iuvχMj ) − 1)dudv

=
M∑
j=1

E (χMj )3
∫ 1

0

∫ 1

0

∫ 1

0
iu2v exp (iuvwχMj )dudvdw

Therefore

|γM | ≤ 1

6

M∑
j=1

|E (χMj )3|

= 1

6

M∑
j=1

|(λ∗(�M (x0))−
1
2hj )3(Wj (x0)g′(μj (x0)))3E(zj − μj (x0))3|

and from (6) we have

|γM | ≤ 1

6

M∑
j=1

|(λ∗(�M(x0))−
1
2 hj )3(Wj (x0)g′(μj (x0)))3b"′(θj (x0))|

and from the assumptions, we obtain

|γM | ≤ C√
M

Finally

1

2

M∑
j=1

E (χMj )2 = 1

2

M∑
j=1

(λ∗(�M(x0))−
1
2hj )2V j (x0)(Wj (x0)g′(μj (x0)))2

= 1

2

M∑
j=1

(λ∗(�M(x0))−
1
2hj )2Wj (x0)

from which it follows immediately that

1

2

M∑
j=1

E (χMj )2 = 1

2
|λ|2 (102)

Therefore

M∑
j=1

aMj → 1

2
|λ|2

Collecting results we obtain

logE exp iλ∗X1M → −1

2
|λ|2
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which is equivalent to (98).
Finally, going back to (94), we have

�
1
2
M (x0)(x̂M − x0) = X1M +X2M +X3M

andX1M converges in law toN (0, I ) andX2M+X3M → 0 inLδ . This implies easily
(93) and completes the proof.�

�

5 Vector Case

5.1 Notation and Preliminaries

In the preceding sections, we have considered that the observation z is a scalar,
whereas the unknown parameter x is a vector inRn. At the beginning, see (1) we had
recalled the classical linear model, in which the observation is a vector in Rd . So for
the sake of completeness, we return here to the vector case. We begin with a density
f (z, θ ) and the loglikelihood L(z, θ ) = log f (z, θ ), with

L(z, θ ) = z∗Σ−1θ − b(θ ) + c(z) (103)

in which z ∈ Rd , θ ∈ Rd andΣ is a symmetric invertible d×d matrix. The function
b : Rd → R will satisfy properties given below. The parameter θ is the canonical
parameter. We note again z the random variable, whose probability density is f (z, θ ),
to save notation.

We have

Ez = μ = ΣDθb(θ ) (104)

and

E(z − μ)(z − μ)∗ = V = ΣD2
θ b(θ )Σ (105)

We relate the unknown variable x to the mean, via the link function, so we write

g(μ) = Hx + h (106)

in which H ∈ L(Rn;Rd ), and g : Rd → Rd . So the canonical parameter is linked
to the unknown variable x by the relation,

g(ΣDθb(θ )) = Hx + h (107)

We shall assume the map θ → g(ΣDθb(θ )), invertible and thus define the function
ϕ(η) by solving

g(ΣDθb(ϕ(η))) = η, ∀η ∈ Rd (108)
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So the canonical parameter is linked to the unknown variable, by the relation

θ = θ (x) = ϕ(Hx + h) (109)

hence

Dθ (x) = Dϕ(Hx + h)H

We set, with abuse of notation,

L(z, x) = L(z, θ (x)) (110)

We compute easily

DxL(z, x) = H ∗Dϕ∗(Hx + h)(Σ−1z −Dθb(θ (x))) (111)

In order to differentiate a second time in x, it is convenient to write the preceding
relation as follows

DxL(z, x) = H ∗
d∑
k=1

((Σ−1z)k −Dθkb(θ (x)))Dϕk(Hx + h) (112)

which implies

D2
xL(z, x) = H ∗[ −Dϕ∗(Hx + h)D2b(θ (x))Dϕ(Hx + h) + (113)

+
d∑
k=1

((Σ−1z)k −Dθkb(θ (x)))D2ϕk(Hx + h)]H

From the relation (108) we can write

I = Dg(μ)ΣD2b(ϕ(η))Dϕ(η)

hence

Σ−1Dϕ(η) = (ΣD2b(ϕ(η))Σ)−1(Dg(μ))−1 (114)

with

μ = ΣDθb(ϕ(η))

Using η = Hx + h, we get

θ (x) = ϕ(Hx + h) (115)

μ(x) = ΣDθb(θ (x))

V (x) = ΣD2b(θ (x))Σ
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hence

Σ−1Dϕ(Hx + h) = V (x)−1(Dg(μ(x)))−1 (116)

therefore, using (111) we can write

DxL(z, x) = H ∗((Dg(μ(x)))∗)−1V (x)−1(z − μ(x)) (117)

We introduce the weight matrixW (x) defined by

W (x) = ((Dg(μ(x)))∗)−1V (x)−1(Dg(μ(x)))−1 (118)

So we can write

DxL(z, x) = H ∗W (x)Dg(μ(x))(z − μ(x)) (119)

Using

ED2
xL(z, x) = −EDxL(z, x)(EDxL(z, x))∗

we get

ED2
xL(z, x) = −H ∗W (x)Dg(μ(x))V (x)(Dg(μ(x)))∗W (x)H

and from (118) it follows

ED2
xL(z, x) = −H ∗W (x)H (120)

We can summarize results as follows

Proposition 9 We assume that b(θ ) is C2 on Rd and D2b(θ ) is strictly positive
on compacts sets. We assume that the link function g(μ) is C1 from Rd to Rd and
invertible with bounded inverse on compact sets. The function θ → g(ΣDθb(θ )) is
then invertible with inverse ϕ(η) C1 on compact sets. The canonical parameter, the
mean and variance are expressed as functions of x by formulas (115). The weight
matrix function is then defined by formula (118) and is continuous on compact sets.
We can then express the gradient of the loglikelihood with respect to x, by formula
(119) and we have formula (120).

5.2 MLE Estimate

We consider now a sequence of independent random variables z1, · · · , zM . Each of
them follows a GLM distribution. We assume that the unknown variable x is the same
for all random variables, however the matrixH and vector h vary from experiment to
experiment, so we have a sequenceHj ,hj . Similarly, we have functions bj (θ ), gj (μ)
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and matrices Σj depending on the experiment, with identical properties. So we get
functions θj (x),μj (x),V j (x),Wj (x) thus

DxL
j (z, x) = (Hj )Wj (x)Dgj (μj (x))(z − μj (x))

The MLE x̂M if it exists is the solution of the following system of nonlinear
equation*s

M∑
j=1

(Hj )∗Wj (x̂M )Dgj (μj (x̂M))(zj − μj (x̂M )) = 0 (121)

We propose to solve (121) by an iterative method, adapted from Newton’s method.
We shall define a sequence x̂kM , written x̂k to save notation as follows

M∑
j=1

(Hj )∗Wj (x̂k)(Hj x̂k+1 + hj ) =
M∑
j=1

(Hj )∗Wj (x̂k)(Hj x̂k + hj ) +

+
M∑
j=1

(Hj )∗Wj (x̂k)Dgj (μj (x̂k))(zj − μj (x̂k))

It is clear that, if this iteration converges, the limit point is a solution of (121). Noting
that

Hj x̂k + hj = gj (μj (x̂k))
We can rewrite the iteration as follows

M∑
j=1

(Hj )∗Wj (x̂k)(Hj x̂k+1 + hj ) =
M∑
j=1

(Hj )∗Wj (x̂k)[gj (μj (x̂k)) +

+Dgj (μj (x̂k))(zj − μj (x̂k))]

Assuming
∑M
j=1 (Hj )∗Wj (x̂k)Hj to be invertible, we get the following iteration

x̂k+1 = (
M∑
j=1

(Hj )∗Wj (x̂k)Hj )−1

⎛
⎝ M∑
j=1

(Hj )∗Wj (x̂k)[ − hj + gj (μj (x̂k)) (122)

+ Dgj (μj (x̂k))(zj − μj (x̂k))])
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5.3 The Gaussian Case

The Gaussian case corresponds to the model

zj = Hjx + hj + εj (123)

where the variables εj are independent, gaussian with mean 0 and covariance matrix
Σj . Indeed, if we take in the model (103)

bj (θ ) = 1

2
θ∗(Σj )−1θ , cj (z) = −1

2
z∗(Σj )−1z − d

2
log (2π |Σj |)|

gj (μ) = μ
then we have

gj (ΣjDθb
j (θ )) = θ

hence ϕ(η) = η. It follows that

θj (x) = Hjx + hj
μj (x) = Hjx + hj
V j (x) = Σj
Wj (x) = (Σj )−1

We clearly have

f j (z, x) = exp − 1
2 (z − (Hjx + hj ))∗(Σj )−1(z − (Hjx + hj ))

(2π |Σj |) d2
which is equivalent to (123).

The system (121) becomes

M∑
j=1

(Hj )∗(Σj )−1(zj −Hj x̂M − hj ) = 0 (124)

therefore x̂M is given explicitly by the formula

x̂M = (
M∑
j=1

(Hj )∗(Σj )−1Hj )−1
M∑
j=1

(Hj )∗(Σj )−1(zj − hj ) (125)

We can check immediately that the iteration (122) leads to x̂k = x̂M , ∀k.
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5.4 Recursivity

It is well known that formula (125), although non recursive in M can be given a
recursive form. Similarly, the iterative algorithm (122) is not recursive inM. To get
a recursive formula we define a sequence x̂j as follows. Given x̂j , define μ̂j by

g(μ̂j ) = Hj x̂j + hj (126)

then θ̂j by

(Σj )−1μ̂j = Db(θ̂j ) (127)

next V̂j by

V̂j = ΣjD2b(θ̂j )Σ
j (128)

Finally Ŵj is given by

Ŵj = ((Dg(μ̂j ))
∗)−1V̂ −1

j (Dg(μ̂j ))
−1 (129)

We write

x̂M+1 =
⎛
⎝ M∑
j=1

(Hj )∗ŴjHj

⎞
⎠

−1

⎛
⎝ M∑
j=1

(Hj )∗Ŵj [ − hj + gj (μ̂j ) +Dgj (μ̂j )(zj − μ̂j )]
⎞
⎠ (130)

We can then give a recursive form to this formula. We set

PM =
⎛
⎝ M∑
j=1

(Hj )∗ŴjHj

⎞
⎠

−1

(131)

then

P−1
M = P−1

M−1 + (HM )∗ŴMHM

from which we obtain easily the following recursive relation

PM = PM−1 − PM−1(HM )∗
(
HMPM−1(HM)∗ + Ŵ−1

M

)−1
HMPM−1 (132)

Let us introduce the corrected observation

ζ̂M = gM(μ̂M ) +DgM (μ̂M)(zM − μ̂M) (133)
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then, from (130) we get

P−1
M x̂M+1 =

M∑
j=1

(Hj )∗Ŵj ( − hj + ζ̂j )

= P−1
M−1x̂M + (HM )∗ŴM ( − hM + ζ̂M )

hence

x̂M+1 = PMP−1
M−1x̂M + PM(HM )∗ŴM ( − hM + ζ̂M)

Using

PMP
−1
M−1 = I − PM (HM )∗ŴMHM

we obtain

x̂M+1 = x̂M + PM(HM )∗ŴM (ζ̂M −HMx̂M − hM ) (134)

or, equivalently

x̂M+1 = x̂M + PM (HM)∗ŴMDg(μ̂M)(zM − μ̂M) (135)

In such a recursive algorithm, the initial condition x̂1 is arbitrary and corresponds to
the best prior estimate of x, without any observation. We then define the values of
μ̂1, θ̂1, V̂1, Ŵ1 by formulas (126), (127), (128), (129) and

P1 = ((H 1)∗Ŵ1H
1)−1 (136)

5.5 Examples

5.5.1 Binomial Distribution

The observation takes only finite values 0, 1, · · · , q.We take d = 1, � = 1,

b(θ ) = q log (1 + exp θ ), c(z) = logCz
q

g(μ) = log
μ

q − μ , 0 < μ < q

so noting

π = exp θ

1 + exp θ
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we get easily

f (z, θ ) = Cz
qπ

z(1 − π )q−z

We take

Hx + h = h∗x

with the abuse of notation as regards h. So

μ(x) = q exph∗x
1 + exph∗x

, θ (x) = h∗x

V (x) = q exph∗x
(1 + exph∗x)2

, W (x) = V (x)

so W (x)g′(μ(x)) = 1. Therefore the maximum likelihood estimator is the solution
of the system on nonlinear equation*s, see (121)

M∑
j=1

hj
(

zj − q exph∗x̂M
1 + exph∗x̂M

)
= 0 (137)

The recursive algorithm (135) reduces to

x̂M+1 = x̂M + PMhM (zM − μ̂M ) (138)

with

PM = PM−1 − PM−1h
M (hM )∗PM−1

(hM )∗PM−1hM + Ŵ−1
M

(139)

If we want to solve the system (137) by the iterative method (122) we get the sequence

x̂k+1 = x̂k +
⎛
⎝ M∑
j=1

Wj (x̂k)hj (hj )∗
⎞
⎠

−1
M∑
j=1

(zj − μj (x̂k))hj (140)

5.5.2 Poisson Distribution

We consider

d = 1, b(θ ) = exp θ , c(z) = − log z!, Σ = 1, g(μ) = logμ (141)

Hx + h = h∗x
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and z is integer, so

f (z, θ ) = θ z

z! exp −θ

Therefore

μ(x) = exp h∗x, ϕ(η) = η, θ (x) = h∗x

V (x) = exp h∗x, W (x) = exp h∗x

then the system (121) becomes

M∑
j=1

(zj − exp ((hj )∗x̂M ))hj = 0 (142)

The algorithm (122) becomes

x̂k+1 = x̂k +
⎛
⎝ M∑
j=1

μj (x̂k)hj (hj )∗
⎞
⎠

−1
M∑
j=1

(zj − μj (x̂k))hj (143)

and the recursive algorithm (135) yields

x̂M+1 = x̂M + PMhM (zM − μ̂M ) (144)

with

PM = PM−1 − PM−1h
M (hM )∗PM−1

(hM )∗PM−1hM + μ̂−1
M

(145)

5.5.3 Gamma Distribution

This is a little bit more complex. We take again d = 1, and (ν is a positive constant)

� = 1

ν
, b(θ ) = −ν log ( − θ ), θ ∈ R−

g(μ) = 1

μ
, μ > 0, c(z) = (ν − 1) log z − log�(ν) + ν log ν, z > 0

We have

f (z, θ ) = ( − θν)ν

�(ν)
zν−1 exp νθz

recalling that θ < 0. Then Hx + h = h∗x.We can easily check that

ϕ(η) = −η, θ (x) = −h∗x
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We note that x must satisfy the constraint

h∗x ≥ 0 (146)

then

μ(x) = 1

h∗x
, V (x) = 1

ν(h∗x)2
, W (x) = ν

(h∗x)2
(147)

So we can write

DxL
j (z, x) = −hjν(z − 1

(hj )∗x
) (148)

Because of the constraint (146), we cannot write directly (121). The necessary
condition of optimality of x̂M can be written as follows (Kuhn-Tucker condition)

M∑
j=1

(DxL
j (z, x̂M ))∗x ≤ 0, ∀x, such that, (hj )∗x ≥ 0, ∀j (149)

M∑
j=1

(DxL
j (z, x̂M ))∗x̂M = 0, (hj )∗x̂M ≥ 0, ∀j (150)

and using formulas (147) we obtain

M∑
j=1

(hj )∗x(zj − 1

(hj )∗x̂M
) ≥ 0, ∀x, such that, (hj )∗x ≥ 0, ∀j (151)

M∑
j=1

(hj )∗x̂M (zj − 1

(hj )∗x̂M
) = 0, (hj )∗x̂M ≥ 0, ∀j (152)

6 Dynamic Models

6.1 General Bayesian Approach

6.1.1 Preliminaries

In all the preceding sections, we have been considering a fixed parameter x.The
problem is thus an estimation problem, and the maximum likelihood is an appropriate
method to achieve this estimation. When the parameter itself evolves with time, it
can be considered as the state of a dynamic system. In general there is an evolution
law for this state, but uncertainties affect this evolution. The problem is to estimate
the current state, and thus it is a tracking problem. An adequate approach is the



52 A. Bensoussan et al.

Bayesian approach. We are going to describe it in general, then to apply it for
dynamic generalized models.

Instead of a parameter, we shall speak of the state of the system at time j , denoted
by xj ∈ Rn. The observation is still denoted zj ∈ Rd . The pair xj , zj evolves as a
Markov chain, with the particularity that the transition probability depends only on
x. In other words, we consider a sequence of functions�j (η, ζ , x) where η, x ∈ Rn
and ζ ∈ Rd . Defining the σ−algebra generated by z1, · · · , zj

Zj = σ (z1, · · · , zj )

and, similarly

F j = σ (x0, x1, z1, · · · , xj , zj )

we have, for a continuous bounded function on Rn × Rd ϕ(x, z)

E(ϕ(xj+1, zj+1)|F j ) =
∫ ∫

ϕ(η, z)�j (η, z, xj )dηdz (153)

To complete the description of the evolution, we need an initial probability density
for x0, denoted by μ(η).

6.1.2 Recursion Formulas

We begin by considering the joint probability density of the variables z1, · · · , zM , xM
given by

πM (ζ 1, · · · , ζM , ηM ) =
∫

· · ·
∫
μ(η0)� 0(η1, ζ 1, η0) · · ·�M−1(ηM , ζM , ηM−1)dη0 · · · dηM−1

(154)

and we see immediately that it satisfies a recursion equation

πM+1(ζ 1, · · · , ζM+1, ηM+1) =
∫
πM(ζ 1, · · · , ζM , η)�M(ηM+1, ζM+1, η)dη

(155)

We then derive the conditional probability density of xM , given the σ−algebra ZM .
For a given bounded continuous function ϕon Rn, we consider E[ϕ(xM)|ZM ]. It a
random variable ZM - measurable. It is standard to check that it obtained through a
conditional probability density by the formula

E[ϕ(xM)|ZM ] =
∫
pM (z1, · · · , zM , η)ϕ(η)dη (156)

and the function pM (ζ 1, · · · , ζM , η) is given by the formula

pM (ζ 1, · · · , ζM , η) = πM (ζ 1, · · · , ζM , η)∫
πM (ζ 1, · · · , ζM , η′)dη′ (157)
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From the recursion (155) we obtain easily a recursion for the function pM . We have

pM+1(ζ 1, · · · , ζM+1, η) =
∫
pM(ζ 1, · · · , ζM , η′)�M(η, ζM+1, η′)dη′∫ ∫
pM (ζ 1, · · · , ζM , η′)�M (η", ζM+1, η′)dη′dη"

(158)

We start this recursion with

p0(η) = μ(η)

6.2 Dynamic GLM

6.2.1 Conditional Probability

At time j , the observation zj+1 has a conditional probability density, when xj = x,
given by

f j (z, x) = exp (θj (x)∗(Rj )−1z − bj (θj (x)) + cj (z)) (159)

The dynamic system xj evolves according to the model

xj+1 = Fjxj + f j +Gjwj (160)

x0 = N (ξ ,P0)

in which the wj are independent random variables, which are normal with mean 0
and covariance matrixQj . The variables wj take values inRm. They are independent
of x0.Also for given xj , the variables xj+1 and zj+1 are independent. Therefore the
pair xj , zj is a Markov chain, as described in Sect. 6.1.1. The function �j (η, ζ , x),
defined in (153) is given by

�j (η, ζ , x)

= exp [− 1
2 (η−F jx−f j )∗(GjQj (Gj )∗)−1(η−Fjx−f j )+θj (x)∗(Rj )−1ζ−bj (θj (x))+cj (ζ )]

(2π )
n
2 |GjQj (Gj )∗| 1

2

(161)

Consider the conditional probability of xM , given the filtration ZM , denoted by
pM (η), in which we omit the dependence with respect to the arguments ζ 1, · · · ζM .
To simplify notation, we define

γ j (η, x) = exp [ − 1
2 (η − F jx − f j )∗(GjQj (Gj )∗)−1(η − F jx − f j )]

(2π )
n
2 |GjQj (Gj )∗| 1

2

and

gj (ζ , x) = exp (θj (x)∗(Rj )−1ζ − bj (θj (x)))
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then formula (158) leads to

pM+1(η) =
∫
pM (η′)γM (η, η′)gM (ζM+1, η′)dη′∫

pM (η′)gM (ζM+1, η′)dη′ (162)

and obtain the following

Proposition 10 For the model (159), (160), the conditional probability density
of xM , given the σ−algebra ZM , denoted pM (η) = pM (ζ 1, · · · , ζM , η) is defined
recursively by formula (162) with p0(η) = μ(η) = N (ξ ,P0).

6.2.2 First Two Moments

The best estimate of xM , denoted x̂M is defined from the conditional probability
density pM (η), simply by the formula

x̂M =
∫
ηpM(η)dη (163)

Unfortunately, there is no recursive formula for x̂M . Noting that
∫
ηγM (η, η′) = FMη′ + f M

we can write

x̂M+1 = FMŷM + fM (164)

with

ŷM =
∫
η pM(η)gM(ζM+1, η)dη∫
pM(η)gM (ζM+1, η)dη

(165)

It is possible to get a recursive formula for x̂M , considering apprimations. The idea
is to introduce the covariance operator

PM =
∫
ηη∗pM (η)dη − x̂M(x̂M )∗ (166)

and to approximate pM (η) by a gaussian

pM (η) = exp [ − 1
2 (η − x̂M )∗P−1

M (η − x̂M )]

(2π )
n
2 |PM | 1

2

therefore

ŷM =
∫
η gM (ζM+1, η) exp [ − 1

2η
∗P−1
M η + (x̂M )∗P−1

M η]dη∫
gM(ζM+1, η) exp [ − 1

2η
∗P−1
M η + (x̂M)∗P−1

M η]dη
(167)
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Recalling (164) we see that x̂M+1 can be obtained from the knowledge of x̂M and
PM.

We next have to define PM+1.We use

PM+1 =
∫
ηη∗pM+1(η)dη − x̂M+1(x̂M+1)∗

with pM+1(η) given by (162) and x̂M+1 given by (164). Introduce

�M =
∫
ηη∗ gM (ζM+1, η) exp [ − 1

2η
∗P−1
M η + (x̂M )∗P−1

M η]dη∫
gM (ζM+1, η) exp [ − 1

2η
∗P−1
M η + (x̂M )∗P−1

M η]dη
− ŷM ŷ∗

M (168)

=
∫

(η − ŷM )(η − ŷM)∗ gM (ζM+1, η) exp [ − 1
2η

∗P−1
M η + (x̂M )∗P−1

M η]dη∫
gM(ζM+1, η) exp [ − 1

2η
∗P−1
M η + (x̂M)∗P−1

M η]dη

We check easily the formula

PM+1 = FM�M(FM )∗ +GMQM (GM )∗ (169)

So we propose the recursive algorithm for x̂M and PM , defined by formulas (164)
and (169), in which the random quantities ŷM and �M are given by formulas (167)
and (168).

6.3 Applications

6.3.1 Kalman Filter

We consider the situation

θj (x) = Hjx + hj , bj (θ ) = 1

2
θ∗(Rj )−1θ

so

gj (ζ , x) = exp ((Hjx + hj )∗(Rj )−1ζ − 1

2
(Hjx + hj )∗(Rj )−1(Hx + hj ))

We will check that pM (η) is indeed a gaussian. Assuming it is the case for pM (η),
we prove it for pM+1(η) by computing the characteristic function

LM+1(λ) =
∫

exp iλ∗η pM+1(η)dη

Since∫
exp iλ∗η γM (η, η′)dη = exp [iλ∗(FMη′ + fM) − 1

2
λ∗GMQM (GM )∗λ]
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we get

LM+1(λ) = exp [iλ∗f M − 1

2
λ∗GMQM (GM )∗λ]

N (λ)

N (0)

with

N (λ)

=
∫

exp

[
−1

2
(η∗(P−1

M + (HM )∗(RM )−1HM )η) + (i(FM)∗λ

+P−1
M x̂M + (HM)∗(RM )−1(ζM+1 − hM))∗η

]
dη

We then check easily that

N (λ)

N (0)
= exp

[
−1

2
λ∗(P−1

M + (HM )∗(RM )−1HM )−1λ

]
×

exp iλ∗ (FM (P−1
M + (HM )∗(RM )−1HM )−1(P−1

M x̂M + (HM )∗(RM )−1(ζM+1 − hM ))
)

Collecting results we see that LM+1(λ) is the exponential of a quadratic form in λ.
Therefore pM+1(η) is a gaussian with mean

x̂M+1 = fM + FM (P−1
M + (HM )∗(RM )−1HM )−1(P−1

M x̂M + (HM )∗(RM )−1(ζM+1 − hM ))

and covariance matrix

PM+1 = GMQM (GM )∗ + FM (P−1
M + (HM )∗(RM )−1HM)−1(FM )∗

We can rewrite these expressions as follows

x̂M+1 = FMx̂M + fM + FM (P−1
M + (HM )∗(RM )−1HM )−1(HM )∗(RM )−1(ζM+1 −HMx̂M − hM )

(170)

Now, we check easily

(P−1
M + (HM )∗(RM )−1HM)−1=PM−PM (HM)∗(RM +HMPM (HM)∗)−1HMPM

So

PM+1 = FMPM (FM )∗ − FMPM (HM )∗(RM +HMPM (HM )∗)−1HMPM (FM )∗ +GMQM (GM )∗
(171)

We use also

(P−1
M + (HM )∗(RM )−1HM )−1(HM)∗(RM )−1=PM(HM )∗(RM +HMPM(HM )∗)−1

to write

x̂M+1=FMx̂M + fM + FMPM (HM )∗(RM +HMPM (HM )∗)−1(ζM+1 −HMx̂M − hM ) (172)

and we obtain the Kalman filter.
Considering formulas (167) and (168) we check easily that

ŷM = (P−1
M + (HM)∗(RM)−1HM )−1(P−1

M x̂M + (HM)∗(RM )−1(ζM+1 − hM))
(173)

�M = (P−1
M + (HM)∗(RM )−1HM )−1 (174)

and thus these formulas are no more approximations.
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6.3.2 Poisson Distribution

Consider the situation of Sect. 5.5.2, then

θj (x) = (hj )∗x, bj (θ ) = exp θ

gj (ζ , x) = exp (ζ (hj )∗x − exp (hj )∗x)

then formulas (167) and (168) yield

ŷM =
∫
η exp [ − 1

2η
∗P−1
M η − exp (hj )∗η + ((x̂M )∗P−1

M + ζM+1(hj )∗)η]dη∫
exp [ − 1

2η
∗P−1
M η − exp (hj )∗η + ((x̂M )∗P−1

M + ζM+1(hj )∗)η]dη
(175)

�M =
∫

(η − ŷM )(η − ŷM )∗ exp [ − 1
2η

∗P−1
M η − exp (hj )∗η + ((x̂M )∗P−1

M + ζM+1(hj )∗)η]dη∫
exp [ − 1

2η
∗P−1
M η − exp (hj )∗η + ((x̂M )∗P−1

M + ζM+1(hj )∗)η]dη
(176)

and x̂M+1,PM+1 are given by (164) and (169).

6.3.3 Kalman Filter Revisited

We consider formulas (173), (174). Note that the Kalman filter x̂M+1 and the
covariance error PM+1 are given by formulas (164) and (169). We rewrite them
as

ŷM = x̂M + (P−1
M + (HM )∗(RM )−1HM)−1(HM )∗(RM)−1(zM+1 − (HMx̂M + hM ))

(177)

�M = (P−1
M + (HM )∗(RM)−1HM )−1 (178)

We have reinstated zM+1 in formula (177) in lieu of ζM+1 to consider ŷM as a random
variable ZM+1measurable. In fact, in this section, we will use the same notation for
random variables and arguments, to save notation. We want to prove the following
result

Proposition 11
We have

ŷM = E[xM |ZM+1] (179)

�M = E[(xM − ŷM )(xM − ŷM)∗|ZM+1] (180)

Note that this interpretation fits perfectly with x̂M+1 = E[xM+1|ZM+1] and

xM+1 = FMxM + f M +GMwM
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and noting that wM is independent of ZM+1.

Proof In proving Proposition 11, we shall use an approach inspired from West et al.
1985. This approach focuses on the canonical parameter, and the GLM form of the
observation probability density. So we introduce the sequence of random variables

θM = HMxM + hM

The probability density of zM+1 given θM is a Gaussian with mean θM and covariance
matrix RM . We write this as

Prob(zM+1|θM ) = N (θM |RM )

We recall that we use the same notation for random variables and arguments
representing their values. We write this probability in GLM format as follows

Prob(zM+1|θM ) = B(zM+1, (RM )−1) exp [(zM+1)∗(RM )−1θM − b(θM , (RM)−1)]
(181)

with, of course,

B(zM+1, (RM)−1) = exp − 1
2 (zM+1)∗(RM)−1zM+1

(2π )
d
2 |RM | 1

2

and the function b(θ ,Σ) defined on Rd × L(Rd ,Rd ) is given by

b(θ ,Σ) = 1

2
θ∗Σθ

We recognize the function b depending on the canonical argument. We have in-
troduced an additional dependence, with respect to a symmetric matrix. This
dependence is linear. This will play a key role in the following. Since we operate a
recursive argument, we know that

Prob(θM |ZM ) = N (HMx̂M + hM ,HMPM (HM)
∗
)

The key idea is to write it as follows

Prob(θM |ZM ) = c(αM ,βM) exp [α∗
Mθ

M − b(θM ,βM )] (182)

where αM is a vector in Rd and βM ∈ L(Rd ,Rd ). They are given explicitly by

αM = (HMPM (HM )
∗
)−1(HMx̂M + hM)

βM = (HMPM (HM )
∗
)−1

and

c(α,β) = |β| 1
2 exp − 1

2α
∗β−1α

(2π )
d
2
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We note the analogy between formulas (181) and (182), in term of using the function
b, but with different arguments.

From the probabilities (181) and (182) we deduce, using the linearity of b with
respect to the second argument

Prob(zM+1|ZM) = c(αM ,βM )B(zM+1, (RM)−1)∫
exp [(αM + (RM)−1zM+1)∗θ − b(θ , (RM )−1 + βM)]dθ

hence, clearly

Prob(zM+1|ZM ) = c(αM ,βM )B(zM+1, (RM )−1)

c(αM + (RM)−1zM+1, (RM )−1 + βM )
(183)

We can then compute Prob(θM |ZM+1). Indeed

Prob(θM |ZM+1) = Prob(θM , zM+1|ZM )

Prob(zM+1|ZM)

= Prob(zM+1|θM , ZM )Prob(θM |ZM )

Prob(zM+1|ZM)

= Prob(zM+1|θM)Prob(θM |ZM )

Prob(zM+1|ZM )

and thus

Prob(θM |ZM+1) = c(αM + (RM)−1zM+1, (RM )−1 + βM )

× exp [(αM + (RM)−1zM+1)∗θM − b(θM , (RM)−1 + βM )] (184)

Using the value of the αM ,βM , the value of the functions c and b, we obtain after a
lengthy calculation that

Prob(θM |ZM+1) = N (gM ,�M) (185)

with

gM = HMx̂M + hM +�M (RM )−1(zM+1 −HMx̂M − hM ) (186)

�M =
(

(RM )−1 + (HMPM (HM )
∗
)−1
)−1

(187)

In order to compute the conditional probability Prob(xM |ZM+1), we compute the
joint conditional probability Prob(xM , θM |ZM+1). We have

Prob(xM , θM |ZM+1) = Prob(xM , θM |zM+1, ZM )
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= Prob(xM , θM , zM+1|ZM )

Prob(zM+1|ZM )

= Prob(zM+1|xM , θM , ZM )Prob(xM , θM |ZM)

Prob(zM+1|ZM )

= Prob(zM+1|θM )Prob(xM , θM |ZM)

Prob(zM+1|ZM )

= Prob(zM+1|θM )Prob(θM |ZM)Prob(xM |θM , ZM )

Prob(zM+1|ZM )

= Prob(zM+1, θM |ZM )Prob(xM |θM , ZM )

Prob(zM+1|ZM)

= Prob(θM |ZM+1)Prob(xM |θM , ZM )

We know Prob(θM |ZM+1). We can define Prob(xM |θM , ZM ) from the knowledge of
the joint conditional probability of the pair xM , θM given the σ−algebra ZM. How-
ever, this joint probability has no density, since θM is linked to xM by a deterministic
relation. However, since the pair is gaussian, it is well known that the conditional
probability is also Gaussian with mean E[xM |θM , ZM ] and covariance

E
(
(xM − E[xM |θM , ZM ])(xM − E[xM |θM , ZM ])∗|θM , ZM

) = ΔM
Classical linear estimation theory for gaussian variables tells that

E[xM |θM , ZM] = x̂M +�M (θM −HMx̂M − hM ) (188)

with

�M = PM (HM )
∗
(HMPM (HM )

∗
)−1

and

�M = PM −QMHMPM(HM )
∗
Q∗
M (189)

Hence we have

Prob(xM , θM |ZM+1) =N (θM ; gM ,�M )N (xM ; x̂M +�M (θM −HMx̂M − hM),ΔM )
(190)

From this formula the conditional probability Prob(xM |ZM+1) is obtained by
integrating in θM . It is Gaussian with mean

E(xM |ZM+1) = x̂M +�M (gM −HMx̂M − hM )

= x̂M +�M�M (RM )−1(zM+1 −HMx̂M − hM )

It remains to show that

�M (HM)∗ = �M�M
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which is left to the reader.We have proven the result (179). Formula (188) shows also
that

E
(
(xM − E(xM |ZM+1))(xM − E(xM |ZM+1))∗|ZM+1

)
= E ((xM − E(xM |θM , ZM ))(xM − E(xM |θM , ZM ))∗|ZM+1

)
+E ((E(xM |θM , ZM )−E(xM |ZM+1))(E(xM |θM , ZM ) − E(xM |ZM+1))∗|ZM+1

)
= �M +�M�M�∗

M

and it remains to show that

ΔM +�M�M�∗
M = �M

which completes the proof. �

6.4 First Two Moments Revisited

6.4.1 General Ideas

In Sect. 6.2.2 we have formulated an approximate recurrence for x̂M and PM , namely
formulas (164), (167) and (168), (169). It is obtained in two steps, defining quantities
ŷM and �M in terms of x̂M and PM , then x̂M+1 and PM+1. The major approximation
was in considering that the conditional probability of xM given ZM was a Gaussian
with mean x̂M and covariance matrix PM . In the case of the Kalman filter, we have
interpreted ŷM as E[xM |ZM+1] and �M as Cov(xM |ZM+1). Also, in the case of
the Kalman filter, the Gaussian property is not an approximation. We have revisited
the Kalman filter, focusing on the canonical parameter θM , instead of the state xM .
We have considered the canonical parameter as a random variable, linked to xM

by a deterministic relation. Thanks to linearity, we could remain in the gaussian
framework, and recover all formulas.

In this section, we will follow the same idea, for the dynamic GLM, and focus on
the canonical parameter. It is still linked to the state, but this time through a nonlinear
deterministic relation. To get a recurrence, an approximation will be needed, but of
a different type. This method has been introduced by West et al. 1985 in the case the
canonical parameter is a scalar.

6.4.2 Model and Approximation

We follow the notation of Sect. 6.3.3., see Proposition 11. We have first to make
more precise the probability density (154), which defines the dependendence of the
observation on the canonical parameter. We write

f j (z, θ ) = exp (θ∗(Rj )−1z − b(θ , (Rj )−1))B(z, (Rj )−1) (191)
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So the function bj (θ ), entering into the definition of (154) is clarified in formula
(191). The function b is linear in the second argument. The relation, between the
canonical parameter and the state is defined as follows

θj (x) = ϕj (Hjx + hj )
or by the inverse

Hjx + hj = γ j (θj ) (192)

We next consider the recurrence fromM toM + 1.We suppose we know

x̂M = E[xM |ZM], PM = Cov(xM |ZM) (193)

Note that PM is not necessarily deterministic.
We define the random variable θM by

HMxM + hM = γM (θM)

and recall that

xM+1 = FMxM + f M +GMwM

therefore

E[γM (θM )|ZM ) = HMx̂M + hM , Cov(γM (θM)|ZM ) = HMPM (HM )∗ (194)

and

x̂M+1 = FM E[xM |ZM+1] + fM (195)

PM+1 = FM Cov(xM |ZM+1)(FM )∗ +GMQM(GM )∗ (196)

Conversely to the Gaussian case, we do not know the conditional probability of θM ,
given ZM , except for two relations which must be satisfied, namely (194). We then
postulate that it has the form (182)

Prob(θM |ZM ) = c(αM ,βM) exp [α∗
Mθ

M − b(θM ,βM )] (197)

where αM ,βM are parameters, which we can define, by writing conditions (194). So
we write

HMx̂M+hM=c(αM ,βM )
∫
γM(θ ) exp [α∗

Mθ − b(θ ,βM )] dθ (198)

HMPM (HM)∗ + (HMx̂M + hM )(HMx̂M + hM )∗

=c(αM ,βM )
∫
γM(θ )(γM(θ ))∗ exp [α∗

Mθ−b(θ ,βM)] dθ (199)
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These two relations allow, in principle to compute αM ,βM.
We can then proceed as in Proposition 11, to show that

Prob(θM |ZM+1) = c(αM + (RM)−1zM+1, (RM )−1 + βM ) (200)

× exp [(αM + (RM)−1zM+1)∗θM − b(θM , (RM)−1 + βM )]

and

Prob(xM , θM |ZM+1) = Prob(θM |ZM+1)Prob(xM |θM , ZM )

Therefore again

E[xM |ZM+1] = E (E[xM |θM , ZM ]|ZM+1
)

(201)

Cov (xM |ZM+1) = E (Cov (xM |θM , ZM)|ZM+1
)+ Cov

(
E[xM |θM , ZM ]|ZM+1

)
(202)

However, unlike the Kalman filter case, we do not know the conditional probability
Prob(xM |θM , ZM ). To compute the quantities on the left hand side of (201), (202),
we do not need the full conditional probability. We only need the quantities

E[xM |θM , ZM ], Cov (xM |θM , ZM)

The first term is the best estimate of xM , given θM , ZM and the second one is
the covariance of the estimation error. Since knowing θM is equivalent to knowing
γM (θM ), we need to compute

E[xM |γM (θM), ZM ], Cov (xM |γM(θM ), ZM)

The first quantity is the best estimate of xM , given γM (θM ), ZM and the second is
the covariance of the residual error. We cannot compute these quantities, because
we do not know the conditional probability of xM , given γM (θM), ZM . However we
can compute the best linear estimate, because we know

E

(
xM

γM(θM )
|ZM

)
=
(

x̂M

HMx̂M + hM
)

and

Cov

(
xM

γM (θM)
|ZM

)
=
(

PM HMPM
PM (HM )∗ HMPM(HM )∗

)

This best linear estimate has been obtained in the case of the Kalman filter. We thus
take the approximation

E[xM |θM , ZM] ∼ x̂M +�M(γM(θM ) −HMx̂M − hM ) (203)
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with

�M = PM (HM )
∗
(HMPM (HM )

∗
)−1 (204)

and

Cov (xM |θM , ZM) ∼ �M = PM −�MHMPM (HM)
∗
�∗
M (205)

Next, using (200) we have

ŷM = E[xM |ZM+1] ∼ x̂M + c(αM + (RM)−1zM+1, (RM )−1 + βM )�M (206)

×
(∫

γM(θ ) exp [(αM+(RM )−1zM+1)∗θ − b(θ , (RM)−1 + βM )]dθ

)

−�M(HMx̂M + hM)

and from (202), (205), (203) we obtain

Cov (xM |ZM+1) ∼ ΔM +�M�M�∗
M (207)

with

�M = c(αM + (RM )−1zM+1, (RM )−1 + βM )

×
(∫

γM (θ )(γM (θ ))∗ exp [(αM + (RM )−1zM+1)∗θ − b(θ , (RM)−1 + βM )]dθ

)
−

− (c(αM + (RM)−1zM+1, (RM )−1 + βM ))2

×
(∫

γM (θ ) exp [(αM + (RM )−1zM+1)∗θ − b(θ , (RM )−1 + βM )]dθ

)2

(208)

So summarizing, x̂M+1 and PM+1 are obtained by formulas (195),(196) with
E[xM |ZM+1] given by formula (206), Cov (xM |ZM+1) given by formulas (207),
(208) in which αM and βM are computed from relations (198), (199).

6.4.3 Further Approximation

Define

θ̂M = E[θM |ZM], Cov(θM |ZM) = E(θM (θM )∗|ZM ) − θ̂M(θ̂M )∗

then we consider the following approximation

γMi (θM )=γMi (θ̂M ) +DγMi (θ̂M)(θM−θ̂M)+1

2
tr
(
D2γMi (θ̂M )(θM−θ̂M )(θM−θ̂M )∗

)
(209)
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so we can write

E[γMi (θM )|ZM ] = γMi (θ̂M ) + 1

2
tr
(
D2γMi (θ̂M )Cov(θM |ZM )

)
(210)

the second term being small with respect to the first one. Similarly, we can check
that

Covij (γ
M (θM)|ZM ) = 1

2
tr
(
(DγMi (θ̂M)(DγMj (θ̂M ))∗

+DγMi (θ̂M )(DγMj (θ̂M))∗)Cov(θM |ZM )
)

Consider the family of matrices

Kij (θ̂M ) = 1

2

(
DγMi (θ̂M )(DγMj (θ̂M ))∗ +DγMi (θ̂M)(DγMj (θ̂M ))∗

)
(211)

then we write

Covij (γ
M(θM )|ZM) = tr(Kij (θ̂M )Cov(θM |ZM )) (212)

We can rewrite (198), (199) as

HMx̂M + hM = γM (θ̂M) (213)

(HMPM(HM )∗)ij = tr(Kij (θ̂M )Cov(θM |ZM )) (214)

Now θ̂M and Cov(θM |ZM ) can be expressed as functions of αM ,βM . We have, from
(182),

θ̂M = −DαM log c(αM ,βM ) (215)

Cov(θM |ZM) = −D
2
αM
c

c
(αM ,βM ) +DαM log c(αM ,βM )(DαM log c(αM ,βM))∗

(216)

and thus (213), (214) is a nonlinear system of algebraic equation*, but does not
involves integrals. Similarly, define

θ̂M+1
M = E[θM |ZM+1], Cov(θM |ZM+1) = E(θM (θM )∗|ZM+1) − θ̂M+1

M (θ̂M+1
M )∗

(217)

These quantities can be computed from the probability (200), but this time we cannot
avoid computing the integrals

θ̂M+1
M = c(αM + (RM )−1zM+1, (RM)−1 + βM)

×
∫
θ exp [(αM + (RM )−1zM+1)∗θ − b(θM , (RM )−1 + βM)]dθ (218)
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E(θM (θM)∗|ZM+1) = c(αM + (RM)−1zM+1, (RM )−1 + βM) (219)

×
∫
θθ∗ exp [(αM + (RM)−1zM+1)∗θ − b(θM , (RM )−1 + βM )]dθ

Knowing these quantities we can approximate formulas (206) and (208). We write

ŷM = E[xM |ZM+1] = x̂M +�M (γM (θ̂M+1
M ) − (HMx̂M + hM )) (220)

and

(�M )ij = tr(Kij (θ̂
M+1
M )Cov(θM |ZM+1)) (221)

6.5 Example of a Beta Model

We report here a simplified example discussed in (da-Silva 2011), with state x ∈ Rn
and observation z ∈ (0, 1). The canonical parameter θ ∈ (0, 1). The probability
density, for a value θ of the canonical parameter is given by

f (z, θ ) = zθ−1(1 − z)−θ

�(θ )�(1 − θ )
(222)

This is not in the GLM form, but the methodology will be easily adapted. At each
experiment (each time) j , the canonical parameter will depend on the state xj by the
relation

θj (xj ) = exp (hj )∗xj

1 + exp (hj )∗xj
(223)

and the evolution of the state is given by

xj+1 = Fjxj + f j +Gjwj (224)

We describe the procudure betweenM andM + 1.We know

x̂M = E[xM |ZM ], PM = Cov(xM |ZM).

Considering the function

γ (θ ) = log
θ

1 − θ , 0 < θ < 1

we define the variable θM by the relation

γ (θM ) = (hM )∗xM
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and we pick as Prob(θM |ZM ) the probability density, depending on parameters αM ,
βM

Prob(θM |ZM) = �(αM + βM)

�(αM)�(βM)
(θM)αM−1(1 − θM )βM−1 (225)

Setting

pM (θ ) = �(αM + βM )

�(αM )�(βM )
(θ )αM−1(1 − θ )βM−1

= exp [(αM − 1) log θ + (βM − 1) log (1 − θ ) − B(αM ,βM)]

with

B(αM ,βM ) = − log�(αM + βM ) + log�(αM ) + log�(βM )

We check easily the formulas

∂B

∂αM
=
∫ 1

0
log θ pM(θ )dθ (226)

∂B

∂βM
=
∫ 1

0
log (1 − θ )pM (θ )dθ (227)

and thus

∂B

∂αM
− ∂B

∂βM
=
∫ 1

0
γ (θ )pM(θ )dθ

Therefore,

(hM )∗x̂M = �(αM ) −�(βM) (228)

with �(x) = d
dx

log�(x).
Equation (228) provides a first relation to compute the pair αM ,βM. To get a

second one, we note that

Var(γ (θ )|ZM) = Var(logθM |ZM) + Var(log(1 − θM )|ZM)

− 2Cov( log θM , log (1 − θM )|ZM )

We then check

Var(logθM |ZM ) = ∂2B

∂α2
M

= � ′(αM ) −� ′(αM + βM )

Var(log(1 − θM )|ZM ) = ∂2B

∂β2
M

= � ′(βM ) −� ′(αM + βM )
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Cov( log θM , log (1 − θM)|ZM ) = ∂2B

∂αM∂βM
= −� ′(αM + βM )

Collecting results, we obtain

Var(γ (θ )|ZM) = � ′(αM ) +� ′(βM)

which leads to the second relation

(hM )∗PMhM = � ′(αM ) +� ′(βM) (229)

and relations (228), (229) allow to obtain αM , βM . If we accept the approximation
�(x) ∼ log x,we obtain

αM = 1 + exp (hM)∗x̂M
(hM )∗PMhM

(230)

βM = 1 − exp (hM)∗x̂M
(hM )∗PMhM

We can next formulate Prob(θM |ZM+1). From (222) we have

Prob(zM+1|θM , ZM ) = (zM+1)θ
M−1(1 − zM+1)−θM

�(θM)�(1 − θM )

and using (225) we can write

Prob(θM |ZM+1) = (zM+1)θ
M−1(1 − zM+1)−θM (θM )αM−1(1 − θM )βM−1

�(θM)�(1 − θM )D(zM+1)
(231)

in which

D(zM+1) =
∫ 1

0

(zM+1)θ−1(1 − zM+1)−θ (θ )αM−1(1 − θ )βM−1

�(θ )�(1 − θ )
dθ (232)

We can then compute

θ̂M+1
M = E[θM |ZM+1]

=
∫ 1

0

(zM+1)θ−1(1 − zM+1)−θ θαM (1 − θ )βM−1

�(θ )�(1 − θ )D(zM+1)
dθ

V M+1
M = Var(θM |ZM+1)

=
∫ 1

0

(zM+1)θ−1(1 − zM+1)−θ θαM+1(1 − θ )βM−1

�(θ )�(1 − θ )D(zM+1)
dθ − (θ̂M+1

M )2
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Set next

�M = PMh
M

(hM)∗PMhM

then we have

ŷM = E[xM |ZM+1] = x̂M +�M
(

log
θ̂M+1
M

1 − θ̂M+1
M

− (hM )∗x̂M

)
(233)

We next set

�M = PM − PMh
M (PMhM )∗

(hM )∗PMhM

and

K(θ ) = (γ ′(θ ))2 = 1

θ2(1 − θ )2

Cov(xM |ZM+1) = PM + PMh
M (PMhM )∗

((hM )∗PMhM )2
(K(θ̂M+1

M )VM+1
M − (hM )∗PMhM ) (234)

Finally

x̂M+1 = FM ŷM + fM (235)

PM+1 = FM Cov(xM |ZM+1)(FM )∗ +GMQM(GM )∗ (236)
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Distortion Risk Measure or the Transformation
of Unimodal Distributions into Multimodal
Functions

Dominique Guégan and Bertrand Hassani

1 Introduction

A commonly used risk metrics is the standard deviation. For examples mean-variance
portfolio selection maximises the expected utility of an investor if the utility is
quadratic or if the returns are jointly normal. Mean-variance portfolio selection using
quadratic optimisation was introduced by Markowitz (1959) and became the stan-
dard model. This approach was generalized for symmetrical and elliptical portfolio
(Ingersoll 1987; Huang and Litzenberger 1988). However, the assumption of ellipti-
cally symmetric return distributions became increasingly doubtful (Bookstaber and
Clarke 1984; Chamberlain 1983) to characterize the returns distributions making
standard deviation an intuitively inadequate risk measure.

Recently the financial industry has extensively used quantile-based downside risk
measures based on the Value-at-Risk (V aRα for confidence level α). While the
V aRα measures the losses that may be expected for a given probability it does not
address how large these losses can be expected when tail events occur. To address
this issue the mean excess function has been introduced, (Rockafellar and Uryasev
2000; Embrechts et al. 2005; Artzner et al. 1999) and Delbaen (2000) describe the
properties that risk measures should satisfy including their coherence in particular
the VaR is not a coherent risk measure, failing to be sub-additive.

When we use a sub-additive measure the diversification of the portfolio always
leads to risk reduction while if we use measures violating this axiom the diversifica-
tion benefit may be lost even if partial risks are triggered by mutually exclusive events.
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The sub-additive property is required for capital adequacy purposes in banking super-
vision: for instance if we consider a financial institution made of several subsidiaries
or business units, if the capital requirement of each of them is dimensioned to its own
risk profile authorities. Consequently it has appeared relevant to construct a more
flexible risk measure which is sub-additive.

Nevertheless, the V aR remains preeminent even though it suffers from the theo-
retical deficiency of not being sub-additive. The problem of sub-additivity violations
is not as important for assets verifying the regularity conditions1 than for those which
do not and for most assets these violations are not expected. Indeed, in most practical
applications the V aRα can have the property of sub-additivity. For instance, when
the return of an asset is heavy tailed, the V aRα is sub-additive in the tail region for
high level of confidence if it is computed with the heavy tail distribution (Ingersoll
1987; Danielson et al. 2005; Embrechts et al. 2005). Non sub-additivity of the V aRα
is highlighted when assets have very skewed return distributions. When the distri-
butions are smooth and symmetric, when assets dependency is highly asymmetric,
and when underlying risk factors are dependent but heavy-tailed, it is necessary to
consider other risks measures.

Unfortunately, non sub-additivity is not the only problem characterizing theV aR.
First VaR only measures distribution percentiles and thus disregards any loss beyond
its confidence level. Due to combined effects of this limitation and the occurrence of
extreme losses there is a growing interest for risk managers to focus on the tail behav-
ior and its Expected Shortfall2 (ESα) since it shares properties that are considered
desirable and applicable in a variety of situations. Indeed, expected shortfall consid-
ers the loss beyond the V aRα confidence level and is sub-additive and therefore it
ensures the coherence of the risk measure (Rockafellar and Uryasev 2000).

Since using expected utility, the axiomatic approach to risk theory has expanded
dramatically as illustrated by (Yaari 1987; Panjer et al. 1997; Artzner et al. 1999; De
Giorgi 2005; Embrechts et al. 2005; Denuit et al. 2006) among others. Thus other
classes of risk measures were proposed each with their own properties including
convexity (Follmer and Shied 2004), spectral properties (Acerbi and Tasche 2002),
notion of deviation (Rockafellar et al. 2006) or distortion (Wang et al. 1997). Acerbi
and Tasche (2002) studied spectral risk measures which involve a weighted average of
expected shortfalls at different levels. Then, the dual theory of choice under risk leads
to the class of distortion risk measures developed by Yaari (1987) and Wang (2000),
which transforms the probability distribution shifting it in order to better quantify
the risk in the tails instead of modifying returns as in the expected utility framework.

Whatever the risk measures considered, the value associated to each measure is
based and depends on the distribution fitted on the underlying data set by risk man-
agers strategy. Mostly of the part the distributions belong to the elliptical domain,

1 Regularly varying (heavy tailed distributions, fat tailed) non-degenerate tails with tail index η > 1
for more detail see Danielson et al. (2005).
2 The terminology “Expected shortfall” was proposed by Acerbi and Tasche (2002) . A common
alternative denotation is “Conditional Value at Risk” or CVaR that was suggested by Rockafellar
and Uryasev (2002).
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recently risk managers and researchers have focused on a class of distributions ex-
hibiting asymmetry and producing heaving tails, All these distributions belong to
the Generalized Hyperbolic class of distributions (Barndorff-Nielsen 1977), to the
α-stable distributions (Samorodnitsky and Taqqu 1994) or the g- and -h distributions
among others.

Nevertheless nearly all these distributions are unimodal. However, since the 2000s
bubbles and financial crises and extreme events became more and more important,
restricting unimodal distributions models for risk measures. Recently debates have
been opened to convince economists to consider bimodal distributions instead of
unimodal distributions to explain the evolution of the economy since the 2000s
(Bhansali 2012). The debate about the choice of distributions characterized by several
modes is timely. We propose an approach to build and fit these distributions on real
data sets. An objective of this paper is to discuss this new approach and propose a
theoretical framework to build multi-modal distributions to create new coherent risk
measures.

The paper is organized as follows. In Section two we recall some principles and
history of the risk measures: the VaR, the ES and the spectral measure. In Section
three we discuss the notion of distortion to create new distributions. Section four
proposes an application which illustrates the impact of the choice of unimodal or
bimodal distribution associated to different risk measures to provide a value for the
corresponding risk. Section five concludes.

2 Quantile-Based and Spectral Risk Measures

Traditional deviation risks measures such as the variance, the mean-variance anal-
ysis and the standard deviation, are not sufficient within the context of capital
requirements. In this section we recall the definitions of several quantile-based risk
measures:3 the Value-at-Risk introduced in the 1980s, the Expected Shortfall pro-
posed by Acerbi and Tasche (2002), the Tail Conditional Expectation suggested by
Rockafellar and Uryasev (2002), and the spectral measure introduced by Acerbi and
Tasche (2002).

Value at Risk initially used to measure financial institutions market risk, was
mainly popularised by J.P. Morgan’s RiskMetrics (1995). This measure indicates the
maximum probable loss, given a confidence level and a time horizon. The V aR is
sometimes referred as the “unexpected” loss.

Definition 1 Given a confidence level α ∈ (0, 1), the V aR is the relevant quantile4

of the loss distribution: V aRα(X) = inf{x | P [X > x] � 1 −α} = inf{x | FX(x) �
α} where X is a risk factor admitting a loss distribution FX .

3 Artzner (2002) proposes a natural way to define a measure of risk as a mapping ρ : L∞ → R∪∞.
4 V aRα(X) = q1−α = F−1

X (α)
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Table 1 Expression of ESα as function of V aRα for some usual distributions in finance

Distribution ESα = f (V aRα)

Normal μ+ σ√
2π

exp

[
−1

2

(
V aRα−μ

σ

)2
]

1 − α

Student-t μ+ σ
1−α

√
η

(η−1)
√
π

Γ
(
η+1

2

)
Γ
(
η

2

) (
1 + (V aRα (X)−μ)2

σ2η

)− η+1
2

Logistic μ+ σ
1−α

(
ln
(
1 + eV aRα (X)

)− V aRα(X)
[
1 + e−(V aRα (X))

]−1
)

Exponential
power

μ+ σβ

(
1
β −1

)

2(1 − α)Γ (1 + 1/β)
Γ

(
2
β

, 1
β

(
V aRα (X)−μ

σ

)β)

Generalized
hyperbolic

μ+ βE(W ) + σ√
2π

exp

[
−1

2

(
V aRα−μ

σ

)2
]

1 − α E(
√
W )

Generalized
pareto

V aRα(X)

1 − ξ + σ − ξu

1 − ξ
g and h μ+ σ

g(1 − α)
√

1 − h

[
e(g

2/2(1− h))φ̄

(√
1 − hzα − g

1 − h

)
− φ̄ (√1 − hzα

) ]

As discussed in the Introduction, the V aR does not always appear sufficient. When
a tail event occurs in a unimodal distribution, the loss in excess of the V aR is not
captured. To avoid this problem we consider the expected shortfall (ESα) proposed
by Artzner et al. (1999). This measure is more conservative than the V aRα as it
captures the information contained in the tail. The expected shortfall is defined as
follows:

Definition 2 The Expected Shortfall (ESα) is defined as the average of all losses
which are greater or equal than V aRα:

ESα(X) = 1

1 − α
∫ 1

α

V aRαdp

The Expected Shortfall has a number of advantages over the V aRα. Accordingly
the ES takes accounts for the tail risk and fulfills the sub-additive property5 (Acerbi
and Tasche 2002)6 . Table 1 summarizes the link between ESα and V aRα for some
distributions given α.

Expected Shortfall is the smallest coherent risk measure that dominates the V aR.
Acerbi and Tasche (2002) derived from this concept a more general class of coherent
risk measures called spectral risk measures7. Spectral risk measures are a subset of
coherent risk measures. Instead of averaging losses beyond the V aR, a weighted

5 An extension can be found in Inui and Kijima (2005).
6 In this last paper, the difference between ES and T CE is conceptual and is only related to the
distributions. If the distribution is continuous then the expected shortfall is equivalent to the tail
conditional expectation.
7 If ρi is coherent risk measures for i = 1. . .n, then, any convex combination ρ = ∑n

1 βiρi is a
coherent risk measure (Acerbi and Tasche 2002).
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Fig. 1 Spectrum of the ES
for some well known
distributions for several
α ∈ [0.9, 0.99]. Each line
corresponds to the graph of
the ES as a function of α for
each distribution introduced
in Table 1

average of different levels of ESα is used. These weights characterize risk aversion:
different weights are assigned to different α levels ofESα in the left tail. The associ-
ated spectral measure could be

∑
α wαESα , where

∑
α wα = 1. In Fig. 1 we exhibit

a spectrum corresponding to the sequence of ESα for different α.
Figure 1 points out that the spectrum of the ES is an increasing function of the

confidence level α. It expresses the risk aversion as a weighted average for different
level ofESα to generate the spectral risk measure. This is one advantage when using a
spectral risk measure. Moreover a spectral risk measure being a convex combination
of ESα for α ∈ [0.9, 0.99], it accounts for more information than only considering
one value of α.

However the choice of weights is sensitive and need to be studied more
carefully (Dowd et al. 2008). Finally, in practice the relation between spectral
risk measure and risk aversion is not obvious depending on the choice of the weights.

3 Distortion Risk Measures

3.1 Notion of Distortion Risk Measures

Distortion risk measures have their origin in Yaari’s (1987) dual theory of choice
under risk that consists in measuring the risks by applying a distortion function g on
the cumulative distribution function FX. In order to transform a distribution into a
new distribution we need to specify the property of the distorsion function g.
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Definition 3 A function g : [0, 1] → [0; 1] is a distortion function if:

1. g(0) = 0 and g(1) = 1,
2. g is a continuous increasing function.

In order to quantify the risk instead of modifying the loss distribution (as with the
expected utility framework), the distortion approach modifies the probability dis-
tribution. The risk measures (VaR and ES) derived from this transformation were
originally applied to a wide variety of financial problems such as the determination
of insurance premiums (Wang 2000), economic capital (Hürlimann 2004), and cap-
ital allocation (Tsanakas 2004). Acerbi (2002) suggests that they can be used to set
capital requirements or obtain optimal risk-expected return trade-offs and could also
be used by clearing-houses to set margin requirements that reflect their corporate
risk aversion (Cotter and Dowd 2006).

One possibility is to shift the distribution function towards the left or the right sides
to account for extreme values. Wang et al. (1997) developed the concept of distortion8

risk measure by computing the expected loss from a non-linear transformation of the
cumulative probability distribution of the risk factor. A formal definition of this risk
measure computed from a distortion of the original distribution has been derived
(Wang et al. 1997).

Definition 4 The distorted risk measure ρg(X) for a risk factor X admitting a
cumulative distribution SX(x) = P(X > x), with a distortion function g, is defined9

as:

ρg(x) =
∫ 0

−∞
[g(SX(x)) − 1]dx +

∫ +∞

0
g(SX(x))dx. (1)

Such a distortion risk measure corresponds to the expectation of a new variable whose
probabilities have been re-weighted.

Finding appropriate distorted risk measures reduces to the choice of an appropri-
ate distortion function g. Properties for the choice of a distortion function include
continuity, concavity, and differentiability. Assuming g is differentiable on [0, 1] and
SX(x) is continuous, then a distortion risk measure can be re-written as:

ρg(X) = E[Xg′(SX(X))] =
∫ 1

0
F−1
X (1 − p)dg(p) = Eg

[
F−1
X

]
. (2)

Distortion functions arose from empirical10 observations that people do not eval-
uate risk as a linear function of the actual probabilities for different outcomes but

8 The distortion risk measure is a special class of the so-called Choquet expected utility, i.e. the
expected utility calculated under a modified probability measure.
9 Both integrals in (1) are well defined and take a value in [0, +∞]. Provided that at least one
of the two integrals is finite, the distorted expectation ρg(X) is well defined and takes a value in
[ − ∞, +∞].
10 This approach towards risk can be related to investor’s psychology as in Kahneman and
Tversky (1979).
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rather as a non-linear distortion function. It is used to transform the probabilities of
the loss distribution to another probability distribution by re-weighting the original
distribution. This transformation increases the weight given to desirable events and
deflates others. Different distortions g have been proposed in the literature. A wide
range of parametric families of distortion functions is mentioned in Wang (2000), and
Hardy and Wirch (2001). For well known utility functions we provide the function g
in Table 2, where the parameters k and γ represent the confidence level corresponding
and the level of risk aversion.

Table 2 Examples of utility functions with their associated convex spectrum

Utility function Parameters Spectrum function

Exponential U1(x) = −e−kx k > 0 g(p, k) = ke−k(1−p)

1−e−k
Power U2(x) = x1−γ γ ∈ (0, 1) g(p, γ ) = γ (1 − p)γ−1

Power U3(x) = x1−γ γ > 1 g(p, γ ) = γ (p)γ−1

When g is a concave function its first derivative g′ is an increasing function, g′(SX(x))
is a decreasing function11 in x and g′(SX(x)) represents a weighted coefficient which
discounts the probability of desirable events while loading the probability of adverse
events. Moreover, Hardy and Wirch (2001) have shown that distorted risk measure
ρg(X) introduced in (2) is sub-additive and coherent if and only if the distortion
function is concave.

In his article, Wang (2000) specifies that the distortion operator g can be applied
to any distribution. Nevertheless in applications due to technical practical reasons he
restricts the illustration of his methodology to a function g defined as follows:

gα(u) = � [�−1(u) + α] , (3)

where� is the Gaussian cumulative distribution. In other words he applies the same
perspective of preference to quantify the risk associated to gain and risk. Thus, a
risk manager evaluates the risk associated to the upside and downside risks with the
same function g implying a symmetric consideration for the two effects due to the
distortion. Moreover it induces the same confidence level for the losses and the gain
which implies the same level of risk aversion associated to the losses and the gains.

In Fig. 2 we illustrate the impact of the Wang (2000) distortion function introduced
in Eq. (3) on the logistic distribution provided in Table 1. We can remark that the
distorted distribution is always symmetrical under this kind of distortion function,
and we observe a shift of the mode of the initial distribution towards the left.

To avoid the problem of symmetry in the previous distorsion, Sereda et al. (2010)
propose to use two different functions issued from the same polynomial with different
coefficients, say:

ρgi (X) =
∫ 0

−∞
[g1(SX(x)) − 1] dx +

∫ +∞

0
g2(SX(x))dx. (4)

11 This property involves that g′(SX(x)) becomes smaller for large values of the random variable
X.
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Fig. 2 Distortion of logistic distribution with mean 0 using a Wang distortion function with
confidence level 0.65. It illustrates the effect of distortion

with gi(u) = u + ki
(
u − u2

)
for ki ∈ ]0, 1] et ∀i ∈ {1, 2}. With this approach one

models loss and gains differently relatively to the values of the parameters ki , i = 1, 2.
Thus upside and downside risks are modeled in different ways. Nevertheless the
calibration of the parameters ki , i = 1, 2 remains an open problem.

To create bimodal or multi-modal distributions we have to impose other properties
to the distortion function g. Indeed, transforming an unimodal distribution into a
bimodal one provides different approaches to the risk aversion of losses and gains.
This will allow us to introduce a new coherent risk measure in that latter case.

3.2 A New Coherent Risk Measure

We begin to discuss the choice of the functiong to obtain a bimodal distribution. To do
so we need to use a function gwhich creates saddle points. The saddle point generates
a second hump in the new distribution which allows us to take into account different
patterns located in the tails. The distortion function g fulfilling this objective is an
inverse S-shaped polynomial function of degree 3 given by the following equation
and characterized by two parameters δ and β:

gδ(x) = a
[
x3

6
− δ

2
x2 +

(
δ2

2
+ β

)
x

]
. (5)

We remark that gδ(0) = 0, and to get gδ(1) = 1 this implies that the coefficient of

normalization is equal a =
(

1

6
− δ

2 + δ2

2
+ β

)−1

. The function gδ will increase if

g′
δ > 0 requiring 0 < δ < 1. The parameter δ ∈ [0, 1] allow us to locate the saddle

point. The curve exhibits a concave part and a convex part. The parameter β ∈ R

controls the information under each hump in the distorted distribution. To illustrate
the role of δ on the location of the saddle points, we provide several simulations.
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Fig. 3 Curves of the
distortion function gδ
introduced in Eq. (5) for
several value of δ and fixed
values of β = 0.001

In Fig. 3, the value of the level of the discrimination of an event is given by
β = 0.001 then we plot the function gδ for different values of δ. This parameter β
illustrates the fact that some events are discriminating more than others. Figure 3
shows the location of the saddle point creating convex and concave parts inside the
domain [0, 1]. The convex part can be associated to the negative values of the returns
associated to the losses and the concave part is associated to positive returns. We
observe in this picture that for high values of δ the concave part diminishes and then
the effect of saddle point decreases.

Variations in β in Fig. 4 exhibit different patterns for a fixed value of δ.
To understand the influence of the parameter β on the shape of the distortion

function we use three graphs in Fig. 4. The two left graphs correspond to the same
value of the parameters. The middle figure zooms on the x-axis from [0, 1] to [−4, 4].
We show that the function g may not have a saddle point on ]0, 1[ depending on the
values of β. The right graph provides different representations of the distorsion
function for several values of β. We observe that if β tends to 1 then the distortion
function g tends to the identity mapping and when β tends to 0 the curve is more
important and the effect of g on the distribution will be more important.

Figure 5 illustrates the effect of distortion of the Gaussian distribution for several
values of β and fixed δ = 0.50. We observe the same effects as in Fig. 4. For
small values of the parameter β (0.00005 or 0.005) the distortion function has two
distinct parts, one convex part for x ∈ ]0, 0.5[ and one concave part for x ∈ ]0.5, 1[.
Moreover when β is close to 1 then the distorted cumulative distribution tends to the
initial Gaussian variable.
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Fig. 4 The effect of β on the distortion function for a level of security δ = 0.75 showing that if β
tends to 1, the distortion function tends to the identity function

Fig. 5 The effect of β on the cumulative Gaussian distribution for δ = 0.50

Figure 6 points out the effect of distortion on the density of the Gaussian dis-
tribution using the same values of the parameters than those used in Fig. 5. Again
we generate a new distribution with two humps. Making both parameters varying
permits to solve one of our objective: to create a asymmetrical distribution with more
than one hump.

It is important to notice that the function gδ creates a distorted density function
which associates a small probability in the centre of the distribution and put greater
weight in the tails. This phenomenon is illustrated in Fig. 7 where the derivative of
g (density) indicates how weights on the tails can be increased.

Such discrimination is also illustrated in Fig. 8 which exhibits the particular effect
of parameter β when δ is fixed to 0.75 for the creation of humps. From a Gaussian
distribution, applying gδ defined in (5), with δ = 0.75 and β = 0.48 we create a
distribution for which the probability of occurrences of the extremes in the right part
is bigger than the probability of occurrence of the extremes in the left part which can
be counter-intuitive for risk management but interesting from a theoretical point of
view.
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Fig. 6 The effect of β on the Gaussian density function for δ = 0.50

Fig. 7 The density g
′

associate to the distortion function gδ with δ = 0.75 which illustrate the fact
that the effect of the saddle point discriminate the middle part of the quantile and put all the weight
in the tail part

In order to associate a risk measure for such distorted function, we can remark
that in all our examples we have g(x) � t for all x ∈ [0, 1] and then ρg(X) � E[X].
This property characterizes the risk adverse behavior of managers. Nevertheless this
last property does not guarantee the coherence of the risk measure ρg introduced in
(2). Indeed, the function gδ used to obtain these results can be convex and concave.
In order to have a sub-additive risk measure and then to get coherence we propose
to define a new risk measure in the following way:

ρ(X) = Eg

[
F−1
X (X)|F−1

X (X) > F−1
X (δ)

]
. (6)

It is a well defined measure, similar to the expected shortfall but computed under
the distribution g ⊗ FX. Moreover it verifies the coherence axiom. With this new
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Fig. 8 Distortion of the
Gaussian distribution using
the function g introduced in
Eq. (5) with δ = 0.75 and
β = 0.48. This picture
exhibits a bimodal
distribution due to the effect
of the saddle point

measure we resolve our concern to define a risk measure that takes into account the
information in the tails.

To create a multi-modal distribution with more than one hump, we can use a
polynomial g of higher degree to have more saddle points in the interval [0, 1]. This
is important if we seek to model distributions with multiple humps to represent
multiple behaviors. For example we can consider a polynomial of degree 5 and 2
saddle points in the interval [0, 1]:

g(x) = a0(a2
1a

2
3
x5

5
+ a2

1a4
x3

3
+ a2

2a3
x3

3
+ a2

2a
2
4x − 2a2

1a3a4
x4

4
− 2a1a2a

2
3
x4

4

+ 4a1a2a3a4
x3

3
− 2a1a2a

2
4
x2

2
− 2a2

2a3a4
x2

2
)

with first and second derivatives:

g′(x) = a0(a1x − a2)2(a3x − a4)2 = a0(a1a3x
2 − a1a4x − a2a3x + a2a4)2

= a0(a2
1a

2
3x

4 + a2
1a4x

2 + a2
2a3x

2 + a2
2a

2
4 − 2a2

1a3a4x
3 − 2a1a2a

2
3x

3

+ 4a1a2a3a4x
2 − 2a1a2a

2
4x − 2a2

2a3a4x),

g′′(x) = 2a0a1(a1x − a2)(a3x − a4)2 + 2a0a3(a1x − a2)2(a3x − a4).

This function satisfies all the properties of a distortion function and can be used
to generate a trimodal distribution under the condition that:

1. ai > 0 for all i ∈ {1, 2, 3, 4},
2. δ1 = a2

a1
and δ2 = a4

a3
.

As we can see, the number of parameters increases as the number of saddle points
increases.
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Table 3 Summary statistics of the daily returns of S&P500

Statistics Mean Variance Std. Dev. Skewness Kurtosis

Return (rt )t 0.000016 0.299164 0.546959 0.030772 97.958431

Fig. 9 The S&P500 return index over time and the density

4 The Risk Measurement Using Distortion Measures

In this section distortion risk measures are applied to daily log-returns computed
on the S&P 500 index collected from 01/01/1999 to 31/12/2011. This sample
contains 3270 data points. Table 3 provides the empirical statistics of the data sets.
This distribution is right skewed, most values are concentrated on the left of the mean,
and some extreme values have been identified in the right tail. The distribution is
leptokurtic (Kurtosis > 3) and sharper than a Gaussian distribution. Figure 9
exhibits the related time series and the empirical cumulative distribution.

Prior to applying any distortion, the underlying distribution has to be selected.
For this exercise, consider the shape of returns as a Gaussian distribution. Then,
considering Eq. (1), the empirical distribution is distorted successively using the Gini,
the exponential and the Wang distortion functions while the polynomial distortion is
calibrated to a Gaussian distribution.

To adjust the distortion, the following approach is implemented. First, the con-
fidence level δ is set, then the parameter β is estimated using market information.
In this paper, extreme value theory is used to estimate the kurtosis of the tail part
associated to the losses. Then, its truncated kurtosis is divided by the kurtosis of the
entire data set to evaluate the discrimination level β. Finally, the distortion using the
function S inverse polynomial with the parameters δ and β can be applied.

Finally we focus on the properties of the resulting risk measures. We first compute
the V aR, the ES and the spectral risk measure using both exponential and power
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Table 4 Values of V aR, ES, exponential spectral risk measure and power spectral risk measure for
different α. This table shows that the power spectral risk measure is not consistent with the concept
of risk aversion

α V aR ES Exp. spectral Power spectral

0.90 0.095406 0.489994 2.210340 0.031422
0.91 0.107440 0.532119 2.226816 0.027705
0.92 0.117975 0.584883 2.243202 0.024120
0.93 0.136280 0.650673 2.259491 0.020690
0.94 0.151314 0.733222 2.275701 0.017383
0.95 0.188124 0.846702 2.291823 0.013892
0.96 0.220421 1.008289 2.307860 0.010814
0.97 0.273118 1.253847 2.323810 0.007881
0.98 0.371772 1.719202 2.339676 0.005319
0.99 0.605753 2.963937 2.355458 0.003081

Fig. 10 This figure presents the level of risk with respect to the risk aversion parameters

spectrum functions using the original data set. These results are provided in Table 4
for different confidence level α. For both the V aR and the ES, the values of the
risk measures increase with α. in this particular case, both the V aR and the ES are
consistent risk measures. The spectral measures are provided first with exponential
weights and second considering power weights. Looking at Table 4 fourth column,
we note that the spectral power risk measures are not consistent12 with the concept
of risk aversion because they decrease with the level of confidence. Although, the
value of the spectral exponential risk measures are consistent. In practice, this means
that it makes no sense to use the power spectral measure. These two behaviors are
presented in Fig. 10.

12 0.90 < 0.99 but 0.031422 > 0.003081.
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Table 5 Values of distorted risk measures of the log returns of the S&P500 using different distortion
functions: Polynomial, Gini, exponential and Wang

Level Saddle Exp. distortion Gini Wang

0.90 1.695396 2.210329 0.096792 1.392441
0.95 2.156548 2.300160 1.105478 2.400308
0.99 2.978867 2.354956 1.108967 5.338054
0.995 3.275869 2.560075 2.106531 6.667918

Fig. 11 On the left graph, the distortion using the Gini function is exhibited, and on the right graph
the distortion implied by Wang. The red line corresponds to the negative part of the returns and the
blue line of the positive part. Using Gini distortion the weights on the negative part are smaller than
the weights obtained using Wang distortion. On the contrary, the weights on the positive part using
Gini are larger than those implied by Wang on the same portion. The same function g is used to
build the positive and the negative part of the distribution

In a second step, various distortion approaches presented previously (Polynomial,
Gini, Exponential and Wang) are applied to the data, and the associated risk mea-
sures are computed using Eq. (1). The risk measures obtained for each of the four
methodologies are given in Table 5. These measures are all more conservative than
the empirical VaR which may be used as a benchmark. The impacts of the distortions
using these functions are represented in Figs. 11 and 12.

In our methodologies, most of the distortion functions are symmetric while the
underlying information is usually asymmetric. To address we propose to use two
different functions for the losses and the gains. Figure 13 exhibits the Sereda et al.
(2010) distortion function overcoming the symmetry issue.

Unfortunately, it is not sufficient to consider the same function with two different
parameters. As observed in Fig. 13, distortions that are applied on both sides are
convex which is not consistent with a risk aversion property. It is important to consider
a different behaviour to analyse separately the losses and the gains. Indeed, if a
convex distortion function is considered for the losses then a concave distortion
function should be considered for the gains (Bhansali 2012).
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Fig. 12 On this figure we present the distorted empirical distribution of the returns using the function
g introduced in (5) with 0.00005 ≤ β ≥ 1 and δ = 0.5
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Fig. 13 In this picture we present two convex distortion functions in order to create asymmetry:
The red line illustrates the function g2(S(X)) − 1 and the blue line represents the function g1(S(X))
where g is a convex distortion function. Two different functions g1 and g2 with two levels of
confidence k1 = 0.95 and k2 = 0.2 are considered to get the positive part and the negative part of
the distribution

5 Conclusion

This paper has summarized different notions of risk measures developed in the lit-
erature: the quantile based risk measure (V aR and ES), the spectral risk measure
and distortion risk measure. This review has amplified the difficulty encountered in
terms of financial regulation (as demanded by Bale III and Solvency II) using these
risk measures. We recall that the V aR is not coherent while the ES cannot account
for risk aversion (because it is risk neutral), and spectral risk measure depends on



Distortion Risk Measure or the Transformation of Unimodal Distributions . . . 87

the choice of the weights limiting the quantification of risk. One alternative to this
limitation is provided by distortion theory developed under convex function. This
approach represents an appropriate way to consider and analyze risk because it is
always possible to define a distortion function such as Wang’s distortion function
generated from a Gaussian distribution. The distortion risk measure provides an
equivalent approach to measure the risk under the convex distortion function.

Nevertheless using the same convex function for upside and downside risks like in
Wang (2000) imposes a similar approach for both parts. This represents a limitation
for the use of convex distortion function to analyze upside and downside risks at the
same time. Alternatively we can consider a distortion risk measure with a S-inverse
function with a concave part and a convex part generating decreasing risk measure
with respect to the confidence level.

In summary we have provided a general framework that combines expected short-
fall of the quantile of the risk measure with S-inverse shaped distortion function. This
new risk measure is coherent, satisfies all the axiom of risk measures and is consis-
tent with risk aversion concept. A statistical methodology for the estimation of such
measures remains yet to be developed.
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Stress Testing Engineering: The Real Risk
Measurement?

Dominique Guégan and Bertrand K. Hassani

1 Introduction

Stress testing (Berkowitz 1999; Quagliariello 2009; Siddique and Hasan 2013) is
used to determine the stability or the resilience of a given financial institution by
deliberately submitting the subject to intense and particularly adverse conditions
which has not been considered a priori. This involves testing beyond the traditional
capabilities-usually to determine limits-to confirm that intended specifications are
both accurate and being met in order to understand the process underlying failures.
This exercise does not mean that the entity’s failure is imminent, though its purpose
is to address and prepare this potential failure. Consequently the stress testing is the
quintessence of risk management.
Since the 1990’s most financial institutions have conducted stress testing exercises on
their balance sheet, but it is only in 2007 following the current crisis, that regulatory
institutions became interested in analyzing and measuring the resilience of financial
institutions1 in case of dramatic movements of economic fundamentals such as the
GDP. Then, stress tests have been regularly performed by regulators to insure that
banks are properly adopting practices and strategies which decrease the chance of a
bank fails and jeopardises the entire economy (Berkowitz 1999).

1 In October 2012, U.S. regulators unveiled new rules expanding this practice by requiring the
largest American banks to undergo stress tests twice per year, once internally and once conducted
by the regulators.
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Fig. 1 Financial system

Originally governments and regulators sought to measure financial institutions’
resilience-and by extension the entire financial system-in order to avoid future fail-
ures, ultimately assumed by the tax payer. Stress testing framework raises the
following questions: if a risk is identified even with a small probability why is it
not directly integrated in bank’s risk models? Why should we have two processes ad-
dressing the same risks, first under “normal” conditions and the other under stressed
condition knowing that the risk universe includes them both? Therefore, are stress
tests discussing in fact the impact of an exogenous event on a balance sheet or of an
endogenous failing process. For example, when a model is shown unable to account
for certain risks. In other words are risks of failure and threats to the entire system
only exogenous?

Assuming that our objective is the protection of the system, a clear definition of
the latter is necessary. Figure 1 exhibits a simplified version of the banking system
used in most developed countries. It consists of three layers, the “real” economy, the
interbanking intermediate market and the central bank. Based on this structure if we
want to measure the system’s resilience we need to identify what threatens the system.
We may reasonably assume that stress-testing and systemic-risk measurement are
necessarily connected. As will be discussed below a bank may either fail because
of a lack of capital or a lack of liquidity. The risk of illiquidity may be particularly
challenging while a bank balance sheet is fairly simple, in fact assets are composed
of intangible assets, investments and loans while liabilities are mostly shareholder’s
equity and subordinated debt. Subsequently comes the wholesale funding and finally
clients deposits. Thus by changing the money on short duration, such as savings with
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money on a longer one, bank’s lending exercises a maturity transformation. This
leads banks having an unfavorable liquidity position since they have no access to the
money they lent while the money they owe to clients can be withdrawn at any time
on demand.

Regarding our simplistic representation of the financial system, Fig. 1 exhibits four
potential failure spots: (i) The central bank cannot provide any liquidity anymore;
(ii) Banks are not funding each other anymore; (iii) A bank of sensible size is failing;
(iv) The banks stop financing the economy.

Regarding the first point (i), considering that the purpose of a central bank is re-
financing loans provided by commercial banks controlling inflation, unemployment
rate, etc., as soon as this central bank ceases functioning properly the entire system
collapses (uncontrolled inflation, etc.). This point discusses a model failure and falls
beyond the stress-testing exercise. Some examples may be found in the Argentinian
or the Russian central banks failure in the 1990’s. Considering the second point (ii),
if banks are not funding each other then some will face a critical lack of liquidity inter
bank trust and may fail (for instance this was the case when banks refused to help
Lehman Brothers the 15th of September 2007). This example highlights how finan-
cial institutions face liquidity risk. Third point (iii), a bank may fail due to a lack of
capital. Consequently the problem arises to evaluate ex-ante its capital requirements
when a major risk occurs. In 2008 the insurance company AIG failed due to a lack of
capital when most of the CDS they sold had been triggered simultaneously. This is
the care of risk management intra-bank. Finally (iv), and assuming that the purpose
of banks is to generate a profit while financing the real economy it is highly unlikely
that they would do it in case of high stress. A lack of liquidity may lead a bank to
stop lending and may engender corporate and retail defaults. Contagion defaults in
chain may themselves drive the financial institution to bankruptcy. In that latter case
we are clearly discussing the way banks are addressing the credit risk.

Whatever the origin of the stress inside the banks a failure causes important
damages: bankruptcy alters the markets confidence. Thus global system disrupted.
Therefore stress tests are used to imagine the scenarii illustrating such situations and
introduce dynamical and adaptive solutions that can avoid dramatic failures.

In this paper we focus on what may lead banks to fail and how financial resilience
can be measured. A system may trigger a chain reaction by measuring its resilience
and by extension the systemic resilience. The proper question is what may trigger
contagion. Following (Lorenz 2010) we have to capture the butterfly which may
engender a twister? Two families of triggers are analyzed: first is based on the impact
of external (and/or extreme) events, the second is based on the impacts of inadequate
models for predictions or risks measurement: explicitly models defaulting over time
due to their non adaptivity to dynamical environmental changes. The first trigger
needs to take into account fundamental macro-economic data or massive operational
risks while the second trigger deals with the limitations of the quantitative models
for forecasting, pricing, evaluating capital or managing the risks. A model’s example
of system failure was the use of the Gaussian copula to price CDOs (and CDS),
mis-capturing the intrinsic upper tail dependencies characterizing CDOs tranches
correlations. These ledding to mis-pricing and mis-hedging positions and in fact



92 D. Guégan and B. K. Hassani

producing the experienced financial breakdowns. It may be argued that if inside
the banks-limitations, pitfalls and other drawbacks of models used were correctly
identified, understood and handled, and if the associated products were correctly
known, priced and insured, then the effects of the crisis may not have been as
important.

This paper is structured as follows. In Section two the stress testing framework
is presented. In the third Section the mathematical tools required to develop the
stress testing procedures are introduced. Finally, in a fourth section we discuss and
illustrate integration of the stress-testing strategy directly into the risk models.

2 The Stress-Testing Framework

A stress-testing exercise means choosing scenarii that are costly and rare which can
lead to the financial institution failure, To do so, we integrate these scenarii in a model
to measure their impact. The integration process may be a simple linear increase of
parameters to augment the outcomes’confidence interval, or switch to more advanced
models predicting the potential loss due to an extreme event or a succession of
extreme events. To do so we implement various methodologies allowing the capture
of multiple behaviours, or adding exogenous variables.

The objective of this exercise is to strengthen management’s rate assessment
to better understanding extreme exposures, i.e. exposure that may fall beyond the
“business as usual” domain of a model. We define the capture domain of a model by
its capability to be resilient to the occurrence of an extreme event, i.e. the relevant
risk measure would not fluctuate or would do so only in a narrow range of values, or
would not breach the selected confidence intervals too often.

When a financial institution proceeds to stress tests, its accept that its exposure only
up to a certain extent. This is due to incomplete data sets used to calibrate the models.
The information set is partial and is not adapted to the real economy. In fact the data
sets contain only past incidents, and if crisis accounted they do not integrate futur
extreme events which are by definition unknown. In other words, even if models are
conservative enough to consider eventual Black Swans (Taleb 2010), stress-testing
provides a greater awareness of Black Swans “with blue eyes and white teeth”.

Selecting the appropriate scenario is equivalent to selecting the factors that may
have an impact on the models, (e.g. covariates) and to define the stress’ level. These
scenarii are planned to characterize shocks likely to occur more than what historical
observations would indicate: shocks that have never occurred (stress expected loss),
shocks reflecting circumstantial break downs, shocks reflecting future structural
breaks. Mathematically all new shocks’ categories entail drawing some new fac-
tor distribution f ∗ which is not equal to the original distribution f that characterizes
the original data set. Every type of shock has to include correlations, co-movements
and specific events, such as crash, bankruptcy, systemic failure, etc.

When scenarii are assessed practitioners have to assess their various outcomes.
Are they relevant to the goal of stress testing? Are they internally consistent? Are they
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archetypal? Do they represent relatively stable outcome situations? Risk managers
would identify extremes outcomes and their causes and assess their consistency and
plausibility. Three key points may be addressed:

1. Time frame: are “new” trends compatible within the time frame in question?
2. Internal consistency: do sources of uncertainty account in probable scenarii?
3. Stakeholder influence: Are scenarii reliable, when considering the potential

negative effect to shareholders?

In fact, there are many risk sources to be taken into account inside stress tests. We
enumerate specific risks for which particular attention ought to be given, and con-
stantly new information used to continuously update and the likelihood of potential
severe outcomes reflected in banks’ internal assessments. These are mainly market,
credit, operational and liquidity risks.

Some procedures have traditionally been applied to banks’ market risks defining
trading portfolios by considering multiple states of nature scenarii (some unlikely)
impacting various risk factors. Traditionally three kinds of approaches are used, stan-
dard, historical and worst-case scenarii. This approach to stress testing is probably
too simple and therefore may be incomplete due to over simplicity.

The credit risk stress testing has been integrated into the capital calculations
formulas through the Loss Given Default distribution. The credit risk stress test-
ing concerns other domains that the capital allocation. For example Majnoni et al.
(2001) linked the ratio non-performing loan over total assets to several fundamentals
macroeconomic variables such as nominal interest rates, inflation, GDP, etc.; Bunn
et al. (2005) measured the impact of aggregate default rates and LGD evaluation of
aggregated write-offs for corporate mortgages and unsecured lendings using standard
macroeconomic factors like GDP, unemployment, interest rates, income gearing and
loan to value ratios. This last component may be particularly judicious in the UK
considering the level of interest rate for mortgages sold in the past few years. Practi-
tioners (Pesola 2007) argue that unexpected shocks should drive loans related losses
and the state of system, i.e. a more fragile system would worsen the losses. Therefore
factors weakening a financial system should interact in a multiplicative way. Coun-
terparty credit exposure may either be represented by the “current” exposure, the
“expected” exposure or the “expected positive” exposures. Stressing the exposure
distributions would naturally impact the measures based on them, for instance the
Credit Value Adjustement (CVA) (Gregory 2012) via the expected exposure or the
expected loss via the expected positive exposure.

Operational risks are stressed through extreme scenarii. Following the demand
of the regulator, the implemented methodologies are often conservative providing
risk measures larger than what empirical data or traditional approach would give
to practitioners. However these are not sufficient studies to provide an accurate
representation of these risks over time. Alternative strategies need to be developed
such as those presented in the next section.

Liquidity risk arises from situations in which an entity interested in trading an
asset cannot do it because nobody wants to buy or sell it with respect to the market
conditions. Liquidity risk becomes particularly important to entities which currently
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hold an asset (or want to held it) since it affects their capability to trade. Manifesta-
tions of liquidity risk are very different if it comes from price dropping to zero. In
case an asset’s price falling to zero the market is saying that the asset is worthless.
However if one bank cannot find a counterparty interested in trading the asset this
may only be a problem of market equilibrium, i.e. the participants have trouble find-
ing each other. This is why liquidity risk is usually found to be higher in emerging
or low-volume markets. Accordingly liquidity risk has to be managed in addition
to market, credit and operational risks. Because of its tendency to compound other
exposures it is difficult or impossible to isolate liquidity risk. Some ALM techniques
can be applied to assessing liquidity risk. A simple test for liquidity risk is to look
at future net cash flows on a day-by-day basis where any day that has a sizeable
negative net cash flow is of concern. Such an analysis can be supplemented with
stress testing.

In this paper we only partially deal with the “micro” liquidity risk, i.e. the liquidity
of an asset, by opposition to the “macro” liquidity exposure, i.e. of a financial insti-
tution which is an aggregated measure assuming that it is included in market prices
dropping up to a certain extent which is captured in the market risk measurement.
The liquidity position of a financial institution is measured by the quantity of assets
to be sold immediately to face the liquidity requirements, even considering a haircut,
while the price of an asset on the market is illiquid if there is no demand and its price
is actually equal to 0, and consequently the measure should be forward. As a result
considering the previous statement-in the next section-we focus on methodologies to
measure and stress the solvency of financial institutions in relation to market, credit
and operational risks.

3 Tools

In this section some of the tools required to develop stress test strategies are in-
troduced. The main ingredient which is determinant in our point of view is the
information set on which our work relies. This set is definitively determinant and
whatever the methodologies we will use latter the conclusions cannot be done with-
out referring to this information set. After discussing the role of the data set we briefly
recall the measures of risks which can be used and how they can be computed. This
leads us in a first step to introduce the distributions appearing relevant to obtained
realistic risks measures (from an univariate point of view) and second the notion
of dependence permitting to capture interdependences between the risks in order to
properly evaluate their risk measures in a multivariate framework. Finally the ques-
tion of dynamics that should be captured in all strategies of risk management is also
discussed.

An a priori which is important to note is that financial data sets are always formed
with discrete time data and they cannot be directly associated to continuous data thus
in this chapter the techniques we present are adapted to this kind of data set.
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3.1 Data Mining

Feeding the scenario analysis and evaluating the potential outcomes lie on the quality
of the information set used. Therefore a data mining process should be undertaken.
Data mining is the computational process of discovering patterns in large data sets.
The objective process is to extract information from a data set, make it understandable
and prepare it for further use. In our case the data mining step is equivalent to a
pre-processing exercise. Data mining involves almost six common classes of tasks
(Fayyad et al. 1996):

(a) Anomaly detection–This is the search of events which do not conform to expected
patterns. These anomalies are often translated into actionable information.

(b) Dependency analysis–The objective is to detect interesting relationships between
variables in databases.

(c) Clustering–Cluster analysis consists in the task of creating groupings of similar
objects.

(d) Classification–The classification consists in generalizing known structure to be
applicable to new data sets.

(e) Regression & fittings–This statistical process purpose is to find the appropriate
model, distribution or function which represent the “best” (in a certain sense) fit
for the data set.

(f) Summarisation–This step purpose is to provide a synthetic representation of the
data set.

These classical techniques are recalled as they could be interesting in certain cases
to determine the sets or subsets on which we should work. They could also be useful
to exhibit the main features of the data before beginning a probabilistic analysis (for
the risk measure) or doing a time series analysis to examine the dynamics which
seems the more appropriate for stress testing purposes.

3.2 Risk Measures

Even if at the beginning the risk in the banks was evaluated using the standard
deviation applied to different portfolios the financial industry uses now the quantile-
based downside risk measures including the Value-at-Risk (V aRα for confidence
level α) and Expected Shortfall. The V aRα measures the losses that may be expected
for a given probability, and corresponds to the quantile of the distribution which
characterizes the asset or the type of events for which the risk has to be measured.
Thus, the fit of an adequate distribution to the risk factor is definitively an important
task to obtain a reliable value of the risk. Then, in order to measure the importance
of the losses beyond the VaR percentile and to capture the diversification benefits the
expected shortfall measure has been introduced.
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The definitions of these two risks measures are recalled below:

Definition 3.1 Given a confidence level α ∈ (0, 1), the V aRα is the relevant
quantile2 of the loss distribution, V aRα(X) = inf{x | P [X > x] � 1 − α} =
inf{x | FX(x) � α} where X is a risk factor admitting a loss distribution FX .

Definition 3.2 The Expected Shortfall (ESα) is defined as the average of all losses
which are equal or greater than V aRα:

ESα(X) = 1

1 − α
∫ 1

α

V aRαdp

The Value at Risk initially used to measure financial institutions market risk was
popularised by Riskmetrics (1993). This measure indicates the maximum probable
loss given a confidence level and a time horizon. The V aRα is sometimes referred as
the “unexpected” loss. The expected shortfall has a number of advantages over the
V aRα because it takes into account the tail risk and fulfills the sub-additive property.
It has been widely dealt with in the literature, for instance in Artzner et al. (1999)
and Rockafellar and Uryasev (2000, 2002). Relationships between V aRα and ESα,
for some distributions can be found in this book inside the chapter of Guégan et al.
(2014).

Nevertheless even if the regulators asked to the banks to use theV aRα and recently
the ESα to measure their risks and ultimately provide the capital requirements to
avoid bankruptcy these risk measures are not entirely satisfactory:

• They provide a risk measure for an α which is too restrictive considering the risk
associated to the various financial products;

• The fit of the distribution functions can be complex or inadequate in particular
for the practitioners who want to follow the guidelines proposed by the regulators
(Basel II/III guidelines). Indeed, in case of the operational risks the suggestions
is to fit a GPD which does not correspond very often to a good fit and whose
carrying out can be difficult.

• It may be quite challenging to capture extreme events. Taking into account these
events in modelling the tails of the distributions is determinant.

• Finally all the risks are computed considering unimodal distributions which can
be non realistic in practice.

Recently several extensions have been analysed to overcome these limitations and to
propose new routes for the risk measures. These new techniques are briefly recalled
and we suggest the reader to look at the chapter of Guégan et al. (2014) in this book
for more details, developments and applications:

• Following our proposal we suggest the practitioners to use several α to obtain
a spectrum of their expected shortfall and to visualize the evolution of the ES
with respect to these different values. Then, a unique measure can be provided

2 V aRα(X) = q1−α = F−1
X (α).
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making a convex combination of these different ES with appropriate weights. This
measure is called spectral measure (Acerbi and Tasche 2002).

• In the univariate approach if we want to take into account information contained
in the tails we cannot restrict to the GPD as suggested in the guidelines provided
by the regulators. There exist other classes of distributions which are very in-
teresting, for instance the generalized hyperbolic distribution (Barndorff-Nielsen
and Halgreen 1977), the extreme value distributions including the Gumbel, the
Frechet and the Weibull distributions (Leadbetter 1983), the α-stable distributions
(Taqqu and Samorodnisky 1994) or the g-and-h distributions (Huggenberger and
Klett 2009) among others.

• Nevertheless the previous distributions are not always sufficient to properly fit the
information in the tails and another approach could be to build new distributions
shifting the original distribution on the right or left parts in order to take a different
information in the tails. Wang (2000) proposes such a transformation of the initial
distribution which provides a new symmetrical distribution. Sereda et al. (2010)
extend this approach to distinguish the right and left part of the distribution taking
into account more extreme events. The function applied to the initial distribution
for shifting is called a distortion function. This idea is ingenious as the informa-
tion in the tails is captured in a different way that using the previous classes of
distributions.

• Nevertheless when the distribution is shifted with a function close to the Gaussian
one as in Wang (2000) and Sereda et al. (2010) the shift distribution remains
unimodal. Thus we propose to distort the initial distribution with polynomials of
odd degree in order to create several humps in the distributions. This permits to
catch all the information in the extremes of the distributions, and to introduce a
new coherent risk measure ρ(X) computed under the g ⊗ FX distribution where
g is the distortion operator and FX the initial distribution, thus we get:

ρ(X) = Eg

[
F−1
X (x)|F−1

X (x) > F−1
X (δ)

]
. (1)

All these previous risk measures can be included within a stress testing strategy.

3.3 Univariate Distributions

This section proposes several alternatives for the fitting of a proper distribution to
the information set related to a risk (losses, scenarios, etc.). The knowledge of the
distributions which characterises each risk factor is determinant for the computation
of the associated measures and will be also determinant in the case of a stress test. The
elliptical domain needs to be left aside to consider distributions which are asymmetric
and leptokurtic like the Generalized Hyperbolic distributions, Generalized Pareto
distributions, or Extreme Value Distributions among others. Their expressions are
recalled in the following.
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The Generalized Hyperbolic Distribution (GHD) is a continuous probability dis-
tribution defined as a mixture of an inverse Gaussian distribution and a normal
distribution. The density function associated to the GHD is:

f (x, θ ) = (γ /δ)λ√
2πKλ(δγ )

eβ(x−μ)
Kλ−1/2

(
α
√
δ2 + (x − μ)2

)
(√
δ2 + (x − μ2)/α

)1/2−λ , (2)

with 0 ≤ |β| < α. This class of distributions is very interesting as it relies on five
parameters. If the shape parameter λ is fixed then several well known distributions
can be distinguished:

(a) λ = 1: hyperbolic distribution
(b) λ = −1/2: NIG distribution
(c) λ = 1 and ξ → 0: Normal distribution
(d) λ = 1 and ξ → 1: Symmetric and asymmetric Laplace distribution
(e) λ = 1 and χ → ±ξ : Inverse Gaussian distribution
(f) λ = 1 and |χ | → 1: Exponential distribution
(g) −∞ < λ < −2: Asymmetric Student
(h) −∞ < λ < −2 and β = 0: Symmetric Student
(i) γ = 0 and 0 < λ <∞: Asymmetric Normal Gamma distribution

The four other parameters can be then associated to the first four moments permitting
a very good fit of the distributions to the corresponding losses.

Another class of distributions is the Extreme Value Distributions built on se-
quences of maxima obtained from the initial data sets. To introduce this class, the
famous Fisher-Tippett theorem needs to be recalled:

Theorem 3.1 Let be (Xn)a sequence of i.i.d.r.v. If it exists constants cn > 0, dn ∈ IR
and a non degenerated distribution function Gα such that

c−1
n (Mn − dn) L→ Gα (3)

then Gα is equal to:

Gα(x) =
{

exp
(
−(1 + αx)−

1
α

)
α �= 0, 1 + αx > 0

exp
(−e−x) α = 0, x ∈ IR

This function Gα(x) contains several classes of extreme values distributions:

.Fréchet (type III) : �α(x) = G1/α

(
x − 1

1/α

)
=
{

0 x ≤ 0
exp

(−x−α) , x > 0, α > 0

.Weibull (Type II) : �α(x) = G−1/α

(
x + 1

1/α

)
=
{

exp{−( − xα)}, x ≤ 0, α > 0
1

.Gumbel (Type I) :  (x) = G0(x) = exp
(−e−x) , x ∈ IR.
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Considering only the maxima of a data set is an alternative to model in a robust
way the impact of the extremes of a series within a stress testing strategy.

Another class of distributions permitting to model the extremes is the distribution
built on a data set defined above or under a threshold. Let X a r.v. with distribution
function F and right end point xF and a fixed u < xF . Then,

Fu(x) = P [X − u ≤ x|X > u], x ≥ 0,

is the excess distribution function of the r.v. X (with the df F ) over the threshold u,
and the function

e(u) = E[X − u|X > u]

is called the mean excess function of X which can play a fundamental role in risk
management. The limit of the excess distribution has the distributionGξ defined by:

Gξ (x) =
{

1 − (1 + ξx)− 1
ξ ξ �= 0,

1 − e−x ξ = 0, .

where,

x ≥ 0 ξ ≥ 0,
0 ≤ x ≤ − 1

ξ
ξ < 0, .

The function Gξ (x) is the standard Generalized Pareto Distribution. One can
introduce the related location-scale familyGξ ,ν,β (x) by replacing the argument x by
(x − ν)/β for ν ∈ IR, β > 0. The support has to be adjusted accordingly. We refer
to Gξ ,ν,β(x) as GPD.

Another class of distributions is the class of α-stable distributions defined through
their charateristic function also relying on several parameters. For 0 < α ≤ 2,
σ > 0, β ∈ [ − 1, 1] and μ ∈ R+, Sα(σ ,β,μ) denotes the stable distribution
with the characteristic exponent (index of stability) α, the scale parameter σ , the
symmetric index (skewness parameter) β and the location parameter μ. Sα(σ ,β,μ)
is the distribution of a r.v. X with characteristic function,

E[eixX] =
{
exp(iμx − σα|x|α(1 − iβsign(x)tan(πα/2))) α �= 1,
exp(iμx − σ |x|(1 + (2/π )iβsign(x)ln|x|)) α = 1 ,

where x ∈ R, i2 = −1, sign(x) is the sign of x defined by sign(x) = 1 if x >
0, sign(0) = 0 and sign(x) = −1 otherwise. A closed form expression for the
density f (x) of the distribution Sα(σ ,β,μ) is available in the following cases: α = 2
(Gaussian distribution), α = 1 and β = 0 (Cauchy distribution) and α = 1/2 and
β = +/−1 (Levy distributions). The index of stability α characterises the heaviness
of the stable distribution Sα(σ ,β,μ).

Finally we introduce the g-and-h random variableXg,h obtained transforming the
standard normal random variable with the transformation function Tg,h:

Tg,h(y) =
⎧⎨
⎩
exp(gy)−1

g
exp

(
hy2

2

)
g �= 0,

yexp
(
hy2

2

)
g = 0, .
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Thus
Xg,h = Tg,h(Y ), when Y ∼ N (0, 1).

This transformation allows for asymmetry and heavy tails. The parameter g deter-
mines the direction and the amount of asymmetry. A positive value of g corresponds
to a positive skewness. The special symmetric case which is obtained for g = 0 is
known as h distribution. For h > 0 the distribution is leptokurtic with the mass is
the tails increasing in h.

Thus to model the margins of all items forming a portfolio we have several choices
in order to capture asymmetry, leptokurtosis and extreme events:

• The Generalized Hyperbolic Distribution
• The ExtremeValue DistributionGα , α ∈ IR which describes the limit distributions

of normalised maxima
• The Generalized Pareto DistributionGξ ,β(x), ξ ∈ IR, β > 0 which appears as the

limit distribution of scaled excesses over high thresholds.
• The α-stable distributions
• The g-and-h distributions.

Now with respect to the risks we need to measure the estimation and the fitting of the
univariate distributions will be adapted to the data sets. The models will be different
depending on the kind of risks we would like to investigate.

3.4 Interdependence Between Risks

A necessity of the stress testing is to take into account the interactions or interde-
pendences between the entities, business units, items or risks. In most of the case, a
bank will be associated to a unique risk portfolio and this one is often modelled as a
weighted sum of all its parties. This approach is very restrictive as even if it captures
in a certain sense the correlation between the lines it is not sufficient to model all the
dependences between the risks characterising the bank. The same observation can be
done when we consider the interactions between the different banks trading by the
way the same products. We need to bypass this univariate approach and work with
a multivariate approach. This multivariate approach permits to explain and measure
the contagion effects between all the parties to model the systemic risks and their
possible propagation between the different parties.

A robust way to measure the dependence between large data sets is to compute
their joint distribution function. As soon as independence between the assets or
risks characterizing the banks or between the banks cannot be assumed measuring
interdependence can be done through the notion of copula. Recall that a copula is
a multivariate distribution function linking a large set of data through their standard
uniform marginal distributions (Bedford and Cooke 2001; Berg andAas 2009). In the
literature, it has often been mentioned that the use of copulas is difficult when we have
more than two risks apart from using elliptical copulas such as the Gaussian one or
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the Student one (Gourier et al. 2009). It is now well known that these restrictions can
be released considering recent developments on copulas either using nested copulas
(Sklar 1959; Joe 2005) or vine copulas (Mendes et al. 2007; Rodriguez 2007; Weiss
2010; Brechmann et al. 2010; Guégan and Maugis 2010) and (Dissmann et al.
2013). These n-dimensional copulas need to be fed by some marginal distributions.
For instance they can correspond to distributions characterizing the various risks
faced by a financial institution. The calibration of the exposure distribution plays
an important role in the assessment of the risks, whatever the method used for the
dependence structure as discussed in the next section.

Until now most practitioners use Gaussian or Student t-copulas however they fail
to capture asymmetric (and extreme) shocks (for example operational risks severity
distributions are asymmetric-sic!). Using a Student t-copula with three degrees of
freedom3 to capture a dependence between the largest losses would mechanically
imply a higher correlation between the very small losses. An alternative is to use
Archimedean or Extreme Value copulas (Joe 1997a) which have attracted particular
interest due to their capability to capture the dependence embedded in different parts
of the marginal distributions (right tail, left tail and body). The mechanism is recalled
in the following.

Let X = [X1,X2, . . .,Xn] be a vector of random variables, with joint distri-
bution F and marginal distributions F1,F2, . . .,Fn . Sklar (1959) theorem insures
the existence of a function C(.) mapping the individual distribution to the joint
distribution:

F (x) = C (F1(x1),F2(x2), . . .,Fn(xn)) .

From any multivariate distribution F , the marginal distributions Fi can be extracted,
and also the copula C. Given any set of marginal distributions (F1,F2, . . .,Fn) and
any copulaC the above formula can be used to compute the joint distribution with the
specified marginals and copula. The functionC can be an Elliptical copula (Gaussian
and Student Copulas) or an Archimedean copulas (defined through a generator) as

C(FX,FY ) = φ−1 [φ(FX) + φ(FY )] ,

including the Gumbel, the Clayton the Franck copulas, among others. The
Archimedean copula are easy to use because of the link existing between the Kendall’s
tau and the generator φ:

τ (Cα) = 1 + 4
∫ 1

0

φα(t)

φ′
α(t)

dt. (4)

If we want to measure the interdependence between more than two risks the
Archimedean nested copula is the most intuitive way to build n-variate copulas with

3 A low number of degrees of freedom imply a higher dependence in the tail of the marginal
distributions.
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bivariate copulas and consists in composing copulas together yielding formulas of
the following type. For instance when n = 3:

F (x1, x2, x3) = Cθ1,θ2 (F (x1),F (x2),F (x3))

= Cθ1
(
Cθ2 (F (x1),F (x2)),F (x3)

)
where θi , i = 1, 2 is the parameter of the copula. This decomposition can be
done several times, allowing to build copulas of any dimension under specific con-
straints to insure that it is always a copula. Therefore a large number of multivariate
Archimedean structures have been developed for instance, the fully nested struc-
tures, the partially nested copulas and the hierarchical ones. Nevertheless all these
architectures imply restrictions on the parameters and impose using an Archimedean
copula at each node, making their use limited in practice. To bypass the restrictions
imposed by the previous nested strategy an intuitive approach proposed by Genest et
al. (1995) can be used based on a pair-copula decomposition such as the D-vine (Joe
1997b) or the R-vine (Mendes et al. 2007). These approaches rewrite the n-density
function associated with the n-copula as a product of conditional marginal and copula
densities. All the conditioning pair densities are built iteratively to obtain the final
one representing the entire dependence structure. The approach is simple and has no
restriction for the choice of functions and their parameters. Its only limitation is the
number of decompositions to consider as the number of vines grows exponentially
with the dimension of the data sample and thus requires the user to select a vine from
n!
2 possible vines, (Capéraà 2000; Galambos 1978; Brechmann et al. 2010; Guégan
and Maugis 2010, 2011). These are briefly introduced now.

If f denotes the density function associated with the distribution F of a set of
n r.v.X, then the joint n-variate density can be obtained as a product of conditional
densities. For instance when n = 3 the following decomposition is obtained:

f (x1, x2, x3) = f (x1).f (x2|x1).f (x3|x1, x2),

where,

f (x2|x1) = c1,2(F (x1),F (x2)).f (x2),

and c1,2(F (x1),F (x2)) is the density copula associated with the copulaC which links
the two margins F (x1) and F (x2). With the same notations we have:

f (x3|x1, x2) = c2,3|1(F (x2|x1),F (x3|x1)).f (x3|x1)

= c2,3|1 (F (x2|x1) ,F (x3|x1)).c1,3(F (x1),F (x3)).f (x3).

Then,

f (x1, x2, x3) =f (x1).f (x2).f (x3)

.c1,2(F(x1),F (x2)).c1,3(F (x1), F(x3)) (5)

.c2,3|1(F(x2|x1), F(x3|x1)).
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Other decompositions are possible using different permutations. These decompo-
sitions can be used whatever the links between the r.v. as there is no constraint. To
use it in practice and eventually to obtain an initial measure of dependence between
the risks inside the banks the first conditioning has to be selected.

3.5 Dynamic Approach

In order to take into account events at the origin of stress some banks consider them
as single events by simply summing them thus the complete dependence scheme
including their arrival time is not taken into account; it appears unrealistic as it may
lead to both inaccurate capital charge evaluation and wrong management decisions.
In order to overcome the problems created by these choices we suggest to use the
following methodology based on the existence of dependencies between the losses
through a time series process.

The dependence between assets, risks, etc. within a bank and with other banks
exists and it is crucial to measure it. We propopse in the previous subsection a way
to take them into account. If it does correctly it can avoid the creation of systemic
risks. Nevertheless sometimes this dependence does not appear and it seems that the
independence assumption cannot be rejected a priori, thus a profound analysis should
always be performed at each step of the cognitive process. Therefore, in order to build
a model close to the reality, static models have to be avoided and intrinsic dynamics
should be introduced. The knowledge of this dynamical component should allow to
build robust stress tests. To avoid bankruptcies and failures, generally we focus on the
incidents performing any probabilistic study as proposed in the previous subsections
nevertheless analysing the dynamics embedded within the incidents through time
series will permit to be more reactive and close to the reality. If (Xt )t ∀t denotes the
losses, then our objective is to propose some time series models permitting to link
the losses in time. These dynamics can be expressed in the formal following way:

Xt = f (Xt−1,...
)+ εt , (6)

where the function f (.) can take various expressions to model the serial correla-
tions between the losses, and (εt )t is a strong white noise following any distribution.
Various classes of models may be adopted for instance short memory models e.g. Au-
toRegressive (AR) processes, GARCH models or long term models, e.g. Gegenbauer
processes.

Besides the famous ARMA model which corresponds to a linear regression of
the observations (losses here) on their known passed values (Brockwell and Davis
1988) characterising the fluctuations of the level of the losses it is possible to mea-
sure the amplitude of their volatility using ARCH/GARCH models whose a simple
representation is (Engle 1982; Bollerslev 1986),

Xt |Ft−1 ∼ D(0,ht ), (7)
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where ht can be expressed as:

ht = h (Xt−1,Xt−2, · · · ,Xt−p, a
)

, (8)

where h(.) is a non linear function in the r.v. Xi , i = 1, . . .,p, p is the order of
the ARCH process, a is a vector of unknown parameters, D(.) is any distribution
previously introduced, and Ft−1 the σ -algebra generated by the past of the process
Xs , for s < t , i.e.: Ft−1 = σ (Xs , s < t).

If we observe both persistence and seasonality inside the losses those can be
modelled in the following way:

k∏
i=1

(
I − 2 cos (λi)B + B2

)di Xt = ut , (9)

where k ∈ N , λi are the k frequencies. This representation is called a Gegenbauer
process (Guégan 2005) and corresponds to the k cycles whose periods are equal to
2π/λi and di are fractional numbers which measure the persistence inside the cycles.
This representation includes the FARMA processes (Beran 1994).

Through these time series processes the risks associated to the loss intensity which
may increase during crises or turmoil are captured and the existence of correlations,
dynamics inside the events, and large events will be reflected in the choice of the
residual distributions. With this dynamical approach we reinforce the information
done by the marginal distribution: for instance for operational risks using a time
series permit to capture the dynamics between the losses and the adequate choice of
the distribution of the filtering data set permits to capture the information provided
in the fat tails.

4 Stress-Testing: A Combined Application

Most stress testing processes in financial institutions begin with negative economic
scenarii and evaluate how the models would react to these shocks. Unfortunately,
considering that the stress testing is supposed to evaluate the resilience of the bank in
case of an extreme shock, if the model used to evaluate how the capital requirements
would react to the integration of extreme information, by definition the model does
not fully capture the risks. Obviously, it is not always simple to fully capture a bank
exposure through a model, for two reasons: on the first hand, financial institutions
may follow an adverse selection process, because the more extreme information you
integrate, the larger the capital charge, and on the other hand the risks may not have
all been identified, and in this case we are going way beyond the Black Swans.

In this section using an alternative economic reality we present approaches that
allow to take into account risk behaviors that may not be captured with traditional
strategies. Our objective, is not to say “the larger the capital charge the better”, but
to integrate all the information left aside by traditional methodologies to understand
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what would be the appropriate capital requirement necessary to face a extreme shock
up to a certain threshold; as even if we are going further than traditional strategies
to capture multiple patterns usually left aside, our models-as any model-will have
its limitations, but in our case the pros and cons scale inclines toward the pros. The
methodologies presented in the previous sections are applied to Market, Credit and
Operational Risk data. The data used in this analysis are all genuine and the results
reliable. However, in order not to confuse our message, a fictive financial institution
is considered where its credit risks arise from loans contracted with foreign countries,
the market risks from investments in the French CAC 40 and its operational risks are
only characterized by Execution, Delivery and Process Management failures.

The impact of the methodologies are analysed applying four steps approach:

(a) In a first step, the risk measures are computed using a traditional but not con-
servative approach. The marginal distributions are combined using a Gaussian
copula.

(b) In a second step, the marginal distributions are built challenging the traditional
aspect either methodologically or with respect to the parameters increasing the
conservativeness of the risk metrics.

(c) In a third step, we introduce a dynamical approach.
(d) In a fourth step, the dependence architecture is modified to capture the extreme

dependencies through a Gumbel copula.

Then, for all steps listed above the impact on the capital requirement and mechanically
on both the risk weight asset (RWA) and the bank balance sheet is illustrated.

4.1 Univariate Approach

For each of the three risks (credit, market and operational risks) the objective is to
build profit and loss distributions. Using all data sets three marginal distributions are
constructed considering various type of stress testing to evaluate the buffer a financial
institution should hold to survive to a shock.

4.1.1 Credit Risks

For stressing the credit risk, various options may be considered from the simplest
which would be to shock the parameters of the regulatory approach to the fit of a fat
tailed distribution on the P&L function. The way the parameters are estimated may
also be revised. In this section, three approaches are presented. The first provides a
benchmark following the regulatory way to compute the credit risk capital charge. In
the second step, the inputs are changed to reflect an economical downturn scenario.
In a third step a Stable distribution (Taqqu and Samorodnisky 1994) is fitted on the
P&L distribution to capture extreme shocks.
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Table 1 Correlation matrix
used to evaluate the credit risk
regulatory capital

1 0.4 0.6 0.4 0.5 0.3 0.3 0.2
0.4 1 0.5 0.6 0.5 0.4 0.3 0.2
0.6 0.5 1 0.2 0.3 0.2 0.2 0.2
0.4 0.6 0.2 1 0.2 0.2 0.3 0.4
0.5 0.5 0.3 0.2 1 0.4 0.3 0.2
0.3 0.4 0.2 0.2 0.4 1 0.4 0.4
0.3 0.3 0.2 0.3 0.3 0.4 1 0.2
0.2 0.2 0.2 0.4 0.2 0.4 0.2 1

Traditional Scheme The credit risk rating provided by S&P which characterizes
the probability of default of the sovereigns4. Table 2 provides the probabilities of
moving from a rating to another over a year. For credit risk the regulation (BCBS
2006) provides the following formula to calculate the capital required:

K =
(

LGD ∗Φ
(√

1

(1 − ρ)
∗Φ−1(PD) +

√
ρ

(1 − ρ)
∗Φ−1(Q)

)
− PD ∗ LGD

)

∗ 1

(1 − 1.5 ∗ b)
∗ (1 + (M − 2.5) ∗ b), (10)

RWA = K ∗ 12.5 % ∗ EAD (11)

where, the LGD is the Loss Given Default, the EAD is the Exposure At Default, the
PD is the Probability of Default, b = ((0.11852 − 0.05478) ∗ ln (PD))2 (maturity
adjustment)5, ρ corresponds to the default correlation,M the number of assets, Φ is
the cdf of a Gaussian distribution andQ represents the 99th percentile.

However, in our case the objective is to build a P&L distribution to measure the
risk associated to the loans provided through the VaR or the Expected Shortfall,
and to use it as a marginal distribution in a multivariate approach. Our approach
is not limited to the regulatory capital. Therefore, a methodology identical to the
one proposed by Riskmetrics (1993) has been implemented. This one is based on
Merton’s model (Merton 1972) which draws a parallel between option pricing and
credit risk evaluation to evaluate the Probabilities of Default.

The portfolio used in this section contains loans to eight countries, for which the
bank exposure is respectively $ 40, $ 10, $ 50, $ 47, $ 25, $ 70, $ 40, $ 23 million. The
risk free rate is equal to 3 %. The Loss Given Default has been estimated historicaly
and is set at 45 % and the correlation matrix is presented in Table 1 and the rating
migration matrix in Table 2 (Guégan et al. 2013).

The VaR and the ES obtained are respectively, $ 35 380 683 and $ 40 888 259
(Table 5).

4 http://www.standardandpoors.com/ratings/articles/en/us/?articleType=HTML&assetID=124535
0156739.
5 The maturity adjustment is not always present as it is contingent to the type of credit.

http://www.standardandpoors.com/ratings/articles/en/us/?articleType=HTML&assetID=1245350156739
http://www.standardandpoors.com/ratings/articles/en/us/?articleType=HTML&assetID=1245350156739
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Table 2 Probability of default: Credit migration matrix (S&P)

AAA AA A BBB BB B C D

AAA 92.3 6.9 0.1 0.2 0.5 0.0 0.0 0.0
AA 9.9 82.7 5.0 2.0 0.4 0.0 0.0 0.0
A 0.0 10.8 77.1 9.6 1.7 0.2 0.3 0.3
BBB 0.0 0.0 20.4 69.1 7.2 1.2 0.5 1.6
BB 0.0 0.0 0.0 18.2 67.6 10.4 0.8 3.0
B 0.0 0.0 0.0 0.6 17.1 73.1 2.4 6.8
C 0.0 0.0 0.0 0.0 0.0 32.5 16.6 50.9
D 0 0 0 0 0 0 0 100

Stressing the Input Stressing the input means that the parameters should reflect a
crisis business cycle characterised for example by a decreasing GDP, an increasing
unemployment rate, etc. resulting in higher probabilities of default, larger exposures
at defaults, higher correlation etc. Considering that during an economical downturn,
input data are already stressed, is extremely risky, as they do not contain the next
extreme events. The objective of the stress testing is to evaluate the resilience of the
bank to extreme shocks, where the term extreme characterises events that are worse
than what the financial institution already experienced.

Table 3 Probability of default: Stress credit migration matrix

AAA AA A BBB BB B C D

AAA 88.81 8.53 0.88 0.36 0.38 0.32 0.31 0.41
AA 0.30 80.65 13.79 2.44 1.56 0.53 0.32 0.41
A 0.00 0.00 74.25 16.98 5.24 2.46 0.51 0.56
BBB 0.00 0.00 3.95 68.93 13.15 7.57 4.92 1.48
BB 0.00 0.00 0.00 5.73 65.25 25.26 2.2 1.56
B 0.00 0.00 0.00 0.00 5.39 73.06 12.54 9.01
C 0.00 0.00 0.00 0.00 0.00 13.01 34.1 52.89
D 0 0 0 0 0 0 0 100

The LGD has been stressed from 0.45 to 0.55, and Table 3 provides the stressed
ratings migration matrix. In credit risk management, the simple application of a LGD
downturn as prescribed by the regulation is by itself the integration of stress-testing
into the traditional credit risk management scheme. The method to evaluate the risk
is identical to the one presented in the previous subsection, only the components have
been stressed. Compared to the metric obtained using Eq. 10, the value increased by
31.5 % from $35 380 683 to $46 556 127 (Table 5).

Stressing the P&L Distribution Though stressing the input may already provide
a viable alternative, the creation of the loss distribution is questionable as it may
not capture extreme shocks beyond the input parameters. An interesting approach
is to fit a Stable distribution on the P&L distribution created using the regulatory
scheme. The underlying assumption is that the regulatory distribution is not con-
servative enough, therefore a more conservative distribution should be fitted to the
regulatory P&L function. The stable distribution is leptokurtic and heavy tailed, and
its four parameters allow a flexible calibration allowing the capture of embedded
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Fig. 2 Estimation of the Stable distribution using the McCulloch method

Table 4 Parameters of the Stable distribution fitted on the stressed P&L distribution obtained by
stressing the input of the credit capital model

α β γ δ

Parameters 0.801 0.950 2915380.878 −1583525.686
s.d. 0.013 0 277961.5 176248.9

or assumed tail behaviours. The parameters of the Stable distribution are estimated
using McCulloch approach (Fig. 2) (McCulloch 1996), (Table 4).

Comparing to the two previous other methods the values obtained from the Stable
distribution we observe that we get higher values of risk measures potentially unre-
alistic. For instance the VaR is superior to $572 million which is almost twice the
value of the portfolio, while or loss is limited to amount lent. It is more interesting
to analyze the results obtained using the α distribution in terms of the probability of
occurences of the events. Indeed the probability of loss using the VaR value obtained
from the stressed input approach (i.e. $46 556 127) is supposed to a 1 % probability
of loss but with the stable distribution it is in a 7.7 % probability of loss (Table 5).
Therefore, the risk of such a loss is much higher with respect of our assumptions and
should be mitigated consequently.

Thus, it appears that stressing the input is not sufficient and the key point in terms
of stress testing lies on the choice of the P&L distribution during the crisis.

4.1.2 Market Risks

To illustrate our analysis, the methodologies presented in the previous section have
been applied to data extracted from the CAC 40 index. These closing values of the
index have been collected from 01 March 1990 to 06 December 2013, on a daily
basis. The time series is presented in Fig. 3.
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Table 5 This table presents the risk measures computed considering the three approaches presented
to model the credit risk, for instance the regulatory approach, the stressed input approach and the fit
of a Stable distribution. The more conservative the approach the larger the risk measures. Comparing
the values obtained from the Stable distribution to the others exhibits much larger risk measures,
potentially unrealistic. Here, we suggest changing the way the results are read. The line labeled
“Percentile Equivalent” provides the probability of losing the VaR value obtained from the stressed
input approach (i.e. $ 46 556 127) considering a Stable distribution. What was supposed to be a
1 % probability of loss is in fact a 7.7 % probability of loss considering the Stable distribution

VaR ES

Regulatory $ 35 380 683 $ 40 888 259
Stressed Input $ 46 556 127 $ 60 191 821
Stable Distribution $ 572 798 381 $ 13 459 805 700
Percentile Equivalent 92.3 % NA

Time
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Fig. 3 CAC 40 index values from 01 March 1990 to 06 December 2013

In this subsection, we assume that our fictive financial institution only invested in
the assets constituting the CAC 40 index, in the exact proportion that they replicated
the index in such a way that daily returns of their portfolio are identical to those of

the CAC 40 index. The daily return are computed as follows, log
(
Indext
Indext−1

)
. The

histogram of the daily log returns are represented in Fig. 4.
In this application, an initial investment of 100 million is considered.

Traditional Scheme Two approaches are considered to build the Profit and Loss
distributions, the Gaussian approximation and the historical log return on investment.
In a first step, a Gaussian distribution is used. The Gaussian VaR is obtained using
the following equation,

V aRMarket = I0 ∗ σ ∗ φ−1
α (0, 1) ∗√(10), (12)

where I0 represents the initial investment, σ is the standard deviation of the log return
of the index, φ−1 is the quantile function of the standard normal distribution,

√
(10)

is the square root of the 10 days and α is the appropriate percentile. Following the
current paradigm, in a first step, α = 0.95 and σ = 1.42 % are used.
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Histogram of the CAC 40 daily return
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Fig. 4 Histogram of CAC 40 daily return

A common alternative is to calculate the historical VaR applying the 10-day log
returns of the index time series to the portfolio value continuously compounded
assuming no reduction, increase or alteration of the investment. 95 % VaR and ES
have been computed and the results are presented in Table 8.

Stressing the Distribution The market risk measure is stressed switching from the
traditional Gaussian distribution to a normal-inverse Gaussian distribution (NIG).
As presented above, the NIG is a continuous probability distribution that is defined
as the normal variance-mean mixture where the mixing density is the inverse Gaus-
sian distribution. The NIG is a particular case of the generalised hyperbolic (GH)
distributions family. This distribution is much more flexible and capture asymmetric
shocks and extreme behaviours by integrating the skewness and the kurtosis of the
data in the parameterization.

The parameters fitted on the 10-day log returns of the index time series applied
to the portfolio value continuously compounded assuming no reduction, increase or
alteration of the investment are provided in Table 6 and also their variances. The
results for the VaR and the ES are provided in Table 8.

Table 6 Parameters of the NIG fitted on the 10-day log returns of the index time series applied to
the portfolio value continuously compounded, and their variance covariance matrix

ᾱ μ σ γ

Parameters 131.8729 6373148.7957 5401353.9667 168.4646
Var-Cov ᾱ μ σ γ

ᾱ 1.363399312 1.564915e+00 −0.0023311711 −8.865840e-02
μ 1.564914681 2.280498e+06 0.1230302070 −1.628887e+05
σ −0.002331171 1.230302e-01 0.0005837707 9.642882e-03
γ −0.088658405 −1.628887e+05 0.0096428820 3.257814e+05
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Fig. 5 ACF of the CAC 40 weekly return

Capturing an Intrinsic Dynamic Considering the market data, an ARMA model
is substituted to the Gaussian approach and the appropriate distribution (potentially
fat tailed) is fitted on the residuals. This approach allows the capture of intrinsic
dynamics, i.e. time dependencies, between the various data points representing the
returns. This approach enables capturing the patterns embedded during the crisis
periods covered by the data sets, patterns which would be diluted in a more traditional
approach such as a simple Gaussian or Historical approach. During a crisis, the VaR
obtained would be larger as the weight of the latest events would be larger than for
the oldest ones.

In a first step, the data are tested to ensure the series be stationary. The initial
augmented Dickey-Fuller test (Said and Dickey (1984)) rejects the stationarity as-
sumption, as the plot of the time series does not show any trends, the data are initially
filtered to remove the seasonality components using a LOWESS process (Cleveland
1979). The results of the augmented Dickey-Fuller test post filtering is exhibited
below.

Dickey-Fuller = −10.6959, Lag order = 10, p-value = 0.01

The p-value lower than 5 % allows not to reject the stationarity assumption. Consider-
ing the ACF and the PACF of the time series, respectivelly exhibited in Figs. 5 and 6,
anARMA(1,1) has been adjusted on the data. Figure 6 exhibits some autocorrelations
up to 22 weeks before the latest. This could be consistent with the presence of long
memory in the process. Unfortunately, the estimation procedure failed estimating
the parameters properly for both the ARFIMA and the Gegenbaueur alternatives.

A NIG is fitted on the residuals. Parameters for theARMA are presented in Table 7
and for the NIG residuals distribution in Table 7.

ARMA φ1 = −0.3314, θ1 = 0.2593
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Fig. 6 PACF of the CAC 40 weekly return

Table 7 Parameters of the NIG fitted on the residuals engendered by the ARMA adjusted on the
weekly CAC 40 log return. The variance covariance matrix is also provided

ᾱ μ σ γ

Parameters 2.127453461 0.007864290 0.028526513 − 0.007269106
Var-Cov ᾱ μ σ γ

ᾱ 0.0577158575 2.513919e-04 − 2.740407e-03 − 2.486429e-04
μ 0.0002513919 7.033579e-06 − 2.430003e-05 − 7.037312e-06
σ − 0.0027404071 − 2.430003e-05 7.635435e-04 2.291703e-05
γ − 0.0002486429 − 7.037312e-06 2.291703e-05 7.737263e-06

Table 8 presents risk measures computed for each of the four approach implemented.
In our case the Gaussian approach provides values for the risk measures which are
lower than the values obtained using historical data, therefore the Gaussian distri-
bution does not capture the tails properly and appears irrelevant. The NIG and the
ARMA process are both providing larger risk measures at the 99 % confidence level,
which would be irrelevant for a traditional capital requirement calculation, but may
be interesting for stress testing as in that kind of exercises, the question is to un-
derstand what could lead to the failure of the institution, and more specificaly from
a market risk perpective, what could lead to the loss of our asset portfolio6. This
reverse stress testing process is captured by the model. It is interesting to note that
a conservative but static approach (the NIG) provides larger risk measures than a
dynamic approach fitting the same distribution on the residuals. This means that the
simple capture of the extreme events by calibrating a fat tailed distribution may be
misleading regarding our interpretation of the exposure and that the research of the
dynamic component is crucial. The threat is represented by an over estimation of the
exposure and its implied falacious management decisions.

6 Note that the ES obtained from the NIG is far superior to the initial investment, but is still consistent
regarding a continously coumpounded portfolio.
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Table 8 This table presents the risk measures computed considering the three approaches presented
to model the market risk, for instance, the traditional approach either calibrating a Gaussian dis-
tribution or using an historical approach, fitting a NIG distribution to value of the portfolio and
adjusting an ARMA process combined with a NIG on the residuals (Time Series). The risk measure
have been computed at the 99 % level

VaR ES

Gaussian 7 380 300 9 261 446
Historic 8 970 352 12 871 355
NIG 93 730 084 157 336 657
Time Series 63 781 366 64 678 036

4.1.3 Operational Risks

This section describes how risks are measured considering three different approaches:
the first one corresponds to the traditional Loss Distribution Approach (Guégan
and Hassani 2009; Hassani and Renaudin 2013; Guégan and Hassani 2012b) the
second assumes that the losses are strong white noises (they evolve in time but in-
dependently)7, and the third one filters the data sets using the time series processes
developed in the previous sections. In the next paragraphs, the methodologies are
detailed in order to associate to each of them the corresponding capital requirement
through a specific risk measure. According to the regulation, the capital charge should
be a Value-at-Risk (VaR) (Riskmetrics 1993), i.e. the 99.9th percentile of the distri-
butions obtained from the previous approaches. In order to be more conservative,
and to anticipate the necessity of taking into account the diversification benefit (Gué-
gan and Hassani 2013a) to evaluate the global capital charge the expected shortfall
(ES) (Artzner et al. 1999) has also been evaluated. The ES represents the mean of
the losses above the VaR therefore this risk measure is informed by the tails of the
distributions.

Traditional Scheme To build the traditional loss distribution function we proceed
as follows. Let p(k, λ) be the frequency distribution associated to each data set,
F (x; θ ), the severity distribution, then the loss distribution function is given by
G(x) = ∑∞

k=1 p(k; λ)F⊗k(x; θ ),x > 0, with G(x) = 0,x = 0. The notation ⊗
denotes the convolution (? ) operator between distribution functions and therefore
F⊗n the n-fold convolution of F with itself. Our objective is to obtain annually
aggregated losses by randomly generating the losses. A distribution selected among
the Gaussian, the lognormal, the logistic, the GEV (Guégan and Hassani 2012a) and
the Weibull is fitted on the severities. A Poisson distribution is used to model the
frequencies. As losses are assumed i.i.d., the parameters are estimated by MLE8.

7 This section presents the methodologies applied to weekly time series, as presented in the result
section. They have also been applied to monthly time series.
8 Maximum Likelihood Estimation.
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Fig. 7 Hill plot obtained from the data characterising CPBP/Retail Banking collected since 2004

Table 9 Parameters of the GPD fitted on the CPBP/Retail Banking collected from 2004 to 2011,
considering an upper threshold of $13 500. The variance covariance matrix is also provided

ξ β

Parameters 8.244216e-01 2.172977e+04
Variances/Covariance ᾱ μ

ξ 0.008012705 − 72.59912
β − 72.599117197 2856807.55692

Capturing the Fat Tails The operational risk approach is similar to the one pre-
sented in the previous paragraph. A lognormal distribution is used to model the body
of the distribution while a GPD is used to characterise the right tail (Guégan et al.
2011). A conditional Maximum likelihood is used to estimate the parameters of the
body while a traditional MLE is used for the GPD on the tail.

Using the Hill plot (Fig. 7), the threshold has been set at $ 13 500. This means
that 99.3 % of the data are located below. However, 407 data points remains above
this threshold. The parameters estimated for the GPD are given in Table 9 along their
variance-covariance matrix. The parameters obtained fitting the lognormal distribu-
tion on the body of the distribution, i.e. on the data below the threshold, are given in
Table 10 along their hessian. The VaR obtained with this approach equals $ 31 438
810 and the Expected Shortfall equals $ 97 112 315 (Fig. 8, 9).

Capturing the Dynamics For the second approach (Guégan and Hassani 2013b),
in a first step, the aggregation of the observed losses provides the time series (Xt )t .
These weekly losses are assumed to be i.i.d. and the following distributions have been
fitted on the severities: the Gaussian, the lognormal, the logistic, the GEV and the
Weibull distributions. Their parameters have been estimated by MLE. Then 52 data
points have been generated accordingly by Monte Carlo simulations and aggregated
to create an annual loss. This procedure is repeated a million times to create a new
loss distribution function. Contrary to the next approach, the losses are aggregated
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Table 10 Parameters of the Lognormal distribution fitted on the CPBP/Retail Banking collected
from 2004 to 2011, considering an upper threshold of $13 500. The hessian is also provided

μ σ

Parameters 4.068128 1.917474
hessian μ σ

μ 10318.2793 − 678.7544
σ − 678.7544 19134.8783

Weekly Aggregated loss time series on the cell
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Fig. 8 The figure represents the weekly aggregated loss time series on the cell CPBP/Retail Banking
collected since 2004

over a period of time (for instance, a week or a month), but no time series process is
adjusted on them, and therefore no autocorrelation phenomenon is being captured.

With the third approach the weekly data sets are modelled using an AR, an ARFI
and a Gegenbauer process when it is possible. Table 11 provides the estimates of
the parameters for the time series processes. For The residuals a distribution is
selected among the Gaussian, the lognormal, the logistic, the GEV and the Weibull
distributions. Their parameters are provided in Table 12. To obtain annual losses, 52
points are randomly generated from the residuals’ distributions (εt )t from which the
sample mean have been subtracted, proceeding as follows: if ε0 = X0 corresponds
to the initialisation of the process, X1 is obtained applying one of the appropriate
adjusted stochastic processes to X0 and ε1, and so on, and so forth until X52. The 52
weeks of losses are aggregated to provide the annual loss. Repeating this procedure
a million times enables creating another loss distribution function.
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Fig. 9 The PACF of the weekly aggregated losses of the cell CPBP/Retail Banking suggests either an
AR at the 5 % level or an long memory process. The order may be higher at a lower confidence level
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intervals, the 90 %, the 80 % and the 70 %

Table 11 The table presents the estimated values of the parameters for the different models adjusted
on the data sets, with their standard deviation in brackets, and also the results of the AIC criteria,
the Portmanteau test and the Jarque-Bera test. The Portemanteau test has been applied considering
various lags, and no serial correlation has been found after the different filterings. However, the
“whiteness” of the results may be discussed using the p-values. Regarding the p-values of the
Jarque-Bera test it appears that the residual distributions do not follow a Gaussian distribution

Model CPBP/RB (W)

AR Parameterisation φ1 = 0.1821 (0.0552)
φ9 = 0.1892 (0.0549)

AIC 9964.2
Portemanteau lag/df = 30

Statistic = 25.4906064
p-value = 0.7008565

Jarque-Bera (df = 2) χ2 = 26517.27
p-value < 2.2e-16

ARFI Parameterisation d = 0.184673 (0.086078), p-value = 0.03192
φ2 = −0.089740 (0.052857), p-value = 0.08955

AIC −144.7204
Portemanteau lag/df = 30

Statistic = 31.320582
p-value = 0.3997717

Jarque-Bera (df = 2) χ2 = 23875.25
p-value < 2.2e–16

Gegenbauer Parameterisation d = 0.822 (0.067)
u = −0.723 (0.045)

AIC −6 466.381
Portemanteau lag/df = 30

Statistic = 12.011896
p-value = 0.9985863

Jarque-Bera (df = 2) χ2 = 14639.36
p-value < 2.2e–16
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The first remark is that, focusing on the distributions selected before, the adequacy
tests may be misleading as the values are not conservative at all. The distributions
have been adjusted on the residuals arising from the adjustment of the AR, the ARFI
and the Gegenbauer processes. However, to conserve the white noise properties, the
mean of the samples has been subtracted from the generated value, therefore, the
distribution which should be the best according to the Kolmogorov-Smirnov test
may not be in reality the most appropriate. As highlighted in Table 13, the use of two
sided distributions lead to lower risk measures while one sided distributions lead to
more conservative risk measures. Besides, these are closer to those obtained from
the traditional LDA meanwhile the autocorrelation embedded within the data has
been captured.

It is also interesting to note that there is not an approach always more or less
conservative than the others. The capital charge depends on the strategy adopted
and the couple selected: time series process and residuals distribution. For instance
a Gegenbauer process associated to a lognormal distribution on CPBP/RB will be
slightly more conservative than the traditional approach and enables the capture time
dependency, long memory, embedded seasonality and larger tail. As a result, this
may be a viable alternative approach to model the risks. The distribution generating
the white noise has a tremendous impact on the risk measures. From Table 13, we
observe that even if the residuals have an infinite two-sided support, they have some
larger tails and an emphasised skewness. Therefore, even if the residuals have been
generated using one sided distribution, as the mean of the sample has been subtracted
from the values to ensure they remain white noises, the pertaining distributions have
only been shifted from a [0, +∞[ support to a ] − ∞, +∞[ support. As a result the
large positive skewness and kurtosis characteristics of the data have been kept.

4.2 Multivariate Approach

A n-dimensional copulas need to be fed by some marginal distributions. In our case
they correspond to the distributions created previously, each of them representing a
particular risk. As exhibited in Guégan and Hassani (2013a), the choice of the model
to characterise a certain risk plays an important role in the measurement of the expo-
sure whatever the method used for the dependence structure. In the previous section,
various methodologies are introduced to fit the appropriate dependence structure, for
instance the nested strategies (Partially, Fully and Hierarchical) or the pair-copula
decomposition such as the D-Vine and the R-Vine (Joe 1997b). While for the nested
structure the dependence intensity has to decrease as the level of nesting increases the
limitation of the vines is found in the number of decompositions we have to consider
as the number of vines grows exponentially with the dimension of the data set and
thus requires the user to select a vine from n!

2 possible vines. For optimal selection
strategies, we refer the interested reader to (Capéraà et al. 2000; Galambos 1978;
Brechmann et al. 2010; Guégan and Maugis 2011).
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Fig. 10 The figure compares the Gaussian copula with a parameter equals 0.5 and a Gumbel copula
with a parameter equals to 5. The Gumbel copula shape exhibit some upper tail dependency

In our case, the number of marginal distributions are limited as we only con-
sidered the three main risks therefore the calibration strategies introduced earlier
may not be necessary and a simple maximum likelihood estimation associated to the
appropriate optimization algorithm may be sufficient. However, as soon as another
marginal distribution is considered, these have to be implemented to ensure a proper
parametrization of the dependence structure.

A crisis is characterized by asymmetric shocks translated into upper tail depen-
dencies. Traditional approaches use either linear correlation in the sense of Pearson
(Pearson 1900), or Gaussian copulas. In the best case scenarios, Student copulas
are also used. Unfortunately this latter copula with 3 degrees of freedom is sym-
metrical therefore the partially captured upper tail dependence is naturally translated
in a modeled lower tail dependence even if small losses are independent. Besides,
these structure are far from being conservative enough. Our stress-testing objective
imposes other copulas like for instance the Archimedean or Extreme value copulas
characterized by upper tail dependences such as the Gumbel copula, the Galambos
copula (Koehler and Symanowski 1995), the Husler-Reiss (Caputo 1998) or the Tawn
copula (Silverman 1986). Figure 10 compare the dependence structure obtained from
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Table 14 This table presents the risk measures (at the 99 % confidence level) computed considering
both the Gaussian and the Gumbel copula for which the marginal distribution have been constructed
implementing traditional approaches

Credit

VaR ES

Gaussian 37 146 877 44 772 524
Gumbel 45 939 029 48 235 754

a Gaussian copula (ρ = 0.5) to the one obtained from a Gumbel (φ = 5). The con-
centration of dots in the top right hand corner of the figure is characteristic of an
upper tail dependence.

Applying these two last copulas to the various traditional marginal distributions
constructed in the previous subsections led us to the risk measures presented in
the Table 14. We note that the Gumbel copula provides a more conservative cap-
ital requirement illustrating the lower impact of the diversification benefit. These
results have been obtained for assets whose correlation is not particularly high:
ρCredit ,Market = 0.5, ρCredit ,Operational = 0.4, ρMarket ,Operational = 0.4 for the
Gaussian copula, and φ1 = 5 for the Gumbel copula.

It is also interesting to note that the capture of an upper tail dependence behaviour
implies the capture of a contagion effect, which engenders larger losses during a
turmoil than during a calm business cycle.
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The Skin in the Game as a Risk Filter

Nassim N. Taleb and Constantine Sandis

A longer version of this chapter has appeared in the Review of
Behavioral Economics, inaugural issue, January 2014.
[Ethics/Epistemology/Risk Management/Probability]

1 Agency Problems and Tail Probabilities

The literature in risk, insurance, and contracts has amply dealt with the notion of
information asymmetry (see Ross 1973; Grossman and Hart 1983a, 1983b; Tirole
1988; Stiglitz 1988), but not with the consequences of deeper information opacity (in
spite of getting close, as in Hölmstrom 1979), by which tail events are impossible to
figure out from watching time series and external signs: in short, in the “real world”
(Taleb 2013), the law of large numbers works very slowly, or does not work at all in
the time horizon for operators, hence statistical properties involving tail events are
completely opaque to the observer. And the central problem that is missing behind
the abundant research on moral hazard and information asymmetry is that these rare,
unobservable events represent the bulk of the properties in some domains. We define
a fat tailed domain as follows: a large share of the statistical properties come from
the extremum; for a time series involving n observations, as n becomes large, the
maximum or minimum observation will be of the same order as the sum. Excursions
from the center of the distributions happen brutally and violently; the rare event dom-
inates. And economic variables are extremely fat tailed (Mandelbrot 1997). Further,
standard economic theory makes an allowance for the agency problem, but not for
the combination of agency problem, informational opacity, and fat-tailedness. It has
not yet caught up that tails events are not predictable, not measurable statistically
unless one is causing them, or involved in increasing their probability by engaging
in a certain class of actions with small upside and large downside. (Both parties may
not be able to gauge probabilities in the tails of the distribution, but the agent knows
which tail events do not affect him.) redSadly, the economics literature’s treatment of
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tail risks, or “peso problems” has been to see them as outliers to mention en passant
but hide under the rug, or remove from analysis, rather than a core center of the
modeling and decision-making, or to think in terms of robustness and sensitivity to
unpredictable events. Indeed, this pushing under the rug the determining statistical
properties explains the failures of economics in mapping the real world, as witnessed
by the inability of the economics establishment to see the accumulation of tail risks
leading up to the financial crisis of 2008 (Taleb 2009). The parts of the risk and
insurance literature that have focused on tail events and extreme value theory, such
as Embrechts (1997), accepts the large role of the tails, but then the users of these
theories (in the applications) fall for the logical insonsistency of assuming that they
can be figured out somehow: naively, since they are rare what do we know about
them? The law of large numbers cannot be of help. Nor do theories have the required
robustness. Alarmingly, very little has been done to make the leap that small calibra-
tion errors in models can change the probabilities (such as those involving the risks
taken in Fukushima’s nuclear project) from 1 in 106 to 1 in 50.

Add to the fat-tailedness the asymmetry (or skewness) of the distribution, by
which a random variable can take very large values on one side, but not the other.
An operator who wants to hide risk from others can exploit skewness by creating a
situation in which he has a small or bounded harm to him, and exposing others to
large harm; thus exposing others to the bad side of the distributions by fooling them
with the tail properties.

Finally, the economic literature focuses on incentives as encouragement or de-
terrent, redbut not on disincentives as potent filters that remove incompetent and
nefarious risk takers from the system. Consider that the symmetry of risks incurred
on the road causes the bad driver to eventually exit the system and stop killing oth-
ers. An unskilled forecaster with skin-in-the-game would eventually go bankrupt or
out of business. Shielded from potentially (financially) harmful exposure, he would
continue contributing to the buildup of risks in the system.1

Hence there is no possible risk management method that can replace skin in
the game in cases where informational opacity is compounded by informational
asymmetry viz. the principal-agent problem that arises when those who gain the
upside resulting from actions performed under some degree of uncertainty are not the
same as those who incur the downside of those same acts2. For example, bankers and
corporate managers get bonuses for positive “performance”, but do not have to pay
out reverse bonuses for negative performance. This gives them an incentive to bury
risks in the tails of the distribution, particularly the left tail, thereby delaying blowups.

The ancients were fully aware of this incentive to hide tail risks, and implemented
very simple but potent heuristics (for the effectiveness and applicability of fast and

1 The core of the problem is as follows. There are two effects: “crooks of randomness” and “fooled
of randomness” (Nicolas Tabardel, private communication). Skin in the game eliminates the first
effect in the short term (standard agency problem), the second one in the long term by forcing a
certain class of harmful risk takers to exit from the game.
2 Note that Pigovian mechanisms fail when, owing to opacity, the person causing the harm is not
easy to identify.
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frugal heuristics both in general and in the moral domain, see Gigerenzer 2010). But
we find the genesis of both moral philosophy and risk management concentrated
within the same rule3 . About 3,800 years ago, Hammurabi’s code specified that if a
builder builds a house and the house collapses and causes the death of the owner of
the house, that builder shall be put to death. This is the best risk-management rule
ever.

What the ancients understood very well was that the builder will always know
more about the risks than the client, and can hide sources of fragility and improve his
profitability by cutting corners. The foundation is the best place to hide such things.
The builder can also fool the inspector, for the person hiding risk has a large informa-
tional advantage over the one who has to find it. The same absence of personal risk is
what motivates people to only appear to be doing good, rather than to actually do it.

Note that Hammurabi’s law is not necessarily literal: damages can be “converted”
into monetary compensation. Hammurabi’s law is at the origin of the lex talonis (“eye
for eye”, discussed further down) which, contrary to what appears at first glance, it
is not literal. Tractate Bava Kama in the Babylonian Talmud4, builds a consensus
that “eye for eye” has to be figurative: what if the perpetrator of an eye injury were
blind? Would he have to be released of all obligations on grounds that the injury has
already been inflicted? Wouldn’t this lead him to inflict damage to other people’s
eyesight with total impunity? Likewise, the Quran’s interpretation, equally, gives the
option of the injured party to pardon or alter the punishment5. This nonliteral aspect
of the law solves many problems of asymmetry under specialization of labor, as the
deliverer of a service is not required to have the same exposure in kind, but incur
risks that are costly enough to be a disincentive.

The problems and remedies are as follows:
First, consider policy makers and politicians. In a decentralized system, say mu-

nicipalities, these people are typically kept in check by feelings of shame upon
harming others with their mistakes. In a large centralized system, the sources of
error are not so visible. Spreadsheets do not make people feel shame. The penalty
of shame is a factor that counts in favour of governments (and businesses) that
are small, local, personal, and decentralized versus ones that are large, national or
multi-national, anonymous, and centralised. When the latter fail, everybody except
the culprit ends up paying the cost, leading to national and international measures
of endebtment against future generations or “austerity”6.These points against “big
government” models should not be confused with the standard libertarian argument

3 Economics seems to be born out of moral philosophy (mutating into the philosophy of action via
decision theory) to which was added naive and improper 19th C. statistics (Taleb 2007, 2013). We
are trying to go back to its moral philosophy roots, to which we add more sophisticated probability
theory and risk management.
4 Tractate Bava Kama, 84a, Jerusalem: Koren Publishers, 2013.
5 Quran, Surat Al-Ma’idat, 45: “Then, whoever proves charitable and gives up on his right for
reciprocation, it will be an atonement for him.” (our translation).
6 See McQuillan (2013) and Orr (2013); cf. the “many hands” problem discussed by Thompson
(1987).
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against states securing the welfare of their citizens, but only against doing so in a
centralized fashion that enables people to hide behind bureaucratic anonymity. Much
better to have a communitarian municipal approach:in situations in which we cannot
enforce skin-in-the game we should change the system to lower the consequences of
errors.

Second, we misunderstand the incentive structure of corporate managers. Counter
to public perception, corporate managers are not entrepreneurs. They are not what
one could call agents of capitalism. Between 2000 and 2010, in the United States,
the stock market lost (depending how one measures it) up to two trillion dollars for
investors, compared to leaving their funds in cash or treasury bills. It is tempting
to think that since managers are paid on incentive, they would be incurring losses.
Not at all: there is an irrational and unethical asymmetry. Because of the embedded
option in their profession, managers received more than four hundred billion dollars
in compensation. The manager who loses money does not return his bonus or incur
a negative one7.The built-in optionality in the compensation of corporate managers
can only be removed by forcing them to eat some of the losses8.

Third, there is a problem with applied and academic economists, quantitative
modellers, and policy wonks. The reason economic models do not fit reality (fat-
tailed reality) is that economists have no disincentive and are never penalized for
their errors. So long as they please the journal editors, or produce cosmetically
sound “scientific” papers, their work is fine. So we end up using models such as
portfolio theory and similar methods without any remote empirical or mathematical
reason. The solution is to prevent economists from teaching practitioners, simply
because they have no mechanism to exit the system in the event of causing risks that
harm others. Again this brings us to decentralization by a system where policy is
decided at a local level by smaller units and hence in no need for economists9.

7 There can be situations of overconfidence by which the CEOs of companies bear a dispropor-
tionately large amount of risk, by investing in their companies, as shown by Malmendier and Tate
(2008, 2009), and end up taking more risk because they have skin in the game. But it remains
that CEOs have optionality, as shown by the numbers above. Further, the heuristic we propose is
necessary, but may not be sufficient to reduce risk, although CEOs with a poor understanding of
risk have an increased probability of personal ruin.
8 We define “optionality” as an option-like situation by which an agent has a convex payoff, that
is, has more to gain than to lose from a random variable, and thus has a positive sensitivity to the
scale of the distribution, that is, can benefit from volatility and dispersion of outcomes.
9 A destructive combination of false rigor and lack of skin in the game. The disease of formalism
in the application of probability to real life by people who are not harmed by their mistakes can be
illustrated as follows, with a very sad case study. One of the most “cited” documents in risk and
quantitative methods about “coherent measures of risk” set strong principles on how to compute
the “value at risk” and other methods. Initially circulating in 1997, the measures of tail risk -while
coherent -have proven to be underestimating risk at least 500 million times (sic, the number is not a
typo). We have had a few blowups since, including Long Term Capital Management; and we had a
few blowups before, but departments of mathematical probability were not informed of them. As we
are writing these lines, it was announced that J.-P. Morgan made a loss that should have happened
every ten billion years. The firms employing these “risk minds” behind the “seminal” paper blew
up and ended up bailed out by the taxpayers. But we now know about a “coherent measure of risk”.
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Fourth, the predictors. Predictions in socioeconomic domains don’t work. Pre-
dictors are rarely harmed by their predictions. Yet we know that people take more
risks after they see a numerical prediction. The solution is to ask—and only take into
account—what the predictor has done (what he has in his portfolio), or is committed
to doing in the future. It is unethical to drag people into exposures without incur-
ring losses. Further, predictors work with binary variables (Taleb and Tetlock 2013),
that is, “true” or “false” and play with the general public misunderstanding of tail
events. They have the incentives to be right more often than wrong, whereas people
who have skin in the game do not mind being wrong more often than they are right,
provided the wins are large enough. In other words, predictors have an incentive
to play the skewness game (more on the problem in Sect. 2). The simple solution
is as follows: predictors should be exposed to the variables they are predicting and
should be subjected to the dictum “do not tell people what you think, tell them what
you have in your portfolio” (Taleb 2012, p. 386). Clearly predictions are harmful to
people as, by the psychological mechanism of anchoring, they increases risk taking.

Fifth, to deal with warmongers, Ralph Nader has rightly proposed that those who
vote in favor of war should subject themselves (or their own kin) to the draft.

We believe Skin in the game is a heuristic for a safe and just society. It is even more
necessary under fat tailed environments. Opposed to this is the unethical practice of
taking all the praise and benefits of good fortune whilst disassociating oneself from
the results of bad luck or miscalculation. We situate our view within the framework
of ethical debates relating to the moral significance of actions whose effects result
from ignorance and luck. We shall demonstrate how the idea of skin in the game
can effectively resolve debates about (a) moral luck and (b) egoism vs. altruism,
while successfully bypassing (c) debates between subjectivist and objectivist norms
of action under uncertainty, by showing how their concerns are of no pragmatic
concern.

Reputational Costs in Opaque Systems Note that our analysis includes costs of
reputation as skin in the game, with future earnings lowered as the result of a mistake,
as with surgeons and people subjected to visible malpractice and have to live with
the consequences. So our concern is situations in which cost hiding is effective
over and above potential costs of reputation, either because the gains are too large
with respect to these costs, or because these reputation costs can be “arbitraged”, by
shifting blame or escaping it altogether, because harm is not directly visible. The latter
category includes bureaucrats in non-repeat environments where the delayed harm is
not directly attributable to them. Note that in many domains the payoff can be large
enough to offset reputational costs, or, as in finance and government, reputations do
not seem to be aligned with effective track record. (To use an evolutionary argument,

This would be the equivalent of risk managing an airplane flight by spending resources making sure
the pilot uses proper grammar when communicating with the flight attendants, in order to “prevent
incoherence”. Clearly the problem is that tail events are very opaque computationally, and that such
misplaced precision leads to confusion. The “seminal” paper: Artzner, P., Delbaen, F., Eber, J. M.,
& Heath, D. (1999). Coherent measures of risk. Mathematical finance, 9(3), 203–228.
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Fig. 1 The most effective
way to maximize the
expected payoff to the agent
at the expense of the principal

time

Changes in Value

we need to avoid a system in which those who make mistakes stay in the gene pool,
but throw others out of it.)

Application of The Heuristic The heuristic implies that one should be the first
consumer of one’s product, a cook should test his own food, helicopter repairpersons
should be ready to take random flights on the rotorcraft that they maintain, hedge
fund managers should be maximally invested in their funds. But it does not naively
imply that one should always be using one’s product: a barber cannot cut his own
hair, the maker of a cancer drug should not be a user of his product unless he is ill. So
one should use one’s products conditionally on being called to use them. However
the rule is far more rigid in matters entailing sytemic risks: simply some decisions
should never be taken by a certain class of people.

Heuristic vs Regulation A heuristic, unlike a regulation, does not require state
intervention for implementation. It is simple contract between willing individuals:
“I buy your goods if you use them”, or “I will listen to your forecast if you are
exposed to losses if you are wrong” and would not require the legal system any
more than simple commercial transaction. It is bottom-up. (The ancients and more-
or-less ancients effectively understood the contingency and probabilistic aspect in
contract law, and asymmetry under opacity, as reflected in the works of Pierre de Jean
Olivi. Also note that the foundation of maritime law has resided in skin-the-game
unconditional sharing of losses, even as far in the past as 800 B.C. with the Lex
Rhodia, which stipulates that all parties involved in a transaction have skin in the
game and share losses in the event of damage. The rule dates back to the Phoenician
commerce and caravan trades among Semitic people. The idea is still present in
Islamic finance commercial law, see Wardé 2010.)

The rest of this essay is organized as follows. First we present the epistemological
dimension of the hidden payoff, expressed using the mathematics of probability,
showing the gravity of the problem of hidden consequences. We conclude with the
notion of heuristic as simple “convex” rule, simple in its application (Fig. 1).



The Skin in the Game as a Risk Filter 131

2 Payoff Skewness and Lack of Skin-in-the-Game

This section will analyze the probabilistic mismatch or tail risks and returns in the
presence of a principal-agent problem.

Transfer of Harm If an agent has the upside of the payoff of the random variable,
with no downside, and is judged solely on the basis of past performance, then the
incentive is to hide risks in the left tail using a negatively skewed (or more generally,
asymmetric) distribution for the performance. This can be generalized to any payoff
for which one does not bear the full risks and negative consequences of one’s actions.

Let P (K ,M) be the payoff for the operator over M incentive periods

P (K ,M) ≡ γ
M∑
i=1

qt+(i−1)�t

(
x
j

t+i�t −K
)+

1�t(i − 1) + t < τ (1)

with Xj =
(
x
j

t+i�t
)M
i=1

∈ R, i.i.d. random variables representing the distribution

of profits over a certain period [t , t + i�t], i ∈ N, �t ∈ R
+ and K is a “hurdle”,

τ= inf
{
s :
(∑

z≤s xz
)
< xmin

}
is an indicator of stopping time when past performance

conditions are not satisfied (namely, the condition of having a certain performance in
a certain number of the previous years, otherwise the stream of payoffs terminates,
the game ends and the number of positive incentives stops). The constant γ ∈(0,1) is
an “agent payoff”, or compensation rate from the performance, which does not have
to be monetary (as long as it can be quantified as “benefit”). The quantity qt+(i−1)�t∈
[1,∞) indicates the size of the exposure at times t+(i-1)�t(because of an Ito lag, as
the performance at period s is determined by q at a a strictly earlier period <s)

Let
{
fj
}

be the family of probability measures fj of Xj , j ∈ N. Each mea-
sure corresponds to certain mean/skewness characteristics, and we can split their
properties in half on both sides of a “centrality” parameter K , as the “upper”
and “lower” distributions. With some inconsequential abuse of notation we write
dFj (x) as fj (x) dx, so F+

j =
∫∞
K
fj (x) dx and F−

j =
∫ K
−∞ fj (x) dx, the “upper”

and “lower” distributions, each corresponding to certain conditional expectation

E
+
j ≡

∫∞
K xfj (x) dx∫∞
K fj (x) dx

and E
−
j ≡

∫ K
−∞ xfj (x) dx∫ K
−∞ fj (x) dx

.

Now define ν ∈ R
+as a K-centered nonparametric measure of asymmetry,

νj ≡ F−
j

F+
j

, with values >1 for positive asymmetry, and <1 for negative ones. In-

tuitively, skewness has probabilities and expectations moving in opposite directions:
the larger the negative payoff, the smaller the probability to compensate.

We do not assume a “fair game”, that is, with unbounded returns
m ∈ (-∞,∞), F+

j E
+
j + F−

j E
−
j = m, which we can write as

m+ +m− = m.
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2.1 Simple Assumptions of Constant q and Simple-Condition
Stopping Time

Assume q constant, q=1 and simplify the stopping time condition as having no loss
larger than −K in the previous periods, τ = inf{(t + i�t): x�t(i − 1) + t < K},
which leads to

E(P (K ,M)) = γ E
+
j × E

(
M∑
i=1

1t+i�t<τ

)
(2)

Since assuming independent and identically distributed agent’s payoffs, the expec-
tation at stopping time corresponds to the expectation of stopping time multiplied

by the expected compensation to the agent γ Ej
+. And E

(∑M
i=1 1�t(i−1)+t<τ

)
=

E

((∑M
i=1 1�t(i−1)+t<τ

)
∧M

)
.

The expectation of stopping time can be written as the probability of success under
the condition of no previous loss:

E

(
M∑
i=1

1t+i�t<τ

)
=

M∑
i=1

F+
j E(1x�t(i−1)+t>K).

We can express the stopping time condition in terms of uninterrupted
success runs. Let

∑
be the ordered set of consecutive success runs∑ ≡ {{F }, {SF}, {SSF}, . . . , {(M − 1) consecutiveS,F }}, where S is success and

F is failure over period t, with associated corresponding probabilities {(1 − F+
j ),

F+
j

(
1 − F+

j

)
,F+
j

2
(

1 − F+
j

)
, . . . ,F+

j
M−1

(
1 − F+

j

)
},

M∑
i=1

F
+(i−1)
j

(
1 − F+

j

)
= 1 − F+M

j � 1 (3)

For M large, since F+
j ∈ (0,1) we can treat the previous as almost an equality, hence:

E

(
M∑
i=1

1t+(i−1)�t<τ

)
=

M∑
i=1

(i − 1) F+
j

(i−1)
(

1 − F+
j

)
� F+

j

1 − F+
j

.

Finally, the expected payoff for the agent:

E (P (K ,M)) � γ E
+
j

F+
j

1 − F+
j

,

which increases by (i) increasing E
+
j , (ii) minimizing the probability of the loss

F−
j , but, and that’s the core point, even if (i) and (ii) take place at the expense of m

the total expectation from the package.
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Fig. 2 Indy Mac, a failed firm during the subprime crisis (from Taleb 2009). It is a representative
of risks that keep increasing in the absence of losses, until the explosive blowup

Alarmingly, since E
+
j = m−m−

F+
j

, the agent doesn’t care about a degradation of the

total expected return m if it comes from the left side of the distribution, m−. Seen in
skewness space, the expected agent payoff maximizes under the distribution jwith
the lowest value of νj (maximal negative asymmetry). The total expectation of the
positive-incentive without-skin-in-the-game depends on negative skewness, not on
m (Fig. 2).

2.2 Multiplicative q and the Explosivity of Blowups

Now, if there is a positive correlation between q and past performance, or survival
length, then the effect becomes multiplicative. The negative payoff becomes explo-
sive if the allocation qincreases with visible profitability, as seen in Fig. 2 with the
story of IndyMac, whose risk kept growing until the blowup10. Consider that “suc-
cessful” people get more attention, more funds, more promotion. Having “beaten the
odds” imparts a certain credibility. In finance we often see fund managers experience
a geometric explosion of funds under management after perceived “steady” returns.
Forecasters with steady strings of successes become gods. And companies that have

10 The following sad anecdote illustrate the problem with banks. It was announces that “JPMorgan
Joins BofA With Perfect Trading Record in Quarter” (Dawn Kopecki and Hugh Son—Bloomberg
News, May 9, 2013). Yet banks while “steady earners” go through long profitable periods followed
by blowups; they end up losing back all cumulative profits in short episodes, just in 2008 they lost
around 4.7 trillion U.S. dollars before government bailouts. The same took place in 1982–1983 and
in the Savings and Loans crisis of 1991, see Taleb (2009).
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Table 1 Multiplicative effect
of skewness

F = .6 0.7 0.8 0.9

r = 0 1.5 2.32 3.72 5.47
0.1 2.57 4.8 10.07 19.59
0.2 4.93 12.05 34.55 86.53
0.3 11.09 38.15 147.57 445.59

hidden risks tend to outperform others in small samples, their executives see higher
compensation. So in place of a constant exposure q, consider a variable one:

q�t(i−1)+t = q ω(i),

where ω(i) is a multiplier that increases with time, and of course naturally collapses
upon blowup.

Equation 1 becomes:

P (K ,M) ≡ γ
M∑
i=1

q ω(i)
(
x
j

t+i�t −K
)

+1t+(i−1)�t<τ , (4)

and the expectation, assuming the numbers of periods,M is large enough

E(P (K ,M)) = γ E
+
j q E

(
M∑
i=1

ω(i) 1�t(i−1)+t<τ

)
. (5)

Assuming the rate of conditional growth is a constant r ∈ [0,∞), and making
the replacement ω(i) ≡ eri , we can call the last term in Eq. 2 the multiplier of the
expected return to the agent:

E

(
M∑
i=1

eir1�t(i−1)+t<τ

)
=

M∑
i=1

(i − 1) Fj
+eirE(1x�t(i−1)+t>K ) (6)

=
(
F+ − 1

) ((
F+)M (Me(M+1)r − F+(M − 1)e(M+2)r

)− F+e2r
)

(F+er − 1)2
(7)

We can get the table of sensitivities for the “multiplier” of the payoff (Table 1):

2.3 Explaining why Skewed Distributions Conceal the Mean

Note that skewed distributions conceal their mean quite well, withP (X < E(x)) < 1
2

in the presence of negative skewness. And such effect increases with fat-tailedness.
Consider a negatively skewed power law distribution, say the mirror image of a
standard Pareto distribution, with maximum value xmin, and domain (−∞, xmin],
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with exceedance probability P (X > x) = −x−αxαmin, and mean −αxmin
α−1 , with α > 1,

have a proportion of 1 − α−1
α

of its realizations rosier than the true mean. Note that
fat-tailedness increases at lower values of α. The popular “eighty-twenty”, with tail
exponent α = 1.15, has > 90 % of observations above the true mean11. Likewise,
to consider a thinner tailed skewed distribution, for a Lognormal distribution with

domain ( − ∞, 0), with mean m = −eμ+ σ2
2 , the probability of exceeding the mean

is P (X > m = 1
2 erfc

(
− σ

2
√

2

)
, which for σ = 1 is at 69 %, and for σ = 2 is at 84 %.

2.4 Forecasters

We can see how forecasters who do not have skin in the game have the incentive of
betting on the low-impact high probability event, and ignoring the lower probability
ones, even if these are high impact. There is a confusion between “digital payoffs”∫
fj (x) dx and full distribution, called “vanilla payoffs”,

∫
xfj (x) dx, see Taleb and

Tetlock (2013)12.
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Capital Adequacy, Pro-cyclicality
and Systemic Risk

Raphael Douady

1 Reasons and Problems of the Current Capital-Adequacy

The current Capital Adequacy rule, as stated by Basel II agreement, computes the
“regulatory capital” of a financial institution as a multiple of its “Value-at-Risk”
(VaR), itself the sum of several risk sources: market risk, credit risk, counterparty
risk, operational risk, etc.

The recommendations for computing the “economic capital” follows the same
guidelines.

The VaR depends on two parameters: the horizon h (usually 5 days) and a per-
centile q (usually 99 %). It is the amountV such that the probability that the institution
loss over the horizon h exceeds V is equal to 1 − q. An abundant literature has been
published on the various methods for computing the Value-at-Risk.

The required capital to operate on markets is k × VaR, where the multiplier k is
a number between 3 and 10, which depends on the “quality” of the VaR computation.
The assessment of the “quality” is the result of two verifications—and as the result,
the worst of both:

• a qualitative assessment of the process
• a quantitative back-test counting the number of exceptions, i.e. where the loss

exceeds the VaR, and comparing this number with the declared frequency 1 − q.

The good thing in this setting is that the Regulator lets the institution compute its
risks, assuming that it has a better knowledge of its details to better track the pitfalls
of its own risk evaluation. It only acts as a verifier who checks afterwards that the
risk has been correctly computed. If the risk was underestimated, the sanction is a
higher ratio, hence a higher cost in regulatory capital for further operations.

It also represents a substantial economy for the Regulator, who leaves the burden
of computing risks to the institutions. It is indeed a massive distribution of the burden
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Fig. 1 Procyclicality of
reactive VaR measures

across all the institutions, each of them taking care of its own risk computation. The
verification task is less costly than the computation itself by orders of magnitude.

However, this approach leads to numerous problems, which became stringent
throughout the 2008 crisis:

1. The rationale for the economic capital is to avoid bankruptcy, hence the loss
should never exceed k × VaR. This trigger is surprisingly enough never tested.

2. The risk measure is 1-dimensional and neither tells the exact risk source, nor
the market scenario it corresponds to. As a consequence, the Regulator cannot
realistically require that the loss never exceeds the declared risk.

3. The most serious problem is pro-cyclicality: in a market downturn, the risk mea-
sure increases, leading most market participants to sell out positions in order to
meet capital adequacy, adding to the market turmoil (Fig. 1).

2 Should a Risk Measure be Reactive or Anticipative?

2.1 Why VaR Reactivity Is Dangerous

It is often thought that a reactive VaR measure is a good one. We will argue the
contrary. Reactivity of a VaR measure means that upon a sudden market event, for
example a jump in one of the factors relevant to the risk of a fund, the risk measure
immediately increases. It is perceived that such a risk measure will let the manager
react quickly to changing market conditions and adjust her/his positions accordingly.
However, quite the contrary is true. Reactivity of a VaR measure only shows that it
does not in fact reveal all the hidden risks of an investment and, therefore, leads to
a very dangerous circle.

A reactive measure of the VaR creates a mechanism that leads to a dangerous
cyclical cascade of market events as shown in the figure above:

Factor jump⇒Risk increase⇒Sell order⇒Liquidity crisis⇒Factor jumps further

This is the typical risk adjustment chain that induced the 1987 crisis, as well as a
number of other crises, including the recent 2008 credit squeeze.
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2.2 Reactivity and Backtesting

On a wider scale this pro-cyclical nature of a reactive VaR creates the conditions for
a deepening of a crisis. For a manager, it induces the cancelation of risky positions
in illiquid times that are least favorable. This phenomenon is obvious, although
seemingly counterintuitive, since most of the time, one will find risk measurers
advertising their reactivity. The reason for leaning towards a reactive measure lies in
the backtesting principles used by Regulators to assess the risk measure soundness.
The Basel committee recommends that two properties of the VaR be tested:

1. Frequency of out-of-sample exceptions: an “out-of-sample” exception of the
VaR with percentile q (e.g. 99 %) and horizon h (e.g. 10 days) occurs when the
portfolio loss between date t and date t + h exceeds the VaR computed at date t.
Such exceptions should not occur with a frequency higher than 1 − q (i.e. 1 % of
the time if q = 99 %.)

2. Independence of exceptions: the occurrence of exceptions at dates separated by
more than the horizon should not be correlated. In other words, if n ≥ h, then the
frequency of exceptions should not be significantly impacted if we condition it
by the fact that there was or there wasn’t an exception n days before.

It appears that when a VaR measure is purely based on past returns, the more the
measure is reactive, i.e. relies on the recent past and ignores the deep past, the better
conditions 1 and 2 are satisfied. Other properties of the VaR which, in our view, are
as important as the two above, are being left aside. Taking them into account would
force risk methodologies to look deeper in the past. These properties are:

3. Independence on market regime: exceptions should not occur more frequently
in periods of high volatility or in periods of low volatility. By definition, a risk is
a surprise. If a bias is observed with respect to some measure of the environment,
it should be incorporated in the models.

4. Inclusion of anticipated extreme events: if an extreme event, a sector or ge-
ographic crisis is announced as a possible event, it should not been taken as an
excuse for an exception, because its impact should be incorporated in the VaR
measure. Risk managers should be equally surprised by its occurrence and by its
“non-occurrence”.

5. Exception size: exceeding the VaR by a small amount is not as serious as ex-
ceeding it by a large amount. This is essential as capital adequacy is meant to
protect institutions from failure. If capital adequacy is a multiple of the VaR, then
exceptions that are larger than this multiple are lethal and should truly be avoided.
Counting exceptions that exceed certain multiples of the VaR is therefore a ne-
cessity. One could say that a sound risk measure is such that the portfolio loss,
counted in units of risk measures, should have thin tails: high multiples are really
rare events!
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2.3 Linear Models, Even with Fat-Tails, Are Reactive

In most factor risk models, a fund, a portfolio is modelled by a function that is
typically linear in the factor returns:

Fund/Portfolio return = Model (Factor return) = k1F1 + . . .+ knFn
In this case, the risk is determined by two inputs:

• the joint density of factor returns Fi , and
• the coefficients ki

Following a jump of one of the factors, two things typically occur:

• The distribution of the factor is changed. This may possibly be a substantial
change since the factor distributions are estimated by deliberately overweighting
the recent past. This is done in order to produce better percentages of exceptions
in backtesting.

• The correlation between the fund and the factor changes, typically increasing the
coefficients ki . This is sometimes referred to as a correlation break, where in effect
it is simply a sign of nonlinearities which the linear model is not able to capture.

Both of these reactions will increase the risk estimate, and sometimes, when acting
jointly, by a substantial amount. Back-filling the fund history in order to produce
longer term statistics does not remedy the issues and is just an intermediary step
resulting ultimately in same mechanism of risk reaction to a factor jump.

3 Naı̈ve Delusion of Fat Tails

Fat tailed models have been introduced in risk management to overcome the insuffi-
ciencies of the long-lasted “normal model”, based on Gaussian distributions. But risk
management is not simply risk measurement. The principle of fat tails is to enhance
the probability of large events (5–10 standard deviations) from truly negligible to
one or a few percents, in order to enter into VaR calculations.

However, this approach, based on stretching the shape of distributions in order
to force them to incorporate observed occurrences that don’t fit into the “normal”
model, miss the essential of risk estimation, and therefore of its management: the
actual behaviour of markets during a crisis is far different from what can be observed
in business as usual situations. Like a crowd in panic rushing through the door when
the alarm rings has nothing to do with the same crowd, calmly exiting the room at
the end of the show. Yet, the panic behaviour can be anticipated, not by “stretching”
the normal one, but by observing the same or other crowds under panic.

When financial markets enter a crisis, a certain number of well-known features
are observed: different asset classes, which usually are uncorrelated, become corre-
lated, alternative investments, which have been precisely chosen for delivering alpha
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without beta, suddenly exhibit beta and no alpha at all, etc. Fat tail models, which
are mostly calibrated on business-as-usual periods, completely miss these particular
features. So-called “robust calibration” is even more of a flawed patch to the prob-
lem, as it minimizes the weight of large events in the calibration, when one should,
on the contrary, increase it.

The only possible approach to anticipate crises (even small ones) and provide
meaningful hedging or risk mitigation recommendations is to use models in which,
in order to simulate extreme events, the calibration specifically focuses on the most
agitated periods and, more particularly, on those extreme correlations one can observe
during these periods.

4 Proposed Solution for an Non Pro-Cyclical Capital-Adequacy
Rule

Pro-cyclicality results from the fact that only a global risk measure is considered (see
point 2 above) and from the reactivity, rather than pro-activity of the risk measure.
Preventing a risk measure from being pro-cyclical is not an easy task. It requires
the regulator to anticipate market crises, using its knowledge of the financial and
economic situation. It also requires verifying that financial institutions have a correct
monitoring of their extreme exposures. Indeed, any type of rule that forces institutions
to act in the middle of the turmoil will mechanically aggravate the liquidity crisis
and add to the turmoil.

4.1 General Principle

We here propose to include stress tests in the measure of capital adequacy in such a
way that we respect the following 3 golden rules:

1. The Regulator defines which stress to apply to which indices. This will ensure
that economic research is unbiased to anticipate potential market shifts.

2. The Institution computes itself the impact of stress scenarios on its activity. It
is free to add other scenarios that the Regulator didn’t think of for its particular
case, either by stressing other risk factors or by increasing the stress size given
by the Regulator.

3. The Regulator verifies that losses incurred by the Institution (if ever) do not
exceed what could have been anticipated given the declared stress tests and the
actual market moves. In other words, the Institution is responsible for correctly
anticipating the impact of markets on its activity, but not for the moves of markets
itself.

The required operating capital is proportional to the worst declared stress test (as of
2). The initial multiplier value is 1. In case of a violation, the impact on the multiplier
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depends on the amount of the violation. Minor violations have a minor impact, while
large violations severely impact the multiplier. If there is no violation, the multiplier
is progressively brought down back to the value 1.

We mean to exclude all notions of probability in this framework. Institutions should
be responsible for the amounts they declare, not for the probability of such or such
event.

4.2 Details of the Regulatory Capital Computation

4.2.1 Stress Tests Defined by the Regulator

Each period (e.g. month, but can be more frequent if necessary), the Regulator issues
a list of market indices to stress with, for each index, a list of amounts by which it
should be stressed.

This means a table of the following kind:

Index Stress ++ Stress + Stress 0 Stress − Stress −
S&P500 + 20 % + 10 % 0 % – 10 % − 20 %
TB yield 10Y + 200 bp + 100 bp 0 bp – 100 bp − 200 bp
BAA credit

spread
+ 500 bp + 200 bp − 10 bp – 100 bp − 200 bp

. . .

Each entry of this table corresponds to a shift of an index Ii by an amount�Iij. Ideally,
each �Iij corresponds to some percentile of the anticipated probability distribution
of the index shift over the next coming month. For instance:

Stress ++ = 99 % percentile up
Stress + = 84 % percentile up
Stress 0 = Median
Stress − = 84 % percentile down
Stress − = 99 % percentile down

We here gave an example with round figures, but the regulator is free to apply any
quantitative model leading to the values of the shifts �Iij. It is somehow recom-
mended that these figures be rather stable through time, especially the most extreme
ones, as capital requirements will be direct functions of them. In particular, rather
than keeping them strictly constant for some time, then re-adjusting them suddenly,
one should estimate them in the most anticipative manner, in order to temper down
the probability of a large jump.

A sequence of 5 stresses for each index seems reasonable but this number can be
subject to discussions. More important is the list of basic indices to be stressed. These
should cover all asset classes (equity, fixed-income, credit, volatility, FX, emerging
markets, commodities, real estate, etc.), as well as the most important drivers of
majorly traded securities.
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It is extremely important that the Regulator makes all efforts to anticipate the
distribution of possible forward moves, and does not simply rely on the past volatility
of each index.

4.2.2 Computation of Stress Scenarios by Institution

Each �Iij must be seen by the institution as a full market scenario, not just a single
shift of a single asset class. For instance, if the scenario represents a 15 % increase
of the oil price, the impact of such a scenario on other asset classes, such as energy
related stocks or whatever market should be accounted for. The importance of this
point will be clear when we shall describe how the Regulator will verify the accuracy
of risk computations.

First, the Institution can, on a fully customary basis, decide to divide itself into
“divisions” D1, . . . ,Dn which correspond to business units mostly exposed one dom-
inant source of risk. Then, every reporting period (e.g. every week), each division
Dk produces a Risk report that contains its own P/L estimate in case of scenario�Iij,
which we denote Lijk.

This P/L estimate is supposed to be the lower bound of a confidence interval of the
impact of the scenario. Specifying the probability to which this confidence interval
corresponds to is not necessary. It is in the interest of the Institution not to overpass
this lower estimate, or by a limited amount, as we shall see.

The institution is free to add more scenarios�Iij either by adding other risk factors
Ii or other shifts �Iij for existing factors. It is in the interest of the institution to be
as exhaustive as possible in the declaration of its risk sources, in order to avoid
violations which may increase its multiplicative ratios. For instance, would one of
the divisions be particularly exposed to Kazakhstan equities, a risk factor not listed
by the Regulator, it is in the interest of the Institution to report a potential exposure
to this risk factor, in order to avoid a violation of declared risks in case of a pure
Kazakh crisis.

The regulatory capital C is computed as follows, where λ represents the multiplier:

C = λ
∑
k

max
i,j
Lijk

In other words, the Institution’s capital is the sum of that of its divisions and, for
each division, it is the maximum potential loss stemming from one of the declared
scenarios.

4.2.3 Back-testing Stress Scenarios

The key point of this regulatory framework is the ability for the Regulator to back-test
the accuracy and completeness of risk reports by financial institutions. Risk reports
are established at dates t for a horizon h. Institutions provide, for each market scenario
�Iij the possible loss Lijk(t) of each division Dk . At the end of the period t + h, the
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Regulator observes the actual shift of each index �Iiact(t) = Ii(t + h) − Ii(t). By a
simple linear interpolation, or extrapolation if this shift happens to exceed the range
of published �Iij , j = 1...5, the Regulator computes what should have been the
impact of this shift on each division Dk:

Lik,impact(t) = Inter/Extrapolation of Lijk for �Iiact(t)

Note that, in case �Iiact(t) is outside the bounds of the 5 values �Iij, this computed
loss may exceed the maximum declared loss. Then the Maximum Accepted Loss of
the division is computed:

MAL(Dk , t) = max
i
Lik,impact(t)

The Institution Maximum Accepted Loss is the sum of that of its divisions:

MAL(t) =
∑
k

MAL(Dk , t)

A violation is incurred when the Institution actual loss Lact(t) over the period [t, t + h]
exceeds MAL(t). In this case, the violation ratio is simply:

V(t) = max(1, Lact(t)/MAL(t))

4.2.4 Computation of the Multiplier

The multiplier λ(t) is re-computed at every reporting period, according to 2 rules:

1. If there is no violation, it is reduced in order to converge after a reasonable period
of time to the value 1.

2. If there is a violation, it is increased by an amount depending on the severity of
the violation.

The formula proposed here to compute λ(t) from its previous value λ(t − 1) and from
the violation ratio is quite simple. First we compute a natural dampening of λ(t – 1):

λ̄(t) = max(1, min((1 − α)λ(t), λ(t) − ε))
In this formula, 1 –α is a dampening factor, whose role is to tame down the multiplier.
If the multiplier is already rather close to 1, the reduction is at least ε, without
possibility to drop below 1. Parameters α and ε depend on the reporting frequency
and should be set in such a way that, approximately after a year without violation,
the multiplier is set back to 1. For instance, for a weekly reporting, α = 1%, ε =
2% ( ≈ 1/52).

In words, every week, if there is no violation, the multiplier is reduced by 1 %
of its value, the reduction not being less than 0.02 until the value 1 is reached. If
λ(t − 1) > 2, then λ̄(t) = 0.99λ(t − 1), if 1.02 < λ(t − 1) ≤ 2 then λ̄(t) =
λ(t − 1) − 0.02 and if 1 ≤ λ(t − 1) ≤ 1.02, then λ̄(t) = 1.
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In case of a violation, i.e. V(t)> 1, the multiplier is simply multiplied by the
violation ratio:

λ(t) = λ̄(t)V (t)

This way, the penalty for violating the MAL is strictly proportional to the size of the
violation.

4.3 Eliminating Pro-Cyclicality

The key point to prevent cyclicality is the de-correlation between violations of
risk measures and market events. This de-correlation will be achieved under two
conditions:

1. The Regulator decides the stresses to apply, hence is in a position to smoothly
impose deleveraging before it becomes an unsolvable problem. This is why the
regulator must have an anticipative measure of factor risks and, in particular, of
systemic risk.

2. Risk reporting is not a figure, but a function of markets hence violations are
not due to markets swings but to misreporting of extreme risks. If institutions
correctly report their extreme exposures, there is no reason why they would more
violate their assessment during a crisis than during normal periods.

There is a chance that, even with such a setting, capital adequacy constraints still
remain pro-cyclical if one of the following occurs:

a. The Regulator fails to anticipate systemic risks,
b. Institutions fail to correctly estimate their exposures to extreme market conditions

For these reasons, it is of utmost importance that the Regulator puts in place appro-
priate tools and analyses to cleverly monitor and update the list of imposed stress
tests.

4.4 Other Risk Sources

It is in the interest of the Institution to foresee other risk sources within its risk
reporting. These will add to the regulatory capital, but will avoid costly violations.
The custom definition of “division” allows institutions to easily include extra risk
sources in their reporting. For instance, in order to include Operational Risk, one
can simply add a division supposed to entirely support this risk. The strength of this
framework is to allow reporting not only a maximum amount, but an amount that
may depend on external risk factors in a purely customary way. Let us here examine
a few examples.
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4.4.1 Operational Risk

The simplest way to include such a risk is to create a specific division Dop. Assuming
operational risk cannot be related to any market factor, one will declare a fixed
amount Lop which will be added to the overall MAL.

Operational losses, which are included in the actual loss Lact(t), will be compared
to this extra buffer in the MAL.

4.4.2 Counterparty Risk

Each major counterparty can be made a division. Losses stemming from the default
of a counterparty are directly related to market events, in two ways: first by the
amount of the engagement, second by the probability of default, which naturally
depends on market conditions. It is in the interest of the Institution to estimate the
reliability of its counterparty and to optimize the risk of violation and its cost in
capital vs. its probability of occurrence. Using hedges, such as credit derivatives, or
diversification strategies across several counterparties will be a direct consequence
of this optimization.

4.4.3 Liquidity Risk

When the Institution deals with illiquid assets or even with assets exposed to liquidity
risk, that is, assets that may suddenly become illiquid, such events materialize by a
sharp price drop, which can be anticipated through nonlinear (optional) modelling. It
is in the interest of the institution to anticipate such events and the market scenarios
that may trigger them. If such scenarios are outside the bounds specified by the
regulator, it might be optimal to include more extreme scenarios in the reporting, or
to include scenarios rather specific to such or such asset class which were not in the
Regulator’s list.

4.4.4 Default Risk

The default risk on an asset is directly identifiable with a price drop. It is quite easy
to anticipate as the impact of some market scenario and to include it into the risk
computation.

5 Counterparty Risk: Monitoring “Too Connected to Fail”

One important teaching of the recent crisis is that market risk netting at the level of
an entire institution is missing an important issue: counterparty risk. In fact, each
major counterparty of the institution should be considered as a separate portfolio as,
in case of default, the firm-wide netting will be destroyed.
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For this reason, institutions should report their exposure to major counterparties
in the same format as they do it for their own risk. In other words, a risk report of
the same nature as that described above should be produced for each counterparty
that accounts for a significant portion of the firm business. The “negative” part of the
engagement with the counterparty (i.e. when the institution owes to the counterparty)
is a simple market risk, to be aggregated with other market risks in the global market
risk report. However, the “positive” part represents counterparty risk and should be
subject to reporting in the form of stress tests as above.

The amount at risk, given by the worst case scenario, should be considered as a
“loan” to the counterparty and be regulated as such with prudential rules. This being a
risk figure and not a foreseeable amount with certainty, the Cooke ratio does not need
to be applied in full. However, monitoring this potential risk with full knowledge
of the market scenario in which it materializes will be crucial for the regulator to
anticipate possible cascade effects. In fact, with such information, the Regulator will
be able to run simulations and identify institutions that are “too connected to fail” as
opposed to “too big to fail”.

6 A New Macroeconomic Lever

In the traditional Keynesian economy, the Government basically holds two macroe-
conomic levers in order to optimally monitor the country growth: short term interest
rates and government spending. The third one—printing paper money—is not avail-
able to all governments (e.g. EU countries) and, generally speaking, is subject to
constraints and must be used with extreme care.

Moreover, all these levers jointly act on the “financial world” and on the so-
called “real economy”. Implicitly, the “financial world” is supposed to be in line
with the “real economy”. Unfortunately, recent economic history has shown that
the development of financial technology—both computerization and new financial
instruments—allow strong discrepancies between the two. These are precisely those
discrepancies which are targeted by regulation on capital adequacy.

The setting described here offers a new type of command lever to the Regulator.
By allowing more or less regulatory capital to financial institutions, it can accurately
monitor the general leverage of the system and discriminatively act on the financial
world without touching the “real economy”, that is the industrial corporations, hence
preventing too large discrepancies as observed during speculative bubbles.

7 Conclusion

The methodology presented here for capital adequacy rules is a strong framework
for regulators to improve the current Basel II principles and, in particular, avoid pro-
cyclicality without incurring uncontrollable costs for the Regulator to monitor the
risks of financial institutions. This is achieved by applying the following principles:
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1. The Regulator defines which market scenarios should be anticipated and tested.
By its anticipative action, it avoids pro-cyclicality.

2. The Institutions provide their own risk estimate in each of these scenarios. The
Regulator does not need to control the details of each institution, avoiding the
corresponding costs.

3. The regulator checks that risks are correctly reported by comparing actual losses
to an amount which depends on both the risk report of the institution and the
actual market move. Institutions must correctly declare the potential impact of
markets, but are not required to actually anticipate markets themselves. This task
is left to the Regulator.

4. The Regulator penalizes institutions proportionally to the amount of the violation
and not with respect to their frequency only. This puts a responsibility on the
Institutions to provide readable risk figures and not abstract numbers potentially
not in relation with actual losses.

Thanks to these rules, one can establish a healthy operating framework in which
Institutions and Regulators keep confidence in each other. Institutions are naturally
led to report risks as exhaustively as possible and to avoid “putting the dust under
the carpet”. Moreover, the extra safety gained by the approach will probably allow a
reduction of capital for a number of healthy institutions that were penalized by the
hazardous activity of others, which forced the Regulator to increase margins when
this was not absolutely necessary.

Finally, the definition of stress scenarios used for computing the regulatory capital
is a new command lever for preventing speculative bubbles, by accurately acting on
the appropriate asset class and, therefore, avoiding systemic risk.
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Financial Modelling and Memory:
Mathematical System

Charles S. Tapiero and Pierre Vallois

1 Introduction

Data based search for patterns are of concern to almost all fields of studies and
research. To do so, parametric mathematical models are constructed to explain ob-
served data sets, forecast future prices, etc. The models we use are extremely varied,
seeking to be reliable, robust and explanatory. Financial models for example have
for the most part assumed models that are based on drift and randomness to con-
struct models of asset prices. Typical examples include random walks and stochastic
(Brownian motion) differential equations (such as a lognormal process) as well as
Poisson and Jump stochastic processes. These latter models are based on events that
occur at random and independent times. They assume also a number of simplifying
assumptions, all of which are either explicit or implicit. For example, stochastic
differential equations assume that data can be expressed in terms of two statistical
properties: the data drift and its volatility, both of which are defined in terms of
underlying (Brownian motion) normally and statistically distributed events. By the
same token, Poisson-like jump processes are defined in terms of a memory-less pro-
cess (with independent inter-events time distributions). To circumvent some of their
assumptions, more complex and multi-variable models are used to account for ob-
servations that such models fail to explain. For the most part these models are based
on both a rationality and an experience acquired based on theoretical constructs and
on data analyses. These models are extremely useful, and provide an ex-ante in-
terpretation for the behavior of data sets as well define the statistical properties of
observed financial variables. Ex-post, however, these models may default since all
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models are merely an educated hypothesis of underlying processes. Modeling finan-
cial processes is therefore a work in process, in search for coherent and complete
mathematical systems that can on the one hand be justified theoretically and on the
other account far more precisely for observed data sets.

The first and fundamental mathematical system underlying financial dundamental
theories is the definition of a pricing probability measures that defines a Martingale
on the basis of which future prices can be priced based on observable current prices.
Technically such approaches are based on the translation of the underlying “noise”
of the financial process. The assumptions of such models are based on economic
rationalities. Their extensions to more complex and generalized mathematical sys-
tems include fractional calculus as well as other systems where both the time scale
of underlying stochastic processes as well underlying “noise processes” differ from
the Brownian motion. These elements provide both theoretical challenges to eco-
nomic and financial rationalities and at the same time provide a greater number of
parameters we use to explain the bahavior of data sets.

This paper provides an elementary introduction to such systems for financial engi-
neers seeking to expand financial modeling. Necessarily, these models are based on
mathematical assumptions which will be defined explicitly. Financial modeling con-
sists then in seeking an economic rationality based on the least number of parameters
which is cogent with observed financial facts and financial agents behaviors.

For example, the traditional assumption that stocks’ rates of returns increments
�R(t) and �R(s) are stationary and independent have far reaching implications to
pricing models. Their simplicity and limitations are compensated however by their
usefulness in defining and “pricing” financial assets that agents are accepting as
reference prices to trade with. Such an assumption has specific and important impli-
cations. Explicitly, consider the mathematical function f (t) = E(R(t)) − E(R(0))
at two instants of time t and s, then independence implies a functional relationship:
f (t + s) = f (t) +f (s) where f (t + s) = E(R(t + s) −R(t)) +E(R(t) −R(0)) and
therefore, it equals E(R(s)−R(0))+E(R(t)−R(0)) = f (t)+f (s). This functional
equation has a unique time linear solution f (t) = tf (1) which proves that such
models have time linear expectations. A similar analysis for its second moment pro-
vides a similar time linearity. However, such assumptions are not always confirmed
by assets time series even though they underlie fundamental financial models. For
example, efficient markets, defined by Fama 1970, as markets in which informa-
tion is instantly reflected in the market price and reflect “all the information” that
is relevant to that stock—past and future, presume such a linearity (see also Fama’s
earlier papers, 1963, 1965a, 1965b). In this framework, the future is model based on
a predictable future of state and their equilibrium prices. Each of these predictable
prices is implicit in traders exchanges occurring at a present time and result in an
equilbrium for all (known) future state prices. Their current expectation (with respect
to the probability measure that define their prices), thus defines (imply) the current
future price. A weak efficiency, however, is defined when the current price reflects
past prices only. This means that, provided all the past information is used (which we
will denote for the moment and for simplicity by the filtration �(t)) accounting for
what is known at time t, a market is weak efficient if its expected price conditioned
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by this information equals the current price. Thus a price at time time t, p(t), for a
future asset price at time t+T , p(t+T ), obeys with respect to a probability measure
Q, given by a financial model definition by:

p(t) = EQ(p(t + 1) |�(t)) = · · · = EQ(p(t + T ) |�(t))

Markets efficiency (assuming that it exists) has assumed an extremely impor-
tant role in theoretical finance. When markets are complete, the Martingale is a
mathematical property that underlies financial asset pricing models. Data as well as
complex financial markets point out however that markets may often be incomplete.
In economics, interest in such market models arose after the publication of a paper by
Charles Nelson and Charles Plosser 1982 on “Trends and Random Walks in Macroe-
conomic Time Series”. Based on the study of a very large number of time series,
they were not able to confirm that “noise” is normal (which is often stated as the
unit root hypothesis). This means either that economic processes are inherently non-
stationary and thus resist explanations by linear models such as ARIMA or related
models, or that there are long range memory effects to economic time series which
are not accounted for by simple time linear Markov models. These observations still
contribute to our search for time series models that can better explain business cycles,
underlying volatility processes and in general better explain the evolution of prices.

Expectations, forecasting, data extrapolation, intrapolation, memory, filtering
and re-modelling with far more complex models (multi-variables, nonlinear, etc.)
are thus sought to reconcile theoretical models and observed data. For example, past
and current data are used to estimate volatility processes based on both historical data
(to estimate the historical volatility) as well as on implied future prices (to estimate
an implied volatility). By the same token, numerous dynamical models are based on
a model of memory. For example, consider a mean reverting stochastic model (an
Ornstein-Uhlenbeck process) with an initial condition x(0) = 0, where {x, t > 0} is
a non-adaptive stochastic process deviating from its mean evolution and W (τ ) is a
standard Brownian motion, or:

dx = −axdt + σdW (t), x(0) = 0 and its integral x(t) = σ
t∫

0

e−a(t−τ )dW (τ )

This process has a (statistical) exponential decay memory, weighting more impor-
tantly recent random deviations from their mean. Alternatively, it is an exponentially
decreasing function of past “normal noises”. The weight of memory is then model
based. Generally,

x(t) = x(0)e−at + σ
t∫

0

e−a(t−τ )dW (τ ), x(0) �= 0
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In this case,

E(x(t)) = E(x(0))e−at

var (x(t)) = E
⎧⎨
⎩(x(0) − E(x(0)))e−at + σ

t∫
0

e−a(t−τ )dW (τ )

⎫⎬
⎭

2

If the initial condition is not anticipating as well (or equivalently, not adapted), it is
possible to write:

var (x(t)) = var (x(0))e−at + σ 2

t∫
0

e−2a(t−τ )dτ = σ 2

2a
+
(

var (x(0)) − σ 2

2a

)
e−at

This elementary memory model can be extended in numerous ways and function-
ally transformed may lead to an interpretation of memory and its uses in different
ways. As we shall subsequently see, such a memory may be conceived and defined
by probability models such as Gamma and Weibull distributions as well as long run
memory trends with fat tails distributions and a memory defined by a calculus based
on the Riemann-Liouville derivative definition of a fractional derivative. These mod-
els on the one hand question the precision of using limit arguments of very small
time intervals between events (can such intervals be parameterized to be greater than
the limit dt?). On the other, are noise processes fuelled by Brownian motion or by
some more elaborate processes? The particularity of these questions underlies the
development of alternative mathematical systems to better appreciate and manage
financial processes.

A preliminary extension of this model leads to financial models where the weight-
ing of “past noises is some functionm(t−τ ), while others are based on the definition
of the stochastic differential equation and its integral and still others are based on
the definition of the “noise” itself. With a normal (Brownian) noise, a premium drift
added to the Brownian motion will provide as we shall see, a probability measure
that defines a pricing model. A variety of mathematical systems are thus possible,
each extension providing a generalization for the fundamental OU normal process.
For example, consider the following model

x̃(t) = x0m(t) + σ
t∫

0

m(t − τ )dW (τ ) with m(0) = 1

And let the stochastic integral equality below be defined by an application of Ito’s
definition of a stochastic integral:

t∫
0

h(t , τ )dW (τ ) = h(t , t)W (t) −
t∫

0

∂h(t , τ )

∂τ
W (τ )dτ
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And therefore,

x̃(t) = x0m(t) + σ
⎛
⎝m(0)W (t) −

t∫
0

∂m(t − τ )

∂τ
W (τ )dτ

⎞
⎠

Of course if m(t) = e−αt then m(t) = e−αt and ∂m(t−τ )
∂τ

= ∂
∂τ
e−α(t−τ ) = αe−α(t−τ )

and therefore,

x̃(t) = x0e
−αt + σ

⎛
⎝W (t) − α

t∫
0

e−α(t−τ )W (τ )dτ

⎞
⎠

1.1 The Langevin Representation

Consider again, the Ornstein-Uhlenbeck process, equivalently written as follows:

dx = −axdt + σw(t)
√
dt , x(0) = 0 and w(t)

√
dt = dW (t)

Note that since var (dW (t)) = dt , var (w(t)
√
dt) = dt var (w(t)) and therefore,

var (w(t)) = 1. The equation is due to Langevin, which we can write as follows:

dx = −axdt + σ
(

w(t)(dt)
1
2

)
, x(0) given

Such a formulation renders explicit the different time scales of the drift and the noise
component due to the special considerations one has to maintain when calculating
a stochastic integral. Explicitly since W (t) is a normally distributed random vari-
able, then integration of �W (t) resulting in W (t) is defined computationally by its
integration choice, its time interval and how the stochastic integral is numerically
defined.

These comments are in fact the elements that distinguish between the Ito stochastic
calculus and the Stratonovich (in fact Riemanian) calculus. Further, the choice of
the limit time interval �t in the stochastic calculus we choose to apply, defines as
well financial models that may have different interpretations. For example, consider
the Ornstein-Uhlenbeck model and assume that the time interval is parameterized to
�t = (�t)H where H is a parameter. Of course if H = 1, that would be equivalent
to a Langevin equation (or a Brownian motion). Namely,

�Hx = −ax(�t)H + σw(t)(�t)H/2, x(0) given

And at the limit:

dHx = −ax(dt)H + σw(t)(dt)H/2, x(0) given



154 C. S. Tapiero and P. Vallois

In other words, by rescaling the stochastic differential calculation we have created
another mathematical system with its own rules and its own analytical procedures.
The integration of such an equation does not lead to the same result its Ito calculus
model indicates, although we shall show later on that there is an equivalence between
these two formulations. In fact, we can interpret the H fractional formulation as a
generalization of the OU process since for H = 1, we have the standard OU Brownian
mean reverting process. In general, we shall see that a fractional calculus is based on
a mathematical operators based on a Cauchy-Riemann-Liouville equation as well as
on the use of a Mittag-Leffler function (a generalization of an exponential function)
as we shall see subsequently. These operators, while mathematically consistent and
inclusive of the Riemann calculus alter some of the calculations we use to interpret
financial models based on Ito stochastic calculus as well as based on the use of the
Brownian motion as an essential source of risk-noise.

1.2 A Poisson Noise

Let noise be defined by a Poisson probability distribution (as we shall subsequently
see), then such a process will generate another family of financial models. It is then
defined by stationary independent (memory-less) increments which are identically
distributed as a Poisson probability distribution. That is, for increment�xt , we have
E(�xt ) = λ�t where λ is the mean rate of a Poisson distribution:

P (�xt = n) = exp (−λ�t)(λ�t)n/n!, n = 0, 1, 2, 3, ....

The probability distribution is in this case a function of the time inter-
val �t . That is, setting, (�t)α , we have then: P ((�xαt ) = n) =
exp (−λα(�t)α)(λnα(�t)αn)/n!, n = 0, 1, 2, 3, .... where we note explicitly that in a
time interval (�t)α, events rates associated to this time interval λα, define a
probability for the number of events within that time interval. In this case,

P ((�xαt ) = 0) = exp (−λα(�t)α) ≈ 1 − λα(�t)α + 1

2
(λα)2(�t)2α + ....

If α > 1 then of course, second order terms are negligible if the time interval is very
small. If (�t) > 1, then evidently, second order terms will be increasing providing
a greater importance to our accounting for these terms, etc. In other words, the time
scale of a a model (whether for counting insurance or financial events) does alter
the underlying assumption we make regarding such a model. Of course, if α = 1
we recuperate the common Poisson distribution which acts in this case as an anchor
distribution with respect to which computational and theoretical results implied by
the model and the time scale we use can be evaluated.

An alternative representation of a common Poisson process as a time continuous
stochastic differential equations consists in the following:

�xt = λ�t + σμ̃(�t) or xt = λt + σ ∼
Nq (t)
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Where Ñq(t) is the sum of a standardized Poisson events, with μ̃(�t) in a time
interval (0, t). Such standardization allows us to construct an approximation to that
of a continuous state (Brownian process). If λ = σ 2, the mean equals the variance
and at least the moments of such a process are equivalent to that of a Poisson process
(although, these are not generated in the same way and therefore they may not be
a Poisson process but its approximation). To standardize μ̃(�t) as a Poisson noise
approximating a Brownian motion model, we let μ̃(�t) be a zero mean and unit
variance process:

μ̄(�t) = μ(�t) −�t with

E(
∼
μ(�t)) = 0 and μ(�t) = �t and var (

∼
μ(�t)) = var (

∼
μ(�t)) = �t . μ(�t) is

thus a random variable with parameter �t with P (μ(�t) = 1) = �t + o(�t) and
P (μ(�t) = 0) = 1−�t+ o(�t) while all other values have negligible probabilities,

μ(�t) =

⎧⎪⎨
⎪⎩

Prob[μ(�t) = 0] = 1 −�t + 0(�t)

Prob[μ(�t) = 1] = �t + 0(�t)

Prob[μ(�t) ≥ 2] = 0(�t)

with E {μ(�t)} = 0 and var {μ(�t)} = �t . When �t becomes very small, the
stochastic Poisson process is formally defined by a stochastic differential equation
with noise μ̃(dt);

dxt = λdt + σμ̃(dt); σ 2 = λ
Evidently, μ̃(dt) represents now a discrete state process, taking on values of zero
and one only. If σ 2 �= λ the process defined above may approximate a hyper or super
Poisson process in a mean-variance sense. Again, in a mean-variance sense, it may be
approximated by the continuous Wiener process, which assumes the standard form:

dxt = λdt + σdW (t), x0

Our use of the underlying Bernoulli “noise” process over a given time interval as-
suming binary values can of course be generalized in many different ways based
on its moments. However, changing the time scale, the assumption that only one
event may occur in a given time interval (however small) can be misleading. Noise
models resulting from the development of “Bernoulli” models may be co-dependent
(as Bernoulli events can in fact be statistically dependent, be causal, etc.). For ex-
ample, does an event, producing “information” useful for financial purposes alter
the probability of a future event (information). Do such events have memory in the
sense that their time record may alter financial decisions and thereby lead to “other”
evolutions of market price processes sensitive to such memory-information.

The representation of a discrete (Bernoulli) random process by a continuous one
(Poisson, diffusion approximation) is necessarily a mathematical convenience, which
is a model of a far more complex reality. In this sense, financial models are essentially
“simple models” of a financial reality while the real evolution of financial prices is
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far more complex than presumed by such models. For example, as indicated above,
redefining the time scale to say μ̃((dt)α) we will necessarily redefine the underlying
process-model, we shall call for convenience, fractional model due to the change
effected on the model time scale. In this case, note that if α < 1, then as the limit of
�t , tending to zero, has (�t)α tend to such a limit is a slower manner (and therefore
mathematically, limit arguments have to be treated more carefully). For example,
let α = 0.1, then: (�t)kα is a term greater than �t for k = 1,2,3,. . . 9 and therefore
neglecting higher order terms may be more difficult to neglect. In this case, as stated
above, consider terms of order up to 2α < 1, and note that:

P (�xt = 0) = exp (−λ(�t)α) = 1 − λ(�t)α + 1

2
λ2(�t)2α

P (�xt = 1) =
(

1 − λ(�t)α + 1

2
λ2(�t)2α

)
(λ(�t)α) = λ(�t)α − λ2(�t)2α

P (�xt = 2) = λ2(�t)2α

with P (�xt = 0) + P (�xt = 1) + P (�xt = 2) = 1 + 1
2λ

2(�t)2α . However if
1 − λ(�t)α >> 1

2λ
2(�t)2α then,

P (�xt = 0) = 1 − λ(�t)α

P (�xt = 1) = λ(�t)α − λ2(�t)2α

P (�xt = 2) = λ2(�t)2α

And their sum equals one, which yields a process:

Prob
[
μ (�tα) = 0

] = 1 − λ(�t)α + 0
(
�tkα

)
, k > 3

μ (�tα) = Prob
[
μ (�tα) = 1

] = λ(�t)α − λ2(�t)2α + 0
(
�tkα

)
, k > 3

Prob
[
μ (�tα) = 2

] = λ2(�t)2α + 0
(
�tkα

)
, k > 3

Prob
[
μ (�tα) ≥ 3

] = 0
(
�tkα

)
, k > 3

which leads to a fractional Poisson model. Physically, it means that when we increase
the time interval the number of events we have to consider is increasingly larger and
further, the fundamental assumption of events independence (which is generated by
considering one event at a time with independent probabilities) may be misleading.
We shall subsequently see that this is the case when we consider fractional Poisson
processes.

Other financial systems do exist, each expressing various rationalities or paramet-
ric generalizations of specific reference models. For example, maximizing entropy
(a measure-metric for disorder) is used in some cases to justify the adoption of
noise models (or explicit probability distributions that meet certain informational
assumptions) that in some specific cases include the standard (and financial model-
conventional) normal probability distribution. In this sense, informational departures
from what leads to such a distribution may be understood to provide a measurement
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for the effects of information that leads to selecting instead of the normal, another
maximum entropy consistent probability distribution. By the same token, instead of
using and “informational rationality”, one may use a behavioral rationality based on
assumptions regarding human preferences and risk attitudes (as it is the case when
using a utility theory to define a financial process through say, the CPM and the
CCAPM type models).

Time, temporal scale, memory, an underlying informational and “behavioural”
rationality, noise and their mathematical representations and treatments thus encom-
pass a broad approach to financial modelling. These approaches result for example, in
the recognition that mean-variance models may be limiting (such as CAPM models
or lognormal stochastic processes based on rates of returns and volatility statistics).
Thus, leading a search for financial stochastic models to be far more coherent with
skew, kurtosis and other statistical characteristics observed in real data. Such a pur-
suit, leads necessarily to a departure from the tenets of fundamental finance theories
such as the Arrow-Debreu framework for financial assets pricing. Such a theoretical
framework assumes in fact (among various assumptions regarding informational and
financial rationalities) that future financial state preferences are completely known
(and therefore it is called complete markets finance). Extending financial models to
be amenable to empirical testing and yet be expressed in terms of an Arrow-Debreu
theory of a deterministic financial equilibrium financial rationality underlies com-
plete markets financial modeling. Deviating from any of its assumptions is defined in
terms of ill-defined market prices disequilibrium, which we call globally, incomplete
markets. Even though, each departure from such a theory provides in fact a different
market “incompleteness”.

In this sense, Brownian noise based on prevalent mean and volatility processes
may be too restrictive. Financial data as stated above often exhibit higher order
moments pointing to skewness (asymmetric distribution) as well as to kurtosis (fat
tails). In this case, fractional (time scaling) noise processes (whether normal based or
Poisson based) alter in a specific way the manner with which information is defined
and the values financial models assume as a function of the time scale the financial
model uses. These elements, implied in both the manner we construct models and
the manners in which we calculate the evolution of models, calculate derivatives,
stochastic models and stochastic integrals, etc. alter financial calculus.

For example, we commonly use a Brownian (normal) noise process to represent
independent noise events, lacking any underlying rationality and purpose, occurring
randomly and then proceed to assess their temporal effects by integrating their past
random outcomes into an integrated whole. Such models are non-anticipating, in the
sense that future “noises” are not integrated and are independent of current noise.
This is of course, justified by the fact that “fundamentally”, the future “noise” of
prices is deemed “unpredictable”.

Computational finance is also, necessarily, models dependent. In financial engi-
neering, much use is made of financial models based on Ito’s calculus (rather than,
say Stratonovich stochastic calculus, both differentiated by their approach to com-
puting stochastic integrals as we shall subsequently see). I believe that this is due to
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finance’s risk measurements to be particularly focused on returns and their volatil-
ity, defined by Brownian motion models and less with other moments (although in
practice, these are elements of increased importance). This is changing however, as
financial models are increasingly more sensitive to returns skewness (distributions’
asymmetry) and to their kurtosis (fat tails). Levy processes we shall outline briefly
are attracting and increasing interest for financial modeling due to their expanding the
moments they consider and yet maintain the (statistical) stability of the probability
distributions it uses.

Fractional or “Long run memory” models, use instead a calculus based on the
Cauchy-Riemann-Liouville equation and the Mittag-Leffler function. In this paper,
some of these elements will be introduced based on an extensive bibliography and
research spanning mathematics, physics, psychology and of course, economics and
finance.

Finally, the manner in which we interpret data and relate it to a future time is also
an important issue to reckon with. In particular we shall refer to “short memory” to
account for the effects of a specific event on the subsequent probability of a future
event. This memory is then the event itself or the past few events. A shift of model to
model is then causal. It may be also be a statistical realization of the past which alters
a financial (or any other) subsequent process causality is the a statistical event. When
such a process occurs once and does not predictably recur, it is then a “bifurcation”—
an event changing a process irrevocably. When an event conditionally alters a process
in well-defined ways, then of course, each time such an event occurs, such a process
bifurcates and change occurs predictably (it is not a bifurcation however). We shall
call such processes short memory or persistent processes.

The empirical study and estimation of such models are evidently model-
dependent. For example, learning (Bayesian or using other statistical tools) may
be applied. These are issues that this paper will not for brevity, attend to. Generally,
financial models are constructed to replicate a specific element or problem of real
finance. Fundamental finance based on the Arrow-Debreu framework seeks to do
by essentially defining a probability measure that ascribes to future prices a current
price. Its usefulness is based on a transparent rationality that justifies our belief in its
predictions. Its weaknesses, as with all models, are embedded in their assumptions.
Their advantage are based (in finance at least) on their acceptance to support trade
and investment decisions as well as their tractability. When its assumptions are met,
markets are called complete (or efficient) and when they are not, they are called
incomplete. In this latter case, financial models are sought that can enrich the ba-
sic complete markets framework to account for financial observations that better fit
observed behaviors and financial time series. Mathematical “systems” may then be
applied, each with characteristics that may differ. Complete markets pricing models
do so by accounting for the risk premium of say a stock price process, which is used
to “transform” the stock to be financially equivalent to another asset whose price is
known for sure in both the present and in its future. In this sense, complete market
pricing models are a relative price construct (rather than a real price) with specific
mathematical properties that define the evolution of theoretical asset prices (defined
in terms of a Martingale as we shall see subsequently).
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Fractional (long-run) memory generalizes fundamental models (in the sense that it
recoups the fundamental model as a special case) and at the same time desensitizes the
application of its calculus to extreme limit times differentials (i.e. the time scale is pa-
rameterized). Its application is not obvious however, not for the mathematics it uses,
but for the finance it implies. Its parametric generalization provides however a mea-
sure when deviating from a reference (complete market) financial model. By the same
token, q-calculus proceeds in a similar manner, albeit with another generalization (see
Jackson calculus as well as applications of maximum Boltzmann-Gibbs 1878 as well
as Tsallis and other functional generalizations of entropy functions and their rationali-
ties). Differences are also observed in the manner in which stochastic noise is defined,
interpreted and calculated. These and many other approaches one might define
provide foundations to analytical approaches to financial modelling and analysis.

The intent of this paper provides an overview of such models as well as uses
problems to assess the effects of such models on some basic results in finance we take
for granted. In this sense, it brings no new results, and replicate some results published
by other authors including Jumarie. Vallois, Herrmann, Oren Tapiero, my own past
publications and others, to which I am most grateful for their permission to use their
publications. Numerous papers are listed in references to provide for the motivated
reader a background and sources for further study. Finally, financial examples are
used to highlight the relevance and the potential usefulness of various mathematical
and memory-information systems for financial modelling. For simplicity, we use both
fixed income-bond models as well as lognormal stochastic price models extended
in different manners according to the mathematical system they use. The intent of
these applications are to challenge both computational approaches in finance and
fundamental financial theories.

2 Time and Memory

What is memory and what is time? These are two intrinsically and fundamental
concepts that underlie mathematical modeling in general and financial modeling in
particular. Time is often defined implicitly in terms of religious and cultural values
to seek a relative line (a time line) to organize our beliefs and thoughts, our data and
information to construct a model of memory and confirm theories. Dynamic models
such as asset price processes are merely models sought to organize a hypothetical
evolution of prices along a given time line and based on the interpretation—objective
or subjective, statistical or punctual of past events—which we call memory. Extend-
ing this time line beyond a current time provides a means to forecast future events and
future prices. Time is defined by fractioning a temporal perspective into a sequence
of points, denoted by the year, the month, the week, the day, the hours, the seconds
and the microseconds. In this context, time can be objective measuring time by a
“clock” while it can be relative to a set of measured or memorized events. A time
line is thus a scale against which we measure a theoretical or a “psychological” pro-
cess. It may have different properties, explanatory and predictive powers and each
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embeds past events and by their memory they can affect attitudes, decisions and
future predictions. The greater the time line interval, the more a memory is embed-
ded (endogenized) in the evolution of the processes’ parameters it seeks to represent
and thus may not be apparent. For example, mathematical models in high frequency
trading may be based on and account for many considerations that are dissipated
when they are integrated (endonenized) in financial day data. Thus, models based
on monthly data, day data or on High-Frequency data can differ appreciably when a
stochastic model is constructed, yet they may be in some rational or statistical way be
dependent—one partly explaining the other and vice versa. Co-dependence of tem-
poral events may be integrated in parameters that define a process trend by the effects
that one has over the other. Similarly, predicted future prices may be endogenous to
a current price (based on the assumption that some expectations are self-fulfilling).
These elements are of course challenging when estimating and interpreting financial
stochastic models. For example, in fundamental finance option prices may be defined
based on historical estimations of volatility (and therefore, memory based) or based
on a future expectation of future state prices (under a specific probability measure)
that are merely a current manifestations of prices traded with a future intent. Valida-
tion of such an approach presumes that such estimates are independent of past data
and therefore past memory. The past, however, may or may not be relevant to such
expectations, requiring that such models (hypotheses) be carefully assessed. Further,
in some models (as with short memory), we can show that memory, while based on
specific events may subsequently be implicit in processes trends and volatility. Mod-
eling memory and defining its time scales is therefore both a challenging modeling
and analytical problem. In other words, real-information may alter future trajectories
and therefore the models we a-priori hypothesize.

Models’ challenges may be circumvented by mathematical transformation of the
data we have, by a dimensional expansion of the underlying model and by defining
more specifically what memory we “mean”. How future states and expectations are
applied to define their present consequence, is the underlying function of pricing
models.

“Memory”, unlike time (but temporally dependent), represents quantitatively the
effects of past states on current and future ones. Memory can assume then many
forms. For example, it may be interpreted as statistical estimates of past and future
events, often defined in terms of probabilities that we use to elucidate future events
(as it is the case in Bayesian probability models that adapt probability estimates by
a Bayesian learning model). In such cases, memory, current data and its reliability
are used to learn and exert an “information transfer” to infer a future probability.
These assume that the past and the future are “temporally dependent”—either in fact
as observed by data or by the definition of a model we construct. Namely, since all
models are merely a partial representation of reality, defined by design or implied in
data sets we use to construct such models, time and memory may simply be tools we
use to augment the comfort of our predictions. Technically, we then use terms such
as temporal dependence, auto-correlations as well as short and long run memory to
define the elements a process is based on with its parameters estimated as information
unfolds.
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“Independence” as opposed to “dependence” is used to indicate that events vary
statistically and independently of one another. Namely, observing or modeling an
underlying set of events that are independent will presume that they are “timeless”—
i.e. the occurrence of an event at one time is independent of another at another time.
Suppose that the underlying statistical elements of a process are used to represent
an evolution which is temporally independent. Then temporality is a term assumed
a-priori to build a statistical model. Time and memory (in its broader sense, of past
and future) are thus intrinsically related.

Examples abound. Financial models use profusely the“Markovian” property,
where future events are defined conditionally on a process current state, (“repre-
senting a point memory of everything that has happened before”). For example,
momentum trading strategies are based on the belief that a stock price increase may
imply a future increase, and vice versa. Mean reversion is then a momentum strategy
but expressed in terms of deviation from an underlying long run trend. When above
the trend, the tendency would be to decline and return to be in the trend and vice
versa. Charting in finance practice is of course memory based as are many trading
techniques on empirical experience and traders’ beliefs.

Fundamental finance theory is also based on memory, but formally representing
all future expected results in terms of a filtration with respect to a theoretical and
sets of past data. There are further, many financial models seeking to depart from
the Markovian assumption in order to explain contagion processes (of banks of de-
fault loans, etc.) or using complex models where the underlying source of risk is
a random (or Markovian) noise. Information or “its manifestation in memory” is a
transfer from a past to a future which assumes of course many forms and in particular
unpredictable ones. A rolling ball is hit by another—its trajectory will necessarily be
altered and therefore valuation models adapt to such changes. Similarly, when inter-
ests are changed by the Central Bank from say 3–3.1 %, prices, future predictions of
interest rates are altered. By the same token, interventions by Sovereign agents on
FX markets produce information regarding States intents’ which also alters future
expectations and the evolution of FX rates. etc. Memory may also linger over long
periods of time or may be curtailed, with only recent events and information dominat-
ing the evolution of financial processes. Both long (with significant autocorrelation)
and short memory assume then many forms, some expressed by a nonlinearly grow-
ing volatility over time to point out the fact, that we can hardly predict the future,
while others alter future trajectories (or Short Run Memory Models). Both Long
and Short Run memory models are manifest in and out of finance (Baddeley 1994,
2003; Atkinson and Shiffrin1968; Miller 1956; Tapiero 1988, 2004, 2010, 2012a,
Tapiero on adverting, its content and forgetting (1975, 1978, 1979, 1982, 1983, 2004,
2005).

In car insurance –the claim history of an insured driver has an effect on the prob-
ability of the driver having future accidents (since an accident may be learned by the
driver that in the future will be more careful and seek to prevent such accidents). In
intraday financial data, as well as in High Frequency Trading (HFT), algorithms are
constructed to profit from memory which may or may not always exist. Momentum
trading strategies for example, assume explicitly that an increasing stock price may be
self-enforcing and thereby lead to future growth in its price, and inversely. Memory
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was shown on the S&P, IBM and other securities to have a memory effect on the
future probabilities of prices lasting 1–5 min in intraday data. Over longer periods
of time, the memory is abated rapidly. In fact, a theoretical model we constructed
(Vallois and Tapiero 2007, 2008) has pointed out explicitly, that lingering memory
effects are embedded in our estimate of process trends and its volatility. Lacking ap-
propriate models to represent the “information transfer from past to future”, memory
is embedded in an uncertainty defined by distributions’ volatility, skewness and in
general probability processes that are “nonlinear” and more complex than normal
distributions.

For financial theories, a fundamental question is: Do stocks have memory? If
yes, then theoretical models we use to price financial assets (based on Martingale
price processes) are misleading (although a Martingale is a mathematical construct).
The fundamental theory of finance answers this question by a categorical no. Yet,
forecasts are based on past data and past experience as well as current future prices
(of forward and options’ prices) that are implicitly used in models with no memory.
Such a categorical no is further challenged by the fact that financial statistics point
out to skewness, kurtosis (fat tails), to stochastic volatility as well as to jumps—some
of which are known in probability and some are not known. The existence of memory
is further compounded by its definition and its manifestations as stated for example
below.

• Memory is a “model” to construct a temporal causality that defines the occur-
rence of future events (stock prices) and their likelihood-probabilities (prices,
interest rates etc.). Thus, better understand and use past information and future
expectations to predict the evolution of prices.

• The physical fact that we are always in a present has motivated our quest to
define a virtual past dictating both our understanding of the present and atti-
tudes towards the future. These underlie our acts in the face of a future which
may be predictable or unpredictable. To frame a future in a cognitive manner,
“expectations-models” and scenarios generating approaches are constructed based
on experience, information, needs and attitudes—these result in a memory.

These are the factors that define our predictions and expectations of future events
and prices.

In some cases, autocorrelation, expressing the dependence of stock prices over
time, presume that memory is embedded in trends, abated by a forgetting rate or
summarized by a statistical reckoning of past meaningful events. Some of these
events are assessed by their deviation from normal expectations (for example outliers)
or may be statistical summaries of statistical events. The existence of memory and
how it manifests itself in underlying financial models is therefore important for both
financial theoretical and practical reasons as well financial statistical and econometric
reasons.

Financial risk models in fact are thus and often are, art rather than just a tech-
nique that consists in defining a meaningful and tractable model that reconciles
best our understanding and observed data sets. For example, the mean reversion
model is based (as its integral solution indicates) on the record of past and random
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events weighted exponentially. By the same token option prices are based on a
model of future and rational expectation of future prices. On theoretical grounds, the
mathematical validation of a financial theory based on complete markets presumes
both the predictability of future state prices defined by a (memory-less) martingale
(defined with respect to an appropriate probability measure). Such processes were
suggested and used by Bachelier who defined an underlying random walk (and Brow-
nian motion) price process (Bachelier 1900, 1901; Einstein 1905). These processes
have special characteristics consisting of independent increments, independently and
identically distributed as Gaussian (normal) random variables with mean zero and
variance t leading time linear volatility growth models.

In all cases, financial models are present models. Namely, they are defined relative
to one instant of time, with the past and the future integrated into a present instant.
This idea has been stated clearly by Saint Augustine (Confessions, Book XI, xx.):

. . . Yet perchance it might be properly said, “there be three times; a present of things past,
a present of things present, and a present of things future.” For these three do exist in some
sort, in the soul, but otherwise I do not see them; present of things past, memory; present of
things present, sight; present of things future, expectation.

Financial and quantitative memory models are therefore always in the present, ex-
plicitly stated in financial models by the conditionality of prices and estimates taken
with respect to a filtration at the time predictions and estimates are made.

Our ability to relate the past and the future to one another other and vice versa—
i.e. make sense of temporal change as well as make sense of current option prices
on a future price volatility. For example, “remembering that stock markets behave
cyclically” might induce a cyclical behavior of prices (which need not, of course,
be the case). “Remembering” i.e. recording the claims history of an insured over
the last years may be used to determine a premium payment schedule and therefore
the probabilities of future claims. The “health” history of a patient might provide
important clues to determining the probabilities of his survival. However, while in
the past such models were constructed on limited and memorized data, leading to an
extensive and competing number of models, currently, clouds, big data, data streams
and diverse data sources and richness, etc. provide new opportunities to reassess
using new and practical models, uses of extremely large and deep data, and the
memory they provide.

Memory models are also based on psychology. Persons do hear and learn and
remember some, but not all. Some is forgotten almost immediately and some is re-
membered “forever”. James Miller in 1956 (the Magical Number 7 plus or Minus 3),
for example emphasized that the human capacity to process information and re-
member it is small and therefore, information is necessarily lost (see also Baddeley
1994, 2003). A system model distinguishing between short term memory, long term
memory and sensory memory was suggested by Atkinson and Sheffrin (1968) and
expanded further in numerous studies (for example, Baddeley 2003). These studies
are particularly important in marketing where consumers’ recall of past advertising
messages as well as their forgetting are important (see Tapiero’s advertising and
repeat purchases related papers, 1975–2005).
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Potential models we can consider are many and varied. Mean reversion and Log-
normal models profusely used in different forms in financial modeling are however
representative of how we might begin. While such models are mathematical stochas-
tic process, prices are the outcomes of an exchanges between traders, investors and
financial agents in general. This model (which is in fact non-stochastic in a conven-
tional way) therefore, results in a pricing model that under very specific assumption
conforms to a fundamental economic rationality as defined by a general equilibrium
theory in economics and extended to future markets by Arrow and Debreu.

3 Models of Memory and Brownian Mathematical Systems

3.1 The Lognormal Price Process

Assume that a stock price process is defined by a lognormal stochastic differential
equation defined by:

dS̃(t)

S̃(t)
= λdt + σdW̃ (t), S(0) > 0

where {W̃ (t), t > 0} is a standard (non-adapted) Brownian motion (normal proba-
bility) process with zero mean and variance t. This is a “noise”, with no memory,
recurring as an independent and stochastic process. The derived rate of returns pro-
cess dR̃(t) = dS̃(t)/S̃(t) = d ln (S̃(t)) has normal probability distribution defined
by an application of Ito’s calculus to the variable transformation R̃(t) = ln (S̃(t)),
leading to:

dR̃(t) = μdt + σdW̃ (t),R(0) given,μ = λ− 1

2
σ 2

The “noise process” {W̃ (t), t > 0} is then a “historical random process” rather than
defining a probability measure we define to construct a predictable pricing process.
Explicitly, if λ is a mean rate of returns, if Rf is a risk free rate Rf , then λ − Rf
is a risk premium a financial agent would pay to “remove the risk” from expected
returns from the lognormal pricing model. A fundamental financial model does so,
by amending the historical (probability measure) “Brownian noise” {W̃ (t), t > 0} to
that of and expected riskless one. Namely, paying a risk premium for the risk implied
by such a model reduces the effective rate of returns to be riskless. Explicitly, adding
and removing the risk premium in the lognormal model, we have:

dS̃(t)

S̃(t)
= λdt + σdW̃ (t) + (λ− Rf )dt − (λ− Rf )dt , S(0) > 0

And defining the probability measure dW̃Q(t) = dW̃ (t) + α−Rf
σ
dt reduces the

lognormal process to a process whose expected rate of returns is risk free (without
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accounting for its volatility since its risk effects were annulled by the risk premium).
In this case, a risk neutral pricing model is defined by the model:

dS̃(t)

S̃(t)
= Rf dt + σdW̃Q(t), S(0) > 0 where dW̃Q(t) = dW̃ (t) + λ− Rf

σ
dt

In this case, a solution of this equation is:

S̃(t) = S(0) exp

{
Rf t − 1

2
σ 2t + σdW̃Q(t)

}

Whose expectation is the fundamental (simplified) pricing model in financial assets
pricing,

S(0) = e−Rf tEQ
(
S̃(t)

)

where EQ(.) indicates an expectation is taken with respect to the Q probability
measure. This property provides a rational (pricing) expectation of prices based on
the probability measure Q. Further note that, such a pricing model is defined by a
Martingale since:

S(t0) = e−Rf (t−t0)EQ
(
S̃(t)

)
or S(t0)e−Rf t0 = e−Rf tEQ(S̃(t))

A pricing process such as the one above presumes that markets are complete, defined
by a Martingale. The inverse is not true however, namely, a Martingale need not
define a pricing process.

3.2 Mean Reverting Models

Such models, assume that rates of returns have a normal probability distribution.
Empirical and statistical analyses of various sorts may indicate rates of returns we
may model otherwise. These models are often used to model interest rate processes
that underlie bond prices. For example, say that a stock rates of returns or interest
rates have long run trends R̄(t), then:

dR̃(t) = −β(R̃(t) − R̄(t))dt + σdW̃ (t),R(0) = R0

And thus the stock (or Bond with stochastic interest rates) price is: S(t) = S(0)
exp{R̃(t)}. Generally, for linear models of this sort, we may hypothesize various
forms and volatility functions σ (ξ , R̃(t)), or:

dR̃(t) = −β(R̃(t) − R̄)dt + σ (ξ , R̃(t))dW̃ (t),R(0) = R0

For example, the following volatility functions are often used: σ (ξ , R̃(t)) = σR̃(t),

σ (ξ , R̃(t)) = σ

√
R̃(t), σ (ξ , R̃(t)) = ξR̃(t) + σ as well as more complex models
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such as a mean reverting model σ (ξ , R̃(t)) = ξ (σ̃ (t) − σ̄ ), etc. Such models are
embedded in stochastic volatility models with their historical estimates based on
ARCH-GARCH type statistical estimation techniques that capture memory trends—
namely, the evolution of rates of returns based on past data models. These models
assume however that the “noise”, fueling models’ risk is memory free. From a finan-
cial viewpoint, these issues are in some cases discarded when an appropriate pricing
Martingale is found reducing expected future prices to their current value which are
in such cases observed (and therefore riskless) and traded by financial agents and
traders agreeing to exchange money for a stock share. Such models assume an expo-
nential memory, with past noise “forgotten” at an exponential rate. More elaborate
memory models can be constructed. For example consider a Gamma memory model
with probability distribution:

f (t) = tk−1e−t/λ

λk�(k)
.

Consider the stochastic integral

ỹ(t , k) = 1

λk�(k)

t∫
0

(t − τ )k−1e−(t−τ )/λdW (τ )

When k = 1, we have the exponential model: ỹ(t , 1) = 1
λ

t∫
0
e−(t−τ )/λdW (τ ). For k an

integer, consider h(τ ) = (t − τ )k−1e−(t−τ )/λ and the integral defined by Ito calculus:

t∫
0

h(τ )dW (τ ) = h(t)W (t) −
t∫

0

∂h(τ )

∂τ
W (τ )dτ

where h(t) = 0, ∂h(τ )
∂τ

= (−(k − 1) + 1
λ

(t − τ) )(t − τ )k−2e−(t−τ )/λ and therefore,
setting,

Y (t , k − 1) = 1

λk−1�(k − 1)

t∫
0

(t − τ )k−2e−(t−τ )/λW (τ )dτ

We have:

ỹ(t , k) = 1

λ
(Y (t , k) − Y (t , k − 1))

which leads to a multivariate models of memory if k is an integer. We shall see
subsequently, that such models are generalized further by extending them to a long
run memory. A typical example is the continuous time fractional ARMA process (for
example, see Viano et al. 1994) defined by:

y(t |k ) =
t∫

−∞
f (t − τ )W (τ )dτ
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Where f (.) is a continuous, twice differentiable function with Laplace Transform:

F ∗(s) = E(e−stf (t)
) =

K∏
1

(s − a%)δ%

The Gamma distribution f (t |λ , k) = 1
λk�(k)

t k−1e−t/λ is of particular interest when
extending the Ornstein-Uhlenbeck exponential process. First note that for the
exponential (OU) memory model (see also Wopert and Taquu 2005):

x̃(1)(t) = σ√2β

t∫
−∞

e−β(t−τ )dW (τ ), x0 = 0

With autocorrelation:

ρ(1)(t) = E (x̃(1)(0)x̃(1)(t)
) = 2σ 2β

0∧t∫
−∞

e−β(t−τ )e−β(0−τ )dτ = σ 2e−β|t |

Now define the process:

x̃(2)(t) =
t∫

−∞
βe−β(t−τ )x̃(1)(τ )dτ or x̃(2)(t) = σ√2β

t∫
−∞

β(t − u)e−β(t−u)dW (u)

which leads to a recursive equation whose solution for k integer, is a Gamma
“memory” model as outlined above.

x̃(k)(t) =
t∫

−∞
βe−β(t−τ )x̃(k−1)(t)dτ = σ

√
2β

�(k)

t∫
−∞

βk−1(t − τ )k−1e−β(t−τ )dW (τ )

However, if k is not an integer, say an arbitrary parameter α > 1/2 replacing k, we
obtain:

X̃(α)(t) = σβα−1√2β

�(α)

t∫
−∞

(t − τ )α−1e−β(t−τ )dW (τ )

with a covariance function:

ρ(α)(t) = E (x̃(α)(0)x̃(α)(t)
) = 2σ 2e−β|t |

[�(α)]2

∞∫
0

(β |t | + τ )α−1(τ )α−1e−2τ dτ

Comparing it to the covariance of an exponential memory σ 2e−β|t |, it provides a
functional evaluation for the relative volatility that each of these models assumes.
Finally note that we assumed an initial condition and therefore the integral in the
time interval (0,t) yields:

X̃(t) = X(0) + σβα−1
√

2β

t∫
0

(t − τ )α−1e−β(t−τ )

�(α)
W (τ )dτ
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3.3 Fractional Models: Preliminary introduction

There are numerous generalizations to random walks that generate various ap-
proaches to their mathematical treatment (Montroll and Weiss 1965; Montroll and
West 1979; Samorodnistky and Taqqu 1994; Taqqu 1986, 2003; Kac and Cheung
2002; Fitouhi et al. 2005) and many others. Below we provide a preliminary appre-
ciation of fractional calculus and its definition of stochastic differential equations. In
particular, say that the Ornstein-Uhlenbeck equation is to be in the following form
due to Langevin:

dx̃(t) = −βx̃dt + σw(t)(dt)
1
2 , x̃(0) = R0 − R̄ = 0

where w(t) is a “White Noise” (a Brownian motion derivative) of mean 0 and
variance 1). Thus, in expectation, E(dx̃(t)) = −βE(x̃)dt while. var (dx̃(t)) =
(σ

√
dt)

2
var (w(t)) = σ 2dt that are similar to that defined by an Ito stochastic dif-

ferential equation. Note that in this formulation that there are two time scales, on for
the drift and the other for the “noise”. Consider instead a time scale defined by (dt)α

with α < 1. If α = 1 the variance growth is:

dX(t) = σ 2dt which means X(t) −X(t − dt) = σ 2dt

Now consider time intervals (dt)α with a differential dαX(t) defined by:

dαX(t) = X(t) −X(t − (dt)α) = σ 2(dt)α.

Of course for α = 1 these two equations are identical. If not, how different or similar
are these two equations if they were measured in terms of the time intervals dt? To
answer this question, we consider two differential equations and will show that these
two equations have the same solutions if � = �(1 + α):

dαX(t)

(dt)α
= �σ 2 and

dX(t)

dt
= αtασ 2

First consider their Laplace Transforms:

L∗
(
dαX(t)

(dt)α

)
= pαX∗(p) − pα−1X(0) = �σ 2

p

L∗
(
dX(t)

dt

)
= pX∗(p) −X(0) = σ 2 α�(α)

pα
= σ 2�(1 + α)

pα

Equating these equations:

pα+1X∗(p) − pαX(0) = �σ 2 and pα+1X∗(p) − pαX(0) = σ 2�(1 + α)

we obtain� = �(1+α). Setting dαX(t) = �dX(t) = �(1+α)dX(t) and replacing
the time scale to be (dt)α , dαX(t) = �(1 + α)dX(t), we have therefore a fractional
model:

dαX(t) = �(1 + α)σ 2(dt)α or
dαX(t)

(dt)α
= Xα(t) = �(1 + α)σ 2
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withXα(t) denoting the fractional derivative. These approaches to financial modeling
will be considered in greater detail with financial applications and references used to
direct the reader to related and prior studies. The equivalence between these equations
is however important. First it confirms that a time scale does not change the basic
assumptions of a financial model based on fractional calculus or on the Riemanian
calculus and second, it indicates how one can be obtained form the other. From a
financial viewpoint, these are two important approaches to financial modeling and
both have to be understood.

Additional references and paper we may refer to for a motivated reader include for
example, Miller and Ross 1973; Oldham and Spanier 1974; Mandelbrot and Taqqu
1979; Mandelbrot and Van Ness 1968; Belair 1987; Beran 1992; Jumarie 1993,
2004, 2005, 2005, 2008, 2010, 2012a, 2012b and his recent book, 2013, Hu and
Oksendahl 2003; Osler 1971; Fox and Taqqu 1985; Granger and Joyeux 1980; Graf
1983; Duncan et al. 2000. On fractional Poisson processes, there is an expanding
list of references including among others, Laskin 2000, 2003, 2011; Wolpert and
Taqqu 2005; Pincibono and Bendjaballah 2006; Orsingher et al. 2012 and others
(see references in this text). Applications in finance and in the study of time series
are also extensive which we refer to in various sections of this paper. These include
and extensive list of papers of Mandelbrot but also Gray et al. 1989; Gewehe and
Woodward 1984; Granger and Joyeux 1980; Willinger and Paxson 1998 (on internet
application); Samko et al. 1987. In financial modeling there are numerous research
papers and books such as Cont and Tankov 2004; Rostek and Schobel 2013 as well
as many applications we shall use and developed by Jumarie (see his extensive list
of papers).

3.4 Fat Tails Memory (Weibull Memory)

Consider at present a “fat tail memory” defined by a weighting function of past obser-
vations e−β(t−τ )α (note that it is the exponential in a Weibull probability distribution).
Namely, inserting in the mean reversion model:

x̃(t) = x0e
−βtα +

t∫
0

e−β(t−τ )α dW (τ ),α > 1

By Ito’s differential rule (and assuming x0 = 0):

ỹ(t) =
t∫

0

e−β(t−τ )αdW (τ ) = W (t) + β1−α
t∫

0

αβα(t − τ )α−1e−β(t−τ )αW (τ )dτ

Or

ỹ(t) = W (t) + β1−α
t∫

0

f (t − τ )W (τ )dτ , f (u) = αβαuα−1e−βuα
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Where f (u) is a Weibull probability distribution. The stochastic integral is a convo-
lution integral and its generating function can be calculated and its moments derived.

3.5 Generalized Pareto Distributions

These distributions have a regular variation at infinity, or:

Lim
t→∞

1 − F (tx)

1 − F (t)
= x−ξ , ξ > 0

For example, a particularly useful case that satisfies this property is the Pareto
distribution given by:

f (t) = αsαt−α−1, F (t) = 1 − sαt−α and

Lim
t→∞

1 − F (tx)

1 − F (t)
= Lim

t→∞
sα(xt)−α

sαt−α
= x−α , α > 0.

In this case, assuming a Pareto distribution for the memory of past “noises”, we have:

ỹ(t) =
t∫

0

f (t − τ )dW (τ ) = αsα

t∫
0

(t − τ )−α−1dW (τ )

which points out to a fractional integral.
Pareto Stable models have been popular in the Finance modeling literature ever

since Fama’s thesis supervised by Mandelbrot (1963). A standard form of the Pareto
distribution is given by:

f (x) = αθα(x + θ )−(1+α), x ≥ 0.

whose hazard rate is: h(x) = α/(x+θ ). Generally, Pareto Stable Distributions (PSD)
are defined stable as follows: If say two random variables x1 and x2 are distributed
as a1u + b1 and a2u + b2, their sum x = x1 + x2 is also of the form au + b.
These probability distributions are characterized by general (natural logarithm) ln
characteristic functions ϕ(z) = E(eixz), i = √−1 with 3 parameters m, c, α given
by (see Feller 1957–1966 for example):

ln ϕ(z) = imz − c|z|α
{

1 − iz

|z| tang
(απ

2

)}
, i = √−1

These distributions have a field of attraction, thus the distribution of their sums
differ only by location parameters. Second, they conform to some time series that
exhibit the fat tail property. An explicit (albeit computationally intensive formulation)
expression for Pareto Stable distributions is given by Feller (1957–1966) by:

For x > 0, 0 < α < 1 : f (x : α, γ ) = 1

πx

∞∑
k=1


(αk + 1)

k! (−x)α sin

(
kπ

2
(γ − α)

)
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For x > 0, 1 < α < 2 : f (x : α, γ ) = 1

π

∞∑
k=1

�(α−1k + 1)

k! (−x)k sin

(
kπ

2α
(γ − α)

)

For x < 0 : f (−x : α, γ ) = f (x : α, −γ ) with |γ | ≤
{
α if 0 < α < 1

2 − α if 1 < α < 2

Some special and well known cases include: The Normal Probability Distribution;
The Generalized Pareto Distribution indicated above; The Cauchy (Infinite variance;
Probability Distribution; Levy Processes and others (there are in fact an infinite
number of such distributions)

Consider the Normal and Pareto Levy Stable Distributions. The Normal Distri-
bution has, as seen earlier a finite variance (and thin tails). Assume that a stock rate
of returns noise {εi} , i = 1,2 · · · , n are i.i.d. random variables with known mean με
and known finite variance σ 2

ε . The standardized random variable R̃n of a sample of
i.i.d. random variables

{
R(i)
ε

}
, i = 1,2 · · · , n is defined by:

R̃(n)
ε = 1

σ
√
n

⎧⎨
⎩

n∑
j=1

R(j )
ε − nμε

⎫⎬
⎭

It converges, by the central limit theorem, to the standard normal distribution. It
is both stable and reproducible (since the sum of normally distributed events has
also a normal distribution). In other words if a time series has events that are all
normally distributed, their sums and averages are normally distributed. Their memory
is then summarized by their parameters. The proof of such an assertion is easily
demonstrated by using the Characteristic Function given by: �1(λ) = E(eiλx) and
calculating the characteristic function of the sum of independent distributions. Letting
samples of a sum of random variables be iid, we obtain the sample characteristic
function equals the product of such characteristic functions, or:

�n(λ) = (�1(λ))n as well as �nk(λ) = (�n(λ))k = (�1(λ))nk.

In such cases, the characteristic function has the same functional form—giving its
name as stable distribution. Functionally such distributions are infinitely divisible.
The Central limit theorem is then proved by showing that:

Lim
n→∞�n(λ) = Lim

n→∞(�1(λ))n = �Normal(λ)

A slight generalization leads to the definition of Pareto-Levy processes. Let {Ri} , i =
1,2 · · · , n be a random event at time i with characteristic function�1(λ)And letRn =
n∑
j=1
Rj , have a characteristic function�n(λ). Unlike the normal probability case, we

would like to find a characteristic function that meets the following conditions:

�n(λ) = [�1(λ)]n and [�1(α(n)λ)] = [�1(λ)]n
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In other words, both the sum and the product of the random variable multiplied by
some parameters (a function of the summing parameter) are distribution invariant.
In this case, we can proceed as follows (see Seville Nanjana,.MIT Lecture Notes,
April, 2006). First note that:

[�1(α(1)λ)] = [�1(λ)]1,�1(α(1)λ) = �1(λ) where α(1) = 1.

Next let the ln characteristic function be (λ) = ln [�1(λ)]. Thus, ln [�1(α(n)λ)] =
n ln [�1(λ)] implies  (α(n)λ) = n (λ). Deriving with respect to n we have:

 (u) = n (λ), u = α(n)λ and
dα(n)

dn

d (u)

du
λ (u) =  (λ), u = α(n)λ,

or at n = 1 :

λ
dα(1)

dn

d (α(1)λ)

du
=  (λ) and

d (u)

du
= d (λ)

dλ
=  (λ)

λdα(1)
dn

A solution to this differential equation is then of the type:

 (λ) =
{
a|λ|α λ > 0

b|λ|α λ < 0
And thus by symmetry �(λ) =

{
ea|λ|α λ > 0
eb|λ|α λ < 0

Since, �(−λ) = �(λ)∗, the following characteristic function results,

�(λ) = exp
{
(c1 + ic2 sgn (λ))

∣∣λ∣∣α} with c1, c2 ∈ �
The characteristic function above is a special case of the Levy-Kintchine for-
mula for finite mean distributions for Pareto Stable distributions with the following
characteristic function:

�(λ) = exp
{
−a∣∣λ∣∣α (1 − iβ tan

(απ
2

)
sgn (λ)

)}

Where β relates to the distribution’s skewness. If the distribution is symmetric, it is
then a Levy distribution which is given as stated above by:

β = 0 and �L(λ) = exp {−a|λ|α}
The motivation for Levy processes arises because of our own concern that a two

moments distribution does not capture the richness that data indicates. In particu-
lar, data skewness, contradicting the assumption of normally distributed data. Levy
processes that replace the Brownian motion process thus provide an opportunity to
characterize skewness in such stable processes.

4 q-Calculus and Long Run Trends

Consider the Bernoulli differential equation:

dS̄

S̄q
= μ̄dt , S̄ = S̄(0)
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whose solution is given by: S̄q (t) = S̄(0)(1 + (1 − q)μ̄t)
1

1−q with Lim
q→1

S̄q (t) =
S̄(0)eμ̂t and Lim

q→1
dS̄q (t)/Sq = μ̂dt . Or, S̄q=1(t) = S̄(0)eμ̄t or (1 − (1 − q)μ̄t)

1
1−q

=→q=1
e−μt . The expression (1 + (1 − q)μ̄t)

1
1−q provides a two parameters functional

generalization of the exponential distribution. Let the parameters estimates be q̂ and
μ̂, where μ̂ is a long run constant corresponding to q = 1. When q �= 1we have thus:

dS̄q(t)

dt
= S̄(0)μ̂

(
(1 + (1 − q)μ̂t)

q
1−q̂
)

or
dS̄q(t)

S̄q (t)
= μ̂

(1 + (1 − q)μ̂t)
dt

As a result, a model of the form:

x(t) = σ
t∫

−∞
(1 − (1 − q)μ̄(t − τ ))

1
1−q dW (τ )

provides a sort of extension of the OU process based on the following defined by:

exq = {1 + (1 − q)x}
1

1−q
+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if q < 1, x < −1/(1 − q)

(1 + (1 − q)x)
1

1−q if q < 1, x > −1/(1 − q)
ex if q = 1

(1 + (1 − q)x)
1

1−q if q > 1, x < −1/(1 − q)

These elements define a q-calculus (or Jackson calculus) (see for example Jackson
1910; Borges and Roditi 1998, Stephen Oney, May, 19, 2007, Oren Tapiero 2012).
Some of the following relationships then hold:

lnq (x) = x1−q − 1

1 − q , x > 0, q ∈ � and lnq (x) = x1−q ln2−q (x)

exqe
−x
2−q = 1 or

(
exq
)q
e
−qx
1/q and ex+y+(1−q)xy

q = exqeyq
Importantly, the differential and the derivative are defined by:

dqf (x) = f (qx) − f (x) and
dqf (x)

dqx
= f (qx) − f (x)

(q − 1)x

By the same token its integral (called in this case, the anti-derivative) is:

F (x) =
∫
f (x)dqf (x)

For example

F (x) =
b∫
a

f (x)dqf (x) =
b∫

0

f (x)dqf (x) −
a∫

0

f (x)dqf (x)
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Where

a∫
0

f (x)dqf (x) = (1 − q)b
∞∑
j=0

qjf (qjb)

The financial justification for this calculus and the resultant probability distribution it
provides for asset prices distributions is based on Physics distinction between exten-
siveness and non-extensiveness. The former is equivalent to a complete definition of
all states (and therefore corresponding to complete markets) and the other to a partial
definition of all states and therefore corresponding to incomplete state preferences
in finance. In other words, a future price assuming 6 potential futures when only
4 are defined, corresponds to two unspecified futures and thereby to an incomplete
accounting of future states. To account for future states uncertainties, Tsallis 1988,
Tsallis et al. 2003, Tapiero (2013a, b, c, d) suggested that we extended the principle
of maximum entropy to non-extensive systems and thus generates distributions for
future states compatible with the information we have. Explicitly, for an extensive
system, maximizing the Boltzmann-Gibbs entropy which is an information measures
of disorder subject to a known mean and known variance, the normal distribution
results. When information regarding future state preferences is partial (and thus the
system is non-extensive), distributions are derived by an application of entropy func-
tions that generalize functionally the Boltzmann-Gibbs entropy (for example, Tsallis,
Renyi and others entropy measures).

For example, finding a bounded distribution that maximizes the Boltzmann-Gibbs
entropy provides a uniform distribution, with all events in its bounds being of equal
probability. Its rationality is a measure of disorder that defines the distribution “the
most disordered distribution” that meet a set of constraints the distribution is limited
to. The measure of disorder—the entropy (an informational measure), then simply
the expected ln of the distribution. For a distribution whose only information is its
mean, its maximum entropy distribution is exponential. If its mean and volatility
are known, its maximum Boltzmann-Gibbs entropy is a normal distribution (Tapiero
2013a, b, c, d). These results concord the Laplace of Insufficient Reason, that states
that (in an entropy sense), these are distributions that assume the least and yet meet
the constraints imposed on their definitions. A functional generalization of the en-
tropy provides other distributions that by definition, and for an appropriate set of
parameters will also indicate the normal probability distribution. In this sense, alter-
native mathematical systems based on principles of maximization and constraints (a
proxy for information) underlie probability models that may be used hypothetically
to construct financial models. For example, the first order condition to maximizing
the Tsallis entropy based on its first two moments yields a generalized function for
the normal probability distribution. Setting,

e−β
∗x2

q = {1 − (1 − q)β∗x2
} 1

1−q
+ ,β∗ = β/

∫
pq (x)dx,



Financial Modelling and Memory: Mathematical System 175

we have the probability distribution (which reduces to a normal distribution for q = 1)

p(x) = e
−β∗x2

q

Zq
,Zq =

+∞∫
−∞

e−β
∗x2

q dx =
√
π�
(

1
q−1 − 1

2

)
√
β∗�

(
1
q−1

)√
q − 1

Applying the moment constraints, we solve for β∗: β∗ = 1
5−3q . Note that for q → 1,

we recover the standard normal distribution (see also Wikipedia for a summary of
results for the q-Gaussian distribution). Explicitly, the q-Gaussian distribution is then
defined by:

f (x) =
√
β

Cq
e−βx

2

q with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cq =
2
√
π�

(
1

1 − q
)

(3 − q)
√

1 − q�
(

3 − q
2(1 − q)

) f or − ∞ < q < 1

Cq
√
π f or q = 1

Cq =
2
√
π�

(
1

1 − q
)

(3 − q)
√

1 − q�
(

3 − q
2(1 − q)

) f or 1 < q < 3

The parameter ‘q’ can be, estimated providing an index of departure from the normal
probability distribution (say, by means of maximum likelihood). By the same token,
assuming that the information on hand is the price of a call option, the, following
distribution results:

p(ST ) =
(

q

1 − q
) 1

1−q (
e−

∑
βi (ST−Ki )+

q

) 1
1−q

pq(ST ) =
(
e

−∑βi (ST−Ki )+
q

) 1
1−q

Z(ST : β, q)
,Z(ST : β, q) =

∫ (
e−

∑
βi (ST−Ki )+

q

) 1
1−q
dST

These are power law distributions (and therefore with fat tails) enriched by the addi-
tional parameter q whose meaning is interpreted by Tsallis as a measure of physical
non extensiveness (Tsallis 2009, book as well as Juniper 2007 and related by Oren
Tapiero 2012, 2013a, b, c, d to Knights definition of uncertainty expressed by the in-
complete definition of future state price preferences). In Oren Tapiero thesis, (2012),
the parameter q is interpreted as a measure on financial incompleteness with a q
smaller than 1 pointing out to a sum of future state probabilities to be incomplete,
although renormalized to sum to 1. In this sense, a q-calculus provides a mea-
sure of sensitivity to complete state preferences—measured with respect to Knight’s
uncertainty or the definition of incomplete state preferences.
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5 Fractional Models and Long Run Memory

Models such as the Orntein-Uhlenbeck mean reversion, the normal rates of returns
model and so many others are based on the assumption that the time interval dt as
well as state increments (in temporal processes, etc.) dS are very small. Now say
that we “parameterize” time intervals to be defined by (dt)α. For example, say that
dt = 0.5 then necessarily if α > 1, say α > 2, then the time interval (dt)α is smaller
than (dt). However, if α < 1, say α = 1/2, then (dt)α = 0.7071 is greater. In this
case, the time clock of two measurements is greater than 0.5. Explicitly, say that we
have price at time t, S(t) and consider the price previous time S(t − dt). This price
would be a price 0.5 time units before while the price S(t − (dt)α) would be “older
price”. Memory in this case, is defined by the elapsed times during which events
were recorded and that affect current prices. Jumarie (2006) presents a number of
simple examples. Consider again the example:

dS(t) = αρtα−1dt , S(0) > 0 and dS(t) = ρ(dt)α , S(0) > 0

Both prices have the same solutions S(t) = S(0) + ρtα . Yet, they are not the same
equation. The proof of their equality is important to highlight the particularities of
their computations. We consider again the Laplace Transform of dS(t) = αρtα−1dt

which is:

pS∗(p) − S(0 + ) = ρα�(α)p−α or S∗(p) = S(0)

p
+ ρ�(1 + α)p−α

Now consider dS(t) = ρ(dt)α. A first transformation of the fractionalized equation
(to have both the right and the left sides of the equation to be measured along a
similar time scale) is (as noted earlier):

dαS(t) = �(1 + α)ρ(dt)α or S(α)(t) = dαS(t)

(dt)α
= �(1 + α)ρ

Using Laplace Transform, we have:

L∗ (S(α)(t)
) = pαS∗(p) − pα−1S(0) = L∗(�(1 + α)ρ)

However, this latter term is the derivative of �(1 + α)ρ(dt)α and therefore,

L∗(�(1 + α)ρ) = p−1�(1 + α)ρ

Or,

pαS∗(p) − pα−1S(0) = p−1�(1 + α)ρ or, S∗(p) = S(0)

p
+ �(1 + α)ρpα−1

which is identical to the previous equation
The equation S(t + dt) = S(t) + αρtα−1dt relates S(t) to its next record by the

small (infinitesimal) time interval dt . The latter, relates to a time interval which his
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greater if α is smaller than 1, since it increases the time interval. In this sense, the
future state arises from the observation of an event that has occurred further down
the “past”. By multiplying by �(1 + α) we have transformed the calculus of this
equation to be uniformly defined in terms of (dt)α and therefore:

Sα(t + (dt)α) = Sα(t) + �(1 + α)ρ(dt)α

Or

dS(t) = ρ(dt)α relates to dαS(t) = �(1 + α)ρ(dt)α or dαS(t) = �(1 + α)dS(t)

Thus, decreasing with α, the past memory increases. In financial models, data avail-
ability will thus dictate the type of models we can use and the results we may
predict. A High Frequency Trader (HFT) using a continuous time equivalent with
instant memory will of course neglect the importance of longer run prices. By the
same token, using an exponential weighting function of past events, may provide a
model to account (at least in theory) for the effects of past prices on a current price.

In some cases, one reduces the frequency of data records linearly, say by a
time transformation t ′ = λt with λ < 1 slow and λ > 1 fast. In this case,
dS = f (S)(λdt). Long run memory models consider instead time intervals (dt)α,
and therefore uses differential models dS = f (S)(dt)α . To maintain the fractional
consistency of this equation, memory is introduced by setting (as shown above):

dαS = �(1 + α)f (S)(dt)α.

And therefore, to a fractional derivative:

Sα(t) = dαS(t)

(dt)α
= �(1 + α)f (S)

These transformations and manipulations require a mathematical system to maintain
their coherence. Numerous contributions have contributed to both the development
of such models and their application. A seminal paper by Tyrone Duncan et al.
(2000) has provided a series of rules that are parallel to Ito’s calculus that account
for fractional stochastic models. Guy Jumarie, Mandelbrot and Taqqu, Laskin and
many others (see the extensive list of papers and books in references) have provided
both a set of rules that simplify a coherent application of fractional calculus as well
as numerous examples and applications in several fields, including finance.

Fractional calculus uses intensively two function we shall use repeatedly. These
are the Mittag-Leffler and the Riemann-Liouville functions.

5.1 The Mittag-Leffler Function (Mittag Leffler 1903–1905)

The Mittag-Leffler function is defined by the infinite series:

Eα(h) =
α∑
k=0

hk

�(1 + αk)
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And is a generalization of exponential models in the sense that for α = 1:

E1(h) =
∞∑

k=0

1


(1 + k)
hk = eh

For example, setting h = λtα we have Eα(λtα) =
α∑

k=0

1

(1 + αk) (λtα)k whose Laplace

Transform can be shown to be: L∗(Eα(λtα)) = pα−1

pα−λ
. Laplace and other transforms

may be used profitably as they provide simpler and treatable formulations of frac-
tional models. For example, if the Mittag-Leffler function is a generalization of
the exponential and its Laplace Transform is as stated above, the convolution of m

such functions will have a Laplace Transform given by
(

pα−1

pα−λ

)m

. Further, if we set:

�α(t) = Eα(�α(t)) then the following ln for a fractional α holds: �α(t) = lnα(�α(t))

5.2 The Cauchy-Riemann-Liouville function (Liouville 1832)

To better appreciate the role of the Riemann-Liouville equation, it is useful to estab-
lish its relationship with the Cauchy equation which has established for integer values
a recursive integration formula (for a review of this approach and its relationship to
fractional calculus, the reader is referred to Wikipedia).

Consider first the basic definition of a derivative, which we express for
convenience by f (1)(t):

Lim
�t→0

�f (t)

�t
= Lim

�t→0

f (t + �t) − f (t)

�t
= df (t)

dt
≡ f (1)(t)

Generally, for the nth integer derivative, we have:

Lim
�t→0

�nf (t)

�tn
= dnf (t)

dtn
≡ f (n)(t)

Cauchy’s repeated integration of such derivative will then proceed as follows:

dn−1f (t)

dtn−1
≡

t∫
0

f (n)(τ )dτ or f (n−1)(τ ) ≡
t∫

0

f (n)(t)dτ

Thus,

f (n−2)(t) ≡
t∫

0

f (n−1)(τ )dτ =
t∫

0

⎛
⎝

τ∫
0

f (n−1)(s)ds

⎞
⎠dτ

And recursively, Cauchy’s integration equation is:

f (n−k)(t) ≡
t∫

0

f (n−(k−1))(τ )dτ = 1

(n − (k − 1))!
t∫

0

(τ − t)n−(k−1)f (n)(τ )dτ
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Where f (n−k)(t) is the kth integration of the nth derivative f n(t) which we may
rewrite conveniently (as it is done commonly) by setting f (t) ≡ f n(t) and therefore,
f (k)(t) ≡ f (n−k)(t), or:

f (k)(t) ≡= 1

(k − 1)!
t∫

0

(τ − t)(k−1)f (τ )dτ

This equation can be verified by noting that:

f (1)(t) =
t∫

0

f (τ )dτ , f (2)(t) =
t∫

0

(τ − t)f (τ )dτ , etc.

The integration operator thus indicates a relationship that will underlie, as we shall
see below the fractional calculus:

f (k+m)(t) ≡ f (k)(t)f (m)(t) with f (k)(t)f (m)(t) = f (m)(t)f (k)(t)

The latter condition being commutative (which does not hold for a fractional model).
Fractional calculus is concerned with fractional integrations (or derivatives) of the

Cauchy equation, defined by non-integers (although, they include as special cases
integers). In particular, let α be a real value and set:

f (α)(t) ≡= 1

�(α)

t∫
0

(τ − t)α−1f (τ )dτ

This is also called the Riemann-Liouville equation which is a fractional reformula-
tion of Cauchy’s integration formula. The product operator above is maintained as
indicated below, although it is no longer commutative:

f (α+β)(t) ≡ f (α)(t)f (β)(t)

The proof of this relationship is led out in both Wikipedia and in Jumarie (2013).
For educational purposes, we repeat the proof below with an application a derivative
f (β)(τ ) and subsequently to that of a derivative f (α)(τ ). By definition:

f (α+β)(t) = 1

�(α)

t∫
0

(τ − t)α−1f (β)(τ )dτ

= 1

�(α)�(β)

t∫
0

f (u)

τ∫
0

(t − τ )α−1(τ − u)β−1dudτ

= 1

�(α)�(β)

t∫
0

t∫
u

(t − τ )α−1(τ − u)β−1f (u)dudτ
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= 1

�(α)�(β)

t∫
0

f (u)

⎛
⎝

t∫
u

(t − τ )α−1(τ − u)β−1f (u)dτ

⎞
⎠ du

Introduce the following change of variables τ = u + (t − u)r ,then

f (α+β)(t) = 1

�(α)�(β)

∫ t

0
(t − u)α+β−1f (u)

(∫ 1

0
(1 − r)α−1rβ−1dr

)
du

Since for the Beta integral we have:

1∫
0

(1 − r)α−1rβ−1drdτ = �(α + β)

�(α)�(β)

We have,

f (α+β)(t) = 1

�(α + β)

t∫
0

(t − τ )α+β−1f (τ )dτ = f (α)(t)f (β)(t)

For example say that f (t) = t k and therefore in a Riemannian calculus,

f (1)(t) = ktk−1, f (2)(t) = k(k − 1)t k−2 and f (n)(t) = k!
(k − n)! t

k−n

In a fractional calculus, we have instead:

f (α)(t) = dα(t k)

dtα
= �(k + 1)

�(k − α + 1)
t k−α

In particular, for k = 1 and α = 1/2, we have:

f ( 1
2 )(t) = d

1
2 (t)

dt
1
2

= �(1 + 1)

�(1 − α + 1)
t1− 1

2 = 2

�(3/2)
t

1
2 = 2

√
t√
π

Next assume that α = 3
2 > 1 which we rewrite as follows: α = 3

2 = 1 + 1
2 . In this

case,

f ( 3
2 )(t) = d

1
2 (t)

dt
1
2

= f ( 1
2 )(t)f (1)(t)

Since, f (1)(t) = df (t)
dt

and if f (t) = t or f (1)(t) = 1 we have:

f ( 3
2 )(t) = f ( 1

2 )f (1)(t) = f ( 1
2 )(1) and therefore,

f ( 1
2 )f (1)(t) = f ( 1

2 )(1) = 1

�
(

1
2

)
t∫

0

(τ − t) 1
2 −1dτ = 1

�
(

1
2

)
t∫

0

(τ − t)− 1
2 dτ
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Calculations such as these are often easier when we use Laplace Transforms. Define
a function f (t), then it Laplace Transforms is:

f ∗(s) =
∞∫

0

e−sτ f (τ )dτ and therefore f ∗(1)(s) =
∞∫

0

e−sτ
τ∫

0

f (u)dudτ = 1

s
f ∗(s)

For a double integral, we have: f ∗(2)(s) = 1
s2
f ∗(s) and generally, for an integer n,

f ∗(n)(s) = 1
sn
f ∗(s). However, for a fractional α, we have:

f ∗(α)(s) = f−1∗
(

1

sα
f ∗(s)

)
where f−1∗ is an inverse transform.

For example,

f (α)(tk) = f−1∗
(
�(k + 1)

sα+k+1

)
= �(k + 1)

�(k + α + 1)
tα+k+1

By the same token, the Laplace Transform of a convolution integral has a Laplace
Transform which equals the product of their Laplace Transforms.

The Riemann-Liouville function as indicated above, provides a functional model
relating fractional models (in (dt)α) into Riemann’s calculus. The fractional calculus
is then explicitly defined for a function f (x) which need not be continuous (since
these are evaluated by integrals). Let its forward value be f (x+h), with h a constant.
A fractional derivative of order α of a function f (x) is thus defined by �(α)f (x),
where:

�(α)f (x) = f (α)(x) or f (α)(x) = d(α)f (x)/(dx)α

For example, the fractional derivative of say a financial price S(α)(t) which is derived
from a fractional stochastic model whenever its limit exists, is then

S(α)(t) ∝ Lim
�t→0

(�αS(t)/(�t)α) when it exists and is finite.

This allows one to write: �S(t) = σ (�t)α or �αS(t) = �(1 + α)σ (�t)α and at the
limit

S(α)(t) = �αS(t)/(dt)α = �(1 + α)σ.

The solution of the fractional derivative for S(t) is a function of the parameter α and
given by Riemann-Liouville function, or:

S(α)(t) = d (α)S(t)

(dt)α
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

�(−α)

t∫
0

(t − τ )−α−1S(τ )dτ if α < 0

1

�(1 − α)

d

dt

t∫
0

(t − τ )−α(S(τ ) − S(0))dτ if 0 < α < 1

(
S(α−n)(t)

)(n)

if n ≤ α < n+ 1, n ≥ 1

When α < 0, the past weight of prices (t − τ )|−α|−1 increases the more nega-
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tive this parameter. In other words, past prices “are not forgotten”, maintaining an
“appreciable” effect on current prices. When 0 < α < 1, a time derivative yields:

d(α)S(t)

(dt)α
= α

�(1 − α)

t∫
0

(t − τ )−α−1(S(τ ) − S(0))dτ

= 1

�(−α)

t∫
0

(t − τ )−α−1(S(τ ) − S(0))dτ

And therefore, a memory effect is maintained but at the same time, it is less
pronounced. The Laplace transform for 0 < α < 1 is then a simple convolution or:

L∗ (S(α)(p)
) = 1

�(−α)
L∗ (t−α−1

) (
L∗(S(t)) −L∗(S(0))

)
where

L∗(t−α−1) = pα�(−α)

As a result,

L∗ (S(α)(p)
) = pα

(
L∗(S(t)) − S(0)

p

)
= pαL∗(S(t)) − pα−1S(0), 0 < α < 1

And

L∗ (S(α)(p)
) == pαS∗(p) − pα−1S(0) or S∗(p) = L∗(S(α)(p))

pα
+ S(0)

p

Of course, if α = 1 then L∗(f (1)(x)) = sL∗(f (x)) − f (0),α = 1 which correspond
to:

L∗
(
dS(t)

dt

)
= pL∗(S(t)) − f (0),α = 1

In this sense the Riemann-Liouville provides a functional approach to calculating
fractional derivatives which reduce to the standard calculus when α = 1.

The Mittag-Leffler equation however provides a functional approach to calculating
Taylor series expansions of fractional order α. It is written as follows (where we
maintain as well the kth derivative of order α):

S(t + h) =
∞∑
k=0

(
hαk
d (k)Sα(t)

(dt)(k)

)

�(1 + αk)

=
∞∑
k=0

(
hαk

d (k)

(dt)(k)
S(α)(t)

)

�(1 + αk) = Eα
(
hαDα

(
S(α)(t)

))
, 0 < α < 1
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with the notation: d(k)S(α)(t)
(dt)(k) = Dk(S(α)(t)). In other words, a two terms series

expansion of S(t) by a fractional calculus of order α yields:

S(t + h) = S(t) + hα

�(1 + α)

d (α)S(t)

(dt)(α) + h2α

�(1 + 2α)

d (2α)S(t)

(dt)(2α) + · · · ., 0 < α < 1

Or

S(t + h) = S(t) + hα

�(1 + α)
S(α)(t) + h2α

�(1 + 2α)
S(2α)(t) + · · · ., 0 < α < 1

Note however that, the order of integration is not symmetric. Namely, although:

S2α(t) = dα

dt
Sα(t), S3α(t) = dα

dt
S2α(t) �= d2α

dt2
Sα(t)

As a result, the order in which fractional derivatives are calculated matters. Further,
since the fractional derivatives depend on β = αk and since the definition of the
derivative defined by the Riemann-Liouville function varies according to its param-
eter (in this case β replacing α), one has to apply correspondingly the appropriate
derivative “transformation”. In any case, a Taylor series development of the first α
order yields:

S(t + h) = S(0)(t) + S(α)(t)
hα

�(1 + α)
, 0 < α < 1

While a second order approximation yields:

S(t + h) = S(0)(t) + S(α)(t)
hα

�(1 + α)
+ h2α

�(1 + 2α)
S2α(t)

where the derivative S2α(t) is necessarily a function of whether α is smaller or
greater than 1. Jumarie 2009, (p. 381), in particular proves a more general equation

S(t + h) =
∞∑
k=0

hk

k! S
(k)(t) +

∞∑
k=1

h(βk+m)

�(1 +m+ βk)S
(βk+m)(t),β = α −m

where the order of a fractional derivative is important as indicated previously. Explic-
itly, consider a derivative of the α order first and then that of β order and vice versa,
applying first a Laplace transform of β order first and then that of α order. We have
then two formulas that differ due to the initial condition of their first derivatives, or:

L∗(D(α+β)S(t)) = L∗(D(α)S(β)S(t)) = pα+βL∗(S(t)) − pα+β−1S(0) − pβ−1S(α)(0),

L∗(D(α+β)S(t)) = L∗(D(β)f (α)f (t)) = pα+βL∗(S(t)) − pα+β−1S(0) − pα−1S(β)(0),

To circumvent this issue, Jumarie proposes that derivatives ought to be in increasing
order such that:

D(α+β)S(t) ≡ Dmax(α,β)S(t)Dmin(α,β)S(t)
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Similar issues recur when we seek the following derivative: D(2α)S(t). Should we
replace α by 2α in the Riemann-Liouville equation or apply the derivative twice. In
the first and second case we have:

L∗(D(2α)S(t)) = p2αL∗(S(t)) − p2α−1S(0)

L∗(D(α)D(α)S(t)) = p2αL∗(S(t)) − pS(0) − pα−1S(α)(0),

which of course they are not the same since L∗(D(2α)S(t)) �= L∗(D(α)D(α)S(t)) as
indicated previously since it is their initial conditions that have to carefully assessed
(see Jumarie 2009, p. 380).

The MacLaurin expansion is of course a special case of a Taylor series expansion,
leading to:

S(t) =
∞∑
k=0

xαk

�(1 + αk)S
(kα)(0), 0 < α < 1

These functions lead to a calculus with which a trove of results can be obtained.
Below, we summarize a number useful relationships that may be proved using the
elements stated above:

5.3 Some Useful Relationships with deterministic fractional
calculus:

dαS(t) ≈ �(1 + α)dS(t), 0 < α < 1

Dα(t)θ ≈ �(1 + θ )

�(1 + θ − α)
(t)θ−α , 0 < α ≤ 1

Derivative operators (for 0 < α < 1):

dα

dtα

t∫
0

S(τ )(dτ )α = �(1 + α)S(t)

dα

dtα

U (t)∫
0

S(τ )(dτ )α = �(1 + α)f (U (t))(U ′(t))α

Further, integration with respect to (dt)α yields,

y(t) =
t∫

0

S(τ )(dτ )α = α
t∫

0

(t − τ )α−1S(τ )dτ , 0 < α ≤ 1
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As well as

y(t) =
t∫
a

S(τ )(dτ )α = α
t∫

0

(t − τ )α−1S(τ − a)dτ , 0 < α ≤ 1

5.3.1 Other Calculations Examples:

t∫
0

τ θ (dτ )α = �(1 + α)�(1 + θ )

�(1 + α + θ )
tα+θ , 0 < α ≤ 1

while

y(t) =
t∫
a

τ θ (dτ )α = �(1 + α)�(1 + θ )

�(1 + α + θ )
(t − a)α+θ , 0 < α ≤ 1

and

y(b |a ) =
b∫
a

(dτ )α = (b − a)α.

For a non-continuous function, integration can be realized by segments:

y(b
∣∣a) =

b∫
a

f (τ )(dτ )α

=
N∑
j=1

aj∫
aj−1

(
b − τ
aj − 1

)α−1

f (τ )(dτ )α , a0 = a < a1 < a2 < · · · < aN

In addition, note that an integration with respect to the “double order integration”
(dτ )α+β would integrate first with respect to (dτ )β and then with respect to order
(dτ )α , or:

y(t) =
t∫

0

f (τ )(dτ )α+β = α

α + β
t∫

0

(t − τ )βf (τ )(dτ )α, 0 < α + β ≤ 1

And then,

t∫
0

(t − τ )βf (τ )(dτ )α = α
t∫

0

(t − τ )α+β−1f (τ )dτ , 0 < α ≤ 1
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And thereby,

y(t) =
t∫

0

f (τ )(dτ )α+β = α2

α + β
t∫

0

(t − τ )α+β−1f (τ )dτ , 0 < α + β ≤ 1

Now say that 2 > α + β > 1, then,

y (t) =
t∫

0

f (τ)(dτ)α+β =
t∫

0

f (τ)(dτ)1+λ where 0 < λ = (1 − α − β) < 1

And therefore,

f (1+λ)(t) = 1

�(λ)

t∫
0

(τ − t)λ−1 d

du

τ∫
0

f (u)dudτ

Thus, if f (u) = e−μu,

f (1+λ)(t) = 1

μ�(λ)

t∫
0

(τ − t)λ−1(1 − e−μτ )dτ

= 1

μ�(1 − α − β)

t∫
0

(τ − t)−(α+β)(1 − e−μτ )dτ

5.3.2 Integration by Parts

Integration by parts yields the following results:

y(b
∣∣a) =

b∫
a

u(α)(τ )v(τ )(dτ )α = �(1 + α) [u(τ )v(τ )]ba −
b∫
a

u(τ )v(α)(τ )(dτ )α

The application models are deterministic approximations of mean reversion as well
as the lognormal model. Their purpose if the highlight the effects of a fractional term
on the evolution of the underlying process.

5.4 A risk free bond and the Vacicek (OU) model

A risk free bond model is defined as follows:
dB(t) = RfB(t)dt ,B(0) > 0 or d lnB(t) = Rf dt and B(t) = B(0)eRf t . The

price of a risk free bond whose price at maturity is B(T ) is thus B(0) = B(T )e−Rf T .
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Say that time is fractional such that dB(t) = RfB(t)(dt)α. In this case, in a fractional
model, we have a bond price:

dαB(t)

B(t)
= �(1 + α)Rf (dt)α or

B(T )∫
B(0)

dαB(t)

B(t)
= lnαB(T ) = �(1 + α)Rf

T∫
0

(dt)α

And inversely, B(0)Eα(lnα(B(t))) = B(t). For a time varying risk free rate,

B(T )∫
B(0)

dαB(t)

B(t)
= lnα

(
B(T )

B(0)

)
= �(1 + α)

T∫
0

Rf (t)(dt)α

Thus,

B(T ) = B(0)αEα

⎛
⎝�(1 + α)

T∫
0

(T − τ )α−1Rf (τ )dτ

⎞
⎠

Note that if Rf (τ ) is constant, then:

T∫
0

(T − τ )α−1Rf dτ = −Rf
0∫
T

uα−1du = 1

α
Rf T

α

And therefore,

B(T ) = B(0)Eα(�(1 + α)Rf T
α)

Where Eα(�(1 + α)Rf T α) is the Mittag-Leffler function (which is the exponential
function when α = 1). Explicitly,

Eα(�(1 + α)Rf T
α) =

∞∑
k=0

(�(1 + α)Rf T α)k

�(1 + αk)

The price of a bond in a fractional model is thus:

B(0) = (Eα(�(1 + α)Rf T
α))−1

B(T )

When the risk free rate is stochastic (say, driven by a Brownian motion), we then
have a lognormal model.

A slight generalization consists in setting a mean rate of return trend in dt and a
longer long run volatility trend with Rf and σ constants (for example, a bond with
two time scales as note previously):

dB(t)

B(t)
= Rf dt + λ(dt)α, B(0) = B0 > 0, 0 < α < 1
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Consider

dB1(t)/B1(t) = Rf dt and B1(t) = B(0)eRf t as well

dB2(t)/B2(t) = λ(dt)α and dαB2(t)/B2(t)

= �(1 + α)λ(dt)α or B2(t) = Eα(�(1 + α)λtα)

and therefore,

B(t) = B1(t)B2(t) = B(0)eRf tEα(�(1 + α)λtα)

And the price of a bond whose maturity is at T and whose nominal value is B(T ) is:

B(0) = e−Rf T (Eα(�(1 + α)λT α))−1
B(T )

If α = 1, we have then as expected:

B(t) = B(0)eRf tE1(�(1 + α)λtα) = B(0)e(Rf )t e(λ)t = B(0)e(Rf+λ)t

Which verifies the solution of the differential equation dB(t)/B(t) = (Rf + λ)
dt , B(0) = B0.

By the same token, consider a stock price whose mean evolution is:

dS(t)

S(t)
= Rf dt − 1

2
σ 2(dt)α , S(0) = S0 > 0, 0 < α < 1

We have then the solution S(t) = S(0)eRf tEα
(− 1

2�(1 + α)σ 2tα
)
. Thus, if we

consider a data time series, then:

ln S(t) = ln S(0) + Rf t + lnEα

(
−1

2
�(1 + α)σ 2tα

)

And explicitly, since Eα
(− 1

2�(1 + α)σ 2tα
) =

∞∑
k=0

(
1
2�(1 + α)

)k (−σ 2tα )
k

�(1+αk) , we have:

ln S(t) = ln S(0) + Rf t + ln
∞∑
k=0

(
1

2
�(1 + α)

)k (−σ 2tα)
k

�(1 + αk)

Where

∞∑
k=0

(
1

2
�(1 + α)

)k (−σ 2tα
)k

�(1 + αk) = 1 − 1

2

(
σ 2tα

)
�(1 + α)

+
(

(�(1 + α))2

4�(1 + 2α)

)
(σ 4t2α) − ....

If σ 4 << σ 2, then:

ln S(t) = ln S(0) + Rf t + ln

(
1 − 1

2

(σ 2tα)

�(1 + α)

)
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And therefore, ln
(

1 − 1
2

(σ 2tα)
�(1+α)

)
< 0. Say that approximately, ln

(
1 − 1

2
(σ 2tα )
�(1+α)

)
=

−δt , thus:

ln S(t) ≈ ln S(0) + (Rf − δ)t or S(0) = e−(Rf−δ)t S(t)

In which case, a fractional risk free bond with the characteristics indicated will value
more the, future payout of the bond compared to the risk free. Say, that the bond
payout is in 5 years, and let its payout be 1 dollar. Further, let σ 2 = 0.05 and α = 0.8,
then

0 < δ = −1

5
ln

(
1 − 1

2

((0.05)5.8)

0.8�(0.8)

)
= −1

5
ln

(
1 − 0.11324

�(0.8)

)

Which points out a greater price for the bond since its effective price is larger.
However if we interpret Rf as a truly risk free bond and σ 2 as a factor due to
random factors, then the bond price is smaller the larger δ. In the special case above,
S(0) = e−5(Rf−δ).

5.4.1 The Deterministic Two Time Scales Vacicek Interest Rates
(Deterministic) Model

Consider again a two time scales interest rates:

dx(t) = −βxdt + σ (dt)α , x̃(0) = R0 − R̄ = 0

There are two time intervals (dt , (dt)α) in the same equation. Namely, mean reversion
“is fast” as it is of order dt while there is a “slow deterministic” (and thus constant)
perturbation when α < 1. This is a deterministic Vacicek model and is used for
demonstration purposes. Its’ solution may be approached in different ways. First,
consider βxdt and σ (dt)α separately. Letting y(t) = eβtx(t) we have, dy(t) =
βeβtx(t) + eβtdx(t). As a result,(

e−βt dy(t) − βx(t)dt
)

= −βxdt + σ (dt)α , x̃(0) = R0 − R̄ = 0

Or

dy(t) = eβtσ (dt)α , x̃(0) = R0 − R̄ = 0 and dαy(t) = �(1 + α)eβtσ (dt)α , y(0) > 0

And therefore,

dαy(t)

(dt)α
= yα(t) = �(1 + α)eβtσ , y(0) > 0

Whose solution in terms of the Riemann-Liouville equation provides a relationship
with the non-fractional in y(t). In this case, �(1 +α)eβtσ is a first α order derivative
whose integral is:

y(t) = y(0) + ασ
t∫

0

(t − τ )α−1eβτdτ
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Replacing y(t)e−βt = x(t), we obtain:

x(t) = x(0) + ασ
t∫

0

(t − τ )α−1e−β(t−τ )dτ

or equivalently

x(t) = x(0) + σ
t∫

0

e−β(t−τ )(dτ )α = x(0) + ασ
t∫

0

(t − τ )α−1e−β(t−τ )dτ , 0 < α < 1

Of course, if dx(t) = σ (dt)α (i.e. β = 0), then: dαx(t) = �(1 + α)σ (dt)α and
xα(t) = �(1 + α)σ where �(1 + α)σ is the result of a first order α derivative, and:

x(t) = x(0) + ασ
t∫

0

(t − τ )α−1dτ = x(0) + ασ
t∫

0

uα−1du = ασ t
α

α
= x(0) + σ tα

5.4.2 The Case 1 < α < 2

The case 1 < α < 2 corresponds to a shorter memory since (dt)α < dt . For example,
if in a fractional model, the variance of stock prices increases at a linear rateσ 2dt , then
if it were defined by σw(t)(dt)α/2,α/2 = 0.65 > 1/2 then α = 1.2 > 1. This case
corresponds to a increasing nonlinear variance since it is equal to σ 2(t)α = σ 2(t)1.2.
However setting β = α− 1 or 1 + β = α in which case 0 < β < 1 (or β = 0.3). In
this case, a series expansion yields (Jumarie 2006),

f (x + h) =
∞∑
k=0

hk

k! f
(k)(x) +

∞∑
k=1

h(βk+m)

�(1 +m+ βk)f
(βk+m)(x),β = α −m

And explicitly, for m = 1 or 0 < β = α − 1 < 1

f (x + h) − f (0)(x) = hf (1)(x) + h2

2
f (2)(x) + ....

+ h(β+1)

�(2 + β)
f (β+1) + h(β+1)

�(2 + 2β)
f (2β+1) + h(3β+1)

�(2 + 3β)
f (3β+1) + .....

but if β < 1 we can retain only these elements kβ < 1 that are smaller than 1. For
example, if α = 1.4,β = 0.4 < 1, 2β = 0.8 < 1 and therefore,

f (x + h) − f (0)(x) = hf (1)(x) + h2

2
f (2)(x) + ....

+ h(β+1)

�(2 + β)
f (β+1) + h(β+1)

�(2 + 2β)
f (2β+1)
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And

f (x + h) − f (0)(x) = hf (1)(x) + h2

2
f (2)(x) + ....

+ h(β+1)

�(2 + β)
f (β)f (1) + h(2β+1)

�(2 + 2β)
f (2β)f (1)

The fractional lognormal model dS(t)/S(t) − Rf dt = − 1
2σ

2(dt)1+β ,α = 1 +β
may then be written as follows:

y(t) = ln
(
e−Rf tS(t)

)
= −Rf t + ln S(t) and

dy(t) = −Rf dt + dS(t)

S(t)
= −1

2
σ 2(dt)1+β

As a result,

dy(t) = −1

2
σ 2(dt)1+β or y1+β(t) = d1+βy(t)

(dt)1+β

= 1

2
�(2 + β)σ 2 or y1+β (t) = y1(t)yβ (t)

A solution within a Fractional Brownian motion case is considered below.

6 The Fractional Brownian Motion and the Hurst Index H

The Fractional Brownian motion with an index H, is, defined by{
WH (t), t ≥ 0

}
, ∀t ∈ �+ with the following elementary properties: Pr

{
WH (0) =0

}
= 1,

{
WH (t), t ≥ 0

}
is a measurable random variable such that it has a null mean

and a covariance given by:

E
{
WH (t)WH (τ )

} = σ 2

2

(
t2H + τ 2H − |t − τ |2H ) .

The variance equation is a solution of the functional equation: xy = x2 + y2 −
(x − y)2 an therefore, assuming that x = t2H , the fractional variance equation above
is obtained. Thus setting H = 1/2, E{W 1

2 (t)W
1
2 (τ )} = σ 2t which corresponds to

standard Brownian motion variance E{[WH (t)]
2} = σ 2(dt)2H . Its self-similarity is

implied also by:WH (ρt)
id=ρHWH (t).And an Ito-Like Lemma, for a twice continuous

function: f
(
t ,WH (t)

)
:

df
(
t ,WH (t)

) = ∂

∂t
f
(
t ,WH (t)

)
dt + ∂f

(
t ,WH (t)

)
∂WH (t)

dWH (t)

+ 1

2

∂2f
(
t ,WH (t)

)
∂
(
WH (t)

)2 (d(t))2H
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Interestingly, we see that in such a case, the expected differential E(df ) may have
multiple scale as indicated earlier, since:

E(df ) =
(
∂f

∂t

)
dt + 1

2
E

(
∂2f

∂(WH (t))2

)
(dt)2H

Of course when H = 1/2, we obtain the Taylor series expansion of a Brownian motion
model.

The relationship between a Brownian motion and a fractional Brownian motion
limited to a positive time interval is given by a kernel (although there may be others)
that relates the fractional Brownian motion with a Brownian motion:

KH (t , τ ) = (t − τ )H− 1
2

�
(
H + 1

2

) with WH (t) =
t∫

0

KH (t , τ )dW (t)

where �
(
H + 1

2

)
is the Euler Gamma function. The manipulation of these inte-

grals and their implications to financial modeling will be outlined below. First we
shall consider a random walk approximation to such fractional stochastic integral.
Subsequently, application of a fractional calculus and examples are considered.

From a financial viewpoint, fractional Brownian motion models have important
implications for many of the paradigms used in modern financial economics. For ex-
ample, optimal consumption-savings and portfolio decisions may become extremely
sensitive to the investment horizon if stock prices returns were long range dependent.
Problems also arise in the pricing of options and futures since the class of models
used are incompatible with long term memory. Traditional tests of the capital asset
pricing model and the APT (Arbitrage Pricing Theory) are no longer valid since the
usual forms of statistical inference do not apply to time series exhibiting such depen-
dence. Tests of an “efficient” markets hypothesis depend therefore precariously on
the presence or absence of long term memory. From a fractional viewpoint, note as
well that the time scale changes and therefore the information and the calculations
implied in the model we use change.

Memory based models such as ARCH-GARCH stochastic volatility models (En-
gle 1987, Bollerslev 1986), Fractal Brownian motion and Multi Fractals stochastic
models (Bianchi et al., this book) have been constructed potentially to better explain
the leptokurtic character of rates of returns distributions. Other studies have shown
that distributions have tails fatter than the normal distribution. Further, stochas-
tic volatility and fractional Brownian motion models have shown that non-linear
volatility growth and non-linear dependence may be observed in fact. In such cases,
the assumptions of a “linear time finance” may in practice be doubtful. References to
these models and the problems they deal with are numerous. Below we shall consider
such models and their mathematical framework that are of particular usefulness in
finance and in other areas where long run memory are observed in fact and are not
accounted for in conventional stochastic models.
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6.1 A Random Walk Approximation to Fractional
Brownian Motion

Consider the fractional Brownian motion integral, which as noted below is a weighted
function of standard normal events which we approximate by random walks, or:

yH (t) = σ

t∫
0

WH (τ )dτ = σ



(
H + 1

2

)
t∫

0

(t − τ )H− 1
2 −1W (τ )dτ

This relationship is proved again by an application of Ito’s differential:

t∫
0

h(t , τ )dW (τ ) = h(t , t)W (t) −
t∫

0

∂h(t , τ )

∂τ
W (τ )dτ

The leads to:
t∫

0
(t − τ )H− 1

2 dW (τ ) = (
H − 1

2

) t∫
0

(t − τ )H− 1
2 −1W (τ )dτ and therefore

to the equation above. For convenience, set α = (H − 1
2 ), then:

yα(t) = σα


(1 + α)

t∫
0

(t − τ )α−1W (τ )dτ , α =
(

H − 1

2

)

And let εk+1 be a series of standardized random walks with mean zero and variance
1. In this case, we construct the following approximation:

t∫
0

(t − τ )αdW (τ ) = Lim
n→∞

√
n

⎧⎪⎨
⎪⎩

[nt]∑
k=0

⎛
⎜⎝

(k+1)/n∫
k/n

(t − τ )α−11{τ<t}dτ

⎞
⎟⎠εk+1

⎫⎪⎬
⎪⎭

With its estimate in the time interval {(k + 1)/n − (k)/n} given by:

(k+1)/n∫
k/n

(t − τ )α−1dτ = 1

α

[−(t − τ )α
] ∣∣∣(k+1)/n

k/n = 1

α

[[
t − k

n

]α

−
[
t − k + 1

n

]α]

And therefore,

yα(t) = σ


(1 + α)

[[
t − k

n

]α

−
[
t − k + 1

n

]α]

= Lim
n→∞

√
n


(1+α)

{
[nt]∑
k=0

([
t − k

n

]α

−
[
t − k + 1

n

]α)
εk+1

}
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which converges in probability to the stochastic integral as stated above and provides
a random walks approximation to the long run memory process. Of course, the time
derivative is :

dyα(t) = σ

�(α)
Lim
n→∞

√
n

{
[nt]∑
k=0

([
t − k

n

]α−1

−
[
t − k + 1

n

]α−1
)
εk+1

}
dt

Thus, a random walk approximation to a fractional mean reversion model is

dxα(t) = −axα(t)dt + dyα(t)

And explicitly:

dxα(t) = − axα(t)dt

+ σ

�(α)
Lim
n→∞

√
n

{
[nt]∑
k=0

([
t − k

n

]α−1

−
[
t − k + 1

n

]α−1
)
εk+1

}
dt

Again, setting zα(t) = eatxα(t) we have e−atdzα(t) − axα(t) = dxα(t) and therefore,

dzα(t) = σ

�(α)
Lim
n→∞

√
n

{
[nt]∑
k=0

(
eat
[
t − k

n

]α−1

− eat
[
t − k + 1

n

]α−1
)
εk+1

}
dt

And finally:

zα(t) = zα(0) + σ

�(α)
Lim
n→∞

√
n

⎧⎨
⎩

[nt]∑
k=0

εk+1

⎛
⎝

t∫
0

eaτ
[
τ − k

n

]α−1

dτ −
t∫

0

eaτ
[
τ − k + 1

n

]α−1

dτ

⎞
⎠
⎫⎬
⎭

6.2 A Note: On the Random Walk Approximation:

Consider a sequence of independent random walks with εi , i ≥ 1 denoting random
variables identically and independently distributed with P (εi = ±1) = 1/2, for all

i ≥ 1. We construct the random walk : xk =
k∑
i=1
εi , k ≥ 1, x0 = 0 and consider the

function defined by : x(n)
t = 1√

n
(x[tn] + (nt − [nt])ε[nt+1]) where the brackets [..]

are used to denote the integer number of its argument. This is equivalent again to a
piecewise linear approximation of the stochastic process where the time interval is
divided into n equal intervals of length 1/n as seen in the figure below. In the interval[
k
n

, k+1
n

]
, x(n)is an affine function and in particular, we havethe linear approximation
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Fig. 1 Piecewise linear
approximation

defined by: x(n)
k/n = 1√

n
xk at the kth point and therefore, in terms of standardized

values:

x
(n)
t = x(n)

k/n + n
(
t − k

n

)(
x

(n)
(k+1)/n − x(n)

k/n

)
for t ∈

[
k

n
,
k + 1

n

]

between the kth and the (k + 1)st points. At the kth point, it can be verified that Fig. 1,

x
(n)
k/n = 1√

n

(
xk + (1 − 1)ε[nt+1]

) = 1√
n

(xk)

Within each segment, the time derivative is obviously:

ẋ
(n)
t = dx

(n)
t

dt
= n

(
x

(n)
(k+1)/n − x(n)

k/n

)
= √

nεk+1, t ∈
]
k

n
,
k + 1

n

[

With these definitions on hand, we consider the stochastic integral defined below and
to which we apply Ito’s differential rule,

∫ t

0
h(s)dw(s) = h(t)w(t) −

t∫
0

h′(s)w(s)ds

where h(s)assumes at least a first derivative denoted by h′(s). By Donsker’s theo-
rem, we know that the process x(n) converges in probability law to the Brownian
motion when n → ∞. Thus, the application of Ito’s differential rule can be written
equivalently by :

∫ t

0
h(s)dw(s) = Lim

n→∞

⎧⎨
⎩h(t)x(n)

t −
t∫

0

h′(s)x(n)
s ds

⎫⎬
⎭ ,

Integration by parts within each interval yields therefore,

h(t)x(n)
t −

t∫
0

h′(s)x(n)
s ds =

t∫
0

h(s)ẋ(n)
s ds
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and as a result, we have the integral expressed by a sum of random walks :

t∫
0

h(s)dw(s) ≈
[nt]∑
k=0

⎛
⎜⎝

(k+1)/n∫
k/n

h(s)ds

⎞
⎟⎠
(
x

(n)
k+1
n

− x(n)
k
n

)

= √
n

⎧⎪⎨
⎪⎩

[nt]∑
k=0

⎛
⎜⎝

(k+1)/n∫
k/n

h(s)1{s<t}ds

⎞
⎟⎠εk+1

⎫⎪⎬
⎪⎭

where 1{s<t} is a function which is equal to 1 as long as s < t and it equals zero
otherwise. Note that the random walk approximation does not require that the first
derivative of the function h(.) exists. Equivalently, we can consider the limit distribu-
tion of the random walks and show that it converges in probability law to the Brownian
motion. The implication of this result were used above to the approximation of the
fractal stochastic integral.

yα(t) =
t∫

0

(t − τ )αdW (τ ),α �= 0

6.3 Fractional Calculus and the Fractional Lognormal Model

We consider next the fractional lognormal Brownian motion model with a Hurst
index:

dS(t)

S(t)
= μdt + σdWH (t), S(0) = S0 > 0 withWH (t) =

t∫
0

(t − τ )H− 1
2

�
(
H + 1

2

) dW (τ )

As indicated previously, a fractional Brownian motion can be approximated by a
converging sum of random walks. In this section, we apply a stochastic fractional cal-
culus. Define for convenience the functional transformation y(t) = ln S(t). Applying
Ito calculus rules, we have:

dy(t) = dS

S
− 1

2

(dS)2

S2
or

dy(t) = dS

S
− 1

2

(dS)2

S2
= μdt − 1

2
σ 2
(
dWH (t)

)2 + σdWH (t)

And therefore, the fractional differential equation:

dy(t) = μdt − 1

2
σ 2(dt)2H + σdWH (t)
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And explicitly in terms of the stock price:

S(t) = S(0) exp

⎧⎨
⎩μt −

1

2
σ 2

t∫
0

(dt)2H + σ
t∫

0

dWH (t)

⎫⎬
⎭

We consider first the deterministic (albeit fractional) part given by (when 0< 2H < 1:

Z(t) = exp

⎧⎨
⎩μt −

1

2
σ 2

t∫
0

(dt)2H

⎫⎬
⎭ or dZ(t) = μZ(t)dt − 1

2
σ 2Z(t)(dt)2H

Whose solution (treated earlier) is defined by Z(t) = Z1(t)Z2(t), with Z1(t) =
Z1(0)e

t∫
0
μdt

However, dZ2(t)
Z2

= − 1
2σ

2(dt)2H can be written by:

d2HZ2(t)

Z2
= −1

2
�(1 + 2H )σ 2(dt)2H , 0 < 2H < 1

Whose solution is given by the Mittag-Leffler equation:

Z2(t) = E2H

(
−1

2
�(1 + 2H )σ 2t2H

)
with

E2H (h) =
∞∑
k=0

hk

�(1 + 2Hk)
=

∞∑
k=0

hk

(2Hk)�(2Hk)

Note that if H = 1/2, then Z2(t) = E1(−σ 2t) and

E1(h) =
∞∑
k=0

hk

�(1 + k) = 1 + h2

�(2)
+ h3

�(3)
+ .....

and thus Z2(t) = E1(−σ 2t) = e−σ 2t

And therefore

Z(t) = Z1(0)e

t∫
0
μdt

E2H

(
−1

2
�(1 + 2H )σ 2t2H

)

The solution of the stochastic fractional differential equation is:

S(t) = S(0)e

t∫
0
μdt+σ

t∫
0
dWH (t)

E2H

(
−1

2
�(1 + 2H )σ 2t2H

)

Where,

E2H

(
−1

2
�(1 + 2H )σ 2t2H

)
=

∞∑
k=0

(− 1
2�(1 + 2H )σ 2

)k
(2Hk)�(2Hk)

t2Hk
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And an explicit development of the first terms yields:

E2H

(
−1

2
�(1 + 2H ) σ 2t2H

)

= 1 − 1

2
σ 2t2H + 1

4

(�(1 + 2H ))2

�(1 + 4H )
σ 4t4H − 1

8

(�(1 + 2H ))3

�(1 + 6H )
σ 6t6H + ....

Replacing the fractional Brownian motion by its time equivalent, we have then:

SH (t) = S(0)E2H

(
−1

2
�(1 + 2H )σ 2t2H

)
exp

⎧⎨
⎩μ+ σ

�
(
H + 1

2

)
t∫

0

(t − τ )H− 1
2W (τ )dτ

⎫⎬
⎭

Which is not of course a Martingale and therefore it is not a financial pricing equation.
When H = 1/2, this pricing model is reduced to the standard model, since the price
is reduced to:

S(t) = S(0) exp

{(
μ− σ 2

2

)
t + σW (t)

}

The Hurst index thus provides a measure for departure from the standard model.
Explicitly, under a probability measure WQ(t) = W (t) + (μ−Rf

σ
)t , the following

pricing (Martingale) measure is obtained:

S(t) = S(0) exp

{(
Rf − σ 2

2

)
t + σWQ(t)

}

And therefore,

S(0) = EQ
{
e
−
(
Rf− σ2

2

)
t+σWQ(t)

S(t)

}
= EQ {e−Rf tS(t)

}

ReplacingW (t) = WQ(t)−(μ−Rf
σ

)t we have a fractional model measuring departure
from market completeness. When, H = 1/2 it is by definition a pricing Martingale
measure while when 0<H< 1/2, it is not a pricing measure as it is incomplete. In this
sense, the Hurst index measures a departure from the complete markets hypothesis
with a current price given by:

S(0) = EQ⎛
⎜⎜⎜⎝
e−
{

σ

�(H+ 1
2 )

(
t∫

0
(t − τ )H− 1

2WQ(τ )dτ +
t∫

0
(t − τ )H− 1

2

(
μ−Rf
σ

)
τdτ

)}

E2H
(− 1

2�(1 + 2H )σ 2t2H
) SH (t)

⎞
⎟⎟⎟⎠
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Since H< 1/2, this corresponds to time series that tend to revert to their trend. The
variance of the underlying process will be smaller than if H> 1/2, in which case,
the evolution of the variance tends to increase at a nonlinear rate. The financial
implications of a fractional lognormal process as defined above are important as they
provide a preliminary approach to pricing the cost of incompleteness. Of course, if

H = 1
2 then, EQ

(
S 1

2
(t)
)

− EQ(S(t)) = 0. While we may expect that since for

H< 1/2, the process variance may grow at a sub-linear rate that EQ(SH<1/2(t)) −
EQ(S(t)) < 0, the difference accounting for a premium that one pays assuming that
the market is complete. Inversely, when the Hurst index is greater than ½, time series
have a tendency to have an increasing variance over time since t2H > t (see also
Vallois and Tapiero and Tapiero and Vallois numerous references at the end of the
paper for the estimation of the Hurst index using range processes). Such situations
imply financial models that have unpredictable states with a variance growing much
more than presumed by the normal Brownian motion model. In this case, we expect
that EQ(SH>1/2(t)) − EQ(S(t)) > 0 which implies a financial risk premium far
greater than presumed by a complete market model. The calculation of such a price
is however more complex.

Let 1 < 2H < 2 which corresponds to fractional time (dt)2H < dt and define
β = 2H − 1 and therefore, 1 + β = 2H as well as 0 < β < 1. The fractional
lognormal model is thus: dS(t)/S(t) − Rf dt = − 1

2σ
2(dt)1+β and as indicated

earlier or y1+β (t) = d1+βy(t)
(dt)1+β = − 1

2�(2 + β)σ 2 Or y1+β (t) = y1(t)yβ(t). Consider
the Laplace Transform of the equation above where we take a first a derivative with
respect to 1 and then to β, then

L∗(D(1+β)y(t)) = p1+βL∗(y(t)) − p1+β−1y(1)(0) − p1−1y(β)(0),

A first integration leads to

L∗(D(1+β)y(t)) = p1+βL∗(y(t)) − pβy(0) − y(β)(0)

And therefore, y(1+β)(t) = (dy(t)/dt)(σ/λ)�(1 + α)σ . A first integration yields:

dy(t)

dt
= dy(0)

dt
Eβ

(
− 1

2λ
σ 2�(2 + β)tβ

)
,

While a second integration yields:

y(t) = dy(0)

dt

t∫
0

Eβ

(
− 1

2λ
σ 2�(2 + β)τβdτ

)
, 1 < 2H < 2 and β = 2H − 1

y(t) = dy(0)

dt

t∫
0

Eβ

(
− 1

2λ
σ 2�(2 + β)τβdτ

)
, 1 < 2H < 2
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7 Long Run Memory and Fractional Models: Theoretical
Properties

A stationary processXt for which there exists a real number α ∈ (0,1) and a constant
Cρ > 0 is said to have lon run memory if Lim

t→∞ρ(t)/(Cρt−α) = 1.Xt has other names

such as long range dependence, strong dependence, or a stationary process with
slowly decaying or long range correlation. Such fractional models are also defined
by the Hurst exponent, H (often used in Bloomberg, as a “chaos coefficient” and
more formally, a self-similarity index, see Vallois 1993, 1995, 1996; Vallois and
Tapiero 1995, 1996, 1997; Tapiero and Vallois 2007 for numerous studies on the
Hurst index). In this case,

Lim
t→+∞

var

(
t∑
i=1
Xi

)

Cγ t2H
= 1

H (2H − 1)

It implies that a time series innovation εt = yt − Et−1(yt ), has a fractional property
or a long run memory. ForH = 1/2, as shown above, we have a linear time variance
while for 1/2 < H < 1 we have a fractional series with self-similarity parameter H.
The implication of this (Hurst) self-similarity index is that although increments are
independent, the following holds:

Yt
(d)=tHY1, t > 0and Y1 �= 0 with positive probability.

This means that:

H < 0 ⇒ Yt
(d)→ 0

H = 0 ⇒ Yt
(d)→Y1

H > 0 and Yt �= 0 ⇒ |Yt | (d)→ ∞
Thus, excluding an initial condition, Yt = 0, Yt is not stationary, unless H = 0.
If H > 0, variance growth is nonlinear, or: E(Yt − Ys)2 = σ 2(t − s)2H while the
covariance is:

E(YtYs) − E(Yt )E(Ys) = γY (t , s) = 1

2
σ 2
[
t2H − (t − s)2H + s2H

]
.

By the same token, if we consider increments Xi = Yi − Yi−1, i = 1,2, 3, · · · the
covariance of these increments is: γX(k) = cov (Xi,,Xi+k) = cov (X1,,Xk+1). Using
the self-similarity property, we have then:

γX(k) = 1

2
σ 2
[
(k + 1)2H − 2k2H + (k − 1)2H

]
and

ρX(k) = 1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
.
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It is then simple to show (as stated above) that:
[

ρX(k)

H (2H − 1)k2H−2

]
→

k→+∞1

This means that if the correlation decays slowly such that for 1/2 < H < 1,
+∞∑
k=−∞

ρX(k) = +∞ leads to a series being unpredictable (i.e. in this case, an infinite

variance which differs from Knight’s uncertainty that presumes that future states are

unknown). While for a Hurst exponent of 0 < H < 1/2,
+∞∑
k=−∞

ρX(k) = 0. The case,

although very rare has been observed while studying trades of Florentine proveditori
degli cambiatori, a special flower traded over long periods of time in the MiddleAges.
Similar results are obtained when we consider the Brownian motion. In this case,
transformation of variables yields: EB(ct) = E[B(ct) − B(0)] = √

cEB(t) = 0.
The fractional Brownian motion expressed in terms of a self-similarity index H

is thus (where B(u) is a standard Brownian motion):

BH (t) =CH
∫

wH (t , u)dB(u) with

⎧⎪⎨
⎪⎩

wH (t , u) = 0 for t ≤ u

wH (t , u) = (t − u)H− 1
2 for 0 ≤ u ≤ t

wH (t , u) = (t − u)H− 1
2 − (−u)H− 1

2 for u < 0

Elementary manipulations will then show that: wH (ct , u) = cH− 1
2 wH (t , uc−1) and

therefore,

BH (ct) = CH
∫

wH (ct , u)dB(u) = CHcH− 1
2

∫
wH (t , uc−1)dB(u)

Substituting v = uc−1, we have: CHcH− 1
2
∫

wH (t , v)dB(cv) and by self-similarity,
we obtain at last:

CHc
H− 1

2

∫
wH (t , v)dB(cv) = CHc

1
2 cH− 1

2

∫
wH (t , v)dB(v) = cHBH (t),

For additional references see Bunde and Havlin 1991; Feller 1951; Hulliet 2002;
Hurst 1951; Imhoff 1985, 1992, Jain and Orey 1968; Jain and Pruitt 1972; Peter
1995; Scalas 2006; Viswanathamn et al. 1999; Barkai 2001; Daley 1999.

8 Stratonovich Calculus

We introduce at this time the Stratonovich calculus as it can be useful in applying
fractional calculus. A formal stochastic differential equation may be written as we
saw above by:

dx(t) = f (x, t)dt + σ (x, t)dW , x(0) = x0
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The stochastic variable x is defined, however, only if the above equation is meaningful
or if its stochastic integral:

t∫
t0

σ (x, t)dW

is meaningful and computable. In which case, the following solution follows:

x(t) = x(t0) +
t∫

t0

f (x, t)dt +
t∫

t0

σ (x, t)dW

The first integral is well defined in Riemann’s calculus. The second integral involves
however, a random variable with an unbounded variation due to the Wiener process,
dW = W (t+dt)−W (t). This unbounded variation introduces some difficulty requir-
ing that we specify precisely what we mean by random (or stochastic) integrals. This
is equivalent to specifying the computational method which allows the calculation of
the stochastic integral. The methods we apply to computing these stochastic integrals,
differentiates the stochastic calculus we apply. To define this integral we partition
the time interval � : [t0, t] into N steps of length t%j+1 − t %j , j = 0,1, · · ·N − 1 where
% = max(t%j+1 − t %j ) and let t = tN . Then we proceed by letting % be the maximum
time difference t %j+1 − t%j , tend to zero, and obtain the Ito stochastic integral:

∫
�

σ (x, t)dW = Lim
%→0

N−1∑
j=1

σ (x(t %j ), t %j )
[
W (t%j+1) −W (t %j )

]

However, using an alternative calculation of the stochastic integral, say as that given
below, then its value may not be the same as that of the Ito-integral. Rather, we have
an integral suggested by Stratonovich whose basic difference is that it follows the
Riemanian (deterministic) calculus. In this case, we have the following procedure to
calculate a stochastic integral:

∫
�

σ (x, t)dW = Lim
%→0

N−1∑
j=1

σ

(
x(t %j ) + x(t%j+1)

2
, t %j

) [
W (t%j+1) −W (t %j )

]

For these integrals to be computable, two essential terms must be understood. First,
the concept of non-anticipating function and second the notion of mean square con-
vergence. The function σ (x, t)is non anticipating if for all times s and t, the function
is independent of the random future eventsW (s)−W (t).This means that the function
σ (x, t)is independent of future values that the Wiener process will assume (which is
a reasonable assumption for most practical and tractable problems). This indepen-
dence allows us to multiply the function and future values of the Wiener process and
compute its moments (since there will be no correlation between the two). Mean
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square, or m.s. stands however, for existence of the limit sum which computes the
stochastic integral in the sense that the squared error is minimal.

Although the Ito and the Stratonovich definition of integrals are not the same
they are related to one another by a relationship which holds with probability one.
In other words, discretizing a random process following the Ito or Stratonovich
stochastic procedures will not lead to the same results and will thus involve stochastic
calculus rules that tend to differ. They are, however, measuring the “same thing” and
therefore, the relationship between their integration rules must remain the same. This
is summarized by the following:
∫

Straton.

σ (x(t), t) dW (t) =
∫
I to

σ (x(t), t)dW (t) + 1

2

∫
I to

∂σ (x(t), t)

∂x
σ (x(t), t)dW (t)

Further, if we were to use a Langevin formalism (with w(t) = dW/dt) then, we
could write as well:∫
Straton.

σ (x(t), t)w(t)(dt)
1
2 which can be generalized to:

∫
Straton.

σ (x(t), t)w(t)(dt)2α

to denote an alternative calculus we shall be concerned with and based on the
Riemann-Liouville function.

Consider at present a random function y = h(t , x). Taylor series developments
(differential rules) under the Ito and the Stratonovich calculus, as indicated above,
will not be the same. Under a Stratonovich calculus, the rules of Riemanian calculus
are applied, in which case:

dyS = ∂h

∂t
dt + ∂h

∂x
dx

While under an Ito calculus, we have:

dyI = ∂h

∂t
dt + ∂h

∂x
dx + 1

2

∂2h

∂x2
(dx)2

And therefore,

dyS = dyI + 1

2

∂2h

∂x2
(dx)2 and dyI = dyS − 1

2

∂2h

∂x2
(dx)2

An equivalence od stochastic differential equations may then be proved. Let the Ito
stochastic differential equation:

dxI = f (x, t)dt + σ (x, t)dWI (t)

Then, its equivalent Stratonovich stochastic differential equation (or dxI ≡ dxS) is:

dxS =
(
f (x, t) − 1

2
σ (x, t)

∂σ (x, t)

∂x

)
dt + σ (x, t)dWS(t)
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In this sense, a drift alters the mean evolution of the process. Inversely, if a
Stratonovich differential equal is given by:

dxS = f (x, t)dt + σ (x, t)dWS(t)

Then, its equivalent Ito stochastic differential equation is specified by:

dxI =
(
f (x, t) + 1

2
σ (x, t)

∂σ (x, t)

∂x

)
dt + σ (x, t)dWI (t)

For example, if σ (x, t) = σ (t), then both equations provide the same results. How-
ever for a lognormal Ito stochastic differential equation, σ (x, t) = σx we have the
Stratonovich Ito equivalent equation given by:

dxS =
(
μx − 1

2
σ 2x

)
dt + σxdWS(t) or

dxS

x
=
(
μ− 1

2
σ 2

)
dt + σdWS(t)

Which is under the Ito calculus the transformation of yI = ln (xI ). Similarly, consider
the Taylor series expansion of the Ito lognormal process:

dxI

x
=μdt + σdWI (t) and setting y(x) = ln x, thus:

∂y

∂x
= 1

x
,
∂2y

∂x2
= − 1

x2
and:

While under the Stratonovitch calculus, we have:

dyS = dyI − 1

2

1

x2
(dx)2 and dyI = dyS + 1

2

1

x2
(dx)2

The financial implications is that computing numerically a financial stochastic in-
tegral model may either point out to a an increase in rates of returns or in its
decrease—relative to the computational (Ito or Stratonovich) approach used.

Using an integration form to Ito stochastic differential equation,

dx = σ (x(t), t)dWI

Then since∫
Straton.

σ (x(t), t)dWS(t) =
∫
I to

σ (x(t), t)dWI (t) + 1

2

∫
I to

∂σ (x(t), t)

∂x
σ (x(t), t)dWI (t)

Or ∫
Straton.

σ (x(t), t)dWS(t) =
∫
I to

(
σ (x(t), t) + 1

2

∂σ (x(t), t)

∂x
σ (x(t), t)

)
dWI (t)

Or ∫
Straton.

σ (x(t), t)dWS(t) =
∫
I to

(
1

2

∂σ (x(t), t)

∂x
σ (x(t), t)dt

)
+
∫
I to

σ (x(t), t)dWI (t)
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And therefore

dx = σ (x(t), t)dWS(t) =
(

1

2

∂σ (x(t), t)

∂x
σ (x(t), t)dt

)
+ σ (x(t), t)dWI (t)

And inversely,

dx = σ (x(t), t)dWI (t) = σ (x(t), t)dWS(t) −
(

1

2

∂σ (x(t), t)

∂x
σ (x(t), t)dt

)

Where numerically, the integrals are calculated by:

σ (x, t)dW = σ (x(tj ), tj )
[
WI (tj+1) −WI (tj )

]
(Ito)

σ (x, t)dW = σ
(
x(tj+1) + x(tj )

2
, tj

) [
WS(tj+1) −WS(tj )

]
(Stratonovich)

For example, consider a Stratonovich stochastic differential equation is given by a
generalized lognormal process:

dx(t) = μxqdt + σxqdWS(t) with ∂(σxq )/∂x = qσxq−1

In which case,

dxS

xq
= μdt + σdWS

dxI

xq
=
(
μ+ 1

2
qσ 2xq−1

)
dt + σdWI (t)

Which results with q = 1 to their equivalent values for a lognormal process. Inversely,
we have:

dxI

xq
= μdt + σdWI

dxS

xq
=
(
μ− 1

2
qσ 2xq−1

)
dt + σdWS(t)

The choice of a mathematical system and the computation of stochastic integrals in
financial analysis thus matters. Although in the cases treated above, we obtained an
equivalence, allowing to define one approach with respect to the other, is clearly
specifies that some theoretical financial results may be valid under a mathemati-
cal system, it might not be valid under another. The same rational applies to the
definitions of stochastic integrals in fractional calculus.
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Fig. 2 A jump process
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9 The Poisson Process and Long Run Memory

Assume at first that a process y(t) is described by a differential equation, given by:

dy = f (y, t)dt , y(s) = x
At random times τi , s < τ1 < τ2 < · · · < τi < · · · . the process above jumps by a
known (or random) quantity zi . This means that at time τ i , the value of the variable
y(τi) instantly increases to y(τ+

i ) = y(τ−
i ) + zi . Mathematically, this can be written

as follows (Fig. 2):

y(t + dt) =
⎧⎨
⎩
y(t) + f (y, t)dt at t ∈ (τi , τi+1)
y(t) + zi at t = τi , i = 1,2, 3, ........

y(s) = x
where it is convenient to write τ 0 = s. In such a process, the equation behaves
between jumps as if it were an ordinary differential equation, while at the jump
times it creates a discontinuous change in the process variable y(t) which may be
deterministic or stochastic. For example, if the jumping process is Poisson then the
probability of a jump occurring in dt is λdt where λ is a known parameter and the
inter-jump event times are exponential. That is, if n(dt) denotes the number of jumps
occurring in dt , then

⎧⎨
⎩

P (n(dt) = 1) = λdt + o(dt)
P (n(dt) = 0) = 1 − λdt + o(dt)

P (n(dt) ≥ 2) = o(dt)
and the size of the jump equals one. As a result, the time between jumps has an expo-
nential distribution and is memory-less since at any instant of time, the probability
of a jumps are independent and independent of their previous history. The ordinary
differential equation with jumps stated above would then be written as follows :

y(t + dt) =
⎧⎨
⎩
y(t) + f (y, t) dy at t ∈ (τi , τi+1)
y(t) + 1 at t = τi , i = 1,2, 3, ........

y(s) = x
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where τi is defined by a Poisson probability distribution with parameter λ. Next, let
the size of the jump z be arbitrary, possibly defined by a probability distribution
f (z). For simplification purposes, we assume that the jump times τiand the jump
magnitudes z are statistically independent leading therefore to a compound Poisson
(jump) process. We then write for convenience.

dy = f (y, t) dt + μ(z, n(dt))

μ(z, n(dt)) =
{

0 if n(dt) = 0
z if n(dt) = 1

Since n(dt) is a Poisson process, we have,

P (dy) =
∑
P [dz |n(dt) ]P [n(dt)]

where n(dt) = 1,0. Thus, P (dy) = P [f (y, t)dt][1 − λdt] + P (z)λdt where P(.)
denotes the probability distribution of its argument. Generally, it is convenient to
write formally a stochastic differential equation with jumps as follows:

dy = f (y, t)dt +
∑

ziδ(t − τi); y(s) = x

where δ(.) is the Dirac Delta function, zi is the ith jump at time τ i , both possibly
random. Further, if the underlying process (without jumps) is also stochastic, or
given by a Wiener process, we can proceed as before and write more generally:

dy = f (y, t)dt + σ (y, t)dw +
∑

ziδ(t − τi), y(s) = x
Applications of such processes in finance and in insurance are numerous. These
include insurance problems where claims arrive following a Poisson process and
claims sizes have a known distribution or events occurring contributing to a jump
of the underlying continuous time process. Model where jumps occur due to a past
history of past jumps are memory based jump processes. Below we consider some
simple jump stochastic processes.

9.1 A forward Rate Process:

Consider at time t, the forward rates for all future maturity T > t and say that it
follows a difference equation where the time interval is denoted by �t :

f (t +�t , T ) = f (t , T ) + a(t , T )�t + σ (T )ξ1(t +�t)
√
�t +Nλ,�tξ2(t +�t), ∀T > t

where f (t , T ) is the one period forward rate at time T, as observed at time t. The drift
coefficient of the normal (Wiener) process is a(t , T ) while the diffusion coefficient is
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σ (T ) which is independent of time t. Further, ξ1(.) is a normal random variable with
zero mean and unit variance while ξ2(.) is a discrete random variable independent of
ξ1(.) and defined as follows:

ξ2 =
{
μ+ γ with probablity 1/2
μ− γ with probability 1/2

Finally, theNλ,�t represents the point process, assuming a value of 1 with probability
λ�t and zero with probability (1 − λ�t). In other words, the parameter λ denotes
the jump rate. As a result, the forward rate is a Wiener-Jump process where the size
of jumps have an expected mean μ which occur at the exponential rate 1/λ.

The Poisson process as introduced at the beginning of this paper is a counting
process with no memory as the time between events is exponentially distributed, and
therefore memory-less. It is defined by the probability distribution:

f (n) = λne−λn

n!
with a meanλ equal its variance, which may be restrictive. LetP (τ ) be the probability
that a given interval of time between events is equal or greater than τ . Let θ (τ ) be
the probability distribution of this time, then:

P (τ ) = 1 −
τ∫

0

θ (u)du and therefore θ (τ ) = −dP (τ )

dτ
and θ (τ ) = λe−λτ

We shall compare this result to Laskin’s (2003) result for a fractional Poisson process.
Crow and Bardwell have suggested instead that a super Poisson distribution can

be constructed to account for a “Poisson-Like” distribution with a greater variance
than its mean (a super-Poisson). In which case, the inter-event distribution would no
longer be exponential. It is given by:

P (n) = f (n : ξ , λ) = �(ξ )λn

1F1(1; ξ ; λ)�(ξ + n)
, n = 0,1, 2,3...

Where λ, ξ > 0 and F1(1; ξ ; λ) is a confluent hyper-geometric series given by:

1F1(1; ξ ; λ) = 1 + λ

ξ
+ λ2

ξ (1 + ξ )
+ λ3

ξ (1 + ξ )(2 + ξ )
+ .....

Whose mean and variance are:

E(n) = λ+ (1 − ξ )

(
1 − 1

1F1(1; ξ ; λ)

)
> λ

var (n) = λ(1 + E(n)) + E(n)(1 − E(n) − ξ ) > λ
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When ξ = 1 then E(n) = λ, var (n) = λ + λE(n) − (E(n))2 = λ which are the
parameters of a standard Poisson distribution. If λ > ξ then 1F1(1; ξ ; λ) ≈ 1 + λ

ξ

and therefore,

E(n) = λ
(

1 + (1 − ξ )2

λ+ ξ
)

while,

var (n) = λ+ (1 + λ− ξ )

(
1 + (1 − ξ )2

λ+ ξ
)

+
(
λ

(
1 + (1 − ξ )2

λ+ ξ
))2

These provide a system of two moment equations in the two parameters of the Poisson
distribution. For example, consider a period of time t and calculate the number of
events a stock price has increased. Let the data indicate a mean and variance estimates,
(μ, s2), then using the two equations above, a mean-variance approximation for the
super Poisson model can be guessed. Maximum Likelihood Estimated (MLE) may
provide specific results.

9.2 The valuation of an option in a jump process (Merton 1976):

The valuation of an option when the price process is modeled by both a diffusion
and a jump process is difficult because the application of the arbitrage argument it
requires (since it is necessary to find a certainty equivalent for both the diffusion
process and the jump). Explicitly, let the price process be lognormal with jumps:

dp

p
= αdt + σdW +KdQ

where dQ is an adapted Poisson process with parameter q�t . In other words,
Q(t + �t) − Q(t) has a Poisson distribution function with mean q�t or for
infinitesimal time intervals:

dQ =
{

1 w.p. qdt

0 w.p. (1 − q)dt

Let F = F (p, t) be the option price. When a jump occurs, the new option price is
F (p(1 +K)). As a result,

dF = [F (p(1 +K)) − F ] dQ

When no jump occurs, we have:

dF = ∂F

∂t
dt + ∂F

∂p
dp + 1

2

∂2F

∂p2
(dp)2

and explicitly, letting τ = T − t be the remaining time to the exercise date, we have:

dF =
[
−∂F
∂τ

+ αp∂F
∂p

+ 1

2
p2σ 2 ∂

2F

∂p2

]
dt + pσ ∂F

∂p
dW
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Combining these two equations, we obtain:

dF = adt + bdw + cdQ

a =
[
−∂F
∂τ

+ αp∂F
∂p

+ 1

2
p2σ 2 ∂

2F

∂p2

]
; b = pσ ∂F

∂p
; c = F (p(1 +K)) − F

with

E(dF ) = [a + qc]dt since E(dQ) = qdt
To eliminate the stochastic elements (and thereby the risks implied) in this equation,
we shall construct a portfolio consisting of the option and a stock. To eliminate
the “Wiener risk”, i.e. the effect of “ dw”, we let the portfolio Z consist of a future
contract whose price is p for which a proportion v of stock options is sold (which will
be calculated such that this risk disappears). In this case, the value of the portfolio is:

dZ = pαdt + pσdW + pKdQ− [vadt + vbdW + vcdQ]

If we set v = pσ/b and insert in the equation above (as done by Black-Scholes),
then we will eliminate the “Wiener risk” since:

dZ = p(α − σa/b)dt + (pσ − vb)dW + p(K − σc/b)dQ

or

dZ = p(α − σa/b)dt + p(K − σc/b)dQ

In this case, if there is no jump the evolution of the portfolio follows the differential
equation:

dZ = p(α − σa/b)dt if there is no jump

However, if there is a jump, then the portfolio evolution is:

dZ = p(α − σa/b)dt + p(K − σc/b)

Since the jump probability equals qdt , we obviously have:

E(dZ)

dt
= p(α − σa/b) + pq(K − σc/b)

There remain a risk in the portfolio due to the jump. To eliminate it we can construct
another portfolio using an option F ′ (with exercise price E′) and a future contract
such that the terms in dQ are eliminated as well. Then, constructing a combination
of the first (Z) portfolio and the second portfolio (Z’), both sources of uncertainty
will be reduced. Applying an arbitrage argument (stating that there cannot be a
return to a riskless portfolio which is greater than the riskless rate of return r) we
obtain the proper proportions of the riskless portfolio.
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Alternatively, finance theory (and in particular, application of the CAPM-Capital
Asset Pricing Model) state that any risky portfolio has a rate of return in a small
time interval dt which is equal the riskless rate rplus a return premium for the risk
assumed which is proportional to its effect. Thus, using the CAPM we can write:

E
dZ

Zdt
= r + λp(K − σc/b)

Z

where λ is assumed to be a constant and expresses the “market price” for the risk
associated to a jump. This equation can be analysed further leading to the following
partial differential equation which remains to be solved (once the boundary conditions
are specified):

−∂F
∂τ

+
[

(λ− q)

{
pK

∂F

∂p
− F (p(1 +K) − F

}]
+ 1

2

∂2F

∂p2
p2σ 2 − rF = 0

with boundary condition:

F (T ) = Max(0,p(T ) − E)

Of course, for an American option, it is necessary to specify the right to exercise the
option prior to its final exercise date, or

F (t) = Max(F ∗(t),p(t) − E)

where F ∗(t) is the value of the option which is not exercised at time t and given by
the solution of the equation above. The solution of this equation is of course much
more difficult than the Black-Scholes partial differential equation we have seen in
the previous chapter. For this reason, any complication in the terms of the option
or the underlying theoretical assumptions which are made, requires that we apply
numerical and simulation techniques to value the option.

9.3 The Fractional Poisson Process

An extension to a fractional (long run memory) Poisson process is a non-Markovian
counting process which is considered next. Such a distribution captures the long run
memory effect which results from a non-exponential interval time between events
observed in a broad set of problems in finance, in insurance as well as in many
“counting” problems where the time between events follows a power law. The frac-
tional Poisson distribution providing a distribution of the number of counted events
in a time interval (0,t) is was initially developed by (see Laskin 2003, 2009). The
underlying process parallel to the Poisson process which solves the following system
of differential-difference equations:

dP (n, t)

dt
= ν(P (n− 1, t) − P (n, t)),

dP (0, t)

dt
= P (0, t)
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Laskin suggests instead, the following model:

dαPα(n, t)

dt
= ν(Pα(n− 1, t) − Pα(n, t)),

dPα(0, t)

dt
= −Pα(0, t) + t−α

�(1 − α)

Where dαPα (n,t)
dt

is the operator of the time derivative of fractional order α defined as
the Riemann-Liouville function, or:

dαPα(n, t)

dt
= 1

�(1 − α)

d

dt

t∫
0

(t − τ )αPα(n, τ )dτ , 0 < α < 1

Explicitly,

dαPα(0, t)

dt
= 1

�(1 − α)

d

dt

t∫
0

(t − τ )αPα(0, τ )dτ = −Pα(0, t) + t−α

�(1 − α)

The probability generating function of these equations are given by:

Gα(z, t) =
∞∑
n=0

znPα(n, t) and its inverse Pα(n, t) = 1

n!
∂nGα(z, t)

∂zn
|z=0

They allow a definition of the PGF of d
αPα (n,t)
dt

since:

dαGα(z, t)

dt
= ν

( ∞∑
n=0

znPα(n− 1, t) −
∞∑
n=0

znPα(n, t)

)

= ν(z − 1)Gα(z, t) + t−α

�(1 − α)

Whose solution is a Mittag-Leffler function

Gα(z, t) = Eα(νtα(z − 1)) with Eα(h) =
∞∑
m=0

hm

�(1 + αm)

And thus Eα(.) is a function given by:

Eα(z, t) = ν + νtα(s − 1)

�(1 + α)
+ νt2αj (s − 1)2

�(1 + 2α)
+

∞∑
j=3

νtαj (s − 1)j

�(1 + αj )

In this case, we have:

Eα(..) |s=1 = Eα(0) = ν
∂Eα(..)

∂s
|s=1 = ∂Eα(..)

∂z

∂z

∂s
and E(n, t) = νtα

�(1 + α)

∂Eα(..)

∂s2
|s=1 = E(n2, t) = 2νt2α

�(1 + 2α)
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Further, the probabilities are:

Pα(n, t) = (νtα)n

n!
∞∑
i=0

(i + n)!
i!

(−νtα)i

�(1 + α(i + n))
, 0 < α < 1

These probabilities as pointed out by Laskin can be represented by the Mitag-Leffler
equation:

Pα(n, t) = (−z)n

n!
dn

dzn
Eα(z) |z=−νtα and Pα(0, t) = Eα(−νtα)

When α = 1, it is reduced to a Poisson process with

Pα(n, t) = (νt)n

n!
∞∑
i=0

(i + n)!
i!

(−νt)i
�(1 + (i + n))

= (νt)n

n! e
−νt

The first two moments are also

E(nα) = νtα

�(1 + α)
and E(n2

α) = nα + (nα)2

√
π�(1 + α)

22α−1�(1/2 + α)

Therefore a variance (see Wikipedia on Fractional Poisson processes):

σ 2
α = E(n2

α) − (nα)2 = nα + (nα)2

( √
π�(1 + α)

22α−1�(1/2 + α)
− 1

)

Note that σ 2
1 = n1 + (n1)2

( √
π

2�(1/2)
− 1

)
= νt + (νt)2

( √
π

2�(1/2)
− 1

)
with

√
π

2�(1/2)
− 1 = 0

As a result a comparison with the Poisson process yields:

Mean : E(nα) = νtα

�(1 + α)
versus

1

2
νt at α = 1

Variance : σ 2
α = E(n2

α) − (nα)2 = nα + (nα)2

( √
π�(1 + α)

22α−1�(1/2 + α)
− 1

)

Versus σ 2
1 = n1 + (n1)2

(
2
√
π

�(1/2)
− 1

)
= n1 = 1

2
νt

Explicit expressions for the initial probabilities are thus:

Pα(0, t) =
∞∑
i=0

(−νtα)i

�(1 + iα)
,Pα(1, t) = (νtα)

∞∑
i=0

i(−νtα)i

�(1 + α(i + 1))
etc.

Finally, the inter-event time distribution can be calculated by noting that:

θα(τ ) = −dPα(τ )

dτ
where Pα(τ ) = 1 −

∞∑
n=1

Pα(n, τ ) = Eα(−νtα)
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And therefore,

θα(τ ) = ντα−1Eα,α(−νtα), Ea,b(z) =
∞∑
m=0

zm

�(am+ b)
, 0 < α < 1

where Ea,b(z) is the two-parameter Mittag-Leffler equation.

The Fractional Compound Poisson Process, defined byX(t) =
N (t)∑
i=1
Yi whereN (t)

is a fractional Poisson process. Laskin 2003, p. 211, in particular proves that the
moment generating function of the Compound Poisson process is:

Jα(s, t) = Eα(νtα(g(s) − 1)) =
∞∑
m=0

(νtα(g(s) − 1))m

�(1 + αm)

dα

ds

Jα(s, t)

∂s
= dα

ds

∞∑
m=0

(νtα)m

�(1 + αm)
(g(s) − 1)m

At s = 0, we have

∂Jα(s, t)

∂s
|s=0 = E(Yi)

νtα

�(1 + α)

where g(s) is the moment generating function of the random variables Yi , which
indicates the independence of the events times of the fractional Poisson process and
the random events Yi .

9.4 The Inter-Event Distribution

Inter-event time distributions for the fractional Poisson process are due to Laskin as
well as subsequent development by several authors (for example, Cahoy and Polito
2013). Again consider the counting fractional Poisson process over time Nν (t), 0 <
ν < 1. Let T ν be the tail distribution of the time between events, or P ν(T ν > t) =
Eν(−λtν) with Eν(z) =

∞∑
n=0

zn

�(νn+ 1)
the Mittag-Leffler equation. The financial

importance of this Poisson process is that it is a counting process whose time between
events are not independent and therefore provides a far greater modeling flexibility
for insurance, credit risks and other events than the Poisson process where inter-
event times are exponentially (and thus independent and memory-less) distributed.
The inter-event time distribution fractional Poisson Process is then:

f ν(t) = λtνEν,ν(−λtν), t > 0
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Where

Eν,κ (−λtν) =
∞∑

n=0

zn


(νn + κ)

is the two-parameters Mittag-Leffler function. Further, the kth fractional moment of
the random inter-event time is:

Eν(T ν)k = 
(1 + k)


(k/ν)
(1 − k))

π

λk sin (πk/ν)
, 0 < k < ν

Thus, the probability density function of mth event is:

f ν
m(t) = λm tνm − 1

(m − 1)!E
(m−1)
ν,ν (−λtν), t > 0

Where E(m−1)
ν,ν denotes an m − 1 derivative of the two parameter Mittag-Leffler

equation. Its Laplace Transform is:

L∗(f ν
m(t)) =

∞∫
0

e−stf ν
m(t)dt = λm

(λ + sν)m

Thus, when ν = 1, this is reduced to the Laplace Transform of a Gamma Probability
distribution and of course when ν = 1 and m = 1 we obtain the Laplace Transform
of the exponential probability distribution. A comparison of the essential properties
of the Poisson and the Fractional Poisson are given below (taken from Cahoy and
Polito 2013).

Poisson ν = 1 FP ν < 1

P ν (T ν > t) e−λt Ev,v(−λtν )

f v(t) λe−λt λtνEv,v(−λtν )

pν
k (t) (λt)k

k! e−λt (λtν )k

k!
∞∑
i=0

(i+k)!(−λtν )i


(ν(i+k)+1)

Mean λt λtν/
(ν + 1)

variance λt λtν


(ν+1) +(λtν)2
[

1
ν
(2ν) − 1


2(ν+1)

]

Laplace Transform
(

λ
λ+s

)m (
λ

λ+sν

)m

Such a counting distribution may then be used to calculate the number of credit
defaults over time, the number of events and so on where the time between default
events are not necessarily exponential. For further study, see Leonenko and Merzbach
2011; Beghin and Orsingher 2009, 2010; Herbin and Merzbach 2006; Ivanov and
Merzbach 2000; Leonenko et al. 2013a, b, c; Wang et al. 2003, 2006, 2007 and Wen
2003, 2006, 2007; Cahoy et al. 2010.
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9.5 The Exponential Model: The Hawkes Process

Consider next the following (Hawkes) mean reverting process:

dx(t) = −λ(x(t) − μ(t)) + ξdNt , x(0) > 0

Where Nt is a counting process. A solution for this equation can be reached as
follows. First set y(t) = eλtx(t) and therefore, dy(t) = λeλtx(t) + eλtdx(t) or
e−λtdy(t) − λe−λty(t)dt = dx(t). As a result,

e−λtdy(t) = dz(t) = (λμ(t))dt + ξdNt , y(0) = x(0)

And therefore for μ constants, we have

z(t) = λμt +
t∫

0

ξdNt or y(t) = λμteλt + eλt ξ
t∫

0

dNt and finally,

x(t) = λμt + ξNt
The interesting question however is to let the counting process be a fractional Poisson
process.

10 Short Memory

Short term memory, unlike autoregressive and model based memory is based on a
“model selection” that depends on the process data that has occurred in the immediate
or in the current past. For example, is the last observed price, contributing to the
propensity for the price to increase or decrease next. Is a series of specific outcomes
altering the underlying process. Such a series may be defined by a series of events or
by a statistical realization of a series of events. It is therefore data based and defined
by identifiable and occurring (or recurring) events. In actuarial science for example,
much use is made Poisson jump processes with specific events (such as a claim by
an insured) used to increase the insured premium). Similarly in finance Brownian
motion is used to capture “the noise” in an otherwise well predicted process while
specific events may alter future expectations and thereby the propensities of financial
agents to buy or sell assets. These models assume for mathematical convenience that
events are independent. Short memory is thus a departure from these models. Weiss
1994, 2002 has pointed out that certain random phenomena have in some manner, a
“biased” randomness (see also Balinth 1986; Masoliver et al. 1993, 2003, 2007; Ben
Avraham and Havlin 2000; Pottier 1996; Claes and van den Broeck 1987; Cresson
et al. 2007; Weiss and Rubin 1983; Wu et al. 2000; Viswanathan et al. 1999, Patlak
1953 and Taylor 1921).

Such a bias can induce a persistent “noise” and therefore alters the underlying
current stochastic process. For example, is a bank failure increasing the probability
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of another failure; Is an accident by an insured alters the probability of a subsequent
accident probability? In some ways, processes do change by learning, by adapting
etc. and thereby their underlying process may change accordingly. These are how-
ever different manifestations of short memory. The short memory process differs in
several manners from the memory presumed in several papers and other applications
areas where memory is deemed important. For example, Telesca and Lovallo (2006)
while studying the advent of terrorist attacks suggest that “memory” is associated to
correlated events—in the sense that inter-events times are not statistically indepen-
dent. Such an observation implies explicitly that terror events do not have a Poisson
distribution. Ferguson and Bazant (2005) while providing a number of avenues to
model polymers in solution characterized by long flexible chains as Random walk
models of various complexities, suggest also the potential use of a memory imbedded
in a correlation between subsequent steps in a random walk. In this case, “persis-
tence” (in their sense) still exhibits a “normal diffusion”. In the longer run, fractal
analysis of random walks, defined by a Hurst exponent, seeks as indicated earlier, to
capture a long run memory, based as well on some “correlation” within the walk that
lead to “sub or superdiffusion” processes. Such approaches assume usually that short
term memory is well accounted for by Markov models (Cresson et al. 2007) while
long-range memory typically gives rise to Non-Markovian walks (Hurst 1951; Man-
delbrot 1982; Bunde and Havlin 1991; Huillet 2002; Tapiero and Vallois 1996; Peter
1995). This is in contradiction to our analysis of a short term memory model, based
on a concept of memory of the previous random event and not only the memory of
the previous random state. These “memory processes” remember only the past state
(or several ones) and not their random properties. For example, “average persistence
of random walks” studied by Rieger and Igloi (1999) is essentially based on a birth-
death (B-D) random walk (their equation 1) which assumes adsorbing boundaries
applied to the B-D random walk and which leads to a “persistence” defined by the
probability that an expected walker’s position has not returned to its initial position.
Persistence of past direction in a random walk or internal bias, was indicated in an
early paper by Clifford Patlak (1953) who meant that the process will travel in a given
direction need not be the same for all directions but depends solely on the particle’s
previous direction of motion. An external bias then arises from an anisotropy of the
external force on the particle. Application of such a model is used to study diffusion
and long chain polymers.

In financial time series, (such as the S&P, the Euro-Dollar exchange rate), we
found evidence of short term memory. For example, over a period of 759 consecu-
tive days, we found that in a standardized process, the probability of a price increase
on the S&P will follow a price increase was 0.4774 while the probability of such an
increase following an actual price decline in the previous day was 0.50964. By the
same token, the probability of a price decline following a price increase was 0.5254
while a decline following a decline was found to have a probability of 0.4820. Anal-
ysis of other time series (such as on intraday data) may lead to more pronounced
results. Over shorter periods of time (51 days), these probabilities were found to
be even more pronounced (0.5925 and 0.4583) and (0.4074 and 0.54166). These
observations lead to some financial traders to devise trading strategies based on



218 C. S. Tapiero and P. Vallois

persistence and profit from financial markets’ incompleteness. Increasingly, individ-
uation of insurance contracts and individual health histories and their time record
are both useful and essential to measure the propensity of an insured to claim or an
individual to recede. Further, initially healthy individuals may eventually become ill,
altering the probabilities of their subsequent health events. In predicting the weather,
counting natural events (such as the number of Hurricanes over a period of time),
their occurrence might not be, necessarily, statistically independent as presumed by
a Poisson counting processes (a fractional Poisson process may however be used).
For example, to what extent do years of intense Hurricane activity follow each other,
or vice versa, what would be the propensity of an active Hurricane period to follow
a period of non-activity? In many theoretical models, we presume that these events
are statistically independent, meaning that there is no statistical memory, justifying
thereby counting processes with linear time growth. Similarly in financial time se-
ries, we use a random walk or a Brownian motion driven stochastic process (although
empirical data regarding financial time series of stocks, exchange rates, interest rates
etc. indicate otherwise).

Finally, “learning” with a short memory model differs from other approaches. For
example, Actuarial approaches mostly assume that prior events do not alter the ba-
sic probabilities laws that determine the occurrence of subsequent events. To update
probability estimates, a statistical credibility theory is used to evaluate the objectivity
and the subjectivity of a risk source and devise a statistical “learning” mechanism
that allows the updating of the underlying future event probability. Using Bayesian
statistics, credibility theory divides risk events into a number classes each with a
propensity for the event to occur which are updated using subjective prior estimates
of risk classes and an accrued experience—the process history observed. The goal
of credibility theory is then to set up an experience rating system. Unlike credibility
theory, this “persistent” approach presumes that there may be an inherent persistence
in an underlying process that will dictate the probability laws (and therefore the ran-
domness) with which subsequent events occur. The probability of a subsequent event
will then be determined by the past memory (in our case, specific past events) rather
than be determined by a statistical estimator based on the accrued evidence of past
events. Explicitly, while credibility theory seeks to integrate “experience” in estimat-
ing the propensity of an event to occur, a persistence approach, an inherent property
of the underlying process determines, conditionally on the “observed memory”, the
actual probabilities with which events may occur or not.

In the following sections, we shall consider some essential and mathematical
results. To simplify our presentation, we shall consider first a one period memory
model in a discrete time random walk and summarize for brevity basic results (where
proofs are given in previous papers published by the authors as well as other authors).
The “simple”, one period memory, will demonstrate analytically the short term and
the long term effects of memory. In particular, we will show that the variance grows
initially at a nonlinear rate and subsequently, becoming linear. The linear trend
however would have endogenized the short term memory effects. To confirm our
analysis, we also obtain as special cases well known ergodic results as well as the
standard random walk processes. The effects of memory have many implications, and
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applications, some of which will be discussed in this paper In particular, we point
out fundamental differences between short term stochastic models based current
“events” and long term stochastic models based on theoretical constructs justified by
extensive and large data sets. These differences are naturally important for financial
trading when the short term is of greater concern.

10.1 The Random Counting Process with a 1-Short memory

Assume that an event in any given period of time can be in one of two states: (0,1) (or
+ 1 or −1). The first state “0” states that the event has not occurred within the period
while “1” states that the event has occurred in the period. For example, a loan in a
bank portfolio loan has defaulted or not, an insured has claimed following an accident
or not, etc. Data can be gathered to determine the probability of an event occurring
conditional on its past realization which we denote by its probability α > 0. By the
same token, if the event has not occurred in the period, then the probability of the
event occurring in the following year would be β > 0. These observations define a
simple two-states Markov chain, given by:

P =
[

1 − α α

β 1 − β
]

Thus, if we let yt be an event occurring at time t, where 0 < α,β < 1 we have four
potential events:⎧⎪⎪⎨

⎪⎪⎩

(yt = 1 |yt−1 = 0 ) and P (yt = 1 |yt−1 = 0 ) = P (εt (α) = 1) = α

(yt = 0 |yt−1 = 0 ) and P (yt = 0 |yt−1 = 0 ) = P (εt (α) = 1) = 1 − α
(yt = 1 |yt−1 = 1 ) and P (yt = 1 |yt−1 = 1 ) = P (ε

′
t (β) = 1) = 1 − β

(yt = 0 |yt−1 = 1 ) and P (yt = 0 |yt−1 = 1 ) = P (ε
′
t (β) = 0) = β

In other words,

If yt−1 = 0 then the probability law of yt is identical to that of εt (α)

If yt−1 = 1 then the probability law of yt is identical to that of ε
′
t (1 − β)

For example, (yt = 1 |yt−1 = 0 ) may define the event that a stock price has increased
at time t given that it did not increase previously. We also define the parameter
ρ = 1 − α − β, ρ ∈ [0,1]. For example, say that α = 0.3, β = 0.6, this means
that is a stock price has not increased, its probability of increasing next is 0.3, while
it has a probability 0.4 if it has increased previously. In other words, there is in this
case a momentum and ρ = 0.1.

Over a period of time t, the total number of events (claims, or an increasing or
decreasing stock price etc.), is then:

xt =
t∑
j=0

yj
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These movements are conditional on the initial event (the current memory of the
event), denoted by: y0 = 0 or y0 = 1. A recursive single memory model is then:

yt = (1 − yt−1)ε̃t (α) + yt−1ε̃
′
t (1 − β) or yt = ε̃t (α) − yt−1(ε̃t (α) + ε̃′

t (1 − β))

Note that yt−1 is an observed value, know at time t while yt = 1,0 is observed only
at time t + 1. Consider a series of observed values:

yt−i = (1 − yt−(i+1))ε̃t−i(α) + yt−(i+1)ε̃
′
t−i(1 − β), i = 1, ....t − 1

And assume that ε̃t−i(α) and ε̃
′
t−i(1 − β) are time independent. Then system of n

equations above provide an estimate for ε̃(α) and ε̃(1 − β). First not that for two
periods,

yt−i = ε̃(α) − yt−(i−1)(ε̃(α) − ε̃′
(1 − β))

And therefore a least square estimate yields

Min E
t∑
i=1

{
yt−i − ε̃(α) + yt−(i−1)(ε̃(α) − ε̃′

(1 − β))
}2

Which we rewrite as follows, with a simplified notation ε̃(α) ≡ α̃ and ε̃
′
(1 − β) =

1 − β̃:

Min
t∑
i=1

{
(yt−i)2 − 2yt−iE(α̃) + E(α̃)2

}

+ (yt−(i+1))
2
{
E(α̃)2 + E(1 − β̃)

2 − 2E(α̃(1 − β̃))
}

− 2yt−(i+1)

{
E(α̃)2 − E(α̃(1 − β̃))

}
+ 2(yt−i)yt−(i+1)(α̃ − (1 − β̃))

Elementary manipulation yields the following:

Min
α,β
E

t∑
i=1

⎧⎪⎨
⎪⎩

(yt−i)2 − 2(yt−i)
{
1 − yt−(i+1)

}
α̃ + {(1 − yt−(i+1))2

}
α̃2

− {2(yt−i)yt−(i+1)
}

(1 − β̃) + (yt−(i+1))2
{

(1 − β̃)
2
}

+2yt−(i+1)
{
1 − yt−(i+1)

}
α̃(1 − β̃)

⎫⎪⎬
⎪⎭

And in expectation (assuming that α̃, β̃ are not correlated):

Min
α,β
E

t∑
i=1

⎧⎨
⎩

(yt−i)2 − 2(yt−i)
{
1 − yt−(i+1)

}
α + {(1 − yt−(i+1))2

}
α2

− {2(yt−i)yt−(i+1)
}

(1 − β) + (yt−(i+1))2
{
(1 − β)2

}
+2yt−(i+1)

{
1 − yt−(i+1)

}
α(1 − β)

⎫⎬
⎭

And therefore, least square estimates are defined by the solution of the following
system of linear equations:⎡

⎢⎢⎣
t∑
i=1

(
1 − yt−(i+1)

)2 −
t∑
i=1

(yt−(i+1)(1 − yt−(i+1)))

t∑
i=1

(yt−(i+1)(1 − yt−(i+1)))
∑
i=1

(
yt−(i+1)

)2

⎤
⎥⎥⎦
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[
α

1 − β
]

=
⎡
⎢⎣

t∑
i=1

(yt−i(1 − yt−(i+1)))∑
i=1

((yt−i)(yt−(i+1)))

⎤
⎥⎦

or,

[
α̂

1 − β̂
]

=

⎡
⎢⎢⎣

t∑
i=1

(1 − yt−(i+1))2 −
t∑
i=1

(yt−(i+1)(1 − yt−(i+1)))

t∑
i=1

(yt−(i+1)(1 − yt−(i+1)))
∑
i=1

(yt−(i+1))2

⎤
⎥⎥⎦

−1

⎡
⎢⎣

t∑
i=1

(yt−i(1 − yt−(i+1)))∑
i=1

((yt−i)(yt−(i+1)))

⎤
⎥⎦

For example,

α̂ =
∑
yt−(i+1)

∑
i=1

(
yt−i(yt−(i+1))

)
{∑
i=1

(yt−(i+1))2
∑
i=1

(1 − yt−(i+1))2 +
(∑
i=1

(
yt−(i+1)(1 − yt−(i+1))

))2
}

And therefore,

E(yt−i) = α̂ − yt−(i−1)(α̂ − (1 − β̂)) = α̂ + ρ̂t yt−(i−1) with ρ̂t = 1 − α̂ − β̂
where ρ̂t is an estimate at time t (since it is based on the estimation of past
observations).

Recursive estimates provide also a relationship based on the expectation of past
outcomes. Thus, at time t,

E(yt ) = α(1 − E(yt−1)) + (1 − β)E(yt−1) = α + (1 − α − β)E(yt−1)

By recursion, we have future events recurring as a function of (α,β) and the longer
memory of event y0:

E(yt ) = α
[

1 − (1 − α − β)t

α + β
]

+ (1 − α − β)t−1E(y0)

In other words, given only y0, the initial condition, the expected value of the event at
time t is a nonlinear function of time and the probabilities (α,β). If the underlying
process is a pure random walk, α+β = 1,E(yt ) = α+E(y0) (since each occurrence
is independent). By the same token, the expected autocorrelation E(ytyt−1) (and
therefore events are memory dependent) is:

yt = ε̃t (α) − yt−1(ε̃t (α) + ε̃′
t (1 − β))
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E(ytyt−1) = (ε̃t (α) − yt−1(ε̃t (α) + ε̃′
t (1 − β)))

(ε̃t−1(α) − yt−2(ε̃t−1(α) + ε̃′
t−1(1 − β)))

= (ε̃t (α)ε̃t−1(α) − yt−1(ε̃t (α)ε̃t−1(α) + ε̃′
t (1 − β)ε̃t−1(α)))

− (yt−2ε̃t (α)(ε̃t−1(α) + ε̃′
t−1(1 − β))) − yt−2yt−1(ε̃t (α)(ε̃t−1(α))

+ 2ε̃
′
t (1 − β)(ε̃t−1(α)) + ε̃′

t (1 − β)ε̃
′
t−1(1 − β))

Assuming independence of α,β and their stationary estimates α̂, β̂, we have:

E(ytyt−1) = (α̂2 − (yt−1 + yt−2)α̂(1 + α̂ − β̂) + yt−2yt−1(1 + α̂ − β̂)
2

Thus,

E(ytyt−1 |yt−1 = 0, yt−2 = 0 ) = α̂2,E(ytyt−1 |yt−1 = 0, yt−2 = 1 ) = −α̂(1 − β̂)

E(ytyt−1 |yt−1 = 1, yt−2 = 0 ) = −α̂(1 − β̂),E(ytyt−1 |yt−1 = 1, yt−2 = 1 )

= (1 − β)2

As a result, at any one time t, the co-variation of an event depends on the previous
two observed values.

For t periods, we define the process {Xt , t ∈ T } by Xt =
t∑
i=1
yi . In this case, the

following results are obtained with their proof in Vallois and Tapiero 2007.
The properties of such a short memory process can be found easily as follows.

Let ρ = 1 − α − β, then in (0, t):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(xt
∣∣y0 = 0) = α

α + β
(
t − (1 − ρt+1)

α + β
)

E(xt
∣∣y1 = 1) = 1

α + β
(
α(t + 1) + β (1 − ρt+1)

α + β
)

With their estimate calculated based on the observations of past events up to time
t−1. The second moment (and therefore a variance calculated based on the second
and the expectations above) is:

E
{
x2(t)

∣∣x(0) = 0
} = α

{
t(t+1)

6 [−2βt2 + (3β − α + 2)t + α − β + 1]

+σ3[−2β(α + β)t + β2 − α2 − 4β + 2α]

}
and

E
{
x2(t)

∣∣x(0) = 1
} = (t + 1)

6

{
6 + t[−β2 − 3βα − 5β + 6] +
t2[−β2 + 3βα − 4β] + 2β2t3

}

+ σ3β[2β(α + β)t + β2 + 3α2 + 4αβ + 2β − 4α]
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whereσ3 = σ3(α+β, t) withσ3 = σ3(s, t) a real valued term defined by the following
relation: 1 − (1 − s)t+1 = s(t + 1) − t(t + 1) s

2

2 + t(t2−1)
6 s3 + s4σ3(s, t).

These results indicate non-linear mean and variance growth rates. This nonlinear
effect is indeed very small if ρ is small and disappears gradually over time to be time
linear with E(xt |y0 = 0 )

t→l arg e
= α

α+β [t]. When α + β = 1, such a process corresponds

to a standard random walk, at ρ = 0. And E(xt |y0 = 0 ) = αt/(α + β) as it is
expected. Note that if both the probabilities of an event occurring whether or not
the event has occurred previously are very small, then ρ = (1 − β) − α should be
very small as well, and therefore ρ ≈ 0 and as a result again we obtain the familiar
random walk. Similar results are obtained when we consider second order moments.
To this effect we calculated the variance (see Vallois and Tapiero 2007).

These results indicate a number of potential approximations to the underlying
probability distributions of short memory processes. Explicitly, if the parameter α
is not too small but α + β = 1, then the Binomial random walk (and its normal
approximation) provide a “good” approximation to the short memory random walk
process. When α is sufficiently small such that α >> α2 holds, then a Poisson
moments approximations to the short memory counting process is also appropriate.
Of course, for other parameters, both the binomial and the Poisson distributions
may turn out to be poor approximations (albeit over the short rather than in the
long run). In this sense, an observation of the US/Euro dollar exchange time series
indicated (as seen above), that there is a volatility effect due to a short range memory
effect. The implications of such an observation are numerous. For example, an option
price (due to memory effects) may be relatively larger (or smaller) the smaller the
option remaining time to its exercise (since the memory effect would “kick in”. By
the same token, long range options (such as perpetual American options) are more
justified in their use of an underlying price process whose stochastic driving element
is the Brownian motion (or a linear growth rate for the underlying process variance).
Such a short time memory may also explain the increased variance on short time
(intra-day data time series). Over the longer run, these effects are dissipated. Again,
for simplicity, we summarize long run (ergodic) results. The asymptotic mean and
variance of the persistent-one period memory random walk is given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
(xt
t

∣∣x0 = 0
)

= α

α + β + 1

t

(
1 − α − β
(α + β)2

)
+ α

(α + β)2

ρt+1

t

E
(xt
t

∣∣x0 = 1
)

= α

α + β + 1

t

(
α2 + αβ + β

(α + β)2

)
− β

(α + β)2

ρt+1

t
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And by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

t
V ar(xt

∣∣x0 = 0) = α

(α + β)3
{4α2 − β2 + 3αβ − 4α + 2β}

+1

t

α(1 − α − β)(β2 + αβ + α − 4β)

(α + β)4
+ 0(1)

1

t
V ar(xt

∣∣x1 = 1) = αβ(2 − α − β)

(α + β)3
t−

−1

t

β(α3 + αβ2 + 2α2β − 5α2 − 4αβ + β2 + 4α)

(α + β)4
+ 0(1)

These results are of course consistent with the random walk, while at the same time
they indicate that memory effects remain and alter the structure of random walks.
Of course, over the long run, the underlying process variance has a linear variance
growth. Further, when α + β = 1, we have also:

E
(xt
t

|x0 = 0
)

= α,E
(xt
t

|x0 = 1
)

= α + 1

t

While the variance is proportional to time t as it is the case for both random walks
and Brownian motion. If this is not the case, we obtain a constant variance correction
due only to the short term memory effect. While over time, such an effect may be
negligible, over shorter periods of time, such an effect can be important and to be
reckoned with.

10.2 Moments and Distributions of the Short Memory Process

Other moments as well as explicit distributions can be obtained by calculating the un-
derlying probability generating function (PGF) defined by G(λ, t)=E {λxt }. Again,
it is given by Vallois and Tapiero (2007) as follows. Let ρ = 1 − α − β, ρ ∈ ]−1,1[
then the PGF of the short memory process is:

G(λ, t) = G(λ, 1)√
δ
�t − λρG(λ, 0)√

δ
�t−1, t ≥ 1

With boundary conditions

G(λ, 0) = P (x0 = 0) + λP (x0 = 1)

G(λ, 1) = (1 − α + λα)P (x0 = 0) + λ(1 + (λ− 1)(α + ρ))P (x0 = 1)

and parameters defined by a = 1 − α + λα, δ = (a + λρ)2 − 4λρ,�t = μt0 − μt1
where:

μ0 = 1

2
(a + λρ + √

δ),μ1 = 1

2
(a + λρ − √

δ)
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where P (x0 = 0) is the probability that the initial event (memory) is null (for
example, no default occurred, no accident occurred, etc.) while P (x0 = 1) denotes
the probability that an event has occurred (e.g. a loan has defaulted).

Such a generating function provides the means to calculate the moments if the
number of defaulting loans in a given time interval for an underlying persistent default
process as well as their number of defaults probabilities in the given time interval.
Further, it clearly points out to the effects of the index ρ = 0 on the default process.
When ρ = 0 then β = 1 − α and whatever the previous outcome (whether a default
has occurred or not), the subsequent probability of default is α while that of no
default is 1 − α. When the persistence index is positive, ρ > 0 then β = 1 − α − ρ.
That is, if a loan defaults at some time, then the probability that a loan default
subsequently is has a smaller probability. And vice versa, when the persistence index
is negative ρ < 0 and the underlying default stochastic process would point out to a
“contagious” default process (for example, with a portfolio’s loans defaulting at an
increasing rate). Inversely, for ρ > 0 it will indicate that the portfolio of loans has a
built-in “incentive effect”, reducing a default probability in a given period following
a default made in the previous one.

Our result allows an explicit calculation of the moments of the persistent counting
process, defined recursively as shown below. Note that:

∂G

∂λ
(λ, t) = E(xtλ

xt−1),
∂2G

∂λ2
(λ, t) = E(xt (xt − 1)λxt−2),

∂3G

∂λ3
(λ, t) = E(xt (xt − 1)(xt − 2)λxt−3)

and so on for higher order terms. Using these terms and setting λ = 1, we obtain
the necessary equations which allow the calculation of the mean, the variance, the
kurtosis and other moments of the short memory process distribution. It is also useful
to derive a number of special and well known cases to confirm the validity of our
results. First note that when λ = 1 then G(1, t) = 1 as expected. Further, when
there is no persistence (i.e. ρ = 0), we have G(λ, t) = G(λ,1)

a
�t , μ0 = a, μ1 =

0 and �t = atand therefore:

G(λ, t) = {P (x0 = 0) + λP (x0 = 1)} at

In particular, if initially, P (x0 = 0) = 1, then G(λ, t) = at which corresponds as
expected to the Probability Generating Function of a binomial distribution. However,
if P (x0 = 1) = 1, then G(λ, t) = λat . A convenient recursive expression for the
generating function can be found by noting that �t = μ0

t − μ1
t where μ0 and μ1

solve μ2 − μ(λ(ρ + α) + 1 − α) + λρ = 0 and verify the second order equation:

�t+2 − (a + λρ)�t+1 + λρ�t = 0

As a result, the probability generating function G(λ, t) satisfies as well the second
order recursive equation given by:

G(λ, t + 2) = (1 − α + λ(α + ρ))G(λ, t + 1) − λρG(λ, t)
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Deriving this equation with respect to λwith λ = 1 we obtain a recursive expression
for the moments of the process. Concentrating our attention on the first moments
only, derivatives yield the following recursive equation:

G(λ, t + 2) = (1 − α + λ(α + ρ))G(λ, t + 1) − λρG(λ, t)

∂kG(λ, t + 2)

∂λk
= (1 − α + λ(α + ρ))

∂kG(λ, t + 1)

∂λk
− λρ ∂

kG(λ, t)

∂λk

+ k(α + ρ)
∂k−1G(λ, t + 1)

∂λk−1
− kρ ∂

k−1G(λ, t)

∂λk−1
, k = 1,2, 3, ....

With initial conditions:

G(λ, 0) = P (x0 = 0) + λP (x0 = 1)

G(λ, 1) = (1 − α + λα)P (x0 = 0) + λ(1 + (λ− 1)(α + ρ))P (x0 = 1)

∂G(λ, 0)

∂λ
= P (x0 = 1),

∂G(λ, 1)

∂λ
= αP (x0 = 0) + (1 + (2λ− 1)(α + ρ))P (x0 = 1)

∂2G(λ, 0)

∂λ2
= 0,

∂2G(λ, 1)

∂λ2
= 2(α + ρ)P (x0 = 1)

∂jG(λ, 0)

∂λj
= 0,

∂jG(λ, 1)

∂λj
= 0, for j ≥ 3

At λ = 1, we can write these expressions in the following manner which simplifies
their numerical solution:

G(1, t + 2) = (1 + ρ)G(1, t + 1) − ρG(1, t)

∂kG(1, t + 2)

∂λk
= (1 + ρ)

∂kG(1, t + 1)

∂λk
− ρ ∂

kG(1, t)

∂λk

+ k(α + ρ)
∂k−1G(1, t + 1)

∂λk−1
− kρ ∂

k−1G(1, t)

∂λk−1
,

While the initial conditions stated above in equation (11) and leading to:

G(1,0) = 1, G(1,1) = 1,
∂G(1,0)

∂λ
= P (x0 = 1),

∂G(1,1)

∂λ
= α + (1 + ρ)P (x0 = 1)

∂2G(1,0)

∂λ2
= 0,

∂2G(1,1)

∂λ2
= 2(α + ρ)P (x0 = 1),

∂jG(1,0)

∂λj
= 0,

∂jG(1,1)

∂λj
= 0, for j ≥ 3.
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Similarly, we can calculate the probabilities of the persistent default process by setting
λ= 0 in the derivatives of the generating functions. In this case, the probabilities are
given by:

pi(t) = 1

i!
∂iG(λ, t)

∂λi
, i = 0, 1, 2, 3, · · · , t with:

G(0, t + 2) = (1 − α)G(0, t + 1)

∂kG(0, t + 2)

∂λk
= (1 − α)

∂kG(0, t + 1)

∂λk

+ k(α + ρ)
∂k−1G(0, t + 1)

∂λk−1
− kρ ∂

k−1G(0, t)

∂λk−1
,

With the initial conditions:

G(0,0) = P (x0 = 0), G(0,1) = (1 − α)P (x0 = 0)

∂G(0, 0)

∂λ
= P (x0 = 1),

∂G(0,1)

∂λ
= αP (x0 = 0) + (1 − α − ρ)P (x0 = 1)

∂2G(0,0)

∂λ2
= 0,

∂2G(0,1)

∂λ2
= 2(α + ρ)P (x0 = 1),

∂jG(λ, 0)

∂λj
= 0,

∂jG(λ, 1)

∂λj
= 0, for j ≥ 3.

These equations define a numerical approach to calculating both the moments and
the probabilities of a persistent process. A more direct approach will be outlined
subsequently however.

Explicit results for the first two moments are provided below with proofs found
directly from the moments equations. Let x0 = 0, then the expected number of
default loans and its second moment are:

E(x(t)) = (1 + ρ)E(x(t − 1)) − ρE(x(t − 2)) + α, t ≥ 2

E(x(t)2) = (1 + ρ)E(x(t − 1)2) − ρE(x(t − 2)2)

+ α

1 − ρ
[

2αt + ρ + 1 − 2

(
α + (1 − α)ρt − ρt+1

1 − ρ
)]

, t ≥ 2

In these equations, note that we have as expected (Vallois and Tapiero 2007):

E(x(t)) = α

1 − ρ
[
t + 1 − 1 − ρt+1

1 − ρ
]

This clearly indicates the nonlinear time effects of persistence in such default
processes. A verification can be reached by setting ρ = 0 and E(x(t)2) =
E(x(t − 1)2) + α[1 + 2α(t − 1)]. Summing for 1 ≤ t ≤ n, we obtain E(x(n)2) =
nα(1 + α(n− 1)). Since x(n) has a binomial distribution B(n,α), we have:

E(x(n)) = nα, V ar(x(n)) = nα(1 − α),
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and thereby:

E(x(n)2) = nα(1 − α) + n2α2 = nα(1 + (n− 1)α) as expected.

Explicit expressions for the persistent counting probabilities can be determined as
well using the recursive probability generating functions. In this case, we calculate
(pk(t); 0 ≤ k ≤ t) by recurrence. Initially these are specified by:

p0(0) = 1, p0(1) = 1 − α, p1(1) = α
Further, (pk(t+2); 0 ≤ k ≤ t+2) is defined as a function of (pk(t+1); 0 ≤ k ≤ t+1)
and (pk(t); 0 ≤ k ≤ t) by using the recursive equation

pk(t + 2) = (1 − α)pk(t + 1) + (α + ρ)pk−1(t + 1) − ρpk−1(t),

for all 0 ≤ k ≤ t + 2, and by convention, we set pk(t) = 0 if k < 0 or k > t .
Subsequent calculations will indicate the underlying process probabilities. In

particular, we have for the first 3 probabilities:

p0(t) = (1 − α)t , p1(t) = α(1 − α)t−2((1 − α − ρ)t + ρ), t ≥ 1

p2(t) = α
{

(α + ρ)(1 − α)t−2 + 1

2
(1 − α)t−4(1 − α − ρ)(t − 2)

(α(1 − α − ρ)t + α + 2ρ − α2 + αρ)

}
, t ≥ 2

Of course, when there is no short memory, this is reduced as expected to:

p0(t) = (1 − α)t , p1(t) = αt(1 − α)t−1, t ≥ 1,

p2(t) = 1

2
α2(1 − α)t−2t(t − 1), t ≥ 2.

Additional and general results are given in Vallois and Tapiero (2007) and in
Herrmann and Vallois 2010. These are summarized by:

E(ytyt−k) =
[

α

α + β (1 − ρ)k + ρk
] [

α

α + β + ρt−k−1

(
E(y1) − α

α + β
)]

E(Xt ) = α

α + β t +
1 − (1 − α − β)t

α + β
(
E(y1) − α

α + β
)

var (Xt ) = E(Xt )[1 − E(Xt )] + 2
t∑
i=1

t−1∑
k=1

E(yiyi−k) where

t∑
i=1

t−1∑
k=1

E(yiyi−k) =
(

α

α + β
)2 t∑

i=1

t−1∑
k=1

[
(1 − ρ)k + α + β

α
ρk
]

[
1 − ρi−k−1

(
1 − α + β

α
E(y1)

)]

Which provides an analytical (rather than an empirical defined earlier) co-variation
between events.
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10.3 Compound Processes with Short Memory

Finally, if an event has risk consequences (for example, a loss, a gain, etc.) then their
aggregate has a generating function that differs from the standard approach we use
in calculated compound processes. Explicitly, assume that every loan defaulting has
a loss probability distribution Z̃j . The total loss over a time interval (0,t) is thus a

Compound Loss process given by ξt =
xt∑
j=1
Z̃j with mean μ = E(Z̃i) and known

variance var (Z̃i). Then, for independent loss processes, the mean loss up to time t
and its variance are:

E

(
xt∑
i=1

Z̃i

)
= E(xt )E(Z̃i), var

(
xt∑
i=1

Z̃i

)
= [E(Z̃i)]

2
V ar(xt ) + V ar(Z̃i)E(xt ).

However, since default is persistence-dependent a more general expression can be
found. Explicitly, consider the following random default:

St =
t∑
i=0

Z̃0
i 1{yi=0} +

t∑
i=0

Z̃1
i 1{yi=1} where xt =

t∑
i=0

yi

where Z̃0
i is a “normal expense” occurring in any regular period (defined by the

fact that no specific loan has defaulted) while Z̃1
i is a “large loss due to a loan

defaulting” (of course, if Z̃0
i = Z̃1

i then St = ξt as stated above). We assume that{
Z̃0
i , Z̃

1
i

}
are random variables independent of each other and independent of the

Markov (persistent) claims. In this case, the compound claim mean and variance and
the claim probability generating function are given by the following (with proofs
provided in the appendix):

E(St ) = (t + 1)E
(
Z̃0

1

)
+
(
E
(
Z̃1

1

)− E(Z̃0
1

))
E(xt )

E(S2
t ) = (t + 1)

[
var
(
Z̃0

1

)
+ (t + 1)

(
E
(
Z̃0

1

))2
]

+ E (x2
t

) [
E
(
Z̃1

1

)
− E

(
Z̃0

1

)]2

+ E(xt )
[
var
(
Z̃1

1

)
− var

(
Z̃0

1

)
+ 2(t + 1)E

(
Z̃0

1

) (
E
(
Z̃1

1

)
− E

(
Z̃0

1

))]

While their Laplace Transform is:

E
(
e−λSt

) =
[
E
(
e−λZ̃

0
i

)]t+1
G(z, t), z =

E
(
e−λZ̃1

1

)

E
(
e−λZ̃0

1

) , λ ≥ 0

where G(z, t) is a probability generating function:

G(z, t) = E(zxt ) =
t+1∑
i=0

ziP (xt = i).

Note that when Z̃0
1 is null, then, we find that:
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E(St ) = E(Z̃1
1)E(xt ) and V ar(St ) = E(xt )V ar(Z̃

1
1) + V ar(xt )(E(Z̃1

1))
2

These results can then be used to obtain a pricing of the portfolio as seen earlier as
well as be used to assess a prospective default of loans over time (providing a default
referential on the basis of which calculations can be made). Note however that the
variance of this process has increased over time due to the process persistence.
Further, based on these moments, the Value at Risk (VaR) risk exposure can be
determined which would use these two moments as a first approximation (although
higher order moments can be calculated as well, the generating function of the
persistent Compound Process).

A numerical analysis of our equations will reveal some of the characteristics of
default persistent process. As expected, the mean evolution of the persistent process
has an almost linear growth as indicated in our equation. In the long run, the variance
turns out to be also almost linear, as it is the case for random walks. However,
persistence ( ρ > 0) has the effect of increasing the variance as shown in figure below.
In the short term however, the variance evolution is nonlinear as our equations have
indicated. Interestingly, the rate of change in variance is not constant and growing
over time which indicates a “persistent volatility”. Such a phenomenon is observed
in fractal stochastic differential equations. Of particular interest is the evolution of
the third moment of the persistent claim distribution. Empirical analyses (see also
Vallois and Tapiero. . . ) have also shown that initially, it was increasing (over 4
periods) and subsequently declining (although remaining positive for ρ positive).
When ρ is negative we noted that for the first few periods the evolution of the mean
and the variance are indeed nonlinear. This is particularly the case for the variance as
shown in figure below. In this figure, the variance initially declines, then increases and
again decreases. Finally, it converged to a linear growth. This behavior is indicative
of the short term effects of memory on the stochastic process as indicated earlier. This
particular observation will allow us to make mean variance approximations validated
over the long run(or at least subsequent to a short period when the process variance
may be volatile).

Further, we noted in some cases we note the divergence in the growth of volatility
when the parameter rho is negative. Finally, the third moment is positive which
demonstrate. This latter observation is particularly important for it may be used to
explain partly the skew of certain time series, presuming that this skew is due to the
short term memory effects prevalent in such series (for example, in financial time
series). Some graphs are drawn below (Figs 3 and 4).

These graphs point out that short memory processes are both of theoretical and
practical importance.

10.4 Short Memory, Lognormal Process and a Binomial
Approximation

The lognormal price process is a normally distributed rates of returns process.
Explicitly, it is defined by:
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Fig. 3 ρ = − 0.3

Fig. 4 The Probability of ρ= 0.3

dS(t)

S(t)
= αdt + σdW (t), S(0) > 0

Letting y(t) = ln S(t), then an Ito’s calculus transformation yields a rates of returns
{y, t ≥ 0} process:

dy(t) =
(
α − 1

2
σ 2

)
�t + σdW (t), S(0) > 0

A short memory process in such a model may be constructed in different manners.
For discussion purposes, we consider a binomial approximation to such a process
given by:

�y+(t) = {�y(t) |y(t − 1) = 1 } =
{
Y++(y, t) − y wpP++(y, t)
Y−+(y, t) − y wp1 − P++(y, t)

�y−(t) = {�y(t) |y(t − 1) = 0 } =
{
Y+−(y, t) − y wpP−+(y, t)
Y−−(y, t) − y wp1 − P−+(y, t)
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In other words, given an outcome (1, − 1, 0, etc.) the probability of a rates of returns
increasing or decreasing to say by Y++(y, t) − y or Y−+(y, t) − y depends on the
previous outcome (in case the rates of returns previously increased). Its probability
of increasing or decreasing is similarly dependent on that previous outcome. As a
result, a financial pricing model is in fact a 6 parameters model (4 state prices and 2
probabilities, defined under an appropriate probability measure) rather than two state
prices and one probability. Such a pricing model requires then far more information
to be defined. Further, it implies that a model that negates the effects of memory in
fact embed short memory in the pricing process. For demonstration purposes, say that
short memory has an effect only on the probability measure defining the subsequent
increase or decrease in a rates of returns while state prices remain identical. In this
case, the 2 binomial processes defined above are reduced to the following:

�y+(t) = {�y(t) |y(t − 1) = 1 } =
{
Y+(y, t) − y wpP+(y, t)
Y−(y, t) − y wp1 − P+(y, t)

�y−(t) = {�y(t) |y(t − 1) = 0 } =
{
Y+(y, t) − y wpP−(y, t)
Y−(y, t) − y wp1 − P−(y, t)

In a one period memory, �y+(t) is the increment in �y(t) when at time t, the stock
price has increased previously. Similarly, �y−(t) is the increment of a same size
as �y+(t) (but differs in its expectation) when in the previous period, the price
was down. The probabilities P+(y, t) and P−(y, t) differ however, expressing a
propensity for a market to increase or decrease following a price increase or decrease.
If P (y, t) = P+(y, t) = P−(y, t), this corresponds to a random walk with no short
memory. In this sense,

{
Y+(y, t),Y−(y, t)

}
define two states, one corresponding to a

stock price increase and the other corresponding to a stock price decrease. Memory
of the last period is then expressed by the probability of the stock increasing or
decreasing based on the previous movement—being up or down. The following
probabilities result:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P
(
y+
t−1

∣∣y−
t−1

) = P−
t−1,P

(
y−
t−1

∣∣y−
t−1

) = 1 − P−
t−1 [ + −]

or
P
(
y+
t−1

∣∣y+
t−1

) = 1 − P+
t−1,P

(
y−
t−1

∣∣y+
t−1

) = P+
t−1

P =
[−
+
] [

1 − P−
t−1 P−

t−1
P+
t−1 1 − P+

t−1

]

And therefore, a rate of returns increase has 4 possibilities:

�y(t) =

⎧⎪⎪⎨
⎪⎪⎩

�y+−
t = Y+(y−

t−�t ) − y−
t−�t wp P−

t−�t
�y−−

t = Y−(y−
t−�t ) − y−

t−�t wp 1 − P−
t−�t

�y++
t = Y+(y+

t−�t ) − y+
t−�t wp 1 − P+

t−�t
�y−+

t = Y−(y+
t−�t ) − y+

t−�t wp P+
t−�t

Corresponding to two Binomial models with (P+
t−�t ,P

−
t−�t ), the unknown probabil-

ities. Next assume a stock price whose rate of returns and volatility are respectively
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(μ, σ ) (and therefore, a lognormal model). If we were to equate the discretized and
binomial approximated such model (note that it is not a pricing model) then in a time
interval�t , a mean-variance approximation equating the normal process with mean(
μ�t − 1

2σ
2�t
)

and its variance σ 2�t yields the following equalities to the short
memory process defined above:
(
μ�t − 1

2
σ 2�t

)
= E(�y(t))

= (�y+−
t

)
P−
t−�t +

(
�y−−

t

) (
1 − P−

t−�t
)+ (�y+_

t

) (
1 − P+

t−�t
)

+ (�y−+
t

)
P+
t−�tσ

2�t = E(�y(t))2 − [E (�y(t))]2

= (�y+−
t

)2
P−
t−�t +

(
�y−−

t

)2 (
1 − P−

t−�t
)

+ (�y++
t

)2 (
1 − P+

t−�t
)+ (�y−+

t

)2
P+
t−�t − [E (�y(t))]2

This is a system of two equations in the two probabilities (P−
t−�t ,P

+
t−�t ) when the

four states�y+−
t , �y++

t ,�y−−
t ,�y−+

t are given by definition. Thus, two equations
in P+

t−�t and P−
t−�t :(

μ�t − 1

2
σ 2�t

)
− (�y−−

t +�y+_
t

) = (�y+−
t − (�y−−

t )
)
P−
t−�t

+ (�y−+
t −�y+−

t

)
P+
t−�t

(
μ�t − 1

2
σ 2�t

)2

+ σ 2�t −
((
�y−−

t

)2 + (�y++
t

)2) =
((
�y+−

t

)2 − (�y−−
t

)2)

P−
t−�t +

((
�y−+

t

)2 − (�y++
t

)2)
P+
t−�t

And therefore

P+
t−�t =

{(
(�y+−

t )2 − (�y−−
t )2

) (
(μ�t − 1

2σ
2�t) − (�y−−

t +�y+_
t )
)

− (�y+−
t − (�y−−

t )
)

}
{[
μ�t − 1

2σ
2�t
]2 + σ 2�t − ((�y−−

t )2 + (�y++
t )2

)}
{(

(�y+−
t )2 − (�y−−

t )2
)

(�y−+
t −�y+−

t )

− (�y+−
t − (�y−−

t )
) (

(�y−+
t )2 − (�y++

t )2
)}

Similarly, the probability P−
t−�t can be defined. Note that this probability is defined

in terms of all previous potential results. By the same token solving for μ and σ 2

will provide a solution in terms of both probabilities. To highlight their dependence
we consider a simple numerical example. Say that:

�y(t) =

⎧⎪⎪⎨
⎪⎪⎩

�y+−
t = 0.12 wp P−

t−�t
�y−−

t = −0.08 wp 1 − P−
t−�t

�y++
t = 0.10 wp 1 − P+

t−�t
�y−+

t = −0.04 wp P+
t−�t
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Then (
μ− 1

2
σ 2

)
�t = 0.12P−

t−�t − 0.08(1 − P−
t−�t )

+ 0.10(1 − P+
t−�t ) − 0.04P+

t−�t

σ 2�t +
(
μ�t − 1

2
σ 2�t

)2

= (0.12)2P−
t−�t + (0.08)2(1 − P−

t−�t )

+ (0.10)2(1 − P+
t−�t ) + (0.04)2P+

t−�t

And
(
μ− 1

2
σ 2

)
�t − 0.02 = 0.04P−

t−�t − 0.14P+
t−�tσ

2�t +
(
μ�t − 1

2
σ 2�t

)2

−(0.0164) = (0.008)P−
t−�t − 0.0084P+

t−�t

And therefore,

P+
t−�t = σ 2�t + (μ�t − 1

2σ
2�t
)2 − 0.2

(
μ�t − 1

2σ
2�t − 0.02

)
0.0196

P−
t−�t = 178.56

(
σ 2�t +

(
μ�t − 1

2
σ 2�t

)2

− 0.0164

)

+ 10.71

(
μ�t − 1

2
σ 2�t − 0.02

)

And inversely, the lognormal model mean and variance imply the probabilities
(P−
t−�t ,P

+
t−�t ):

μ�t = 0.0282 + 0.044P−
t−�t − 0.1442P+

t−�t −
1

2
(0.02 + 0.04P−

t−�t − 0.14P+
t−�t )

2

σ 2�t = 0.0164 + (0.008)P−
t−�t − 0.0084P+

t−�t − (0.02 + 0.04P−
t −�t − 0.14P+

t−�t )
2

For small time intervals, we have then,

P+
t−�t = 52.04(σ 2�t) − 2.0833(μ�t) − 0.04166

P−
t−�t = 173.205(σ 2�t) + 10.71(μ�t) − 3.1425

And inversely,

μ�t = 52.04
{
P−
t−�t + 3.1425

}− 173.205
{
P+
t−�t + 0.04166

}
52.04 ∗ 10.71

,

σ 2�t = 0.02P+
t−�t − 0.0523P−

t−�t

Note that in this case, the variance is very small compared to the mean.
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Next assume instead a risk neutral pricing model under a probability measure Q,

dS(t)

S(t)
= Rf dt + σdW (t), S(0) > 0 and S(0) = e−Rf tEQ(S(t))

In this case, we may have a short memory pricing process with probabilities
(P−Q
t−�t ,P

+Q
t−�t ) given by:

Rf�t =
52.04

{
P

−Q
t−�t + 3.1425

}
− 173.205

{
P

+Q
t−�t + 0.04166

}
52.04 ∗ 10.71

σ 2�t = 0.02P+Q
t−�t − 0.0523P−Q

t−�t

Or probabilities defined as a function of a stock price volatility:

P
+Q
t−�t = 52.04(σ 2�t) − 2.0833(Rf�t) − 0.04166

P
−Q
t−�t = 173.205(σ 2�t) + 10.71(Rf�t) − 3.1425

If However, a call option,C(0) = e−Rf tEQ(Max(S(t) = K , 0)) its implied volatility
can be calculated and therefore assuming σ 2�t = 0.015 as well as a risk free rate of
0.08, we have the following implied risk neutral probabilities for each of these two
binomial processes:

P
+Q
t−�t = 0.7802 − 2.0833(Rf�t) = 0.6135

P
−Q
t−�t = 10.71(Rf�t) − 0.5444 = 0.2556

We shall see below that such a process may converge to three limits: a deterministic,
a normal distribution and finally to a Telegraphic equation. Each of these limits
depends on the memory conditional Markov probabilities. While the proof of these
results requires an extensive analysis, we shall summarize basic results and refer to
Herrmann and Vallois (2010). A discussion of these results follows.

10.5 Continuous Time Limits and Convergence

Continuous time short memory models, based on limits of their underlying transitions
may seem a contradiction, with limits pointing out to “long run” results based on
infinitesimal Markov transitions and their short memory effects on the limit stochastic
models. In this section we consider a number of results and theirs implications based
mostly on the Herrmann andVallois 2010 paper. To do so, we assume that the Markov
transition probabilities consist of the discrete (binomial) probabilities considered
earlier and denoted by (α0,β0) as well as small perturbations (�α,�β) defining the
Markov chain transition probabilities:

α = α0 +�α(�α → 0) and β = β0 +�β(�β → 0)
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Table 1 A summary of limit
results

�x → �t (�x)2 → σ�t (�x)3 → ξ�t

ρ0 = 0 Deterministic walk Random walk –
ρ0 �= 0 – BM with drift –
ρ0 = 1 Planar Poisson

process
Telegraphic

equation
If ρ0 = −1,

BM with
no drift

where ρ0 = 1 − (α0 + β0) is used as an index of asymmetry. These result in the
Markov chain where for convenience we write: �α = c0�x and �β = c1�x with
�x denoting a transition probability perturbation which is converges at a time linear
rate �x → r�t or converging in its quadratic perturbation (�x)2 → σ�t . As a
result, we obtain the following 2 states Markov Chain, with transitions in (1, −1)
(rather than 1,0 as considered earlier):

+1 −1

P = +1
−1

[
1 − (α0 + c0�x) α0 + c0�x
β0 + c1�x 1 − (β0 + c1�x)

]
, 0 < α,β < 1

A number of cases will be considered based on both the index of asymmetry of
the underlying short memory process and the perturbations (�α ,�β ). These limits
determine the convergence of the continuous time short memory process to either a
constant process, a Brownian motion process with drift (albeit with the memory pa-
rameters embedded in the process drift and its volatility) reminiscent of a central limit
theorem and finally a convergence to Telegraphic equation (a wave partial differential
equation). The implications of these results, are that the underlying assumption of
most financial Brownian models are either “hiding” memory parameters or are just
limit models in an environment and profession which is based essentially on short
run transactions and trades. A number of cases are summarized in the following 1.

Continuous time limits are reached by considering a partition of time into n
discrete events Yi with, Xt = Y0 + Y1 + Y2 + · · · + Yt , t ≥ 0 while the time
between events is assumed exponential. Note that Yn defines a random walk if and
only ifρ0 = 0 or 1 = α0+β0 whereρ0 is an index of asymmetry withρ0 = 1−α0−β0.
For convenience we also set η0 = α0 − β0.

As a result, the process Yn defines a Markov chain with two states, + 1 to denote a
price increase and −1 to denote a price decrease. Note that this process, when one is
a given state and the probability of switching to another process is extremely small,
the process will converge at the limit to a telegraphic partial differential equation.
We normalize the process {Xt , t > 0} associated to event Yt by considering a small
interval of time �t and define a limit counting process Z�(s�t) = �xXs , k ∈ N

or Z�s = �xXs/�t . A continuous time approximation is given by Z̃�s obtained
through an interpolation ofZ�t . Intuitively, we have then two processes resulting in a
single events counting process, each corresponding to another past event (the current
memory) which we count by Nc0,c1

t = ∑
k≥1

1{∑
i=1
λiei≤t

}. Note here that the ei are

exponential times taken to have a mean 1 while 1/λi are the mean events defined by
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the transition probabilities of both processes. Explicitly, if ρ0 = 1, then α0 = β0 = 0
and evolution of the short memory process depends only on the probabilities c0, c1

with:

1/λi =
{
c0 if i is odd
c1 otherwise

In such a process, when the process is in state + 1, the probability of remaining in
that state is 1 − c0�x which is almost equal to 1 since �x is very small. While the
probability of switching to −1 in a small interval of time is very small. Similarly
if the process is in state −1, the probability of switching to a + 1 state is extremely
small resulting in a process alternating “infrequently” from one state to another. For
example, is pricing model is defined by two states, one of price expansion and the
other of price depreciation, then it will be defined by an underlying process that
remains an appreciable amount of time in the + 1 state followed by an appreciable
amount of time in its −1 state. Of course, the time between a switch from one state
to another will depend on the exponential time of transition (a Gamma Probability
distribution, defined by the number of exponential events occurring for a process
switch to occur) and the means of these exponentials when in one of the two processes.
In the special case c0 = c1, the number of events process

{
N
c0
t , t ≥ 0

}
is then a usual

Poisson process whose Poisson rate is c0t and Nc00 = 0. Generally, Herrmann and
Vallois prove that the probability distribution of the counting process is:

P
{
Nc0t
} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
{
N
c0
t = 2k

} = (c0c1)kαk(t)

22kk!(k − 1)!e
c0+c1

2

with αk(t) =
t∫

−t
(t − z)k−1(t + z)ke

c1−c0
2

P
{
N
c0
t = 2k + 1

} = c0
k+1c1

kᾱk(t)

22k(k!)2 e
c0+c1

2

with ᾱk(t) =
t∫

−t
(t − z)k(t + z)ke

c1−c0
2

As a result, the process Z�s corresponding to the counting process Nc0,c1
t (for both

processes, + 1 and −1) is defined by:

Zc0,c1
t =

t∫
0

(−1)N
c0,c1
u du

In other words, when the number of events was odd, then the memory is −1 and
otherwise it is necessarily + 1. This latter process is in fact a Poisson planar process
which can be shown under certain condition to converge to a Brownian motion model.
Herrmann and Vallois (2010) point out that the process Zc0,c1

t is non-Markovian and
that its conditional probability distribution (on the counting process Nc0t ) provides
the following distribution:
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P
{
Zc0,c1
t

} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P
{
Z
c0,c1
t ∈ dz

∣∣Nc0t = 2k
}

= 1

αk(t)
(t − z)k−1(t + z)ke

c1−c0
2 1[−1,1](z) k ≥ 1

P
{
N
c0
t ∈ dz = 2k + 1

}
= 1

ᾱk(t)
(t − z)k(t + z)ke

c1−c0
2 1[−1,1](z) k ≥ 0

Additional results, such as special cases for c0 = c1 are also derived. In addition,
the probability distribution of Zc0,c1

t is calculated explicitly and while Zc0,c1
t is non

Markovian,
{
Z
c0,c1
t ,Nc0,c1

t

}
is Markovian while by definition:

dZ
c0,c1
t

dt
= (−1)N

c0,c1
t

Further for ρ0 = 1, we shall see that at the limit, the short memory Markov process
converges to a Telegraphic (wave) stochastic process (see case 4).

Given these definitions, the following special cases result, each of which is
discussed and with essential proofs to be found in (see Herrmann and Vallois 2010):

Case 1: ρ0 �= 1 and �x → r�t
This case corresponds to a “slow convergence” of the Markov probability to

its linear time increment, �x = r�t , r > 0. The counting process {Z̃�s , s > 0}
converges then to a linear trend deterministic�rt with� = (α0−β0)

1−ρ0
as�x → 0. For

example, if α0 = 0.4, β0 = 0.3, then the limit is: −0.333rt .
Case 2: ρ0 �= 1 and and (�x)2 → r�t
This case corresponds to a quadratic convergence of the Markov probability to lin-

ear time increment, (�x)2 → r�t . Consider the random increment Z�s = �xXs/�t
and defined the following variable:

ξ̃�t = Z̃�t +�√
r
t√
�t

Where t/
√
�t ids the number of time increments. Then, Herrmann and Vallois

(2010) prove that ξ�(t) converge in distribution to a Brownian motion with drift and
volatility defined by μt + σBt where Bt a standard Brownian:

μ = r
(

− c̄

1 − ρ0
− (α0 − β0)c

(1 − ρ0)2

)
and σ =

√
r(1 + ρ0)

1 − ρ0

(
1 − (α0 − β0)2

(1 − ρ0)2

)

Or defining an underlying Ito linear stochastic differential equation which we denote
by dBρt to denote a memory prone Brownian motion, since the above process reduces
to a standard Brownian motion when there is no memory. Thus,

dB
ρ
t = −r

(
1

1 − ρ0
(c̄ −�c)

)
dt +

√
r(1 + ρ0)

1 − ρ0
(1 −�2)dBt , B

ρ
0 = Y0
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where c̄ = c1 − c0 and c = c1 + c0 and therefore c̄−�c = c1(1 −�) − c0(1 +�).
In other words, short memory perturbs the Brownian motion. A pure random walk
is then defined if the transition probabilities are symmetric, i.e. � = 0 as well as
c̄ = c1 − c0 = 0 and further ρ0 = 0. As a result,

dB
ρ
t = √

rdBt , B
ρ
0 = Y0

And r is an arbitrary parameter, which can be set to 1, thus Bρt ≡ Bt . In this sense,
short memory perturb predictably (in our case) the Brownian motion by altering both
a process drift and its volatility. Explicitly, for a lognormal price process, with mean
and volatility (μ, σ ) and a short memory perturbed Brownian motion, we have:

dS(t)

S(t)
= μdt + σdBρt , S(0) > 0

We have instead:

dS(t)

S(t)
=
{
μ− r

(
1

1 − ρ0
(c̄ −�c)

)}
dt + σ

√
r(1 + ρ0)

1 − ρ0
(1 −�2)dBt , S(0) > 0

In this case, the rate of returns on the price is:

dR(t) =
{
μ− r

(
1

1 − ρ0
(c̄ −�c)

)
− 1

2
σ 2

(
r(1 + ρ0)

1 − ρ0
(1 −�2)

)}
dt

+ σ
√
r(1 + ρ0)

1 − ρ0
(1 −�2)dBt , S(0) > 0

Further, under an assumption of complete markets, and relative to a risk neutral
probability measure, we have:

dS(t)

S(t)
= Rf dt + σ

√
r(1 + ρ0)

1 − ρ0
(1 −�2)dBt , S(0) > 0 And

S(0) = eRf tEQ(S(t))dt

The risk premium in this case is:

π =
μ− r

(
1

1−ρ0
(c̄ −�c)

)
− Rf

σ

√
r(1+ρ0)

1−ρ0
(1 −�2)

Of course, ifρ0 �= 0 whileα0 = β0 (� = 0) then the risk premium is a function of the
short memory asymmetry in its basic Marko probabilities and in their perturbations:

π = (μ− Rf )(1 − ρ0) − r(c1 − c0)

σ
√
r(1 − ρ0

2)
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And if c1 = c0 and r = 1, then,

π =
(
μ− Rf
σ

)√
1 − ρ0

1 + ρ0

And therefore for ρ0> 0 or α0 + β0 < 1, the risk premium is smaller while for
ρ0 < 0, the risk premium is greater.

The implications of these results imply that although a short memory process may
converge in distribution to a Brownian motion, the process drift and its volatility are
also a function of the underlying process short memory as well as the asymmetry in
the process probabilities when they move from one state (say −1, or + 1) to the other
state (in this case, + 1 and −1 respectively). Further, both the mean rate of return
and the volatility depend on a common set of parameters that define the process short
memory. For a short term pricing model and based on momentum trading using a
lognormal pricing model, we may over or underestimate the effects of short memory.
Of course, for no short term memory, ρ0 = 0 (and therefore the probability on an
increase or a decrease in rates of returns are statistically independent) and hereby,
reduced to the standard risk neutral pricing model.

Case 3: ρ0 = −1 and α0 = β0 = 1 and (�x)2 → r�t , r > 0
This case corresponds to ρ0 = −1 = 1 − α0 − β0 and therefore α0 = β0 = 1

which implies that once in + 1 or in a −1 process, we remain in this process (i.e. it
is an absorbing state). However, if these probabilities are perturbed by a quadratic
variation, Herrmann and Vallois (2010) show that Z̃�t converges to the Gaussian
distribution with mean zero and variance equal to r |c0| t where c1 = c0 < 0. In
other words, since�= 0, we have ξ̃�t = Z̃�t and therefore at the limit, the following
stochastic process results:

dB
ρ
t = r |c0| dBt

Case 4: ρ0 = 1 and �x → �t
This case corresponds to α0 = β0 = 0 and therefore to the Markov switching

model defined by the perturbations:

+1 −1

P = +1
−1

[
1 − c0�x c0�x
c1�x 1 − c1�x

]
,

As note earlier, �x = �t and c0 = c1 then the counting process Nc0t is a Poisson
process. Further, if �x = �t and the initial condition is Y0 = X0 = +1 then
the continuous time process {Z̃�s , s > 0} converges in distribution to the counting
process

{
Zc0,c1
s , s ≥ 0

}
defined earlier. Similarly, if �x = �t and Y0 = X0 = −1

then
{
Z̃�s , s > 0

}
converges in distribution to the counting process

{−Zc0,c1
s , s ≥ 0

}
.

Of particular interest is the convergence of such a process to a telegraphic (wave
distribution) equation. Consider the following equation:

u(x, t) = 1

2
{f (x + at) + f (x − at)} , x ∈ R, t ≥ 0
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Such a distribution is defined as the sole solution of the wave partial differential
equation:

∂2u(x, t)

∂t2
= a2 ∂

2u(x, t)

∂x2
with u(x, 0) = f (x) and

∂u(x, 0)

∂t
= 0

If we set c0 = c1 = c then Zc,ct =
t∫

0
(−1)N

c
udu with Ncu a Poisson process and Zc,ct

defining a sum of + 1 and −1, occurring with the same inter-event exponential prob-
ability distribution. In this particular case, since

{
Nc0,c1
s ,Zc0,c1

s

}
is a Markov process,

the function w(t , x) = E
{
u(x,Zc,cs )

}
, satisfies the partial differential equation:

∂2w(x, t)

∂t2
+ 2c

∂w(x, t)

∂t
= a2 ∂

2w(x, t)

∂x2
with w(x, 0) = f (x) and

∂u(x, 0)

∂t
= 0

which is a Telegraphic equation.
When c0 �= c1 a general result called the Integrated Telegraphic Noise (ITN) by

Herrmann and Vallois 2010, provides the probability distribution of Zc0,c1
t , given in

terms of modified Bessel functions:

Iλ(ξ ) =
∑
i≥0

(ξ/2)λ+2i

i!�(λ+ i + 1)

Letting,

f (t , x) = 1

2

[√
c0c1(t + x)

t − x I1

(√
c0c1(t2 − x2)

)
+ c0Io

(√
c0c1(t2 − x2)

)]
e(c1−c0)x

We obtain the probability distribution:

P(Zc0,c1
t ∈ dx) = e−c0t δt (dx) + e−(c0+c1)f (t , x)1[−t ,t](x)

where δt (dx) is a Dirac-Delta function.
This particular Short memory case important as it provides a rational framework

for random disturbances that are “cyclical” in the sense that a system may be operating
under a certain model (say + 1) for a random time, switch then following some Jump
probability model) to a another model (say −1) and then return at a later random
time to the model + 1. The current application to this model to financial problems is
in its infancy however.
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Asset Price Modeling: From Fractional
to Multifractional Processes

Sergio Bianchi and Augusto Pianese

1 Introduction and Motivation

The 2007–2009 crisis has re-awakened the interest in modeling financial assets and
their prices among academics and practitioners, and increased the awareness of the
limits that the standard financial paradigm shows in describing real world data. A
large number of research contributions over the last quarter century combined with
overwhelming financial crises have provided ample evidence that financial markets
are not always complete. In particular, Brownian based stochastic processes under-
lying fundamental models of finance were shown to fail by several magnitudes when
predicting the shocks that financial markets have been subjected to (Tapiero 2010;
Tapiero et al. 2013; Tapiero et al. 1996). By undermining the bricks of the efficient
markets model, these failures have motivated the research of models that seek to
account for the complexity and the anomalies of financial markets (seeYen 2008 and
Tapiero 2007 for a survey). Cont 2001 for example summarizes some of the most
relevant stylized facts, including:

• the absence of autocorrelations in the log-price variations and the slow decay of
autocorrelation in absolute (or squared) returns;

• the asymmetric behavior of stock prices that produces large and sudden draw-
downs, but only slow upward movements;

• the volatility clustering, meaning that high-volatile periods tend to cluster in time
and to generate, in this way, the so called intermittency;

• the presence of heavy tails (mostly, with a tail index between two and five) in the
unconditional distributions of returns and the presence of conditional heavy tails
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(smaller with respect to the unconditional distributions) even for the residuals
obtained by correcting returns for volatility clustering;

• the aggregate Gaussianity, meaning that distributions tend to the Gaussian law as
one increases the time scale used to calculate the returns;

• the correlation between volatility and traded volumes;
• an asymmetry in time scales, meaning that fine-scale measures of volatility predict

coarse-grained volatility worse than the other way round.

The considerations above suggest that the Efficient Market Hypothesis (EMH) – that
is the most influential idea of the modern investment theory stating that market prices
fully and instantaneously reflect all the available information (Fama 1970)—is not
always met in practice. In this regard, it is not by chance that the Behavioral Finance
(BF) is gaining consensus (Sewell 2007). Nonetheless, while it is widely recognized
that behavioral biases and psychology of market participants can intervene hither
and thither in decision making, it is still unclear to what extent they affect trading
and investment management (Lo 2005). To provide a rationale for behavioral case
studies and heuristics, (Lo 2004, 2012) proposed an Adaptive Market Hypothesis
(AMH) based on concepts of evolutionary biology such as competition, mutation,
reproduction, and natural selection, as a synthesis between behavioral constructs and
the EMH. The combination of these forces determines then the efficiency of markets
and is ultimately responsible for the waxing and waning of finance. The EMH is thus
the “frictionless ideal” recovered once all market imperfections, both technical and
psychological, are accounted for.

Beyond the plausibility of this interpretation, the BF and the AMH are not suffi-
ciently developed and formalized to represent well-established paradigms. Indeed,
if it is true that behavioral versions of some basic financial schemes were proposed
(see e.g. Kahneman and Tversky 1979 for the utility theory, Shefrin and Statman
2000 for the portfolio theory, Shefrin and Statman 1994 for the C.A.P.M., or Shefrin
and Thaler 1988 for the Life Cycle Hypothesis), such models met a limited diffusion
among academics and practitioners. Furthermore, most of them succeed in explain-
ing only partially the complexity embedded in real data, and therefore their pros are
judged not substantial enough when compared with the cons affecting the current
paradigm.

In order to overcome this limit, it is useful to step back and start again from
the definition of efficiency; this can be linked very parsimoniously to the new and
promising analytical financial models that will be discussed in this chapter.

Thus, the notion of efficiency suggests that the price St of an individual stock
discounts all the information Ft accumulated up to time t , as a consequence of the
quick and wide spread of news. This assumption is traditionally introduced and tested
in terms of the expected value of properly discounted payoffs (Fama 1970). With
respect to the filtered probability space (&, Ft , (F)0≤t≤T , P), the condition requires
that for t < τ < T

St = Et

(
Yt ,τXτ

)
(1)
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or, equivalently, that

Et

(
Yt ,τ
Xτ

St

)
= 1, (2)

where as usual Et ( · ) is the short notation for the conditional expectation E( · |Ft ).
In words, the current price of a financial asset equals the conditional expectation of
its payoff Xτ discounted by the stochastic discount factor Yt ,τ 1 that accounts for the
dynamics of risk premia. Equation (1) can be easily written in terms of excess returns
with respect to the risk-free rate rt ,τ as

Et

(
Yt ,τ

(
Xτ

St
− (1 + rt ,τ )τ−t

))
= 0.

For τ = t + 1, setting R∗
t ,t+1 = Xt+1−St

St
− rt ,t+1, the equation above turns to

Et

(
Yt ,t+1 · R∗

t ,t+1

) = 0, (3)

stating that the conditional expected excess returns equals zero. Usually, efficiency
is tested through (3), but since the model-dependent process that generates the risk-
premium is not observable, the EMH can be ultimately tested only jointly with a
model providing Yt ,τ . Since Eq. (3) implies

Et

(
R∗
t ,t+1

) = − (1 + rt ,t+1
) · Cov

(
R∗
t ,t+1,Yt ,t+1

)
(4)

by itself the predictability of returns (i.e. the controversial failure of the random walk
model) does not prove market inefficiency, since it suffices the expected conditional
return to comply with (3) in order to save both efficiency and non-random walk
models.

Nonetheless, the exploitation of the above relation to argue about the behavior of
financial time series is somewhat controversial: while the first empirical evidence of
predictability was ascribed to market inefficiency under the assumption of constant
expected returns (Shiller et al. 1984; Summers 1986), further studies proposed the
time-varying expected returns as an alternative explanation (Fama and French, 1988).
In turn, these can be generated by time-varying risk aversion (Campbell and Cochrane
1999), long-run consumption risk (Bansal and Yaron 2004, or time-variation in risk-
sharing opportunities (Lustig et al. 2005).

To say it shortly, since empirical evidence suggests that the intensity of dependence
in financial time series actually changes over time, new insights are likely to come
from framing the notion of efficiency in a dynamical perspective, which means
to include market inefficiencies into the models rather than considering them as
pathological outliers. To this aim, several models have been proposed, relaxing the
hypothesis of independence or the assumption of identical distribution of the log
price variations.

1 Remind that the random process Yt ,τ , τ > t , is a stochastic discount factor (or pricing kernel) if
(a) P(Yt ,t = 1,Yt ,τ > 0) = 1, and (b) St = E

P

t [Yt ,τ Sτ ].
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In the standard Gaussian framework, stationarity requires that the process point-
wise regularity, quantified by the Hölder exponent2, be time-invariant; at the same
time, independence means assuming that the Hölder parameter is almost everywhere
equal to 1

2 .
The model that will be discussed in this chapter is defined based on processes

that relax both the assumptions (independence and identical distributions), by acting
on the process pointwise regularity. This is described in detail in paragraph 3. Such
stochastic processes—named multifractional Brownian motion (mBm) (see Benassi
et al. 1997; Péltier and Lévy Véhel 1995) and multifractional Processes with Random
Exponent (MPRE) (see Ayache and Taqqu 2005)—generalize the celebrated frac-
tional Brownian motion (fBm) (Kolmogorov 1940; Mandelbrot and Van Ness 1968).
In turn, fBm extended the Brownian motion by replacing its scaling factor 1

2 by the
parameter H ∈ (0, 1), that rules the dependence of its increments and quantifies the
pointwise and global regularity. Despite their large modeling flexibility, mBm and
MPRE are still largely unknown in finance, mostly because of the prejudice due to
the fact that fBm admits arbitrage when H �= 1

2 (Sewell 1997) and thus violates a
fundamental hypothesis of complete markets. The word prejudice is not out of place;
in fact, while the proof of the existence of arbitrage opportunities was deduced under
the constancy of the parameter H when it differs from 1

2 , no results are available
yet for mBm and MPRE, whose functional parameter changes over time in a deter-
ministic (mBm) or stochastic (MPRE) way. In addition, if one properly restricts the
class of admissible strategies, even whenH �= 1

2 the fBm fulfills the condition of No
Free Lunch with Vanishing Risk (Cheridito 2003; Jarrow and Sayit 2009). Aside the
arbitrage argument, the adoption of an mBm/MPRE-based modeling also augments
the difficulties to infer global probabilistic properties. Despite this state of affairs,
they are very promising stochastic processes for several reasons:

• a proper choice of the functional parameter renders the mBm/MPRE able to re-
produce stylized facts. Some of these features will be discussed: the absence
of autocorrelation in its increments and significant autocorrelation in its abso-
lute/squared increments, the unconditional and the conditional heavy tails, the
gain/loss asymmetry, the intermittency and the volatility clustering;

• the time varying Hölder exponent of mBm/MPRE measures the pointwise regu-
larity of the process paths, but can also be interpreted as the pointwise intensity of
memory. The very fact that it changes over time can provide an explanation for the
many seemingly inconsistent estimates of the long-range dependence parameter
(see Baillie 1996 and Henry and Zaffaroni 2003 for a survey). In fact, as noted in
(Bianchi and Pianese 2008), it can be easily shown that detecting dependence or
not using asymptotic estimators strongly relies on the segment of data one looks
at, what basically indicates nonstationarity;

• it is not only about multifractional processes ability to replicate financial dynamic
processes. Importantly, these processes are flexible providing a rationale to the

2 The definition of Hölder exponent will be given in paragraph 2; here, we just recall that it measures
the degree of irregularity of the graph of a function.
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market mechanisms, since they potentially can gather multifaceted behaviors of
investors’ trading (in particular their reactions to financial crashes). The financial
intuition for these processes will be presented in paragraph 4, while their empirical
validation will be discussed in paragraph 6;

• the mBm/MPRE can be interpreted as the quantitative counterpart of qualitative
models such as the BF or theAMH, in the sense that it allows to assess analytically
how far markets are from efficiency at any time t . In this way, the mBm/MPRE
could serve as models for the development of a new financial calculus.

Due to these reasons, the starting point of a fitting multifractional modeling relies
on a reliable estimate of the functional parameter of the mBm/MPRE. This task has
attracted in the last fifteen years many contributions in diverse fields. In paragraph
5 an estimator will be described which allows a reliable and timely reckoning of the
pointwise regularity.

Finally, it is appropriate to underline that, in spite of their semantic affinity, mul-
tifractional processes should not be confused with the more popular multifractal
models, studied for example by (Calvet et al. 1997; Arneodo 1998; Riedi 2002). In
fact, multifractal models are mostly based on measures deforming the calendar (or
physical) time; therefore, by definition, they belong to the family of time-change
processes. Unlike these processes, the mBm is not in general a multifractal process.
Ayache 2000 provides technical conditions under which the Generalized multifrac-
tional Brownian motion (which extends the mBm) can be multifractal; an analysis of
the use and the limits in finance of multifractality detection techniques is proposed
in (Bianchi 2005) and (Bianchi and Pianese 2007).

2 Pointwise, Local and Uniform Hölder Regularity

In the previous paragraph we have pointed out that, if the expected conditional return
complies with (4), predictability of returns by itself does not prove market ineffi-
ciency. This implies that a stochastic financial time series ought to be characterized in
some other manner, namely by using a process regularity and its link with the semi-
martingale condition of no arbitrage. For a discussion of this notion with respect to
stochastic processes we refer to (Ayache 2013) (reference that we will follow in the
definitions below), while for the general case of a function f , see (Kolwankar, K.
and Lévy Véhel 2002).

Let X(t ,ω) be a stochastic process with a.s. continuous and not differentiable
trajectories over the real line R. One has the following

Definition 1 (Uniform Hölder exponent) Let J ⊂ R be a non-degenerate compact
interval (i.e., not empty nor made of a single point). The global Hölder regularity of
the trajectory t �→ X(t ,ω) is measured by

βX(J ,ω) = sup

{
β ≥ 0 : sup

t ,s∈J
|X(t ,ω) −X(s,ω)|

|t − s|β <∞
}

(5)
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Definition 2 (Pointwise and Local Hölder Exponent) The local Hölder regularity
of the trajectory t �→ X(t ,ω) with respect to some fixed point t ∈ R can be measured
through the pointwise or the local Hölder exponent, respectively defined as3

αX(t ,ω) = sup

{
α ≥ 0 : lim sup

h→0

|X(t + h,ω) −X(t ,ω)|
|h|α = 0

}
(6)

α̃X(t ,ω) = sup {βX([a, b],ω) : a, b ∈ R, t ∈ (a, b)} (7)

It is always

α̃X(t ,ω) ≤ αX(t ,ω).

The intuition for (6), (7), and hence for (5), is sketched in Fig. 1. It provides the
geometrical meaning of the pointwise Hölder regularity quantified by the exponent
α. Function X has exponent α at t0 if, around t0, for any positive ε, there exists a
neighborhood of t0, I (t0), such that, for t ∈ I (t0), the graph of X is included in the
envelope defined by t �→ X(t0)−c|t−t0|α−ε and t �→ X(t0)+c|t−t0|α+ε (LévyVéhel
and Barriére 2008). Hence, the regularity (or smoothness) of the graph increases with
α. For certain classes of stochastic processes, remarkably for Gaussian processes,
by virtue of zero-one law, both the quantities are deterministic, that is there exist
the non random quantities aX(t) and bX(t) such that P(aX(t) = αX(t ,ω)) = 1 and
P(bX(t) = βX(t ,ω)) = 1 (Ayache 2013). From a practical viewpoint αX increases
with the smoothness of the graph and it can be proved to be equal to 1

2 when the
process is the ordinary Brownian motion.

3 Fractional and Multifractional Gaussian Processes

In the following, three (multi)fractional processes will be discussed. Other vari-
ants exist: the step fractional Brownian motion (Benassi 2000), the multiscale
fractional Brownian motion (Bertrand 2005), the sparse multifractional Brownian
motion (Bertrand 2012), the Generalized multifractional Brownian motion (Ayache
and Lévy Véhel 2000) (just to limit the discussion to Brownian models). Nonethe-
less, we start from the miliar stone representation of the fractional Brownian motion
and focus on two processes-the multifractional Brownian motion (mBm) and the
Multifractional Processes with Random Exponent (MPRE)-which offer an immedi-
ate financial interpretation. Before discussing their peculiarities, it is worthwhile to
underline that, in spite of the assonance, these processes should not be confused with

3 The distinction between these two ways of measuring the local regularity is not just a mathematical
detail, since-as proved in (Ayache 2013)-while the trajectories of an arbitrary centered Gaussian
process share the same global (uniform) as well as local Hölder regularity, the same property does
not hold with respect to the pointwise Hölder regularity.
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Fig. 1 Hölder regularity of the graph of a random function

the more popular multifractal models (see Calvet and Fischer 2002; Calvet and Fisher
2008; Arneodo 1998, Riedi 2002), whose use (and abuse) in finance is analyzed in
(Bianchi 2005; Bianchi and Pianese 2007). In fact, while the former originate from
the variability of the scale, the latter are defined in terms of the variability of the
time: multifractal processes mostly deform the calendar (or physical) time, which
in finance is meant to account for the time-changing number of transactions. In this
sense, by definition, they belong to the family of time-changed processes.Generally,
the two stochastic processes we are going to discuss are not multifractal (Ayache
2000 provides the technical conditions under which a further extension of the mul-
tifractional Brownian motion-the Generalized multifractional Brownian motion-can
be multifractal).

3.1 Fractional Brownian Motion

The fractional Brownian motion BH (t) is a centered Gaussian, self-similar4, con-
tinuous stochastic process with almost surely non differentiable sample paths and
stationary increments. It was introduced in a seminal paper by Mandelbrot and Van

4 We remind that the stochastic process {X(t ,ω)}t∈T is said self-similar of parameter H if for any

a > 0 and t ∈ T , it is {X(at ,ω)} d= {aHX(t ,ω)
}
, where the equality holds for the finite-dimensional

distributions of {X(t ,ω)}.
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Ness (Mandelbrot and Van Ness 1968)5 as a generalization of the Brownian motion
obtained by replacing the value 1

2 by the Hurst exponent H ∈ (0, 1). Several rep-
resentations can be given of this process; in particular, the non anticipative moving
average representation lends itself to interpret the fBm as a weighted sum of the
Brownian measure, in which the weights prescribe the intensity of the dependence
the process is endowed with. It is defined by

BH (t) = KVH
∫

R

(
(t − s)H− 1

2+ − ( − s)H− 1
2+

)
dW (s) (8)

where x+ = max(x, 0), VH = �(2H+1) sin (πH )
1
2

�(H+ 1
2 )

is a normalizing factor, K2 =
V arBH (1) and, as usual, dW denotes the Brownian measure.

Representation (8), up to a multiplicative constant, is equivalent to the following
harmonizable one

B̂H (t) =
∫

R

eitξ − 1

iξ |ξ |H− 1
2

dŴ (ξ ) (9)

where dŴ is the Fourier transform of the Brownian measure dW , i.e. the unique
complex-valued stochastic measure such that

∫
R
f (x)dW (x) = ∫

R
f̂ (x)dŴ (x) for

all f ∈ L2(R), where f̂ (x) = ∫
R
e−iξxf (x)dx is the Fourier transform of f .6 A

relevant property is that αBH (t) = βBH (&) = H , almost surely at any point t.
Therefore, the trajectories of an fBm of parameterH display the same regularity (or
roughness), whatever the point.

The covariance of the fBm reads as

E (BH (t)BH (s)) = K2

2

(|t |2H + |s|2H − |t − s|2H ) (11)

which implies that EBH (t)2 = Var (BH (t)) = K2t2H .
Unless the normalizing factor K , the variance of the increments is

Var
(
BH (t + 1) − BH (t)

) = Var
(
BH (1) − BH (0)

) = VarBH (1)

5 Actually, processes having properties similar to those displayed by the fBm were considered, at
least implicitly, by (Kolmogorov 1940; Hunt 1951; Lamperti 1962; Yaglom 1958; Yaglom 1968).
6 The fBm can be also defined in terms of random wavelet series as

B̄(x,H ) =
+∞∑
j=−∞

∑
k∈Z

2−jH εj ,k
(
�(2j x − k,H ) −�( − k,H )

)
(10)

where
{
εj ,k
}

(j ,k)∈Z2 is a sequence of independent N (0, 1) random variables; Ψ ∈ C∞(R × (0, 1))
is well-localized in the first variable and uniformly localized in H , which means that, for all
(n,p) ∈ N

2, sup
{
(1 + |x|)p|(∂ (n)

x Ψ )(x,H )| : (x,H ) ∈ R × (0, 1)
}
< +∞. This representation-

which allows to define the MPRE (see below) also when its random exponent depends on the
Brownian measure-is almost surely uniformly convergent in (x,H ) on each compact subset of
R × (0, 1).
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Fig. 2 Variance of the increments of fBm for different values of H

= �(2 − 2H )cos(πH )

πH (1 − 2H )

and behaves with respect toH as displayed in Fig. 2 (see Decreusefond and Üstünel
1999).

The stationary increment process YH (t , k) = BH (t + k) − BH (t)
d= BH (k) −

BH (0) = YH (k) has autocovariance function that can be easily deduced by (11). It
is given by

ρH (k) = E (YH (t)YH (t + k)) = K2

2

(|k + 1|2H − 2|k|2H + |k − 1|2H )

= K2

2
�2|k|2H (12)

where�2 denotes the second difference. Unlike the Brownian motion, the increments
of the fBm are correlated and display long range dependence; in fact, when H >
1
2 ,
∑
k∈Z

|ρH (k)| = +∞. Therefore, the autocovariance function (12) indicates that
the larger the differenceH − 1

2 , the larger the positive (long-range) dependence; the
lower the difference H − 1

2 , the higher the negative dependence.
WhenH = 1

2 (Brownian motion), the autocovariance is obviously zero whatever
the lag. This behaviour reflects in the regularity of the sample paths, whose Hausdorff
dimension is almost surely equal to 2 − H , implying that for H > 1

2 , the paths are
smoother than those of the Brownian motion and conversely forH < 1

2 (see Fig. 3).
This peculiar feature is a source of problems in financial modelling. Indeed,

irrespective of the integration theory one chooses, it is well-known that a continuous
time market model excludes free lunch with vanishing risk if and only if the price
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Fig. 3 Examples of fBm for different Hurst exponents

process is a semimartingale (Delbaen and Schachermayer 1994). Unfortunately, the
predictability resulting from the autocovariance function implies that the fBm is not
a semimartingale when αBH (t) = H �= 1

2 (Rogers 1997). This result readily follows
from the behaviour of the order-p variation of the fBm

Vn,p =
∑
j=1

2n|BH (j2−n) − BH ((j − 1)2−n)|p ∼ (2n)1−pH .

As n → ∞, Vn,p tends to zero if p > H−1 and to infinite if p < H−1. Since
all semimartingales have well defined quadratic variation, the behaviour of Vn,p is
consistent with a semimartingale only ifH = 1

2 . In fact, ifH > 1
2 , one could choose

p ∈ (H−1, 2) in order to let Vn,p tend to zero in probability. This would mean that
the quadratic variation of the fBm is zero and that BH is a finite-variation process.
But this is not, since for p ∈ (1,H−1), almost surely limn→∞ Vn,p is infinite, as
well as the order-p variation (because of the scaling). Therefore BH cannot be finite-
variation. In the opposite case, if H < 1

2 , it suffices to choose p > 2 (such that
pH < 1) to see that the order-p variation is infinite, what violates the almost-sure
finiteness of the quadratic variation of a semimartingale.

Explicit arbitrage strategies can be found in (Shiryayev 1998; Dasgupta and
Kallianpur 2000; Cheridito 2003 or Bende et al. 2007). Although remedies were
suggested to correct the fBm to avoid arbitrage7, it is widely recognized that the
process can unlikely represent a good model of financial dynamics.

7 The corrections mainly concerned the revision of classical definitions of arbitrage and self-
financing condition (Hu and Oksendal 2003; Elliott and Van Der Hoek 2003); the regularization
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In addition to arbitrage-based objections, the constancy itself of the Hölder
regularity seems too restrictive to depict the complexity of financial dynamics,
characterized-for example-by volatility clustering and (eventually skewed) non
Gaussian unconditional distributions.

3.2 Multifractional Brownian motion

The most immediate generalization of the fBm can be obtained by replacing its ex-
ponentH by a proper Hölderian deterministic function of time h(t)8. This extension,
referred to as multifractional Brownian motion (see Péltier and Lévy Véhel 1995;
Benassi et al. 1997) can describe the dynamics of signals whose regularity changes
through time. The cost for the increased flexibility of the model resides in the fact
that the increments of the mBm are generally no longer stationary nor self-similar9.
Once accounted for the function h(t), the non anticipative representation of the mBm
becomes

Xh(t)(t) = KVh(t)

∫
R

(
(t − s)h(t)− 1

2+ − ( − s)h(t)− 1
2+

)
dW (s), (13)

where, as above, Vh(t) =
√
�(2h(t)+1)sin(πh(t))

�(h(t)+ 1
2 )

is a normalizing factor.

Using the notation as in the previous case, the harmonizable representation of the
mBm is similar to (9)

X̂h(t)(t) =
∫

R

eitξ − 1

iξ |ξ |h(t)− 1
2

dŴ (ξ ). (14)

However, the distributions of Xh(t)(t) and X̂h(t)(t) are not properly the same but
just nearly the same, as pointed out by (Stoev and Taqqu 2006).

Figure 4 displays noticeably the effect of the function h(t) on a path of the pro-
cess, simulated using the improved (Chan and Wood algorithm 1998). Notice the
increasing jaggedness for decreasing values of h(t) (or, symmetrically, the increasing
smoothness for increasing values).

Remark 1 If almost surely βh([0, 1]) > supt∈[0,1] h(t), namely the uniform Hölder
exponent of function h is larger than the supremum of h(t), then αXh(t) (t) = h(t) and
βXh(t)(t) = inf t∈J h(t), almost surely (see Benassi et al. 1997; Péltier and Lévy Véhel

of the weighting kernel of the fBm (Rogers 1997; Cheridito 2001), the introduction of transaction
costs (Guasoni 2006 or of delays in transaction times Cheridito 2003).
8 Remind that the function h(t) is Hölderian of order β on each compact interval J ⊂ R if, for each
t , s ∈ J and for c > 0, it holds |h(t) − h(s)| ≤ c|t − s|β , where β > maxt∈J h(t).
9 Indeed, (Ayache and Taqqu 2005) provide sufficient conditions for a multifractional process with
random functional parameter to be self-similar (in the sense of its marginal distributions) or to have
stationary increments.
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Fig. 4 Surrogated mBm. Panels: a sinusoidal h(t); b surrogated process; c volatility process

1995). Therefore, within this class of models, under the above technical condition,
the pointwise and the uniform regularity capture the time-changing volatility process
that eventually causes the departure from efficiency, when the process is used to
model financial data.

Remark 2 The moving average representation (13) is due to (Péltier and Lévy Véhel
1995). Benassi et al. (1997) provides the spectral representation (14), also convenient
for simulation purposes. The two representations are equivalent up to a multiplicative
deterministic function of time (Cohen 1999).

Remark 3 Because of the Remark 1, h(t) is the pointwise Hölder exponent of the
mBm at point t . This means that in a neighborhood of t , the process is asymptotically
self-similar with parameter h(t), in the sense stated by (Benassi et al. 1997), and
denoted by Y (t , au) = Xh(t+au)(t + au) −Xh(t)(t) the increment process, it holds

lim
a→0+ a

−h(t)Y (t , au)
d= Bh(t)(u),u ∈ R. (15)

Equality (15) (see Péltier and Lévy Véhel 1995) states that at any point t there
exists an fBm with parameter h(t) ‘tangent’ to the mBm. From (11) it follows that
V ar(Bh(t)(u)) = K2u2h(t); so, recalling that the fBm is a Gaussian process, the
infinitesimal increment of the mBm at time t , normalized by ah(t), is normally dis-
tributed with mean 0 and variance K2u2h(t) (u ∈ R , a → 0+). The estimator of h(t)
discussed in the sequel is based on this result.

Remark 4 The hölderianity of function h : [0, ∞) → (0, 1] represents a sufficient
condition for the continuity of the motion. This constraint is relaxed by Ayache and
Lévy Véhel 2000, who define a Gaussian process, the Generalized Multifractional
Brownian Motion, that extends the mBm and allows the functional parameter h(t) to
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belong to a set of functions larger than the space of the Hölder functions. The result is
a continuous process with Hölder regularity given by even very irregular functions.

Remark 5 The covariance of the mBm reads as (Ayache et al. 2000)

E(Xh(t)(t)Xh(s)(s)) = K2D(h(t),h(s))
(
th(t)+h(s) + sh(t)+h(s) − |t − s|h(t)+h(s)

)
(16)

where

D(h(t) + h(s)) =
√
�(2h(t) + 1)�(2h(s) + 1) sin (πh(t)) sin (πh(s))

2�(h(t) + h(s) + 1) sin
(
π h(t)+h(s)

2

) .

This results will be useful to justify the use of a class of estimators of the functional
parameter h(t).

Remark 6 Unlike the generalization considered in (Coeurjolly 2000), that assumes
K to depend on time, here we maintain constant the scale parameter and explain the
whole process variability in terms of its functional parameter h(t).

Remark 7 An interesting feature of the mBm is that, similarly to the empirical
distributions of financial returns, the unconditional distribution of its increments is
high-peaked and fat-tailed. This follows from the variability of the Hölder exponent
along the process’ paths. More precisely, consider a multifractional Brownian mo-
tion sampled at n points on the unit time interval, with functional parameter h(ti)
for i = 0, . . . , n and ti = i

n
. Since at each fixed time ti the mBm behaves like

an fBm with parameter h(ti) (see (15)), we can exploit relation (11). This implies
EBh(ti )(ti)

2 = Var
(
Bh(ti )(ti)

) = K2t
2h(ti )
i , and hence-by the stationarity of the incre-

ments of the fBm-K2t
2h(ti )
i is also the variance of the ti-lagged increments. It follows

that the variance of each random variable of the sequence above defined isK2n−2h(ti ).
Therefore, the variance of the unconditional distribution of the mBm above defined
reads as

σ 2 = K2

n

n∑
i=1

n−2h(ti ) = 1

n

n∑
i=1

σ 2
i (17)

where σ 2
i = K2n−2h(ti ). Finally, the unconditional density can be written as

fX(x) = 1

n

n∑
i=1

e
− x2

2σ2
i

σi
√

2π
(18)

We can now prove that fX(x) is leptokurtic with respect to the Gaussian distribution.
To this aim, consider the index of kurtosis excess γ2 = EX4/σ 4 − 3. Values of
γ2 larger than zero denote that the kurtosis is larger that the one of the Gaussian
distribution. Let us calculate EX4 by the moment-generating function:

mX(t) = E
(
etX
) =

∫
R

etxfX(x)dx =
∫

R

etx
1

n

n∑
i=1

1

σi
√

2π
e
− x2

2σ2
i dx =
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= 1

n

∫
R

n∑
i=1

1

σi
√

2π
e
− (x−σ2

i
t)2

2σ2
i

+ σ2
i
t2

2
dx = 1

n

n∑
i=1

e
σ2
i
t2

2

∫
R

1

σi
√

2π
e

− (x−σ2
i
t)2

2σ2
i dx

As the integrands in the last line are normal densities with meanμi = σ 2
i t , the integral

equals one. It follows that mX(t) = 1
n

∑n
i=1 e

σ2
i
t2

2 . Recalling that E(Xk) = dkm

dtk
(0),

one has

E(X4) = d4 m

dt4
(0) = 3

n

n∑
i=1

σ 4
i

Substituting in the index γ2 and solving the inequality

3
n

∑n
i=1 σ

4
i(

1
n

∑n
i=1 σ

2
i

)2 − 3 > 0

leads to

n∑
i=1

σ 4
i >

1

n

(
n∑
i=1

σ 2
i

)2

(19)

Relation (19) is trivially true because of the Chebishev’s inequality, stating that

n

(
n∑
i=1

aibi

)
≥
(

n∑
i=1

ai

)(
n∑
i=1

bi

)
,

where n ∈ N and a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bn, with ai , bi ∈ R.
In our case, setting ai = bi = σ 2

i , there is no need to assume the ordering of
sequences ai and bi . Furthermore, since the σ ′

i s are all larger than zero, the inequality
holds strictly.

Since the index of kurtosis is larger than zero, the unconditional distribution is
leptokurtic with respect to the normal law whose variance is given by (17).

A further way to see things is to prove that the unconditional density exhibits fat
tails with respect to the Gaussian density with variance (17). To this aim, it suffices
to analyze the asymptotic behaviour of the ratio

Q(x) =
1
n

∑n
i=1

1
σi

√
2π
e
− x2

2σ2
i

1
σ
√

2π
e
− x2

2σ2

.

Since σ 2 is the convex combination of the values σ 2
i , properly arranging these one

can write

σ1 < · · · < σk < σ < σk+1 < . . . σn
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from which it follows

Q(x) = σ

n

⎛
⎜⎜⎝

k∑
i=1

e
− (σ2−σ2

i
)x2

2σ2
i
σ2

σi
+

n∑
i=k+1

e
− (σ2−σ2

i
)x2

2σ2
i
σ2

σi

⎞
⎟⎟⎠

and therefore

lim
x→∞Q(x) = +∞. (20)

Limit (20) states that the function at the numerator tends to zero more slowly than
the function at the denominator (i.e. the normal distribution) as x diverges, and this
trivially indicates that the tails are heavier.

For practical purposes, the mBm can represent a good candidate as a model of
financial dynamics, but it has a conceptual limit due to the deterministic function
h(t). Since this summarizes the weight that traders ascribe to the past in the sense
stated by Remark 3, this is ultimately conditional to the new information that
spreads into the market. Thus, there is no apparent reason to assume a deterministic
functional parameter (see, e.g., Bianchi and Pianese 2007, 2008 or Bianchi and
Pantanella 2013 for a discussion of this issue). For this reason it is useful to consider
a different process, in which even the determinism of h(t) is abandoned.

3.3 Multifractional Processes with Random Exponents

Starting from the fBm, (Ayache and Taqqu 2005) build a process in which the parame-
terH is replaced by a random variable or even by a stochastic process10 {S(t ,ω)}t∈R

with values in the fixed interval [a, b] ⊂ (0, 1). The starting point to define the
MPRE is the result provided by Papanicolaou and Sølna 2002, who showed that the
stochastic integral

Z(t ,ω) =
∫

R

eitξ − 1

iξ |ξ |S(t)− 1
2

dŴ (ξ ), (21)

i.e. the fBm (9) where the parameterH is replaced by the stochastic process S(t ,ω),
is well-defined when S(t ,ω) is independent of dŴ . In this case, the main results
stated on mBm apply to {Z(t ,ω)}t∈R.

It is worthwhile to emphasize that the Roger’s argument to prove that the fBm is
not a semimartingale when H �= 1

2 does not apply to (21), as well as to the mBm
defined in (13) or (14). In fact, the behaviour of the order-p variation depends on the

10 To avoid ambiguity, when necessary, we write explicitly ω for the stochastic process.
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assumptions made about the random parameter S(t ,ω) or the functional parameter
h(t), respectively. Reasonably, this depends on how S(t ,ω) is modeled; in this con-
cern, some works show that the random parameter significantly changes through time
(Costa and Vasconcelos 2003; Bertrand 2005; Bayrakta et al. 2013) and, on large
samples, it is very close to 1

2 (Bianchi 2005; Bianchi et al. 2013), what intuitively
seems to be consistent with the arbitrage principle and indicates that the model’s
financial consistency is still an open question deserving further research.

Process (21) is not defined if {S(t ,ω)} depends on dŴ . In this case, Ayache and
Taqqu consider the standard random wavelet series representation (10) and exploit
its almost sure uniform convergence in (x,H ) on each compact subset of R × (0, 1);
therefore, they replace (x,H ) by (t , S(t ,ω)) and define the Multifractional Process
with Random Exponent as

Z(t ,ω) = f2(f1(t)) = BS(t ,ω)(t ,ω) (22)

where

◦ f1 : [0, 1] → [0, 1] × [a, b] (i.e., t �→ (t , S(t ,ω))) and f2 : [0, 1] × [a, b] → R

(i.e., (t ,H ) �→ BH (t ,ω)).
◦ the stochastic process S : t ∈ [0, 1] → [a, b] ⊂ [0, 1] (without loss of generality

one could replace the time domain [0, 1] by any compact interval);
◦ {BH (t)} is a random field for which (t ,H ) ∈ [0, 1] × [a, b] ⊂ (0, 1).

The construction of the MPRE does not necessarily require neither stationarity nor
independence of S(t ,ω) on the Brownian motionW . When independence is assumed,
the MPRE recovers the main results stated for the mBm; if dependence holds, the
kernel (t − s)S(t ,ω)−1/2

+ − ( − s)S(t ,ω)−1/2
+ is no longer adapted to the natural filtration

ofW and the integral is no longer defined. In this case, the standard random wavelet
series representation (10) can be still used, since it does not involve the variable s.

It is worthwhile to recall four relevant features of the MPRE proved by (Ayache
and Taqqu 2005):

Remark 8 The continuity of the paths of {S(t ,ω)} implies the continuity of {Z(t ,ω)}.
In addition, if S is a non-degenerate process, Z(t ,ω) is not Gaussian.

Remark 9 As in the case of the mBm, if βS([0, 1]) > supt∈[0,1] S(t ,ω) with
probability 1, then almost surely αZ(t ,ω) = S(t ,ω) at any point t ∈ (0, 1) and
βZ(J ,ω) = inf t∈J S(t ,ω). This means that, almost surely, the pointwise Hölder ex-
ponent of the MPRE equals its stochastic functional parameter S and the uniform
Hölder exponent equals the infimum of S over J , so preserving the information in
terms of pointwise regularity of the process.

Remark 10 IfS is a random variable independent ofW in (21) then, forh ∈ [0, 1−t],
{(Z(t + h) − Z(t)} d= {(Z(h) − Z(0)}, i.e. the increments of Z form a stationary
sequence.

Remark 11 If S is a stationary stochastic process independent of W in (21), then

{Z(t ,ω)} is self-similar in its marginal distributions, namely Z(at)
d1= aS(t)Z(t).
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Fig. 5 Some estimates of the long-range dependence parameter H of several financial time series

4 Financial intuition for the multifractionality

Starting from its introduction at the end of 1960 s (Papanicolaou and Soølna 1968),
the fBm was used as a model of financial time series and a number of contributions
tried to estimate empirically its parameterH , called Hurst exponent, using different
techniques (R/S analysis, Whittle’s estimators, the Higuchi method, just to quote the
main tools).

In particular, one of the most used estimators is based on the range statistics,
whose role in the estimation of the long-run dependence has been widely studied
in literature. In this respect, interesting theoretical as well as practical results are
provided by Tapiero and Vallois (see Tapiero 2000; Tapiero and Vallois 2007; Vallois
and Tapiero 1996; Vallois and Tapiero 1997; Vallois and Tapiero 2001; Vallois and
Tapiero 2008). In detail, in (Vallois and Tapiero 1996) a modified Hurst exponent
is calculated starting from run length statistics; in (Vallois and Tapiero 1997), the
authors provide a definition of reliability based on a process range; in (Tapiero and
Vallois 2007) the mean and the variance are explicitly calculated for a memory-based
persistent process.

While several results are available from a theoretical viewpoint, from an empirical
perspective many inconsistent results were obtained with respect to financial time
series (see the non exhaustive list in Fig. 5), even for the same time series using
different estimation methods and/or with respect to different time intervals. The
unquestionable diversity of the estimates strongly indicates that a sole parameter
of long-run dependence cannot seize the complexity of the price process. Indeed,
the great variability of the estimates can be parsimoniously explained by assuming
that the intensity of dependence changes through time (see the discussion in Bianchi
and Pianese 2008). From a modeling viewpoint, if one wants to remain within the
Brownian paradigm, the most immediate choice is to consider the mBm/MPRE
processes. In such cases, the key parameter h(t), or S(t) for the MPRE, can be
interpreted as summarized in Table 1.
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Table 1 Interpretation of h(t) (or S(t))

h(t) Stochastic consequence Investors’ belief Market consequence

> 1
2 Positive dependence Confidence that future

information will confirm past
positions

Low volatility
Low variance Underreaction
Persistence (pos. or neg. trend) Overconfidence as

h(t) − 1
2 increases

= 1
2 Independence Past information fully

discounted by prices
Efficiency

< 1
2 Negative dependence Confidence that future

information will contradict
past positions

High volatility
High variance Overreaction as
Antipersistence

(mean reversion)

1
2 − h(t) increases

The theoretical justification for this interpretation is provided by Remark 1 (Re-
mark 9) and Remark 3. Since in a neighborhood of any fixed time t0 the mBm, as well
as the MPRE ifS is independent of dW , behaves like an fBm of parameter equal to the
pointwise functional (or stochastic) parameter, the intuition is straightforward: h(t)
or S(t) can be read as the weight assigned by investors to past prices when they take
their trading decisions. In this way, with respect to a given market, when h(t) = 1

2
(independence, Brownian motion), the current price discounts all past prices and
the market is efficient; h(t) > 1

2 (positive long-range dependence, low variance and
trends) means that the investors believe that future prices will move accordingly to
past ones, no matter if in a bullish or bearish market. As a consequence, the stronger
this belief the higher the difference h(t) − 1

2 ; momentum strategies predominate and
the market reacts only gradually to new information, generating what in Behavioural
Finance is known as underreaction. On the contrary, h(t) < 1

2 (negative dependence,
high variance and mean reversion) denotes the investors’belief that future prices will
contradict the current price. This typically occurs when (or as a consequence of) some
bad news suddenly spreads into the market, triggering a quick buy-and-sell activity
with profit taking (the so called touch-and-go market). Even if small, the capital gain
coming from the transactions in this market phase can satisfy the investors, due to
the perceived extreme unpredictability of how future information could influence the
current price (overreaction).

This interpretation naturally suggests that the overall dynamics of a market (or
even of single stocks) is nothing but a collection of local disequilibria and equilibria
in the sense stated by the EMH. Nonetheless, the fact that disequilibria roughly
compensate over a sufficiently long interval (see Fama 1998) does not imply that
efficiency holds everywhere, but only on large samples. This is exactly the meaning
of E (ST |Ft ) = Et (ST ) = St , in which the filtration Ft summarizes the whole past
history, not just a part of it. The compensating mechanism described above works if,
in the long run, S(t) distributes with roughly the same masses above and below 1

2 .
With the working hypothesis that the long-run dependence parameter (and hence the
pointwise regularity) can change through time, it looks natural to link the efficiency
of a market to the velocity of reabsorption of the departures from the threshold 1

2 .
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5 Estimation of the Pointwise Regularity

The idea that the pointwise regularity of financial time series changes through time
and is possibly well-behaved with respect to the threshold 1

2 needs to be tested, in
order to validate or at least falsify the market mechanism as outlined above. Therefore,
one or more estimators of the pointwise regularity are needed; by definition, these
cannot be asymptotical, as the majority of the estimators available for the long-range
dependence parameter. Many authors attempted to solve the estimation problem and
a short survey of these contributions could be useful to contextualize the technique
that will be described hereinafter.

Using the method defined in (Benass et al.1998) for filtered white noises, (Istas
and Lang 1997) and (Benassi 1998) introduce the generalized quadratic variations11,
an estimator of a continuously differentiable function, whose pro is allowing Gaus-
sian limiting distribution with

√
N -rate of convergence,N being the sampling points

along the process path. The result is extended by (Coeurjolly 2005), who considers
an estimator based on a local estimation of the second order moment of a unique
discretized filtered path. This allows to consider Hölderian functions (of arbitrary
positive order) and to provide limit theorems for the functional estimators. A semi-
parametric estimator for a piece-wise constanth(t) is proposed in (Benassi et al.1999)
and Benassi et al. 2000 with the aim to detect abrupt changes of the Hölder exponent
for Gaussian processes with almost sure continuous paths. To identify the functional
parameter of an even more general mBm (the Generalized mBm), (Ayache and Lévy
Véhel 2004; Ayacheet al. 2005, Ayache et al. 2007) use the generalized quadratic
variation and derive a central limit theorem for their estimator. With a specific look
to financial applications, (Bianchi 2005) extends to the mBm the class of estimators
introduced for the fBm in (Péltier and Lévy Véhel 1994) and studies its Gaussian
limiting distribution with (

√
δ logN )-rate of convergence, δ and N respectively be-

ing the length of the estimation window and the number of sampling points. More
recently, (Loutridis 2007) proposes an algorithm based on the scaled window vari-
ance method for estimating both global and local scaling exponents and claims its
simplicity and computational efficiency with respect to other techniques. Finally, a
class of consistent estimators based on convex combinations of sample quantiles of
discrete variations is proposed by (Coeurjolly 2008), who also derives the almost
sure convergence and the asymptotic normality of the estimators.

11 Basically, with regard to the process X sampled at N times, the generalized quadratic variation

is defined as VN = ∑N−2
p=0

(
X
(
p+2
N

)
− 2X

(
p+1
N

)
+X ( p

N

))2
; the variation serves to define the

estimator ĥN = 1
2

(
1 − lnVN

lnN

)
which, under some assumptions on the function h(t), satisfies

limN→+∞ĥN = inft∈(0,1)h(t) almost surely. The result stated for the infimum provides the way to
estimate h itself at any point t ∈ (0, 1); in fact choosing a proper (ε,N )-neighborhood of t one
can calculate the generalized quadratic variation Vε,N and hence the estimator ĥε,N , that satisfies
limN→+∞ĥε,N = inf|s−t |<εh(s) (a.s). Letting ε tend to zero one gets an estimate of h(t).
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Our approach is based on the Absolute Moment Based Estimator introduced by
(Bianchi 2005), and refined by (Bianchi et al. 2013), as an extension of the estimator
of the parameterH of the fBm defined by (Péltier and Lévy Véhel 1994). It works for
the multifractional Brownian motion, and even if the case of a stochastic parameter
(MPRE) hasn’t been covered yet from a theoretical viewpoint, the estimation works
also when the functional parameter h(t) is very irregular, as it will be seen hereinafter.
In order to discuss this class of estimators, let us assume that the process (13) is
sampled in discrete time on the grid t = 1, . . ., n. From Remark 3, one has12.

Xj+q,n −Xj ,n
d= N

(
0,K2

(
q

n− 1

)2h( t
n−1 )
)

, (23)

for j = t − δ, . . ., t − q; t = δ + 1, . . ., n− q + 1; q = 1, . . ., δ. The construc-
tion of the estimator starts from the formula providing the kth absolute moment of
Y ∼ N (0, σ 2)

E(|Y |k) = 2k/2�
(
k+1

2

)
�
(

1
2

) σ k (24)

Exploiting (23) one can define the quantity

S
k
δ,q,n,K (t) = 1

δ − q + 1

t−q∑
j=t−δ

|Xj+q,n −Xj ,n|k t = δ + 1, . . . , n

which, by (24), leads to

E(Skδ,q,n,K (t)) = E

⎛
⎝ 1

δ − q + 1

t−q∑
j=t−δ

|Xj+q,n −Xj ,n|k
⎞
⎠

12 The variance in (23) follows from assuming a smooth h(t). In fact, from (16) it follows:

V ar (Xt −Xs) = E (Xt −Xs)2 − (E(Xt −Xs ))2 = E
(
X2
t +X2

s − 2XtXs
) =

= t2h(t) + s2h(s) −D(h(t),h(s))
(
th(t)+h(s) + sh(t)+h(s) − |t − s|h(t)+h(s))

= th(t)(th(t) −D(h(t),h(s))th(s)) + sh(s)(sh(s) −D(h(t),h(s))sh(t)) +
+D(Ht ,Hs)|t − s|h(t)+h(s).

Since lim|h(t)−h(s)|→0D(h(t),h(s)) = 1, whenever h(t) ≈ h(s), one has V ar (Xt −Xs) ≈ |t −
s|2h(t). Assuming that the mBm is sampled in discrete time over n points with V ar(Xn−X0) = K2

entails therefore

V ar
(
X t+q
n−1

−X t
n−1

) ∼= K2

∣∣∣∣ t + qn− 1
− t

n− 1

∣∣∣∣
2h
(

t
n−1

)
= K2

(
q

n− 1

)2h
(

t
n−1

)

that the variance in (23)
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= 2k/2�
(
k+1

2

)
�
(

1
2

) Kk
(

q

n− 1

)kh(t)

(25)

Since the ratio

S
k
δ,q,n,K (t)

E

(
S
k
δ,q,n,K (t)

) =
√
πS

k
δ,q,n,K (t)

2k/2�
(
k+1

2

)
Kk
(
q

n−1

)kh(t) (26)

tends to 1 in probability as δ tends to infinity (see Bianchi 2005 for the proof), one
has

√
πS

k
δ,q,n,K (t)

2k/2�
(
k+1

2

)
Kk

P−→
(

q

n− 1

)kh(t)

(27)

and hence

log
(√
πS

k
δ,q,n,K (t)/

(
2k/2�

(
k+1

2

)
Kk
))

k log
(
q

n−1

) P−→h(t). (28)

By (28) directly follows the class of estimators

hkδ,q,n,K (t) =
log
( √

π

δ−q+1

∑t−1
j=t−δ |Xj+q,n −Xj ,n|k/

(
2k/2�

(
k+1

2

)
Kk
))

k log
(
q

n−1

) . (29)

For the estimator’s distribution, it can be proved that

k log

(
n− 1

q

)√
δ − q + 1(h(t) − hkδ,q,n,K (t))

d= N
(

0,
π

2k�2
(
k+1

2

)σ 2

)
(30)

where σ 2 is the limit variance of a series of normalized nonlinear functions of
a stationary Gaussian sequence with slowly decaying autocorrelation function. It
is worthwhile to underline that relation (30) entails a rate of convergence for the

estimator equal to O
(
δ− 1

2 ( log n)−1
)

, which provides reliable estimates even for

small δ’s.

Remark 12 (Optimal q and k) Relation (30) provides conditions useful to set two
of the four parameters of the estimator, q and k. Concerning the former, as the
estimator’s variance grows with q, a natural choice consists in setting it equal to 1,
the minimal admissible value. The optimal choice of k is a little bit more complicate
to set and passes through writing the variance in (30) for hkδ,q,n,1(t) = H = 1

2 and
q = 1. Toilsome computations show that in this case one gets13

V ar(hkδ,1,n,1(t)) =
√
π

δk2 log2 (n− 1)�2
(
k+1

2

) ·
[
�

(
2k + 1

2

)
− 1√

π
�2

(
k + 1

2

)]

13 For h �= 1
2 , the variance of hkδ,q,n,1(t) is hard to deduce because of the term σ 2 that appears in the

variance of (30).
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Fig. 6 Standard deviation of the estimator calculated by locally weighted smoothing quadratic
regression

which, minimized, leads to the optimal k (k = 2).
In the general case, the variance of relationship (30) is hard to calculate due

to the term σ 2. The estimator’s standard deviation for different values of h and δ
can be calculated by Monte Carlo simulation. Figure 6 displays the interpolating
surface-using the locally weighted smoothing quadratic regression-obtained from
1, 000 samples of length N = 4, 096.

Remark 13 (OptimalK) As widely discussed in (Bianchi and Pianese 2013), when
actual data are taken into consideration, the parameter K to be valued in (29) is
generally unknown and a misleadingK causes a shift of the estimated h(t) sequence.
In fact relation (29) can be written as follows:

hkδ,q,n,K (t) =
log

(√
π
∑t−q
j=t−δ |Xj+q,n−Xj ,n|k

(δ−q+1)2k/2�( k+1
2 )

)

k log
(
q

n−1

) − logK

log
(
q

n−1

)

Since the logarithm is slowly varying at infinity14, the shift can be significant even
when n is large. To estimate the rightK from empirical data, notice that relation (23)
implies the random variables collected in the set

Vq = {Xj+q,n −Xj ,n : hkδ,q,n,K (t) ∈ (h∗ − ε,h∗ + ε)} (31)

14 Function L is slowly varying at infinity if limt→∞ L(αt)
L(t) = 1 for some α ∈ R

+
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to be normally distributed with mean zero and variance equal to K2
(
q

n−1

)2h∗
, as

ε → 0. So, applying (24), for each fixed h∗ and for ε → 0, it is straightforward to
obtain15

log E
(|Xj+q,n −Xj ,n|s

) = log
2s/2�

(
s+1

2

)
�
(

1
2

) K̂s + sĥ log

(
q

n− 1

)
(32)

This relation provides testable conditions to estimate K: its correct value
can be evaluated through the intercept of a simple linear fit in the plane(
log q

n−1 , log E(|Xj+q,n −Xj ,n|s)
)

for increasing q’s. In (Bianchi et al. 2013) the
following steps are defined:

1. The initial estimation is run with an arbitrary K∗;
2. the empirical density function fhk

δ,q,n,K∗ (t)(x) of the estimates is calculated;

3. the value h∗ = arg maxfhk
δ,q,n,K∗ (t)(x)) is taken as the center of the interval (whose

inf and sup are the extremes of the bin hkδ,q,n,K∗ belongs to) that serves to define
the set in (31);

4. onceVq is settled, the log linear fit (32) is performed. The parameterK is therefore
estimated by deducing K̂ from the first term of the right-hand side of (32);

5. finally, the estimation is rerun with K̂ .

This procedure is particularly effective when the number of data in fhk
δ,q,n,K∗ (t)(x) is

suitably large for some x, so to guarantee the set Vq to have a number of elements
sufficient to stabilize the log-linear regression (so, the higher the number of datapoints
in the set Vq the more accurate the estimate of K).

Remark 14 (Optimal δ) The assumption that the observations are normally dis-
tributed with mean zero and variance in (23) holds if the parameter h(t) lingers
constant within the window δ. When dealing with real data, the effectiveness of this
assumption strongly depends on the size of δ16, which in principle should be allowed
to vary over time. In fact, maintaining a constant length of the window implicitly
means assuming that the arrival of information causes h(t) to change only on a same
fixed horizon. A reasonable alternative-proposed in Bianchi et al. 2013-is to change
δ, preserving the local normality of the price variations. Roughly speaking, once
a maximal and a minimal window lengths have been fixed (say δmax and δmin, re-
spectively), one tests for normality over δmin. If the normality test is passed, the
window is increased by one unit and the test is looped until it fails or until δ reaches

15 To avoid confusion with the notation, here we indicate the order of the absolute moment by s
(instead of k used for hkδ,q,n,K (t)).
16 Using the two-sided Lilliefors test at different significance levels, Bianchi and Pianese 2008
show that, consistently with the mBm/MPRE model, the empirical significance values of three
main stock indexes converge to the nominal ones as δ decreases. Although this suggests to maintain
δ as short as possible in order to ensure the normality of data, a trade-off problem arises because the
estimator’s variance increases as the length of the window decreases. The discussion of this effect
leads the authors in (Bianchi and Pianese 2008) to set δ = 30.
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Fig. 7 Simulation and estimation of the mBm. Panel (a) Function h(t) generated from the linear
combination of sine and cosine waves of different frequencies; Panel (b) the resulting mBm (X(t)),
simulated using the Wood and Chan circulant matrix method (Chan and Wood 1998); Panel (c) the
increment processY (t , 1) = X(t+1)−X(t) (notice the “bursts” of variance, typical of financial time
series); Panel (d) the functional parameter h(t) (bold line) and the estimated sequence h2

30,1,4096,0.5
(dotted line)

δmax . Clearly, with this procedure, the estimator’s variance changes with δ and the
sequence of estimated hkδ,q,n,K (t) can contain holes for the time subsets in which
normality is rejected.

Figure 7 describes how the estimator functions. Notwithstanding the jaggedness
of h(t), thanks to the very good rate of convergence of the estimator, the sequence
h2

30,1,4096,0.5 succeeds to shadow the functional parameter. The results obtained with
the time-changing δ are very similar and therefore they are omitted, in order to
improve the readability of the Figure.

5.1 Regularity of a Portfolio

Given the estimator defined in the previous paragraph and assuming the same nota-
tion, it may be of interest to deduce the estimated regularity for a whole portfolio
of N assets sXj ,n, s = 1, . . . ,N , j = t − δ, . . ., t − q, t = δ + 1, . . ., n − q + 1,
q = 1, . . ., δ, whose dynamics are modeled by N multifractional processes, each
one characterized by its own functional parameter sh(t) estimated by sh

k
δ,q,n(t). In

the sequel, we will assume each process to have unit variance at time n and that
k = 217.

17 This assumption is not restrictive, since it has just been shown that k = 2 minimizes the estimator’s
variance (see Remark 14).



Asset Price Modeling: From Fractional to Multifractional Processes 271

Denoted by αs the weight allocated on the asset sth, let

�(t) =
N∑
s=1 s

X(t)αs

be the value of the portfolio at time t18.
It can be proved that the portfolio’s regularity estimator reads as

�h
2
δ,q,n(t) = −

ln

(
N∑
p=1

N∑
r=1
αpαr

(
n−1
q

)−(ph2
δ,q,n(t)+r h2

δ,q,n(t))
ρp,r ,δ

)

2 ln
(
n−1
q

) (33)

where ρp,r ,δ denotes the correlation of the absolute increments of the assets pth and
r th.

In fact, let d(�j ,q ) = �j+q − �j =
N∑
s=1
αsd(sXj ,q ) denote the portfolio’s

increments, with d(sXj ,q ) :=s Xj+q −s Xj . One has

�h
2
δ,q,n(t) = −

ln

t−q∑
j=t−δ

∣∣∣∣∣
N∑
s=1
αsd(sXj ,q )

∣∣∣∣∣
2

K2(δ−q+1)

2 ln
(
n−1
q

)

= −
ln

N∑
s=1
α2
s

t−q∑
j=t−δ

d(sXj ,q )2+2
t−q∑
j=t−δ

N−1∑
p=1

N∑
r=p+1

αpαr |d(pXj ,q )||d(rXj ,q )|
K2(δ−q+1)

2 ln
(
n−1
q

)

Since from relation (23) it readily follows that

t−q∑
j=t−δ

d
(
X2
j

)

K2(δ − q + 1)
=
(
n− 1

q

)−2h2
δ,q,n(t)

one has

�h
2
δ,q,n(t) = −

ln

(
N∑
s=1
α2
s

(
n−1
q

)−2sh2
δ,q,n(t) + A

K2(δ−q+1)

)

2 ln
(
n−1
q

) . (34)

18 Likewise the notation already introduced, from now on the subscript will refer to the discrete
time sampling.
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where

A =
t−q∑
j=t−δ

N−1∑
p=1

N∑
r=p+1

αpαr
∣∣d (pXj ,q

)∣∣ ∣∣d (rXj ,q
)∣∣ .

A more insightful way of writing relation (34) exploits again (23), from which
one has

−sh
2
δ,q,n(t) =

ln

t−q∑
j=t−δ

|d(sXj ,q)|2

K2(δ−q+1)

2 ln
(
n−1
q

)

Once the above relation is written for p and r , summing up side by side we get

−ph2
δ,q,n(t) −r h

2
δ,q,n(t) =

ln

t−q∑
j=t−δ

|d(pXj ,q )|2
t−q∑
j=t−δ

|d(rXj ,q )|2

K4(δ−q+1)2

2 ln
(
n−1
q

)

and therefore

(
n− 1

q

)−
(
ph

2
δ,q,n(t)+r h2

δ,q,n(t)
)

=
√∑t−q

j=t−δ
∣∣d (pXj ,q

)∣∣2∑t−q
j=t−δ

∣∣d (rXj ,q
)∣∣2

K2(δ − q + 1)
.

Finally, setting ρp,r ,δ :=
t−q∑
j=t−δ

|d(pXj ,q )||d(rXj ,q )|
√

t−q∑
j=t−δ

|d(pXj ,q )|2
t−q∑
j=t−δ

|d(rXj ,q )|2
,

(
n− 1

q

)−
(
ph

2
δ,q,n(t)+r h2

δ,q,n(t)
)
ρp,r ,δ =

t−q∑
j=t−δ

∣∣d (pXj ,q
)∣∣ ∣∣d (rXj ,q

)∣∣
K2(δ − q + 1)

and by substituting in (34) one gets (33).

6 Analysis of Financial Data

As seen in the previous paragraphs, the estimation of the pointwise regularity is the
core issue to assess the presence of multifractionality in financial time series. In this
regard, we provide the results obtained using theAbsolute Moment Based Estimators
with seven main daily stock indexes, from different Countries: All Ordinaries (Aus-
tralia), Dow Jones Industrial Average (USA), Footsie 100 (United Kingdom), DAX
(Germany), Hang Seng (Hong Kong), MerVal (Argentine), Nikkei 225 (Japan), all
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Table 2 Data set

Ticker AORD DJIA FTSE GDAXI HSI MERV N225

#(obs) 5,926 5,882 5,893 5,921 5,926 5,799 5,739
Mean( × 10−4) 1.9075 2.8620 1.6487 2.4892 3.5850 9.2457 −1.7962
St.Dev 0.0093 0.0111 0.0114 0.0146 0.0167 0.0265 0.0155
Skewness −0.5173 −0.2165 −0.1034 −0.1108 −0.0043 0.7466 −0.0929
Kurtosis 9.2583 10.8882 8.9866 7.5653 12.0977 12.8407 8.4302
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Fig. 8 Estimation of the pointwise regularity (parameters: δ = 30, q = 1 and k = 2)

examined from January 1st, 1990 to April 30th, 2013 (Table 2 reports the lengths of
the series along with their main distributional characteristics).

Figure 8 displays the pointwise regularity estimated by means of relation (29),
with δ = 30, q = 1 and k = 219. The two straight lines provide the confidence
interval around 1

2 at a p−level of 5 % (see Remark 12). When the estimated h(t) lies
outside the acceptance region, the series displays a pointwise regularity significantly
different from 1

2 . The figure clearly shows that the departures from this value are
ubiquitous and generally last for not negligible time spans, as opposed to what the
efficient market theories claim. A clear example is provided by the Dow Jones from
2003 to 2007, period during which the pointwise regularity was always significantly
above 1

2 .
Table 3 summarizes the main distribution parameters of the estimated h(t) of

each index, along with the results of the Dickey Fuller test. Several interesting issues
deserve a discussion.

19 Using a time changing δ (see Remark 14) produces very similar results, hence to save the
homogeneity of the results we have chosen a fixed window of proper length.
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Table 3 Main distribution parameters of h2
30,1,n,K

AORD DJIA FTSE GDAXI HSI MERV N225

Mean 0.491 0.534 0.496 0.493 0.517 0.520 0.476
Median 0.494 0.539 0.501 0.499 0.525 0.530 0.478
St. Dev 0.044 0.050 0.049 0.051 0.051 0.055 0.043
Skewness −0.642 −0.697 −0.707 −0.478 −0.669 −0.729 −0.417
Kurtosis 4.172 3.737 3.464 2.978 3.250 3.155 3.904
�̂(z1)a 0.2763 0.1091 0.2794 0.2987 0.1964 0.1941 0.4344
�̂(z2) − �̂(z1) 0.5363 0.3127 0.4499 0.4416 0.3423 0.3057 0.4661
1 − �̂(z2) 0.1874 0.5782 0.2707 0.2597 0.4614 0.5002 0.0994
ADF test
Stat −4.4301 −4.0108 −3.6949 −3.9739 −4.029 −4.6337 −4.631
pValue 0.0026 0.0089 0.0231 0.0098 0.0084 1.00E-03 1.00E-03
a�̂(z1) denotes the empirical cumulative distribution function of h(t) calculated in z1 =
�̂−1(0.025) � 0.4708 and z2 = �̂−1(0.975) � 0.5292, respectively the lower and the upper
thresholds of the 95 % confidence interval of the estimator

Long-Term Mean Value It is really self-consistent that the overall mean of the
estimated pointwise regularity is close to 1

2 for all the stock indexes. Together with
the mean-reverting behaviour of the pointwise regularity itself, this facet suggests an
overall efficiency obtained by the compensation of local inefficiencies of opposite
sign (below and above 1

2 , respectively). The potential to harmonize the no arbitrage
principle with the turbulence that indeed affects the real financial markets is evident:
if a sole value of the pointwise Hölder exponent is estimated on the whole time
series using any asymptotic estimator, one would conclude that it roughly equals 1

2 ,
the sole value consistent with the absence of arbitrage. Actually, a finer examination
leads to surface the complex nature of the price process that an analysis with a coarser
resolution cannot seize. To say it with Bayaraktar et al. 2013, “for long-term economic
models, it is important to look at time-varying rates of long-range dependence, where
the variation is caused by global economic factors, or regime changes. At some times,
the market may be efficient, for example in a bullish exuberant economy like the late
1990s ( . . . ), while at other times, the Joseph effect may be prominent, such as
during a recession or period of economic nervousness as in the early 1990s”.

Stationarity Significantly, the Augmented Dickey-Fuller test (see Table 3) indi-
cates that the functional parameter h(t) is trend stationary for each time series here
analyzed. In principle, there is no apparent reason to take this result for granted;
in addition, the mean reversion of the pointwise regularity to approximately 1

2 is
very pronounced. This indicates that markets generally tend to correct inefficiencies
very quickly, even if periods exist where inefficiency prevails. A potentially relevant
consequence of both the stationarity and the long run average equal to 1

2 can sim-
plify the models, whose nonstationarity ultimately depends on the nonstationarity of
h(t). In fact, if the pointwise regularity could be modeled by a random variable or
a stationary process, then the resulting MPRE would be more tractable in terms of
global probabilistic properties because of Remarks 10 and 11.
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Fig. 9 Empirical non parametric density estimation of h2
30,1,n,K . The vertical dashed bands denote

the 95 % confidence interval

Magnitude of the Swings As displayed by Fig. 9, the swings of the estimated
pointwise Hölder exponent around 1

2 are mostly bounded between 0.4 and 0.6,
against a confidence interval that for the given lengths is approximately equal to
[0.4708, 0.5292]. The statistical significance of the departures from the value 1

2 is
therefore out of discussion, since in almost all the cases more than the fifty percent

of the distribution mass is outside the confidence interval
[
�̂−1(.025), �̂−1(.975)

]
,

even approaching the seventy percent for the Dow Jones, the Hang Seng and the
Merval. Also notice that periods can be observed in which the pointwise regularity
overstays significantly above 1

2 (bubbles), but generally the larger the distance the
faster the return to the central value. Again, this behaviour looks self-consistent in
that it describes the tendency of the markets to move towards the equilibrium, even
if this is nothing but a special case of a much more complex dynamics.

Well-Behaved Residuals The sequencehkδ,q,n,K (t) can be used to calculate the resid-

uals r(t) = dX(t)

K(n−1)
−hk
δ,q,n,K (t)

of the increment process dX(t) := ln (X(t + 1)/X(t)). If

the model and the estimator work, we expect r(t) to be i.i.d. standard normal. In this
regard, it is well-known that heavy tails and volatility clustering, the very motiva-
tions for the use for example of GARCH models, are expected to disappear once the
returns are normalized by the level of volatility, making their distribution Gaussian.
Nevertheless, under the classical ARMA-GARCH modeling, such scaled returns are
still generally heavy tailed and show extremal dependence, whose strength reduces
only as extreme levels increase. This unpleasant result, which makes questionable
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the capability of such models to capture entirely the variation in volatility, is gen-
erally addressed by modeling the residuals by some ad hoc distribution. The most
popular distributions used to this aim are the (eventually asymmetric) Student’s t ,
the generalized Pareto, the normal inverse Gaussian distribution or the double ex-
ponential, as a particular case of the generalized error distribution when the tail
thickness parameter equals 1. Despite the many efforts devoted to the analysis of
this topic, the choice of such distributions appears somewhat arbitrary. So, one may
wonder whether multifractional modeling succeeds in improving the behaviour of
the residuals. At a first glance, it seems so. In fact, Fig. 10 displays the box plots of
the p-values calculated by the Jarque-Bera normality test (Jarque and Bera 1987)20

for different samplings of the sequence of residuals (from approximately one trading
month to approximately one trading year). The p-value generally stays above 0.05,
which means that normality cannot be rejected at 5 % significance level. The worst
cases occur for the indexes Dow Jones and Merval; for both, normality is mostly
rejected starting from a span of about six trading months.

Table 4 displays the average value of the first four moments of the residuals; the
average is calculated with respect to the number of samplings obtained dividing the
number of data in the whole series by each fixed time span. Notice that all the moments
are close to those of a normal i.i.d. distribution; nonetheless, the distributions are
systematically lightly left-skewed, what will be discussed hereinafter.

Finally, for each index the sample autocorrelation functions of both the residuals
and the squared residuals were calculated. It is quite evident that neither the residuals
nor their squared transforms are autocorrelated at the 5 % significance level (see
Fig. 11).

Autocorrelation of the Pointwise Regularity Parameter For each analyzed time
series, the estimated sequences of the regularity parameters display a strong positive
and slowly decaying autocorrelation (see Fig. 12). It should be noted that the high
level of autocorrelation is not significant up to lag 30, as a consequence of the spu-
rious effect of the overlapping induced by the estimation window δ. Anyway, over
this value, the autocorrelation remains high (0.35 − 0.50) and decays slowly, losing
statistical significance only for very large lags (well above one trading year). This
behaviour suggests two insights: (a) the level of pointwise regularity is strongly con-
ditional to its past values. In other words, given the interpretation provided in Table 1,
markets seem to preserve for a long time the memory of their own assessments in
terms of the weight attributed to the past information; (b) the positive autocorrelation
can contribute to limit the domain of the functions (mBm) or processes (MPRE) that
can model the dynamics of the pointwise regularity itself.

Asymmetry of the Pointwise Regularity The estimates ofh(t) reflect the asymmet-
ric role played by the information process. As claimed previously, all the distributions
of the functional parameter are left skewed, what indicates that the low values in the

20 The Jarque-Bera test quantifies the distance from the Gaussian distribution in terms of skewness
and kurtosis and then computes a single p value using the sum of these discrepancies.
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Fig. 10 Box plots of the p-values from the Jarque-Bera normality test of the residuals. On each
box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers are plotted
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Table 4 Main distribution parameters of the residuals

25 50 75 100 125 150 175 200 225 250

AORD
Mean 0.029 0.033 0.031 0.029 0.032 0.033 0.027 0.029 0.031 0.028
St.Dev 0.993 1.004 1.006 1.008 1.009 1.009 1.009 1.010 1.010 1.008
Skewness −0.103 −0.190 −0.214 −0.232 −0.244 −0.244 −0.238 −0.240 −0.252 −0.239
Kurtosis 2.941 3.294 3.383 3.452 3.462 3.516 3.483 3.466 3.500 3.485

DJIA
Mean 0.042 0.041 0.043 0.038 0.039 0.042 0.041 0.040 0.041 0.039
St.Dev 1.000 1.011 1.013 1.014 1.013 1.016 1.014 1.013 1.014 1.014
Skewness −0.116 −0.170 −0.214 −0.216 −0.219 −0.243 −0.226 −0.235 −0.235 −0.233
Kurtosis 3.076 3.419 3.515 3.566 3.545 3.651 3.598 3.604 3.557 3.588

FTSE
Mean 0.026 0.022 0.023 0.022 0.020 0.022 0.018 0.022 0.022 0.018
St.Dev 1.003 1.011 1.014 1.014 1.015 1.016 1.015 1.014 1.014 1.015
Skewness −0.034 −0.091 −0.109 −0.118 −0.141 −0.138 −0.136 −0.140 −0.137 −0.146
Kurtosis 2.760 2.994 3.002 3.100 3.080 3.093 3.083 3.116 3.088 3.087

GDAXI
Mean 0.030 0.028 0.028 0.028 0.028 0.027 0.029 0.027 0.027 0.028
St.Dev 0.992 1.003 1.006 1.006 1.008 1.008 1.009 1.009 1.011 1.010
Skewness −0.098 −0.161 −0.199 −0.201 −0.206 −0.232 −0.221 −0.229 −0.232 −0.227
Kurtosis 2.930 3.193 3.361 3.392 3.431 3.516 3.477 3.503 3.530 3.503

HSI
Mean 0.035 0.038 0.036 0.038 0.037 0.038 0.036 0.037 0.037 0.037
St.Dev 1.006 1.016 1.023 1.020 1.024 1.022 1.021 1.021 1.022 1.022
Skewness −0.045 −0.104 −0.152 −0.146 −0.151 −0.143 −0.144 −0.146 −0.158 −0.158
Kurtosis 3.101 3.356 3.520 3.558 3.563 3.543 3.542 3.528 3.579 3.557

MERV
Mean 0.030 0.029 0.029 0.028 0.029 0.028 0.027 0.027 0.028 0.029
St.Dev 0.996 1.012 1.018 1.019 1.021 1.023 1.022 1.022 1.022 1.023
Skewness −0.097 −0.146 −0.165 −0.180 −0.182 −0.171 −0.168 −0.185 −0.171 −0.181
Kurtosis 3.183 3.597 3.674 3.717 3.762 3.785 3.768 3.801 3.799 3.848

N225
Mean −0.018 −0.019 −0.016 −0.018 −0.019 −0.017 −0.021 −0.025 −0.021 −0.025
St.Dev 1.011 1.021 1.027 1.027 1.027 1.028 1.028 1.028 1.028 1.029
Skewness 0.001 −0.065 −0.065 −0.111 −0.092 −0.108 −0.116 −0.125 −0.123 −0.134
Kurtosis 2.884 3.205 3.304 3.355 3.408 3.409 3.461 3.454 3.462 3.489

pointwise regularity carry more weight than the high values. This is very consistent
with the financial interpretation summarized in Table 1: the pointwise regularity is
a proxy of the confidence the traders nourish in the past. In this view, we expect the
two following implications:

• the increase of trust (revealed by increasing values of h(t)) is by definition a slow
and gradual process, made of step-by-step reinforcements that can be frustrated
suddenly by the occurrence of even a single shocking news. As shown by the
distributions of Fig. 9, this is right what one observes as to the estimated pointwise
regularity functions;

• since the higher h(t) the smoother the price process (the more evident the trend),
the higher h(t) the more the past information weighs in the traders’ assessment
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Fig. 12 Sample ACF of the estimated pointwise regularity

of future prices, regardless the direction of the trend. Therefore, large and sudden
downward movements-that is the destruction of the “memory” or the “trust in the
past”-are likely to take place when h(t) is larger than 1

2 . What is more, the larger
h(t) the higher the conditional probability of a heavy downward variation.

The fact that very large and sudden downward variations tend to occur only when the
Hölder exponent is much larger than 1

2 , while the reverse (large upward and more
unstable variations) is much less frequent and tends to appear only immediately after
the falls, is well-rendered by the behaviour of the conditional average variations
of the pointwise regularity. More precisely, setting for notational simplicity ĥ(t) =
hkδ,q,n,K (t) and denoting by ĥm = min{ĥ(t)} and ĥM = max{ĥ(t)} the minimum and
the maximum of the estimated pointwise regularity, one can estimate the conditional
average variations through the following steps:

• for any ε ∈ R
+ small enough and any fixed h ∈ [ĥm + ε, ĥM − ε], define the set

T(h,ε) = {t : ĥ(t) ∈ [h− ε,h+ ε)} as the set collecting all the times for which the
corresponding estimates of h(t) belong to the interval centered on h;

• for each t ∈ T(h,ε) and any fixed integer f identifying the number of trading days
ahead with respect to t , calculate �t (h, f ) = ĥ(t + f ) − h;

• finally, calculate the average �̄(h, f ) = #(T(h,ε))−1
∑
t∈T(h,ε)

�t (h, f ), where as
usual, #(X) denotes the number of elements of the set X.

The average conditional variations �̄(h, f ) are displayed in Fig. 13 over an hori-
zon of one trading month (f = 25) only for two indexes (Footsie 100 and Hang
Seng), because the output is nearly the same for all the examined series. From the
perspective of behavioural finance, the conditional variations well describe both the
underreaction and the overreaction biases: as to the first, large values of h tend to be
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Fig. 13 Average variation of the pointwise regularity conditional to the estimated h(t), on a number
of f trading days to come. Panel a Footsie 100; Panel b Hang Seng

followed by small negative variations towards the equilibrium, as far as h itself is not
too large (in this case the correction is usually heavy and abrupt); as to the second,
low values of h, typical of financial crises, tend to be followed by wider and more
unstable positive variations (the amplitude of the swings in Fig. 13 tend to diminish
as h increases).

It is worthwhile to underline that this is can be seen as a stylized fact, since by
construction the conditional average variations are calculated with respect to the
whole series, and therefore they summarize reactions induced by even very different
market conditions.

Pointwise Regularity of the Financial Crises In proximity of financial crises, the
estimated pointwise regularity falls even to 0.35. The reason why the financial crises
do not simply reset the ‘memory’

(
h(t) = 1

2

)
, but induce low values of h(t) can

be well explained in behavioural terms: when markets experience dramatic shocks
(whose intensity can be estimated by the difference 1

2 − h(t)), traders typically
react by trading frenetically and settle for reduced margins. Said differently, the
collapse of the trust induces the traders to take profits as soon as possible. If this
behaviour is widespread in the market, it causes the fall in the price and thus the
asset becomes attractive for the next buyer, whose demand will increase the price
again in a cyclical mechanism. This touch-and-go market produces antipersistence,
which is the statistical counterpart of very low values of h(t).
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7 Further Developments

There is a growing awareness that fundamental models of stock prices are limited due
to market complexity induced by several factors such as globalisation, the quantity
and the quality of traded derivatives and information asymmetry and its management,
just to quote the main ones.

Traders and investors increasingly are questioning the choice of models we use.
A potential good candidate model should be able to reduce in a coherent frame all

empirical evidence that, collected by the stylized facts, do not agree with the current
models. As a second step, a good candidate should be sufficiently formalized from
a mathematical viewpoint to allow for the asset pricing, even of complex or illiquid
financial derivatives. This has motivated research in behavioural finance such as the
Lo’s Adaptive Market Hypothesis; albeit their conceptual content is well grounded,
these efforts are still insufficient.

In the previous paragraphs, we have introduced the main analytical properties of
the multifractional processes and described how they can be used to model financial
time series, in order to make the paradigm of Efficient Markets consistent with the
stylized facts and, ultimately, with the biases brought to light by the Behavioural
Finance. The synthesis that the multifractional stochastic processes provide for these
two apparently opposite worlds benefits of a very rigorous and parsimonious math-
ematical framework. The parsimony resides in their functional parameter, which
can be read as the time-changing weight that traders ascribe to past prices. A null
weight indicates local efficiency (that is, a locally null autocorrelation function of
the price variations); a positive weight denotes a positive inefficiency (that is, pos-
itive autocorrelation, trend and underreaction); finally, a negative weight reflects
a locally negative inefficiency (i.e., negative autocorrelation, mean reversion and
overreaction).

Under the assumption of multifractionality, the empirical estimates show that
the functional parameter of several stock indexes fluctuates around 1

2 , that is the
null weight, but even long time intervals exist where it lies very far from this mean
value, in both the directions. These outcomes strongly suggest that the alternation
of inefficiencies of opposite sign leads to long-term efficiency. But what generally
matters is not just the long-term, and in this respect the main advantage offered by the
model is to allow to assess, at each given time, how far the market is from efficiency
and how probable a correction is.

Once an extensive empirical evidence will be produced about the consistency
between the model and the actual financial time series (as to this, Bianchi and Pianese
2008; Bianchi and Pantanella 2010; Bianchi and Pantanella 2011; Bianchi et al.
2013) are promising contributions), the results will concur to model the functional
parameter in order to face the problem of the asset pricing in the multifractional
framework.
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Financial Analytics and A Binomial
Pricing Model

Charles S. Tapiero and Jiangyi Qi

1 Introduction

The Walras, Arrow and Debreu economic and financial equilibrium models have set
the foundations for pricing in an equilibrium (complete) competitive financial and
theoretical markets (Arrow 1951a, 1951b, 1963; Debreu 1959; Arrow and Debreu
1960; Lucas 1978). These models presume that events are memory-less, as well as
a number of assumptions that are not always met in practice. Real financial data
(such as the S&P, the Euro-Dollar exchange rate, etc.), indicate that financial rates
of returns are not necessarily normally distributed as may be affected by past and
observed returns (i.e. have memory, be auto-correlated and increasing or decreasing
as a function of observed returns). For example, over a period of 759 consecutive
days, we found that the probability of a price increase on the S&P will follow a price
increase was 0.4774 while the probability of such an increase following an actual
price decline in the previous day was 0.50964. By the same token, the probability
of a price decline following a price increase was 0.5254 while a decline following a
decline was found to have a probability of 0.4820. Analysis of other time series (such
as on intraday data) has indicated more pronounced results. Over shorter periods of
time (51 days), these probabilities were found to be even more pronounced (0.5925
and 0.4583) and (0.4074 and 0.54166). These observations lead to some financial
traders to devise trading strategies based on persistent random walks (see for example
Damien, at www.cetcapital.com) and profit from a financial markets incompleteness
arising due to a mis-specification of underlying financial models.

The intent of this paper is to consider basic elements of the binomial pricing
model by including a memory-based and a learning model. While most of the results
presented in this paper are commonly known (for example, the Arrow-Debreu pric-
ing model and the Bayesian learning model), we consider a short memory, regime
switching model. That is, unlike Markov switching pricing models where one move
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from one pricing model to another in (an exogenous) probability, we define a model
switching using the actual observed information of a price model at a given time. To
simplify the presentation, we assume in fact that when a model history (limited for
presentation purposes to one past period) is say of a price increase and then the price
decrease, this will lead to a switch to another pricing model and vice versa. Such an
approach is motivated by the belief that financial markets are characterize by long
trends with fundamental underlying factors while future expectations (and thus pric-
ing models) are sensitive to news, fears and financial assessments that lead to price
models to switch from one type to another. For example, are new fears regarding
financial markets altering future expectations and therefore their evolution? Most
events might not alter the basic probabilities laws and randomness that determine
the occurrence of subsequent events. But some events might have such an effect.

The traditional and statistical credibility theory approach commonly used in actu-
arial science is based on an approach that evaluates the objectivity and the subjectivity
of a risk source and devises a statistical “learning” mechanism that allows the up-
dating of the underlying claim probability. Using Bayesian statistics for example,
credibility theory divides risk events into a number of classes each with a propensity
for the event to occur and which are updated using subjective prior estimates of risk
classes and its accrued experience—the process history observed. The goal of credi-
bility theory is then to set up an experience rating system (and thus with a statistical
memory). Unlike credibility theory, the short memory approach presumes that ob-
served information may alter in probability the underlying random process defining
the probability law of a subsequent event. Explicitly, while credibility theory seeks
to integrate “experience” in estimating the propensity of a process future’s states and
its probabilities, short memory models are an inherent property of the process that
determines, conditionally on observed information, its future process evolution. The
credibility approach however, will use the fact that an event occurred to revise the
probability (say by applying Bayes Theorem) to estimate the future probability of
that event with a credibly estimated probability (since it is based on more informa-
tion). In this sense these approaches differ fundamentally. The examples we shall
use in this paper seeks to outline their differences.

In fact, what is memory and what is time? These are two intrinsically and fun-
damental related concepts that underlie financial modeling. Time is often defined
implicitly in terms of a relative time line to organize events and their theories. Dy-
namic models for example (such as price processes) are merely models sought to
organize a hypothetical evolution of prices along a given time line. Extending this
time line beyond a current time provides means to forecast future events and prices.
Time is then defined as a sequence of points, denoted by the year, the month, the
week, the day, the hours, the seconds and the microseconds. Each time line may have
different properties, explanatory and predictive powers and each embeds past events
and their effects on current ones—the memory. The greater the time line interval, the
more a memory is embedded in the evolution of the processes’ parameters it seeks to
represent. These elements lead to difficult problems that seek to account for theories
and their models are constructed to negate their effects. For example, in fundamental
finance option prices are defined strictly in terms of a model (rational expectations)
that has the current option price to be an expectation (under a specific probability
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measure) of a future price. The past may or may not be relevant to such expectations
is then simply done away with. Modeling memory is therefore both a challenging
modeling and analytical problem. We circumvent its challenges by a mathematical
transformation of the underlying data we have, by a dimensional expansion of an
underlying model we construct and by endogenizing the elements that we use to
define what we “mean” by memory and how future states and expectations are applied
to define their present consequences. The problems we use in this paper outline and
compares some of these approaches using the simple binomial model.

2 Financial Models and Memory

Modeling memory processes takes on many form. The following examples outline
their differences.

1. No memory in which the past and the future have no effect on current states.
Future estimates are then defined in terms of a filtration which summarizes all the
relevant information relative to that state. In this sense, “memory” is embedded
on the definition of a filtration changing over time as information is revealed,
accumulted and interpreted.

2. Markovian memory where all past states are summarized by the last state attained.
Their incremental occurrence may therefore be statistically independent.

3. Statistical and Bayesain memory. These models use Bayes Theorem to update
future state estimates as new information is revealed. In this sense, it provides
a statistical definition for a “new filtration” based on data sets defined at any
particular instant of time.

4. Long run Memory underlie a family of models where the volatility of underlying
processes does not grow linearly but increases over time at a nonlinear rate.
Models such as Levy processes, limit infinite variance processes etc. are such
models. These models are not considered in this paper.

5. Short memory processes unlike previous memory models are “regime swtiching”
stochastic models reacting to observed information. A variety of derived mod-
els may be constructed to better represent (using appropriate data and statistical
estimation techniques) the causal factors underlying the evolution of events. Un-
like, Bayesian models, short run models are information specific that trigger a
changing process rather than its statistical estimates.

For example, does an increase in a market price depend statistically on a previous
growth? Does a current market growth correlate with a series of price increases?
Such dependence, if existing, is often used by traders to predict market increases
and trade on a momentum of prices. Dependence is then endogenous, expressing the
time behavior of assets, responding to their “memory”, namely their past history of
growth and decline in stock prices. Such dependence leads to processes that can be
called persistent, anti-persistent. In the first case, the occurrence of a random event
determines the random occurrence of subsequent events. When these events are self-
reinforcing, we shall call these “persistent” when they are counter reinforcing (for
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example, as it is presumed in mean reverting processes), these will be called “anti-
persistent. In some models, extensive use of a Bayesian approach is used, where
information continuously updates prior estimates.

Below, we consider first how memory is accounted for in fundamental finance.
This is the case, since financial prices are defined by an equilibrium implied in
the exchange of buyers and sellers in financial markets, assumed “complete” and
thereby defined in terms of certain conditions we shall elaborate below. In particular,
the Arrow-Debreu fundamental model for assets pricing is based on the assumption
that at any equilibrium time, the future is predictable and therefore its future well
defined by a state and its price. The models we use are then extended within binomial
models.

3 The Arrow-Debreu Model and Memory

Memory models (or a lack of it) are implied in both financial and econometric models.
It assumes many forms spanning synthetic probability models where probability of
future states are an artificial construct (as it is the case in theArrow-Debreu, definition
of risk neutral distributions), random walk models where events occur independently
of their past unless structured in a parametric and mathematical model, Bayesian
and adaptive models where information is continuously translated into a “statistical
memory”, long-run and short run memories etc.

In an Arrow-Debreu pricing model for example, future states, say 2 such states
Si , i = 1, 2 are priced explicitly by investors’ exchange—some buying a future
state and some selling that future state. In equilibrium, each state has then price,
say πi , i = 1, 2. Over a “complete set of potential future states”, all potential
and future states define a predictable market which is a future risk model, unlike
state uncertainty (in a Knight sense) where future states may be unknown. Such
a situation is one aspect (future states predictability) that differentiates between
risk and uncertainty models in finance and thus, complete and incomplete markets.
For example, expectation that a stock price increases by a fixed rate to S1 with
S1 = S0(1 +h) or just decrease to S2 by a fixed loss rate, or S2 = S0(1 − %) defines a
2-states predictable future. In addition, the Arrow-Debreu model (as it is the case in
all complete markets finance models), assumes a market equilibrium for each future
state implying that the demand and supply for a stock future state define uniquely its
price. Thus, in the Arrow-Debreu model, buying these future states for S0 initially
means that an exchange occurred, one paying S0 and the other selling the future
prospect at S1π1 + S2π2 (since once an investor has paid S0 he owns as well the
future states and therefore, S0 = S1π1 +S2π2). Any additional information provides
an opportunity to reduce the parameters defined by such a pricing model. Explicitly,
define π = π1 + π2 and let,

S0 = π
(
S1
π1

π
+ S2

π2

π

)
= π (S1p1 + S2(1 − p1)).

Since there is no risk and uncertainty in such transactions and since the future
price occurs a period later, its present price, discounted at a risk free rate Rf (since
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there is no risk and since the price of such an investment is only 1 $) the equation
above is equivalent to earning the risk free rate at all state prices, or:

1 = π ((1 + Rf)p1 + (1 + Rf)(1 − p1)) = π (1 + Rf)(p1 + (1 − p1)) = π (1 + Rf )

And 1/(1 + Rf ) = π which leads to:

S0 = π (S1p1 + S2(1 − p1)) = 1

1 + Rf (S1p1 + S2(1 − p1)),

p1 = π1

π1 + π2
and p2 = π2

π1 + π2

In equilibrium, one pays what one wants to get and both the buyer and the seller have
agreed on the unique price of their exchange. Therefore if we were to pay instead B0

dollar and obtain for sure some amount, B1, thenB0 = B1π1 +B1π2 = B1(π1 +π2),
thus π1 + π2 = B0/B1. As a result we obtain a relative pricing model—pricing
one asset (say a stock) relative to another (a bond). The price of the stock is thus
conditional on “information” which is in this case, expressed by the price of a risk
free asset, or:

S0 = B0

B1
(S1p1 + S2p2) or p1 = 1

S1 − S2

(
S0
B1

B0
− S2

)

Further, if Ci = Max(Si − K , 0), i = 1, 2 is the price of a call option, then, the
current price of such an option is:

C0 = B0

B1
(C1p1 + C2p2) = B0

B1
(Max(S1 −K , 0)p1 + Max(S2 −K , 0)p2)

And therefore,

C0
B1

B0
=
(

Max(S1 −K , 0)
1

S1 − S2

(
S0
B1

B0
− S2

)

+ Max (S2 −K , 0)
1

S1 − S2

(
S1 − S0

B1

B0

))

Of course, if a stock price, its current call option price and say a put option whose
exercise price is Q, then we have a system of two equations in the two implied future
states. In other words, the second equation is:

P0
B1

B0
=
(

Max(Q− S1, 0)
1

S1 − S2

(
S0
B1

B0
− S2

)

+ Max (Q− S2, 0)
1

S1 − S2

(
S1 − S0

B1

B0

))

In this sense, the Arrow-Debreu is an endogenous model with parameters defined by
the financial information which investors or financial analysts have.
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The connotation “probability” to p1 and p2 is therefore artificial. In this sense,
there is no memory and there is no future but just a present summarized by exchanges
in a market which is always in equilibrium and fair—with one price for the two states
(S1, S2), and a price relative to one state asset whose price is a risk free bond whose
future price isB1. As a result, the existence of memory or memory models that do not
replicate the basic exchange outlined above (albeit in far more complex situations)
are therefore pricing models that do not conform to the fundamental finance theory of
pricing. Such models are therefore off-equilibrium prices. For example, in markets
with few and powerful (rich) financial agents (e.g. Big Banks, Big Funds and Big
Financial Firms), the interactions as well as the weight each of these agents can
impose on financial markets will alter the price that each agents will be paying for
financial assets. In this case, prices are not unique and markets are “incomplete”.

Finance in the “real world” is in fact besieged by many future states, some un-
known, some known but cannot be priced, etc. and cannot therefore replicate the kind
of exchange that occur as stated above which will lead to a unique (and equilibrium)
price. Financial analytics consists then in reconciling real finance with its theoretical
underpinning—either exactly (in which case, our financial models define what we
call complete markets) or approximately, in which case they “transform” what is an
incomplete market financial model, into an approximate one. In these cases, since
market prices exist in fact “only in the present”, memory and anticipation of future
states are mechanisms that reduce both past and future states into a single present
one (see Tapiero 2013).

Example: Pricing in a Complete Market The following example outlines this ap-
proach. No memory in a modeling sense means that two subsequent events are
independent of one another. In addition, financial models assume the predictability
of future states. For example, let a stock price be given by future states modeled as
a lognormal model:

dS̃(t)

S̃(t)
= dR̃(t) where dR̃(t) = αdt + σdW (t), S(0) = S0 > 0

WhereW (t) is a Brownian motion, consisting of independently and identically stan-
dard normally distributed random variables (of mean 0 and variance 1). In this model,
the price at time (t + dt), S(t + dt), depends necessarily on the price of at time t and
is therefore “dependent” on its previous value. This occurs in two ways, first due to a
trend rate α and due to the random occurrence of the Brownian motion W̃ (t) whose
stock price multiplying factor is the volatility σ . However the stock price rate of

return, defined by dR̃(t) = dS̃(t)
S̃(t)

is necessarily memory-less since rates of returns are
independent and time linear with expected normal rates of returns with mean αt and
variance σ 2t . Such a model, called the Lognormal model for asset prices underlies
many financial applications withy complete markets. For example, it is easy to show
by Ito’s calculus that:

ln S̃(t) =
(
α − 1

2
σ 2

)
t + σW (t), S(0) = S0 > 0 and S̃(t) = S0e

(α− 1
2 σ

2)t+σW (t)
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Adding and subtracting a risk free rate payment, we have by definition:

S̃(t) = S0e
(−Rf+α− 1

2 σ
2+Rf )t+σW (t) = S0e

(+Rf− 1
2 σ

2)t+σW (t)+(α−Rf )t

= S0e
(+Rf− 1

2 σ
2)t+σ

(
W (t)+

(
α−Rf
σ

)
t
)

Thus, interpreting the risk premium rate (α−Rf
σ

) that one pays to remove the effect
of future price risk (however not to remove the underlying future price risks, and
therefore it is merely an insurance price against future returns risks). We may define
a “riskless probability model”, (in the sense that the price of risk has been accounted
for by the appropriate probability measure selected) which we shall call a probability
measure Q with:

WQ(t) = W (t) +
(
α − Rf
σ

)
t

Thus, with respect to this probability measure the following pricing model results:

S̃(t) = S0e
(Rf− 1

2 σ
2)t+σWQ(t) or

dS̃(t)

S̃(t)
= Rf dt + σdWQ(t), S(0) > 0

This probability measure (coined the Q probability measure) defines a Martingale.
Namely, a price process with the following (stable and equilibrium) quantitative
pricing model:

e−Rf (0)S0 = e−Rf ∗(1)EQS̃(1) = . . . = e−Rf ∗(t)EQS̃(t)

This corresponds to the binomial case treated earlier, defining a pricing Martingale
with respect to the state prices p1 = π1

π1 +π2
and p2 = π2

π1 +π2
with (p1, p2) defining

the probabilities of this probability measure. In this context,

e−Rf ∗tEQS̃(t) = . . .= e−Rf ∗(T )EQS̃(T ) or EQS̃(t) = e−Rf (T−t)EQS̃(T )

However, since at time t, we can observe uniquely the price, S̃(t) ≡ S(t) and as a
result,

S(t) = e−Rf (T−t)EQ
{
S̃(T ) |�t

}

Where �t denotes a filtration, with expectation at time t conditional on such filtration.
A filtration stands for all the information available and commonly shared at time t.
In this sense, it embeds past information as well which has led financial agents to
act on financial markets to buy or to sell and therefore reach a price equilibrium
which is implied by the probability measure Q, named in this special case (as it is
defined with respect and based on the information about the risk free bond market)
a “risk neutral probability measure”. The Arrow-Debreu thus defines an important
pricing approach with a model which is utility free and therefore based on an implied
behavior of financial markets rather than explicit financial agents. Financial analytic
pricing models are then designed to account for deviations from such a model, but
yet be approximately consistent with such an approach.
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4 Financial Prices, Filtration and Memory

Financial prices at time t are defined conditionally on information available at time t.
When time changes, the information-filtration may of course change and therefore,
future prices are necessarily revised to reflect a current and observed price to maintain
the completeness of the financial model. Consider two instants of time, then:

S(t) = e−Rf (1)EQ
{
S̃(t + 1) |�t

}
= . . . = e−Rf (T−t)EQ

{
S̃(T ) |�t

}

S(t + 1) = e−Rf (1)EQ
{
S̃(t + 2) |�t+1

}
= . . . = e−Rf (T−(t−1))EQ

{
S̃(T ) |�t+1

}

Note that the filtration has changed from time t to time t + 1. Further, the price at
time t + 1 need not be defined by states defined at time t and therefore, the price of
a state at time t measured with respect to states defined at time t + 2 and the price
at time t + 1 defined with respect to the states at time t + 2 need not be identical. A
filtration, resulting from both a re-definition of future states and a “new economic
environment” contribute to changing prices. In fact, such a “model revision” depends
on the information one use and how we use it. Since future state prices and economic
news and information alter investors decisions, past information combined with a new
one, imply that the filtration of an Arrow-Debreu pricing model implies a memory of
some sort. In this sense, observed prices S(t) and S(t + 1) for a future price S(t + 2)
are not necessarily based on the same “financial model” (since they are not based on
the same information regarding the states and the prices of S̃(t + 2)).

S(t) = e−Rf (2)EQ
{
S̃(t + 2) |�t

}
and S(t + 1) = e−Rf (1)EQ

{
S̃(t + 2) |�t+1

}

For example, in a binomial model, we have the “risk neutral probabilities”:

p
Q
1,t = π1,t

π1,t + π2,t
and p

Q
2,t = π2,t

π1,t + π2,t
at time t with state prices (π1,t ,π2,t )

where π1,t ≡ (π1,t |�t ), �t ≡ {St−1, St−2, . . . . . . } is a state defined conditionally on
some filtration (information) which is necessarily past, future, or external to the pro-
cess. A pricing model that simplify its definition is thus based on specific assumption
regarding the information we use and how it is used. Given the standardization of
these states into risk neutral probabilities, we note that past prices are implied in the
risk neutral probability since:

p
Q
1,t ≡

(
p
Q
1,t |St−1, St−2, . . .

)
as well as p

Q
1,t+1 ≡

(
p
Q
1,t+1 |St , St−1, St−2, . . .

)

And at time t + 1(
p
Q
1,t+1 |St , St−1, St−2, . . .

)
= π1,t+1

π1,t+1 + π2,t+1
with state prices (π1,t+1,π2,t+1)

And therefore, at time t:

S(t) = 1

1 + Rf
(
p
Q
1,t Sh(t + 1) + pQ2,t S%(t + 1)

)
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Setting, Sh(t + 1) = S(t)(1 + ht+1), S%(t + 1) = S(t)(1 − %t+1), we have:

1 = 1

1 + Rf
(
p
Q
1,t (1 + ht+1) + pQ2,t (1 − %t+1)

)
, with filtration �t at time t

1 = 1

1 + Rf
(
p
Q
1,t+1(1 + ht+2) + pQ2,t+1(1 − %t+2)

)
, with filtration �t+1 at time t+1

Or

p
Q
1,t = Rf + %t+1

ht + %t+1
, pQ1,t+1 = Rf + %t+2

ht+2 + %t+2
, with filtrations �t , �t+1

Of course, if additional information regarding, say option prices with known strike
prices at time t + 2, then at times t and t + 1, we have:

Ct

(
S̃t+1,K1

)
= 1

1 +Rf
(
p
Q
1,tCt+1

(
St (1 + ht+1),K1

)+pQ2,tCt+1
(
St (1 − %t+1),K1

))

Replacing the implied risk neutral probability, we have two equations in two states
at time t + 1, ht+1 and %t+1 denoting the rate of returns (whether gain or loss) at time
t + 1

Ct

(
S̃t+1,K1

)
= 1

1 + Rf

⎧⎪⎪⎨
⎪⎪⎩

Rf + %t+1

ht+1 + %t+1

(
Ct+1 (St (1 + ht+1), K1)

−Ct+1 (St (1 − %t+1),K1)
)

+Ct+1 (St (1 − %t+1),K1)

⎫⎪⎪⎬
⎪⎪⎭

Ct

(
S̃t+1,K2

)
= 1

1 + Rf

⎧⎪⎪⎨
⎪⎪⎩

Rf + %t+1

ht+1 + %t+1

(
Ct+1 (St (1 + ht+1),K2)

−Ct+1 (St (1 − %t+1),K2)
)

+Ct+1 (St (1 − %t+1),K2)

⎫⎪⎪⎬
⎪⎪⎭

where K1 and K2 are two strikes of two call options we have used in this example.
Of course given the future states %t+1 and ht+1, the risk neutral probabilities in
the underlying asset are well defined and theoretical option prices at time t can be
calculated. At time t + 1, an instant of time later we have similarly,

Ct+1

(
S̃t+2,K1

)
= 1

1 + Rf

⎧⎪⎪⎨
⎪⎪⎩

Rf + %t+2

ht+2 + %t+2

(
Ct+2 (St+1 (1 + ht+2),K1)

−Ct+2 (St+1 (1 − %t+2),K1)
)

+Ct+2 (St+1 (1 − %t+2),K1)

⎫⎪⎪⎬
⎪⎪⎭

Ct+1

(
S̃t+2,K2

)
= 1

1 + Rf

⎧⎪⎪⎨
⎪⎪⎩

Rf + %t+2

ht+2 + %t+2

(
Ct+2 (St+1 (1 + ht+2),K2)

−Ct+2 (St+1 (1 − %t+2),K2)
)

+Ct+2 (St+2 (1 − %t+2),K2)

⎫⎪⎪⎬
⎪⎪⎭

Since, pQ1,t = Rf+%t+1

ht+1+%t+1
and pQ1,t+1 = Rf+%t+2

ht+2+%t+2
, the implied risk neutral probabilities

(pQ1,t ,p
Q
1,t+1) may define an autocorrelation and therefore a memory anchored in
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their common information or in the use of common information to estimate the
future states at time t + 1 and at time t + 2. Is there then a relationship between
the probabilities pQ1,t and pQ1,t+1? While, pQ1,t is implied in the known future states
(ht+1, %t+1) and its filtration at time t + 1, these same states at time t are embedded in
a filtration at time t − 1. As a result, we can consider these elements as probabilities
implied in our temporal observations of time, providing a series of probabilities
p
Q
1,1,pQ1,2,pQ1,3, . . .pQ1,t implied by the information we have regarding these prices.

Given a set of prices, are these probabilities dependent? Do they reveal a trend?
Is there an autocorrelation between these probabilities (that would reveal an inter-
temporal dependence)? Etc. Such a problem is considered in the next section. Below a
number of extensions are considered. These include the effects of filtration (additional
information at a given time) and short memory as will be developed subsequently)
that leads to a price process as a function of past information. Such approaches
are then based on the statistical realization of information which contributes to the
adjustment of financial markets to be consistent with the Arrow-Debreu equilibrium
model. A specific case is considered below which assumes that information is defined
by the proportional number of times a stock price has increased or decreased (or both)
consecutively over a given time period. Of course, if a series increases or decreases
is random, the probability that consecutive “risk neutral” probabilities are dependent
is null and vice versa. Namely, consecutive risk neutral probabilities are dependent.

5 A Multivariate Pricing Models with Short Memory

For simplicity, let p̃Qt ∈ {1,0} with pQ1,t the probability that the stock price has

increased (or equal 1) and pQ2,t = 1 − pQ1,t . We define similarly p̃Qt+1 ∈ {1,0} and

therefore assume that
{
p̃
Q
t , p̃Qt+1

}
are two random variables defined by a bi-variate

Bernoulli process. Consider next two consecutive periods. There are then four states
〈{1,1}, {1,0}, {0,1}, {0,0}〉. If these probabilities are statistically independent, their
joint distribution is their product (p̃Qt p̃

Q
t+1). If they are dependent, then they define a

bi-variate bernoulli joint probability distribution (and evidently, for n samples, these
define a bi-variate binomial probability distribution):

℘
(
p̃
Q
t , p̃Qt+1

)
=

⎧⎪⎪⎨
⎪⎪⎩

p̃
Q
t = 1, p̃Qt+1 = 1 probability p11

p̃
Q
t = 1, p̃Qt+1 = 0 probability p10

p̃
Q
t = 0, p̃Qt+1 = 1 probability p01

p̃
Q
t = 0, p̃Qt+1 = 0 probability p00

Or,
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t + 1 Price increase t + 1 Price decrease

t Price increase p11 p10

t price decrease p01 p00

While their joint distribution is:

℘(p̃Qt , p̃Qt+1) = {p11}p̃Qt p̃Qt+1{p10}p̃Qt (1−p̃Qt+1){p01}(1−p̃Qt )p̃Qt+1{p00}(1−p̃Qt )(1−p̃Qt+1),

with (p̃Qt , p̃Qt+1) ∈ [1,0] and p11 + p10 + p01 + p00 = 1

The probability generating function is P ∗(z1, z2) =∑
p̃
Q
t =1,0

∑
p̃
Q
t+1=1,0

℘(p̃Qt , p̃Qt+1)zp̃
Q
t

1 z
p̃
Q
t+1

2

and therefore,

P ∗(z1, z2) = p00 + p10z1 + p01z2 + p11 z1z2

The moments of such a distribution are thus estimated by deriving the PGF at z1 =
1, z2 = 1 leading to:

E(p̃Qt ) = p10 + p11, var (p̃Qt ) = (p10 + p11)(1 − (p10 + p11))

E(p̃Qt+1) = p01 + p11, var (p̃Qt+1) = (p01 + p11)(1 − (p01 + p11))

andE(p̃Qt p̃
Q
t+1) = p11 or p11 = 1−p00 −p10 −p01. Further, setting 1−p00 −p01 =

p1 and 1 − p00 − p10 = p2 we obtain two Bernoulli distributions:

E(p̃Qt ) = p1 = 1 − p00 − p01, var (p̃Qt ) = p1(1 − p1)

E(p̃Qt+1) = p2 = 1 − p00 − p10, var (p̃Qt+1) = p2(1 − p2)

As well as: E(p̃Qt p̃
Q
t+1) = p11 = E(p̃Qt )E(p̃Qt+1) + ρ

√
var (p̃Qt ) var (p̃Qt+1) where ρ

is the correlation of the two implied risk neutral probabilities at time t and t + 1. Or,

ρ = p11 − (1 − p00 − p01)(1 − p00 − p10)√
(1 − p00 − p01)(p00 + p10)(1 − p00 − p10)(p00 + p10)

Thus,E(p̃Qt p̃
Q
t+1) = p11 = p1−p10 = p2−p01 = p1p2+ρ√p1p2(1 − p1)(1 − p2)

and finally:

cov (p̃Qt , p̃Qt+1) = ρ − p1p2 = ρ − (1 − p00 − p01)(1 − p00 − p10)

Assume for example, over a10 periods, the following record of increases and
decreases in a stock price,

〈{1,0}, {0,1}, {1,1}, {1,1}, {1,1}, {1,0}, {0,1}, {1,0}, {0,0}, {0,1}〉
Or

t + 1 Price increase t + 1 Price decrease

t Price increase p11 = 0.3 p10 = 0.3
t price decrease p01 = 0.3 p00 = 0.1
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The average time the price increased or decreased are equal and equal 0.4 while:
ρ = −0.25.

Similarly, we have considered a number of stocks and indexes over various periods
of time and data sets and have obtained the following results, indicating mostly a
correlation between the probabilities of consecutive, increase or decrease.

For Apple’s stock rate of return over a given period in 2005, we used the following
rates of returns

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
ROR

ROR

Consecutive increases and decreases indicated (for 100 days) the following statistic
01 11 10. . .with

t + 1 Price increase t + 1 Price decrease

t Price increase p11 = 0.333 p10 = 0.2745
t price decrease p01 = 0.29411 p00 = 0.09803922

Over 100 days in APPLE’s stock in 2005.
In this case,

E(p̃Qt ) = p1 = 1 − 0.098 − 0.2941 = 0.6079, var (p̃Qt ) = 0.2383

E(p̃Qt+1) = p2 = 1 − 0.098 − 0.2741 = 0.6279, var (p̃Qt+1) = 0.2336

And E(p̃Qt p̃
Q
t+1) = p11 = 0.3334 = (0.6079)(0.6279) + ρ√(0.2383)(0.2336), and

therefore, a negative correlation ρ = −0,2046.
Similar results, indicating a dependence are obtained using data on a variety of

indexes using different time periods. The results below summarize a number of
estimates on both indexes and stocks using intraday and day data. IBM intraday data
in 1, 5 and 10 min indicates that dependence is more pronounced in 1 min data while
it is reduced as the time interval increases. This observation reinforces the advantages
that intraday high frequency traders have over day traders or long investors.
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t + 1 Price increase t + 1 Price decrease

IBM: Intraday data, 1, 5 and 10 min

t Price increase p11(1 min) = 0.4437 p11(5 min) = 0.4694
p11(10 min) = 0.5067 p10(1 min) = 0.5562
p10(5 min) = 0.5305 p10(10 min) = 0.4932

t Price decrease p01(1 min) = 0.4989 p01(5 min) = 0.5373
p01(10 min) = 0.5034 p00(1 min) = 0.5010
p00(5 min) = 0.4626 p00(10 min) = 0.4965

SPX index: day and weekly data

t Price increase p11(1day) = 0.4616 p11(1week) = 0.5722
p10(1day) = 0.5188 p10(1week) = 0.4227

t price decrease p01(1day) = 0.5846 p01(1week) = 0.477
p00(1day) = 0.4153 p00(1week) = 0.5230

Shanghai composite index: 1 day

t Price increase p11 = 0.5866 p10 = 0.41338
t Price decrease p01 = 0.5341 p00 = 0.4658
Aapp intraday 1 min and 5 min data

t Price increase p11(1 min) = 0.456 p11(5 min) = 0.4911
p10(1 min) = 0.544 p10(5 min) = 0.5088

t Price decrease p01(1 min) = 0.5156 p01(5 min) = 0.5112
p00(1 min) = 0.4843 p00(5 min) = 0.4887

Risk neutral probability distributions (in the binomial model we have used) thus
imply future states prices and therefore the belief of a typical agent, representative
of the financial market, to know these two states and thus their proportional value.
Further it assumes as well that all agents in a financial market will buy or sell at the
same expected price.

Example: Extending the Memory to Two Periods Extending the memory to two pe-
riods leads to a Markov model defined by the following matrix for which appropriate
probabilities at time t are defined conditional on a price increasing or decreasing next:

(1)++ (2)−+ (3)+− (4)−
(1)++ pt1,1 0 1 − pt1,1 0
(2)−+ pt2,1 0 1 − pt2,1 0
(3)+− 0 pt3,2 0 1 − pt3,2
(4)− 0 pt4,2 0 1 − pt4,2

Where ++ means that the price has increased in the subsequent two periods while
+ − means that the price has first increased and the decrease in the previous two
periods. Thus, pt1,1 is the probability that the price will continue to increase while
pt3,1 = 1 − pt1,1 is the probability that it will decrease at the subsequent period. For
simplicity, assume a stationary state. Then the (long run) probability to be in any

of these information states pt1,pt2,pt3,pt4 with
4∑
i=1
pi = 1 are given by the ergodic

probabilities using the current state transition probabilities pt1,1, pt2,1, pt3,2 and pt4,2.
At the limit, the long run probabilities are given by (in our example case, by setting
pt+1
i = pti = p̂i and therefore



300 C. S. Tapiero and J. Qi

pt+1
1 = pt1pt11 + pt2pt21; pt+1

2 = pt3pt32 + pt4pt42

pt+1
3 = pt1

(
1 − pt11

)+ pt2
(
1 − pt21

)
, pt+1

4 = pt3
(
1 − pt32

)+ pt4
(
1 − pt42

)
and thus (with p4 = 1 − pt1 − 2pt2):

pt1 =
(

pt42p
t
21

pt42p
t
21 + (1 + 2pt42 − pt32

) (
1 − pt11

)
)

,

pt2 = pt3 = pt42

(
1 − pt11

)
(
1 + 2pt42 − pt32

) (
1 − pt11

)+ pt42p
t
21

A binomial pricing model is given in this case by:

1 = 1

1 + Rf
(
pt11

(
1 + h1

t+1

)+ (1 − pt1,1

) (
1 − %1

t+1

))
,

1 = 1

1 + Rf
(
pt21

(
1 + h2

t+1

)+ (1 − pt21

) (
1 − %2

t+2

))
,

1 = 1

1 + Rf
(
pt32

(
1 + h3

t+1

)+ (1 − pt32

) (
1 − %3

t+2

))
,

1 = 1

1 + Rf
(
pt42

(
1 + h4

t+1

)+ (1 − pt42

) (
1 − %4

t+2

))

However, since the probability of being in any of these 4 states is given by
pt1,pt2,pt3,pt4 we have:

1 = pt1

1 + Rf
(
pt11

(
1 + h1

t+1

)+ (1 − pt1,1

) (
1 − %1

t+1

))

+ p2
1

1 + Rf
(
pt21

(
1 + h2

t+1

)+ (1 − pt21

) (
1 − %2

t+2

))
,

+ pt3

1 + Rf
(
pt32

(
1 + h3

t+1

)+ (1 − pt32

) (
1 − %3

t+2

))

+ pt4

1 + Rf
(
pt42

(
1 + h4

t+1

)+ (1 − pt42

) (
1 − %4

t+2

))

where each of the information states pti , i = 1,2, 3,4 are given as a function of the
transition probabilities as stated above. These probabilities are necessarily dependent
as they are defined in terms of common probabilities.

6 A Binomial Model and Bayesian Learning

Assume at present that there are many buyers and sellers that share a common ex-
pected risk neutral probability such that at two consecutive times E(p̃Qt ) = αt

αt+βt
and E(p̃Qt+1) = αt+1

αt+1+βt+1
which we assume for simplicity to be approximated by a

bivariate Beta probability distribution with variance:
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var
(
p̃
Q
t

)
= αtβt

(αt + βt )2(αt + βt + 1)
,

var
(
p̃
Q
t+1

)
= αt+1βt+1

(αt+1 + βt+1)2(αt+1 + βt+1 + 1)

And therefore using categorical data of consecutive increases or decreases in prices,
we have then 4 equations for moments estimates of αt ,βt ,αt+1,βt+1:

E(p̃Qt ) = 0.6079 = αt

αt + βt , E(p̃Qt+1) = 0.6279 = αt+1

αt+1 + βt+1
,

and

var (p̃Qt ) = 0.2383 = αtβt

(αt + βt )2(αt + βt + 1)
,

var(p̃Qt+1) = 0.2336 = αt+1βt+1

(αt+1 + βt+1)2(αt+1 + βt+1 + 1)

Or, β = αt (1−E(p̃Qt ))/E(p̃Qt ) and therefore αt = E(p̃Qt )(1−E(p̃Qt ))

var (p̃Qt )
−1. These lead to

αt = 0.0002416, βt = 0.00015611 and αt+1 = 0.000178, βt+1 = 0.00014317
with ρ = −0,2046 which provides an indication to a bi-variate Beta probability
distribution. Such distributions are however varied, assuming various forms (see for
example, Olkin and Liu 2003; Nadajarah and Kotz 2005 as well as Arnold and Ng
2011 for a number of such distributions as well as their moments estimation).

Generally for a K vector of multivariate Bernoulli probability distributions (note
the change in notation) denoting a time series of increases or decreases in a stock
price:

p(x1, x2, . . .., xK ) = {p11....1}
K∏
j=1

xj {p011..1}
(1−x1)

K∏
j=1
xj

. . . . . .{p00......0}
K∏
j=1

(1−xj )

Such a multivariate distribution can then be used for a pricing model of a K-length
memory time series.

Co-variation in the implied risk neutral probabilities does not mean however that
markets are incomplete, but indicate that the market is changing from period to
period due to new information (filtration effects) or potentially, future states that
define the whole set of potential future prices.

If we consider information to be defined by the last past periods, say at t − 1, t
and t + 1 we have then 8 states ( 23 = 8) probabilities. Their probability generating
function, thus:

P ∗(z1, z2, z3) = {p000 + p001z3 + p010z2 + p011z2z3 + p100z1 + p101z1z3

+ p110z1z2 + p111z1z2z3
}
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To calculate their estimate, mean, and variance and autocorrelation is a simple exer-
cise. Considering n samples, its PGF is [P ∗(z1, z2, z3)]n which we can use to calculate
the moments of their distribution. For the bi-variate case, we obtain a multivariate
binomial distribution:

B(x1 = i, x2 = j )

=
∑
k=0

n!
i!(j − i)!(k − i)!(n− j − k + i)! (p̂11)i(p̂10)k−i(p̂01)k−j (p̂00)n−k−j+i

Which calculates the number of times a stock price has assumed consecutive values.
Further, when the probabilities are assumed unknown or random, mixture

probabilities models can be constructed as we shall briefly outline using some
examples.

Generally for any arbitrary length, we let (x̃1, x̃2, . . .., x̃n) be, n bi-variate random
variables, defined as follows (see also . . ..):

f (x̃i = 1
∣∣p1,i) = p1,i

f (x̃i = 1, x̃j = 1
∣∣p2,ij) = p2,ij , i, j = 1, . . .n; i �= j

. . . . . .

f (x̃i = 1, x̃j = 1, . . . . . ., x̃n = 1
∣∣pk,i,j ...n) = pk,i,j ...n

where {pk} is a parameter set (similar to that defined above). Since this is a binary
variable, we have:

E(x̃i |p1i) = p1i , E(x̃i x̃j
∣∣p2,ij ) = p2,ij ;

cov (x̃i , x̃j
∣∣p1i ,p1jp2,ij) = p2,ij − p1ip1j ; i �= j

and

ρij (x̃i , x̃j ) = p2,ij − p1ip1j√
p1i(1 − p1i)p1j (1 − p1j )

An Example: A Bayesian Learning Model Say that information is a counting process
of the past times a stock price has increased and the number of times it has decreased.
In this case, under complete markets and at two consecutive instants of time, we have:

S(t) = 1

1 + Rf E
Q
{
S̃(t + 1) |�t

}
= . . . . . .= 1

(1 + Rf )T−t E
Q
{
S̃(T ) |�t

}

S(t + 1) = 1

1 + Rf E
Q
{
S̃(t + 2) |�t+1

}
= . . . . . .= 1

(1 + Rf )T−(t+1)E
Q
{
S̃(T ) |�t+1

}

Where �t denotes the filtration of past events (the memory) of the number of times rt
an asset has increased in price and therefore, the number of times that it has decreased
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is t − rt . Therefore, S(t |rt )is a price which is defined conditionally on the number
of events rt and t − rt . As a result, the future price at time t, the price is:

S(t |rt ) = Ex̃t
{
e−Rf (1)EQ

{
S̃(t + 1 |rt + x̃t )

}}
, x̃t = 1,0

where

x̃t =
{
rt + 1 w.p. θ̃t
rt w.p. 1-θ̃t

where “θ̃t” is the probability that the return have increased at time t + 1. Let the
expectation E(θ̃t ) = pQt denote the risk neutral probability, or:

S(t |rt ) =
{

1

1 + Rf E
Q
{
Eθ̃t S̃(t + 1 |rt + 1 )θ̃t + Eθ̃t S̃(t + 1 |rt )(1 − θ̃t )

}}
,

x̃t = 1,0

If S̃(t + 1 |rt + i ) and θ̃t are statistically independent, then, if the probability θ̃t has
a Beta probability distribution with parameters “ αt” and “ βt”, or: θ̃t˜Bt (αt ,βt ) then
p
Q
t = αt/(αt ,βt ) and therefore, “ αt” and “ βt” define proportional estimates of the

future assets states, or

S(t |rt ) =
{
e−Rf (1)EQ

{
S̃(t + 1 |rt + 1)

αt

αt + βt + S̃(t + 1 |rt) βt

αt + βt
}}

Of course, the parameters αt and βt de not define the state preferences. However in
expectation they provide an implied risk neutral probability. In this case, as infor-
mation is revealed, the future probability θ̃t and its distribution may be revised once
the observation that a stock price has increased or decreased is recorded.

If a gain occurs, then, the Bernoulli-beta process yields a posterior beta distribution
with parameters Bt+1(αt+1,βt+1) = Bt+1(1 + αt ,βt ) However, if a decrease occurs,
then the posterior distribution is also beta with Bt+1(αt+1,βt+1) = Bt+1(αt , 1 +
βt ). In this sense, the updating scheme can be represented by the Beta distribution
Bt+1(θ̃t+1 + αt , 1 − θ̃t+1 + βt ), θ̃t+1 = 1,0. For example, say that we observe the
following increases and decreases in prices:

(rt , t − rt ; t , θ̃t = 1); (rt+1 = rt + 1, t − (rt + 1), t + 1; θ̃t+1 = 0);

(rt+2 = rt + 2, t + 2 − (rt + 2), t + 2; θ̃t+2 = 1); . . .

For example, at time t, we observed rt times that the stocks increased and therefore
t − rt times that the stock decreased in this case θ̃t ∼ Bt (αt ,βt ), and at time t,
θt = 1. In this case, at the next period t + 1 we have therefore rt+1 = rt+1 increases
while t + 1 − rt+1 decreases where the probability of an increase has now the Beta
probability distribution θ̃t+1 ∼ Bt+1(1+αt ,βt ). In this case the stock price decreased
which leads to the observation θ̃t+1 = 0 and therefore to the next probability θ̃t+2 ∼
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Bt+1(1+αt , 1+βt ). The following price models with θ̃t = 1, θ̃t+1 = 1 and θ̃t+2 = 0
thus results. In this case, set, at time t + 1, state prices (π1,t+1,π2,t+1) and therefore
their risk neutral probabilities are:

p
Q
1,t = π1,t+1(rt )

π1,t+1(rt ) + π2,t+1(t − rt ) = αt

αt + βt
and

p
Q
2,t = π1,t+1(%t = t − rt )

π1,t+1(rt ) + π2,t+1(t − rt ) = βt

αt + βt
Of course as data accumulates over time, say with the following observations for
price increases and decreases, we note the following changes in the “risk neutral
probabilities”:

p
Q
1,t = π1,t+1(rt )

π1,t+1(rt ) + π2,t+1(t − rt ) = αt

αt + βt , Price increased at t, t + 1

p
Q
1,t+1 = π1,t+2(rt + 1)

π1,t+2(rt + 1) + π2,t+2(t + 1 − rt ) = 1 + αt
1 + αt + βt , Price increased at t + 1, t + 2

p
Q
1,t+2 = π1,t+3(rt + 2)

π1,t+2(rt + 2) + π2,t+2(t + 2 − rt ) = 2 + αt
2 + αt + βt , Price decrease at t + 2, t + 3

p
Q
1,t+3 = π1,t+4(rt + 2)

π1,t+2(rt + 2) + π2,t+2(t + 3 − (rt + 1))
= 2 + αt

3 + αt + βt , Price decrease at t + 2, t + 3

and so on. Using the data we calculate using the Apple stock rates of returns,

1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, . . . .

we find the following of parameters estimates, indicating the changing relative state
prices defining the risk neutral probability:

p
Q
1,t , t = 0,1, 2,3, 4, ... =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α0

α0 + β0
;

1 + α0

1 + α0 + β0
;

2 + α0

2 + α0 + β0
;

2 + α0

3 + α0 + β0
;

3 + α0

4 + α0 + β0
;

3 + α0

5 + α0 + β0
;

4 + α0

6 + α0 + β0
;

4 + α0

7 + α0 + β0

′ 4 + α0

8 + α0 + β0
; ......

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Considering the two periods and assuming that α0 and β0 are negligible com-
pared to 4, we have, a rough estimate of the risk neutral probabilities 4 +α0

7 +α0 +β0
≈

0.5714 and 4 +α0
8 +α0 +β0

≈ 0.500 . . . and thus to changing patterns in risk neutral
probabilities.

7 Arrow-Debreu and Short Memory

Short memory presumes that information can alter future probability processes. Thus,
unlike statistical dependence, an underlying process may switch to be a different
process based on the information observed at a given time. For example, when
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counting the number of claims that an insured has over time, there is an increased
interest in assessing whether a claim generates more claims, or rather a claim has
reduced the insured propensity to claim. Similarly, if a stock price has increased, what
are the effects of this increase on it increasing next or decreasing? This observation
underlies trading momentum based strategies as well as pair trading strategies. While
in the latter case, one generally implies the statistical relationships between two asset
prices, they seek in fact to define a causal relationship between one asset and the
other. By the same token, a driver who has an accident may be more careful in the
year that follows the accident but be less concerned in a subsequent year when there
were no accidents to report etc. For example, we consider a two periods and one
period memory binomial model with stock prices S+

t and S−
t denoting the time t and

the and an index “+” or “−” to point out that in the previous period stock prices
increased or decreased. In this case, assume that there are probabilities defined by the
bivariate process (xQ1,t , x

Q
2,t ) with probabilities (pQt ,ij ). In this case, a two consecutive

process is represented graphically (in case at the current time t − 1, the previous
outcome has been an increase in price as well as in case the previous period there
was a price decrease):

In both cases a representation of these 8 possibilities at time t − 1 are given in the
table below:
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x
Q
1,t = 1 x

Q
1,t = 0(

x
Q
1,t−1 = 1

) (
p
Q+
t ,11 ;pQ−

t ,11

) (
p
Q+
t ,10 ;pQ−

t ,10

)
(
h+
t−1,h+

t

)
;
(
h−
t−1,h+

t

) (
h+
t−1, %+t

)
;
(
h−
t−1, %+t

)
(
x
Q
1,t−1 = 0

) (
p
Q+
t ,01 ;pQ−

t ,01

) (
p
Q+
t ,00 ;pQ−

t ,00

)
(
%+t−1,h+

t

)
;
(
h−
t−1%

−
t

) (
%+t−1, %−t

)
;
(
%−t−1%

−
t

)

and therefore, assuming that there are risk neutral probabilities at time t − 1 to account
for both periods starting at S+

t−1 or S−
t−1 over two periods, we have:

S+
t−1 = 1

(1 + Rf )2

{
(pQ+
t ,11S

+
t−1(1 + h+

t−1)(1 + h+
t ) + pQ+

t ,10S
+
t−1(1 + h+

t−1)(1 − %+t ))

(pQ+
t ,01S

+
t−1(1 − %+t−1)(1 + h−

t−1) + pQ+
t ,00S

+
t−1(1 − %+t−1)(1 − %−t ))

}

Or

1 = 1

(1 + Rf )2

{
p
Q+
t ,11(1 + h+

t−1)(1 + h+
t ) + pQ+

t ,10(1 + h+
t−1)(1 − %+t )

p
Q+
t ,01(1 − %+t−1)(1 + h−

t−1) + pQ+
t ,00(1 − %+t−1)(1 − %−t )

}
; Starting at S+

t−1

As well, starting at S−
t−1:

1 = 1

(1 + Rf )

2
{
p
Q−
t ,11(1 + h−

t−1)(1 + h+
t ) + pQ−

t ,10(1 + h−
t−1)(1 − %+t )

p
Q−
t ,01(1 − %−t−1)(1 + h−

t−1) + pQ−
t ,00(1 − %−t−1)(1 − %−t )

}
; Starting at S−

t−1

Where the correlation ρ+ of the two implied risk neutral probabilities at time t and
t + 1 are in case at time t − 1, the price is S+

t−1:

ρ+ = p
Q+
t ,11 − (1 − pQ+

t ,00 − pQ+
t ,01)(1 − pQ+

t ,00 − pQ+
t ,10)√

(1 − pQ+
t ,00 − pQ+

t ,01)(pQ+
t ,00 + pQ+

t ,10)(1 − pQ+
t ,00 − pQ+

t ,10)(pQ+
t ,00 + pQ+

t ,10)

And similarly when starting at S−
t−1 we calculate the correlation ρ−. Note that if

initially at time t − 1 we are in state +, then the probability of being in states + or
− at time t, and at time t + 1, denote by P (S+

t+1

∣∣S+
t−1) and P (S−

t+1

∣∣S+
t−1), etc. the

probabilities of being in states + or – are:

P (S+
t

∣∣S+
t−1) = pQ+

t−1,;P (S−
t

∣∣S+
t−1) = 1 − pQ+

t−1;

P (S+
t

∣∣S−
t−1) = pQ−

t−1,;P (S−
t

∣∣S+
t−1) = 1 − pQ−

t−1;

As well as:

P (S+
t+1

∣∣S+
t−1) = pQ+

t−1p
Q+
t , + (1 − pQ+

t−1)pQ−
t , ;

P (S−
t+1

∣∣S+
t−1) = (1 − pQ+

t−1)(1 − pQ−
t ) + pQ+

t−1(1 − pQ+
t )
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P (S+
t+1

∣∣S−
t−1) = pQ−

t−1p
Q+
t , + (1 − pQ−

t−1)pQ+
t , ;

P (S−
t+1

∣∣S−
t−1) = (1 − pQ−

t−1)(1 − pQ−
t ) + pQ−

t−1(1 − pQ+
t )

And so on for subsequent periods of time. These equations clearly highlight the inter-
dependence of movements in the probabilities of being in any one state. As a result, if,
we were at time t − 2, in one of the two states + or −, namely: (S+

t−2, S−
t−2) with prob-

abilities P (S+
t−2

∣∣S+
t−1, . . . .) and P (S−

t−2

∣∣S−
t−1, . . . .) then P (S+

t−1) = pQ+
t−2,P (S +

t−2) +
p
Q−
t−2P (S−

t−2); P (S−
t−1) = (1 − pQ−

t−2)P (S−
t−2) + (1 − pQ+

t−2)P (S+
t−2) which provides a

recursive set of equations to a prior state where the process state can be observed for
sure.

In terms risk neutral probabilities, future prices are random given by:

S̃+
t+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S+
t−1(1 + h+

t−1)(1 + h+
t ) wp pQ+

t ,11

S+
t−1(1 + h+

t−1)(1 − %+t ) wp pQ+
t ,10

S+
t−1(1 − %+t−1)(1 + h−

t−1) wp pQ+
t ,01

S+
t−1(1 − %+t−1)(1 − %−t ) wp pQ+

t ,00

and

S̃−
t+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S−
t−1(1 + h−

t−1)(1 + h+
t ) wp pQ−

t ,11

S−
t−1(1 + h−

t−1)(1 − %+t ) wp pQ−
t ,10

S−
t−1(1 − %−t−1)(1 + h−

t−1) wp pQ−
t ,01

S−
t−1(1 − %−t−1)(1 − %−t ) wp pQ−

t ,00

Thus, depending in the past states, the information required to assess future price on
the basis of a current observed state, increases immensely, rendering the process of
completing a memory based pricing model much more difficult to contend with. In a
binomial model therefore, the assumption of no memory is a prerequisite to reduce
the information needed to price a future return (of say a future stock price) to that
of the currently observed single option price (and vice versa). Thus the price of an
option, say a call option with strike K, yields:

C+
t+1(S+

t+1K
∣∣S+
t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Max
{
S+
t−1(1 + h+

t−1)(1 + h+
t ) −K , 0

}
wp pQ+

t ,11

Max
{
S+
t−1(1 + h+

t−1)(1 − %+t ) −K , 0
}

wp pQ+
t ,10

Max
{
S+
t−1(1 − %+t−1)(1 + h−

t−1) −K , 0
}

wp pQ+
t ,01

Max
{
S+
t−1(1 − %+t−1)(1 − %−t ) −K , 0

}
wp pQ+

t ,00

And

C−
t+1(S̃t+1,K

∣∣S−
t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Max
{
S−
t−1(1 + h−

t−1)(1 + h+
t ) −K , 0

}
wp pQ−

t ,11

Max
{
S−
t−1(1 + h−

t−1)(1 − %+t ) −K , 0
}

wp pQ−
t ,10

Max
{
S−
t−1(1 − %−t−1)(1 + h−

t−1) −K , 0
}

wp pQ−
t ,01

Max
{
S−
t−1(1 − %−t−1)(1 − %−t ) −K , 0

}
wp pQ−

t ,00
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For three forward periods, the future price (and thus also the option price) are reduced
to 8 potential future states rather than four, Further when the memory increases, the
number of equations increases as well in both their numbers and their complexity
(dependence). In this case, for a stock price three periods hence, with a short memory
of one period the following state prices are defined:

S̃+
t+2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S+
t−1(1 + h+

t−1)(1 + h+
t )(1 + h+

t+1)

S+
t−1(1 + h+

t−1)(1 + h+
t )(1 − %+t+1)

S+
t−1(1 + h+

t−1)(1 − %+t )(1 + h−
t+1)

S+
t−1(1 + h+

t−1)(1 − %+t )(1 − %−t+1)

S+
t−1(1 − %+t−1)(1 + h−

t )(1 + h+
t )

S+
t−1(1 − %+t−1)(1 + h−

t )(1 − %+t )

S+
t−1(1 − %+t−1)(1 − %−t )(1 + h−

t )

S+
t−1(1 − %+t−1)(1 − %−t )(1 − %−t )

Of course, these equations have numerous parameters and therefore cannot be re-
solved uniquely unless an extensive data set on option prices can be assembled. The
implications of the foregoing discussion is then that market “completeness” is pri-
marily an informational problem rather than a theoretical or physical issue. Complete
markets is this sense is a model that provides an appreciable means to information re-
duction to parameters that are in fact observables or can be inferred from observable
information.

Further, if we were to assume that whether price increase or decrease (defined
in theory by the ratio of future state prices) or the actual future state prices, is also
equivalent as one can be defined in terms of the other. For example, if we observe the
Shanghai memory based probabilities of the Shanghai composite index to increase
or decrease over time, as indicated earlier and reproduced below, we can then define
an appropriate set of states to define such a market to be complete, or:

Shanghai composite index: 1 day (see above)

t + 1 Price increase t + 1 Price decrease

t Price increase p11 = 0.5866 p10 = 0.41338
t Price decrease p01 = 0.5341 p00 = 0.4658

And as a result, calculate the implied rates of returns to complete the system of
equations. A solution of these equations then provides a “solution” that meets the
theoretical properties of market completeness with a one period memory.

Consider again

1 = 1

(1 + Rf )2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + h+
t−1)(1 + h+

t ) p
Q+
t ,11

(1 + h+
t−1)(1 − %+t ) p

Q+
t ,10

(1 − %+t−1)(1 + h−
t−1) p

Q+
t ,01

(1 − %+t−1)(1 − %−t ) p
Q+
t ,00

at S+
t−1,
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1 = 1

(1 + Rf )2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + h−
t−1)(1 + h+

t ) p
Q−
t ,11

(1 + h−
t−1)(1 − %+t ) p

Q−
t ,10

(1 − %−t−1)(1 + h−
t−1) p

Q−
t ,01

(1 − %−t−1)(1 − %−t ) p
Q−
t ,00

at S−
t−1

And let the lognormal process:

d ln S(t) =
(
α − 1

2
σ 2

)
dt + σdW (t), S(0) > 0

And the binomial approximation

� ln S(t) =

⎧⎪⎪⎨
⎪⎪⎩

((
α − 1

2
σ 2

)
�t + σ√

�t

)
wp

1

2((
α − 1

2
σ 2

)
�t − σ√

�t

)
wp

1

2

With E(� ln S(t)) = (
α − 1

2σ
2
)
�t and

√
var(� ln S(t)) = σ

√
�t . Thus, for two

binomial processes:

� ln S+(t) =

⎧⎪⎪⎨
⎪⎪⎩

((
α+ − 1

2
σ+2

)
�t + σ+√

�t

)
wp

1

2((
α+ − 1

2
σ+2

)
�t − σ+√

�t

)
wp

1

2

,

� ln S−(t) =

⎧⎪⎪⎨
⎪⎪⎩

((
α− − 1

2
σ−2

)
�t + σ−√

�t

)
wp

1

2((
α− − 1

2
σ−2

)
�t − σ−√

�t

)
wp

1

2

For example, say that α+ = 0.05 and σ+ = 2α+, and setting �t = 1, then

h+ =
(
α+ − 1

2
σ+2

)
+ σ+ = 0.145 and − %+ = −

((
α+ − 1

2
σ+2

)
− σ+

)
= 0.145

While for α− = 0.04 and σ− = α− we have: h− = 0.072 and − %− = −(0.032 −
0.04) = 0.008.

If we set the conditional probabilities: μ+− as the probability of being in state
“ + ” and switching to state “−” and μ−+, the probability of switching to state +
from a “−” states, then, the following information dependent mixture process results
for the logormal model:

1 = 1

(1 + Rf )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + h+
t−1)(1 + h+

t ) μ+
t+1p

Q+
t ,11 = μ+

t−1μ
+
t p

Q+
t ,1 p

Q+
t+1,1

(1 + h+
t−1)(1 − %+t ) μ−

t+1p
Q+
t ,10 = μ+

t−1μ
−
t p

Q+
t ,1 (1 − pQ+

t+1,1)

(1 − %+t−1)(1 + h−
t−1) μ+

t+1p
Q+
t ,01 = μ+

t−1μ
−
t (1 − pQ+

t ,1 )(1 − pQ−
t+1,1)

(1 − %+t−1)(1 − %−t ) μ−
t+1p

Q−
t ,00 = μ+

t−1μ
−
t (1 − pQ+

t ,1 )pQ−
t+1,1

(1 + h−
t−1)(1 + h+

t ) μ+
t+1p

Q−
t ,11 = μ−

t−1μ
+
t (1 − pQ−

t ,1 )pQ+
t+1,1

(1 + h−
t−1)(1 − %+t ) μ−

t+1p
Q−
t ,10 = μ−

t−1μ
−
t (1 − pQ−

t ,1 )pQ−
t+1,1

(1 − %−t−1)(1 + h−
t−1) μ+

t+1p
Q−
t ,01 = μ−

t−1μ
−
t p

Q−
t ,1 (1 − pQ−

t+1,1)

(1 − %−t−1)(1 − %−t ) μ−
t+1p

Q−
t ,00 = μ−

t−1μ
−
t p

Q−
t ,1 p

Q−
t+1,1
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To calculate these probabilities and reduce this pricing model to a treatable model
we proceed as follows. After one period, we have:[

μt
+

μt
−

]
=
[
p
Q+
t ,1 1 − pQ−

t ,1

1 − pQ+
t ,1 p

Q−
t ,1

][
μt−1

+
μt−1

−

]

and [
μt+1

+
μt+1

−

]
=
[
p
Q+
t+1,1 1 − pQ−

t+1,1

1 − pQ+
t+1,1 p

Q−
t+1,1

][
μt

+
μt

−

]

And therefore,
[
μt

+
μt

−

]
=
⎡
⎣pQ+

t ,1 μt−1
+ +

(
1 − pQ−

t ,1

)
μt−1

−(
1 − pQ+

t ,1

)
μt−1

+ + pQ−
t ,1 μt−1

−

⎤
⎦

As well as[
μt+1

+

μt+1
−

]
=
[
p
Q+
t+1,1 1 − pQ−

t+1,1

1 − pQ+
t+1,1 p

Q−
t+1,1

]⎡⎢⎣
p
Q+
t ,1 μt−1

+ +
(

1 − pQ−
t ,1

)
μt−1

−

(
1 − pQ+

t ,1

)
μt−1

+ + pQ−
t ,1 μt−1

−

⎤
⎥⎦,

and

[
μt+1

+
μt+1

−

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
p
Q+
t+1,1p

Q+
t ,1 +

(
1 − pQ−

t+1,1

) (
1 − pQ+

t ,1

))
μt−1

+

+
(
p
Q+
t+1,1

(
1 − pQ−

t ,1

)
+
(

1 − pQ−
t+1,1

)
p
Q−
t ,1

)
μt−1

−((
1 − pQ+

t+1,1

)
p
Q+
t ,1 + pQ−

t+1,1

(
1 − pQ+

t ,1

))
μt−1

+

+
((

1 − pQ+
t+1,1

) (
1 − pQ−

t ,1

)
+ pQ−

t+1,1p
Q−
t ,1

)
μt−1

−

⎤
⎥⎥⎥⎥⎥⎥⎦

Now since:

p
Q+
t+1,1p

Q+
t ,1 = pQ+

t ,11;
(

1 − pQ−
t+1,1

) (
1 − pQ+

t ,1

)
= pQ+

t ,00 ;pQ+
t+1,1

(
1 − pQ−

t ,1

)

= pQ−
t ,01;

(
1 − pQ−

t+1,1

)
p
Q−
t ,1 = pQ−

t ,10

(
1 − pQ+

t+1,1

)
p
Q+
t ,1

= pQ+
t ,10; p

Q−
t+1,1

(
1 − pQ+

t ,1

)
= pQ+

t ,01 ;
(

1 − pQ+
t+1,1

) (
1 − pQ−

t ,1

)

= pQ−
t ,00; p

Q−
t+1,1p

Q−
t ,1 = pQ−

t ,10

We have:
[
μt+1

+
μt+1

−

]
=
⎡
⎣
(
p
Q+
t ,11 + pQ+

t ,00

) (
p
Q−
t ,01 + pQ−

t ,10

)
(
p
Q+
t ,10 + pQ+

t ,01

) (
p
Q−
t ,00 + pQ−

t ,10

)
⎤
⎦[μt−1

+
μt−1

−

]

For example, if at time t − 1, μt−1
+ = 1,0, then μt−1

− = 0,1 and

[
μt+1

+
μt+1

−

]
=
[
p
Q+
t ,11 + pQ+

t ,00

p
Q+
t ,10 + pQ+

t ,01

]
, μt−1

+ = 1 and

[
μt+1

+
μt+1

−

]
=
[
p
Q−
t ,01 + pQ−

t ,10

p
Q−
t ,00 + pQ−

t ,10

]
, μt−1

− = 1

Generally, a risk neutral framework provides the price:
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1 = 1

(1 + Rf )2

⎛
⎜⎜⎜⎝

(1 + h+
t−1)(1 + h+

t )μ+
t+1p

Q+
t ,11 + (1 + h+

t−1)(1 − %+t )μ−
t+1p

Q+
t ,10+

(1 − %+t−1)(1 + h−
t−1)μ+

t+1p
Q+
t ,01 + (1 − %+t−1)(1 − %−t )μ−

t+1p
Q+
t ,00+

(1 + h−
t−1)(1 + h+

t )μ+
t+1p

Q−
t ,11 + (1 + h−

t−1)(1 − %+t )μ−
t+1p

Q−
t ,10+

(1 − %−t−1)(1 + h−
t−1)μ+

t+1p
Q−
t ,01 + (1 − %−t−1)(1 − %−t )μ−

t+1p
Q−
t ,00

⎞
⎟⎟⎟⎠

Inserting μt+1
+ and μt+1

− we obtain a binomial pricing model which is a function
of the implied probabilities pQ+

t ,11 ,pQ+
t ,10,pQ+

t ,01 ,pQ+
t ,00 and pQ−

t ,11 ,pQ−
t ,10 ,pQ−

t ,01,pQ−
t ,00 where

p
Q+
t ,11 +pQ+

t ,10 +pQ+
t ,01 +pQ+

t ,00 = 1 as well as pQ−
t ,11 +pQ−

t ,10 +pQ−
t ,01 +pQ−

t ,00 = 1. However
if the price process starts at states “ + ” or a state “−”, we have:

1 = 1(
1 + Rf

)2

⎛
⎜⎜⎜⎝

(
1 + h+

t−1

) (
1 + h+

t

)
μ+
t+1p
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t−1

)
(
1 − %+t

)
μ−
t+1p

Q+
t ,10+(

1 − %+t−1

) (
1 + h−

t−1

)
μ+
t+1p

Q+
t ,01 + (1 − %+t−1

)
(
1 − %−t

)
μ−
t+1p

Q+
t ,00

⎞
⎟⎟⎟⎠ at a state “ + ” or

1 = 1(
1 + Rf

)2

⎛
⎜⎜⎜⎜⎜⎜⎝

(
1 + h+

t−1

) (
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t

) (
p
Q+
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t ,00

)
p
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) (
1 − %+t

) (
p
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)
p
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) (
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) ((
p
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p
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) (
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) (
p
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at a state “ + ”
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) (
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Where the autocorrelation in the “ + ” case, ρ+ is:

ρ+ =
p
Q+
t ,11 −

(
1 − pQ+

t ,00 − pQ+
t ,01

) (
1 − pQ+

t ,00 − pQ+
t ,10

)
√(

1 − pQ+
t ,00 − pQ+

t ,01

) (
p
Q+
t ,00 + pQ+

t ,10

) (
1 − pQ+

t ,00 − pQ+
t ,10

) (
p
Q+
t ,00 + pQ+

t ,10

)
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8 Conclusion

A person who cannot change his mind in light of overwhelming evidence is similar
to a financial process that does not alter future expectations in light of observed
market prices. When evidence of any sort is revealed, a price process may or may not
switch to another pricing model. Short memory in this case is defined by observed
past prices and their effects on price models switching. Of course, such an approach
differs from Markov switching models which are defined by a process switching from
one model to another according to a Markov chain. Although we have considered
a one period information, extensions to multiple periods information as well as
summarizing past data statistically may also be considered and will be considered
in subsequent research papers. These problems are far more complex to analyze
although simulation of such processes and the application of numerical techniques
may provide some insights on the effects of information on price models switching.

Although the first sections of the paper have dealt with cases that are mostly
known and based on Arrow- and Debreu model for rational expectations in pricing,
the short memory case provides some new results, pursuing developments of Vallois
and Tapiero (2007), Tapiero and Vallois 1996. Other references include Viswanathan
et al.1999, Weiss 1994, 2002, Weiss and Rubin 1983, as well as Toth 1986, Claes
and Broeck 1987, Ferguson and Bazant 2005, Hermann and Vallois 2010, Masoliver
et al. 2003, Patlak 1953, Pottier 1996.
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