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Preface

A number of different instruments for design can be unified
in the context of lattice theory towards cross-fertilization

By “lattice theory” [1] we mean, equivalently, either a partial ordering relation
[2, 3] or a couple of binary algebraic operations [3, 4]. There is a growing
interest in computational intelligence based on lattice theory.

A number of researchers are currently active developing lattice theory
based models and techniques in engineering, computer and information sci-
ences, applied mathematics, and other scientific endeavours. Some of these
models and techniques are presented here.

However, currently, lattice theory is not part of the mainstream of compu-
tational intelligence. A major reason for this is the “learning curve” associated
with novel notions and tools. Moreover, practitioners of lattice theory, in spe-
cific domains of interest, frequently develop their own tools and/or practices
without being aware of valuable contributions made by colleagues. Hence,
(potentially) useful work may be ignored, or duplicated. Yet, other times,
different authors may introduce a conflicting terminology.

The compilation of this book is an initiative towards proliferating estab-
lished knowledge in the hope to further expand it, soundly.

There was a critical mass of people and ideas engaged to produce this
book. Around two thirds of this book’s chapters are substantial enhancements
of preliminary works presented lately in a three-part special session entitled
“Computational Intelligence Based on Lattice Theory” organized in the con-
text of the World Congress in Computational Intelligence (WCCI), FUZZ-
IEEE program, July 16-21, 2006 in Vancouver, BC, Canada. The remaining
book chapters are novel contributions by other researchers.

This book is a balanced synthesis of four parts emphasizing, in turn,
neural computation, mathematical morphology, machine learning, and (fuzzy)
inference/logic.



VIII Preface

PART I focuses on neural computation. More specifically, chapter 1 (by
Kaburlasos) presents a granular enhancement of two popular neural classifiers,
namely fuzzy-ART and SOM, based on lattice (partial) ordering.

Chapter 2 (by Ritter and Urcid) introduces novel algorithms for learn-
ing described in terms of lattice algebraic computations in dendritic (neural)
structures according to recent discoveries in neuroscience.

Chapter 3 (by Barmpoutis and Ritter) demonstrates, successfully, novel
dendritic lattice computing in difficult classification problems.

Chapter 4 (by Healy and Caudell) uses generalized lattices, or equivalently
categories, in neural networks in order to model distributed world semantics.

PART II focuses on mathematical morphology applications. In particular,
chapter 5 (by Urcid and Ritter) demonstrates the capacity of novel lattice
matrix associative memory techniques to recall images degraded by noise.

Chapter 6 (by Graña, Villaverde, Moreno, and Albizuri) introduces a new
feature extraction technique, which is employed for visual pattern recognition.

Chapter 7 (by De Witte, Schulte, Nachtegael, Mélange, and Kerre) presents
a new approach for extending mathematical morphology from binary- to both
greyscale- and color-images including also an image denoising method.

Chapter 8 (by Sussner and Valle) describes the storage and recall phases of
morphological and certain fuzzy morphological associative memories including
applications to classification and prediction.

PART III focuses on machine learning applications. In particular, chap-
ter 9 (by Athanasiadis) introduces a rule-based perspective for fuzzy lattice
reasoning (FLR) including also two environmental data mining applications.

Chapter 10 (by Petridis and Syrris) investigates the application of fuzzy
lattice neurocomputing (FLN) in an environmental prediction problem.

Chapter 11 (by Piedra-Fernández, Cantón-Garb́ın, and Guindos-Rojas)
demonstrates applications of a fuzzy lattice classifier to ocean satellite images.

Chapter 12 (by Al-Daraiseh, Kaylani, Georgiopoulos, Mollaghasemi, Wu,
and Anagnostopoulos) presents three genetically optimized neural algorithms
for classification applicable to a lattice of hyperboxes.

Chapter 13 (by Cripps and Nguyen) uses fuzzy lattice reasoning (FLR)
classifier with similarity measures whose effectiveness is shown experimentally.

PART IV focuses on logic and inference. More specifically, chapter 14 (by
Munoz-Hernandez and Vaucheret) enhances Fuzzy Prolog by default knowl-
edge in order to represent incomplete information in logic programming.

Chapter 15 (by Knuth) considers lattice fuzzification by valuation func-
tions towards a unification of probability- with information- theory.

Chapter 16 (by Hatzimichailidis and Papadopoulos) studies useful connec-
tions between L-fuzzy sets and intuitionistic fuzzy sets.

Chapter 17 (by Kehagias) studies extensions of both t-norms and t-conorms
to a superlattice, the latter is a multi-valued analog of a lattice.

Chapter 18 (by Kehagias) describes the construction of fuzzy-valued both
t-norms and t-conorms from families of multi-valued t-norms and t-conorms.



Preface IX

Algorithms are presented in several chapters. Often, there are cross refer-
ences among book chapters. References and (possible) Appendices are shown
per chapter. There is a single Index for all chapters at the end of this book.

We thank the authors for their contribution.

Kavala, Greece, EU Vassilis G. Kaburlasos
Gainesville, Florida, USA Gerhard X. Ritter

April 2007
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04120 Almeŕıa, Spain, EU
jpiedra@ual.es

Ritter, Gerhard X.
(chapters 2, 3, 5)
University of Florida
Dept Comp & Info Science & Eng
Gainesville, FL 32611, USA
ritter@cise.ufl.edu

Schulte, Stefan
(chapter 7)
Ghent University
Dept Appl Math & Comp Science
9000 Gent, Belgium, EU
Stefan.Schulte@UGent.be

Sussner, Peter
(chapter 8)
State University of Campinas
Inst Math Stat & Sci Computing
13081 Campinas, Brazil
sussner@ime.unicamp.br

Syrris, Vassilis
(chapter 10)
Aristotle University of Thessaloniki
Dept Electr & Computer Engineering
54006 Thessaloniki, Greece, EU
vsyrris@auth.gr

Urcid, Gonzalo
(chapters 2, 5)
Nat Inst Astroph Optics & Electron
Dept Optics
Puebla 72000, Mexico
gurcid@inaoep.mx

Valle, Marcos Eduardo
(chapter 8)
State University of Campinas
Inst Math Stat & Sci Computing
13081 Campinas, Brazil
mevalle@ime.unicamp.br

Vaucheret, Claudio
(chapter 14)
Universidad Nacional del Comahue
Dept Ciencias Computación
Buenos Aires 1400, Argentina
vaucheret@gmail.com



XVI List of Contributors

Villaverde, Ivan
(chapter 6)
Universidad del Páıs Vasco
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Part I

Neural Computation



1

Granular Enhancement of Fuzzy-ART/SOM
Neural Classifiers Based on Lattice Theory

Vassilis G. Kaburlasos

Technological Educational Institution of Kavala, Dept. of Industrial Informatics
65404 Kavala, Greece, EU
vgkabs@teikav.edu.gr

Summary. Fuzzy adaptive resonance theory (fuzzy-ART) and self-organizing map
(SOM) are two popular neural paradigms, which compute lattice-ordered granules.
Hence, lattice theory emerges as a basis for unified analysis and design. We present
both an enhancement of fuzzy-ART, namely fuzzy lattice reasoning (FLR), and an
enhancement of SOM, namely granular SOM (grSOM). FLR as well as grSOM can
rigorously deal with (fuzzy) numbers as well as with intervals. We introduce inspiring
novel interpretations. In particular, the FLR is interpreted as a reasoning scheme,
whereas the grSOM is interpreted as an energy function minimizer. Moreover, we can
introduce tunable nonlinearities. The interest here is in classification applications.
We cite evidence that the proposed techniques can clearly improve performance.

1.1 Introduction

Two novel approaches to neural computing were proposed lately by different
authors based on lattice theory [22, 23, 35]. More specifically, one approach
is based on the “order” definition for a lattice [22, 23], whereas the other
one is based on the “algebra” definition for a lattice [35] as explained later.
This chapter builds on the former definition; furthermore, it proposes granular
enhancements of two popular neural paradigms, namely adaptive resonance
theory (ART) and self-organizing map (SOM).

Stephen Grossberg, the founder of ART, points out occassionally an inher-
ent affinity of the biologically-motivated clustering mechanisms of ART with
Kohonen’s SOM [26]. This work shows yet another aspect of the aforemen-
tioned affinity since both ART and SOM can be studied analytically (and also
be further improved) based on mathematical lattice theory. Here we consider
the fuzzy enhancement of ART known as fuzzy-ART [5].

The operation of both fuzzy-ART and SOM is based on the computation
of clusters in RN . In particular, a cluster for fuzzy-ART corresponds to a
hyperbox, whereas a cluster for SOM corresponds to a Voronoi region in a
metric space. Another term for cluster is granule. Lately, there is a growing
interest in granular computing as explained next.

V.G. Kaburlasos: Granular Enhancement of Fuzzy-ART/SOM Neural Classifiers Based on

Lattice Theory, Studies in Computational Intelligence (SCI) 67, 3–23 (2007)

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007



4 V.G. Kaburlasos

Granular computing is a category of theories, methodologies, techniques
and tools that make use of information granules in the process of problem
solving. Where, an (information) granule can be conceived as a collection of
entities grouped together by similarity, functional adjacency, indistinguisha-
bility, coherency, etc. The basic notions and principles of granular computing
have appeared under different names in many related fields such as informa-
tion hiding in programming, granularity in artificial intelligence, divide and
conquer in theoretical computer science, interval computing, cluster analy-
sis, fuzzy and rough set theories, and many other. Granular computing is an
emerging computational paradigm [27, 30].

Granules in RN are partially-ordered, in particular they are lattice-ordered.
Hence, lattice theory emerges as a basis for analysis and design in granular
computing. This work shows granular enhancements of the popular fuzzy-ART
and SOM classifiers. Moreover, novel interpretations are introduced. In parti-
cular, fuzzy-ART is interpreted as an interactive reasoning scheme, whereas
SOM is interpreted as an energy minimizer. Note also that the techniques
presented here could be useful elsewhere in granular computing.

This chapter is organized as follows. Section 1.2 summarizes, in context,
the learning mechanisms of fuzzy-ART and SOM. Section 1.3 covers the math-
ematics required for describing the enhancements proposed later. Section 1.4
describes enhancements of both fuzzy-ART and SOM. Section 1.5 summarizes,
in perspective, the contribution of this work.

1.2 Fuzzy-ART and SOM

This section summarizes the operation of both fuzzy Adaptive Resonance The-
ory (fuzzy-ART) and Self-Organizing Map (SOM) for unsupervised learning,
i.e. clustering. It also presents interesting extensions by different authors.

1.2.1 Fuzzy-ART Operation

The original fuzzy-ART neural network regards a two-layer architecture [5].
Layer F1 of fuzzy-ART fans out an input vector to the fully-interconnected,
competitive neurons in layer F2. A layer F2 neuron filters an input vector x
by computing vector x∧w, where w is the code (vector) stored on interlayer
links. More specifically, an entry of vector x ∧w equals the minimum of the
corresponding (positive real number) entries of vectors x and w. Algorithm
fuzzy-ART for training (learning) by clustering is briefly described next.

Algorithm fuzzy-ART for training

ART-1: Do while there are more inputs.
Apply the complement coding technique in order to represent input
[xi,1, ..., xi,N ] ∈ [0, 1]N by xi = [xi,1, ..., xi,N , 1 − xi,1, ..., 1 − xi,N ] ∈
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R2N , i = 1, ..., n. Then, present xi to the (initially) “set” neurons in
layer F2.

ART-2: Each layer F2 neuron with code wj ∈ R2N computes its choice
(Weber) function Tj = |xi ∧wj |/(α + |wj |).

ART-3: If there are no “set” neurons in layer F2 then memorize input xi.
Else, competition among the “set” neurons in layer F2: Winner is
neuron J such that TJ

.= argmax
j

Tj .

ART-4: Similarity Test : (|xi∧wJ |/|xi|) ≥ ρ, where |xi∧wJ |/|xi| is the match
function and ρ ∈ (0, 1] is the user-defined vigilance parameter.

ART-5: If the Similarity Test is not satisfied then “reset” the winner neuron;
goto step ART-3 to search for another winner.
Else, replace the winner neuron code wJ by xi∧wJ ; goto step ART-1.

We remark that |x| above equals, by definition, the sum of vector x (posi-
tive) entries. Parameter “α” in the choice (Weber) function Tj is a very small
positive number whose role is to break ties in case of multiple winners [16].

As soon as training (learning) completes, each neuron defines a cluster by
a hyperbox. It follows algorithm fuzzy-ART for testing (generalization).

Algorithm fuzzy-ART for testing

art-1: Feed an input vector x0 = [x0,1, ..., x0,N , 1− x0,1, ..., 1− x0,N ] ∈ R2N .
art-2: A layer F2 neuron with code wj ∈ R2N computes the choice (Weber)

function |x0 ∧wj |/(α + |wj |).
art-3: Competition among the neurons in layer F2: Winner is neuron J such

that TJ
.= argmax

j
Tj . Assign input x0 to the cluster represented by

neuron J .

1.2.2 SOM Operation

Kohonen’s self-organizing map (SOM) architecture [26] includes a two dimen-
sional L×L grid (or, map) of neurons (or, cells). Each cell Ci,j stores a vector
mi,j = [mi,j,1, ...,mi,j,N ]T ∈ RN , i = 1, ..., L, j = 1, ..., L. Vectors mi,j are
called code vectors and they are initialized randomly. A version of algorithm
SOM for training (learning) by clustering is briefly described next.

Algorithm SOM for training

SOM-1: Memorize the first input datum x1 ∈ RN by committing, randomly,
a neuron on the L× L grid.
Repeat the following steps a user-defined number Nepochs of epochs,
t = 1, ..., Nepochs.

SOM-2: For each training datum xk ∈ RN , k = 1, ..., n carry out the following
computations.

SOM-3: Calculate the Euclidean distance d(mi,j ,xk), i, j ∈ {1, ..., L}.
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SOM-4: Competition among the neurons on the L×L grid: Winner is neuron
(I, J) .= arg min

i,j∈{1,...,L}
d1(mi,j ,xk).

SOM-5: Assimilation Condition: Vector mi,j is in the neighborhood of vector
mI,J on the L× L grid.

SOM-6: If the Assimilation Condition is satisfied then compute a new value
m′

i,j :

m′
i,j = mi,j + a(t)(xk −mi,j) = [1− a(t)]mi,j + a(t)xk, (1.1)

where a(t) ∈ (0, 1) is a decreasing function in time (t).

As soon as training (learning) completes, each cell Ci,j defines a cluster
by a code vector mi,j . It follows algorithm SOM for testing (generalization).

Algorithm SOM for testing

som-1: Present an input x0 ∈ RN , k = 1, ..., n to the neurons of the L × L
grid.

som-2: Calculate the Euclidean distance d(mi,j ,x0), i, j ∈ {1, ..., L}.
som-3: Competition among the neurons on the L × L grid: Winner is neu-

ron (I, J) .= arg min
i,j∈{1,...,L}

d1(mi,j ,xk). Assign input x0 to the cluster

represented by neuron J .

Note that the set of clusters computed during training by both fuzzy-ART
[10, 16] and SOM depends on the order of data presentation.

1.2.3 Extensions by Different Authors in Context

Both fuzzy-ART and SOM compute information granules. In particular, fuzzy-
ART computes fuzzy-sets with hyperbox cores, whereas SOM partitions its
data domain in Voronoi-regions.

Both fuzzy-ART and SOM for clustering have been extended by a number
of authors. More specifically, on the one hand, fuzzy-ARTMAP has been pro-
posed for supervised learning [6]. Improvements of fuzzy-ARTMAP were pro-
posed in various learning applications [7, 8]. Furthermore, fuzzy-ART(MAP)
has inspired various min-max neural networks [2, 18]. An interesting proba-
bilistic analysis of fuzzy-ARTMAP was proposed lately using martingales [1].
An extension of the fuzzy-ART(MAP) algorithm to a mathematical lattice
data domain is the FLR algorithm [19]. Note that the FLR algorithm can
be implemented as a neural network towards fuzzy lattice neurocomputing,
or FLN for short [18, 23, 32]. On the other hand, SOM has been popular
in signal- and other information-processing applications [26]. Various SOM
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extensions have been proposed including nonEuclidean metrics [31], weight-
ing factors [13], etc. A different SOM extension is the generative topographic
mapping (GTM) based on a constrained mixture of Gaussians [4]. However,
conventional SOM as well as its extensions cannot cope with ambiguity. In
response, SOM-based fuzzy c-means algorithms have been proposed [24]. Note
that an early employment of SOM in fuzzy inference systems (FISs) appeared
[37]. Lately, SOM extensions were presented for FIS analysis and design based
on positive FINs [21, 29], the latter (FINs) are presented below.

1.3 Mathematical Background

This section covers lattice theory mathematics necessary for introducing novel
enhancements later.

1.3.1 Crisp lattices

We present two equivalent definitions for a mathematical lattice [3], namely
order-based - and algebra-based - definition, respectively. The former is based
on the notion partially ordered set, or poset for short, defined in the Appendix.

By “a covers b” in a poset (P,≤) it is meant that b < a but b < x < a
for no x ∈ P . Let (P,≤) be a poset with least element O. Every x ∈ P which
covers O, if such x exists, is called atom.

Let (P,≤) be a poset and X ⊆ P . An upper bound of X is a a ∈ P with
x ≤ a, ∀x ∈ X. The least upper bound (l.u.b.), if it exists, is the unique upper
bound contained in every upper bound. The l.u.b. is also called supremum or
lattice join of X and denoted by supX or ∨X. The notions lower bound of
X and greatest lower bound (g.l.b.) of X are defined dually. The g.l.b. is also
called infimum or lattice meet of X and denoted by infX or ∧X.

The order-based definition for a lattice follows.

Definition 1.1 A lattice is a poset (L,≤) any two of whose elements have
both a greatest lower bound (g.l.b.), denoted by x∧ y, and a least upper bound
(l.u.b.), denoted by x∨y. A lattice (L,≤), or equivalently crisp lattice, is called
complete when each of its subsets X has a l.u.b. and a g.l.b. in L.

Setting X = L in definition 1.1 it follows that a nonvoid complete lattice
contains both a least element and a greatest element denoted, respectively, by
O and I. By definition, an atomic lattice (L,≤) is a complete lattice in which
every element is a joint of atoms.

The algebra-based definition for a lattice follows based on the notion algebra
defined in the Appendix to this chapter.

Definition 1.2 An algebra with two binary operations which satisfy L1-L4 is
a lattice, and conversely.
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(L1) x ∧ x = x x ∨ x = x (Idempotent)
(L2) x ∧ y = y ∧ x x ∨ y = y ∨ x (Commutative)
(L3) x ∧ (y ∧ z) = (x ∧ y) ∧ z (Associative)

x ∨ (y ∨ z) = (x ∨ y) ∨ z
(L4) x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x (Absorption)

We remark that definition 1.2 is popular in applications of mathematical
morphology [12, 34, 36]. This work employs mainly definition 1.1.

Both definitions 1.1 and 1.2 regard a crisp lattice, where the binary relation
x ≤ y is either true or false. In particular, if x ≤ y (or, y ≤ x) then x and y
are called comparable; otherwise, x and y are called incomparable or parallel,
symbolically x||y. A simple crisp lattice example is shown next.

Example 1.1 Let P(A) = {{}, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} be
the power set of set A = {a, b, c}. It turns out that (P(A),⊆) is a complete
lattice, ordered by set-inclusion, with least and greatest elements O = {}
and I = {a, b, c}, respectively. Figure 1.1 shows a Hasse diagram of lattice
(P(A),⊆) such that a line segment connects two sets X (below) and Y (above)
if and only if Y covers X. A Hasse- or, equivalently, line- diagram can be
drawn only for a finite lattice.

The inverse ≥ of an order relation ≤ is itself an order relation. More
specifically, the order ≥ is called dual (order) of ≤, symbolically also ≤∂ , or
≤−1. Furthermore, the Cartesian product (L,≤) = (L1,≤1) × ... × (LN ,≤N )
of N constituent lattices (L1,≤1), ..., (LN ,≤N ) is a lattice [3]. In particular, if
both (a1, ..., aN ) and (b1, ..., bN ) are in L then (a1, ..., aN ) ≤ (b1, ..., bN ) if and
only if ai ≤ bi, i = 1, ..., N .

Of particular interest here is lattice (τ(L),≤), where τ(L) denotes
the set of intervals in L (including also the empty set) partially-ordered by

{ }

{c}{b}{a}

{b,c}{a,c}{a,b}

{a,b,c}

Fig. 1.1. Hasse diagram of the partially-ordered, complete lattice (P(A),⊆), where
“P(A)” is the powerset of set A = {a, b, c} and “⊆” is the set-inclusion relation
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set-inclusion — For a definition of an interval see in the Appendix. One way of
dealing with lattice (τ(L),≤) is based on the product lattice (L∂ ×L,≤∂ × ≤)
[23].

1.3.2 Fuzzy lattices

The binary relation “≤” in a crisp lattice can be fuzzified resulting in a fuzzy
lattice as explained next — Note that a fuzzy set is denoted here by a pair
(U, µ), where U is the universe of discourse and µ is a function µ : U → [0, 1],
namely membership function.

Definition 1.3 A fuzzy lattice is a triple (L,≤, µ), where (L,≤) is a crisp
lattice and (L× L, µ) is a fuzzy set such that µ(x, y) = 1 if and only if x ≤ y.

Function µ in definition 1.3 is a weak (fuzzy) partial order relation in the
sense that both µ(x, y) = 1 and µ(y, z) = 1 imply µ(x, z) = 1, whereas if
either µ(x, y) 	= 1 or µ(y, z) 	= 1 then µ(x, z) could be any number in [0, 1].
Fuzzification of a lattice can be pursued using either a generalized zeta function
[25] or an inclusion measure function. The latter is defined next [19].

Definition 1.4 Let (L,≤) be a complete lattice with least element O. An
inclusion measure is a map σ : L × L → [0, 1], which satisfies the following
conditions.

(IM0) σ(x,O) = 0, x 	= O
(IM1) σ(x, x) = 1,∀x ∈ L
(IM2) x ∧ y < x⇒ σ(x, y) < 1
(IM3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) (Consistency Property)

For noncomplete lattices condition (IM0) drops.
We remark that σ(x, y) may be interpreted as a (fuzzy) degree of inclusion

of x in y. Therefore, notations σ(x, y) and σ(x ≤ y) are used interchangably.
Alternative inclusion measure function definitions have been proposed by dif-
ferent authors [9]. If σ : L× L → [0, 1] is an inclusion measure, in the sense of
definition 1.4, then (L,≤, σ) is a fuzzy lattice [18, 19].

1.3.3 Useful functions in a lattice

An inclusion measure can be defined in a crisp lattice (L,≤) based on a positive
valuation function (the latter is defined in the Appendix) as shown next.

Theorem 1.1 If v : L → R is a positive valuation function in a crisp lattice
(L,≤) then both functions (a) k(x, u) = v(u)/v(x ∨ u), and (b) s(x, u) =
v(x ∧ u)/v(x) are inclusion measures.

We point out that a positive valuation in a crisp lattice (L,≤) also defines
a metric function d : L×L → R+

0 given by d(x, y) = v(x∨ y)− v(x∧ y) — For
a definition of a metric see in the Appendix to this chapter.
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Given (i) a product lattice (L,≤) = (L1,≤1)× ...× (LN ,≤N ), and (ii) both
a positive valuation v : Li → R and an isomorphic function θi : L∂

i → Li in
a constituent lattice (Li,≤i), i = 1, ..., N — for a definition of an isomorphic
function see in the Appendix to this chapter — then: (1) A positive valuation
v : L → R is given by v(x1, ..., xN ) = v1(x1) + ... + vN (xN ), (2) an isomorphic
function θ : L∂ → L is given by θ(x1, ..., xN ) = (θ1(x1), ..., θN (xN )), and
(3) countably infinite Minkowski metrics dp are given in L by

dp(x,y) = [dp
1(x1, y1) + ... + dp

N (xN , yN )]1/p, (1.2)

where p = 1, 2, ... and di(xi, yi) = vi(xi ∨ yi) − vi(xi ∧ yi), xi, yi ∈ Li, i =
1, ..., N . In the following, interest focuses on lattices stemming from the set R
of real numbers.

1.3.4 Lattices stemming from R

Three different lattice examples are shown in Examples 1.2, 1.3, and 1.4 next
including geometric interpretations on the plane.

Example 1.2 Consider the set R of real numbers represented by a line
(Fig. 1.2). It turns out that (R,≤) is a noncomplete lattice including only
comparable elements. Hence, lattice (R,≤) is called totally-ordered or, equiv-
alently, chain. Of particular interest is the complete sublattice (I = [0, 1],≤).

Example 1.3 Lattices of interest are both (τ(R),≤) and (τ(I),≤), where τ(R)
and τ(I) denote the set of (closed) intervals in R and I, respectively. Con-
sider the set of hyperrectangles or, equivalently, hyperboxes, in the partially-
ordered lattice RN . It turns out that a hyperbox is a (lattice) interval in
RN . Moreover, (τ(RN ),≤) denotes the noncomplete lattice of hyperboxes in
RN . Note that τ(RN ) = [τ(R)]N . Of particular interest is complete lattice
(IN ,≤), namely unit-hypercube. The corresponding complete lattice of hyper-
boxes is denoted by (τ(IN ),≤) ≡ ([τ(I)]N ,≤). Figure 1.3 shows (hyper)boxes
in lattice (τ(RN ),≤) for N = 2 (i.e. the plane). The unit-square is also
shown.

10

Fig. 1.2. The totally-ordered, noncomplete lattice (R,≤) of real numbers. Note that
lattice (I,≤), where I = [0, 1], is a complete one
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10

u
w

v z

1

Fig. 1.3. Partially-ordered hyperboxes in the noncomplete lattice (RN ,≤) are shown
for N = 2 (i.e. the plane). The complete lattice unit-square is also shown. Box u is
included in box w, i.e. u ≤ w; all the other boxes are incomparable, e.g. w||z, etc

The diagonal of a hyperbox in RN is defined as follows.

Definition 1.5 The diagonal of a hyperbox [a, b] in RN , where a, b ∈ RN with
a ≤ b, is defined as a nonnegative real function diagp : τ(RN ) → R+

0 given by
diagp([a, b]) = dp(a, b), p = 1, 2, ...

1.3.5 Lattices of generalized intervals

Definition 1.6 (a) A positive generalized interval of height h is a map µh
a,b:

R → {0, h} given by µh
a,b(x) =

⎧
⎨

⎩

h, a ≤ x ≤ b

0, otherwise
, where h ∈ (0, 1]. (b) A

negative generalized interval of height h is a map µh
a,b : R → {0,−h} given by

µh
a,b(x) =

⎧
⎨

⎩

−h, a ≥ x ≥ b

0, otherwise
, where a > b and h ∈ (0, 1].

Note that a generalized interval is a “box” function, either positive or
negative. In the interest of simplicity a generalized interval will be denoted as
[a, b]h, where a ≤ b (a > b) for a positive (negative) generalized interval.

The set of positive (negative) generalized intervals of height h is denoted
by Mh

+(Mh
−). The set of generalized intervals of height h is denoted by Mh,

i.e. Mh = Mh
− ∪Mh

+. It turns out that the set Mh of generalized intervals is
partially ordered; more specifically, Mh is a mathematical lattice [17, 18] with
lattice meet and lattice join given, respectively, by [a, b]h∧[c, d]h = [a∨c, b∧d]h

and [a, b]h ∨ [c, d]h = [a ∧ c, b ∨ d]h. Moreover, the corresponding lattice order
relation [a, b]h ≤ [c, d]h in Mh is equivalent to “c ≤ a”.AND.“b ≤ d”.
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Example 1.4 Figure 1.4 shows elements of lattice Mh. In particular, Fig. 1.4
shows all combinations for generalized intervals of height h as detailed in
[17, 18, 20].

p

q

(e)

p∧q=q

p∨q=p

-h

 h

-h

p

q

(f)

p∧q

p∨q

-h

h

h

 -h

p∧q

p∨q

(b)

p  q
 h

 h

-h

p∨q

p  q

p∧q

(a)

 h

 h

p∧q

p∨q

(d)

p   q
-h

h

-h

p∨q

p  q

(c)

p∧q

-h

-h

Fig. 1.4. Demonstrating the lattice- join (p ∨ q) and meet (p ∧ q) for all different
pairs (p, q) of generalized intervals of height h. Different fill-in patterns are used
for partially overlapped generalized intervals. (a) “Intersecting” positive general-
ized intervals. (b) “Nonintersecting” positive generalized intervals. (c) “Intersecting”
negative generalized intervals. (d) “Nonintersecting” negative generalized intervals.
(e) “Intersecting” positive and negative generalized intervals. (f) “Nonintersecting”
positive and negative generalized intervals
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In the totally-ordered lattice R of real numbers any strictly increasing
function fh : R → R is a positive valuation, whereas any strictly decreasing
function θh : R → R is an isomorphic function. Given both fh and θh, a
positive valuation in lattice (Mh,≤) is given by v([a, b]h) = fh(θh(a)) + fh(b).
Therefore, a metric between two generalized intervals is given by

dh([a, b]h, [c, d]h) = [fh(θh(a∧c))−fh(θh(a∨c))]+[fh(b∨d)−fh(b∧d)] (1.3)

Choosing θh(x) = −x and fh such that fh(x) = −fh(−x) it follows
dh([a, b]h, [c, d]h) = [fh(a ∨ c)− fh(a ∧ c)] + [fh(b ∨ d)− fh(b ∧ d)].

The set-union of all Mhs is the set M of generalized intervals, i.e. M =
∪

h∈(0,1]
Mh. Our interest is in generalized intervals [a, b]h with h ∈ (0, 1] because

the latter emerge from α-cuts of fuzzy numbers [18, 22]. It is interesting that
different authors lately have considered the notion “α-fuzzy set” [33], the
latter is identical to the notion “positive generalized interval” here.

The significance of a positive valuation function is demonstrated next.

Example 1.5 Consider the positive generalized intervals [−1, 0]1 and [3, 4]1.
Let f1(x) = x3 and f2(x) = (1− e−x)/(1 + e−x) be the two strictly increasing
functions shown in Fig. 1.5(a) and Fig. 1.5(b), respectively. Note that func-
tion f1(x) is steeply increasing, whereas function f2(x) is saturated. The
computation of the (metric) distance d1([−1, 0]1, [3, 4]1) using f1(x) equals
d1([−1, 0]1, [3, 4]1) = [f1(3) − f1(−1)] + [f1(4) − f1(−0)] = 65 + 27 = 92.
Whereas, the computation of the (metric) distance d1([−1, 0]1, [3, 4]1) using
f2(x) equals d1([−1, 0]1, [3, 4]1) = [f2(3) − f2(−1)] + [f2(4) − f2(−0)] =
1.3672 + 0.9640 = 2.3312. This example was meant to demonstrate that dif-
ferent positive valuation functions can drastically change the distance between
two intervals. In practice, we often employ parametric positive valuations in
order to introduce tunable nonlinearities by optimal parameter estimation.

The space Mh of generalized intervals is a real linear space [18, 22] with

• addition defined as [a, b]h + [c, d]h = [a + c, b + d]h.
• multiplication (by k ∈ R) defined as k[a, b]h = [ka, kb]h.

A subset C of a linear space is called cone if for all x ∈ C and a real
number λ > 0 we have λx ∈ C. It turns out that both Mh

+ and Mh
− are cones.

1.3.6 The lattice of Fuzzy Interval Numbers (FINs)

Consider the following definition.

Definition 1.7 A Fuzzy Interval Number, or FIN for short, is a function
F : (0, 1] → M such that (1) F (h) ∈ Mh, (2) either F (h) ∈ Mh

+ (positive
FIN), or F (h) ∈ Mh

− (negative FIN) for all h ∈ (0, 1], and (3) h1 ≤ h2 ⇒ {x :
F (h1) 	= 0} ⊇ {x : F (h2) 	= 0}.
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Fig. 1.5. Two positive valuation functions are shown on the domain [−1, 4] including
(a) The steeply increasing cubic function f1(x) = x3, and (b) The saturated logistic
function f2(x) = (1 − e−x)/(1 + e−x)

A FIN F can be written as the set union of generalized intervals; in par-
ticular, F = ∪

h∈(0,1]
{[a(h), b(h)]h}, where both interval-ends a(h) and b(h) are

functions of h ∈ (0, 1]. The set of FINs is denoted by F. More specifically, the
set of positive (negative) FINs is denoted by F+ (F−).

Example 1.6 Figure 1.6 shows a positive FIN. The only restriction is that a
FIN’s membership function needs to be “convex”.

We define an interval-FIN as F = ∪
h∈(0,1]

{[a(h), b(h)]h}, where both a(h)

and b(h) are constant, i.e. a(h) = a and b(h) = b. In particular, for a = b
an interval-FIN is called trivial-FIN. In the aforementioned sense F+ includes
both (fuzzy) numbers and intervals.

We remark that a FIN is a mathematical object, which can be interpreted
either as a possibility distribution (i.e. a fuzzy number) or as a probability
distribution, etc. [17, 18, 22]. An ordering relation has been introduced in F
as follows: F1 ≤ F2 ⇔ F1(h) ≤ F2(h),∀h ∈ (0, 1]. It turns out that F is a
mathematical lattice. The following proposition introduces a metric in F.
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F(h2)

F(h1)

F

h2

h1

1

0

Fig. 1.6. A positive FIN F = ∪
h∈(0,1]

{F (h)} is the set-union of positive generalized

intervals F (h), h ∈ (0, 1]

Proposition 1.1 Let F1 and F2 be FINs in the lattice F of FINs. A metric
function dK : F× F → R+

0 is given by

dK(F1, F2) =

1∫

0

dh(F1(h), F2(h))dh (1.4)

Based on dK , a metric D : FN ×FN → R+
0 can be defined between two N -

dimensional FINs F1 = [F1,1, ..., F1,N ]T and F2 = [F2,1, ..., F2,N ]T as follows.

D(F1,F2) =

√
√
√
√

N∑

i=1

d2
K(F1,i, F2,i) (1.5)

We remark that formula (1.5) may involve a vector x = [x1, ..., xN ]T ∈ RN

under the assumption that a vector entry xi (number) is represented by the
trivial-FIN xi = ∪

h∈(0,1]
{[xi, xi]h}, i = 1, ..., N .

Addition and multiplication are extended from Mh to F as follows.

• The product kF1, where k ∈ R and F1 ∈ F, is defined as Fp : Fp(h) =
kF1(h), h ∈ (0, 1].

• The sum F1+F2, where F1, F2 ∈ F is defined as Fs : Fs(h) = (F1+F2)(h) =
F1(h) + F2(h), h ∈ (0, 1].

We remark that, on the one hand, the product kF1 is always a FIN. On the
other hand, when both F1 and F2 are in cone F+ (F−) then the sum F1 + F2

is in cone F+ (F−). However, if F1 ∈ F+ and F2 ∈ F− then F1 + F2 might not
be a FIN. The interest of this work is in positive FINs.
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1.3.7 Practical FIN representation

From a practical viewpoint a FIN F is represented in the computer memory by

a L × 2 matrix

⎡

⎢
⎢
⎢
⎣

a1 b1

a2 b2

...
...

aL bL

⎤

⎥
⎥
⎥
⎦

of real numbers, where L is a user-defined number

of levels h1, h2, ..., hL such that 0 < h1 ≤ h2 ≤ ... ≤ hL = 1; that is, FIN
F equals F = ∪

i∈{1,...,L}
{[ai, bi]hi}. In our experiments we usually use either

L = 16 or L = 32 levels, spaced equally in the interval [0, 1].

1.4 Enhancement of Both Fuzzy-ART and SOM

Based on the lattice-theoretic notions and tools presented previously, this
section describes enhancements of both fuzzy-ART and SOM, namely fuzzy
lattice reasoning (FLR) and granular SOM (grSOM), respectively, for super-
vised granular learning. We point out that the FLR is based on an inclusion
measure function, whereas the grSOM is based on a metric function. Both
aforementioned functions are used here in the lattice F+ of positive FINs.

1.4.1 FLR: An enhancement of fuzzy-ART for classification

Algorithm FLR for training is presented next followed by algorithm FLR for
testing. Both algorithms are applied on interval-FINs.

Algorithm FLR for training

FLR-0: A rule-base RB = {(u1, C1), ..., (uL, CL)} is given, where ui ∈ FN
+ is

a hyperbox and Ci ∈ C, i = 1, ..., L is a class label — Note that C is
a finite set of class labels.

FLR-1: Present the next input pair (xi, ci) ∈ FN
+ × C, i = 1, ..., n to the

initially “set” RB.
FLR-2: If no more pairs are “set” in RB then store input pair (xi, ci) in RB;

L ← L + 1; goto step FLR-1.
Else, compute the fuzzy degree of inclusion k(xi ≤ ul), l ∈ {1, ..., L}
of input hyperbox xi to all “set” hyperboxes ui, i = 1, ..., L in RB.

FLR-3: Competition among the “set” pairs in the RB: Winner is pair (uJ , CJ )
such that J

.= arg max
l∈{1,...,L}

k(xi ≤ ul). In case of multiple winners,

choose the one with the smallest diagonal size.
FLR-4: The Assimilation Condition: Both (1) diag(xi ∨ uJ) is less than a

maximum user-defined threshold size Dcrit, and (2) ci = CJ .
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FLR-5: If the Assimilation Condition is not satisfied then “reset” the winner
pair (uJ , CJ ); goto step FLR-2.
Else, replace the winner hyperbox uJ by the join-interval xi ∨ uJ ;
goto step FLR-1.

Algorithm FLR for testing

flr-0: Consider a rule-base RB = {(u1, C1), ..., (uL, CL)}.
flr-1: Present a hyperbox x0 ∈ FN

+ to the rule base RB.
flr-2: Compute the fuzzy degree of inclusion k(x0 ≤ ul), l ∈ {1, ..., L} of

hyperbox x0 in all hyperboxes ui, i = 1, ..., L in the RB.
flr-3: Competition among the hyperboxes in RB: Winner is pair (uJ , CJ )

such that J
.= arg max

l∈{1,...,L}
k(xi ≤ ul).

flr-4: Hyperbox x0 is classified to the class with label CJ .

By “hyperbox” above we mean “interval-FIN”. We remark that the FLR
has been described as a rule-based classifier [19], where a hyperbox h is
assigned a class label thus corresponding to the following rule: If a point
p is inside hyperbox h (let the latter by labeled by c) then p is in class c. For
points outside all hyperboxes, as well as for points inside overlapping hyper-
boxes, inclusion measure k is used to assign a class. Note also that FLR has
been implemented on a neural network architecture [18, 23].

There are inherent similarities as well as substantial differences between
fuzzy-ART and FLR. In particular, both fuzzy-ART and FLR carry out learn-
ing rapidly in a single pass through the training data by computing hyperboxes
in their data domain. Note that a computed hyperbox corresponds to the core
of a fuzzy set and it can be interpreted as an information granule (cluster).

Advantages of FLR over fuzzy-ART include (1) comprehensiveness,
(2) flexibility, and (3) versatility as summarized next [23]. (1) The FLR can
handle intervals (granules), whereas fuzzy-ART deals solely with trivial inter-
vals the latter are points in the unit-hypercube. (2) It is possible to optimize
FLR’s behavior by tuning an underlying positive valuation function v as well
as an isomorphic function θ, whereas fuzzy-ART implicitly uses, quite restric-
tively, only v(x) = x and θ(x) = 1−x. (3) The FLR can handle general lattice
elements including points in the unit-hypercube, the latter is fuzzy-ART’s sole
application domain.

In addition, the FLR can deal with “missing” data as well as with “don’t
care” data in a constituent complete-lattice by replacing the aforementioned
data by the least and the greatest element, respectively, in the corresponding
constituent lattice [23].

Both of fuzzy-ART’s choice (Weber) function and match function cor-
respond to FLR’s inclusion measure function “k”. Moreover, fuzzy-ART’s
complement coding technique corresponds to a specific isomorphic function,
namely θ(x) = 1 − x. Apparently, choosing a different isomorphic function
than θ(x) = 1− x results in a different “coding” technique [18, 23].
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Let fi and θi be strictly-increasing and strictly-decreasing functions,
respectively, in a constituent lattice R in RN . A typical assumption for both
fuzzy-ART and FLR is to select fi and θi such that equation v([a, b]) =
1+diag1([a, b]) is satisfied [19]. On the one hand, two popular functions fi and
θi in the complete lattice unit-interval [0, 1] are fi(x) = x and θi(x) = 1− x.
On the other hand, two popular functions fi and θi in the noncomplete lattice
R are fi(x) = 1/(1 + e−λ(x−x0)) and θi(x) = 2x0 − x.

Inclusion measure “k” above retains an Occam razor semantic interpre-
tation as detailed in [19]. In particular, winner of the competition in steps
FLR-3/flr-3 above is the hyperbox whose diagonal needs to be modified the
least so as to “barely” include an input datum/hyperbox.

The FLR was interpreted lately as a reasoning scheme, which supports two
different modes of reasoning, namely Generalized Modus Ponens and Rea-
soning by Analogy [19]. A novel interpretation is presented here as follows.
Inclusion measure k(p ≤ q) is interpreted as the degree of truth of implication
“p ⇒ q” involving the truth values p and q, respectively, of two propositions.
Note that various mechanisms have been proposed in the literature for calcu-
lating the degree of truth of an implication “p ⇒ q” given the truth values p
and q [14]. The basic difference here is that the truth values p and q of the
two propositions involved in implication “p ⇒ q” take on values in a general
complete lattice [11] rather than taking on values solely in the unit-interval
[0, 1]. However, the truth of implication “p ⇒ q” takes on values in the unit-
interval [0, 1]. More specifically, the truth of implication “p⇒ q” is calculated
as k(p ⇒ q) = v(q)/v(p ∨ q). In conclusion, the FLR carries out interactively
tunable inferences. A couple of FLR drawbacks are described next.

Fuzzy-ART’s proliferation problem, that is the proliferation of hyper-
boxes/clusters, is inherited to FLR. However, FLR is equipped with tools such
as an inclusion measure as well as a metric function to reduce “in principle”
the number of hyperboxes.

Another drawback of FLR, also inherited from fuzzy-ART, is that the
learned clusters (in particular their total number, size, and location) depend
on the order of presenting the training data. A potential solution is to employ
an ensemble of FLR classifiers in order to boost performance stably [18].

1.4.2 grSOM: An Enhancement of SOM for Classification

Algorithm FLR is applicable in the space F+ of (positive) FINs. Algorithm
grSOM for learning (training) is presented next followed by algorithm grSOM
for generalization (testing).

Algorithm grSOM for training

GR-0: Define the size L of a L × L grid of neurons. Each neuron can store
both a N -dimensional FIN Wi,j ∈ FN

+ , i, j ∈ 1, ..., L and a class label
Ci,j ∈ C, where C is a finite set. Initially all neurons are uncommitted.
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GR-1: Memorize the first training data pair (x1, C1) ∈ FN
+×C by committing,

randomly, a neuron in the L× L grid.
Repeat the following steps a user-defined number Nepochs of epochs,
p = 1, ..., Nepochs.

GR-2: For each training datum (xk, Ck) ∈ FN
+ × C, k = 1, ..., n “reset” all

L× L grid neurons. Then carry out the following computations.
GR-3: Calculate the Minkowski metric d1(xk,Wi,j) between xk and commit-

ted neurons Wi,j i, j ∈ {1, ..., L}.
GR-4: Competition among the “set” (and, committed) neurons in the L× L

grid: Winner is neuron (I, J) whose weight WI,J is the nearest to xk,
i.e. (I, J) .= arg min

i,j∈{1,...,L}
d1(xk,Wi,j).

GR-5: Assimilation Condition: Both (1) Vector Wi,j is in the neighborhood
of vector WI,J on the L× L grid, and (2) CI,J = Ck.

GR-6: If the Assimilation Condition is satisfied then compute a new value
W ′

i,j as follows:

W ′
i,j =

[
1− h(k)

1+dK(WI,J ,Wi,j)

]
Wi,j + h(k)

1+dK(WI,J ,Wi,j)
xk.

Else, if the Assimilation Condition is not satisfied, “reset” the winner
(I, J); goto GR-4.

GR-7: If all the L × L neurons are “reset” then commit an uncommitted
neuron from the grid to memorize the current training datum (xk, Ck).
If there are no more uncommitted neurons then increase L by one.

Algorithm grSOM for testing

gr-0: Present x0 ∈ FN
+ to a trained grSOM.

gr-1: Calculate the Minkowski metric d1(x0,Wi,j) for committed neurons
Wi,j , i, j ∈ {1, ..., L}.

gr-2: Competition among the committed neurons in the L× L grid: Winner
is neuron (I, J) such that (I, J) .= arg min

i,j∈{1,...,L}
d1(x0,Wi,j).

gr-3: The class C0 of x0 equals C0
.= CI,J .

Function “h(k)”, in the training phase above, reduces smoothly from
1 down to 0 with the epoch number k. The above algorithm is called
incremental-grSOM [20]. It differs from another grSOM algorithm, namely
greedy-grSOM [22], in that only the incremental-grSOM employs convex com-
binations of (positive) FINs. Both grSOM and SOM partition the data domain
in Voronoi-regions, and each one of the aforementioned regions can also be
interpreted as an information granule.

A fundamental improvement of grSOM over SOM is the sound capacity of
grSOM to rigorously deal with nonnumeric data including both fuzzy numbers
and intervals represented by FINs. However, the decision-making function
of grSOM (as well as the corresponding function of SOM) does not admit
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a logical/linguistic interpretation. Rather, since the aforementioned function
is an energy-type objective function, that is a metric, optimization is pursued
during learning using energy minimization techniques.

1.5 Conclusion

This chapter was meant as a reference towards proliferating the employment
of both fuzzy-ART and SOM in granular classification applications. Enhance-
ments of fuzzy-ART as well as of SOM were presented, namely FLR and
grSOM, respectively. FLR/grSOM is applicable in the lattice of fuzzy interval
numbers, or FINs for short, including both (fuzzy) numbers and intervals.
The FLR was interpreted as a reasoning scheme, whereas the grSOM was
interpreted as an energy minimizer. The employment of mathematical lattice
theory was instrumental for introducing useful tools.

Ample experimental evidence suggests that FLR and/or grSOM can com-
paratively improve classification performance [18, 19, 20, 21, 22, 23].

Future work will consider alternative granular inputs to modified FLR
/grSOM classifiers including type-2 fuzzy set inputs, rough set inputs, etc. In
addition, fuzzy logic reasoning applications [15, 28] will be pursued.
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Chapter 1 Appendix

A poset is a pair (P,≤), where P is a set and ≤ is a binary partial order
relation defined next.

Definition 1.8 A partial order relation satisfies the following laws.
(PO1) x ≤ x (Reflexivity)
(PO2) x ≤ y and y ≤ x⇒ x = y (Antisymmetry)
(PO3) x ≤ y and y ≤ z ⇒ x ≤ z (Transitivity)

We remark that relation < means both ≤ and 	=.

Definition 1.9 An algebra is a pair (S, F ), where S is a non-empty set, and
F is a set of operations fa, each mapping a power Sn(a) of S into S for some
non-negative finite integer n(a).

We remark that each operation fa assigns to every n(a)-ple (x1, . . . , xn(a))
of elements of S, an element fa(x1, . . . , xn(a)) in S, the result of performing
the operation fa on the sequence x1, . . . , xn(a). In particular, if n(a) = 1, the
operation fa is called unary ; if n(a) = 2, it is called binary, etc.

Definition 1.10 An interval [a, b], with a ≤ b in a poset (P,≤), is defined as
the set [a, b] = {x ∈ P : a ≤ x ≤ b}.

Definition 1.11 A positive valuation in a crisp lattice (L,≤) is a real func-
tion v : L → R, which satisfies both

(PV 1) v(x) + v(y) = v(x ∧ y) + v(x ∨ y), and
(PV 2) x < y ⇒ v(x) < v(y).

Definition 1.12 A metric in a set A is a nonnegative real function d : A ×
A → R+

0 , which satisfies
(D0) d(x, y) = 0 ⇒ x = y
(D1) d(x, x) = 0
(D2) d(x, y) = d(y, x)
(D3) d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

If only conditions D1, D2, and D3 are satisfied then function d is called
pseudo-metric. We remark that a metric space is a pair (A, d) including both
a set A and a metric d : A×A → R+

0 .

Definition 1.13 Let P and Q be posets. A map ψ : P → Q is called
(i) Order-perserving (or, alternatively, monotone), if x ≤ y in P implies

ψ(x) ≤ ψ(y) in Q.
(ii) Order-isomorphism (or, simply, isomorphism), if both x ≤ y in P ⇔

ψ(x) ≤ ψ(y) in Q and “ψ is onto Q”.

We remark that when there is an isomorphism from P to Q, then P and
Q are called isomorphic, symbolically P ∼= Q; moreover, the corresponding
function ψ is called isomorphic (function).
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Summary. Recent discoveries in neuroscience imply that the basic computational
elements are the dendrites that make up more than 50% of a cortical neuron’s mem-
brane. Neuroscientists now believe that the basic computation units are dendrites,
capable of computing simple logic functions. This paper discusses two types of neural
networks that take advantage of these new discoveries. The focus of this paper is on
some learning algorithms in the two neural networks. Learning is in terms of lattice
computations that take place in the dendritic structure as well as in the cell body
of the neurons used in this model.

2.1 Introduction

During the past two decades artificial neural networks based on lattice theory
or employing various aspects of lattice theoretic computations have attracted
considerable attention which is partially due to their useful applications in a
variety of disciplines [2, 3, 5, 7, 9, 10, 11, 12, 19, 20, 22, 23, 24]. However,
just like the various artificial neural networks currently in vogue such as mul-
tilayer perceptrons, radial basis function neural networks, and support vector
machines, these lattice based neural networks bear little resemblance to bio-
logical neural networks. In biological neurons, the terminal axonal branches
make contact with the soma and the many dendrites of other neurons. The
sites of contact are the synaptic sites where the synapse takes place. The
number of synapses on a single neuron in the cerebral cortex ranges between
500 and 200 000. Most of the synapses occur on the dendritic tree of the neu-
ron, and it is here where the information is processed [4, 8, 16, 17]. Dendrites
make up the largest component in both surface area and volume of the brain.
Part of this is due to the fact that pyramidal cell dendrites span all cortical
layers in all regions of the cerebral cortex [1, 4, 16]. Thus, when attempting
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to model artificial brain networks that bear more than just a passing resem-
blance to biological brain networks, one cannot ignore dendrites (and their
associated spines) which make up more than 50% of the neuron’s membrane.
For a more thorough background in dendritic computing we refer the reader
to the references cited in [13].

In order to take advantage of recent advances in neurobiology and the
biophysics of neural computation and to nudge the field of ANNs back to its
original roots, we proposed a model of single neuron computation that takes
into account the computation performed by dendrites [13]. Extrapolating on
this model, we constructed a single-layer, feedforward neural network based
on dendritic computing within the lattice domain [14]. This new neural net-
work model was referred to as a single layer morphological perceptron (SLMP).
However, a more appropriate name would be a single layer lattice perceptron
(SLLP) since the basic neural computations are derived from the lattice alge-
bra (IR,+,∨,∧), where IR denotes the set of real numbers and +, ∨, and ∧
denote the operations of addition, maximum, and minimum, respectively, of
two numbers.

This chapter is organized as follows: Sect. 2.2 outlines the functionality of
the SLLP; Sect. 2.3 discuss methods of training SLLPs. An example comparing
SLLPs with some other current artificial neural networks is also given; in
Sect. 2.4 we provide the basic algorithm for multi-class learning with SLLPs;
Sect. 2.5 gives an extension of the SLLP to a lattice based associative memory
with one hidden layer and provide a formulation for computing the weights
of axonal terminal fibers. Concluding remarks to the material exposed here
are given in Sect. 2.6. The chapter ends with a list of essential references to
which the reader may turn for supplementary information.

2.2 The Dendritic Single Layer Lattice Perceptron

In the dendritic SLLP model, a set of n input neurons N1, . . . , Nn accepts
input x = (x1, . . . , xn) ∈ IRn. That is, the value xi of the ith input neuron Ni

need not be binary. An input neuron provides information through its axonal
arborization to the dendritic trees of a set of m output neurons M1, . . . ,Mm.
Explicitely, the state value of a neuron Ni(i = 1, . . . , n) propagates through
its axonal tree all the way to the terminal branches that make contact with
the neuron Mj(j = 1, . . . , m). The weight of an axonal branch of neuron
Ni terminating on the kth dendrite of Mj is denoted by w�

ijk, where the
superscript � ∈ {0, 1} distinguishes between excitatory (� = 1) and inhibitory
(� = 0) input to the dendrite (see Fig. 2.1). The kth dendrite of Mj will
respond to the total input received from the neurons N1, . . . , Nn and will either
accept or inhibit the received input. The computation of the kth dendrite of
Mj is given by

τ j
k(x) = pjk

∧

i∈I(k)

∧

�∈L(i)

(−1)1−�(xi + w�
ijk) , (2.1)
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Fig. 2.1. The neural pathways in an SLLP. Terminations of excitatory and inhibitory
fibers are marked with • and ◦, respectively. Symbol Djk denotes dendrite k of
Mj and Kj its number of dendrites. Neuron Ni can synapse Djk with excitatory
or inhibitory fibers, e.g. weights w1

1jk and w0
nj2 respectively denote excitatory and

inhibitory fibers from N1 to Djk and from Nn to Dj2

where x = (x1, . . . , xn) denotes the input value of the neurons N1, . . . , Nn

with xi representing the value of Ni, I(k) ⊆ {1, . . . , n} corresponds to the set
of all input neurons with terminal fibers that synapse on the kth dendrite of
Mj , L(i) ⊆ {0, 1} corresponds to the set of terminal fibers of Ni that synapse
on the kth dendrite of Mj , and pjk ∈ {−1, 1} denotes the excitatory (pjk = 1)
or inhibitory (pjk = −1) response of the kth dendrite of Mj to the received
input. Note that the number of terminal axonal fibers on Ni that synapse on
a dendrite of Mj is at most two since L(i) is a subset of {0, 1}.

The value τ j
k(x) is passed to the cell body and the state of Mj is a function

of the input received from all its dendrites. The total value received by Mj is
given by

τ j(x) = pj

Kj∧

k=1

τ j
k(x) , (2.2)

where Kj denotes the total number of dendrites of Mj and pj = ±1 denotes
the response of the cell body to the received dendritic input. Here again,
pj = 1 means that the input is accepted, while pj = −1 means that the cell
rejects the received input. Figure 2.1 illustrates the neural pathways from the
sensor or input neurons to a particular output neuron Mj . The next state of
Mj is then determined by an activation function f , namely yj = f [τ j(x)]. In
this exposition we restrict our discussion to the hard-limiter

f [τ j(x)] =
{

1 ⇔ τ j(x) ≥ 0
0 ⇔ τ j(x) < 0 . (2.3)
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2.3 Single Class Learning in SLLPs

Early learning algorithms were derived from the proofs of the following two
theorems which provide insight into the computational capability of SLLPs.

Theorem 2.1 If X ⊂ IRn is compact and ε > 0, then there exists a single
layer lattice perceptron that assigns every point of X to class C1 and every
point x ∈ IRn to class C0 whenever d(x,X) > ε.

The expression d(x,X) in the statement of Theorem 2.1 refers to the dis-
tance of the point x ∈ IRn to the set X. As a consequence, any compact
configuration, as the one shown in Fig. 2.2(a), whether it is convex or non-
convex, connected or not connected, or contains a finite or an infinite number
of points, can be approximated within any desired degree of accuracy ε > 0
by an SLLP with one output neuron.

An SLLP can be extended to multiple output neurons in order to handle
multiclass problems, just like its classical counterpart. However, unlike the well
known single layer perceptron (SLP), which is a linear discriminator, the SLLP
with multiple outputs can solve multiclass nonlinear classification problems.
This computational capability of an SLLP with multiple output neurons is
attested by Theorem 2.2 below, which is a generalization of Theorem 2.1 to
multiple sets. Suppose X1, . . . , Xm denotes a collection of disjoint compact
subsets of IRn. The goal is to classify, ∀j = 1, . . . , m, every point of Xj as
a point belonging to class Cj and not belonging to class Ci whenever i 	= j.
For each p ∈ {1, . . . , m}, define Yp =

⋃m
j �=p Xj . Since each Yp is compact and

Yp∩Xp = ∅, the Euclidean distance between the two sets Xp and Yp is greater
than zero; i. e., d(Xp, Yp) > 0. Then, set εp = d(Xp, Yp) for all p = 1, . . . ,m
and let ε0 = 1

2min{ε1, . . . , εp}.
Theorem 2.2 If {X1, . . . , Xm} is a collection of disjoint compact subsets of
IRn and ε is a positive number with ε < ε0, then there exists a single layer

Fig. 2.2. (a) Compact set X and (b) collection of disjoint compact sets X1, X2, X3,
each with a banded region of thickness ε (dashed). Theorems 2.1 and 2.2 guarantee
the existence of SLLPs able to classify sets X and, respectively, X1, X2, X3, within
a desired ε accuracy
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lattice perceptron that assigns each point x ∈ IRn to class Cj whenever x ∈ Xj

and j ∈ {1, . . . , m}, and to class C0 = ¬
⋃m

j=1 Cj whenever d(x,Xi) > ε,∀i =
1, . . . ,m. Furthermore, no point x ∈ IRn is assigned to more than one class.

Figure 2.2(b) illustrates the conclusion of Theorem 2.2 for the case m = 3.
Based on the proofs of these two theorems, which can be found in [13], we
constructed training algorithms for SLLPs [13, 14, 15]. For faster computa-
tion, instead of the Euclidean distance, the SLLP algorithms work with the
Chebyshev distance as defined next.

Definition 2.1 The Chebyshev distance (also known as checkerboard dis-
tance between two patterns x,y ∈ IRn is given by

d(x,y) = max
1≤i≤n

|xi − yi| . (2.4)

During the learning phase, the output neurons grow new dendrites while
the input neurons expand their axonal branches to terminate on the new
dendrites. The algorithms always converge and have rapid convergence rate
when compared to backpropagation learning in traditional perceptrons.

Training can be realized in one of two main strategies, which differ in the
way the separation surfaces in pattern space are determined. One strategy is
based on elimination, whereas the other is based on merging. In the former
approach, a hyperbox is initially constructed large enough to enclose all pat-
terns belonging to the same class, possibly including foreign patterns from
other classes. This large region is then carved to eliminate the foreign pat-
terns. Training completes when all foreign patterns in the training set have
been eliminated. The elimination is performed by computing the intersection
of the regions recognized by the dendrites, as expressed in (2.2) for some
neuron Mj : τ j(x) = pj

∧Kj

k=1 τ j
k(x).

The latter approach starts by creating small hyperboxes around individ-
ual patterns or small groups of patterns all belonging to the same class. Iso-
lated boxes that are identified as being close according to a distance measure
are then merged into larger regions that avoid including patterns from other
classes. Training is completed after merging the hyperboxes for all patterns
of the same class. The merging is performed by computing the union of the
regions recognized by the dendrites. Thus, the total net value received by
output neuron Mj is computed as:

τ j(x) = pj

Kj∨

k=1

τ j
k(x) . (2.5)

The two strategies are equivalent in the sense that they are based on the
same mathematical framework and they both result in closed separation sur-
faces around patterns. The equivalence can be attested by examining the equa-
tions employed to compute the total net values in the two approaches (2.2)
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and (2.5), and remarking that the maximum of any K values a1, a2, . . . , aK ,
can be equivalently written as a minimum:

∨K
k=1 ak = −

∧K
k=1(−ak). Thus,

if the output value yj at neuron Mj is computed in terms of minimum as
yj = f [pj

∧Kj

k=1 τ j
k(x)], then yj can be equivalently computed in terms of max-

imum as yj = f [−pj

∨Kj

k=1(−τ j
k(x))].

The major difference between the two approaches is in the shape of the
separation surface that encloses the patterns of a class, and in the number
of dendrites that are grown during training to recognize the region delimited
by that separation surface. Since the elimination strategy involves removal
of pieces from an originally large hyperbox, the resulting region is bigger
than the one obtained with the merging strategy. The former approach is
thus more general, while the latter is more specialized. This observation can
guide the choice of the method for solving a particular problem. Additional
developments related with the material presented in this section appear in [6,
18]; also in this book, see Chap. 3 by Barmpoutis and Ritter on Orthonormal
Basis Lattice Neural Networks.

Figure 2.3 illustrates two possible partitionings of the pattern space IR2

in terms of intersection (a) and, respectively, union (b), in order to recog-
nize the solid circles (•) as one class C1. In part (a) the C1 region is deter-
mined as the intersection of three regions, each identified by a corresponding
dendrite. The rectangular region marked D1 is intersected with the comple-
ment of the region marked D2 and the complement of the region marked D3.
An excitatory dendrite recognizes the interior of an enclosed region, whereas
an inhibitory dendrite recognizes the exterior of a delimited region. Thus,
the corresponding dendrite D1 is excitatory, while dendrites D2 and D3 are
inhibitory. If we assign j = 1 in (2.1) and (2.2) as representing the index

Fig. 2.3. Two partitionings of the pattern space IR2 in terms of intersection (a) and
union (b), respectively. The solid circles (•) belong to class C1, which is recognized
as the shaded area. Solid and dashed lines enclose regions learned by excitatory and,
respectively, inhibitory dendrites
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of the output neuron for class C1, then the output value is computed as
y1 = f [τ1(x)] = f [p1

∧3
k=1 τ1

k (x)], where τ1
k (x) is computed as in (2.1). There,

the responses p1k are p11 = 1 and p12 = p13 = −1. The response of the cell
body is p1 = 1.

In part (b) the C1 region is determined as the union of four regions, each
identified by a corresponding dendrite. This time, all dendrites D1, . . . , D4

are excitatory, so their responses will be p1k = 1, k = 1, . . . , 4. Using (2.1)
and (2.5) we obtain the output value y1 = f [τ1(x)] = f [p1

∨4
k=1 τ1

k (x)], where
p1 = 1. As noted above, the output value can be equivalently computed with
minimum instead of maximum as y1 = f [τ1(x)] = f [p∗1

∧4
k=1 p∗1kτ1

k (x)], i.e. by
conjugating the responses p∗1 = −p1 and p∗1k = −p1k.

2.3.1 Training based on Elimination

A training algorithm that employs elimination is given below. In the training
or learning set {(xξ, cξ) : ξ = 1, . . . ,m}, the vector x ξ = (xξ

1, . . . , x
ξ
n) ∈ IRn

denotes an exemplar pattern and cξ ∈ {0, 1} stands for the corresponding
class number in a one-class problem, i.e., cξ = 1 if x ξ ∈ C1, and cξ = 0 if
x ξ ∈ C0 = ¬C1. Numbered steps are prefixed by S and comments are provided
within brackets.

Algorithm 2.1. SLLP Training by Elimination

S1. Let k = 1, P = {1, . . . ,m}, I = {1, . . . , n}, L = {0, 1}; for i ∈ I do

w1
ik = −

∧

cξ=1

xξ
i ; w0

ik = −
∨

cξ=1

xξ
i

[Initialize parameters and auxiliary index sets; set weights for first dendrite
(hyperbox enclosing class C1); k is the dendrite counter.]

S2. Let pk = (−1)sgn(k−1); for i ∈ I, � ∈ L do r�
ik = (−1)(1−�); for ξ ∈ P do

τk(xξ) = pk

∧

i∈I

∧

�∈L

r�
ik(xξ

i + w�
ik)

[Compute response of current dendrite; sgn(x) is the signum function.]

S3. For ξ ∈ P do τ(xξ) =
∧k

j=1 τj(xξ)
[Compute total response of output neuron M .]

S4. If f(τ(xξ)) = cξ ∀ξ ∈ P then let K = k; for k = 1, . . . ,K and
for i ∈ I, � ∈ L do print network parameters: k, w�

ik, r�
ik, pk stop

[If with k generated dendrites learning is successful, output final weights and
input-output synaptic responses of the completed network; K denotes the final
number of dendrites grown in neuron M upon convergence (the algorithm ends
here). If not, training continues by growing additional dendrites (next step).]
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S5. Let k = k + 1, I = I ′ = X = E = H = ∅, and D = C1

[Add a new dendrite to M and initialize several auxiliary index sets; initially,
set D gets all class 1 patterns.]

S6. Let choice(xγ) ∈ C0 such that f(τ(xγ)) = 1
[Select a misclassified pattern from class C0; γ is the index of the misclassified
pattern and function choice(x) is a random or sort selection mechanism.]

S7. Let

µ =
∧

ξ �=γ

{
n∨

i=1

|xγ
i − xξ

i | : xξ ∈ D}

[Compute the minimum Chebyshev distance from the selected misclassified
pattern xγ to all patterns in set D; since D is updated in step S12, µ changes
during the generation of new terminals on the same dendrite.]

S8. Let I ′ = {i : |xγ
i − xξ

i | = µ, xξ ∈ D, ξ 	= γ} and
X = {(i, xξ

i ) : |xγ
i − xξ

i | = µ, xξ ∈ D, ξ 	= γ}
[Keep indices and coordinates of patterns in set D that are on the border of
the hyperbox centered at xγ .]

S9. For (i, xξ
i ) ∈ X, if xξ

i < xγ
i then w1

ik = −xξ
i , E = {1} and

if xξ
i > xγ

i then w0
ik = −xξ

i , H = {0}
[Assign weights and input values for new axonal fibers in the current dendrite
that provide correct classification for the misclassified pattern.]

S10. Let I = I ∪ I ′ ; L = E ∪H
[Update index sets I and L with only those input neurons and fibers needed
to classify xγ correctly.]

S11. Let D′ = {xξ ∈ D : ∀i ∈ I,−w1
ik < xξ

i and xξ
i < −w0

ik}
[Keep C1 exemplars x ξ (ξ 	= γ) that do not belong to the recently created
region in step S9; auxiliary set D′ is used for updating set D that is reduced
during the creation of new possible axonal fibers on the current dendrite.]

S12. If D′ = ∅ then return to S2 else let D = D′ and loop to step S7
[Check if there is no need to wire more axonal fibers to the current dendrite.
Going back to S2 means that the current dendrite is done, no more terminal
fibers need to be wired in it but the neuron response is computed again to see
if learning has been achieved; returning to S7 means that the current dendrite
needs more fibers.]

To illustrate the results of an implementation of the training algorithm
based on elimination, we employed a data set from [21], where it was used
to test a simulation of a radial basis function network (RBFN). The data set
consists of two nonlinearly separable classes of 10 patterns each, where the
class of interest, C1, comprises the patterns depicted with solid circles (•). All
patterns were used for both training and test. Figure 2.4 compares the class
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Fig. 2.4. The closed class C1 region (shaded) learned by an SLLP with dendritic
structures using the elimination algorithm (a), in comparison to the open region
learned by an MLP (b), both applied to the data set from [21]. During training, the
SLLP grows only 3 dendrites, one excitatory and two inhibitory (dashed). Compare
(a) to the output in Fig. 2.5 of the merging version of the SLLP training algorithm

C1 regions learned by an SLLP with dendritic structures using the elimination-
based algorithm (a) and, respectively, by a backpropagation MLP (b).

The first step of the algorithm creates the first dendrite, which sends an
excitatory message to the cell body of the output neuron if and only if a point
of IR2 is in the rectangle (solid lines) shown in Fig. 2.4(a). This rectangle
encloses the entire training set of points belonging to class C1. Subsequent
steps of the algorithm create two more dendrites having inhibitory responses.
These dendrites will inhibit responses to points in the carved out region of the
rectangle as indicated by the dashed lines in Fig. 2.4(a). The only “visible”
region for the output neuron will now be the dark shaded area of Fig. 2.4(a).

The three dendrites grown in a single epoch during training of the SLLP
are sufficient to partition the pattern space. In contrast, the MLP created
the open surface in Fig. 2.4(b) using 13 hidden units and 2000 epochs. The
RBFN also required 13 basis functions in its hidden layer [21]. The separation
surfaces drawn by the SLLP are closed, which is not the case for the MLP,
and classification is 100% correct, as guaranteed by the theorems listed at the
beginning of this section. Additional comments and examples in relation to
Algorithm 2.1 are discussed in [13].

2.3.2 Training based on Merging

A training algorithm based on merging for a SLLP is given below. The algo-
rithm constructs and trains an SLLP with dendritic structures to recognize
the patterns belonging to the class of interest C1. The remaining patterns in
the training set are labeled as belonging to class C0 = ¬C1. The input to
the algorithm consists of a set of training patterns X = {x1, . . . ,xk} ⊂ IRn
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with associated desired outputs yξ with yξ = 1 if and only if xξ ∈ C1, and
yξ = 0 if x ξ is not in class C1. In the form provided below, the algorithm
will construct small hyperboxes about training patterns belonging to C1 and
then merge these hyperboxes that are close to each other in the pattern space.
For this reason, the number of dendrites of the output neuron M created by
the algorithm will exceed the cardinality of the number of training patterns
belonging to class C1. Besides having one dendrite per pattern in class C1, M
may also have dendrites for some unique pattern pairs of patterns in C1.

Algorithm 2.2. SLLP Training by Merging

S1. Let k = 0 and set all n-dimensional pattern pairs {xξ, xν} from C1

as unmarked; let

dmin =
∧

ξ �=γ

d(xξ,xγ) =
∧

ξ �=γ

{
n∨

i=1

|xξ
i − xγ

i | : xξ ∈ C1,xγ ∈ C0} ;

let ε = 0.5dmin; for i = 1, . . . , n set α1
i , α

0
i < ε

[k is a dendrite counter, the α’s are 2n accuracy factors where dmin is the min-
imal Chebyshev interset distance between classes C1 and C0; ε is a tolerance
parameter for merging two hyperboxes.]

S2. For x ξ ∈ C1 do step S3

S3. Let k = k + 1; for i = 1, . . . , n do w1
ik = −(xξ

i − α1
i ), w0

ik = −(xξ
i + α0

i )
[Create a dendrite on the neural body of the output neuron M and for each
input neuron Ni grow two axonal fibers on the kth dendrite by defining their
weights.]

S4. For x ξ ∈ C1 do steps S5 to S10 [Outer loop.]

S5. Mark each unmarked pattern pair {x ξ,xν}, where xξ is fixed by step S4
and do steps S6 to S10

[The pattern pair can be chosen in the order xν appears in the training set or
at random.]

S6. If d(xξ,xν) < dmin + ε, do steps S7 to S10 else loop to step S5

S7. Identify a region R in pattern space that connects patterns x ξ and xν ;
for i = 1, . . . , n define a set of merging parameters εi

such that 0 < εi ≤ dmin + ε
[This ensures a user defined merging size for each dimension. If |xξ

i −xν
i | ≥ εi,

region R will be bounded by the hyperplanes xξ
i and xν

i or by the hyperplanes
0.5(xξ

i + xν
i − εi) and 0.5(xξ

i + xν
i + εi) otherwise.]

S8. If xγ ∈ C0 and xγ 	∈ R then do step S9 else do step S10
[R is the merged region determined in step S7.]
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S9. Let k = k + 1; for i = 1, . . . , n do
if |xξ

i − xγ
i | ≥ εi

then w1
ik = −min{xξ

i , x
γ
i }, w0

ik = −max{xξ
i , x

γ
i },

else w1
ik = −0.5(xξ

i + xγ
i − εi), w0

ik = −0.5(xξ
i + xγ

i + εi)
[Create a new dendrite and axonal branches that recognize the new region.]

S10. If there are unmarked pattern pairs remaining, loop to step S5; if all
class C1 pattern pairs {x ξ,xν} with the fixed x ξ have been marked, then
loop to step S4; when outer loop exits, let K = k and stop

According to this algorithm, the output neuron M will be endowed with
K dendrites. If |C1| denotes the number of training patterns belonging to
class C1, then K−|C1| corresponds to the number of dendrites that recognize
regions that connect a pattern pair, while |C1| of the dendrites recognize
regions around individual class one patterns. We need to point out that this
training algorithm as well as our previously mentioned algorithm starts with
the creation of hyperboxes enclosing training points. In this sense there is some
similarity between our algorithms and those established in the fuzzy min-max
neural networks approach, which also uses hyperboxes [19, 20]. However, this is
also where the similarity ends, as all subsequent steps are completely different.
Furthermore, our approach does not employ fuzzy set theory.

Figure 2.5 illustrates the results of an implementation of the SLLP training
algorithm based on merging, applied to the same data set as in Fig. 2.4. Again,
all patterns were used for both training and test. During training 19 excitatory
dendrites are grown, 10 for regions around each pattern from class C1 and 9
more to merge the individual regions. The separation surface is closed and
recognition is 100% correct, as expected.

There is one more region in Fig. 2.5, drawn in dashed line, correspond-
ing to an inhibitory dendrite, and its presence is explained as follows. The
merging algorithm outlined above creates regions that are sized to avoid

Fig. 2.5. The class C1 region (shaded) learned by an SLLP with dendritic structures
using the merging-based algorithm, applied to the data set from [21]. During train-
ing, the SLLP grows 20 dendrites, 19 excitatory and 1 inhibitory (dashed). Compare
to the results in Fig. 2.4(a) obtained with the elimination version of the algorithm
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touching patterns belonging to class C0 or approaching them closer than a
certain distance. In a more general version, larger hyper-boxes are allowed to
be constructed. In this case, an additional step would identify foreign patterns
that are approached or touched, and create inhibitory dendrites to eliminate
those patterns. This more general approach is being used in the experiment
of Fig. 2.5 and explains the presence of the inhibitory dendrite whose region
is depicted with dashed line.

2.4 Multiple Class Learning in SLLPs

For better clarity of the description, the training algorithms described so far
were limited to a single non-zero class, which corresponds to a single output
neuron of the SLLP with dendritic structures. Below we present a straightfor-
ward generalization to multiple classes, which will invoke either one of the two
procedures (elimination or merging) discussed in Sect. 2.3 as a subroutine.

The generalized algorithm consists of a main loop that is iterated m times,
where m represents the number of non-zero classes and also the number of
output neurons of the resulting SLLP. Within the loop, the single-class pro-
cedure is invoked. Thus, one output neuron at a time is created and trained
to classify the patterns belonging to its corresponding class. The algorithm
proceeds as follows.

Algorithm 2.3. Multi-class SLLP Training

S1. For j = 1, . . . ,m do steps S2 through S4
[j is a non-zero class index.]

S2. Generate the output neuron Mj

[Create a new output neuron for each non-zero class.]

S3. For each pattern x ξ of the training set do
If x ξ is labeled as belonging to class Cj

then temporarily reassign x ξ as belonging to C1

else temporarily reassign x ξ to class C0

[The assignment is for this iteration only; original pattern labels are needed
in subsequent iterations.]

S4. Call a single-class procedure to train output neuron Mj on the
training set modified to contain patterns of only one non-zero class

[Algorithm 2.1 (elimination) or 2.2 (merging) can be used here.]

The straightforward generalization presented above suffers from a potential
problem. The resulting SLLP partitions the pattern space in regions that might
partially overlap. It is desirable that the learned regions be disjoint. Otherwise,
a test pattern located in an area of overlap will erroneously be classified as
belonging to more than one class. Theorem 2.2 guarantees the existence of an
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SLLP with multiple output neurons that is able to classify m classes disjointly.
Therefore, the generalization of the algorithm can be modified to prevent
overlap between classes.

One way of modifying the algorithm would consist of taking into account
current information during training about the shape of the regions learned
so far, and using this information when growing new dendrites and assigning
synaptic weights. An alternative would be to draw regions of controlled size
based on minimum interset distance, in such a way that two regions that
belong to different classes cannot touch. A similar idea was mentioned in the
training algorithm based on merging.

Yet another approach to prevent overlap of different class regions would
involve the augmentation of the SLLP with an additional layer of neurons. The
former output layer of the SLLP will thus become the hidden layer of a two-
layer lattice perceptron with dendritic structures. The role of the supplemental
layer is basically to change the neural values of the hidden nodes, where several
can be active simultaneously, into values where at most one output neuron
may be active (may fire) at a time.

It is worthwhile mentioning that multiple layers are not required to solve
a nonlinear problem with a lattice perceptron, as is the case for classical per-
ceptrons. The theorems in Sect. 2.3 prove that a single layer is sufficient. The
two-layer SLLP described in the previous paragraph simply provides a con-
ceivable manner to prevent ambiguous classification in the straightforward
generalization of the training algorithm. Existence of single layer lattice per-
ceptrons that are able to solve a multi-class problem with no class overlap is
guaranteed.

2.5 Dendritic Lattice Associative Memories

One goal in the theory of associative memories is for the memory to recall a
stored pattern y ∈ IRm when presented a pattern x ∈ IRn, where the pattern
association expresses some desired pattern correlation. More precisely, suppose
X = {x1, . . . ,xk} ⊂ IRn and Y = {y1, . . . ,yk} ⊂ IRm are two sets of pattern
vectors with desired association given by the diagonal {(x ξ,y ξ) : ξ = 1, . . . , k}
of X × Y . The goal is to store these pattern pairs in some memory M such
that for ξ = 1, . . . , k, M recalls y ξ when presented with the pattern x ξ. If
such a memory M exists, then we shall express this association symbolically
by x ξ →M→ y ξ. Additionally, it is generally desirable for M to be able to
recall y ξ even when presented with a somewhat corrupted version of xξ.

A modification of the lattice based perceptron with dendritic structure
leads to a novel associative memory that is distinct from matrix correlation
memories and their various derivatives. This new dendritic lattice associative
memory or DLAM can store any desirable number of pattern associations,
has perfect recall when presented with an exemplar pattern and is extremely
robust in the presence of noise. For this new hetero-associative memory one
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defines a set of sensory (input) neurons N1, . . . , Nn that receive input x from
the space IRn with Ni receiving input xi, the ith-coordinate of x. If, as before,
X = {x1, . . . ,xk} ⊂ IRn represents the set of exemplar patterns, then the
input neurons will propagate their input values xi to a set of k hidden neurons
H1, . . . , Hk, where each Hj has exactly one dendrite. Every input neuron Ni

has exactly two axonal fibers terminating on the dendrite of Hj . The weights
of the terminal fibers of Ni terminating on the dendrite of Hj are given by

w�
ij =
{
−(xj

i − αj) ⇔ � = 1
−(xj

i + αj) ⇔ � = 0
, (2.6)

where i = 1, . . . , n and j = 1, . . . , k, and for each j ∈ {1, . . . , k}, the number
αj > 0 is a user defined noise parameter associated with the pattern xj . This
noise parameter needs to satisfy

αj <
1
2
min{d(xj ,xγ) : γ ∈ K(j)} =

1
2
dmin , (2.7)

where K(j) = {1, . . . , k} \ {j} and d(xj ,xγ) denotes the Chebyshev distance
between patterns xj and xγ (see Def. 2.1).

For a given input x ∈ IRn, the dendrite of the hidden unit Hj computes

τ j(x ) =
n∧

i=1

1∧

�=0

(−1)1−�(xi + w�
ij). (2.8)

The state of the neuron Hj is determined by the hard-limiter activation
function

f(z) =
{

0 ⇔ z ≥ 0
−∞ ⇔ z < 0 . (2.9)

The output of Hj is given by f [τ j(x )] and is passed along its axonal fibers to
m output neurons M1, . . . ,Mm. The activation function defined by (2.9) is a
hard-limiter in the algebra A = (IR−∞,∨,+) since the zero of A is −∞ (for
the operation ∨) and the unit of A corresponds to 0. This mirrors the hard-
limiter in the algebra (IR,+,×) defined by f(z) = 0 if z < 0 and f(z) = 1 if
z ≥ 0, since in this algebra the zero is 0 and the unit is 1.

Similar to the hidden layer neurons, each output neuron Mh, where
h = 1, . . . ,m, has one dendrite. However, each hidden neuron Hj has exactly
one excitatory axonal fiber and no inhibitory fibers terminating on the den-
drite of Mh. Figure 2.6 illustrates this dendritic network model. The excitatory
fiber of Hj terminating on Mh has synaptic weight vjh = yj

h. Note that, for
an auto-associative DLAM, m = n and vjh = xj

h.

The computation performed by Mh is given by

τh(s) =
k∨

j=1

(sj + vjh), (2.10)
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Fig. 2.6. The topology of a DLAM. This associative memory is a feedforward fully
connected neural network; all axonal branches from input neurons Ni synapse via
two fibers (excitatory and inhibitory) on all hidden neurons Hj , which in turn con-
nect to all output nodes Mh via excitatory fibers

where sj denotes the output of Hj , namely sj = f [τ j(x)], with f defined
in (2.9). The activation function g for each output neuron Mh is the linear
identity function g(z) = z.

Each neuron Hj will have the output value sj = 0 if and only if x is an
element of the hypercube Bj = {x ∈ IRn : xj

i − αj ≤ xi ≤ xj
i + αj} and

sj = −∞ whenever x ∈ IRn \ Bj . The output of the network having the
weights set according to (2.6) will be y = (y1, . . . , ym)′ =

(
yj
1, . . . , y

j
m

)′ =
yj if and only if x ∈ Bj . That is, whenever x is a corrupted version of xj

with each coordinate of x not exceeding the allowable noise level αj , then x
will be associated with xj . If the amount of noise exceeds the level αj , then
the network rejects the input by yielding the output vector (−∞, . . . ,−∞)′.
Obviously, each uncorrupted pattern xξ will be associated with xξ.

It is important to remark that the αj values computed with (2.7) are input
independent and establish maximum allowable noise bounds on input patterns
in order to guarantee their perfect recall. In addition, the αj parameter for the
jth exemplar pattern depends only on distances against the other exemplar
patterns. An alternative scheme considers a single input dependent α value
that takes into account the distances between an arbitrary noisy input and
each exemplar pattern. Let x̃ ∈ IRn denote a noisy version of an exemplar
pattern x ∈ X, then the value of α used for the weights in (2.6) is given by

α = min
1≤γ≤k

{d(x̃ ,x γ)} = d̃min ; x̃ 	∈ X , xγ ∈ X. (2.11)
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Fig. 2.7. Top row depicts the images p1,p2,p3, which were converted into the
prototype patterns of the set X = {x1, x2, x3}; bottom row shows the images used
to generate the corresponding association patterns from the set Y = {y1, y2, y3}

The modified DLAM has the advantage that it can work with inputs cor-
rupted by unspecified amounts of random noise and still preserves robustness.

2.5.1 Image Retrieval from Noisy Inputs with a DLAM

To illustrate the performance of this associative memory, we use a visual
example consisting of the associated image pairs P = {p1,p2,p3} and Q =
{q1, q2, q3} shown in Fig. 2.7. Each p ξ is a 50×50 pixel 256-gray scale image,
whereas each qξ is a 30 × 50 pixel 256-gray scale image, where ξ = 1, 2, 3.
Using the standard row-scan method, each pattern image p ξ and q ξ was
converted into an associative pair of pattern vectors x ξ = (xξ

1, . . . , x
ξ
2500)

′

and y ξ = (yξ
1, . . . , y

ξ
1500)

′. Thus, for this particular example, we have X =
{x1,x2,x3} ⊂ IR2500 and Y = {y1,y2,y3} ⊂ IR1500.

The patterns illustrated in the top row of Fig. 2.8 were obtained by dis-
torting 100% of the vector components of each xj within a noise level αj ,
chosen to satisfy the inequality in (2.7). Specifically, we set

α1 = 0.49min[d(x 1,x 2), d(x 1,x 3)] ≈ 97 ,

α2 = 0.49min[d(x 2,x 1), d(x 2,x 3)] ≈ 92 , (2.12)

α3 = 0.49min[d(x 3,x 1), d(x 3,x 2)] ≈ 92 .

The values were obtained by truncation to the nearest integer. Figure 2.8
shows that our model achieves perfect recall association when presented the
very noisy versions of the exemplar patterns.

In the case of the modified DLAM that employs the α bound defined in
(2.11), further experiments were performed on the amphibian images con-
sidered as a set of auto-associations. Different kinds of distortions, such as
random dilative, random erosive, and random mixed noise with probabilities
of 0.2, 0.3, 0.4, were tested. The noise is introduced in the exemplar patterns
without being conditioned or constrained to a pre-established value. For the
set X = {x1,x2,x3} of exemplar patterns (amphibians), a matrix D can
be defined that contains in the upper right portion the different distances
obtained from computation; for convenience, all entries are initialized to ∞.
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Fig. 2.8. Top row shows the corrupted prototype patterns x̃ 1, x̃ 2, x̃ 3; bottom row
illustrates that the memory makes the correct association when presented with the
corrupted input

Table 2.1. Test cases for the modified DLAM

Test Pattern Noise type D∗ α-range γ

1 x1 40%-dilative (128, 253, 247) [128, 247) 1
2 x2 30%-dilative (245, 128, 252) [128, 245) 2
3 x3 20%-dilative (240, 233, 128) [128, 233) 3
4 x1 40%-erosive (128, 211, 242) [128, 211) 1
5 x2 30%-erosive (224, 128, 227) [128, 224) 2
6 x3 20%-erosive (241, 220, 128) [128, 220) 3
7 x1 40%-mixed (128, 253, 247) [128, 247) 1
8 x2 30%-mixed (249, 128, 253) [128, 249) 2
9 x3 20%-mixed (247, 229, 128) [128, 229) 3

Given a noisy input, the checkerboard distance matrix is recomputed using
the distorted input pattern x̃. In this example, the D matrix has the following
entries

D =

⎛

⎝
d12 d13 d14

∞ d23 d24

∞ ∞ d34

⎞

⎠ ; D∗ = (d14, d24, d34) , (2.13)

where the third column registers the distances of each exemplar pattern to
the noisy one (the fourth pattern). For brevity, D∗ will denote the transpose
of the third column of matrix D. Table 2.1 lists some noisy patterns with their
respective distances to the three exemplar patterns and Fig. 2.9 displays the
exemplars as well as the noisy versions used as test cases.

The 1st column numbers each test, the 2nd column specifies the corrupted
exemplar pattern, the 3rd column describes the type of random noise, the 4th

column gives the Chebyshev distance vector of the noisy input with respect
to each exemplar pattern, the 5th column gives the valid recollection α-range,
and the last column gives the pattern index showing perfect recall.

Any value of α ∈ [d̃min, η), where η is the next minimum distance, i.e., the
second closer exemplar pattern to x̃, can be used for weight assignment. If
α < d̃min the recalled pattern is always zero (black image) and if α ≥ η, the
recalled pattern turns to be a mixture with other exemplar patterns. Observe
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Fig. 2.9. 1st row, exemplar patterns; row 2, dilative noisy versions (test cases 1, 2,
3); row 3, erosive noise versions (test cases 4, 5, 6); row 4, patterns contaminated
with mixed random noise (test cases 7, 8, 9)

that, if the input independent αj values in (2.12) are used the DLAM fails
since αj < d̃min for j = 1, 2, 3.

An earlier approach to lattice associative memories is based on matrix
minimax algebra whose description the reader will find in Chap. 5 of this book,
Noise Masking for Pattern Recall using a Single Lattice Matrix Associative
Memory by Urcid and Ritter. See also Chap. 8, Morphological and Certain
Fuzzy Morphological Associative Memories for Classification and Prediction,
where the use of fuzzy set theory in lattice associative memories has been
developed and applied successfully by Sussner and Valle.

2.6 Conclusions

We presented a single layer feed-forward neural network (SLLP) for pattern
recognition and a two layer associative memory with both of these networks
taking into account the dendritic processes of neurons. Emphasis was on learn-
ing. The theory and examples presented make it obvious that the SLLP has
several advantages over both traditional single layer perceptrons and percep-
trons with hidden layers. For instance, the SLLP needs no hidden layers when
solving nonconvex problems. There are no convergence problems and speed
of learning far exceeds traditional back propagation methods. Questions may
arise as to whether dendrites merely represent hidden layers. Such questions
are valid in light of the fact that, theoretically, a two hidden layer perceptron



2 Learning with Dendrites in Lattice Neural Nets 43

can also classify any compact region. In comparison to hidden neurons in reg-
ular perceptrons, dendrites use no activation functions while hidden neurons
usually employ sigmoidal activation functions. Also, with hidden layers, the
number of hidden neurons are predetermined before training. In the model
presented, dendrites and axonal terminal fibers are grown automatically as
the neuron learns a specific task. This is analogous to cortical neurons which
grow dendrites and synaptic connections during learning. Furthermore, no
error remains after training. All pattern vectors of the training set will always
be correctly identified after training stops.

To be precise, learning does not really take place in the lattice associa-
tive memory. Here dendrites and synaptic connections are hard-wired and
weights are directly computed from the associated pattern vectors. However,
the dendritic lattice approach has major advantages over traditional memories
such as Hopfield or Kohonen matrix correlation memories and their various
modifications. Again, there are no convergence problems. Storage capacity of
dendritic lattice associative memories described here is unlimited; for any set
of k associations, only k hidden neurons are required and the network can
learn new pattern associations by adding one hidden neuron with appropri-
ate connections to the input/output layer neurons for each new association.
Associations for uncorrupted input is always perfect and, as illustrated, the
memory is extremely robust in the presence of noisy inputs.
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Summary. Lattice based neural networks are capable of resolving some difficult
non-linear problems and have been successfully employed to solve real-world prob-
lems. In this chapter a novel model of a lattice neural network (LNN) is presented.
This new model generalizes the standard basis lattice neural network (SB-LNN)
based on dendritic computing. In particular, we show how each neural dendrite
can work on a different orthonormal basis than the other dendrites. We present
experimental results that demonstrate superior learning performance of the new
Orthonormal Basis Lattice Neural Network (OB-LNN) over SB-LNNs.

3.1 Introduction

The artificial neural model which employs lattice based dendritic computation
has been motivated by the fact that several researchers have proposed that
dendrites, and not neurons, are the elementary computing devices of the brain,
capable of implementing logical functions [1, 16]. Inspired by the neurons of
the biological brain, a lattice based neuron that possesses dendritic structures
was developed and is discussed in detail in [13, 14, 17].

Several applications of LNNs have been proposed, due to their high capa-
bility of resolving some difficult non-linear problems. LNNs were employed in
applications for face and object localization [3, 9], Auto-Associative memories
[10, 18, 19], color images retrieval and restoration [20] etc. Furthermore, vari-
ous models of fuzzy lattice neural networks (FLNN) were studied in [5, 6] and
some of their applications in the area of text classification and classification
of structured data domains were presented in [7, 8].

Despite the high capabilities of LNNs, training dendritic networks such
as Lattice Based Morphological Perceptrons with Dendritic Structure [13],
results in creating huge neural networks with a large number of neurons; the
size of the trained network sometimes is comparable to the size of the training
data.

In this work a new model of LNNs is proposed. In this model each neural
dendrite can work on a different orthonormal basis than the other dendrites.
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www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007



46 A. Barmpoutis and G.X. Ritter

The orthonormal basis of each dendrite is chosen appropriately in order to
optimize the performance of the Orthonormal Basis Lattice Neural Network
(OB-LNN). OB-LNNs have some useful properties such as automatic com-
pression of the size of the neural network and they show significantly better
learning capabilities than the standard basis LNNs. Validation experimental
results in synthetic and real datasets are presented and demonstrate superior
learning performance of OB-LNNs over SB-LNNs.

The rest of the chapter is organized into the following sections: In Sect. 3.2,
we make a brief review of the LNN model. In Sect. 3.3, the Orthonormal Basis
Lattice Neural Network is presented. This section is divided in two parts. In
the first part the model of OB-LNNs is presented. This is followed by an
algorithm for training such a neural network. Finally, in Sect. 3.4, valida-
tion experimental results are presented which demonstrate superior learning
performance of OB-LNNs over standard basis LNNs.

3.2 Lattice Neural Networks

The primary distinction between traditional neural networks and LNNs is the
computation performed by the individual neuron. Traditional neural networks
use a multiply accumulate neuron with thresholding over the ring (�,×,+)
given by the formula

τj(x) =
∑n

i=1
xiwij − θj (3.1)

where τj(x) is the total input to the jth neuron, xi are the values of the input
neurons connected with the jth neuron, and wij are their weights. Finally θj

are bias weights.
In the case of a lattice based neuron, lattice operators ∨ (maximum) and

∧ (minimum) are used. These operators and the addition (+) form the rings
(� ∪ −∞,∨,+) and (� ∪∞,∧,+). The computation performed by a neuron
is given by the formula

τj(x) = pj∨n
i=1rij(xi + wij) (3.2)

or
τj(x) = pj∧n

i=1rij(xi + wij) (3.3)

where τj(x) is the total input to the jth neuron, xi are the values of the input
neurons connected with the jth neuron, and wij are their weights. Parameters
rij take +1 or −1 value if the ith input neuron causes excitation or inhibition
to the jth neuron. Pj takes also +1 or −1 value if the type of the output
response is excitatory or inhibitory. A more detailed presentation of the theory
of lattice based morphological neurons and how their networks work can be
found in [11, 14].
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Fig. 3.1. An artificial neural network model which employs lattice based dendritic
computations

Using the above computational framework, a lattice neural network can
be constructed using layers of lattice based neurons which are connected to
neurons of other layers. Each lattice based neuron consists of dendrites which
connect the neuron with the previous layers neurons. Figure 3.1 shows a lattice
neural network with an input layer and a lattice based neuron layer. Each
lattice neuron Mj consists of dendrites Dij . The neurons of the input layer
are connected to the next layer via the dendrites. The black and white circles
denote excitatory and inhibitory connection respectively. Each dendrite can
be connected with an input neuron at most twice (with one inhibitory and
one excitatory connection).

The computation performed by a single (the kth) dendrite can be expressed
using lattice operators by the formula:

τk(x) = pk∧i∈I∧l∈L(−1)1−l(xi + wl
ik) (3.4)

where I is a subset of 1,...,n which corresponds to the set of all input neurons
Ni with terminal fibers that synapse on the kth dendrite of the current lattice
based neuron. L is a subset of 1,0 and the other parameters are the same with
those used in (3.2) and (3.3).

The geometrical interpretation of the computation performed by a den-
drite is that every single dendrite defines a hyperbox. The borders of this
hyperbox form the decision boundaries in a particular location of the input
space. The left part of Fig. 3.2 shows a hyperbox that separates data points
of two different classes. Here the input space is the plane of real numbers (�2)
and the hyperbox is a rectangle. This hyperbox can be defined by a single
dendrite via its weight values wij .

Decision boundaries with more complex shapes, can be formed by using
more dendrites. Furthermore boundaries which separate more than two classes
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Fig. 3.2. Decision boundaries of a SB-LNN dendrite (left) and a OB-LNN dendrite
(right)

Fig. 3.3. This is an illustration of the decision boundaries that can be formed by
a SB-LNN (middle) and an OB-LNN (right). The desired decision boundaries form
the ABC letters (left)

can be formed, if more lattice based neurons are employed. The left part of
Fig. 3.3 shows an example of decision boundaries with more complex shape,
forming the letters ABC. In the middle of the same figure we can see how
a group of hyperboxes (2-dimensional boxes in this case) can approximate
the decision boundaries. Each box can be defined by a dendrite. Complicated
figures require a large number of dendrites, in order to achieve satisfactory
approximation of the decision boundaries.

Note that here the word hyperbox has a more general meaning, since some
of the bounding planes of the hyperboxes may have infinite length. The word
hyperbox as used in this article includes open hyperboxes. For example, in
�1 a half-open interval of form [α,∞) or (−∞, α] are half-open boxes, while
in �2 a rectangle as well as the convex area bounded by one, two, or three
mutually orthogonal lines are also considered to be hyperboxes. Following
similar reasoning, two parallel lines can be also considered as a hyperbox, etc.

An algorithm for training a lattice neural network with dendritic struc-
ture can be found in [11] and method for learning LNNs can be found in
[17]. A comparison of various training methods for LNNs that employ den-
dritic computing is presented in [12]. The next section is divided into two
parts. In the first part the model of Orthonormal Basis lattice neural net-
work is presented. This is followed by an algorithm for training such a neural
network.
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3.3 Orthonormal Basis Lattice Neural Networks

In this section, the Orthonormal Basis Lattice Neural Network is presented.
This section is divided into two parts. In the first part the model of OB-
LNNs is presented. This is followed by an algorithm for training such a neural
network.

3.3.1 The OB-LNN model

As it was discussed earlier, the geometrical interpretation of the computation
performed by a dendrite is that every single dendrite defines a hyperbox in the
space of input values. These hyperboxes are oriented parallel to the Cartesian
axis of the space of input values. The left part of Fig. 3.2 presents a decision
hyperbox defined by a dendrite. Its edges are parallel to the x and y axis
of the input space (�2). Due to this constraint about the orientation of the
hyperboxes, the decision boundaries formed by lattice neural networks are not
smooth and box patterns are annoyingly visible along the boundaries (Fig. 3.3
middle).

To overcome these disadvantages, a new type of dendrite can be defined,
which is able to form a hyperbox parallel to an arbitrary orthonormal system.
The right part of Fig. 3.2 presents such a hyperbox, whose orientation is no
longer parallel to the Cartesian axis of the input space. A neural network
consisting of lattice based neurons with such dendrites would be able to pro-
duce smoother decision boundaries (Fig. 3.3 right). In Fig. 3.3 the decision
boundaries formed by such an Orthonormal Basis Lattice Neural Network
are compared with these formed by a Standard Basis LNN. Notice that the
number of hyperboxes (thus the number of dendrites as well) required by the
OB-LNN is much smaller than the number of those required by a SB-LNN.

Another advantage of the Orthonormal Basis LNNs is that they store
information about the local orientation of the classes. This is demonstrated
with an example in Fig. 3.4. Suppose that the samples of a class form the
shape of the letter A. A neural network with Orthonormal Basis Dendtrites

Fig. 3.4. Another advantage of OB-LBNN (right) is that they also store information
about the local orientation of the classes
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can approximate this shape forming mainly 3 hyperboxes. The orientation of
each hyperbox contains information about the local orientation of this class
(Fig. 3.4 right). This useful information cannot be obtained by the standard
basis LNN that was trained for the same purpose (Fig. 3.4 left). This property
is better illustrated in Sect. 3.4 (Fig. 3.6), where training results of standard
and orthonormal basis LNNs are presented.

The computation performed by the kth Orthonormal Basis dendrite can
be expressed using lattice operators, changing slightly (3.4) as follows

τk(X) = pk∧i∈I∧l∈L(−1)1−l [(RkX)i + wl
ik

]
(3.5)

where X is the input value vector (x1, x2, ..., xI)T , Rk is a square matrix
whose columns are unit vectors forming an orhonormal basis, and (RkX)i

is the ith element of the vector RkX. Each dendrite now works in its own
orthonormal basis defined by the matrix Rk. The weights of the dendrite act
on the elements of vector RkX, hence the weights act on the rotated by the
orthonormal basis Rk space.

Note that Standard Basis Lattice Neural Networks are a sub group of
the Orthonormal Basis Lattice Neural Networks where the matrix Rk is the
identity matrix. In this case it is obvious (RkX)i = xi, thus (3.5) becomes
equal to (3.4).

3.3.2 Training OB-LNNs

The training of an Orthonormal Basis Lattice Neural Network is based on
finding the best possible values for the weights and Rk matrices. In other
words, in order to train an OB-LNN, one must train its dendrites.

The training methods which can be used for training SB-LNNs can also be
used for training OB-LNNs with an appropriate modification in order to adopt
the fact that each dendrite works on its own orthonormal basis. The training
procedure of an orthonormal basis dendrite can be treated as a maximization
problem. The quantity that we are trying to maximize is the volume of the
hyperbox which is defined by the dendrite. Due to this volume maximization
process the OB-LNN training algorithm generally produces more compressed
neural networks compared to those in the standard basis case. This property
is expressed by lemma 1, which is discussed at the end of this section.

By fixing the matrix Rk, the weights of the dendrite can be estimated
by the training procedure described in [11]. The weights define the hyperbox;
therefore its volume can be directly calculated from the weights. We can repeat
the process by varying appropriately the matrix Rk, until the volume of the
hyperbox reaches a maximum.

The matrix Rk is a rotation matrix, i.e. it rotates the vector X. A variation
of this matrix dR is also a rotation matrix. A new rotation matrix R′

k can
be obtained by multiplying Rk with matrix dR, (R′

k = RkdR). A variation
matrix dR can be easily constructed by using the following equation:
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dR = exp(tS) (3.6)

where S is a randomly generated skew symmetric matrix, and t is a scalar
value. Note that the exponential is the matrix exponential. Note also that the
matrix exponential of a skew symmetric matrix is always a rotation matrix.
The smaller the absolute value of t is, the smaller the variation, which is caused
by the matrix dR, is. A brief review of the properties of matrix exponential
and skew-symmetric matrices can be found in the appendix at the end of this
article.

By using the above, any cost minimization method can be used in order to
minimize the negative of the hyperboxes volume (or to maximize its volume)
in steps 2 and 7 of Algorithm 1. Simulated annealing [15] and greedy searching
for experiments in 2D are the methods used in the experiments presented in
Sect. 3.4, in order to find the matrix Rk that gives the maximum hyperboxes
volume.

The training algorithm of an OB-LNN morphological perceptron is sum-
marized below. This algorithm is an extension, in the space of OB-LNN, of the
training algorithm for morphological perceptron proposed in [11]. The algo-
rithm is presented for the case of 2 classes only, but it can be easily extended
to problems with a larger number of classes. A more detailed description of
the training algorithm in the case of SB-LNN is presented in [11].

input : N training samples Xi, and N outputs di = 0 or 1 for class C1
or C2, respectively, i = 1, ..., N

output: The number of generated dendrites L, their weights Wj and
their orthonormal basis Rj , j = 1, ..., L

Step 1: L ← 1 ;
Step 2: Find the size W and orientation R of the smallest possible
hyperbox containing all the samples of C1 ;
Step 3: Assign the result of step 2 to W1 and R1 ;
Step 4: If there are misclassified points of C2, go to step 5 ;
else go to step 10 ;
Step 5: Pick arbitrarily a misclassified point ξ of C2 ;
Step 6: L ← L + 1 ;
Step 7: Find the size W and orientation R of the biggest hyperbox that
contains ξ, but it does not contain any point of C1 ;
Step 8: Assign the result of step 7 to WL and RL ;
Step 9: Go to step 4 ;
Step 10: Terminate the algorithm and report the results ;

Algorithm 1: Training an orthonormal basis lattice neural network

It can be easily shown that the time complexity of this algorithm is equal
to OOBLNN = OSBLNN ×OMin where OSBLNN is the time complexity of the
training algorithm in the case of SB-LNN and OMin is the time complexity of
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the minimization process used in steps 2 and 7. Therefore, in order to obtain
improved learning capability we loose in speed performance. The improve-
ment in speed performance will be one of the research topics in our future
work. Practically we can use efficiently this algorithm for problems defined
in 2 dimensions, e.g. image processing related problems and problems defined
in 3 dimensions, e.g. point set processing and 3D volume image processing
problems.

More specifically, in 2-dimensional problems the orthonormal basis is
defined by a 2 × 2 rotation matrix R. For the storage of this matrix we
need to store only 1 real number, which is either the only lower triangular
element of a 2× 2 skew-symmetric matrix (see in the Appendix to this chap-
ter), or the rotation angle of the orthonormal system around the origin. In
the 3-dimensional case, the orthonormal basis is defined by a 3 × 3 rotation
matrix, which can be stored using only 3 real number storage units. Similarly
to the 2D case these 3 numbers are the three lower triangular elements of
a 3 × 3 skew-symmetric matrix A such that R = exp(A). Generally in the
n-dimensional case, we need n(n− 1)/2 real number storage units in order to
store the orthonormal basis.

The difference between the training algorithm of an orthonormal basis
lattice neural network and the training algorithm of a standard basis lattice
neural network, is in the processes performed in steps 2 and 7. For the standard
basis case these two steps find only the size W and not the orientation R of
the new dendrite. The standard orthonormal basis (expressed by the identity
matrix) is employed for every dendrite. As a result of this difference between
the orthonormal basis and the standard basis algorithms, the orthonormal
basis algorithm generally produces more compressed neural networks, i.e. with
smaller number of dendrites compared to those in the standard basis case. This
property is discussed in more details by the following lemma and its proof.

Lemma 1. The number of dendrites generated by training an orthonormal
basis lattice neural network LO is smaller or equal to the number of dendrites
obtained by training on the same dataset a standard basis lattice neural net-
work LS (LO ≤ LS).

The proof of the lemma involves understanding of the process performed in
step 7 of Algorithm 1. Without loss of generality we will assume that in step 5
the same misclassified point ξ is arbitrarily selected for both orthonormal basis
and standard basis lattice neural network training. Let assume that for one
particular ξ the SB-LNN algorithm creates a hyperbox of volume A. The OB-
LNN algorithm will create a hyperbox with the maximum possible volume,
say B. Therefore A ≤ B, and the equality holds in the case that the standard
basis hyperbox happens to have the maximum possible volume. Hence the
number of the training points included in volume A must be smaller or equal
to those included in volume B. As a consequence the number of iterations
performed by the orthonormal basis training algorithm is smaller or equal to
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those performed by the standard basis training algorithm. This proves the
lemma since LO ≤ LS .

3.4 Experimental Results

In this section, validation experimental results are presented which demon-
strate superior learning performance of OB-LNNs over SB-LNNs. The exper-
iments were performed using synthetic 2-dimentional datasets and the well
known Iris flower dataset.

The first dataset was synthetically generated and it forms two 2D spirals.
The points of the two spirals obey the equations

[x1(θ), y1(θ)] = [2θcos(θ)/π, 2θsin(θ)/π] (3.7)

and
[x2(θ), y2(θ)] = [−x1(θ),−y1(θ)] (3.8)

respectively. Several versions of this datasets were generated with a) 130,
b) 258, c) 514, d) 770, e) 1026, f) 1538 samples. The largest dataset (2538
samples) was used for the testing dataset. The samples of the smallest dataset
(130 samples) are presented in Fig. 3.5. Small circles denote the samples of
the one spiral, and small crosses denote the samples of the other one.

Two neural networks were trained in the previously described datasets: a)
a Standard Basis Lattice Neural Network and b) the proposed Orthonormal
Basis Lattice Neural Network. Both networks were lattice based morphological
perceptrons with dendritic structure [11] so that their performance could be
compared directly. In the case of the OB-LNN perceptron, the dendrites were

Fig. 3.5. This figure shows some of the hyperboxes formed by a SB-LNN (left) and
a OB-LNN(right). The 130 training samples are denoted by circles and crosses and
they are forming two spirals. The hyperboxes presented here for comparison, are the
9 smallest of each case
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Table 3.1. This Table presents classification errors and number of dendrites needed
for the training of an OB-LNN and a SB-LNN, using different sizes of training
samples (see column 1). The 2nd and 4th columns present the number of dendrites
needed for the correct classification of the training samples. The 3rd and 5th columns
show the percentage of misclassified samples using always 1538 testing samples. The
last column shows the quantity equals to one minus the ratio of the 3rd column over
the 5th column

Training OB-LNN OB-LNN SB-LNN SB-LNN 1-Ratio
samples Dendrites Error Dendrites Error of errors

130 12 14.0% 14 18.34% 23.45%
258 14 6.5% 17 9.69% 32.20%
514 15 3.2% 19 4.55% 28.57%
770 16 2.3% 19 3.20% 26.88%
1026 15 1.5% 20 2.54% 40.94%

Orthonormal Basis dendrites, which were trained in order to maximize the
volume of the hyperboxes that they formed.

Table 3.1 presents the classification errors of the trained neural networks
for different sizes of the training datasets (column 1). The size of the testing
dataset for all the experiments was 1538 samples. In all cases, the classification
errors made by the OB-LNN are significantly smaller than these made by the
SB-LNN. This conclusively demonstrates superior training performance of the
proposed neural network over the standard basis lattice neural networks.

Furthermore, the number of the dendrites, which are required to form the
decision boundaries between some populations, measures the learning ability
of a neural network. Table 3.1 also presents the final number of dendrites
required by the lattice neural networks in order to classify correctly all the
training samples (columns 2 and 4). In all cases, the number of dendrites
trained by the OB-LNN is smaller than the number of dendrites trained by a
standard basis LNN. This means that the OB-LNN compresses automatically
its size.

Figure 3.5 shows most of the hyperboxes formed by the dendrites of the
Standard basis (left) and the Orthonormal basis LNNs (right). These hyper-
boxes were formed by the training process using 130 training samples. By
observing this figure we can see the differences between the decision bound-
aries formed by the OB-LNN and those formed by the SB-LNN. The hyper-
boxes generated by the Orthonormal basis LNN have bigger volume (area in
the 2D domain) than those generated by the standard basis LNN. In the case
of OB-LNN each hyperbox is rotated appropriately because of the fact that
it is working on a different orthonormal basis than the other dendrites.

As it was discussed earlier in Sect. 3.3, each hyperbox contains informa-
tion about the local orientation of the classes. This property is illustrated
in Fig. 3.6. In this figure the decision boundaries between the two spirals
generated by a SB-LNN (left) and an OB-LNN (right) are presented. On each
hyperbox several ellipses are plotted. The sizes of the principal axes of each
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Fig. 3.6. Decision boundaries formed by a SB-LNN (left) and a OB-LNN (right).
On each hyperbox several ellipses are plotted. The sizes of the principal axes of each
ellipse are proportional to the sizes (length and width) of the relative hyperbox

Table 3.2. This Table presents classification errors of the three neural networks for
different amounts of training samples

Training samples OB-LNN SB-LNN Perceptron

50% 8.33% 10.67% 13.33%
60% 6.41% 10.00% 12.21%
70% 4.20% 6.33% 7.34%
80% 3.12% 3.67% 6.54%
90% 2.01% 3.33% 6.38%
100% 0% 0% 3.67%

ellipse are proportional to the size (length and width) of the relative hyperbox.
The dominant axis of each ellipse is also plotted, forming a vector field.

Observing the vector field generated by the SB-LNN (top) and this gen-
erated by the OB-LNN (bottom), one can conclude that the hyperboxes of
the OB-LNN contain information about the local orientation of the classes.
In the case of SB-LNN this property cannot be generally observed.

Another set of experiments was held by using the Iris flower dataset. The
Iris Flower dataset is a popular multivariate dataset that was introduced by
R.A. Fisher as an example for discriminant analysis. The data reports on
four characteristics of the three species of the Iris Flower, sepal length, sepal
width, petal length, and petal width. The goal of a discriminant analysis is to
produce a simple function that, given the four measurements, will classify a
flower correctly.

Several experiments were performed by using randomly different amounts
of the Iris flower samples as testing samples (1st column of Table 3.2). The
following three neural networks were trained: a) an OB-LNN perceptron,
b) a SB-LNN perceptron and c) a multilayer perceptron (MLP) with one
hidden layer. Several different architectures were used for the MLP with 1
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Fig. 3.7. Left: This dataset forms an ellipse. Right: Plot of the misclassified points
over the number of dendrites required by a OB-LNN and a SB-LNN during the
training process

hidden layer, and the results of Table 3.2 are the best obtained. The whole
Iris data set were used as the testing data set. The classification errors of the
three neural networks are presented in Table 3.2. In all cases, the classification
errors made by the OB-LNN are significantly smaller.

Finally, another experiment was also held in order to compare the sizes of
the trained neural networks. A synthetic dataset was generated forming two
classes; one within an ellipse (Fig. 3.7 left) and the other one outside of it.
The sample points of the two classes were picked up randomly using uniform
distribution.

The same two lattice neural networks with dendritic structure were used:
a) an OB-LNN perceptron and b) a SB-LNN perceptron. The right plate of
Fig. 3.7 shows the plot of the number of misclassified sample points over the
number of dendrites generated by the two neural networks during the training
process. The final number of dendrites required by the OB-LNN in order to
classify correctly all the training samples is significantly smaller than the
number of dendrites trained by a standard basis LNN. This also conclusively
demonstrates superior learning performance of OB-LNNs over SB-LNNs.

3.5 Conclusion

A novel model, namely Orthonormal Basis Lattice Neural Network, was pre-
sented. Comparisons of the proposed model with the standard basis model
of Lattice neural networks were shown. Validation experimental results were
also presented demonstrating the advantages of the proposed model. Our
future work will be focused on applying this model in applications for face
and object localization, Auto-Associative memories and color images retrieval
and restoration, in which areas the standard basis lattice neural networks
have been applied [3, 9, 10, 18, 19, 20]. Extension of the proposed model in
the area of Fuzzy Lattice Neurocomputing [5, 6] and improvement in speed
performance will also be some of our future research topics.
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Chapter 3 Appendix

In this section we review briefly some of the mathematical preliminaries
related to the methods presented in this article.

The matrix exponential of a square n× n matrix A is defined as

exp(A) =
∑∞

i=0

Ai

i!
= I + A +

A2

2
+

A3

6
+ ... (3.9)

where I is the n× n identity matrix. The summation of the infinite terms of
(3.9) does converge and the obtained result is a n×n positive definite matrix.
Similarly to the matrix exponential we can define the matrix logarithm as
the inverse operation. The matrix logarithm of a n × n positive definite real
valued matrix A gives a n × n real valued matrix. Both exp and log matrix
operations are invariant to rotations, i.e. for every n× n orthogonal matrix v
we have exp(vAvT ) = vexp(A)vT and log(vAvT ) = vlog(A)vT .

A skew-symmetric matrix A is a n × n matrix whose negative is also
the transpose of itself (i.e. AT = −A). A skew-symmetric matrix has all
its diagonal elements zero, and the rest of the elements satisfy the property
Ai,j = −Aj,i.

The matrix exponential of a skew-symmetric matrix is an orthogonal
matrix R = exp(A), where R is an orthogonal matrix and it is also a positive
definite matrix because it is expressed as the matrix exponential of a matrix.
The zero n× n matrix is an example of a skew-symmetric matrix. By evalu-
ating (3.9) it turns out that the matrix exponential of the zero matrix is the
n × n identity matrix (i.e. I = exp(0)), which is also an orthogonal matrix.
The n × n identity matrix I can be seen as the zero rotation matrix of the
n-dimensional space. Generally, the matrix operation exp(λA), where λ is a
scalar which is close to zero, produces an orthogonal matrix which is close to
the identity and rotates slightly the n-dimensional space.

lim
λ→0

exp(λA) = I (3.10)

A random small rotation of the n-dimensional space can be generated
from Eqn. (3.10) by using a randomly generated skew-symmetric matrix A
and a scalar λ which is close to zero. A random skew-symmetric matrix can
be generated by using the multivariate Gaussian distribution for the lower
triangular elements of the matrix. If we set the rest of the elements (diagonal
and upper triangular) to be zero, we can obtain a randomly generated skew-
symmetric matrix by subtracting the transpose of this lower triangular matrix
from itself.

Computing exponential of a n× n skew-symmetric matrix has time com-
plexity O(n3). A detailed discussion on computing exponentials of skew-
symmetric matrices and logarithms of orthogonal matrices was presented in
[2]. Finally, a more detailed study on the matrix exponential, skew-symmetric
matrices and the related theory can be found in [4].
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Summary. Concepts have been expressed mathematically as propositions in a dis-
tributive lattice. A more comprehensive formulation is that of a generalized lattice,
or category, in which the concepts are related in hierarchical fashion by lattice-like
links called concept morphisms. A concept morphism describes how an abstract con-
cept can be used within a more specialized concept in more than one way as with
“color”, which can appear in “apples” as either “red”, “yellow” or “green”. Further,
“color” appears in “apples” because it appears in “red”, “yellow” or “green”, which
in turn appear in “apples”, expressed via the composition of concept morphisms.
The representation of such concept relationships in multi-regional neural networks
can be expressed in category theory through the use of categories, commutative
diagrams, functors, and natural trasformations. Additionally, categorical model the-
ory expresses the possible worlds described by concepts. The analysis of morphisms
between the possible worlds highlights the importance of reciprocal connections in
neural networks.

4.1 Introduction

The contributions in this volume discuss lattice theory from different perspec-
tives. Some relate it to neural network algorithms in which the partial order
relation (≤ ) and the meet/join operations (∧, ∨ ), regarded as min/max
operations, are part of the computational model. There is a history of lat-
tice theory in neural network theoretical models [12, 18, 28], and in some the
meet/join operations have other interpretations. One of these involves sym-
bolic languages for modeling the semantics of neural computation. Symbolic
languages including formal logics have appeared over the years in attempts
to obtain a mathematically precise expression of the semantics of neural net-
works [2, 3, 6, 12, 13, 17, 19, 24, 26, 27]. In addition to classical propositional
and first-order logic [3], the logics used have included fuzzy logic [24], geo-
metric logic [12], and non-monotonic logics [26]. In the semantic model of
[12], the input data for a neural network represent paired entities from two
domains. The network’s long-term adaptation is explained as the learning of
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a geometric logic theory about each domain while simultaneously learning
an inference relation between the theories that expresses a mapping between
their domains. Because of the form of geometric logic used, this yields lattices
coupled by a very special type of lattice homomorphism. In the process of
learning, the network modifies its connection weights based upon input data,
and this effectively combines domain knowledge extracted from the data with
pre-existing knowledge to derive new theories and new inferences between
their formulas. Each initial theory consists of a set of predicates represent-
ing observable features of the entities, and proceeds through the adaptation
process to include derived formulas and their relationships, and these and the
modified inferencing express the information gained.

Vickers applies geometric logic, a non-Boolean logic similar to intuitionis-
tic logic ([29, 30]), to domain theory. The logic is applied as a “logic of finite
observations”. This derives from the interpretation of a statement Q in the
logic as affirmable: It cannot be falsified, only affirmed through demonstration
(observation or proof). The axioms of a geometric theory specify basic knowl-
edge about some domain. As with most logics, the propositions, predicates,
the formula-constructing operations—in this case conjunction and disjunction
along with the existential quantifier ∃—- and the proof theory of the logic,
resulting in entailments such as ∃xP (x) � ∃xQ(x) , are used to reason about
any domain to which the theory applies. In the logic of finite observations,
however, negation ¬ , implication formulas P (x) → Q(x) and the universal
quantifier ∀ are used only in formulating the axioms. Further, as with intu-
itionistic logic, the Law of the Excluded Middle (LEM, ∀x(P (x) ∨ ¬P (x)) is
not an axiom of geometric logic: It must be either established as valid when
it applies or assumed as an axiom of a theory where its use is desired. The
analyst has the task of formulating axioms for a theory sufficiently detailed to
express all relevant, pre-existing knowledge about the domain of investigation
and then applying the geometric operations to make inferences about new
data.

Propositional geometric logic is a special case of this. For a propositional
theory formulated in geometric logic, a lattice can be constructed from the
axioms, other propositions, and the entailments, where � becomes the lat-
tice order relation ≤ . Inference is then carried out based solely upon the
lattice operations of meet (∧ ) and join (∨ ), interpreted as conjunction and
disjunction. The full logic with predicates, quantifiers and open formulas, on
the other hand, requires a structure more general than a lattice— it requires
category theory.

Yet, single-argument predicates of the form P (x) are used within a lat-
tice in [12]. The explanation for this is that the argument x represents the
observations in a domain, not individual entities discussed within the domain
theory, and the predicate is affirmed when an observation applies to it. This
notation is a convenience for conducting an analysis over multiple domains
while maintaining the utmost simplicity. The different domains are obtained
by coupling networks with systems of interconnects to form a composite or
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multi-regional network. The example examined in [12] is that of a LAPART
network [13], a coupling of two ART-1 networks in such a way that the com-
posite network can learn inferences across theories in addition to learning
the individual theories. From this, a new theory can be formed that com-
bines the newly-formed sub-network theories together with the newly-formed
implications between their formulas, all based upon observation. A composite
domain accompanies the composite theory, having the form of a product—if
the domains are thought of as sets, the composite in this case is a cartesian
product. A finding of this analysis is that most of the structure supporting the
learning of coupled domain theories is missing from the example architecture.

The domain theories in propositional geometric logic yield upper-complete
distributive lattices, having infinite as well as finite joins and having finite
meets (the lattices have infinite meets, but they are non-geometric, so are not
used). Mathematically, an advantage of this use of geometric logic is that a
theory in the logic directly corresponds to a topology for its domain. This
makes it possible to perform model-theoretic analyses in terms of topological
spaces and continuous functions (although this is not quite point-set topology,
since a slight modification to the set union operation must be made). Thus,
the application of geometric propositional logic combines the advantages of
logical inference, lattice theory, topology, and domain theory in describing the
semantics of neural networks. This facilitates the design of improved neural
networks by noting which entailments, lattice meets and joins, and continuous
structures are missing from an existing architectural model. The analysis is
not restricted to binary-input neural networks because graded values can be
represented in a quantized form (see, for example, [13]). With all its advan-
tages, however, this kind of analysis reveals only a part of the gap between
present-day architectures and the full potential of neural networks.

More recently, we have been experimenting with a much more compre-
hensive semantic theory for neural networks based upon category theory [16].
Here, the main application of category theory is not to represent the predicate
version of geometric logic and assign formulas with predicates and quantifiers
to network nodes. Instead, neural network nodes are still regarded as rep-
resenting closed logical fragments, but these are whole domain theories and
the theories have quantities of more than one type. They are associated with
network nodes based upon the nodes’ input connection pathways traced back
to the input nodes, which are assigned theories that describe the properties
of the input features. Also, the logic in which the theories are expressed is
left to the analyst’s choice; it can be geometric, intuitionistic, classical first-
order, or fuzzy, and so forth. When adopted in full, this strategy enables the
expression of neural network semantics in the framework of categorical logic
and categorical model theory, resulting in a deeper and more useful analysis.
One example of this is an experiment with an application of a neural network
to multi-spectral imaging, in which an existing architecture was re-designed
to produce images with a significantly higher quality [15]. Here, we provide a
brief recounting of the categorically-based semantic theory.
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4.2 Lattices and Categories

A category can be thought of as a system of mathematical structures of some
kind, concrete or abstract, together with the relationships between them that
express that type of structure [1, 7, 20, 21, 25]. Each relationship, called a
morphism or arrow, has the form f : a −→ b with a domain object a and
a codomain object b . A lattice is a special case of a category in which the
morphisms are the relations a ≤ b . In a category C , each pair of arrows f :
a −→ b and g : b −→ c (with a head-to-tail match, where the codomain b of
f is also the domain of g as indicated) has a composition arrow g◦f : a −→ c
whose domain a is the domain of f and whose codomain c is the codomain
of g . In a lattice, of course, this expresses the transitivity of ≤. Composition
satisfies the familiar associative law, so that in triples which have a head-to-
tail match by pairs, f : a −→ b , g : b −→ c and h : c −→ d , the result of
composition is order-independent, h ◦ (g ◦ f) = (h ◦ g) ◦ f . Also, for each
object a , there is an identity morphism ida : a −→ a (in a lattice, a ≤ a )
such that the identities ida ◦ g = g and f ◦ ida = f hold for any arrows
f : a −→ b and g : c −→ a .

Unlike in a lattice, there can be many morphisms in either or both direc-
tions between a pair of objects a and b . The category Set of sets and
functions (with composition of functions) is a familiar example, for given arbi-
trary sets α and β , there can be many functions with either set as domain
or codomain. With a multiplicity of morphisms existing between two objects
in a typical category, and given the notion of composition, the notion of a
commutative diagram takes on great significance. A diagram in a category
C is simply a collection of objects and morphisms of C (the domain and
codomain objects of a morphism are always included with it). In a commuta-
tive diagram, any two morphisms with the same domain and codomain, where
at least one of the morphisms is the composition of two or more diagram mor-
phisms, are equal. Initial and terminal objects (the bottom and top elements
in a lattice) are also important when they exist in a category C . An initial
object i is the domain of a unique morphism f : i −→ a with every object
a of C as codomain. A terminal object t has every object a of C as the
domain of a unique morphism f : a −→ t with t as codomain.

The principle of duality is a fundamental notion in category theory. The
dual or opposite Cop of a category C has the same objects, and the arrows
and compositions g◦f reversed, fop◦gop . The dual of a statement in category
theory is the statement with the words “domain” and “codomain”, “initial”
and “final”, and the compositions reversed. If a statement is true of a category
C , then its dual is true of Cop ; if a statement is true of all categories, the dual
statement is also true of all categories because every category is dual to its
dual. Roughly speaking, “half the theorems of category theory are obtained
for free”, since proving a theorem immediately yields its dual as an additional
theorem (see any of [1, 21, 25]).
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In addition to the widely-used notion of duality, category theory provides
a mathematically rigorous notion of “isomorphism”, a term which is often
used in a loose, intuitive sense. One sometimes hears a statement such as
“the two [concepts, data types, program constructs, etc.] are in some sense
isomorphic”. If the entities under discussion can be formalized as objects in
a category, one can make such statements with mathematical rigor. If a, b
are objects of a category C such that there exist arrows f : a −→ b and
g : b −→ a with f ◦ g = idb and g ◦ f = ida , then the morphism f
is called an isomorphism (as is g also) and g is called its inverse (and f
is called the inverse of g ), and the two objects are said to be isomorphic.
The property of an identity morphism ensures that isomorphic objects in a
category are interchangeable in the sense that they have the same relationships
with all objects of the category. It is easily shown that all initial objects in
a category are isomorphic, and the same holds for terminal objects (see the
above definitions for initial and terminal objects).

Let ∆ be a diagram in a category C , shown in Fig. 4.1 with objects
a1, a2, a3, a4, a5 and morphisms f1 : a1 −→ a3, f2 : a1 −→ a4, f3 : a2 −→
a4, f4 : a2 −→ a5 . Also shown are two cone-like structures, K ′ and K ′′ . Each
of these cocones extends ∆ , forming a commutative diagram: For example,
K ′ adds an object b′ and morphisms g′i : ai −→ b′ (i = 1, . . . , 5) such that
g′3 ◦ f1 = g′1 = g′4 ◦ f2 and g′4 ◦ f3 = g′2 = g′5 ◦ f4 . The cocones for ∆
are objects in a category coc∆ whose morphisms are morphisms of C from
one cocone apical object to the other, h : b′ −→ b′′ , having the property that
the legs of the codomain cocone K ′′ factor through the legs of the domain
K ′ and the morphism h ,
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Fig. 4.1. A cocone morphism h : K′ −→ K′′ in coc∆ is a morphism h : b′ −→ b′′

in C between the apical objects b′ and b′′ of cocones K′ and K′′ , respectively,
that is a factor of each leg morphism g′′

i : ai −→ b′′ of K′′ , with g′′
i = h ◦ g′

i



64 M.J. Healy and T.P. Caudell

g′′i = h ◦ g′i (i = 1, . . . , 5) . (4.1)

With morphisms so defined, the composition of cocone morphisms follows
directly. A colimit for the diagram ∆ is an initial object K in the category
coc∆ . That is, for every other cocone K ′ for ∆ , there exists a unique cocone
morphism h : K −→ K ′ . The original diagram ∆ is called the base diagram
for the colimit and the diagram ∆ formed by adjoining K to ∆ is called
its defining diagram. By initiality, all colimits for a given base diagram are
isomorphic. A coproduct is the colimit for a discrete diagram, one having
objects but no morphisms among them except the identity morphism for each
diagram object, which is always assumed to be present in a diagram. In Set ,
for example, coproducts are disjoint unions of the component sets.

Limits are the dual notion to colimits, obtained by “reversing the arrows”
and interchanging “initial” and “terminal”. By duality, a limit for a diagram
∆ , if one exists, is a terminal cone, whose morphisms are directed into the dia-
gram. A limit for a discrete diagram is called a product, and the leg morphisms
are called projections. The familiar cartesian product of sets is an example in
the category Set . Limits and colimits are useful constructs where they are
available, and colimits have a history of use in categorical logic and computer
science ([11, 32]). A theorem in category theory can be used to derive an algo-
rithm for calculating limits in any category that contains limits for all of its
diagrams, and similarly for colimits by dualization (see The Limit Theorem
in [25]).

4.3 A Category of Concepts

We express the semantics of a system in terms of a distributed system of
concepts about the system’s environment as well as the system itself. This
manner of describing a system can be thought of as a knowledge representa-
tion that is implicit in the system’s disposition to sample its environment and
act upon it. The concept system, of which the knowledge representation is a
part, is an ontology for the system’s environment as experienced through the
system inputs, both external to the system and possibly internally-generated
as well. The ontology is expressed mathematically as a category Concept
whose objects are symbolic descriptions (concepts) of domains of items (sensed
entities, events, situations, and their parts). The concepts are represented
incrementally in an adaptive system based upon sensor input, and, where
the capabilities exist, are based upon the interplay of sensor input with effer-
ence copy (where motor command outputs are used also as system inputs)
and with feedback from higher-level processing to levels of processing more
directly associated with the sensors. For example, the concept representations
in a neural network are formed through modification of connection weights,
which in some networks exist in both feedforward and feedback connection
pathways. Determining the knowledge representation capability of a given



4 Generalized Lattices Express Parallel Distributed Concept Learning 65

neural architecture, and designing architectures with a desired capacity, are
major goals of analysis using the semantic theory.

Through feedback, sensor inputs can be filtered and adaptively-formed
concept representations learned from them can be made consistent with the
already-existing knowledge representation store in, say, a cognitive system.
We refer to concept representations formed at or near the sensor level through
this two-way processing as percepts, even when they are not associated with
conscious awareness or a biological organism. Concept representations formed
through further processing at a “higher” level are, as a consequence, based
in perception. This view of concept representation based in perception has
important implications for theories of cognition and intelligence. Indeed, it
is consistent with converging evidence and theory in cognitive neuroscience
[4, 8, 9, 10, 22, 31]. Toward the end of this chapter, we discuss categorical
model theory and suggest that it indicates the desirability of feedback in a
neural network. It also provides a mathematical foundation for perceptual
knowledge representations.

As explained in Sect. 4.5, mathematical rigor is maintained in this formu-
lation by describing structure-preserving mappings from Concept to a cate-
gory representing the neural system’s computational structure, thus showing
how concepts, their morphisms, and the consequences of composition includ-
ing commutative concept diagrams are represented in the system computa-
tions. A Concept morphism s : T −→ T ′ is an association of the description
constituting concept T with a subconcept, or logical part, of the description
constituting concept T ′ , with the property that the axioms of the domain T
of the morphism are mapped to axioms or theorems of the codomain T ′ . We
use an already-available mathematical convenience, a category of formal logic
theories and theory morphisms ([7, 11, 23]) for the category Concept . The
category has an overall hierarchical structure, since the more abstract theories
are represented within the more specialized ones and the morphisms convey
this. We use the terms “theory” and “concept” interchangeably.

As shown in the next section, colimits provide a means of combining con-
cepts to derive concepts of greater complexity. Because they are more complex,
these concepts are also more specific, or specialized, than any of the concepts in
their diagrams. In the lattice formulation for geometric propositional logic, the
lattice meet ∧ operation plays an analogous role, since it forms a proposition
of greater specificity than those being combined. However, because colimits
are based upon diagrams in a category of theories, more can be expressed in
this manner than with lattices. The same can be said for limits relative to the
lattice join operation ∨ . Limits form simpler, hence, more abstract, concepts
than those in their base diagrams. But asserting that a category of theories is
more expressive than a lattice begs the question of whether the theory category
is not itself a lattice. After all, a lattice is a category, and in that sense a cate-
gory is a sort of generalized lattice. How is the concept category not a lattice?

The key point is that a theory category, like most categories, has many
“edges” between a given pair of “nodes”; that is, there can be many ways in
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which an object a is related to an object b (and, in many categories, b can be
related to a as well). This is a consequence of the complexity allowed in the
morphisms, which is two-fold: First, a theory morphism must map all symbols
(sorts, operations, constants) of the domain to symbols of the same type in
the codomain. Second, each axiom of the domain theory, when transformed
by symbol substitution, must become an axiom or theorem of the codomain
theory.

Consider a concept of color stated as a theory, as follows:

Concept T
sorts Colors, Items
op has color: Items*Colors -> Boolean
const c: Colors
Axiom color-is-expressed is

exists (it: Items) (has color (it, c))
end

The statement line sorts Colors, Items introduces the basic sorts, or “log-
ical containers”, of T ; logic in this form is called sorted. The explicit typing
of variables and constants in sorted theories such as T is a convenient alter-
native to using predicates to qualify the quantities in every formula, and it
allows operations to be interpreted as total (as opposed to partial) functions
whose domains are expressed in the theory as sorts. The line op has color:
Items*Colors -> Boolean specifies an operation has color. This operation
acts as a predicate with items and colors as arguments, where Items*Colors
is a product sort—a “container” for ordered pairs of items and colors. The
Boolean sort contains the truth values true and false. It is part of a theory
of logical operations that is implicitly included in every concept (it is an initial
object of the concept category). Notice that T also contains a constant c of
sort Colors; this can represent, for example, a feature always observed via
one sensor element of a system. The axiom color-is-expressed states that
the color c has some item that expresses it (in a sorted predicate calculus,
simply asserting a formula as shown is the same as stating that it is true).
This color is arbitrary, having no definition, but as a constant it is regarded
as a definite color nevertheless. In actuality, T does not have enough content
to constitute a theory about color, but it will suffice for this simple example.

To show how such an abstract theory might be used, let there be mor-
phisms s(i) : T −→ T (i) (i ∈ {1, 2, 3}) , where T ′, T ′′ and T (3) are concepts
representing three specific colors, red, yellow and green . For example:

Concept T’
sorts Colors, Items
op has color: Items*Colors -> Boolean
const red: Colors
Axiom red-is-expressed is

exists (it: Items) (has color (it,red))
end
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Theories T ′′ and T (3) are identical except that red is replaced by yellow
and green, respectively. The morphism s′ : T −→ T ′ has the form

Morphism s′ : Colors �→ Colors
Items �→ Items
has color �→ has color
c �→ red

Morphisms s′′ and s(3) are identical except for a color-symbol change. The
axiom re-naming (red-is-expressed replaces color-is-expressed) need
not be included in stating a morphism, since axiom names are simply a cos-
metic touch. Also, it is customary to omit symbols that remain unchanged
when stating a morphism, in this case Colors, Items and has color. Contin-
uing, T ′, T ′′ and T (3) are the domains for morphisms t(i) : T (i) −→ T (4) (i ∈
{1, 2, 3}) which have a common codomain, a theory that uses the three colors:

Concept T(4)

sorts Colors, Apples
op has color: Apples*Colors -> Boolean
const red: Colors
const yellow: Colors
const green: Colors
Axiom some-apple-colors is

exists (x, y, z: Apples)
(has color (x,red))
and (has color (y, yellow))
and (has color (z, green))

end

The morphism t′ : T ′ −→ T (4) , for example, has the form:

Morphism t′ : Items �→ Apples

(The mappings of Colors to Colors, has color to has color, and red to
red are not shown, as is customary.) Notice that the axiom of each of the
theories T ′, T ′′ and T (3), transformed by the symbol substitution from t′, t′′

and t(3), respectively, maps to a theorem of T (4) : For example, exists (x:
Apples) (has color (x,red)) is an immediate consequence of the axiom
some-apple-colors of T (4) .

Finally, the compositions t′ ◦ s′ , t′′ ◦ s′′ and t(3) ◦ s(3) are three distinct
morphisms with domain T and codomain T (4) . For example, t′ ◦ s′ : T −→
T (4) is as follows, by tracing the symbol mappings:

Morphism t′ ◦ s′ : Items �→ Apples
c �→ red

Therefore, the category Concept is not a lattice. Of course, there would have
been only one morphism from T to T (4) had T not included the constant
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c: Color. However, most theories are much more complex than the ones in
this example, increasing the possibilities for morphisms.

Another distinguishing feature of a category of theories is that colimits
and limits are more expressive than joins and meets, for they express the
contents of their base diagrams, not just the concepts. For example, colimits
“paste together” or “blend” the concepts in a diagram along shared concepts
as indicated in the diagram morphisms.

4.4 Colimits — An Example

The concept of a triangle can be derived as a colimit for a diagram involving
concepts about points and lines (the alternative of defining triangles in terms
of angles would complicate the example). We can start with a rather abstract
concept, a theory that defines lines in terms of undefined quantities, or primi-
tives, called points. The definition is expressed using a predicate on with two
arguments, a point and a line, and is true just in case the point “lies on” the
line (see [5] for a discussion of geometries based upon this definition).

Concept T1
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points)
((x not= y) implies

(exists L:Lines)
(on (x, L) and on (y, L) and

((forall m:lines) (on (x, m) and
on (y, m)) implies (m = L) ))

end

Notice that T1 also contains constants representing three arbitrary points
p1, p2 and p3 . Three other concepts T2, T3 and T4 share T1 except with dif-
ferent names for the point constants in each. The latter concepts also include
a line constant and associate two of the point constants with it via the on
predicate. This is specified with an additional axiom (name omitted) which
also states that the two point constants denote distinct points. For example:

Concept T2
sorts Points, Lines
const pa1: Points
const pa2: Points
const paext: Points
const La: Lines
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op on: Points*Lines --> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points)
((x not= y) implies

(exists L:Lines)
(on (x, L) and on (y, L) and

((forall m:lines) (on (x, m) and
on (y, m)) implies (m = L) ))

on (pa1, La) and on (pa2, La)
and (pa1 not= pa2)

end

Concepts T3 and T4 are identical, except with the names pa1, pa2, paext,
and La replaced with pb1, pb2, pbext, Lb in T3 and pc1, pc2, pcext, Lc in
T4. A morphism s1 : T1 −→ T2 maps the sort symbols Points and Lines and
the on predicate symbol to the corresponding symbols in T2 , which happen
to be identical. We reformulate all statements of T1 by term replacement in
accordance with the symbol mapping to form their image statements in T2 .
As a consequence, the axiom of T1 relating points to lines maps to itself as an
axiom of T2. The point constants p1, p2 and p3 map to the point constants
pa1, pa2 and paext. In T2 , pa1 and pa2 are associated with the line La
via the on predicate, and paext is intended as a point “external to” La.

Morphism s1 : p1 �→ pa1
p2 �→ pa2
p3 �→ paext

Morphisms s2 : T1 −→ T3 and s3 : T1 −→ T4 are similar to s1 but with
different point constant targets pb1, pb2, pbext and pc1, pc2, pcext :

Morphism s2 : p1 �→ pbext
p2 �→ pb1
p3 �→ pb2

Morphism s3 : p1 �→ pc2
p2 �→ pcext
p3 �→ pc1

In T3 , it is the images pb1 of p2 and pb2 of p3 that are associated with the
line constant, lb , while the image pbext of p1 is the “external” point. The
associations are similarly reordered in T4 ; the point-to-line associations in
each concept can be seen by noticing which points are the targets of those of
T1 under the appropriate morphism and applying term substitution. A colimit
for the diagram ∆ with objects T1, T2, T3, T4 and morphisms s1, s2, s3

(which always exists in the category Concept ) has a cocone as shown in
Fig. 4.2, with apical object T5 and leg morphisms �1 : T1 −→ T5 , �2 : T2 −→
T5 , �3 : T3 −→ T5 , and �4 : T4 −→ T5 . With ∆ as the base diagram, the
defining diagram of the colimit, ∆ , is commutative, with
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p2
p1

p3

x y
L

pa2

pa1

paext

pbext

pcextpb1 pb2
pc1

pc2
La

Lb

Lc

p1

p2 p3
La

Lb

Lc

s1
s2 s3

l1

l2
l3

l4

T1

T2 T3 T4

T5

∆

∆

Fig. 4.2. A pictorial illustration of the colimit base and defining diagrams ∆ and
∆ . The contents of the concepts involved are pictured along with the diagrammatic
structure. Solid dots and lines signify point and line constants. Concept T1 has no
line constant, so it is shown containing a dashed line with two open dots, representing
the axiom relating points and lines which is present in all the concepts

�1 = �2 ◦ s1 = �3 ◦ s2 = �4 ◦ s3 . (4.2)

The resulting colimit object, T5 , is as follows:

Concept T5
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
const La: Lines
const Lb: Lines
const Lc: Lines
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points)
((x not= y) implies

(exists L:Lines)
(on (x, L) and on (y, L) and

((forall m:lines) (on (x, m) and
on (y, m)) implies (m = L) ))
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on (p1, La) and on (p2, La) and
(p1 not= p2)

on (p2, Lb) and on (p3, Lb) and
(p2 not= p3)

on (p3, Lc) and on (p1, Lc) and
(p3 not= p1)

end

As a consequence of the commutativity of the defining diagram ∆ of the
colimit, its apical concept T5 is a “blending” or “pasting together” of T2, T3

and T4 along their common sub-concept T1 . That is, for the equality (4.2) to
hold, separate symbols of T2, T3 and T4 that are images of the same symbol
of T1 under the three diagram ∆ morphisms s1, s2 and s3 must merge into
a single symbol in the colimit apical concept T5 . To make this clear, each
symbol in T5 that is a merging of symbols has been assigned the name of the
T1 symbol underlying the merging. Thus, symbols such as Points, Lines and
on appear in T5 , and appear only once, since they are mapped to themselves
by each of the morphisms s1, s2 and s3 . The point constants p1, p2, p3 also
appear. However, in T5 , each one represents a merging of two point constants
from T2, T3 and T4 and as a consequence appears in the definition of two
different lines. In two of these concepts, the image of each single point constant
appears in the definition of a line, but as a different point on a different line
in each of the two concepts. In the third concept, it appears as an “external”
point, not on the line named in that concept. For example, p1 in T1 is
mapped to pa1 in T2 via s1 , to pbext in T3 via s2 , and to pc2 in T4 via
s3 . In T5 , therefore, it forms the point p1 at the intersections of lines La
and Lc , and lies external to line Lb . Because of the initiality of the colimit
cocone, any other cocone for ∆ is the codomain of a unique cocone morphism
whose domain is the cocone containing T5 . Therefore, T5 adds no extraneous
information to that in ∆ , and any other apical concept of a cocone for ∆ is
either isomorphic with T5 or extends it without duplicating it.

Because it is more complex, the colimit apical object is more specific, or
more specialized, than any of the concepts in its base diagram. Because it
expresses the “pasting together” of the base diagram concepts around their
shared sub-concepts, it expresses the concept relationships (morphisms) as
well as the concepts in its base diagram. Because of the Colimit Theorem,
the calculation of concept colimits can be automated. For example, the apical
object T5 and leg morphisms �1, �2, �3 , and �4 above can be derived auto-
matically from the objects and morphisms of the base diagram, ∆ . Other
examples are given in [32] for an application of engineering software synthesis
via category theory. Where they are available, limits can be calculated also,
yielding less complex or abstract theories and their attendant morphisms. This
facilitates the generalization of learned concepts to new contexts by extracting
useful invariants from them.
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The ability to calculate concept colimits and limits suggests the ability to
“flesh out” an ontology in an incremental fashion. This process can begin with
a collection of concepts and morphisms describing the most basic properties
of observable quantities and also any desired assumptions about the environ-
ment and the operation of a system within it. More specialized theories can
be calculated as colimits, and more abstract ones as limits, through re-use of
pre-existing concepts and morphisms. Taken together, the discussions in this
section and the previous one suggest the use of category theory in the study
of knowledge systems, learning, and the semantics of distributed, adaptive
systems such as neural networks. Conducting these studies while utilizing the
mathematical rigor of category theory requires the availability of categories
that express the system computations together with structure-preserving map-
pings from Concept to these categories. Any such mappings must be capable
of conveying only part of the ontology expressed in Concept , for two reasons:
(1) Concept is infinite and realizable systems are finite, and (2) in an adap-
tive system, only a part of the ontology will have been learned at any one time.
Another issue arises in systems with multiple sources of inputs working in par-
allel, such as neural networks with more than one sensor. Simultaneous inputs
from the different sensors obtain different types of information about the same
events. Fusing the information across sensors requires a multi-component sys-
tem that can make several knowledge representations act as one.

4.5 Structural Mappings and Systems

A functor F : C −→ D , with domain category C and codomain category D ,
associates to each object a of C a unique image object F (a) of D and to
each morphism f : a −→ b of C a unique morphism F (f) : F (a) −→ F (b)
of D . Moreover, F preserves the compositional structure of C , as follows.
Let ◦C and ◦D denote the separate composition operations in categories
C and D , respectively. For each composition g ◦C f defined for morphisms
of C , F (g ◦C f) = F (g) ◦D F (f) , and for each identity morphism of C ,
F (ida) = idF (a) . It follows that the images of the objects and morphisms in
a commutative diagram of C form a commutative diagram in D . This means
that any structural constraints expressed in C are translated into D and,
hence, F is a structure-preserving mapping. Functors can be many-to-one,
and by this means much of the structure of the domain category of a functor
can be “compressed”, so that not all the structure is represented explicitly
in the codomain. Functors can also be into mappings, so that the codomain
need not be entirely utilized in representing the domain; this leaves room
for a functor to be used in defining an extension of a given category, or in
representing a structure in the context of one with a greater complexity.

We have proposed elsewhere (for example, [15, 16]) that a neural network
at a given stage of learning can be associated with a category NA,w that
expresses both its connectivity and potential state changes in response to its
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next input. Here, A represents the architectural design including dynamic
properties (the dynamics are represented only in summary fashion as rules for
state changes), while w is the current connection-weight array. An analy-
sis of the network determines whether it is possible to define a functor
M : Concept −→ NA,w . This allows the knowledge-representation capabili-
ties of an existing architecture to be evaluated with mathematical rigor, and
can lead to insights for possible design improvements or for the design of
entirely new architectures. Since functors are many-to-one mappings, concepts
which have not been acquired at some stage of learning or simply cannot be
represented by a given neural network can be included in the analysis.

A further advantage of the categorical approach is the notion of natural
transformations, of the form α : F −→ G with domain functor F : C −→ D
and codomain functor G : C −→ D . A natural transformation α consists of
a system of D -morphisms αa , one for each object a of C , such that the
diagram in D shown in Fig. 4.3 commutes for each morphism f : a −→ b
of C . That is, the morphisms G(f) ◦ αa : F (a) −→ G(b) and αb ◦ F (f) :
F (a) −→ G(b) are actually one and the same, G(f) ◦ αa = αb ◦ F (f) . In
a sense, the two functors have their morphism images F (f) : F (a) −→ F (b) ,
G(f) : G(a) −→ G(b) “stitched together” by other morphisms αa, αb exist-
ing in D , indexed by the objects of C . In a multi-sensor system, with
each sensor having its own dedicated processing network and the networks
connected into a larger system, natural transformations express knowledge
coherence. They accomplish this by unifying the knowledge representations
of the subnetworks of a neural network, which can include subnetworks for
sensor association, planning and other functions (see [14] for an example net-
work). Figure 4.4 illustrates this notion for two functors M1 : Concept −→
NA,w and M2 : Concept −→ NA,w representing sensor-specific processing
knowledge and M3 : Concept −→ NA,w representing knowledge fusion in
an association region of a multi-regional network. Natural transformations
γ1 : M1 −→ M3 and γ2 : M2 −→ M3 provide knowledge coherence between
the separate knowledge representations.

F(a)
αa ��

F(f)

��

G(a)

G(f)

��
F(b)

αb

�� G(b)

Fig. 4.3. A commutative diagram associated with a natural transformation. The
morphisms G(f) ◦ αa : F (a) −→ G(b) and αb ◦ F (f) : F (a) −→ G(b) are one and
the same, G(f) ◦ αa = αb ◦ F (f)
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Fig. 4.4. Functors map the hierarchy of a concept category to multiple regions.
Natural transformations represent coherent interconnections between hierarchy rep-
resentations

4.6 From Points to Models

In the topological-lattice account of [12, 29, 30], the instances of propositions
are referred to as points. This is suggestive, for the semantics of proposi-
tional geometric logic is analyzed in terms of topological systems (similar to
the spaces of point-set topology) and continuous functions. However, as men-
tioned in the aforementioned papers by Vickers, category theory is required
for expressing the semantics of the geometric predicate calculus. In this con-
text, the collection of points associated with a predicate formula is a space of
models, or possible worlds in which the predicate has a valid interpretation.
Category theory is required to express the internal structure of theories, and
their model spaces are also categories. The semantic theory presented here
replaces formulas with whole theories, with functors associating theories and
their morphism with objects and morphisms of a neural category . Here, the
models are possible worlds or situations in which a theory is valid.

Each concept morphism s : T −→ T ′ has an associated model-space mor-
phism, a functor Mod(s) : Mod(T ′) −→ Mod(T ) . Here, Mod(T ) and Mod(T ′)
are the model categories for T and T ′ , respectively. Since Mod(s) reverses
the direction of s , each instance of T ′ has a corresponding instance of
T . This fact has great significance for knowledge representation. In partic-
ular, it suggests a design principle for neural networks, as follows: Suppose
that neural category objects M(T ) and M(T ′) are the images of objects
(concepts) T and T ′ under a functor M : Concept −→ NA,w , and that
M(s) : M(T ) −→ M(T ′) is the image of a concept morphism s : T −→ T ′ .
We associate the activating inputs for the objects M(T ) and M(T ′) with
objects in the model categories Mod(T ) and Mod(T ′) , respectively. Given this
association, every input that activates M(T ′) must also activate M(T ) , a con-
sequence of the existence of the model-space morphism Mod(s) : Mod(T ′) −→
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Mod(T ) . This provides a mathematical justification—in fact, an imperative—
for the presence of feedback in neural networks. Further, this principle applies
in some appropriate form to the design of any knowledge representation
system.

The model-space morphism principle has important implications for limit
and colimit representations. For example, let T be the apical concept of a
limit cone for a diagram ∆ in Concept and let � : T −→ T ′ be one of the
leg morphisms for the limit cone, where T ′ is an object in the base diagram
∆ . Then, M(T ′) is an object in the image diagram M(∆) , and the model-
space morphism principle dictates that the image M(T ) of the limit apical
object must be activated through M(�) whenever M(T ′) is active. The reverse
is true for concept colimits: Every instance of the functorial image of a colimit
apical object must also be an instance of the objects in the image of its base
diagram. One consequence is that the analyst can detect limit and colimit
representations in a given neural network, and distinguish between them.

4.7 Conclusion

We express the semantics of a system in terms of a distributed system of
concepts. The system is an ontology for the system’s environment as experi-
enced through the system inputs, both external to the system and possibly
internally-generated as well. The ontology is expressed mathematically as a
category Concept whose objects are symbolic descriptions (concepts) of a
domain of items (sensed entities, events, situations, and their parts). We have
discussed a sense in which this category is a kind of generalized lattice, dif-
fering from a lattice in having morphisms, which are more expressive than
edges, with a consequent multiplicity of relationships between objects and
with diagrammatic constructions which provide automated concept deriva-
tions useful in expressing learning. Two modes of learning can be expressed,
specialization and abstraction. In a system such as a neural network with
incremental knowledge gain, these two modes serve to “fill out” a repre-
sentation of an ontology for the environment and functionality of the sys-
tem, beginning with basic knowledge about inputs. Mathematical rigor is
maintained through structure-preserving mappings from Concept to a cat-
egory representing the system’s computational structure, thus showing how
concepts, their morphisms, and the consequences of composition including
commutative concept diagrams are represented in the system computations.
Natural transformations formalize knowledge coherence, the unified operation
of the separate knowledge representations in the different subnetworks of a
multi-regional architecture. Another system of structure-preserving mappings
formalizes the relationship between possible worlds for the concept representa-
tions. The semantic theory thus offers a comprehensive mathematical theory
to support investigations in concept learning in adaptive, distributed systems.
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Summary. Lattice matrix associative memories have been developed as an alter-
native way to work with a set of associated pattern pairs for which the storage and
retrieval stages are based in the theory of minimax algebra. Several methods have
been proposed to cope with the problem of binary or real valued pattern recall from
corrupted inputs and recent results on fixed point sets of matrix lattice transforms
have provided for an algebraic characterization as well as a geometrical description
of the canonical lattice min and max auto-associative memories. Compared to other
correlation type associative memory models, the lattice associative memory schemes
have shown better performance for both storage and recall capability; however, the
computational techniques devised to achieve that purpose are still cumbersome when
inputs have undetermined noise bounds. The procedures explained in this chapter
makes use of noise masking to boost the recall performance of either the min or max
morphological auto-associative memories. Examples using image patterns show the
enhanced recovery of almost correct associations from noisy inputs by a single lattice
matrix associative memory.

5.1 Introduction

The neural networks known as morphological associative memories (MAMs)
were introduced a decade ago by Ritter and coworkers [8, 9, 10] as a new
paradigm for the storage and recall of pattern associations. These memories
are feedforward, fully connected neural networks, in which the interconnection
weights between input and output neurons follow a properly defined hebbian
type learning rule. In most correlation type associative memory models, the
storage and recall stages use conventional algebra whereas computation in
MAMs are based on the mathematical theory of minimax algebra developed
by Cuninghame-Green [1, 2] and applied by Ritter [7]; since the standard mini-
max matrix algebra is a specific instance of a lattice algebraic structure, MAMs
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are also named lattice matrix associative memories. Once a set of exemplar
pattern pairs is imprinted in the neural network, then it is expected that the
memory device will exhibit a certain capability to recall the correct association
when presented with an exemplar pattern (perfect input) or with a corrupted
version of it (non-perfect input). It is important to remark that both input
cases pose a difficult robustness problem for any associative memory model.
For perfect input, Ritter and Sussner [8, 10, 16] have proved that the canoni-
cal auto-associative morphological memories (AMMs) have unlimited storage
capacity, give perfect recall for all exemplar patterns, and are robust for exclu-
sively erosive or dilative noise; based on stronger assumptions, similar results
were established for hetero-associative morphological memories (HMMs). To
deal with inputs distorted by mixed random noise, i.e. both erosive and dila-
tive noise combined, the kernel method that chains the max and min AMMs
in a two-stage memory scheme was developed for binary [10, 16] and real val-
ued patterns [11, 12]; in addition, different computational approaches or model
extensions were devised to increase its recall capability or applicability in pat-
tern recognition problems. A fast technique for finding kernels and the use of
multiple kernels of binary patterns were proposed respectively by Hattori [6]
and Hashiguchi [5]; variations on the kernel, the dual kernel methods and the
use of fuzzy set theory applied to AMMs were established by Sussner [18, 19]
for the binary case; Urcid [22] gave an algorithm based on induced morpholog-
ical strong independence over a source set of real valued exemplar patterns,
and recently, Wang [23] has proposed a fuzzy AMM that uses an empirical
map that has also been tested with real valued patterns. In the last two tech-
niques, inputs corrupted by mixed random noise were considered. For real
world applications, Graña and coworkers [3, 4] have successfully applied the
AMMs and the morphological independence criterion of a pattern set to find
endmembers in hyperspectral imagery. With a more theoretical algebraic and
geometrical orientation and parallel to technical developments and applica-
tions, Sussner [17, 20], Ritter and Gader [15] have establish a deeper insight
that provides useful results on the fixed point set of AMMs and therefore,
a complete characterization of their response for arbitrary inputs. From this
point of view, numerical examples and a practical discussion are given in [15],
and a comparison of AMMs with other enhanced associative memory neural
networks for gray-scale pattern retrieval appears in [20] although only for ero-
sive or dilative noise. More recently, Sussner and Valle [21] have developed
gray-scale AMMs that use an appropriate additive constant to achieve consid-
erable amounts of error correction for inputs degraded by random noise.

We point out the relevant fact that the strengths and weaknesses of the min
and max auto-associative memories have driven the different developments
of all previous work done on MAMs as briefly described above. The recall
failure of the min AMM for inputs degraded by dilative noise and similarly,
the poor performance of the max AMM for inputs corrupted with erosive noise,
and consequently their inapplicability to deal with mixed random noise has
been exposed repeatedly since their introduction [10, 16], in the most recent
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theoretical results discovered about them [15, 20, 21], and in the development
of new lattice based associative dendritic or fuzzy memory models [13, 14, 23].
In these pages we give a complete pragmatical solution to pattern recall from
inputs corrupted by mixed random noise using only one of the canonical AMMs
by masking the noise contained in the corrupted pattern. Therefore, in spite of
the aforementioned limitations of AMMs we will use their robustness to either
erosive or dilative noise to regain their inherent computational advantage by
extending their functionality to cope with any type and considerable amounts
of random noise.

This chapter is organized as follows: Sect. 5.2 gives some mathematical
background on minimax algebra covering the fundamental lattice matrix oper-
ations used to define and apply the fundamental AMMs, together with the fun-
damental theoretical results in regards to their recall performance; Sect. 5.3
explains the mechanism behind noise masking that will be used for pattern
recall; in Sect. 5.4 we provide the basic algorithms that employ a single AMM
capable to recall binary or real valued patterns from inputs contaminated with
mixed random noise, and a few concluding remarks to the material exposed
here are given in Sect. 5.5. The chapter ends with a list of essential references
to which the reader may turn for supplementary information.

5.2 Mathematical Background

5.2.1 Some Minimax Matrix Algebra

The basic numerical operations of taking the maximum or minimum of two
numbers usually denoted as functions max(x, y) and min(x, y) will be written
as binary operators using the “join” and “meet” symbols employed in lattice
theory, i.e., x ∨ y = max(x, y) and x ∧ y = min(x, y). It was shown in [1, 7]
that the algebraic systems (IR−∞,∨,+) and (IR+∞,∧,+′) are semirings for
the corresponding max-∨, min-∧ operations and their respective additions, +
and +′ over the sets IR−∞ = IR ∪ {−∞} and IR∞ = IR ∪ {+∞}. In what
follows we consider only finite values of x and y, for which, x +′ y = x + y.

We use lattice matrix operations that are defined componentwise using the
underlying structure of IR−∞ or IR∞ as semirings. For example, the maximum
and minimum of two matrices X,Y of the same size m×n is defined as shown
in (5.1), i.e., for all i = 1, . . . , m and j = 1, . . . , n:

(X ∨ Y )ij = xij ∨ yij ; (X ∧ Y )ij = xij ∧ yij . (5.1)

Inequalities between matrices are also verified elementwise, e.g., X ≤ Y if
and only if xij ≤ yij . On the other hand, the conjugate matrix X∗ is defined
as −XT where XT denotes usual matrix transposition. In addition, given a
transform T : IRn → IRn, then x ∈ IRn is called a fixed point of T if and only
if T (x) = x. Also, we will need to use the arithmetic mean µ(x) of a vector
x ∈ IRn, where µ(x) = µ(x1, . . . , xn) =

∑n
i=1 xi/n.
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Definition 5.1 The max-product, X ∨Y and the min-product, X ∧Y , of
matrix X of size m× p with matrix Y of size p× n, for all i = 1, . . . ,m and
j = 1, . . . , n are given by

(X ∨ Y )ij =
p∨

k=1

(xik + ykj) , (5.2)

(X ∧ Y )ij =
p∧

k=1

(xik + ykj) . (5.3)

Definition 5.2 The lattice product of two vectors x = (x1, . . . , xn)T ∈ IRn

and y = (y1, . . . , ym)T ∈ IRm, referred here as the minimax outer product, is
given by the m× n matrix

y× xT =

⎛

⎜
⎝

y1 + x1 · · · y1 + xn

...
. . .

...
ym + x1 · · · ym + xn

⎞

⎟
⎠ . (5.4)

It is worthwhile to note that y× xT = y ∨ xT = y ∧ xT.

Definition 5.3 If X = {x1, . . . ,xk} ⊂ IRn, then a lattice polynomial or
linear minimax combination of vectors from X, denoted by LP(X), is any
vector x ∈ IRn of the form

x = LP(X) =
∨

i∈I

k∧

ξ=1

(xξ + αξ
i ) , (5.5)

where I is a finite set of indices and αξ
i ∈ IR for all i, ξ. The set of all such

lattice polynomials is called the real linear minimax span of X and is denoted
by LMSIR(X).

The previous definitions and equations are the necessary tools to discuss
the theoretical background of morphological associative memories as explained
in the next subsection. In relation to MAMs, detailed treatments of lattice and
minimax algebra as well as additional mathematical results can be found in
[7, 15, 21]. See also in this book, Chap. 2 by Ritter on Learning in Lat-
tice Neural Networks that Employ Dendritic Computing and Chap. 8 by
Sussner and Valle on Morphological and Certain Fuzzy Morphological Asso-
ciative Memories for Classification and Prediction for complementary com-
prehensive surveys and additional insight on the same background material.

5.2.2 Lattice Matrix Associative Memories

Henceforth, let (x1,y1), . . . , (xk,yk) be k vector pairs with xξ = (xξ
1, . . . , x

ξ
n)T

and yξ = (yξ
1, . . . , y

ξ
m)T for ξ = 1, . . . , k where xξ ∈ IRn and yξ ∈ IRm.
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For a given set of pattern associations {(x ξ,y ξ) : ξ = 1, . . . , k} we define
a pair of associated pattern matrices (X,Y ), where X = (x1, . . . ,xk) and
Y = (y1, . . . ,yk). Thus, X is of dimension n × k with i, jth entry xj

i

and Y is of dimension m × k with i, jth entry yj
i . To store k vector pairs

(x1,y1), . . . , (xk,yk) in an m× n lattice matrix associative memory we use a
similar approach for encoding associations in a linear or correlation memory
but instead of using the linear outer product, the minimax outer product is
used as follows [8, 9, 10].

Definition 5.4 The min-memory WXY and the max-memory MXY, both of
size m × n, that store a set of pattern associations (X,Y ) are given, respec-
tively, by the matrix and componentwise expressions

WXY =
k∧

ξ=1

[yξ × (−xξ)T] ; wij =
k∧

ξ=1

(yξ
i − xξ

j) , (5.6)

MXY =
k∨

ξ=1

[yξ × (−xξ)T] ; mij =
k∨

ξ=1

(yξ
i − xξ

j) . (5.7)

We speak of a hetero-associative morphological memory (HMM) if X 	= Y
and an auto-associative morphological memory (AMM) if X = Y .

The expressions to the left of each equation are in matrix form and the right
expression is the ijth entry of the corresponding memory. Note that according
to (5.4), for each ξ, yξ × (−xξ)T is a matrix Eξ of size m× n that memorizes
the association pair (xξ,yξ) hence WXY =

∧k
ξ=1 Eξ and MXY =

∨k
ξ=1 Eξ,

which suggests the given names. The retrieval of pattern yξ from pattern xξ

can be expressed using the following one pass memory scheme,

xξ → {WXY | MXY} → yξ , (5.8)

where, the vertical bar means that, either one of WXY or MXY may be used.
In this exposition we restrict our discussion to AMMs, i.e., to WXX or MXX of
size n× n; also, for application purposes we will assume that pattern entries
are non-negative and finite, i.e., 0 ≤ xξ

i < ∞ for all i, ξ.

5.2.3 Main Theoretical Results

The theorems listed here give a quick overview of the theoretical foundations
of AMMs that are of practical significance in applications; their proofs can be
found in [10, 16, 17] or [15]. To safe space, statements in the theorems refer
only to the min-memory WXX since analogous properties for the max-memory
MXX are readily obtained using the duality principle. AMMs have unlimited
storage capacity, the pattern domain can be binary or real valued, give perfect
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recall for perfect input, and computation is performed in one step, free of any
convergence problems [8, 10]. In mathematical form:

Theorem 5.1 WXX ∨ X = X, for any matrix X of size n×k whose columns
are the exemplar pattern vectors x1, . . . ,xk ∈ IRn.

Theorem 5.2 If WXX ∨ x = x′, then WXX ∨ x′ = x′, where x ∈ IRn is any
input vector and x′ is the recalled pattern.

Notice that the max-product of WXX with vector x is an example of a lat-
tice matrix transform defined by TW(x) = WXX ∨ x; therefore, Theorem 5.1
means that any exemplar pattern xξ for ξ = 1, . . . , k is a fixed point of TW

(complete perfect recall). From Theorem 5.2 it is clear that the recalled pat-
tern x′ obtained in the first step is a fixed point for the second application of
WXX and therefore one step convergence is guaranteed.

Definition 5.5 The fixed point set of the min-memory W is given by

F (X) = {x ∈ IRn : WXX ∨ x = x} . (5.9)

The next theorem gives a complete algebraic characterization of the recall
response of the lattice matrix auto-associative memories in terms of lattice
polynomials.

Theorem 5.3 The fixed point set F (X) of the AMMs, WXX and MXX coin-
cides, in either case it is given by F (X) = LMSIR(X).

Consequently, from (5.9) and (5.5), the result established in Theorem 5.2
means that, for any input vector x ∈ IRn the recalled pattern x′ belongs to
F (X). Hence, if βξ

i ∈ IR for all i ∈ I, ξ ∈ {1, . . . , k}, the following equation is
valid

WXX ∨ x = x′ = LP(X) =
∨

i∈I

k∧

ξ=1

(xξ + βξ
i ) . (5.10)

Observe that the input vector x appearing in (5.10) is a lattice polynomial
in X that can be an exemplar pattern xξ, a noisy version of it, usually sym-
bolized by x̃ξ, or even a non-corrupted non-exemplar pattern. Any way, the
righthand side of (5.10) means also that WXX has many spurious states that
are stable. This equation is a deep and nice theoretical result but still does not
provide a practical criterion to enhanced the recall performance of the canon-
ical AMMs for inputs corrupted by noise. An alternative approach to lattice
associative matrix memories is based on morphological neurons endowed with
dendrites whose description the reader will find in Chap. 2 of the present
book, Learning in Lattice Neural Networks that Employ Dendritic Computing
by Ritter. Application of the canonical AMMs to hyperspectral imaging and
pattern recognition are surveyed in Chap. 6 on Convex Coordinates from Lat-
tice Independent Sets for Visual Pattern Recognition by Graña, Villaverde,
Moreno, and Albizuri.



5 Noise Masking for a Lattice Associative Memory 87

Missing parts, occlusions or corruption of exemplar patterns can be con-
sidered as “noise”. Particularly, if alterations in pattern entries follow a prob-
ability law, then the pattern is said to be contaminated with random noise.
If pattern entries change in a deterministic way, then the pattern is said to
be distorted with structured noise. In order to specify the recall capabilities
of AMMs when presented with non-perfect inputs, noise can be classified in
three types relative to the total ordered structure of a given numerical scale
such as the real line.

Definition 5.6 Let I = {1, . . . , n} then, a distorted version x̃ of pattern x has
undergone an erosive change whenever x̃ ≤ x or equivalently if ∀i ∈ I, x̃i ≤ xi.
A dilative change occurs whenever x̃ ≥ x or equivalently if ∀i ∈ I, x̃i ≥ xi.
Let L,G ⊂ I be two non-empty disjoint sets of indexes. If ∀i ∈ L, x̃i < xi and
∀i ∈ G, x̃i > xi, then the distorted pattern x̃ is said to contain mixed noise
(random or structured).

Theorem 5.4 Let x̃γ be an eroded version of pattern xγ , then the equation
WXX ∨ x̃γ = xγ holds if and only if for each row index i ∈ {1, . . . , n} there
exists a column index j(i) ∈ {1, . . . , n} such that

x̃γ
j(i) = max

⎛

⎝xγ
j(i),
∨

ξ �=γ

[
xγ

i − xξ
i + xξ

j(i)

]
⎞

⎠ . (5.11)

Corollary 5.1 If WXX ∨ x̃γ = xγ then x̃γ must be an eroded version of xγ ,
i.e., x̃γ ≤ xγ .

Theorem 5.4 and Corollary 5.1 still remain the fundamental results that
give the conditions to guarantee perfect recall from a distorted exemplar
corrupted by erosive noise using the min-memory WXX. Similar conditions
provide for perfect recall applying the max-memory MXX to an exemplar pat-
tern that has been changed by dilative noise. Additional theoretical discus-
sions [16, 20], useful commentaries and explanations using numerical examples
[10, 15], as well as a wide spectrum of computational experiments with differ-
ent sets of binary or gray-scale images [10, 11, 12, 16, 20], have demonstrated
the surprising fact that WXX is very robust to erosive noise and dually, that
MXX is very robust to dilative noise. However, both AMMs fail completely
for inputs corrupted with mixed noise, a handicap that has been emphasized
several times in all enhanced models developed so far, such as, the kernel
based methods, the extended fuzzy models, and the lattice dendrite associa-
tive memory models.

A reasonable, simple question pops up in our minds. If the canonical AMMs
have a firm mathematical foundation, give results of far reaching applications,
and are quite robust to erosive or dilative distortions – closely related to
the more general situation of mixed noise – is it possible to implement a
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mechanism that takes all their known advantages and therefore regain their
status as good associative memory models for perfect recall in the presence
of mixed noise? The answer is affirmative and we explain it in detail in the
following two sections.

5.3 Noise Masking

The only roadblock that prevents the use of the min-memory WXX as a direct
memory scheme for arbitrary inputs, is the condition that it can work very
well only with exemplar patterns corrupted by erosive noise. We propose to
use noise masking to changed an input vector degraded by mixed noise into
a vector corrupted only by erosive or dilative noise.

Definition 5.7 Let X = {x1, . . . ,xk} ⊂ IRn be a finite set of exemplar pat-
terns and let x̃ be a mixed noisy version of x ∈ X, then the min-masked
pattern of x̃ is given by x̃ ∧ x = x̃e and the max-masked pattern of x̃ is given
by x̃ ∨ x = x̃d.

It turns out, using the axioms of a lattice structure, that x̃e ≤ x, hence x̃e is
an eroded version of x that can be used as input to WXX; dually, x̃d ≥ x, i.e.,
x̃d is a dilated version of x useful for MXX. We point out the important fact
that in any associative memory model, the set X of fundamental memories
or exemplars constitutes available “known information”. Therefore, determi-
nation of the min- and max-masked input patterns makes sense and both are
readily obtained since computation with lattice vector operations is fast.

Example 5.1 In binary image processing it is usual to consider two possi-
ble encodings of objects. The W/B encoding assigns a value of 1 (white) for
the object or foreground, and 0 (black) for its background. Alternatively, the
encoding B/W considers a value of 0 (black) for the object and 1 (white) for
its background. Figure 5.1 illustrates binary masking for the uppercase let-
ter ‘G’ with the W/B encoding and the uppercase letter ‘R’ with the B/W
encoding. For each exemplar letter four samples of noisy versions and their
corresponding masked results are displayed.

In the third column of the left panel in Fig. 5.1, noise min-masking with
the ∧-operator is equivalent to a pointwise logical And operation and gives the
eroded versions of the ‘G’ letter that can be used as inputs to WXX. Similarly,
in the third column of the right panel, noise max-masking using the ∨-operator
is equivalent to a pointwise logical Or operation and produces the dilated
versions of the complement of the ‘R’ letter which can be used as inputs to
MXX. Note that, in the case of binary contaminated image patterns, mixed
random noise is synonymous with impulsive noise or pixel value reversal.

If random noise occurs with probability p ∈ (0, 1), then the masking rules
that generate an adequate noisy version of an exemplar binary pattern x ∈
{0, 1}n, are specified as follows:
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Fig. 5.1. Binary masking: in each image panel, the 1st entry in the 1st column
shows an uppercase letter with different encoding as an exemplar pattern, 2nd col-
umn of both panels shows corrupted versions with 0.25, 0.40, 0.60, 0.75 random noise
probability, and the 3rd column displays the results of noise masking

• eroded noisy patterns obtained by min-masking,

if p ∈ (0, 0.5) then x̃+e = x ∧ x̃ (5.12)
else x̃−e = x ∧ (1− x̃) , (5.13)

• dilated noisy patterns obtained by max-masking,

if p ∈ (0, 0.5) then x̃+d = x ∨ x̃ (5.14)
else x̃−d = x ∨ (1− x̃) . (5.15)

In (5.12) and (5.14) we denote positive masking with a plus sign (+) as
subindex and similarly, in (5.13) and (5.15) negative masking is distinguished
by a minus sign (−). In this last case, use is made of the inverted or negative
of the noisy input which is given by 1− x̃ where 1 = (1, 1, . . . , 1) ∈ IRn.

Example 5.2 Figure 5.2 illustrates the advantage of using (5.13) or (5.15)
to properly mask the corrupted input pattern when it comes with high levels
of noise. Under this situation, more and more pixels are inverted and the
corrupted patterns begins to change its initial encoding, hence the need of
negative masking is justified. Encoding interchange for the exemplar uppercase
letters ‘U’ and ‘S’ is clearly seen against their 85% noisy versions shown in
the 4th row and 2nd column of their corresponding image panels.

It is important to remark, that visual object recognition as illustrated here
with binary image patterns is a function of the spatial organization and struc-
ture of the object as well as the noise probability distorting it. In the examples
given in Fig. 5.1 and Fig. 5.2, it is evident that low-high levels of noise with
probability p in the range (0, 0.35] ∪ [0.65, 1) still allows for visual identifica-
tion of the selected letters or their negatives; however, if p ∈ (0.35, 0.65), then
the corrupted letter is no longer visually recognizable. The extreme values
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Fig. 5.2. Binary masking: in each image panel, 1st entry in 1st column shows
an uppercase letter with different encoding as an exemplar pattern, 2nd col-
umn of both panels shows highly corrupted versions of letters “U” and “S”
with 0.55, 0.65, 0.75, 0.85 random noise probability, 3rd column displays the results
obtained with positive masking, and the 4th column displays better results produced
by negative masking

Fig. 5.3. Gray-scale masking: 1st entry of 1st column shows the exemplar pat-
tern, 2nd column shows corrupted versions of the “Lena” image with 0.25, 0.50, 0.75
random noise probability, 3rd column displays the eroded results obtained by min
masking, and the 4th column displays the dilated results produced by max masking

given in these intervals do not define crisp boundaries due to psychophysical
aspects of human visual perception. As a general comment, the technique of
noise masking combined with subtraction is equivalent to unmix the erosive
and dilative components that are present in the input pattern.

Example 5.3 We end this section with Fig. 5.3 that illustrates noise masking
for gray-scale image patterns, in this case the “Lena” image has been corrupted
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by additive random salt and pepper noise with a gray reference value of 128.
The eroded noisy versions of the “Lena” image displayed in the 3rd column can
be used as inputs to WXX and the dilated corrupted images of the 4th column
may serve as inputs to MXX. An interesting fact is that for any amount of
noise added to an L-gray-scale image pattern x ∈ [0, L−1]n, only the masking
rules given by (5.12) and (5.14) are used, respectively, to generate eroded or
dilated noisy versions. Therefore, negative masking is not required for sets of
real-valued patterns.

5.4 Recall from Noisy Inputs

This section contains the computational procedures based on noise masking,
to change a corrupted exemplar input pattern into a similar pattern that
has only erosive or dilative noise. Since the conditions for perfect recall with
AMMs given in Theorem 5.4 are not always satisfied for arbitrary finite sets
of exemplar patterns, it is necessary to measure the difference between the
noisy input and the output recalled. For convenience of exposition we treat
the binary and real valued cases separately.

5.4.1 Binary Patterns

Let X = {x1, . . . ,xk} ⊂ {0, 1}n be a finite set of k exemplar binary pat-
terns that are stored in WXX following (5.6) by taking Y = X. If x̃ denotes
a noisy version of the exemplar x = xξ for some ξ ∈ {1, . . . , k}, we will use
the normalized Hamming distance (NHD) between both patterns as a mea-
sure of their proximity; it is defined by any of the two expressions in (5.16),
i.e.

h(x, x̃) =
1
n

n∑

i=1

| xi − x̃i |=
1
n

n∑

i=1

mod(xi + x̃i, 2) . (5.16)

Observe that, 0 ≤ h(x, x̃) ≤ 1. If the vectors compared match each other in all
entries, then h(x, x̃) = 0, if there is a single mismatch then h(x, x̃) = 1/n, and
if all entries differ in value then h(x, x̃) = 1. With the help of this measure we
can formalize the notion of “almost perfect recall” for the binary case in the
following sense:

Definition 5.8 The lattice matrix autoassociative memory WXX is an almost
perfect recall memory for a set X of binary patterns if and only if there exists a
small rational number ε > 0 close to zero, such that h(WXX ∨ x̃,x) ≤ ε for all
x ∈ X with respect to finite sets of noisy versions x̃ of x. Under similar condi-
tions, MXX is an almost perfect recall memory whenever h(MXX ∧ x̃,x) ≤ ε.

The next algorithm, expressed in mathematical notation, establishes the tech-
nique of noise masking for binary patterns as a mechanism to provide an
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eroded noisy input pattern to the min memory WXX. Numbered steps are
prefixed by S and comments are provided within brackets.

Algorithm 5.1. Binary Pattern Recall with WXX

S1. Input x̃ ∈ {0, 1}n

[Assume x̃ is an unknown noisy exemplar corrupted with mixed noise.]

S2. For ξ = 1 to k do

x̃ξ
+e = xξ ∧ x̃

x̃ξ
−e = xξ ∧ (1− x̃)

[Min-positive/negative masked vectors of k memorized patterns.]

S3. For ξ = 1 to k do

Dξ
+e = µ[h(x̃ξ

+e,x
ξ), h(x̃ξ

+e, x̃)]
Dξ

−e = µ[h(x̃ξ
−e,x

ξ), h(x̃ξ
−e, 1− x̃)]

Dξ = Dξ
+e ∧Dξ

−e

[Mean positive, mean negative and minimum mean distance vectors.]

S4. Find γ ∈ {1, . . . , k} such that Dγ =
∧k

ξ=1 Dξ.
[Min-masked candidate vectors, eroded only versions of x̃ are x̃γ

+e and x̃γ
−e.]

S5. Let xγ
+ = WXX ∨ x̃γ

+e and let xγ
− = WXX ∨ x̃γ

−e

[The masked γ-vectors in S4 are inputs to WXX to get output candidate
patterns.]

S6. Let δ+ = h(xγ
+,xγ) and let δ− = h(xγ

−,xγ)
[Positive and negative Hamming distances of recalled candidate patterns.]

S7. If δ+ < δ− then xγ = xγ
+ else xγ = xγ

−
[Select the exemplar pattern that is most correctly associated by WXX with
the noisy input x̃. For another input return to S1.]

Observe that, after step 7 the following relationship holds

δ+ ∧ δ− =
k∧

ξ=1

h(x̃,xξ) . (5.17)

The operations needed in steps 2, 3, 5 and 6 of Algorithm 5.1 can be
performed in parallel and do not pose a computational burden in possible
applications that may use the single autoassociative memory WXX since all
arithmetical operations are very simple. Equivalently, the search operation
needed in step 4 may be replaced by a fast ascending sort. Algorithm 5.1 can
be readily modified to be used with the dual max memory MXX. Specifically,
step 2 will use the ∨-operator to generate dilated versions (+d,−d subindexes),
step 5 will compute two min-products using MXX, and the other steps remain
exactly the same.
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Example 5.4 In this computational experiment, the set of exemplar patterns
consisted of the 26 uppercase letters of the English alphabet, each letter coded
as a binary image in a matrix of size 32×32 pixels; here, the smallest non-zero
value of NHD = 1/1024 ≈ 0.001. Table 5.1 gives the numerical mean values
of the normalized Hamming distances related to the W/B encoding over 100
eroded corrupted versions of the binary letters ‘G’ and ‘U’ that where used as
noisy inputs for the min-memory WXX. In a similar fashion, Table 5.2 lists
the numerical results for the dual encoding of the letters R’ and ‘S’ of which
100 complemented dilative versions were fed into the max-memory MXX. A
single trial has been shown in Fig. 5.1 and Fig. 5.2; specifically, letter ‘G,U’
in the left image panel and letters ‘R,S’ in the right image panel.

From the last column in Tables 5.1 and 5.2, it can be observed that the
difference between the recalled pattern and the stored pattern is small, since
all the numerical values listed for µ[hi(x̃

γ ,x)] for i = 1, . . . , 100, are at most
an order of magnitude above the minimum difference 0.001 given earlier.

Example 5.5 Further computational experiments reveal that, for several runs
of 100 noisy versions of each uppercase letter, the mean of the distances Dγ

computed in step 4 of Algorithm 5.1, calculated over a run, is a piecewise
linear function of noise probability, i.e.,

µ(D1
γ , . . . , D100

γ )(p) � 0.25(1− 2|p− 0.5|) . (5.18)

In (5.18), the value of γ gives the correct pattern index for p ∈ [0, 0.45] ∪
[0.55, 1] for each letter, even for similar letters such as ‘D’ and ‘O’ (γ =
4, 15), or ‘I’ and ‘J’ (γ = 9, 10). For noise probability levels in the range
[0.46, 0.48] ∪ [0.52, 0.54], the value of γ may correspond to similar letters; for

Table 5.1. Mean normalized Hamming distances for mixed noise, eroded versions,
and recall performance of memory WXX

Letter
Noise Mean Mean Mean

p h(x̃, x) h(x̃e, x) h(x̃
γ
, x)

‘G’ 0.25 0.250 0.053 (+e) 0.007
‘G’ 0.45 0.452 0.095 (+e) 0.014
‘U’ 0.55 0.549 0.080 (−e) 0.021
‘U’ 0.75 0.748 0.045 (−e) 0.010

Table 5.2. Mean normalized Hamming distances for mixed noise, dilated versions,
and recall performance of memory MXX

Letter
Noise Mean Mean Mean

p h(x̃, x) h(x̃d,x) h(x̃
γ
, x)

‘R’ 0.25 0.250 0.051 (+d) 0.015
‘R’ 0.45 0.452 0.092 (+d) 0.032
‘S’ 0.55 0.554 0.086 (−d) 0.025
‘S’ 0.75 0.752 0.047 (−d) 0.011
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Fig. 5.4. Binary positive masking: mean of the distances Dξ
+e computed over a

run of 100 random corrupted versions of the letter ‘D’ against each letter with
p = 0.1(•), 0.2(◦), 0.3( ), 0.4(
). Vertical scale is normalized and D(ξ, +e) = Dξ

+e

p ∈ (0.48, 0.52), the mean distance values are almost the same for all letters
and there is no way to tell what letter is truly associated with such a noisy
input. Figure 5.4 shown below, displays the value of the mean of the distances
Dξ

+e computed over a run of 100 random corrupted versions of ‘D’ against each
letter with probabilities equal to 0.1, 0.2, 0.3, 0.4 which are marked respec-
tively, with a disk (bottom curve), a circle, a solid square, and a triangle (top
curve). Observe that in each curve, the pattern index γ = 4 obtained in step 4
of Algorithm 5.1 gives the correct letter; in this case, since p < 0.5, it follows
that D4 = D4

+e ∧D4
−e = D4

+e.
Similarly, Fig. 5.5 shows the value of the mean of the distances Dξ

−e com-
puted over a run of 100 random corrupted versions of ‘I’ against each letter
with probabilities equal to 0.9, 0.8, 0.7, 0.6 which are marked respectively,
with a disk (bottom curve), a circle, a solid square, and a triangle (top curve).
Observe that in each curve, the pattern index γ = 9 obtained in Step 4 of
Algorithm 5.1 gives the correct letter; in this case, since p > 0.5, it follows
that D9 = D9

+e ∧D9
−e = D9

−e. These curves also illustrate that for noise prob-
ability values near 0.5, letter ‘I’ will be confused more times with ‘T’ (γ = 20)
than with ‘J’ (γ = 10).

Thus, aided by noise masking, each AMM, WXX or MXX used as a single robust
associative memory device, gives almost perfect recall for binary inputs that
have been corrupted with random noise for probability values below 0.5 − δ
or above 0.5 + δ where δ > 0 is a small number which is problem dependent;
in example 5.5, δ = 0.04.
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Fig. 5.5. Binary negative masking: mean of the distances Dξ
−e computed over a

run of 100 random corrupted versions of the letter ‘I’ against each letter with p =
0.9(•), 0.8(◦), 0.7( ), 0.6(
). Vertical scale is normalized and D(ξ,−e) = Dξ

−e

5.4.2 Real Valued Patterns

Let X = {x1, . . . ,xk} ⊂ IRn be a finite set of k exemplar real valued patterns
that are stored in WXX following (5.6) by taking Y = X. If x̃ denotes a
noisy version of the exemplar x = xξ for some ξ ∈ {1, . . . , k}, we can use
the normalized absolute error (NAE) or the normalized mean squared error
between both patterns to measure their proximity. They are defined by

α(x, x̃) =
1
n

n∑

i=1

| xi − x̃i | , (5.19)

σ(x, x̃) =
n∑

i=1

(xi − x̃i)2/
n∑

i=1

(xξ
i )

2 . (5.20)

Although NAE is the natural extension to real vectors of NHD for binary
vectors, it is common practice to compute distances between pattern vectors
using the NMSE, since it gives numerical values that agree more objectively
with the perceived visual differences when comparing two gray-scale image
patterns. With the aid of this metric we formalize again the idea of “almost
perfect recall” in the real valued case as follows:

Definition 5.9 The lattice matrix autoassociative memory WXX is an almost
perfect recall memory for a set X of real valued patterns if and only if there
exists a small real number ε > 0 close to zero, such that σ(WXX ∨ x̃,x) ≤ ε for
all x ∈ X with respect to finite sets of noisy versions x̃ of x. Under similar con-
ditions, MXX is an almost perfect recall memory whenever σ(MXX ∧ x̃,x) ≤ ε.
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The next algorithm, expressed in mathematical notation, establishes the
technique of noise masking for real valued patterns as a mechanism to provide
an eroded noisy input pattern to the min memory WXX. Numbered steps are
prefixed by S and comments are provided within brackets.

Algorithm 5.2. Real Valued Pattern Recall with WXX

S1. Input x̃ ∈ IRn

[Assume x̃ is an unknown noisy exemplar corrupted with mixed noise.]

S2. For ξ = 1 to k do

x̃ξ
e = xξ ∧ x̃

[Min-masked vectors of k memorized patterns.]

S3. For ξ = 1 to k do

Dξ = µ[σ(x̃ξ
e,x

ξ), σ(x̃ξ
e, x̃)]

[Mean distance vector.]

S4. Find γ ∈ {1, . . . , k} such that Dγ =
∧k

ξ=1 Dξ.
[Min-masked candidate vector, eroded only version of x̃ is x̃γ

e .]

S5. Let xγ
+ = WXX ∨ x̃γ

e

[The masked γ-vector in S4 is an input to WXX to get output candidate
pattern.]

Note that, after step 5, the exemplar pattern that is most correctly asso-
ciated by WXX with the noisy input x̃ is given by xγ . Therefore,the following
relationship holds

σ(x̃,xγ) =
k∧

ξ=1

σ(x̃,xξ) . (5.21)

The same remarks made for Algorithm 5.1 apply to Algorithm 5.2, except
that in the real valued case, the algorithm is much simpler and requires a less
number of arithmetical operations. Algorithm 5.2 can be readily modified to
be used with the dual max memory MXX. Specifically, step 2 will use the ∨-
operator to generate dilated versions (+d subindex) and step 5 will compute
one min-product using MXX. In the next two examples, the set of exemplar
patterns consisted of 10 grayscale public domain images shown in Fig. 5.6,
where each image is registered in a matrix of size 64× 64 pixels.

Example 5.6 Table 5.3 gives several NMSE mean values over 25 noisy ver-
sions of the gray-scale “Lena” image, whose eroded versions were used as
inputs to the min-memory WXX. The same Table lists similar numerical val-
ues for the same face image of which 25 dilated corrupted versions were fed
into the max-memory MXX. Note that in the 4th (W-Mean) and 7th (M-Mean)
columns, the difference between the recalled pattern and the exemplar is small
for any p ≤ 0.85, since µ[σi(x̃

γ ,x)] ≤ 5× 10−3 for i = 1, . . . , 25.
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Fig. 5.6. Exemplar gray-scale images. 1st row, ξ = 1, . . . , 5; 2nd row, ξ = 6, . . . , 10

Table 5.3. Mean NMSE’s for mixed noise, eroded versions, recall performance of
WXX; mixed noise, dilated versions, and recall performance of MXX

Noise Mean Mean W-Mean Mean Mean M-Mean
p σ(x̃, x) σ(x̃+e, x) σ(x̃

γ
, x) σ(x̃, x) σ(x̃+d, x) σ(x̃

γ
, x)

0.15 0.119 0.057 0.00011 0.124 0.075 0.00026
0.25 0.188 0.102 0.00016 0.188 0.106 0.00033
0.35 0.250 0.154 0.00011 0.242 0.135 0.00064
0.45 0.296 0.215 0.00047 0.284 0.153 0.00075
0.55 0.340 0.270 0.00030 0.341 0.178 0.00089
0.65 0.385 0.356 0.00094 0.362 0.190 0.00100
0.75 0.418 0.436 0.00100 0.403 0.208 0.00200
0.85 0.436 0.499 0.00098 0.440 0.221 0.00300

Example 5.7 In several runs of 25 noisy versions of each gray-scale image,
the mean of the distances Dγ computed in step 4 of Algorithm 5.2 gives
the correct pattern index γ for any p ∈ [0, 0.65]. For noise probability lev-
els in the range (0.66, 0.70], the value of γ may correspond to similar noisy
images, and for p > 0.70, the mean distance values for at least two images
are very close and there is no way to recall the correct exemplar. Figure 5.7
displays the mean of the distances D(ξ, e) = Dξ

e computed over a run of 25 ran-
dom corrupted versions of four selected images against each other image with
p = 0.35, marked respectively, with a disk (Baboon), a circle (Lena), a solid
square (Bird), and a triangle (Fruits). The lowest point in each curve gives the
correct value of γ. In similar fashion, Fig. 5.8 shows an analogous behavior
for p = 0.65; again, the lowest point in each curve gives the correct pattern
index.

The kind of computer experiments described in Examples 5.6–5.7, show
that grayscale noise masking as a preprocessing step, turns each AMM, WXX

or MXX as a single robust associative memory device, into an almost perfect
recall associative memory for noisy real valued inputs.
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Fig. 5.7. Gray-scale masking: mean of the distances Dξ
e computed over a run of 25

random corrupted versions of 4 selected images vs. each other image with p = 0.35
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Fig. 5.8. Gray-scale masking: mean of the distances Dξ
e computed over a run of 25

random corrupted versions of 4 selected images vs. each other image with p = 0.65

5.5 Conclusions

This chapter exposes a noise masking technique, based on simple lattice alge-
bra operations, to unmix the erosive and dilative noise components of mixed
noise present in a corrupted input pattern. In this way, any input corrupted
with any kind and a wide range of noise levels can be recognized by a single
lattice matrix associative memory, either the min-memory WXX that has been
thoroughly tested with erosive noise, or the max-memory MXX that is also
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very robust in handling dilative noise. The algorithms given here, for binary
or real valued patterns, can be optimized by parallelizing several of their steps
and are good candidates to be implemented as neuromorphic or FPGA systems
for real-time applications. Noise masking provides a practical and complete
solution to the problem of pattern recall from noisy binary or real-valued
inputs, that is highly competitive against other associative memory models
described in detail in [20, 21].
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Summary. One of the key processes in nowadays intelligent systems is feature
extraction. It pervades applications from computer vision to bioinformatics and data
mining. The purpose of this chapter is to introduce a new feature extraction process
based on the detection of extremal points on the cloud of points that represent
the high dimensional data sample. These extremal points are assumed to define an
approximation to the convex hull covering the data sample points. The features
extracted are the coordinates of the data points relative to the extremal points,
the convex coordinates. We have experimented this approach in several applications
that will be summarized in the chapter.

6.1 Introduction

Feature extraction is the process of extracting a vector of (real) values from
a sample data item. The pioneer works on the application of Principal Com-
ponent Analysis (PCA) [10] to this task, have been followed by a cohort of
methods, most of them linear (i.e. Independent Component Analysis (ICA)
[18, 19]). Feature extraction implies dimensionality reduction, because the
extracted feature vector is usually of much lower dimension than the original
data items. This dimensionality reduction can be guided by minimum error
criterion (i.e. PCA), maximum independence (i.e. ICA), maximum discrim-
ination power, etc. Depending on the application and type of the data, the
diverse methods can be of different usefulness.

The method proposed in this chapter has the following outline:

1. The extremal points of the data sample are extracted. They provide an
approximation to the vertices of the minimal convex set that covers the
data sample.

2. The data points in the sample are represented as linear combination of
the extremal points: the convex coordinates are the extracted features.

This simple outline has several difficulties. First, in high dimensional spaces,
computing the convex hull of a set points is not trivial matter. Second, the
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algorithms give approximations to the correct convex hull vertices, hence there
is no guarantee that the simplex defined by them encloses all the data. The
convex coordinates are expected to be positive, but this is seldom true for the
approximations to the convex hull obtained.

We have tried our approach on a variety of applications:

Hyperspectral image unsupervised segmentation The starting point of our
research [11, 12]. The motivation is to obtain a fast segmentation algo-
rithm for hyperspectral images, that could serve as a first hand analysis.
Unsupervised means that no a priori classes are give, so that the results
do not identify materials but regions of high abundance.

Hyperspectral image supervised segmentation The motivation for unsuper-
vised segmentation is the scarcity of the ground truth information. How-
ever, when trying supervised classifier design, the process becomes a true
feature extraction process. We did some experiences with available ground
truth for hyperspectral data that encouraged the work reviewed in this
chapter [13, 14].

Content Based Image Retrieval The issue here is to be able to extract image
features that work as indices for image database search. We have worked
with both hyperspectral images and shape features from conventional
images.

Robot Visual Localization From our early attempts [30, 31] at brute force
visual navigation with morphological neural networks, we have changed
the approach to that of using them for feature extraction. The problem of
robot self-localization is stated as a classification problem [48, 49] based
on the features obtained from the endmember extraction algorithm.

We started our works based on the works on Morphological Neural Net-
works from Ritter, Sussner and other people [34, 35, 43, 44]. The introduction
in [36] of the idea of morphological independence has been very influential
in our work. This idea has been elaborated in depth in [38] relating strong
lattice independence with linear independence, a necessary condition for the
vertices of the convex hull of the data sample points. Although we do not
ensure strong lattice independence, our procedure obtains almost always lin-
early independent sets of vectors that can be used for the computation of
convex coordinates.

We will start the summary description of our approach revising the defin-
ition of the convex coordinates in Sect. 6.2. Next we introduce some methods
for linear feature extraction in Sect. 6.3 and the algorihtms for the induc-
tion of the endmembers from the data in Sect. 6.4, including our proposed
approach. The works on hyperspectral images are related in Sects. 6.5 and
6.6. The application to shape CBIR to a database of mushrooms is presented
in Sect. 6.7. The application to robot navigation is described in Sect. 6.8. We
gather our conclusions in Sect. 6.9.
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6.2 Convex Coordinates

The linear model:

x =
M∑

i=1

aisi + w = Sa + w, (6.1)

where x is the d-dimensional explained data point, S is the d ×M mixture
matrix whose columns are the d-dimensional basis vectors si, i = 1, ..,M,
a is the M -dimension coordinate vector, and w is the d-dimension additive
observation noise vector. If the coordinates fulfill the following conditions:

Nonnegative ai ≥ 0, i = 1, ..,M,
Additive normalization

∑M
i=1 ai = 1,

then the basis vectors can be assumed to be the vertices of a convex polytope
enclosing the data points x. When M � d the computation of the convex
coordinates can be interpreted as a dimension reduction process, or a feature
extraction process.

Depending on the application domain, the convex coordinates are inter-
preted differently. For instance, if the input data are hyperspectral remote
sensing images, the linear model in (6.1) is called a linear mixing model [21],
the basis vectors si are the endmember’ spectra, a is the fractional abundance
vector, and x is the sensed pixel spectrum. The convexity conditions amount
to the physical feasibility of the linear model, because observed spectra are
made up from the positive contributions of the spectra of materials in the
physical world, and the fractional contributions of the endmembers always
sum up to one.

Once the convex polytope vertices S have been determined, computing the
convex coordinates amounts to solve the linear system of equations:

x = Sa. (6.2)

The simplest approach is the unconstrained least squared error estimation
given by:

â =
(
ST S
)−1

ST x. (6.3)

The key problem in this simple process is that of finding out the vertices
of a convex polytope that covers the data sample points. In the hyperspec-
tral image processing these convex polytope vertices are called endmembers.
The first significant work on the automated induction of endmember spectra
from image data is [7], whose starting observation is that the scatter plots of
remotely sensed data are tear shaped or pyramidal, if two or three spectral
bands are considered. The apex lies in the so-called dark point. The endmem-
ber detection becomes the search for non-orthogonal planes that enclose the
data defining a minimum volume simplex, hence the name of the method.
The method is computationally expensive and requires the prior specification
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of the number of endmembers. A recent approach to the automatic endmem-
ber detection is the Convex Cone Analysis (CCA) method proposed in [20],
applied to target detection. The CCA selects the greatest eigenvalue eigen-
vectors, as many as the specified number of endmembers. These eigenvectors
define the basis of the convex cone that covers the image data. The vertices
of the convex cone correspond to spectra with as many zero elements as the
number of eigenvectors minus one. The search for the convex cone vertices
involves the exploration of the combination of bands and the solution of a
linear system for each combination. The complexity of the search for these
vertices is O (bc) where b is the number of bands and c the number of eigen-
vectors. At present we use a raw random search to obtain the experimental
results reported below. Another approach to endmember induction from the
data from a morphological background is presented in [29]. The authors gener-
alize the erosion and dilation morphological operators based on the distances
between pixels in a neighborhood. They introduce a measure of eccentricity
as a measure of the variance in the neighborhood that allows to decide on
the validity of the neighborhood to extract an endmember. The method uses
neighborhoods located on region boundaries and discards smooth regions. The
next section describes some endmember induction algorithms.

6.3 Linear Feature Extraction: ICA and PCA

The Independent Component Analysis (ICA) [19] assumes that the data is
a linear combination of nongaussian, mutually independent latent variables
with an unknown mixing matrix. The ICA reveals the hidden independent
sources and the mixing matrix. That is, given a set of observations repre-
sented by a d dimensional vector x, ICA assumes a generative model x = As,
where s is the M dimensional vector of independent sources and A is the
d × M unknown basis matrix. The ICA searches for the linear transfor-
mation of the data W, such that the projected variables Wx = s are as
independent as possible. It has been shown that the model is completely
identifiable if the sources are statistically independent and at least M − 1
of them are non gaussian. If the sources are gaussian the ICA transforma-
tion could be estimated up to an orthogonal transformation. Estimation of
mixing and unmixing matrices can be done maximizing diverse objective
functions, among them the non gaussianity of the sources and the likeli-
hood of the sample. We have used the FastICA [18] algorithm available
at http://www.cis.hut/projects/ica/fastica. The Principal Component
Analysis (PCA) [10] is a well-known linear dimension reduction procedure that
is optimal in the sense of the mean squared error. It consists in the selection of
the largest eigenvalue eigenvectors of the data covariance matrix. These eigen-
vectors constitute the transformation matrix. The selection of the number of
eigenvectors or the independent components can be made attending to some
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quantitative criteria, but in our experiment below we selected the number of
components in the ground truth image.

6.4 Endmember Induction

The main problem in the approach of computing the convex coordinates as
features extracted from the data, lies in the need to obtain the vertices of the
convex polytope from the data. We start this section recalling a fast review of
Morphological Associative Memories (MAM). Next, we introduce our method
based on lattice computing, which in fact was derived from properties of the
MAMs. Finally we include the definition of an algorithm originally intended
for the extraction of endmembers in hyperspectral images, that we take as an
alternative method for the extraction of the convex polytope vertices, which
we continue to call endmembers following the conventions of hyperspectral
image processing.

6.4.1 Morphological associative memories

The work on Morphological Associative Memories stems from the consider-
ation of an algebraic lattice structure (IR,∨,∧,+) as the alternative to the
algebraic (IR,+, ·) framework for the definition of Neural Networks computa-
tion [34, 35]. The operators ∨ and ∧ denote, respectively, the discrete max and
min operators (resp. sup and inf in a continuous setting). The approach is
a highly successful instance of lattice computing with several evolutions and
upgradings being published in this volume. The name “morphological” came
from the common grounds between this approach and the field of mathemat-
ical morphology in image processing. Given a set of input/output pairs of
pattern (X,Y ) =

{(
xξ,yξ

)
; ξ = 1, .., k

}
, an heteroassociative neural network

based on the pattern’s cross correlation [17] is built up as W =
∑

ξ yξ ·
(
xξ
)′

.
Mimicking this construction procedure [34, 35] propose the following construc-
tions of Heteroassociative Morphological Memories (HMM’s):

WXY =
k∧

ξ=1

[
yξ ×

(
−xξ
)′]

and MXY =
k∨

ξ=1

[
yξ ×

(
−xξ
)′]

, (6.4)

where × is any of the ∨� or ∧� operators. Here ∨� and ∧� denote the max and
min matrix product, respectively defined as follows:

C = A ∨� B = [cij ] ⇔ cij =
∨

k=1..n

{aik + bkj} , (6.5)

C = A ∧� B = [cij ] ⇔ cij =
∧

k=1..n

{aik + bkj} . (6.6)



106 M. Graña et al.

If X = Y then the HMM memories are Autoassociative Morphological
Memories (AMM). Conditions of perfect recall by the HMM’s and AMM’s of
the stored patterns are proved in [34, 35]. In the continuous case, the AMM’s
are able to store and recall any set of patterns:

WXX ∨� X = X = MXX ∧� X, (6.7)

for any X.
These results hold when we try to recover the output patterns from the

noise-free input pattern. Let it be x̃γ a noisy version of xγ . If x̃γ ≤ xγ then
x̃γ is an eroded version of xγ , alternatively we say that x̃γ is corrupted by
erosive noise. If x̃γ ≥ xγ then x̃γ is a dilated version of xγ , alternatively we
say that x̃γ is corrupted by dilative noise.

Morphological memories are selectively sensitive to these kinds of noise.
The conditions of robust perfect recall are proven in [34, 35]. Here we will
remember them for the sake of the reader, because they are on the basis of
the proposed algorithm. Given patterns X, the equality

WXX ∨� x̃γ = xγ (6.8)

holds when the noise affecting the pattern is erosive x̃γ ≤ xγ and the following
relation holds:

∀i∃ji; x̃
γ
ji

= xγ
ji
∨

⎛

⎝
∨

ξ �=γ

(
xγ

i − xξ
i + xξ

ji

)
⎞

⎠ . (6.9)

Similarly, the equality
MXY ∧� x̃γ = xγ (6.10)

holds when the noise affecting the pattern is dilative x̃γ ≥ xγ and the following
relation holds:

∀i∃ji; x̃
γ
ji

= xγ
ji
∧

⎛

⎝
∧

ξ �=γ

(
xγ

i − xξ
i + xξ

ji

)
⎞

⎠ . (6.11)

Therefore, the AMM will fail to recall the pattern if the noise is a mixture
of erosive and dilative noise. In [32] we have proposed a morphological scale
space method to increase the robustness of AMM.

An approach to obtain general noise robustness is based on the so-called
kernel patterns [35, 36, 43]. Related to the construction of the kernels,
[36] introduced the notion of morphological independence, distinguishing ero-
sive and dilative versions of its definition: Given a set of pattern vectors
X =

(
x1, ...,xk

)
, a pattern vector y is said to be morphologically indepen-

dent of X in the erosive sense if y≤/ xγ ; γ = {1, .., k} , and morphologically
independent of X in the dilative sense if y ≥/ xγ ; γ = {1, .., k} . The set of
pattern vectors X is said to be morphologically independent in either sense
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when all the patterns are morphologically independent of the remaining pat-
terns in the set. For the current application we want to use AMM as detectors
of the set extreme points, to obtain a rough approximation of the minimal
simplex that covers the data points. We note that given a set of pattern vec-
tors X =

(
x1, ...,xk

)
, and the erosive WXX and dilative MXX memories con-

structed from it, and a test pattern y /∈ X, if y is morphologically independent
of X in the erosive sense, then WXX ∨� y /∈ X. Also, if y is morphologically
independent of X in the dilative sense, then MXX ∧� y /∈ X. Therefore the
AMM’s can be used as detectors of morphological independence. The works
in [38] have generalized the notion of morphological independence to that of
lattice independence, showing that strong lattice independence implies linear
independence. Therefore a set of strongly lattice independent points can be
considered as the vertices of a convex polytope. In our approach we find lattice
independent vectors from the data looking for morphologically independent
vectors. Although we do not test strong lattice independence, we have found
from experience that it holds almost always when the number of induced end-
members is much lower than the data dimensionality. That is, almost always
the induced endmembers are linearly independent.

A final remark before the presentation of the algorithm for endmember
induction from the data. The set of vector patterns that we are searching
for are morphologically independent vectors both in the erosive and dilative
senses, and they enclose the remaining vectors. Working with integer valued
vectors, given a set of pattern vectors X =

(
x1, ...,xk

)
and the erosive WXX

and dilative MXX memories constructed from it, if a test pattern y < xγ

for some γ ∈ {1, .., k} then WXX ∨� y /∈ X. Also, if the test pattern y > xγ

for some γ ∈ {1, .., k} then MXX ∧� y /∈ X. Therefore, working with integer
valued patterns the AMM will be useless for the detection of morphologically
independent patterns. However, if we consider the binary vectors obtained as
the sign of the vector components, then morphological independence would be
detected as suggested above: The already detected endmembers are used to
build the erosive and dilative AMM. If the output recalled by a new pattern
does not coincide with any of the endmembers, then the new pattern is a new
endmember.

6.4.2 The selection of endmembers from the data

The region of the space enclosed by a set of vectors which are morphologically
independent in both erosive and dilative senses simultaneously is a high dimen-
sional box. Here we try that this box approaches as much as possible the min-
imal simplex enclosing the data points. Let us denote

{
f (i) ∈ Rd; i = 1, .., n

}

the high dimensional data that may be the pixels in a multispectral or hyper-
spectral image, or selected points in shape representation, µ and σ are, respec-
tively, the mean vector and the vector of standard deviations computed over
the data sample, α the noise correction factor and E the set of already discov-
ered vertices. The noise amplitude of the additive noise in (1) is σ, the patterns
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are corrected by the addition and subtraction of ασ, before being presented to
the AMM’s. The gain parameter α controls the amount of flexibility in the dis-
covering of new endmembers. Let us denote by the expression x > 0 the con-
struction of the binary vector ({bi = 1 if xi > 0; bi = 0 if xi ≤ 0} ; i = 1, .., n) .

The steps in the procedure are the following:

1. Shift the data sample to zero mean
{f c (i) = f (i)− µ; i = 1, .., n}.

2. Initialize the set of vertices E = {e1} with a randomly picked sample.
Initialize the set of morphologically independent binary signatures X =
{x1} =

{(
e1

k > 0; k = 1, .., d
)}

3. Construct the AMM’s based on the morphologically independent binary
signatures: MXX and WXX .

4. For each pixel f c (i)
a) compute the noise corrections sign vectors f+ (i) = (f c (i) + ασ > 0)

and f− (i) = (f c (i)− ασ > 0)
b) compute y+ = MXX ∧� f+ (i)
c) compute y− = WXX ∨� f− (i)
d) if y+ /∈ X or y− /∈ X then f c (i) is a new vertex to be added to E,

execute once 3 with the new E and resume the exploration of the data
sample.

e) if y+ ∈ X and f c (i) > ey+ the pixel spectral signature is more extreme
than the stored vertex, then substitute ey+ with f c (i) .

f) if y− ∈ X and f c (i) < ey− the new data point is more extreme than
the stored vertex, then substitute ey− with f c (i) .

5. The final set of endmembers is the set of original data vectors f (i) corre-
sponding to the sign vectors selected as members of E.

6.4.3 The convex cone analysis (CCA)

The CCA was proposed by [20]. The basic idea is that after PCA of the
spectral correlation matrix, the data falls in a cone shaped region in the
positive subspace centered in the first eigenvector. Given the N × M × d
hyperspectral image, it is reorganized as a NM × d matrix X. The spec-
tral correlation matrix is computed as C = XT X. Let it be C = PLPT the
PCA decomposition of the correlation matrix, select the first c eigenvectors
[p1, ..,pc] = Pc and search for the boundaries of the convex region charac-
terized by x = p1+a1p2+.. + ac−1pc≥ 0. The vertices of this region are the
points with exactly c−1 zero components. The CCA algorithm searches among
all the

(
b

c−1

)
possible combinations of eigenvectors performing the following

test. Let it be [p (γ1) , ..,p (γc−1)] = P′ the selected set of eigenvectors. Solve
the set of equations P′a = 0 and compute x = Pca. If x has exactly c−1 zero
components it is a vertex of the convex region data. In practice, each compo-
nent is tested against a threshold. However, as the combinatorial space grows
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the problem becomes intractable. We implemented an straightforward ran-
dom search. Application of more sophisticated random search algorithms like
genetic algorithms may be of interest for large problems. The CCA algorithm
has been used in some works as a competing algorithm to ours.

6.5 Hyperspectral Image CBIR

In Content Based Image Retrieval (CBIR) [42] systems, the images stored
in the database are labeled by feature vectors, which are extracted from the
images by means of computer vision and digital image processing techniques.
In CBIR systems, the query to a database is specified by an image. The query’s
feature vector is computed and the closest items in the database, according
to a similarity measure defined in feature space, are returned as the answers
to the query. Of course, there is no universal definition of the feature vectors
because of the diversity of image kinds.

Hyperspectral images are a special kind of images, in which each pixel
contains a fine sampling of the visible and near infrared spectrum, represented
by a high dimensional vector. Hyperspectral sensing in hundreds of spectral
bands allows the recognition of physical materials in image pixels, and the
decomposition of mixed pixel spectrum into their constituent material spectra
by spectral unmixing [21]. There is a growing need for the maintenance of large
collections of hyperspectral images, and for the automated search within these
collections. The attempts to define CBIR systems for them are scarce and
partial. The only clear example of an attempt to build up such a system found
in the literature searched is [1]. Even there, the use of the spectral information
is rather marginal. It is our main concern that the spectral information must
be used as much as possible in the definition of search strategies in large
collections of hyperspectral images. That is, the indexing of those images
must be based, at least partiall, in the spectral information extracted from
the image itself.

We have proposed the characterization of the hyperspectral images by their
endmembers. Endmembers may be defined by the domain experts (geologists,
biologists, etc.) selecting them from available spectral libraries, or induced
from the hyperspectral image data using machine learning techniques. It is
our working hypothesis that much of the spectral information of the image
is summarized in the convex region representation provided by the induced
endmembers. Also, the abundance images produced by the spectral unmixing
may be used as dimensionally reduced images for searches based on spatial
features.

A big drawback for the definition and validation of the kind of systems
that we are discussing is the absence of publicly available large collections of
experimental images. While there are some collections for the “conventional”
CBIR community, like the COIL dataset [5], in the case of hyperspectral
images there are some free images provided by the AVIRIS site, and some
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other miscellaneous that come from the works of Landgrebe. Most of them do
not have ground truth information, or it is rather inexact. As the experimental
setup to demonstrate our ideas, we have constructed a small database of
synthetic images. We start defining the similarity between images based on
the image induced endmembers.

6.5.1 Similarity between images

Let it be Sk =
[
sk
1 , ..., sk

nk

]
the set of endmembers, obtained as described

before from the k-th image fk (i, j) in the database, where nk is the number
of endmembers detected in this image. Given two images fk (i, j) and fl (i, j),
we compute the following matrix whose elements are the Euclidean distances
between the endmembers of each image:

Dk.l = [di,j ; i = 1, .., nk; j = 1, ..., nl] (6.12)

where
di,j =

∥
∥sk

i − sl
j

∥
∥ . (6.13)

We compute the vectors of the minimal values by rows and columns,

mk =
[

mk
i = min

j
{dij}

]

(6.14)

and
ml =

[
ml

j = min
i
{dij}

]
(6.15)

respectively. Then the similarity between the images is given by the following
expression:

d (fk, fl) = (‖mk‖+ ‖ml‖) (|nk − nl|+ 1) . (6.16)

The endmember induction procedure may give different number of end-
members and endmember features for two hyperspectral images. The similar-
ity measure of (6.16) is a composition of two asymmetrical views: each vector
of minimal distances measures how close are the endmembers of one image
to some endmember of the other image. Suppose that all the endmembers Sk

of an image are close to a subset of the endmembers Sl of the other image.
Then the vector of minimal distances mk will be very small, not taking into
account the unlike endmembers in the second image. However, the vector of
minimal distances ml will be larger than mk because it will take into account
the distances of endmembers in Sl which are unlike to those in Sk. Thus the
similarity measure of (6.16) can cope with the asymmetry of the situation. It
avoids the combinatorial problem of trying to decide which endmembers can
be matched and what to do in case that the number of endmembers is differ-
ent from one image to the other. The difference in the number of endmembers
is introduced as an penalty factor. The measure is independent of image size
and, as the endmember induction algorithm is very fast, it can be computed
in acceptable time. Also the endmember set poses no storage problem.
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6.5.2 Experimental results and discussion

The validation of CBIR approaches is a subtle issue, because it is not pos-
sible in general to determine the response to a query that best fits the user
expectations or needs. Our approach to demonstrate the usefulness of the pro-
posed similarity measure is to built up a database of simulated hyperspectral
images. The hyperspectral images are generated as linear mixtures of a set of
spectra (the ground truth endmembers) with synthesized abundance images.
The ground truth endmembers were randomly selected from a subset of the
USGS spectral libraries corresponding to the AVIRIS flights. The synthetic
ground truth abundance images were generated in a two step procedure, first
we simulate each as an gaussian random field with Matern correlation function
of parameters varying between 2 and 20. We applied the procedures proposed
by [22] for the efficient generation of big domain gaussian random fields. Sec-
ond to ensure that there are regions of almost pure endmembers we selected
for each pixel the abundance coefficient with the greater value and we nor-
malize the remaining to ensure that the abundance coefficients in this pixel
sum up to one. It can be appreciated on the abundance images that each end-
member has several region of almost pure pixels, viewed as brighter regions
in the images. Image size is 256×256 pixels of 224 spectral bands each. We
have generated collections of 100 images with a given number of ground truth
endmember/abundances, this number varying from 2 to 5 for total number of
400 images.

The experiment performed on these images consists on the following steps:

1. Compute the distances between the images in the database, on the basis of
(6.16), using the ground truth endmembers. The distances are computed
between images with the same number of ground truth endmembers, and
with all the remaining images.

2. Extract the endmembers from the images using the approach described
in Sect. 6.4.2.

3. Compute the distances between the images in the database, on the basis of
(6.16), using the morphologically independent induced endmembers. The
distances are computed between images with the same number of ground
truth endmembers, and with all the remaining images.

4. We consider the R closer images to each image in each case (ground truth
and morphologically independent induced endmembers) as the responses
to a potential query represented by the image.

5. The images that appear in both responses (based on the ground truth and
the morphologically independent induced endmembers) are considered as
relevant images, or correct responses.

In Table 6.1 we present the results from the experiment with the 400
images, in terms of the average number of correct responses. First row presents
the results when we pool together all the images, regardless of the number
of ground truth endmembers. The next rows present the results when we
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Table 6.1. Average number of relevant images per query

R=1 R=3 R=5 R=10

All images 0.94 1.21 1.61 2.96
2 endmembers 0.81 1.55 2.27 4.67
3 endmembers 0.98 1.44 2.21 4.9
4 endmembers 0.99 1.53 2.36 4.81
5 endmembers 1.00 1.57 2.37 4.74

only try to search in the subcollection of images with the same number of
endmembers as the query image. Each row corresponds to a different number
of images in the response to the query. The value of the noise gain was set
to α = 0.5. In Table 6.1 it can be appreciated that the consideration of all
the images as responses to the query introduces some confusion and reduce
the average number of correct images obtained in the query. This effect can
be due to the fact that the morphological independence algorithm can find
a number of endmembers different from the ground truth making it possible
for the image to match with images outside its natural collection of images.
Then images with different ground truth numbers of endmembers may become
similar enough to enter in their respective response sets.

When we restrict the search to the collections with identical number of
ground truth endmembers, all the results improve, except when R = 1. We
have that near 50% of the responses are significative when R > 1. The case
R=1 can be interpreted as the probability of obtaining the closest image in
the database according to the distance defined in (6.16), or the probability of
success. It can be seen that it is very high, close to 1 for all search instances,
except for the case of 2 ground truth endmembers.

In Fig. 6.1 we show an interrogation to the database of simulated images.
The left part of the image presents the ground truth endmembers of a query
to the database (above) and the ground truth abundance images (below).
The right part of the image presents the closest image in the database repre-
sented by endmembers extracted from the image by the AMM based algorithm
(above) and the abundance images computed based on these endmembers
(below).

6.6 Supervised Classification

Construction of supervised classifiers often employs some feature extraction
algorithms, which are data dimension reduction procedures applied to the
experimental data prior to training or operation of the classifier. The goals of
feature extraction are both computational efficiency and enhanced discrimi-
nation of the data classes. Linear feature extraction algorithms, like Principal
Component Analysis (PCA) [10], Linear Discriminant Analysis (LDA) [10],
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Fig. 6.1. An instance of a single response query to the database of simulated images.
See text for explanations

Independent Component Analysis (ICA) [19] are defined as linear transforma-
tions that minimize some criterion function, like the mean square error (PCA),
a class separability criterion (LDA) or an independence criterion (ICA). In this
section we reproduce some results on the construction of supervised classifiers
of hyperspectral images that compare some linear feature extraction methods
(PCA and ICA) and the convex coordinates computed on the endmembers
obtained from the CCA and the AMM algorithms described in Sect. 6.4. The
classifiers consists of two steps:

1. An unsupervised feature extraction algorithm that reduces the data
dimensionality. This role is performe by the PCA and the ICA algorithms,
as linear feature extraction methods, and by the convex coordinate com-
puted from sets of endmembers obtained from the CCA and AMM algo-
rithms.

2. A supervised classifier, constructed using the given ground truth informa-
tion and the features obtained by the algorithms tested in the previous
step. The role of the supervised classifiers is neutral. They are not specially
tuned to any feature extraction method.

The supervised classifiers employed were the Nearest Neighbor (1-NN), the
Gaussian Classifier (GC) using the Euclidean distance, and the Support Vector
Machines (SVM) [46] with a Radial Basis Function (RBF) kernel of identical
unit variances, using the implementation by Anton Schwaighofer available
at http://www.cis.tugraz.at/igi/aschwaig/software.html. No attempt
has been made to fine tune the SVM. The motivation for this selection of
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classifiers is that they do not introduce additional bias in the experiment,
which is aimed to show the value of the LSU as feature extraction algorithm.

6.6.1 The data sets

The data used in the experiments are two well known real hyperspectral
images, obtained by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) developed by NASA JPL which has 224 contiguous spectral chan-
nels covering a spectral region from 0.4 to 2.5 mm in 10 nm steps. The first
hyperspectral image used for this work correspond to the Indian Pines 1992
image. It is a 145 by 145 pixel image with 220 spectral bands. The available
image ground truth designates 16 mutually exclusive classes of land cover [45].

The second is real hyperspectral data collected by the AVIRIS imaging
spectrometer in 1998 over Salinas Valley, California. The full scene consists of
512 lines by 217 samples with 224 spectral bands with a spatial pixel resolution
of 3.7m×3.7m. The available ground truth has 15 classes. When applying the
PCA, ICA and CCA methods we have set the target dimension to the exact
number of ground truth components. Our AMM approach needed the setting
of the noise gain parameter α. Setting α = 2 we obtained 12 endmembers on
the Salinas image, whereas setting α = 3 we obtained 6 endmembers.

6.6.2 The experimental results

The experiment consisted in 30 repetitions of the construction and validation
of the clasifiers over 50% random partitions of the data, which preserve the a
priori distributions of the classes. We did not perform any band selection or
smoothing of the pixel spectra in the experimental results presented here. The
results of the experiment are presented in Tables 6.2 and 6.3. They consist of
the average accuracy of the classifiers.

Table 6.2. Correct recognition over the Indian Pines data

Nearest Neigh. Gaussian C. SVM

raw 0.19 0.08 0.23
PCA 0.16 0.05 0.24
ICA 0.14 0.03 0.35
CCA 0.33 0.20 0.48
AMM 0.34 0.25 0.64

Table 6.3. Correct recognition over the Salinas data

Nearest Neigh. Gaussian C. SVM

raw 0.08 0.11 0.21
PCA 0.33 0.17 0.36
ICA 0.13 0.07 0.38
CCA 0.57 0.41 0.75
AMM 0.61 0.50 0.89
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The SVM improves greatly over the other classifiers, as may be expected
from the results in the literature. However, we are more interested in analyzing
the results by rows. The results on the raw data are very bad, but, surpris-
ingly, PCA and ICA do not improve very much over them most of the times.
Finally, both methods based on convex coordinates, CCA and AMM improve
substantially over the linear projection methods. The SVM with the convex
coordinates obtained from AMM gives an almost state of the art result.

6.7 Shape CBIR

In Sect. 6.5 we have introduced the ideas of CBIR, describing an experiment
in the domain of hyperspectral images. In this section the application of inter-
est is the CBIR of shape images [47]. The CBIR problem is that of finding
within a set of images the ones more similar to a given one. The role of the
feature extraction algorithm is to map the images to low dimensional vectors
whose topology reflects the visual similarity between shapes. The shape of the
objects is described by the spatial distribution of a set of significative shape
points [6]. The data we are interested in consists of the shapes of Mushroom
images in a custom image database that we are building for the design of
remote mushroom identification through mobile communications. Although
the problem is one of database access, the validation of the approach becomes
a classification problem, once the validation data set is fixed. As in Sect. 6.6,
we consider the classifier composed of two stages: the unsupervised feature
extraction and the supervised classifier. Again we compare the approach to
feature extraction based on convex coordinates, with endmembers computed
either with AMM or CCA algorithms, and the ICA. As the quality of the
original shape contours is critical, we review the approach based on active
contours that we have applied to obtain them from the mushroom images.

6.7.1 Active contours

In order to obtain smooth contours, we have applied an active contour tech-
nique [3, 51], based on the minimization of the following energy functional:

E =
∑

s

(αEc(s) + βEg(s) + γEe(s) + δEp(s)). (6.17)

Where the contour is given by an implicit function c(s). In practice the contour
is given by a discrete set of control points. The first two terms of the energy
functional refer to the internal energy of the contour, while the last two terms
model the external influences on the contour shape. The first term models the
contour continuity, that is the spread of the points of the contour:

Ec(s) = (d̄− ‖c(s)− c(s− 1)‖)2. (6.18)
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Where d̄ is the average distance between points in the contour. The sec-
ond term models the contour smoothness via an approximation of the second
derivative:

Es(s) = ‖c(s− 1)− 2c(s) + c(s + 1)‖2. (6.19)

The third term models the attraction of the contour to the edges in the image

Ee(s) = −‖∇I‖2. (6.20)

Where ∇I is the spatial gradient in the image, which can be computed by
conventional operators, such as the Sobel operator, or by morphological gra-
dient operators. The use of the gradient information to push the contour to
the objects in the image can lead to frozen dynamics in flat regions of the
image. To avoid this situation we introduce a potential term, which models
the attraction to the image objects in regions with null spatial gradient.

Ep(s) = K
∑

r �=s

I(r)
dr,s

. (6.21)

Where I(r) is the image intensity at pixel r and dr,s is the distance between
pixel sites r and s. This definition is quite similar to the physical one of
electrical potential. The constant factor is set to K = −1.

In our experiments we did use 200 control points to represent the shape
contour. The active contour algorithm was applied to them, with a distance
renormalization interleaved step that redistributed the control points over
the contour at equal distances. This step avoided excessive concentration of the
control points on highly noise regions of the contour. When the active contour
algorithm reaches its stable final state, we shift the centroid of the shape to
the origin and we normalize the coordinates to a maximum value of 1. (Not
a norm normalization). We compute the polar coordinates of the normalized
shapes and take as our data sample vectors the polar coordinate magnitude
starting with the lowest point in the normalized shape. It is important to note
that we did not need to register the shapes to have a standard orientation,
because we assume the image capture was performed with enough care. We
keep the magnitude of the polar coordinates as the shape description. That
way, each shape is represented by a 1D discrete function, a high dimensional
vector, and all shapes have the same dimensionality.

6.7.2 Experimental results

From these 1D representations we extracted the vertices of a convex set cov-
ering most of the data applying the procedure described in Sect. 6.4.2 setting
the noise filtering parameter to the standard value α = 2. In Fig. 6.2 we
present the extreme shapes found by one execution of the algorithm. Repeti-
tions of the algorithm with the same control parameter give similar number
of extreme shapes, although the precise shapes may vary between executions.
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Fig. 6.2. Lattice independent shapes found by our algorithm

As can be appreciated there is a great variability between shapes, partly due
to the capture conditions, the surface texture and reflectance of the mush-
rooms, partly due to the intraclass and interclass variability of the mushroom
shapes. For instance, the shape of the Amanita Muscaria shown in Fig. 6.3(a)
is quite different from the exemplar of Boletus Granulatus in Fig. 6.3(b) or the
exemplar of Lepista Inversa in Fig. 6.3(d). This interclass variability, which
can be very positive for classification purposes is compensated negatively by
a high intraclass variability. The exemplars of Boletus Granulatus shown in
Fig. 6.3(b) and Fig. 6.3(c) correspond to mushrooms of different stages of
development and they may be closer to other species in analogous stages of
development than to the ones of its own species. Besides the diverse sizes
produce contours of diverse size (in number of pixels). The effect of these size
changes have not been taken into account.

To test of the power of the representation obtained, we computed the
convex coordinates of each shape in the database on the basis of selected
extreme shapes, applying the unmixing algorithm in (2). Then we perform the
search of the most similar shapes to a given one according to the Euclidean
distance between their feature vectors (the convex coordinates). Figure 6.4
shows one query applied to the database. Figure 6.5 shows the four most
similar shapes found in the database according to the convex coordinates
computed relative to the shapes shown in Fig. 6.2. These kind of responses
encourage the use of our approach for CBIR. However, to obtain some kind
of quantitative backup of our proposition we have performed a recognition
experiment using a Nearest Neighbor algorithm over the database of shapes
described by their convex coordinates. The validation strategy is one-leave-
out. Besides we computed the same experiment over the results of ICA and
the convex coordinates over the vertices obtained by the CCA algorithm.
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Fig. 6.3. Some mushrooms in our database (a) Amanita Muscaria, (b) and (c)
Boletus Granulatus, (d) Lepista Inversa

Fig. 6.4. A test shape to query the database of shapes
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Fig. 6.5. Most similar shapes found in the database of shapes

Table 6.4. Recognition ratio over the Mushroom data set with diverse number of
classes

#Clases #Extrema AMM ICA CCA

32 16 0.3557 0.0772 0.2852
32 15 0.3356 0.0872 0.1913
32 14 0.2987 0.0369 0.2114
15 12 0.4772 0.1066 0.3706
15 11 0.4365 0.0761 0.4112
15 10 0.3957 0.1015 0.2386
10 8 0.5319 0.1489 0.4326
10 7 0.5177 0.1384 0.4894
10 6 0.4823 0.1844 0.4823
5 9 0.7512 0.1375 0.7125
5 8 0.7625 0.2250 0.7750
5 7 0.7375 0.1875 0.6625
3 5 0.9333 0.4889 0.8889
3 4 0.9556 0.5556 0.7111
3 3 0.9333 0.4889 0.8000

In Table 6.4 we show the recognition results (ratio of correct classification)
for the AMM, ICA and CCA approaches using a 1-NN classification algorithm
over the different subsets of mushroom classes, using a one-leave-out validation
methodology. The criteria to select the classes has been the number of individ-
ual images gathered for each class. The complete database contains 39 classes.
The lowest number of classes considered (the ones with most individuals) is 3.
To set the number of endmembers for CCA and the dimensional reduction
of ICA, we compute first the AMM algorithm and then we set both CCA
and ICA to the number of endmembers found by the AMM algorithm. The
inspection of the results show that both convex coordinate approaches (AMM
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and CCA) improve over the ICA transformation, and that AMM improves
almost always over CCA, although, both approaches being stochastic in some
way, there may be instances of repetitions of the CCA which improve other
repetitions of the AMM approach. Discarding the classes with the lowest num-
ber of items we obtain databases with 15, 10, 5 and 3 classes. Reducing the
number of classes reduces confusion among classes and improves the recogni-
tion ratio up to levels of significant performance using a simple 1-NN classifier.

6.8 Indoor Robot Navigation

Navigation is the ability of an agent to move around its environment with
a specific purpose [4]. It implies some knowledge of the environment, be it
topological or not. A needed ability for navigation is self-localization: the
ability of the robot to ascertain, more or less accurately, where it is from
the information provided by its sensors. This knowledge makes possible other
navigation related tasks like planning. The basic self-localization procedure
is odometry: self-sensing and keeping track of motion commands. However
the uncertainties related to the environment and the robot internal status
call for sensor based external confirmation of the position internal estimation.
Self-localization based on low range external sensors has been formulated in
a probabilistic framework [9]. Vision based [8] and mixed [27, 40] systems
are proposed to increase the sensing range and self-localization robustness.
Visual self-localization methods usually are based on landmark recognition
[2, 15, 23, 24, 26, 28, 33, 39, 41]. For instance, the system described in [2]
computes for each stored view a graph model representation of salient points
in the image as measured by the information content of a neighborhood of the
point in a gradient image. To recognize the view, the salient points in the cur-
rent image are compared to the stored models. Model matching as performed
in [2] is not invariant or robust against translations and rotations. Therefore
each view is only recognized when the robot is within a small neighborhood of
the physical position and orientation where the landmark was detected origi-
nally. Recognition in this case is not continuous, unless the stored views built
up a dense map. Our approach falls within the class of holistic approaches.
The stated goal is to recognize, with some degree of robustness, several pre-
determined robot placements and orientations based on the recognition of the
visual information captured by the robot. We can associate to each position
an area of the physical environment where the robot recognizes this position,
like in [2, 24]. The robot is supposed to wander looking forward, taking images
at a steady rate. Each image corresponds to a view of the world, characterized
by a physical position and orientation. Images are analyzed continuously and
when a scene is recognized a certain spatial position is assumed for the robot.
Robustness implies that the recognition must cope with some variations in
lighting and small rotations and translations of the camera due to the uncer-
tainty of the robot position, which, in its turn, is due to the uncertainties
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in the motion of the robot. This work described here departs from previous
work [30, 31, 48] where we first proposed MAMs to solve the self-localization
problem, although we continue working on the same platform: a Pioneer 2DX
(ActivMedia, Ma.). The approach we follow is to characterize the data by a
convex region that encloses them or most of them. The features extracted are
the relative coordinates of the data points in this region, the convex coordi-
nates, as discussed in Sect. 6.2, when the vertices of the convex region are
approximated by those found by the procedure described in Sect. 6.4.2.

6.8.1 Experimental results

The experimental setup is as follows. First a path was defined from our labo-
ratory to the stairs hall on 3d floor of our building. The mobile robot platform
was guided manually seven times following this path. In each of those trips,
the odometry was recorded and the images taken from the camera, at an
average of 10 frames per second, were also recorded.

In the computational experiments that follow, the first trip was used
to train the system parameters, and the six other trips were used as test
sequences, simulating a real trip. The task to perform is to recognize a given
set of map positions from their landmark views. The positions were selected
on the floor plane, selecting places of practical relevance, like doors to other
laboratories, and the corresponding landmark views were selected from the
first trip image sequence based on odometry readings. Figure 6.6 shows the
map position landmark views as extracted from the image sequence.

Fig. 6.6. The landmark views corresponding to the positions selected to build up
the map
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Classes are composed for each of the selected landmark position, assigning
the images in the sequences to the closest map position according to its odom-
etry reading. Therefore the task becomes the classification of the images into
one of the map classes, where each class is composed of images taken in robot
path positions before and after the map position for which it is the closest
map position. The clasification was done using k-NN. Each of the images of
the training trip was assigned to a class, using them as a cluster of images rep-
resenting each selected position. For the test trips, each image was classified
on those classes using 3-NN.

From the image sequence of the first trip a PCA transformation consisting
of 230 eigenvectors was computed. All the following computations were done
on the PCA coefficients of the images. We apply the algorithm described in
6.4.2 several times to the different image sequences, after their transformation
by the 230 eigenvector PCA. The noise tolerance parameter with best results
was set, after some tuning, to α = 5 An instance of the extrema selected
with this value is given in Fig. 6.7. Despite their similarity to the collection of
images shown in Fig. 6.6, these are obtained from a completely unsupervised
process, while those in Fig. 6.6 correspond to a human made selection. An
interesting question is whether our approach could be used as an automatic
landmark selection algorithm for simultaneous map building and localization.

As the algorithm described in Sect. 6.4.2 has a random start, different
runs of it may give different results. In Tables 6.6 and 6.7 we present the clas-
sification success ratios for each of the sequences on the convex coordinates
computed from the extrema found by the algorithm after each run, with dif-
ferent values of α. The last column shows the number of extrema found at

Fig. 6.7. The views corresponding to the extrema selected in one instance of the
execution of the algorithm described in [49]
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Table 6.5. Landmark recognition success rate based on the PCA representation of
the navigation images for several sets of eigenvectors selected, using a 3-NN classifier

Set Train P1 P2 P3 P4 P5 P6 Av.

PCA 197 0.95 0.95 0.84 0.76 0.65 0.79 0.77 0.82
PCA 150 0.95 0.95 0.84 0.76 0.65 0.78 0.76 0.81
PCA 100 0.95 0.95 0.85 0.76 0.65 0.79 0.76 0.82
PCA 50 0.95 0.94 0.85 0.76 0.65 0.78 0.78 0.81
PCA 30 0.96 0.94 0.87 0.77 0.64 0.78 0.78 0.82
PCA 10 0.96 0.94 0.86 0.78 0.66 0.76 0.73 0.81
Av. 0.96 0.94 0.85 0.76 0.65 0.78 0.76 0.82

Table 6.6. Landmark recognition success rate based on the convex coordinates
representation of the navigation images for several runs of the extrema extraction
algorithm with α = 6 and using 3-NN

Run Train P1 P2 P3 P4 P5 P6 Av. #e

1 0.92 0.91 0.78 0.74 0.66 0.68 0.62 0.76 8
2 0.95 0.93 0.77 0.73 0.74 0.72 0.62 0.78 7
3 0.95 0.93 0.83 0.73 0.67 0.72 0.64 0.78 8
4 0.94 0.93 0.78 0.71 0.67 0.69 0.64 0.77 7
5 0.93 0.90 0.76 0.71 0.65 0.67 0.62 0.75 7
6 0.93 0.91 0.77 0.72 0.69 0.68 0.57 0.75 8
7 0.95 0.93 0.78 0.70 0.61 0.66 0.62 0.75 8
8 0.95 0.93 0.78 0.69 0.58 0.69 0.62 0.75 8
9 0.93 0.92 0.80 0.73 0.70 0.73 0.63 0.78 8

10 0.94 0.94 0.80 0.73 0.65 0.69 0.67 0.77 9
Av. 0.94 0.92 0.79 0.72 0.66 0.69 0.62 0.76

each run. Notice that the number of extrema is in the order of 10 for the best
results, meaning a dimension reduction from 230 to 10. The Av. row shows
the average success for each image sequence, including the training image
sequence. For comparison we perform some further dimension reduction on
the PCA coefficient vectors selecting the most significant eigenvectors for the
transformation. The average results of the image classification are given in
Table 6.5, the average being computed as in the last column of the other
Tables.

In all the tables the success ratio decreases as the image sequence is farther
in time from the initial one used for training. The comparison of the results in
Tables 6.5, 6.6, and 6.7 shows that there is at least an instance of the convex
coordinates features which improves the best results of the PCA, and that
the convex coordinates are comparable or improve the results of the PCA
with a the same or much stronger dimensionality reduction. These results
are much less favorable to our approach than the ones reported in previous
sections. The cause of the performance loss may be in the nature of the images
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Table 6.7. Landmark recognition success rate based on the convex coordinates
representation of the navigation images for several runs of the extrema extraction
algorithm with α = 5 and using 3-NN

Run Train P1 P2 P3 P4 P5 P6 Av. #e

1 0.94 0.93 0.81 0.76 0.72 0.73 0.67 0.79 13
2 0.94 0.93 0.85 0.77 0.69 0.78 0.71 0.81 14
3 0.94 0.93 0.84 0.75 0.70 0.75 0.74 0.81 13
4 0.94 0.93 0.83 0.71 0.63 0.73 0.67 0.78 14
5 0.94 0.93 0.85 0.79 0.69 0.78 0.72 0.81 12
6 0.93 0.93 0.80 0.70 0.67 0.69 0.70 0.77 12
7 0.94 0.93 0.83 0.71 0.59 0.70 0.66 0.77 12
8 0.93 0.93 0.82 0.76 0.69 0.74 0.66 0.79 12
9 0.94 0.93 0.79 0.73 0.64 0.70 0.63 0.77 14

10 0.92 0.92 0.79 0.70 0.63 0.65 0.60 0.75 12
Av. 0.94 0.93 0.82 0.74 0.67 0.73 0.68 0.78

used for the experiment. The effect of translations of the robot is a radial
displacement of the pixels in the image, with some new values appearing at
the image center. This is an effect that is highly non linear and the most likely
conclusion is that both PCA and our approach have comparable difficulties
to cope with this kind of data. The effect of rotations is a displacement of the
pixels along the lines of the image, with new values appearing at the border.
Again, the appearance of new values is a highly nonlinear phenomena. When
using the images selected from a previous walk, we find that the robot minor
path deviations are translated into image translations or changes in image
conditions. These factors are at the root of the behavior degradation in time.

6.9 Conclusions

We propose the use of convex coordinates as a feature extraction method.
Given a convex polytope defined by a set of linearly independent endmbem-
bers, the computation of such coordinates is done by a simple matrix inversion.
The key problem is that of inducing the endmembers from the data. We have
proposed an algorithm for the induction from the data of a set of endmembers
or vertices of a convex polytope approaching the minimum one covering the
data. The definition of the algorithm was based on lattice independence, or
as known at the time of its earlier proposals, morphological independence. In
this chapter we have gathered several applications of this approach.

In Sect. 6.5 we have proposed an approach to CBIR in homogeneous data-
bases of hyperspectral images based on the collection of endmembers induced
by our algorithm. The image characterization is independent of image size
and spatial undesired variations, like distortions due to variations in the fly-
ing path. We have performed an experiment of exhaustive search on a collec-
tion of simulated hyperespectral images. The results are encouraging: almost
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100% success in providing the closest image in terms of the ground truth
endmembers. It is possible to define other distances based on the endmem-
bers extracted by the AMM (or any alternative algorithm). For example,
the Euclidean distance between individual endmembers may be substituted
by max/min distances. The whole set of endmbembers may be evaluated
according to the Haussdorf distance. There are also diverse ways to introduce
penalization terms to evaluate the diverse number of endmembers found in
the images. Another case of use of our approach in CBIR applications is shown
in Sect. 6.7 for shape based search on a database of mushroom images. The
visual results of the search for the most similar images are rather consistent
with the desired behavior of the system.

In Sect. 6.6 we have explored the use of the convex coordinates as feature
extraction methods for supervised construction classification methods. We
have performed an experiment on two well known hyperspectral images. Both
convex coordinate instances were superior to the linear feature extraction
algorithms. These results are pointing to one line of research little explored.
Instead of trying to build classifiers based on lattice computing, using lattice
computing to obtain good data transformations that allow to construct better
classifiers using conventional techniques. Besides, this experiment confirms
also that our approach to the induction of endmembers from the data, the
AMM approach is, at least, comparable to other well-established methods,
like CCA. The quantitative validation of the shape CBIR system described in
Sect. 6.7 are also an instance of supervised classifier construction and confirm
the results obtained on the hyperspectral image pixel classification.

The less optimistic results were obtained on the robot navigation experi-
ment described in Sect. 6.8. Mobile robot self-localization is stated as a clas-
sification of images taken from the camera. We use the PCA and the convex
coordinates, based on the MAM detected endmembers, as the features for
classification with a 1-NN classifier. We found that our approach improves
the PCA approach in some runs, while on average performs similar than most
PCA eigenvector selections tried. Both approaches degrade their performance
with time. We attribute those results to the highly non-linear image transfor-
mations introduced by the robot motion.
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Summary. Mathematical morphology (MM) is a theory for the analysis of spa-
tial structures, based on set-theoretical notions and on the concept of translation.
MM has many applications in image analysis such as edge detection, noise removal,
object recognition, pattern recognition and image segmentation in a.o. geosciences,
materials science, the biological and medical world [13, 15]. MM was originally devel-
oped for binary images only. The basic tools of MM are the morphological operators,
which transform an image A we want to analyse, using a structuring element B into
a new image P (A, B) in order to obtain additional information about the objects in
A like shape, size, orientation, image measurements. Apart from the threshold and
umbra approach, binary morphology can be extended to morphology for greyscale
images using fuzzy set theory, called fuzzy morphology. In this work we will present
a new vector-based approach for the extension of MM for greyscale images to colour
morphology. We will extend the basic morphological operators dilation and erosion
based on the threshold and fuzzy set approach to colour images. Finally in the
last section we illustrate an image denoising method using MM to reduce stripes’
artefacts in satellite images.

7.1 Basic Notions

7.1.1 Modelling of images

Digital images are often represented by a 2-dimensional array, where a pair
(i, j) denotes the position of a pixel of the image. Binary images assume two
possible pixel values, e.g. 0 and 1, corresponding to black and white respec-
tively. White represents the objects in an image, whereas black represents the
background. Mathematically, a 2-dimensional binary image can be represented
as a mapping f from a universe X of pixels (usually X is a finite subset of
R

2, in practice, it will even be a subset of Z
2) into {0, 1}, which is completely

determined by f−1({1}), i.e., the set of white pixels, so that f can be identi-
fied with the set f−1({1}), a subset of X, the so-called domain of the image.
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Colour Images, Studies in Computational Intelligence (SCI) 67, 129–148 (2007)
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A 2-dimensional greyscale image can be represented as a mapping from X to
the universe of grey values [0, 1], where 0 corresponds to black, 1 to white and
in between we have all shades of grey. Colour images are then represented as
mappings from X to a ‘colour interval’ that can be for example the product
interval [0, 1]× [0, 1]× [0, 1] (the RGB colour model). So a digital colour image
in RGB is stored as a two-dimensional array of (three-dimensional) vectors
that defines the red, green and blue colour component for each pixel. Colour
can be modelled in different colour models; more information about colour
models can be found in [12, 14].

7.1.2 Fuzzy sets

A fuzzy set F in a universe X is characterised by a X − [0, 1] mapping,
the so-called membership function, where for all x in X, F (x) denotes the
degree in which x belongs to the fuzzy set F . An extensive study of fuzzy sets
can be found in [7]. Further on we need the extension of the binary logical
operators negation (¬), conjunction (∧) and implication (⇒) to fuzzy logic,
where these operators are called negators, conjunctors and implicators. The
most popular conjunctors C on [0, 1] are the triangular norms minimum TM ,
algebraic product TP and Lukasiewicz triangular norm TW ; the most popular
implicators I on [0, 1] are the Kleene-Dienes implicator IKD, the Reichenbach
implicator IR and the Lukasiewicz implicator IW given by

conjunctor implicator
TM (a, b) = min(a, b) IKD(a, b) = max(1− a, b)
TP (a, b) = a · b IR(a, b) = 1− a + a · b

TW (a, b) = max(0, a + b− 1) IW (a, b) = min(1, 1− a + b)

The standard negator Ns on [0, 1] is defined as Ns(a) = 1−a for all a in [0, 1].

7.2 Binary Morphology

Consider a binary image A and a binary structuring element B. The transla-
tion Ty(B) of B by a vector y ∈ R

2 is defined as Ty(B) = {x ∈ R
2 | x−y ∈ B};

the reflection of B is defined as −B = {−x ∈ R
2 | x ∈ B}.

Definition 7.1 Let A be a binary image and B a binary structuring element.
The binary dilation D(A,B) of A by B is the binary image given by

D(A,B) = {y ∈ R
2 | Ty(B) ∩A 	= ∅}.

The binary erosion E(A,B) of A by B is defined as

E(A,B) = {y ∈ R
2 | Ty(B) ⊆ A}.
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Fig. 7.1. Geometrical interpretation of the binary dilation (left) and the binary
erosion (right). The centre of the structuring element B coincides with the origin of
the coordinate system

Fig. 7.2. The original binary image A (left), the binary dilation D(A, B) (middle)
and the binary erosion E(A, B) (right). You see that the dilation enlarges the objects
in an image, while the erosion reduces them

The binary dilation and erosion have a beautiful geometrical interpretation,
see Fig. 7.1. The dilation D(A,B) contains all points y in R

2 for which
the translation Ty(B) of B has a non-empty intersection with the image A.
A point y belongs to the dilation D(A,B) if and only if the translation Ty(B)
and A hit each other. The binary erosion E(A,B) consists of all points y ∈ R

2

for which the translation Ty(B) of B is contained in A. A point y belongs to
the erosion E(A,B) if and only if the translation Ty(B) and coA don’t hit.
When we use the following structuring element B given by (the underlined
element corresponds to the origin of coordinates)

B =

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ ,

we get the results shown in Fig. 7.2 for the binary dilation and erosion.
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7.3 Greyscale Morphology

7.3.1 Greyscale morphology based on the threshold approach

Consider a greyscale image A represented as a R
2−[0, 1] mapping and a binary

structuring element B modelled as a crisp subset of R
2. The support dA of

A is defined as the set dA = {x ∈ R
2 | A(x) > 0}; the reflection of A is the

R
2 − [0, 1] mapping −A characterised by (−A)(x) = A(−x), for all x in R

2.

Definition 7.2 Let A be a greyscale image and B a binary structuring ele-
ment. The t-dilation Dt(A,B) and the t-erosion Et(A,B) are the greyscale
images given by

Dt(A,B)(y) = sup
x∈Ty(B)∩dA

A(x) and Et(A,B)(y) = inf
x∈Ty(B)

A(x), for y ∈ R
2.

Figure 7.3 gives an example of the t-morphological dilation and erosion.

7.3.2 Fuzzy mathematical morphology

Since greyscale images can be modelled as R
2−[0, 1] mappings, we can identify

greyscale images with fuzzy sets and extend binary morphology to greyscale
morphology using fuzzy set theory.

Definition 7.3 Let A be a greyscale image and B a greyscale structuring
element (both seen as fuzzy sets), C a conjunctor on [0, 1] and I an implicator
on [0, 1]. The fuzzy dilation DC(A,B) and the fuzzy erosion EI(A,B) are the
fuzzy sets defined as

DC(A,B)(y) = sup
x∈Ty(dB)∩dA

C(B(x− y), A(x)) for y ∈ R
2,

EI(A,B)(y) = inf
x∈Ty(dB)

I(B(x− y), A(x)) for y ∈ R
2.

Fig. 7.3. The original greyscale image A (left), the t-dilation Dt(A, B) (middle)
and the t-erosion Et(A, B) (right)
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Proposition 7.1 Because TM ≥ TP ≥ TW and IKD ≤ IR ≤ IW , we obtain

DTM
(A,B) ⊇ DTP

(A,B) ⊇ DTW
(A,B) and

EIKD
(A,B) ⊆ EIR

(A,B) ⊆ EIW
(A,B),

for every greyscale image A and greyscale structuring element B.

Figure 7.4 illustrates the fuzzy dilation and fuzzy erosion using the following
greyscale structuring element

B(:, :, 1) = B(:, :, 2) = B(:, :, 3) =
1

255

⎛

⎝
200 220 200
220 255 220
200 220 200

⎞

⎠ .

For a detailed study of binary and greyscale morphology we refer to [5, 6, 11].
More information about fuzzy MM can be found in [1, 3, 4, 10]. A study about
the aspects of the algebraic theory of MM from the viewpoints of minimax
algebra and translation-invariant systems and an extension to a more general
algebraic structure that includes generalized Minkowski operators and fuzzy
image operators can be found in [9].

Fig. 7.4. Above: the fuzzy dilation DTM (A, B) (left), the fuzzy dilation DTP (A, B)
(middle) and the fuzzy dilation DTW (A, B) (right), below: the fuzzy erosion
EIKD (A, B) (left), the fuzzy erosion EIR(A, B) (middle) and the fuzzy erosion
EIW (A, B) (right)
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7.4 Colour Morphology

Colour images can be represented as R
2−[0, 1]×[0, 1]×[0, 1] mappings. A first

way to extend MM for greyscale images to colour images is the component-
based approach. MM can be naturally extended to colour morphology by
processing the morphological operators on each of the colour components sep-
arately. A major disadvantage of this approach is that the existing correlations
between the different colour components are not taken into account and this
often leads to disturbing artefacts. Another approach is to treat the colour at
each pixel as a vector. Since we need the concept of a supremum and infimum
to define morphological operators, we first have to define an ordering between
these colour vectors. We have considered the three colour models RGB, HSV
and L*a*b*.

7.4.1 New colour vector ordering

In the RGB colour model

A colour in the RGB colour model is obtained by adding the three colours red,
green and blue in different combinations. Therefore a colour can be defined
as a vector in a 3-D space that can be represented as a unit cube using a
Cartesian coordinate scheme. This way every point in the cube represents a
vector (colour). The greyscale spectrum is characterised by the line between
the black top Bl with coordinates (0, 0, 0) and the white top Wh (1, 1, 1).

On the RGB cube in Fig. 7.5 [2] we can observe the colour hue red for
example (we can also choose green or blue). If we start at the white top (with
coordinates (1, 1, 1)) and go along the diagonal to the red top (1, 0, 0) and
from there on along the edge to the black top (0, 0, 0), we see that we go
from ‘light’ red over the most ‘bright’ colour red to ‘dark’ red. Inspired by
this observation we will sort the colours in the RGB colour model from ‘dark’

Fig. 7.5. Representation of the RGB colour model
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colours (close to black) to ‘light’ colours (close to white), with respect to their
distance to black and white. So we can define three relations R<, R> and R=

on RGB, given for all colours c(rc, gc, bc) and c′(rc′ , gc′ , bc′) in RGB by

(c, c′) ∈ R< ⇔ d(c,Bl) < d(c′, Bl) or
(d(c,Bl) = d(c′, Bl) and d(c,Wh) > d(c′,Wh))

⇔ c lies strict closer to black than c′ or c lies as far
from black as c′ and c lies strict farther from white than c′

(c, c′) ∈ R> ⇔ d(c,Wh) < d(c′,Wh) or
(d(c,Wh) = d(c′,Wh) and d(c,Bl) > d(c′, Bl))

⇔ c lies strict closer to white than c′ or c lies as far
from white as c′ and c lies strict farther from black than c′

(c, c′) ∈ R= ⇔ (d(c,Bl) = d(c′, Bl)) and (d(c,Wh) = d(c′,Wh)).

1. With the relation R< colours are first ordered from vectors with smallest
distance to black to vectors with largest distance to black. The smaller the
distance to black, the lower the colour is ranked. This way the RGB cube is
sliced into different parts of spheres around the black top. Colours that are
part of the same sphere (around the black top) are then ordered according
to their distance with respect to white, from colours with largest distance to
white to colours with smallest distance to white. So we will ‘cut’ the spheres
around the black top with spheres with the white top as centre. Those colours
closest to white are farthest away from black and vice versa.
2. With the relation R> we look at the distance with respect to white to
know which one of two colours is ranked highest in the RGB colour model.
The colour with the smallest distance to white is ordered higher than the other
colour. If the distance to white is equal, i.e., if both colours lie on the same
sphere around the white top, we select that colour lying farthest from black.
Again, the RGB cube is sliced into parts of spheres, but now first towards the
white top and then towards the black top.
3. Finally in the relation R= we combine both relations R< and R> to say
that colours that have the same distance to the black top and the same dis-
tance to the white top, and thus lie on a circle (as profile of two spheres) in
the RGB cube, are ranked equally.

Inspired by our idea to look at the black top to determine the smallest colour
and to look at the white top to determine the largest colour, we have investi-
gated the cases HSV and L*a*b*.

In the HSV colour model

In the HSV colour model a colour is characterised by the three quantities hue,
saturation and value. Because of the opposite colour theory [12] all colour hues
can be arranged in an opponent colour wheel along two axes (red-green and
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blue-yellow) that begins and ends by the same colour. So we can range the
hue component in a circle from 0◦ to 360◦, which begins and ends by red. Val-
ues for the saturation component range from 0% if the colour isn’t saturated
(grey values) to 100% if the colour is completely saturated (pure colours).
The value component V in the HSV colour model varies from 0 (black) to 1
(white), where the colours become increasingly brighter. While adding black
to a certain colour, the value of the colour will decrease. The value axis begins
by black, ends by white and in between we get all shades of grey. So that we
get a cone for the representation of the three-dimensional colour model HSV.
We denote a colour c in the HSV colour model as c(hc, sc, vc).

We want to order the colour vectors in the HSV colour model with respect to
black and white, so we get:

1. Because the value component V of each colour in HSV gives us the ‘grey
level’ of that colour, we can first order colours by looking at their V -value.
A large V -value for a colour means that the colour lies closer to white than
to black, while a colour with a small V -value lies closer to black than to
white. The smaller the value component, the smaller the colour is seen.

2. If the V component is equal, we look at the saturation component S of
both colours. An S-value of 100% indicates that the colour is completely
saturated and contains no white light, the colour is pure. An S-value of 0%
indicates that the colour is a grey value. That’s why we sort the colours
from colours with greatest S-value to colours with smallest S-value.

3. Finally, if two colours have the same V -value and the same S-value, we
consider the hue component to order these colours. We have made the
choice that the smaller the H-value, the lower the colour is ranked. We
want to notice that the ordering we obtained here is equal to the one intro-
duced by G. Louverdis, M.I. Vardavoulia, I. Andreadis and Ph. Tsalides
in [8]. Their idea for ordering the colours in HSV this way is that the
larger the mixture of a colour with black, the smaller the colour is con-
sidered, regardless of its saturation and its hue. In case two colours have
been mixed with the same amount of black, the smaller is the one with
the less mixture of white. If two colours have been mixed with the same
amount of black and white, the smaller is the one with the smaller hue
value.

This gives us an ordering ≤HSV of colour vectors in the HSV colour model,
defined for two colours c(hc, sc, vc) and c′(hc′ , sc′ , vc′) as:

c <HSV c′ ⇔ vc < vc′ or
(vc = vc′ and sc > sc′) or
(vc = vc′ and sc = sc′ and hc < hc′)

c >HSV c′ ⇔ c′ <HSV c
c =HSV c′ ⇔ (vc = vc′ and sc = sc′ and hc = hc′).
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In the L*a*b* and L*u*v* colour model

The colour models L*a*b* and L*u*v* use a common lightness scale L*.
The vertical axis L* in the centre of both colour models represents the light-
ness/brightness of a colour where the value L∗ range from 0 (black) to 100
(white), with in between grey values. Both colour models use different uni-
form colour axes: the colour axes a* versus b* and u* versus v* (red-green
versus yellow-blue) are based on the fact that a colour can’t be red and green
at the same time or both blue and yellow because these colours are opposite
(opposite colour theory) [12]. At every colour axis values go from positive to
negative. At the a* and u* axis the positive values give the amount of red and
the negative values the amount of green, while at the b* and v* axis yellow
is positive and blue negative. For these axes 0 is neutral grey.
Here we will only consider the L*a*b* colour model, but the same reasoning
can be done for the L*u*v* colour model. A colour c in the L*a*b* colour
model can be presented as c(L∗, a∗, b∗), with a∗, b∗ ∈ [−1, 1]. If we order the
colours in the L*a*b* colour model by looking at their “distance” to black
and white (just as in the RGB colour model), we first have to consider the
lightness component L* of the colours, in the same way as described for the
value component in the HSV colour model. Secondly, we calculate the hue
and chroma of the colours (by converting the rectangular axes a* and b* into
polar coordinates)

h∗
ab = arctan(b∗/a∗) (hue) and C∗

ab =
√

(a∗2 + b∗2) (chroma).

In Fig. 7.6 the hue and chroma is shown in a graphical representation of
the L*a*b* colour model. Chroma is defined as the colourfulness of an area
judged as a proportion of the brightness of a similarly illuminated reference
white [12]. The scales h∗ and C∗ together with lightness L∗ correspond to
perceptual colour appearance. So we can order colours with the same L∗-
value according to their C∗-component: the greater the C∗-value, the lower
the colour is ranked. If the colours have the same L∗-value and also the same
C∗-value, then we look for the h∗-value and decide to order colours from
smallest h∗-values to greatest h∗-values.

BLACK

GREEN (−) RED (+)

WHITE

YELLOW (+)

BLUE (−)

a*

b*

L*

C
*
ab

h
*
ab*

Fig. 7.6. Hue and chroma in a graphical representation of the L*a*b* colour model
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Summarised, a new colour ordering ≤Lab in the L*a*b* colour model is defined
for two colours c(L∗

c , a
∗
c , b

∗
c) and c′(L∗

c′ , a
∗
c′ , b

∗
c′) as:

c <Lab c′ ⇔ L∗
c < L∗

c′ or
(L∗

c = L∗
c′ and C∗

c > C∗
c′) or

(L∗
c = L∗

c′ and C∗
c = C∗

c′ and h∗
c < h∗

c′)
c >Lab c′ ⇔ c′ <Lab c
c =Lab c′ ⇔ (L∗

c = L∗
c′ and C∗

c = C∗
c′ and h∗

c = h∗
c′).

We want to notice that (HSV,≤HSV ) and (L∗a∗b∗,≤Lab) are both lattices and
complete, because we work in ‘finite’ colour spaces (in practice only a finite
number of colours can be obtained in a colour space). The greatest element in
(HSV,≤HSV ) is 1 = (360, 100, 1) and the smallest element is 0 = (0, 0, 0); the
greatest element in (L∗a∗b∗,≤Lab) is 1 = (100, 1, 1) and the smallest element
is 0 = (0, 0, 0). Notice that the posets (HSV,≤HSV ) and (Lab,≤Lab) are
totally ordered sets; for every two colours c and c′ in HSV and Lab hold, by
definition of the order relation ≤HSV and ≤Lab, that c ≤ c′ or c′ ≤ c.

7.4.2 Associated minimum and maximum operators

Based on the vector ordering for colours introduced in the previous section in
the HSV and L*a*b* colour model, we now define new minimum and maxi-
mum operators.

The HSV colour model

With the ordering defined in Sect. 7.4.1 for colour vectors c(hc, sc, vc) with
hue component hc ∈ [0◦, 360◦], saturation component sc ∈ [0, 100] and value
component vc varying in [0, 1] in the HSV model, we define the minimum of a
given set S of n colours c1(h1, s1, v1), . . . , cn(hn, sn, vn) in HSV as the colour
cα(hα, sα, vα) ∈ {c1, c2, . . . , cn} satisfying:

if (∃!α)(vα = min(v1, . . . , vn)) then ∧ S = cα

else if (∃!α)(vα = min(v1, . . . , vn) and sα = max(s1, . . . sn)) then ∧ S = cα

else if (∃!α)(vα = min(v1, . . . , vn) and sα = max(s1, . . . sn) and hα =
min(h1, . . . , hn)) then ∧ S = cα, where 1 ≤ α ≤ n.
We define the maximum of S as the colour cα(hα, sα, vα) ∈ {c1, c2, . . . , cn}
wherefore

if (∃!α)(vα = max(v1, . . . , vn)) then ∨ S = cα

else if (∃!α)(vα = max(v1, . . . , vn) and sα = min(s1, . . . sn)) then ∨ S = cα

else if (∃!α)(vα = max(v1, . . . , vn) and sα = min(s1, . . . sn) and hα =
max(h1, . . . , hn)) then ∨ S = cα, where 1 ≤ α ≤ n.
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The L*a*b* colour model

In Sect. 7.4.1 we have determined an ordering of colour vectors ci(L∗
i , a

∗
i , b

∗
i )

(L∗
i ∈ [0, 100], a∗

i and b∗i in [−1, 1]) in the L*a*b* colour model. The mini-
mum of a set S of n colours c1(L∗

1, a
∗
1, b

∗
1), c2(L∗

2, a
∗
2, b

∗
2), . . . , cn(L∗

n, a∗
n, b∗n) in

L*a*b* is the colour cα(L∗
α, a∗

α, b∗α) ∈ {c1, c2, . . . , cn} given by

if (∃!α)(L∗
α = min(L∗

1, . . . , L
∗
n)) then ∧ S = cα

else if (∃!α)(L∗
α = min(L∗

1, . . . , L
∗
n) and h∗

α = max(h∗
1, . . . , h

∗
n)) then ∧ S = cα

else if (∃!α)(L∗
α = min(L∗

1, . . . , L
∗
n) and h∗

α = max(h∗
1, . . . , h

∗
n) and C∗

α =
min(C∗

1 , . . . , C∗
n)) then ∧ S = cα, with 1 ≤ α ≤ n.

The maximum of S is the colour cα(L∗
α, a∗

α, b∗α) ∈ {c1, c2, . . . , cn} with

if (∃!α)(L∗
α = max(L∗

1, . . . , L
∗
n)) then ∧ S = cα

else if (∃!α)(L∗
α = max(L∗

1, . . . , L
∗
n) and h∗

α = min(h∗
1, . . . , h

∗
n)) then ∧ S = cα

else if (∃!α)(L∗
α = max(L∗

1, . . . , L
∗
n) and h∗

α = min(h∗
1, . . . , h

∗
n) and C∗

α =
max(C∗

1 , . . . , C∗
n)) then ∧ S = cα, with 1 ≤ α ≤ n.

7.4.3 New (+), (−) and (∗) operations between colours

Apart from a colour ordering, minimum and maximum operators, we also
have to define the operations + and − between two colours to extend the
fuzzy morphological operators to colour images.

In RGB

If c(rc, gc, bc) and c′(rc′ , gc′ , bc′) are two colours in RGB, then we define the
complement co(c), the sum c + c′ and the difference c− c′ as:

• (co(c))(r, g, b) with r
def
= 1− rc, g

def
= 1− gc, b

def
= 1− bc;

• (c + c′)(r, g, b) with r
def
= (rc + rc′)/2, g

def
= (gc + gc′)/2, b

def
= (bc + bc′)/2;

• (c− c′)
def
= c + co(c′) = c + (1RGB − c′).

In HSV

We define the complement co of a colour c(hc, sc, vc) and the operations +
and − between two colours c(hc, sc, vc) and c′(hc′ , sc′ , vc′) in the HSV colour
model as:

• (co(c))(h, s, v) with

1. h
def
= hc, s

def
= sc, v

def
= 1− vc, if c is a shade of grey (thus hc = sc = 0)

2. h
def
= (hc + 180◦) mod 360◦, s

def
= sc, v

def
= vc, otherwise;
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• (c + c′)(h, s, v) with

1. h
def
= hc, s

def
= sc, v

def
= (vc + vc′)/2, if c′ is a shade of grey (analogous if

c is a shade of grey)

2. h
def
= (hc + hc′)/2, s

def
= (sc + sc′)/2, v

def
= (vc + vc′)/2, otherwise;

• (c− c′)
def
= c + co(c′) = c + (1HSV − c′).

In L*a*b*

If c(L∗
c , a

∗
c , b

∗
c) and c′(L∗

c′ , a
∗
c′ , b

∗
c′) are two colours in the L*a*b* model, then

we define the complement co of the colour c and the operations + and −
between the two colours c and c′ as

• (co(c))(L∗, a∗, b∗) with

1. L∗ def
= 1 − L∗

c , h
∗ def

= h∗
c , C

∗ def
= C∗

c , if c is a shade of grey (thus
h∗

c = C∗
c = 0)

2. L∗ def
= L∗

c , h
∗ def

= (h∗
c + 180◦) mod 360◦, C∗ def

= C∗
c , otherwise;

• (c + c′)(l∗, a∗, b∗) with

1. L∗ def
= (L∗

c + L∗
c′)/2, h∗ def

= h∗
c , C

∗ def
= C∗

c , if c′ is a shade of grey
(analogous if c is a shade of grey)

2. L∗ def
= (L∗

c +L∗
c′)/2, h∗ def

= (h∗
c +h∗

c′)/2, C∗ def
= (C∗

c +C∗
c′)/2, otherwise;

• (c− c′)
def
= c + co(c′) = c + (1Lab − c′).

To apply the fuzzy mathematical morphological operators to a colour image in
HSV or L*a*b* we also need to define an operation multiplication ∗ between
two colours.

In RGB

As 3-dimensional structuring element in RGB we will usually take a symmetric
greyscale structuring element because we consider all three colour components
R, G and B to be equally important

B(:, :, 1) = B(:, :, 2) = B(:, :, 3) =

⎛

⎝
cB1 cB11 cB1

cB11 1 cB11

cB1 cB11 cB1

⎞

⎠

to give a certain weight, thus a certain grade of importance, to each observed
colour in the window. But we can also choose for example a structuring ele-
ment of the form

B(:, :, 1) =

⎛

⎝
◦ ◦ ◦
◦ 1 ◦
◦ ◦ ◦

⎞

⎠ , B(:, :, 2) = B(:, :, 3) =

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠
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to give a weight to the R-component only, so that the G- and B-component
remain unchanged. We then define the product ∗ of a colour c(rc, gc, bc) and
a colour cB(rcB

, gcB
, bcB

) of the chosen structuring element B component-
wisely as

(c ∗ cB)(r, g, b) with r
def
= rc · rcB

, g
def
= gc · gcB

, b
def
= bc · bcB

.

In HSV

To get a 3-dimensional structuring element in the HSV colour model we can
transform the structuring element B chosen in RGB into HSV. Now if we want
to define a multiplication ∗ between a colour c in HSV and a colour cBHSV

of a structuring element BHSV in HSV, we always have to scale the values of
the H-, S- and V -component of the colour cBHSV

to the interval [0, 1] (note
c∗BHSV

) to give a weight to the colour c. We can also choose immediately a
structuring element B∗

HSV , for example,

B∗
HSV (:, :, 1) = B∗

HSV (:, :, 2) =

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ , B∗
HSV (:, :, 3) =

⎛

⎝
◦ • ◦
• 1 •
◦ • ◦

⎞

⎠ ,

to attach importance to the value component only. So we define the product
∗ of a colour c(hc, sc, vc) and a colour c∗BHSV

(hc∗
BHSV

, sc∗
BHSV

, vc∗
BHSV

) of the
chosen structuring element B∗

HSV as

(c ∗ c∗BHSV
)(h, s, v) with h

def
= hc · hc∗

BHSV
, s

def
= sc · sc∗

BHSV
, v

def
= vc · vc∗

BHSV
.

Some t-norms on the lattice (HSV,≤HSV ) are for all γ and δ in HSV given by

Tmin(γ, δ) = minHSV (γ, δ) and T∗(γ, δ) = γ ∗ δ.

The S-implicators induced by Tmin (and T∗) and the standard negator Ns on
(HSV,≤HSV ) are then for all γ and δ in HSV given by

ITmin,Ns
(γ, δ) = maxHSV (1− γ, δ) and IT∗,Ns

(γ, δ) = 1− (γ ∗ (1− δ)).

In L*a*b*

In the L*a*b* colour model we proceed analogously as in the HSV colour
model. Two t-norms on the lattice (L∗a∗b∗,≤Lab) are Tmin(γ, δ) = minLab(γ, δ)
and T∗(γ, δ) = γ∗δ defined ∀γ, δ ∈ L∗a∗b∗. The S-implicators induced by Tmin

(and T∗) and the standard negator Ns on (L∗a∗b∗,≤Lab) are ITmin,Ns
(γ, δ) =

maxLab(1− γ, δ) and IT∗,Ns
(γ, δ) = 1− (γ ∗ (1− δ)),∀γ, δ ∈ L∗a∗b∗.
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7.4.4 New vector-based approach to colour morphology

Consider now a colour image C, modelled in the HSV or L*a*b* colour model,
and a one- or three-dimensional structuring element BHSV or BLab. For the
extension of the greyscale morphological operators to morphological operators
acting on colour images we get

1. The t-morphological operators (threshold approach):
We calculate the maximum and minimum of the set of colours of the image
C contained in an m×m window (structuring element) around a chosen
central colour pixel. The t-dilation and t-erosion are the original colours
of the pixels where this maximum, resp. minimum, is obtained.

2. The fuzzy morphological operators (fuzzy logic):
Again, we have to determine the maximum and minimum of a (new) set
of colours (after adding, subtracting or multiplying original colours of C
with colours of the structuring element B).

7.4.5 Experimental results

Finally in our experimental results (Fig. 7.7 to Fig. 7.9) we have compared
our new approach with the component-based approach. We have used differ-
ent test images in our experiments (the well-known Tulips, Trees and Lena
images). Since the dilation is a supremum operator, this operator will sup-
press dark colours and intensify light colours: objects/areas in the image that
have a dark colour become smaller while objects/areas that have a light colour
become larger. The erosion on the other hand is an infimum operator so that
light colours are suppressed and dark colours intensified. The choice of the
structuring element has of course a great influence on the result and will
obviously depend on the application. As ‘binary’ structuring element we have
used

B′(:, :, 1) = B′(:, :, 2) = B′(:, :, 3) =

⎛

⎝
0 1 0
1 1 1
0 1 0

⎞

⎠ ,

and as greyscale structuring element we have used

B′′
RGB(:, :, 1) = B′′

RGB(:, :, 2) = B′′
RGB(:, :, 3) =

1
255

⎛

⎝
0 255 0

255 255 255
0 255 0

⎞

⎠ ,

or

BWh
RGB(:, :, 1) = BWh

RGB(:, :, 2) = BWh
RGB(:, :, 3) =

1
255

⎛

⎝
255 255 255
255 255 255
255 255 255

⎞

⎠ ,

where the underlined element corresponds to the origin of coordinates. Notice
that since in both the HSV and L*a*b* colour model we can separate inten-
sity from chrominance(= hue and saturation/chroma), we will obtain the best
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Fig. 7.7. T-morphological operators in HSV: at the top: the original image C, the
t-dilation Dt(C, B′) (left) and the t-erosion Et(C, B′) (right): from top to bottom:
the component-based approach and our new vector-based approach
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Fig. 7.8. Fuzzy morphological operators for (C, I) = (Tmin, ITmin,Ns) in L*a*b*:
at the top: original image C, left column: the dilation DTmin(C, BWh) and right
column: the erosion EITmin,Ns

(C, BWh): from top to bottom: the component-based
approach and our new approach
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Fig. 7.9. Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in HSV: at the
top: original image C, left column: the dilation DT∗(C, B′′) and right column: the
erosion EIT∗,Ns

(C, B′′): from top to bottom: the component-based approach and
our new approach

results for the component-based approach by applying the greyscale morpho-
logical operators on the intensity component only. Then we add the ‘new’
intensity component to the original chrominance components to get again a
colour image in HSV or L*a*b*.

We may conclude that our new method provides an improvement on
the component-based approach of morphological operators applied to colour
images. Firstly, one great advantage is that the colours are preserved and thus
no new colours appear after applying the new vector t- and fuzzy morpholog-
ical operators for (C, I) = (Tmin, ITmin,Ns

) to colour images. Secondly, more
details from the original colour image are preserved, and thus visible.

7.5 Image Denoising using Mathematical Morphology

Especially on satellite images it can happen that systematically some stripes
or bands appear. One kind of satellite images where this noise appears are
SAR images (Synthetic Aperture Radar images). These images are captured
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Input

Dilation:
- bright regions increase in size
- dark objects become smaller

Erosion:
- dark regions increase in size
- bright areas become smaller

Dilation - Erosion

Edge Image

Output
Non-edge
pixels are
replaced by
their dilation.

Fig. 7.10. Illustration of the proposed filtering scheme for the denoising of satellite
images

by 9 detectors, so if one of these 9 does not work well we receive images
typically with bands or stripes (e.g. Fig. 7.11 (a) and (c)). In this section
we illustrate how MM can be used to reduce this kind of noise. As already
mentioned in Sect. 7.1 and 7.3 the basic morphological operators (dilation and
erosion) transfer an image into another image, using a structuring element
that can be chosen by the user. The goal is to retrieve additional information
from the images. One tool to extract the edge information of an image is the
morphological gradient.

Definition 7.4 Let A be a greyscale image and B a binary structuring ele-
ment. The t-morphological gradient Gt(A,B) is a greyscale image given by

Gt(A,B) = Dt(A,B)− Et(A,B).

Our destripping method uses the following greyscale morphology operators:
gradient Gt(A,B), dilation Dt(A,B) and erosion Et(A,B). As mentioned
before the effect of the dilation is that bright regions increase in size while
black objects become smaller. The effect of the erosion is that dark regions
increase in size while bright areas become smaller. The effect of a gradient
operator is that edges become visible, i.e. the brighter a pixel the more this
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pixel can be seen as an important edge, and the darker a pixel the less impor-
tant this pixel is for the edge detection. We use MM to reduce artefacts like
bands or stripes in digital images. The idea is to replace the noisy image by
the dilation, but in order to preserve the important edge structures we do not
want to change the pixel if it is an edge. Therefore we use the gradient image
Gt(A,B) in order to control the amount of filtering. We use a transferred
gradient image G̃t(A,B), i.e., we transfer the image so that all pixels can only
have values in the unit interval [0, 1]. This transferred image can be seen as
a fuzzy set edge, where a membership degree one (zero) indicates that the
corresponding pixel is a(n) (non-)edge pixel quite sure. Our method works as
follows:

1. We calculate the dilated Dt(A,B) and eroded image Et(A,B) (with a
typical structuring element of size three by three) .

2. Using these two images we can calculate the transferred gradient image
G̃t(A,B) as shown in Fig. 7.10.

(a) (b)

(c) (d)

Fig. 7.11. Example of the destripping performance of the proposed method for
two SAR images
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3. Non-edge pixels (i.e., pixels that have a low membership degree in the
fuzzy set edge) are finally replaced by their dilation (because the noisy
stripes are black lines and will be reduced by the dilation) so that the
stripes or bands disappear.

In Fig. 7.11 (b) and (d) we illustrate the performance of the proposed method
for two SAR images that are corrupted with stripes. We can observe that MM
can be used to eliminate such kinds of unwanted effects.
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Summary. Morphological associative memories (MAMs) are based on a lattice
algebra known as minimax algebra. In previous papers, we gained valuable insight
into the storage and recall phases of gray-scale autoassociative memories. This article
extends these results to the heteroassociative and to the fuzzy case in view of the
fact that a gray-scale MAM model can be converted into a fuzzy MAM model that
coincides with the Lukasiewicz IFAM by applying an appropriate threshold. The
article includes experimental results concerning applications of MAM and fuzzy
MAM models in classification and prediction.

8.1 Introduction

A number of recent approaches to neurocomputing are either explicitly or
implicitly rooted in lattice theory [6]. These approaches include fuzzy lattice
neural networks [31], morphological neural networks [34, 35], and fuzzy min-
max neural networks [38, 39]. The morphological associative memory (MAM)
model that we discuss in this article belongs to the class of morphological
neural networks (MNNs).

The mathematical foundations of MNNs can be found in mathematical
morphology [18] which represents a set theoretic approach to image process-
ing. Mathematical morphology (MM) can be conducted very generally in a
complete lattice setting [36]. In mathematical morphology, an operator that
commutes with the lattice operation “meet” is called erosion and an operator
that commutes with the lattice operation “join” is called dilation. An ero-
sion can be formulated in terms of an inclusion measure and a dilation can
be constructed from a given erosion via a relationship of duality. A fuzzifi-
cation of an inclusion measure can be used to formulate a fuzzy erosion in
the complete lattice [0, 1]n and a fuzzy dilation arises as the dual of fuzzy
erosion. Other operators of mathematical morphology include anti-dilation,
anti-erosion, opening and closing. The four morphological operators dilation,

P. Sussner and M.E. Valle: Morphological and Certain Fuzzy Morphological Associative Memo-

ries for Classification and Prediction, Studies in Computational Intelligence (SCI) 67, 149–171

(2007)
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erosion, anti-dilation, and anti-erosion can be considered to be the elementary
operators of mathematical morphology [4, 5].

In the context of artificial neural networks, we speak of a MNN if the first
step in computing the next state of a neuron is given by one of the four ele-
mentary morphological operators. A MNN whose neurons perform operations
in the fuzzy domain is called a fuzzy MNN. Applications of morphological
and hybrid morphological/linear neural nets include automatic target recog-
nition, land mine detection, handwritten character recognition, and prediction
of financial markets [2, 15, 21, 22, 30].

The morphological associative memory model represents one of the first
MNN models that appeared in the literature [35]. B. Raducanu, M. Graña
et al. have applied this type of MNN to the problems of face-localization, self-
localization, and hyperspectral image analysis [16, 17, 32]. Although initial
research efforts have focused on the binary autoassociative case, the MAM
model was proposed from the outset as a heteroassociative memory model for
the storage and the recall of real-valued patterns and a number of notable
features of autoassociative morphological memories (AMMs) such as optimal
absolute storage capacity and one-step convergence have been shown to hold in
the general case for real-valued patterns [35]. More importantly, these results
remain valid for integer-valued patterns since MAMs can be applied in this
setting without any roundoff errors.

In a recent paper, we presented a thorough analysis of gray-scale AMMs
[43]. Specifically, we described the fixed points and the basins of attraction
of real- and integer-valued AMMs. We also introduced a modified gray-scale
AMM model that produces as an output a fixed point which is closest to the
input pattern with respect to the Chebyshev distance. This article generalizes
some of these results to include the heteroassociative case. In particular, we
obtain a theorem that characterizes the output of a MAM for every input
pattern. Furthermore, we show that a slightly modified version of this theo-
rem describes the output patterns of a certain fuzzy morphological associa-
tive memory (FMAM). We construct this fuzzy model from the MAM model
by applying appropriate thresholds and we point out that the new FMAM
represents a special case of an implicative fuzzy associative memory (IFAM)
[44, 45]. Finally, we undermine our theoretical results by applying the MAM
and FMAM models to problems in classification and prediction.

8.2 Some Background Information on Lattice Theory,
Mathematical Morphology, and Minimax Algebra

In contrast to traditional semi-linear neural network models, morphological
neural networks perform the morphological operations of erosion or dilation at
every node. Alternatively, we can describe the operations that are performed
in each layer of a morphological neural network in terms of matrix products in
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minimax algebra. Minimax algebra is a lattice algebra which originated from
problems in operations research and machine scheduling [13, 14].

Lattice theory is concerned with algebraic structures that arise by impos-
ing some type of ordering on a set [6, 18, 36]. A partially ordered X is called a
lattice if and only if there exists an infimum and a supremum for every finite
subset of X. The infimum of Y ⊆ X is denoted by the symbol

∧
Y . Alterna-

tively, we write
∧

j∈J yj instead of
∧

Y if Y = {yj : j ∈ J} for some index
set J . Similar notations are used to denote the supremum of Y . We speak of
a complete lattice X if every (finite or infinite) subset has an infimum and a
supremum in X. From now on, we denote complete lattices by the symbols L

and M.
The elementary operations of mathematical morphology are erosion, dila-

tion, anti-dilation, and anti-erosion [5]. In the general complete lattice setting,
an erosion is an operator ε : L → M that commutes with the infimum opera-
tion [18, 37]. In other words, the operator ε represents an erosion if and only
if the following equality holds for every subset Y ⊆ L:

ε(
∧

Y ) =
∧

y∈Y

ε(y) . (8.1)

Similarly, an operator δ : L → M that commutes with the supremum
operation is called a dilation. In other words, the operator δ represents a
dilation if and only if the following equality holds for every subset Y ⊆ L:

δ(
∨

Y ) =
∨

y∈Y

δ(y) . (8.2)

Apart from erosions and dilations, we will also consider the elementary
operators anti-erosion and anti-dilation that are defined as follows [5, 18]. An
operator ε̄ is called an anti-erosion if and only if (8.3) holds for every Y ⊆ L

and an operator δ̄ is called a anti-dilation if and only if (8.4) holds for every
subset Y ⊆ L.

ε̄(
∧

Y ) =
∨

y∈Y

ε̄(y) , (8.3)

δ̄(
∨

Y ) =
∧

y∈Y

δ̄(y) . (8.4)

Erosions, dilations, anti-erosions, and anti-dilations exemplify the concept of
morphological operator, i.e., an operator that arises in the context of math-
ematical morphology [18]. Banon and Barrera showed that every mapping f
between complete lattices L and M can be represented either as the supre-
mum of pair-wise infimums of erosions and anti-dilations or as the infimum of
pair-wise supremums of dilations and anti-erosions [5].

In minimax algebra, we define certain algebraic structures called belts and
blogs (“bounded lattice ordered groups”). The set of extended real numbers
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R±∞ = R ∪ {+∞} ∪ {−∞}, exemplifies a belt as well as a blog. Specif-
ically, we have that (R±∞,∨,+) and (R±∞,∧,+′) represent belts and that
(R±∞,∨,∧,+,+′) represents a blog. The operations “+” and “+′” act like the
usual sum operation and are identical on R±∞ with the following exceptions:

(−∞) + (+∞) = (+∞) + (−∞) = −∞ , (8.5)
(−∞) +′ (+∞) = (+∞) +′ (−∞) = +∞ . (8.6)

If (E,⊕,⊗) and (F,⊕′,⊗′) are belts then a belt homomorphism is a function
f : E → F that is compatible with the operations. We refer to f as a belt
isomorphism if f is bijective. In this article, we employ the belt isomorphism
of conjugation, denoted by a “*” symbol, between the belts (R±∞,∨,+) and
(R±∞,∧,+′). This isomorphism is given as follows.

x∗ =

⎧
⎪⎨

⎪⎩

−x if x ∈ R ,

−∞ if x = +∞ ,

+∞ if x = −∞ .

(8.7)

We say that (R±∞,∨,+) is the conjugate of (R±∞,∧,+′) or simply that the
blog (R±∞,∨,∧,+,+′) is self-conjugate. Note that (Z±∞,∨,∧,+,+′) also
represents a self-conjugate blog.

A matrix A ∈ R
m×n
±∞ corresponds to a conjugate matrix A∗ ∈ R

n×m
±∞ . Each

entry a∗
ij = [A∗]ij of A∗ is given by

a∗
ij = (aji)∗ . (8.8)

Obviously, (A∗)∗ = A for all A ∈ R
m×n
±∞ , and thus the isomorphism of conju-

gation R
m×n
±∞ → R

n×m
±∞ is involutive. We say that a matrix A ∈ R

m×n
±∞ is finite

if every row vector and every column vector has at least one finite entry. In
particular, a vector x ∈ R

n
±∞ is finite if and only if x ∈ R

n.
The maximum and the minimum of two matrices are performed element-

wise. For matrices A,B ∈ R
m×n
±∞ , we have,

(A ∨B)∗ = A∗ ∧B∗ and (A ∧B)∗ = A∗ ∨B∗ . (8.9)

There are two types of matrix products with entries in R±∞. For an m×p
matrix A and a p×n matrix B with entries from R±∞, the matrix C = A ∨� B,
also called the max product of A and B, and the matrix D = A ∧� B, also called
the min product of A and B, are defined by

cij =
p∨

k=1

(aik + bkj) and dij =
p∧

k=1

(aik +′ bkj) . (8.10)

Suppose that A is an arbitrary matrix in R
m×n
±∞ . Consider operators εA and

δA such that εA(x) = A ∧� x and δA(x) = A ∨� x. Note that εA and δA associate
elements of the complete lattice R

n
±∞ with elements of the complete lattice
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R
m
±∞. Clearly, we have that εA is an erosion and δA is a dilation. Morphological

associative memories employ erosions and dilations of this form.
For appropriately sized matrices A and B with entries in R±∞, we obtain

the following equalities that will also be useful for describing MAMs.

(A ∨� B)∗ = B∗ ∧� A∗ and (A ∧� B)∗ = B∗ ∨� A∗ . (8.11)

Note that the second halves of (8.9) and (8.11) are the duals of the first
halves. As another example for this duality relationship, the reader may find a
true statement of minimax algebra as well as the corresponding dual statement
in (8.12) and (8.13) [13]. The matrices A, B, C are assumed to be appropriately
sized.

A ∨� (B ∧ C) ≤ (A ∨� B) ∧ (A ∨� C) ∀A,B,C . (8.12)
A ∧� (B ∨ C) ≥ (A ∧� B) ∨ (A ∧� C) ∀A,B,C . (8.13)

Finally, note that (8.9) and (8.11) imply that every statement in minimax
algebra induces a dual statement which simply arises by replacing each “∧”
symbol with a “∨” symbol and vice versa, and by reversing each inequality.
Taking advantage of this fact, we only need to present primal statements on
MAMs and we may omit the corresponding dual statements.

8.3 A Brief Review of Morphological Associative
Memories

Morphological associative memories (MAM) were originally conceived as
simple matrix memories endowed with recording recipes that are similar
to correlation recording. Suppose that we want to record k vector pairs(
x1,y1

)
, . . . ,

(
xk,yk

)
using a morphological associative memory [35]. Let

X denote the matrix in R
n×k whose column vectors are the vectors xξ ∈ R

n

and let Y denote the matrix in R
m×k whose column vectors are the vectors

yξ ∈ R
m, where ξ = 1, . . . , k. For simplicity, we write X = [x1, . . . ,xk] and

Y = [y1, . . . ,yk]. The first recording scheme consists in constructing an m×n
matrix WXY as follows:

WXY = Y ∧� X∗ . (8.14)

In other words, the entry wij of the matrix WXY is given by the equation

wij =
k∧

ξ=1

(yξ
i − xξ

j) . (8.15)

The second, dual scheme consists in constructing an m × n matrix MXY

of the form MXY = Y ∨� X∗. Note that the identity (WXY )∗ = MY X can be
deduced from (8.14) and (8.11).
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If the matrix WXY receives a vector x as input then the product WXY ∨� x
is formed. Dually, if the matrix MXY receives a vector x as input then the
product MXY ∧� x is formed.

We speak of a binary MAM if X ∈ {0, 1}n×k and Y ∈ {0, 1}m×k. In
the special case that X = Y , we obtain the autoassociative morphological
memories (AMMs) WXX and MXX [43]. If X 	= Y , we have a heteroassociative
morphological associative memory.

From now on, we will focus on the MAM WXY . Results concerning the
dual model MXY can be obtained in a similar fashion by applying the duality
relationship given by (8.9) and (8.11).

Example 8.1

X =

⎛

⎝
0 3 −3 1
8 6 −4 5
6 3 −3 −4

⎞

⎠ , (8.16)

WXX ∨� X = X = MXX ∧� X . (8.17)

Note that although the number of stored patterns exceeds the length of
the patterns in this example, we have perfect recall for undistorted patterns.
We will see in the next section that the absolute storage capacity for autoasso-
ciative morphological memories is unlimited, i.e., as many patterns as desired
can be stored in an AMM with perfect recall.

Example 8.2 Let X be as in Example 8.1 and let Y be as follows.

Y =

⎛

⎜
⎜
⎝

3 3 −1 1
−1 −4 −2 −5
0 1 4 −1
−1 −4 −5 −5

⎞

⎟
⎟
⎠ , (8.18)

WXY ∨� X =

⎛

⎜
⎜
⎝

3 3 −3 1
−1 −4 −10 −5
0 1 −5 −1
−1 −4 −10 −5

⎞

⎟
⎟
⎠ . (8.19)

Note the difference between Y and WXY ∨� X and the fact that Y ≥
WXY ∨� X. Unlike AMMs, heteroassociative morphological memories (HMMs)
are not capable of storing an arbitrary number of patterns.

8.4 Fundamental Results on Gray-scale Autoassociative
Morphological Memories

Autoassociative models represent an important special case for associative
memories [9, 19, 47]. In this section, we review some fundamental results con-
cerning gray-scale autoassociative morphological memories that have recently
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appeared in the literature [43]. We only need to formulate the results for the
AMM WXX since similar results for the dual model MXX can be obtained by
applying the relationship of duality that was discussed at the end of Sect. 8.2.

We begin by providing a powerful theorem that yields a complete char-
acterization of the fixed points and basins of attraction of gray-scale AMMs.
We say that a pattern x ∈ R

n
±∞ is a fixed point of the AMM WXX if and

only if WXX ∨� x = x. Similarly, we say that a pattern x ∈ R
n
±∞ is a fixed

point of the AMM MXX if and only if MXX ∧� x = x. We denote the set of
finite fixed points of WXX using the symbol F (WXX) and we denote the set
of finite fixed points of MXX using the symbol F (MXX).

Theorem 8.1 For X ∈ R
n×k, the sets F (WXX) and F (MXX) coincide. If

F denotes this set then F consists exactly of the following expressions:

n∨

i=1

k∧

ξ=1

(aξ
i + xξ) , where aξ

i ∈ R . (8.20)

Alternatively, the set F can be characterized as the set of all expressions of
the form

r∧

j=1

k∨

ξ=1

(cξ
j + xξ) , where cξ

j ∈ R and r ∈ N . (8.21)

Moreover, given an arbitrary pattern x ∈ R
n, we have

WXX ∨� x = x̂ and MXX ∧� x = x̌ , (8.22)

where x̂ is the supremum of x in F and where x̌ is the infimum of x in F .

Corollary 8.1 If F denotes F (WXX) = F (MXX) where X ∈ R
n×k then we

have

F = {
n∧

j=1

k∨

ξ=1

(cξ
j + xξ) : cξ

j ∈ R } . (8.23)

The proof of Theorem 8.1 involves some theorems on eigenvectors and
eigenvalues in minimax algebra [43]. Another, different proof of the first state-
ment of this theorem was independently presented in [33].

Theorem 8.1 has several important consequences, most notably the unlim-
ited absolute storage capacity and one-step convergence of AMMs. These facts
are formally expressed in the following corollaries.

Corollary 8.2 For all X ∈ R
n×k, the fixed points of WXX include the pat-

terns x1, . . . ,xk.

Corollary 8.3 Let X ∈ R
n×k. The set of finite fixed points of WXX consists

of all WXX ∨� x such that x ∈ R
n. Moreover, if x is attracted to xξ for some

ξ ∈ {1, . . . k} under an application of WXX then x is an eroded version of
xξ, i.e., x ≤ xξ.
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Theorem 8.1 also induces necessary and sufficient conditions for the per-
fect recall of an original pattern xγ [43]. These conditions are formulated in
Theorem 8.2.

Theorem 8.2 Let X ∈ R
n×k and let x ∈ R

n. The equality WXX ∨� x = xγ

holds if and only if x ≤ xγ and there is no “linear combination” l =
∨k

ξ=1(cξ +
xξ) 	= xγ such that x ≤ l ≤ xγ .

Example 8.3 Figure 8.1 depicts four images of size 64 × 64 with 256 gray
levels (these images represent downsized versions of images contained in the
database of the Computer Vision Group, University of Granada, Spain). For
each of these image, we generated a vector xξ of length 4096. We synthe-
sized the weight matrices WXX and MXX = −W t

XX of size 4096 × 4096,
applied them to the original patterns xξ, and we confirmed that perfect recall
was achieved as we had pointed out in Corollary 8.2. We also stored the vec-
tors xξ, ξ = 1, . . . , 4, using the optimal linear associative memory (OLAM)
[23], kernel associative memory (KAM) [47] the generalized BSB model of
Costantini et al. [12], and the complex-valued Hopfield net of Müezzinoǧlu
et al. [28].

Example 8.4 In this experiment, we probed the associative memory models
under consideration with incomplete patterns which arose from leaving away
substantial parts of the original images. The outcome of this experiment is
visualized in Fig. 8.2. Table 8.1 lists the resulting NMSEs produced by the
morphological memory WXX , the OLAM, and the generalized BSB model of
Costantini et al. for each partial image. Since the KAM model performed very
poorly in this experiment, we refrained from displaying the output of the KAM
in Fig. 8.2.

We would like to clarify that we did not conduct this experiment using the
complex-valued Hopfield net for the following reasons. Due to computational
limitations, the complex-valued Hopfield net can only store small segments of
the images. In this experiment, we may have an input segment that contains no
information at all, making it impossible to recover the desired image segment.

Fig. 8.1. Original images that were used in constructing the memories WXX and
MXX . Presenting the corresponding patterns as inputs to either one of WXX or
MXX results in perfect recall
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Fig. 8.2. The images in the top row represent severely incomplete versions of orig-
inal face images. The following rows show - from top to bottom - the corresponding
recalled patterns using the morphological memory WXX , the OLAM, and the gen-
eralized BSB model

Table 8.1. NMSEs produced by AM models in applications to incomplete patterns
of Fig. 8.4

AMM WXX OLAM KAM Generalized BSB

Tree 0.0017 0.2302 1.0000 0
Lena 0.0137 0.4588 1.0000 0.0449
Cameraman 0.0088 0.6017 1.0000 0.1721
Church 0.0030 0.7448 1.0000 0.2332

Example 8.5 Theorem 8.1 and the dual version of Theorem 8.2 indicate that
the AMM MXX exhibits tolerance with respect to dilative noise. In order to
exemplify this type of noise tolerance, we added the absolute value of gaussian
noise with zero mean and with variance 0.1 to the original patterns xξ,
ξ = 1, . . . , 4. We compared xξ with the patterns that were retrieved by the
MXX memory and the other associative memory models. Table 8.2 displays
the resulting NMSEs for each model in 100 experiments for each pattern xξ,
ξ = 1, . . . , 4. Figure 8.3 provides for a visual interpretation of this simulation.
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Table 8.2. NMSEs produced by AM models in applications to patterns that were
corrupted by adding the absolute value of gaussian noise with zero mean and vari-
ance 0.1

MXX OLAM KAM Gen. BSB Compl. Hopf.

Dil. Gauss. 0.0247 0.4185 0.9950 0.4538 0.5460

Fig. 8.3. The images in the top row display the original Lena image, a corrupted
image that was generated by adding dilative gaussian noise, and the output of the
morphological memory MXX . The images in the bottom row show the corresponding
recalled patterns using - from left to right - the OLAM, the generalized BSB, and
the complex-valued Hopfield model

Since the KAM model performed very poorly in this experiment, we refrained
from displaying the output of the KAM in Fig. 8.3.

Theorems 8.1 and 8.2 imply that the AMMs WXX and MXX are not suited
for dealing with arbitrary noise, i.e., noise that is neither (mostly) erosive nor
(mostly) dilative. To overcome these limitations of the original AMM models,
we introduced modified versions of WXX and MXX that we denoted using
the symbols WXX + ν and MXX + µ. The AMMs WXX + ν and MXX + µ
exhibit a much better tolerance with respect to arbitrary noise compared to
WXX and MXX while maintaining the properties of optimal absolute storage
capacity and one-step convergence. For further details, we refer the reader to
a recent journal article [43].
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8.4.1 Applications of gray-scale autoassociative morphological
memories to classification problems

Autoassociative memory models such as the morphological models WXX and
MXX can be applied to solve multi-class classification problems. Suppose
that Xj represents the matrix that consists of all training patterns belonging
to class j. For a given test pattern x, we compute the Chebyshev distance
ζ(x,x(j)) where x(j) denotes WXjXj ∨� x. The smallest error ζ(x,x(j)) indi-
cates the class that corresponds to x. Obviously, the same principle of classi-
fication can be applied to other AMM models. For instance, we can employ
autoassociators such as the OLAM and the KAM together with the Euclidean
distance.

Example 8.6 Let us consider the image segmentation problem that is avail-
able from the UCI Repository of Machine Learning Databases [1]. In this
problem, we have 19 continuous attributes concerning a 3 × 3 region of a
hand-segmented image. The instances were drawn randomly from a database
of 7 outdoors images, namely, brickface, sky, foliage, cement, window, path,
and grass. The data set contains 30 instances per class for training and 300
instances per class for testing. The data was standardized before processed.

Table 8.3 displays the errors of classification that we obtained using the
autoassociative morphological memories WXX and MXX , the OLAM, and the
KAM model. The classifiers based on WXX and MXX yield the same result.
Table 8.3 also includes the image segmentation results obtained by a fuzzy
lattice neural network (FLNN) [31] and a support vector machine (SVM)
with gaussian kernel and one-against-one method. Note that the AMMs out-
performed the other classifiers except for the SVM model which succeeded in
providing the correct classification for 4 more patterns than the AMM models
WXX and MXX .

The implementation of the SVM model that we used in this experiment
is available on the Internet [7]. We chose to adopt the default parameters.
Finally, recall that a particular FLNN model or FLR classifier depends on the
choice of a positive valuation function [3, 20]. We employed the linear positive
valuation function v(x) = (x−xmin)/(xmax−xmin), where x ∈ [xmin, xmax].
We also conducted experiments considering the sigmoid valuation function
v(x) = 1/(1− exp[−λ(x−xmed)]), where xmed = (xmax−xmin)/2. The error
of classification obtained for λ = 1 and λ = 0.1 were 12.14% and 12.52%,
respectively.

Table 8.3. Results of the image segmentation problem

Classifier Error Rate Classifier Error Rate

AMM WXX 11.05% AMM MXX 11.05%
SVM 10.86% FLNN 12.00%
KAM 82.52% OLAM 82.95%
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Table 8.4. Results of the glass classification problem

Classifier Error Rate Classifier Error Rate

WXX 34.8 ± 4.1 MXX 34.8 ± 4.1
KAM 37.9 ± 4.2 KAA-2 37.4 ± 5.4
MLP 56.9 ± 6.1 SVM 42.2 ± 5.9

Example 8.7 Let us consider the Glass Recognition problem, another classi-
fication problem that can be found in the UCI Repository of Machine Learning
Databases [1]. The data set consists of six types of glass. Each type has 70,
17, 76, 13, 9, or 27 instances. The goal is to determine the glass type from
nine attributes.

Zhang et al. have considered this problem in a recent paper [48]. Several
classifiers such as multi-layer perceptrons and support vector machines were
tested using two-fold cross-validation. The data were normalized to the range
[−1, 1] in order to remove the scale effect, and each network was fine tuned.
Table 8.4 shows the results of the experiment. The acronym KAA-2 denotes
an extension of the KAM that was introduced by H. Zhang et al. The error
rates concerning the KAM, the KAA-2, the MLP, and the SVM model were
taken from [48].

Table 8.4 also displays the results obtained via applications of the morpho-
logical autoassociative memories. Note that the AMM based models outper-
formed the other classifiers including the SVM model.Moreover,an application
of the AMM model does not require any fine tuning of the network.

8.5 Heteroassociative and Fuzzy MAMs

Heteroassociative morphological memories (HMMs) naturally extend the auto-
associative models that we reviewed in the previous section. Heteroassociative
morphological memories have proved to be useful in several applications
[16, 17, 32]. Additional motivation for discussing HMMs can be drawn from
the fact that the following theorems on HMMs have some important conse-
quences for the fuzzy domain.

In contrast to binary HMMs [41], gray-scale HMMs have yet to be studied
extensively. In fact, only two theorems on gray-scale HMMs concerned with
conditions for perfect recall and tolerance to noise are known [35]. Unfor-
tunately, these conditions are rather complicated and hard to understand.
Therefore, we consider it timely to present new results which offer consider-
able insight into the functionality of HMMs. To this end, we will generalize the
fundamental results on gray-scale AMMs that we presented in the previous
section.

First, let us introduce a few pertinent notations. The symbol O(WXY )
denotes the set of all WXY ∨� x such that x ∈ R

n. Similarly, the symbol
O(MXY ) denotes the set of all MXY ∧� x such that x ∈ R

n. Theorem 8.1 and
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Corollary 8.3 imply that the set O(WXX) consists of the expressions given by
(8.20) or by (8.21). The first two statements of Theorem 8.3 generalize this
result to include the heteroassociative case.

Theorem 8.3 For X ∈ R
n×k and Y ∈ R

m×k, the sets O(WXY ) and
O(MXY ) coincide. If O denotes this set then O consists exactly of the fol-
lowing expressions:

n∨

i=1

k∧

ξ=1

(aξ
i + yξ) , where aξ

i ∈ R . (8.24)

Alternatively, the set O can be characterized as the set of the following expres-
sions:

r∧

j=1

k∨

ξ=1

(cξ
j + yξ) , where cξ

j ∈ R and r ∈ N . (8.25)

Moreover, for arbitrary x ∈ R
n, the pattern WXY ∨� x equals the smallest

expression given by (8.24) such that
∨n

i=1

∧k
ξ=1(a

ξ
i + xξ) is the supremum of

x in F . In addition, the pattern WXY ∨� x equals the smallest expression given
by (8.25) such that

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) is the supremum of x in F .

Proof. Let x ∈ R
n be an arbitrary input pattern. Consider the following

matrix Z ∈ R
p×k and the following vector z ∈ R

p
±∞, where p = n + m.

Z =
(

X
Y

)

and z =
(

x
−∞

)

. (8.26)

Here −∞ denotes the constant vector (−∞, . . . ,−∞)t of length m.
Note that WZZ ∈ R

p×p can be written in block matrix form as follows.

WZZ =
(

WXX WY X

WXY WY Y

)

. (8.27)

Computing the max product WZZ ∨� z yields

WZZ ∨� z =
(

WXX ∨� x ∨WY X ∨� (−∞)
WXY ∨� x ∨WY Y ∨� (−∞)

)

=
(

WXX ∨� x
WXY ∨� x

)

. (8.28)

The resulting vector is finite since WXX , WXY , and x are finite.
Moreover, the vector WZZ ∨� z represents a fixed point of WZZ because
WZZ ∨� WZZ = WZZ and because the max product is associative [14]. Identity
WZZ ∨� WZZ = WZZ follows from Theorem 11 of [43] and the fact that WZZ

has a zero diagonal [40].
Let f denote WZZ ∨� z ∈ FZ = F (WZZ) = F (MZZ). By Theorem 8.1,

the elements of FZ are described by (8.20) and (8.21) (where zξ replaces xξ).
Comparing these equations with (8.28) reveals that WXY ∨� x can be expressed
in terms of (8.24) and (8.25).
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Regarding the proof of the last two statements, we observe that f repre-
sents the supremum of f in FZ . As mentioned before, the set FZ consists of
the expressions given by (8.20) and (8.21) with zξ replacing xξ. Recall that f
can also be written in the form (WXX ∨� x,WXY ∨� y)t. Therefore, we have

f =
n∨

i=1

k∧

ξ=1

(aξ
i + zξ) =

r∧

j=1

k∨

ξ=1

(cξ
j + zξ) , (8.29)

where
∨n

i=1

∧k
ξ=1(a

ξ
i + xξ) =

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) is the supremum of x in

F = F (WXX) = F (MXX). Therefore, WXY ∨� x is as stated in the theorem.

Theorem 8.4 If O denotes O(WXY ) = O(MXY ) where X ∈ R
n×k and Y ∈

R
m×k then we have

O = {
n∧

j=1

k∨

ξ=1

(cξ
j + yξ) : cξ

j ∈ R } . (8.30)

For arbitrary x ∈ R
n, the pattern WXY ∨� x equals the smallest expression

given by (8.30) such that
∧n

j=1

∨k
ξ=1(c

ξ
j + xξ) is the supremum of x in F .

Proof. The proof of this theorem employs Corollary 8.1 and resembles the
proof of Theorem 8.3.

Corollary 8.4 For X ∈ R
n×k, Y ∈ R

m×k, and let x ∈ R
n be such that

WXX ∨� x = xγ . We have WXY ∨� x = yγ if and only if the following implica-
tion holds for all cξ ∈ R where ξ = 1, . . . , k.

xγ ≤
k∨

ξ=1

cξ + xξ ⇒ yγ ≤
k∨

ξ=1

cξ + yξ . (8.31)

Proof. Let us again consider the matrix Z and the vector z represented in
(8.26). Let x be as stated above.

Suppose that WXY ∨� x = yγ which – in view of (8.28) – implies that
WZZ ∨� z = zγ . In other words, we have ẑ = zγ , where ẑ denotes the supremum
of z in FZ . By Corollary 8.2, FZ consists of all patterns

∧n
j=1

∨k
ξ=1(c

ξ
j + zξ)

such that cξ
j ∈ R.

Consider arbitrary scalars cξ, where ξ = 1, . . . , k, such that the left hand
side of (8.31) holds. If u denotes

∨k
ξ=1(c

ξ + zξ) then u ∈ FZ represents an
upper bound of z = (x,−∞)t. We obtain the following relationships.

(
xγ

yγ

)

= zγ = WZZ ∨� z ≤ WZZ ∨� u = u =
k∨

ξ=1

[

cξ +
(

xξ

yξ

)]

. (8.32)

In particular, we recognize that yγ ≤
∨k

ξ=1(c
ξ +yξ) which shows that the

(8.31) is a necessary condition for WXY ∨� x = yγ .
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Let us now prove that (8.31) implies WXY ∨� x = yγ . Let
∧r

j=1

∨k
ξ=1(c

ξ
j +

yξ) denote the smallest pattern such that
∧r

j=1

∨k
ξ=1(c

ξ
j +xξ) = x̂, the supre-

mum of x in F = F (WXX).
By Theorem 8.3, we have WXY ∨� x =

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ). Theorem 8.1

states that x̂ = WXX ∨� x which equals xγ by assumption. Thus, we obtain
the following identity

r∧

j=1

k∨

ξ=1

(cξ
j + xξ) = xγ . (8.33)

Equation (8.33) implies that the patterns
∨k

ξ=1(c
ξ
j + xξ) are bounded from

below by xγ for all j = 1, . . . , n. From (8.31) we infer that

k∨

ξ=1

(cξ
j + yξ) ≥ yγ ∀ j = 1, . . . , r . (8.34)

⇔
r∧

j=1

k∨

ξ=1

(cξ
j + yξ) ≥ yγ (8.35)

⇔
r∧

j=1

k∨

ξ=1

(cξ
j + yξ) ∧ yγ = yγ . (8.36)

Obviously, we have
∧r

j=1

∨k
ξ=1(c

ξ
j + yξ) ∧ yγ ≤

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ) and

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) ∧ xγ = x̂ ∧ xγ = x̂ since x̂ =

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) =

WXX ∨� x = xγ . Therefore,
∧r

j=1

∨k
ξ=1(c

ξ
j + yξ)∧ yγ and

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ)

coincide since the former is bounded from above by the latter pattern and
since the latter pattern

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ) represents the smallest pattern

such that
∧r

j=1

∨k
ξ=1(c

ξ
j +xξ) = x̂. In view of (8.36), we are able to finish the

proof of the theorem as follows:

WXY ∧� x =
r∧

j=1

k∨

ξ=1

(cξ
j + yξ) =

r∧

j=1

k∨

ξ=1

(cξ
j + yξ) ∧ yγ = yγ . (8.37)

Theorem 8.3 and Corollary 8.4 completely characterize the output of
HMMs for any input pattern x. The rest of the article is concerned with the
implications of these results with respect to fuzzy morphological associative
memory (FMAM) models.

Note that the fuzzy domain [0, 1]n represents a complete lattice. An erosion
ε : [0, 1]n → [0, 1]m is called a fuzzy erosion. In a similar vein, we speak of fuzzy
dilations, fuzzy anti-dilations, and fuzzy anti-erosions. In fuzzy mathematical
morphology, a fuzzy erosion can be defined in terms of a fuzzy inclusion mea-
sure and a fuzzy dilation can be defined in terms of a fuzzy intersection
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measure [29, 42]. We consider fuzzy morphological neural networks to be
models of artificial neural networks that calculate an elementary operation
of mathematical morphology such as fuzzy erosion or fuzzy dilation at each
node. FMAMs belong to this class of models.

Let us consider a particular FMAM model. Let X ∈ [0, 1]n×k, Y ∈
[0, 1]m×k, and let WXY be defined as before. The symbols 0m×n and 0m

stand for the zero matrix of size m× n and the zero vector of length m. If W
denotes the m×n matrix WXY ∧0m×n then the Lukasiewicz FMAM is defined
in terms of the following relationship between an input pattern x ∈ [0, 1]n and
an output pattern y ∈ [0, 1]m.

y = (W ∨� x) ∨ 0m . (8.38)

The Lukasiewicz FMAM performs a fuzzy dilation [0, 1]m → [0, 1] at every
node. This fuzzy dilation can also be expressed in terms of a supremum of fuzzy
Lukasiewicz conjunctions, hence the name Lukasiewicz FMAM. Furthermore,
it can be shown that (8.38) yields the Lukasiewicz IFAM model [44, 45].

Recall that WXY =
∨k

ξ=1[y
ξ ∧� (xξ)∗]. Hence, the probability that WXY ∈

[−1, 0]m×n increases as more and more fundamental memories (xξ,yξ) are
stored in the network. If WXY ∈ [−1, 0]m×n then WXY equals W , the
weight matrix of the Lukasiewicz FMAM, and we may apply Theorem 8.3
to Lukasiewicz FMAMs which leads to the following corollary.

Corollary 8.5 Let X ∈ [0, 1]n×k and Y ∈ [0, 1]m×k such that WXY ∈
[−1, 0]m×n. For an arbitrary input pattern x ∈ [0, 1]n, an application of the
Lukasiewicz FMAM produces the maximum of 0m and the smallest expression
given by (8.24) such that

∨n
i=1

∧k
ξ=1(a

ξ
i + xξ) is the supremum of x in F .

Corollary 8.6 Let X ∈ [0, 1]n×k and Y ∈ [0, 1]m×k be such that WXY ∈
[−1, 0]m×n. Suppose that x ∈ [0, 1]n satisfies WXX ∨� x = xγ . We have
(W ∨� x) ∨ 0m = yγ if the following implication holds for all cξ ∈ R where
ξ = 1, . . . , k.

xγ ≤
k∨

ξ=1

cξ + xξ ⇒ yγ ≤
k∨

ξ=1

cξ + yξ . (8.39)

Proof. Let WXY and x ∈ [0, 1]n be as stated above. By Corollary 8.4,
the assumption that (8.31) holds for all cξ ∈ R, where ξ = 1, . . . , k,
implies that WXY ∨� x = yγ which belongs to [0, 1]m. Therefore, we have
(WXY ∨� x) ∨ 0m = yγ . Finally, note that WXY can be replaced by W since
WXY ∈ [−1, 0]m×n.

8.5.1 Applications of FMAMs in prediction

Fuzzy associative memories such as the FMAM can be used to implement
mappings of fuzzy rules. In this case, a set of rules in the form of human-like
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IF-THEN conditional statements are stored. In this subsection, we present two
applications of the FMAM model to the problem of forecasting time-series.

Example 8.8 Let us consider the problem presented in [10] and discussed
latter in [44, 45]. This problem consists of assessing the manpower requirement
in steel manufacturing industry in the state of West Bengal, India. Initially,
we have five linguistic values representing concepts such as “the requirement
in manpower is large”. A set of fuzzy conditional statements such as “If the
manpower requirement of year n is large, then that of year n+1 is very large”
is obtained from the past values. We converted these conditional statements
into the set of input-output pairs that are represented in Table 8.5 and we
generated the following matrix WXY .

WXY =

⎡

⎢
⎢
⎢
⎢
⎣

−0.5 −1.0 −1.0 −1.0 −1.0
0 −0.5 −1.0 −1.0 −1.0

−0.5 −0.5 −0.5 −1.0 −1.0
−1.0 −1.0 −1.0 −.5 −.5
−1.0 −1.0 −1.0 −0.5 0

⎤

⎥
⎥
⎥
⎥
⎦

. (8.40)

Since WXY ∈ [−1, 0]5×5, the matrices W and WXY coincide. Therefore,
Corollaries 8.5 and 8.6 can be applied. For example, if x = [1, 0.6, 0, 0, 0]T then
the supremum of x in F is WXX ∨� x = [1, 0.6, 0.1, 0, 0]T = x1∨[(0.1+x1)∧x2].
Note that the latter expression represents a meet of joins that can be easily
brought into the form

∨5
i=1

∧5
ξ=1(a

ξ
i +xξ) by adding some coefficients aξ

i ≥ 1.
By Corollary 8.5, we have (WXY ∨� x) ∨ 05 ≤ y1 ∨ [(0.1 + y1) ∧ y2] ∨ 05 =
[0.5, 1, 0.5, 0, 0]T . In fact, we calculate (WXY ∨� x) ∨ 05 = [0.5, 1, 0.5, 0, 0]T .

Now, let us consider Corollary 8.6. On one hand, Corollary 8.2 implies that
WXX ∨� x2 = x2. On the other hand, an application of the Lukasiewicz FMAM
to x2 yields [0, 0.5, 0.5, 0, 0]T 	= y2. Therefore, there are some cξ such that the
implication in (8.39) does not hold. We have, for example, that x2 ≤ x3

whereas y2 	≤ y3.

Table 8.5. Set of input and output pairs used in the forecasting application

ξ xξ yξ

1 [1.0, 0.5, 0, 0, 0]T [0.5, 1.0, 0.5, 0, 0]T

2 [0.5, 1.0, 0.5, 0, 0]T [0.5, 1.0, 0.5, 0, 0]T

3 [0.5, 1.0, 0.5, 0, 0]T [0, 0.5, 1.0, 0.5, 0]T

4 [0, 0.5, 1.0, 0.5, 0]T [0.5, 1.0, 0.5, 0, 0]T

5 [0, 0.5, 1.0, 0.5, 0]T [0, 0.5, 1.0, 0.5, 0]T

6 [0, 0.5, 1.0, 0.5, 0]T [0, 0, 0.5, 1.0, 0.5]T

7 [0, 0, 0.5, 1.0, 0.5]T [0, 0, 0.5, 1.0, 0.5]T

8 [0, 0, 0.5, 1.0, 0.5]T [0, 0, 0, 0.5, 1.0]T

9 [0, 0, 0, 0.5, 1.0]T [0, 0, 0, 0.5, 1.0]T
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Table 8.6. Average errors in forecasting manpower

Method Average Error

Lukasiewicz FMAM 2.29%

Kosko’s FAM 2.67%

Lukasiewicz GFAM 2.67%

Gödel IFAM 2.73%

Max-min FAM with threshold 2.73%

Goguen IFAM 2.99%

AM of Wang and Lu 2.99%

ARIMA2 5.48%

ARIMA1 9.79%

If x represents a fuzzy set corresponding to the manpower of year n then
(8.38) can be used to forecast the manpower of year n + 1 by means of the
Lukasiewicz FMAM. Specifically, a defuzzification of the output pattern y
according to the rule described in [10] yields the prediction for year n + 1.
Table 8.6 displays the average errors in the predictions that were obtained by
means of the Lukasiewicz FMAM and several other methods that can be found
in the literature [11, 24, 25, 44, 45, 46]. Figure 8.4 plots the manpower data
of the years 1984 through 1995. The actual values are compared to the predic-
tions obtained by some of these methods. Note that the Lukasiewicz FMAM
outperformed the other models.

Example 8.9 In this example, we applied the Lukasiewicz FMAM to the
problem of forecasting the average monthly streamflow of a large hydroelec-
tric plant called Furnas, that is located in southeastern Brazil. This problem
was previously discussed in [26, 27].

Note that the seasonality of the monthly streamflow suggests the use of 12
different models, one for each month of the year. Let sξ, for ξ = 1, . . . , q, be
samples of a seasonal streamflow time series. The goal is to estimate the value
of sγ from a subsequence of (s1, s2, . . . , sγ−1). Here, we employ subsequences
that correspond to a vector of the form

pγ = (sγ−h, . . . , sγ−1)T , (8.41)

where h ∈ {1, 2, . . . , γ − 1}. In this experiment, our FMAM based model only
uses a fixed number of three antecedents. For example, the values of January,
February, and March were considered for predicting the streamflow of April.

The uncertainty that is inherent in hydrological data suggests the use of
fuzzy sets to model the streamflow samples. For ξ < γ, a fuzzification of pξ

and sξ using Gaussian membership functions yields fuzzy sets xξ : U → [0, 1]
and yξ : V → [0, 1] respectively, where U and V represent finite universes of
discourse. A subset S of the resulting input-output pairs {(xξ,yξ), ξ < q} is
implicitly stored in the Lukasiewicz FMAM (we only construct the parts of the
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Fig. 8.4. Predictions of manpower. The continuous line represents the actual man-
power. The dashed line marked by ‘◦’ corresponds to the Lukasiewicz FMAM
model, the dotted line marked by ‘×’ corresponds to Kosko’s FAM model and
the Lukasiewicz Generalized FAM, the dotted line marked by ‘+’ corresponds to
Max-min FAM with threshold and Gödel IFAM, and the dotted line marked by ‘�’
corresponds to the Associative Memory model of Wang and Lu and the Goguen
IFAM. The lines marked by ‘
’ and ‘∇’ represent ARIMA1 and ARIMA2

weight matrix that are actually used in the recall phase). We employed the sub-
tractive clustering method to determine the set S [8]. Feeding the pattern xγ

into the FMAM model, we retrieved the corresponding output pattern yγ . For
computational reasons, xγ is modeled as a discrete Dirac-δ (impulse) function.
A defuzzification of yγ using the mean of maximum yields sγ .

Figure 8.5 shows the forecasted streamflows estimated by the prediction
model based on the FMAM for the Furnas reservoir from 1991 to 1998.
Table 8.7 compares the errors that were generated by the FMAM model and
several other models [26, 27]. In contrast to the FMAM-based model, the MLP,
NFN, and FPM-PRP models were initialized by optimizing the number of the
parameters for each monthly prediction. For example, the MLP considers 4
antecedents to predict the streamflow of January and 3 antecedents to pre-
dict the streamflow for February. Moreover, the FPM-PRP model also takes
into account slope information which requires some additional “fine tuning”.
We experimentally determined a variable number of parameters (including
slopes) for the FMAM model such that MSE = 0.88 × 105, MAE = 157, and
MPE = 15.
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Fig. 8.5. The streamflow prediction for the Furnas reservoir from 1991 to 1998. The
continuous line corresponds to the actual values and the dashed line corresponds to
the predicted values

Table 8.7. Mean square, mean absolute, and mean relative percentage errors pro-
duced by the prediction models

MSE MAE MPE
Methods (×105) (m3/s) (%)

FMAM 1.42 226 22
PARMA 1.85 280 28
MLP 1.82 271 30
NFN 1.73 234 20
FPM-PRP 1.20 200 18
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Summary. This chapter introduces a rule-based perspective on the framework of
fuzzy lattices, and the Fuzzy Lattice Reasoning (FLR) classifier. The notion of fuzzy
lattice rules is introduced, and a training algorithm for inducing a fuzzy lattice rule
engine from data is specified. The role of positive valuation functions for specifying
fuzzy lattices is underlined and non-linear (sigmoid) positive valuation functions are
proposed, that is an additional novelty of the chapter. The capacities for learning
of the FLR classifier using both linear and sigmoid functions are demonstrated in
a real-world application domain, that of air quality assessment. To tackle common
problems related to ambient air quality, a machine learning approach is demon-
strated in two applications. The first one is for the prediction of the daily vegetation
index, using a dataset from Athens, Greece. The second concerns with the estimation
of quartely ozone concentration levels, using a dataset from Valencia, Spain.

9.1 Introduction

The framework of fuzzy lattices has been utilized lately in machine learning
applications, mainly by utilizing artificial neural network architectures, i.e.
as in [9, 10, 11, 12, 14, 15]. In this chapter, the fuzzy lattice framework is
approached from a rule-based, reasoning perspective. Two issues related to
fuzzy lattice reasoning are discussed here. The first one is the foundation of
the fuzzy lattice rule engines, as a remedy for classification problems. The
notion of fuzzy lattice rule is introduced, which employes fuzzy lattice ele-
ments as the rule antecedents, while the fuzzy inclusion measure serves as a
truth function for deriving to rule consequences (conclusions). On top of the
fuzzy lattice rule, a fuzzy lattice rule engine is specified, with which classifica-
tion tasks can be performed. A fuzzy lattice rule engine induction algorithm
is presented in this chapter as well. The second issue deals with the posi-
tive valuation functions for defining fuzzy lattices from partially ordered sets.
Previous works have employed only linear positive valuation functions for
defining fuzzy lattices. In this work, non-linear positive valuation functions

I.N. Athanasiadis: The Fuzzy Lattice Reasoning (FLR) Classifier for Mining Environmental

Data, Studies in Computational Intelligence (SCI) 67, 175–193 (2007)
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are investigated and a sigmoid one is introduced. The sigmoid positive valu-
ation functions are immidiately applicable to the framework of fuzzy lattices,
and its variety of applications. Non-linear positive valuation functions can be
considered as an extention to existing artificial neural network architectures
based on fuzzy lattices, as the Fuzzy Lattice Neural Networks (FLNN) [14],
and the Fuzzy Lattice Neurocomputing models (FLN) [11]. In this chapter,
the employment of non-linear positive valuation functions is demonstrated in
the context of the Fuzzy Lattice Reasoning classifier presented. Specifically,
the Fuzzy Lattice Reasoning classifier is used for addressing classification tasks
related to ambient air quality, is comparison with other rule-based classifiers.
In conclusion, the FLR classifier turned out with credible models both for the
prediction of the daily vegetation index in the metropolitan area of Athens,
Greece, and the estimation of quartely ozone concentration levels in the region
of Valencia, Spain. In both cases the use of sigmoid positive valuation func-
tions improved the performance of the classifier, while it didn’t increase the
complexity of model. Actually, in one of the cases it was reduced significantly.

The rest of the chapter is organized as follows. Section 9.2 summarizes
briefly the required mathematics, and is provided for the reader of the stand
alone chapter. Readers who are are comfortable with the terms and notations
of the book and can proceed to Sect. 9.3, where the Fuzzy Lattice Reason-
ing classifier is presented. The introduction of a sigmoid positive valuation
function is detailed in Sect. 9.4. Section 9.5 demonstrates the two test-cases
and presents comparative results with other classification methods. The main
findings of this chapter are discussed in the last Sect. 9.6.

9.2 Mathematical Background

A lattice L is a partially ordered set (poset), so that any two of its elements
a, b ∈ L have a greatest lower bound (or meet) denoted by a ∧ b := inf{a, b}
and a least upper bound (or join) denoted by a ∨ b := sup{a, b}. A lattice
L is called complete when each of its subsets has a least upper bound and a
greatest lower bound in L. A non-void complete lattice has a least element
and a greatest element denoted by O and I, respectively.

The Cartesian product L = L1×. . .×LN of N constituent lattices L1 . . . LN

(product lattice) is a lattice [7]. In a product lattice L = L1 × . . . × LN

inclusion can be defined as:

(x1, . . . , xN ) ≤ (y1, . . . , yN ) ⇐⇒ (x1 ≤ y1)& . . . &(xN ≤ yN ) (9.1)

The meet in a product lattice L = L1 × LN is given by (x1, . . . , xN ) ∧
(y1, . . . , yN ) = (x1∧y1, . . . , xN∧yN ), whereas the join is given by (x1, . . . , xN )∨
(y1, . . . , yN ) = (x1 ∨ y1, . . . , xN ∨ yN ) [7, 8].

A product lattice could combine diverse constituent lattices thus implying
the potential to deal either separately and/or jointly, in any combination, with
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disparate types of data such as vectors of real numbers, propositions, (fuzzy)
sets, events in a probability space, symbols, graphs, etc.

A fuzzy lattice is a pair 〈L, µ〉, where L is a lattice and (L × L, µ) is a
fuzzy set with membership function µ : L × L → [0, 1] such that µ(a, b) =
1 ⇐⇒ a ≤ b [11].

The set of all fuzzy lattices 〈L, µ〉 is called framework of fuzzy lattices
and has been used for decision-making in various applications [10, 11]. This
paper approaches the fuzzy lattice framework from a rule-based perspective
as presented in Sect. 9.3 below. Some more usefull instruments of the fuzzy
lattice framework are the followings.

A valuation function v : L → R is defined on a lattice L as any real
function that satisfies: v(a) + v(b) = v(a∧ b) + v(a∨ b),∀a, b ∈ L. A valuation
function is called positive if and only if a < b ⇐⇒ v(a) < v(b) [7]. Linear
positive valuations function have been used in previous works [10] for defining
an inclusion measure (σ) in a complete lattice L.

In general, an inclusion measure on a complete lattice L is defined as a
real mapping function σ : L × L → [0, 1], such that for each a, b, x ∈ L the
following conditions are satisfied:

σ(a,O) = 0,∀a 	= O (9.2)

σ(a, a) = 1 (9.3)

a < b ⇒ σ(x, a) < σ(x, b) (9.4)

a ∧ b < a ⇒ σ(a, b) < 1 (9.5)

Given a lattice L and an inclusion measure σ : L × L → [0, 1] it turns out
that 〈L, σ〉 is a fuzzy lattice, with σ the membership function.

Another useful tool implied by a positive valuation in a general lattice L is
a metric distance function d : L×L → R defined as d(x, y) = v(x∨y)−v(x∧y).

A positive valuation function v : L → R in a lattice L with v(O) = 0 is a
sufficient condition for two inclusion measures [10]:

k(a, b) =
v(b)

v(a ∨ b)
(9.6)

s(a, b) =
v(a ∧ b)

v(a)
(9.7)

Ultimately, given a lattice L, for which a positive valuation function
v : L → R can be defined with v(O) = 0, then both 〈L, k〉 and 〈L, s〉 are
fuzzy lattices. It becomes apparent that the only requirement for specifing
a fuzzy lattice on a lattice L is the selection of an appropriate positive valua-
tion function v(· ). Based on this remark, any kind of partially ordered data,
as numbers, sets, graphs, etc that can define a lattice, to which if a positive
valuation function is ascribed, then it becomes available in the framework of
fuzzy lattices.
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The framework of fuzzy lattices has been extended to lattices of closed
intervals [11], which are of particular interest for the introduction of fuzzy
lattice rules in Sect. 9.3. In a complete lattice L, a closed interval of lattice
elements is defined as

[a, b] = {x|a ≤ x ≤ y} (9.8)

A singleton interval is defined as [a, a] = a,∀a ∈ L. The set τ(L) of all closed
interval of lattice elements in L (including singletons) is also a complete lattice
with upper bound [O, I] and lower bound [I,O]. In τ(L) an ordering relation
is defined as:

[a, b] ≤ [c, d] ≡ {c ≤ a & b ≤ d} (9.9)

Join of two τ(L) elements [a, b] and [c, d] is defined as:

[a, b] ∨ [c, d] = [a ∧ c, b ∨ d] (join) (9.10)

And meet of two τ(L) elements [a, b] and [c, d] is defined as:

[a, b] ∧ [c, d] =

{
[a ∨ c, b ∧ d], if a ∨ c ≤ b ∧ d

0, otherwise
(meet) (9.11)

The definition of a valuation function vτ for the lattice of closed intervals
τ(L) has been discussed in [11, 15]. Based on the positive valuation function
v : L → R of lattice L and an isomorphic function θ : L∂ → L, a valuation
function in τ(L) is defined as:

vτ ([a, b]) = v(θ(a)) + v(b) (9.12)

Both inclusion measures defined in (9.6), (9.7) using vτ can be applied on
τ(L):

kτ ([a, b], [c, d]) =
vτ ([c, d])

vτ ([a, b] ∨ [c, d])
(9.13)

sτ ([a, b], [c, d]) =
vτ ([a, b] ∧ [c, d])

vτ ([a, b])
(9.14)

As a result it turns out that 〈τ(L), kτ 〉, 〈τ(L), sτ 〉 are fuzzy lattices. Note
that the inclusion measure kτ is more usable compared to sτ , due to the
conditional definition of the meet in τ(L), which appears in the nominator of
(9.14). In the contrary, kτ is unconditionally defined as:

kτ ([a, b], [c, d]) =
vτ ([c, d])

vτ ([a, b] ∨ [c, d])
(9.15)

=
vτ ([c, d])

vτ ([a ∧ c, b ∨ d])

=
v(θ(c)) + v(d)

v(θ(a ∧ c)) + v(b ∨ d)
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9.3 Fuzzy Lattice Reasoning (FLR) Classifier

Many data structures of practical interest are lattice ordered. The objective
here is to present a classifier for inducing a rule-based inference engine from
data, based on the instruments of the fuzzy lattice framework presented in
the previous section.

9.3.1 Fuzzy lattice rule engine

A fuzzy lattice rule engine is based on fuzzy lattice rules. A fuzzy lattice
rule employes a fuzzy lattice element as the rule antecedent, while the fuzzy
inclusion measure serves as a truth function for deriving to rule consequences
(conclusions).

A fuzzy lattice rule is a pair 〈a, c〉 where a is an element in a fuzzy lattice
〈L, µ〉 and c ∈ C is a categorical label. Note that this definition applies to the
whole framework of fuzzy lattices, including product lattices and lattices of
closed intervals. A fuzzy lattice rule can be considered as the mapping a→ c
of a fuzzy lattice 〈L, µ〉 element a to a categorical label c, where a is the rule
antecedent and c is the consequence of the rule.

Let a and b be two lattice L elements, c a categorical label in C and
function k, as defined in (9.6) be a fuzzy membership function in L. We define
the degree of truth of the fuzzy lattice rule a → c against the perception b
to be defined by the fuzzy membership function of the fuzzy lattice 〈L, µ〉, as:

µ(b, a) = k(b, a) =
v(a)

v(b ∨ a)
(9.16)

Similarly holds for τ(L) using kτ as defined in (9.13).
A fuzzy lattice rule engine E〈L,µ〉,C can be considered as a set of N

fuzzy lattice rules that are commonly activated:

E〈L,µ〉,C ≡ {ai → ci}, ai ∈ 〈L, µ〉, ci ∈ C, i = 1 . . . N (9.17)

Reasoning with a fuzzy lattice rule engine implies the calculation of the
degree of truth for each one of engines rules. For example consider the follow-
ing engine that consists of three rules:
E〈L,µ〉,C = {a1 → c1, a2 → c2, a3 → c3}, where a1, a2, a3, are elements of a
fuzzy lattice 〈L, µ〉 and c1, c2, c3 a set of predifined labels. Against an input
element a0, the engine will result with the following table of degree of truth for
each consequence: c1 = σ(a0, a1), c2 = σ(a0, a2), and c3 = σ(a0, a3). The fuzzy
lattice reasoning engine will respond with the class c = argmax

i
(σ(a0, ai)). In

another mode of generalization, E may respond with the label that is addi-
tively included the most. In this way, a fuzzy lattice reasoning engine can be
used for generalization.
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9.3.2 Fuzzy lattice rule induction (training)

The task of inducing a fuzzy lattice rule engine can be described as follows:
Let a training set of M partially ordered objects {u1, u2, . . . , uM} ∈ U , each
one of which is associated with a class label c ∈ C, where C = {c1, c2, . . . , cK}
is a set of K predefined labels (classes). The objective is to induce a set of
fuzzy lattice rules that implement a function h : U→ C, associating any object
u ∈ U with a classification label c ∈ C.

In general, the universe U of the training objects can include any type of
complex data structures, as vectors of real numbers, graphs or sets. Obviously,
U is a complete lattice. Given a positive valuation function v : U → R, an
inclusion measure σ : U × U → [0, 1] can be defined in U, as denoted above
in (9.6), (9.7), (9.13), (9.14), which implies a fuzzy membership function µ :
U× U → [0, 1]. In this respect, it turns out that 〈U, µ〉 is a fuzzy lattice. The
classifier to be built is equivalent to a map h′ : 〈U, µ〉 → C, which is a set of
fuzzy lattice rules, i.e. a fuzzy lattice rule engine: h ≡ h′ ≡ E〈U,µ〉,C.

Each object u of the training set is an element of U and each training pair
〈u, c〉 can be expressed as a fuzzy lattice rule u → c, where u is an element
of the fuzzy lattice 〈U, µ〉 and c the corresponding class. This means that
the instances of a training set could be treated as fuzzy lattice rules. For
example consider the simple case where the universe of the training instances
is a closed interval of real numbers [O, I]. Then any training pair 〈x, c〉 where
x ∈ [O, I] and c ∈ C can be expressed as a fuzzy lattice rule consisted from
a lattice interval singleton mapped to class c, as: 〈x, c〉 ≡ 〈[x, x], c〉. Likewise
for alternative universes of discourse.

A naive fuzzy lattice reasoning classifier that can be induced directly
from a set of M training pairs (u1, c1), . . . , (uM , cM ), ui ∈ U, and ci ∈ C, is the
one that memorizes all training instances as fuzzy lattice rules. Given a posi-
tive valuation function v, each training element ui is an element of the fuzzy
lattice 〈U, σ〉, where σ is an inclusion measure defined in (9.6), (9.7), (9.13).
In this way, the most simple fuzzy lattice rule engine will consist at most out
of M (trivial) rules and will be: E = {u1 → c1, . . . , ui → ci, . . . , uM → cM},
where u ∈ 〈U, σ〉 and c ∈ C.

A training process for inducing a fuzzy lattice rule engine is based on
joining lattice rules pointing to the same class for formulating lattice rules
of higher size, and potentially higher ability for generalization. The training
procedure for inducing the classifier h, through single pass iteration over all
training instances is presented below. Note that a simplified version of the
FLR algorithm was presented previously implemented as neural network σ-
FLN architecture [10, 11].

FLR training algorithm

Step-0: Let a fuzzy lattice rule engine E〈L,σ〉,C = {a1 → c1, . . . , aR → cR} of
size R.
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Note that E〈L,σ〉,C could be initially empty, i.e. R = 0, and a user-defined
threshold size Dcrit.

Step-1: Present the next training pair 〈u, c〉, in the form of a fuzzy lattice
rule u → c to the initially set rules in E〈L,σ〉,C.

Step-2: If no more rules in E are set then append input rule u → c in E and
go to Step-1.
Else, compute the fuzzy degree of inclusion σ(u ≤ ar), ∀l = 1 . . . R of the
antecedent u to the antecedents of all the set rules in E .

Step-3: Competition among the set rules in E . Winner is the rule aJ → cJ ,
where

J = arg max
r∈{1,...R}

σ(u ≤ ar) (9.18)

Step-4: If both c = cJ and diag(u∨aJ ) < Dcrit (assimilation condition), then
replace the antecedent aJ of the winner rule aJ → cJ by the join-lattice
u ∨ aJ , i.e. with the rule: u ∨ aJ → cJ . Go to Step-1.
Else, reset the winner rule aJ → cJ , and go to Step-2.

Previous works has employed for the algorithm tuning, instead of Dcrit,
the dimensionless vigilance parameter:

ρcrit =
N

N + Dcrit
⇔ Dcrit =

N(1− ρcrit)
ρcrit

(9.19)

Note that ρcrit varies in the interval [0.5, 1] for any number of dimensions
N as shown in [11]. In the following experiments ρcrit has been employed, as
its range is not related to the dimension of the lattice.

9.3.3 Decision making with fuzzy lattice rules (testing)

The decision making process (testing phase) of an (induced) fuzzy rule
engine E〈L,σ〉,C of size R, involves the competition of its rules over a per-
ception x ∈ U , of unknown label. The element x is presented to each rule
of the engine: ar → cr, and the inclusion measure σ(x ≤ ar) ≡ σ(x, ar) is
calculated. Finally, x is assigned to the category cJ , where

J = arg max
r∈{1,...,R}

σ(x ≤ ar) (9.20)

A second mode of reasoning for the an (induced) fuzzy rule engine E〈L,σ〉,C
of size R may involve a contributing competition, where all rules pointing
to the same class ci will add-up their inclusion measures and the perception
x ∈ U will be assigned to the class that additively includes it the most:

J = argmax
ci∈C

∑

r={1,...,R/cr=ci}
σ(x ≤ ar) (9.21)
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In principal, in any universe of partially ordered data, that can be for-
malized as lattices, product lattices or lattices of intervals a fuzzy lattice rea-
soning classifier can be induced. A similar lattice algorithm, namely Find-S
algorithm, has been presented in a machine learning context [13], but with-
out an employment of positive valuation functions. In the following section
the capacity of the algorithm is further broaden, by introducing non-linear
positive valuation functions.

9.4 Non-linear Positive Valuation Functions

The whole procedure for inducing an FLR classifier is related to the selection
of an appropriate valuation function in U, that implies the formation of the
fuzzy lattice 〈U, σ〉, where σ is an inclusion measure as those defined in (9.6),
(9.7), (9.13), (9.14). This remark holds also for other decision making schemes
built upon the framework of fuzzy lattices that map data to lattices. Typi-
cally, prior works within the Framework of Fuzzy Lattices [2, 10, 12, 14, 15]
have focused in forming fuzzy lattices from numerical datasets by employ-
ing linear valuation functions. In cases that data reside in the N -dimensional
unit hypercube IN = [0, 1] × [0, 1] × . . . × [0, 1], the positive valuation func-
tion selected for each consistuent lattice is the simple function vi(x) = x. In
other cases, where data reside in RN the training dataset can be formulated as
T = [O1, I1]× [O2, I2]× . . .× [ON , IN ], and the positive valuation function for
each constituent lattice is given by the following equation that which linearly
scales T to the N -dimensional unit hypercube IN :

vi(x) =
(x−O)
(I −O)

(9.22)

In this paper, both linear and non-linear positive valuation functions are
considered for inducing an FLR classifier from a numerical dataset. The sig-
moid function is an example non-linear increasing function with range [0, 1]
that could be used as a positive valuation function for mapping an interval of
real numbers to a fuzzy lattice. In the particular case of lattice I a non-linear
positive valuation function is defined by:

vλ(x) =
1

1 + e−λ(x−1/2)
, λ > 0 (9.23)

In generic the case of data residing within the interval [O, I], a positive
valuation function can be defined by the sigmoid function:

vς(x) =
1

1 + e−λ(x−xmed)
, (9.24)

where
xmed =

I + O

2
, λ =

ς

I −O
, ς > 0
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The single parameter ς can be used for tuning the slope of vς(x). Figure 9.1
plots function vς(x) for various values of ς, in contrast with a linear valuation
function v(x) = x.

The capacity of non-linear positive valuation functions to improve per-
formance has been demonstrated lately in classification and regression appli-
cations [1, 6]. In the following section, the capacity for learning of the FLR
classifier is evaluated in two air quality data sets, by employing both linear
and sigmoid positive valuation functions.

9.5 Application on Environmental Datasets

In this work, the problem of operational decision support related to air pollu-
tion is tackled by utilizing a machine learning approach. Specifically, the FLR
Classifier is demonstrated in comparison with other state-of the-art algorithms
in two application cases related to urban air quality assessment. The first one
concerns with the prediction of the daily vegetation index in the metropolitan
area of Athens, Greece, while the second one is for the estimation of ambient
ozone concentration levels, in a rural area in Valencia, Spain.

9.5.1 Air quality assessment

Ambient air quality assessment and management is characterized by complex-
ity and uncertainty mainly due to the difficulties of atmospheric chemistry
and physics and the stochastic processes involved in air pollutant generation.
These boundaries raise the major obstacles in building simple models for cred-
ible prediction. In most cases, decision making relies on human expertise, as
analytical models are too complex and slow for operational decision support.
Legislation in Europe, the US, and elsewhere, define environmental quality
indicators, which could be communicated to the public on-time (or even in
advance) for informing population about air quality, especially in urban areas.

In both application cases, focus is given on ambient ozone, which is a sec-
ondary pollutant formed as a result of catalytic reactions between pollutants
emitted from industrial sources and automobiles. In the presence of sunlight
(ultra-violet radiation) and under suitable meteorological conditions, the pre-
cursors react photo-chemically to produce ozone. Due to the chemical reaction
dynamics, the analytical models for describing ozone formation in ambient air
are very complex. As a consequence, simple, yet credible prediction models
are required for achieving both the requirements of accurate air quality assess-
ment and capabilities for fast decision making (in contrast with the analytical
complex models). These properties can be realized by learning from data,
using knowledge discovery techniques as discussed in previous works [3, 4, 5],
and presented below.
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Fig. 9.1. Sigmoid positive valuation functions vς(x) illustrated in the interval [O, I]
in contrast with the linear positive valuation function vi(x) for various values of the
normalized parameter ς
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9.5.2 Daily vegetation index prediction in Athens, Greece

The first demonstration case concentrates in the metropolitan area of Athens,
Greece, that suffers from air-pollution problems, mainly due to the traffic and
industrial emission, but also because of the urban landscaping. A measure of
the impact of air pollution to human quality of life is the daily vegetation index
introduced by the European Commission with the Directive 92/72/EEC. It is
an early warning indicator of the overall air quality and specifies a threshold
on the ozone’s mean concentration (O3) over a 24 hours period. The same
directive sets the daily vegetation threshold at the limit of 65 µg/m3.

The prediction of the daily vegetation index threshold (exceeded or not) is
the actual goal of the first demonstration case, where FLR has been employed.
Specifically, a dataset was available that contained daily observations from the
Maroussi station of the Ministry of Environment lined up with meteorological
data from the Athens National Observatory. The selection of the monitoring
station was based on the frequency of high exceedances of the selected index.
The dataset covers a 3.5 year period (January 1999 - June 2001) and has been
split in two parts: one for training (that corresponds to the period January
1999 - December 2001) and one for testing (January - June 2002). The pur-
pose of this selection was the ability to make comparisons with the statistical
methods used for the same test case as previously reported [3]. Tables 9.1, 9.2
present the dataset attributes and statistics.

Table 9.1. Athens dataset attributes

Attribute Symbol Datatype Units

1 Carbon monoxide CO real number mg/m3

2 Nitrogen oxide NO real number µg/m3

3 Nitrogen dioxide NO2 real number µg/m3

4 Nitrogen oxides NOx real number µg/m3

5 Sulfur dioxide SO2 real number µg/m3

6 Ozone O3 real number µg/m3

7 Air temperature Ta real number deg C
8 Soil temperature Ts real number deg C
8 Relative humidity RH real number
9 Wind speed WS real number m/s
10 Wind direction WD real number rad
11 Mean temperature meantemp real number deg C
12 Max temperature maxtemp real number deg C
13 Min temperature mintemp real number deg C
14 Solar radiation ws real number Wm−2

16 Vegetation index O3 alert class label Yes/No
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Table 9.2. Athens dataset statistics

Records in class

Yes No

Training set 571 525
Testing set 62 120

Table 9.3. Results for the Athens dataset

Model Accuracy (%) False positive rate (%)

LCA 53.37 0.37
PCA 21.47 0.55
ARIMA 31.58 2.94
FLR (sigmoid) 84.53 5.88
FLR (linear) 80.11 8.4
Nnge 59.68 8.4
Conjunctive Rule 64.52 10.92
OneR 70.97 11.76
Decision Table 69.35 12.61
IBk 59.68 15.13
Voted Perceptron 80.65 15.97
ADTree 85.48 17.65
NaiveBayes 80.65 17.65
C4.5 (J48) 75.81 19.33
KStar 61.67 43.7

9.5.3 Comparative results for the Athens dataset

A set of cross-evaluation experiments were conducted for the Athens test-case.
FLR with both linear and sigmoid valuation functions has been applied for
predicting the daily vegetation index, for a range of values for the parameters
ρ and ς. For comparison purposes, results are presented in Table 9.3 along
with previous results obtained for the same test case with statistical meth-
ods (LRA, ARIMA and PCA) [16] and other ten classification algorithms
and neural networks (ADTree, C4.5, Conjunctive Rule, Decision Table, IBk,
KStar, NaiveBayes, Nnge, OneR, Voted Perceptron) [3]. Note that WEKA
platform [17] implementations of the algorithms have been used. The statis-
tical methods resulted low overall accuracy rates (less than 60%), with high
false positive rates, i.e. there are several alarms missed, but the confidence on
those identified is very high. On the contrary, classification techniques manage
higher classification accuracies, with the cost of a lower credibility on their
decisions.

The application of FLR with the linear valuation function resulted up to an
overall classification accuracy of 80.11% with a fuzzy lattice rule engine of 212
rules. The accuracy compared to the rest classification algorithms is relatively
good (ADTree and NaiveBayes performed better). Also, the false positive rates
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of FLR with linear positive valuation function is the best achieved among
classification algorithms. In this terms FLR performance is competitive.

Next, the FLR with a sigmoid positive valuation function was employed,
resulting a Fuzzy Lattice Rule Engine of 123 rules. In this case, the overall
accuracy improved to 84.53%, while the false positive rate decreased signif-
icantly to 5.88%. Overall, the introduction of a sigmoid positive valuation
function achieved to decrease the number of extracted rules almost to half,
result an overall accuracy similar to that of ADTree, while arriving the optimal
false positive rate. Based on these remarks, the FLR with a sigmoid positive
valuation function can be considered as the most credible model for predicting
the daily vegetation index in this particular application.

9.5.4 Ozone level estimation in Valencia, Spain

The second test-case concerns with the peri-urban area of Valencia, Spain
where ambient air quality is diminished due to industrial activities. The goal
here is to identify the level of ozone concentration, a critical photochemical
pollutant, which is commonly used as an indicator of the overall ambient
air quality. In this case, the objective is to estimate the ozone concentration
levels from the concurrent observations of other pollutants and meteorological
attributes, a task related with both quality assurance and control activities
and operational decision making.

In this case, data were available from a single metrological stations, that
monitors eight parameters, including both meteorological attributes and air-
pollutant concentrations, as shown in Table 9.4. Data are sampled on a
quarter-hourly basis during the year 2001. In total there are available 35,040
data vectors, out of which 565 records have the ozone label missing, and thus
where excluded in the analysis below. Values were missing in other attributes,
and in total there are 6,020 records (that is around 17% of the total) with
at least one missing value. In the following experiments, both the original
dataset with missing values and a preprocessed one that excluded all records

Table 9.4. Valencia dataset attributes

Attribute Symbol Datatype Units

1 Sulfur dioxide SO2 real number µg/m3

2 Nitrogen oxide NO real number µg/m3

3 Nitrogen dioxide NO2 real number µg/m3

4 Nitrogen oxides NOx real number µg/m3

5 Wind velocity V EL real number m/s
6 Temperature TEM real number deg C
7 Relative humidity HR real number %
8 Ozone level O3 class label low, med

Note: Class low corresponds to concentration levels in range 0 − 60 µg/m3, and
class med(ium) to 60 − 100 µg/m3.
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Table 9.5. Valencia dataset statistics for (a) the dataset without missing values,
and (b) the dataset with missing values (original)

Records in class

low medium

Training set 6,865 4,761
Testing set 12,256 5,138

(a)

Records in class

low medium

Training set 9,472 6,074
Testing set 13,483 5,446

(b)

with missing values. Data collected from January 1, 2001 until mid June
have been used for training, whereas the remaining data until year end have
been used for testing. The corresponding numbers of data vectors available in
classes low and med(ium), respectively, are shown in Table 9.5.

9.5.5 Comparative results for the Valencia dataset

For estimating the ozone concentration level three classifiers were employed:
(a) The C4.5 classifier, (b) The FLR classifier, with a linear positive valuation
function, and (c) The FLR classifier, with a sigmoid positive valuation func-
tion. Two series of experiments have been carried out: first, using the dataset
without missing values and, second, the original set including the ones with
missing values.

First, the C4.5 classifier has been employed on a standard software
platform (WEKA platform [17]), for generating decision trees, in which the
internal nodes specify inequalities for the values of environmental attributes,
moreover the tree leaves specify an output class. Initially, the C4.5 classi-
fier has been applied on the data without missing values, without pruning,
resulting in a decision tree with 1393 leaves (rules). The corresponding classi-
fication accuracy on the training set reached 94.8%, whereas on the testing set
it was only 64.85%. Similar results have been obtained for the dataset with
no missing values. Obviously, C4.5 over-fits the training data, therefore two
pruning methods have been employed: (1) Confidence Factor Pruning (CFP),
and (2) Reduced Error Pruning (REP). Results are shown in Tables 9.6 and
9.9 for selected pruning parameter values. The highest accuracy achieved on
the testing split was 73.74% and 77.56% respectively for each dataset.

The FLR classifier has been implemented on the same software platform
(WEKA) using both linear and sigmoid valuation functions. Initially, the FLR
Classifier has been employed using a linear valuation function. In this case, the
valuation function used was vi(x) = (x−O)

(I−O) , where [O, I] are the minimum and
maximum values of the training data in each dimension. Results are presented
in Tables 9.7 and 9.10 for selected values of the vigilance parameter ρ. The
FLR Classifier achieved a classification accuracy of 83.23% with only three
rules for the dataset without missing values and 84.60% with 19 rules for the
dataset with missing values. Note that the FLR classifier outperforms C4.5.
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Table 9.6. Results with C4.5 for the Valencia dataset without missing values

Parameter Classification accuracy (%) No. of Rules
value Training set Test set (Tree leaves)

Unpruned

- 94.80 64.85 1393

Confidence factor pruning (parameter: CF)

0.1 91.33 67.31 575
0.2 92.87 66.71 823
0.3 93.92 67.40 1055
0.4 94.10 67.39 1101
0.5 94.31 67.19 1169

Reduced error pruning (parameter: no. of Folds)

2 89.31 63.71 507
10 89.01 71.85 465
50 85.05 60.62 251
100 83.33 73.74 131
300 81.55 69.98 75
500 77.73 72.48 31

Table 9.7. Results with FLR with linear valuation function for the Valencia dataset
without missing values

Parameter Classification accuracy (%) No. of Rules

ρ Training set Test set (Tree leaves)

0.5 59.16 70.46 2
0.6 64.73 83.23 3
0.7 73.68 74.85 20
0.8 67.43 72.59 139

Then, experiments have been conducted for the FLR Classifier using the
sigmoid function of (9.24) on both datasets. In this case the FLR Classifier
has been tuned using two parameters: The vigilance parameter ρ and the
slope parameter ς of the sigmoid valuation function. Results obtained by FLR
with sigmoid valuation function are presented in Tables 9.8 and 9.11. For
the dataset without missing values the FLR with sigmoid positive valuation
function achieved a classification accuracy of 85.22% with three rules. Note
that using the sigmoid positive valuation function the best performance has
improved by 2% without increasing the number of induced rules. For the
dataset with missing values, the best accuracy improved by nearly 1%, again
without increasing the number of rules, as shown in Tables 9.8 and 9.11.
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Table 9.8. Results with FLR with sigmoid valuation function for the Valencia
dataset without missing values

Parameter Classification accuracy (%) No. of Rules

ς ρ Training set Test set (Tree leaves)

1 0.5 59.16 70.46 2
0.6 59.16 70.46 2
0.7 59.16 70.46 2
0.8 62.73 85.22 3

5 0.5 59.16 70.46 2
0.6 65.40 82.70 3
0.7 70.48 79.64 19
0.8 67.53 78.72 40

10 0.5 59.16 70.46 2
0.6 64.27 83.43 3
0.7 65.77 74.89 34
0.8 69.56 82.87 115

15 0.5 59.16 70.46 2
0.6 64.73 83.24 3
0.7 68.85 78.88 23
0.8 70.39 81.54 112

Table 9.9. Results with C4.5 for the Valencia dataset with missing values

Parameter Classification accuracy (%) No. of Rules
value Training set Test set (Tree leaves)

Unpruned

- 94.80 64.85 1393

Confidence factor pruning (parameter: CF)

0.1 89.14 60.26 279
0.2 89.98 59.19 368
0.3 90.81 59.44 463
0.4 91.37 59.30 542
0.5 91.59 59.32 598

Reduced error pruning (parameter: no. of Folds)

2 88.14 64.91 318
10 88.28 59.19 288
50 85.44 60.17 144

100 84.01 61.36 84
300 82.48 77.56 44
500 81.33 70.19 32

9.6 Discussion

This chapter introduced the Fuzzy Lattice Reasoning (FLR) classifier, by
considering Fuzzy Lattices as the foundation for specifying rules, both for
Fuzzy Lattices and Fuzzy Lattices of intervals. Modes of generalization in a
Fuzzy Lattice Rule Engine have been identified and a training procedure was
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Table 9.10. Results with FLR with linear valuation function for the Valencia
dataset with missing values

Parameter Classification accuracy (%) No. of Rules

ρ Training set Test set (Tree leaves)

0.5 60.99 71.22 5
0.6 60.99 71.22 8
0.7 63.48 84.60 19
0.8 69.00 66.54 43

Table 9.11. Results with FLR with sigmoid valuation function for the Valencia
dataset with missing values

Parameter Classification accuracy (%) No. of Rules

ς ρ Training set Test set (Tree leaves)

1 0.5 60.99 73.37 2
0.6 60.99 73.37 2
0.7 60.99 73.37 3
0.8 60.99 73.37 4

5 0.5 60.99 71.22 4
0.6 60.99 71.22 6
0.7 60.99 71.23 9
0.8 65.34 85.53 19

10 0.5 60.99 71.22 6
0.6 60.99 71.23 9
0.7 60.99 71.22 14
0.8 63.55 82.55 26

15 0.5 60.99 71.22 6
0.6 60.99 71.23 10
0.7 60.99 71.23 17
0.8 64.00 82.59 31

detailed. Also, here non-linear positive valuation functions are introduced as
an instrument for further improving the capacity for decision-making within
the framework of Fuzzy Lattices. The FLR classifier was demonstrated for
assessing ambient air quality on two test-cases. Results obtained with FLR
Classifier for the case of the prediction of the daily vegetation index in Athens
have compared favorably with the results obtained by other state-of-the-art
classifiers and statistical approaches used in previous works. The FLR Clas-
sifier achieved the best performance in terms of false positive rates (5.88%),
while keeping the overall accuracy at very high levels (84%). The introduc-
tion of the non-linear positive valuation function in this case resulted to an
improvement of performance by 5%, while reducing the number of the model
complexity (induced rules) to half. In the case of the estimation of ozone level
concentrations in Valencia, the FLR Classifier resulted positively, with respect
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to the performance achieved with C4.5 decision trees. The FLR classifier with
linear positive valuation function, compared to C4.5, improved classification
accuracy by 9.5% for the dataset without missing values and by 7% for the
dataset with missing values. Furthermore, the employment of a sigmoid pos-
itive valuation function by the FLR classifier achieved further improvement
without increasing the complexity (number of induced rules) of the model.
Finally, the approach presented here for tackling with the complexity and the
uncertainties of the air quality assessment by using machine-learning tech-
niques and in particular the FLR classifier rendered with trustworthy and
credible results with a great potential for the application domain.

References

1. Athanasiadis IN, Kaburlasos VG (2006) Air quality assessment using Fuzzy
Lattice Reasoning (FLR). In: Proc World Congress Computational Intelligence
(WCCI) FUZZ-IEEE Program pp 231–236

2. Athanasiadis IN, Kaburlasos VG, Mitkas PA, Petridis V (2003) Applying
machine learning techniques on air quality data for real-time decision support.
In: First Intl Symposium Information Technologies in Environmental Engineer-
ing (ITEE-2003) ICSC-NAISO Academic Press p 51

3. Athanasiadis IN, Karatzas KD, Mitkas P (2006) Classification techniques for
air quality forecasting. In: Fifth ECAI Workshop on Binding Environmental
Sciences and Artificial Intelligence, 17th European Conf on Artificial Intelligence

4. Athanasiadis IN, Mitkas PA (2004) Supporting the decision-making process in
environmental monitoring systems with knowledge discovery techniques. Vol III
Knowledge-based Services for the Public Sector Symposium: KDnet pp 1–12

5. Athanasiadis IN, Mitkas PA (accepted) Knowledge discovery for operational
decision support in air quality management. J of Environmental Informatics

6. Cripps A, Nguyen N (2007) Fuzzy lattice reasoning (FLR) classification using
similarity measures. This volume, chapter 13

7. Birkhoff G (1967) Lattice Theory. Colloquium Publications, Providence, RI
8. Davey B, Priestley H (1990) Introduction to Lattices and Order. Cambridge

University Press, Cambridge, UK
9. Georgiopoulos M, Fernlund H, Bebis G, Heileman G (1996) Order of search in

fuzzy ART and fuzzy ARTMAP: effect of the choice parameter. Neural Networks
9(9):1541–1559

10. Kaburlasos V (2006) Towards a Unified Modeling and Knowledge-
Representation Based on Lattice Theory: Computational Intelligence and Soft
Computing Applications, ser Studies in Computational Intelligence 27. Springer,
Heidelberg, Germany

11. Kaburlasos VG, Petridis V (2000) Fuzzy lattice neurocomputing (FLN) models.
Neural Networks 13(10):1145–1170

12. Kaburlasos VG, Petridis V (2002) Learning and decision-making in the frame-
work of fuzzy lattices. In: Jain LC, Kacprzyk J (eds) New Learning Paradigms in
Soft Computing, ser Studies in Fuzziness and Soft Computing 84:55–96. Physica-
Verlag, Heidelberg, Germany

13. Mitchell T (1997) Machine Learning. McGraw-Hill, New York, NY



9 FLR Classifier for Mining Environmental Data 193

14. Petridis V, Kaburlasos VG (1998) Fuzzy lattice neural network (FLNN): a
hybrid model for learning. IEEE Trans Neural Networks 9(5):877–890

15. Petridis V, Kaburlasos V (1999) Learning in the framework of fuzzy lattices.
IEEE Trans Fuzzy Systems 7(4):422–440

16. Slini T, Karatzas K, Moussiopoulos N (2005) Ozone forecasting supported by
data mining statistical methods. In: R Sokhi, J Brexhler (eds) 5th International
Conference on Urban Air Quality Measurement, Modelling and Management

17. Witten IH, Frank E (1999) Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, USA



10

Machine Learning Techniques
for Environmental Data Estimation

Vassilios Petridis1 and Vassilis Syrris2

1 Department of Electrical and Computer Engineering, Aristotle University of
Thessaloniki, Greece petridis@eng.auth.gr

2 Department of Electrical and Computer Engineering, Aristotle University of
Thessaloniki, Greece vsyrris@auth.gr

Summary. In this paper we investigate the issue of wind speed prediction at a par-
ticular location in the urban area of Thessaloniki, Greece, based on the historical
data containing wind parameter values at two other different locations. We evalu-
ate the performance of two significant machine learning methodologies, the Fuzzy
Lattice Neurocomputing (FLN) and the Support Vector Regression (SVR). The
results of the specific applications are compared with past work on the same data
set, and a discussion upon the exhibited features is carried out.

10.1 Introduction

Wind prediction (short/long-term) is of great significance for the wind energy
production which is the fastest growing type of renewable energy in Europe.
The energy produced strongly depends on the actual wind speed at a certain
location, so the power output cannot be guaranteed at all times. The objec-
tive for the energy market is the secure and economical management of a
power system [13], thus there is an urgent need for the development of flexible
computational techniques capable of controlling and governing efficiently the
energy resources.

Several researchers studied wind parameters at a certain location [9, 17].
However the performance of such an approach was not particularly remark-
able, at short-time prediction mainly, especially when compared with simple
techniques (e.g. Persistence). Wind forecasting is a stochastic process with
a high level of non-stationarity. This fact prompted researchers to take into
account spatial correlation of wind parameters at different locations [3, 19, 21].

This article describes two computational representations the first originat-
ing from the Fuzzy Lattice Neurocomputing (FLN) framework introduced in
[11, 12, 20] and the second from Support Vector Machines and the Kernel-
based framework. FLN is a scheme which combines elements from the Adap-
tive Resonance Theory (ART) [6], the mathematical theory of lattices [4] and
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the theory of fuzzy sets [25]. The FL-framework can handle families of inter-
vals. Also it can cope with disparate types of data including vectors, Boolean
data, symbols, images, text, graphs, etc. On the other hand, we have a promis-
ing regression technique, the Support Vector Regression (SVR) which has been
introduced by V. Vapnik and his collaborators [16, 23, 24]. It is deemed as a
universal learning machine founded on the principle of Structural Risk Mini-
mization which derives from statistical theory.

The goal herein is to test and validate the prediction hypothesis resolved by
both a FLN clustering/regression and a SVR approach. We examine the case
of real-time learning in a significantly non-stationary problem and we demon-
strate how the spatial correlation improves the final learning performance.
The application domain is the forecasting of wind speed at a meteorological
station based on values also measured by two other stations presenting spatial
correlation with the one in discussion.

10.2 Case Description

The study area is around the Thermaikos gulf, in the city of Thessaloniki,
Greece (Fig. 10.1); it is a region rather flat and almost at sea level. The type
of wind we are interested in is medium to high-speed. The prevailing winds
blow from the north-northwest. Therefore, two meteorological stations have
been situated at locations S1 and S2 that together with our location of interest,
the local station S0, are along the axis N-NW where strong winds appear. The
wind speed distribution is similar in all three stations. Their distances are:
(S1S2) = 27 km, (S2S0) = 12 km and obviously (S1S0) = 39 km.

One minute measurements of wind speed
and direction were collected at the afore-
mentioned three locations for a year [1] and
processed in order to remove non valid val-
ues and errors. The remaining set was aver-
aged for every 15 minutes eliminating thus
the measurement noise and the sudden wind
variations. The resulting measurements set
consists of 6 measurements at each instant
(υS1(t), ϕS1(t), υS2(t), ϕS2(t), υS0(t), ϕS0(t))
where υ and ϕ denote speed and direction
respectively. There are 3260 time instants.

S1

S2

S0

50 km 100 km

NORTH

PREVAILING
WINDS

10 km

THESSALONIKI
BAY

Fig. 10.1. The map shows the loca-
tion of the three meteorological sta-
tions

We point out that the location of the three stations allows the exploitation
of any spatial correlations among the locations involved. To this end we use
neighboring areas measurements concerning wind events in order to achieve



10 Machine Learning Techniques for Environmental Data Estimation 197

higher precision in the predictions regarding the study area. Our aim is to
predict future values of site S0 based on past values of all three stations.

In time-series prediction, the prediction origin, denoted t0, is the time from
which the prediction is generated. The time between the prediction origin and
the predicted data point is the prediction horizon h or the time lead of the
time series, while the stack of data used to conduct the prediction is defined
as batch history data, bhd, or look back length.

10.3 The FLN Forecasting Method

The reasoning behind the wind prediction problem as we formulate it is
to exploit possible similarities and correlations among the three stations by
means of FL-clustering application onto their historical data concerning wind
speed and wind direction. Thus, the subject matter is simplified and cast as
a problem of clustering; that is detecting sets of values the average of which,
with the suitable adjustment, can be employed as predictor. In case of new
evidence, the algorithm classifies it to a cluster. In fact this method is a regres-
sion technique involving two phases: a clustering process in the first phase and
a classification process in the second phase of the algorithm. The method is
applicable in a fuzzy lattice data domain and in this paper, in space R4.

10.3.1 The FL-framework

A lattice L is a partially ordered set of which any two elements have a greatest
lower bound (meet) denoted by x∧ y and a least upper bound (join) denoted
by x ∨ y. A lattice L is called complete when each of its subsets has a least
upper bound and a greatest lower bound in L. A non-void complete lattice
has a least element (O) and a greatest element (I ).

At this point we mention a considerable asset of lattice theory in knowledge
representation. A lattice L can be the Cartesian product L = L1 × · · · × LN

of N constituent lattices L1, · · · , LN . A product lattice L involving disparate
constituent lattices has the potential of dealing with disparate types of data
such as vectors of real numbers, propositions, fuzzy sets, events in a probability
space, symbols, graphs, etc.
A useful function in a lattice L is a valuation function v : L → R defined by

v(x) + v(y) = v(x ∧ y) + v(x ∨ y), x, y ∈ L.

A valuation is called positive if and only if x < y ⇒ v(x) < x(y). An inclusion
measure function σ is defined on a complete lattice L as a map σ : L× L →
[0, 1] such that for u,w, x ∈ L the following three axioms are satisfied:

(Axm1) σ(x,O) = 0, x 	= O
(Axm2) σ(x, x) = 1,∀x ∈ L
(Axm3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) Consistency Property
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Given a positive valuation function v(.) in a lattice L an inclusion measure
can be defined by the ratio σ(x, u) = v(u)

v(x∨u) [11]. The complete lattice τ(L)
of intervals of lattice elements has been analyzed in [11]. In that work it was
shown that an inclusion measure in a lattice L implies a fuzzy lattice, which
can be defined as follows: A fuzzy lattice is a pair < L,µ >, where L is a crisp
lattice and (L×L, µ) is a fuzzy set with membership function µ : L×L → [0, 1]
such that µ(x, y) = 1 if and only if x ≤ y. It turns out that < L, σ > is a
fuzzy lattice.

Finally the interval size is defined given a positive valuation function v(.)
in a lattice L. The size of an interval x = [a, b] ∈ τ(L) is a function Z : L→ R
as expressed in Z([a, b]) = v(b)− v(a).

10.3.2 Application of the method

In FL-data formulation we represent both parameters (speed and direction)
of each station as a 2-dimensional vector: xS0(t) = [υS0(t), ϕS0(t)], xS1(t) =
[υS1(t), ϕS1(t)], xS2(t) = [υS2(t), ϕS2(t)]. The data set DFL consists of xS0(t),
xS1(t), xS2(t) for 3260 time instants. So the reference domain is considered
to be the complete product lattice L = R2 × R2 (called a rectangle), where
a constituent complete lattice is the interval of real numbers. The prediction
scheme takes the form:

x̃S0(t0 + h) = f(xS0(t0), ..., xS0(t0 − (bhd − 1)), xS1(t0), ...,
xS1(t0 − (bhd − 1)), xS2(t0), ..., xS2(t0 − (bhd − 1))) (10.1)

During the experiments we set up the variables h and bhd to be equal.
A positive valuation function in R is given by v(x) = x. The inclusion

measure σ : R×R → [0, 1] is defined as:

σ(x, y) =
v(y)

v(x ∨ y)
=

y

max(x, y)
, x, y ∈ R.

In order to determine the inclusion measure of a point u = (x, y) into the
rectangle w = (x1, y1) × (x2, y2), we represent the former by its respective
degenerate rectangle u = (x, y) × (x, y) and then we introduce the following
formula that calculates the inclusion measure of u in w:

σ(u,w) =
1
2

(
mean(x1, x2)

max(x,mean(x1, x2))
+

mean(y1, y2)
max(y,mean(y1, y2))

)

(10.2)

where mean(a, b) = a+b
2 , a, b ∈ R.

It is worth mentioning that all the points of the constituent lattices are
comparable as we can see in the following example: consider the points u =
(0, 4) and w = (3, 2). Their degenerate rectangles are: u = (0, 4) × (0, 4)
and w = (3, 2) × (3, 2). According to the relationship (10.2) their respective
inclusion measures are: σ(u,w) = 1.5/2 = 0.75 and σ(w, u) = 1/2 = 0.5 and
consequently, we infer that u ≤ w.
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10.3.3 Algorithm description

The prediction scheme of (10.1) is implemented by means of the algorithm
described in this subsection. Before we proceed to the essence of the FL learn-
ing mechanism, we should mention two crucial points for the fine tuning of
the model. A major parameter is the vigilance parameter ρ ∈ R which is nec-
essary for the clustering procedure in order to adjust the size of the clusters.
The vigilance parameter specifies the algorithm sensitivity. As ρ increases, the
calculated rectangles size increases too. Another basic factor is the correction
of the function outcome (10.1). After many experiments we obtain the best
results when we adjust the vigilance parameter as ρ = s (standard deviation of
the sample/time window), while the prediction improves if we take its average
with the last measured value, i.e. if xS0(t) is the last known value at station
S0 measured at time t and x̃S0(t + h) is the estimation at time t + h given by
the (10.1), then the final prediction is given by:

pS0(t + h) =
xS0(t) + x̃S0(t + h)

2
(10.3)

Moreover, there is no need for any normalization of the experimental values.
The algorithm consists of two phases, the clustering procedure and the

prediction function:
The clustering phase as an iterative procedure:

C1. A data set of n vectors is given.
C2. At the initial pass of the algorithm, the first vector is presented and its

degenerate rectangle constitutes the first cluster. As the algorithm pro-
ceeds a set of clusters CR is created CR = {CR1, ..., CRL} as described
in the sequel. A cluster is represented by a rectangle in R2 ×R2.

C3. At each iteration a new vector u = [x, y] is fed to the algorithm.
C4. The inclusion measure of u = [x, y] is calculated with respect to each

rectangle CR1, ..., CRL.
C5. Rectangles CR1, ..., CRL compete over input u = [x, y]. Winner is the

rectangle CRW which includes u the most, i.e. it has the largest inclusion
measure.

C6. Winner rectangle CRW is augmented tentatively so as to include the
degenerate rectangle u = [x, y]× [x, y]. For instance, if CRW = [x1, y1]×
[x2, y2] then the union rectangle CRU is calculated as:

CRU = [min(x, x1), min(y, y1)]× [max(x, x2), max(y, y2)]

C7. If size of CRU is smaller than or equals the vigilance parameter then the
rectangle CRW is replaced by CRU . Otherwise, reset occurs (i.e. the size
of CRW is reverted to its previous state and it is excluded from the list
of the candidate rectangles to be compared with u), and the next winner
is selected among the remaining rectangles.
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C8. If all the rectangles have been reset, then input u = [x, y] is learned as a
new rectangle, CRnew = [x, y]× [x, y].

The prediction phase as a categorization procedure:

1. We set both the time horizon to be h steps from the last known measure-
ment at S0 (at the moment t = 0) and the look back length to be bhd.
This means that we want to estimate xS0 (t0 + h) based on bhd vectors.

2. The three vectors xS0(t = 0) = [υS0(t = 0), ϕS0(t = 0)], xS1(t = 0) =
[υS1(t = 0), ϕS1(t = 0)] and xS2(t = 0) = [υS2(t = 0), ϕS2(t = 0)] of the
data set DFL are selected.

3. The standard variation s of the above vectors is calculated.
4. For the clustering procedure [C1–C8] we use as data set the vectors

xS0(t = 0), xS1(t = 0), xS2(t = 0). The result is the generation of the
set of cluster/s referred to as CR.

5. An input vector W is presented to the algorithm. When t = 0 then W =
xS0(t = 0). The inclusion measure of W is calculated for each rectangle
of step 4 resulting thus in the inclusion measure vector.

6. The values of the inclusion measure vector are normalized to give the sum
of 1 producing the column vector [NIM(CRi)], where NIM(CRi) is the
normalized inclusion measure of rectangle CRi, i = 1, 2, ..., L.

7. The mean of a rectangle CRi = [x1i, y1i] × [x2i, y2i] is a point Mi =(
x1i+x2i

2 , y1i+y2i

2

)
i = 1, 2, ..., L. The estimation of xS0(t0 +h) is calculated

by multiplying the mean of each rectangle with its respective normalized
inclusion measure and then by summing each partial result, i.e. x̃S0(t0 +
h) = [Mi]× [NIM(CRi)], i = 1, 2, ..., L.

8. The estimate is corrected by averaging the produced result from step 7
with the last measurement (at the station S0) as shown in (10.3). The
outcome pS0 (t = 1) is the first estimation for one step ahead h = 1.

9. We check if we have reached the desired time horizon. If so, then the
algorithm stops otherwise it continues to the next step.

10. A new data set is created using the vectors xS0(t = 0), xS1(t = 0), xS2(t =
0), the estimate pS0 (t = 1) and the vectors for one step back (except the
case where we have reached the look back length bhd) xS0(t = −1), xS1(t =
−1), xS2(t = −1), i.e. NewData = {xS0(t−1), xS1(t−1), xS2(t−1), xS0(t0),
xS1(t0), xS2(t0), x̃S0(t1)}.

11. The vigilance parameter is taken equal to the standard variation of the
NewData data set.

12. We apply the clustering procedure [C1-C8] to the data set defined in step
10. New rectangles are formed representing the knowledge generated by
the contribution of new evidence.

13. The flow of the algorithm goes to stage 5 by using as new input the
estimated value pS0 (t = 1) (in general, by using the last estimated value),
i.e. W = pS0 (t = 1), and CR is the set of clusters generated in step 12.
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10.4 The SVR Method

The theory of Support Vector Machines has been extended in order to cope
with regression problems. Suppose that we have a data set {(xi, yi), i =
1, 2, ..., n} of measurements where xi ∈ X and yi ∈ R (X denotes the space
of the input patterns and R is the set of real numbers). We consider that the
tuples (xi, yi) are taken from an unknown distribution P (x, y).

10.4.1 Linear regression

The formulation of the linear regression task stated by Vapnik [23] is the
following convex optimization problem:

minimize 1
2 ‖w‖

2 + C
n∑

i=1

(ξi + ξ∗i )

subject to

⎧
⎨

⎩

yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉+ b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(10.4)

where 〈·, ·〉 refers to the inner product in X. C > 0 is a pre-specified value that
determines the trade-off between the flatness of regressor and the amount up
to which deviations larger than ε are tolerated and ξi, ξ

∗
i are slack variables

interpreted as: ξ for exceeding the target value by more than ε and ξ∗ for
being more than ε below the target value (soft margin regression).

In addition to (10.4) a loss function is minimized. For our SV-models we
choose the linear ε-insensitive loss function :

Lε =
{

0 for |yi − (〈w, xi〉 − b)| ≤ ε
|yi − (〈w, xi〉 − b)| − ε otherwise

This defines an ε tube in such a way that if the predicted value is within
the tube then the loss is zero, whereas if the predicted point is outside the
tube, the loss is the magnitude of the difference between the predicted value
and the radius ε of the tube.

To assure that the training data appear as inner products among the
vectors and to better handle the constraints, the problem is transformed into
a Lagrangian formulation named the primal form:

LP = 1
2 ‖w‖

2 + C
n∑

i=1

(ξi + ξ∗i )−
n∑

i=1

(ηiξi + η∗
i ξ∗i )

−
n∑

i=1

ai (ε + ξi − (yi − 〈w, xi〉 − b))

−
n∑

i=1

a∗
i (ε + ξ∗i − (〈w, xi〉+ b− yi))

(10.5)

where ai, a
∗
i , ηi, η

∗
i ≥ 0 are the Lagrange multipliers.

Differentiating with respect to w, b, ξi, ξ
∗
i gives:
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∂L
∂w = w −

n∑

i=1

(ai − a∗
i ) xi = 0

∂L
∂b =

n∑

i=1

(a∗
i − ai) = 0

∂L
∂ξi

= C − ai − ηi = 0
∂L
∂ξ∗

i
= C − a∗

i − η∗
i = 0

(10.6)

Substituting for w into (10.5) and using the relations (10.6) the dual opti-
mization problem is obtained:

LD = − 1
2

n∑

i=1

n∑

j=1

(ai − a∗
i )
(
aj − a∗

j

)
〈xi, xj〉

− ε
n∑

i=1

(ai + a∗
i ) +

n∑

i=1

(ai − a∗
i ) yi

(10.7)

This function is maximized subject to:

n∑

i=1

(ai − a∗
i ) = 0 and 0 ≤ ai, a

∗
i ≤ C (10.8)

Solving the first equation of (10.6) for w gives: w =
n∑

i=1

(ai − a∗
i ) xi so the

candidate linear function takes the form:

f(x) = wx + b =
n∑

i=1

(ai − a∗
i ) 〈xi, x〉+ b (10.9)

The Karush-Kuhn-Tucker complementary conditions [14, 15] are:

ai (ε + ξi − (yi − 〈w, xi〉 − b)) = 0
a∗

i (ε + ξ∗i − (〈w, xi〉+ b− yi)) = 0
ηiξi = (C − ai) ξi = 0
η∗

i ξ∗i = (C − a∗
i ) ξ∗i = 0

(10.10)

The (10.10) imply that aia
∗
i = 0 which means that the set of dual variables

can never be nonzero at the same time. Those patterns xi with ai > 0 or
a∗

i > 0 are support vectors. If ai ∈ (0, C) or a∗
i ∈ (0, C) then (xi, yi) lies on

the boundary of the tube surrounding the regression function at distance ε.
Moreover, if ai = C or a∗

i = C then the point lies outside the tube. Thus, the
parameter b is computed as follows:

b = yi − 〈w, xi〉 − ε for ai ∈ (0, C)
b = yi − 〈w, xi〉+ ε for a∗

i ∈ (0, C)
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10.4.2 Nonlinear regression

In this case the nonlinear function has the form: f(x) = 〈w, φ(x)〉 + b where
φ(x) is the image of input vector x in a high dimensional space. Using the
trick of kernel functions [7] the dual form (10.5) is replaced by the quadratic
problem:

LD = − 1
2

n∑

i=1

n∑

j=1

(ai − a∗
i )
(
aj − a∗

j

)
K (xi, xj)

−ε
n∑

i=1

(ai + a∗
i ) +

n∑

i=1

(ai − a∗
i ) yi

(10.11)

where K (xi, xj) = 〈φ(xi), φ(xj)〉 is a kernel function satisfying Mercer’s
conditions [8]. The relationship (10.11) is maximized subject to the con-
straints (10.8). Finally, the regressor takes the form:

f(x) =
n∑

i=1

(ai − a∗
i )K(xi, x) + b (10.12)

In that way, we manage to apply linear regression not in the low dimen-
sional input space but in a high dimensional (feature) space via the kernel
function which makes the mapping implicitly, i.e. without knowing φ(x).

10.4.3 The prediction of SV-models

As analyzed in previous section, the objective of SVR is to construct a hyper-
plane that lies “close” to as many of the data points as possible [22]. The
solution is obtained as a set of support vectors that can be sparse. These lie
on the boundary and as such summarize the information required to separate
the data.

SVR has an advantage over other function estimation methods: it is capa-
ble of controlling the capacity of the hypothesis; the algorithm selects the
subspace of the hypothesis space that is optimal in terms of some bound on
the generalization of the hypothesis. This fact leads to the choice of the kernel
function, the width of the ε-insensitive zone and the capacity control C for
controlling the regression model. Since there is not a rigorous way to select
the finest set of hyperparameters, i.e. kernel, ε and C, we use the leave-one-
out cross-validation method by constructing successive time windows of size
bhd + 1, i.e. we utilize bhd vectors in order to predict one value h steps ahead.

After a sufficient number of experiments, we obtained the best results when

we used the RBF kernel K (xi, xj) = 〈φ(xi), φ(xj)〉 = e−
(xi−xj)

2

2σ2 , where the
width of radial basis functions equals to σ = 0.08 and the other parameters
were tuned to the values: ε = 0.05, C = 1.
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We developed two different models :

M1. Solve the quadratic optimization problem (10.11), calculate the Lagrange
multipliers and the bias and finally use the regressor (10.12) to get the
prediction.

M2. Solve the quadratic optimization problem (10.11) and express the final
prediction as a linear dependence of the arisen support vectors.

Each of the above models has two alternative versions concerning the input
data type and the output:

a. We define the sets V1 = {xi(t) = [υS0(t) υS1(t) υS2(t)] for t = 1, 2, ..., 3260}
(it consists of 3260 3-dimensional vectors) and V2 = {υS0(t), υS1(t), υS2(t)
for t = 1, 2, ..., 3260} (it consists of 3 × 3260 scalars). Thus, the inputs
of the models are either i) 3-dimensional vectors that is xi ∈ V1 or ii)
1-dimensional vectors that is xi ∈ V2.

b. The outcome of the models x̃S0 (t0 + h) can either i) remain intact or ii)
be averaged with the last measured value xS0 (t0) at S0, i.e.

predS0 (t0 + h) =
xS0 (t0) + x̃S0 (t0 + h)

2
(10.13)

For simplicity reasons, when we refer, for instance, to model M1.a(i).b(ii)

we mean the option which uses the regressor (10.12), it takes 3-dimensional
vectors as input and its output results from (10.13) (i.e. model M1, versions
a(i) and b(ii)). The same convention holds for all the other options.

10.4.4 Algorithms description

A sliding window is used containing x(t), x(t−1), ..., x(t−bhd+1). For example,
we consider as look back length 3 steps and as future time horizon 10 steps.
If we start at the moment t0 = 6, we use three vectors at time instances
t−2 = 4, t−1 = 5 and t0 = 6 as historical data which lead to the prediction at
t10 = 16. At next moment t0 = 7 we use the vectors at time instances t−2 = 5,
t−1 = 6 and t0 = 7 to make a prediction at time t10 = 17 etc. The algorithms
of the previous section are described more analytically below:

Algorithm M1.a(i).b(i)

S1) Set future time horizon h, the look back length bhd and the prediction
origin t0.

S2) Normalize data in [−1,1].
S3) For i = t0 to 3260:

S3.1) The vectors xi in regressor (10.12) are the vectors in the interval
(t0−bhd+1, t0): [xS1(t0−k), xS2(t0−k), xS0(t0−k)] and yi = xS0(t0−
k + h), where k = m− 1 and m = (bhd − 1), ..., 2, 1.

S3.2) Solve the quadratic problem.
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S3.3) Use the regressor function (10.12) where
x = [xS1 (t0 + h) , xS2 (t0 + h) , xS0 (t0 + h)]

S3.4) The regressor’s output x̃S0(t0 + 2h) is the prediction for h steps
ahead.

Algorithm M2.a(i).b(i)

Until S3.2 the steps are the same with the previous algorithm.

— S3.3) We take into account the xS0(t0 + h) component of the input
vector x. Then we consider the xS0(t + h) component of the sup-
port vector SVi, i = 1, ...,M (where M is the number of sup-
port vectors) denoted by xSVi

S0
. Finally, the column vector Dist =

[|xSV1
S0

−xS0(t0 + h)|, ..., |xSVM

S0
−xS0(t0 + h)|]T is computed. The Dist

is normalized as NDist = Dist/
M∑

i=1

|xSVi

S0
− xS0(t0 + h)|.

— S3.4) The final prediction is: xS0(t0 + 2h) = [xSV1
S0

, ..., xSVM

S0
]×NDist.

In the cases 1.a(ii) and 2.a(ii) we modify step S3.1 as:
Select all vectors in the interval (t0 − bhd + 1, t0): [xS1(t0−k), xS0(t0−k+

h)] , [xS2(t0−k), xS0(t0−k+h)] , [xS0(t0−k), xS0(t0−k+h)], where k = m− 1
and m = (bhd − 1), ..., 2, 1.
In the cases 1.b(ii) and 2.b(ii) we change the outcome of step S3.4 using (10.13).

10.5 Model Evaluation

In order to test the performance of the models we compare the degree of their
prediction success with other approaches such as:
Persistence: The most commonly used reference model for short term fore-
casting of wind is the Persistence method which assumes that:  ̏the conditions
that existed at the beginning of the forecast period will continue or persist
through to the end of the period˝[5]:

ỹt+h = yt where yt is the last measured value

This method is not only the simplest modeling approach but is also the
most economical to implement, and surprisingly accurate for short term fore-
casting (1 to 5 hours).
Moving Average: It is a widely used forecasting method constituting a gen-
eralization of the Persistence model. This simple approach is based on the
average value of the variable over a specific number of preceding periods. In
this paper we define the Moving Average method as

ỹt+h = 1
h

h−1∑

j=0

yt−j , h = 1, 2, ..., n, where h = bhd

As h goes to infinity the Moving Average tends to the global average: ỹt + h =
yt where yt is the average of all the available measurements until time t.
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Recurrent Neural Networks: A Recurrent Neural Network employs feedback
connections and has the potential to represent  ̏certain computational struc-
tures in a more parsimonious fashion˝[10]. RNNs address the temporal rela-
tionship of their inputs by maintaining an internal state. In the latest
bibliography regarding wind forecasting we find the RNN algorithm in [2]
and because of its having been applied on the same data set displaying good
performance we compare it to the FL-model.

To measure the precision of the models (i.e. how the model output is close
to the real value) we make use of three statistical types of errors:

• The Mean Absolute Error: MAE = 1
N

N∑

i=1

|yi − ỹi|

• The Normalized Mean Square Error: NMSE =

1
N

N∑

i=1

{
(yi−ỹi)2}

1
N

N∑

i=1

{(

yi− 1
N

N∑

i=1

yi

)2}

• The Root Mean Square Error: RMSE =

√

1
N

N∑

i=1

{
(yi − ỹi)

2
}

where yi is the real value, ỹi is the model output and N is the number of
tested values. Smaller values of the aforesaid uncertainty statistics denote
better model performance. The reason for using these criteria is that they
operate independently of application and target value specification while they
are not biased towards models that over or under predict.

10.6 Experimental Results

The FL-Approach: Tables 1.2, 1.3 regarding both parameters of wind (speed
and direction) display the comparison analysis among the reference models
and the proposed approach. We use symbol  ̏-˝ when the value is not provided.
Explanation of the table columns is given in Table 1.1.

For the validation of the result, we adopt the sliding window where 2h× 3
is the window size for all the 3260 vectors and h is the time horizon within
which the variable to be predicted lies. When we try to make a prediction h
steps ahead from the moment t we take as input values the time frame h− 1
steps back from t, i.e. t, t− 1, ..., t− (h− 1) (each step refers to a period of 15
minutes).

The SV-Approach: The accuracy of each forecasting method is determined by
its specific architecture [8]. The SVR algorithms offer a sufficient number of
degrees of freedom in customizing models to a particular forecasting task. As
we mentioned before, in order to evaluate the candidate models and determine
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the suitable architecture we adopt the leave-one-out cross-validation method;
we select these ones with the lowest error on the validation data set.

The following Tables (2.1, 3.1, 4.1) display the performance of the proposed
SV-models. We show these results which correspond to look back length bhd =
3 and 6 and to time horizon h = 1, 6, 20, 40, 80 and 160 steps ahead. At each
instant the first line of the tables refers to x̃S0 (t0 + h) and the second line
refers to predS0 (t0 + h).
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Tables 2.2, 2.3, 3.2, 3.3, 4.2 and 4.3 provide the improvement percentage
with respect to both reference models, i.e. Persistence and Moving Average.
For example, the improvement percentage of SV model S0, S1, S2svs over the
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Persistence using the criterion NMSE at 1200 minutes ahead and x̃S0 (t0 + 80)
(Table 2.1) is 1.52−1.35

1.52 × 100% = 11.47% (Table 2.3).
However, it is common that the performance varies in the data set and,

indeed, there is not an a priori reason to believe that accurate predictions
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can be made at every single time step; in a mainly non-linear system, there
may be islands of predictability implanted in a sea of unpredictable or chaotic
behavior [18].



10 Machine Learning Techniques for Environmental Data Estimation 211

10.7 Discussion

Some interesting points emerging from the comparison analysis are given in
the following.

The FL-Approach:

1. The Moving Average method exhibits the poorest performance whereas
the RNN and the FLS0,S1,S2-approach demonstrate significant improve-
ment in comparison with it and the Persistence method. Up to a certain
degree, this result is expectable since the RNN and FLS0,S1,S2 exploit the
correlation among the three meteorological stations.

2. Additionally, the FLS0-approach utilizing only the historical data of sta-
tion S0 is not better than the Persistence in predicting wind speed, while
it behaves better in wind direction predictions. This can be explained by
the fact that the wind direction displays noticeably less variation than
wind speed.

3. In the first two steps (15 and 30 minutes) the FL-model cannot beat
the Persistence method because a crucial factor in FL-approach is the
formulation of rectangles and in this time horizon the created rectangles
are few and contain no significant information in order to result in more
precise predictions. The RNN model seems to perform better in this time
window but we have to consider the fact that it exploits more information
(steps back) in the training phase.

4. The percentage improvement of both FLS0,S1,S2 and RNN algorithms
compared with MA shows a slightly better performance of the former
especially after 4 steps ahead. For instance, at h = 8 the FLS0,S1,S2-model
presents a 24.31% improvement while the respective percentage of RNN
is 23.61%. Similarly, at h = 12 the FLS0,S1,S2-model displays a 22.99%
improvement while the respective percentage of RNN is 20.98%. However,
the RNN model and the FL-approach are not totally comparable since
they refer to slightly different samples. However, we have to stress the
fact that the FL-approach does not need any training while it is easily
tuned (the vigilance parameter is set equal to the standard variation of
the data sample and the curve correction is eventuated by means of the
last measured value) and presents both low computational and time cost.

5. Another advantage of the FL-model for the user is data compression and
the effortless extraction of simple rules (symbolic knowledge which has
meaning to humans) where the prediction of a new fact is calculated from
the weighted average of the created rectangles and its average with the
last measured value.

In Fig. 10.2, we indicate how the FL-model approximates the real curve.
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Fig. 10.2. Approximation of real curve by the FL-model

The SV-Approach: We test the SV-models only for wind parameter predic-
tion.

1. The usage of small time frames (bhd=1 or bhd=6) limits the memory
requirements for storage of the kernel matrix whilst the impact of past
outliers is diminished. Moreover, after many tests we ascertained that
greater values for bhd do not give better results.

2. The two algorithms S0 svs and S0 with kernel cannot outperform any
other model. This indicates the need for additional information.

3. In most cases the predS0 (t0 + h) gives better results than x̃S0 (t0 + h).
The latter seems to have improved after 80 steps.

4. The approach with the 3-dimensional input vectors exhibits better per-
formance related to models with 1-dimensional input vectors.

5. The greater generalization ability is displayed by S0, S1, S2 svs, S0, S1,
S2−3d svs and S0, S1, S2−3d kernel especially after 20 steps ahead. We
note that these models take advantage of the spatial correlation among
the three stations.

We point out that the performance of SV algorithms depends crucially on an
appropriate choice of parameters. Although several different approaches exist
for their selection, the issue of how to practically select a good set is still far
from being resolved.

10.8 Conclusions

This paper applies comparatively two prediction methodologies (the Fuzzy
Lattice Neurocomputing and the Support Vector Regression) to a real-world
problem that of wind prediction which is a very demanding task. Short (0–6
hours) and long (>6 hours) time forecasting of wind variations is still an open
problem.
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FLN and SVR have sound mathematical foundations. The results pro-
duced depend on the selection of the valuation function in the FLN case and
the kernel function in the SVR case. There are few parameters to adjust. In
FLN we just tune the vigilance parameter while in SVR we adjust the capac-
ity control and the kernel parameters (the width of the Gaussian kernel in
RBF case). Additionally, they can be applied to different types of data such
as real-valued vectors, symbols, images, text etc. Yet, only the FL technique
manages to cope with different types of data simultaneously by considering the
Cartesian product of multiple lattices. Both methodologies seek for a sparse
representation of the final solution, i.e. FLN utilizes intervals whereas SVR
uses the support vectors representing the bounds of the candidate solution
regions standing for diverse classes. The problem of missing and don’t care
attribute values in the data has not been explicitly addressed within the SVR
methodology whereas in the FL-framework missing values have been replaced
by the least element and don’t care values can be replaced by the greatest ele-
ment of the corresponding lattice. Finally, the model selection problem is still
an open research topic since both methodologies employ a quite expensive
way (cross validation) to select the model parameters.

We have assessed the performance of the proposed models by compar-
ing them with two well-known reference techniques employed widely as
benchmarks to time-series analysis, the Persistence and the Moving Aver-
age method, and additionally to a recurrent neural network. In general the
FL-approach demonstrates a satisfactory and constant performance. Future
work involves the testing of the FL-approach in dealing with data typically
containing high noise and significant non-stationarity. Finally, a synthesis of
these two effective methodologies (FL and SVR) might result in superior algo-
rithms.
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Summary. The main objective of this work is to improve the automated inter-
pretation of ocean satellite images using a fuzzy lattice system that recognizes the
most important ocean structures in satellite AVHRR (Advanced Very High Resolu-
tion Radiometer) images. This chapter presents a hybrid model based on an expert
system segmentation method, a method of correlation-based feature selection, and
a few classifiers including Bayesian nets (BN) and fuzzy lattice neural networks.
The results obtained by the fuzzy lattice system are clearly better than the results
obtained by ANNs (Artificial Neural Nets), knowledge based reasoning systems, and
graphic expert system (GES).

11.1 Introduction

During the last thirty years, a large amount of environmental data has been
obtained from Earth observation satellites. At present, high resolution imag-
ing sensors are very important in modern remote sensing technology. These
sensors produce both multispectral and hyperspectral data. With the growth
of dimensionality and higher spectral resolution, many different classes can be
identified. When pattern recognition methods are applied to remote sensing
problems, the limited training data, which is used for designing the classifier,
is an inherent problem. Complex statistical distribution of a large number of
classes is yet another important problem.

Today, the European ENVISAT satellite acquires more than 1Tb of data
every day. This large amount of information requires the development of fully
automatic interpretation systems to manage it efficiently.

In this work we have tried to enhance previous results in the field of auto-
matic recognition of meso and macroscalar ocean structures in AVHRR satel-
lite images. One of our main goals was to design a system which performs
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better than similar classifiers such as existing ANNs symbolic processing ele-
ments developed by our work group [1], specifically in dealing with complex
remote sensing classification problems.

In this work we present an approach to solve this complex problem (the
borders of the ocean structures are not precisely defined in satellite images
and their morphology is highly variable) employing an automatic fuzzy lat-
tice interpretation system developed to detect and label the most important
oceanic structures for channel 4 AVHRR infrared images [2].

Our automatic interpretation system is made up of an expert system for
segmentation, a filter method for feature selection and a new hybrid hierarchi-
cal classifier. This hybrid classifier consists of several BNs and a fuzzy lattice
neural network (FLNN), where the BNs simplify the class selection problem
inherent in FLNN design. As a result, small BNs are generated to reduce the
scope of the classification problem.

Section 11.2 introduces some ocean structures with thermal expressions
that are of interest for oceanographers, section 11.3 presents the overall auto-
matic interpretation system structure.

Subsection 11.3.1 describes the method used for cloud masking. This
method allows to automatically create the cloud mask and to improve the
recognition of ocean structures.

Subsection 11.3.2 describes the segmentation procedure. The segmentation
is the partitioning of a digital image into multiple regions and in our case
the goal of segmentation is to locate ocean structures. But unfortunately,
many important segmentation algorithms are too simple to solve this problem
accurately. We have developed an automatic segmentation system for this
problem.

Subsection 11.3.3 describes the feature selection method. In our case, we
have limited data samples with a large number of features. We have used pop-
ular metrics for classification problems: correlation and mutual information,
but the best result has been obtained by correlation based feature selection
(CFS).

Subsection 11.3.4 shows the different oceanic structure to classify.
Section 11.4 shows the classification methods used. This section is divided

into two subsection. Subsection 11.4.1 explains the first classifiers designed
like a graphic expert system, Bayesian networks, neural networks and fuzzy
systems. These classifiers will be compared with the fuzzy lattice classifier.

In the following subsection 11.4.2 we present the fuzzy lattice classifier and
shows the advantages of the fuzzy lattice for the recognition of ocean struc-
tures. Moreover, we propose a hybrid hierarchical model based on Bayesian
networks and fuzzy lattice system.

Section 11.5 and section 11.6 present, respectively, the results and conclu-
sions of our work.



11 Application of FLN in Ocean Satellite Images 217

11.2 Ocean Structures

The AVHRR sensor has been a powerful tool in environmental, climatic and
geophysical research tasks for over twenty years. This sensor, on board the
Tiros and NOAA satellite series, have three infrared (IR) and two visible (VIS)
channels. AVHRR channels 2 and 4 provide VIS and IR information in the
ranges of 0.725-1.10 µm and 10.50-11.50 µm, respectively. Infrared information
in particular has been used in oceanic feature identification [3, 4, 5, 6].

Our study was carried out in the region of NW Africa, Atlantic Iberian
coasts and Mediterranean sea (see Fig. 11.1).

Fig. 11.1. Study area. White lines represent upwellings and white circles are zones
with mesoscalar structures (From [1])
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Fig. 11.2. Ch 4 AVHRR image showing: 1) the upwelling, 2) a warm wake south
of Gran Canaria island and 3) a cold gyre SW of the same island.(From [1])

A detailed oceanographic description of this area can be found in [7, 8,
9, 10, 11]. In these regions the most important oceanic mesoscalar structures
observable in satellite images are [8, 10, 12, 13, 14]: upwellings, cold eddies,
warm eddies and warm wakes in the lee of some islands (see Fig. 11.2). All
these structures have also been observed and studied also in the area by means
of VIS sensors (CZCS-Coastal Zone color Scanner and SeaWiFS), ERS-1 and
TOPEX altimeters and in situ and AXBTs (Aircraft Expandable Bathyther-
mographs) [12, 14]. Upwelling is the term used by oceanographers to describe
a structure in which cool, nutrient-rich waters from the lower layers of the
ocean rise to the surface. When they reach the light, such waters becomes
very fertile and a rich feeding ground for fish. Upwellings are generated when
there are persistent winds parallel to the shore, and Ekman transport diverts
the surface flow away from the coast permitting cold and nutrient-rich water
from the bottom to reach the surface.

Prevailing NE trade winds between 30 and 60 North produce one of the
biggest upwellings in the world, the NW African Upwelling (see Fig. 11.2).

Upwellings are regular phenomena off the NW African coast and other
coasts like the Peruvian and Benguela (South Africa) coasts, where wind
conditions are suitable. Nonetheless, upwellings may well be intermittent,
depending both on the weather [8, 9] and, to a certain extent, on ocean-wide
thermohaline circulation. Because of their importance to commercial fisheries,
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much oceanographic research has been directed at their comprehension and
prediction for which remote satellite sensing is a powerful tool.

Eddies are highly morphologically and contextually variable gyres pro-
duced mainly by the hydrodynamic interaction between the cold Canary cur-
rent flowing from the NE and the Canary islands [12, 13]. Similar eddies due
to the same mechanism have been found in other archipelagos around the
world. The temperature and salinity of the water in eddies is different from
the surrounding waters and can travel great distances for a long period of
time without mixing with the surrounding water. Moreover, the movement
and shape of cold (cyclonic in the northern hemisphere-NH) and warm (anti-
cyclonic) eddies in this region are controlled by the Trade Winds. Cool eddies
are more intense under calm conditions, whereas with strong winds, the warm
eddies are more intense and symmetrical [14]. In cool eddies vertical movement
of the water is ascending: cold water, rich in nutrients, rises to the surface.
However, in warm eddies water accumulates and sinks, generating transport
of organic matter downward toward the ocean interior [12].

Wakes [8, 12] are warm oceanic structures leeward of islands. A wake is
generated when islands form an obstacle to the prevailing wind field in this
region (NE trade winds). This lowers the intensity of winds SW of the islands
and warms the sea surface (see Fig. 11.2). Wakes are very thin and warmer
than the surrounding waters.

11.3 The Automatic Interpretation System

Figure 11.3 shows the overall structure of the system developed in this work for
improving previous results obtained with the automatic recognition systems
for ocean features observed at IR AVHRR images.

In a first step, the raw image is processed by standard models for radio-
metric and geometrical correction and land masking. These are well known
techniques also used for image analysis by human experts. On the other hand,
the automatic digital image interpretation processing system works directly
with the digital numbers, so it makes no sense to use image enhancement
methods like histogram equalization or others.

The second step attempts to automatically detect cloud pixels that are
opaque to the ocean radiance data measured in the AVHRR infrared and
visible scenes and create a mask of 0s for these areas [15].

The next task, segmentation, divides the image into meaningful oceanic
regions. The nature of ocean dynamics complicates this basic process, so we
have designed a new iterative knowledge-driven method for it [16]. After seg-
mentation the type of features or descriptors to describe or represent the
segmented regions are selected.

The feature selection step chooses an optimal or sub-optimal feature subset
from the set of features chosen previously.
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Fig. 11.3. Automatic ocean recognition system structure

In the last step of ocean region recognition, each region produced dur-
ing the segmentation and represented by a selected group of descriptors is
analyzed and, if the recognition is positive, it is labeled with the identifier
of the matching structure (upwelling, cold or warm eddy or wake). We have
implemented a redundant recognition subsystem, with different classifiers:

• Neurofuzzy system: neurofuzzy function approximator (NEFPROX) and
NEFCLASS.

• Fuzzy lattice neural networks (FLNN).
• Bayesian networks (BNs) (Nave Bayes and Tree Augmented Nave Bayes).
• ANN-based symbolic processing elements (SPE)[1].
• Graphic expert system (GES).
• Hybrid hierarchical model (HHM).

One of our goals was to compare the efficiency of the different mesoscalar
ocean structure recognition classifiers in which the fuzzy lattice plays an
important role.

11.3.1 Cloud masking

The technique used to automatically create the cloud mask is described in
detail in [15]. Cloud pixels have:

1. A very low value on channel 4 (sea surface temperature brightness) com-
pared to their neighbors and/or
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2. The digital values of the neighbor pixels have high variability in the visible
channel 2.

The cloud mask system is composed of two back-propagation ANNs. The
first of them detect those pixels (candidate pixels) either affected by both
characteristics or very strongly by one of them in a first estimation. After
that, candidate pixels are classified by the second ANN which finds the cloud
pixels.

11.3.2 Segmentation

Segmentation is a key task for any automatic image analysis system. Final
results are good only if high-quality segmentation is achieved. But, as explained
in [16], AVHRR ocean images are very difficult to segment due to the highly
variable pixel values, yielding poor segmentation results with conventional
techniques that rely merely on gradients or textures [17, 18]. The method
that we proposed in [16] uses isothermal lines that have been proven to pro-
duce good segmentation in this kind of images. This, like any other threshold
segmentation, has the inherent drawback of threshold selection, but we have
solved this by applying the knowledge acquired in the recognition phase, thus
creating an iterative procedure. The initial threshold for segmentation of each
structure can be set at a fixed empirical value or at the water-pixel mean. This
is then used for segmentation and results are passed on to the classifier, which
labels (upwelling, cold gyre, warm gyre, wake) all the region in the image.
Then the threshold can be raised or lowered and segmentation repeated with
a new threshold.

The new region is then compared with the previous by the GES, which
recognizes the regions every time the threshold changes, and the system deter-
mines whether the threshold change was favourable, must be reversed, or the
task ended at the last value. This method yields good segmentation of AVHRR
images, producing compact regions and reducing oversegmentation resulting
from other methods tested like watersheds [17] and the Canny edge detec-
tor [18].

11.3.3 Feature selection

The most common way to proceed with feature selection is to define criteria
for measuring the goodness of a set of features [19], and then use a search algo-
rithm to find an optimal or sub-optimal set of features [20, 21]. We applied
filtering methods with good results. Filtering methods use heuristics based
on general data characteristics rather than a learning algorithm to evalu-
ate the merit of feature subsets. We used: mutual information, Matusita dis-
tance, Kullback-Leibler, Shannon entropy, correlation based features selection
(CFS)and other. The best filtering method used was CFS [22]. CFS measures
correlation between features. The features used for each segmented region
were:
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• Simple features: area, perimeter, density, volume, equivalent diameter.
• Bounding ellipse: centroid, major and minor axis, orientation, eccentricity,

irradiance.
• Bounding box: height, width, area.
• Level of gray: min, max and mean level of gray, standard deviation,

barycenter of grey level.
• Inertia moments: Hu’s moments, Maitra’s moments, Zernike’s moments,

tensorial moments.

CFS reduces the number of features from 80 to only 16. In order to evaluate
feature selection efficiency, we cross-validated with a Naive Bayes (simple
Bayesian classifier).

11.3.4 Classification

The last step in image recognition is classification. All classifiers used in this
work and presented in Section 11.4 were designed and tested with the same
image dataset. Figure 11.4 shows the different oceanic structure identifiers:

• Upwellings - (ID: 2, 3 and 4)
– 2 identifies the upwellings between Cape Jubi and Cape Bojador.

Fig. 11.4. The oceanic structure identifiers
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– 3 identifies upwellings south of Cape Bojador.
– 4 identifies the upwellings in both coast regions.

• Wakes - (ID: 5, 6, 7, 8, 9 and 10).
– 5 identifies the El Hierro Wake.
– 6 identifies the Gran Canaria Wake.
– 7 identifies the La Palma Wake.
– 8 identifies the La Gomera Wake.
– 9 identifies the Tenerife Wake.
– 10 identifies Fuerteventura Wake.

• Anticyclonic eddy - (ID 11).
• Cyclonic eddy - (ID 12).
• No structure - (ID 0).

A series of factors combine to make oceanic structures in satellite images
difficult to identify with classical computational techniques:

• Thermal and morphological variability in oceanic structures makes it prac-
tically impossible to construct a mathematical model incorporating the
number of variables necessary for their description.

• Identification is influenced by a very significant contextual factor: the tem-
peratures measured or features derived in a given region produces different
structures depending on their geographical location and the date on which
they are found.

In the next section we justify the use of fuzzy models and lattice theory
for the design of different classifiers.

11.4 Classifiers

We believe that instead of selecting classifiers based only on their accuracy,
it may often be more effective to attempt to select the classifiers based on
the knowledge they represent. Combining classifiers is an effective way of
improving classification performance. It is often possible to construct several
classifiers with different characteristics.

We have implemented classifiers representing different knowledge. In the
following sections, we show two classifications: the initial classifier 11.4.1 and
the fuzzy lattice classifier 11.4.2. The fuzzy lattice classifier section shows the
new model based on lattice theory, explains the advantage of the system used
and the necessity of the combining classifiers (hybrid hierarchical model).

11.4.1 Initial classifier

We divide the classifier into two groups. The initial classifiers were GES, BNs
and the neurofuzzy classifiers.
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Graphic Expert System

This system is like an oceanographer, collecting knowledge about the ocean
and representing it as production rules [16]. The GES filters incoming infor-
mation and keeps only information relevant to the recognition of the ocean
structures present in the image. In order to train this component, every ocean
feature of interest has to be defined by a human expert using numerical or sym-
bolic descriptors. The hard job here is to figure out the imprecise, sometimes
intuitive, deduction scheme that human experts use to perform the task. The
lack of a precise model for each feature of interest in our problem can lead to
gaps or inconsistencies in the knowledge that the expert provides the system
with. This is a common problem in expert systems, so some techniques have
been designed to manage such imprecise or incomplete knowledge (Bayesian
networks or fuzzy methods).

The main problem of this system is that it was built by human experts,
that is, the learning process is manual and not automatic.

Bayesian Networks

Bayesian Networks model uncertainties. We have tested two simple Bayesian
classifiers [23]: The Naive Bayes and The Tree Augmented Naive Bayes Clas-
sifier (TAN). The Naive Bayes is oriented to classification, and is based on
the assumption that all the features are conditionally independent when the
value of the class is known. This assumption implies that the structure of the
network is rather simple, since only the arcs link the classes with features,
and there are no arcs between feature variables.

The Naive Bayes is easy to construct and performs surprisingly well in clas-
sification, even though the conditional independence assumption is rarely true
in real world applications. A more effective straightforward way to improve
The Naive Bayes is to extend its structure to represent dependencies among
attributes [24]. The TAN model is a restricted family of BNs in which the
class has no parent nodes and the parents of each feature are the values of the
class, or at most, another feature.

One problem of the Naive Bayes is that decoupling the class conditional
feature distribution means that each distribution can be independently esti-
mated as a one dimensional distribution. This dimensionality problem implies
a need for datasets that scale exponentially with the number of features.
However, the classifier is robust enough to ignore serious deficiencies in its
underlying naive probability model. Other reasons for the observed success of
the naive Bayes classifier are discussed in [24].

Neurofuzzy Systems

Neural networks are good for learning and classification, but do not explain
how they reach their decisions (black box). Fuzzy logic systems can be well
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understood by humans, but cannot be built automatically. Neurofuzzy Sys-
tems combine the fuzzy set theory with ANNs with the advantages of both.
In our work, we used the NEFCLASS and NEFPROX models to implement
the Neurofuzzy systems.

NEFCLASS [25] is a neurofuzzy classification system derived from the
generic model of a 3-layer fuzzy perceptron (may be thought of as a special
3-layer feed-forward neural network). The nodes in this network use T-norms
or T-conorms instead of the activation functions common to neural networks.
The first layer is associated with the input features, the hidden layer represents
the fuzzy rules (each node is associated with one rule) and the third layer
represents output features (in our case the classes). Fuzzy sets are encoded
as connection weights. The inputs have real values. The nodes of the output
layer use a T-conorm for rule aggregation, where the T-conorm is usually
the maximum. The winner class is determined by the output node with the
highest value.

NEFCLASS model can only be used for discrete sets (crisp classifica-
tion tasks). We have therefore used NEFPROX [26] (NEuroFuzzyfunction
apPROXimator). NEFPROX extends NEFCLASS using a general approach
for function approximation by means of a neurofuzzy model based on super-
vised learning with a Mamdani fuzzy system. The main difference between
them is that NEFCLASS models do not use membership functions on the
consequent.

11.4.2 Fuzzy lattice classifiers

A fuzzy lattice is a lattice L such that the ordering relation has been extended
to all elements in L in a fuzzy degree of truth. The inclusion relation in a lattice
L can be extended to all the elements of the Cartesian product L×L using an
axiomatically defined inclusion measure function σ : L× L → [0, 1]. Learning
is achieved by computing intervals of lattice elements (in the Ndimensional
Euclidean space a lattice interval is an hyperbox).

The benefit of using a fuzzy lattice is that it directly enables representation
and calculation with the imprecision found in the oceanic structures, which
arises from variability in morphological measurement due to errors, structural
defects, and contextual characteristics. It is important to emphasize that the
creation of intervals by means of the fuzzy lattice neural networks in the
numeric descriptors improve the understandability of the rules set by the
human experts.

Fuzzy Lattice Neural Networks

The fuzzy lattice neural network (FLNN) [27] emerges as a connectionist
paradigm in the framework of fuzzy lattices, which have the advantages of
being able to deal rigorously with different types of data, such as numerical
and linguistic data, value intervals, missing and don’t care data.
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The σ-FLNMAP (σ Fuzzy Lattice Neural MAP) classifier was introduced
in [27, 28, 30]. The σ-FLNMAP classifier is a relationship between two FLNN
models: FLNNa and FLNNb. The two models together produce a σ-FLNMAP
classifier. FLNNa clusters the input data, while FLNNb has the classes (cat-
egory labels), and an intermediate MAP field is used to associate clusters in
FLNNa with clusters in FLNNb, as described in [28]. That is, the MAP field
assigns a class (in FLNNb) to a data cluster (in FLNNa). The rules extracted
with σ-FLNMAP are represented as hyperboxes. The vigilance parameter
specifies the σ-FLNMAP’s sensitivity. As the vigilance parameter increases,
hyperbox size decreases. At the end of learning, there are M hyperboxes par-
titioned into K classes, where K is the cardinality of the finite set of category
labels. As soon as learning is complete, the set of calculated hyperboxes can
be implemented as either a decision tree or a neural network [27, 28].

Lately, Fuzzy Lattice Reasoning (FLR) algorithm has been introduced as
a successor to the FLN [31]. In fact, the FLN is a (limited) neural network
implementation of the more flexible FLR.

Hybrid Hierarchical Model

In our work, we propose a hybrid hierarchical model, which has three classi-
fiers: two Bayesian Nets (Naive Bayes) and one Fuzzy Lattice Neural Network
(σ-FLNMAP) as the best solution for automatic ocean structure recognition.
This model has a hierarchical structure of cluster classes which improves or
maintains the accuracy rate of other classifiers used and reduces the num-
ber of rules managed by the system. This classifier works on two levels (see
Fig. 11.5) .

In the first level the cluster classes used were: upwellings, eddies, wakes
and no oceanic structure. In the second level the cluster classes used were:

• Upwellings between Cape Jubi and Cape Bojador
• Upwellings south of Cape Bojador
• Upwellings in both coast regions
• The El Hierro Wake
• The Gran Canaria Wake
• The La Palma Wake
• The La Gomera Wake
• The Tenerife Wake
• The Fuerteventura Wake
• Anticyclonic eddy
• Cyclonic eddy

On the first level, the Naive Bayes is the classifier. The Naive Bayes chosen
has 3 classes to classify. On the second level there are two classifiers: Naive
Bayes and σ-FLNMAP. The classes used for each classifier are (see Fig. 11.5):

• Nave Bayes: 3 classes of upwellings (between Cape Jubi and Cape Bojador,
south of Cape Bojador and both coastal regions)



11 Application of FLN in Ocean Satellite Images 227

Fig. 11.5. Structure of hybrid hierarchical model

• σ-FLNMAP: 2 classes of eddies (anticyclonic and cyclonic eddies) and 6
classes of wakes (The El Hierro Wake, The Gran Canaria Wake, The La
Palma Wake, The La Gomera Wake and The Tenerife Wake)

11.5 Results

All of the classifiers produced good general ocean structure recognition results,
as shown in Table 11.1. Classifications were made with 10-fold cross-validation.
We have worked with 1000 cases (upwellings: 590 cases, wakes: 180 cases, anti-
cyclonic eddies: 10 cases, cyclonic eddies: 40 cases and misclassified regions:
180 cases). 12 classes were used (3 classes of upwellings, 2 classes of eddies, 6
classes of wakes and 1 class of misclassified regions).

The best classifications were provided by NEFCLASS, σ-FLNMAP, GES
and the Hybrid Hierarchical Model. Should be emphasized that the neurofuzzy
systems and fuzzy lattice neural networks improve the classification results
and enable knowledge to be acquired by means of fuzzy rules or fuzzy lattice
rules (understandable to the user). Of course, the results of the GES are one
of the best, with only 50 rules compared with the 367 of NEFCLASS.

The σ-FLNMAP classifier learns in one run through the training data,
furthermore, there is only one parameter to be tuned (the vigilance parameter
σ). The vigilance parameter had several values, of which σ = 0.85 yielded the
best results. Classification performance with the dataset was 92.29%.



228 J.A. Piedra-Fernández et al.

Table 11.1. Comparative classification results

classifier no. of Features no. of Rules Accuracy rate

NEFCLASS 16 367 96.49
NEFPROX 16 420 89.62
σ-FLNMAP 15 156 92.29
Nave Bayes 16 - 89.68
TAN 14 - 87.08
Hybrid Hierarchical Model 1st level: 11

2nd level: 5 and 25 2nd level: 8 94.93
G.E.S. 18 50 95.00

On the first level, hybrid hierarchical model classification performance with
the test dataset was 95.79% using 11 features.

On the second level, the classification performance by the Naive Bayes
using 5 features was 93.06%. The FLNMAP had an accuracy rate of 95.96%
with 25 features. The global classification accuracy rate of the hybrid hierar-
chical model was 94.93%. This model improves the classification of the rest of
the classifiers reducing the number of rules and increasing the accuracy rate.
The best classification was by NEFCLASS, but it uses a very large number
of fuzzy rules (about 370 rules) and there are about 100 linguistic labels for
each feature, whereas the hybrid hierarchical model uses only 8 rules and 8
linguistic labels (one interval for each one of the rules). Therefore, NEFCLASS
efficency is 1.5 better than that of the hybrid model but the interpretability is
(100 linguistic labels and 370 rules) worse than (8 rules and 8 linguistic labels).
The classification performance of GES was 95.00%, which is a good result, but
this system was built by human experts, that is, the learning process is manual
and not automatic like the neurofuzzy system.

Figure 11.6 and Fig. 11.7 show the original image and the results obtained
in the recognition process, where the structures recognized are shown in dif-
ferent colours.

Moreover other important aspects are:

• GES. The learning process is manual and not automatic like the neurofuzzy
and hybrid hierarchical systems and does not use imprecise knowledge.

• BNs. The main problem is that they do not use possibilistic knowledge,
although the model structure (Naive Bayes) is very easy.

• Neurofuzzy System. In this case the problem is not the use of a lattice
model. Oceanographers must understand the variables that are used to
calculate the fair value of the oceanic structures. They must also under-
stand how changes in the required variables drive the fair value and the
resulting effect. Lattice models involve construction of a binomial tree of
different paths with lattice parameters.

• σ-FLNMAP. Knowledge is represented by means of fuzzy lattice rules,
which make it possible to find information close to human knowledge.
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Fig. 11.6. The image aquired on August 10th, 1993

Fig. 11.7. The image obtained by the hybrid automatic interpretation system
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• Hybrid hierarchical system. This system improves the accuracy rate and
the representation of knowledge. This knowledge is designed by means of
possibilistc and probabilistic information on two hierarchical levels.

11.6 Conclusions

The results of this work using classifiers based on neurofuzzy and fuzzy lattice
systems improve the results of the other classifiers (GES and BNs) used in pre-
vious works and make it possible to manage imprecise knowledge, something
impossible with non fuzzy systems. Also, the fuzzy set rules are understand-
able and reduced. Like in the Hough transform [32] when you divide the para-
meter space in lattices, the fuzzy lattice group in every box of the hyperspace
parameters all the ocean structures that share a common subset of properties
and have some similarity. Furthermore, by using fuzzy lattice parameters, it
is possible to work with fuzzy intervals instead of fuzzy numbers and this
produce a reduced set of fuzzy rules to describe the ocean structures. This
allows a clear and simple knowledge representation of the ocean structures.
The fuzzy lattice rules can be considered a generalization of fuzzy rules, that
is to say, we group the fuzzy features of fuzzy rules into fuzzy lattices.

The main problem with initial classifiers is the number of rules generated,
which is often excessive. The hybrid hierarchical model maintains or enhances
the accuracy rates in the recognition process, reduces the number of rules gen-
erated, thereby increasing the interpretability of the system, and is completely
automatic. Moreover, the hybrid hierarchical system is based on probabilistic
and possibilistic knowledge through the use of fuzzy lattices.

In future works, we also plan to improve the accuracy rate of the hybrid
hierarchical model and the fuzzy lattice systems by including more features,
tuning training parameters and optimizing the rule set.
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Summary. This chapter focuses on the evolution of ARTMAP architectures, using
genetic algorithms, with the objective of improving generalization performance and
alleviating the ART category proliferation problem. We refer to the resulting archi-
tectures as GFAM, GEAM, and GGAM. We demonstrate through extensive exper-
imentation that evolved ARTMAP architectures exhibit good generalization and
are of small size, while consuming reasonable computational effort to produce an
optimal or a sub-optimal network. Furthermore, we compare the performance of
GFAM, GEAM and GGAM with other competitive ARTMAP structures that have
appeared in the literature and addressed the category proliferation problem in ART.

12.1 Introduction

Adaptive resonance theory (ART) was developed by Grossberg (see [18]).
Some of the ART architectures that have appeared in the literature include
Fuzzy ARTMAP (FAM) (see [10]), Ellipsoidal ARTMAP (EAM) (see [1]),
and Gaussian ARTMAP (GAM) (see [36]). All of these ART architectures
possess a number of desirable properties, such as they can solve arbitrarily
complex classification problems, they converge quickly to a solution (within a
few presentations of the list of input/output patterns belonging to the training
set), they have the ability to recognize novelty in the input patterns presented
to them, they can operate in an on-line fashion (new input patterns can be
learned by the ART system without retraining with the old input/output
patterns), and they produce answers that can be explained with relative ease.

Since, Fuzzy ARTMAP’s inception in 1992, a number of ART related
papers have appeared in the neural network literature, some of which (as
the ones mentioned above) modified the Fuzzy ARTMAP neural network so
as to improve its performance. A related, important contribution in the ART
literature is the one contributed by Petridis and Kaburlasos in 1998 ([31]),
where they introduced the Fuzzy Lattice Neural Network (FLNN), a cross
fertilization of fuzzy set theory and lattice theory, which can handle general
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types of data in addition to N -dimensional vectors. Most of the lattice work
of Kaburlasos is included in a recently published book by Springer Verlag (see
[21]) where a unified, cross-fertilizing approach for knowledge representation
and modeling based on lattice theory is presented with emphasis on cluster-
ing, classification and regression applications. Some of Kaburlasos’ recent work
related with fuzzy lattice reasoning (FLR), which is the algorithm/software
applied on a FLNN, can be found in [22].

The above references paint only an incomplete picture of the work that
researchers have contributed into the ART literature, since Fuzzy ARTMAP’s
inception. However, since our goal in this chapter is to focus on the category
proliferation problem in ART we are limiting, from this point on, our referrals
to papers that have addressed this ART problem. Quite often the category
proliferation problem in ART is connected with the issue of overtraining in
ART. Over-training happens when ART is trying to learn the training data
perfectly at the expense of degraded generalization performance (i.e., classi-
fication accuracy on unseen data) and also at the expense of creating many
categories to represent the training data (leading to the category prolifera-
tion problem). Categories in ART are formed in order to compress the input
data prior to mapping these compressed data to their respective outputs. The
categories in Fuzzy ARTMAP are hyperboxes, in Ellipsoidal ARTMAP are
ellipsoids, and in Gaussian ARTMAP they are Gaussian multi-dimensional
probability distributions represented by their center points and widths (means
and standard deviations) across every dimension. A number of authors have
tried to address the category proliferation problem in ART. Amongst them
we refer to the work by Marriott and Harrison, 1995, (see [28]), where the
authors eliminate the match tracking mechanism of Fuzzy ARTMAP when
dealing with noisy data; the work by Charalampidis et al., 2001 (see [13]),
where the Fuzzy ARTMAP equations are appropriately modified to compen-
sate for noisy data; the work by Verzi, et al., 2001 (see [35]), Anagnostopoulos,
et al., 2002 and 2003 (see [2, 3]), and Gomez-Sanchez et al., (see [16, 17]),
where different ways are introduced of allowing the ART categories to encode
patterns that are not necessarily mapped to the same output (label); the
work by Koufakou, et al., 2001, (see [25]), where cross-validation is employed
to avoid the overtraining/category proliferation problem in Fuzzy ARTMAP;
and the work by Carpenter, et al., 1998 (see [11]), Williamson, 1997 (see [37]),
Parrado, et al., 2003 (see [30]), where the ART structure is changed from the
winner-take-all to a distributed version and simultaneously slow learning is
employed with the intent of creating fewer ART categories and reducing the
effect of noisy patterns.

In this paper, we propose the use of genetic algorithms (see [15]) to solve
the category proliferation problem in ART architectures, such as FAM, EAM
and GAM.

Genetic algorithms (GAs) are a class of population-based stochastic search
algorithms that are developed from ideas and principles of natural evolution.
An important feature of these algorithms is their population based search
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strategy. Individuals in a population compete and exchange information with
each other in order to perform certain tasks. Genetic algorithms have been
extensively used to evolve artificial neural networks. For a thorough exposition
of the available research literature on evolving neural networks the interested
reader is advised to consult the work of Yao (see [40]), 1999. In [40], the
author distinguishes three different strategies in evolving neural networks.
The first strategy is the one used to search for the weights of the neural
network (see for example [32]). The second one is the one used to design the
structure of the network (see for example [27] where only the structures are
evolved, and [39], where both the structure and the interconnection weights
are evolved), and the third one is the one where the learning rules of the
neural network are evolved (see [19]). Furthermore, GAs may also be used to
select the features that are input to the neural network. Since the pioneering
work by Siedlecki and Sklanski (see [33]), genetic algorithms have been used
for many selection problems using neural networks (see [6, 38]), and other
classifiers, such as decision trees (see [4]), k-nearest neighbors (see [24]), and
Naive Bayes classifiers (see [8, 20]).

To the best of our knowledge, work that utilizes GAs and ART neural
network architectures is rather limited. For instance, in Liu, et al., 2003 (see
[26]), a GA algorithm was employed to appropriately weigh attributes of input
patterns before they were fed into the input layer of Fuzzy ARTMAP. The
results reported reveal that this attribute weighting was beneficial because
it produced a trained ART architecture of improved generalization. Further-
more, in Burton and Vladimirova, 1997 (see [7]), a Fuzzy ART neural network
is employed as a GA fitness function evaluator, however the brevity of the
published paper did not allow for the discussion of the details pertinent to
this work.

In our work here, we use GAs to evolve simultaneously the weights, as well
as the topology of the ART neural networks, such as FAM, EAM or GAM.
In contrast to the feed-forward neural networks that have been extensively
evolved, the aforementioned ART neural networks have a number of topologi-
cal constraints, such as (a) they have one hidden layer of nodes, called category
representation layer, and (b) every interconnection weight value from every
node of the input layer to a node in the hidden layer is important (e.g., in FAM
they are representing the minimum or the maximum of the values of input pat-
terns across every dimension that were encoded by this node). Consequently,
the only element of the ART’s topology that can be evolved is the number of
nodes in the category representation layer of the ART network. Furthermore,
in our application we start with a population of trained ARTs, whose number
of nodes in the hidden layer and the values of the interconnection weights con-
verging to these nodes are fully determined (at the beginning of the evolution)
by the ART’s training rules. To this initial population of ART networks, GA
operators are applied to modify these trained ART architectures (i.e., number
of nodes in the hidden layer, and values of the interconnection weights) in a
way that encourages better generalization and smaller size architectures.
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It is worth reminding the reader that, as with many neural network archi-
tectures, the knowledge in ART is stored in its interconnection weights that
have a very interesting geometrical interpretation (see [2, 9]. In particular,
the interconnection weights in Fuzzy ARTMAP (converging to the nodes in
the hidden layer) represent the lower and upper end-points of hyper-rectangles
(referred to as categories) that enclose within their boundaries clusters of data
that are mapped to the same label. Furthermore, the interconnection weights
in Ellipsoidal ARTMAP represent the size and the direction of ellipsoids that
enclose within their boundaries clusters of data that are mapped to the same
label. Finally, the interconnection weights in Gaussian ARTMAP represent
the mean vectors and variance vectors of Gaussianly distributed data that are
mapped to the same label. Eventually, the evolution of these trained ARTs
produces ART architectures, referred to as GFAM, GEAM or GGAM. GFAM,
GEAM and GGAM are extracted from the last generation of the ART evolu-
tion, as the Fuzzy ARTMAP, Ellipsoidal ARTMAP, or Gaussian ARTMAP,
respectively, that attained the highest fitness value. The fitness value of an
ART network is defined in a way that attains higher values for better gener-
alizing and smaller size ART networks.

It is apparent that, in evolving neural network architectures, one has to
decide on the genotype representation scheme for the neural network architec-
ture under consideration, on the genetic operators used to evolve these neural
network architectures, and on the fitness function used to guide this evolution.
In this paper we address these issues in a manner that fits the characteristics
of the specific ART neural network, under consideration, and our ultimate
objective of reducing category proliferation in ART, while preserving good
generalization performance. In addition to successfully addressing the issues
related with the evolution of ART structures, mentioned above, we also com-
pare in this paper the final product of ART’s evolution with other approaches
proposed in the ART literature that also addressed the category proliferation
problem in ART. This comparison is based on the accuracy of the architectures
and size of the architectures produced by these techniques. This comparison
demonstrates that GFAM, GEAM, and GGAM perform well compared to a
number of other approaches proposed in the literature that have claimed that
they address the ART category proliferation problem.

The organization of this chapter is as follows: In section 12.2 we empha-
size some of the basics of the ART architectures (FAM, EAM, GAM). In
Sect. 12.3 we also provide the step-by-step description of the evolved ART
architectures, such as GFAM, GEAM and GGAM, and we introduce the fit-
ness function used for the evolution of ART architectures. In Sect. 12.4, we
describe the experiments and the datasets used to assess the performance
of GFAM, GEAM, and GGAM. In particular, in this section we explain the
experiments that we conducted to come up with good default parameter values
for the probability of category mutation, and for the probability with which
a category is deleted in the evolution of ART architectures. Then for these
good default parameter values we assess the performance of these genetically
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engineered architectures, and we offer performance comparisons between the
GFAM, GEAM and GGAM and other ART architectures that were proposed
as solutions for the category proliferation problem in ART. In Sect. 12.5, we
summarize our findings, and we offer some conclusive remarks.

12.2 ART Preliminaries

The Fuzzy ARTMAP (FAM) neural network architecture was introduced by
Carpenter and Grossberg in their seminal paper ( see [10]). Since its introduc-
tion, other ART architectures have been introduced into the literature and the
focus on this paper is on Fuzzy ARTMAP and two other ART architectures
Ellipsoidal ARTMAP (see [1]) and Gaussian ARTMAP (see [36]). Our objec-
tive in this paper is to illustrate how we can design genetically engineered
ART architectures from a population of Fuzzy ARTMAPs, or Ellipsoidal
ARTMAPs, or Gaussian ARTMAPs. We assume that the reader is famil-
iar with all these ART architectures. In this section we will only describe the
specifics of ART architectures that are needed to understand the genetically
engineered ART structures, introduced in section 12.3. For simplicity we refer
to all these ART architectures as ART and we use their specific name (FAM,
or EAM or GAM) only when we want to discriminate one from the other.

The block diagram of an ART architecture is shown in Fig. 12.1 (for FAM)
and Fig. 12.2 (for EAM and GAM). Notice that this block diagram is sim-
pler than the block diagram of FAM, reported in Carpenter and Grossberg in
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Fig. 12.1. The block diagram of a FAM Architecture
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Fig. 12.2. The block diagram of an EAM or GAM Architecture

1992, and it has been adopted by various researchers in the field (e.g., Kasuba,
1993 [23], as well as Taghi, et al., 2003 [34]) because it can completely and
succinctly describe the functionality of a variety of ART architectures, deal-
ing with classification problems. As the focus of our paper is on classification
problems, we also adopt this simpler ART architecture. The ART architec-
ture, depicted in Fig. 12.1 (FAM) and Fig. 12.2 (EAM or GAM), has three
major layers. The input layer F a

1 where the input patterns (designated by I)
are presented, the category representation layer F a

2 , where compressed rep-
resentations of these input patterns (designated as wa

j ), are formed, and the
output layer F b

2 that holds the labels of the categories formed in the category
representation layer. An additional layer, not shown in Fig. 12.1 and Fig. 12.2,
and designated by F a

0 , is a pre-processing layer and its functionality is to pre-
process the input patterns, prior to their presentation to ART. The first level
of ART pre-processing takes the input vector and normalizes it so that each
one of its components lies in the interval [0, 1], and that is the only level of
pre-processing needed for EAM and GAM. The second level of pre-processing
(needed only for FAM) takes the normalized input vector, referred to as a
and complementary encodes it, by appending to it another vector, referred to
as ac. The complement of vector a is defined as

ac = (1− a(1), 1− a(2), . . . , 1− a(Ma)) (12.1)

where

a = (a(1), a(2), . . . , a(Ma)) (12.2)

and Ma, in the above equations, stands for the dimensionality of the input
pattern of the pattern classification task under consideration. It is worth
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mentioning that the complementary encoding of the input patterns is necessary
for the successful operation of Fuzzy ARTMAP (for an explanation see [14]),
however it is not needed by either EAM or GAM. Therefore, in this paper we
assume that the inputs to FAM are normalized and complementary encoded,
while the inputs to EAM and GAM are simply normalized (see Fig. 12.1 for
FAM, and Fig. 12.2 for EAM and GAM). Note that normalization of inputs
prior to their presentation to a neural network is common practice in the
neural network literature.

ART can operate in two distinct phases: the training phase and the per-
formance (test) phase. The training phase of ART can be described as follows:
Given a set of inputs and associated label pairs, I1, label(I1), I2, label(I2),...,
IPT , label(IPT) (called the training set), we want to train ART to map every
input pattern of the training set to its corresponding label. To achieve the
aforementioned goal we present the training set to the ART architecture
repeatedly. That is, we present I1 to F a

1 , label(I1) to F b
2 , then I2 to F a

1 ,
label(I2) to F b

2 , and finally, IPT to F a
1 , label(IPT ) to F b

2 . We present the
training set to the ART network as many times as it is necessary for ART to
correctly classify these input patterns. The task is considered accomplished
(i.e., learning is complete) when the weights in ART do not change during
a training set presentation, or after a specific number of list presentations
is reached. The performance phase of ART works as follows: Given a set of
input patterns (referred to as the test set), we want to find the ART out-
put (label) produced when each one of the aforementioned test patterns is
presented at its layer. In order to achieve this goal, we present the test set
to the trained ART network and we observe the network’s output. For the
purposes of this paper, we assume that the reader knows the details of the
training/performance phases in ART (FAM, EAM or GAM).

As we mentioned above, the weights (templates) in ART create compressed
representations of the input patterns presented to the ART network during
its training phase. These compressed representations have a geometrical inter-
pretation. In particular, every node (category) in the category representation
layer of Fuzzy ARTMAP (FAM) has template weights that completely define
the lower and upper endpoints of a hyperbox. This hyperbox includes within
its boundaries all the input patterns that chose this category as their repre-
sentative category in FAM’s training phase and were subsequently encoded
by this category. In Fig. 12.3, we show the hyperbox of a category in a FAM
architecture (2-D example), with lower endpoint uj , and upper endpoint vj ,
and the input patterns (the I’s that it has encoded). Also, every node (cat-
egory) in the category representation layer of Ellipsoidal ARTMAP (EAM)
has template weights that completely define an ellipsoid through its center,
direction of major axis, length of the major axis, and ratio of lengths of minor
axes to major axis in the ellipsoid. This ellipsoid includes within its bound-
aries all the input patterns that chose this category as their representative
category in EAM’s training phase and were subsequently encoded by this cat-
egory. In Fig. 12.4, we show the ellipsoid of a category in a EAM architecture
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Fig. 12.3. A hyperbox category representation in FAM. This hyperbox has encoded
patterns I1, I2, I3, I4. In the figure, the a portion of these input patterns is depicted,
as well as the lower end-point uj and the upper endpoint vj of this hyperbox

I4

I3
mj

dj I2

I1

Fig. 12.4. An ellipsoidal category representation in EAM. This ellipsoid has encoded
patterns I1, I2, I3, I4. In the figure, the center point mj and the direction vector dj

are shown, while the radius of the major axis, and the ratio of lengths of minor to
major axis are easily deduced from the figure

(2-D example), with center mj , direction of the major axis dj , length of the
major axis, represented by its radius rj (implied from the figure), ratio of the
lengths of minor axes to major axis µ (implied from the figure), and the input
patterns I’s that it has encoded. Finally, every node (category) in the cate-
gory representation layer of Gaussian ARTMAP has template weights that
define the mean vector, the standard deviation vector of a multi-dimensional
Gaussian distribution, and the number of points that are associated with this
Gaussian distribution. The mean vector of this Gaussian distribution and the
standard deviation vector of this Gaussian distribution are defined in terms
of the means and the standard deviations (across every dimension) of the
points that chose this node (category) as their representative category, while
the number of the points associated with this Gaussian distribution are the
number of points that chose this category as their representative category. In
Fig. 12.5, we show the Gaussian distribution of a category in a GAM architec-
ture (1-D example), with mean mj , standard deviation σj , number of points
nj (in our example nj = 4), and the input patterns (i.e., I’s) that it has
encoded.
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I4I2I3I1 mj

σj

Fig. 12.5. A Gaussian curve category representation in GAM. This Gaussian dis-
tribution has encoded patterns I1, I2, I3, I4. In the figure, the center point mj and
the standard deviation vector σj of the Gaussian curve are shown, while the number
of points nj that this Gaussian curve represents is deduced as being equal to 4
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Fig. 12.6. FAM Learning (2-D Example): (a) A category with 0 size; (b) Introduc-
ing a new pattern I2, represented by a2; (c) The category expands to include a2;
(d) Since new pattern I3, represented by a3 is inside the category, it doesn’t change
its size; (e) New Pattern I4, represented by a4 is presented; (f) Since a4 is outside
the category, the category is expanded to include a4, within its boundaries

In essence, at the beginning of training, every category of FAM starts as a
trivial hyperbox (equal to a point) and subsequently it expands to incorporate
within its boundaries all the input patterns that in the training phase choose
this hyperbox as their representative hyperbox, and are encoded by it (see
Fig. 12.6, where the category expansion of FAM is shown for an example
dataset). The size of hyperbox is the sum of the lengths of its sides.

Similarly, at the beginning of training, every EAM category starts as a
trivial ellipsoid (equal to a point) and subsequently it expands to incorpo-
rate within its boundaries all the input patterns that in the training phase
chose this ellipsoid as their representative ellipsoid, and are encoded by it
(see Fig. 12.7, where the category expansion of EAM is shown for an example
dataset). The size of the ellipsoid is measured as the length of the major axis.

Finally, at the beginning of training, every category of GAM starts as
a collection of Gaussianly distributed data, with mean equal to the input
pattern that was first encoded by this category, and a small standard deviation
vector (part a of Fig. 12.8); as training progresses in GAM this GAM category
is modified to incorporate the information of the additional input patterns
that are encoded by it (see part b of Fig. 12.8 for an illustration of how the
GAM category is modified for an example dataset). At any point in time
the mean vector of this Gaussian distribution, corresponding to a category, is
equal to the mean vector of all the input patterns encoded by the category,
and the variance vector of the Gaussian distribution is equal to the variance
vector corresponding to the input patterns that were encoded by the category.
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Fig. 12.7. EAM Learning (2-D Example): (a) A category with 0 size; (b) Intro-
ducing a new pattern I2; the category expands to include I2; (c) Introducing a new
pattern I3; since the category includes I3, it does not change its size; (d) Pattern I4

is presented; since this pattern is outside the category, the category is expanded to
include I4 within its boundaries

σ j σ j
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Fig. 12.8. GAM Learning (a) A category with 0 size; (b) Introducing a new pattern
I2; the category characteristics (mean, standard deviation, of the Gaussian curve,
as well as number of points encoded by the Gaussian curve) change to include the
new knowledge that the new input pattern brings

The ability of the category to encode new input patterns depends on the
Mahalanobis distance of an input pattern from the mean/variance vectors of
the Gaussian distribution corresponding to the category.

It is also worth mentioning that the categories in FAM, EAM and GAM
are allowed to expand up to a point allowed by a threshold, controlled by a
network parameter denoted as the baseline vigilance parameter . This parame-
ter assumes values in the interval [0, 1]. Small values of this parameter allow
the creation of large categories, while large values of this parameter allow the
creation of small categories. In the one extreme when ρ̄a is equal to 0, a FAM
or EAM category, equal to the whole input space, could be created, while at
the other extreme when ρ̄a is equal to 1 only point categories are formed.
In GAM, small values of this parameter allow more and more patterns to
be encoded by a GAM category, while large values of this parameter allow
only a few patterns to be encoded by a GAM category. It turns out that
this parameter has a significant effect on the number and type of categories
formed, and consequently it affects the performance of these networks.

The performance of ART networks is measured in terms of the number of
categories created in its training phase (small number of categories is good),
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and how well it generalizes on unseen data (high generalization accuracy is
good). In the process of discovering GFAM, GEAM or GGAM we are starting
from a population of trained FAM, EAM or GAM networks that have been
trained with different baseline vigilance parameter values, and different orders
of pattern presentations of the training data (it has been a known fact that
performance in ART is affected by the order according to which training data
are presented to an ART architecture).

The performance of Fuzzy ARTMAP (Ellipsoidal ARTMAP) is also
affected by another network parameter called choice parameter. In the training
of the Fuzzy ARTMAP (Ellipsoidal ARTMAP) networks used in our experi-
ments, we fixed this choice parameter to the value of 0.1 (0.01). The perfor-
mance of Ellipsoidal ARTMAP is also affected by another network parameter
called length of minor to major axis parameter (denoted by the symbol µ),
and expressing the ratio of lengths of minor axes versus major axis of the ellip-
soid that corresponds to an EAM category. In the training of the Ellipsoidal
ARTMAP networks used in our experiments, we fixed this choice parameter
to the value of 1. The performance of Gaussian ARTMAP is also affected by
another network parameter called initial variance parameter (denoted by the
symbol γ), and representing the initial variance of a GAM category (after it
has encoded a single input pattern). In the training of our Gaussian ARTMAP
networks, we fixed this choice parameter to the value of 0.6.

12.3 Evolution of ART Architectures

In the rest of the paper we assume that for every classification problem we are
provided with a training set, a validation test, and a test set. The training set
is used for the training of GFAM, GEAM, and GGAM architectures under
consideration. The validation set is used to optimize the produced GFAM,
GEAM or GGAM network in ways that will become apparent in the following
text. Finally, the test set is used to assess the performance of the optimized
GFAM, GEAM, or GGAM network created.

GFAM, GEAM, and GGAM are evolved FAM, EAM, GAM networks,
respectively, that are produced by applying, repeatedly, genetic operators
on an initial population of trained FAM, EAM, or GAM networks. GFAM,
GEAM, GGAM use tournament selection with elitism, as well as genetic oper-
ators, including crossover and mutation. In addition, GFAM, GEAM and
GGAM use a special operator, Catdel; this special operator is needed so
that categories could be destroyed in the ART architectures, thus leading
us, through evolution, to smaller ART structures.

To better understand how ART (FAM, or EAM, or GAM) is genetically
designed, we resort to a step-by-step description of this design. The genetic
design of ART can be articulated through a sequence of basic steps, defined
succinctly below. Before we proceed, appropriate terminology is needed and
is outlined in the Appendix to this chapter.
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The following pseudo-code shows the basic steps of GFAM, GEAM and
GGAM :

begin

1: Generate-Initial-Population()
2: Repeat
2.a. Evaluate-Fitness-And-Sort()
2.b. Selection()
2.c. CrossOver()
2.d. Catdel()
2.e. Mutate()

Until [max number of generations reached]

3. Return bestNetwork
end

Step 1: Generate Initial Population: The algorithm starts by training
Popsize ARTMAP networks (FAM, EAM or GAM), each one of them trained
with a different value of the baseline vigilance parameter ρ̄a, and order of
training pattern presentation. In particular, we first define ρ̄inc

a = ρ̄max
a −ρ̄min

a

Popsize−1 ,
and then the baseline vigilance parameter of every network is determined by
the equation ρ̄min

a + iρ̄inc
a , where i ∈ {1, 2, ..., Popsize − 1}. The choice para-

meter in a FAM network was chosen to be equal to 0.1. The choice parameter
in an EAM network was chosen to be equal to 0.01. The ratio of the length
of the minor axes to major axes in EAM was chosen equal to 1. The initial
value of the standard deviation γ in a GAM network is chosen to be equal
to 0.6. In our experiments with GFAM and GEAM we chose ρ̄min

a = 0.1 and
ρ̄max

a = 0.95, while in our experiments with GGAM we chose ρ̄min
a = 0.1 and

ρ̄max
a = 0.75.

We assume that the reader is familiar with how training of FAM, EAM and
GAM networks is accomplished, and thus the details here are omitted. Once
the Popsize networks are trained, they need to be converted to chromosomes
so that they can be manipulated by the genetic operators. The following is a
description of the encoding schemes used in GFAM, GEAM and GGAM:

• GFAM uses a real number representation to encode the networks. Each
FAM chromosome consists of two levels, level 1 containing all the categories
of the FAM network, and level 2 containing the lower and upper endpoints
of the hyperboxes, representing every category in level 1, as well as the
label of every category in level 1 (see Fig. 12.9). We denote a category
of a trained FAM network with index p, 1 ≤ p ≤ Popsize, by wp

j , where
wa

j (p) = (ua
j (p), (va

j (p))c, lj(p)), where ua
j (p), and va

j (p) are the lower and
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Fig. 12.10. GEAM chromosome structure. At level 2, the category’s weight wa
j

contains the information of the center, ma
j , the direction vector of the major axis,

da
j , the radius (half length) of the major axis, rj , and the ratio of the lengths of the

minor axes over the length of the major axis, µj , of the ellipsoid corresponding to
this category, as well as the label lj of the category

upper endpoints of the hyperbox corresponding to this category, and lj(p)
is the label of this category.

• GEAM also uses a real number representation to encode the networks.
Each EAM chromosome consists of two levels, level 1 containing all the
categories of the EAM network, and level 2 containing the center, direc-
tion, radius of the major axis, the ratio of the minor axes to major
axis of every category (ellipsoid) in level 1, as well as the label of the
category (see Fig. 12.10). We denote the category of a trained EAM
network with index p, 1 ≤ p ≤ Popsize, by wa

j (p), where wa
j (p) =

(ma
j (p),da

j (p), ra
j (p), µa

j (p), lj(p)). The first four components of this vector
are the center, direction of the major axis, half length of the major axis,
and ratio of the lengths of minor axes to major axis of the ellipsoid that
represents this category, while the fifth component of this vector is the
label of this category.

• GGAM also uses a real number representation to encode the networks.
Each GAM chromosome consists of two levels, level 1 containing all the
categories of the GAM network, and level 2 containing the mean, standard
deviation, number of training patterns, and the label of every category
(Gaussian curve) in level 1 (see Fig. 12.11). We denote the category of a
trained GAM network with index p, 1 ≤ p ≤ Popsize, by wa

j (p), where
wa

j (p) = (ma
j (p), σa

j (p), na
j (p), lj(p)). The first three components of this

vector are the mean, standard deviation, and number of patterns that chose
this category as their representative category, while the fourth component
of this vector is the label of the category.



246 A. Daraiseh et al.

Chromosome p 

Level 1

Level 2

w1
a ( p) w2

a (  p) wj
a ( p)

m
j

a
( p) n

j

a 
( p) l

j

a
( p)σ

j

a 
( p)

w
a
Na

 ( p)

Fig. 12.11. GGAM chromosome structure. At level 2, the category’s weight wa
j

contains the information of the center of the Gaussian curve, ma
j , the standard

deviation vector of the Gaussian curve, σa
j , and the number of points represented

by the Gaussian curve, nj , as well as the label lj of the category

In this step, we eliminate all single-point categories in the trained networks,
referred to as cropping the chromosomes. Since our ultimate objective is to
design a network that reduces the network size and improves generalization
we discourage at this stage the creation of single-point categories. Our exper-
iments have shown that cropping single-point categories is beneficial because
it speeds-up the convergence of the GA.
Step 2 (Apply Genetic Operators): In this step a GA is applied to the
population of the ART trained networks.

• Sub-step 2a (Fitness Evaluation): Calculate the fitness of each ART
chromosome (ART trained network). The fitness function for the p-th ART
network is denoted by Fit(p), and it depends on the PCC(p) and Na(p)
values of this network. Note that, PCC(p) designates the percentage of
correct classification, exhibited by the p-th network, on the validation set,
while Na(p) is the number of categories of the p-th network. The fitness
function Fit(p) of the p-th network is defined as follows:

Fit(p) = PCC(p)− 0.5(Na(p)− Catmin) (12.3)

Obviously, this fitness function increases as PCC(p) increases or as Na(p)
decreases. The value of Catmin is chosen to be equal to the number of
classes of the classification problem at hand. It is evident from the fitness
equation that one percentage of better correct classification of a network,
or two categories less of a network, increase the fitness function by the
same amount (i.e., by an amount of 1). This is one of the simplest ways of
defining a fitness function that depends on two measures (generalization
of the network and size of the network) and has been extensively adopted
in the classification literature (e.g., see [5]).

• Sub-step 2b (Selection): Initialize an empty generation referred to as
the temporary generation. The algorithm searches for the best NCbest chro-
mosomes (i.e., the chromosomes having the NCbest highest fitness values)
from the current generation and copies them to the temporary generation
without change.

• Sub-step 2c (Cross-Over Operation): The remaining Popsize−NCbest

chromosomes in the temporary generation are created by crossing over
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pairs of parents from the current generation. The parents are chosen
using a deterministic tournament selection, as follows: Randomly select
two groups of four chromosomes each from the current generation, and
use as a parent, from each group, the chromosome with the best fitness
value in the group. If it happens that from both groups the same chro-
mosome is chosen then we choose from one of the groups the chromosome
with the second best fitness value. If two parents with indices p, p′ are
crossed over, two random numbers n, n′ are generated from the index sets
1, 2, ..., Na(p) and 1, 2, ..., Na(p′), respectively. Then, all the categories with
index greater than index n′ in the chromosome with index p′ and all the
categories with index less than or equal to index n in the chromosome
with index p are moved into an empty chromosome within the temporary
generation. Notice that crossover is done at level 1 of the chromosome.
This operation is pictorially illustrated in Fig. 12.12.

• Sub-step 2d (Category Deletion): The operator Catdel deletes one of
the categories of every chromosome (created in Step 2c) with probabil-
ity Pr(Catdel). If a chromosome is chosen to have one of its categories
deleted then this category is picked randomly from the collection of the
chromosome’s categories; however if the number of categories for this chro-
mosome, due to deletion, falls below the designated minimum number of
categories Catmin the deletion is prohibited.

• Sub-Step 2e (Category Mutation): Every chromosome created by step
2d gets mutated as follows:
– In GFAM, with probability Pr(Mut) every category is mutated. If a

category is chosen to be mutated, either its u or v endpoint is selected
randomly (with 50% probability) and then every component of this
selected vector gets mutated by adding to it a small number. This num-
ber is drawn from a Gaussian distribution with mean 0 and standard
deviation 0.01. If the component of the chosen vector becomes smaller
than 0 or greater than 1 (after mutation), it is set back to 0 or 1,
respectively.

w2
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Fig. 12.12. GFAM, GEAM, GGAM Crossover implementation. In crossover the
weight vectors of chromosome p, with index smaller than or equal to index n, and
the weight vectors of chromosome p′ with index larger than n′, are combined (con-
catenated) to produce a new chromosome
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– In GEAM, with probability Pr(Mut) every category is mutated. If a
category is chosen to be mutated, then every component of the ellip-
soidal center m gets mutated by adding to it a small number. This
number is drawn from a Gaussian distribution with mean 0 and stan-
dard deviation 0.01. If the component of the chosen vector becomes
smaller than 0 or greater than 1 (after mutation), it is set back to 0
or 1, respectively. Furthermore, the mutated category’s axis ratio µ or
radius r is selected with 50% probability. We add a small number, to the
axis ratio or the radius, if they are chosen to be mutated. The small
number is drawn from a Gaussian distribution with zero mean and
standard deviation 0.01. However if µ, or r, due to mutation, become
larger than 1, they are set back to the value of 1, while if they become
smaller than zero we set their value to 0.0001.

– In GGAM, with probability Pr(Mut) every category is mutated. If a
category is mutated, its mean vector m, or standard deviation vector
σ is selected randomly (50% probability). Then every component of
this selected vector is mutated by adding to it a small number. This
number is drawn from a Gaussian distribution with mean 0 and stan-
dard deviation 0.01. If the component of the chosen vector becomes
smaller than 0 or greater than 1 (after mutation), it is set back to 0 or
1, respectively.
Notice that mutation is applied at level 2 of the chromosome structure.
The label of the chromosome is not mutated because our initial GA
population consists of trained networks, and consequently we have a lot
of confidence in the labels of the categories that these trained networks
have discovered through the training process.

Step 3: If evolution has not reached the maximum number of iterations,
Genmax, replace the current generation with the members of the temporary
generation and go to step 2a. Otherwise calculate the performance of the
best-fitness network on the test set.

12.4 Experiments and Results

We conducted a number of experiments to assess the performance of the
genetically engineered ART architectures. There were two objectives for this
experimentation. The first one is to find proper values for the ranges of two
of the GA parameters, the probability of deleting a category, Pr(Catdel), and
the probability of mutating a category, Pr(mut). The second objective is to
compare GFAM, GEAM and GGAM performance (for good parameter values)
to that of popular ART architectures, such as ssFAM, ssEAM, ssGAM, and
micro-ARTMAP.
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12.4.1 Databases

We have experimented with 19 databases, 16 simulated databases and 3 real
databases. Each dataset in the database was randomly divided into three sub-
sets; training, validation and testing. Each one of these datasets is described,
in more detail, in the text that follows.

• Gaussian Databases: (# 1-12) These are artificial databases, where
we created 2-dimensional data sets, Gaussianly distributed, belonging to
2-class, 4-class, and 6-class problems. In each one of these databases, we
varied the amount of overlap of data belonging to different classes. In
particular, we considered 5%, 15%, 25%, and 40% overlap. Note that 5%
overlap means that the optimal Bayesian Classifier would have 5% mis-
classification rate on the Gaussianly distributed data. There are a total of
3×4=12 Gaussian databases. We refer to these databases as G#c-##
where the first number is the number of classes and the second number
is the percentage of class overlap. For example, G2c-05 means that the
Gaussian database is a 2-class and 5% overlap database.

• Structures within a Structure databases: These are artificial data-
bases that were inspired by the circle (structure) - in the - square (struc-
ture) problem. This problem has been extensively examined in the ART,
and other than ART neural network literature. Four different datasets were
generated by changing the structures (type, number and probability) that
we were dealing with. The data-points within each structure of these arti-
ficial datasets are uniformly distributed within the structure. The number
of points within each structure is chosen in a way that the probability of
finding a point within this structure is equal to a pre-specified number.
Some of these artificial datasets were also considered in [30] where four
different ART architectures were compared, Fuzzy ARTMAP, FasART,
distributed Fuzzy ARTMAP, and distributed FasART.
4Ci/Sq (# 13): This is a four circle in a square problem, a five class
classification problem. The probability of finding a data point within a
circle or inside the square and outside the circles is equal to 0.2. We refer
to this database as 4Ci/Sq.
1Ci/Sq (# 14): This is a one circle in a square problem, a two class
classification problem. The probability of finding a data point within a
circle or inside the square and outside the circle is equal to 1/2. The sizes
of the areas in the circle and outside the circle and inside the square are
the same. This is the benchmark circle in the square problem. We refer to
this database 1Ci/Sq.
1Ci/Sq/30:70 (# 15): This is a one circle in a square problem, a two
class classification problem. The probability of finding a data point within
a circle or inside the square and outside the circle is equal to 0.3 and 0.7,
respectively. The sizes of the areas in the circle and outside the circle and
inside the square are 0.3 and 0.7, respectively. This is a modified version
of the circle in the square problem. We refer to this database as 30:70.



250 A. Daraiseh et al.

2Ci/Sq/20:30:50 (# 16): This is two circles in a square problem, a
three class classification problem. One of the circles is smaller than the
other. The probability of finding a data point within the small circle, the
large circle, and outside the circles but inside the square is 0.2, 0.3, and
0.5, respectively. We refer to this database as 20:30:50.

• Modified Iris (MOD-IRIS) Database (# 17): In this database we
started from the IRIS dataset (see [29]) of the 150 data-points, 3-class
problem. We eliminated the data corresponding to the class that is linearly
separable from the other 2 classes. Thus, we ended up with 100 data-points.
From the four input attributes of this IRIS dataset we focused on only two
attributes (attribute 3 and 4) because they seem to have enough discrim-
inatory power to separate the 2-class data. Finally, in order to create a
reasonable size dataset from these 100 points (so we can reliably perform
cross-validation to identify the optimal ART, genetically engineered ART
networks) we created noisy data around each one of these 100 data-points
(the noise was Gaussian of zero mean and small variance) to end up with
approximately 10,000 points. We named this database Modified Iris. We
refer to this database as MOD-IRIS.

• Modified Abalone (ABALONE) Database (# 18): This database
is originally used for prediction of the age of an abalone (see [29]). It
contains 4177 instances, each with 7 numerical attributes, 1 categorical
attribute, and 1 numerical target output (age). We discarded the categor-
ical attribute in our experiments, and grouped the target output values
into 3 classes: 8 and lower (class 1), 9-10 (class 2), 11 and greater (class 3).
This grouping of output values has been reported in the literature before.
We refer to this database as ABALONE.

• Page Blocks (PAGE) Database (# 19): This dataset represents the
problem of classifying the blocks of the page layout in a document (see
[29]). It contains 5473 examples coming from 54 distinct documents. Each
example has 10 numerical attributes (e.g., height of the block, length of the
block, eccentricity of the block, etc.,) and one target (output) attribute,
representing the type of the block (text, horizontal line, graphic, vertical
line, and picture). One of the noteworthy points about this database is that
its major class (text) has a high probability of occurring (above 80%). This
dataset has five classes, four of them make only 10% of the total instances.
We refer to this database as PAGE.

The summarized specifics of each one of the aforementioned datasets are
depicted in Table 12.1.

12.4.2 Selection of the GA parameters

As we have mentioned above, part the first objective of our experimentation
was devoted to the selection of good values for the GA parameters: probability
of deleting an ART category, Pr(Catdel), and probability of mutating an
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Table 12.1. Datasets used for experimentation, and their characteristics

Database # Training # Validation # Test # Attri- # % Major
Name Instances Instances Instances butes Classes Class

1 G2c-05 500 5000 5000 2 2 50.0
2 G2c-15 500 5000 5000 2 2 50.0
3 G2c-25 500 5000 5000 2 2 50.0
4 G2c-40 500 5000 5000 2 2 50.0
5 G4c-05 500 5000 5000 2 4 25.0
6 G4c-15 500 5000 5000 2 4 25.0
7 G4c-25 500 5000 5000 2 4 25.0
8 G4c-40 500 5000 5000 2 4 25.0
9 G6c-05 504 5004 5004 2 6 16.7

10 G6c-15 504 5004 5004 2 6 16.7
11 G6c-25 504 5004 5004 2 6 16.7
12 G6c-40 504 5004 5004 2 6 16.7
13 4Ci/Sq 2000 5000 3000 2 5 20.0
14 1Ci/Sq 2000 5000 3000 2 2 50.0
15 30:70 2000 5000 3000 2 2 70.0
16 20:30:50 2000 5000 3000 2 3 50.0
17 MOD-IRIS 500 4800 4800 2 2 50.0
18 ABALONE 501 1838 1838 7 3 33.3
19 PAGE 500 2486 2487 10 5 83.2

ART category, Pr(Mut). As it is evident from our prior discussion there
are a few other GA parameters that one has to carefully choose, such as
Popsize, Genmax, and NCbest; we did not perform exhaustive experimentation
to decide on the values of these parameters, but limited experimentation with
these parameters for some of the above databases showed that reasonable
choices for these parameters were: Popsize = 20, Genmax = 500, NCbest = 3.

Our approach to select good values for the GA parameters Pr(Catdel),
and Pr(Mut) consisted of a number of steps delineated below:

• Select GA Step 1: We selected four different values for the Pr(Catdel)
to experiment with. These were: 0.05, 0.1, 0.2, and 0.4. We also selected
four different values for the Pr(Mut) to experiment with. These were: 0.0,
0.1, 0.2, and 0.4. This resulted in 16 combinations of parameter settings
for Pr(Catdel), and Pr(Mut).

• Select GA Step 2: For each one of the 16 settings of the Pr(Catdel),
and Pr(Mut) parameters, and for each of the 19 databases, described in
an earlier section, we applied the GA optimization of FAMs, EAMs, and
GAMs, as delineated in Sect. 12.2, 10 different times (using a different
initial seed for the GA optimization). Consequently, for each database,
and each parameter setting, and each of the genetically engineered ART
algorithms we obtained 10 PCC and 10 Na numbers.

• Select GA Step 3: For each genetically engineered ART algorithm (i.e.,
GFAM, GEAM,or GGAM),and each dataset,we chose the best-performing
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(with respect to average validation PCC of the 10 experiments) parameter
setting. Then, we used ANOVA statistical tests to choose other parameter
settings that did not significantly differ (statistically) from the best per-
forming parameter setting. We marked these parameter settings as good
settings for this database and the associated GART (GFAM or GEAM or
GGAM) algorithm.

• Select GA Step 3: After we performed Step 3 for all databases and all
genetically engineered ART algorithms we counted the number of data-
bases for each GART algorithm for which a particular parameter setting
was deemed as “good” from the Select GA Step 3. Based on these counts
we recommended the best parameter setting for each GART algorithm,
and a range of acceptable parameter settings.

The following table (Table 12.2) summarizes the results for GFAM. Similar
tables have been produced for GEAM and GGAM but are omitted due to
lack of space. In Table 12.2 an entry of “1” for a database indicates that the
corresponding parameter setting performed well (with respect to the average
PCC on the validation set). An underscored “1” entry indicates that the
corresponding parameter setting performed the best for this database (with
respect to the average PCC on the validation set). In Table 12.2 the “1” entries
corresponding to the Number of Categories criterion (actually average number
of categories criterion) are omitted to preserve the table’s clarity. However an
entry of “1” for the PCC resulted also in an entry of “1” for the Number of
Categories (not shown in Table 12.2). In Table 12.2 we designated with an
asterisk the parameter setting that performed best for this database (with
respect to the average Number of Categories criterion). A careful observation
of the results shown in Table 12.2 indicate that any value of Pr(Catdel) in
the interval [0.2, 0.4], and any value of the Pr(Mut) in the interval [0.05, 0.4]
gives good results. Also, the results from Table 12.2 indicate that the best
performing parameter setting for GFAM is Pr(Catdel) = 0.1, and Pr(Mut) =
0.4, since for this parameter setting we observe the highest number of good
performances (19), and best performances (7) of the associated GFAM (the
count of the best performances consider the best observed performances with
respect to the average PCC on the validation set or the average number of
categories). Finally, we can also deduce from the results of Table 12.2 that a
probability of mutation equal to 0 is not recommended, since it always (for
all databases) results in a GFAM network that is not performing well.

From similar tables produced for GEAM and GGAM (omitted due to lack
of space) we can draw similar conclusions. In particular, a careful observation
of the GEAM results indicate that any value of Pr(Catdel) in the interval
[0.2, 0.4], and any value of the Pr(Mut) in the interval [0.05, 0.4] gives good
results for GEAM. Also, the best performing parameter setting for GEAM is
Pr(Catdel) = 0.2, and Pr(Mut) = 0.4, since for this parameter setting we
observe the highest number of good performances (19), and best performances
(6) of the associated GEAM. Finally, a probability of mutation equal to 0
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Table 12.2. Goodness of Parameter Settings for the GA parameters Pr(Catdel),
and Pr(Mut). An entry of “1” in the table indicates that the corresponding para-
meter setting is good, while the lack of an entry “1” indicates that the parameter
setting is not good. The column before last counts the number of “1” entries for a
particular parameter setting that are good, while the last column counts the num-
ber of times that a particular parameter setting is the best of all parameter settings
(with respect to the average PCC on the validation set or the average number of
categories). Entries are depicted for the PCC value and not for the number of cate-
gories value, in order to avoid cluttering the table; however whenever there is a “1”
or lack of a “1” entry for the PCC value there is also a “1” or lack of a “1” entry
for the number of categories value. Underscored “1” entries in this table designate
parameter settings for which we obtained the best result related to the average PCC
value, while asterisks designate parameter settings for which we obtained the best
result with respect to the average number of categories value
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is not recommended for GEAM, since it always (for all databases) results
in a GEAM that is not performing well. Additionally, a careful observation
of the GGAM results indicate that any value of Pr(Catdel) in the interval
[0.2, 0.4], and any value of the Pr(Mut) in the interval [0.05, 0.4] gives good
results for GGAM. Also, the best performing parameter setting for GGAM
is Pr(Catdel) = 0.4, and Pr(Mut) = 0.1, since for this parameter setting we
observe the highest number of good performances (19), and best performances
(4) of the associated GGAM. Finally, a probability of mutation equal to 0 is
not recommended for GGAM, since it always (for all databases) results in a
GGAM that is not performing well.

12.4.3 Comparison of GART with other ART architectures

The second objective of our experimentation was to compare GFAM, GEAM,
and GGAM (summarily referred to as GART ) with other ART architectures
that have previously addressed the category proliferation problem in ART.
The ART architectures that we chose to compare GFAM, GEAM, GGAM with
are: ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP. The first three are
based on the principle of semi-supervision, introduced by Anagnostopoulos,
et al., 2002, [2], and Verzi, et al., 2001, [35]. Semi-supervision is a term
attributed to learning in an ART architecture (FAM, EAM or GAM), where
categories in ART are allowed to encode patterns of different labels provided
that the percentage of patterns that belong to the plurality label exceed a
certain threshold. Safe micro-ARTMAP is a Fuzzy ARTMAP that allows cat-
egories in Fuzzy ARTMAP to encode patterns that are mapped to different
labels. In safe micro-ARTMAP (see Gomez-Sanchez, et al., 2001, [16]) though
the mixture of labels allowed in a category, or in all of the categories is con-
trolled by the entropy of the category or categories.

For each of the ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP net-
works, and for each of the 19 databases, we performed a number of experi-
ments with different settings of their network parameter values. For each one
of these network parameter settings we calculated the resulting network’s fit-
ness function (we used the same fitness function as the one utilized for the
GART networks (see equation 12.3)). For the training of ssFAM, ssEAM,
ssGAM, and safe micro-ARTMAP we used the same training set as the one
used for the GART networks, and for the validation of the performance of
each of the ssFAM, ssEAM, ssGAM, and Safe micro-ARTMAP networks we
used the same validation set as the one used for the GART networks. The
parameter setting of the ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP
network that maximized the fitness function was chosen as the best parame-
ter setting for the specific database; the number of categories created by the
“best” parameter setting network, and its corresponding percentage of correct
classification on the test set are reported in Table 12.3.

In particular, the parameter settings that we experimented with ssFAM
were: baseline vigilance values ranging from 0 to 0.9 with step size of 0.1, choice
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parameter values of 0.001 and 0.01, maximum allowable mixture threshold val-
ues ranging from 0 to 1 with step size of 0.1, and 100 different orders of pattern
presentations of the training data (resulting in 22,000 different parameter set-
tings). Furthermore, the settings for ssEAM were: baseline vigilance values
ranging from 0 to 0.9 with step size of 0.1, choice parameter values of 0.001
and 0.01, maximum allowable mixture threshold values ranging from 0 to 1
with step size of 0.1, minimum axes to maximum axis ratio values ranging from
0.1 to 1 with step size of 0.1, and 100 different orders of pattern presentations
of the training data (resulting in 220,000 different parameter settings). Also,
the settings for ssGAM were: baseline vigilance values ranging from 0 to 0.9
with step size of 0.1, initial standard deviation parameter ranging from 0.1 to
1 with step size of 0.1, maximum allowable mixture threshold values ranging
from 0 to 1 with step size of 0.1, and 100 different orders of pattern presenta-
tions of the training data (resulting in 110,000 different parameter settings).
Finally, the settings for safe micro-ARTMAP were: baseline vigilance values
ranging from 0 to 0.4 with step size of 0.2, baseline vigilance parameter values
of 0.001 and 0.01, 5 values for the maximum “all-categories” entropy thresh-
old, 6 different ratios of the values of the “categories” entropy threshold to
the “all-categories” entropy threshold, three values of the maximum allowable
expansion of a category, and 100 different orders of pattern presentations of
the training data (resulting in 90,000 different parameter settings).

The best parameter setting, identified in the previous sub-section, for
GFAM, GEAM, and GGAM was used for each of the 19 databases. Ten (10)
experiments per database were conducted for 10 different initial seeds of the
GA optimization process. The network that produced the maximum value of
the fitness function, was deemed as “best”. The number of categories of the
“best” GFAM, GEAM and GGAM for each database and its corresponding
performance (PCC) on the test set are reported in Table 12.3. The results
shown in Table 12.3 are truncated to one decimal place.

12.4.4 Observations from the results

Some of the conclusions that can be deduced from the comparative results,
depicted in Table 12.3, are emphasized below.

• Observation 1 (Overall Performance of GART networks): GFAM,
GEAM and GGAM attain good performance on all the datasets, and quite
often, optimal performance (e.g., see performance of all the networks in the
Gaussian databases, and performance of GGAM on the structures-within-
structure problems, and on the real databases). The best performing net-
work from the class of GART networks (GFAM, GEAM, and GGAM) is
GGAM.

• Observation 2 (Comparative Performance of GART networks,
with respect to each other). GGAM and GEAM outperform the per-
formance of GFAM on all the structures, within structure problems. For
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Table 12.3. Best results obtained from GFAM, GEAM and GGAM compared to
best results obtained from Safe µARTMAP, ssFAM, ssEAM and ssGAM

Dataset GFAM GEAM GGAM Safe µAM ssFAM ssEAM ssGAM
Name PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat

G2c-05 95.4 2 95.3 2 95.3 2 95.2 2 94.7 2 94.6 2 94.6 2
G2c-15 85.3 2 85.2 2 85.2 2 85.0 2 85.5 2 85.2 2 85.5 2
G2c-25 75.2 2 75.2 2 75.2 2 74.9 2 75.0 2 75.1 2 75.0 2
G2c-40 62.0 2 61.8 2 61.7 2 61.4 3 59.5 2 59.5 2 59.5 3
G4c-05 95.1 4 95.0 4 95.0 4 95.0 4 94.5 5 94.9 4 95.5 4
G4c-15 84.7 4 84.6 4 84.7 4 83.2 4 82.7 4 82.0 4 83.4 6
G4c-25 75.0 4 75.1 4 75.3 4 74.5 4 70.3 9 72.9 4 72.3 21
G4c-40 59.9 4 59.8 4 75.3 4 58.9 4 57.8 7 54.7 7 59.5 14
G6c-05 94.8 6 94.7 6 94.8 6 92.3 6 87.2 8 93.4 6 94.6 8
G6c-15 84.8 6 85.1 6 85.2 6 80.9 6 80.5 6 82.0 7 83.4 9
G6c-25 74.3 6 74.1 6 74.4 6 67.9 6 70.2 15 71.4 7 71.2 13
G6c-40 60.1 6 59.9 6 60.0 6 54.0 6 55.1 17 49.3 7 55.1 13
4Ci/Sq 95.0 9 99.1 7 98.9 6 95.4 8 87.2 18 94.6 5 93.4 12
1Ci/Sq 97.7 7 99.6 3 99.8 2 94.7 8 92.9 8 97.0 8 91.0 8
30:70 97.9 6 99.9 2 99.9 2 96.8 8 93.2 8 97.1 8 92.3 8
20:30:50 97.5 5 98.1 3 99.5 3 97.2 6 90.2 12 97.0 3 95.6 9
MOD-IRIS 95.3 2 95.3 2 94.9 2 94.9 2 94.7 8 94.7 2 94.7 2
ABALONE 61.8 3 62.2 3 62.6 3 58.1 3 60.0 6 58.8 3 56.3 2
PAGE 96.7 5 95.0 5 96.2 5 92.9 5 87.9 3 93.8 2 94.3 5

all the other problems the differences between GEAM, and GGAM versus
GFAM are not statistically significant.

• Observation 3 (Comparative Performance of GART networks
compared with ssFAM): ssFAM performs as well as the GART net-
works for the 2-class Gaussian datasets. For all the other datasets at least
one (if not all) the GART networks perform better (achieving higher PCC
with fewer ART categories). The largest difference in PCC observed is
almost 12% (for the 4 Circle in the Square problem), while the largest
ratio of number of ssFAM versus GART categories is for the modified
IRIS problem (ratio of 4).

• Observation 4 (Comparative Performance of GART networks
compared with ssEAM): ssEAM performs as well as the GART net-
works for the 2-class Gaussian datasets. For all the other datasets at least
one (if not all) the GART networks perform better (achieving higher PCC
with fewer ART categories). The largest difference in PCC observed is more
than 10% (for the 6 class Gaussian problem with 40% overlap), while the
largest ratio of number of ssEAM versus GART categories is for Circle in
the Square problem (ratio of 4).

• Observation 5 (Comparative Performance of GART networks
compared with ssGAM): ssGAM performs as well as the GART net-
works for the 2-class Gaussian datasets. For all the other datasets at least
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one (if not all) the GART networks perform better (achieving higher PCC
with fewer ART categories). The largest difference in PCC observed is
more than 8% (for the 1 Circle in the Square problem), while the largest
ratio of number of ssGAM versus GART categories is for the four Gaussian
dataset with 25% overlap problem (ratio larger than 5).

• Observation 6 (Comparative Performance of GART networks
compared with safe micro-ARTMAP): Safe micro-ARTMAP per-
forms as well as the GART networks for the 2-class, and 4-class Gaussian
datasets. For all the other datasets at least one (if not all) the GART net-
works perform better (achieving higher PCC with fewer ART categories).
The largest difference in PCC observed is more than 6% (for the 6 class
Gaussian dataset with 25% overlap), while the largest ratio of number
of safe micro-ARTMAP versus GART categories is for the Circle in the
Square problem (ratio of 4).

What is also worth pointing out is that the better performance of the
GART network is attained with reduced computations as compared with the
computations needed by the alternate methods (ssFAM, ssEAM, ssGAM, safe
micro-ARTMAP). Specifically, the performance attained by ssFAM, ssEAM,
ssGAM and the safe micro-ARTMAP required training these networks for a
large number of network parameter settings (at least 22,000 experiments) and
then choosing the network that achieved the highest value for the fitness
function that we introduced earlier (through cross-validation). In GFAM,
GEAM and GGAM cases we trained only a small number of these networks
(Popsize = 20 of them), compared to the large number of networks trained
in the ssFAM, ssEAM, ssGAM or micro-ARTMAP cases (at least 22,000).
Furthermore, in GFAM, GEAM and GGAM cases we evolved the trained
networks Genmax = 500 times, each evolution requiring cross-validating
Popsize = 20 networks. Hence, the total number of networks cross-validated
in the ssFAM, ssEAM, ssGAM and micro-ARTMAP cases were at least
22,000, while in the GFAM, GEAM and GGAM networks were 10,000;
furthermore the networks cross-validated in the ssFAM, ssEAM, ssGAM,
and micro-ARTMAP cases have higher number of category nodes than the
ones cross-validated in the GFAM, GEAM and GGAM cases. As a result, we
can argue that the improved performance (smaller number of nodes and bet-
ter generalization) of GFAM, GEAM, and GGAM, compared with ssFAM,
ssEAM, ssGAM, and micro-ARTMAP, is achieved with reduced computa-
tional effort.

12.5 Conclusions

Adaptive Resonance Theory (ART) neural networks have been introduced
into the literature by Carpenter, Grossberg and their colleagues at Boston
University, as well as other researchers in the field. The consensus with ART
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networks is that they converge fast to a solution for arbitrary classification
problems they can provide explanations for the answers that they produce,
they can function in an on-line training mode, and they solve effectively a
variety of classification problems. However, all these benefits sometimes come
at the expense of unnecessarily creating (at times) too many categories to
solve the problem at hand, referred to as the category proliferation problem in
ART. This problem is more acute when ART is confronted with classification
problems that deal with noisy or highly overlapping data. To alleviate this
problem a number of researchers have proposed solutions such as ssFAM,
ssEAM (see Anagnostopoulos, et al., 2002 and 2003, [2, 3], and Verzi, et
al., 2001, [35]), ssGAM (see Chalasani, 2005 [12]), Safe micro-ARTMAP (see
Gomez, et al., 2001, [16]), dFAM (Carpenter, et al., 1998, [11]), FasART, and
dFasART (Parado-Hernandez, et al., 2003, [30]), to mention only a few.

In this paper, we have introduced yet another method of solving the cat-
egory proliferation problem in ART. This method relies on evolving a popu-
lation of trained ART networks, such as FAM, EAM or GAM. The evolution
of trained ART networks creates an ART network, referred to as GFAM, or
GEAM or GGAM.

We have experimented with a number of databases that helped us identify
good default parameter settings for the evolution of FAM, EAM or GAM.
We defined a fitness function that gave emphasis to the creation of a small
size ART networks which exhibited good generalization. In the evolution of
ART trained networks, we used a unique (and needed) category operator,
referred to as Catdel operator (this operator allowed us to evolve into ART
networks of smaller size). The ART network identified at the end of the evo-
lutionary process (last generation) was the FAM, EAM or GAM network that
attained the highest fitness value (referred to as GFAM, GEAM, or GGAM,
respectively). Our method for creating GFAM, GEAM and GGAM resulted
in a networks that performed well on a number of classification problems, and
on a few of them it performed optimally (see our observations in earlier
sections).

Furthermore, GART networks were found to be superior to a number of
other ART networks (ssFAM , ssEAM , ssGAM , safe micro-ARTMAP ) that
have been introduced into the literature to address the category proliferation
problem in ART. More specifically, GFAM , GEAM , and GGAM gave a
better generalization performance (in almost all problems tested) and a
smaller than, or equal, size network (in all problems tested), compared to
these other ART networks, requiring reduced computational effort to
achieve these advantages. More specifically, in some instances the difference
in classification performance of GFAM, GEAM, and GGAM with these other
ART networks quite significant (as high as 12%). Also, in some instances
the ratio of the number of categories created by these other ART networks,
compared to the categories created by GFAM, GEAM or GGAM was large
(as high as 5).
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Chapter 12 Appendix

GFAM: It denotes the genetically engineered Fuzzy ARTMAP architecture.
GEAM: It denotes the genetically engineered Ellipsoidal ARTMAP architec-
ture.
GGAM: It denotes the genetically engineered Gaussian ARTMAP architec-
ture.
GART: It is a generic name referring to the genetically engineered ART
architectures, as a whole, such as GFAM, GEAM, and GGAM.
ssFAM: It denotes the semi-supervised Fuzzy ARTMAP architecture. For
more details see [2, 3].
ssEAM: It denotes the semi-supervised Ellipsoidal ARTMAP architecture.
For more details see [2, 3].
ssGAM: It denotes the semi-supervised Gaussian ARTMAP architecture.
For more details see [12].
Safe micro-ARTMAP: It the ART architecture introduced by Gomez-
Sanchez, et al., in 2001 (see [16]).
ρ̄a; Baseline Vigilance Parameter: One of the parameters of the Fuzzy
ARTMAP (FAM), Ellipsoidal ARTMAP (EAM) and Gaussian ARTMAP
(GAM) architectures that controls the size of the categories created in FAM,
EAM and GAM.
Choice Parameter: One of the parameters of the Fuzzy ARTMAP (FAM)
and Ellipsoidal ARTMAP (EAM) architectures that controls the value of
bottom-up input of a category in FAM or EAM.
γ; Initial Standard Deviation Parameter: One of the parameters of
the Gaussian ARTMAP architecture that controls the initial width of the
Gaussian probability distribution of a GAM category.
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µ; Minor Axes to Major Axis Parameter: One of the parameters of the
Ellipsoidal ARTMAP architecture that defines the ratio of the minor axes to
major axis of the ellipsoidal categories in the EAM architecture.
m; Center of a Category: One of the parameters that describes a category
in EAM or GAM. In EAM it corresponds to the center of the ellipsoidal cat-
egory, while in GAM it corresponds to the center of the Gaussian probability
distribution, representing a GAM category.
d; Direction Vector of a Category: One of the parameters that describes
a category in EAM. It corresponds to the direction of the major axis of the
ellipsoid.
r; Radius of a Category: One of the parameters that describes a category
in EAM. It is equal to the half length of the major axis.
σ; Standard Deviation Vector of a Category: One of the parameters
that describes a category in GAM. The components of this vector define the
standard deviation of the Gaussian distribution across every dimension of the
input pattern space.
n; Number of Patterns Encoded by a Category: One of the parameters
that describes a category in GAM.



13

Fuzzy Lattice Reasoning (FLR) Classification
Using Similarity Measures

Al Cripps1 and Nghiep Nguyen2

1 Middle Tennessee State University, Murfreesboro, TN 37132, USA
Dept. of Computer Science
acripps@mtsu.edu

2 Dept. of Economics and Finance
nguyen@mtsu.edu

Summary. In this work, we show that the underlying inclusion measure used by
fuzzy lattice reasoning (FLR) classifiers can be extended to various similarity and
distance measures often used in cluster analysis. We show that for the cosine similar-
ity measures, we can weigh the contribution of each attribute found in the data set.
Furthermore, we show that evolutionary algorithms such as genetic algorithms, tabu
search, particle swarm optimization, and differential evolution can be used to weigh
the importance of each attribute and that this weighting can provide additional
improvements over simply using the similarity measure. We present experimental
evidence that the proposed techniques imply significant improvements.

13.1 Introduction

This work provides a framework to extend fuzzy lattice reasoning (FLR) classi-
fiers [13] to use similarity and distance measures. Furthermore we demonstrate
experimentally the effectiveness of using similarity measures and evolutionary
algorithms to improve fuzzy lattice classifiers in the Cleveland heart bench-
mark classification problem.

Stemming from the adaptive resonance theory (ART) neural networks [2,
10], fuzzy lattice reasoning bases both its learning and generalization on the
computation of hyperboxes in space RN . Note that other classifiers including
ART, Min-Max neural networks and variations [2, 8, 10] compute hyperboxes
in RN . Nevertheless, a unique advantage of FLR is its applicability in a lattice
data domain including the product L = L1× . . .×LN of N constituent lattices
L1, . . . , LN [14].

A practical advantage of a lattice applicability is the capacity to deal
with disparate types of data, e.g. vectors of numbers, fuzzy sets, symbols,
graphs, etc. in applications [13, 14, 17, 18]. Note that with the proliferation of
information technologies, the latter capacity may be useful in dealing as well
with non-numeric data. Learning and generalization are effected in a lattice L
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by computing lattice L intervals. Apart from the simplicity of the method, this
work also shows that the computation of lattice intervals can imply significant
improvements in classification problems.

The layout of this paper is as follows. Section 13.2 provides the fuzzy lattice
classifier theoretic background. Section 13.3 explains principles of similarity
and distance measures while Section 13.4 discusses evolutionary algorithms.
Section 13.5 presents our theoretical classification improvements for the clas-
sifiers found in [6, 7, 14]. Section 13.6 investigates the characteristics of the
weighted cosine similarity measure. Section 13.7 provides empirical results
that demonstrate the improvement of our enhanced FLR classifiers when com-
pared to other classification methods for the Cleveland heart data. Finally, sec-
tion 13.8 summarizes the contribution of this work and delineates future work.

13.2 Fuzzy Lattice Theoretic Background

In this paper we employ the lattice theoretic notation introduced in [11, 13,
14]. More specifically, let L denote a mathematical lattice, then τ(L) denotes
the set of lattice L intervals. For this paper, we deal exclusively with a complete
lattice L, where O and I denote, respectively, the least and greatest elements
in L. It follows that τ(L) is, also, a complete lattice [14]. Furthermore, α(L)
denotes the set of atoms in a lattice L, the latter set α(L) includes all trivial
intervals (singletons); hence α(L) ⊂ τ(L).

Note that the conventional space RN of N -dimensional vectors is a product-
lattice of N identical, totally-ordered lattices R. A trivial interval in RN

includes the set of N -dimensional points. Moreover, the unit N -dimensional
hypercube IN is a complete lattice, where I equals the closed interval I = [0, 1].

An inclusion measure is a map σ : L × L → [0, 1], which satisfies the
following conditions for u,w, x ∈ L.

(C0) σ(x,O) = 0, x 	= O,
(C1) σ(x, x) = 1,
(C2) w ∧ u < w ⇒ σ(w, u) < 1, and
(C3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) - Consistency Property
We remark that σ(x, u) denotes the degree of inclusion of lattice element

x to lattice element u; hence symbols σ(x, u) and σ(x ≤ u) are used inter-
changeably.

A positive valuation v on a lattice L is a real function v : L → R which
satisfies both (1) v(x) + v(y) = v(x ∧ y) + v(x ∨ y) and (2) x < y implies
v(x) < v(y) for x, y ∈ L. Given a positive valuation function in a lattice L, one
can show that both of the following are inclusion measures: k(u ≤ w) = v(w)

v(u∨w)

and s(u ≤ w) = v(u∧w)
v(u) [11]. Furthermore note that for a positive valuation

function v in a lattice L, a metric distance is given in L by d(x, y) = v(x∨y)−
v(x∧ y) [11]. The work in [14] has shown how a positive valuation function in
a lattice L can be extended to the lattice τ(L) of intervals.



13 FLR Classification Using Similarity Measures 265

Given a category function g : α(L) →M whereM is a finite set of category
labels, then the finite labeled training data set is the pairs (ai, g(ai)), i =
1, . . . , n where ai is an atom in α(L) and g(ai) is the corresponding category
label. For classification problems, the goal is to learn a valid approximation of
category function g : α(L) →M so as to achieve an acceptable generalization
on the testing data.

Learning from the training data is effected by a fuzzy lattice algorithm
by computing fits, the latter are intervals of lattice elements computed by
the lattice-join of training data in the same category. A contradiction occurs
when a training datum from one category is included in a fit of a different
category. A fit is called tightest when the lattice-join with any training datum
from the same category (and not already in the fit) causes a contradiction.
We are most interested in those category functions that are tightest fits.

In [14], positive valuations of the form v(x1, . . . , xN ) = c1x1 + . . .+ cNxN ,
where ci > 0 are defined, but are only used for one simple data set, and
in that case, a heuristic approach is used to find the constants ci > 0.
Almost exclusively in [6, 7, 14] a positive valuation function of the form
v(x1, . . . , xN ) = x1 + . . . + xN is used, i.e., ci = 1, ∀i. We will refer to
positive valuations of the form v(x1, . . . , xN ) = c1x1 + . . . + cNxN , where
ci > 0 as positive hyperplane valuations and the valuation of the form
v(x1, . . . , xN ) = x1 + . . . + xN as the unit valuation.

In [6, 7, 14] the following five tightest fit classifiers are defined: FLR tight-
est fit (FLRtf ), FLR first fit (FLRff ), FLR maximal tightest fit (FLRmtf ),
FLR ordered tightest fit (FLRotf ), and FLR selective fit (FLRsf ). In the sec-
tions that follow, we focus our attention upon these five classifiers plus the
valuations and inclusion measures used by these classifiers.

13.3 Introduction to Similarity and Distance Measures

In section 13.5 we will use similarity and distance measures to extend the
FLR classifiers found in [6, 7, 14]. In this section we provide an introduction
to these measures. In general, distance measures numerically how unlike (dif-
ferent) two datum are where as similarity measures numerically how alike two
datum are. For a similarity measure, the idea is that a higher value indicates
greater similarity where as for a distance measure, the lower (positive) value
indicates greater similarity. In concept, a similarity measure is the converse
of a distance measure. A formal definition of distance measure is given below,
however, we find no formal definition found for similarity measures in the lit-
erature. There are many popular measures defined in the literature (e.g. Lp

norm, Squared chord, squared Chi-squared, Canberra measure, Czekanowski
coefficient, cosine, and correlation coefficient) for which all can be thought of
as calculating a correlation between two data items (one of which is usually a
group centroid). Generally, for these measures it is necessary that each of the
two data items be expressed by a real-valued array of feature attributes.



266 A. Cripps and N. Nguyen

In section 13.5 we extend the FLR classifiers to use distance measures. For
our experimental application, we are mostly interested in the cosine similarity
measure often used in cluster analysis. For the cosine similarity measure, if
two data items x and y have K attributes each, then x and y can be thought
of as two vectors. The cosine similarity measure is then the cosine of the angle
between the two vectors x and y and is described by the formula [21]

CS(x,y) =
∑K

1 xi yi
√
∑K

1 x2
i

∑K
1

y2
i

The cosine distance metric is defined as CD(x,y) = 1− CS(x,y).
In section 13.5 we also use distance measures to extend the FLR classifiers.

Typically, a distance measure falls into one of two groups: metric and semi-
metric. To be classified as metric, a non-negative distance between two vectors
x and y must obey: 1) d(x, y) = 0 ⇒ x = y, 2) d(x, y) = d(y, x), 3) d(x, x) = 0,
and 4) when considering three objects, x, y and z, d(x, y) ≤ d(x, z) + d(z, y).
Distance measures that obey the last three rules, but fail to obey rule 1 are
referred to as semi-metric. The Lp norm is a well known group of distance
measures as defined by the following. The Lp norm between two data items
x and y each of which has K attributes is given by the formula

Lp(x,y) =
[
∑K

i=1
|xi− yi|p

]1/p

If p = 1 then this distance is known as the Manhattan distance; if p = 2
then the formula produces the well-known Euclidean distance. If p = ∞, then
the distance is called the Chebychev distance.

13.4 Introduction to Evolutionary Algorithms

Often times when a problem has no known algorithmic solution, i.e., not
known to be a tractable problem, then some type of search technique can be
used to arrive at a reasonable solution. In section 13.5 we are interested in find-
ing coefficients for hyperplane valuations associated with FLR classifiers for
which no known algorithmic solution exists. In section 13.7 we employ a group
of search techniques generally categorized as evolutionary algorithms to find
reasonable coefficients for hyperplane valuations associated with our experi-
mental data set. In general, evolutionary algorithms are based upon concepts
found in the study of population genetics. More specifically, the algorithms in
this category maintain a population (set) of candidate solutions (individuals)
to a problem. The fitness of a candidate solution is determined by evaluat-
ing how well it does on the problem, and the most fit candidate solution has
some type of effect on the overall makeup of the candidate population. Thus,
the population of candidate solutions evolves over time, hopefully resulting in
improved solutions for the problem.
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In section 13.7 we employ four different Evolutionary Algorithms: Genetic
Algorithms [23], Tabu Search [9], Particle Swarm Optimization [15], and Dif-
ferential Evolution [19] to find coefficients associated with hyperplane val-
uations for FLR classifiers. The remainder of this section is devoted to an
introductory description of the four search techniques.

Genetic Algorithms [23] were introduced in the 1970’s by John Holland.
For this search technique, an initial population of candidate solutions is estab-
lished (either randomly or with some known constraints), on which a genetic
algorithm performs the following four steps until some stopping criterion is
met: 1. Establish the fitness of each candidate solution in the population from
time t; 2. Clone individuals from population t for a new population for time
t + 1 using the fitness distribution of the population from time t; 3. Perform
crossover in population t + 1; 4. Perform mutation in population t + 1. The
set of steps 1 – 4 is generally called a generation. In many cases, the stopping
criteria is merely a set number of generations. The crossover (step 3) combines
two chromosomes from the parents to produce a new offspring chromosome
with the desired affect being the offspring is better than the parents. Mutation
(step 4) is a random change of a parameter value somewhere in the popula-
tion, i.e., an alteration of one or more gene values in a chromosome. While
it is possible to use a high mutation rate, this effectively produces random
search. Most researchers use a very low mutation rate. Steps 2 and 3 are a bit
more complicated than the other steps.

In step 2, individuals from population t are selected to appear in popu-
lation t + 1 based on their fitness relative to the rest of the population. The
selection is generally either roulette wheel selection (where the entire set of
fitnesses is used to establish the composition of the roulette wheel), or else
the selection is a binary tournament selection (where pairs of individuals are
chosen randomly and the one with the best fitness is copied into the new
population).

In step 3, a percentage of the population is chosen in pairs to create new
candidate solutions. The chosen pairs are called parents, and the new indi-
viduals are called children. Children are created by choosing some parameters
from one parent and other parameters from the other parent. Typically the
children replace the parents in the population. There are three common forms
of crossover: one point, two point, and uniform. One point crossover ran-
domly selects a crossover point and everything to the left of that point comes
from one parent, while everything to the right of that point comes from the
other parent. Two point crossover randomly selects two points and everything
between the two points comes from one parent, while everything outside the
two points comes from the other parent. Uniform crossover randomly chooses
the parent for each parameter.

Tabu Search [9] is generally attributed to Fred Glover and like Genetic
Algorithms originated in the 1970’s. Unlike Genetic Algorithms, Tabu Search
works with a population of a single candidate solution and can be considered
a neighborhood search method. In addition to the single candidate solution
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population, there is a list of individuals that are neighbors of the candidate
solution and a historical memory of previously encountered candidate solu-
tions. The historical memory is called the Tabu list (there can be more than
one Tabu list). The first individual may be generated randomly or based on
some type of constraint. Once the individual’s fitness is determined, the Tabu
search algorithm will perform the following four steps until some stopping cri-
terion is met: 1. create a neighborhood of individuals for the current candidate
solution each of which is slightly different than the current candidate solution;
2. determine which of the newly created individuals has the best fitness; 3. if
the new best fitness is better than the current candidate solution’s fitness,
then keep the new individual and place the old individual on the Tabu list;
4. if the new fitness is worse than the previous fitness but it is not on the
Tabu list and it is only slightly worse than the current candidate solution,
then keep the new individual and place the old individual on the Tabu list.
As with Genetic Algorithms, Tabu Search has several parameters that must
be set: the size of the neighborhood, the size of the Tabu list, the number of
Tabu lists, the definition of “slightly worse”, and the stopping criterion.

Particle Swarm Optimization [15], which was introduced by Russell C.
Eberhart and James Kennedy in the 1990’s, is both a global and a neighbor-
hood optimization technique. The concept comes from observing the behavior
of groups of organisms in nature, e.g., schools of fish and flocks of birds. Indi-
viduals within the groups have a position and a velocity which change over
time relative to other individuals in the group. With this behavior in mind,
Particle Swarm Optimization maintains a population of candidate solutions
each of which has a position, x (i.e. a point in the search space) and a velocity
v (i.e. the distance to move from the current position in the next time step).
After initializing the population, the algorithm performs the following five
steps until some stopping criterion is met: 1. Calculate each candidate solu-
tion’s new position x = x + v; 2. Calculate the fitnesses of the new positions;
3. If a new fitness is better than the best fitness the individual has seen, χ,
then χ = x; 4. If a new fitness is better than the best fitness χg the swarm
has seen then χg = x; 5. Calculate the velocities for the new individuals using
the formula v = wv + c1r1(χ− x) + c2r2(χg − x).

Differential Evolution [19] was developed by Kenneth Price in the 1990’s.
Differential Evolution is very similar to genetic algorithms without the cloning
step or the mutation step. Instead, the algorithm performs the following four
steps for each individual (target) in the population: 1. Choose two random
population members and calculate their weighted sum; 2. Add the calculated
answer to a third randomly chosen individual; 3. Create a child by performing
crossover with the answer from step 2 and the target individual; 4. If the child’s
fitness is better than the target’s fitness, then replace the target with the child.
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13.5 Classification Enhancements

This section describes enhancements to the inclusion measure used in [6, 7, 14].
Recall that each of the classifiers described and applied in [6, 7, 14] is based
upon an inclusion measure given by the function σ(u ≤ w) = v(w)

v(u∨w) , where v

is a positive valuation function. We will refer to this inclusion measure as the
σ-inclusion measure. Generally, for the experimental results found in [6, 7, 14]
the unit valuation function of the form v(x1, . . . , xN ) = x1 + . . . + xN is used.
As noted in [14], we can also weigh each of the attributes x1, . . . , xN via a
positive hyperplane valuation function v(x1, . . . , xN ) = c1x1 + . . . + cNxN ,
where ci > 0.

In the following, we investigate the effect of using the combination of
hyperplane valuations and the σ-inclusion measure. First, consider a point
C = (c1,. . ., cN ) where each ci > 0 represents the coefficients used for the
positive hyperplane valuation, i.e. v(x1, . . . , xN ) = c1x1 + . . . + cNxN . Since
the point C is in RN , we can translate C into polar coordinates as follows:

Let ρ =
√

c2
1 + . . . + c2

N , θ1, . . . , θN−2 be the polar angles and let θN−1 be
the azimuthal angle, then

c1 = ρ cosθ1

c2 = ρ sinθ1 cosθ2

c3 = ρ sinθ1 sinθ2 cosθ3

. . .
cN−1 = ρ sinθ1 sinθ2 . . . sinθN−2 cosθN−1

cN = ρ sinθ1 sinθ2 . . . sinθN−2 sinθN−1

Consider the evaluation of the positive hyperplane valuation function v(x),
v(x) = v(x1, . . ., xN ) = c1x1 + . . . + cNxN

= ρ cosθ1x1 + ρ sinθ1 cosθ2x2 + . . . + ρ sinθ1 . . . sinθN−1xN

= ρ(cosθ1x1 + sinθ1 cosθ2x2 + . . . + sinθ1. . . sinθN−1xN )
= ρ(b1x1 + b2x2 + . . . + bNxN )
= ρ v′(x),

where the point B = (b1, b2, . . ., bN ) is the point on the (unit) hypersphere
corresponding to the point C in RN , i.e. 1 =

√
b2
1 + . . . + b2

N with bi > 0.
Hence for the σ-inclusion measure with hyperplane valuation is given by

σ(u ≤ w) =
v(w)

v(u ∨ w)
=

ρv′(w)
ρv′(u ∨ w)

=
v′(w)

v′(u ∨ w)

Thus, the σ-inclusion measure defined in [14] using hyperplane valuations
is equivalent to using (unit) hypersphere valuations. In particular, this means
that we can limit our search space from the first quadrant of RN to the
(unit) hypersphere in the first quadrant of RN when trying to find reasonable
coefficients for a hyperplane valuation.

Next, we consider the relationship of the following three entities: 1) σ-
inclusion measure, 2) the distance (metric) d(u,w) = v(u ∨ w) − v(u ∧ w)
defined in [3] where v is a valuation, and 3) the L1(u,w) norm. For simplicity,
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we use the unit hypercube IN in RN , the unit valuation, and a point, say
w in IN ; we also use complement coding (in regards to the set A below) to
represent a data vector as detailed in [14]. With these conditions, we have
the following three sets being identical: A = {u ∈ IN : σ(u ≤ w) = N

N+m},
B = {u ∈ IN : d(u,w) = m}, and C = {u ∈ IN : L1(u,w) = m}. Using the
relationship between A, B, and C plus the fact that in IN , σ(u ≤ w) = N

N+m =
v(w)

v(w)+L1(u,w) we can see that the inclusion measure defined in [14] is based
upon the L1 norm. Furthermore, this relationship provides a general technique
to define a measure based upon distance measures, i.e. δ(u,w) ≡ v(w)

v(w)+d(u,w) ,
where d is a distance measure. Likewise, if s is a similarity measure such
that 0 ≤ s(u,w) ≤ 1 then we can define a measure as follows: δ(u,w) ≡

v(w)
v(w)+(1−s(u,w)) . We will refer to measures defined in this way (either using a
distance measure or similarity measure) as δ-measures.

Now consider the training data given in Fig. 13.1 which consists of 12 train-
ing data and 3 test data. We are interested in a solution with 100% accuracy
for the test data that uses the fewest number of hyperboxes possible. Using
the geometric interpretations described in [14] where the data are grouped via
hyperboxes, we quickly conclude there is no solution using the unit valuation
that is 100% accurate for the test data. In other words, one cannot place point
g in a training data rectangle without that rectangle also including point 7
or 8. This can be verified via experiments as well. To solve this problem, we
turn our attention to hyperplane valuations and σ-inclusion measure. Since
we have shown that we may limit our search for coefficients of the hyper-

Fig. 13.1. Fifteen training data are presented in the order a(0,0), b(.25,0), c(0,.5),
d(.25,.5), e(0,1), f (.25,1) (category “•”), and 1 (.75,0), 2 (1,1), 3 (.75,.5), 4 (1,.5),
5 (.75,1), 6 (1,1) (category “o”). Three test data are g(.5,.5) from category “•” and
7 (.5,0), 8 (.5,1) from category “o”. The problem is to find a tightest fit category
function that uses the fewest hyperboxes and has 100% test data accuracy
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plane valuation to the first quadrant hypersphere, an exhaustive search is not
unreasonable, i.e. we can restrict our search to the circumference of the unit
circle in the first quadrant. Via experiments, we found that none of the five
classifiers FLRtf, FLRff, FLRmtf, FLRotf, andFLRsf can group the training
data with 100% test data accuracy using σ-inclusion measure with hyperplane
valuation. Actually for the given data found in Fig. 13.1, each of the five clas-
sifiers FLRtf, FLRff, FLRmtf, FLRotf, and FLRsf provide the same test data
accuracy results (one data point incorrect using two hyperboxes) whether a
unit or hyperplane valuation is used.

In an effort to find better inclusion measures, we have conducted numer-
ous experiments on different data sets using different δ-measures. We tried
well known distance and/or similarity measures such as the Lp norms, cosine,
squared chord, squared Chi-squared, Canberra measure, Czekanowski coeffi-
cient, and correlation coefficient. However, none of these δ-measures consis-
tently performed as well as the σ-inclusion measure defined in [14] when using
a unit valuation nor are these δ-measures able to solve the problem noted in
Fig. 13.1 when using a unit valuation.

In order to solve the problem in Fig. 13.1, we now turn our focus to a
δ-measure that uses weighted attributes. As previously noted, the σ-inclusion
measure using a hyperplane valuation is equivalent to a σ-inclusion measure

v′(w)
v′(u∨w) where the coefficients for v′ are taken from the unit hypersphere. This
equivalency is not true, however, of all δ-measures. Consider the weighted
(attribute) cosine similarity measure

ACS(u,w) =

∑

i

ciuiwi

√
(
∑

i

ciu2
i
)(
∑

i

ciw2
i
)

and the following four δ measures with ACD representing the attribute cosine
distance metric

δ1(u,w) = v(w)
v(w)+ACD(u,w) ,

δ2(u,w) = v(w)
v(w)+ACD(u∨w,w) ,

δ3(u,w) = v(w)
v(w∨u)+ACD(u∨w,w) , and

δ4(u,w) = v(w)−(1−ACD(u∧w,w))
v(w) .

Note that for each measure, constant vector C = (c1,. . ., cN ) is used in both
the valuation function v(x) and the attribute cosine distance metric ACD.

We now reconsider the problem described in Fig. 13.1 and conduct exper-
iments using the five classifiers FLRtf, FLRff, FLRmtf, FLRotf, and FLRsf
using each of the four weighted cosine δ-measures: δ1, δ2, δ3, and δ4. For
each experiment, no FLR training parameters (such as epsilon for improved
accuracy) are used. Hence, this requires the coefficients used in the weighted
cosine δ-measure to completely compensate for all FLR parameters. Thus for
our experiments, each FLR classifier is simply used to compute the number
of hyperboxes needed by the training data, and in return, the number of
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correctly classified test data. The goal in each experiment is to find coeffi-
cients for the weighted cosine δ-measure such that the number of hyperboxes
is the fewest possible and 100% test data accuracy. Recall for the weighted
cosine δ-measure, our search space is not restricted to the unit circle. Hence
an exhaustive search of the first quadrant in R2 is used. When using the four
weighted cosine δ-measures, each of the five classifiers are able to solve the
problem in Fig. 13.1 using three hyperboxes and 100% test data accuracy. The
graph of the solution space for the classifier FLRotf using the δ2-measure is
given in Fig. 13.2. Table 13.1 provides a single solution (a pair of coefficients)
for each of the modified five classifiers (there are infinitely many solutions)
using the δ2-measure. As we previously stated, none of the five classifiers
FLRtf, FLRff, FLRmtf, FLRotf, and FLRsf can solve the problem given in
Fig. 13.1 using the original inclusion measure given in [14] and hyperplane val-
uations. It is only when one combines both the weighted cosine δ-measure and
hyperplane valuations are the modified five classifiers FLRtf, FLRff, FLRmtf,
FLRotf, and FLRsf able to solve the problem in Fig. 13.1. Via experiments,
we found that the δ2-measure is most successful (of the four δ1, δ2, δ3, and
δ4) in solving the problem in Fig. 13.1 and problems similar to those given
in Fig. 13.8, Fig. 13.9, and Fig. 13.10 below. Because of the success of δ2,
future unqualified references to weighted cosine δ-measure are assumed to be
a reference to the δ2 definition only.

Fig. 13.2. FLRotf weighted cosine solution for the problem described in Fig. 13.1

Table 13.1. Coefficients for weighted cosine δ measure associated with problem
described in Fig. 13.1

FLR classifier C1 coefficients C2 coefficients

FLRtf 6.391859 2.853784
FLRff 2.488825 5.349365
FLRmtf 6.391859 2.853784
FLRotf 2.761679 2.893634
FLRsf 2.761679 2.893634
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Let’s revisit the definition of an inclusion measure given above, namely σ
is a map σ : L× L → [0, 1], which satisfies the following conditions

(C0) σ(x,O) = 0, x 	= O,
(C1) σ(x, x) = 1,
(C2) w ∧ u < w ⇒ σ(w, u) < 1, and
(C3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) - Consistency Property

and our definition of the weighted cosine δ-measure given above. First, con-
sider conditions (C0) and (C1), the unit hypercube, and the inclusion measure
defined by σ(u,w) = v(w)

v(u∨w) where v is a positive valuation. Under these cir-
cumstances, in order to satisfy condition (C1), σ(O,O) is defined to be 1 [11].
This definition is needed since one has division by zero whenever v(u ∨ w) is
zero in v(w)

v(u∨w) . Note that σ is not continous at O since as u approaches O,
σ(u,O) is zero and σ(u, u) is one. For the weighted cosine δ-measure, a similar
problem exists in that one has a division by zero whenever ACD(u∨w,w) is
undefined or equivalently whenever v(u ∨ w) = 0 or v(w) = 0 or equivalently
whenever v(u) = 0 or v(w) = 0. If one defines ACD(u,w) to be some value
geater than zero, say 1, whenever v(u) = 0 or v(w) = 0, then another problem
occurs when one evaluates δ(O,O), i.e. the value of δ(O,O) evaluates to 0
and in conflict with condition (C1). One solution is to define ACD(u,w) to
be zero whenever either v(u) = 0 or v(w) = 0 and define δ(O,O) = 1. Hence,
by defining special case values, we can satisfy conditions (C0) and (C1). An
alternative would be to modify (C1) to read as σ(x, x) = 1, for all x 	= O and
to define ACD(u,w) = 1 whenever v(u) = 0 or v(w) = 0. Now, let’s consider
condition (C2). In general, condition (C2) is not true even with the restriction
to positive valuations and special definitions for ACD. As an example, con-
sider the unit hypercube IN in RN and two points (vectors) u and w. Now if the
vectors u and w have the same direction (when viewed as vectors) and u < w

in IN , then w ∧ u = u < w and δ(w, u) = v(u)
v(u)+1−ACS(w∨u,u) = v(u)

v(u)+1−1 = 1.
To show that ACS(w ∨ u, u) is one, consider the following: 1) since w and u
have the same direction and w∧u = u < w, w∨u = w has the same direction
as u, 2) since ACS(w ∨ u, u) is the cosine of the angle formed between the
vector u and w∨u, the ACS(w∨u, u) is just the cosine of the angle zero since
u and w ∨ u have the same direction. This is in direct conflict with condition
(C2). An alternative for (C2) is w ∧ u ≤ w ⇒ σ(w, u) ≤ 1. In regards to
condition (C3), the weighted cosine δ measure does not meet this condition.
To demonstrate this, consider the unit hypercube IN in RN and three points
(vectors) x, u and w with 1) the vectors x and u having the same direction,
2) u < x and u < w in IN , 3) u 	= O, and 4) u and w do not have the same
direction (see Fig. 13.3 for an example in I2). Then

δ(x, u) = v(u)
v(u)+1−ACS(x∨u,u) = v(u)

v(u)+1−ACS(x,u) = v(u)
v(u)+1−1 = 1, and

δ(x,w) = v(w)
v(w)+1−ACS(x∨w,w) = v(w)

v(w)+1−m < 1,
where i) ACS(x, u) is one since the angle between x and u is zero, ii) ACS(x∨
w,w) is some constant m, 0 < m < 1, i.e. the angle between x ∨ w and w, θ,
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w

x

u

θ

x∨w

Fig. 13.3. For the given points, we have both δ(x, u) = 1 and δ(x, w) < 1

is between 0 and π/2, exclusive. Thus the weighted cosine δ measure fails to
meet condition (C3) and no alternative for (C3) is offered. Although no proof
is given here, note that δ3 as defined above is an inclusion measure.

13.6 Investigating Further the Weighted Cosine Measure

Let’s further consider the FLRotf solution noted in Fig. 13.2 and the weighted
cosine δ-measure. All of the coefficient solutions given in Fig. 13.2 give the
same set of hyperboxes, i.e. if we consider a specific coefficient solution, say
(5, 2), and apply the FLRotf classifier, then the resulting solution consists of
exactly three hyperboxes: one hyperbox containing the single point (.75, 0),
one hyperbox containing the single point (.75, 1), and one hyperbox containing
the single point (.25, .5). We will refer to these hyperboxes as A, B, and C
respectively. See Fig. 13.4. Is this solution a tightest fit solution, i.e. can
either of the hyperboxes A, B, and C be expanded to include more training
data without incurring a contradiction? Although visually it appears that
one can expand each of the hyperboxes, the fit is indeed (based upon the
computations) a tightest fit.

Although we cannot graph the weighted cosine δ-measure for the above
problem {z : z = δ(u,w), where u and w are members of I2× (dual of) I2}
since the input range is 8 dimensions, we can, however, graphically view the
how the weighted cosine δ-measure behaves for specific coefficients. To do
this, we consider a pair of coefficients from each of the blocks in the solution
space identified in Fig. 13.2: namely the coefficient pairs (5, 2), (2.75, 3), and
(2.3, 5.75) giving one pair from each region. To graphically view the measure,
we use three data sets: the training and test sets associated with Fig. 13.1 and a
third data set (validation) defined to be {(x, y, 1) : (x, y) ∈ I2 and 1 represents
the category for the pair}. The training and test sets are used to obtain the
hyperboxes identified in Fig. 13.4 (initial training) while the third data set is
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Fig. 13.4. Hyperbox A contains the single point (.75, 0), hyperbox B contains the
single point (.75, 1), and hyperbox C contains the single point (.25, .5)

Fig. 13.5. Coefficients (2.75, 3) are employed in this figure

used to locate the boundary between the region correctly classified and the
region misclassified. We shall use this technique for multiple experiments that
follow. Note that we not using the validation set in the traditional sense, but
only to gather information about the boundary of the category regions given
since we are no longer dealing with traditional hyperboxes. Hence, for the
problem stated in Fig. 13.1 and coefficient solution space given in Fig. 13.2, the
category regions for each pair of coefficients are given in Fig. 13.5, Fig. 13.6,
and Fig. 13.7. For each the three figures, the category “•” is the shaded
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Fig. 13.6. Coefficients (2.3, 5.75) are employed in this figure

~.597~.411
10

1

Fig. 13.7. Coefficients (5, 2) are employed in this figure

portion while the category “o” is represented by the unshaded region. As
demonstrated in Fig. 13.5, Fig. 13.6, and Fig. 13.7, the shaded triangular
region grows and shrinks based upon the coefficients used in the weighted
cosine δ-measure. For the coefficients (1, 1), the triangular region disappears
with the category “•” being the rectangular region [0, .5]× [0, 1] and category
“o” being the remaining area. This results in two misclassifications for the test
data. In other words, without the “weighting” the cosine δ-measure achieves
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the same results as the traditional FLNotf classifier (for this problem). It
is also interesting to note that for other coefficient pairs such as (8, 2), the
triangular region protrudes to the left instead of to the right, i.e. a mirror
image of the ones given in Fig. 13.5, Fig. 13.6, and Fig. 13.7.

Next, we investigate how the weighted cosine δ-measure adapts to a slightly
different test set (the training set remains as found in Fig. 13.1). Namely,
the test data set: g(.5, .75), h(.5, .25) from category “•” and 7(.5, 0), 8(.5, 1),
9(.5, .5) from category “o”. We can perform an exhaustive search and deter-
mine that in deed the weighted cosine δ-measure can solve this modified
problem as well. For one solution to this problem using the weighted cosine
δ-measure with coefficients (1.71, 2.1), see Fig. 13.8. In Fig. 13.8, the curve
line near the vertical line x = 0.5 represents the boundary between the two
categories “•” and “o” and is generated by the weighted cosine δ-measure
using coefficients (1.71, 2.1). When using the given coefficients, the FLNotf
with weighted cosine δ-measure is able to train with 100% accuracy and 100%
correct for the test set. Also in Fig. 13.8, the resulting trained hyperboxes
are labeled A, B, C, D, E, and F , i.e. there are 6 hyperboxes. Again, this
solution is a tightest fit. Visually, it appears that one could form one hyperbox
containing both the hyperbox A and hyperbox B, but in doing so, the single
box would cause miss classifications along the vertical line at x = 0.5.

Fig. 13.8. The training set consists of points a(0, 0), b(.25, 0), c(0, .5), d(.25, .5),
e(0, 1), f(.25, 1) (category “•”) and 1(.75, 0), 2(1, 1), 3(.75, .5), 4(1, .5), 5(.75, 1),
6(1, 1) (category “o”) plus the test data set: g(.5, .75), h(.5, .25) from category
“•” and 7(.5, 0), 8(.5, 1), 9(.5, .5) from category “o”. To produce the curve bound-
ary between the two categories, the weighted cosine δ-measure uses coefficients
(1.71, 2.1). The six hyperboxes A, B, C, D, E, and F represent the training results
for FLNotf and form a tightest fit
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Next, we experiment by tilting the series of test points found near x = .5
for Fig. 13.8 while the training set remains the same. We tilt the test points
to the left, i.e. negative slope, with a pivot point at (.5, .5). Via experimen-
tation, we determine that FLNotf is successful in achieving 100% accuracy
for the test data with a slope range from vertical down to −7 (actually some-
where between −6 and −7) with each line passing through the pivot point
(.5, .5). Thus for a slope of −7, the given line is y = −7x + 4 and corre-
sponding points g(.4643, .75), h(.5357, .25) from category “•” and 7(.5714, 0),
8(.4246, 1), 9(.5, .5) from category “o” are given in Fig. 13.9. Although the
FLNotf achieves success in adapting to the tilting, it does so by modifying
the curvature of the boundary (see Fig. 13.9) and not by tilting of the curve.
Hence the axis remains vertical. Again for these experiments, an exhaustive
search is first done to determine possible coefficients for the weighted cosine
δ-measure followed by the use of a validation set to determine the boundary
between the correctly classified sets.

Finally, we investigate how the weighted cosine δ-measure adapts to a
slightly different training and test set. Namely, a training set of a(0, 0),
b(.25, 0), c(0, .5), d(.25, .5), e(0, 1), and f(.25, 1) in category “•” and 1(.75, 0),
2(1, 1), 3(.75, 0.5), 4(1, 0.5), 5(.75, 1), and 6(1, 1) in category “o” plus the test
data set: (.5, 0.125), (.5, 0.375), (.5, 0.625), (.5, 0.875) from category “•” and
(.5, 0), (.5, 0.25), (.5, 0.5), (.5, 0.75), and (.5, 1) from category “o”. We again
perform an exhaustive search and determine that in deed the weighted cosine

Fig. 13.9. The training set consists of points a(0, 0), b(.25, 0), c(0, .5), d(.25, .5),
e(0, 1), f(.25, 1) (category “•”) and 1(.75, 0), 2(1, 1), 3(.75, .5), 4(1, .5), 5(.75, 1),
6(1, 1) (category “o”) plus the test data set: g(.4643, .75), h(.5357, .25) from category
“•” and 7(.5714, 0), 8(.4246, 1), 9(.5, .5) from category “o”. In this case the test data
are tilted to the left and are obtained from the line y = −7x+4. To produce the curve
boundary between the two categories, the weighted cosine δ-measure uses coefficients
(0.600012, 2.42178). Six hyperboxes represent the training results for FLNotf (there
are two hyperboxes along the y axis). These form a tightest fit
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Fig. 13.10. The training set consists of points a(0, 0), b(.25, 0), c(0, .5), d(.25, .5),
e(0, 1), f(.25, 1) (category “•”) and 1(.75, 0), 2(1, 1), 3(.75, .5), 4(1, .5), 5(.75, 1),
6(1, 1) (category “o”) plus the test data set: (0.125, 0.5), (0.375, 0.5), (0.625, 0.5),
(0.875, 0.5) from category “•” and (.5, 0), (.5, 0.25), (.5, 0.5), (.5, 0.75), (.5, 1) from
category “o”. To produce the curve boundary between the two category regions, the
weighted cosine δ-measure uses coefficients (0.004, 0.255272). When using the given
coefficients, the FLNotf with weighted cosine δ-measure is able to train with 100%
accuracy and 100% correct for the test set. There are 11 hyperboxes in the training
results for FLNotf

δ-measure can solve this modified problem. For one solution to this prob-
lem using the weighted cosine δ-measure with coefficients (0.004, 0.255272),
see Fig. 13.10. In Fig. 13.10, the curve line near the vertical line x = 0.5
represents the boundary between the solution regions for the two categories
“•” and “o”. When using the given coefficients, the FLNotf with weighted
cosine δ-measure is able to train with 100% accuracy and 100% correct for
the test set. As noted in Fig. 13.10, the resulting 11 trained hyperboxes are
given. It is somewhat disappointing that this boundary region is not symmet-
rical, i.e. the spikes near y = 0.375 and y = 0.625 are not the same. This
observation tends to imply that if the following two data points were added
to the training set: (.75, 0.625), (1, 0.625), then certainly this solution would
not work. When these additional two points are added, we are not able via
experimentation using an exhaustive search for the weighted cosine δ-measure
coefficients determine a solution that is 100% accurate for the test data.

13.7 Experiments and Results

The general learning capacity of the classifiers FLRff, FLRotf, and FLRsf with
the weighted cosine δ-measure is demonstrated in this section by considering
the Cleveland heart benchmark classification problem from the UCI repository
of machine learning data sets [4].
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The Cleveland heart data set involves numeric data of various sizes includ-
ing missing attribute values. A missing attribute value is dealt with by replac-
ing it with the least element in the corresponding constituent lattice as
explained in [14]. Thus each data vector is represented in the lattice RN .
Complement coding is used to represent a data vector, in particular instead
of (x1, . . ., xN ) the vector (1− x1, x1, . . ., 1− xN , xN ) is used [12, 14].

For the Cleveland heart data, the problem is to diagnose heart disease
in a patient from a 14-attribute vector. This benchmark consists of 303 data
vectors. The severity of heart disease is indicated by an integer ranging from 0
(no heart disease) to 4. By collapsing the classes into two, i.e. absence versus
presence of heart disease, the problem becomes a “2-categories” problem as
opposed to the original “5-categories” problem. Because no training and test-
ing data sets are given explicitly, a keep-250-in series of 100 experiments is
carried out such that in each experiment 250 randomly selected data are used
for training and the remaining 53 data are left out for testing. Also, since we
are wanting to compare the weighted cosine δ-measure results with existing
published results for other classifiers. Since our comparison is to published
works that did not use a validation set in their experiments, neither will our
experiments use a validation set. Again, we are primarily interested in showing
the malleability of the weighted cosine δ-measure via our experiments.

Table 13.2 shows the results by various methods from the literature in
the 2-categories problem. Table 13.3 shows results for the 5-category problem
using various FLR classifiers as reported in [6, 7, 14]. In Table 13.3, the average
and the corresponding standard deviation are shown for both the classification
accuracy and the number of rules in a series of experiments. The same 100
randomly generated data sets are used in all 5-category problems listed in
Table 13.3.

For our experiments involving the Cleveland heart data, the same 100
randomly generated data sets are used in all 5-category problems. For each of
the three classifiers FLRff, FLRotf, and FLRsf, four evolutionary algorithms
are employed to find reasonable coefficients for the weighted cosine δ-measure.
All total, we conducted 1200 experiments (100 data sets with three classifiers

Table 13.2. Performance of various methods from the literature in classifying Cleve-
land’s 2-categories benchmark “heart problem”

Pattern classification method Classification accuracy (%)

Probability analysis 79.0
Conceptual clustering (CLASSIT) 78.9
ARTMAP-IC (10 voters) 78.0
Discriminant analysis 77.0
Instance based prediction (NTgrowth) 77.0
Instance based prediction (C4) 74.8
Fuzzy ARTMAP (10 voters) 74.0
KNN (10 neighbors) 67.0
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Table 13.3. Performance of classifiers FLRtf, FLRff, FLRotf, FLRmtf, and FLRsf
in the Cleveland’s benchmark “5-categories” heart problem. Results are from [7]

Classification Accuracy Number of rules
FLR classifier Average std. Average std.

(%) deviation (%) deviation

FLRff 66.74 4.96 53.47 10.30
FLRotf 66.60 5.52 51.18 11.00
FLRsf 66.49 5.59 49.47 9.80
FLRmtf 65.38 5.00 61.24 7.00
FLRtf 56.74 7.23 86.81 4.67

and four evolutionary algorithms per classifier). For each of the four evolu-
tionary algorithms used, the same parameters are used on all 100 data sets
and for each classifier. Each FLR classifier is merely used to determine the
fitness of an evolutionary algorithm’s solution as noted in Sect. 13.4. We use
the Genetic Algorithm Utility Library (GAUL) software [1] for genetic algo-
rithms, tabu search, and differential evolution portion of our experiments.
For particle swarm optimization, we adapted software originally written by
Clerc [5].

For our experiments, we modify each FLR classifier FLRff, FLRotf, and
FLRsf to use the weighted cosine δ-measure in place of the traditional σ-
inclusion measure. For the problem given in Fig. 13.1, it is reasonable to use
an exhaustive search to find the hyperplane valuation for the weighted cosine
since the search space is the first quadrant of R2. However for larger problem
sets (with more attributes) such as the Cleveland heart data, an exhaustive
search is not realistic. For larger problem sets we employ evolutionary algo-
rithms to find a hyperplane valuation for the weighted cosine δ-measure.

In particular, we use evolutionary algorithms to provide a set of coefficients
for the weighted cosine δ-measure. In each experiment, the initial coefficient
set is randomly generated. Each of the FLR classifiers are then used to deter-
mine the fitness of the coefficients provided by the evolutionary algorithm, i.e.
to determine the number of test data correctly identified and the number of
hyperboxes used. Using the fitness information provided by the FLR classi-
fier, the evolutionary algorithm updates its candidate solution and in return
provides an additional set of coefficients for the weighted cosine δ-measure.
For each evolutionary algorithm and all data sets, the evolutionary algorithm
parameters remain fixed.

The parameter settings for each evolutionary algorithm follows. In all
cases, the stopping criterion for each evolutionary algorithm is a fixed number
of generations. For the genetic algorithm, a set of coefficients for the weighted
cosine δ-measure represent a single chromosome. We use a population size
of 500 which is initially randomly generated/seeded within the range 3.0 to
44.0. The stopping criterion is set to 200 generations; our mutation rate is
0.001 (i.e. one out of every 1000 parameters in a population was altered). For
selection we use binary tournament selection where the elitist parents survive
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from one generation to the next. For crossover, we use a two point crossover
in which two crossover points are randomly selected, and we set the percent-
age of the population that undergo crossover at 60%. We experimented with
multiple techniques of selection and mutation. For example, we experimented
with directional adjustments to the chromosome similar to what one would
do using a “hill climbing” technique, i.e. we iterated through the genes of a
chromosome making small adjustments and testing for improvement. Unfortu-
nately, none of techniques showed improvement over a mutation rate of 0.001
and binary tournament selection. For tabu search, we used a population size
of 500 which was initially randomly generated within the range of 0.3 and 50.
The stopping criterion was set to 300 generations. We used a single tabu list
size of 400 with a neighborhood size of 100. For mutation, we randomly chose
whether to swap or shift a list item. A member was tagged as tabu if it differed
no more than 0.1 from other members. For differential evolution, we used a
population size of 500 which was initially randomly generated within the range
0.3 and 50. The stopping criterion was set to 100 generations. We chose to use
the strategy “best”, crossover “exponential”, perbations “1”, weighting factor
0.5, and crossover 0.8. For particle swarm optimization, we used a swarm size
of 500, confidence coefficient of 1.42694, 100 informers, and 15 executions as
the stopping criterion.

Table 13.4 shows the results for the classifiers FLRff, FLRotf, and FLRsf
with the weighted cosine δ-measure for the 5-category problem. The use of the
weighted cosine δ-measure shows considerable improvement (approximately
10%) in the classification accuracy for this problem as compared to the same
classifiers for the same data sets using σ-inclusion measure. In fact, the 5-
category results are comparable to most other methods when they are applied
to the 2-category problem. See Table 13.2. When differential evolution is used
to find the coefficients of the weighted cosine δ-measure, each of three clas-
sifiers performed better than the original classifier in every case, i.e. in each
of the 100 data sets. Overall, the genetic algorithm and differential evolu-

Table 13.4. Both classification accuracy and no. rules statistics for FLRff, FLRotf,
and FLRsf in the Cleveland “heart problem” using weighted cosine δ-measure

FLRff FLRotf FLRsf
% clas accu no. rules % clas accu no. rules % clas accu no. rules

Method av sd 1-1∗ av sd av sd 1-1∗ av sd av sd 1-1∗ av sd

GA 75.2 2.7 100 49.0 3.6 75.3 2.5 99 49.7 3.6 75.3 2.6 99 48.9 3.5
Tabu 72.8 2.7 97 49.9 3.1 73.2 2.7 95 49.8 3.3 72.5 2.8 90 49.8 2.9
PSO 70.5 2.6 92 49.9 3.2 70.5 2.6 89 49.8 3.2 70.5 2.6 84 49.9 3.2
DE 75.5 2.3 100 50.8 3.8 75.2 2.5 100 51.2 4.3 75.5 2.3 100 50.9 3.8
Original 66.0 2.6 − 53.5 10.3 66.6 2.9 − 51.2 11.0 66.5 3.0 − 49.5 9.8
∗ For 100 data sets, a 1-to-1 comparison was made between an enhanced classi-

fier and the original one. For example, entry 97 for Tabu and FLRff indicates
that of the 100 data sets tested, the enhanced FLRff classifier outperformed
the traditional FLRff on 97 out of 100 data sets.
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tion search techniques provided better results than tabu and particle swarm
optimization search techniques. Over fitting the training data is ruled out by
construction, i.e. no FLR training parameters are used for the FLR classifiers
and a fixed number of generations are used for each evolutionary algorithm
— independent of the data set used.

13.8 Discussion and Conclusion

This work builds upon previous work found in [6, 7, 14] by modifying the defi-
nition of an inclusion measure used in those articles to a measure that we refer
to as a δ measure. Although this measure is no longer an inclusion measure in
the strictest sense, it can still be used in the traditional FLR tightest fit classi-
fiers. We have also shown that the traditional σ-inclusion measure based upon
hyperplane valuations (used in previous articles) is actually limited to the unit
hypersphere valuation. It is also shown that the σ-inclusion measure is related
to the L1 norm (in IN ). We have also extended the σ-inclusion measure to a δ
measure that is based upon distance and similarity measures. This extension
opens a corridor between FLR and cluster analysis research, i.e. the similarity
measures of cluster analysis can be used in FLR, and in return FLR classifiers
can be more readily applied to cluster analysis. We have shown that FLR clas-
sifiers using the weighted cosine measure are able to solve problems for which
σ-inclusion hyperplane measures could not. We have used the weighted cosine
δ-measure in FLR classifiers plus evolutionary algorithms to find the weights
associated with the cosine δ-measure. An application of three FLR classifiers
using δ-measure to the Cleveland heart data 5-category problem shows signifi-
cant improvements over alternative classification methods from the literature.
In fact, our results for the 5-category problem are comparable to alternative
classification methods reported in the literature for the 2-category problem.

Future work includes a comparison of the weighted cosine δ-measure and
σ-inclusion measure on other data sets. Additional work needs to be done in
search of similarity measures now used in cluster analysis that may be used
as δ measures. Additional research needs to be done to determine if there is a
more efficient way to find coefficients used in the weighted cosine δ-measure for
a given problem set. Open questions: is there a methodology that can be used
to find an optimal or near optimal set of coefficients for different problem sets;
are there other measures that can generally perform better than the weighted
cosine δ-measure.
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Summary. Incomplete information is a problem in many aspects of actual environ-
ments. Furthermore, in many scenarios the knowledge is not represented in a crisp
way. It is common to find fuzzy concepts or problems with some level of uncertainty.
There are not many practical systems which handle fuzziness and uncertainty and
the few examples that we can find are used by a minority. To extend a popular sys-
tem (which many programmers are using) with the ability of combining crisp and
fuzzy knowledge representations seems to be an interesting issue.

Fuzzy Prolog [5] is a language that models fuzziness and uncertainty. In this
chapter we enhance Fuzzy Prolog by using default knowledge to represent incomplete
information in Logic Programming. We also provide the implementation of this new
framework. This new release of Fuzzy Prolog handles incomplete information, it has
a complete semantics (the previous one was incomplete as Prolog) and moreover it
is able to combine crisp and fuzzy logic in Prolog programs. Therefore, new Fuzzy
Prolog is more expressive to represent real world.

Fuzzy Prolog inherited from Prolog its incompleteness. The incorporation of
default reasoning to Fuzzy Prolog removes this problem and requires a richer seman-
tics which it is discussed.

14.1 Introduction

World information is not represented in a crisp way. Its representation is
imperfect, fuzzy, etc., so that the management of uncertainty is very important
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in knowledge representation. There are multiple frameworks for incorporating
uncertainty in logic programming:

• fuzzy set theory
• probability theory
• multi-valued logic
• possibilistic logic

In [10] a general framework was proposed that generalizes many of the
previous approaches. At the same time an analogous theoretical framework
was provided and a prototype for Prolog was implemented [21]. Basically, a
rule is of the form A ← B1, . . . , Bn, where the assignment I of certainties is
taken from a certainty lattice, to the Bis. The certainty of A is computed by
taking the set of the certainties I(Bi) and then they are propagated using the
function F that is an aggregation operator. This is a very flexible approach
and in [5, 22] practical examples in a Prolog framework are presented.

In this work we extend the approach of [5] with arbitrary assignments of
default certainty values (non-uniform default assumptions). The usual seman-
tics of logic programs can be obtained through a unique computation method,
but using different assumptions in a uniform way to assign the same default
truth-value to all the atoms. The most well known assumptions are:

• the Closed World Assumption (CWA), which asserts that any atom whose
truth-value cannot be inferred from the facts and clauses of the program
is supposed to be false (i.e. certainty 0). It is used in stable models [2, 3]
and well-founded semantics [12, 13, 15],

• the Open World Assumption (OWA), which asserts that any atom whose
truth-value cannot be inferred from the facts and clauses of the program
is supposed to be undefined or unknown (i.e. certainty in [0, 1]). It is used
in [10].

There are also some approaches [23, 24] where both assumptions can be
combined and some atoms can be interpreted assuming CWA while others
follows OWA. Anyway, what seems really interesting is not only to combine
both assumptions but to generalize the use of a default value. The aim is
working with incomplete information with more guarantees.

The rest of the paper is organized as follows. Section 14.2 introduces the
Fuzzy Prolog language. A complete description of the new semantics of Fuzzy
Prolog is provided in Section 14.3. Section 14.4 completes the details about
the improved implementation using CLP(R) with the extension to handle
default knowledge. Some illustrating examples are provided in section 14.5.
Finally, we conclude and discuss some future work in section 14.6.

14.2 Fuzzy Prolog

In this section we are going to summarize the main characteristics of the Fuzzy
Prolog that we proposed in [5] and that is the basis of the work presented here.
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Fuzzy Prolog is more general than previous approaches to introduce fuzziness
in Prolog in some respects:

1. A truth value will be a finite union of closed sub-intervals on [0, 1]. This
is represented by Borel algebra, B([0, 1]), while the algebra E([0, 1]) only
considers intervals. A single interval is a special case of union of intervals
with only one element, and a unique truth value is a particular case of
having an interval with only one element.

2. A truth value will be propagated through the rules by means of an aggre-
gation operator. The definition of aggregation operator is general in the
sense that it subsumes conjunctive operators (triangular norms [9] like
min, prod, etc.), disjunctive operators [19] (triangular co-norms, like max,
sum, etc.), average operators (like arithmetic average, quasi-linear aver-
age, etc) and hybrid operators (combinations of the above operators [17]).
In [11]3 a resolution-Like Strategy based on a Lattice-Value Logic is pro-
posed, as in our approach, although it is limited to the Lukasiewicz’s
implication operator.

3. The declarative and procedural semantics for Fuzzy Logic programs are
given and their equivalence is proved.

4. An implementation of the proposed language is presented. A fuzzy program
is a finite set of
• fuzzy facts (A ← v, where A is an atom and v, a truth value, is an

element in B([0, 1]) expressed as constraints over the domain [0, 1]),
and

• fuzzy clauses (A ←F B1, . . . , Bn, where A,B1, . . . , Bn are atoms,
and F is an interval-aggregation operator, which induces a union-
aggregation, as by Definition 14.2, F of truth values in B([0, 1]) repre-
sented as constraints over the domain [0, 1]).

We obtain information from the program through fuzzy queries or fuzzy
goals (v ← A ? where A is an atom, and v is a variable, possibly instan-
tiated, that represents a truth value in B([0, 1])).

Programs are defined as usual but handling truth values in B([0, 1]) (the
Borel algebra over the real interval [0, 1] that deals with unions of intervals)
represented as constraints. We refer, for example, to expressions as: (v ≥
0.5 ∧ v ≤ 0.7) ∨ (v ≥ 0.8 ∧ v ≤ 0.9) to represent a truth value in
[0.5, 0.7]

⋃
[0.8, 0.9].

A lot of everyday situations can only be represented by this general rep-
resentation of truth value. There are some examples in [5].

The truth value of a goal will depend on the truth value of the subgoals
which are in the body of the clauses of its definition. Fuzzy Prolog [5] uses
aggregation operators [20] in order to propagate the truth value by means

3 This work discusses the resolution based on a Lattice-Valued Logic for the Prolog
language at theoretical level. In our approach we provide also an operational
semantics and an implementation using an extended Prolog with constraints.
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of the fuzzy rules. Fuzzy sets aggregation is done using the application of a
numeric operator of the form f : [0, 1]n → [0, 1]. An aggregation operator
must verify f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, and in addition it should
be monotonic and continuous. If we deal with the definition of fuzzy sets as
intervals it is necessary to generalize from aggregation operators of numbers to
aggregation operators of intervals. Following the theorem proved by Nguyen
and Walker in [16] to extend T-norms and T-conorms to intervals, we propose
the following definitions.

Definition 14.1 (interval-aggregation) Given an aggregation f : [0, 1]n →
[0, 1], an interval-aggregation F : E([0, 1])n → E([0, 1]) is defined as follows:

F ([xl
1, x

u
1 ], ..., [xl

n, xu
n]) = [f(xl

1, ..., x
l
n), f(xu

1 , ..., xu
n)].

Actually, we work with union of intervals and propose the definition:

Definition 14.2 (union-aggregation) Given an interval-aggregation
F : E([0, 1])n → E([0, 1]) defined over intervals, a union-aggregation
F : B([0, 1])n → B([0, 1]) is defined over union of intervals as follows:

F(B1, . . . , Bn) = ∪{F (E1, ..., En) | Ei ∈ Bi}.

In the presentation of the theory of possibility [25], Zadeh considers that
fuzzy sets act as an elastic constraint on the values of a variable and fuzzy
inference as constraint propagation.

In [5] (and furthermore in the extension that we presented in this paper),
truth values and the result of aggregations are represented by constraints.
A constraint is a Σ-formula where Σ is a signature that contains the real
numbers, the binary function symbols + and ∗, and the binary predicate
symbols =, < and ≤. If the constraint c has solution in the domain of real
numbers in the interval [0, 1] then c is consistent, and is denoted as solvable(c).

14.3 Semantics

This section contains a reformulation of the semantics of Fuzzy Prolog. This
new semantics is complete thanks to the inclusion of default value.

14.3.1 Least model semantics

The Herbrand universe U is the set of all ground terms, which can be made up
with the constants and function symbols of a program, and the Herbrand base
B is the set of all ground atoms which can be formed by using the predicate
symbols of the program with ground terms (of the Herbrand universe) as
arguments.
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Definition 14.3 (default value) We assume there is a function default
which implement the Default Knowledge Assumptions. It assigns an element of
B([0, 1]) to each element of the Herbrand Base. If the Closed World Assump-
tion is used, then default(A) = [0, 0] for all A in Herbrand Base. If Open
World Assumption is used instead, default(A) = [0, 1] for all A in Herbrand
Base.

Definition 14.4 (interpretation) An interpretation I = 〈BI , VI〉 consists
of the following:

1. a subset BI of the Herbrand Base,
2. a mapping VI , to assign

a) a truth value, in B([0, 1]), to each element of BI , or
b) default(A), if A does not belong to BI .

Definition 14.5 (interval inclusion ⊆II) Given two intervals I1 = [a, b],
I2 = [c, d] in E([0, 1]), I1 ⊆II I2 if and only if c ≤ a and b ≤ d.

Definition 14.6 (Borel inclusion ⊆BI) Given two unions of intervals U =
I1 ∪ · · · ∪ IN , U ′ = I ′1 ∪ · · · ∪ I ′M in B([0, 1]), U ⊆BI U ′ if and only if ∀Ii ∈ U ,
i ∈ 1..N , Ii can be partitioned in to intervals Ji1, ..., JiL, i.e. Ji1 ∪ ... ∪ JiL =
Ii, Ji1 ∩ ... ∩ JiL is the set of the border elements of the intervals (except the
lower limit of Ji1 and the upper limit of JiL) and for all k ∈ 1..L, ∃J ′

jk ∈
U ′ . Jik ⊆II J ′

jk where jk ∈ 1..M .

The Borel algebra B([0, 1]) is a complete lattice under ⊆BI (Borel inclu-
sion), and the Herbrand base is a complete lattice under ⊆ (set inclusion) and
so the set of all interpretations forms a complete lattice under the relation %
defined as follows.
Notice that we have redefined interpretation and Borel inclusion with respect
to the definitions in [5]. We will also redefine the operational semantics and
therefore the internal implementation of the Fuzzy Prolog library. Sections
below are completely new too. For uniformity reasons we have kept the same
syntax that was used in [5] in fuzzy programs.

Definition 14.7 (interpretation inclusion %) Let I = 〈BI , VI〉 and
I ′ = 〈BI′ , VI′〉 be interpretations. I % I ′ if and only if BI ⊆ BI′ and for all
B ∈ BI , VI(B) ⊆BI VI′(B).

Definition 14.8 (valuation) A valuation σ of an atom A is an assignment
of elements of U to variables of A. So σ(A) ∈ B is a ground atom.

In the Herbrand context, a valuation is the same as a substitution.

Definition 14.9 (model) Given an interpretation I = 〈BI , VI〉,
• I is a model for a fuzzy fact A ← v, if for all valuations σ, σ(A) ∈ BI and

v ⊆BI VI(σ(A)).
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• I is a model for a clause A ←F B1, . . . , Bn when the following holds:
for all valuations σ, σ(A) ∈ BI and v ⊆BI VI(σ(A)), where v =
F(VI(σ(B1)), . . . , VI(σ(Bn))) and F is the union aggregation obtained
from F .

• I is a model of a fuzzy program, if it is a model for the facts and clauses
of the program.

Every program has a least model which is usually regarded as the intended
interpretation of the program since it is the most conservative model. Let ∩
(that appears in the following theorem) be the meet operator on the lattice
of interpretations (I,%). We can prove the following result.

Theorem 14.1 (model intersection property) Let I1 = 〈BI1 , VI1〉, I2 =
〈BI1 , VI1〉 be models of a fuzzy program P . Then I1 ∩ I2 is a model of P .

Proof. Let M = 〈BM , VM 〉 = I1 ∩ I2. Since I1 and I2 are models of P , they
are models for each fact and clause of P . Then for all valuations σ we have

• for all facts A ← v in P ,
– σ(A) ⊆ BI1 and σ(A) ∈ BI2 , and so σ(A) ∈ BI1 ∩BI2 = BM ,
– v ⊆BI VI1(σ(A)) and v ⊆BI VI2(σ(A)), and so hence

v ⊆BI VI1(σ(A)) ∩ VI2(σ(A)) = VM (σ(A))
therefore M is a model for A ← v

• and for all clauses A ←F B1, . . . , Bn in P
– since σ(A) ∈ BI1 and σ(A) ∈ BI2 , hence σ(A) ∈ BI1 ∩BI2 = BM .
– if v = F(VM (σ(B1)), . . . , VM (σ(Bn))), since F is monotonic, v ⊆BI

VI1(σ(A)) and v ⊆BI VI2(σ(A)), hence v ⊆BI VI1(σ(A))∩VI2(σ(A)) =
VM (σ(A))

therefore M is a model for A ←F B1, . . . , Bn

and M is model of P .�

Remark 14.1 (Least model semantic). If we let M be the set of all models
of a program P , the intersection of all of these models,

⋂
M, is a model and it

is the least model of P . We denote the least model of a program P by lm(P ).

Example 14.1 Let’s see an example (from [5]). Suppose we have the follow-
ing program P :

tall(peter) ← [0.6, 0.7] ∨ 0.8
tall(john) ← 0.7
swift(john) ← [0.6, 0.8]
good player(X) ←luka tall(X), swift(X)

Here, we have two facts, tall(john) and swift(john) whose truth val-
ues are the unitary interval [0.7, 0.7] and the interval [0.6, 0.8], respectively,
and a clause for the good player predicate whose aggregation operator is the
Lukasiewicz T-norm.
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The following interpretation I = 〈B, V 〉 is a model for P , where
B = {tall(john), tall(peter), swift(john),

good player(john), good player(peter)} and

V (tall(john)) = [0.7, 1]
V (swift(john)) = [0.5, 0.8]

V (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]
V (good player(john)) = [0.2, 0.9]
V (good player(peter)) = [0.5, 0.9]

note that for instance if V (good player(john)) = [0.2, 0.5] I = 〈B, V 〉 cannot
be a model of P , the reason is that v = luka([0.7, 1], [0.5, 0.8]) = [0.7 + 0.5 −
1, 1 + 0.8− 1] = [0.2, 0.8] 	⊆II [0.2, 0.5].

The least model of P is the intersection of all models of P which is M =
〈BM , VM 〉 where
BM = {tall(john), tall(peter), swift(john),
good player(john)} and

VM (tall(john)) = [0.7, 0.7]
VM (swift(john)) = [0.6, 0.8]

VM (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]
VM (good player(john)) = [0.3, 0.5].

14.3.2 Fixed-point semantics

The fixed-point semantics we present is based on a one-step consequence oper-
ator TP . The least fixed-point lfp(TP ) = I (i.e. TP (I) = I) is the declarative
meaning of the program P , so is equal to lm(P ). We include it here for clarity
reasons although it is the same that in [5].

Let P be a fuzzy program and BP the Herbrand base of P ; then the
mapping TP over interpretations is defined as follows:

Let I = 〈BI , VI〉 be a fuzzy interpretation, then TP (I) = I ′, I ′ = 〈BI′ , VI′〉,
BI′ = {A ∈ BP | Cond}, VI′(A) =

⋃
{v ∈ B([0, 1]) | Cond}

where

Cond = (A ← v is a ground instance of a fact in P and
solvable(v)) or
(A ←F A1, . . . , An is a ground instance of a
clause in P, and
solvable(v), v = F(VI(A1), . . . , VI(An))).

Note that since I ′ must be an interpretation, VI′(A) = default(A) for all
A /∈ BI′ .

The set of interpretations forms a complete lattice, so that TP it is con-
tinuous.

Recall (from [5]) the definition of the ordinal powers of a function G over
a complete lattice X:
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G ↑ α =
{⋃

{G ↑ α′ | α′ < α} if α is a limit ordinal,
G(G ↑ (α− 1)) if α is a successor ordinal,

and dually,

G ↓ α =
{⋂

{G ↓ α′ | α′ < α} if α is a limit ordinal,
G(G ↓ (α− 1)) if α is a successor ordinal,

Since the first limit ordinal is 0, it follows that G ↑ 0 = ⊥X (the bottom
element of the lattice X) and G ↓ 0 = )X (the top element). From Kleene’s
fixed point theorem we know that the least fixed-point of any continuous
operator is reached at the first infinite ordinal ω. Hence lfp(TP ) = TP ↑ ω.

Example 14.2 Consider the same program P of the example 14.1 (from [5]),
the ordinal powers of TP are
TP ↑ 0 = {}
TP ↑ 1 = {tall(john), swift(john), tall(peter)} and

V (tall(john)) = [0.7, 0.7]
V (swift(john)) = [0.6, 0.8]
V (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]

TP ↑ 2 = {tall(john), swift(john), tall(peter), good player(john)} and

V (tall(john)) = [0.7, 0.7]
V (swift(john)) = [0.6, 0.8]
V (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]
V (good player(john)) = [0.3, 0.5]

TP ↑ 3 = TP ↑ 2.

Lemma 14.1 Let P a fuzzy program. Then M is a model of P if and only if
M is a pre-fixpoint of TP , that is TP (M) % M.

Proof. Let M = 〈BM , VM 〉 and TP (M) = 〈BTP
, VTP

〉.
We first prove the “only if” (→) direction. Let A be an element of Herbrand

Base, if A ∈ BTP
, then by definition of TP there exists a ground instance of

a fact of P , A ← v, or a ground instance of a clause of P , A ←F A1, . . . , An

where {A1, . . . , An} ⊆ BM and v = F(VM (A1), . . . , VM (An)). Since M is a
model of P , A ∈ BM , and each v ⊆BI VM (A), then VTP

(A) ⊆BI VM (A) and
then TP (M) % M . If A /∈ BTP

then VTP
(A) = default(A) ⊆BI VM (A).

Analogously, for the “if” (←) direction, for each ground instance
v = F(VM (A1), . . . , VM (An)), A ∈ BTP

and v ⊆BI VTP
(A), but as TP (M) %

M , BTP
⊆ BM and VTP

(A) ⊆BI VM (A). Then A ∈ BM and v ⊆BI VM (A)
therefore M is a model of P . �

Given this relationship, it is straightforward to prove that the least model
of a program P is also the least fixed-point of TP .
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Theorem 14.2 Let P be a fuzzy program. Then lm(P ) = lfp(TP ).

Proof.
lm(P ) =

⋂
{M | M is a model of P}

=
⋂
{M | M is a pre-fixpoint of P}

from lemma 14.1
= lfp(TP )

by the Knaster-Tarski
Fixpoint Theorem [18].�

14.3.3 Operational semantics

The improvement of Fuzzy Prolog is remarkable in its new procedural seman-
tics that is interpreted as a sequence of transitions between different states
of a system. We represent the state of a transition system in a computation
as a tuple 〈A, σ, S〉 where A is the goal, σ is a substitution representing the
instantiation of variables needed to get to this state from the initial one and
S is a constraint that represents the truth value of the goal at this state.

When computation starts, A is the initial goal, σ = ∅ and S is true (if
there are neither previous instantiations nor initial constraints). When we
get to a state where the first argument is empty then we have finished the
computation and the other two arguments represent the answer.

Definition 14.10 (Transition) A transition in the transition system is
defined as:

1. 〈A ∪ a, σ, S〉 → 〈Aθ, σ · θ, S ∧ µa = v〉
if h ← v is a fact of the program P , θ is the mgu of a and h, µa is the
truth value for a and solvable(S ∧ µa = v).

2. 〈A ∪ a, σ, S〉 → 〈(A ∪B)θ, σ · θ, S ∧ c〉
if h ←F B is a rule of the program P , θ is the mgu of a and h, c is
the constraint that represents the truth value obtained applying the union-
aggregation F to the truth values of B, and solvable(S ∧ c).

3. 〈A ∪ a, σ, S〉 → 〈A, σ, S ∧ µa = v〉
if none of the above are applicable and solvable(S ∧ µa = v) where µa =
default(a).

Definition 14.11 (Success set) The success set SS(P ) collects the answers
to simple goals p(x̂). It is defined as follows: SS(P ) = 〈B, V 〉
where B = {p(x̂)σ|〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉} is the set of elements of the
Herbrand Base that are instantiated and that have succeeded; and V (p(x̂)) =
∪{v|〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉, and v is the solution of S} is the set of truth
values of the elements of B that is the union (got by backtracking) of truth
values that are obtained from the set of constraints provided by the program P
while query p(x̂) is computed.
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Example 14.3 Let P be the program of example 14.1 (from [5]). Consider
the fuzzy goal

µ ← good player(X) ?

the first transition in the computation is

〈{(good player(X)}, ε, true〉 →
〈{tall(X), swift(X)}, ε, µ = max(0, µtall + µswift − 1)〉

unifying the goal with the clause and adding the constraint corresponding to
Lukasiewicz T-norm. The next transition leads to the state:

〈{swift(X)}, {X = john}, µ = max(0, µtall + µswift − 1) ∧ µtall = 0.7〉

after unifying tall(X) with tall(john) and adding the constraint regarding the
truth value of the fact. The computation ends with:

〈{}, {X = john}, µ = max(0, µtall+µswift−1)∧µtall = 0.7∧0.6 ≤ µswift∧
µswift ≤ 0.8〉

As µ = max(0, µtall +µswift−1)∧µtall = 0.7∧0.6 ≤ µswift∧µswift ≤ 0.8
entails µ ∈ [0.3, 0.5], the answer to the query good player(X) is X = john
with truth value the interval [0.3, 0.5].

In order to prove the equivalence between operational semantic and fixed-
point semantic, it is useful to introduce a type of canonical top-down eval-
uation strategy. In this strategy all literals are reduced at each step in a
derivation. For obvious reasons, such a derivation is called breadth-first.

Definition 14.12 (Breadth-first transition) Given the following set of
valid transitions:

〈{A1, . . . , An}, σ, S〉 → 〈{A2, . . . , An} ∪B1, σ · θ1, S ∧ c1〉
〈{A1, . . . , An}, σ, S〉 → 〈{A1, A3 . . . , An} ∪B2, σ · θ2, S ∧ c2〉

. . .
〈{A1, . . . , An}, σ, S〉 → 〈{A1, . . . , An−1} ∪Bn, σ · θn, S ∧ cn〉

a breadth-first transition is defined as
〈{A1, . . . , An}, σ, S〉 →BF 〈B1 ∪ . . . ∪Bn, σ · θ1 · . . . · θn, S ∧ c1 ∧ . . . ∧ cn〉

in which all literals are reduced at one step.

Theorem 14.3 Given an ordinal number n and TP ↑ n = 〈BTPn
, VTPn

〉.
There is a successful breadth-first derivation of length less or equal to n + 1
for a program P , 〈{A1, . . . , Ak}, σ, S1〉 →∗

BF 〈∅, θ, S2〉 iff Aiθ ∈ BTPn
and

solvable(S ∧ µAi
= vi) and vi ⊆BI VTPn

(Aiθ).

Proof. The proof is by induction on n. For the base case, all the literals are
reduced using the first type of transitions or the last one, that is, for each
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literal Ai, it exits a fact hi ← vi such that θi is the mgu of Ai and hi, and µAi

is the truth variable for Ai, and solvable(S1 ∧µAi
= vi) or µAi

= default(Ai).
By definition of TP , each vi ⊆BI VTP1

(Aiθ) where 〈BTP1
, VTP1

〉 = TP ↑ 1.
For the general case, consider the successful derivation,

〈{A1, . . . , Ak}, σ1, S1〉 →BF 〈B, σ2, S2〉 →BF . . . →BF 〈∅, σn, Sn〉
the transition 〈{A1, . . . , Ak}, σ1, S1〉 →BF 〈B, σ2, S2〉

When a literal Ai is reduced using a fact or there is not rule for Ai,
the result is the same as in the base case. Otherwise there is a clause hi ←F

B1i
, . . . , Bmi

in P such that θi is the mgu of Ai and hi ∈ Bσ2 and Bji
θi ∈ Bσ2,

by the induction hypothesis Bσ2 ⊆ BTPn−1
and solvable(S2 ∧ µBji

= vji
)

and vji
⊆BI VTPn−1

(Bji
σ2) then Bji

θi ⊆ BTPn−1
and by definition of TP ,

Aiθi ∈ BTPn
and solvable(S1 ∧ µAi

= vi) and vi =⊆BI VTPn
(Aiσ1). �

Theorem 14.4 For a program P there is a successful derivation

〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉

iff p(x̂)σ ∈ B and v is the solution of S and v ⊆BI V (p(x̂)σ) where lfp(TP ) =
〈B, V 〉.

Proof. It follows from the fact that lfp(TP ) = TP ↑ ω and from the Theorem
14.3. �

Theorem 14.5 For a fuzzy program P the three semantics are equivalent,
i.e.

SS(P ) = lfp(TP ) = lm(P ).

Proof. The first equivalence follows from Theorem 14.4 and the second from
Theorem 14.2. �

14.4 Implementation and Syntax

14.4.1 CLP(R)

Constraint Logic Programming [7] began as a natural merging of two declara-
tive paradigms: constraint solving and logic programming. This combination
helps make CLP programs both expressive and flexible, and in some cases,
more efficient than other kinds of logic programs. CLP(R) [8] has linear arith-
metic constraints and computes over the real numbers.

Fuzzy Prolog was implemented in [5] as a syntactic extension of a CLP(R)
system. CLP(R) was incorporated as a library in the Ciao Prolog system4.

Ciao Prolog is a next-generation logic programming system which, among
other features, has been designed with modular incremental compilation in

4 The Ciao system [1] including our Fuzzy Prolog implementation can be down-
loaded from http://www.clip.dia.fi.upm.es/Software/Ciao
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mind. Its module system [1] permits having classical modules and fuzzy mod-
ules in the same program and it incorporates CLP(R).

Many Prolog systems have included the possibility of changing or expand-
ing the syntax of the source code. One way is using the op/3 built-in and
another is defining expansions of the source code by allowing the user to
define a predicate typically called term expansion/2. Ciao has redesigned
these features so that it is possible to define source translations and operators
that are local to the module or user file defining them. Another advantage of
the module system of Ciao is that it allows separating code that will be used
at compilation time from code which will be used at run-time.

The fuzzy library (or package in the Ciao Prolog terminology) which imple-
ments the interpreter of our Fuzzy Prolog language [5] has been modified to
handle default reasoning.

14.4.2 Syntax

Let us recall, from [5], the syntax of Fuzzy Prolog. Each Fuzzy Prolog clause
has an additional argument in the head which represents its truth value in
terms of the truth values of the subgoals of the body of the clause. A fact
A ← v is represented by a Fuzzy Prolog fact that describes the range of values
of v with a union of intervals (which can be only an interval or even a real
number in particular cases). The following examples illustrate the concrete
syntax of programs:

youth(45) ← [0.2, 0.5]
⋃

[0.8, 1]
tall(john) ← 0.7
swift(john) ← [0.6, 0.8]
good player(X) ←min tall(X),

swift(X)

youth(45):∼ [0.2,0.5]v[0.8,1]
tall(john):∼ 0.7
swift(john):∼ [0.6,0.8]
good player(X):∼min tall(X),

swift(X)

These clauses are expanded at compilation time to constrained clauses that
are managed by CLP(R) at run-time. Predicates . = ./2, . < ./2, . <= ./2,
. > ./2 and . >= ./2 are the Ciao CLP(R) operators for representing con-
straint inequalities, we will use them in the code of predicates definitions
(while we will use the common operators =, <, ≤, >, ≥ for theoretical defi-
nitions). For example the first fuzzy fact is expanded to these Prolog clauses
with constraints

youth(45,V):- V .>=. 0.2, V .<=. 0.5.
youth(45,V):- V .>=. 0.8, V .<. 1.
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And the fuzzy clause

good_player(X) :~ min tall(X),swift(X).

is expanded to

good_player(X,Vp) :- tall(X,Vq),
swift(X,Vr),
minim([Vq,Vr],Vp),
Vp .>=. 0,
Vp .=<. 1.

The predicate minim/2 is included as run-time code by the library. Its
function is adding constraints to the truth value variables in order to imple-
ment the T-norm min.

minim([],_).
minim([X],X).
minim([X,Y|Rest],Min):-

min(X,Y,M),
minim([M|Rest],Min).

min(X,Y,Z):- X .=<. Y , Z .=. X.
min(X,Y,Z):- X .>. Y, Z .=. Y .

We have implemented several aggregation operators as prod, max, luka
(Lukasiewicz operator), etc. and in a similar way any other operator can be
added to the system without any effort. The system is extensible by the user
simply adding the code for new aggregation operators to the library.

14.5 Combining Crisp and Fuzzy Logic

14.5.1 Example: Teenager student

In order to use definitions of fuzzy predicates that include crisp subgoals we
must define properly their semantics with respect to the Prolog Close World
Assumption (CWA) [4]. We will present a motivating example from [5].

Fuzzy clauses usually use crisp predicate calls as requirements that data
have to satisfy to verify the definition in a level superior to 0, i.e. crisp pred-
icates are usually tests that data should satisfy in the body of fuzzy clauses.
For example, if we can say that a teenager student is a student whose age is
about 15 then we can define the fuzzy predicate teenager student/2 in Fuzzy
Prolog as

teenager_student(X,V):~
student(X),
age_about_15(X,V2).
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In this example we pretend the goal teenager student(X,V ) provides:

• V = 0 if the value of X is not the name of a student.
• The corresponding truth value V if the value of X is the name of a student

and we know that his age is about 15 in a certain level.
• Unknown if the value of X is the name of a student but we do not know

anything about his/her age.

Note that we can face the risk of unsoundness unless the semantics of crisp
and fuzzy predicates is properly defined. CWA means that all non-explicit
information is false. E.g., if we have the predicate definition of student/1 as

student(john).
student(peter).

then we have that the goal student(X) succeeds with X = john or with
X = peter but fails with any other value different from these; i.e:

?- student(john).
yes

?- student(nick).
no

which means that john is a student and nick is not. This is the semantics
of Prolog and it is the one we are going to adopt for crisp predicates because
we want our system to be compatible with conventional Prolog reasoning.
But what about fuzzy predicates? According to human reasoning we should
assume OWA (non explicit information in unknown). Consider the following
definition of age about 15/2

age_about_15(john,1):~ .
age_about_15(susan,0.7):~ .

The goal age about 15(X,V ) succeeds with X = john and V = 1 or with
X = susan and V = 0.7. If we want to work with the CWA, like crisp
predicates do, then we will obtain V = 0 for any other value of X different
from john and susan. The meaning is that the predicate is defined for all
values and the membership value will be 0 if the predicate is not explicitly
defined with other value. In this example we know that the age of john is 15
and susan’s age is about 15 and with CWA we are also saying that the rest
of the people are not about 15. This is the equivalent semantics to the one
in crisp definitions but we think that we usually prefer to mean something
different, i.e. in this case we can mean that we know that john and susan are
about 15 and that we have no information about the age of the rest of people.

Therefore we do not know if the age of peter is about 15 or not; and we
know that nick’s age is definitely not about 15. We can explicitly declare

age_about_15(nick,0):~ .
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We are going to work with this semantics for fuzzy predicates because we
think it is the most alike to human reasoning. So a fuzzy goal can be true
(value 1), false (value 0) or having other membership value. We have added
the concept of unknown to represent no explicit knowledge in fuzzy definitions.
We understand that if we don’t have any information about a truth value V
then its value is something (a value, an interval or a union of intervals) in the
interval {0, 1}, so the most general assumption is the whole interval [0, 1]. The
interval is represented by its corresponding constraints V ≥ 0 and V ≤ 1.

Our way to introduce crisp subgoals into the body of fuzzy clauses is trans-
lating the crisp predicate into the respective fuzzy predicate. In the example
the way to obtain it is by overcoming the CWA behavior of the crisp predicate
student/1 to obtain the truth value 0 for student(susan). The solution is to
fuzzify crisp predicates when they are in the body of fuzzy clauses.

For each crisp predicate in the definition of fuzzy predicate, the compiler
will generate a fuzzy version to replace the original one in the body of the
clause. For the example above of crisp predicate student/1, the compiler will
produce the predicate f student/2 that is an equivalent fuzzy predicate to
the crisp one. For our example we obtain the following Prolog definition of
teenager student/2.

teenager_student(X,V):~
f_student(X,V1),
age_about_15(X,V2).

Where the default truth value of a crisp predicate is 0.

f_student(X,1):- student(X).
:-default(f_student/2,0).

Nevertheless, we consider for age about 15/2 and teenager student/2 that the
default value is unknown (the whole interval [0, 1]).

:-default(age_about_15/2,[0,1]).
:-default(teenager_student/2,[0,1]).

Observe the following consults:

?- age_about_15(john,X).
X = 1

?- age_about_15(nick,X).
X = 0

?- age_about_15(peter,X).
X .>=. 0, X .<=. 1

This means john’s age is about 15, nick’s age is not about 15 and we have
no data about peter’s age.
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We expect the same behavior with the fuzzy predicate teenager student/2,
i.e.:

?- teenager_student(john,V).
V .=. 1

?- teenager_student(susan,V).
V .=. 0

?- teenager_student(peter,V).
V .>=. 0, V .<=. 1

as john is a “teenager student” (he is a student and his age is about 15),
susan is not a “teenager student” (she is not a student) and we do not know
the value of maturity of peter as student because although he is a student, we
do not know if his age is about 15.

Now the internal fuzzy resolution is simple, sound and very homogeneous
because we only consider fuzzy subgoals in the body of the clause.

14.5.2 Example: Timetable compatibility

Another real example could be the problem of compatibility of a couple of
shifts in a work place. For example teachers that work in different class timeta-
bles, telephone operators, etc. Imagine a company where the work is divided
in shifts of 4 hours per week. Many workers have to combine a couple of shifts
in the same week and a predicate compatible/2 is necessary to check if two
shifts are compatible or to obtain which couples of shifts are compatible. Two
shifts are compatible when both are correct (working days from Monday to
Friday, hours between 8 a.m. and 18 p.m. and there are no repetitions of the
same hour in a shift) and in addition when the shifts are disjoint.

compatible(T1,T2):-
correct_shift(T1),
correct_shift(T2),
disjoint(T1,T2).

But there are so many compatible combinations of shifts that it would
be useful to define the concept of compatibility in a fuzzy way instead of in
the crisp way it is defined above. It would express that two shifts could be
incompatible if one of them is not correct or if they are not disjoint but when
they are compatible, they can be more or less compatible. They can have a
level of compatibility. Two shifts will be more compatible if the working hours
are concentrated (the employee has to go to work few days during the week).
Also, two shifts will be more compatible if there are few free hours between
the busy hours of the working days of the timetable.
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Fig. 14.1. Timetable 1 and 2

Therefore, we are handling crisp concepts (correct shift/1, disjoint/2)
besides fuzzy concepts (without gaps/2, few days/2). Their definitions, rep-
resented in Fig. 14.3 and Fig. 14.4, are expressed in our language in this simple
way (using the operator “: #” for function definitions and the reserved word
“fuzzy predicate”):

few_days :# fuzzy_predicate([(0,1),
(1,0.8),(2,0.6),
(3,0.4),(4,0.2),
(5,0)]).

without_gaps :# fuzzy_predicate([(0,1),
(1,0.8),(5,0.3),
(7,0.1),(8,0)]).

A simple implementation in Fuzzy Prolog combining both types of predi-
cates could be:

compatible(T1,T2,V):~ min
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Fig. 14.2. Timetable 3 and 4

f_correct_shift(T1,V1),
f_correct_shift(T2,V2),
f_disjoint(T1,T2,V3),
f_append(T1,T2,T,V4),
f_number_of_days(T,D,V5),
few_days(D,V6),
f_number_of_free_hours(T,H,V7),
without_gaps(H,V8).

Here append/3 gives the total weekly timetable of 8 hours from joining
two shifts, number of days/3 obtains the total number of working days of
a weekly timetable and number of free hours/2 returns the number of free
one-hour gaps that the weekly timetable has during the working days. The
f_predicates are the corresponding fuzzified crisp predicates. The aggregation
operator min will aggregate the value of V from V 6 and V 8 checking that
V 1, V 2, V 3, V 4, V 5 and V 7 are equal to 1, otherwise it fails. Observe the
timetables in Fig. 14.1 and Fig. 14.2. We can obtain the compatibility between
the couple of shifts, T1 and T2, represented in each timetable asking the
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Fig. 14.4. Fuzzy predicate without gaps/2

subgoal compatible (T1, T2, V ). The result is V = 0.2 for the timetable 1,
V = 0.6 for the timetable 2, and V = 0 for the timetable 3 (because the shifts
are incompatible).

Regarding compatibility of shifts in a weekly timetable, we are going to
ask some questions about the shifts T1 and T2 of timetable 4 of Fig. 14.2.
One hour of T2 is not fixed yet.

We can note: the days of the week as mo, tu, we, th and fr; the slice of
time of one hour as the time of its beginning from 8 a.m. till 17 p.m.; one
hour of the week timetable as a pair of day and hour and one shift as a list of
4 hours of the week.

If we want to fix the free hour of T2 in the slice 10-11 a.m. but with a
compatibility not null, we obtain that only Tuesday is not compatible.:

?- compatible(
[(mo,9), (tu,10), (we,8), (we,9)],
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[(mo,8), (we,11), (we,12), (D,10)], V),
V .>. 0 .

D =/= tu

If we want to know how to complete the shift T2 given a level of compati-
bility higher than 70 %, we obtain the slice from 10 to 11 p.m. at Wednesday
or Monday morning.

?- compatible(
[(mo,9), (tu,10), (we,8), (we,9)],
[(mo,8), (we,11), (we,12), (D,H)],
V),

V .>. 0.7 .

V = 0.9, D = we, H = 10 ? ;
V = 0.75, D = mo, H = 10 ? ;
no

14.6 Conclusions and Future Work

Extending the expressivity of programming systems is very important for
knowledge representation. We have chosen a practical and extended language
for knowledge representation: Prolog.

Fuzzy Prolog presented in [5] is implemented over Prolog instead of imple-
menting a new resolution system. This gives it a good potential for efficiency,
more simplicity and flexibility. For example aggregation operators can be
added with almost no effort. This extension to Prolog is realized by inter-
preting fuzzy reasoning as a set of constraints [25], and after that, translating
fuzzy predicates into CLP(R) clauses. The rest of the computation is resolved
by the compiler.

In this paper we propose to enrich Prolog with more expressivity by adding
default reasoning and therefore the possibility of handling incomplete informa-
tion that is one of the most worrying characteristics of data (i.e. all information
that we need usually is not available but only one part of the information is
available) and anyway searches, calculations, etc. should be done just with
the information that we had.

We have developed a complete and sound semantics for handling incom-
plete fuzzy information and we have also provided a real implementation based
in our former Fuzzy Prolog approach.

We have managed to combine crisp information (CWA) and fuzzy informa-
tion (OWA or default) in the same program. This is a great advantage because
it lets us model many problems using fuzzy programs. So we have extended
the expressivity of the language and the possibility of applying it to solve real
problems in which the information can be defined, fuzzy or incomplete.



14 Fuzzy Prolog 307

Presently we are working in several related issues:

• Obtaining constructive answers to negative goals.
• Constructing the syntax to work with discrete fuzzy sets and its applica-

tions (recently published in [14]).
• Implementing a representation model using unions instead of using back-

tracking.
• Introducing domains of fuzzy sets using types. This seems to be an easy

task considering that we are using a modern Prolog [6] where types are
available.

• Implementing the expansion over other systems. We are studying now the
advantages of an implementation in XSB system where tabling is used.

• Using our approach for the engine of robots in a RoboCup league in a joint
project between our universities.
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Summary. The notion of ordering is perhaps one of the most fundamental of
abstract concepts. The zeta function is used to algebraically describe the ordering
of elements in a lattice. An appropriate generalization of the zeta function general-
izes the concept of inclusion to degrees of inclusion. However, the lattice structure
imposes strong constraints on the values that these degrees can take. Here we review
our previous work [1] 1 in studying these degrees of inclusion and relate these notions
to the fuzzification of the lattice (independently introduced by Vassilis Kaburlasos).
We show that an inclusion measure on the Boolean lattice of logical statements leads
to Bayesian probability theory, which suggests a fundamental relationship between
fuzzification of a Boolean lattice and Bayesian probability theory.

15.1 Introduction

In recent years, Lattice Theory, also known as Order Theory, has become
widely recognized (especially in computer science) as a basic mathematical
field that introduces a new perspective on the concept of an algebra. An
algebra considers a set of elements along with a set of operations. These
operations simply map elements of the algebra onto one another. However,
a lattice takes a different perspective and considers a set of elements and
a binary ordering relation, called a partial order. Instead of studying the
mappings of the algebraic operations, one studies how the set of objects are
ordered. As we will demonstrate, such changes in perspective often provide
unique advantages.

This partial order, denoted by x ≤ y and read “y includes x”, describes
the situation where one element of the set “includes” a second element as
defined by the ordering relation. This notion of inclusion can be extremely
diverse encompassing the usual “lesser than” relation between real numbers,
set inclusion, as well as implication among logical statements. A set of elements

1 This contribution is an expanded version of our paper presented at the 2006 IEEE
World Congress on Computational Intelligence (WCCI), Vancouver, BC, Canada.

K.H. Knuth: Valuations on Lattices: Fuzzification and its Implications, Studies in Computa-

tional Intelligence (SCI) 67, 309–324 (2007)

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
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and an ordering relation give rise to what is called a partially ordered set, or
poset. In the event that x ≤ y and there does not exist an element z in the
set such that x ≤ z ≤ y, it is said that “y covers x.” This concept of covering
can be used to make diagrams such as those shown in the figure in this paper
where y would appear above x in the diagram, and they would be connect by
a line. It is in the special case where each pair of elements in a poset possesses
a unique least upper bound, denoted x ∨ y , and a unique greatest lower
bound, denoted x ∧ y, that the poset is called a lattice. For more information
on posets and lattices, we refer the reader to the introductory text by Davey
and Priestley [2] or the more advanced text by Birkhoff [3].

This notion of inclusion, which is central to the partially ordered set, is
encoded neatly by a function called the zeta function ζ(·, ·), defined as

ζ(x, y) =
{

1 if x ≤ y
0 if x ≤/y

(15.1)

This function belongs to an important class of real-valued functions of two
variables defined on the poset called the incidence algebra [4]. These functions
f(x, y) are non-zero only when x ≤ y, and can be multiplied by performing a
convolution over the interval of elements z in the poset where x ≤ z ≤ y

h(x, y) =
∑

x≤z≤y

f(x, z)g(z, y).

The inversion of the zeta function relies on the Möbius function, µ(x, y), which
is the inverse of the zeta function [4, 5, 6] so that

δ(x, y) =
∑

x≤z≤y

ζ(x, z)µ(z, y),

where δ(x, y) is the Kronecker delta function. As one might expect, these
functions are indeed related to the more familiar Riemann zeta function of
number theory, which originates from the partially ordered set of integers
ordered by the relation “divides”. These functions play an important role in
order theory, and will play an even greater role in the generalizations that we
will discuss here.

In this paper we will consider a particular class of lattices called distrib-
utive lattices, which include Boolean lattices. In Sect. 15.2 and Sect. 15.3 we
review our previous work, which extends algebraic results by Richard Cox
[7, 8], to derive Bayesian probability theory from generalizing the dual of the
zeta function on the Boolean lattice of logical statements [9]. Last, in Sect. 15.4
we summarize the results and discuss future directions.

15.2 Valuations and Distributive Lattices

In this section, we explore generalizations of the zeta function that enable us
to quantify degrees of inclusion. One of the benefits of this methodology is
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that the meaning of the binary ordering relation, which is encoded into the
zeta function, is maintained during the process of generalization and carried
over into the valuations that we derive.

15.2.1 Lattices and algebras

It is clear from the definition of the zeta function that the values that this
function takes depend on the structure of the lattice. All lattices obey the
following algebraic properties common to all posets

P1. For all a, a ≤ a (Reflexivity)
P2. If a ≤ b and b ≤ a, then a = b (Antisymmetry)
P3. If a ≤ b and b ≤ c, then a ≤ c (Transitivity)

as well as the following properties common to all lattices: Idempotency (L1),
Commutativity (L2), Associativity (L3), and Absorption (L4)

L1. x ∨ x = x, x ∧ x = x
L2. x ∨ y = y ∨ x, x ∧ y = y ∧ x
L3. x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z
L4. x ∨ (x ∧ y) = x ∧ (x ∨ y) = x

The greatest lower bound x∧y can be viewed as an algebraic operation called
the meet, and the greatest upper bound x ∨ y can be viewed as an opera-
tion called the join. Note that these relations are symmetric with respect to
interchange of the meet and the join.

The relationship between the algebraic operations meet and join, and the
ordering relation of the lattice can be illustrated by what is called the consis-
tency relation

x ≤ y ⇔ x ∧ y = x
x ∨ y = y

(Consistency Relations)

It should be noted that the meaning of the join and the meet depend on both
the set and the chosen ordering relation. For example, when the elements are
logical statements and the ordering relation is logical implication, the join is
the logical OR and the meet is the logical AND. When the elements are sets
and the ordering relation is set inclusion ⊆, the join is the set union ∪ and
the meet is the set intersection ∩. As a final example, when the elements are
the set of positive integers and the ordering relation is divides, the join is the
least common multiple and the meet is the greatest common divisor.

Complete lattices have a top element called the top, denoted by ), so that
x∨) = ) for all x ∈ L, and dually an element called the bottom, denoted by
⊥ where x ∧ ⊥ = ⊥ for all x ∈ L.

Lattices can have elements that cannot be written as the join of any two
elements, so that for such elements z ∈ L there do not exist an x ∈ L and a
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y ∈ L, with x 	= y, such that z = x ∨ y. Such elements, called join-irreducible
elements, play an important role in lattice theory. Join-irreducible elements
also play an important role in min-max neural networks [11].

15.2.2 Measures and valuations

A measure m typically refers to a function on a Boolean lattice B that takes a
lattice element to a real number so that given x ∈ B, m : x→ R. The concept
of a valuation is more general.

Definition 15.1 (Valuation) A valuation v is a function that takes a lattice
element to a real number. For all x, y ∈ L, v : x→ R such that

1. x ≤ y ⇒ v(x) ≤ v(y)
2. v(x) + v(y) = v(x ∧ y) + v(x ∨ y) (15.2)

The first condition above is described as ‘v is increasing’. For this reason,
it is often convenient in complete lattices to define the valuation such that the
bottom element of the lattice has a valuation of zero: v(⊥) = 0.

In our previous work [9, 10], we have shown that the second condition
need not be included in the definition, as it is a consequence of associativity
of the lattice and applies to valuations on all distributive lattices. We begin
by considering a valuation where v(⊥) = 0. Note that if v(⊥) is not equal to
zero, we can define v′ so as to shift the origin to make this the case. Now, if
the constraint equation we seek is to hold in general, then it had better hold
in special cases. This is known as Skilling’s Principle of Induction after John
Skilling [16]. Consider the special case where the meet of any pair of the set
of three elements x, y and z is the bottom:

x ∧ y = ⊥
y ∧ z = ⊥
z ∧ x = ⊥

If these lattice elements have any relation between them at all, we would
expect that x ∨ y would have something to do with x, y, and perhaps even
x ∧ y. Furthermore, their valuations must somehow be related. So that in
general consistency requires that

v(x ∨ y) = F [v(x), v(y), v(x ∧ y)], (15.3)

where F [·] is an unknown function. Since we are looking at the special case
where x∧y = ⊥ and v(⊥) = 0, we can simplify our expectation of consistency
by expressing the relation between v(x), v(y), and v(x ∨ y) in terms of a
different, but related, unknown function S[·]

v(x ∨ y) = S[v(x), v(y)]. (15.4)
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We now consider complicating matters slightly. The idea is that we will
come up with an expression that can be written two different ways. The result
of each of the two relations must be the same, and we will use this to obtain
our constraint equation. Consider the join of three elements (x ∨ y) ∨ z. Our
relation (15.4) can then be written as

v((x ∨ y) ∨ z) = S[v(x ∨ y), v(z)]. (15.5)

We can now apply our relation again to the first argument of S on the right-
hand side

v((x ∨ y) ∨ z) = S[S[v(x), v(y)], v(z)]. (15.6)

However, we can also use the property of associativity of the join to write our
multiple join as x ∨ (y ∨ z). This results in the relation being written as

v(x ∨ (y ∨ z)) = S[v(x), v(y ∨ z)], (15.7)

which subsequently can be expanded into

v(x ∨ (y ∨ z)) = S[v(x), S[v(y), v(z)]]. (15.8)

Now we have two expressions (15.6) and (15.8) that compute the same quan-
tity and thus must be equal

S[S[v(x), v(y)], v(z)] = S[v(x), S[v(y), v(z)]]. (15.9)

It is a little difficult to see what is going on here, so we clean things up a bit
by introducing three quantities

u = v(x)
v = v(y)
w = v(z)

The result is a functional equation

S[S[u, v], w] = S[u, S[v, w]]. (15.10)

This is known as the Associativity Equation, and the general solution for the
function S [17] is

f(S[v(x), v(y)]) = f(v(x)) + f(v(y)), (15.11)

which is
f(v(x ∨ y)) = f(v(x)) + f(v(y)). (15.12)

This suggests that there exists a more convenient representation for this val-
uation that is given by f(v(·)). We can adopt this convenient valuation and
call it by another name. For the purposes of simplicity, I shall just continue
to call it v(·).
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For the special case when x ∧ y = ⊥, we now have a constraint equation
that arises because of associativity

v(x ∨ y) = v(x) + v(y). (15.13)

These are all very basic considerations, and this relation must hold if one
wishes to conform to associativity of the join. Any deviation from this con-
straint equation will lead to the serious consequence of not conforming to the
algebraic properties of the set of elements, or equivalently a violation of the
ordering relation among elements.

The last remaining step is to derive the constraint in the more general
cases where x ∧ y 	= ⊥. This can be done by considering the Möbius function
for the distributive lattice, which enables us to avoid double-counting. The
result is that

v(x ∨ y) = v(x) + v(y)− v(x ∧ y), (15.14)

which is equivalent to the well-known valuation equation

v(x) + v(y) = v(x ∨ y) + v(x ∧ y). (15.15)

Many readers may be familiar with Cox’s derivation of the sum and prod-
uct rules of Bayesian probability theory from Boolean algebra, and may also
be equally familiar with many of the disagreements. However, it is important
to point out that in the derivation above, we have not mentioned probability,
logical statements, belief or any such concepts—only valuations which map
a single lattice element to a real number. The result we have obtained here
is seen to be a necessary constraint equation imposed by associativity of the
distributive lattice.

A consequence of this result is that this constraint equation is funda-
mental and thus must appears in a wide variety of theories. Indeed this is
the case as one may recognize this as Gian-Carlo Rota’s famous inclusion-
exclusion principle [18]. The inclusion-exclusion principle appears over and
over in mathematics: for example, in probability theory

p(x ∨ y|t) = p(x|t) + p(y|t)− p(x ∧ y|t),

where x∧y represents the logical AND of two statements, and x∨y represents
the logical OR, and t represents some statement assumed to be true. It appears
in information theory

MI(x, y) = H(x) + H(y)−H(x, y), (15.16)

where MI is the mutual information and H is the entropy. It is even relevant
to integer relations as Rota [5] highlighted from Pölya and Szegö’s work [19]

max(x, y) = x + y − min(x, y).
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The Euler characteristic is an excellent example in geometry. For regular poly-
topes, the Euler characteristic is found by the number of faces minus the
number of edges plus the number of vertices

χ = F − E + V.

Despite the fact that the Euler characteristic has a value of two for all three-
dimensional regular polytopes, it is an example of inclusion-exclusion as the
faces of polytopes are comprised of edges, which themselves are comprised of
vertices. The inclusion-exclusion relation also appears in quantum mechanics
as the rule for summing quantum amplitudes and is the basis for the Feynman
Path Integrals [12]. Again, this is a direct result of the associativity of the
underlying lattice structure [9, 10]. This is a fundamental relation indeed,
and it originates from associativity.

15.2.3 Co-valuations and bi-valuations

It may be that v is a decreasing function so that as

x ≥ y ⇒ v(x) ≤ v(y). (15.17)

In this case, v is called a co-valuation. It is important to note that the deriva-
tion of the previous section does not hold for co-valuations, since it was explic-
itly assumed that v(⊥) = 0 and that v(x) ≥ v(⊥) for all elements x. Instead,
with co-valuations, v(⊥) is maximal, and v(x) ≤ v(⊥) for all elements x. In
the case of a co-valuation, the constraint of associativity leads to a different
constraint equation.

The special requirements of the co-valuation can be handled by first
re-graduating the co-valuation so that v(⊥) = 1 and v()) = 0. Once this
has been performed, one can define a new co-valuation by taking the loga-
rithm k(x) = log(v(x)). This mapping gives us a co-valuation where k(⊥) = 0
and k()) = −∞. The constraint of associativity results in a sum-rule con-
straint equation in the log space, which gives a product-rule constraint for the
original co-valuation. The details of this analysis will be published elsewhere.

The concept of valuations can be extended to include multiple lattice ele-
ments as arguments, such as the bi-valuation, which takes two lattice elements
to a real number. The zeta function and Möbius functions above are two such
examples. In general, we will refer to all such functions as valuations, with the
exception when the fact that the function is a bi-valuation requires emphasis.

Since a bi-valuation has two arguments, it is not as easy to characterize
the function as a valuation or a co-valuation. Consider the bi-valuation w(a, b)
defined on the lattice L. If for every b ∈ L, x ≤ y → w(x, b) ≤ w(y, b), then we
can say that w is a valuation in its first argument. Similarly, if for every b ∈ L,
x ≥ y → w(x, b) ≤ w(y, b), then we can say that w is a co-valuation in its
first argument. Similar definitions enable us to differentiate bi-valuations that
are valuations or co-valuations in their second argument. In the remainder,
we will focus on bi-valuations that are valuations in their first argument.
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15.2.4 Distributivity

We now focus on distributive lattices, which satisfy the following distributive
properties in addition to the previous properties P1-P3 and L1-L4 we have
Distributivity of ∧ over ∨ (D1), and Distributivity of ∨ over ∧ (D2):

D1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
D2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

It should be noted that a useful property of distributive lattices is that every
distributive lattice can be expressed as a lattice of sets ordered by set inclusion.

Boolean lattices are distributive lattices D with an additional property
of complementation, where for every element x ∈ D, there exists a unique
element ∼ x ∈ D, such that

C1. x∨ ∼ x = )
C2. x∧ ∼ x = ⊥ (Complementation)

Boolean lattices belong to the class of complemented distributive lattices.
Since the number of elements of a Boolean lattice goes as 2N , lattices where
N > 3 are impractical to display. Figure 15.1 shows a Boolean lattice formed
from three atomic elements (join-irreducible elements, which cover ⊥). In
this example the set of elements are logical statements ordered by logical

Fig. 15.1. A Boolean lattice of logical statements. The three atomic statements a,
v, m, stand for animal, vegetable, and mineral. The elements are ordered by logical
implication, and the top element, the truism is the statement “It is an animal,
vegetable, or a mineral!” The bottom statement is the absurdity formed by a logical
AND of any pair of atomic statements, such as “It is an animal and a mineral!”
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implication so that y includes x, x ≤ y, represents x → y with the atomic
elements being the statements:2

a = “It is an animal!”
v = “It is a vegetable!”
m = “It is a mineral!”

The Boolean lattice consists of the set of these three atomic logical statements
and all of the possible joins one could construct from them ordered by logical
implication. This lattice is isomorphic to the lattice of the powerset of three
elements ordered by set inclusion.

15.2.5 Generalizing the zeta function

We now consider a straightforward generalization of the zeta function (15.1).
The motivation for this will become apparent.

First we define its dual ζ∂(x, y) [9]

ζ∂(x, y) =
{

1 if x ≥ y
0 otherwise (15.18)

which is the original zeta function, but with the inclusion condition turned
around. This function simply indicates whether the lattice element x includes
the element y. We now introduce the generalization by defining the function
z(·, ·), which expands on the “otherwise” case

z(x, y) =

⎧
⎨

⎩

1 if x ≥ y
0 if x ∧ y = ⊥
z ∈ (0, 1) otherwise

(15.19)

Inclusion on the lattice has now been generalized to degrees of inclusion,
which are represented by a real number in the interval [0, 1]. We could have
defined the value of z to be over any finite real interval, but we have chosen
the unit interval here both for convenience and to highlight the relationship
to probability. In this case, this function is defined so that if we are certain
that x includes y, then it returns a value of 1; however, if x does not include
y this function can encode the degree to which x includes y. This extends
the incidence algebra to an inclusion calculus. We have not yet stated the
particular values that the function z(·, ·) takes in a given case. This will be
discussed in some detail in the next section. It should be noted that such
generalizations were independently introduced into the fuzzy lattice literature
[20, 21], where the zeta function is called a ‘crisp lattice inclusion relation’
and the generalized zeta function is called a ‘fuzzy lattice inclusion relation’.

2 Here we use the notation introduced by Robert Fry where a logical statement is
indicated with an exclamation mark.
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This bi-valuation is required to follow Rota’s inclusion-exclusion principle,
which is a consequence of associativity of ∨ of the lattice. Enforcing this con-
sistency requirement for the first argument of z(·, ·) defined on a distributive
lattice gives [9, 10]

z(x1 ∨ x2 ∨ · · · ∨ xn, t) =
∑

i

z(xi, t)−
∑

i<j

z(xi ∧ xj , t)

+
∑

i<j<k

z(xi ∧ xj ∧ xk, t)− · · · . (15.20)

Given x, y, t ∈ D, we would like to be able to compute the degree to which
t includes the meet x ∧ y, written z(x ∧ y, t). The sum rule (15.20) imposes a
relevant constraint

z(x ∧ y, t) = z(x, t) + z(y, t)− z(x ∨ y, t). (15.21)

However, another form can be found by requiring consistency with distrib-
utivity D1. Following Cox [7, 8], and relying on the consistency arguments
given by Jaynes [13], Tribus [14], and Smith and Erickson [15], this degree
can be written two ways as a function P a pair of lattice elements

z(x ∧ y, t) = P (z(x, t), z(y, x ∧ t)) = P (z(y, t), z(x, y ∧ t)). (15.22)

The two expressions on the right are a consequence of commutativity, which
we will address later.

The goal here is to use distributivity to impose a constraint on the possible
forms for the function P . We focus on the first expression of P , and consider
five elements a, b, r, s, t ∈ D where a∧ b = ⊥ and r ∧ s = ⊥. Distributivity D1
of the meet over the join enables us to write a ∧ (r ∨ s) two ways

a ∧ (r ∨ s) = (a ∧ r) ∨ (a ∧ s). (15.23)

Using the sum rule (15.20) and the form of P (15.22), distributivity requires
that

P (z(a, t), z(r ∨ s, a ∧ t)) = z(a ∧ r, t) + z(a ∧ s, t), (15.24)

which simplifies to

P (z(a, t), z(r, a ∧ t) + z(s, a ∧ t)) =
P (z(a, t), z(r, a ∧ t)) + P (z(a, t), z(s, a ∧ t)). (15.25)

This can be simplified by defining u = z(a, t), v = z(r, a∧t), and w = z(s, a∧t),
so that

P (u, v + w) = P (u, v) + P (u,w). (15.26)

This functional equation for P captures the essence of distributivity D1.
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Following Caticha [12], we now show that P (u, v+w) is linear in its second
argument. Defining k = w + v, and writing (15.26) as

P (u, k) = P (u, v) + P (u,w), (15.27)

we can compute the second derivative with respect to x. Using the chain rule
for differentiation, we find that

∂

∂v
=

∂k

∂v

∂

∂k
=

∂

∂k
=

∂k

∂w

∂

∂k
=

∂

∂w
, (15.28)

so that the second derivative with respect to k can be written as

∂2

∂k2
=

∂

∂v

∂

∂w
. (15.29)

The second derivative of P (u, k) with respect to k is then found to be

∂2

∂k2
P (u, k) = 0, (15.30)

which implies that P is linear in its second argument

P (u, v) = A(u)v + B(u), (15.31)

where A and B are functions to be determined. Substitution of (15.31) into
(15.26) gives B(u) = 0.

Now we consider (a ∨ b) ∧ r, which using D1 can be written as

(a ∨ b) ∧ r = (a ∧ r) ∨ (b ∧ r). (15.32)

This gives a similar functional equation

P (v + w, u) = P (v, u) + P (w, u), (15.33)

where u = z(r, t), v = z(a, r ∧ t), w = z(b, r ∧ t). By taking the appropriate
derivatives, it is easy to show that P is also linear in its first argument

P (u, v) = A(v)u. (15.34)

Together with (15.31), the general solution is

P (u, v) = Cuv, (15.35)

where C is an arbitrary constant. Thus we have derived the product rule

z(x ∧ y, t) = Cz(x, t)z(y, x ∧ t), (15.36)

as a constraint equation that enforces distributivity. This rule enables us to
assign the degree to which t includes the meet x∧y. The constant C acts as a
normalization factor, and is crucial when these valuations are normalized to
values other than unity.

Last, commutativity of the meet further constrains the product rule result-
ing in a constraint equation that is analogous to Bayes’ Theorem

z(y, x ∧ t) =
z(y, t)z(x, y ∧ t)

z(x, t)
. (15.37)
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15.3 Bayesian Inference From Valuations

The dual of the zeta function (15.18) indicates implication in a Boolean lattice
of logical statements. The generalization to the z-function allows us to quantify
degrees of implication. This generalization is quite useful. Even though the
truism does not imply the statement a = “It is an animal!”, we can use the
defined bi-valuation to compute the degree to which the truism implies that
“It is an animal!”. In practical situations, this generalization is useful indeed.

The fact that the z-function quantifies degrees of implication, and is
manipulated using the familiar sum rule, product rule and Bayes’ Theorem,
suggests that we have obtained an order-theoretic derivation of the notion of
probability. With a simple change in notation, by defining p(x|y) = z(x, y),
one can see that we have derived a valuation that follows all of the expecta-
tions of Bayesian probability theory, where [9]

p(y|x) =

⎧
⎨

⎩

1 if x→ y
0 if x ∧ y = ⊥
p ∈ (0, 1) otherwise

(Probability) (15.38)

It is vital to understand that the area of discourse is a lattice of logical state-
ments ordered by implication. This lattice represents a hypothesis space, and
its structure, previously hidden by the algebra, is now made explicit by the
perspective of lattice theory. The sum and product rules are also seen from a
new viewpoint where they are merely constraint equations necessary to ensure
that the valuation obeys the structure of the lattice. Any other rules for manip-
ulating such degrees of implication would violate the properties P1-P3, L1-L4,
D1 and D2.

The view of probability as degrees of belief represented by real numbers
goes back to 1946 with Richard Cox who derived the sum and product rules by
requiring that these degrees of belief be consistent with the rules of Boolean
algebra [7, 8, 13]. However, here we do not rely on controversial quantities such
as degrees of belief, but instead we merely generalize the zeta function, which
quantifies inclusion on the lattice, to degrees of inclusion. For this reason, this
development is more general in that it applies to valuations on all distributive
lattices, and is not restricted to the arena of probability theory. What is meant
by a degree of inclusion depends entirely on the meaning of inclusion on the
partially ordered set.

Furthermore, Cox relied on complementation (which is valid for only
Boolean lattices) to obtain the sum rule and associativity to obtain the prod-
uct rule. This present work follows Caticha [12] and relies on the constraint
of associativity to obtain the sum rule and the constraint of distributivity to
obtain the product rule.

We are, of course, now left with the dilemma of probability assignments,
which we find to be outside the realm of this discourse. The constraints of
associativity and distributivity are clearly not sufficient to uniquely define
the valuation on the lattice. Those who choose to view this as a limitation
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of the theory, may be comforted by the fact that there is a theorem by Rota
that states:

Theorem 15.1 (Assigning Valuations [5]) A valuation in a finite distrib-
utive lattice is uniquely determined by the values it takes on the set of join-
irreducibles of L, and these values can be arbitrarily assigned.

This theorem holds when the value of the bottom element is zero, which in
our probability theory example is p(⊥|)) = 0. This theorem can be applied by
considering p(x|)) ≡ p(x) as a valuation p(·) where x is any one of the join-
irreducible assertions in the space, which comprise the N mutually exclusive
atomic statements. The valuation p(·) can be seen to be equivalent to the
Bayesian notion of a prior probability. The sum rule can be used to obtain
p(y|)) for all y ∈ L. One can then show that the product rule defines unique
values for p(y|z) for all y, z ∈ L.

In short, the constraints imposed by the lattice structure, or equivalently
the algebra, do not influence the possible values that a valuation assigns to
the join-irreducible elements of the lattice. With reference to our example in
Fig. 15.1, the probability that the object considered is an animal given the
fact that we know that the object must be either an animal, a vegetable, or
a mineral, p(a|)), can be assigned any value within the limits of the defined
interval, and the calculus will suffer no contradictions. How then do we assign
such values? We must take into account other consistency principles relevant
to the problem, such as symmetry and constraints. Some of this groundwork
has already been laid by Jaynes who introduced the Principle of Group Invari-
ance [22] and the Principle of Maximum Entropy [23].

The Principle of Group Invariance is particularly interesting. It is useful
when two problems are related via a symmetry. If particular valuation assign-
ments are chosen for the join-irreducible elements of the lattice in one of the
two problems, then consistency with respect to the symmetry between the two
problems constrains the assignment of the valuations of the join-irreducible
elements in the second problem. However, this principle does not tell you how
to make the valuation assignments to the first problem. It merely asserts that
the valuation assignments to the two problems must be commensurate with
the symmetry relating the problems. This is the nature of a constraint.

15.4 Conclusions

In this paper we define a generalization of the zeta function on a lattice that
enables us to encode the degree to which one element of the lattice includes
another. This generalization does not tell us how to define all the values of
the function. However, the lattice structure places strong constraints on the
values that are assigned. We show that the constraint of associativity of the
join results in a sum rule, which is equivalent to Rota’s inclusion-exclusion
principle. As expected, the generality of this result suggests that this rule



322 K.H. Knuth

should be ubiquitous in mathematics, and indeed we find that this is the case.
Furthermore, the constraint of distributivity results in a rule that depends on
the product of two degrees of inclusion. This result holds for all distributive
lattices, which means that a valuation that generalizes set inclusion to degrees
of inclusion will also follow a sum rule and a product rule.

The constraint of commutativity on a distributive lattice results in a con-
straint equation that is analogous to Bayes’ Theorem. It is significant that
this derivation makes no reference to a particular lattice. Instead the results
hold equally for all distributive lattices. When it comes to the Boolean lattice
of logical statements, we get a clearer picture of probability theory as aris-
ing from the generalization (or fuzzification) of lattice inclusion. This explicit
generalization avoids the conceptual and linguistic pitfalls carried by termi-
nology such as ‘plausibility’, ‘degrees of belief’ and ‘frequencies of occurrences
of events’. Instead the meaning of the zeta function implies that probability
is more clearly though of as a degree of implication, and the rules of proba-
bility are not so much rules of manipulation as they are constraint equations
limiting the values that the function can take.

However, these lattice constraints do not completely define the valuation.
There are values of the valuation that can be arbitrarily assigned without vio-
lating the algebra, or equivalently, the lattice structure. Does this imply that
the entire procedure is useless? Not at all. A valuation calculus that is com-
pletely constrained has no room to be applied to a specific problem. Instead,
each problem has symmetries and constraints of its own, which now further
constraint the valuation assignments. This perspective of constraints high-
lights some of the difficulties with the purely subjective Bayesian philosophy
with which many fuzzy logic researchers disagree. Instead, it suggests that
objective Bayesianism might be best viewed in terms of constraints imposed
by symmetries and constraints imposed by the application itself.

It is exciting that a similar generalization of lattice inclusion was inde-
pendently introduced by Vassilis Kaburlasos and colleagues [20, 21] from the
perspective of fuzzification of the lattice. At long last, it is possible that fuzzy
logic and probability theory have found common ground by elucidating the
topic of discourse, which has remained implicit in both fields since their respec-
tive inceptions.
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Summary. In this article we firstly summarize some notions on L−fuzzy sets, where
L denotes a complete lattice. We then study a special case of L−fuzzy sets, namely
the “intuitionistic fuzzy sets”. The importance of these sets comes from the fact
that the negation is being defined independently from the fuzzy membership
function. The latter implies both flexibility and effectiveness in fuzzy inference appli-
cations. We additionally show several practical applications on intuitionistic fuzzy
sets, in the context of computational intelligence.

16.1 Introduction

This work presents a novel fuzzy implication. Then, its extends it to intuition-
istic fuzzy sets [14, 16]. Finally, it proposes useful geometric interpretations
regarding intuitionistic fuzzy sets [15].

This chapter is organized as follows. Sections 16.2 and 16.3 summarize
basic notations and definitions including useful geometrical interpretations.
Sect. 16.4 presents a fuzzy implication. Sect. 16.5 presents an extension of
the aforemenioned implication to intuitionistic fuzzy sets. Finally, Sect. 16.6
summarizes the contribution of this work.

16.2 L−Fuzzy Sets

The definition and notations can be found in [12, 19].

Definition 16.1 Let X be a nonempty, ordinary set and let L be a complete
lattice. An L−fuzzy subset, on X, is a mapping:

A : X → L

That is, the family of all L−fuzzy subsets, of X, is just LX consisting of
all mappings from X to L. Here, LX is called an L−fuzzy space, X is called
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the carrier domain, of each L−fuzzy subset of it, and L is called the value
domain, of each L−fuzzy subset of X (see [12, 19]).

Many authors study fuzziness in the case L = [0, 1], and use the word
“fuzzy”, and not “L−fuzzy”, to describe it. So, the word “fuzzy” possesses
two levels of meaning. In the first case it means “[0, 1]−fuzzy” and in the other
describes all fuzzy L = [0, 1] cases including both L−fuzzy and [0, 1] cases.

In the special case, in which L = [0, 1] × [0, 1] is equipped with the order
≤, where (x1, y1) ≤ (x2, y2), if and only if x1 ≤ x2 and y1 ≥ y2, we consider
the intuitionistic fuzzy set.

16.3 Intuitionistic Fuzzy Sets

The definitions and notations, that we are going to use in this Section, can
be found in [1, 2, 3, 4, 5, 6, 13, 15].

16.3.1 Some basic notions

Atanassov (see [1]) suggested, in 1983, a generalization of a classical fuzzy set,
that was named intuitionistic fuzzy set 1. We define such a set as follows.

Definition 16.2 An intuitionistic fuzzy set (IFS) A, in X, is an object of
the following form

A = {〈x, µA(x), νA(x)〉 : x ∈ X},

where the functions
µA : X → [0, 1]

and
νA : X → [0, 1]

define the degree of membership and the degree of non-membership, of an
element x ∈ X and, evenmore, for each x ∈ X

0 ≤ µA(x) + νA(x) ≤ 1 .

Now, if πA(x) = 1−µA(x)−νA(x), then πA(x) is called the degree of non-
determinance, of an element x ∈ X, to the set A, where πA(x) ∈ [0, 1], ∀x ∈ X.

It can be easily verified that each fuzzy set is a particular case of the
intuitionistic fuzzy set. Moreover, if A is a fuzzy set, then πA(x) = 0, ∀x ∈ X.

We are particularly interested in the study of fuzzy sets for the case that
L = [0, 1], because many practical problems can be solved within this frame-
work. In the same manner, a great interest is growing for the intuitionistic
fuzzy sets, with L = [0, 1]× [0, 1].

1 The term “intuitionistic” is controversial in the area of Fuzzy Logic [7, 10].
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16.3.2 Geometric interpretations of IFSs

In the following we give two geometrical interpretations of intuitionistic fuzzy
sets, which introduced in the literature (see [1, 15]).

(i) Let X denote the universe set. Let us also consider the Euclidean plane,
with the Cartesion coordinates (see Fig. 16.1), and let F be defined as
follows:

F = {P/(p = 〈a, b〉) : a, b ≥ 0, a + b ≤ 1}
Let A ⊆ X be a fixed set. Then, we can construct a function fA : X → F,
such that if x ∈ X, then

fA(x) = p = 〈a, b〉 ∈ F,

where
0 ≤ a + b ≤ 1 .

Note that the coordinates have been fixed such that a = µA(x) and
b = νA(x).

(ii) The geometrical interpretation given below ([15]) could also be regarded
as a generalization of the corresponding one given in [1].
Let T be an arbitrary triangle. It is known, from the Euclidean geometry,
that for an arbitrary internal point P, of T, the following relation holds:

dµ

vµ
+

dν

vν
+

dπ

vπ
= 1 ,

where dµ, dν , dπ denote the distances between P and the sides µ, ν and
π, of the respective hights (see Fig. 16.2).

< 0, 1>

fA x

X

P

< 0, 0 > <1, 0 >

Fig. 16.1. Atanassov’s geometrical interpretation of intuitionistic fuzzy sets
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<0,0>

<1,0>

<0,1>

fA(x)

um

un up

dm

dn n

m

p

dp

fAX  x

Fig. 16.2. Geometrical interpretation of some concepts in the intuitionistic fuzzy
logics

We now assume that X is the universe set, and A ⊆ X is a fixed set. We
then define a function fA : X → T, as follows:

fA(x) = p = 〈a, b〉 ∈ T, ∀x ∈ X,

where
a, b ∈ [0, 1]

and
0 ≤ a + b ≤ 1 .

The coordinates a and b are defined by the relations:

a = µA(x) =
dµ

vµ
,

b = νA(x) =
dν

vν

and
1− πA(x) =

dπ

vπ
.

16.3.3 Operations on IFS

For any two IFSs, A and B, several relations and operations have been intro-
duced (see references [1]-[6]). Here we shall introduce only those which are
closely related to this article, namely the properties:

1. A ⊆ B ⇔ µA(x) ≤ µB(x) and νA(x) ≥ νB(x), ∀x ∈ X
2. A ⊇ B ⇔ B ⊆ A
3. A = B ⇔ µA(x) = µB(x) and νA(x) = νB(x), ∀x ∈ X
4. Ā = {〈x, νA(x), µA(x)〉 : x ∈ X}
5. A ∩B = {〈x, min (µA(x), µB(x)) , max (νA(x), νB(x))〉 : x ∈ X}
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6. A ∪B = {〈x, max (µA(x), µB(x)) , min (νA(x), νB(x))〉 : x ∈ X}
7. A + B = {〈x, (µA(x) + µB(x)− µA(x) · µB(x)), (νA(x) · νB(x))〉 : x ∈ X}
8. A ·B = {〈x, (µA(x) · µB(x)), (νA(x) + νB(x)− νA(x) · νB(x))〉 : x ∈ X}
9. A@B =

{〈
x, (µA(x)+µB(x))

2 , (νA(x)+νB(x))
2

〉
: x ∈ X

}

10. A $B =
{〈

x,
√

µA(x) · µB(x),
√

νA(x) · νB(x)
〉

: x ∈ X
}

11. A ∗ B =
{〈

x, µA(x)+µB(x)
2·(µA(x)·µB(x)+1) ,

νA(x)+νB(x)
2·(νA(x)·νB(x)+1)

〉
: x ∈ X

}

12. A � �B =
{〈

x, 2 µA(x)·µB(x)
µA(x)+µB(x) , 2

νA(x)·νB(x)
νA(x)+νB(x)

〉
: x ∈ X

}
,

where if µA(x) = µB(x) = 0, then µA(x)·µB(x)
µA(x)+µB(x) = 0 and if νA(x) = νA(x) = 0,

then νA(x)·νB(x)
νA(x)+νB(x) = 0.

We introduce four operators, over IFS, with the following definitions.

Definition 16.3 The necessity operator is defined as:

�A = {< x, µA(x), 1− µA(x) > : x ∈ X}

and the possibility operator is defined as:

�A = {< x, 1− νA(x), νA(x) > : x ∈ X}

The above operators are similar to the operators of necessity and possi-
bility that are defined in some modal logic, and they have no counterparts in
the ordinary fuzzy set theory.

The operator below is an extension of the operators � and �, but it can
be extended even further.

Definition 16.4 Let a ∈ [0, 1] be a fixed number. Given an IFS A, the oper-
ator Da is defined as follows:

Da(A) = {< x, µA(x) + a · πA(x), νA(x) + (1− a) · πA(x) > : x ∈ X} .

Definition 16.5 Let α, β ∈ [0, 1] and α + β ≤ 1. The operator Fα,β, for the
IFS, A is defined as:

Fα,β(A) = {< x, µA(x) + α · πA(x), νA(x) + β · πA(x) > : x ∈ X} .

In Figs. 16.3 and 16.4, we give the geometric interpretations for the oper-
ators Da and Fα,β respectively.

16.4 Implications on Fuzzy Sets

The definitions and notations can be found in [9, 11, 18, 20].
Let X denote a universe of discourse. Then, a fuzzy set A, in X, is defined

as a set of ordered pairs A = {< x, µA(x) > : x ∈ X}, where the function
µA : X → [0, 1] defines the degree of membership, of the element x ∈ X [22].
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<1,0>

<0,0><0,1>

f A(x)

fA(x)

A2

A1

p

m

n

f A(x)

fDa (A)(x) 

Fig. 16.3. The point fD α(x) belongs to the segment defined by the points f� A(x)
and f� A(x), and its exact position depends on the value of the arguments α ∈ [0, 1]

A2

A1

<1,0>

<0,1> <0,0>

fA(x)

p

n

m

fFa,b(A)(x)

f A(x)

f A(x)

Fig. 16.4. The point fFα,β(A)(x) is an internal point of the triangle with vertices
fA(x), f� A(x) and f� A(x). The point depends on the value of the argumets α, β ∈
[0, 1], for which α + β ≤ 1

Definition 16.6 A binary operation i, on the unit interval, (i.e. a [0, 1] ×
[0, 1] → [0, 1] mapping) is called a fuzzy intersection, if it is an extension of
the classical Boolean intersection i(a, b) ∈ [0, 1], for every a, b ∈ [0, 1] where
i(0, 0) = i(0, 1) = i(1, 0) = 0 and i(1, 1) = 1.

A canonical model of fuzzy intersections is the family of triangular norms
(briefly the t−norms).

Definition 16.7 A t−norm is a function of the form:

i : [0, 1]× [0, 1] → [0, 1],

which is commutative, associative, non-decreasing, and i(a, 1) = a, a ∈ [0, 1].
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A t−norm is called Archimedean, if it is continuous, and for a ∈ (0, 1),
i(a, a) < a it is nilpotent, if it is continuous and ∀ a ∈ (0, 1), there exists a

ν ∈ N, such that i

ν
︷ ︸︸ ︷
(a, . . . , a) = 0. So, the Archimedean norms appear in two

forms, in the nilpotent and in the non-nilpotent ones. Moreover, those which
are not nilpotent are called strict.

Definition 16.8 A function n : [0, 1] → [0, 1] is called a negation, if it is
non-increasing, i.e. n(a) ≤ n(b), if a ≥ b, and n(0) = 1, n(1) = 0.

A negation, n, is called strict, if and only if n is continuous and strictly
decreasing (n(a) < n(b), if a > b, for all a, b ∈ [0, 1]). A strict negation, n,
is called strong, iff it is self-inverse, i.e. n(n(a)) = a, for all a ∈ [0, 1]. The
most important, and widely used strong negation, is the standard negation
ns : [0, 1] → [0, 1], given by nS = 1− a.

A function u : [0, 1]× [0, 1] → [0, 1], satisfying the properties:

1. u(a, 0) = a, for all a ∈ [0, 1],
2. u(a, b) ≤ u(c, d), if a ≤ c and b ≤ d,
3. u(a, b) = u(b, a), for all a, b ∈ [0, 1],
4. u(u(a, b), c) = u(a, u(b, c)), for all a, b, c ∈ [0, 1]

is called a triangular conorm (or t−conorm).

A fuzzy implication, g, is a function of the form:

g : [0, 1]× [0, 1] → [0, 1],

which defines (for any possible truth values a, b, of some given fuzzy proposi-
tions p, q respectively) the truth value I(a, b), of the conditional proposition
“if p then q”.

Function g should be an extension of the classical implication, from the
domain {0, 1} to the domain [0, 1], of truth values in fuzzy logic.

Definition 16.9 The implication operator, of the classical logic, it a map-
ping:

m : {0, 1} × {0, 1} → {0, 1},
which satisfies the conditions:

m(0, 0) = m(0, 1) = m(1, 1) = 1 and m(1, 0) = 0

These conditions are the least ones that we can demand, from a fuzzy
implication operator. In other words, the fuzzy implications collapse to the
classical implication, when the truth values are restricted to 0 and 1:

g(0, 0) = g(0, 1) = g(1, 1) = 1 and g(1, 0) = 0
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One way of defining g in classical logic is to use the logic-formula:

g(a, b) = ā ∨ b,

for all a, b ∈ {0, 1}.
Another way is to employ the formula:

g(a, b) = max{x ∈ {0, 1} : a ∧ x ≤ b},

for all a, b ∈ {0, 1}.
The extensions of these equations in fuzzy logic are, respectively:

g(a, b) = u(n(a), b), (16.1)

g(a, b) = sup{x ∈ [0, 1] : i(a, x) ≤ b}. (16.2)

for all a, b ∈ [a, b], where u, i and n denote a fuzzy union, a continuous fuzzy
intersection and a fuzzy negation, respectively. Furthermore, if u and i are
dual with respect to n, we say that a t−conorm i and a t−conorm u are
dual with respect to a fuzzy negation n, iff n(i(a, b)) = u(n(a), n(b)) and
n(u(a, b)) = i(n(a), n(b)), for all a, b ∈ [0, 1].

The fuzzy implications, that are obtained from (16.1), are usually referred
to the literature as S−implications (S is often used for denoting t−conorms),
and the fuzzy implications that are obtained from (16.2) are called
R−implications.

Moreover, the formula g(a, b) = ā ∨ b may also be rewritten (due to the
law of absorption of negation in classical logic), as either:

g(a, b) = ā ∨ (a ∧ b)

or
g(a, b) = (ā ∧ b̄) ∨ b

The extensions of these equations, in fuzzy logic, are, respectively:

g(a, b) = u(n(a), i(a, b)), (16.3)

g(a, b) = u(i(n(a), n(b)), b), (16.4)

where u, i and n are required to satisfy the De Morgan laws.
The fuzzy implications that are obtained from (16.3) are called QL−

implications, since they were originally employed in quantum logic.
Identifying various properties of the classical implication, and generalizing

them appropriately, leads to the following properties, which may be viewed
as reasonable axioms of fuzzy implications (see [18]):
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(A1) a ≤ b implies that g(a, x) ≥ g(b, x) (monotonicity in first argument).
This means that the truth value of fuzzy implications increases, as the
truth value of the antecedent increases.

(A2) a ≤ b implies that g(x, a) ≤ g(x, b) (monotonicity in second argument).
This means that the truth value of of fuzzy implications increases, as
the truth value of the consequent increases.

(A3) g(a, g(b, x)) = g(b, g(a, x)) (exchange propery). This is a generalization
of the equivalence of a ⇒ (b ⇒ x) and b ⇒ (a ⇒ x), which holds for
the classical implication.

(A4) g(a, b) = g(n(b), n(a)), for a fuzzy complement n (contraposition)
(A5) g(1, b) = b (neutrality of truth)
(A6) g(0, a) = 1 (dominance of falsity)
(A7) g(a, a) = 1 (identity)
(A8) g(a, b) = 1, if and only if a ≤ b (boundary condition)
(A9) g is a continuous function (continuity)

One can easily prove that all the S−implications fulfil axioms A1, A2,
A3, A5, A6 and, when the negation is strong, A4. In addition, all the
R−implications fulfil the axioms A1, A2, A5, A6 and A7.

Let now G be the fuzzy implications that are obtained from (16.4), when
a ≤ b, i.e. G(a, b) = u(i(n(a), n(b)), b), when a ≤ b. We also defined G(a, b) =
0, when a > b. Thus, we have a class of fuzzy implications, which we define
as follows (see also [16]):

Definition 16.10 Consider the following function G : [0, 1]× [0, 1] → [0, 1]

G(a, b) = [1− sg(a− b)] · u(i(n(a), n(b)), b), (16.5)
for all a, b ∈ [0, 1] where u, i and n are required to satisfy De Morgan laws,

n is a strong negation and sg(x) =
{

1, if x > 0
0, otherwise . Then G(a, b) is a class

of fuzzy implications, which collapse to the classic implication when the truth
values are restricted to 0 and 1, i.e. G(0, 0) = G(0, 1) = G(1, 1) = 1 and
G(1, 0) = 0.

Choosing in (16.5) as a fuzzy union the standard one, u(a, b) = max(a, b) =
a∨ b, as a fuzzy intersection the standard i(a, b) = min(a, b) = a∧ b, and as a
negation the standard fuzzy negation nS = 1 − a, we will have the following
fuzzy implication, which we introduce in the proposition below.

Proposition 16.1 Let g be a function defined as follows for all a, b ∈ [0, 1]

gh(a, b) = [1− sg(a− b)] · [(1− b) ∨ b],

where sg(x) is given in the previous definition. Then gh(a, b) is a fuzzy impli-
cation, which collapses to the classical implication when the truth values
are restricted between 0 and 1, i.e gh(0, 0) = gh(0, 1) = gh(1, 1) = 1 and
gh(1, 0) = 0.

A graphical interpretation of fuzzy implication gh(a, b) is shown inFig. 16.5.
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Fig. 16.5. The graphical representation of the fuzzy implication gh

16.5 Implications on Intuitionistic Fuzzy Sets (IFSs)

Let S be a set of propositions p. Let also a valuation function, V, be defined
over S, in the following way:

V (p) = <µ(p), ν(p)>,

where µ(p) + ν(p) ≤ 1.
The function V : S → [0, 1] × [0, 1] gives the truth and falsity degres of

all propositions in S. The valuation function V assigns to the logical truth T,
V (T ) =< 1, 0 > and to the logical falsity F, V (F ) =< 0, 1 >. Also,

V (* p) =< ν(p), µ(p) >,

V (p ∧ q) =< min(µ(p), µ(q)), max(ν(p), ν(q)) >,

V (p ∨ q) =< max(µ(p), µ(q)), min(ν(p), ν(q)) > .

Now, considering the propositions p and q, the two most acceptable defi-
nitions of implications, in IFS, are the following:

1. The (max-min)-implication:

V (p ⇒ q) =< max(ν(p), µ(q)), min(µ(p), ν(q)) >
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2. The sg−implication:

V (p ⇒ q) = 〈1− (1− µ(q)) · sg(µ(p)− µ(q)), ν(q) · sg(µ(p)
−µ(q)) · sg(ν(q)− ν(p))〉,

where sg(x) =
{

1, if x > 0
0, otherwise

Implications in IFS collapse to the classical implication, when the truth
values are restricted between 0 and 1, i.e.

V (p) V (q) V (p ⇒ q)
< 0, 1 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 1, 0 >
< 1, 0 > < 0, 1 > < 0, 1 >
< 1, 0 > < 1, 0 > < 1, 0 >

The following proposition introduces an implication in IFS, which we call
“→ implication” (see [14]).

Proposition 16.2 Let A and B be two IFSs, and denote A → B = V (A ⇒
B). Then,

A → B =

⎧
⎪⎪⎨

⎪⎪⎩

{< x, max(µB(x), νB(x), min(µB(x), νB(x)) > : x ∈ X},
if µA(x) ≤ µB(x) and νA(x) ≥ νB(x)

{< x, 0, 1 > : x ∈ X}, otherwise

The “→ implication” collapses to the classical one, when the truth values
are restricted between 0 and 1, i.e.

V (A) V (B) V (A → B)
< 0, 1 > < 0, 1 > < 1, 0 >
< 0, 1 > < 1, 0 > < 1, 0 >
< 1, 0 > < 0, 1 > < 0, 1 >
< 1, 0 > < 1, 0 > < 1, 0 >

Also, the “→ implication” will be an extension, in IFS, of the fuzzy impli-
cation gh (see [16]) (where gh is the fuzzy implication, which was introduced
in Proposition 1).

Definition 16.11 An IFS, A, is called an Intuitionistic Fuzzy Tautological
Set (IFTS), iff µA(x) ≥ νA(x), ∀x ∈ X. (see [1]).

In the following theorems (1-4) we introduce the relations, which the “→
implication” satisfies. These theorems are easily proved (see [14]).
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Theorem 16.1 Let A, B and C be IFSs. Then the following sets are IFTS:

1. A → A
2. A ∩B → A
3. A ∩B → B
4. ¯̄A → A
5. A → (A ∪B)
6. B → (A ∪B)
7. A → (B → A), when B ⊆ A
8. A → B, if A ⊆ B
9. (Ā → B̄) → [(Ā → B) → A], when max(µB(x), νB(x)) ≤ µA(x) and

min(µB(x), νB(x)) ≥ νA(x)
10. [A ∩ (A → B)] → B
11. [(A → B) ∩ B̄] → Ā
12. [A → (B → C)] → [(A → B) → (A → C) ] when A ⊆ C and

max(µB(x), νB(x)) ≤ max(µC(x), νC(x)), min(µB(x), νB(x)) ≥ min(µC(x),
νC(x))

13. [(A → B) ∩ (B → C)] → (A → C), when A ⊆ C
14. (A → C) → [(B → C) → ((A ∪B)→ C))].

<1,0>
<0,0>

<0,1>

fA(x) f B(x)

fB(x)

fB(x) f B(x)

f B(x)fB(x)

fDa(B)(x)

fDa (B)(x)

a

Fig. 16.6. The geometric interpretation of Theorem 16.4, statements 1. and 2



16 L-fuzzy Sets and Intuitionistic Fuzzy Sets 337

Theorem 16.2 Let A1, A2, . . . , Aν be IFSs. If max(µAν−1(x), νAν−1(x)) ≤
µAν

(x) and min(µAν−1(x), νAν−1(x)) ≥ νAν
(x), then (((A1 → A2) → . . .) →

Aν−1) → Aν is an IFTS.

Theorem 16.3 Let A and B be two IFSs. Then,

1. �(A → B) ⊆ (�A) → (�B) and
2. �(A → B) ⊇ (�A) → (�B) when µA(x) ≤ µB(x).

Theorem 16.4 Let A and B be two IFSs. Then, the following statements are
true:

1. If A ⊆ B, then Da(A → B) ⊇ Da(B).
2. If A /⊆ B, then Da(A → B) ⊆ Da(B).
3. If A ⊆ B, then Fα,β(A → B) ⊇ Fα,β(B).
4. If A /⊆ B, then Fα,β(A → B) ⊆ Fα,β(B).

The geometric interpretation of Theorem 16.4 is given in Fig. 16.6 (state-
ments 1. and 2.) and in Fig. 16.7 (statements 3. and 4.).

<1,0><0,0>

<0,1>

fA(x)

fB(x)

fDa (B)(x)

fFa,b(B)(x)

fFa,b(B)(x)

a + b ≤ 1
b

β

a

f B(x)

f B(x)
fDa(B)(x)

f B(x)

f B(x)
fB(x)

Fig. 16.7. The geometric interpretation of Theorem 16.4, statements 3. and 4
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16.6 Conclusion

This chapter has presented a fuzzy implication as well as its extension in intu-
itionistic fuzzy sets (IFSs). We pointed out that there is a strong connection
between intuitionistic fuzzy sets and L-fuzzy sets. Therefore, the aforemen-
tioned implication might be expressed equivalently using either intuitionistic
fuzzy sets or lattice fuzzy (L-fuzzy) sets.
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Summary. Given a lattice (X,≤,∧,∨) we define a multi-valued operation ∧Q which
is analogous to a t-norm (i.e. it is commutative, associative, has one as a neutral
element and is monotone). The operation is parametrized by the set Q, hence we
actually obtain an entire family of such multi-valued t-norms. Similarly we define a
family of multi-valued t-conorms ∨P . We show that, when P, Q are chosen appropri-
ately, ∧Q,∨P (along with a standard negation) form a de Morgan pair. Furthermore
∧Q,∨P are order generating and (X,≤,∧Q,∨P ) is a superlattice, i.e. a multi-valued
analog of a lattice.

17.1 Introduction

In this paper we generalize the concepts of t-norm and t-conorm. While many
variants of t-norm and t-conorm have appeared in the literature, they always
are single-valued functions. The current work is substantially different because
it considers a multi-valued generalization.

As is well known, a t-norm is an extension of the classical logical operator
AND to the realm of fuzzy logic. While in the classical case AND is a function
from {0, 1}×{0, 1} to {0, 1} (or, equivalently, from {True,False}×{True,False}
to {True,False}), a t-norm is a function from [0, 1]×[0, 1] to [0, 1]. The interval
[0, 1] can be an interval of reals or, more generally, a lattice with bottom
element 0 and top element 1. Recently considerable attention has been paid to
t-norms for particular types of lattices, for instance the lattice of real intervals
[2], the lattice of type-2 fuzzy sets [23] etc. All of these generalizations are
concerned with the domain and range of the t-norm. Similar remarks hold for
t-conorms, which extend from {0, 1} to [0, 1] the logical OR operator1.

Many t-norms and t-conorms have been presented in the fuzzy literature
but the above remarks apply to practically all of them. This also holds true
for t-norms and t-conorms which apply to interval-valued fuzzy sets: in this
1 Under another interpretation, a t-norm generalizes set intersection and a t-conorm

generalizes set union.

A. Kehagias: A Family of Multi-valued t-norms and t-conorms, Studies in Computational Intel-

ligence (SCI) 67, 341–360 (2007)
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case a t-norm takes as input pairs of intervals and produces as output a single
interval. The case with which we deal in the current work is significantly
different. We are interested in multi-valued t-norms and t-conorms; a simple
example would be a t-norm which takes as input two reals and produces as
output an interval of reals. In this paper we discuss the generalization of this
example.

Our motivation for studying multi-valued logical connectives is the follow-
ing: fuzzy logic is a calculus of uncertain reasoning; but it seems that all the
uncertainty is concentrated in the truth values of the logical propositions; the
case where uncertainty is associated with the actual operation of the logical
connectives has not been studied in the past. The introduction of multi-valued
logical connectives is a reasonable way to introduce this type of uncertainty.
On the other hand, much of the work presented concerns intervals (either of
reals or, more generally, of lattice elements) which has been a common theme
in the fuzzy and computationbal intelligenece literature; see for instance the
use of “hyperboxes” (lattice intervals) in [11, 12, 17] for theoretical aspects
and [1, 11, 18] for applications. We present our work in the general frame-
work of lattice theory, which is quite popular for the general analysis of fuzzy
systems [6, 8, 19].

There is a considerable literature on algebras equipped with multi-valued
operations; see the book [5]. In this area the multi-valued operations are called
hyperoperations and they yield hyperalgebras such as hypergroups [3, 4], hyper-
rings [15, 22], hyperlattices [14, 16, 20, 21] etc. Using similar terminology we
will speak of the hyper-t-norm, the hyper-t-conorm etc. It is not stressed often
enough, but a basic hyperoperation which finds frequent application in Com-
putational Intelligence is clustering [17] which takes as input two (or a few)
points to produce as output a region, i.e. a set of points.

Among all uni-valued t-norms, the min t-norm ∧ has a special place. For
example, it is the only idempotent t-norm. Also, in a certain sense, it is the
simplest extension of AND. Finally, and perhaps more importantly, it is the
only t-norm which generates an order , i.e. the double implication

aTb = a⇔ a ≤ b

only holds for T = ∧. Similar remarks hold for the max t-conorm ∨. In the
current work we present a family of multi-valued logical connectives which
make essential use of ∧ and ∨; our construction can be applied to other
t-norms and t-conorms but the results are not as satisfactory. Let us mention
however that the current generalization is only one of several ways to define
multi-valued t-norms and t-conorms; we have presented other possibilities in
[10, 20, 21].

The plan of this paper is as follows. In Section 17.2 we present some
preliminary concepts. The rest of the paper assumes a basic de Morgan alge-
bra (X,≤,∧,∨,′ ) and constructs on it various algebraic structures. In Sec-
tion 17.3 we introduce the basic objects of our study, namely the multi-valued
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∧Q t-norm and ∨P t-conorm. In Section 17.4 we study the multi-valued S-
implication obtained from ∨P . In Section 17.5 we show that ∧Q and ∨P

generate a structure analogous to a lattice, the so-called (P,Q)-superlattice.
In Sect. 17.6 we obtain additional results for the case when (X,≤,∧,∨,′ ) is a
Boolean algebra. Finally, we summarize our results in Section 17.7.

17.2 Preliminaries

In this section we review some fundamental concepts which will be used in
the main part of the paper; we also present some well known propositions (we
omit their proofs, which can be found in standard texts [7]).

Given a set X, the power set of X will be denoted by P (X) and will
be defined to be the set of all (crisp) subsets of X. We can equip X with
an order relationship ≤ and thus obtain a partially ordered set (X,≤). If for
every pair x, y ∈ X the inf (x, y) and sup(x, y) exist, we say that (X,≤) is a
lattice. We denote inf (x, y) by x ∧ y and sup(x, y) by x ∨ y ; then ∧,∨ are
binary operations on X and we sometimes say that (X,≤,∧,∨) or (X,∧,∨)
is a lattice. We also use the notation x1 ∧ x2 ∧ ...∧ xN to denote the infimum
of x1, x2, ..., xN (the ∧ operation is associative) and ∧P to denote ∧x∈P x,
the infimum of a set P ⊆ X (if such an infimum exists); similarly we use
x1 ∨ x2 ∨ ... ∨ xN and ∨P . A lattice is called distributive iff ∀a, b, c ∈ X it is

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) , a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) .

We will use the following proposition repeatedly in what follows.

Proposition 17.1 In a distributive lattice (X,≤,∨,∧) the following proper-
ties hold for all a, b, x, y ∈ X such that x ≤ y, a ≤ b:

a ∨ [x, y] = [a ∨ x, a ∨ y]; [a, b] ∨ [x, y] = [a ∨ x, b ∨ y];
a ∧ [x, y] = [a ∧ x, a ∧ y]; [a, b] ∧ [x, y] = [a ∧ x, b ∧ y].

We now introduce several “substructures” within the lattice (X,≤,∧,∨) .

1. A sublattice of a lattice is a set Y ⊆ X such that: x, y ∈ Y ⇒ x ∧ y ∈
Y, x ∨ y ∈ Y .

2. A convex sublattice is a set Y ⊆ X such that: if x, y ∈ Y then [x∧y, x∨y] ⊆
Y . We denote the set of all convex sublattices of X by C (X).

3. A filter is a set Y ⊆ X which satisfies the following two conditions: (a) if
x ∈ Y , y ∈ X and x ≤ y, then y ∈ Y (b) if x, y ∈ Y then x ∧ y ∈ Y .

4. An interval in the lattice (X,≤,∧,∨) is a set of the form {x : a ≤ x ≤ b},
where a, b ∈ X are the endpoints of the interval; we denote this interval
by [a, b]. We denote the set of all intervals of X by I (X).

Every filter is a convex sublattice; in a lattice with bottom element 0 and
top element 1, every interval of the form [q, 1] is a filter.

Given a poset (or lattice) (X,≤) we can define two “order-like” relations
on P (X) (i.e. they hold between subsets of X).
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1. A ≤1 B means that:
{
∃a ∈ A such that ∀b ∈ B we have a ≤ b
∃b ∈ B such that ∀a ∈ A we have a ≤ b

.

2. A ≤2 B means that: ∀a ∈ A, b ∈ B we have a ∨ b ∈ B and a ∧ b ∈ A.

These relations are not independent; also (under appropriate restrictions)
they are orders.

Proposition 17.2 For every A,B ∈ C (X), we have A ≤1 B ⇒ A ≤2 B.

Proposition 17.3 The relations ≤i(i = 1, 2) are orders on C (X) (and, a
fortiori, on I (X)).

In the rest of the paper we will use a generalized de Morgan lattice defined
as follows.

Definition 17.1 A generalized deMorgan lattice is a structure (X,≤,∨,∧,′ ),
where (X,≤,∨,∧) is a complete distributive lattice with minimum element 0
and maximum element 1; the symbol ′ denotes a unary operation (“negation”);
and the following properties are satisfied.

1. For all x ∈ X, Y ⊆ X we have x∧ (∨y∈Y y) = ∨y∈Y (x∧y), x∨ (∧y∈Y y) =
∧y∈Y (x ∨ y) (Complete distributivity).

2. For all x ∈ X we have: (x′)′ = x (Negation is involutory).
3. For all x, y ∈ X we have: x ≤ y ⇒ y′ ≤ x′ (Negation is order reversing).
4. For all Y ⊆ X we have (∨y∈Y y)′ = ∧y∈Y y′, (∧y∈Y y)′ = ∨y∈Y y′ (Com-

plete deMorgan laws).

In Section 17.6 we will make a stronger assumption, that (X,≤,∨,∧,′ ) is
a generalized Boolean lattice, i.e. it satisfies the following.

Definition 17.2 A generalized Boolean lattice is a generalized deMorgan lat-
tice (X,≤,∨,∧,′ ) in which every x ∈ X satisfies: x ∨ x′ = 1, x ∧ x′ = 0.

Notation 17.1 Given a set A ⊆ X we will denote the set of all negated
elements of A by A′ = {x : x′ ∈ A}.

Proposition 17.4 Let A = [a1, a2]; then A′ = [a′
2, a

′
1].

We now turn to t-norms, t-conorms and their multi-valued extensions.
Recall that a t-norm on a general lattice (X,≤) with 0 and 1 is a function T :
X ×X → X which is commutative, associative and satisfies for all a, b, c ∈ X
the following

absorption : aT1 = a, (A1)
monotonicity : a ≤ b⇒ aTc ≤ bTc; (A2)

similarly a t-conorm is a function S : X × X → X which is commutative,
associative and satisfies for all a, b, c ∈ X the following
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absorption : aS0 = a, (B1)
monotonicity : a ≤ b ⇒ aSc ≤ bSc. (B2)

Now, t-norms and t-conorms are examples of operations, i.e. uni-valued map-
pings from X×X to X; they map pairs of elements to elements. The following
notations are standard in the hyperoperations literature:

1. if ∗ is an operation, for any a ∈ X and A,B ⊆ X we define a ∗ B =
∪b∈B {a ∗ b}, A ∗B = ∪a,b∈B {a ∗ b} .

2. if ∗ is a hyperoperation, for any a ∈ X and A,B ⊆ X we define a ∗ B =
∪b∈Ba ∗ b, A ∗B = ∪a,b∈Ba ∗ b (remember that a ∗ b is a set).

Now we are ready to define hyper-t-norms and hyper-t-conorms by gener-
alizing properties A1, A2 and B1, B2 to their multi-valued analogs.

1. A hyper-t-norm is a multi-valued map T : X × X → P (X) which is
commutative, associative and satisfies for all a, b, c ∈ X the following

absorption : aT1 + a, (C1)
monotonicity : a ≤ b⇒ aTc ≤ bTc. (C2)

(where ≤ is an order relationship on the range of T).
2. A hyper-t-conorm is a multi-valued map S : X × X → P (X) which is

commutative, associative and satisfies for all a, b, c ∈ X the following
a ≤ b ⇒ aTc ≤ bTc.

absorption : aS0 + a, (D1)
monotonicity : a ≤ b ⇒ aSc ≤ bSc. (D2)

Conditions C1 and D1 are straightforward generalizations of A1 and B1,
respectively. Conditions C2 and D2 are more subtle. Note that in both C2 and
D2 ≤ is an order relationship between sets (such as the above defined ≤1,≤2

etc.). To complete the definitions of hyper-t-norm and hyper t-conorm, we
must specify which order relationship we are using. There are several options
for ≤ and, furthermore, it is only required that ≤ is an order on the range of
T / S . As will be seen in Section 17.3, this will turn out to be significant
when we examine specific hyperoperations with a restricted range.

17.3 The ∧Q hyper-t-norm and the ∨P hyper-t-conorm

17.3.1 The ∧Q hyper-t-norm

We define a hyperoperation which, under suitable restrictions, has the prop-
erties of a multivalued t-norm.
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Definition 17.3 Let Q be some subset of X and define the hyperoperation
∧Qas follows:

∀a, b ∈ X : a ∧Q b
.= {a ∧ b ∧ q : q ∈ Q} .

Remark 17.1. Hence we could write a ∧Q b = a ∧ b ∧Q.

We will now show that under suitable conditions ∧Q is a hyper-t-norm, i.e.
it is commutative, associative and satisfies C1, C2. We will proceed in several
steps. First we show that ∧Q is always commutative and associative.

Proposition 17.5 Take any set Q ⊆ X. Then, for all a, b, c we have

a ∧Q b = b ∧Q a;
(
a ∧Q b

)
∧Q c = a ∧Q

(
b ∧Q c

)
.

Proof. The first part is obvious. For the second, take any x ∈
(
a ∧Q b

)
∧Q c;

then exists some y such that

y ∈ a ∧Q b and x ∈ y ∧Q c;

also, y ∈ a ∧Q b means that there exists q1 ∈ Q such that y = a ∧ b ∧ q1 ; and
x ∈ y ∧Q c means that exists q2 ∈ Q such that x = y ∧ c ∧ q2. Hence

x = (a ∧ b ∧ q1) ∧ c ∧ q2 = a ∧ (b ∧ c ∧ q1) ∧ q2.

But the last part of the above equality shows that x ∈ a ∧Q
(
b ∧Q c

)
. Hence

(
a ∧Q b

)
∧Q c ⊆ a ∧Q

(
b ∧Q c

)
; similarly we can show that a ∧Q

(
b ∧Q c

)
⊆

(
a ∧Q b

)
∧Q c; and so a ∧Q

(
b ∧Q c

)
=
(
a ∧Q b

)
∧Q c. �

Next we give a necessary and sufficient condition on Q for C1 to hold.

Proposition 17.6 We have:
(
∀a : a ∈ a ∧Q 1

)
⇔ (1 ∈ Q).

Proof. If 1∈ Q, then a = a∧1∧1 ∈ a∧Q1. On the other hand, if ∀a : a ∈ a∧Q1,
then 1 ∈ 1 ∧Q 1, i.e. exists q1 ∈ Q such that 1= 1 ∧ 1 ∧ q1 = q1. �

Finally we examine the question of monotonicity (i.e. condition C2). To
this end we need an auxiliary proposition, regarding the nature of a ∧Q b.

Proposition 17.7 Take any Q ⊆ X such that 1 ∈ Q. Then we have the
following

1. (Q is a convex sublattice)⇔
(
∀a, b ∈ X : a ∧Q b is a convex sublattice

)
;

2. (Q is a filter) ⇒
(
∀a, b ∈ X : a ∧Q b is a convex sublattice

)
;

3. (Q is an interval) ⇔
(
∀a, b ∈ X : a ∧Q b is an interval

)
.

Proof. For 1, suppose Q is a convex sublattice. Take any a, b ∈ X, then take
any x, y ∈ a ∧Q b; i.e. x = a ∧ b ∧ q1, q1 ∈ Q; and y = a ∧ b ∧ q2, q2 ∈ Q. Now
consider [x ∧ y, x ∨ y]; we have
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[x ∧ y, x ∨ y] = [a ∧ b ∧ (q1 ∧ q2) , a ∧ b ∧ (q1 ∨ q2)]

= a ∧ b ∧ [q1 ∧ q2, q1 ∨ q2] ⊆ a ∧ b ∧Q = a ∧Q b.

(since Q is a convex sublattice, [q1 ∧ q2, q1 ∨ q2] ⊆ Q). Hence a ∧Q b is a
convex sublattice. Conversely, if ∀a, b ∈ X : a∧Q b is a convex sublattice, then
1 ∧Q 1 = 1 ∧ 1 ∧Q = Q is a convex sublattice. For 2, simply note that every
filter is a convex sublattice. For 3, suppose Q = [q1, q2]. Then

a ∧Q b = a ∧ b ∧ [q1, q2] = [a ∧ b ∧ q1, a ∧ b ∧ q2]

is an interval; and conversely, if ∀a, b ∈ X : a∧Q b is an interval, then 1∧Q 1 =
1 ∧ 1 ∧Q = Q is an interval. �

Remark 17.2. In fact, the third part of Proposition 17.7 can be strengthened.
As will be seen in the sequel, we are mainly interested in the Q’s which contain
1; if such a Q is also an interval, then Q = [q, 1]. Then we have the following.

Proposition 17.8 If Q = [q, 1] then a ∧Q b = [a ∧ b ∧ q, a ∧ b] ( ∀a, b ∈ X).

Proof. a ∧Q b = a ∧ b ∧ [q, 1] = [a ∧ b ∧ q, a ∧ b]. �

Under certain conditions ≤1,≤2 are orders on the collection
{
a ∧Q b

}

a,b∈X
.

Proposition 17.9 Take any Q ⊆ X such that 1 ∈ Q.

1. If Q is a convex sublattice, then ≤2 is an order on
{
a ∧Q b

}

a,b∈X
.

2. If Q is an interval, then ≤1,≤2 are orders on
{
a ∧Q b

}

a,b∈X
.

Proof. First we prove 1. Suppose Q is a convex sublattice.

i. Pick any a, b ∈ X and any x, y ∈ a∧Q b. Then a∧Q b is a convex sublattice
(Prop. 17.7) and so x ∧ y ∈ a ∧Q b and x ∨ y ∈ a ∧Q b and so a ∧Q b ≤2

a ∧Q b.
ii. Pick any a, b, c, d ∈ X such that a ∧Q b ≤2 c ∧Q d and c ∧Q d ≤2 a ∧Q b.

Now choose any x ∈ a ∧Q b and any y ∈ c ∧Q d. Then x ∧ y ∈ a ∧Q b
and x ∨ y ∈ a ∧Q b. So y ∈ [x ∧ y, x ∨ y] ⊆ a ∧Q b which implies that
c ∧Q d ⊆ a ∧Q b. Similarly we can show that a ∧Q b ⊆ c ∧Q d and so
c ∧Q d = a ∧Q b.

iii. Pick any a, b, c, d, e, f ∈ X such that a∧Q b ≤2 c∧Qd and c∧Qd ≤2 e∧Qf .
Now choose any x ∈ a ∧Q b, any y ∈ c ∧Q d and any z ∈ e ∧Q f . Then
x∨ y ∈ c∧Q d and so x∨ y ∨ z ∈ e∧Q f . So x∨ z ∈ [z, x ∨ y ∨ z] ⊆ e∧Q f .
Similarly we can show x ∧ z ∈ a ∧Q b. Hence a ∧Q b ≤2 e ∧Q f .

2 follows from 1: if Q is an interval, it is also a convex sublattice. �

Now we can prove a monotonicity property of a ∧Q b.
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Proposition 17.10 Take any Q ⊆ X with 1∈ Q.

1. If Q is a filter, then we have: a ≤ b ⇔
(
∀c ∈ X : a ∧Q c ≤2 b ∧Q c

)
.

2. If Q is an interval, then (for i = 1, 2) we have:

a ≤ b ⇔
(
∀c ∈ X : a ∧Q c ≤i b ∧Q c

)
.

Proof. 1. Let Q be a filter. Suppose that a ≤ b and take x ∈ a∧Q c, y ∈ b∧Q c.
That is, x = a ∧ c ∧ q1 and y = b ∧ c ∧ q2. Then

x ∧ y = a ∧ b ∧ c ∧ (q1 ∧ q2) = a ∧ c ∧ (q1 ∧ q2) ;

since q1, q2 ∈ Q and Q is a filter, then q1 ∧ q2 ∈ Q and x ∧ y ∈ a ∧Q c. Also

x ∨ y = (a ∧ c ∧ q1) ∨ (b ∧ c ∧ q2) = ((a ∧ q1) ∨ (b ∧ q1)) ∧ c

= ((a ∨ b) ∧ (q1 ∨ b) ∧ (a ∨ q2) ∧ (q1 ∨ q2)) ∧ c

= (b ∧ (q1 ∨ b) ∧ (a ∨ q2) ∧ (q1 ∨ q2)) ∧ c

= (b ∧ (a ∨ q2) ∧ (q1 ∨ q2)) ∧ c.

Now, a ∨ q2 ≥ q2 ∈ Q and so a ∨ q2 ∈ Q (Q is a filter); also q1 ∨ q2 ∈ Q (Q is
a sublattice) hence q = (a ∨ q2) ∧ (q1 ∨ q2) ∈ Q. This means

x ∨ y = b ∧ c ∧ q ∈ b ∧Q c.

Since x ∧ y ∈ a ∧Q c and x ∨ y ∈ b ∧Q c, it follows that a ∧Q c ≤2 b ∧Q c.
2. If Q is an interval, then Q = [q, 1]. Hence a ≤ b⇒ a∧c ≤ b∧c⇒ a∧c∧q ≤
b ∧ c ∧ q. Hence

a ∧Q c = [a ∧ c ∧ q, a ∧ c] ≤1 [b ∧ c ∧ q, b ∧ c] = b ∧Q c

On the other hand, if
(
∀c ∈ X : a ∧Q c ≤1 b ∧Q c

)
, then taking c = 1 we get

[a ∧ q, a] ≤1 [b ∧ q, b] ⇒ a ≤ b.

The same result follows for ≤2, since this is equivalent to ≤1 over a class of
intervals. �

Remark 17.3. Note the double implications in the above proposition. They
show that ∧Q has a stronger-than-monotonicity property (when 1 ∈ Q).

From the above propositions we can state the following proposition which
give conditions for ∧Q to be a hyper-t-norm.

Proposition 17.11 Let Q ⊆ P (X) with 1∈ Q.

1. If Q is a filter then ∧Q is a hyper-t-norm (with respect to the order ≤2).
2. If Q is an interval, then ∧Q is a hyper-t-norm (with respect to the orders
≤1, ≤2).
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Proof. This is a simple consequence of Propositions 17.7, 17.9, 17.10. �

In the rest of the paper we will always assume that Q is (at least) a filter
and that 1 ∈ Q. Here are some additional properties of ∧Q regarding order.

Proposition 17.12 For all a, b ∈ X we have: max
(
a ∧Q b

)
= a ∧ b.

Proof. Indeed, x ∈ a ∧Q b ⇒ x = a ∧ b ∧ q ≤ a ∧ b ∧ 1 = a ∧ b. And
a ∧ b = a ∧ b ∧ 1 ∈ a ∧Q b. �

Proposition 17.13 For all a, b ∈ X we have: a ∧Q b = a ∧Q a⇔ a ≤ b.

Proof. Assume a ≤ b. Then a∧Qb = ∪q∈Qa∧b∧q = ∪q∈Qa∧q = ∪q∈Qa∧a∧q =
a ∧Q a. Conversely, if a ∧Q b = a ∧Q a, then by Proposition 17.12

a ∧ b = max
(
a ∧Q b

)
= max

(
a ∧Q a

)
= a ∧ a = a ⇒ a ≤ b.�

17.3.2 The ∨P hyper-t-conorm

In completely analogous manner to that of the previous section, we define
a hyperoperation which, under suitable restrictions, has the properties of a
multivalued t-conorm.

Definition 17.4 Let P be some subset of X and define the hyperoperation
∨P as follows:

∀a, b ∈ X : a ∨P b
.= {a ∨ b ∨ p′ : p ∈ P} .

Remark 17.4. We could also write a ∨P b = a ∨ b ∨ P ′.

Proposition 17.14 Take any set P ⊆ X. Then, for all a, b, c we have

a ∨P b = b ∨P a;
(
a ∨P b

)
∨P c = a ∨P

(
b ∨P c

)
.

Proposition 17.15 We have:
(
∀a : a ∈ a ∨P 0

)
⇔ (1 ∈ P ).

Proposition 17.16 Take any P ⊆ X such that 1 ∈ P . Then we have the
following

1. (P is a convex sublattice) ⇔
(
∀a, b ∈ X : a ∨P b is a convex sublattice

)
;

2. (P is a filter) ⇒
(
∀a, b ∈ X : a ∨P b is a convex sublattice

)
;

3. (P is an interval) ⇔
(
∀a, b ∈ X : a ∨P b is an interval

)
.

Proposition 17.17 If P = [p, 1] then a∨P b = [a ∨ b, a ∨ b ∨ p′] (∀a, b ∈ X).

Proposition 17.18 Take any P ⊆ X such that 1 ∈ P .

1. If P is a convex sublattice, then ≤2 is an order on
{
a ∨P b

}

a,b∈X
.

2. If P is an interval, then ≤1,≤2 are orders on
{
a ∨P b

}

a,b∈X
.
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Proposition 17.19 Take any P ⊆ X with 1∈ P.

1. If P is a filter, then we have: a ≤ b ⇔
(
∀c ∈ X : a ∨P c ≤2 b ∨P c

)
.

2. If P is an interval, then (for i = 1, 2) we have:

a ≤ b ⇔
(
∀c ∈ X : a ∨P c ≤i b ∨P c

)
.

Proposition 17.20 Let P ⊆ P (X) with 1∈ P .

1. If P is a filter then ∨P is a hyper-t-conorm (with respect to the order ≤2).
2. If P is an interval, then ∨P is a hyper-t-conorm (with respect to the orders
≤1, ≤2).

Proposition 17.21 For all a, b ∈ X we have: min
(
a ∨P b

)
= a ∨ b.

Proposition 17.22 For all a, b ∈ X we have: a ∨P b = a ∨P a⇔ a ≤ b.

17.3.3 Further Properties of ∧Q and ∨P

The following proposition establishes that ∧Q and ∨P have a weak form of
distributivity.

Proposition 17.23 For all a, b, c ∈ X we have
(
a ∧Q

(
b ∨P c

))
∩
((

a ∧Q b
)
∨P
(
a ∧Q c

))
	= ∅, (17.1)

(
a ∨P

(
b ∧Q c

))
∩
((

a ∨P b
)
∧Q
(
a ∨P c

))
	= ∅. (17.2)

Proof. Since 1∈ Q and 1∈ P , then

a ∧ (b ∨ c) = a ∧ (b ∨ c ∨ 1′) ∧ 1 ∈ a ∧Q
(
b ∨P c

)
. (17.3)

Also

(a ∧ b)∨ (a ∧ c) = (a ∧ b ∧ 1)∨ (a ∧ c ∧ 1)∨1′ ∈
(
a ∧Q b

)
∨P
(
a ∧Q c

)
. (17.4)

Finally,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∨ c) . (17.5)

From (17.3), (17.4) and (17.5) we obtain (17.1); (17.2) is proved dually. �

Here are some more properties related to order.

Proposition 17.24 For all a, b ∈ L we have: x ∈ a∨P b, y ∈ a∧Q b ⇒ y ≤ x.

Proof. True, since y ≤ max
(
a ∧Q b

)
= a ∧ b ≤ a ∨ b = min

(
a ∨P b

)
≤ x. �

Proposition 17.25 For all a, b ∈ L we have:
(
a ∨P b

)
∩
(
a ∧Q b

)
	= ∅ ⇒

a = b.
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Proof. Take some x ∈
(
a ∨P b

)
∩
(
a ∧Q b

)
; then for some p ∈ P, q ∈ Q we have

a ∧ b ≥ a ∧ b ∧ q = x = a ∨ b ∨ p′ ≥ a ∨ b⇒ a = a ∧ b = a ∨ b = b.�

We also have a sort of “reduction property”.

Proposition 17.26 For all a, x, y ∈ L we have:
(
a ∨P x = a ∨P y and a ∧Q x = a ∧Q y

)
⇒ x = y.

Proof.

a ∨P x = a ∨P y ⇒ max
(
a ∨P x

)
= max

(
a ∨P y

)
⇒ a ∨ x = a ∨ y (17.6)

a ∧Q x = a ∧Q y ⇒ max
(
a ∧Q x

)
= max

(
a ∧Q y

)
⇒ a ∧ x = a ∧ y (17.7)

From (17.6), (17.7) and a standard property of distributive lattices we get
x = y. �

Proposition 17.27 For every ′ and Q, we obtain the de Morgan triple(
∧Q,∨Q,′

)
. In other words, ∨Q′

is a hyper-t-conorm, ∧Q is a hyper-t-norm
and the following analogs of de Morgan’s laws hold:

(
a ∧Q b

)′
= a′ ∨Q b′ and

(
a ∨Q b

)′
= a′ ∧Q b′

Proof. Straightforward. �

So far we have assumed that P,Q are filters. Let us now strengthen this
assumption; for the rest of this section we will asume that P,Q are intervals
of the form P = [p, 1], Q = [q, 1] and we prove several additional results. It
will be convenient to introduce a new notation.

Notation 17.2 When Q = [q, 1] we will denote ∧Q by ∧q; when P = [p, 1]
(and P ′ = [0, p]) we will denote ∨P by ∨p.

The following proposition establishes that ∧q and ∨p have a weak form of
distributivity.

Proposition 17.28 For all p, q ∈ X and for all a, b, c ∈ X we have

a ∧q (b ∨p c) ⊆ (a ∧q b) ∨p (a ∧q c) , a ∨p (b ∧q c) ⊆ (a ∨p b) ∧q (a ∨p c) .

Proof. Ít is straightforward to show that

a ∧q (b ∨p c) = [a ∧ (b ∨ c) ∧ q, a ∧ (b ∨ c ∨ p′)] (17.8)
(a ∧q b) ∨p (a ∧q c) = [(a ∧ b ∧ q) ∨ (a ∧ c ∧ q) , (a ∧ b) ∨ (a ∧ c) ∨ p′] . (17.9)

Also

a ∧ (b ∨ c) ∧ q = (a ∧ b ∧ q) ∨ (a ∧ c ∧ q) (17.10)
a ∧ (b ∨ c ∨ p′) = (a ∧ b) ∨ (a ∧ c) ∨ (a ∧ p′) ≤ (a ∧ b) ∨ (a ∧ c) ∨ p′ (17.11)

and (17.8) – (17.11) show that the first part of the proposition holds; the
second part is proved dually. �
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Proposition 17.29 For all p1, p2, q1, q2 ∈ X and a, b, c ∈ X the following
properties hold.

(a ∧q1 b) ∧q2 c = (a ∧q1 b) ∧q2 c = a ∧q1∧q2 b ∧q1∧q2 c. (17.12)
(a ∨p1 b) ∨p2 c = (a ∨p1 b) ∨p2 c = a ∨p1∨p2 b ∨p1∨p2 c. (17.13)

Proof. Straightforward. �

17.4 The →P S-hyper-implication

We can also introduce an additional hyperoperation, the hyper-implication.
This is a straightforward generalization of Boolean and fuzzy implications.
Recall that in Boolean logic we can define the implication → as follows

∀a, b : a→ b
.= a′ ∨ b. (17.14)

Several other equivalent definitions can be used. In fuzzy logic we generalize
(17.14) by introducing the class of S-implications: given a t-conorm S (and a
negation ′) we define

∀a, b : a → b
.= a′Sb. (17.15)

We can define a hyper-implication (i.e. a multi-valued implication) by using
∨P in place of S in (17.15). In other words, we introduce the following hyper-
implication, denoted by →P and defined as follows

a→P b
.= a′ ∨P b.

This hyper-implication has several interesting properties (analogous to these
of the classical implication).

Proposition 17.30 Given a filter P ⊆ X such that 1 ∈ P , we have for every
a, b, c the following.

1. a ≤ b ⇒
((

a→P c
)
≥2

(
b →P c

)
and
(
c→P a

)
≤2

(
c →P b

))
,

2. 1 ∈
(
0 →P a

)
and a ∈

(
1 →P a

)
,

3.
(
a →P b

)
=
(
b′ →P ′

a′
)
.

Proof. This is fairly straightforward.

1. Assume a ≤ b. Then a′ ≥ b′ and, by monotonicity of ∨P we have(
a →P c

)
= a′ ∨P c ≥2 b′ ∨P c =

(
b→P c

)
. Similarly, if a ≤ b then

(
c →P a

)
= c′ ∨P a ≤2 c′ ∨P b =

(
c →P b

)
.

2. min
(
0 →P a

)
= min

(
0′ ∨P a

)
= 1 ∨ a = 1; hence 1 ∈

(
0 →P a

)
. Also

1 →P a = 1′ ∨P a = ∪p∈P [0 ∨ a, 0 ∨ a ∨ p′]. Since 0∈ P ′, a = 0 ∨ a ∨ 0 ∈(
1 →P a

)
.

3.
(
a →P b

)
= a′ ∨P b = (b′)′ ∨P a′ =

(
b′ →P ′

a′
)
. �

The above properties are similar to the ones established in [9] and other
places about (uni-valued) implications.
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17.5 The (P, Q)-superlattice

As we have already mentioned in Section 17.1, ∧ has several special properties,
as compared to other t-norms. Among all these properties, we believe the most
special is that ∧ is both monotone and “order-generating”. In other words,
while by definition every t-norm T satisfies

monotonicity: ∀a, b, c : a ≤ b ⇒ aTc ≤ bTc (17.16)

the only t-norm that satisfies

order generation: ∀a, b : a ≤ b⇔ aTb = a. (17.17)

is T = ∧. The order generated by ∧ can then be defined as follows

a ≤ b iff a ∧ b = a. (17.18)

Similar things hold for the t-conorm ∨. The algebra (X,≤,∧,∨) is a lattice;
now we will show that the hyperalgebra (X,≤,∧Q,∨P ) is a superlattice, i.e. the
multivalued analog of a lattice. First consider the following general definition.

Definition 17.5 Given a poset (U,%) and hyperoperations , and - map-
ping U × U to P (U), the structure (U,%,,,-) is called a superlattice iff the
following conditions hold for all a, b, c ∈ U .

G1. a ∈ (a - a), a ∈ (a , a).
G2. a - b = b - a , a , b = b , a.
G3. (a - b) - c = a - (b - c), (a , b) , c = a , (b , c).
G4. a ∈ (a - b) , a, a ∈ (a , b) - a.
G5. a % b ⇒ b ∈ a - b, a ∈ a , b.
G6. b ∈ a - b ⇔ a ∈ a , b ⇔ a % b.

The similarity (“order generation”) between , and ∧, as well as between
- and ∨ is especially seen in properties G5, G6.

We now show that the hyperalgebra
(
X,∧Q,∨P

)
is a superlattice, in the

sense of Definition 17.5. To this end we must prove the following auxiliary
proposition.

Proposition 17.31 Take any P,Q ⊆ X such that 1 ∈ Q and 1 ∈ P . Then(
X,≤,∧Q,∨P

)
is a superlattice, i.e. it satifies

S1. a ∈ (a ∨P a), a ∈ (a ∧Q a).
S2. a ∨P b = b ∨P a, a ∧Q b = b ∧Q a.
S3. (a ∨P b) ∨P c = a ∨P (b ∨P c), (a ∧Q b) ∧Q c = a ∧Q (b ∧Q c).
S4. a ∈ (a ∨P b) ∧Q a, a ∈ (a ∧Q b) ∨P a.
S5. a ≤ b ⇒ b ∈ a ∨P b, a ∈ a ∧Q b.
S6. b ∈ a ∨P b ⇔ a ∈ a ∧Q b ⇔ a ≤ b.
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Proof. S1 is straightforward. S2 and S3 were proved in Propositions 17.5,
17.14. For S4, we know that

a ∈ [(a ∨ b) ∧ a ∧ 1, (a ∨ b ∨ 0) ∧ a] ⊆ [a ∨ b, a ∨ b ∨ 0] ∧Q a ⊆
(
a ∨P b

)
∧Q a;

and a ∈
(
a ∧Q b

)
∨P a is proved similarly. For S5, a ≤ b ⇒ a ∨ b = b and so

[b, b] = [a ∨ b, a ∨ b ∨ 0] ⊆ a ∨P b. Conversely, if b ∈ a ∨P b, then a ∨ b ≤ b ≤
a∨ b∨ 0 and so b = a∨ b, a ≤ b. Hence we have proved a ≤ b ⇔

(
b ∈ a ∨P b

)
.

Similarly we can prove a ≤ b ⇔
(
a ∈ a ∧Q b

)
. For S6, if b ∈ a ∨P b, then (for

some p ∈ P ) we have b = a ∨ b ∨ p′ ≥ a; similarly for a ∈ a ∧Q b. �

The superlattice
(
X,≤,∧Q,∨P

)
has been studied in [20, 21], under the

name of “(P,Q)-superlattice”. A case of special interest is the (Q′, Q)-
superlattice (i.e. using P = Q).

17.6 The Boolean Case

We now turn to a special case which yields additional results. Up to this point
we have assumed that the lattice (X,≤,∧,∨,′ ) is de Morgan; now we make
the stronger assumption that it is Boolean. In other words we assume that
∀a ∈ X : a∧a′ = 0 and a∨a′ = 1. Furthermore in this section (and in the rest
of the paper) we assume that P = [p, 1] (P ′ = [0, p′]), Q = [q, 1]. We will also
use again the notation ∧q, ∨p and →p for the implication. Under the interval
assumption we can obtain additional properties of ∧q and ∨p.

The (X,∧q,∨p) hyperalgebra can be characterized as a weak Boolean
superlattice. By this we mean that it is a weakly distributive and hypercom-
plemented superlattice, i.e. in addition to S1-S6 the following properties hold

weak distributivity :a ∧q (b ∨p c) ⊆ (a ∧q b) ∨p (a ∧q c) ,

a ∨p (b ∧q c) ⊆ (a ∨p b) ∧q (a ∨p c) ,

hypercomplementation :1 ∈ (a ∨p a′) , 0 ∈ (a ∧q a′) .

These properties hold in the general de Morgan case; now we see additional
properties for the Boolean case.

Proposition 17.32 For every a, b, c ∈ X, i = 1, 2 and p ∈ X we have the
following:

1. a ≤ b ⇒ (a →p c) ≥i (b→p c) and a ≤ b⇒ (c →p a) ≤i (c→p b),
2. 1 ∈ (0 →p a) and a ∈ (1 →p a),
3. (a →p b) = (b′ →p a′),
4. 1 ∈ (a→p a) and a ∈ (1 →p a).
5.
(
a →P (b→p c)

)
= (b→p (a →p c)) ( strong exchange property);
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Proof. Parts 1 and 2 are proved exactly as in Proposition 17.30, except that
now we use the order ≤1. 3 is obvious. For 4 (a →p a)= [a′ ∨ a, a′ ∨ a ∨ p′]=
[1, 1]; for the second part we have (1→p a)= [1′ ∨ a, 1′ ∨ a ∨ p′]= [a, a ∨ p′];
the second part is proved similarly. For 5 (exchange property) we have

(a →p (b→p c)) = a′ ∨p [b′ ∨ c, b′ ∨ c ∨ p′] = [a′ ∨ b′ ∨ c, a′ ∨ b′ ∨ c ∨ p′]
(b →p (a→p c)) = b′ ∨p [a′ ∨ c, a′ ∨ c ∨ p′] = [a′ ∨ b′ ∨ c, a′ ∨ b′ ∨ c ∨ p′]

which are obviously equal. �

Furthermore in the Boolean case the implication →p has Modus Ponens,
Modus Tollens and syllogistic reasoning properties.

Proposition 17.33 For every a, b, c ∈ X and p, q ∈ X we have the following

Modus Ponens : a ∧q b ⊆ a ∧q (a→p b) (17.19)
Modus Tollens : a′ ∧q b′ ⊆ b′ ∧p (a →p b) (17.20)

Syllogistic Reasoning : (a→p b) ∧q (b →p c) ≤2 (a→p c) (17.21)

Proof. For (17.19) we note that

a ∧q b = [a ∧ b ∧ q, a ∧ b]
a ∧q (a →p b) = a ∧q [a′ ∨ b, a′ ∨ b ∨ p′] = [a ∧ (a′ ∨ b) ∧ q, a ∧ (a′ ∨ b ∨ p′)] .

Now, a∧ (a′ ∨ b)∧q= (a ∧ a′ ∧ q)∨ (a ∧ b ∧ q)= a∧ b∧q and a∧ (a′ ∨ b ∨ p′)=
(a ∧ a′) ∨ (a ∧ b) ∨ (a ∧ p′)= a ∧ (b ∨ p′) ≥ a ∧ b which complete the proof of
(17.19). We omit the proof of (17.20), which is similar. Regarding (17.21), it
follows (a→p b)= [a′ ∨ b, a′ ∨ b ∨ p′], (b →p c)= [b′ ∨ c, b′ ∨ c ∨ p′], (a→p c)=
[a′ ∨ c, a′ ∨ c ∨ p′]. Also, with f = (a′ ∨ b)∧ (b′ ∨ c)∧ q and g = (a′ ∨ c ∨ p′)∧
(b′ ∨ c ∨ p′), we have

[a′ ∨ b, a′ ∨ b ∨ p′] ∧q [b′ ∨ c, b′ ∨ c ∨ p′] = [f, g] .

Now

(a′ ∨ b) ∧ (b′ ∨ c) = (a′ ∧ b′) ∨ (b ∧ b′) ∨ (a′ ∧ c) ∨ (b ∧ c) ≤ a′ ∨ c;

since the first term in the middle expression above is less than a′, the second
is 0, the third term is less than a′ and the last less than c. Also

(a′ ∨ b ∨ p′) ∧ (b′ ∨ c ∨ p′) = x ∨ y ∨ z

where

x = (a′ ∧ b′) ∨ (b ∧ b′) = (a′ ∧ b′) ≤ a′

y = (a′ ∧ c) ∨ (b ∧ c) ∨ (p′ ∧ c) ≤ c

z = (p′ ∧ b′) ∨ (a′ ∧ p′) ∨ (b ∧ p′) ∨ (p′ ∧ p′) ≤ p′

hence (a′ ∨ b ∨ p′) ∧ (b′ ∨ c ∨ p′) = a′ ∨ c ∨ p′ from which follows (17.21). �

The →p implication also induces an “order-like” relationship.



356 A. Kehagias

Proposition 17.34 For all a, b, p ∈ X we have: 1 ∈ (a →p b) ⇔ a∨p′ ≤ b∨p′

Proof. On the one hand, 1 ∈ (a →p b) = [a′ ∨ b, a′ ∨ b ∨ p′] implies that 1 =
a′ ∨ b ∨ p′. Then

a = (a′ ∨ b ∨ p′) ∧ a = (b ∨ p ′) ∧ a ⇒ a ≤ b ∨ p′ ⇒ a ∨ p′ ≤ b ∨ p′.

Conversely,

a ∨ p′ ≤ b ∨ p′ ⇒ a′ ∨ a ∨ p′ ≤ a′ ∨ b ∨ p′ ⇒ 1 ≤ a′ ∨ b ∨ p′ ⇒ 1 ∈ (a →p b) .�

This motivates us to define the relations ≤p,=p.

Definition 17.6 For every p ∈ X we define ≤p and =p as follows:

a ≤p b⇔ a ∨ p′ ≤ b ∨ p′, a =p b⇔ a ∨ p′ = b ∨ p′.

Proposition 17.35 For all a, b, p ∈ X we have

a ≤p b⇔ a ∧ p ≤ b ∧ p, a =p b ⇔ a ∧ p = b ∧ p. (17.22)

Proof. In the one direction

a ≤p b ⇒ a ∨ p′ ≤ b ∨ p′ ⇒ (a ∨ p′) ∧ p ≤ (b ∨ p′) ∧ p ⇒
(a ∧ p) ∨ (p′ ∧ p) ≤ (b ∧ p) ∨ (p′ ∧ p)⇒ a ∧ p ≤ b ∧ p.

Conversely,

a ∧ p ≤ b ∧ p⇒ (a ∧ p) ∨ p′ ≤ (b ∧ p) ∨ p′ ⇒
(a ∨ p′) ∧ (p ∨ p) ≤ (b ∨ p′) ∧ (p ∨ p) ⇒ a ∨ p′ ≤ b ∨ p′ ⇒ a ≤p b.

This proves the first part of (17.22); the second part is proved similarly. �

Proposition 17.36 The relation ≤p is a preorder (i.e. it is reflexive and
transitive) and =p is the natural equivalence indiced from ≤p.

Proof. Straightforward (also see [7]). �

Let us now establish some properties of the equivalence relation =p.

Notation 17.3 For every p ∈ X we denote by ap the class of a under =p,
i.e. ap = {x : a ∨ p′ = x ∨ p′}.

Proposition 17.37 For every a, p ∈ X, ap is an interval. More specifically
ap = [a ∧ p, a ∨ p′].

Proof. If x ∈ ap then clearly x ≤ x ∨ p′ = a ∨ p′. Also

x ∨ p′ = a ∨ p′ ⇒ (x ∨ p′) ∧ p = (a ∨ p′) ∧ p⇒ x ∧ p = a ∧ p ⇒ x ≥ a ∧ p.
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Hence
ap ⊆ [a ∧ p, a ∨ p′]. (17.23)

On the other hand, let us show that ap is a convex sublattice. Indeed, ap is a
sublattice: take any x, y ∈ ap then

a ∨ p′ = x ∨ p′

a ∨ p′ = y ∨ p′

}

⇒
{

a ∨ p′ = (x ∨ p′) ∨ (y ∨ p′) = (x ∨ y) ∨ p′

a ∨ p′ = (x ∨ p′) ∧ (y ∨ p′) = (x ∧ y) ∨ p′

and so x ∨ y, x ∧ y ∈ ap. Further, take any z ∈ [x ∧ y, x ∨ y], then

(x ∧ y) ∨ p′ ≤ z ∨ p′ ≤ x ∨ y ∨ p′ ⇒
a ∨ p′ = (x ∨ p′) ∧ (y ∨ p′) ≤ z ∨ p′ ≤ (x ∨ p′) ∨ (y ∨ p′) = a ∨ p′ ⇒
z ∨ p′ = a ∨ p′

and (x ∧ y) ∧ p ≤ z ∧ p ≤ (x ∨ y) ∧ p⇒

a ∧ p = (x ∧ p) ∧ (y ∧ p) ≤ z ∧ p ≤ (x ∧ p) ∨ (y ∧ p) = a ∧ p⇒ z ∧ p = a ∧ p
(17.24)

So z ∈ ap and ap is a convex sublattice. And a ∧ p and a ∨ p′ belong to ap,
hence

[a ∧ p, a ∨ p′] ⊆ ap. (17.25)

Combining (17.24) with (17.25) we get the desired result. �

Proposition 17.38 For all p, a, b, c ∈ X we have:

ap = b
p ⇒
{

a ∨ c
p = b ∨ c

p

a ∧ c
p = b ∧ c

p

Proof. We only prove the first part (the second is proved similarly). We have

ap = b
p ⇒ [a ∧ p, a ∨ p′] = [b ∧ p, b ∨ p′] ⇒

{
a ∧ p = b ∧ p
a ∨ p′ = b ∨ p′

Now
a ∨ p′ = b ∨ p′ ⇒ a ∨ c ∨ p′ = b ∨ c ∨ p′ (17.26)

and

b ∧ p = a ∧ p
c ∧ p = c ∧ p

}

⇒ (a ∧ p)∨(c ∧ p) = (b ∧ p)∨(c ∧ p) ⇒ (a ∨ c)∧p = (b ∨ c)∧p.

(17.27)
From (17.26) and (17.27) we get

[(a ∨ c) ∧ p, (a ∨ c) ∨ p′] = [(b ∨ c) ∧ p, (b ∨ c) ∨ p′] ⇒ a ∨ c
p = b ∨ c

p
.�

We will prove a Proposition similar to Proposition 17.38 for ∨p and ∧p,
but first we need the following.
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Definition 17.7 The set of classes A
p

is defined as follows A
p

= {xp : x ∈ A} .

Proposition 17.39 For all p, a, b ∈ X we have:

a ∨p b
p

= {[(a ∨ b) ∧ p, (a ∨ b) ∨ p′]} , a ∧q b
q

= {[(a ∨ b) ∧ q, (a ∨ b) ∨ q′]}
(17.28)

i.e. each of a ∨p b
p
, a ∧q b

q
contains a single class.

Proof. We only prove the first part of (17.28):

a ∨p b
p
={xp : a ∨ b ≤ x ≤ a ∨ b ∨ p′}={[x ∧ p, x ∨ p′] : a ∨ b ≤ x ≤ a ∨ b ∨ p′}

Take any x such that xp ∈ a ∨p b
p
. Then a ∨ b ≤ x ≤ a ∨ b ∨ p′ and so

a ∨ b ∨ p′ ≤ x ∨ p′ ≤ a ∨ b ∨ p′ ⇒ a ∨ b ∨ p′ = x ∨ p′. Hence

(a ∨ b) ∧ p ≤ x ∧ p ≤ (a ∨ b ∨ p′) ∧ p = ((a ∨ b) ∧ p) ∨ (p′ ∧ p) = (a ∨ b) ∧ p

which implies (a ∨ b) ∧ p = x ∧ p. Hence

xp = [x ∧ p, x ∨ p′] = [(a ∨ b) ∧ p, (a ∨ b) ∨ p′] = a ∨ b
p

and the proof is complete. �

Now we prove the analog of Proposition 17.38.

Proposition 17.40 For all p, a, b, c ∈ X we have:

ap = b
p ⇒
{

a ∨p c
p = b ∨p c

p

a ∧p c
p = b ∧p c

p .

Proof. Take any xp ∈ a ∨p c
p, yp ∈ b ∨p c

p
. Then, by the previous Proposition,

xp = [(a ∨ c) ∧ p, (a ∨ c) ∨ p′] , yp = [(b ∨ c) ∧ p, (b ∨ c) ∨ p′] (17.29)

also ap = b
p ⇒ [a ∧ p, a ∨ p′] = [b ∧ p, b ∨ p′] and so
{

a ∧ p = b ∧ p
a ∨ p′ = b ∨ p′

}

⇒
{

(a ∨ c) ∧ p = (b ∨ c) ∧ p
(a ∨ c) ∨ p′ = (b ∨ c) ∨ p′

}

. (17.30)

From (17.29) and (17.30) we obtain the first part of the proposition; the second
part is proved similarly. �

Proposition 17.41 For all p, a, b, c ∈ X we have:

a ∨ c
p = b ∨ c

p

a ∧ c
p = b ∧ c

p

}

⇒ ap = b
p

and
a ∨p c

p = b ∨p c
p

a ∧p′ c
p = b ∧p′ c

p

}

⇒ ap = b
p
.



17 A Family of Multi-valued t-norms and t-conorms 359

Proof. We have a ∨ c
p = b ∨ c

p ⇒
{

(a ∨ c) ∧ p = (b ∨ c) ∧ p
(a ∨ c) ∨ p′ = (b ∨ c) ∨ p′

}

⇒
{

(a ∧ p) ∨ (c ∧ p) = (b ∧ p) ∨ (c ∧ p)
(a ∨ p′) ∨ (c ∨ p′) = (b ∨ p′) ∨ (c ∨ p′) .

(17.31)
Similarly, a ∧ c

p = b ∧ c
p ⇒

{
(a ∧ c) ∧ p = (b ∧ c) ∧ p
(a ∧ c) ∨ p′ = (b ∧ c) ∨ p′

}

⇒
{

(a ∧ p) ∧ (c ∧ p) = (b ∧ p) ∧ (c ∧ p)
(a ∨ p′) ∧ (c ∨ p′) = (b ∨ p′) ∧ (c ∨ p′) .

(17.32)
From the first parts of (17.31), (17.32) we get a ∧ p = b ∧ p and from the
second parts a ∨ p′ = b ∨ p′, which together imply ap = b

p
. �

17.7 Conclusion

We have introduced two crisp hyperoperations, ∧Q and ∨P , which are nat-
ural multi-valued generalizations of the t-norm ∧ and the t-conorm ∨. The
hyperoperations depend on the sets Q and P . In the special case Q = [q, 1],
P = [0, p], we have the hyperoperations denoted as ∧q and ∨p Clearly, the
new hyperoperations have a great potential for applications to computational
intelligence, where they can extend the concepts and procedures of fuzzy rea-
soning.

We intend to further pursue our research especially in the following direc-
tions: a formulation of the orders≤1,≤2 in terms of the zeta function discussed
in [13] and secondly an in-depth study of the multi-valued implication →P

along the lines of [9].

References

1. Athanasiadis IN (2007) The fuzzy lattice reasoning (FLR) classifier for mining
environmental data. This volume, Chapter 9

2. Cornelis C, Deschrijver G, Kerre EE (2006) Advances and challenges in interval-
valued fuzzy logic. Fuzzy Sets and Systems 157:622–627

3. Corsini P, Tofan I (1997) On fuzzy hypergroups. Pure Math Appl 8:29–37
4. Corsini P, Leoreanu V (2000) Hypergroups and binary relations. Algebra Uni-

versalis 43:321–330
5. Corsini P, Leoreanu V (2003) Applications of Hyperstructure Theory. Kluwer
6. Cripps A, Nguyen N (2007) Fuzzy lattice reasoning (FLR) classification using

similarity measures. This volume, Chapter 13
7. Davey BA, Priestly HA (1990) Introduction to Lattices and Order. Cambridge

University Press, Cambridge, UK
8. Graña M, Villaverde I, Moreno R, Albizuri FX (2007) Convex coordinates from

lattice independent sets for visual pattern recognition. This volume, Chapter 6
9. Hatzimichailidis AG, Papadopoulos BK (2007) L-fuzzy sets and intuitionistic

fuzzy sets. This volume, Chapter 16



360 A. Kehagias

10. Kehagias A (2003) L-fuzzy � and � hyperoperations and the associated L-fuzzy
hyperalgebras. Rend Circ Mat Palermo 52:322–350

11. Kaburlasos VG (2004) FINs: Lattice theoretic tools for improving prediction of
sugar production from populations of measurements. IEEE Trans Systems, Man
and Cybernetics - B, Cybernetics 34(2):1017–1030

12. Kaburlasos VG, Petridis V (2000) Fuzzy lattice neurocomputing (FLN) models.
Neural Networks 13(10):1145–1170

13. Knuth KH (2007) Valuations on lattices: fuzzification and its implications. This
volume, Chapter 15

14. Konstantinidou M, Mittas J (1977) An introduction to the theory of hyperlat-
tices. Math Balkanica 7:187–193

15. Massouros CG (1985) On the theory of hyperrings and hyperfields. Algebra i
Logika 24:728–742

16. Mittas J, Konstantinidou M (1989) Sur une nouvelle generalisation de la notion
de treillis: les supertreillis et certaines de leurs proprietes generales. Ann Sci
Univ Clermont-Ferrand II Math 25:61–83

17. Petridis V, Kaburlasos VG (2003) FINkNN: a fuzzy interval number k-nearest
neighbor classifier for prediction of sugar production. Journal of Machine Learn-
ing Research 4:17–37

18. Petridis V, Syrris V (2007) Machine learning techniques for environmental data
estimation. This volume, Chapter 10

19. Ritter GX, Urcid G (2007) Learning in lattice neural networks that employ
dendritic computing. This volume, Chapter 2

20. Serafimidis K, Kehagias A, Konstantinidou M (2004) The structure of the (P, Q)-
superlattice and order related properties. Ital J Pure Appl Math 15:133–150

21. Serafimidis K, Kehagias A (2004) Some representation results for (P, Q)-
superlattices. Ital J Pure Appl Math 15:151–164

22. Vougiouklis T (1991) The fundamental relation in hyperrings — the general
hyperfield. Algebraic hyperstructures and applications 203–211. World Sci

23. Walker E, Walker C (2005) The algebra of fuzzy truth values. Fuzzy Sets and
Systems 149:309–347



18

The Construction of Fuzzy-valued t-norms
and t-conorms

Athanasios Kehagias

Faculty of Engineering, Aristotle University of Thessaloniki
kehagiat@auth.gr

Summary. In this paper we present a method to construct fuzzy-valued t-norms
and t-conorms, i.e. operations which map pairs of lattice elements to fuzzy sets, and
are commutative, associative and monotone. The fuzzy-valued t-norm and t-conorm
are synthesized from their α-cuts which are obtained from families of multi-valued
t-norms and t-conorms.

18.1 Introduction

We are interested in generalizations of the concepts of t-norm and t-conorm. In
a companion chapter in this volume [14] we have presented a family of hyper-
t-norms ∧q and a family of hyper-t-conorms ∨p. The prefix hyper is used to
indicate multi-valued operations, also known as hyperoperations (see [5, 14]),
i.e. operations which map pairs of elements to sets of elements. See [14] for
the construction of hyperoperations which generalize t-norms and t-conorms.
These hyperoperations are crisp, i.e. their output is a crisp set. A natural
generalization is to consider fuzzy hyperoperations, i.e. operations which map
elements to fuzzy sets.

Hence in this chapter we will present a procedure to construct fuzzy-valued
t-norms and t-conorms.

Relatively little work in this direction has appeared in the literature. A
pioneering paper is [4] which introduces fuzzy hypoperations which induce
fuzzy hypergroups. A fuzzy hypergroup, different from the one used by Corsini,
is [13] and a version of fuzzy min and fuzzy max operations appears in [11, 12]1.

As explained also in [14], our motivation to study multi-valued and fuzzy-
valued connectives is that, while fuzzy logic is a calculus of uncertain rea-
soning, not much attention has been paid to the case where uncertainty is
1 Let us also note that t-norms and t-conorms appropriate for the lattice of fuzzy-

valued truth values are studied in [19, 20, 21]. But all of these works concern
single- not multi-valued operations. (Also, t-norms and t-conorms for the lattice
of real intervals are studied in [1, 2, 3]).

A. Kehagias: The Construction of Fuzzy-valued t-norms and t-conorms, Studies in Computa-

tional Intelligence (SCI) 67, 361–370 (2007)
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associated with the actual operation of the logical connectives. This is exactly
the situation we want to capture with the proposed fuzzy-valued t-norm and
t-conorm.

There is some literature on the use of fuzzy uni -valued operations, in the
context of type-2 fuzzy sets [9, 17] which is related to the present chapter.

The plan of this paper is as follows. In Sect. 18.2 we present some pre-
liminary concepts. In Sect. 18.3 we construct the basic objects of our study,
namely the fuzzy-valued t-norm � and t-conorm �. In Sect. 18.4 we study
the fuzzy-valued S-implication obtained from �. In Sect. 18.5 we summarize
our results.

18.2 Preliminaries

In this section we review some fundamental concepts which will be used in
the main part of the paper.

We will work with a generalized deMorgan lattice (X,≤,∨,∧,′ ) (for the
corresponding definition see [14] in this volume). We will study lattice-valued
fuzzy sets, also termed L-fuzzy sets or, for the sake of brevity, simply fuzzy sets.
We take these to be identical to their membership functions and we consider
the special case where both the domain and range of the membership function
is (X,≤,∨,∧,′ ). In short, we define fuzzy sets as follows.

Definition 18.1 An L-fuzzy set is a function M : X → X.

The collection of all L-fuzzy sets is denoted by F(X).
The α-cut of the fuzzy set M is denoted by Mα and defined by Mα

.= {x :
M(x) ≥ α}. We will use the following properties of α-cuts (see [18]).

Proposition 18.1 Given a fuzzy set M ∈ F (X) we have

1. M0 = X.
2. For all p, q ∈ X we have: p ≤ q ⇒ Mq ⊆Mp.
3. For all p, q ∈ X we have: Mq ∩ Mp = Mp∨q, for all P ⊆ X we have:
∩p∈P Mp = M∨P .

Proposition 18.2 Suppose a family of sets
{

M̃p

}

p∈X
is given which satisfies

1. M̃0 = X.
2. For all p, q ∈ X we have: p ≤ q ⇒ M̃q ⊆ M̃p.

3. For all p, q ∈ X we have: M̃q ∩ M̃p = M̃p∨q, for all P ⊆ X we have:
∩p∈P M̃p = M̃∨P .

Then, defining for every x ∈ X

M (x) = sup
{

p : x ∈ M̃p

}
,

we obtain the fuzzy set M ∈ F (X) which, for every p ∈ X, satisfies Mp = M̃p.
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From the above propositions we see that a fuzzy set M is in a 1-to-1
correspondence with its α-cuts {Mp}p∈X . A special class of fuzzy sets are the
fuzzy intervals [10].

Definition 18.2 A fuzzy set is called a fuzzy interval iff all its α-cuts are
closed intervals. We denote the set of all fuzzy intervals of X by Ĩ (X).

In the rest of the paper we will deal with crisp and fuzzy hyperoperations.
Crisp hyperoperations map pairs of elements to crisp sets; fuzzy hyperopera-
tions map pairs of elements to fuzzy sets. We will use the following.

Notation 18.1 Let ∗ be a fuzzy operation and a, b, x ∈ X. We will denote
the membership grade of x in the fuzzy set a ∗ b by (a ∗ b)(x).

18.3 Fuzzy Valued t-norm and t-conorm

Our goal in the current section is to define fuzzy-valued operations which are
analogous to t-norms and t-conorms. Recall the definition of the hyperopera-
tions ∧q, ∨p (see [14] in this volume).

a ∧q b = [a ∧ b ∧ q, a ∧ b], a ∨p b = [a ∨ b, a ∨ b ∨ p′].

The fuzzy-valued operations will be defined in terms of the crisp hyperopera-
tions ∧q and ∨p. To this end, let us first prove the “α-cut properties” for ∧q

and ∨p.

Proposition 18.3 Take any q1, q2 ∈ X and R ⊆ X. Then, for every a, b, c ∈
X we have:

1. a ∧0 b = [0, a ∧ b] ; a ∧1 b = [a ∧ b, a ∧ b] ;
2. q1 ≤ q2 ⇒ a ∧q2 b ⊆ a ∧q1 b;
3. (a ∧q1 b) ∩ (a ∧q2 b) = a ∧q1∨q2 b, ∩q∈R (a ∧q b) = a ∧∨R b.

Proof. For 1 we have: a ∧0 b = [a ∧ b ∧ 0, a ∧ b] = [0, a ∧ b], a ∧1 b =
[a ∧ b ∧ 1, a ∧ b] = [a ∧ b, a ∧ b].

For 2 we have a∧q2 b = [a ∧ b ∧ q2, a ∧ b] ⊆ [a ∧ b ∧ q1, a ∧ b] = a∧q1 b since
a ∧ b ∧ q1 ≤ a ∧ b ∧ q2.

For the second (more general) part of 3:

∩q∈R (a ∧q b) = ∨q∈R [a ∧ b ∧ q, a ∧ b] = [∨q∈R (a ∧ b ∧ q) , a ∧ b]
= [a ∧ b ∧ (∨q∈Rq) , a ∧ b] = [a ∧ b ∧ (∨R) , a ∧ b] = a ∧∨R b.�

Proposition 18.4 For p1, p2 ∈ X and P ⊆ X and a, b, c ∈ X we have:

1. a ∨1 b = [0, a ∨ b] ; a ∨1 b = [a ∨ b, a ∨ b] ;
2. p1 ≤ p2 ⇒ a ∨p2 b ⊆ a ∨p1 b;
3. (a ∨p1 b) ∩ (a ∨p2 b) = a ∨p1∨q2 b; ∩p∈R (a ∨p b) = a ∨∨R b.
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Proof. The proof is similar to that of Proposition 18.3 and hence is omitted.
�

We now construct the L-fuzzy hyperoperations � and �. Following a stan-
dard approach, we will construct � and � through their α-cuts, which will
be the ∨p and ∧p families studied previously. First, for compatibility with the
usual interpretation of α-cuts, we redefine for every a, b the symbols

a ∧0 b = [0, 1] , a ∨0 b = [0, 1] .

Now, for every a, b ∈ X we can define an L-fuzzy valued hyperoperation.

Definition 18.3 For all a, b ∈ X

1. We define the L-fuzzy set a � b by defining for every x ∈ X: (a � b)(x) .=
∨{q : x ∈ a ∨q b};

2. We define the L-fuzzy set a � b by defining for every x ∈ X: (a � b)(x) .=
∨{q : x ∈ a ∧q b};

Proposition 18.5 For all a, b ∈ X and p ∈ X we have (a � b)p = a ∨p b,
(a � b)p = a ∧p b.

Proof. It follows from the construction of a � b, a � b in Definition 18.3 (for
details see [18]). �

Proposition 18.6 For all a, b ∈ X, the L-fuzzy sets a � b and a � b are
L-fuzzy intervals.

Proof. As already mentioned (Proposition 18.5), for any p ∈ X the p-cut of
a � b is (a � b)p = a ∨p b and by construction a ∨p b is an interval. The same
is true for a � b. �

Before proceeding, we will need an auxiliary definition.

Definition 18.4 Let ◦ : X ×X → F(X) be an L-fuzzy hyperoperation.

1. For all a ∈ X, B ∈ F(X) we define the L-fuzzy set a ◦B by

(a ◦B)(x) .= ∨ ([(a ◦ b)(x)] ∧B(b)) .

2. For all A,B ∈ F(X) we define the L-fuzzy set A ◦B by

(A ◦B)(x) .= ∨ ([(a ◦ b)(x)] ∧A(a) ∧B(b)) .

Remark 18.1. The above definition also applies to crisp operations if we
take the view that a crisp operation gives as output not an element but an
indicator function. An example should make this clear. Take the operation ∧.
For any a, b ∈ X we can write that
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(a ∧ b) (x) =
{

1 iff x = inf (a, b)
0 else.

The same approach can be used for crisp hyperoperations. In other words, we
take crisp sets to be a special case of fuzzy sets and identify every set (crisp
or fuzzy) with its membership function.

Remark 18.2. The above construction of the L-fuzzy valued hyperoperations
is similar to the construction of fuzzy interval numbers (FINs) used in [7, 8].

Proposition 18.7 For all a, p ∈ X, for all A,B ∈ F(X) we have

1. a ∨p Bp ⊆ (a � B)p; Ap ∨p Bp ⊆ (A � B)p .
2. a ∧p Bp ⊆ (a � B)p; Ap ∧p Bp ⊆ (A � B)p .

Proof. We only prove the first part of 1, since the remaining items are proved
similarly. Choose any x ∈ a∨p Bp. If p = 0, then, by definition, (a � B)p = X
and obviously a ∨0 B0 ⊆ X. If p > 0 then there is some b ∈ Bp and so
B (b) ≥ p. Also x ∈ a ∨p b = (a � b)p implies that (a � b) (x) ≥ p. Hence

(a � B) (x) = ∨u∈X ([(a � u) (x)] ∧ [B (u)]) ≥ [(a � b) (x)] ∧ [B (b)] ≥ p

which implies that x ∈ (a � B)p . We have thus a ∨p Bp ⊆ (a � B)p. �

Let us now prove some simple properties of �,�.

Proposition 18.8 For all a, b, c ∈ X the following hold.

1. (1 � a) (1) = 1, (1 � a) (a) = 1, (0 � a) (a) = 1, (0 � a) (0) = 1.
2. a � b = b � a, a � b = b � a.
3. a ∨p b ∨p c ⊆ (a � (b � c))p ∩ ((a � b) � c)p, a ∧p b ∧p c ⊆ ((a � b) � c) ∩

(a � (b � c)).
4. (a � a) (a) = 1, (a � a) (a) = 1.
5. (a � b) (a ∧ b) = 1, (a � b) (a ∨ b) = 1.
6. [(a � b) ∨ a] (a) = 1,[(a � b) ∧ a] (a) = 1.
7. ((a � b) � a) (a) = 1, ((a � b) � a) (a) = 1.

Proof. 1. We have: (1 � a)(1) .= ∨{q : 1 ∈ 1 ∨q a}. Since 1 ∈ 1 ∨1 a =
[(1∨a), (1∨a)∨1′], it follows that 1 ∈ {q : 1 ∈ 1∨qa} and so (1 � a) (1) = 1.
The remaining parts of 1 are proved similarly.

2. This is obvious.
3. We apply Proposition 18.7.1 using B = b � c; in this manner we show

that a ∨p b ∨p c = a ∨p (b ∨p c) = a ∨p (b � c)p ⊆ (a � (b � c))p. Similarly
a ∨p b ∨p c ⊆ ((a � b) � c)p and we are done.

4. Note that a ∈ [a, a] = a ∨1 a = (a � a)1 and so (a � a) (a) ≥ 1. Similarly
we show (a � a) (a) = 1.

5. Note that (a � b) (a∧ b) = ∨{q : a ∧ b ∈ a ∧q b} = 1 (since a∧ b ∈ a∧1 b);
the case (a � b) (a ∨ b) = 1 is proved similarly.
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6. From 5 we have (a � b) (a ∧ b) = 1 > 0. Also [a ∨ (a ∧ b)] (a) = 1. Now

[(a � b) ∨ a] (a) = ∨z∈X [(a � b) (z)] ∧ [(z ∨ a) (a)] ≥ (18.1)
[(a � b) (a ∧ b)] ∧ [((a ∧ b) ∨ a) (a)] = 1 ∧ 1 = 1 (18.2)

Similarly we can prove [(a � b) ∧ a] (a) = 1.
7. We prove the first part as follows. We already have (a � b) (a∧ b) = 1 and

[((a ∧ b) � a) (a)] = ∨z∈X [(z � a) (a)] ∧ [(a ∧ b) (z)] ≥ (18.3)
[((a ∧ b) � a) (a)] ∧ [(a ∧ b) (a ∧ b)] = 1 ∧ 1 = 1; (18.4)

hence

[(a � b) � a] (a) = ∨ [(a � b) (z)] ∧ [(z � a) (a)] ≥ (18.5)
[(a � b) (a ∧ b)] ∧ [((a ∧ b) � a) (a)] = 1 ∧ 1 = 1. (18.6)

The second part is proved similarly.�

Proposition 18.9 For all a, b, c, p ∈ X we have

1. a ∨p (b ∧p c) ⊆ (a � (b � c))p ∩ ((a � b) � (a � c))p .
2. a ∧p (b ∨p c) ⊆ (a � (b � c))p ∩ ((a � b) � (a � c))p.

Proof. From Proposition 18.7.1 we have

a ∨p (b ∧p c) ⊆ (a � (b � c))p . (18.7)

From Proposition 28 of [14], with p = q, we have

a∨p(b ∧p c) ⊆ (a ∨p b)∧p(a ∨p c) = (a � b)p∧p(a � c)p ⊆ ((a � b) � (a � c))p .
(18.8)

From (18.7) and (18.8) follows the first part of the proposition; the second
part can be proved similarly. �

Remark 18.3. Part 3 of Proposition 18.8 shows that the associativity of �,�
holds in a limited sense. Proposition 18.9 shows a limited form of distributiv-
ity. Both of these limitations can be traced to the fact that, in Proposition
18.7, we do not have equality of sets but set inclusion.

Proposition 18.10 For all a, b, c ∈ X we have

a � c = b � c
a � c = b � c

}

⇒ a = b.

Proof. We have

a � c = b � c ⇒
(
∀p ∈ X : (a � c)p = (b � c)p

)
⇒ (18.9)

(∀p ∈ X : a ∨p c = b ∨p c) ⇒ a ∨1 c = b ∨1 c ⇒ a ∨ c = b ∨ c; (18.10)
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similarly a�c = b�c⇒ a∧c = b∧c; finally, as is well known, in a distributive
lattice we have

a ∨ c = b ∨ c
a ∧ c = b ∧ c

}

⇒ a = b. �

In [14] we have introduced an order �2 on crisp intervals. We now extend
this order to Ĩ(X), the collection of all L-fuzzy intervals of X.

Definition 18.5 For every A, B ∈ Ĩ(X), we write A . B iff for all p ∈ X
we have Ap �2 Bp.

Proposition 18.11 . is an order on Ĩ(X) and (̃I(X),.) is a lattice.

Proof. This follows from the fact that a fuzzy set is uniquely specified by its
α-cuts. �

The �, � hyperoperations are monotone in the following sense.

Proposition 18.12 For all a, b ∈ X we have: a ≤ b ⇒
{

a � c . b � c,
a � c . b � c.

.

Proof. Take any p ∈ X. Then

a ≤ b ⇒
{

a ∨ c ≤ b ∨ c
(a ∨ c) ∨ p′ ≤ (b ∨ c) ∨ p′

}

⇒ a∨pc . b∨pc ⇒ (a � c)p . (b � c)p .

Since the above is true for every p ∈ X, it follows that a� c . b� c. Similarly
we show that a � c . b � c. �

�, � and ′ are interrelated as seen by Proposition 18.14.

Definition 18.6 For every A ∈ F(X) define A′ by its α-cuts, i.e. A′ is the
(unique) fuzzy set which for every p ∈ X satisfies

(A′)p = (Ap)
′ = {x′}x∈Ap

.

Proposition 18.13 If A is a fuzzy interval, then A′ is also a fuzzy interval.

Proof. Take any p ∈ X. Suppose that Ap = [a1, a2]. Then

(A′)p = (Ap)
′ = {x′ : a1 ≤ x ≤ a2} = [a′

2, a
′
1] . �

Proposition 18.14 For every a, b ∈ X we have:

(a � b)′ = a′ � b′, (a � b)′ = a′ � b′.

Proof. Choose any p ∈ X. Then

(
(a � b)′

)

p
=
(
(a � b)p

)′
= (a ∨p b)′ = a′ ∧p b′ = (a′ � b′)p .

Since for all p ∈ X the fuzzy sets (a � b)′ and a′ � b′ have the same cuts, we
have (a � b)′ = a′ � b′. �
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In conclusion, we have constructed a fuzzy hyperoperation �. Let us now
see in what sense it can be called a fuzzy t-norm. To see the similarity consider
the following Table 18.1, which compares the properties of any crisp t-norm
T with those of �; the properties of � are obtained from Proposition 18.8.

Table 18.1. This list compares a crisp t-norm T properties with those of fuzzy
t-norm �

A crisp t-norm T The fuzzy t-norm �
aTb = bTa a � b=b � a

(aTb)Tc = aT (bTc) (a � b) � c=a � (b � c)

a = aT1 (a � 1) (a) = 1

a ≤ b ⇒ aTc ≤ bTc a ≤ b ⇒ a � c � b � c

A similar table can be used to compare � with some t-conorm S. The
analogies between the “classical” operations T, S and the fuzzy-valued hyper-
operations �,� are obvious. Hence we can justifiably say that � is a fuzzy
t-norm and � is a fuzzy t-conorm.

18.4 Fuzzy-valued S-implication

We can also construct a fuzzy hyperoperation which behaves like an S-
implication. This is done as follows.

Definition 18.7 The fuzzy implication is denoted by � and defined for every
a, b ∈ X by

(a � b) = (a′ � b) .

It is easy to prove the following.

Proposition 18.15 For all a, b, p ∈ X we have

(a � b)p = a→p b.

Proof. Indeed (a � b)p = (a′ � b)p = a′ ∨p b = a →p b. �

From Proposition 18.15 and the properties of ∨p, described in Sect. 3 of
[14] we can immediately prove the following proposition, which summarizes
the properties of �; it can be easily seen that these are analogous to the
classical implication.

Proposition 18.16 We have for every a, b, c ∈ X the following.

1. a ≤ b ⇒ ((a � c) / (b � c) and (c � a) . (c � b)) ,
2. (0 � a) (1) = 1,

(
1 →P a

)
(a) = 1,

3. (a � b) = (b′ � a′).

Proof. Straightforward. �

Remark 18.4. The above are similar to the properties proved in [6] and other
places about (crisp, uni-valued) implications.
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18.5 Conclusion

We have introduced two fuzzy-valued hyperoperations, � and �, which are
natural generalizations of the t-norm ∧ and the t-conorm ∨. Clearly, the new
(crisp and fuzzy) hyperoperations have a great potential for applications to
computational intelligence, where they can extend the concepts and proce-
dures of fuzzy reasoning.

In particular, the definitions and results of Sect. 18.4 constitute a first
step in the study of fuzzy-valued implications; in the future we plan to work
further in this direction and apply the resulting implications to the study of
fuzzy cognitive maps [15, 16].
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Index

σ-FLNMAP, 226, 227
ε-insensitive zone, 201, 203

Active contours, 115
Aggregation operator, 289
Air quality assessment, 183

daily vegetation index, 185
ozone levels estimation, 187

Algorithms
binary pattern recall using the

max-memory M , 92
binary pattern recall using the

min-memory W , 91
Multi-class SLLP training, 36
real valued pattern recall using the

max-memory M , 96
real valued pattern recall using the

min-memory W , 96
SLLP training by elimination, 31
SLLP training by merging, 33

ART, 233
ART over-training, 234
Artificial neural networks

based on lattice theory, 25
Associative memory, 156

fuzzy morphological, 163
gray-scale morphological, 150
heteroassociative morphological, 154
implicative fuzzy, 150
Lukasiewicz fuzzy morphological,

164–166
morphological, 149, 150, 153

Associativity Equation, 313

Autoassociative memory
gray-scale morphological, 154, 159

Automatic recognition, 215, 219
AVHRR, 215, 217, 219

Batch history data, 197
Bayesian Inference, 320
Bi-valuation, 315
Biological neural networks

dendrites, 25
synapse, 25

Borel algebra, 291

Capacity control, 201, 203
Category, 60–69, 71, 72, 74, 75

categorical model theory, 61, 65, 74
Category function, 265
Category proliferation problem, 234
Chain, 10
Chebyshev distance, 29, 32, 34, 38, 41
Ciao Prolog, 297
Cleveland heart, 279
Closed World Assumption, 288
CLP, 297
CLP(R), 297
Co-valuation, 315
Colimit, 64, 65, 68–72, 75
Colour vector ordering

in the HSV colour model, 135
in the Lab colour model, 137
in the RGB colour model, 134

Complement coding, 17
Concept, 63–69, 71–75
Cone, 13, 15



372 Index

Constraint logic programing, 297

Content based image retrieval (CBIR),
102, 109, 124

shape, 115

Convex optimization problem, 201

Correlation based features selection,
221

Decision boundaries, 47, 54

Default value, 291

Degree of inclusion, 9, 317

Diagonal, 11

Diagram, 62–65, 68, 69, 71, 73, 75

base, 64, 65, 68, 69, 71, 75

commutative, 62, 63, 69, 71, 72, 75

defining, 64, 69, 71

Differential evolution, 268, 282

Dilation, 130, 132

Distributivity, 343, 350, 351, 354, 366,
367

Dual variables, 202

Ellipsoidal ARTMAP, 233

Endmember induction, 105

convex cone analysis, 108, 114

morphologically independent sets,
107, 109, 114, 122

Endmember induction

convex cone analysis, 108

ENVISAT, 215

Erosion, 130, 132

Evolution of ART Architectures, 235

Feature extraction, 101, 102, 112, 115,
124

convex coordinates, 103

linear methods, 104, 117, 122

Filter, 343, 348–351

FIN, 13, 365

representation, 16

Fit, 265

first, 265, 271

maximal, 265, 271

ordered, 265, 271, 274

selective, 265, 271

tightest, 265, 271

FL-framework, 196, 197
FLN, 176, 197
FLNN, 225
FLR, 16, 226
FLR classifier, 179

induction, 180
Functor, 72–75
Fuzzy lattice, 9, 198
Fuzzy lattice rule

definition, 179
degree of truth, 179
engine, 179
generalization, 181
induction, 180

Fuzzy set, 362, 363, 365, 367
interval valued, 341
type-2, 362

Fuzzy-ART, 4
Fuzzy-ARTMAP, 6, 233, 239

GA category delete operator, 247
GA parameter selection process, 251
GA parameters for ART evolution, 248
GART: Genetically engineered ART,

254, 255, 258, 261
Gaussian ARTMAP, 233
GEAM, 236, 248, 258, 261
Generalized intervals, 11
Genetic algorithm, 234, 267, 281
Genetic design of ART, 243
Genetic encoding of ART, 244
GFAM, 236, 248, 258, 261
GGAM, 236, 248, 258, 261
Granular computing, 3
Graphic expert system, 224, 227, 230
grSOM, 18

Hasse diagram, 8
Heteroassociative memory

morphological, 160
Hydroelectric plant

streamflow, 166
Hyperalgebra, 342, 353
Hyperbox, 10, 16, 48, 51, 239, 241, 270,

272, 274, 277, 342
volume maximization, 50

Hyperoperation, 342, 349, 359, 361, 363,
364, 367–369
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Hyperspectral image, 103, 124
AVIRIS, 114
CBIR, 109

similarity measure, 110
endmember induction, 105, 107
supervised segmentation, 102, 112
unsupervised segmentation, 102

Image analysis, 219, 221
Image denoising, 145
Image processing, 52
Image segmentation, 159
Implication

→, 335
fuzzy, 331

gh(a, b), 333
fuzzy-valued, 362, 368
hyper-implication, 352
multi-valued, 343, 352

Incidence algebra, 310
Inclusion measure, 9, 197, 198
Information granule, 4
Interval, 341–343, 346–351, 354, 356

fuzzy, 363, 364, 367
Interval-aggregation, 290
Intuitionistic fuzzy sets, 326

geometric interpretations, 327
implications, 334
operations, 328
tautological, 335

Kernel, 203
Knowledge coherence, 73, 75
Knowledge representation, 64, 65, 72–75

Lattice, 59–62, 65, 67, 74, 75, 197
algebra-based definition, 7
Boolean, 316, 344, 354
complete, 149, 151, 152, 163, 197
convex sublattice, 343, 346
deMorgan, 342, 344, 354, 362
distributive, 316, 343, 344, 351, 367
hyperlattice, 342
of intervals, 341, 361
of type-2 fuzzy sets, 341
operators, 46, 47
order-based definition, 7
product, 176
sublattice, 343

Lattice associative memories

activation function, 38, 39

almost perfect recall, 91, 95

binary masking examples, 88

dendritic type, 37, 42, 43

fixed points, 86

gray-scale masking examples, 90

hidden neurons, 38

masking rules, 88

matrix type, 81, 82, 85

max-memory M , 85

min-memory W , 85

noise, 39, 87

noise masking, 88, 90, 91, 98

noise parameter, 38

pattern associations, 37, 85

perfect recall, 39, 86, 87, 91

recall performance examples, 40, 93,
96

recall response, 86

robustness, 40, 87, 94, 97

storage capacity, 37, 43, 82

Lattice independent, 101, 107, 117

Lattice interval, 342

Lattice neural networks, 25

orthonormal basis, 49, 50

standard basis, 48, 49

Lattice perceptrons

activation function, 27

dendritic computing, 26

learning by elimination, 29, 31

learning by merging, 29, 33

multiple class learning, 36

single class learning, 28

single layer, 26, 28, 42

single neuron computation, 26

training examples, 32, 35

Limit, 64, 65, 68, 71, 72, 75

Linear space, 13

Local orientation, 50, 54

Logic, 59–61, 65, 66

categorical, 61, 64

fuzzy, 59

geometric, 59–61, 74

Logical connective, 341

multi-valued, 342



374 Index

Möbius function, 310, 314
Matrix

exponential, 51, 58
rotation, 50
skew symmetric, 52, 58

Measure
cosine distance, 266, 271
cosine similarity, 266
delta, 270–273, 281, 282
distance, 263–265
inclusion, 264, 273
metric, 266
semimetric, 266
sigma, 269, 282
similarity, 263, 265
weighted cosine, 271, 282

micro-ARTMAP, 254, 258, 261
Minimax algebra, 83

fixed point, 83
linear combination, 84
linear span, 84
matrix operations, 83
matrix transform, 86
max-product, 84
min-product, 84
outer product, 84

Minimum and maximum operators
in the HSV colour model, 138
in the Lab colour model, 139

Modelling of digital images, 129
Modus Ponens, 355
Modus Tollens, 355
Monotonicity, 344, 346–348, 352, 353,

361, 367
Morphism, 62–69, 71–75
Morphology

greyscale
threshold approach, 132

binary, 130
colour

component-based approach, 134
vector-based approach, 142

greyscale
fuzzy approach, 132

mathematical, 129, 149, 151, 164
fuzzy, 163

Moving Average, 205
Multi-valued

operation, 342

Naive Bayes, 222, 224, 226, 228
Natural transformation, 73, 75
NEFCLASS, 225, 227
NEFPROX, 225
Neural network, 59, 61, 65, 72–75
Neural networks

fuzzy morphological, 164
morphological, 149, 150

Normalized absolute error, 95
Normalized Hamming distance, 91
Normalized mean squared error, 95

Object, 62–64, 66, 69, 70, 72–75
apical, 63, 69, 71, 75

Occam razor, 18
Ocean structures, 215, 217
Ontology, 64, 72, 75
Open World Assumption, 288
Operations between colours

in the HSV colour model, 139, 141
in the Lab colour model, 140, 141
in the RGB colour model, 139, 140

Order, 341–345, 347, 349, 350, 353, 355,
359

Order Theory, 309
Orthonormal basis, 49, 50

Particle swarm optimization, 268
Perception, 65
Persistence, 205
Prediction horizon, 197
Principle

inclusion-exclusion, 314
of Group Invariance, 321
of Induction, 312
of Maximum Entropy, 321

Product rule, 319
Prolog, 287

Remote sensing, 215
Robot visual localization, 102, 120, 125

SAR images, 145
Segmentation, 221
Semi-supervised ART, 254
SOM, 5
Sort, 66, 69
Spatial correlation, 195, 196
ssEAM, 248, 254, 258, 261
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ssFAM, 248, 254, 258, 261
ssGAM, 248, 254, 258, 261
Superlattice, 341, 343, 353, 354
SV models, 204
SVR, 196, 201

linear regression, 201
nonlinear regression, 203

Syllogistic reasoning, 355

T-conorm, 331
T-norm, 330

fuzzy-valued, 361–363, 368, 369
hyper-t-norm, 341, 342, 345, 361, 369
multi-valued, 342, 345, 359, 361
multivalued, 342

Tabu search, 267, 282
Topological space, 61, 74
Tree Augmented Naive Bayes, 224

Uncertainty, 287
Union-aggregation, 290

Valuation, 197, 312, 321
hyperplane, 271
hypersphere, 269
positive, 9, 264, 265
positive hyperplane, 265
unit, 265, 271

Valuation function, 177
positive, 177
sigmoid, 182

Vigilance parameter, 199, 242, 261

Wind prediction, 195

Zeta function, 310, 317




