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Preface

In July 1998, a summer school in cryptology and data security was organized
at the computer science department of Aarhus University, Denmark. This took
place as a part of a series of summer schools organized by the European Educa-
tional Forum, an organization consisting of the research centers TUCS (Finland),
IPA (Holland) and BRICS (Denmark, Aarhus). The local organizing committee
consisted of Jan Camenisch, Janne Christensen, Ivan Damgåard (chair), Karen
Møller, and Louis Salvail. The summer school was supported by the European
Union.

Modern cryptology is an extremely fast growing field and is of fundamental
importance in very diverse areas, from theoretical complexity theory to practical
electronic commerce on the Internet. We therefore set out to organize a school
that would enable young researchers and students to obtain an overview of some
main areas, covering both theoretical and practical topics. It is fair to say that
the school was a success, both in terms of attendance (136 participants from
over 20 countries) and in terms of contents. It is a pleasure to thank all of the
speakers for their cooperation and the high quality of their presentations.

A total of 13 speakers gave talks: Mihir Bellare, University of California,
San Diego; Gilles Brassard, University of Montreal; David Chaum, DigiCash;
Ronald Cramer, ETH Zürich; Ivan Damg̊ard, BRICS; Burt Kaliski, RSA Inc.;
Lars Knudsen, Bergen University; Peter Landrock, Cryptomathic; Kevin Mc-
Curley, IBM Research, Almaden; Torben Pedersen, Cryptomathic; Bart Preneel,
Leuven University; Louis Salvail, BRICS; Stefan Wolf, ETH Zürich.

It was natural to take the opportunity kindly offered by Springer-Verlag to
publish a set of papers reflecting the contents of the school. Although not all
speakers were able to contribute, due to lack of time and resources, this volume
does cover all the main areas that were presented. The intention of all papers
found here is to serve an educational purpose: elementary introductions are given
to a number of subjects, some examples are given of the problems encountered,
as well as solutions, open problems, and references for further reading. Thus, in
general we have tried to give an up-to-date overview of the subjects we cover,
with an emphasis on insight, rather than on full-detail technical presentations.
Several results, however, are in fact presented with full proofs. The papers have
not been refereed as for a journal.

I would like to thank all of the authors for their contributions and the hard
work and time they have invested.

Ivan Damg̊ard
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Mihir Bellare

Dept. of Computer Science & Engineering, University of California at San Diego
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1 Introduction

This short article is intended to complement my talk. I would like to try to
introduce you to a certain, relatively new sub-area of cryptography that we have
been calling practice-oriented provable-security. It is about applying the ideas of
“provably security” to the derivation of practical, secure protocols. I believe it
is a fruitful blend of theory and practice that is able to enrich both sides and
has by now had some impact on real world security.

A few years ago, provable security was largely known only to theoreticians.
This has been changing. We are seeing a growing appreciation of provable secu-
rity in practice, leading in some cases to the use of such schemes in preference
to other ones. Indeed it seems standards bodies and implementors now view
provable security as an attribute of a proposed scheme. This means that a wider
audience needs an understanding of the basic ideas behind provable security.

This article is directed at practioners and theoreticians alike. For the first
I hope it will help to understand what provable security is and isn’t, why it is
useful, how to evaluate the provable security of a scheme, and where to look for
such schemes. For the second group, it can serve to acquaint them with how the
ideas with which they are familiar are being applied.

I will begin by describing the basic idea behind provable security. (For many
of you, this will be mostly recall, but some novel viewpoints or examples may
enter.) Next, I will discuss the practice-oriented approach. I will discuss its main
ideas, the problems it has addressed, and briefly survey known results. I hope
to leave you feeling there is scope here both for interesting research and for
application.

2 Protocols, Primitives, Proofs and Practice

The basic task in cryptography is to enable to parties to communicate “securely”
over an insecure channel, namely in a way that guarantees privacy and authen-
ticity of their transmissions. (There are many other tasks as well, but we will
begin by thinking about this basic one.)

I. Damg̊ard (Ed.): Lectures on Data Security, LNCS 1561, pp. 1–15, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



2 Mihir Bellare

2.1 Protocols and Primitives: The Problem

Protocols: the end goal. To enable secure communication, one wants cryp-
tographic protocols or schemes. For example, an encryption scheme enables users
to communicate privately. Such a scheme is specified by a pair (E ,D) of algo-
rithms. The first, run by the sender, takes a key and the plaintext M to create
a ciphertext C, which is transmitted to the receiver. The latter applies D, which
takes a key and the received ciphertext to recover the plaintext. (Roughly, the
security property desired is that an adversary can’t learn anything useful about
the plaintext given the ciphertext, but we will get into this more later.) They key
could be a shared one (this is the private key or symmetric setting) or the keys
for encryption and decryption could be different (the public key or asymmetric
setting). Designing an encryption scheme means designing the two algorithms E
and D.

Similarly, a message authentication scheme (or protocol) enables parties to
tag their data so that the recipient is assured that the data originates with the
person claiming to have sent it and has not been tampered with on the way.

The design of such protocols is the end goal for the cryptographer. However,
it is not an easy one to reach. What makes it reachable at present is that we
have very good primitives on which to base these protocols.

Primitives: the tools. Julius Caesar also wanted to design protocols. He had
a much harder time than we do today, because he didn’t have DES or the RSA
function.

The latter are examples of what I will call atomic primitives. Certainly, they
are cryptographic objects of some sort. What is it that distinguishes them from
protocols? The distinction is that in their purest and rawest state, atomic prim-
itives don’t solve any cryptographic problem we actually care about. We must
use them appropriately to construct protocols to solve the problems that matter.
For example, DES based CBC encryption is a way of using DES to do symmetric
encryption. By first hashing a message and then decrypting under RSA we have
a possible way to do digital signatures based on the RSA function. (Whether
these ways are good or bad ways of accomplishing the goal is another question,
to be addressed later.) Thus, atomic primitives are simple building blocks that
must be put together to yield protocols.

Good atomic primitives are rare, as are people who understand their work-
ings. Certainly, an important effort in cryptography is to design new atomic
primitives and cryptanalyze them and old ones. This, however, is not the part of
cryptography I want to talk about. The reason is that the design (or discovery)
of good atomic primitives is more an art than a science. On the other hand, I’d
like to claim that the design of protocols can be made a science.

The question. We will view a cryptographer as an engine for turning atomic
primitives into protocols. That is, we focus on protocol design under the assump-
tion that good atomic primitives exist. Some examples of the kinds of questions
we are interested in are these. What is the best way to encrypt a large text file
using DES, assuming DES is secure? What is the best way to design a signature
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scheme using the RSA function, assuming the latter is one-way? How “secure”
are known methods for these tasks? What do such questions even mean, and can
we find a scientific framework in which to ask and answer them?

The problem. The problem with protocol design is that a poorly designed
protocol can be insecure even though the underlying atomic primitive is good. An
example is ECB (Electronic Code-Book) mode encryption with a block cipher. It
is not a good encryption scheme because partial information about the plaintext
leaks. Yet this is no fault of the underlying atomic primitive (typically DES).
Rather, the atomic primitive was mis-used.

Indeed, lots of protocols are broken. Yet the good atomic primitives, like
DES and RSA, have never been convincingly broken. We would like to build on
the strength of atomic primitives in such a way that protocols can “inherit” this
strength, not loose it!

2.2 Provable Security: Reductions

The idea of provable security was introduced in the pioneering work of Gold-
wasser and Micali [26]. They developed it in the particular context of asymmetric
encryption, but it soon spread to be applied to other tasks. (Of these, the most
basic were pseudorandomness [16,40,25] and digital signatures [27]).

What is provable security? The paradigm is as follows. Take some goal, like
achieving privacy via encryption. The first step is to make a formal adversarial
model and define what it means for an encryption scheme to be secure. With
this in hand, a particular scheme, based on some particular atomic primitive,
can be analyzed from the point of view of meeting the definition. Eventually, one
shows that the scheme “works” via a reduction. The reduction shows that the
only way to defeat the protocol is to break the underlying atomic primitive. In
other words, there is no need to directly cryptanalyze the protocol: if you were
to find a weakness in it, you would have unearthed one in the underlying atomic
primitive. So you might as well focus on the atomic primitive. And if we believe
the latter is secure, we know, without further cryptanalysis of the protocol, that
the protocol is secure.

An important sub-part of the last step is that in order to enable a reduction
one must also have a formal notion of what is meant by the security of the under-
lying atomic primitive: what attacks, exactly, does it withstand? For example,
we might assume RSA is a one-way function.

Here is another way of looking at what reductions do. When I give you a
reduction from the one-wayness of RSA to the security of my protocol, I am
giving you a transformation with the following property. Suppose you claim
to be able to break my protocol. Let P be the program that does this. My
transformation takes P and puts a simple “wrapper” around it, resulting in a
protocol P ′. This protocol P ′ provably breaks RSA. Conclusion? As long as we
believe you can’t break RSA, there could be no such program P . In other words,
my protocol is secure.
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Those familiar with the theory of NP-completeness will recognize that the
basic idea of reductions is the same. When we provide a reduction from SAT to
some problem we are saying our problem is hard unless SAT is easy; when we
provide a reduction from RSA to our protocol, we are saying the latter is secure
unless RSA is easy.

Here, I think, is a beautiful and powerful idea. Some of us by now are so
used to it that we can forget how innovative it was. And for those not used to
it, it can be hard to understand (or, perhaps, believe) at first hearing, perhaps
because it delivers so much. Protocols designed this way truly have superior
security guarantees.

Nomenclature. In some ways the term “provable security” is misleading. As
the above indicates, what is probably the central step is providing a model and
definition, which does not involve proving anything. And one does not “prove
a scheme secure:” one provides a reduction of the security of the scheme to the
security of some underlying atomic primitive. For that reason, I sometimes use
the term “reductionist security” to refer to this genre of work.

The complexity-theoretic approach. The precise formalization of prov-
able security can take many forms. The theoretical literature has chosen, for the
most part, to develop it in a complexity theoretic framework where one talks
about “polynomial time” adversaries and transformations, and “negligible suc-
cess probabilities.” This approach was convenient for a field striving to develop
a technical idea of great depth. Complexity-based cryptography has been re-
markably successful, coming up with definitions for many central cryptographic
primitives, and constructions based on “minimal assumptions.” For a brief in-
troduction to this body of work, refer to the recent survey by Goldreich [24].

In practice? The potential for the idea of provable security to impact practice
is large. Yet its actual impact had been disappointingly small, in the sense that
these ideas were reflected almost not at all in protocols used in practice. Here
are some possible reasons.

In practice, block ciphers are the most popular atomic primitive, especially
for private key cryptography. Yet the provable security line of work (prior to the
development of the practice-oriented variant) omitted any treatment of schemes
based on block ciphers: only number-theoretic atomic primitives were deemed
adequate as a basis for protocol design. In particular some of the world’s most
used protocols, such as CBC MAC [1] or encryption [32,2], seemed to be viewed
as outside the domain of provable security.1

The main generic disadvantage of the schemes delivered by the traditional
provable security approach is that they are inefficient.2 This is due in part to
the complexity of the constructions. But it is also due in part to a reliance on
inefficient atomic primitives. For example, a MAC would be constructed out of

1 Luby and Rackoff [31] studied the Feistel structure behind DES, but what I am
talking about is to look at protocols that use DES and ask about their security.

2 Typically the gap relative to what is desirable in practice is enormous. In some cases
it is small, but still seems enough to preclude usage.
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a one-way function like RSA rather than out of a block cipher. This takes us
back to the above.

Finally, some aspects of the complexity-theoretic approach unfortunately dis-
tanced provable security from practice. For example, practioners need numbers:
how many cycles of adversary computation can the scheme withstand, how many
bits is the security parameter? These are only loosely captured by “polynomials”
or “negligible probabilities.” To make provable security useful, reductions and
security analyses must be concrete. Theoreticians will say, correctly, that this
information can be obtained by looking at their proofs. But this view obscures
the importance of working on improving the security of reductions.3

Practice-oriented provable security attempts to remedy this by appropriate
paradigm shifts.

3 Practice-Oriented Provable Security

Practice-oriented provable security as I discuss it was introduced in a set of
papers authored by myself and Phil Rogaway [8,7,6]. We preserve and focus
on the two central ideas of the provable security approach: the introduction
of notions, or definitions that enable us to think about protocols and atomic
primitives in a systematic way, and the idea of doing reductions. But we modify
the viewpoints, models, and problems treated. Here are some elements of the
approach and work to date.

3.1 Using Block Ciphers

Block ciphers like the DES are the most ubiquitous tool in practical crypto-
graphic protocol design. However, as indicated above, traditionally nothing was
proved about protocols that use them. An important element of our line of work
is to integrate block ciphers into the fabric of provable security. On the one hand
we analyze existing schemes that use block ciphers to assess how well they meet
strong, formal notions of security; on the other hand we design new schemes
based on block ciphers and show they meet such notions. In the first category
are our analyses of the CBC MAC [7] and analyses of various modes of operation
of a block cipher [5]. In the second category are constructions like the XOR MAC
[6] or the cascade [4].

Key to these results (and perhaps more important than any individual re-
sult) is that we treat block ciphers systematically by formally modeling them in
some way. Specifically, the suggestion of [7], followed in the other works, was to
model a block cipher as a finite pseudorandom function (FPRF) family. (The
fundamental notion of a pseudorandom function family is due to Goldreich, Gold-
wasser and Micali [25]. The finite variant was introduced in [7].) Roughly, we are
3 This is not to say concrete security has always been ignored. One person who from
the beginning has systematically addressed concrete security in his works is Claus
Schnorr. See any of his papers involving cryptographic reductions.
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assuming that as long as you don’t know the underlying key, the input-output
behavior of a block cipher closely resembles that of a random function.

Thus, the theorems in the mentioned papers say that a scheme (eg. CBC
MAC) is secure unless one can detect some deviation from random behavior in
the underlying block cipher. Underlying this claim is a reduction, as usual in the
provable security approach, showing how to break the cipher given any way to
break the scheme based on it.

The idea of treating block ciphers as pseudorandom functions provides a fresh
way of looking at block ciphers from both the design and usage perspective. On
the one hand, this view can form the basis for analyses of many other block
cipher based schemes. On the other hand, we suggest it be a design criterion for
future block ciphers (a view that new efforts such as AES do seem to support)
and that existing ciphers should be cryptanalyzed to see how well they meet this
goal.

3.2 Concrete Security

Practice oriented provable security attempts to explicitly capture the inherently
quantitative nature of security, via a concrete or exact treatment of security.
Rather than prove asymptotic results about the infeasability of breaking a pro-
tocol in polynomial time, we present and prove “exact” or “concrete” reductions.
Our results have the form: “If DES withstands an attack in which the adversary
gets to see 236 plaintext-ciphertext pairs, then our protocol is secure against an
adversary who can run for t steps, for the following value of t.” This enables a
protocol designer to know exactly how much security he/she gets. And it brings
a new dimension to protocols: rather than just being secure or non-secure, one
can be “more” secure than another.

For example, the theorem of [7] characterizing the security of the CBC MAC
says that an adversary who runs for time t and sees q correctly MACed messages
has chance at most ε + (3q2n2 + 1)/2l of correctly forging the MAC of a new
message, where l is the block length of the underlying cipher, n is the number
of blocks in any message to which the MAC applies, and ε captures the security
of the cipher, specifically being the chance of detecting a deviation of the cipher
from random behavior in time t+O(nql) given nq input-output examples of the
cipher under the same key. (This ε is of course a function of the key length of the
underlying cipher, but the latter does not need to appear explicitly.) Thus, a user
sees exactly how the chance of forgery increases with the number of messages
MACed.

Another aspect of the concrete security treatment is to try to preserve as
much as possible of the strength of the underlying atomic primitive in transform-
ing it to the protocol. This means we aim for reductions as strong as possible.
This is important because reduction strength translates directly to protocol effi-
ciency in practice. A weak reduction means that to get the same level of security
in our protocol we must use larger keys for the underlying atomic primitive, and
this means slower protocols. If the reduction is strong, shorter keys will suffice
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and the protocol is more efficient. Reduction quality plays a significant role in
[7,6,10,12,4,5] all of which achieve tight or close to tight reductions.

We found that improving the concrete security was a rich and rewarding line
of work, and thinking about it greatly increases understanding of the problem.

In [5] we also concern ourselves with how different formalizations of a notion
(in this case, secure encryption) are affected when concrete security is an issue.

3.3 Security Versus Attacks

Practitioners typically think only about concrete attacks; theoreticians ignore
them, since they prove the security. Under the practice oriented provable secu-
rity approach, attacks and security emerge as opposite sides of the same coin,
and complement each other. Attacks measure the degree of insecurity; our quan-
titative bounds measure the degree of security. When the two meet, we have
completely characterized the security of the protocol.

For example, the security of the CBC MAC shown in [7] is the flip-side of
attacks like those of Preneel and Van Oorschot [37]. (The latter say that the
CBC MAC can be broken once 2l/2 messages have been MACed, where l is the
block length of the underlying cipher. We say, roughly, that it can’t be broken
when fewer than this many messages are MACed.) Thus the results of [7,37]
complement each other very well. Yet, the literature on these subjects does not
reflect this duality appropriately.

We found that even when proofs are provided, much is to be gained by finding
the best possible attacks. We find new kinds of attacks, which break the system
as measured by our more stringent notions of security: an encryption scheme is
broken of you can tell whether the message encrypted was 0 or 1, not just if you
find the key. This is actually important in practice. Meanwhile, these attacks
provide, effectively, the lower bounds to our concrete security analyses, telling
us whether the proven security is optimal or not. Publications in which we assess
the optimality of our reductions via attacks include [6,4,5].

3.4 The Random Oracle Model

Sometimes, using pseudorandom function families or one-way functions alone,
we are not able to find schemes efficient enough for practice. This is true for
example in the case of public key encryption or signatures. In such cases, we
turn to the random oracle paradigm.

The random oracle paradigm was introduced in [9] as a bridge between theory
and practice. The idea is a simple one: namely, provide all parties —good and bad
alike— with access to a (public) function h; prove correct a protocol assuming
h is truly random, ie. a random oracle; later, in practice, set h to some specific
function derived in some way from a standard cryptographic hash function like
SHA-1 [33] or RIPEMD-160 [21].

We used the random oracle paradigm most importantly to design OAEP
[10] and PSS [12]. These are schemes for (public key) encryption and signature



8 Mihir Bellare

(respectively), the most popular versions of which use RSA as the underlying
primitive. (Both OAEP and PSS are, more accurately, padding or formatting
mechanisms which are applied to a message before the appropriate RSA opera-
tion is applied.) They are as efficient as previously used or standardized schemes,
but, unlike them, provably achieve strong notions of security in the random or-
acle model, assuming RSA is a one-way function.

RSA Corporation publishes a standard for RSA based encryption called
PKCS#1. (It is a widely used standard, implemented in Netscape and other
browsers, and used in SSL.) Much publicity was given recently to a chosen-
ciphertext attack on PKCS#1 that was discovered by Bleichenbacher [15]. RSA
Corporation has now revised the protocol, adopting OAEP in PKCS#1 v2.0
[38]. The rationale for that move is that our protocol had been proven to re-
sist chosen-ciphertext attacks (indeed Bleichenbacher’s attacks do not work on
OAEP, even though at the time of the design of OAEP we had not thought of
these specific attacks), and furthermore OAEP is just as practical as the original
PKCS#1 protocol.

OAEP is also included in SET, the electronic payment protocol of Master-
Card and Visa, where it is used to encrypt credit card numbers. Both OAEP
and PSS are being proposed for the IEEE P1363 standard.

What’s the point of the random oracle paradigm, and what does it buy you?
It buys efficiency, plus, we claim, security guarantees which, although not at the
same level as those of the standard provable security approach, are arguably
superior to those provided by totally ad hoc protocol design. The last point
merits some more discussion.

The random oracle paradigm should be used with care and understanding.
It is important to neither over-estimate nor under-estimate what this paradigm
buys you in terms of security guarantees. First, one must be clear that this is
not standard provable security. The function h that we actually use in the final
scheme is not random. Thus the question is: what has it bought us to have done
the proof in the first place?

The overly skeptical might say the answer is “nothing.” This is not quite
true. Here is one way to see what it buys. In practice, attacks on schemes in-
volving a SHA-1 derived h and number theory will often themselves treat h as
random. We call such attacks generic attacks. In other words, cryptanalysis of
these “mixed” schemes is usually done by assuming h is random. But then the
proofs apply, and indeed show that such generic attacks will fail unless the un-
derlying number-theoretic problems are easy. In other words, the analysis at
least provably excludes a certain common class of attacks, namely generic ones.

It is important to choose carefully the instantiating function h. The intuition
stated in [9] is that the resulting scheme is secure as long as the scheme and the
hash function are sufficiently “independent,” meaning the scheme does not itself
refer to the hash function in some way. This is a fuzzy guideline which we hope
to understand better with time.

An important step in our understanding of the random oracle model was
taken by Canetti, Goldreich and Halevi [19]. They indicate that there exist
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schemes secure in the random oracle model but insecure under any instantiation
in which we substitute a function from a small family of efficiently computable
functions. Their examples however are somewhat contrived, and this kind of
situation does not arise with any of the “real” constructions in the literature.

In comparison with totally ad hoc design, a proof in the random oracle model
has the benefit of viewing the scheme with regard to its meeting a strong and
formal notion of security, even if this is assuming some underlying primitive
is very strong. This is better than not formally modeling the security of the
scheme in any way. This explains why the random oracle model is viewed in [9]
as a “bridge between theory and practice.”

Since we introduced this model, it has been used in other places, for example
in the design and analysis of signature schemes [35,36,34], hash functions [13]
and threshold encryption schemes [23].

3.5 New Notions: Session Key Distribution

“Entity authentication” is the process by which a party gains confidence in the
identity of a communication partner. It is usually coupled with the distribution
of a “session key.” These are arguably the most basic problems for secure dis-
tributed computation— without a correct solution there can be no meaningful
access control or accountability; there cannot even be reliable distribution of
work across network resources. Despite a long history and a large literature,
this problem rested on no meaningful formal foundation. This is more than an
academic complaint: it is an area in which an informal approach has often lead
to work which has subsequently been found to be wrong, and in some cases the
flaws have taken years to discover.

In [8] we address the two party setting of the problem. It achieves provable
security by providing a model, definitions, protocols, and proofs of correctness
for these protocols under standard assumptions.

The three party case of this problem may be the most well-known. It was
first addressed by Needham and Schroeder in 1978. Its most popular incarnation
is the Kerberos system. However this system, and existing solutions, suffer from
the same problems discussed above. In [11] we provide provably secure protocols
for the three party session key distribution problem.

All our protocols are efficient and practical, viable alternatives to current
systems. Some have been implemented. Our models have been used to study
related key distribution problems, for example in [39].

4 What Provable Security Is and Isn’t

Now that provable security is moving into practice, there are many people who
although not trained as theoreticians, or even deeply interested in the details of
research, need to take decisions involving claims about provable security. The
kinds of things they need to know are: exactly what provable security provides
and doesn’t provide; how to compare different provably secure schemes; how to
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validate a claim of provable security. So I would like to discuss some of these
points here.

4.1 On Limitations

The above has explained what provable security provides, but it is also important
to understand its limitations. The first of these is in the model considered. One
must ask what kinds of attacks the model encompasses. In particular, there are
classes of attacks that do not fall into the normal fabric of provable security; these
include timing attacks [29], differential fault analysis [18,14], and differential
power analysis [30]. (That is, models used in provable security do not encompass
these attacks. One should note that this does not mean specific proven secure
schemes fall to these attacks. It just means we do not claim to have proven that
they do not fall to these attacks. In fact if you look at specific schemes, some
fall to these attacks, others don’t.) But it is worth investigating an extension of
provable security that does include these attacks, a line of research suggested by
Dan Boneh.

Even when using a proven secure scheme, security can compromised in a
number of ways. Sometimes, requirements may have been overlooked: we proved
security, but for the wrong problem or in the wrong model. Or, the protocol may
be used incorrectly. For example, a setting such as key exchange might require a
public key encryption scheme that is secure against chosen-ciphertext attack. It
does little good to use a proven secure scheme that is only proven secure against
chosen-plaintext attack. This is a question of understanding what requirements
a higher level protocol imposes on the lower level primitive.

Or software may be buggy. If you implement the scheme incorrectly, obvi-
ously all bets are off. Similarly the environment may be improperly administered
leading to loss of passwords or keys. There may be insider attacks. And so on.

4.2 On Assumptions

Proven security does not mean that attacks (of the kind modeled) are uncondi-
tionally guaranteed to fail. Remember that a scheme is proven secure given some
assumption. For example, we may have an encryption scheme proven to resist
chosen-plaintext attacks as long as the problem of factoring a number product of
two primes is computationally infeasible. Or, as in examples above, that a mes-
sage authentication scheme is secure as long as the underlying cipher behaves
like a pseudorandom function family.

If these assumptions fail, of course the proof becomes worthless. (One should
note that failure of an assumption does not necessarily lead to attacks on the
scheme. It just means that the proof of security is no longer useful.) This means
that a proof of security is worth more when the assumption is weaker, ie. less
likely to fail. An important parameter of a proof of security is thus the underly-
ing assumption: the weaker the better. In particular this becomes something to
consider in comparing schemes. If you have a choice between two schemes, you
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will of course take into account many things, such as performance, ease of imple-
mentation, exportability and so on. But on the security front, if both schemes
are proven secure, the one making weaker assumptions is preferable.

Comparing provable guarantees has both a qualitative and quantitative as-
pect. Even when two schemes are based on the same assumptions, one may
have better concrete security. (We discussed the concrete security approach in
Section 3.2.) This means that there is less loss of security in the translation
from the problem of the assumption to the scheme. An example is the signature
schemes FDH and PSS [12]– both are proven secure in a random oracle model
assuming RSA is one-way, but the reduction for PSS is tight and that for FDH
is not, so the quantitative guarantee of PSS is better.

How does one compare assumptions to see which is weaker? Unfortunately
it is not always possible. Indeed, in the bulk of cases, we do not know how to
compare the assumptions underlying various proofs of security. But it is still
important to know about this and know when they are comparable and when
not.

To illustrate these issues let us look at public key encryption secure against
chosen-ciphertext attack. We discussed (RSA based) OAEP [10] above: it is
proven secure in the random oracle model assuming the RSA function is one-
way.

Dolev, Dwork and Naor [22] had designed a scheme that resists chosen-
ciphertext attack many years prior to this. Lets call this the DDN scheme. The
security of the DDN scheme can be proven assuming RSA is a one-way func-
tion. Notice that this assumption is weaker than the one underlying OAEP, since
OAEP assumes in addition that we have a hash function that behaves like a ran-
dom oracle. As a consequence we can say that the provable security guarantee
provided in the DDN scheme is superior to that of OAEP. In this case, a security
comparison was possible.

More recently, Cramer and Shoup [20] introduced a new proven-secure en-
cryption scheme which we call the CS scheme. Unlike the schemes we have been
discussing up to now, it is not RSA based: it assumes the hardness of a certain
version of the Diffie-Hellman problem. How does the security of the CS scheme
compare to that of OAEP? That is more difficult to assess. The CS scheme
does not use the random-oracle paradigm, which is a plus. But it assumes the
hardness of the so-called Decisional Diffie Hellman problem. (See [17] for a nice
discussion of this problem.) This is a strong assumption, and relatively new and
un-studied one compared to the assumption that RSA is one-way. (It would be
much more surprising if the RSA assumption failed than if the Decisional Diffie-
Hellman assumption failed.) In particular, we do not know how this assumption
compares to the assumptions underlying OAEP. So, while the fact that the CS
scheme avoids random oracles is a point in its favor, it is not really possible to
say that one of these schemes has better security guarantees than the other in
practice, because the assumptions are incomparable.

If one had to choose a scheme in practice one would of course also consider
cost. OAEP has the same cost as heuristic RSA schemes. The DDN scheme is
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many orders of magnitude more expensive than any practical scheme, since it
involves multiple signatures and zero-knowledge proofs, and thus is likely to be
ruled out. The CS scheme is much cheaper than the DDN scheme, but still more
expensive than OAEP. (Encryption in OAEP is only a few multiplications if a
small RSA exponent is used; while in the CS scheme it is a few exponentiations.
Decryption in the CS scheme is about five times as costly as in OAEP.) In some
applications, this kind of increase may be tolerable; in others not. There is no
unique answer.

4.3 Proofs and Definitions

Faced with a choice of protocols claiming to be provably secure, we discussed
above some issues involved in comparing them. Another should be mentioned:
verification of the claims. A scheme isn’t provably secure just because it is
claimed to be so. One should check that proper formal definitions of security
have been provided so as to know what is being proved. One should be able to
at least cursorily verify the claims. How? Remember that a reduction consists
of an algorithm that is an attacker for the problem we are assuming hard, using
as a subroutine an attacker for the scheme. Look at the least for a description
of such an algorithm.

5 Going On

The above has discussed provable security and its practice oriented variant in a
general way. Next I would like to illustrate the ideas by looking in more depth at
a central problem: encryption. The goal is to motivate the need for strong and
formal notions of security and then show how to to adapt the seminal notions
of [26] (given in the asymmetric setting) to the symmetric setting. With concrete
security definitions in hand, we will turn to analyzing popular encryption modes
like CBC or CTR and gauge their merits. We want to answer questions like: are
the secure? Which is “better”?

I did this in my talk, for the most part following [5], and refer the reader
there for this materiel. Some day, I hope to extend this article by the inclusion
of this and other materiel.
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Abstract. The objective of this paper1 is to give an elementary in-
troduction to fundamental concepts, techniques and results of Secure
Computation.
Topics covered include classical results for general secure computation
by Yao, Goldreich & Micali & Wigderson, Kilian, Ben-Or & Goldwasser
& Wigderson, and Chaum & Crépeau & Damgaard.
We also introduce such concepts as oblivious transfer, security against
malicious attacks and verifiable secret sharing, and for some of these
important primitives we discuss realization.
This paper is organized as follows.
Part I deals with oblivious transfer and secure (general) two-party com-
putation.
Part II discusses secure general multi-party computation and verifiable
secret sharing.
Part III addresses information theoretic security and presents detailed
but elementary explanations of some recent results in Verifiable Secret
Sharing and Multi-Party Computation.
The importance of theory and general techniques often lies in the fact
that the true nature of security is uncovered and that this henceforth en-
ables to explore what is “possible at all”. This then motivates the search
for concrete and often specialized realizations that are more efficient.
Nevertheless, many principles developed as part of the general theory
are fundamental to the design of practical solutions as well.

Part I

Secure Two-Party Computation

1 Oblivious Transfer and Match-Making

Suppose there are two politicians who want to find out whether they both agree
on a certain matter. For instance, they may be discussing a controversial law that
has been proposed. Clearly, they could decide just to announce to each other
1 This paper is based on a lecture given by the author at the 1998 Aarhus Summer-
school in Cryptography and Data Security. An updated and extended version may
be obtained from the author in the near future.

I. Damg̊ard (Ed.): Lectures on Data Security, LNCS 1561, pp. 16–62, 1999.
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their opinion, and both of them could determine whether there is agreement.
But this has a drawback that careful politicians may wish to avoid. If only one
of them supports that controversial law, he may lose face.

In other words, what they need is a method allowing two players to figure
out if they both agree but in such a way that if they don’t, then any player that
has rejected the matter has no clue about the other player’s opinion. Moreover,
they may want to be able to carry out the method over a distance.

Technically, we can model the situation as follows. There are two players, A
and B, and each of them has a secret bit. Say that A has the bit a and B has
the bit b.

They want to compute a · b (which corresponds to the logical AND of a and
b, and hence it is 1 if and only if a = b = 1) so that

– Correctness: none of the players is led to accept a false result.
– Fairness: each learns the result a · b.
– Privacy: each learns nothing more than what is implied by the result and

the own input.

Indeed, if A for example holds a = 0, then a · b = 0, regardless of the value
of b. Therefore, B’s choice b remains unknown to A in this case.

We construct a solution to this “Match-Making” problem based on an impor-
tant primitive Oblivious Transfer (OT) (more precisely: “chosen one-out-of-two
oblivious transfer”). An OT is a protocol between two players, a sender S and
a receiver R, that achieves the following. S has two secret input bits, b0 and b1,
and R has a secret selection bit s. At the end of the protocol, which may consist
of a number of exchanges of information between S and R, R obtains the bit bs,
but without having obtained any information about the other bit b1−s (sender
security). On the other hand, S does not get any information about the selection
bit s (receiver security).

We use OT(b0, b1, s) = bs to denote the output of an OT protocol as a
function of the inputs. It is useful to observe that bs is actually equal to (1 ⊕
s)b0⊕sb1, where the operations are the usual multiplication and addition of bits.

Sender Receiver

In: b0, b1 ∈ {0, 1} In: s ∈ {0, 1}

←−−−−
S → R : OT(b0, b1, s)−−−−−−−−−−−−−−−−−−−−→

Out: bs

Although at this point it is not clear whether OT-protocols exist and if so,
how to construct them, we can already solve the Match-Making problem by
assuming an OT-protocol!

This is how. If A and B now execute the OT-protocol with A acting as the
sender and B as the receiver, using b0 = 0 and b1 = a, and s = b as their
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respective inputs, we see that B gets the value ab as output. In other words,
OT(0, a, b) = (b⊕ 1)0⊕ ba = ab. Finally, B simply reveals ab to A, so that both
learn the result. And indeed, if b = 0, then ab = 0 no matter what a is and player
B learns nothing more about a by the properties of OT. If a = 0, then from the
fact that the OT-protocol doesn’t leak information about b and the fact that in
this case B returns 0 to A in the final step no matter what b is, A doesn’t learn
nothing more about b as a result of the complete protocol.

Note that with respect to correctness and fairness, we have to assume that B
indeed sends the correct value ab to A. Furthermore, we must assume here that
both players take their actual choices as input to the protocol. But in any case,
we can say that the protocol is secure for both parties if they are semi-honest.
This means that both follow the rules of the game, but may try to learn as much
as possible about the other player’s input. We must also assume that no crash-
failures occur, i.e. both players remain operational throughout the protocol and
don’t fail.

1.1 Historical Notes

Oblivious Transfer was originally introduced by M. O. Rabin [71], in a slightly
different way. Namely, in his definition, the sender has just one bit b, and at the
end of the protocol the receiver gets the bit b with probability 1/2. Otherwise
the receiver gets “?”, and doesn’t receive the bit. The sender cannot tell what
happened.

Even, Goldreich and Lempel [40] later defined OT as we use it here, except
that they require the selection bit to be random. It turned out that Wiesner [74]
had earlier devised a similar definition in unpublished work.

The definition used here has appeared in many works on OT.
Soon after the invention of OT by Rabin, M. Blum [16] has conceived coin-

flipping over the phone and certified electronic email as applications of OT.

2 Variations and Other Applications of OT

The Match-Making protocol is in fact just a toy example. Oblivious Transfer is
an important primitive with many powerful applications, as we shall see.

2.1 OT of Strings

Suppose that instead of bits b0 and b1, the sender in OT has two strings x0, x1 ∈
{0, 1}n. Can we perform an OT where the sender receives the string x0 if his
selection bit s is 0 and the string x1 otherwise? Note that “bitwise” OT of the n
pairs of bits xi

0, x
i
1 of x0 and x1 is clearly not an option, since a cheater can for

instance learn bits of both strings, which contradicts the requirements of string
OT (whose definition is the obvious extension of the definition of OT of bits).

A general approach to this problem of oblivious transfer of strings is due to
Brassard, Crépeau and Sántha and appears in [17]. They define zig-zag functions.
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Consider a function h : {0, 1}m → {0, 1}n, and for an arbitrary subset J of
{1, . . . ,m} and arbitrary y ∈ {0, 1}m, let yJ denote y = (y1, . . . , ym) restricted
to the |J | bits yi with i ∈ J .

A function h is a zig-zag if for any I ⊂ {1, . . . ,m}, there is a J ∈ {I, Ic} such
that for any x ∈ {0, 1}n and for a uniformly random chosen h-pre-image y of x,
yJ gives no information about h(y) = x.

In other words, for any fixed subset of the m bits of y, it holds that either
this subset of the bits or the remaining bits give no information about h(y) = x,
and which of the two cases actually hold, does not depend on x or y.

Given such a function h, this is how one can perform chosen one-out-of-two
oblivious transfer of n-bit strings x0 and x1. First the sender selects random y0

and y1 such that h(y0) = x0 and h(y1) = x1. Say that the receiver wishes to get
the string xs. Then they execute for i = 1 . . . n the protocol OT(yi

0, y
i
1, s). As a

result, the receiver gets all bits of ys, applies h to it and gets xs. Clearly, the
sender has no information about s.

Let’s see why it is true that at least one of the strings x0, x1 remains as
unknown to the receiver as before the protocol. It is clear, by inspection of the
protocol and the properties of OT, that even if the receiver deviates from the
steps above there is some I ⊂ {1, . . . ,m} such that he receives at best y0,I and
y1,Ic . Let J , with J = I or J = Ic, be as in the definition of a zig-zag function.
Then the receiver obtains at best y0,J and y1,Jc and he has no information
about h(y0) = x0, or obtains y0,Jc and y1,J and he has no information about
h(y1) = x1, since J only depends on h and I.

Constructions of zig-zag functions can be based on linear codes. It is easy to
see that it is sufficient to construct a binary matrix with n rows such that for
any subset I of the columns it holds that I or Ic has maximal rank n. Finding
preimages can be done efficiently using basic linear algebra. Here is a small
example with n = 2 and m = 3: the first column has entries 1 and 0, the second
1 and 1, and the third 0 and 1. Examples for larger values of n can be found for
instance using recursion in combination with Vandermonde matrices, working
over extension fields [17].

2.2 Oblivious Common String Verification

We describe a nice application of oblivious string transfer due to Fagin, Naor
and Winkler [41]. There are two players A and B, and each of them holds some
secret n-bit string. Their goal is to obliviously verify whether those strings are
equal: as a result both of them should learn whether the strings are equal, but
nothing more than that. Obviously, a secure protocol for this task can be used
as a means of identification in a number of scenarios.

This is how the FNW protocol works. A has x = (x1, . . . , xn) ∈ {0, 1}n and
B has y = (y1, . . . , yn) ∈ {0, 1}n as private input. For i = 1 . . . n, A selects
random k-bit strings ri,0 and ri,1, and B selects random k-bit strings si,0 and
si,1. The parameter k is a security parameter. In the following, if u and v are
n-bit strings, then u + v denotes the n-bit string whose i-th bit is equal to the
sum (modulo 2) of the i-th bit of u and the i-th bit of v, i = 1 . . . n.
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Consider the bit strings α =
∑

si,xi , β =
∑

ri,yi , α′ =
∑

ri,xi and β′ =∑
si,yi . If x = y, then clearly α + α′ = β + β′. Otherwise, these values are

different with probability 1/2k (so in order for the error to be small, k must be
large).

Note that A and B can obtain the strings α, resp. β by one-out-of-two string
OT. The values α′ and β′ can be computed by A, and B respectively from their
own random choices and their input strings. This is the complete protocol.

A B

In: x ∈ {0, 1}n In: y ∈ {0, 1}n

For i = 1 . . . n, For i = 1 . . . n,
ri,0, ri,1 ∈ {0, 1}k : random. si,0, si,1 ∈ {0, 1}k : random.

←−−−−−−−−−−−−
A → B : For i = 1 . . . n,OT(ri,0, ri,1, yi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−
B → A : For i = 1 . . . n,OT(si,0, si,1, xi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α =
∑n

i=1 OT(si,0, si,1, xi) β =
∑n

i=1 OT(ri,0, ri,1, yi)
α′ =

∑n
i=1 ri,xi β′ =

∑n
i=1 si,yi

− α + α′
−−−−−−−−−−→
←

β + β′
−−−−−−−−−−−

Out: α + α′ ?= β + β′ Out: α + α′ ?= β + β′

Note that if one of the parties is honest, and the other party has some yi that
differs from xi, then the latter receives a completely random string in the final
exchange. There exists a variety of other solutions to this particular problem.
See [37] for a more efficient solution based on OT. Both [41] and [37] additionally
survey completely different approaches not based on OT.

2.3 A Reduction

Crépeau [33] has shown that the OT as defined by Rabin (Rabin-OT, see Sec-
tion 1.1) and chosen one-out-of-two OT are the same in the sense that one can
be simulated from the other in a blackbox fashion, vice versa.

Given chosen one-out-of-two OT as a subroutine, Rabin-OT can be simulated
as follows. The sender in Rabin-OT has a bit b to be obliviously transferred. First,
the sender selects bits b0 and b1 at random such that b0⊕b1 = b, and the receiver
selects a random selection bit s. After they have executed OT(b0, b1, s), the
sender selects a random bit t and sends (t, bt) to the receiver. With probability
1/2, t is different from s and hence the receiver obtains both bits b0 and b1 and
computes b = b0 ⊕ b1. Also with probability 1/2, the receiver gets the bit he
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already had, leaving him in the dark about the other bit by the properties of
chosen one-out-of-two OT and hence about b. The sender doesn’t know what
happened, since he doesn’t learn s.

The interesting case is to simulate chosen one-out-of-two OT from Rabin-OT.
So let the sender have input bits b0 and b1, and let the receiver have a selection
bit s. Furthermore, Rabin-OT is at their disposal as a subroutine.

The sender chooses k random bits δ1, . . . , δk, where k is asecurity parameter.
This value should be chosen large enough so that some error probability (to
become clear later on) is small enough to be acceptable.

Next, using Rabin-OT, the sender transmits these bits one by one to the
receiver, who is expected to receive roughly half of them. It is important to note
that with probability 1− 1/2k, at least one of the bits is not received, and with
the same probability some bit is received.

Let I ⊂ {1, . . . , k} denote the collection of j such that δj has been received.
Likewise, Ic refers to the bits that have not arrived. Having selection bit s, the
receiver writes Is = I and I1−s = Ic, and sends the ordered pair (I0, I1) to the
sender. The sender now knows that the receiver obtained the bits corresponding
to I0 or I1, but both events are equally likely from his point of view by the
properties of Rabin-OT. Next, the sender adds all bits δi, i ∈ I0 to b0 and the
bits δi, i ∈ I1 to b1, and sends the resulting two bits to the receiver. Since the
latter knows all bits δi, i ∈ Is, he can recover the bit bs, as required. It’s clear
that the sender has no clue about s.

Finally, consider a cheating receiver, who might define the sets I0, I1 differ-
ently, and perhaps learn more. However, if I0 and I1 cover the full set {1, . . . , k},
then with probability 1− 1/2k at least one of the sets, say I0, contains an index
referring to a bit not received, which is hence completely unknown. In this case,
the receiver doesn’t learn b0.
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Sender Receiver

In: b0, b1 ∈ {0, 1} In: s ∈ {0, 1}
δ1, . . . , δk ∈ {0, 1} : random

←−−−−−−−
S → R : Rabin-OT(δ1), . . . ,Rabin-OT(δk)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

received: δj , j ∈ I
set Is = I,
I1−s = Ic

←
I0, I1−−−−−−−−−−−

I0 ∪ I1
?= {1, . . . , k}

z0 = (⊕i∈I0δi) ⊕ b0
z1 = (⊕i∈I1δi) ⊕ b1

−
z0, z1−−−−−−−−−−→

Out:
bs = (⊕i∈Isδi) ⊕ zs

3 Constructions of OT-Protocols

For OT protocols to exist, we must make assumptions about the world in which
the players operate, for instance related to the communication channel connect-
ing the players, or their computational abilities.

However, besides its elegance and usefulness in protocol design, it is interest-
ing to note that OT can be implemented under a wide variety of different such
assumptions.

Among these, the difficulty of factoring large random composite integers,
the Diffie-Hellman problem (related to the difficulty of computing discrete log-
arithms), and abstract, general assumptions such as the existence of trapdoor
one-way permutations (which can be implemented under the RSA assumption)
[54]. But physical assumptions suffice as well, such as the OT based on noisy
communication channels of Crépeau and Kilian [36].

3.1 Necessity of Assumptions

Why doesn’t OT exist unconditionally? Indeed suppose that a protocol for OT
exists, making no assumptions on the computational abilities of the players, the
communication channel or whatever.

Then there are programs used by sender and receiver to compute the ex-
changed messages, that given random strings and the input bits would operate
deterministically. Moreover, we may assume that the players communicate over
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a perfect channel, and that the players have infinite computing power. Say that
the protocol achieves perfect correctness and always halts.

This leads to a contradiction as shown by the following (informal) argument,
even if we assume that the players are semi-honest.

Given OT, there exists a protocol with similar characteristics for two play-
ers A and B to obliviously evaluate the AND of their input bits a and b (see
Section 1). We show that such a protocol does not exist.

Let T denote the sequence of messages exchanged in a completed execution
of the protocol (T is called transcript). Write xA ∈ {0, 1}∗ and xB ∈ {0, 1}∗ for
the respective random strings used by A and B in the computation.

Say that a = 0. We argue that a semi-honest A having a = 0 as input
can always figure out the value of B’s input b, thus contradicting the security
conditions.

If b = 0, then there exists a random string x′
A ∈ {0, 1}∗ such that T is

consistent with A having input a = 1 instead of a = 0. This follows from the
fact that B, having b = 0 as input, has no information about A’s input. Clearly,
fixing the transcript T and an arbitrary x′

A, and setting a = 1, A can effectively
decide whether the transcript is consistent with x′

A and a = 1. Since we do not
assume limits on the computational power of the players, A eventually finds such
string x′

A.
In case that b = 1, it is clearly impossible that T is consistent with a = 1 and

some x′′
A, since in this case flipping A’s input from 0 to 1, changes the logical

AND of the inputs: since we assumed perfect correctness, T cannot be consistent
with two pairs of inputs (a, b) whose respective logical AND is different.

Therefore, A decides that b = 0 if there exists x′
A such that T is consistent

with x′
A and a = 1, and decides that b = 1 if no such x′

A exists.
Similar arguments apply to the OR-function. Based on information-theory,

one can find a more general argumentation.

3.2 Rabin-OT

We present a version of the original Rabin-OT [71]. Let n be the product of two
distinct, large random primes p and q. By the assumption that factoring large
random composite integers is infeasible 2, it is hard to retrieve p and q given just
n.

However, it’s easy to generate such n with known factorization. Testing pri-
mality can be done efficiently 3, and by the Prime Number Theorem, the fraction
of primes smaller than K is roughly 1/ lnK for large K. Therefore, one can just
select a random large integer and test it for primality. After some tries one finds
a random integer that one knows is prime. Multiplying two such primes gives n.

2 though certainly not impossible.
3 i.e., certainly in practice. There is also a theoretical result by Adleman and Huang,
extending a result by Goldwasser and Kilian, saying that primality can be tested in
probabilistic polynomial time, with a negligible probability that no decision is made.



24 Ronald Cramer

Rabin-OT is based on the number-theoretic fact that given two square roots
x and z of a square y modulo n, that do not differ by a sign, one can efficiently
compute p and q from those roots and n. Indeed, from x2 ≡ z2 mod n we get
(x + z)(x − z) ≡ 0 mod n. And since x �≡ ±z mod n, n doesn’t divide (x + z)
and doesn’t divide (x − z), yet it divides (x + z)(x − z). This is only possible
if p divides exactly one of the two terms, and q divides the other. We now just
compute the greatest common divisor of n and (x− z) and the greatest common
divisor of n and (x+ z), to get both factors p and q. Note that greatest common
divisor can be efficiently computed using for instance Euclid’s algorithm.

Each square y modulo n has four distinct square roots. Indeed, modulo each
of the factors p and q, there are two square roots. Combining them with the
Chinese Remainder Theorem, we get 4 distinct roots modulo n.

From the difficulty of factoring, and the analysis above, we conclude that
that squaring modulo n is a one-way function, i.e. given just n and a random
square y modulo n, it is infeasible to find a square root of y. Indeed, if this were
not so, then one would select a random x, compute y as the square modulo n of
x and compute a square root z of y given just y and n. With probability 1/2,
x/z mod n is a non-trivial root of 1, and one can factor n efficiently.

On the other hand, if one knows p and q, computing a root of a square is
efficient. It’s easy to explain in the case that p and q are both 3 mod 4. Let y be
a square modulo p, and write z2 ≡ y mod p. Define x ≡ y(p+1)/4 mod p. Then
x2 ≡ y(p+1)/2 ≡ zp+1 ≡ z2 ≡ y mod n. Same story for computing square roots
modulo q. So if one has a square modulo n and one knows p and q (both of them
3 mod 4), one projects the problem modulo n on the factors p and q, computes
square roots, and lifts it back with the Chinese Remainder Theorem. If p and q,
are not both 3 mod 4, it’s more complicated. We say that squaring modulo n is
a trapdoor one-way function.

Without giving further details, we state that it is possible to encode a bit b
as an integer modulo n using a public function ENCODE(b, n), such that it is
hard to retrieve b given just ENCODE(b, n) and n, but easy given the trapdoor
for n as well, i.e. its factorization.

The protocol works as follows. The sender encodes the bit b that is to
be sent by Rabin-OT by computing ENCODE(b, n). After receiving n and
ENCODE(b, n) from the sender, the receiver selects a random x modulo n and
sends its square y modulo n to the sender. Note y perfectly hides which out of
the four possible roots the receiver has chosen. The sender, knowing p and q, can
efficiently compute a random square root z of y and returns it to the receiver.
With probability 1/2, z does not differ by a sign from x, and the receiver can
factor n, and efficiently retrieve b from ENCODE(b, n). Otherwise, also with
probability 1/2, z ≡ ±x mod n, and the receiver doesn’t get the factorization of
n, and hence doesn’t get closer to learning b.



Introduction to Secure Computation 25

Sender Receiver

In: b ∈ {0, 1}
−
n,ENCODE(b, n)
−−−−−−−−−−−−−→

x ∈ ZZ∗
n : random

y ≡ x2 mod n

←−
y

−−−−−−−−−−−−
z : random s.t.
z2 ≡ y mod n

−− z−−−−−−−−−−−→
If z �≡ ±x,
factor n, get b
Out: b
Else Out: ?

It is assumed that both players are semi-honest. For sender security we have
to assume that the receiver is computationally bounded. The security of the
receiver is unconditional.

3.3 OT Based on RSA

We give an example for chosen one-out-of-two OT based on RSA [72], the well-
known public-key encryption scheme which R. Rivest, A. Shamir and L. Adleman
introduced in 1978. We assume that both players are semi-honest. The sender
selects two large random distinct primes p and q, and computes n = pq, the
modulus. Next, the sender selects an integer exponent e such that e is relatively
prime to (p−1)(q−1). Let the integer d satisfy de ≡ 1 mod (p− 1)(q − 1) (given
p, q and e such d is easy to compute). Now we have (xe)d = (xd)e ≡ x mod n
for all x. The sender keeps d secret, and sends n, e (public key) to the receiver.

It has been proved by Alexi, Chor, Goldreich and Schnorr [1] that if a plain-
text x is chosen at random, guessing the least significant bit of x, given just the
ciphertext y = xe mod n, n and e, significantly better than at random, is as hard
as finding all bits of x. This is called a hard-core bit for the RSA function. Note
that this result does not follow directly from the usual RSA-security assumption.
That assumption only states that it is infeasible to recover all bits of x from y.
In the protocol to follow, the sender in OT exploits the existence of hard-core
bits to “mask” his bits b0 and b1.

The receiver, having selection bit s, chooses a random plain text m mod n
and computes the cipher text cs ≡ me mod n. Let rs denote the least-significant
bit of the plain-text m.

The receiver selects the ciphertext c1−s as a random integer modulo n and
communicates the pair of ciphertexts (c0, c1) to the sender. The sender, knowing
the secret RSA-key, computes for each of those ciphertexts their respective least-
significant bits r0 and r1. Now the sender masks the bits b0 and b1 by setting
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b′0 = b0 ⊕ r0 and b′1 = b1 ⊕ r1, and sending them to the receiver. The receiver
recovers bs by computing b′s ⊕ rs. The bit b1−s remains concealed, since he
cannot guess r1−s with high enough probability. Note that the selection bit s is
unconditionally hidden from the sender, and that we have to assume that the
receiver is semi-honest in order to guarantee sender security.

This is essentially the OT protocol of Goldreich, Micali and Wigderson [54],
which not only works for RSA but any other trapdoor one-way permutation as
well (though in general, more care has to be taken to define a hard-core bit).

4 General Secure Two-Party Computation

It is a natural question to ask which functions other than AND or string equality
can be obliviously evaluated. It is the answer to this question that demonstrates
the power of oblivious transfer: all functions f with finite domain and finite image
can be obliviously evaluated. This is due to A. Yao [75], who based his result on
the assumption that factoring integers is intractable. The protocol below shows
the stronger result saying that the existence of OT is sufficient for this task. This
is due to O. Goldreich and R. Vainish [55].

For simplicity, think of a function f : {0, 1}nA ×{0, 1}nB → {0, 1}, where nA

and nB denote the number of input bits player A and B hold.
The function f is assumed to be efficiently computable (polynomial time on

a Turing-machine) and both players have agreed on a Boolean circuit computing
f (so in particular they both know f):

– a directed acyclic graph with
– nA + nB input nodes, and one output node.
– The remaining vertices are labelled as binary negation, and two-input binary

addition and multiplication gates. Note that these operations correspond to
binary NOT, XOR and AND. The outputs of internal gates can be led to an
arbitrary number of other gates (arbitrary fan-out).

– The topology of the graph dictates the flow of the values on which the com-
putations are performed. More precisely, the circuit computes f in the sense
that if one assigns the bits of any input strings a, b to the input nodes, and
inductively propagates the values resulting from the computations performed
on them (according to the logic of the gates), then the output node will be
set to f(a, b).

It is well known that all computable functions f can be computed by Boolean
circuits and that a Boolean circuit computing f can be constructed with a num-
ber of nodes (gates) polynomial in the number of inputs (i.e. nA + nB in this
case) if f is efficiently computable.

The problem of oblivious function evaluation of f is as follows. Player A has
input a ∈ {0, 1}nA, and player B has input b ∈ {0, 1}nB . For fixed input a, b, and
a fixed circuit computing f , the computation graph is the graph representing the
circuit but with the flow of the values written on the edges. For a given gate in
the computation graph, we speak of the actual inputs and the actual output.
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We try to devise a protocol for A and B to execute such that both learn
f(a, b), but none of them learns more than what is implied by f(a, b) and the
own input. In the following we assume that neither player crashes, and that both
of them are semi-honest.

The protocol consists of three stages.

Input Sharing. For each of the nA bits ai of his input string a, A selects two
bits si,A and si,B at random such that si,A ⊕ si,B = ai and sends si,B to
B. Player B does the same to the nB inputs bits bi of his input string b,
resulting in ti,A and ti,B. This is an additive secret sharing of the inputs, and
the s and t values above are called shares.

Computation. The computation proceeds inductively and in a gate by gate
manner, possibly handling many gates in parallel. The players maintain the
following invariant. The actual inputs to the current gate are additively
shared. After processing of the current gate, there are uniformly random
shares uA (held by A) and uB (held by B) such that uA ⊕ uB equals the
actual output of the current gate and such that neither player has increased
knowledge about the actual output.

Output Reconstruction: Each player reveals his share in the output bit of
the computation. The sum of these shares equals the output bit f(a, b).

It remains to be shown how this invariant is maintained for each of the three
types of gates.

4.1 Addition-Gates

Let x0, x1 denote the actual input bits, and let x = x0 ⊕ x1 denote the actual
output bit. Then A holds x0,A and x1,A, and B holds x0,B and x1,B such that
x0,A ⊕ x0,B = x0 and x1,A ⊕ x1,B = x1.

Player A computes xA = x0,A ⊕ x1,A as his share in the actual output bit x
of the current gate. For B there is a similar program, resulting in a share xB .
We have x = xA ⊕ xB.

4.2 Negation-Gates

These are simply handled by designating one player, say A, who just flips his
share in the actual input bit, and takes the result as his share in the actual
output bit. B just takes his share in the actual input bit as his share in the
actual output bit.

4.3 Multiplication-Gates

A more interesting case is multiplication. Again, let x0, x1 denote the actual
input bits. Then A holds x0,A and x1,A, and B holds x0,B and x1,B such that
x0,A ⊕ x0,B = x0 and x1,A ⊕ x1,B = x1.

Before we proceed, let’s take a look at OT once more. Suppose that player
A has some bit α and that player B has some bit β. How can they arrive at the
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situation where they hold random additive shares in α · β but neither of them
has gained information about α · β ?

Let ρ be a secret random bit chosen by player A. If A and B now execute the
OT-protocol with A acting as the sender and B as the receiver, using b0 = ρ and
b1 = α ⊕ ρ, and s = β as their respective inputs, we see that B gets the value
αβ⊕ρ as output. In other words, OT(ρ, α⊕ρ, β) = (β⊕1)ρ⊕β(α⊕ρ) = αβ⊕ρ.
A then just takes ρ as his share, and B takes αβ ⊕ ρ as his share. We only need
to argue that A and B do not gain knowledge about each other’s inputs as a
result. Clearly, the security of OT implies that A doesn’t gain knowledge about
β, since it is B’s selection bit. Again by the security of OT, B learns only one of
ρ and ρ⊕ α, and since ρ was chosen at random by A, this doesn’t increase B’s
knowledge about α.

Sender A Receiver B

ρ ∈ {0, 1} random
In: α ∈ {0, 1} In: β ∈ {0, 1}

←−−−
A → B : OT(ρ, α⊕ ρ, β)
−−−−−−−−−−−−−−−−−−−−−−→

Out: ρ Out: αβ ⊕ ρ

Now we return to handling the multiplication gates. Note that

x = x0 · x1 = (x0,A ⊕ x0,B)(x1,A ⊕ x1,B) =

x0,Ax1,A ⊕ x0,Ax1,B ⊕ x1,Ax0,B ⊕ x0,Bx1,B.

Two executions of OT with, say, A as the sender are sufficient to get to the
random additive shares of x. A selects random bits ρ01 and ρ10.

1. A → B: OT(ρ01, ρ01 ⊕ x0,A, x1,B) = ρ01 ⊕ x0,Ax1,B.
2. A → B: OT(ρ10, ρ10 ⊕ x1,A, x0,B) = ρ10 ⊕ x1,Ax0,B.

A takes as his share in x the bit xA = x0,Ax1,A ⊕ ρ01 ⊕ ρ10, and B takes
xB = x0,Bx1,B ⊕ x0,Ax1,B ⊕ x1,Ax0,B ⊕ ρ01 ⊕ ρ10 as his share.

4.4 Complexity of the Protocol

By inspection, an upperbound on the communication costs of executing the
protocol is O(|C|) OT’s and O(|C|) bits (the latter is from the initial input
sharing), where |C| denotes the number of gates in the circuit computing the
function f . Handling many gates in parallel, the round complexity is upper
bounded by the depth of the circuit C, i.e. the length of the longest path in the
graph of C.
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4.5 Security Discussion

In order that the above oblivious circuit evaluation protocol satisfies the required
correctness and privacy properties we have to assume that both players are semi-
honest, i.e. they follow the protocol and behave exactly as required, but each of
them separately may try to deduce from the information available to them as
a result of the protocol execution as much as possible about the other player’s
inputs.

It is easy to see that if one of the players is malicious and deviates from the
protocol, he can make the other player accept a false result, while he in fact
knows the correct one. With an adequate definition of what it means for OT to
be secure against malicious attacks, the protocol above would be private though.
For fairness, we have to assume that neither player crashes before termination
of the protocol.

The intuition behind the analysis of privacy is that the invariant maintained
guarantees that at each point in the execution of the protocol, the players hold
random additive shares in the actual outputs so far and that the respective shares
of each player does not increase knowledge about the actual output so far. It
is only at the end of the protocol where they have random additive shares in
the actual output that are exchanged, enabling the reconstruction of the actual
output.

Therefore, another way to look at the protocol is by saying that, conceptually
speaking, it simulates a trusted host: a third party who is and can be trusted by
both players. Given such a third party, both players secretly send their inputs to
the host, who returns the function value to both players. This is called an ideal
protocol.

In an actual proof, one has to show that each player on his own, given just
his input and the result of the computation, is able to generate efficiently a
simulation of the protocol that is indistinguishable from the ideal protocol.

Later we present protocols for the same task, that are secure against much
stronger adversaries than semi-honest ones in a much broader context, and in
fact, the security principles outlined above are the basis for defining security
there as well (Beaver [4], Micali/Rogaway [65], Goldreich [57], Canetti [21]).

5 Example

As an illustration, let’s return to the problem of Oblivious Common String Veri-
fication. We show that the general protocol provides a solution for this problem.
There are good reasons to prefer the solution of Fagin, Naor and Winkler, mainly
because an appropriate OT withstanding attacks by malicious rather than semi-
honest players renders the complete FNW solution secure against this kind of
attack.

But if we may assume the players are semi-honest, the following protocol is
just as good. Two players A and B each hold some secret n-bit string. Write
x = (x1, . . . , xn) and y = (y1, . . . , yn) for their respective strings.
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Write f(x1, . . . , xn, y1, . . . , yn) = (x1⊕y1⊕1) · · · (xn⊕yn⊕1). It follows that
f(x, y) = 1 if and only if x = y.

From this formula for f we can easily derive a Boolean circuit: there are n
pairs of input bits (xi, yi). For each such pair, the bits in it are first led through
a binary addition gate, after which the result is passed through a negation gate.
Now there are n intermediate results, which only have to be led through an
n-input binary multiplication gate. To be consistent with our description, we
first write the n-input binary multiplication gate as a tree of depth logn with
two-input binary multiplication gates only, and lead the intermediate results into
it.

By the method from Section 4 A and B can now obliviously verify whether
or not they have the same string. Note that 2n oblivious transfers and 2 logn
rounds of communication suffice.

6 Dealing with Malicious Attacks

Unfortunately, most protocols presented so far only work if the players are semi-
honest. We first indicate the failures that occur in the examples we have given,
if one of the players is cheating and deviates from the protocol, i.e. carries out
a malicious attack. The rest of this section deals with methods to enhance the
security of OT-protocols, achieving security even in the presence of a malicious
attacker. We stress that we still assume that the players do not crash before the
end of the protocol, to ensure fairness.

As an example of a failure, although Rabin-OT is secure for the sender if the
receiver is semi-honest and factoring large integers is hard, it is not clear that a
receiver deviating from the steps required in the protocol couldn’t “extract” the
factorization from the sender, even without being able to factor large numbers
efficiently in general. It might be true that there exists a single number modulo n
such that a square root of it reveals the factorization of n. Given such a number
it would be easy for the receiver to get the factorization of the sender’s modulus,
since the sender returns a square-root of any number modulo n that the receiver
sends. Hence, the receiver would always get the bit b. On the other hand, if the
sender would choose the modulus n as the product of three primes for instance,
he can influence the probability with which the receiver gets the bit b.

Fischer, Micali and Rackoff [44] presented the first realization of OT secure
against malicious attacks, i.e. it provides security for sender and receiver even if
one of them deviates arbitrarily from the protocol.

It is easy to see that the scheme based on RSA we presented is totally insecure
against malicious attacks by the receiver: nothing prevents the receiver from
computing the ciphertext c1−s in the same fashion as cs, in which case the
receiver retrieves both b0 and b1 at the end of the OT.
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6.1 Notion of Security of Basic OT

We assume that at most one of the players carries out a malicious attack. These
are the minimum (and for some applications sufficient) requirements we have to
make in order for OT resisting malicious attacks to make sense.

1. If the sender is honest (so the bits b0 and b1 are well-defined) throughout
the protocol, “no matter” how the receiver plays (note that if the receiver is
corrupt, the selection bit s may not even be well-defined in general), at least
one of the bits b0, b1 remains “completely” unknown to him. 4

2. If the receiver is honest throughout the protocol, “no matter” how the sender
plays, the selection bit s remains “completely” unknown to the sender. More-
over, the receiver always gets some bit, or else just aborts and the sender is
deemed corrupt.

Under this definition, the string-equality protocol of [41] as presented in
Section 2.2 is secure against a malicious attack by one of the players, for instance.

Beaver [9,10] has a simulation based definition of secure OT.

6.2 A General Solution in the Cryptographic Scenario

Goldreich, Micali and Wigderson [54] have a general defense against malicious
attacks that works in principle for any OT based on intractability assumptions.
We give an informal overview. It involves three other important primitives: com-
mitment schemes, mutually random coins and general zero knowledge techniques.
Interestingly, all these primitives (including OT) can be realized under the as-
sumption that trapdoor one-way permutations exist.

Trapdoor One-Way Permutations. We assume that both players are re-
stricted to probabilistic polynomial time computations, so that none of the play-
ers is computationally powerful enough to invert one-way permutations without
knowing a trapdoor. More precisely, this means that if a trapdoor one-way per-
mutation is selected at random by one party, then the other party, having ac-
cess to the description of the forward function only, cannot efficiently invert a
randomly chosen element from its range. The party knowing the trapdoor can
efficiently invert the function. Why is it that one party does have the trap-
door while the other doesn’t? This is by the existence of a special probabilistic
polynomial time algorithm called trapdoor permutation generator. On input of a
random bit string, the generator outputs a “random” one-way permutation and
a corresponding trapdoor. RSA (see Section 3.3) is an example of a trapdoor
one-way permutation.
4 Actually, one must require that there is a bit s so that if bs is given to the receiver,
he still has no information about b1−s This is to exclude the possibility that the
receiver for instance learns b0 ⊕ b1
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Commitments. Conceptually, there is an analog between vaults and commit-
ment schemes. PlayerA has some secret piece of information, and places the piece
in a vault, locks it and memorizes the opening combination. He then passes the
vault on to player B, to whom the secret information is hidden until he gets the
secret opening information to open the vault. But in the mean time, player A
cannot change the information stored in the vault, since it is no longer in his
possession. Thus, the commitment is binding. At some later moment, player A
can simply send the key of the vault to player B, who can then open it and read
the information.

Cryptographic, non-physical realizations of commitment schemes, can for
instance be based on RSA. Player A generates a key-pair ((n, e), (p, q)) for RSA,
and sends the public-key to player B. To commit to a bit b, A generates a
random plaintext m, and computes the corresponding ciphertext c. Write ρ for
its least significant bit. He sets d = b ⊕ ρ and sends (c, d) as the commitment
to B. To open the commitment, A sends m and the bit b to B, who verifies
that m is the plaintext corresponding to c and that d is equal to the sum of
its least significant bit and b. The hiding property follows from the fact that
the least significant bit is a hard-core bit (see Section 3.3). The commitment is
binding since RSA is a permutation (if the public exponent e is a prime larger
than the modulus n, for instance, B can efficiently verify that the public key
defines a permutation without any further proofs from A, since then we have
gcd((p− 1)(q − 1), e) = 1 for sure and primality can be efficiently tested). Note
that the binding property is unconditional and that the hiding property holds if
B is polynomially bounded. In fact, it can be shown that one-way permutations
are sufficient for commitments.

This seemingly innocent primitive has far reaching applications in cryptogra-
phy. For instance, it is sufficient to implement general zero knowledge interactive
proofs [53,56], a method that allows one to prove “anything provable” in zero
knowledge, i.e. to convince a sceptical judge of the veracity of an assertion with-
out giving anymore information away than the fact that the assertion is true. 5

Mutually Random Coins. Another application of commitments is mutually
random coins. Here players A and B want to establish a bit (or a string) that
is random if one of them is honest. A simple protocol goes as follows. A selects
a random bit bA and sends to player B a commitment to it. Player B selects
a random bit bB and sends it to A, who opens the commitment. The bit b is
defined as b = bA ⊕ bB.

OT Secure against Malicious Attacks. Returning to the problem of defend-
ing against malicious attacks in OT, we now show how we can defend against
these attacks by the techniques of [54].
5 There is a vast literature dealing with general zero knowledge and commitment
techniques, with many different flavours, styles and security and efficiency properties,
but we do not discuss these any further here.
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The key observation is that, for instance in the RSA based example of OT, if
one of the players is honest the security of the other player is guaranteed. That’s
not what we want, since actually we want that a player’s security is guaranteed
if he is honest, no matter what the other player does. Nevertheless, in some sense
this fact is the basis for achieving it: based on the primitives outlined above, an
honest player can force the other player to be honest as well or else the protocol
simply halts with no advantage for the corrupt player.

This has become an important design principle throughout the field of cryp-
tography: often it is possible to start from a cryptographic protocol that is se-
cure if its participants are semi-honest and to transform it into a protocol secure
against malicious adversaries, by forcing each player to prove that he behaved
as a semi-honest participant.

We start looking into the details. First of all, it’s useful if the randomness
used by each player is mutually random. However, it is in the interest of both
players not to reveal their randomly chosen bits, for obvious security reasons. Say
that each player needs at most l random bits. Then they execute the protocol
for achieving a mutually random bit l times in parallel where the receiver is
the committing party, and l times in parallel where the sender is the committing
party. However, they do not open any of the commitments used. Note that in the
first case this implies that the receiver knows the resulting mutually random bits
whereas the sender does not. So the receiver can use these bits later on whenever
they are required, and in fact we will explain how the sender can verify that the
receiver used them, in a way that is secure for the receiver. The second case is
of course similar, with the roles reversed.

Let’s first look at the sender’s security and let’s look at the RSA-example
from Section 3.3. The sender wants to make sure that the receiver gets at most
one of the bits b0, b1. It is sufficient if the receiver can convince the sender of
the veracity of the following assertion about the ciphertexts c0, c1. One of them
is equal to some particular string of mutually random bits, and one of them is
equal to the RSA-function applied to some other particular string of mutually
random bits (in this case we refer to those mutually random bits that the receiver
knows, but the sender doesn’t). To protect the receiver in case he is honest, the
means by which the receiver convinces the verifier of this assertion must be
zero-knowledge.

Roughly speaking, it is now fairly easy though tedious for the sender and
receiver to efficiently derive by themselves from what is known to both of them,
a description of a function F and a function-value y such that the assertion
about the ciphertexts c0, c1 is equivalent to saying that there exists an x with
F (x) = y. Furthermore, if the receiver followed the protocol, he can actually
efficiently determine such x.

The zero knowledge techniques from [53] are designed for exactly this tech-
nical situation! So in principle, the security of the sender can be guaranteed.

As to the receiver’s security, his selection bit is protected by the fact that
the proof of the assertion is zero knowledge.
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Therefore, under fairly general intractability assumptions, OT that is secure
against malicious attacks can be realized. However, it is very costly to resort
to the powerful techniques underlying the defense. In concrete situations with
specific implementations of OT, there may exist a more efficient way to enhance
the security.

Oblivious Function Evaluation and Malicious Attacks. So, are we done
and can we now use the OT with enhanced security directly in the general
protocol from Section 4 and obtain general oblivious function evaluation secure
against malicious attacks by one of the players?

No! There are many more things to be fixed first. For instance, in each current
gate, the inputs used must be the same as the outputs of some earlier gates.
Here a solution is to have both players always commit to their inputs at each
current gate and have them prove to each other in zero knowledge that these
commitments commit to the same values as the outputs of the gates that are
supposed to deliver the inputs to the current gate. In particular, both players
commit to their initial inputs.

Furthermore, using similar techniques as in the case of OT with strengthened
security above, it is not so difficult anymore to handle the full set of instructions
from Section 4 securely at all gates.

We return later to the techniques of GMW [54].

7 A Generic Solution

Another fundamental result is by Kilian [62], who shows constructively that OT
is necessary and sufficient for general oblivious function evaluation, even if one
of the players is malicious. From the previous section it should have become clear
that this is by no means obvious.

Given OT as a black-box 6 and given a function to be obliviously evaluated
and a circuit for it, there is a generic transformation that results in a set of
protocols for the players to execute. It is immaterial how the OT works exactly:
at those points in the protocols where OT is required, only calls are made to a
black-box for doing OT. In the other direction, note that OT can be viewed as
a oblivious evaluation of the function f(b0, b1, s) = (s⊕ 1)b0 ⊕ sb1.

Another contribution of [62] concerns the round-complexity of general secure
function evaluation, which is shown to be constant with polynomial size message
complexity if the function can be computed by a polynomial size formula (i.e.
the fan-out of the gates in the circuit is 1).

We do not overview a proof of Kilian’s result, but only introduce some of its
fundamental parts.

6 It is beyond the scope of the present paper to discuss the exact security definition
required for this result.
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7.1 Commitment Based on OT

Kilian shows how a commitment scheme (which he attributes to Crépeau) can
be simulated from OT as follows. Let b be the bit that player A wants to commit
to. A and B agree on a security parameter k.

1. For i = 1 . . . k, A selects a pair of random bits (r0
i , r

1
i ) such that b = r0

i ⊕ r1
i .

2. For i = 1 . . . k, B selects a random bit si.
3. For i = 1 . . . k, with A being the sender and B the receiver, they execute

OT (r0
i , r

1
i , si)

4. B takes the bits received, together with his own random choices, as A’s
commitment.

5. To open the commitment, A reveals the bit b and, for i = 1 . . . n, the ordered
pairs (r0

i , r
1
i ). Player B accepts the opening if and only if this information is

consistent.

Player A’s cheating probability is at most 1/2k: if A were able to open the
commitment in two different ways, he would have to guess all of B’s random bits,
so the binding property is satisfied. The hiding property follows immediately
from the definition of OT.

7.2 Committed Oblivious Transfer (COT)

COT is as OT, except that

1. Initially, the sender is committed to his input bits b0, b1, and the receiver is
committed to his selection bit s.

2. At the end of the protocol, the receiver is committed to the received bit bs.

An alternative proof of Kilian’s result can be found in [35], who introduce COT
and show that it is sufficient for secure function evaluation tolerating a malicious
attacker, and that COT can be simulated from OT (they don’t treat the con-
stant round issue though). The latter construction involves so-called envelope
techniques and error correcting codes.

8 Other Work

Some suggestions for further reading about defining OT secure against malicious
attacks and constructions of secure OT: Beaver addresses the pitfalls in attempts
to define OT secure against malicious attacks and presents solutions and con-
structions [7,9]. In [10], he gives a precise definition of OT so that when used in
a multi-party computation protocol the protocol as a whole is secure against a
malicious adaptive attacker.

The above references and Crépeau [34] (besides those references we already
mentioned) contain a host of other interesting references.
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Part II

General Secure Multi-party Computation

9 Introduction

The protocols from Sections 4 and 6.2 have an obvious extension from two players
to n players guaranteeing correctness and privacy. This is done by using n-out-
of-n additive sharing of bits and executions of OT between every pair of players.
In this case, privacy of a single player is guaranteed even if the n−1 other players
pool their complete views on the protocol. The extension to n > 2 players of the
protocol from Section 6.2 is even secure against malicious attacks.

However, the fairness condition is only fulfilled by making a strong assump-
tion on the behaviour of the players, since one party can leave the protocol
knowing the result of the computation whereas the other remain ignorant about
it, or simply disrupt it in an early stage.

An important contribution of Goldreich, Micali and Wigderson [54], is that
they explain how privacy can be traded for fairness. In fact, they achieve the
stronger property of robustness: it is not only infeasible for corrupted parties
to walk away prematurely with the result of the computation and leaving the
remaining players ignorant about it, they can’t disrupt the computation at all: if
the corrupt players leave the computation, the remaining ones will still be able
to complete the computation.

More precisely, they show that even if at most a minority of the players
perform a coordinated malicious attack, then correctness, privacy and robustness
can be guaranteed.

Apart from GMW-techniques we discussed in Section 6.2, they employ what
is called verifiable secret sharing, which was first introduced by B. Chor, S.
Goldwasser, S. Micali and B. Awerbuch [27].

Before sketching the full protocol of GMW, we introduce secret sharing and
verifiable secret sharing in the next sections.

10 Secret Sharing with Semi-Honest Participants

In a secret sharing scheme there is a dealer and a number of agents. The dealer
holds some secret string s, and sends shares of s privately to each of the agents.
These shares are computed in such a way that only certain specific subsets of
the agents can reconstruct the secret s by pooling their shares, while others have
no information about it.

Secret sharing was invented independently by A. Shamir [73] and B. Blakley
[15] in 1979. Their solutions allow the dealer to consider any number n of agents
and any threshold t ≤ n, such that from any subset of size at least t of the
shares the secret s can be reconstructed uniquely and efficiently, whereas sets
containing less than t shares contain no information at all about s.
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We explain Shamir’s scheme which is based on Lagrange-interpolation over
finite fields. We assume that all parties involved are semi-honest.

We use the following version of Lagrange Interpolation. Let K be a (finite)
field. Suppose we are given any t ≥ 1 points (p1, q1), . . . , (pt, qt) in the plane
K2, where the pi’s are all different. Then there is a unique polynomial f(X) ∈
K[X ] of degree smaller than t, that passes through these t points, i.e. f(p1) =
q1, . . . , f(pt) = qt.

First we discuss existence. For each 1 ≤ i ≤ t define the polynomial

fi(X) =

∏
1≤j≤t,j �=i(X − pj)∏
1≤j≤t,j �=i(pi − pj)

.

Observe that each fi has degree exactly t − 1 and that fi(pi) = 1 whereas
fi(pj) = 0 if j �= i.

But then it follows immediately that the following polynomial f does the
trick (Lagrange interpolation formula).

f(X) =
∑

1≤i≤t

qi · fi(X).

Note that f(X) has degree at most t− 1. Indeed, it can be strictly smaller than
t− 1.

As to uniqueness, note that if there were a polynomial f ′(X) ∈ K[X ] of
degree smaller than t that agrees with f on all t points, then the polynomial
f − f ′ ∈ K[X ] has t zeroes while its degree is smaller than t. So f − f ′ must
be identical to the zero-polynomial, since it’s well known that any polynomial
g ∈ K[X ] has at most degree(g) zeroes unless it’s the zero-polynomial.

To set up Shamir’s secret sharing scheme, let K be a finite field with |K| > n,
where n is the number of agents. Let P1, . . . , Pn be distinct, non-zero elements
of K, and let these values serve as “names” for the n agents. Let 1 ≤ t ≤ n be
the threshold. The secret-space in which the dealer codes the secret s is K. For
each s ∈ K, define Π(t, s) as the set of all polynomials f(X) ∈ K[X ] such that
degree(f) < t and f(0) = s.

One can efficiently sample a random member from Π(t, s) by setting the
lowest-order coefficient to s and taking random elements from K for the remain-
ing t− 1 coefficients. 7

The field K, the threshold t, the names P1, . . . , Pn and the protocol below are
known to all players. We assume that for each agent, there is a separate private
communication channel with the dealer (for instance one based on public key
encryption).

– Distribution Phase: The dealer has a secret s ∈ K, and selects a random
polynomial f(X) ∈ Π(t, s) and sends si = f(Pi) as share in s privately to
player Pi, i = 1 . . . n.

7 Note that this does not necessarily mean that one generates a polynomial of degree
exactly t− 1, since 0 ∈ K is also in the play.
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– Reconstruction Phase: From collection of ≥ t shares, the corresponding play-
ers pool their shares and jointly reconstruct f(X) and compute f(0) = s.

By Lagrange interpolation it is clear that reconstruction works as desired.
As to privacy, consider an arbitrary subset V of the agents of size t − 1.

Write V = {P ′
1, . . . , P

′
t−1} ⊂ {P1, . . . , Pn}, and write s′1, . . . , s′t−1 for the shares

f(P ′
1), . . . , f(P ′

t−1) of V .
Observe that for each s′ ∈ K, the t points (0, s′), (P ′

1, s
′
1), . . . , (P

′
t−1, s

′
t−1)

uniquely determine a polynomial f ′(X) ∈ Π(t, s′) that passes through all of
them.

So from the joint view of the players in V , each secret is equally likely (take
into account that the dealer chose f at random, given s) and hence the shares
held by V give no information about the real secret s.

Note that since the joint view of any set of size t − 1 gives no information
about the secret, the view of a smaller subset doesn’t give information about
the secret either. This follows from the fact that a smaller subset holds even less
information.

11 Verifiable Secret Sharing

In the presence of participants carrying out malicious attacks, there are two
threats in Shamir’s scheme.

– The dealer may send inconsistent shares, i.e. not all of them are simultane-
ously on some polynomial of degree smaller than t.

– At reconstruction, players may contribute false shares so that s̃ �= s is re-
constructed or nothing at all.

Note that if the malicious players coordinate well, the honest players cannot
in general distinguish between “good shares” and “bad shares”. Therefore, the
honest players may not even be able to figure out who the malicious players are.

In this section we explain methods to remedy this situation.

11.1 Definition of Malicious Adversary

Before we define verifiable secret sharing (VSS) to remedy these threats, we make
the model more precise and introduce some terminology. Consider a dealer and
n agents. A malicious adversary is allowed to corrupt the dealer and any single
subset of the n agents of size smaller than t. All other players are honest. Later
during the execution of a protocol 8 the adversary is allowed to alter and control
the behaviour of the corrupted players at his will, and even have them behave
8 In many multi-party computation protocols, the dealer will in fact at the same time
also be one of the agents. In this case, there are in total n players involved, and
the condition on the adversary is equivalent to saying that he is allowed to corrupt
any single subset of size less than t of the n players, without distinguishing between
dealer and agents.
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in a coordinated fashion. In particular the adversary can make some corrupted
players crash. For simplicity, we assume that the adversary makes the choice
of which subset to corrupt before anything happened, i.e. before the start of a
protocol.

11.2 Definition of VSS

The following informal definition is based on a formal definition of VSS from
[50].

1. If the dealer is honest, then the distribution of a secret s always succeeds,
and the corrupted players gain no information about s as a result of the
distribution phase. At reconstruction, the honest players recover s. These
properties hold regardless of the behaviour of the corrupted players.

2. If the dealer is corrupt, then the following holds. Either the dealer is deemed
corrupt by the honest players, and all of them abort the distribution phase. 9

Else, the distribution phase is accepted by the honest players and some value
s is uniquely fixed by the information held by the honest players as a result
of the distribution phase. In the reconstruction phase, the honest players
recover this value s. These properties hold regardless of the behaviour of the
corrupted players.

Note the absence of a secrecy condition in the corrupt dealer case: if the set of
corrupted players includes the dealer, the adversary controlling them knows the
secret. Therefore, it is only required that in this case the protocol is robust. The
honest dealer case of course corresponds to what one would naturally require.

11.3 VSS Scheme

Here is a sketch of a generic construction of VSS based on a combination of
Shamir’s secret sharing scheme, commitments and zero-knowledge interactive
proofs. Let the threshold t for Shamir’s scheme satisfy t− 1 < n/2.

Commitments We assume that we have a commitment scheme for committing
to log |K| bits, for instance obtained as a parallel version of the commitments
from Section 6.2 based on RSA or trapdoor one-way permutations.

From a high level, a commitment protocol based on such primitives works
as follows. There is a public, efficiently computable function “commit” whose
description follows from the primitive chosen, and it takes as input a random m-
bit string (for some m that will be clear from the primitive) and some log |K|-bit
string.

To commit to a log |K|-bit string x, one chooses a random m-bit string ρ and
computes C = commit(x, ρ). Finally, one publishes C as a commitment.

To open, one publishes x and ρ. The opening is verified by checking that
commit(x, ρ) = C. We call the string ρ the opening information of the commit-
ment to x.
9 Another possibility is that the honest players take some default set of shares.
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Broadcast We now also assume that a primitive called broadcast is at the
disposal of the participants. This is a mechanism by means of which any of
the participants can make sure that a message he has for all players is received
unaltered by the honest players, despite the possible presence of malicious adver-
saries. Furthermore, we assume that recipients can establish who is the originator
of the message. This mechanism may be realized by physical means or may be
simulated by a protocol among the players. It suffices to know that it can be
realized using digital signatures for instance.

VSS Protocol Here is an informal overview of a VSS protocol due to [54], which
is also a nice illustration of the power of zero knowledge techniques and com-
mitments. We assume that all players are restricted to probabilistic polynomial
time computations.

– Distribution Phase: The dealer has secret s ∈ K, and computes shares
s1, . . . , sn of s as in Shamir’s scheme. For i = 1 . . . n, he computes a com-
mitment Ci to si. After he has broadcast the commitments to all players,
he proves in zero knowledge to all players P1, . . . , Pn that the commitments
contain shares consistent with some secret. If this proof is accepted, he sends
si and the opening information for Ci privately to Pi, i = 1 . . . n.

– Reconstruction Phase: As in Shamir’s scheme, except that each player Pi

not only broadcasts his share si, but also the opening information for Ci.
For reconstruction of the secret s, the honest players only take those shares
whose corresponding commitment is opened successfully.

We briefly analyze this protocol. Regarding the zero knowledge proof of con-
sistency, we assume that it proceeds in such a way that consistency holds if and
only if the proof is accepted by all honest players (except with negligible error
of course).

There is a number of ways to achieve this, for instance by having each player
separately and publicly (using the broadcast primitive) act as a verifier in a
zero knowledge proof by the dealer, while all others verify whether the proof is
accepting. Only if the dealer at some point returns a proof that is not accepting,
the honest players accuse the dealer and abort. Note that if consistency does not
hold, then with high probability the proof when verified by an honest player will
fail.

The actual consistency statement that the dealer has to prove, could take the
following form: there exist s, a1, . . . , at−1 ∈ K, ρ1, . . . , ρn ∈ {0, 1}m such that
for i = 1 . . . n, Ci = commit(s +

∑
1≤j≤t−1 ajP

j
i , ρi).

Such statements can be proved in zero knowledge by the methods of [53], for
instance. 10

If the dealer is honest, the distribution phase definitely succeeds. Privacy
follows from the hiding property of the commitments (the corrupted players are

10 A particularly efficient general zero knowledge protocol is given in [29]
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polynomially bounded and hence cannot read the contents of commitments), the
privacy of Shamir’s scheme, and the zero knowledge property of the proofs.

Looking at the reconstruction phase, and assuming that the distribution
phase was successful, we note that in the case of corrupt shares, the commitments
cannot be successfully opened since this would contradict the binding property.
Therefore, false shares are always found out and can henceforth be ignored by
the honest players. In summary, the only malicious action the corrupt players
can undertake is to refuse to participate in the reconstruction phase. But since
there are at most t− 1 corrupt players and since we assumed that the threshold
t in Shamir’s scheme satisfies t − 1 < n/2, there are always t honest players 11

to reconstruct the secret s.

11.4 Other Work

Particularly efficient VSS based on specific intractability assumptions (discrete
logarithms) are presented in [42] and [67]. See also [28]. In a later section we
discuss information theoretic VSS.

12 GMW: Achieving Robustness

With VSS in hand, the GMW protocol first has each player VSS each of his
inputs before the n-player extension of protocol from Section 6.2 is executed
(see Section 9). At the end of the protocol, each player applies VSS again, this
time to the (additive) shares in the result of the computation. This requires
additional zero knowledge proofs (in the same style as before) showing that
these additive shares are indeed shared with VSS.

If one of the players fails in this phase (or earlier) he is kicked out of the
computation, and the remaining players back up to the beginning, reconstruct
the failed player’s input, and do the protocol over again, this time simulating
the failed player openly. Note that up to t− 1 corrupted parties are tolerated in
this way. With a similar argument as in the case of VSS, this can be shown to
be optimal. There are more efficient variants, see [57] for a full description and
analysis of the GMW-result.

The analysis [57] of the actual 12 GMW-protocol is very complex and has to
deal with many subtleties that have been suppressed in our informal overview.

11 This argument can also be used to show that t − 1 < n/2 is optimal, i.e. it is not
only sufficient but also necessary.

12 We have made a number of simplifications for ease of exposition. For instance, we
have neglected input independence.: in reality one must make sure that the corrupted
parties choose their inputs to the computation independently from the inputs of the
honest parties. This can be achieved by having all players commit to their inputs
and having them give a zero knowledge proof of knowledge showing they can open
these commitments.
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13 Other Work

Chaum, Damgaard and van de Graaf [23] present protocols where one of the
players’ input is unconditionally protected. Kilian, Micali, and Ostrovsky [63]
show how oblivious transfers can be used in zero knowledge protocols. Galil,
Haber and Yung [48] achieve greater efficiency with their computation proto-
cols. Recently, Gennaro, Rabin and Rabin [52] presented particularly efficient
protocols for the cryptographic model (see also [28]).

Part III

Information Theoretic Security

14 Introduction

In 1987, two independent papers by M. Ben-Or, S. Goldwasser and A. Wigderson
[13], and D. Chaum, C. Crépeau and I. Damgaard [24] achieved a new break-
through in the theory of general multi-party computations.

They demonstrated the existence of information theoretically secure general
multi-party computation protocols.

The price to be paid is a smaller tolerance with respect to the number of
maliciously behaving players. Whereas [54] tolerates any malicious minority un-
der the assumption that the players are computationally bounded, the protocols
of [13] and [24] tolerate any malicious subset of size less than a third of the
total number of players, with no assumptions on the computational power of the
adversary. However, both papers argue that this is essentially the best one can
achieve.

A common feature of both papers is the use of Shamir’s secret sharing scheme,
and the general paradigm of compiling a protocol secure against semi-honest
players into one secure against malicious players by forcing all players to prove
that they behave as semi-honest ones. However, [13] relies on techniques from the
theory of error correcting codes, while [24] is based on distributed commitments
and zero-knowledge. The result from [13] achieves perfect correctness, while [24]
has a negligibly small error probability. 13

14.1 Model

We make the model of BGW [13] and CCD [24] a bit more precise.

Communication:
13 An interesting side-contribution of [24], seemingly often overlooked, is that it employs

general zero knowledge techniques and information theoretically secure commitments
in a distributed setting, showing that general zero knowledge makes sense (in a
distributed setting) even if for instance NP = P .
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– The n players are arranged in a complete (synchronous) network.
– Untappable private channels between each pair of players are available.

Adversary:

– The adversary is allowed to corrupt any single subset of size k of the players
before the start of the protocol.

– Exercising complete control over the corrupted players, the adversary is al-
lowed to force the corrupted players into coordinated malicious attack on
the protocol.

Function:

– Any efficiently computable function g with n inputs.

14.2 Results of CCD and BGW

There is a correct, private, robust polynomial time protocol evaluating g iff
the adversary corrupts at most k < n/3 players. In the semi-honest case this is
k < n/2. These bounds are optimal. 14

14.3 Remark on Broadcast

For security against malicious attacks, both results require the availability of a
broadcast channel [64]. It is clearly not an option to use digital signatures in
this case, since this does not fit with context of information theoretically secure
protocols.

However, broadcast among n players can be efficiently simulated even in the
presence of at most t− 1 < n/3 malicious players (see for instance [43,49]). This
bound is optimal.

14.4 Outline of this Part

Instead of explaining the techniques of [24] and [13], we will sketch proofs of their
results based on recent developments in the theory of multi-party computation
due to Gennaro, Rabin and Rabin [52] and Cramer, Damg̊ard and Maurer [28].

We first treat the semi-honest case.

15 Semi-Honest Case

We show how n players can securely compute on shared secrets. More concretely,
n players have shares in two secrets (according to Shamir’s secret sharing scheme)
and they wish to compute from these, random shares in the sum or the product
of these secrets.

We first treat these two cases. Later we show how this allows the n players
to compute an arbitrary function on shared secrets.
14 Given a broadcast channel for free, a malicious minority can also be tolerated by the

result of T. Rabin and M. Ben-Or [70,69] at the expense of a negligble correctness
error.
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15.1 Computing on Shared Secrets

Constants, Addition Suppose there are n players holding shares of two secrets
s and s′, both resulting from Shamir’s secret sharing scheme, with parameters
n and t. It is easy to see that shares for the sum s + s′ are obtained when
each player simply adds his shares of s and s′. Moreover, if the players later
reconstruct s+ s′ from these new shares, no new information about s, s′ is given
away beyond what can be deduced from their sum s + s′.

If the dealer used polynomials f and g to compute the shares of s and s′

respectively, the new shares “look” as if the dealer had used the polynomial
(f + g) to compute shares of s + s′.

Similarly, for any constant c known to all players, they compute shares for
c · s (respectively, c + s) by multiplying (respectively, adding) each share by c.

Multiplication We explain a method introduced by R. Gennaro, T. Rabin and
M. Rabin [52]. Suppose there are n players holding shares of two secrets s and
s′, both resulting from Shamir’s secret sharing scheme, with parameters n and
t.

The goal of the players is to jointly compute on their shares such that as a
result they hold shares in the product s · s′, also resulting from Shamir’s secret
sharing scheme with parameters n and t. Moreover, they require that these
shares for s · s′ are randomly generated, as if the (honest) dealer had not only
distributed shares for s and s′, but independently for s · s′ as well.

If we consider the joint view of any set of t−1 players, we can observe that this
randomness condition has the following effect. If s ·s′ is later reconstructed from
the n shares of s · s′, the shares revealed together with the complete information
held by the t − 1 players, do not give information beyond ss′ and what can be
inferred from it.

Unlike the case of addition, this is not trivial to solve. The first protocols for
this task appeared in [24] and [13], but the solution of [52] we explain here is
elegant and simple.

Let f and g denote the polynomials used by the dealer. Let n denote the
number of players (agents) and t the threshold. We assume that t− 1 < n/2.

We have: f(0) = s and g(0) = s′ and both polynomials are of degree less
than t. For i = 1 . . . n, write si = f(Pi) and s′i = g(Pi) for player Pi’s shares in
secrets s and s′, respectively.

We are interested in s·s′. Observe that the polynomial f ·g satisfies (f ·g)(0) =
s · s′ and that it has degree at most 2t − 2 < n. Furthermore, for i = 1 . . . n,
(f · g)(Pi) = si · s′i, which is a value that player Pi can compute on his own.

Therefore, by Lagrange interpolation and by our assumption t−1 < n/2, the
players at least hold enough information to define f · g uniquely.

Now comes the interesting point. First, there exists a fixed linear combi-
nation, whose coefficients r1, . . . , rn ∈ K only depend on the Pi’s, over the
“product-shares” si · s′i that yields s · s′. This is easy to see. By the Lagrange
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interpolation formula we have

(f · g)(0) =
∑

1≤i≤n

( ∏
1≤j≤n,j �=i −Pj∏

1≤j≤n,j �=i(Pi − Pj)

)
· sis

′
i.

So the values between brackets are the coefficients r1, . . . , rn, and all of these
can be computed from public information. A simple but important fact for the
analysis to follow is that at least t of these values are non-zero. For suppose
without loss of generality that rt = . . . = rn = 0. Then we have, for instance,
(f · 1)(0) = s =

∑
1≤i≤t−1 ri(si · 1), where 1 denotes the polynomial 1 ∈ K[X ].

This would mean that players P1, . . . , Pt−1 can break Shamir’s secret sharing
scheme, a contradiction.

Of course the players don’t want to keep these product-shares sis
′
i as their

shares in s · s′; first of all it changes the threshold, and second, these product-
shares are by no means random shares of the secret s · s′. In fact, reconstruction
could reveal more than just s ·s′ in the sense that it could also reveal information
about s, s′ individually.

Therefore, they first re-share their product-shares: each player Pi acts as a
dealer and distributes shares of his secret si · s′i to all players (Pi included for
completeness), using the same parameters n and t and resulting in share uij for
player Pj , j = 1 . . . n. Write hi for the polynomial used by Pi.

Consider the polynomial

h(X) =
∑

1≤i≤n

ri · hi(X).

This has degree < t, and h(0) =
∑

1≤i≤n ri · hi(0) =
∑

1≤i≤n ri · sis
′
i = s · s′.

Therefore, when each player Pi now computes

vi =
∑

1≤j≤n

rjuji,

Pi has a share vi in s · s′ resulting from the polynomial h(X) of degree less than
t.

As to privacy, it is sufficient to note that from the point of view of any
coalition of the players of size t − 1 or smaller, the polynomial h contains at
least one hi contributed by a player outside the coalition, since at least t of the
r1, . . . , rn are non-zero.

15.2 Protocol for Semi-Honest Participants

Based on the techniques for computing on shared secrets, we now present a
general multi-party computation protocol (essentially due to [52]) secure if a
semi-honest adversary has access to the complete information of at most t − 1
players, where t− 1 < n/2.

We assume that the function they wish to jointly compute is given as an
arithmetic circuit over a finite field K with |K| > n. Arithmetic circuits are
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similar to Boolean circuits (see Section 4), except that the computations take
place over K instead of GF (2). This is no restriction: if we fix an arbitrary
K, then any function that is efficiently computable is also computable by a
polynomial size arithmetic circuit over K. These are the types of gates we require:
two-input addition- and multiplication gates, and one-input gates for addition
or multiplication with a constant.

As in Section 4, the computation proceeds in a gate-by-gate manner, main-
taining the invariant that at each point the players have random shares in the
current intermediate results.

When they have processed the final output gate, all players broadcast their
shares in the result, and reconstruct it.

Input Distribution Phase
Using Shamir’s Secret Sharing Scheme, each player provides shares of his
input to all players.

Computation Phase
If the current gate is addition, or addition/multiplication of a constant, they
follow the steps from the first part of Section 15.1. If the current gate is
multiplication, they follow the steps from the second part Section 15.1.

Reconstruction Phase
Each player broadcasts his share in the output, and all reconstruct the result.

15.3 Optimality of the Bound

Suppose there exists an integer n > 1 and a general n-party computation proto-
col secure if more than a strict minority of the players conspire (semi-honestly),
i.e. the number of tolerable conspirators would be at least n/2. This would
immediately imply a protocol for two players to evaluate for instance the AND-
function obliviously (each of the players would simulate a different half of the n
players). By the same arguments as in Section 3.1, this is impossible and hence
the t− 1 < n/2 bound is optimal.

16 Dealing with Malicious Attacks

We first show how to turn Shamir’s secret sharing scheme into a Verifiable Secret
Sharing Scheme. Based on this, we construct distributed homomorphic commit-
ments. Finally, we explain how to defend against malicious attacks in general
multi-party computations.

These results are taken from Cramer, Damgaard and Maurer [28].

16.1 Verifiable Secret Sharing Scheme

Below we adopt a linear algebraic view on Shamir’s secret sharing scheme, that
some may find less intuitive than the explanation based on polynomial interpo-
lation (though technically speaking it is definitely as elementary).
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Our reasons for doing so are two-fold.
First, it opens the way to a verifiable secret sharing scheme that avoids the

bi-variate polynomials and error correcting codes of [13].
Second, Brickell [18] points out how this linear algebraic view leads to a nat-

ural extension to a wider class of secret sharing schemes that are not necessarily
of the threshold type. This has later been generalized to all possible so-called
monotone access structures 15 Karchmer and Wigderson [61] based on a linear
algebraic computational device called monotone span program.

Cramer, Damg̊ard and Maurer [28] extend these results of Karchmer and
Wigderson, by introducing a method to transform monotone span program based
secret sharing schemes (Shamir’s scheme is a particular instance) into verifiable
secret sharing schemes. The enhancement is purely linear algebraic in nature and
admits no analogous view based on polynomials. In fact, in the monotone span
program model of [61], which deals with arbitrary monotone access structures
and not just threshold ones, it is in general not possible to speak about poly-
nomials. Therefore, one reaches further if one concentrates on the quintessential
algebraic properties, instead of on the very specific language of polynomials.

We will not present the general VSS result of [28] here, but rather the
threshold-case which has some nice extras over the general construction, that
are mentioned but not detailed in [28]. The presentation is self-contained and
doesn’t require knowledge of [61].

Linear Algebraic View on Shamir’s Secret Sharing Let K be a finite field,
let M be a matrix with n rows and t columns, and with entries from K. We say
that M is an (n, t)-Vandermonde matrix (over K) if there are α1, . . . , αn ∈ K, all
distinct and non-zero, such that the i-th row of M is of the form (1, αi, . . . , α

t−1
i )

for i = 1 . . . n. Note that this implies that |K| > n.
For an arbitrary matrix M over K with n rows labelled 1 . . . n, and for an

arbitrary non-empty subset A of {1, . . . , n}, let MA denote the matrix obtained
by keeping only those rows i with i ∈ A. If A = {i}, we write Mi. Similarly, for
a vector s ∈ Kn, sA denotes those coordinates si of s with i ∈ A.

Let MT
A denote the transpose of MA and let ImMT

A denote the K-linear
span of the rows of MA. We use KerMA to denote all linear combinations of the
columns of MA leading to 0, the kernel of MA.

It is well-known that any square (i.e. number of rows is equal to number of
columns) Vandermonde matrix has a non-zero determinant. If M is an (n, t)-
Vandermonde matrix over K and A ⊂ {1, . . . , n}, then we conclude that the
rank of MA is maximal (i.e. is equal to t, or equivalently, ImMT

A = Kt) if and
only if |A| ≥ t.

15 This generalization has first been achieved by Ito, Nishizeki and Saito [60] and later
by Benaloh and Leichter [11]. Both these results are based on elementary monotone
formula complexity of the access structure ([60] is more restricted since it requires
DNF formulae). However, the model of [61] is much more powerful in terms of
efficiency. See also [14].
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But more is true. Let ε denote the column vector (1, 0, . . . , 0) ∈ Kt. If |A| < t,
then ε �∈ ImMT

A , i.e. there is no λ ∈ K |A| such that MT
Aλ = ε.

This can be seen as follows. Suppose without loss of generality that |A| = t−1
and that there is such λ. Consider the square matrix NA obtained from MA by
deleting the first column (that consists of t − 1 1’s). This matrix is “almost” a
square Vandermonde matrix: it can be seen as a square Vandermonde matrix
multiplied by a matrix that has zeroes everywhere, except that its diagonal
consists of non-zero elements (in fact, αi’s with i ∈ A). It follows that NA has a
non-zero determinant. But then MT

Aλ = ε implies NT
Aλ = 0 and λ �= 0. This is

impossible since NA is a square matrix with non-zero determinant.
Therefore we can say

ε ∈ ImMT
A if and only if |A| ≥ t.

We need some more basic linear algebra. For vectors x,y ∈ Kt, define the
standard in-product (finite field case) as 〈x,y〉 = x0y0+ . . .+xt−1yt−1. We write
x⊥y when 〈x,y〉 = 0 and x is said to be orthogonal to y, and vice-versa. For a
K-linear subspace V of Kt, V ⊥ denotes the collection of elements of Kt that are
orthogonal to all of V (the orthogonal complement), which is again a K-linear
subspace.

For all subspaces V of Kt we have V = (V ⊥)⊥. This is an elementary fact
that can be proved in a number of ways. Here we exploit the fact that K is finite.

Say dim(V ) = t′, and choose any basis for V . Now x ∈ V ⊥ if and only if
〈x, f〉 = 0 for all vectors f in the chosen basis. So if we arrange those basis
vectors as the rows of a matrix M (it follows that V = ImMT ), we have V ⊥ =
(ImMT )⊥ = KerM . The latter equality simply follows by inspection.

By Gaussian Elimination (“sweeping”) on the rows of M , we can bring it of
course into a form where the first t′ columns constitute the identity matrix.

The rows of this new M are still a basis for V , and therefore the relationships
above still hold. We count the number of x such that Mx = 0, i.e. we count
|KerM |. From M ’s form, it follows that for each selection of the last t − t′

coordinates of x, there is a unique selection of its first t coordinates such that
Mx = 0. Hence, |V ⊥| = |KerM | = |K|t−t′ . Therefore, by applying this fact once
more, |(V ⊥)⊥| = |K|t′ . Since V ⊂ (V ⊥)⊥ from the definition, it now follows that
V = (V ⊥)⊥.

By application of this fact, it now follows that ImMT
A = (KerMA)⊥, and we

can conclude that

ε �∈ ImMT
A if and only if there exists κ ∈ Kt such that MAκ = 0 and κ1 = 1.

Another simple identity is that 〈x,MT
Ay〉 = 〈MAx,y〉 for all x,y of adequate

dimensions.
Now we can present and analyze Shamir’s scheme in an alternative fashion.
Let there be n players, and let t be the threshold. Over a finite field K, let

M be an (n, t)-Vandermonde matrix.

Distribution Phase: Let s ∈ K be the secret. The dealer chooses a vector b ∈ Kt

by setting its first coordinate b1 to s, and selecting random elements from
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K for the remaining coordinates. To player i he privately sends si = Mib as
share in s, for i = 1 . . . n.

Reconstruction Phase: Let A ⊂ {1, . . . , n} with |A| ≥ t. From their joint in-
formation, the players in A efficiently compute by elementary linear alge-
bra λ ∈ K |A| such that MT

Aλ = ε . Write Mb = s. Then s = 〈b, ε〉 =
〈b,MT

Aλ 〉 = 〈MAb,λ 〉 = 〈sA,λ 〉, which they can compute efficiently.

It should be clear that reconstruction works as desired. Regarding privacy,
let |A| = t − 1, and consider the joint information held by the players in A,
i.e. sA = MAb. Let s̃ ∈ K be arbitrary, and let κ be such that MAκ = 0 and
κ1 = 1. Then MA(b+(s̃− s)κ) = sA and the first coordinate of the argument is
equal to s̃. This means that, from the point of view of the players in A, sA can
be consistent with the secret s̃.

The number of b̃ ∈ Kt with b̃1 = s̃ is clearly equal to |Ker(MA)| (which is
independent of s̃), and the players in A have no information about s (take into
account that all coordinates of b except possibly the first have been chosen at
random).

Towards VSS Let t − 1 < n/3. A fact that is also exploited in [13] is that a
complete set of shares s with at most t−1 arbitrary errors still defines the secret
s uniquely.

Indeed, let δ1, δ2 ∈ Kn be arbitrary vectors with Hamming-weight at most
t− 1. Let W ⊂ {1, . . . , n} denote the indices of the coordinates that are simul-
taneously zero in both vectors. Note that |W | ≥ t. Consider s1 = Mb1 and
s2 = Mb2, and s̃1 = s1 + δ1, and s̃2 = s2 + δ2. Suppose that s̃1 = s̃2. Then we
have MW (b1 −b2) = 0. But since |W | ≥ t, the first coordinate of the argument
must be zero and hence b1 = b2.

Therefore, in principle and assuming that the dealer is honest, setting t −
1 < n/3 guarantees robustness against players handing in false shares. However,
efficiency is a problem (even when assuming an honest dealer): how to decode
a “disturbed” set of shares s̃ and recover the secret. In [13], efficient standard
error correction techniques are applied to a version of Shamir’s scheme obtained
by first passing to an extension field of K.

We first explain how this can be avoided (for the moment we still assume an
honest dealer).

Consider the following variant of Shamir’s scheme.

Distribution Phase: Let s ∈ K be the secret. The dealer chooses a random
symmetric matrix R ∈ Kt,t, subject to the condition that it has s in its
upper left corner. For i = 1 . . . n, the dealer sends privately to player i the
(row-)vector si = MiR as share in s. Write b for the first column of R, then
the first coordinate of si is equal to Mib. This value is called player i’s actual
share in s.

Reconstruction Phase: For i = 1 . . . n, each player i broadcasts his share s̃i.
Consider the matrix C with n rows and n columns, whose entry in the i-th
row and j-th column is 1 if and only if Mj s̃T

i = s̃jM
T
i . Throw away all rows
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of C that have t or more zeroes. There will be at least t rows left. For each
of the rows i left, take the first coordinate of the corresponding s̃i as the
actual share of player i. These at least t actual shares determine uniquely
the secret s, according to Shamir’s secret sharing scheme as before.

We first argue that the secret s is indeed efficiently reconstructed, assuming
an honest dealer and at most t − 1 arbitrarily corrupt players. First note that
for all i, (MiR)T = RMT

i by symmetry of R. Hence, for all i, j we have

MjsT
i = sjM

T
i .

From this we conclude that each player j holds a share MjsT
i in player i’s

actual share of s. Consider the case that a player i broadcasts a vector s̃i that
differs from his share si in the first coordinate (and possibly elsewhere as well),
then for at most t−1 of the real sj ’s we have Mj s̃T

i = sjM
T
i , since obviously, two

complete sets of shares in Shamir’s scheme (with parameters n, t) for different
secrets can agree on at most t − 1 of the shares. But we also have to take into
account that not only player i may be cheating, he may also coordinate with
t − 2 other cheaters. Hence, an upperbound on the number of consistencies in
this case is (t−1)+(t−1) = 2t−2. Therefore, there are at least t inconsistencies
in this case.

On the other hand, if player i is honest then no matter how the corrupt
players lie and cheat, they are going to cause at most t−1 inconsistencies in the
i-th row of the consistency matrix C. Therefore, the procedure yields at least t
good actual shares, sufficient for reconstructing s. Note that in the analysis we
have only used the fact that the total information sB received by the set of the
honest players B is of the form sB = MBR for some symmetric R.

As to privacy we note the following. For vectors v = (v1, . . . , vt) ∈ Kt and
w = (w1, . . . , wt) ∈ Kt, the standard tensor product (matrix form)v ⊗ w is
defined as a matrix with t rows and t columns such that the j-th column is equal
to vjw. Note that v ⊗ v is a symmetric matrix. Privacy is argued in a similar
way as in the case of the linear algebraic explanation of Shamir’s scheme. Let
|A| ≤ t − 1, and let κ satisfy MAκ = 0 and κ1 = 1. Then κ ⊗ κ is symmetric,
has 1 in its upper left corner and satisfies MA(κ ⊗ κ) = 0. This is then used to
show that for each possible secret, the number of symmetric matrices with that
secret in its upper left corner and consistent with the joint information of A, is
the same.

Pairwise Checking Protocol We now drop the assumption that the dealer
is honest, and build a “pair-wise checking protocol”, where each pair of players
exchange checking information, around the scheme above to obtain VSS. The
pair-wise checking as such is quite similar to methods from e.g. [13] and [43].

Let B denote the set of honest players, and let SB be the total information
received by B in the distribution phase. By the analysis of the honest dealer case
above, we are done if SB = MBR for some symmetric matrix R.
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Suppose that some “pair-wise checking protocol” performed right after the
dealer distributed the shares (as in the scheme above) would guarantee that

MBST
B = SBMT

B .

We show that this is sufficient to conclude the existence of such R. Since certainly
|B| ≥ t, we know that the span of the rows of MB is all of Kt. Hence there exists
a matrix NB such that MT

BNB is equal to the identity matrix with t rows and t
columns. Hence we have MB(ST

BNB) = SB, and we can take ST
BNB as R.

The following pairwise-checking protocol is appended to the distribution
phase.

1. Each player i sends to each player j the value MjsT
i . Player j checks that this

is equal to sjM
T
i (pairwise consistency check). In case of an inconsistency,

player j broadcasts a complaint about the value received from player i.
2. In response to complaints, the dealer must broadcast the correct value MjsT

i

for all complaints of players j about the values received from players i.
3. If any player j finds that the information broadcast by the dealer is still in-

consistent, it is clear to player j that the dealer is corrupt, and he broadcasts
a request that the dealer makes public all the information sent to player j.
This counts as claiming that the dealer is corrupt. These accusing players
remain passive until a decision is made in the final step.

4. The dealer must again broadcast all the requested information, and again
this may result in some players accusing the dealer of being corrupt. This
can repeat until the information broadcast by the dealer contradicts itself,
or he has been accused by at least t players. Or else, no new complaints
occur and the number of accusations is at most t− 1. The decision whether
or not to accept the distribution phase is now taken as follows. In the first
two cases, the dealer is deemed corrupt and is disqualified. In the last case,
the distribution phase is accepted by the honest players. Accusing players
accept the information broadcast for them as their shares.

We analyze the protocol. First, we look at the honest dealer case. The corrupt
players do not get more information than in the protocol above that assumes an
honest dealer (note that no honest player will request the honest dealer to make
public the information sent to him by the dealer, because if the honest player
complains about some player, the honest dealer will always send the correct
value).

Furthermore, the corrupt players can cause at most t − 1 accusations, and
hence the distribution phase is always accepted by the honest players if the
dealer is honest.

Next, let’s drop the assumption that the dealer is honest and let’s assume that
the distribution phase was accepted by the honest players. Then it is immediate
that each honest player has a share that is consistent with the shares of all
other honest players. Suppose that this is not the case. There must be at least
one honest player that did not accuse the dealer (since there are at most t − 1
accusations and at most t − 1 corrupted players, and 2t − 2 < n since t − 1 <
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n/3). Clearly, the shares held by the set of non-accusing honest players (which
is non-empty by the above) must be pair-wise consistent. All other shares of
honest players are broadcast, so if there were any inconsistency, a non-accusing
honest player would have accused the dealer, which is in contradiction with our
assumptions.

16.2 General Protocol Secure against Malicious Attacks

Consider the protocol for the semi-honest case. We would like to enhance it so
that the following invariant is maintained. At each point in the (once again)
gate-by-gate multi-party computation, the current intermediate results (i.e. the
values at the current gate as propagated through the circuit from the actual
inputs) are secret shared (as in the semi-honest case) and moreover, each player
is committed to his shares.

Homomorphic Distributed Commitments Distributed commitments have
similar binding and hiding properties as the commitments from Section 6.2,
except that this time these properties hold unconditionally, i.e. regardless of the
computing power of an adversary. Of course, this will be so only with respect to
the adversary we have defined earlier, that corrupts less than n/3 of the players
before the start of the protocol.

Based on VSS, this is how it works. If player j wants to commit to s ∈ K,
the n players execute the distribution phase of VSS, where player j acts as the
dealer and takes s as the secret. To open the commitment, the n players execute
the reconstruction phase of VSS.

One can immediately see that given two distributed commitments to values s
and s′ respectively, a commitment to s+s′ is non-interactively created by having
all players locally take the sum of the information they hold (i.e. the VSS-shares
in s and s′).

Similarly, they can take a commitment and non-interactively multiply or add
in a known constant.

It is in this sense that we say that the commitments are homomorphic. To
create a distributed commitment to ss′, is more involved and is explained later
on.

Maintaining the Invariant Now think of the commitments from above as ab-
stract, black-box homomorphic commitments, and forget for the moment how we
actually constructed them. Suppose the dealer in Shamir’s scheme first commits
to the secret s and the random choices ρ1, . . . , ρt−1. Then, by the homomorphic
properties of the commitments and the fact that the shares in Shamir’s scheme
are linear combinations (with fixed public coefficients!) of the secret and the
ρi’s, the players can compute new commitments to these n shares by just doing
local computations. This guarantees that the dealer is committed to consistent
shares, i.e. the shares results from a correct (not necessarily random, but this
is no problem) execution of the distribution phase of the secret sharing scheme.
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The only thing the dealer now has to do, is to send privately to each player the
share he is entitled to and the “opening information” of the commitment to this
share 16, so that now the receiving player is committed to his share and can open
it himself. We call this Commitment Sharing Protocol (CSP)

In the Input Distribution Phase of the general protocol, all players will secret
share their inputs to the computation in the way we have just described.

In the Computation Phase, if the current gate is addition, or multiplication
by a constant, the procedure is trivial by the homomorphic properties of com-
mitments and Shamir’s secret sharing scheme. The only real difficulty left is
handling multiplication gates, which we will study separately.

In the Output Reconstruction Phase, each player merely opens the commit-
ment to his share in the final result of the computation. Each player collects
enough correct shares to reconstruct the result (output) of the computation.

Linear Secret Sharing Schemes We now set out to handle the multiplication
gates. But first it is convenient to further explore our linear algebraic view.

Shamir’s secret sharing scheme is a linear scheme in the sense that each share
is a linear combination (with fixed, public constants) of the secret and random
choices made by the dealer.

It is possible to take this point of view as the starting point for a class of
secret sharing schemes [18,14,61]: general linear secret sharing schemes.

There are n players, and there is a public matrix M with d rows and e
columns, in which each row is assigned to one of the players. Abstractly speaking,
each of the d rows of M is labeled with exactly one element from {1, . . . , n}, and
we allow that some (or all) labels occur more than once. Write ψ for the function
that associates a row with a player. For A ⊂ {1, . . . , n}, let MA denote those
rows of M that are labeled with an element from the set A. If A = {i}, we write
Mi.

To compute shares of a secret, the dealer chooses a vector b at random
subject to the condition that the secret is in the first coordinate of the vector,
and for i = 1 . . . n sends the vector si = Mib as share in s privately to player i.

In Shamir’s scheme this matrix corresponds of course to the Vandermonde
matrix, and each player is associated with exactly one row.

Recall from the linear algebra proof of Shamir’s scheme that exactly those
subsets of the players can reconstruct the secret, whose matrix (i.e. the submatrix
that contains the rows associated with the subset) has ε in its K-linear span of
the rows. Other subsets have no information about the secret.

It can be shown by similar arguments as the ones used in the linear algebra
proof of Shamir’s scheme, that in the general linear scheme as defined above,
exactly those subsets A can reconstruct the secret for which ε is in the K-linear
span of the rows of MA. Other subsets have no information.
16 The opening information for a share consists basically of all data needed to construct

the commitment. It’s easy to see that the dealer in fact has the required information.
In reality, the process we describe needs to be augmented with a complain/satisfy
procedure, like in VSS. This procedure is fairly straightforward in this case.
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Now in general, the subsets that can reconstruct are not exactly all subsets
of a certain cardinality. One can show that for any monotone access structure
Γ , i.e. a collection of subsets of the n players with the property that if A is a
member of Γ than any set containing A is in Γ as well, there is a linear secret
sharing scheme such that the subsets that can reconstruct the secret are exactly
the members of Γ . Again, other subsets have no information.

Let ε denote the vector (1, 0, . . . , 0) ∈ Ke. It is not hard to show that the
subsets A that can reconstruct the secret are exactly those for which ε ∈ ImMT

A .
The players in such a set A jointly recover a secret s by computing s = 〈sA,λ〉,
where MT

Aλ = ε, and sA are the shares held by A, i.e. sA = MAb.
The quadruple M = (K,M, ε, ψ) is called monotone span program [61]. This

powerful device is said to compute an access structure Γ (or equivalently, a
monotone Boolean function) if and only if it is the case that ε ∈ ImMT

A exactly
when A is a member of Γ .

We will also call the sets in this correponding access structure the sets “ac-
cepted” by M. A set that is not accepted, is called “rejected”.

So each linear secret sharing scheme can be viewed as derived from a mono-
tone span program computing its access structure.

We now return to the multiplication protocol. Let M be a (n, t)-Vandermonde
matrix over K with t− 1 < n/2. For vectors s, s′ ∈ Kn, define their star-product

s ∗ s′ = (s1s
′
1, . . . , sns

′
n) ∈ Kn.

For vectors x,y ∈ Kt, define their tensor product (this time a vector instead of
a matrix)

x ⊗ y = (x1y1, . . . , x1yt, . . . , xty1, . . . , xtyt) ∈ Kt2 .

For a matrix M , let M⊗ denote M except that each row v of M is replaced by
v ⊗ v.

Another way to view the multiplication protocol from Section 15.1 for
Shamir’s scheme is by saying that there exists a fixed vector r ∈ Kn, which
we call recombination vector, such that for all b,b′ ∈ Kt, with respective first
coordinates s, s′ ∈ K, we have

〈r, s ∗ s′〉 = ss′,
where s = Mb and s′ = Mb′.

Call this the multiplication-property of the secret sharing scheme. The exis-
tence of the vector r follows for instance from the analysis in Section 15.1, as
well as a method for efficiently computing it. From the analysis it also follows
that Shamir’s scheme has the multiplication property if and only if t− 1 < n/2.

In the case of defense against malicious attacks in the multiplication protocol
for Shamir’s scheme and for reasons to become clear shortly, we need additionally
that for all B ⊂ {1, . . . , n} with 17 |B| ≥ n− t + 1 there exists a fixed vector r
(depending on B) such that

〈r, sB ∗ s′B〉 = ss′,
17 these sets of course correspond to the potentially honest sets rather than the poten-

tially corrupt sets of size at most t− 1
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where sB = MBb and s′B = MBb′ are arbitrary.
Call this the strong multiplication-property of the secret sharing scheme, and

call r the recombination vector for the set B.
Note that if the strong multiplication-property is satisfied, then certainly also

the multiplication-property is satisfied: just take B = {1, . . . , n}.
We can also say that strong multiplication is satisfied exactly when for each

B with at least n− t + 1 elements, MB has multiplication.
If we now set t− 1 < n/3, then we see that for all B with n− t+1 elements,

MB is an (n− t+ 1, t)-Vandermonde matrix (“t out-of n− t+ 1”) and also that
t − 1 < (n − t + 1)/2. If B has even more elements, this clearly holds as well.
Therefore, strong multiplication is satisfied by the way we set the parameter t.

It will be helpful to further extend the linear algebraic view. Note that the
definition of the multiplication-property makes no reference to Shamir’s secret
sharing or threshold access structures. We could require this property of a general
linear secret sharing scheme. In fact, this is exactly the definition of monotone
span programs with multiplication from [28]. For strong multiplication, the only
change in the definition we make is to say that the property holds for all sets B
that are the complement of a set that is rejected by the monotone span program
(i.e. complements of sets that are not in the access structure).

It is proved 18 in [28] that M = (K,M, ε, ψ) is a monotone span program
with multiplication if and only if

ε ⊗ ε ∈ ImMT
⊗ .

Any vector r with ε ⊗ ε = MT
⊗r is a recombination vector.

As to strong multiplication, let MB be the monotone span program obtained
by throwing away the rows corresponding to the complement B of a rejected set.
Then it follows immediately that M has strong multiplication if and only if for
all such B, MB has multiplication.

We are now ready to state the properties we use in the explanation of defense
against malicious attacks to follow. Now let M be a monotone span program
with multiplication. We can now consider the linear secret sharing scheme based
on M⊗ = (K,M⊗, ε ⊗ ε, ψ) and conclude that the set {1, . . . , n} is accepted
by M⊗. Hence, if the n players receive a complete set of shares M⊗c, they can
recover the secret, which is c’s first coordinate. This follows from the observations
about the connection between general linear secret sharing and monotone span
programs above.

If M has strong multiplication, this is true for each subset B, whose comple-
ment is rejected by M. This fact and the following technicality (which is proved
directly from the definitions) are useful in what follows.

For any monotone span program M, and for all b and b′, we have

s ∗ s′ = M⊗(b ⊗ b′),

where s = Mb and s′ = Mb′.
18 This follows from the definition and the uniqueness of algebraic normal form.
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The Commitment Multiplication Protocol The situation is as follows.
There are two values s and s′, and each of the n players is committed to his
shares in s and s′.

We’d like to have a protocol by means of which the same can be enforced on
ss′.

Of course the protocol from Section 15.1 comes in handy, but we will have
to enhance it.

Let M = (K,M, ε, ψ) be the monotone span program underlying Shamir’s
secret sharing scheme with t− 1 < n/3.

Consider player i right before he re-shares sis
′
i in Section 15.1, where si and

s′i are his shares in s and s′, respectively. In the current context we may assume
that he is already committed to si and s′i separately.

It is sufficient for our purposes here if player i could create a commitment
to sis

′
i and convince the rest of the players that this is indeed a commitment to

sis
′
i.
Indeed, suppose we had such a method, then for re-sharing we would do as in

Section 15.1 and additionally have each player i commit to his local product sis
′
i,

prove that the resulting commitment contains indeed sis
′
i, commit to randomness

needed for the basic Shamir’s secret sharing, have all players compute non-
interactively commitments to the shares, and have player i finally send their
shares privately, plus the information needed to open the commitments their
respective shares, just as in the CSP-protocol. After each player i has done so,
they can compute their own shares in ss′, commitments to all shares and opening
information for the commitments to their own shares, using the recombination
vector r.

How can player i prove that a given commitment contains the product of the
contents of two other given commitments?

We assume that t− 1 < n/3. Let M be an (n, t)-Vandermonde matrix. Then
M = (K,M, ε, ψ) is with strong multiplication and ψ just associates the j-th
row of M with the j-th player, j = 1 . . . , n.

First, player i selects b at random such that b1 = si and b′ at random
such that b′1 = s′i. Next, he commits to all random coefficients of b and b′

(commitments to si and s′i are already available, by assumption). Then all players
compute, non-interactively, commitments to the individual shares resulting from
u = Mb and u′ = Mb′. Finally, player i sends shares uj and u′

j privately to
player j, j = 1 . . . , n. So this is as the CSP-protocol, except that at this point it is
not necessary to provide the opening information of the respective commitments.

Player i proceeds by committing to sis
′
i, and to each of the t2 coordinates

of b ⊗ b′. The players now compute non-interactively commitments to the n
coordinates v = (v1, . . . , vn) of M⊗(b ⊗ b′).

Note that if player i indeed committed to the correct value sis
′
i, for each j

we must now have uju
′
j = vj , since u ∗ u′ = M⊗(b ⊗ b′).

In any case, there is a vector c such that v = M⊗c. Write u∗u′ = w. Consider
the set B, defined as the complement of the set of players that the adversary
actually corrupted (i.e. B consists of the honest players). Note that |B| ≥ n−t+1.
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Since u∗u′ = M⊗(b⊗b′) and since M has strong multiplication, B is accepted
by M⊗ and the set of shares wB for B defines sis

′
i uniquely. Likewise, vB defines

a secret (i.e. c’s first coordinate c1) uniquely.
Therefore, if c1 �= sis

′
i, there must be a j ∈ B such that player j holds

different shares for c1 and sis
′
i: if not, the reconstruction procedure for B (in the

secret sharing scheme derived from M⊗) applied to wB and vB would yield the
same secrets.

Therefore, if player i did not commit to sis
′
i there is at least one honest

player j that will notice an inconsistency and is going to complain. Upon that
complaint, player i must open the commitments to uju

′
j and vj so that all honest

players conclude that player i is corrupt.
On the other hand, if player i is honest, then there are at most t − 1 such

complaints from the corrupted players, and each of them will not convince any
honest player, since opening the commitments will show that the complaining
player is corrupt rather than player i. Moreover, the information that becomes
available in the course of handling these complaints, does not yield any new
information (from the point of view of the corrupted players) about sis

′
i.

16.3 Extensions

The protocol above 19 and its analysis are a special case of [28]. In fact, the basic
framework behind it also works for any adversary that can be captured 20 by a
monotone span program with (strong) multiplication.

However a lot of things have to be settled first. The VSS protocol we described
is an optimization for the threshold case of the general VSS scheme from [28].
That scheme is based on arbitrary monotone span programs and we cannot in
general assume as in the threshold case here, that the matrix corresponding
to the honest players has maximal rank (this is essential in the analysis of the
threshold VSS). However, one can show that the protocol, although in general not
a VSS, is still a distributed commitment scheme. Based on these commitments,
one can indeed construct VSS based on arbitrary monotone span programs.

Moreover, [28] provides a theory of monotone span programs with (strong)
multiplication that shows that exactly those general (not necessarily thresh-
old) adversaries are captured for which [59] demonstrates that secure computa-
tion tolerating them is possible at all. Therefore, the theory is complete. Upper
bounds on the complexity of monotone span programs with (strong) multipli-

19 We have not tried to optimize its efficiency, and we have been not very explicit about
how to handle situations where players are found out to be corrupt. In any case, it
is always possible to back-up to the beginning, and recover the inputs of corrupted
players, after which the protocol is done over again with the corrupted players openly
being simulated. There are other options which we do not discuss here.

20 Loosely speaking, this requires a monotone span program with (strong) multiplica-
tion that rejects the sets in the adversary structure: a pre-determined collection of
subsets of the players, out of which the actual adversary may pick an element and
corrupt all the players in it.
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cation are given 21 as well, that show significant improvements over previous
approaches (similarly for VSS, but not requiring multiplication properties).

A remark about broadcast is in place. In case of general adverarsaries, in-
formation theoretically secure broadcasts protocols defending against threshold
adversaries are in general not sufficient. Therefore, [28] uses the result of [45].

Also, the techniques extend to the model of [70], where broadcast is assumed
(and cannot be simulated information theoretically) and an exponentially small
error is tolerated (see also [30]). This is non-trivial, and we omit any of the
details.

17 Other Work

We provide some suggestions for further reading (besides those references already
given). This list is by no means complete and selection has been quite ad-hoc
(This holds as well for the results covered in detail in this paper, with the
exception of the classical results).

Adaptive adversaries, i.e. adversaries who do not necessarily select their vic-
itms before the start of the protocol but rather adaptively as the protocol is
proceeding, are dealt with in [8] [20].

In [2] it is shown how general multi-party computations can be performed
with polynomial complexity and a constant number of rounds of interaction, pro-
vided that the function to be evaluated is given as a polynomial size arithmetic
formula (instead of circuit). Efficiency considerations (also using pre-processing)
are discussed in [5,6].

This issue of a corrupt majority is studied in [3].
Secure multi-party computation in an asynchronous communication model

is addressed in [12].
Loosely speaking, a proactively secure protocol is one secure against an at-

tacker who in principle can corrupt an arbitrary number of players in the life-time
of a system, except that in each time-frame less than, say, half of the players are
corrupted and a majority is honest [66,46].

For lots of references and detailed explanations of some fundamental results,
see for instance [47] and [19].

Regarding multi-party computation protocols for electronic cash or electronic
voting, see for instance [22], [26], [32] and [31].

Threshold cryptography, i.e. efficient and secure distributed computation for
specific functions was introduced in [39]. See for instance, [38], [51] and [68] for
distributed RSA-protocols.
21 Recently, in a revision of [28], the authors have proved that for all relevant functions

f (i.e. Q2-functions), if a monotone span program of size m is given that computes
such a function f , then there exists a monotone span program with multiplication
that computes f as well and has size O(m). Note that the novelty is in the last
part of the claim. This implies, in a well-defined sense, that linear secret sharing
is “sufficient” for general secure multi-party computation, where both existence and
efficiency are taken into account.
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Abstract. This article is an introduction to two fundamental primi-
tives in cryptographic protocol theory: commitment schemes and zero-
knowledge protocols, and a survey of some new and old results on their
existence and the connection between them.

1 What’s in this Article?

This article contains an introduction to two fundamental primitives in cryp-
tographic protocol theory: commitment schemes and zero-knowledge protocols.
We also survey some new and old results on their existence and the connection
between them. Finally, some open research problems are pointed out.

Each of the two main sections (on commitments, resp. zero-knowledge) con-
tain its own introduction. These can be read independently of each other. But
you are well advised to study the technical sections on commitment schemes
before going beyond the introduction to zero-knowledge.

The reader is assumed to have some basic knowledge about cryptography and
mathematics, in particular public key cryptography and the algebra underlying
the RSA and discrete log based public key systems. Concepts such as groups
and homomorphisms will be used without further introduction.

2 Commitment Schemes

2.1 Introduction

The notion of commitment is at the heart of almost any construction of modern
cryptographic protocols. In this context, making a commitment simply means
that a player in a protocol is able to choose a value from some (finite) set and
commit to his choice such that he can no longer change his mind. He does not
however, have to reveal his choice - although he may choose to do so at some
later time.

As an informal example, consider the following game between two players P
and V :

1. P wants to commit to a bit b. To do so, he writes down b on a piece of paper,
puts it in a box, and locks it using a padlock.
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2. P gives the box to V
3. If P wants to, he can later open the commitment by giving V the key to the

padlock.

There are two basic properties of this game, which are essential to any com-
mitment scheme:

– Having given away the box, P cannot anymore change what is inside. Hence,
when the box is opened, we know that what is revealed really was the choice
that P committed to originally. This is usually called the binding property.

– When V receives the box, he cannot tell what is inside before P decides to
give him the key. This is usually called the hiding property

There are many ways of realizing this basic functionality, some are based on
physical processes, e.g. noisy channels or quantum mechanics, while others are
based on distributing information between many players connected by a network.
We will say a bit more about this later, but for now we will concentrate on the
scenario that seems to be the most obvious one for computer communication:
commitments that can be realized using digital communication between two
players.

As a very simple example of this kind of commitments, consider the case
where P has a pair of RSA keys, where V (like anyone else) knows the public
key with modulus n and public exponent e. To commit to a bit b, P can build
a number xb, which is randomly chosen modulo n, such that its least significant
bit is b. Then he sends the encryption C = xe

b mod n to V . We do not prove
anything formal about this scheme here, although that is in fact possible. But it
should be intuitively clear that P is stuck with his choice of b since the encryption
C determines all of xb uniquely, and that V will have a hard time figuring out
what b is, if he cannot break RSA. Thus, at least intuitively, the binding and
hiding requirements are satisfied.

Why should we be interested in building such commitment schemes? Primar-
ily because this simple functionality enables the construction of secure protocols
that accomplish surprisingly complicated, even seemingly impossible tasks. We
will see some examples of this in the section on zero-knowledge. But we can al-
ready now give an example of a simple problem that seems intractable without
commitment schemes, namely coin flipping by telephone.

The following story was introduced by Manuel Blum: suppose our old friends
Alice and Bob are getting a divorce. They are at the point where they cannot
even stand facing each other, so they have to discuss over the phone how to split
the furniture, the kids, etc. But one problem remains: who gets the car? Since
they cannot agree, they decide to flip a coin. However, they quickly realize that
this is easier said than done in this situation where of course they don’t trust each
other at all. Bob would not be very happy about a protocol where he announces
HEADS, only to hear Alice reply on the phone: “Here goes...I’m flipping the
coin....You lost!”. How can we solve this? Well, certainly not by asking Alice
to flip the coin and announce the result to Bob before he has chosen heads or
tails; Alice would be just as unhappy as Bob was before. We seem to be in a
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deadlock - neither party wants to go first in announcing their choice. However,
this deadlock can be broken: using a commitment scheme, we get the following
simple protocol:

1. Alice commits to a random bit bA, and sends the resulting commitment C
to Bob (you can think of C as being a locked box or an encryption, as you
wish).

2. Bob chooses a random bit bB and sends it to Alice.
3. Alice opens C to let Bob learn bA, and both parties compute the result,

which is b = bA ⊕ bB.

It is not hard to argue intuitively that if the commitment is binding and
hiding, then if at least one of Alice and Bob play honestly and chooses a bit
randomly, then the result is random, no matter how the other party plays. A
formal proof requires a more precise definition of commitments, which we will
get to in the next section.

2.2 Defining Commitment Schemes

Two things are essential in the RSA example:

– The RSA key used does not come falling from the sky. There has to be an
algorithm for generating it: some procedure that takes as input the length
of modulus to generate, and then chooses randomly n and e, suitable for
use as an RSA public key. In the example this algorithm would be run by
P initially, and P must have some confidence that keys generated by this
algorithm cannot be easily broken by V .

– When committing, it is essential that P makes random choices. The scheme
above (in fact any scheme) would be completely insecure, if this was not the
case (can you see why?). Thus the commitment sent to V must be a function
of both the bit committed to, and of some random choices made by P .

Keeping this in mind, we can abstract the following general definition. It is
somewhat simplified in that it does not cover all commitment schemes, but it
covers the examples we will look at, and is enough to get a feeling for how such
definitions work.

We will think of a commitment scheme as being defined by a a probabilistic
polynomial time algorithm G called a generator. It takes as input 1l where l is a
security parameter and corresponds to e.g. the length of RSA modulus we want.
It outputs a description of a function commit : {0, 1}l × {0, 1} → {0, 1}l. where
the idea is that a 0/1-values can be committed to. We stick to bit-commitments
here for simplicity. We refer to the description of commit as the public key of the
commitment scheme.

To use the scheme in practice, one first executes a set-up phase (once and
for all) where either P or V runs G, and sends a description of the resulting
function commit to the other party. In some schemes it is necessary in addition
to convince the other party that commit was correctly chosen, in case this is not
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easy to verify from the description itself. Thus, one of the parties may reject in
the set-up phase, meaning that it refuses to use the public key it received.

Assuming that the public key was accepted, to commit to a bit b, P chooses
r at random from {0, 1}l and computes the commitment C ← commit(r, b). To
open a commitment, r, b are revealed, and V checks that indeed C = commit(r, b).

To define precisely the two essential properties of hiding and binding for this
kind of commitment, we need to first define what it means for an entity, typi-
cally a probability, to be negligible – “too small to matter”. There are different
ways in which one can define what negligible means, from the point of view of a
practical application, one might want to say that anything occurring with prob-
ability below a concrete bound, such as 2−50, is negligible. In complexity based
cryptography, one usually prefers an asymptotic definition: ε(l) is negligible in l
if for any polynomial p, ε(l) ≤ 1/p(l) for all large enough l. One motivation for
this is that if we perform repeatedly an experiment in which a particular event
occurs with negligible probability in l, then the expected number of repetitions
before seeing an occurrence is superpolynomial in l. In this sense we can say
that events that occur with negligible probability occur so seldom that polyno-
mial time algorithms will never see them happening. We then have the following
definitions:

– The binding property comes in two flavors.
unconditional binding: Means that even with infinite computing power,

P cannot change his mind after committing. In this case, P will run the
generator and send the function commit to V . We require that if commit
is correctly generated, then b is uniquely determined from commit(r, b),
and that an honest V accepts an incorrectly generated commit with at
most negligible probability.

computational binding: Means that unless you have “very large” com-
puting resources, then you chances of being able to change your mind
are very small. In this case, V will run the generator, so we can define it
precisely as follows: take any probabilistic polynomial time algorithm P ∗

which takes as input a public key produced by the generator G on input
1l. Let ε(l) be the probability (over the random choices of G and P ∗)
with which the algorithm outputs a commitment and two valid openings
revealing distinct values. That is, it outputs C, b, r, b′, r′ such that b 	= b′

and commit(r, b) = C = commit(r′, b′). Then ε(l) is negligible in l.
– The hiding property also comes in two flavors:

unconditional hiding: Means that a commitment to b reveals (almost) no
information about b, even to an infinitely powerful V . In this case V will
run the generator and send the function commit to P . We require that if
commit is correctly generated, then the distributions of commit(r, 0) and
commit(s, 1) for random r, s are almost the same, meaning that one can
be changed into the other by moving a negligible amount of probability
mass. Furthermore an honest P should accept an incorrectly generated
commit with at most negligible probability. In the best possible case, a
commitment commit(r, b) has distribution independent of b, and P never
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accepts a bad commit function, i.e. commitments reveal no information
whatsoever about the committed values. We then speak of perfectly hid-
ing commitments.

computational hiding: Means that a polynomially bounded V will have a
hard time guessing what is inside a commitment. In this case, P will run
the generator. A precise definition: consider any probabilistic polynomial
time algorithm which takes as input a public key produced by the G on
input 1l, and a commitment commit(r, b), where b is 0 or 1, and outputs
a bit. Let εb(l) be the probability that 0 is produced as output when
the commiment contained b. Then |ε0(l) − ε1(l)| is negligible in l. This
definition says that an adversary will not be able to tell efficiently which
of the two given values is in a commitment, with probability much better
than just guessing at random.

Before we continue, a word of warning about the definitions of the computa-
tional flavors of hiding and binding: They are based on the asymptotic behavior
of an adversary as we increase the value of the security parameter. This is math-
ematically convenient when doing proofs, and has nice connections to standard
complexity theory - but one should take care when evaluating the meaning in
practice of results according to such a definition: it implicitly classifies every-
thing that can be solved in probabilistic polynomial time as being “easy” and
anything else as being “hard”, and this distinction is not always accurate in
real life. Even if a problem (such as breaking a commitment scheme) is asymp-
totically hard, it might still be easy in practice for those input sizes we want
in a particular application. This does not at all mean that asymptotic security
results are worthless, only that usage of a scheme in real life should always be
supplemented with an analysis of practical state of the art of solutions to the
(supposedly) hard problem we base ourselves on.

In any case, it is evident that the computational versions of the properties are
more complicated to define than the unconditional ones. And since furthermore
an unconditional guarantee is of course better, why don’t we just build commit-
ments that are both unconditionally binding and hiding? Well, unfortunately
this is impossible!

Imagine we had such a scheme. Then, when P sends a commitment to e.g. 0
C = commit(r, 0), there must exist an r′, such that C = commit(r′, 1). If not, V
could conclude that the committed value could not be 1, violating unconditional
hiding. But then, if P has unlimited computing power, he can find r′ and change
his mind from 0 to 1, violating unconditional binding. This reasoning does not
depend on the particular definition we have presented of commitment schemes.
It extends to any protocol whatsoever for committing to a value in a two-player
game. The basic reason for this is that the scenario by definition ensures that
each player sees everything the other player sends.

There are several scenarios, however, where this reasoning does not apply. In a
distributed scenario with many players, or in a two-party case where communica-
tion is noisy, it is no longer true that V sees exactly what P sends and vice versa.
And in such cases, unconditional binding and hiding can in fact be obtained si-
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multaneously. For commitment schemes in such scenarios, see e.g. [10, 3, 14, 9].
Note, however, that despite the fact that the reasoning does not apply to quan-
tum communication either, bit commitment with unconditional security is not
possible with quantum communication alone. More about his can be found in
the article by Salvail in this volume.

2.3 Examples of Commitment Schemes

Many examples of commitment schemes have been suggested in the literature,
see e.g. [4] for some basic ones or [11] for some later and more efficient examples.

Above, we have seen an example based on RSA with unconditional binding.
This scheme also satisfies computational hiding, assuming that the RSA encryp-
tion function is hard to invert, although this is quite technically complicated to
prove. It does not follow immediately, since a priori it might well be the case
that the least significant bit of x is easy to compute from xe mod n, even though
all of x is hard to find. However in [1] it was proved that this is not the case:
any algorithm that guesses the least siginificant bit of x with probability slightly
better than 1/2 can, by a randomized polynomial time reduction, be turned into
one that inverts the RSA encryption function.

We now look at a general way to make commitment schemes with uncon-
ditional hiding. It turns out that such schemes can be constructed if we can
efficiently generate group homomorphisms that are 1-way functions, i.e. they
are easy to compute but hard to invert. A precise definition:

Definition 1 A Group Homomorphism Generator H is a probabilistic polyno-
mial time algorithm which on input 1l outputs a description of two finite Abelian
groups G,H and a homomorphism f : H → G. Elements in G,H can be repre-
sented as l-bit strings, and the group operation and inverses in G and H can be
computed in polynomial time. Finally, a uniformly chosen element in H can be
selected in probabilistic polynomial time.

H is said to be one-way if in addition the following holds for any probabilistic
polynomial time algorithm A: on input f, y, where f is selected by H on input 1l

and y is uniformly chosen in Im(f), the probability that A outputs x ∈ H such
that f(x) = y is negligible.

As an example, consider any algorithm for generating a secure RSA modulus
n. We can extend this to a homomorphism generator by choosing also a prime
q > n, letting G = H = Z∗

n, the multiplicative group modulo n, and finally
defining f(x) = xq mod n. Assuming that RSA with modulus n and public
exponent q is hard to invert, this clearly satisfies the requirements (recall that in
general, f is a homomorphism, if f(1) = 1 and f(xy) = f(x)f(y)). Note that q,
being larger than n, must be prime to φ(n) and so one can directly check from
a description of f that it is surjective.

We can also base a generator on the discrete log problem. In this case, f
would be of the form f(x) = gx mod p for a large prime p. We leave the details
to the reader.
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Given a generator as defined above, we define an unconditionally hiding
scheme as follows. We assume for simplicity that given y, one can directly check
if y ∈ Im(f). This is trivially true of the RSA implementation above.

– Set-up Phase: the generator G for the commitment scheme is defined based
on the group homorphism generator H as follows: it runs H on input 1l. It
then chooses a random element x ∈ G and outputs f,G,H and y = f(x). In
the set-up phase, V runs G and sends the output f,G,H, y to P , who checks
that y ∈ Im(f).

– Commit function: is defined as a mapping fromH×{0, 1} toG. Concretely,
commit(r, b) = ybf(r).

– Hiding Property: is unconditionally satisfied, since by assumption, P can
verify without error that y ∈ Im(f), and in this case a commitment to b will
have distribution independent of b, namely the uniform distribution over
Im(f). This is because P chooses r uniformly in H , group homomorphisms
are regular mappings (they map a fixed number of elements to one), and
finally because multiplication by the constant y is a one-to-one mapping in
the subgroup Im(f) ≤ G. Thus these commitments are in fact perfectly
hiding.

– Binding Property: Follows from the following fact: given any algorithm A
that breaks the binding property of this scheme with success probability ε
in time TA. Then there exists an algorithm A′ that inverts homomorphisms
generated by H with success probability ε as well and in time TA plus the
time needed for one inversion and one multiplication in G.
This is easy to show: we are given f : H → G, y and must invert f in
point y. We run A on input f,G,H, y pretending this is the public key of
a commitment scheme instance. A outputs in time TA a commitment c and
openings r0, 0 and r1, 1. We now output x = r0r

−1
1 . We leave it to the reader

to show that if indeed r0, 0 and r1, 1 are valid openings of c, then f(x) = y.

There are several things to notice about this scheme and its proof:

– In the set-up phase, it is essential that P is convinced that y ∈ Im(f). It
would be devastating if V could get away with selecting y 	∈ Im(f) (can you
see what would go wrong?). For the RSA example, this was not a problem:
P can check for himself that f is surjective which implies that y ∈ Im(f).
In other cases, the set-up phase must be more elaborate in that V must
convince P that the public key was correctly selected. This can be done
using a zero-knowledge protocol (see Section 3). In particular it is always
possible given any homomorphism f for V to convince P in zero-knowledge
that y ∈ Im(f), which is in fact enough for the scheme to be secure.

– The proof of the binding property is an example of so called proof by black-
box reduction: we want to show that existence of cryptographic primitive P1
implies existence of primitive P2. In our case P1 = one-way group homo-
morphisms and P2 = unconditionally binding commitments schemes.
To do this, we first make a construction that takes an instance of P1 and
builds an instance of P2. This construction treats the instance of P1 as a



70 Ivan Damg̊ard

black-box: anything that satisfies the abtract requirements (e.g for being a
one-way group homomorphism) will do. We then show that any algorithm
that can break P2 can be used to build an algorithm that breaks P1 “just as
efficiently”. This is done by a reduction that treats the algorithm attacking
P2 as a black-box: it doesn’t care how the algorithm manages to break P2,
it just uses the fact that it succeeds in doing so. We conclude that if the
security properties of P2 are violated, so are those of P1, and conversely, if
secure instances of P1 exist so do secure instances of P2.
This black-box paradigm has proven extremely productive in many areas of
cryptography. See the article by Bellare in this volume for more information
on this.

– The black-box reduction we built to show the binding property is actually
much stronger than needed for the definitions: for that, it would have been
enough if we had shown that the running time of A′ was polynomial in TA,
and that the success probability of A′ was a polynomial function of ε. Still,
what we have done is far from being overkill: what we want, in practice as
well as in theory, is basically to say that “breaking the comitment scheme
is just as hard as it is to invert the homomorphism”. And of course we can
make this claim in a stronger sense, the more efficient a reduction we have.
Hence if we want results that are meaningful not only in theory, but also in
practice, it is important to try to obtain as efficient a reduction as possible
in any proof of this type.

– Group homomorphisms can also be used to build unconditionally binding
commitments, and to build schemes where one can commit to many bits in
the same commitment. For details on this, see [11].

2.4 Theoretical Results of Existence of Commitment Schemes

It is easy to see that if any commitment scheme in the two-player model exists,
then a one-way function must also exist. For example, in our definition, it is
clear that the function commit must be one-way in order for the commitment
scheme to be secure.

Hence, the optimal result would be to show existence of commitment schemes
based only on the existence of one-way functions. Such a result is known for one
type of commitment scheme, and follows from a result of Naor [29] (actually,
Naor’s result is the last in a chain of results linking one-way functions with
commitments through other primitives such a pseudorandom generators, for ref-
erences on this, see [29]):

Theorem 2. If one-way functions exist, then commitment schemes with uncon-
ditional binding (and computational hiding) exist.

For unconditionally hiding schemes, the situation is different. In [30], the
following is proved:

Theorem 3. If one-to-one surjective one-way functions exist, then commitment
schemes with perfect hiding (and computational binding) exist.
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In [31], with generalizations to multi-bit commitments in [18], the following
is proved:

Theorem 4. If collision-intractable hash functions exist, then there exists com-
mitment schemes with unconditional hiding (and computational binding).

Loosely speaking, a collision intractable hash function is a function h :
{0, 1}k → {0, 1}l such that l < k, h is easy to compute, but it is hard to
find x 	= y such that h(x) = h(y) (although such values must of course exist –
for a precise definition, see [15]).

Whereas the first two of these three basic results involve very complex re-
ductions and therefore are of limited practical value, the third one can lead to
very practical schemes.

There is no implication known in either direction between existence of one-
way one-to-one functions and collision-intractable hash functions, so the last
two results are in this sense “independent” from a theoretical point of view.
The obvious question “does existence of one-way functions imply existence of
unconditionally hiding commitments?” is a long standing open problem.

3 Zero-Knowledge Protocols

3.1 Introduction

In order for a modern computer network to offer services related to security, it
is a basic necessity that its users have access to private information, in the form
of e.g. passwords, PIN codes, keys to cryptosystems, keys to signature systems
etc. If I know every bit of information that you know, it will be impossible for
the rest of the system to tell us apart.

This introduces a basic problem when implementing such services: of course
I want my private information to stay private, but as soon as I start using it
as input when computing the messages I send to other parties on the net, this
introduces the risk of leaking private information, in particular if the parties
I interact with do not follow the protocols, but instead do their best to mali-
ciously trick me into revealing my secrets. This dilemma can be solved if we use
protocols on the net for which we can control exactly how much sensitive infor-
mation is being released, even in presence of adversarial behavior. The concept
of zero-knowledge, first introduced by Goldwasser, Micali and Rackoff [26], is
one approach to the design of such protocols.

As an easy example, consider the classical user identification problem: we
have a host computer that would like to verify the identity of users that try to
log on. The classical solution is assign a private password to each user. When
logging on, the user types his user name and password, this is sent to the host,
who checks it against a stored list.

The security problems with this are many and well known. Let us concentrate
here on the obvious problem that if an adversary eavesdrops the line, he can pick
up the password, and then impersonate the user. When trying to solve this, the
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immediate reaction might be to propose that we transport instead the password
in a protected way. Perhaps we should just encrypt it?

But then we would be barking up the wrong tree. We have to ask ourselves
first what the purpose of the protocol is. Is it to send the password from the
user to the host? No! - we are trying to identify the user. What we have done
intitally is to assign a secret (the password) to each user, so when someone types
his user name, say xxx, this is equivalent to claiming that a certain statement
is true, in this case “I know the secret corresponding to user name xxx”.

The only thing the host needs to know here is only 1 bit of information,
namely whether this statement is true or not. The real purpose of the protocol
is to communicate this piece of knowledge to the host. Sending the secret of the
user in clear is just one way, and not even a very intelligent way to do it.

In general, we could have the user and host conduct an interactive protocol,
where at the end, the host can compute a one-bit answer saying whether the user
was successfull in proving himself or not. Here of course we have to design the
protocol such that if the user really knows the right secret, he will be successful,
whereas the answer will be no, if the user is cheating and does not know the
secret. If this is satisfied, we can say that the protocol really does communicate
this 1 bit of knowledge saying whether the claim is true or not. But moreover,
if we design the protocol correctly, we can actually obtain that it communicates
nothing more than this. Which would mean that for example an eavesdropper
listenting to the communication would just as far away from guessing the user’s
secret after seeing the conversation as he was before.

This leads to our first very loose definition of zero-knowledge: a protocol is
zero-knowledge if it communicates exactly the knowledge that was intended, and
no (zero) extra knowledge.

3.2 A Simple Example

One way to realize the scenario where each user has his own secret is to use a
public key cryptosystem. So suppose each user A has a private key SA known
only to him, whereas everyone, including the host, knows the public key PA.

Now, if the cryptosystem is any good, it must be the case that decrypting a
ciphertext C = PA(M) is hard unless you know the private key. Hence, if you
meet someone who is able to decrypt a ciphertext you send him, it is reasonable
to conclude that he knows SA, at least if you make sure that the message you
encrypt is randomly chosen from a large set, such that the probability of guessing
your choice is negligible. This suggests the following simple protocol, where we
rename the players so that the description fits better with the definitions to
follow: the user, who is the one wanting to convince the other about the truth
of some claim will be called the Prover (P ), and the host, who is interested in
checking that the claim is true, will be called the verifier (V ).

1. If the prover claims to be A, the verifier chooses a random message M , and
sends the ciphertext C = PA(M) to the prover.

2. The prover decrypts C using SA and sends the result M ′ to the verifier.
3. The verifier accepts the identity of the prover if and only if M ′ = M .
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Let us look at this protocol from the point of view of both parties. Should
the verifier be happy about this protocol? the answer is yes if the public key
system used is secure: while the owner of SA can always conduct the protocol
successfully, an adversary who knows only the public key and a ciphertext should
not be able to find the plaintext essentially better than by guessing at random.

Now what about security from the (honest) prover’s point of view - is any
unnecessary knowledge being communicated to the verifier here? At first sight, it
may seem that everything is OK: if we consider the situation of the verifier just
after sending C, then we might argue that since the verifier has just chosen the
message M itself, it already knows what the prover will say; therefore it learns
no information it didn’t know before, and so the protocol is zero-knowledge.

But this reasoning is WRONG! It assumes that the verifier follows the proto-
col, in particular that C is generated as prescribed. This is of course unreasonable
because nothing in the protocol allows the prover to check that the verifier is be-
having honestly. This is more than a formal problem: assume that an adversary
takes control of the verifier, and sends instead of a correctly generated C some ci-
phertext C′ intended for the correct prover, that the adversary has eavesdropped
elsewhere. And now, following the protocol, the unsuspecting prover will kindly
decrypt C′ for the adversary!

This is certainly not the kind of knowledge we wanted to communicate, and
hence this protocol is definitely not zero-knowledge. How can we repair this
protocol? The basic problem we saw is that when the verifier sends C, we are
not sure if it really knows the corresponding plaintext M . If it did, we would be
fine. However, the verifier will of course not be willing to reveal M immediately,
since from its point of view, the purpose of the protocol is to test if the prover
can compute M based only on C. And for the reasons we saw above, the prover
will not be willing to go first in revealing M either. So we have a sort of deadlock
situation similar to the one in the coin-flipping by telephone problem from the
former section. Like that problem, this one can be solved using commitments.

Assume we have a commitment scheme that lets the prover commit to any
message that can be encrypted by the public key system. Let commit(r,M)
denote a commitment to message M (using random choice r - we can always
commit bit by bit if no more efficient methods are available). Then consider the
following:

1. If the prover claims to be A, the verifier chooses a random message M , and
sends the ciphertext C = PA(M) to the prover.

2. The prover decrypts C using SA and sends a commitment to the result
commit(r,M ′) to the verifier.

3. The verifier sends M to the prover.
4. The prover checks if M = M ′. If not he stops the protocol. Otherwise he

opens the commitment, i.e. he sends r,M ′ to the verifier.
5. The verifier accepts the identity of the prover if and only if M ′ = M and

the pair r,M ′ correctly opens the commitment.
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Proving formally that this repair works turns out to be surprisingly compli-
cated, but possible. The necessary techniques can be found e.g. in [5, 24]. Here,
however, we are only interested in arguing informally why such a solution should
have a chance of working: first, the protocol demonstrates that the prover can
decrypt C based on C alone, since when the verifier finds the right plaintext
inside the commitment, this shows that the prover knew it already in step 2, by
the binding property of the commitment scheme. As for zero-knowledge, either
the verifier knows M or not. If yes, then it can send the correct M in step 3,
but then it already knows what it will find inside the commitment in step 5
and so learns nothing new. If not, then it cannot send the right value in step 3,
the prover will stop the protocol, and the verifier will be left with an unopened
commitment which by the hiding property is a useless piece of information that
might represent any value whatsoever.

If nothing else, this example demonstrates first the fundamental role that
commitments often play in protocol design, and second that we should not ar-
gue security of protocols based on what players should be doing according to
the protocol, we must take any adversarial behavior into account. Finally, it
also demonstrates one basic design principle for zero-knowledge protocols that
continue to appear in all sorts of incarnations: have the prover demonstrate
something the verifier already knows. The problem with this is, in the above
protocol as in all protocols of this type, to ensure that the verifier does indeed
know in advance what the prover will say. For other examples of this kind, see
e.g. the graph nonisomorphism protocol from [25].

3.3 Definitions

Interactive Proof Systems and Proofs of Knowledge The protocols to
follow will take place as interactions between two Interactive Turing Machines,
i.e. ordinary probabilistic Turing machines that are in addition equipped with
communication tapes allowing a machine to send and receive messages from the
other one. A formal definition can be found in [26].

To define interactive proof systems, we assume that one machine, called the
prover (P ) has infinite computing power, and the other called the verifier (V )
is polynomial time bounded. The machines get a common input string (usually
called x). Running the machines on some input x results in V outputting accept
or reject after which the machines halt. We say that the pair (P, V ) accepts or
rejects x accordingly. Finally a binary language L is given.

In the previous section, we talked about the intutive model where the prover
claims that “a certain statement is true”. We now specialize to the concrete case
where the prover claims that a certain logical statement is true, namely that
x ∈ L. This can be compared in the real world to convincing someone that a
certain theorem is true. Concretely, we have the following definition [26]:

Definition 5 The pair (P, V ) is an interactive proof system for L if it satisfies
the following two conditions:
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Completeness: If x ∈ L, then the probability that (P, V ) rejects x is negligible
in the length of x.

Soundness: If x 	∈ L then for any prover P ∗, the probability that (P ∗, V ) accepts
x is negligible in the length of x.

What these conditions say is that first, the honest prover can always convince
the verifier about a true statement, but that there is no strategy that convinces
him about something false. Both conditions are required to hold except with
negligible probability, and are in fact rather strong: even if the honest prover
can convince the verifier using only polynomial computing time, there must be
no way to cheat the verifier, even using infinite computing power.

There are two features that make this definition interesting, namely that
interaction and error probabilities are allowed. It is easy to see that if the prover
is only allowed to send a single message to the verifier, who should then be able
to check without error that the input x is in L, we would only be redefining the
class NP . But with these two features, the model becomes much more powerful
in terms of the class of statements that can be proved, as we shall see.

There is a variant of this, known as Proofs of Knowledge, where the prover’s
claim has a different flavor: he claims to know a certain piece of information (such
as a secret key corresponding to a given public one). Such proof systems can
be defined in a similar model, where however the completeness and soundness
properties are replaced by knowledge completeness and knowledge soundness.
The first property simply says that if the prover knows the claimed information
and follows the protocol, he can almost always convince the verifier. The second,
loosely speaking, says that if some prover can, using whatever strategy, convince
the verifier with substantial probability, then the prover knows the information
in question. By “knowing the information” we mean that the prover can compute
it, and that the time he needs to do so is roughly inversely proportional to the
probability with which the verifier gets convinced. A precise definition can be
found in [2].

Interactive Arguments Another variant of Interactive proof systems is known
as Interactive Arguments and has perhaps more direct relations to practical
protocols. In this type of protocol, we want the prover to be polynomial time,
but on the other hand are only concerned about polynomial time provers cheating
the verifier. This can be said to be a complexity theorist’s way of modelling the
situation where only realistic computing power is available to prover and verifier.

The simplest way to define an interactive argument for a language L, is to
say that it is an interactive proof system, but with two changes:

– The honest prover is required to be probabilistic polynomial time, and its
only advantage over the verifier is that it has a private auxiliary input. The
completeness condition says that for every x ∈ L, there is an auxiliary input
that allows the prover to convince the verifier almost always1.

1 In order for the protocol to be interesting at all, the prover must have some advantage
- otherwise the verifier might as well go and solve the problem on his own.
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– The soundness condition says “for any probabilistic polynomial time prover”,
in stead of “for any prover”.

It turns out that this simplistic definition of soundness is not quite adequate
in all cases, but it will do for us here. For a more complete set of definitions and
a discussion of this, see [17].

Zero-Knowledge Zero-Knowledge can be seen as an extra property that an
interactive proof system, a proof of knowledge or an interactive argument may
have. Here, we want to express the requirement that whatever strategy the ver-
ifier follows, and whatever a priori knowledge he may have, he learns nothing
except for the truth of the prover’s claim. We do this by requiring that assuming
the prover’s claim is true, the interaction between the prover and verifier can be
efficiently simulated without interacting with the prover.

A verifier that tries to cheat the prover can be modelled by an arbitrary prob-
abilistic polynomial time machine V ∗ that gets an auxiliary input H of length
some fixed polynomial in the length of the common input x. This represents a
priori information that V ∗ could have e.g. from earlier executions of the proto-
col, which it may now use to trick the prover into revealing more information.
By a conversation between P and V we mean the ordered concatenation of all
messages sent between P and V in an execution of the protocol. We get the
following [26]:

Definition 6 An interactive proof system or argument (P, V ) for language L is
zero-knowledge if for every probabilistic polynomial time verifier V ∗, there is a
simulator MV ∗ running in expected probabilistic polynomial time, such that for
x ∈ L and any auxiliary input H, the distribution of conversations output by
MV ∗ on input x,H is computationally indistinguishable from the distribution of
conversations produced by (P, V ∗) on input x and H (given to V ∗).

By “computationally indistinguishable”, we mean the following: consider any
probabilistic polynomial time distinguisher D, who gets as input x ∈ L and H as
above. In case 0 it also gets a conversation generated by (P, V ∗) on this input, in
case 1 it gets a simulated conversation generated from the same input. D outputs
a bit, which we can think of as its guess at which case we’re in. Let pi(x,H) be
the probability that D outputs 0 from this experiment, assuming we are in case
i, i = 0, 1. These probabilities are taken over the coin tosses used for producing
the conversations as well as over internal coin tosses of D. Then computational
indistinguishability means that |p0(x,H) − p1(x,H)| is negligible in the length
of x 2.

For some protocols, we can obtain that real and simulated conversations have
exactly the same distribution, in this case we speak of perfect zero-knowledge.
2 Usually, one allows D to be a non-uniform algorithm, i.e. it is specified by a family
of polynomial size Boolean circuits – but this is not so important for our purposes
in this paper
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In other cases, the distributions are different, but very close to each other in
the sense that the amount of probability mass one must move to change one
into the other is negligible; then we speak of statistical zero-knowledge. Clearly,
perfect zero-knowledge implies statistical zero-knowledge, which in turn implies
computational zero-knowledge as defined above.

At first sight, the zero-knowledge definition may seem intuitively to contra-
dict the proof system definition: first we say that the verifier should be convinced
by talking to the prover. But then we require that the whole conversation can
be efficiently simulated without talking to the prover – doesn’t this mean that
having a conversation with the prover cannot be convincing?

Fortunately, this is not the case. The explanation is that a simulator has
some degrees of fredom that the prover doesn’t have when executing the real
protocol. In particular, the simulator can generate messages of a conversation
in any order it wants - it can start with the last message first, and then try
to find earlier messages that match. A real prover is forced by the verifier to
proceed in the protocol with the correct time ordering of messages. And this is
why it can be possible that even an infinite prover cannot cheat the verifier, and
still a simulator with no special knowledge or computing power can simulate the
conversation. For concreteness, see the example below.

3.4 An Example

We describe here a simple example taken from [25], namely a perfect zero-
knowledge proof system for the graph isomorphism problem: the common input
in this case is a pair of graphs G0, G1 each on n nodes, and the prover claims the
graphs are isomorphic: there is a permutation π (an isomorphism) such that by
permuting the nodes of G0 according to π (and connecting two resulting nodes
iff their preimages were connected in G0), one obtains the graph G1. We say
that π(G0) = G1.

Note that no general probabilistic poly-time algorithm is known for deciding
if two graphs are isomorphic. We will use n as a measure of the length of the
input. In the protocol, we actually do not need P to be infinitely powerful,
although the definition of proof systems allows this; it is enough that he knows
an isomorphism π. The protocol works by repeating sequentially the following
steps n times:

1. P chooses a random permutation φ on n points and sends H = φ(G0) to V .
2. V chooses at random a bit b, and sends it to P .
3. If b = 0, P sets ψ = φ−1. Else he sets ψ = πφ−1. He sends ψ to V , who

checks that ψ(H) = Gb, and rejects immediately if not.

The verifier accepts, only if all n iterations were completed successfully.
First, let us check that this is a proof system. Completeness is obvious: if

indeed π(G0) = G1 and ψ(G0) = H , then it follows trivially that V ’s check will
be satisfied for both values of b. Soundness can be argued as follows: observe that
we must prove something here assuming that the prover’s claim is wrong, which
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in this case means that G0 is not isomorphic to G1. Now assume that in one of
the n iterations, P can answer both values of b with a permutations that satisfy
V ’s check. Let ψ0, ψ1 be the permutations sent as response to b = 0, 1. Since
V ’s checks are satisfied, we know that ψ0(H) = G0 and ψ1(H) = G1. It follows
that G0 is isomorphic to G1 under the isomorphism ψ1ψ

−1
0 , a contradiction.

Consequently, it must be the case that in all n iterations, the prover is able
to answer at most one of the 2 possible values of b. Hence the probability of
acceptance is at most 2−n, which is certainly negligible in n.

Finally, let us show that the protocol is perfect zero-knowledge. To this end,
we must build a simulator. The easiest way to think of a simulator usually is
to think of it as an algorithm that tries to complete the protocol, playing the
role of the prover, but of course without any special knowledge or computing
power. Thus, a non-trivial trick is needed. In our case, we cannot just execute
the protocol: we saw in the argument for soundness that knowing how to answer
both of V ’s challenges at the same time implies we can compute an isomorphism
between G0 and G1, and no efficient algorithm is known for this. However it is
possible to prepare in such a way that one of the challenges can be answered.
This is used in the following algorithm for a simulator M :

1. Start the machine V ∗, which means giving it inputs G0, G1 (plus possibly
some auxiliary input H) and supplying random input bits for V ∗. These are
needed since V ∗ is allowed to be a probabilistic algorithm; we choose the
random bits here and keep them fixed for the rest of the simulation.

2. To simulate one iteration, execute the following loop:
(a) Choose a bit b′ and a permutation ψ at random. Set H = ψ−1(Gb′ ) and

send H to V ∗.
(b) Get b from V ∗. If b = b′, output H, b, ψ and exit the loop. Else, reset V ∗

to its state just before the last H was chosen, and go to step 2a.
If we have completed simulation of all n iterations at this point, then stop.
Else start at Step 2a again.

So in simulating one iteration, the simulator prepares to answer question
b′, and hopes that this is the question V ∗ will ask. If this happens, we’re in
business and can complete the simulation of the current iteration. Otherwise
we just pretend the bad case never happened by rewinding V ∗ and then we
try again. At first sight, this rewinding technique can seem somewhat strange.
However, it is essentially the same as rebooting your PC when it crashes: if we
reach a configuration we don’t like, we take the machine back to one we like
better; so in this sense rewinding is an everyday experience3.

To show that this simulator works, we need to show two things: M runs in
expected polynomial time, and the distribution output by M is exactly the same
as in a real protocol run.

Observe first, that by definition of zero-knowledge, we always prove correct-
ness of a simulation assuming that P ’s claim is true, in our case this means that
3 If your PC never crashes, you should be making a fortune in consultancy instead of
reading this book!
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G0 is isomorphic to G1. Let S be the set of all graphs isomorphic to G0 (or G1).
It is straightforward to check that the distribution of H generated in the simu-
lation is the same as in the real protocol, namely the uniform distribution over
S. In particular it is independent of b′. It follows that the b chosen by V ∗ must
be independent of b′ as well, and so Prob(b′ = b) = 1/2. Hence the expected
number of times we do the loop to simulate one iteration is 2, and so the whole
simulation takes expected time 2n times the time to go though the loop once,
which is certainly polynomial in n.

Finally, the output distribution: The simulator produces for the i’th iteration
a triple (H, b, ψ). First note that the candiate H ’s produced in step 2a are
uniform over S. By independency of H and b′ the decision to keep H or rewind
and throw it out does not depend on the choice of H . Hence the H ’s actually
output are also uniform over S, as in the real protocol. The b occurring in a
triple is by construction always the value V ∗ would send having seen H (recall
that we fix V ∗’s random bits initially). And finally ψ is a random permutation
mapping H to Gb, just as in the real protocol. Thus the output distribution of
M matches the real protocol exactly.

This example demonstrates another basic design idea for zero-knowledge pro-
tocols: the prover is asked to answer one out of some set of questions. We set it
up such that he can only answer all of them if his claim is true, but such that
one can always prepare for answering any single question properly. For other
examples of this type of protocol, see e.g. [11, 12, 13, 21, 27, 32].

3.5 Known General Results and Open Problems

Having seen a few examples of zero-knowledge proofs, it is natural to ask some
more general questions:

– Which languages have interactive proofs?
– Which languages have (perfect/statistical) zero-knowledge interactive proofs?
– Can we compose several zero-knowledge protocols and obtain again a zero-
knowledge protocol?

It turns out that the answers depend strongly on whether the prover (and
cheating provers) are allowed infinite computing power, or only polynomial time,
that is, if we are talking about proof systems or arguments.

Results on Interactive Proofs and Arguments For an unbounded prover,
the first question has been answered recently by Shamir [33], where we define
IP = {L| L has an interactive proof system}:
Theorem 7. IP = PSPACE, i.e. the statements that an all powerful prover
can prove to a polynomially bounded verifier, are precisely those that can be
verified using polynomially bounded memory (but possibly unbounded time).

If the prover is polynomially bounded, it is clear that his only possible ad-
vantage over the verifier is that he may have more information than the verifier.
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In this case, the best the prover can do to convince the verifier is to simply
send his information, s, say, to the verifier who should then be able to check
the prover’s statement based on s, where some error probability is allowed. The
class of languages allowing such probabilistic verification of membership given
auxiliary knowledge is already well known as NBPP or MA. So if we define
Bounded-ProverIP to be the class of languages that have interactive arguments,
then we have:

Theorem 8. Bounded-ProverIP = MA

Results on Zero-Knowledge We first look at the case of zero-knowledge
interactive proofs. Let

ZKIP = {L| L has a zero-knowledge interactive proof system}.

Goldreich, Micali and Wigderson [25] show that any NP ⊂ ZKIP if commit-
ment schemes with unconditional binding exist. This was extended to all of IP
in [6]. This, together with Theorem 2 gives:

Theorem 9. If one-way functions exist, then ZKIP = IP .

It is natural to ask also about statistical and perfect zero-knowledge. Let
PZKIP , SZKIP denote the classes of languages with perfect, resp. statisti-
cal zero-knowledge proof systems. Except for the trivial PZKIP ⊂ SZKIP ⊂
ZKIP , very little is known with certainty. We know that a few languages with
nice algebraic properties, such as graph isomorphism and quadratic residuosity4

are in PZKIP . Also the complements of these languages are in PZKIP , and
this is interesting since a problem such graph non-isomophism is not known to
be in NP , and so it seems unlikely that PZKIP ⊂ NP . It also seems unlikely
that the converse inclusion holds: Fortnow [20] has proved that if it does, then
the polynomial hierachy collapses - something believed to be false by many com-
plexity theorists. In fact this can be seen as evidence that the graph isomorphism
problem is not NP -complete, one of the few real evidences that have been found.

A nice characterization of languages in PZKIP or SZKIP is an interesting
open problem. We do know, however, some information on complete problems
in SZKIP [35], and that a proof system that is statistical zero-knowledge w.r.t.
the honest verifier implies existence of a proof system that is statistical zero-
knowledge in general [23].

Let us mention also a variant of the zero-knowledge concept, known as non-
interactive zero-knowledge. In the non-interactive zero-knowledge model, an un-
bounded prover and a polynomial time verifier share access to a random string
α. It is assumed as a part of the model, that α contains independent random
bits. The prover must now convince the verifier that a common input x is in some
language L by sending only 1 message σ (hence the “non-interactiveness”). The
verifier then checks σ against x and α and accepts or rejects.
4 This is the set of pairs of numbers n, a, where a is a square modulo n
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This proof system is called sound if whenever x 	∈ L, no prover can make
the verifier accept with non-negligble probability over the choice of α. It is zero-
knowledge if the pair σ, α can be simulated with an indistinguishable distribution
in expected polynomial time.

This model was introduced by Blum, de Santis, Micali and Persiano [7] to
formalize the absolute minimal amount of interaction required to prove non-
trivial statements in zero-knowledge.

To distinguish between all the relevant complexity classes now involved, we
use the following notation: Let NIZK, NIPZK and NISZK denote the classes
of languages with non-interactive computational, perfect and statistical zero-
knowledge proof systems.

Lapidot and Shamir [28] have shown that

Theorem 10. If one-to-one surjective one-way functions exist, then NP ⊂
NIZK.

It is an open question whether any one-way function would be sufficient.
The non-interactive model is weaker than the normal interactive model in

that interaction is not allowed, but in another respect stronger because a ran-
dom string with correct distribution is assumed to be given “for free”. It is
therefore not immediately clear whether any language that has a non-interactive
zero-knowledge proof system also has an interactive one and vice versa. In [16],
Damg̊ard shows:

Theorem 11. We have that NIZK ⊂ ZKIP , NISZK ⊂ SKZIP and that
NIPZK ⊂ PZKIP .

We already know that if one-way functions exist, ZKIP = PSPACE. This
together with the fact that a non-interactive proof uses only a constant number of
rounds provides very strong evidence that the first containment above is proper,
since it is extremely unlikely that a constant number of rounds would be sufficient
to prove all of IP . On the other hand, the corresponding questions for the classes
where statistical or perfect zero-knowledge are required seem more open.

For the interactive argument model - which is the most interesting one in
practice - the situation is again quite different. We have already seen that the
only statements we can hope to prove at all are those in the class MA.

So the remaining question is whether we can prove any such statement in
zero-knowledge, or even in perfect zero-knowledge.

In [4], Brassard Chaum and Crépeau show that any MA-language has a
perfect zero-knowledge argument, if commitment schemes with unconditional
hiding exist. It follows that

Theorem 12. If one-to-one surjective one-way functions exist, resp. if collision-
intractable hash functions exist, then any language in MA has a perfect, resp.
statistical zero-knowledge interactive argument.

There is currently no implication known either way between the two as-
sumptions listed in this theorem. Proving the theorem assuming only existence
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of one-way functions is a challenging open problem. Note that there is no conflict
between this result and that of Fortnow mentioned above: Fortnow’s result talks
only about interactive proofs (and not arguments).

The concrete protocol constructions used to prove that all NP problems have
zero-knowledge proof systems and arguments are in fact also proofs of knowledge.
So equally general results on proofs of knowledge follow immediately.

On Composition of Zero-Knowledge Protocols In general, the sequential
composition of two zero-knowledge protocols is again zero-knowledge. An exam-
ple of this is the graph isomorphism protocol shown above – it is in fact the
result of repeating sequentially a basic step several times, where each step is
zero-knowledge.

However, if we try doing the repetitions in parallel, then the resulting pro-
tocol does not seem to be zero-knowledge: we would get a scenario where P
would send many graphs H1, ..., Hn at once, V would send challenges b1, ...bn

and P would reply by ψ1, ..., ψn. The resetting technique for simulation does
not work anymore: we would be forced to try to guess in advance all the bits
b1, ...bn, and it would take us expected exponential time before the guess was
correct. The idea that doing the protocol in parallel is not zero-knowledge may
seem counterintuitive at first sight: why should doing it in parallel tell V more
about an isomorphism between G0 and G1? The answer is that while it might
in fact be true that V learns nothing that could help him to compute such an
isomorphism, this is not enough for zero-knowledge which requires that V learns
nothing whatsoever that he could not compute himself. Indeed if the verifier com-
putes its challenge bits as a one-way function of the H1, ..., Hn received, then it
seems that conversation itself would be a piece of information that is difficult
for V to generate on his own.

This discussion does not prove that the parallel version of the graph isomor-
phism protocol is not zero-knowledge, only that the resetting technique will not
work for simulating it. However, Goldreich and Krawczyk [24] have shown that
there exist protocols that are zero-knowledge, but where the parallel composition
provably is not zero-knowledge.

A more complicated scenario which has been considered very recently is that
of concurrent zero-knowledge where we allow arbitrary interleaving of different
instances of protocols, i.e. while P is running a protocol with V1, it starts doing
(the same or) a different protocol with V2, etc. There is no a priori time ordering
fixed between messages sent in different protocols. We can ask whether this entire
interaction is simulatable. There are results about this indicating that many well
known protocols fail to be zero-knowledge in such a scenario, however, there are
also ways around this problem. More information on this can be found in one of
the latest papers on the subject by Dwork and Sahai [19], which also contains
pointers to more material.
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3.6 Applications of Zero-Knowledge

One basic application of zero-knowledge protocols that is important in theory
as well as in practice is the usage of zero-knowledge protocols as subprotocols in
larger constructions, this could be voting schemes, key distribution protocols, or
in general any multiparty computation (see the article by Cramer in this volume
for information and references on this). If we do not want to assume existence
of secure channels, such constructions are usually not possible in the first place
unless one-way functions exist. This means that in building such protocols we can
assume without loss of generality that NP ⊂ ZKIP . And so whenever a player
A sends a message in a protocol he can convince anybody else in zero-knowledge
that he has computed his message according to the rules in the protocol. This
follows since if the computation A was supposed to do is feasible in the first
place, then the claim that the message is correctly computed can be verified in
polynomial time given all A’s data, and so is an NP -statement.

It follows that we can automatically transform any protocol that is secure
assuming players follow the rules into one that is secure even if players deviate
arbitrarily from the protocol. This oberservation was first made in [25].

This can be interesting in practice if the involved zero-knowledge proofs are
efficient. However, this is not always the case if we are using the general theoret-
ical results we have covered. While they show what is in principle possible, most
of the actual protocol constructions occurring in the proofs of those results are
not very attractive in practice.

As an example, we know that a zero-knowledge proof or argument can be
given for any NP language, and this is proved by providing a zero-knowledge
proof for an NP complete problem such as Boolean Circuit satisfiability (SAT).
When we are given a concrete problem instance x ∈ L, where L ∈ NP , then to
use the general result, we must first construct from x a Boolean circuit which is
satisfiable precisely if x ∈ L, and then use the protocol for SAT.

This approach often results in very large circuits, for problem instances of in-
terest in real life, typically at least 10.000 to 100.000 binary gates. It is therefore
of interest to be able to construct instead an ad hoc zero-knowledge protocol for
the problem in question, such as the graph isomorphism protocol above. A few
problems are “nice” in this sense, in that they allow construction of particularly
efficient protocols. This is often true of problems derived from number theory,
and we mention some examples below. Still, there are also cases where the only
solution we know is to use general techniques. This can be the case e.g. if P wants
to show that for a given bit string y he knows x such that h(x) = y, where h is
some cryptograhic hash function. Since such functions are usually constructed
deliberately to have none of the nice algebraic properties that enable efficient
zero-knowledge directly, we have to resort to the general techniques. SAT is often
the natural NP complete problem to use, so efficient zero-knowledge protocols
for SAT are of particular interest. Recent results by Cramer and Damg̊ard in
this direction show that one can prove satisfiability of a Boolean circuit while
communicating only a number of bit commitments linear in the size of the cir-
cuit [11]. Using preprocessing, one can even reduce the proof to one message
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containing 2 bits pr. gate in the circuit [12]. Thus, general techniques can in fact
be practical in some cases.

Still, the largest potential for practical applications of zero-knowledge comes
from extremely efficient protocols specially designed for particular problems such
as the quadratic residuosity problem [21], the discrete logarithm problem [32], or
the RSA root extraction problem [27]. The typical use here is for the classical user
identification problem that we mentioned earlier: each user U gets a solution to a
hard problem instance xU , and can identify himself by proving in zero-knowledge
that he knows a solution to xU . By the zero-knowledge property, none of the
proofs conducted by U will help an adversary to find a solution to xU . Still,
by the soundness property, an adversary can only impersonate U if he can find
a solution to xU . So if he succeeds it means he could find a solution to xU

from scratch, and this is not possible if the underlying problem is hard. Using a
secure hash function, one can also use these (interactive) identification protocols
to build (non-interactive) signature schemes [21]. These can be more efficient
than RSA signatures, but have so far only conjectured security in the sense that
we do not know how to reduce the security to any well established computational
assumption.

The most efficient versions of these protocols yield error probability exponen-
tially small in the security parameter, even though the communication required
is only linear. Unfortunately, these protocols are only zero-knowledge against
the honest verifier, and hence have no provable security in real life. Feige and
Shamir [22] point out a possible way around this problem: the identification
scenario does not really require the full power of zero-knowledge. It is enough
if the protocol does not help the verifier (or anyone else) to find the provers
secret (while zero-knowledge ensures that the verifier learns nothing new what-
soever). This is so since we can show that an adversary needs to know the
prover’s secret to impersonate the prover. Protocols with this weaker property
are called Witness Hiding (WH), and might conceivably be easier to construct.
In [13] Cramer, Damg̊ard and Schoenmakers show that the efficient honest ver-
ifier zero-knowledge protocols of [32, 27] can be transformed into WH protocols
while preserving the efficiency.

The results just mentioned and many others in the area of efficient zero-
knowledge andWH protocols revolve around protocols of a particular form where
P sends a message, V sends a random challenge, and P gives an answer that
can be checked by V (this is the form of the basic step in the graph isomor-
phism protocol). While such protocols by themselves have only limited security
properties (e.g. they either have large error probability or are only honest ver-
ifier zero-knowledge), it turns out that they can be used in a modular way in
a number of constructions of protocols and signature schemes with simultane-
ously high efficiency and provable security. For instance, a prover can show that
he knows at least t out of n > t secrets without revealing which t secrets is
involved [13, 34]. This can be important, e.g. in protocols where anonymity is
desired. For a nice introduction to this entire area, see [8].
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Abstract. The transition from theory to industry standards presents
many challenges, particularly in terms of what features are important and
how they are to be specified. Public-key cryptography, now in its third
decade, is in the midst of such a transition. With an introduction to the
P1363 project Standard Specifications for Public Key Cryptography, this
survey highlights some of the transitional challenges, and also describes
several areas for further research motivated by the standards efforts.

1 Introduction

As public-key cryptography has now moved into its third decade, a maturing of
available technology has occurred, as reflected by the widespread deployment of
products based on public-key techniques, and the development of standards for
public-key cryptography.

Standards have historically been developed for many reasons. Perhaps the
most traditional motivation is that of a reference: standard time and standard
measurements are two examples. Many standards today, particularly for com-
munications, extend this notion of a reference definition to provide a basis for
interoperability, as parties communicate according to a common set of proto-
cols. For security, the protocols are further based on standards for underlying
cryptographic techniques, including public-key cryptography.

Another motivation for standards is assurance of some kind of safety; here,
fire resistance standards are a classic example. Assurance of security also plays
a role in the development of public-key standards.

Public-key standards today tend to be converging on three families of al-
gorithms, where a family is defined by the underlying hard problem on which
security is based. The first two families are based on the difficulty of the discrete
logarithm problem over finite fields and the difficulty of the elliptic curve discrete
logarithm problem. The third is based on the difficulty of integer factorization.
As shorthand, these families may be denoted DL, EC, and IF, respectively, and
they are the subject of further discussion in the material that follows. For more
background on those families, the reader is referred to other articles within this
Volume.

I. Damg̊ard (Ed.): Lectures on Data Security, LNCS 1561, pp. 87–104, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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Organization Web Page

ANSI X9F1 www.x9.org

IEEE P1363 grouper.ieee.org/groups/1363

ISO/IEC JTC1 SC27 www.iso.ch/meme/JTC1SC27.html

NIST www.nist.gov

Table 1. Web pages of four organizations developing public-key standards.

As noted in an earlier survey [14], the set of standards is as broad as the set
of applications, and it would be difficult to write (at least in a short paper) a
full description of every standard involving public-key cryptography. However,
much of the work is covered by four organizations, so it is possible to convey a
reasonable sense of the overall activity by reviewing the four efforts. This is done
in Section 2. One of the outcomes of the various work efforts is a general model
for public-key standards, which is helpful as a framework for further work. This
model, presented in Section 3, also illustrates the techniques in the IEEE P1363
draft standard.

Section 4 gives an interesting account standards development with respect
to the “strong primes” issue. The interaction between research and standards
development is a challenging one in this regard; new research results motivate
different positions in standards, and new requirements from standards motivate
new research. The “strong primes” issue is thus one relevant area of research.
Several other areas prompted by recent standards development are considered
in Section 5.

2 A Survey of Standards Efforts

This brief survey is mainly intended as “snapshot” of current activities as of
October 1998 in four organizations: ANSI X9F1, IEEE P1363, ISO/IEC JTC1
SC27, and NIST. New activities are being added continually, and the reader is
encouraged to consult the organizations’ Web pages for further information (see
Table 1). Also, in the interest of brevity in terms of the references (and in view of
the ongoing nature of the standards projects), full bibliographic citations for the
standards documents are not given. Titles and other information can generally
be obtained from the Web pages or directly from the organizations.

2.1 ANSI X9F1

ANSI X9F1 (full name: Accredited Standards Committee X9, Financial Services
— Data and Information Security — Cryptographic Tools) develops crypto-
graphic tools for the financial services industry in the United States. Member-
ship is by corporation and meetings are held quarterly. Balloting is conducted
through X9F1’s parent committees, X9 and X9F, and an approved document
becomes an American National Standard.
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Standard Description Status

ANSI X9.30 DL signatures (DSA) approved 1995

ANSI X9.31 IF signatures (RSA, RW) approved 1998

ANSI X9.42 DL key agreement (DH, MQV) nearly complete

ANSI X9.44 IF key transport (RSA) in preparation

ANSI X9.62 EC signatures (DSA) in public comment

ANSI X9.63 EC key agreement / transport (DH, MQV) in preparation

ANSI X9.80 Prime generation in preparation

Table 2. ANSI X9F1 standards and draft standards for public-key techniques.

X9F1 has standards and draft standards for digital signatures and key estab-
lishment in each of the three families. A standard for prime generation, which
underlies all three families, is in development. Table 2 lists the various efforts.

The renewed debate about “strong primes” (Section 4) has emerged as a
result of ANSI X9F1’s standardization efforts.

2.2 IEEE P1363

IEEE P1363 is developing a comprehensive standard for public-key cryptography
in computer and communications systems. Membership is by individual and
meetings are held quarterly. Balloting is conducted through P1363’s sponsor,
the IEEE Computer Society Microprocessor Standards Committee. An approved
document becomes an IEEE Standard.

P1363 has a comprehensive draft standard about to begin ballot, whose title
is the same as the working group’s name, IEEE P1363: Standard Specifications
for Public Key Cryptography. The draft standard includes a variety of public-key
techniques from all three families as well as extensive material on the number-
theoretic algorithms underlying the standard and on security considerations.
P1363 defines schemes and primitives (see Section 3), but not protocols.

A new project, IEEE P1363a, will develop additional techniques to be added
to the P1363 standard. That project has just started, and submissions of new
techniques are currently being received.

2.3 ISO/IEC JTC1 SC27

ISO/IEC JTC1 SC27 (full name: International Organization for Standardization
/ International Electrotechnical Commission — Joint Technical Committee 1,
Information Technology — Subcommittee 27, IT Security Techniques). Mem-
bership is by country, although experts participate in the three working groups
of SC27. Meetings are held several times a year. Balloting is conducted through
ISO and IEC, and an approved document becomes an international standard.

SC27 has projects involving many aspects of cryptography, with both sym-
metric and public-key techniques (often from multiple families) in the same set
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Project Description

ISO/IEC 9796 Signatures with message recovery

ISO/IEC 9798 Entity authentication

ISO/IEC 11770 Key agreement / transport

ISO/IEC 13888 Nonrepudiation

ISO/IEC 14888 Signatures with appendix

Table 3. Some ISO/IEC SC27 projects involving public-key techniques.

of documents, which often have multiple parts. Table 3 lists some of the current
efforts. SC27 defines protocols as well as other techniques and does not make as
strong a distinction between schemes and primitives as P1363 does.

2.4 NIST

NIST, the U.S. National Institute of Standards and Technology, develops stan-
dards for the U.S. government, including Federal Information Processing Stan-
dards (FIPS). The Computer Security Act (1987) gave NIST the charter for
cryptography standards for the U.S. government. Although NIST submits doc-
uments for public review, there is no ballot process, and final approval is by the
U.S. Secretary of Commerce.

NIST has two standards involving public-key techniques, FIPS PUB 186
(Digital Signature Standard), and FIPS PUB 196 (Entity Authentication Using
Public Key Cryptography). A key agreement / exchange standard is also in
preparation.

NIST is also developing the Advanced Encryption Standard (AES), which
though not a public-key standard, is clearly a major achievement in terms of the
synergy between standards development and research in cryptography.

2.5 Differences and Coordination

The four organizations, though developing standards based on related technol-
ogy, have significant differences. ISO/IEC JTC1 SC27 and IEEE P1363 focus
more on cryptographic building blocks and leave a fair amount of flexibility.
ANSI X9F1 is oriented toward U.S. banking requirements and includes con-
siderations relevant to auditing and validation of security components. NIST
is oriented toward U.S. government requirements for unclassified data. These
differences result in generally related but not necessarily compatible results.

Despite the differences, there is significant coordination. IEEE P1363 and
ANSI X9F1 have overlapping membership and an informal understanding that
ANSI X9F1 will adopt or “profile” IEEE P1363 specifications to meet banking
requirements (although the reverse is also occurring, where IEEE P1363 general-
izes some of the ANSI X9F1 specifications). NIST has stated that it will accept
new ANSI X9F1 standards for government purposes, in addition to its existing
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Digital Signature Standard, FIPS 186. (Interestingly, ANSI X9F1 had previously
adopted FIPS 186 as the basis for ANSI X9.30.) ANSI X9F1 documents are pro-
moted into the international standards process through the banking standards
committee ISO TC68, which has some coordination with ISO/IEC JTC1 SC27.

2.6 Related Efforts

Another standards effort of interest is the Public-Key Cryptography Standards
(PKCS) series (www.rsa.com/rsalabs/pubs/PKCS/) coordinated by RSA Lab-
oratories. PKCS builds consensus among an informal, international audience of
cryptography developers and is intended as a catalyst for more formal standards
development. PKCS also follows the three-family model, with the RSA algorithm
(IF family) covered in PKCS #1, Diffie-Hellman (DL family) in #3, and the EC
family in the proposed #13.

Also of particular interest today are the standards being developed in the
security area of the Internet Engineering Task Force (www.ietf.org), many of
which involve public-key protocols. Some of the more notable efforts are Public-
Key Infrastructure (X.509) (pkix), S/MIME Mail Security (smime), IP Security
Protocol (ipsec) and Transport Layer Security (tls).

3 A General Model for Public-Key Standards

As standards for public-key cryptography have emerged, a classification of the
types of public-key techniques has been developed as well. The classification, a
result of attempts to specify public-key techniques in a common manner, provides
a natural framework or model for new standards development, as well as for
research into new techniques.

The primary characteristic of the model is the separation of public-key tech-
niques into two “levels”: primitives and schemes. Primitives are basic mathemat-
ical operations like RSA encryption, c = me mod n. Schemes are sets of related
operations combining primitives with additional techniques, like signature oper-
ations that involve the additional technique of hashing. Primitives are intended
for low-level implementation as in a crypto-accelerator, schemes are intended as
components of high-level application protocols and services. In addition, schemes
are intended to be “secure” on all messages they process, whereas primitives are
assumed to be difficult to compute (or invert) only on average.

As examples of schemes and primitives, some techniques from IEEE P1363
will be mentioned. Background on the P1363 naming convention will be helpful
here. The general form of a P1363 name consists of three fields:

family type – instance

where family is the two-character designation for the underlying hard problem
(DL, EC or IF); type is a two- to four-character shorthand for the type of tech-
nique, and instance is the name of a particular instance of the given type.
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With the focus on P1363, protocols are not covered in the general model
presented here. Examples of protocols include entity authentication protocols
where one party verifies another party’s presence, and key establishment proto-
cols where parties agree on or exchange a session key. Such protocols can readily
be built out of the various schemes, and in general can be built in a generic fash-
ion where it is only the type of scheme that matters, not the specific scheme.
For instance, it is possible to build an entity authentication scheme from any
signature scheme. Thus protocols need not be defined in terms of basic mathe-
matical operations, which further justifies the separation between primitives and
schemes.

3.1 Primitives

A primitive is a basic mathematical operation from which other cryptographic
techniques can be built. By itself, a primitive provides a degree of computational
security in that it may be difficult on average to compute a primitive (or perhaps
to invert one) without access to a certain key.

Types of Primitive The following types of primitive are defined in P1363.

Secret value derivation. A secret value derivation primitive (denoted SVDP)
combines one or more private keys with one or more public keys to produce a
secret value. The same secret value can be obtained by combining the corre-
sponding public keys with the corresponding private keys.

Secret value derivation is relatively new terminology, being introduced in
P1363 for specifying basic operations like the Diffie-Hellman step that combines
one party’s public key, say yB, with another party’s private key, say xA, to
compute a value zAB = yxA

B (the exponentiation being performed in some group).
Other aspects of Diffie-Hellman such as how keys are derived from the value zAB

or how the public/private key pairs are managed, are more properly parts of a
scheme or protocol. The primitive isolates the basic mathematical part.

Secret value derivation primitives in P1363 include the following:

– DLSVDP-DH, basic Diffie-Hellman [9]
– DLSVDP-DHC, Diffie-Hellman with cofactor multiplication (see [15]), which

protects against certain chosen-public-key attacks [20,17]
– DLSVDP-MQV, Menezes-Qu-Vanstone secret value derivation, involving

two key pairs per party [15]
– DLSVDP-MQV, MQV with cofactor multiplication
– ECSVDP-DH, ECSDVP-DHC, ECSVDP-MQV, and ECSVDP-MQV, the

elliptic curve analogs of the preceding primitives

Only the DL and EC families have secret value derivation primitives, an advan-
tage of having common domain parameters to be shared among parties.

Signature and verification. A signature primitive (SP) processes a mes-
sage representative (an input that contains information about a message, such
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Family \ Type SVDP SP / VP EP / DP

DL DH, DHC, MQV, MQVC NR, DSA —

EC DH, DHC, MQV, MQVC NR, DSA —

IF — RSA1, RSA2, RW RSA

Table 4. Primitives in IEEE P1363, by family and type.

as the hash of the message) with a signer’s private key to produce a signature.
A corresponding verification primitive (VP) processes the signature with the
signer’s public key to recover the message representative, or processes the signa-
ture and the message representative to verify the signature. (In the former case,
the primitive is said to have a message recovery capability.)

Signature and verification primitives in P1363 include:

– DLSP-NR / DLVP-NR, Nyberg-Rueppel signatures [23]; these have a mes-
sage recovery capability

– DLSP-DSA / DLVP-DSA, generalizations of the NIST FIPS 186 Digital
Signature Algorithm [22]

– ECSSP-NR / ECVP-NR and ECSP-DSA / ECVP-DSA, the elliptic curve
analogs of the preceding primitives

– IFSP-RSA1 / IFVP-RSA1, basic RSA [28]
– IFSP-RSA2 / IFVP-RSA2, basic RSA with an “absolute value” step that

saves one bit, as in ISO/IEC 9796 and ANSI X9.31
– IFSP-RW / IFVP-RW, Rabin-Williams signatures [26,31] with the one-bit

savings

Encryption and decryption. An encryption primitive (EP) processes a mes-
sage representative with a recipient’s public key to produce a ciphertext. A
corresponding decryption primitive processes the ciphertext with the recipient’s
private key to recover the message representative.

There is just one pair of encryption and decryption primitives:

– IFEP-RSA / IFDP-RSA, basic RSA

Encryption in the other families is typically based on secret value derivation
primitives, so only the latter type of primitive need be defined for the DL and
EC families.

To summarize, Table 4 lists the primitives according to family and type.

Examples DLSP-DSA generates a signature (r, s) from a message representa-
tive m with a private key (p, q, g, x). (The meaning of the individual items is not
significant to this discussion — but the notation differs from P1363 to be more
consistent with the original DSA specification [22].) DLSP-DSA computes the
signature (r, s) as

r ← (gk mod p) mod q

s ← k−1(m + xr) mod q
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where (k, gk mod p) is a freshly generated DL key pair. DLVP-DSA verifies the
signature by computing

u1 ← ms−1 mod q

u2 ← rs−1 mod q

and then comparing

r
?= (gu1yu2 mod p) mod q.

(Some testing for nonzero values is also included in the primitives.) The
EC/DLSSA signature scheme is built from these primitives.

Other primitives in P1363 have a similar flavor, consisting of modular arith-
metic and other group operations.

Implementation Primitives are likely to be implemented as low-level com-
ponents of a system, for instance as functions interfacing to a cryptographic
accelerator in a smart card. They are generally not directly accessible to appli-
cations, particularly since “raw” access to a primitive may provide a means of
compromising a private key. Moreover, because a primitive is a mathematical
operation, it may have properties that lead to potential attack if the primitive
is employed directly to protect data. In addition, a primitive, being a basic op-
eration, is limited in terms of the size of messages it can process. Because of the
mathematical properties and the message size limitation, a primitive needs to
be combined with other techniques in a scheme, as described next.

3.2 Schemes

A scheme is a set of related operations combining one or more primitives with
additional techniques to enhance security and, possibly, to handle messages of
arbitrary size. A scheme is intended to be secure for all messages it processes.

Types of Scheme Four types of scheme are defined in P1363. Each has one
or two related operations, in addition to key management operations mentioned
further below.

Key agreement. A key agreement scheme (KAS) includes a key agreement
operation by which two parties can agree on a shared secret key. The key agree-
ment operation typically combines a secret value derivation primitive with a key
derivation function, where the key derivation function maps shared secret values
produced by the primitive to one or more shared secret keys.

Key agreement schemes in P1363 include DL/ECKAS-DH1, based on Diffie-
Hellman with one key pair per party; DL/ECKAS-DH2, with two key pairs
per party (see [5] for some security analysis); and DL/ECKAS-MQV, based on
MQV. Similar to the situation with primitives, only the DL and EC families
have a key agreement scheme. Key agreement protocols can be defined for any
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of the families, however, building on an encryption scheme in the case of the IF
family.

Signature. A signature scheme includes a signature generation operation and
a signature verification operation by which parties can verify the origin and
integrity of a message. There are two flavors. In a signature scheme with appendix
(SSA), a signature is provided to a verifier separate from the message. In a
signature scheme with message recovery (SSR), the message is recovered from
the signature. The operations combine signature and verification primitives with
an encoding method for signatures, where the encoding method maps between
arbitrary length messages and message representatives. Examples of encoding
methods include a hash function and a hash function with padding.

Signature schemes in P1363 include DL/ECSSA, IFSSA, and IFSSR, each a
general signature scheme combining primitives in the families with an encoding
method. Signature schemes with message recovery for the DL and EC families
are the subject of further work.

Encryption. An encryption scheme (ES) includes an encryption operation and
a decryption operation by which parties can protect a message from disclosure.
An authenticated encryption scheme can also verify the integrity of a message
and can bind it to certain non-secret “control information” (see [13] for dis-
cussion). The operations combine encryption and decryption primitives with an
encoding message for encryption.

There is just one encryption scheme in P1363, IFES, based on RSA. Encryp-
tion schemes for other families are the subject of further work.

The selection of encoding methods and key derivation functions is a delicate
matter, as these additional techniques must address mathematical properties of
the primitives and also be internally secure. For instance, an encoding method
for signatures must produce a message representative in a way that overcomes
any mathematical properties of the signature primitive. It must also be difficult
to find two messages with the same message representative, or a messages with
a given message representative. The internal properties are the ones most often
studied for such encoding methods, but the mathematical considerations are
also an appropriate area for research. (In fact, both are addressed together in
the most recent encoding methods, such as OAEP [2] and PSS [3].)

Key management operations for the various schemes include key generation,
key validation (terminology proposed by Don Johnson in a contribution to ANSI
X9F1), and, depending on the family, domain parameter generation and domain
parameter validation, where domain parameters are components common to a
set of key pairs, such as an elliptic curve group in the EC family or a prime in
the DL family. The validation operations, which are optional in P1363, are for
verifying that a public key or a set of domain parameters satisfies its definition.
The key management operations are complementary to the other operations in
the schemes in the sense that they produce (and optionally verify) the keys that
are input to the related scheme operations. (How parties obtain one another’s
public keys is a separate matter.)

Table 5 summarizes the schemes according to family and type.
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Family \ Type KAS SSA SSR ES

DL/EC DH1, DH2, MQV DSA, NR open open

IF — RSA, RW RSA, RW RSA

Table 5. Schemes in IEEE P1363, by family and type.

Example An example scheme, building on the DSA primitive from the previous
discussion, is DL/ECSSA, a signature scheme with appendix for the DL and EC
families. DL/ECSSA is “generic” in that it can be based on any pair of DL and
EC signature and verification primitives and any encoding method consistent
with the primitives. It has six operations: the four key management operations,
the signature generation operation, and the signature verification operation. The
latter two are described here.

DL/ECSSA signature generation generates a signature (r, s) from a message
M with a private key S. (For DLSP-DSA the private key would have the form
(p, q, g, x) as above, though again meaning of the individual items is not sig-
nificant to this discussion.) The operation computes the signature (r, s) by the
following steps:

1. Apply the message encoding method to compute a message representative
from the message: m = Encode(M).

2. Apply the signature primitive to the message representative and the private
key to produce a signature: (r, s) = DLSP-DSA(S, M).

DL/ECSSA signature verification verifies the signature with a public key
V by these steps (for a primitive such as DLVP-NR with a message recovery
capability the steps would be somewhat different):

1. Apply the message encoding method to compute a message representative
from the message: m = Encode(M).

2. Apply the verification primitive to the message representative, the signature,
and the public key to verify the signature: DLVP-DSA(V, M, (r, s)).

Implementation Scheme operations might be found as “mid-level” compo-
nents, such as modules in a cryptographic service provider or library. They will
typically be directly accessible to applications, in contrast to primitives. A se-
quence of scheme operations can then be carried out by an application, along
with other message processing, in the form of a key establishment, entity au-
thentication, or other security protocol.

4 Are “Strong Primes” Needed for RSA?

Standards development can place new requirements on existing cryptographic
systems, challenging assumptions about what is necessary for security. An ex-
cellent example is found in the ongoing debate about whether so-called “strong
primes” are needed for the RSA public-key cryptosystem.
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4.1 1980s: Yes

The security of the RSA public-key cryptosystem depends, in part, upon the
difficult of factoring large integers that are the product of two primes. A number
of methods are available for solving this problem of integer factorization. Some
are “general purpose” in that they apply equally well to all integers of a given
size. Others are “special purpose,” operating more effectively when the integer
or its factors have a certain form.

One special-purpose method of particular interest is Pollard’s P − 1 Method
[25]. This method can factor an RSA modulus n = pq in about r operations
where r is the largest prime factor of p−1. Because of this, it was recommended
in the 1980s that a modulus be constructed so that the largest prime factors
of p − 1 and q − 1 are large, say at least 100 bits long. Other special-purpose
methods lead to other sets of strong prime conditions, such as “P +1” conditions
and “r − 1” conditions (r being the large factor of P − 1). “Strong primes” are
primes satisfying one or more of these conditions.

One standard developed during the 1980s, ITU-T (then CCITT) Recommen-
dation X.509 (1988) [7], includes a number of these conditions in its description
of RSA key generation. Strong primes are easy to generate: Gordon [11] gives
a method for generating strong primes with only a small overhead compared to
generation of random primes.

4.2 Early 1990s: No

Although strong primes were easy to generate and protected against certain at-
tacks, were they necessary? This was the subject of an unpublished paper by
Rivest in the early 1990s [27] (see also [29]). To resist general-purpose meth-
ods, the paper argued, the prime factors of an RSA modulus would need to
be reasonably large. If the primes were sufficiently large and were generated at
random, the paper continued, the primes would with high probability resist the
various special-purpose methods as well, so strong prime conditions would add
no protection in practice. At most, they gave a false sense of security.

This point became particularly clear with the development of the Generalized
Number Field Sieve (GNFS) [6], which by increasing the required size of RSA
moduli to resist a certain level of attack, made the special-purpose methods even
less relevant.

The development that perhaps most convincingly argued against the need for
strong primes (and for the need for large ones) was the Elliptic Curve Method
(ECM) [16]. ECM, unlike the P − 1 Method and other previous special-purpose
methods, is equally effective on all primes of a given size. No special conditions
on a prime, other than size, can defend against it. Thus, in a certain sense, every
prime of a given size is a “weak prime” — including even primes strong against
the P −1, P +1 and all other previous methods. Of course, primes large enough
to resist GNFS will resist ECM as well.

By the mid-1990s, then, it seemed that standards for the RSA public-key
cryptosystem should no longer include conditions on the primes, other than that
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they be sufficiently large and random. Implementations should be able to include
such conditions during RSA key generation, but to impose a general requirement
no longer seemed necessary. The debate about whether an RSA modulus could
be “weak” appeared settled.

4.3 Late 1990s: Maybe?

Another debate, however, was just beginning. Although a large random prime
would resist attacks against outside opponents, what if a user deliberately gen-
erated a prime that was not random or not large enough? Indeed, what if the
user deliberately generated a prime that was weak against the P − 1 method?
The user could do so by repeatedly generating RSA key pairs until one of the
primes output as part of the RSA private key was obviously weak. (To detect
the weakness, the user need only try to factor p− 1 or q − 1, perhaps by ECM.)
A user might be motivated to do this if the user later could claim that, because
the prime was weak, the resulting RSA modulus could easily be factored. The
user could thereby attempt to repudiate a previously verified signature.

On the one hand, it was argued that a user would have a difficult time
convincing a judge that the supposed weakness was the result of chance. Since
it is unlikely that a random prime would be weak against the P − 1 method, the
claim would seem suspicious, particularly as to why an opponent would choose
this one RSA modulus to factor with the P − 1 method without knowing in
advance whether the effort would succeed. (Although the user could know in
advance whether a modulus could be factored by the P − 1 method, there is no
way for an outsider to determine this without actually trying to factor it.)

On the other hand, it was pointed out that the mere possibility that such a
ruse might succeed was sufficient justification to prevent it.

In any case, a general consensus was emerging by the late 1990s that it was
important to consider not only security against outside opponents, but security
against insiders — the users — when constructing requirements for key genera-
tion.

This debate, which played out in the final stages of the development of ANSI
X9.31, makes it clear that assumptions about what is necessary for security
are continually evolving. (The verdict: ANSI X9.31 would require strong prime
conditions.) It also raises some nice research problems about how users can prove
their keys are properly generated, a topic which is considered further in the next
section.

5 Research Areas

As already established, research in cryptography eventually finds its way into
standards, though perhaps not necessarily as originally intended. Standards de-
velopment likewise motivates additional research.

As an example, consider Table 5. As part of standards development, it became
clear that certain types of techniques were better established in one family than
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in another. This provided motivation for finding new techniques in the other
families. Or consider the strong primes debate. The question about whether
strong primes were necessary, cast in the new light of nonrepudiation, raised
issues about proving that public keys satisfy certain properties. Most research is
influenced in one way or another by application requirements, and standards, by
defining a class of applications, thus have a significant impact on new research.

(As a side note, perhaps the most compelling example of how standards
development can influence research can be found in the significant body of re-
search surrounding the analysis of the Data Encryption Standard [21] and the
development it is successor, the Advanced Encryption Standard.)

As it would have been difficult to cover all the standards involving public-key
cryptography, so it is difficult to cover all the research problems motivated by
those standards. However, four research areas have been particularly prominent
in the development of P1363 and its addendum, P1363a, and these are described
in further detail next.

5.1 Key Validation

As discussed above in the context of the strong primes issue, it can be important
to have assurance that a public/private key pair has certain properties. More
fundamentally, it can often be important to know that a given public key is, in
fact, a public key.

There is an interesting definitional issue here. When specifying a crypto-
graphic primitive, one usually assumes that public keys are valid; as validation
may be expensive and can be performed elsewhere, there is little reason to specify
the behavior of a primitive on an invalid public key. When specifying a protocol,
however, one can no longer make this assumption. Thus, the definition of “public
key” varies according to the type of technique. The transition between differ-
ent types of technique, say a protocol and a primitive, can introduce potential
security risks due to misunderstanding about whether a key is valid or not.

Public-key validation is primarily of interest in key agreement schemes,
which combine one user’s public key with another user’s private key in a secret
key derivation primitive. Effectively, this combination can open the door to a
“chosen-public-key attack” where an opponent, by supplying an invalid pub-
lic key, may be able to extract information about a private key. (The “small
subgroup” attacks on the Diffie-Hellman and related primitives observed by Van-
stone [20] and by Lim and Lee [17] illustrate the risks involved.) Key validation
is one of the countermeasures to these concerns.

In encryption and signature schemes, public-key validation provides an addi-
tional level of assurance, but is less important than for key agreement schemes
since there is no direct counterpart to the “chosen-public-key attack.” (Chosen-
message and chosen-ciphertext attacks are of greater concern.) One example of
added assurance is that public-key validation can defend against the possibility
that a user might repudiate a signature on the basis that the user’s public key
is invalid.
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As one area for research, then, it would be worthwhile to refine existing
security models to accommodate the possibility that public keys might be invalid.
Such models could account for the possibility that a user might repudiate a
signature, and issues such as when key validation is necessary could be addressed.

A user may perform key validation directly, or a perhaps rely on a certifi-
cate authority to perform key validation as part of issuing a certificate. The
particular validation method depends on the type of key. For DL and EC public
keys, validation involves a straightforward check that the public key satisfies its
definition — that is, that the public key has the correct order in an intended
group. This assumes, of course, that the correct order and the intended group,
which are part of the DL or EC domain parameters, have also been validated, a
process that can be carried out separately.

An alternative to a direct check of a public key’s validity is an interactive
proof of knowledge of the corresponding private key such as the one given by
Chaum et al. [8].

For IF public keys, validation is more difficult. (As mentioned above, however,
the need for validation of IF public keys is less pronounced, since there is no
direct “chosen-public-key” attack.) No method is known, for instance, by which
a user can check whether an RSA modulus is a product of two primes of similar
size. A user can check whether a modulus is composite, of course, but to verify
the number of primes involved appears to require an interactive proof with the
holder of the prime factors such as the one given by van de Graaf and Peralta
[30].

Recently, several techniques have been developed for proving additional prop-
erties about IF public keys. Liskov and Silverman give an interactive proof for
the size of the prime factors [18]; Mao presents an alternate proof [19]. The proof
given by Gennaro, Micciancio and Rabin [10] shows that there are two primes
involved, each occurring exactly once as a factor for a certain class of moduli.
The techniques can likely be improved, and further research on this problem is
well motivated.

5.2 New Encryption Schemes

Another area of research interest concerns improvements to encryption schemes.
In P1363, there is only one encryption scheme, IFES, based on the RSA encryp-
tion primitive. Schemes for the DL and EC families were not included since there
were no established techniques in practice, and since it was possible to establish
keys for conventional encryption schemes through the use of the DL and EC key
agreement schemes.

Related to the broadening of encryption schemes to include the other families
is the broadening of the schemes to include potentially larger messages. IFES,
as defined, limits the size of the message it can encrypt to slightly less than
the size of the RSA modulus. This is generally not a problem in practice as
the RSA modulus is typically 96 bytes or more and the message is typically a
symmetric key of 16 bytes or less, though further flexibility would be helpful.
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A straightforward approach to EC encryption, however, would combine a 16-
byte key with a secret value that is (say) 20 bytes long. This leaves little room
for padding and other enhancements that may be necessary for security, and
motivates further research on how to construct DL and EC schemes.

New and better encryption schemes for all three families were thus identified
as a research objective during the development of P1363, and several contribu-
tions resulted that are now being considered for inclusion in P1363a (a full list
of contributions can be found through the P1363 Web page). As this is still a
relatively new area of research, further review and additional contributions are
definitely welcome.

5.3 New Signature Schemes

The situation with signature schemes in P1363 is somewhat more complete than
with encryption schemes, as there is at least one scheme for each family. However,
here as well there is need for additional research, as only one of the families has a
signature scheme giving message recovery, and as the latest results on “provable
security” (e.g. [24]) have not yet been incorporated. In addition, the one signature
scheme with message recovery, IFSSR, has a relatively older design. More recent
schemes, such as PSS [3], have better security proofs.

For the DL and EC families, signature schemes with message recovery could
be based on the Nyberg-Rueppel signature primitive, since it supports message
recovery. A challenge here is that the verification primitive (DLVP-NR or ECVP-
NR) can only recover a relatively small message — typically 20 bytes. Any
redundancy necessary for security would further limit the size of the message.

The recent discussion on “target-collision-resistant” hash functions [4] can
also provide insight into the appropriate design of new signature schemes.

5.4 Provable Security

“Provable” security, of course, remains a continual objective — whether a better
understanding of the complexity of an underlying hard problem or an assurance
of the connection between that hard problem and a particular cryptosystem.
Proofs for primitives, schemes, and protocols are all important; the last of the
three is perhaps the most important in practice, since it is through actual pro-
tocols that parties (including opponents) most often interact with one another.
Since proofs of protocol security depend on security of the underlying schemes
and primitives, however, security analysis for the other two levels is important
as well.

The random oracle model [1] has provided significant insight into the design
and security proof of schemes, but it has limitations, namely that in practice,
the random oracle in the construction is instantiated with a particular method
such as a hash function. Security proofs in the random oracle model generally
contemplate a generic attack that works for any instantiation. In practice, one
would like assurance about specific attacks involving a particular hash function as
well (although, certainly, the absence of a generic attack is itself quite assuring).
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As an example, one might ask how security results about RSA bits [12] apply to
the OAEP construction [2]. Further research into “instantiated security” is thus
another desirable research topic.

6 Conclusion

With all the standards development around public-key cryptography, it is clear
that the technology has matured significantly, but story is far from over. Im-
provements to existing techniques, new techniques, and perhaps even completely
different approaches are to be expected.

A lesson learned for future development is the importance of collaboration
between research and standards. Inasmuch as standards are “best practice,” they
are an excellent avenue for applying research, and their continued success de-
pends on ongoing research. Basic research in cryptography and the development
of standards are thus quite closely related. Though in the past the efforts have
been separated by a decade or more, hopefully, in the future, they will proceed
more closely in step, as the promising results of additional knowledge continue
to be made available for everyday use.
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Abstract. This paper considers modern secret-key block ciphers. The
theory behind the design and analysis of modern block ciphers is ex-
plained, and the most important known attacks are outlined. Finally the
Advanced Encryption Standard is discussed.

1 Block Ciphers - Introduction

In the last few thousands of years encryption algorithms, also called ciphers, have
been developed and used [18,28]. Many of the old ciphers are much too weak to
be used in applications today because of the tremendous progress in computer
technology. There are essentially two types of cryptosystems, one-key and two-
key ciphers. In one-key ciphers the encryption of a plaintext and the decryption
of the corresponding ciphertext is performed using the same key. Until 1976 when
Diffie and Hellman introduced public-key or two-key cryptography [20] all ciphers
were one-key systems, today called conventional or classical cryptosystems. Con-
ventional cryptosystems are widely used throughout the world today, and new
systems are published frequently. There are two kinds of one-key ciphers, stream
ciphers and block ciphers. In stream ciphers, typically a long sequence of bits is
generated from a short string of key bits, and is then added bitwise modulo 2 to
the plaintext to produce the ciphertext. In block ciphers the plaintext is divided
into blocks of a fixed length, which are then encrypted into blocks of ciphertexts
using the same key. The interested reader will find a comprehensive treatment
of early cryptology in [28].

A block cipher is called an iterated cipher if the ciphertext is computed by
iteratively applying a round function several times to the plaintext. In each round
a round key is combined with the text input. In other words, let G be a function
taking two arguments, such that, it is invertible when the first argument is fixed.
Then define

Ci = G(Ki, Ci−1),

where C0 is the plaintext, Ki is the ith round key, and Cr is the ciphertext.
A special kind of iterated ciphers are the Feistel ciphers. A Feistel cipher with
block size 2n and r rounds is defined as follows. Let CL

0 and CR
0 be the left and

right halves of the plaintext, respectively, each of n bits. The round function G
operates as follows

CL
i = CR

i−1

CR
i = F (Ki, C

R
i−1) + CL

i−1,
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and the ciphertext is the concatenation of CR
r and CL

r . Note that F can be any
function taking as arguments an n-bit text and a round key Ki and producing
n bits. ‘+’ is a commutative group operation on the set of n bit blocks. For the
remainder of this paper we will assume that ‘+’ is the exclusive-or operation
(⊕).

The Data Encryption Standard (DES) [55] is by far the most widely used it-
erated block cipher today. Around the world, governments, banks, and standards
organisations have made the DES the basis of secure and authentic communica-
tion [65]. The DES is a Feistel cipher. However, the key size and the block size of
the DES have become too small. Therefore the National Institute of Standards
and Technology (NIST) in the U.S.A. has initiated the process of developing and
to standardise a new encryption algorithm, the Advanced Encryption Standard
(AES) [57], as a replacement for DES. This work is ongoing as this paper is
written.

The remainder of this paper is organised as follows. § 2 lists and discusses
the modes of operation for block ciphers used for encryption. § 3 discusses the
theoretical and practical security of block ciphers. The most important methods
of cryptanalysing block ciphers are given in § 4. § 5 discusses design principles of
block ciphers and §6 reviews how to strengthen the DES. In §7 the Advanced En-
cryption Standard is discussed and some conjectures are made, and § 8 contains
concluding remarks.

2 Modes of Operations

The most obvious and widespread use of a block cipher is for encryption. In 1980
a list of four modes of operation for the DES was published [56]. These four modes
can be used with any block cipher and seem to cover most applications of block
ciphers used for encryption [18]. In the following let EK(·) be the permutation
induced by using the block cipher E of block length n with the key K and
let P1, P2, ....., Pi, ... be the blocks of plaintexts to be encrypted. The Electronic
Code Book (ECB) is the native mode, where one block at a time is encrypted
independently of the encryptions of other blocks, Ci = EK(Pi), Pi = EK(Ci). In
the Cipher Block Chaining (CBC) mode the encryption of a block depends on
the encryptions of previous blocks. Ci = EK(Pi ⊕ Ci−1), Pi = DK(Ci) ⊕ Ci−1,
where C0 is a chosen initial value. The Cipher Feedback (CFB) mode is a stream
cipher mode, where one m-bit character at a time is encrypted.

Ci = Pi ⊕ MSBm(EK(Xi))
Xi+1 = LSBn−m(Xi) ‖ Ci

where X1 is a chosen initial value, ‖ denotes concatenation of blocks, MSBs and
LSBs denote the s most and least significant bits respectively or equivalently the
leftmost and rightmost bits respectively. Decryption is similar to encryption.
Here m can be any number between 1 and the block length of the cipher. If
the plaintext consists of characters, m = 7 or m = 8 is usually the well-chosen
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parameter. The Output Feedback (OFB) mode is a second stream mode, where
the stream bits are not dependent on the previous plaintexts, that is, only the
stream bits are fed back, not the ciphertext as in CFB mode.

Ci = Pi ⊕ MSBm(EK(Xi))
Xi+1 = LSBn−m(Xi) ‖ MSBm(EK(Xi))

where X1 is a chosen initial value. Decryption is equal to encryption. Both the
CFB and OFB modes have two parameters, the size of the plaintext block and
the size of the feedback value. In the above definition we have chosen them equal
and will do so also in the following.

The ECB is the native mode, well-suited for encryption of keys of fixed
length. It is not suited for the encryption of larger plaintexts, since equal blocks
are encrypted into equal blocks. To avoid this, the CBC mode is recommended.
Not only does a current ciphertext block depend on the current plaintext but
also on all previous ciphertext blocks. In some applications there is a need for
encryptions of characters, instead of whole blocks, e.g., the 8 bytes for the CBC
mode of DES. For that purpose the CFB and OFB modes are suitable. It is often
recommended to use the OFB mode only with full feedback, i.e., with m = n
(64 for the DES). It comes from the fact, that for m < n the feedback function
is not one-to-one, and therefore has a relatively short cycle [18] of length about
2n/2.

An important issue in the applications of the four modes is how an error in
the transmission of ciphertexts is propagated. In the ECB mode an error in a
ciphertext block affects only one plaintext block. A lost ciphertext block results
in a lost plaintext block. An error in a ciphertext block in the CBC mode affects
two plaintexts blocks. As an example, assume that ciphertext C3 has an error and
that all other ciphertext blocks are error-free, then P4 = DK(C4)⊕C3 inherits the
error from C3 and P3 = EK(C3)⊕C2 will be completely garbled. Here we assume
that even a small change in the input to the block cipher will produce a randomly
looking output. All other plaintexts will be decrypted correctly. A lost ciphertext
block results in a lost plaintext block and an error in one addition plaintext
block after which the mode synchronises itself. In the CFB mode an error in a
ciphertext block Ci will be inherited by the corresponding plaintext block Pi, and
moreover since Xi+1 contains the garbled Ci the subsequent plaintexts blocks
will be garbled until the X value is free of Ci, i.e., when Ci has been shifted
out. In other words in CFB mode with m-bit ciphertexts, at most n/m + 1
plaintext blocks will be garbled. The case of lost ciphertext blocks is similar to
that of the CBC mode. In the OFB mode, since the feedback is independent of
the plaintexts and ciphertexts, a transmission error in a ciphertext block garbles
only the corresponding plaintext block and is not propagated to other plaintext
blocks. On the other hand, a lost ciphertext block will result in an infinite error
propagation.
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3 Security of Secret-Key Block Ciphers

When discussing the security of cryptographic systems one needs to define a
model of the reality. We will use the model of Shannon [64]. The sender and
the receiver share a common key K, which has been transmitted over a secure
channel. The sender encrypts a plaintext P using the secret key K, sends C
over an insecure channel to the receiver, who restores C into P using K. The
attacker has access to the insecure channel and can intercept the ciphertexts
(cryptograms) sent from the sender to the receiver. In this section we assume
that the legitimate sender and receiver use a secret-key cipher EK(·) of block
size n (bits), where the key K is of size k. To avoid an attacker to speculate
in how the legitimate parties have constructed their common key, the following
assumption is made.

Assumption 1. All keys are equally likely and a key K is always chosen uni-
formly random.

Also we will assume that all details about the cryptographic algorithm used by
the sender and receiver are known to the attacker, except for the secret key. This
assumption is known as Kerckhoffs’s Assumption [28].

Assumption 2. The enemy cryptanalyst knows all details of the enciphering
process and deciphering process except for the value of the secret key.

For a fixed key, a block cipher is a permutation. There are totally 2n2n

possible
n-bit permutations. Thus, it would require k = n2n bits to specify all of them.
With a block size of 64 bits or more this is a huge number. In a practical block
cipher, the key size is much smaller, typically k = 128 or k = 256. A block cipher
(system) with a k-bit key and blocks of n bits can be seen as an algorithm of
how to select and specify 2k of all 2n2n

n-bit permutations.

3.1 Classification of Attacks

The possible attacks an attacker can do are classified as follows.

– Ciphertext-only attack. The attacker has obtained a set of intercepted ci-
phertexts.

– Known plaintext attack. The attacker obtains P1, P2, ..., Ps a set of s plain-
texts and the corresponding ciphertexts C1, C2, ..., Cs.

– Chosen plaintext attack. The attacker chooses a priori a set of s plain-
texts P1, P2, ..., Ps and obtains in some way the corresponding ciphertexts
C1, C2, ..., Cs.

– Adaptively chosen plaintext attack. The attacker chooses a set of plain-
texts P1, P2, ..., Ps interactively as he obtains the corresponding ciphertexts
C1, C2, ..., Cs. That is, the attacker chooses P1, obtains C1, then chooses P2

etc.
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– Chosen ciphertext attacks. For symmetric ciphers these are similar to those
of chosen plaintext attack and adaptively chosen plaintext attack, where the
roles of plain- and ciphertexts are interchanged.

Also, one can consider any combination of the above attacks. The chosen text
attacks are obviously the most powerful attacks. In many applications they are
however also unrealistic attacks. If the plaintext space contains redundancy, it
will be hard for an attacker to ‘trick’ a legitimate sender into encrypting non-
meaningful plaintexts and similarly hard to get ciphertexts decrypted, which do
not yield meaningful plaintexts. But if a system is secure against an adaptively
chosen plaintext/ciphertext attack then it is also secure against all other attacks.
An ideal situation for a designer would be to prove that her system is secure
against an adaptively chosen text attack, although an attacker may never be
able to mount more than a ciphertext only attack.

3.2 Theoretical Secrecy

In his milestone paper from 1949 [64] Shannon defines perfect secrecy for secret-
key systems and shows that they exist. Shannon’s theory is described in many
text books and here only a few of his results are stated. A secret-key cipher is
perfect if for all P and all C it holds that Pr(P ) = Pr(P |C) [64]. In other words,
a ciphertext C gives no information about the plaintext. This definition leads to
the following result.

Corollary 1. A perfect cipher is unconditionally secure against a ciphertext-
only attack.

As noted by Shannon the Vernam cipher, also called the one-time pad , is a perfect
secret-key cipher. In the one-time pad the plaintext characters are exclusive-
ored with independent key characters to produce the ciphertexts. However, the
practical applications of perfect secret-key ciphers are limited, since it requires
as many digits of secret key as there are digits to be enciphered [45]. Clearly, the
above definition of a perfect cipher makes no sense when considering known or
chosen plaintext attacks. A less stringent form of theoretical secrecy is possible,
in terms of the unicity distance. It is the smallest integer s such that essentially
only one value of the secret key K could have encrypted some plaintexts to the
ciphertexts C1, ..., Cs. The unicity distance depends on both the key size and on
the redundancy in the plaintext space. Redundancy is an effect of the fact that
certain plaintext characters appear more frequently than others. However, the
unicity distance gives no indication of the computational difficulty in breaking
a cipher, it is merely a lower bound on the amount of ciphertext blocks needed
in a ciphertext-only attack. The concept of unicity distance can be adapted also
to the known or chosen plaintext scenario. In these cases the redundancy of the
plaintexts from the attacker’s point of view is zero. Let k and n be the number of
bits in the secret key respectively in the plaintexts and ciphertexts. If we assume
that the keys are always chosen uniformly at random the unicity distance in a
known or chosen plaintext attack is �k/n�.
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3.3 Practical Secrecy

In the recent years cryptanalysis has been focused on finding the key K of a
secret-key cipher. However, there are other serious attacks, which do not find
the secret key. In the sequel Assumption 1 is used.

– Total break. An attacker finds the secret key K.
– Global deduction. An attacker finds an algorithm A, functionally equivalent

to EK(·) (or DK(·)) without knowing the key K.
– Instance (local) deduction. An attacker finds the plaintext (ciphertext) of an

intercepted ciphertext (plaintext), which he did not obtain from the legiti-
mate sender.

– Information deduction. An attacker gains some (Shannon) information about
the secret key, the plaintexts or the ciphertexts, which he did not get directly
from the sender and which he did not have before the attack.

– Distinguishing algorithm. An attacker is able to tell whether the attacked
cipher is a randomly chosen permutation or one of the 2k permutations
specified by the secret key.

Clearly, this classification is hierarchical, that is, if a total break is possible, then
a global deduction is possible and so on.

A global deduction is possible when a block cipher contains a “block struc-
ture”. If certain subsets of the ciphertext are independent of certain subsets of
the plaintext, then no matter how long the key is, the block cipher is vulnerable
to a global deduction in a known plaintext attack. Also, in iterated block ciphers
the round keys are sometimes generated in a one-way fashion [62,63,15,16]. So in
attacks, which find the round keys, it may be impossible for the attacker to derive
the actual value of the secret key, but at the same time the round keys enable the
attacker to encrypt and decrypt. An instance deduction can be as dangerous as
a total break, if the number of likely plaintexts is small. Consider the situation
where the block cipher is used for encrypting a key in a key-exchange protocol.
Here only one plaintext is encrypted and a total break is equal to an instance
deduction. If the plaintext space is highly redundant an information deduction
can be a serious problem. In general, the legitimate parties are often interested
in that no information at all about the plaintexts and keys are obtained by
any enemies. A distinguishing algorithm is the least serious attack. Let A be an
attack (a distinguisher), which has access to a black box which is able to com-
pute EK(·) for K the secret key. When asked for the ciphertexts of plaintexts
P1, . . . , Pi the black box flips a coin whether to return EK(P1), . . . , EK(Pi) or
π(P1), . . . , π(Pi) for a randomly chosen permutation π. The attack A has to de-
cide whether the encryptions came from EK(·) or π. The advantage of the attack
is abs(Pr(A : “it is EK(·)”|EK(·) was used)−Pr(A : “it is EK(·)”|π was used)),
that is, a number between 0 and 1. The higher the number the better the at-
tacker’s strategy.

In the following some trivial attacks applicable to all block ciphers are dis-
cussed. All block ciphers are totally breakable in a ciphertext-only attack, simply
by trying all keys one by one and checking whether the computed plaintext is
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meaningful, using only about Nud ciphertext blocks, where Nud is the unicity dis-
tance. This attack requires the computation of about 2k encryptions. Also, there
is the table look-up attack, where the attacker encrypts in a pre-computation
phase a fixed plaintext P under all possible keys and sorts and stores all the
ciphertexts. Thereafter the cipher is total breakable in a chosen plaintext attack
requiring one chosen plaintext. There might be some keys encrypting P into the
same ciphertext. Repeating the attack a few times with P ′ 	= P will give a unique
key. All block ciphers are globally/instance deducible under a known/chosen
plaintext attack. Simply get and store all possible plaintext/ciphertext pairs.
The running time of a deduction is the time of one table look-up.

The following result shows that a non-trivial information gain can be obtained
when about the square root of all ciphertexts are available.

Theorem 1 ([34]). Every n-bit block cipher used in the ECB, CBC or CFB
mode is information deducible in a ciphertext-only attack with complexity about
2n/2.

Note that the result of Theorem 1 is independent of the key size. This attack
on CBC mode was named the matching ciphertext attack in [12]. Thus, it is
recommended that a single key is used to encrypt at most 2n/2 ciphertext blocks.

Hellman [24] has presented a time-memory trade-off attack on any block
cipher, which finds the secret key after 22k/3 encryptions using 22k/3 words of
memory. The 22k/3 words of memory are computed in a pre-processing phase,
which takes the time of 2k encryptions.

To estimate the complexity of a cryptanalytic attack one must consider at
least the time it takes, the amount of data that is needed and the storage require-
ments. For an n-bit block cipher the following complexities should be considered.
Data complexity: The amount of data needed as input to an attack. Units are
measured in blocks of length n. Denote this complexity Cd. Processing com-
plexity: The time needed to perform an attack. Time units are measured as the
number of encryptions an attacker has to do himself. Denote this complexity
Cp. Storage complexity: The words of memory needed to do the attack. Units
are measured in blocks of length n. Denote this complexity Cs. As a rule of
thumb, the complexity of an attack is taken to be the maximum of the three
complexities, that is, Ca = max(Cd, Cp, Cs). In general, there are some devia-
tions from this rule and furthermore the three complexities are relative to the
attacker. As an example, we may say that the above attack by Hellman on the
DES has complexity 22×56/3 
 238. Although the time of the pre-computation
phase is 256, it is done only once after which any DES-key can be derived with
a complexity of 238. On the other hand, the storage requirements may be un-
realistic for most attackers, e.g., the attack on the DES will require about 1000
Gigabytes of memory.

4 Cryptanalysis of Block Ciphers

The history of cryptanalysis is long and at least as fascinating as the history of
cryptography. As a single example, in 1917 in an article in “Scientific American”
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the Vigenère cipher was claimed to be “impossible of translation” [19]. Today,
it is an exercise in cryptology classes to illustrate that this claim is not true.

4.1 Attacks on Iterated Ciphers

In the following, P denotes the plaintext and C denotes the ciphertext. In most
modern attacks on iterated ciphers, the attacker repeats his attack for all possible
values of (a subset of) the bits in the last-round key. The idea is, that when he
guesses the correct values of the bits of the key, he can compute bits of the
ciphertexts after the second-last round, that is before the last round, whereas
when he guesses wrongly, these bits will correspond to ciphertext bits encrypted
with a wrong key. If there is a probabilistic correlation between the bits of the
plaintexts, P , and the bits of the ciphertexts before the last round, C̃, denoted
cor(P, C̃), an attacker might be able to distinguish the correct guesses of the
key in the last round from wrong guesses. If this is the case, the attacker can
peel off one round of the cipher and do a similar attack on a cipher one round
shorter to find the second-last round key etc. In some attacks it is advantageous
to consider the first-round key instead of the last-round key or both at the same
time, depending on the structure of the cipher, the number of key bits involved
in each round etc. In iterated ciphers the correlation is often found by first
identifying a correlation between inputs and outputs of the individual rounds and
them combining them to a correlation over several rounds. The probability of this
correlation can be calculated as the product of the probabilities of the individual
round correlations, if they are independent. For most ciphers this independence
is obtained by assuming that all round keys are independent. Although this
is most often not the case, first of all, experiments have shown [6,34,49] that
this leads to a good approximation to the real probability, secondly there seems
to be no other way to compute the real probability. Denote by the reduced
cipher, the cipher that one gets by removing the first and/or the final rounds
of the original cipher. Let P̃ , C̃ be the input bits and output bits respectively
of the reduced cipher. Let K̃ be the key bits the attacker guesses in the attack
(note that an attacker might not need to know all input and output bits of the
reduced cipher). If the attacker guesses K̃ correctly, he can compute (bits of)
P̃ , C̃ from P,C. Let P ′, C′ be the results the attacker obtains when he guesses K̃
wrongly. The probability of success of an iterated attack depends first of all on
whether cor(P̃ , C̃) is different from cor(P ′, C′), at least for some wrong guesses
of K̃. In most attacks on iterated ciphers, an attacker repeats the basic attack a
number of times and counts the values of K̃ which led to the expected cor(P̃ , C̃).
Although some attacks in the literature do not have exactly this form, they can
be translated into this general form (at least for illustration). A similar approach
was taken in [67]. The signal-to-noise ratio (see [6] for the differential attack) is
the expected number of times the correct guess of the key is counted over the
expected number of times a wrong guess of the key is counted. Earlier it was
believed that a necessary condition for the success of an iterated attack is that
the signal-to-noise ratio is greater than one [6]. However, it was later discovered
[60,9] that an attack can work in two ways: when S/N > 1 one looks for the
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most suggested value of the key, and when S/N < 1 one looks for the least
suggested value. Attacks where S/N < 1 are in principle as good as attacks
where S/N > 1 but do not seem easier to find in general. In the following a
number of iterated attacks are described. Since all of them have the above form,
it suffices to describe how to detect and obtain the correlation of bits of the
inputs and outputs of the reduced cipher.

4.2 Differential Cryptanalysis

The most general method of analysing conventional cryptosystems today is dif-
ferential cryptanalysis, published by Biham and Shamir in 1990. The method
has proved to be relatively efficient and has been applied to a wide range of
iterated ciphers see e.g., [6,32]. Furthermore, it was the first attack which could
(theoretically) recover DES keys in time less than the expected cost of exhaus-
tive search [6,7]. In the following a brief description of differential cryptanalysis
with respect to a general n-bit iterated cipher, cf., (1) is given.

First, one defines a difference between two bit strings, X and X ′ of equal
length as

∆X = X ⊗ (X ′)−1, (1)

where ⊗ is the group operation on the group of bit strings used to combine the
key with the text input in the round function and where (X)−1 is the inverse
element of X with respect to ⊗. The idea behind this is, that the differences
between the texts before and after the key is combined are equal, so the difference
is independent of the key. In a strong encryption algorithm there will be some
components which are non-linear in the ⊗-operation. In a differential attack one
exploits that for certain input differences the distribution of output differences
of the non-linear components is non-uniform.

Definition 1 (([6])). An s-round characteristic is a series of differences defined
as an s + 1-tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

Define pi as the probability that inputs of difference αi−1 lead to output of
difference αi, where the probability is taken over all choices of the round key
and the inputs to the ith round. In [44] the notion of a Markov cipher was
introduced. In a Markov cipher this probability is independent of the actual
inputs of the round and is calculated over all possible choices of the round key.
Also in [44] it was shown that in a Markov cipher if the round keys Ki are
independent, the pi’s are also independent and

Pr(∆Cs = αs |∆P0 = α0) =
s∏

i=1

Pr(∆Ci = αi |∆Ci−1 = αi−1). (2)

In some differential attacks using an (r− 1)-round characteristic only the plain-
text difference ∆P and the last ciphertext difference ∆Cr−1 need to be fixed.
That is, the intermediate differences ∆C1, ∆C2, . . . , ∆Cr−2 can have any value.
Lai and Massey introduced the notion of differentials [44].
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Definition 2. An s-round differential is a pair of differences {α0, αs}, where
∆P = α0, ∆Cs = αs.

The probability of an s-round differential (∆P,∆Cs) is the conditional proba-
bility that given an input difference ∆P at the first round, the output difference
at the sth round will be ∆Cs. More formally, the probability of an s-round
differential is given as

Pr(∆Cs = βs | ∆P = β0) =∑
β1

· · ·
∑
βs−1

s∏
i=1

Pr(∆Ci = βi | ∆Ci−1 = βi−1), (3)

where ∆C0 = ∆P . A differential will, in general, have a higher probability than
a corresponding characteristic. Differentials were used in [54] to construct cipher
secure against differential attacks. Also, for some ciphers there is a significant
advantage in considering differentials instead of characteristics [40].

In a differential attack the attacker does not know the key. Therefore in find-
ing a good differential, the attacker computes the probabilities of differentials
assuming that all the round keys are uniformly random and independent. How-
ever, the pairs of encryptions an attacker gets are encrypted using the same key,
where the round keys are fixed and (can be) dependent. In [42] this problem is
dealt with as follows

Definition 3 ((Hypothesis of stochastic equivalence)). For virtually all
high probability (r − 1)-round differentials (α, β)

PrP (∆C1 = β | ∆P = α, K = k) ≈ PrP,K(∆C1 = β | ∆P = α, )

holds for a substantial fraction of the key values k.

In the differential attack on IDEA in [9], it was exploited that the hypothesis
of stochastic equivalence does not hold for IDEA reduced to 3.5 rounds. A differ-
ential attack was mounted for which the S/N -ratio is one when the differential
is averaged over all keys. When the key is fixed the S/N -ratio is different from
one and the secret key can be recovered with sufficiently many pairs of plain-
texts and ciphertexts. In [38] a differential attack on DEAL is described using a
differential of probability zero. Also, recently a differential attack with S/N < 1
on Skipjack was announced [5].

Experiments have shown that the number of chosen plaintexts needed by the
differential attack in general is approximately c/p, where p is the probability of
the differential being used and c a small constant.

Higher Order Differentials In [43] a definition of higher order derivatives of
discrete functions was given. Later higher order differentials were used to crypt-
analyse ciphers presumably secure against conventional differential attacks [37].
In [27] these attacks were extended and applied to the cipher of [54]. A dth order
differential is a collection of 2d (first-order) differentials. The main idea in the
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higher order differential attack is the fact that a dth order differential of a func-
tion of nonlinear order d is a constant. Consequently, a d+ 1st order differential
of the function is zero. Assume that (a subset of) the output bits of the reduced
cipher are expressible as a low-degree polynomial p(x̃) ∈ GF (2)[x̃1, x̃2, . . . , x̃i],
where x̃1, x̃2, . . . , x̃i is a subset of input bits to the reduced cipher. If this poly-
nomial has degree not higher than d, then

∑
x̃∈Ld

p(x̃) = c, where Ld denotes a
d-dimensional subspace of GF (2)n and c a constant. This method was applied
to the cipher example given in [54]. This cipher is “provably secure” against a
differential attack but can be broken in a higher order differential attack with
relatively low complexity.

Truncated Differentials In some ciphers it is possible and advantageous to
predict the values of only parts of the differences after each round of the ci-
pher. Let {α0, α1, . . . , αs}, be an s-round characteristic. Then {α′

0, α
′
1, . . . , α

′
s}

is called a truncated characteristic, if α′
i is a subsequence of αi. Truncated char-

acteristics were used to some extent in [6] but only in the outer rounds of a
cipher. Note that a truncated characteristic is a collection of characteristics and
therefore reminiscent of a differential. A truncated characteristic contains all
characteristics {α′′

0 , α
′′
1 , . . . , α

′′
s} for which trunc(α′′

i ) = α′
i, where trunc(x) is the

truncated value of x, where the truncation is not further specified here. The
notion of truncated characteristics extends in a natural way to truncated differ-
entials introduced in [37].

The truncated differentials were used in [39] to attack SAFER K [46,47]. Also,
in [9] truncated differential attacks were presented on IDEA [44] and latest on
Skipjack [5].

4.3 Linear Cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [48]. A preliminary version
of the attack on FEAL was described in 1992 [51]. Linear cryptanalysis is a
known plaintext attack in which the attacker exploits linear approximations of
some bits of the plaintext and ciphertext. In the attack on iterated ciphers the
linear approximations are obtained by combining approximations for each round
under the assumption of independent round keys. The attacker hopes in this way
to find an expression

(P̃ · α) = (C̃ · β) (4)

where α, β are n-bit strings and where ‘·’ denotes the dot product, which holds
with probability pL 	= 1

2 over all keys, such that |pL − 1
2 |, called the bias, is

maximal. As in differential cryptanalysis one can define characteristics to be
used in linear cryptanalysis.

The number of known plaintexts needed such that the relation (4) can be
effectively detected is approximately |pL − 1/2|−2. The following result appears
in [53].
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Theorem 2. If X and K are independent and K is uniformly distributed, then
for all a ∈ GF (2)m, b ∈ GF (2)n ∈ GF (2)�

2−�
∑

k∈GF (2)�

|PX(X · a + Y (X, k) · b = 0) − 1/2 |2 =

∑
c∈GF (2)�

|PX,K(X · a + Y (X,K) · b + K · c = 0) − 1/2 |2

This theorem shows the similarity between the concept of differentials in differ-
ential cryptanalysis and in linear cryptanalysis. An expression of the form (4) is
called a linear hull . Note that in [48] the linear approximations have the form
(P̃ · α) = (C̃ · β) ⊕ (K · γ), where (K · γ) is an exclusive-or of round-key bits
accumulated in the linear characteristic. The bias of the linear approximations
is taken as the bias of the linear characteristic used. However, such an attack
cannot be guaranteed to work in general. If there exist linear approximations
such that (P̃ · α) = (C̃ · β) ⊕ (K · γ), and (P̃ · α) = (C̃ · β) ⊕ (K · γ′) both
with probability p > 1/2 but where (K · γ) 	= (K · γ′), then these two linear
approximations may cancel the effect of each other. This was also noted in [3].

In Matsui’s attack on the DES, experiments indicate that the bias of the
linear hull is equal to the bias of a single characteristic [49]. It is further confirmed
by computer experiments that the probability of (4) is close to 1/2 when the
value of K̃ is wrong. It is estimated that the complexity of a linear attack on
the DES with up to 16 rounds is about

NP 
 c× |pL − 1/2|−2

where c ≤ 8. The attack on the DES was implemented in 1994, required a total
of 243 known plaintexts [49] and is today the fastest, known key-recovery attack
on the DES.

In [29] an improved linear attack using multiple linear approximations was
given. In [41] a linear attack is shown using non-linear approximations in the
outer rounds of an iterated cipher. For the DES none of these attacks have yet
shown to offer an significant improvement compared to Matsui’s linear attack.
The attacks seem best suited for attacks on ciphers with large S-boxes.

4.4 Davies’ Attack

In [17] a correlation attack on the DES was outlined. It exploits that the out-
puts from neighbouring S-boxes are not uniformly distributed. The correlation
can be iterated to any number of rounds with a corresponding decrease in the
probability. The attack was improved in [4] and finds the secret key of the DES
using about 250 known plaintexts, and is the third, known key-recovery attack
which finds the secret key faster than by an exhaustive search.



Contemporary Block Ciphers 117

4.5 Differential-Linear Attack

In [25] it was shown how to combine the techniques of differential and linear
attacks. The attack is a chosen plaintext attack and considers pairs of plaintexts
and ciphertexts, the bits of which are (partly) approximated by linear approxi-
mations. In particular, an attack on the DES reduced to 8 rounds was devised,
which on input only 512 chosen plaintexts finds the secret key. It seems that
the attack is not easily extended to more than 8 rounds of DES [25]. In [1] the
differential-linear attack was applied to FEAL. The attack takes a long time,
but only 12 chosen plaintexts are needed.

4.6 Other Variants

Several generalisations of the differential and linear attacks have been developed.
In [67] a generalisation of both the differential and linear attacks, known as statis-
tical cryptanalysis was introduced. It was demonstrated that a statistical attack
on the DES included the linear attack by Matsui but without any significant
improvement. The applications to other ciphers have not been demonstrated.
In [22,23] two generalisations of the linear attack were given. However, none of
them have yet proved to be much more efficient than the linear attack.

4.7 Interpolation Attack

In [27] the interpolation attack was introduced based on the following well-known
formula. Let R be a field. Given 2n elements x1, . . . , xn, y1, . . . , yn ∈ R, where
the xis are distinct. Define

f(x) =
n∑

i=1

yi

∏
1≤j≤n,j �=i

x− xj

xi − xj
. (5)

f(x) is the only polynomial over R of degree at most n− 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (5) is known as the Lagrange interpolation formula
(see e.g., [10, page 185]).

In the interpolation attack an attacker constructs polynomials using inputs
and outputs of the reduced cipher. This is particularly easy if the components
in the cipher can be easily expressed as mathematical functions. The idea in
the attack is, that if the constructed polynomials have a small degree, only few
plaintexts and their corresponding ciphertexts are necessary to solve for the
(key-dependent) coefficients of the polynomial. In an extended version of the
attack meet-in-middle techniques are used to further reduce the degrees of the
used polynomials [27].

Recently, a probabilistic version of the interpolation attack was introduced
[26].
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4.8 Non-surjective Attack

In [61] the non-surjective attack on iterated ciphers was described. It is applicable
to Feistel ciphers where the round function is not surjective. In a Feistel cipher
the plaintexts and corresponding ciphertexts give the exclusive-or of all outputs
of the round function. Thus, if the round function is not surjective this gives
information about intermediate values in the encryptions, which can be used in
an attack.

4.9 Key Schedule Attacks

In this section we consider the key schedules of block ciphers. We consider an
n-bit block cipher, where EK(·) denotes encryption with the key K and DK(·)
denotes decryption. A weak key K, is a key for which encryption equals de-
cryption, that is, EK(X) = DK(X) for all n-bit texts X . A pair of semi-weak
keys K,K∗, are keys for which encryption with one keys equals decryption with
the other key, that is, EK(X) = DK∗(X) for all n-bit texts X or equivalently,
DK(X) = EK∗(X) for all n-bit texts X . It is well-known that there are at least
four weak keys and six pairs of semi-weak keys for the DES. In [11] it was shown
that there are exactly 232 fixed points for the DES used with a weak key.

If there are only a small number of weak keys they pose no problem for
applications of encryption if the used keys are chosen uniformly at random.
However, when block ciphers are used in hash modes where e.g., the key input can
be chosen by the attacker in attempts to find collisions, they play an important
role as demonstrated in [14,59].

[13] lists a large class of 251 keys for IDEA, which can be easily identified
using only a few plaintexts and ciphertexts. Note that IDEA uses 128-bit keys.
In [68] it was shown that for 1 in 215 keys for Blowfish a differential attack
is faster than an exhaustive key search. [40] lists a large class of differentially
weak keys for RC5 [62], keys for which a specific differential attack has improved
performance.

Related Key Attacks There are several variants of this attack depending on
how powerful the attacker is assumed to be.

1. Attacker gets encryptions under one key.
2. Attacker gets encryptions under several keys.

(a) Known relation between keys.
(b) Chosen relation between keys.

The first kind of attacks was introduced in [33], the second kind of attacks in
[2]. Also, there are related key attacks on SAFER K [36] and on several other
block ciphers [30].

Note that for the attacks of 2b above one must omit Assumption 1. It may be
argued that the attacks with a chosen relation between the keys are unrealistic.
The attacker need to get encryptions under several keys, in some attacks even
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with chosen plaintexts. However there exist quite realistic settings, in which an
attacker may succeed to obtain such encryptions, as argued in [30]. Also, there
exists quite efficient methods to preclude the related key attacks [30,16].

5 Design of Block Ciphers

In this section we discuss some of the problems involved in the design of a block
cipher. Two generally accepted design principles for practical ciphers are the
principles of confusion and diffusion that were suggested by Shannon. Massey[45]
interprets Shannon’s concepts of confusion and diffusion [64] as follows Confu-
sion: “The ciphertext statistics should depend on the plaintext statistics in a
manner too complicated to be exploited by the cryptanalyst”. Diffusion: “Each
digit of the plaintext and each digit of the secret key should influence many
digits of the ciphertext”. These two design principles are very general and infor-
mal. Shannon also discusses two other more specific design principles. The first
is to make the security of the system reducible to some known difficult prob-
lem. This principle has been used widely in the design of public-key systems,
but not in secret-key ciphers. Shannon’s second principle is to make the system
secure against all known attacks, which is still the best known design principle
for secret-key ciphers today.

There have been many suggestions in the past of more specific design princi-
ples, e.g. completeness, strict avalanche criterion, see [52, page 277-278]. However
a specific cryptographic design principle should not be overvalued. Design prin-
ciples should be seen as “guidelines” in the construction of ciphers, evolved from
years of experience, and as necessary, but not sufficient requirements. There are
many examples of this in the history of cryptography. We already mentioned the
example of [27], where a block cipher “provably secure” against differential and
linear attacks was broken by some other means.

5.1 Block and Key Size

It is clear from the discussion in Section 3.3 that if either the block or key
size is too small or both, a block cipher is vulnerable to a brute force attack.
These attacks are independent of the internal structure and intrinsic properties
of an algorithm. Most block ciphers in use today have a block size of 64 bits.
For these ciphers the birthday attacks of Theorem 1 require storage/collection
of 232 ciphertext blocks for a success of about one half. It may seem unlikely
that a single key is used to process that many ciphertexts, and the storage of
232 ciphertext blocks of each 64 bits will require about 25 Gigabytes of memory.
However with the rapid increase in computing power and available storage media
it can expected that in a few years this attack is very realistic. This has be
taken into consideration in the ongoing development of the Advanced Encryption
Standard, cf. later.

The key size of the DES is only 56 bits, which is too short. In [69,70] a design
of an exhaustive search machine was given, which at the cost of 1 million US$
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finds the secret key of the DES in average time 0.5 hours. In [8] is was estimated
that with respect to an exhaustive key search a key size of at least 90 bits will
suffice for the next 20 years.

5.2 Resistance against Differential and Linear Attacks

We consider an r-round iterated block cipher with round function G. Denote by
pd the highest probability of a non-trivial one-round differential achievable by the
cryptanalyst. Let p be the probability of a linear approximation. Then |p− 1/2|
is called the bias. Recall that the success of a linear attack is proportional to
the reciprocal value of the square of the bias of the used linear approximation.
It has been shown how to treat differential and linear cryptanalysis in a similar
way [50] by defining q = (2p − 1)2. Let q� denote the highest such quantity for
a one-round linear approximation. It is possible to lower bound the probability
of any differential and any hull in an r-round iterated cipher expressed in terms
of pd and q�.

Theorem 3 ([34]). Consider an r-round iterated cipher, which has independent
round keys. Any s-round differential, s ≥ 1, has a probability of at most pd. Any
s-round linear hull, s ≥ 1, has a reciprocal squared bias of at most q�.

For Feistel ciphers, Theorem 3 is trivial, since pd = q� = 1 when the right
halves of the inputs are fixed. These differentials and hulls are called trivial one-
round differentials and hulls. It is possible to lower bound the probabilities of
differentials and hulls in a Feistel cipher expressed in terms of the most likely
non-trivial one-round differential with probability pmax and the best non-trivial
one-round linear hull with reciprocal squared bias of qmax.

Theorem 4 ([54,50]). Consider an r-round Feistel cipher with independent
round keys. Any s-round differential, s ≥ 4, has a probability of at most 2p2

max.
Any s-round linear hull, s ≥ 4, has a reciprocal squared bias of at most 2q2

max.

It has been shown that the round function in a Feistel cipher can be chosen
in such a way that pmax and qmax are small [54,34].

5.3 Resistance against other Attacks

As mentioned earlier one should be careful not to focus too much on the resis-
tance against a limited set of attacks, when constructing new block ciphers. In
some cases other attacks become possible.

Let E be a n-bit r-round iterated block cipher. Assume that the nonlinear
order of the ciphertext bits after one round is d and ds after s rounds with a high
probability. Then higher order differential attacks will in general not be possible
after r rounds, if dr 
 n. One should take into account that the attacker may
be able to guess key bits in the outer rounds of the cipher thereby attacking a
cipher with a fewer number of rounds. Thus, if the nonlinear order should reach
the block size after, say, r − 2 rounds.
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It is yet unknown how to obtain exact security against truncated differential
attacks. However, a truncated differential is a collection of differentials. There-
fore, if the probabilities of all differentials can be bounded sufficiently low, this
attack will have only small probability of succeeding.

The differential-linear attack will only work if both good linear hulls and
good differentials exist. Thus, the techniques of the previous section also apply
in this case.

The interpolation attack works particularly well when the outputs of one
round of a cipher can be described as a polynomial of the input bits with rel-
atively few nonzero coefficients. Thus, if a cipher consists of elements which
cannot be described as such, it seems that the attack will not be possible. The
probabilistic version of the interpolation attack might improve on this, but this
has not been reported and needs further study.

The key-schedule attacks can be precluded by using only so-called strong
key-schedules [35], see also [30,16].

6 Enhancing the Strength of the DES

Already in 1977 the DES was criticised for its short key length and it was
suggested to use the DES in a triple encryption mode [21]. In a triple encryption
with three independent keys K1,K2, and K3, the ciphertext corresponding to P
is C = EK3(EK2(EK1(P ))). One variant of this idea is well-known as two-key
triple encryption, proposed in [66], where the ciphertext corresponding to P is
EK1(DK2(EK1(P ))). Compatibility with a single encryption can be obtained by
setting K1 = K2. However, whereas triple encryption is provably as secure as
single encryption, a similar result is not known for two-key triple encryption.
A two-key triple encryption scheme with a proof of security appeared in [16].
Another method of increasing the key size is DES-X, developed by Rivest. In
DES-X the ciphertext corresponding to P is C = EK(P ⊕ K1) ⊕ K2, where K
is a 56-bit key, and K1 and K2 are 64-bit keys. Alternatively, K1 = K2 may
be used. It was shown [31] that for attacks not exploiting the internal structure
the effective key size of DES-X is 118 − log2 m bits, where m is the maximum
number of plaintext/ciphertext pairs the attacker can obtain.

Although all these schemes increase the key lengths of the DES, the block
lengths of 64 bits of these proposals are the same as for DES, and the matching
ciphertext attack is still a problem.

7 The Advanced Encryption Standard

A better solution than those of the previous section seems to be to construct
a new block cipher with larger keys and larger blocks to replace the DES, a
cipher which at the same time is immune to all kinds of attacks reported so
far in the cryptographic literature. Such an initiative was announced in January
1997 by the U.S. National Institute of Standards and Technology (NIST), the
same institute that standardized DES in the 70’s. The first workshop was held
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April 15, 1997. NIST’s intention is to standardize a new encryption algorithm,
the Advanced Encryption Standard (AES) [57], as a replacement for DES. NIST
encouraged parties world-wide to submit proposals for the new standard. Sub-
mission deadline was June 15, 1998; 15 proposals from all over the world were
submitted and all proposals are now publicly available [58]. The proposals are
required to support at least a block size of 128 bits, and three key sizes of 128,
192, and 256 bits. NIST hopes that the end result is a block cipher “with a
strength equal to or better than that of Triple-DES and significantly improved
efficiency.” With the minimum requirements for the key sizes it is clear that an
exhaustive key search will be infeasible for many years. Also with a block size
of 128 bits the matching ciphertext attack requires a huge number of about 264

ciphertext blocks to come into play.
The submitters of most of the algorithms claim a very high level of security.

An exhaustive search for the key is often claimed to be the best attack, or it
is claimed that an attacker would need all 2128 possible inputs and outputs to
succeed.

However, we think that once a few candidates have been selected by NIST,
the increased attention of the worlds cryptanalysts will result in new analysis
and in levels of security much lower than claimed by the designers. In partic-
ular, we conjecture that (theoretical) key-recovery attacks with complexities in
the neighborhood of 2100 or less will be found against most of the candidates
(provided that they are looked at) in 5 to 10 years and therefore with a secu-
rity level lower than the best known key-recovery attacks on triple-DES today.
Also, a long-time conjecture is that the (theoretical) security level of the final
candidate, or the final few candidates in case NIST should decide for several
algorithms, will drop to less than 264 in 30 years from now.

8 Conclusion and Open Problems

This paper considers contemporary block ciphers. In the last decade there has
been a huge increase in the public knowledge regarding the security of secret-
key block ciphers, most notably through the publication of the differential and
linear attacks. Although this has enabled us to break many systems faster than
by an exhaustive search for the key, the best known attacks on many of these
systems are not very practical and require either the encryptions of unrealisticly
many chosen or known plaintexts and/or a huge memory and processing time.
The open problems in cryptanalysis of block ciphers are easy to spot: Break all
unbroken block ciphers! And there is a lot of them.
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Primality Tests and Use of Primes in Public Key

Systems
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Abstract. In the first part of this discussion, we first briefly discuss
various prime generation methods, starting with the Rabin-Miller test,
and then moving on to a very simple new deterministic test. After that
we discuss various ways of constructing so-called strong primes, and why
this better be avoided.

1 Rabin-Miller’s Primality Test

The celebrated Rabin-Miller test is the most commonly used algorithm used for
generating primes in public key schemes, be it RSA, DSA, Diffie-Hellman or el-
liptic curves in odd characteristic. The idea goes back to [1] and the probabilistic
algorithm was introduced in [2].

This is a probabilistic algorithm that on input a(n odd) number can prove
that it is composite or assert with some degree of certainty that it is a prime:

1. On input n, compute n− 1 = 2rh, where h is odd.
2. Choose b uniformly in [1, ...., n− 1]
3. Then n passes if bh = 1 mod n or if bh2i

= −1 mod n for some i < r.

By Fermat’s Little Theorem, a prime always passes this test. The question
is what we can say about a composite number that passes the Rabin-Miller
test. Note that for all Carmichael numbers n, a base b chosen prime to n has a
multiplicative order dividing n − 1. There are infinitely many:

Definition: An integer n is called a Carmichael number if φ(n)|(n − 1).
Consider a procedure that chooses odd k-bit numbers uniformly and output

the first one that passes t iterations of Rabin’s test.
Furthermore, let C denote the event that n is a composite, and let T (t)

denote the event that t iterations of the test outputs a composite number. Let
P (k, t) = P (C|T (t)) denote the probability that this happens, where k is the
bitlength of n.

1.1 Introductory Results

Notation: M(k) is the set of odd numbers of bit length exactly k. Fix k and let
n be an odd number of bitlength k.

Let a(n) denote the elements of Z∗
n, for which the R-M test is positive. These

elements do not form a subgroup, unfortunately. Let α(n) be the fraction of
elements in [1...n− 1] for which R-M’s test is positive.
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Lemma 1. Let n = pr1
1 · ... · prs

s be the decomposition of n into distinct prime
factors. The fraction α(n) is bounded by

– 2−s+1 where s is the number of different prime divisors of n.
– 2−s+1q−1 where

q =
s∏

i=1

pri−1
i ui

(h, pi − 1) ,

for ui the odd part of pi − 1 and h the odd part of n− 1.
Lemma 2. α(n) < 1/4

Proof: See e.g. [MOR]
Thus it follows that P (T (1)|C) ≤ 1/4, and hence that P (T (t))|C) ≤ 4 − t.

However, we are interested in P (C|T (t)) = P (k, t))!!
But even so, if we could prove e.g. that P (C|T (1)) ≤ 1/4, a guaranteed error

rate of 264 would require 32 independent choices of bases for the Rabin-Miller
test.

Experience shows that for the vast majorities of values of n, α(n) is very
small, while for very few values of n, the maximal possible value just below 1/4
is assumed. However, in [3], Paul Comba wrote:

“Unfortunately, the “vast majority” and the “very few” have not been quan-
tified by mathematical analysis.”

In [4] and further improvements in [5] partly based on [6], this analysis is pro-
vided. Earlier results by Erdös and Pommerance were not exact, but asymptotic
only.

To evaluate this probability effectively, one needs to study average behaviour
over the distribution of candidates, as first done in [7]. It is elementary to prove

Lemma 3. With the notation above, we have

P (k, t) ≤ 41−tP (k, 1)/(1− P (k, 1))

Indeed, this follows by Bayes’ Theorem, P (T (t))P (C|T (t)) = P (T (t)|C)P (C)
where in particular P (T (1))P (C|T (1)) = P (C)P (T (1)|C)) From the former, we
get

P (C|T (t)) = P (T (t)|C)P (C)/P (T (t))
≤ 4−t+1P (T (1)C)P (C)/P (¬C)
= 4−t+1P (T (1))P (CT (1))/P (¬C)

where the last equality follows from the former and the inequality from the fact
that P (T (t)) ≥ P (¬C).

But as P (¬C|T (1))P (T (1)) = P (¬C)P (T (1))|¬C) = P (¬C), due to the fact
that the Rabin-Miller test is always positive on a prime (i.e. the incident ¬C),
we have

P (T (1))
P (¬C)

=
1

P (¬C|T (1)) =
1

1− P (C|T (1))
which inserted above yields the claim.
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1.2 Estimates

We sketch the approach of [5] very briefly: In the following choose k = 100, say,
and

2 ≤ m ≤
√

k

2

We want to choose a subset Cm of Mk such that

1. Cm is small compared to Mk

2. The composite numbers n in Mk \ Cm satisfy one of the following.

– All prime divisors of n are smaller than 2k/m−1

– Some prime divisor p in n is larger than 2k/m−1 and (p−1)/(p−1, n−1)>
2m−1

The idea is to define Cm as the set of composite numbers in Mk for which
neither condition holds:

Cm = {n ∈ Mk|n is a composite with a prime divisor
p > 2k/m−1 such that (p− 1)/(p− 1, n− 1) ≤ 2m−1 }

Using the techniques above, it is easy to prove that α(n) < 2−m for all n ∈
Mk \ Cm.

Example: Let n = pqr, where p, q and r are primes that are 3 mod 4, and
n is a Carmichael number: Then α(n) = 1/4. A specific example is 1729 =
7·13·19, the celebrated taxi cab number. Hardy probably mentioned this number
to Ramanujan at the famous visit to the hospital to cheer Ramanujan up by
making the mock statement that this number was uninteresting. Hardy was
very familiar with Carmichael’s work and it is quite feasible that he thought
such a statement might tricker off a reaction from the sad Ramanujan, as he
(of course) too would recognise it as a Carmichael number. Ramanujan then
astounded Hardy by pointing out that it is the smallest number which in two
different ways may be written as a sum of two cubes.

By going through even more elaborate estimates but still along the same
lines, these results may be dramatically improved. See [5] for details on the
following table which in the (k, t)’th entry contains − log2 of the upper bound
for P (k, t). For instance, P (150, 2) ≤ 2−20.
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k \ t 1 2 3 4 5 6 7 8 9 10
100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 11 25 34 41 47 52 57 61 65 69
250 14 29 39 47 54 60 65 70 75 79
300 19 33 44 53 60 67 73 78 83 88
350 28 38 48 58 66 73 80 86 91 97
400 37 46 55 63 72 80 87 93 99 105
450 46 54 62 70 78 85 93 100 106 112
500 56 63 70 78 85 92 99 106 113 119
550 65 72 86 93 100 107 113 119 119 126
600 75 82 88 95 102 108 115 121 127 133

2 A Simple Deterministic Prime Generation Algorithm

The approach as such goes back to [8]: Start with a random prime p1 of some
limited size from a table and construct a prime p2 = k1p1 + 1. Continue with
this process until a prime pr is constructed of the right size. This was used by
D. Wheeler to construct large primes in the 50ies. D. Wheeler always chose the
coefficient ki less than pi. Compare to Theorem 101 in [8].

This can be improved as follows: Let p be a prime, and let k = ap+ b, where
a, b < p are both odd. Set n = kp+ 1.

Theorem 1. Suppose there exists a t such that

– tk �= 1 mod n
– tkp = 1 mod n

Then n is a prime.

Note that n is in the range p < n < p3.
Proof: We first observe that if n is composite, it must have a prime divisor q

of the form xp+1, x even. Hence n = qr, where r = yp+1, y even. Thus a = xy
and b = x+ y are both even, a contradiction.

Note: It is easy to see that the condition that a, b be odd can be relaxed to
the assumption that b2 − 4a not be a square integer.

Notice that the restriction on a and b only reduces the potential key space
by a factor 4, i.e. two bits.

This test is much simpler than e.g. Ueli Maurer’s construction of deterministic
primes (see [9]), but gives the same uniform distribution properties, as we shall
indicate:

What is the quality of the distribution of the primes constructed by this
method?

We need an estimate of the probability that a random (odd) number n is
divisible by primes up to a certain bound B only. Obviously, this probability
equals ∏

3≤p≤B

(1 − 1
p
)
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which by Merten’s Theorem (see e.g. [8]) can estimated as

2e−γ/ log(B) ≈ 1/ log(B)
where γ is Euler’s constant. Thus the distribution is linear in log(B)−1. This
gives the following estimate for the fraction ρ(e) of numbers x less than n whose
largest prime factor is less than x1/e.

e ρ(e)
1.5 0.59453 48919
2.0 0.30685 28194
2.5 0.13031 95618
3.0 0.04860 83883
3.5 0.01622 95932
4.0 0.00491 09256
4.5 0.00137 01177
5.0 0.00035 47247
6.0 0.00001 96497
7.0 0.00000 08746
8.0 0.00000 00323
9.0 0.00000 00010

We observe that 95% of all (odd) numbers x have a prime divisor which is
at least x1/3.

Assuming that the distribution of prime divisors is independent of the fact
that n − 1 (or n + 1 is a prime (which can be verified statistically), this result
yields the probability that a prime p has the property that all prime divisors of
p−1 or p+1 are below a certain bound. This in fact is also the argument behind
not using strong primes above a certain limit (about 384 bits).

This estimate also indicates how the size of the prime p dividing n−1 is chosen
if we start by choosing the bit length of the final candidate n: The distribution
should be linear in log(p)−1. We may then successively call our algorithm to
generate smaller and smaller primes, until we end up with a size we can look up
in a table, and then go backwards in our construction using the theorem above.

Likewise, this estimate above yields that by test dividing with all primes up
to say 256, we may discard about 80% ≈ (1 − 1/8) of all candidates. Thus we
will speed up the prime generation time considerably by first test dividing with
small primes and only then start our favorite algorithm up, and always with 2 as
the first choice for the test base, as modular exponentiation of 2 is much faster
than modular exponentiation in general.

For much more on this, see [10].

3 Constructing Strong Probabilistic Primes

The only problem to address here is how to construct a prime p such at the same
time p − 1 is divisible by the prime r and p + 1 is divisible by a prime s. An
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obvious tool is to use the Chinese Remainder Theorem. The obvious solution
was first described in [11].

The basic idea is the following:
Calculate first some number a which is 1 mod r and −1 mod s, and then start

examining all candidates of the form n = a+ 2jrs, for j = 1, 2, ... To find such
a number a is of course easy. [12] suggests the number a = ((2sr−2) mod r)s −
1, which has the advantage that it is quite small (Gordon suggested (sr−1 −
rs−1) mod rs).

Next test candidates of the form n = a+ 2jrs using the R-M test.
We observe that

– n mod r = a mod r = 2− 1 = 1 by Fermat’s Little Theorem
– n mod s = a mod s = 0− 1 = −1.

In most applications, p is specified to be of a particular bit length, k. This
is achieved by first constructing the primes r and s to satisfy that log r + logs
is of size about k − m log k, where m is small, say 4. Starting the algorithm of
with j = m log k, and then increasing j in alternating steps of 2 and 4 (to avoid
the factor 3 (!)) the bit length of the final candidate will be k with a very high
probability by the Prime Number Theorem.

The problem with this approach of course is that it only works if rs < p.
Most algorithms seem to choose r and s of equal size, and this of course is
very restrictive, and hence not recommendable at all. We do not have any exact
estimate for the fraction of all good candidates which are accepted using this
approach, but it is very, very small! Given our earlier discussions, it seems a much
better idea to choose r randomly in the range [p1/3, p2/3] or perhaps [p1/2, p2/3]
and then s accordingly, if “the customer” insists on strong primes.

Notice than alternative choice of a above is

a = ((−2rs−2) mod s)r + 1

Hence candicates of the form

n = a+ 2jrs = ((−2rs−2) mod s+ js)r + 1

are been considered, and Theorem 1 of Chapter 2 above may be invoked if
(j + 1)s < r2, e.g., if s < r, which is a reasonable assumption by the remarks
above, and j < r, which is the intention of the whole approach anyway.

Final remarks: Any algorithm, however good, needs a random input of con-
siderable size, called a random seed. This must originate from a random source,
and this is a completely different story.
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Abstract. Motivated by the increasing use of cryptography, in particu-
lar digital signatures, to secure electronic commerce this paper discusses
applications of digital signatures. The aim is to give an overview of some
problems, which on one hand are related to electronic commerce and,
on the other hand, are challenging from a cryptographic point of view.
The paper first deals with fundamental techniques for establishing a pub-
lic key infrastructure and for creating non-repudiation tokens. The latter
makes it possible to use digital signatures to solve disputes which is often
the ultimate goal when using digital signatures in practice.
Next more advanced cryptographic protocols are discussed by giving an
overview of protocols for fair exchange of signed documents as well as
for implementing electronic cash (prepaid payment systems).

1 Introduction

Digital signatures were made possible by the invention of public key crypto-
graphy by Diffie and Hellman in the middle seventies (see [DH76]). In a public
key (or asymmetric) crypto system a user has a key pair consisting of a private
key known only to himself and a public key, which may be publicly announced
and which must be known to all other parties communicating securely with the
user in question. These keys are used in algorithms, which are also publicly
known (usually standardised algorithms such as [DSS93] for digital signatures
and [RSA78] for both confidentiality and digital signatures).

Now consider a party, A, having a public key pair (s, p), where s is the private
key and p the public one. Other parties can send information confidentially to
A by encrypting it under A’s public key. A can retrieve the original information
by deciphering the cipher text using s. As only A knows this key, A is the only
person who can retrieve the encrypted information. Due to efficiency reasons
public key cryptography is often used to encrypt symmetric keys, which are
then used to encrypt a single message or used several times during a session.

In the above setting, A can digitally sign a message using his private key. This
results in a digital signature which can be verified by anyone using A’s public
key. The verification process ensures that only someone knowing the private key
corresponding to the public verification key (here A) could have produced the
signature.

In the following we only consider public key cryptography for digital signa-
tures and stress, that it is possible to have a public key scenario, which can be

I. Damg̊ard (Ed.): Lectures on Data Security, LNCS 1561, pp. 134–157, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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used for digital signatures but not for public key encryption. More precisely, in-
spired by the increase in electronic commerce, this paper focuses on applications
of digital signatures to electronic payments and fair exchange of signed data.
Obviously, electronic payments are fundamental to electronic commerce, while
exchange protocols may be necessary to ensure fairness in business sessions in-
volving parties that don’t trust each other (e.g., a buyer may not want to sign
a receipt for some goods unless he is sure to get the goods, and a merchant may
not want to send the (electronic) goods, unless he gets a receipt).

Development of Digital Signature Schemes

While public key cryptography was introduced in [DH76], the first digital sig-
nature scheme was published a few years later in [RSA78]. Later, a number of
digital signature schemes have been suggested, but only a few have survived
extensive analysis in the cryptographic community. We now review the most
notable ones.

The RSA system is based on the problem of factoring. The public key is a
pair of numbers (n, e) where n is the product of two primes p and q, and e, the
public exponent, is relatively prime to lcm(p− 1, q− 1). The secret key consists
of n and d, where d is the inverse of e modulo lcm(p− 1, q − 1). The signature
on some data, D (considered a positive number less than n) is

σ = Dd (mod n).

This signature can be verified using the public key by computing D′ as

D′ = σe (mod n)

and verifying that the retrieved data D′ is of the correct form.
While anybody who is able to factor n can make false signatures, it is not

known whether breaking RSA requires the ability to factor (forgeries based on
homomorphic properties are possible, but these can be prevented if the signed
data, D contains sufficient redundancy).

However, Rabin presented in [Rab79] a variant of RSA where the public ex-
ponent is 2 (i.e., the exponentiation with the public exponent is replaced by
squaring). Note that 2 is not a valid public exponent in RSA, but as computing
square roots modulo a composite requires the ability to factor the composite,
signing arbitrary messages in Rabin’s scheme requires knowledge of the factori-
sation of the modulus (an interesting variant of Rabin’s scheme was given in
[Wil80]).

In 1984, ElGamal presented a signature scheme based on the difficulty of com-
puting discrete logarithms in the mulitplicative group modulo a prime [EG85].
This scheme had a renaissance in the end of the eighties, as a variant of it was
selected as public standard by NIST [DSS93]. The ElGamal and DSA signa-
ture schemes will be discussed in more detail in Section 2. These schemes have
gained further interest as variants can be implemented in groups defined by
elliptic curves over finite fields (e.g., ”elliptic curve DSA” [1/S98a]).
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At the end of the eighties a new paradigm for the construction of digital
signatures was introduced (see [FS87,FFS88]). These signature schemes are de-
rived from zero-knowledge identification protocols (see [GMR89] for information
about zero-knowledge). A number of signature schemes have been based on this
technique, e.g., [Sch90,GQ89].

Most of the applications discussed in this paper are generic in the sense that
they can be based on any signature scheme. In these cases the schemes mentioned
above are very good candidates.

Existence of Digital Signatures

One problem with practical digital signature schemes is that they are not ”prov-
ably” secure (i.e., it cannot be shown that forging signatures requires the solution
of a generally assumed hard problem). Even in Rabin’s scheme, where signing ar-
bitrary messages is equivalent to factoring, the signers secret key can be retrieved
if an attacker is allowed to get signatures on arbitrary messages (see Section 2.1).
Recently a number of practical signature schemes, including Schnorr signatures,
have been proved secure in the random oracle model [BR93].

Security of digital signature schemes was not formally defined until [GMR88],
which also presented a provably secure scheme based on the existence of claw-
free pairs of trapdoor functions. Later the sufficient condition for making secure
digital signature schemes was weakened in a series of papers. Most notably

– [BM92] showed how to make secure signatures given any trapdoor function
(in particular secure digital signatures based on RSA was made possible,
although not that practical);

– [NY89] based secure digital signatures on universal one-way hash functions,
which can be constructed given any one-way permutation; and finally

– Rompel showed in [Rom90] how to construct universal one-way hash func-
tions (and hence secure digital signatures) based on one-way functions. Ex-
istence of one-way functions is also a necessary condition for secure digital
signatures.

This paper will not deal with these ”theoretical” schemes but consider sche-
mes, that are used in practice and some applications of these.

Overview

The next section defines secure digital signatures (based on [GMR88]) and dis-
cusses the security of some of the signature schemes mentioned above. The next
four sections consider applications of signatures. First, Section 3 discusses public
key infrastructures, which on one hand is an application of signatures, and on the
other is a prerequisite for the deployment of public key techniques, and Section 4
describes a standard format for non-repudiation tokens. Methods for exchanging
such tokens (more generally, contract signing) are described in Section 5, and
Section 6 presents the principles behind some electronic payment systems.
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2 Definition of Secure Digital Signatures

A signature scheme is defined by the following components:

Key Space A subset of {0, 1}∗ × {0, 1}∗ of pairs of private and public keys
Key Generator A probabilistic polynomial time algorithm, gen, which on in-

put the security parameter k outputs a private key KS and a matching
public key KP . All keys, messages and signatures are of polynomial length
in k.

Message Space A subset of {0, 1}∗.
Signature Space A subset of {0, 1}∗.
Signing function A probabilistic polynomial time algorithm sign, which on

input a message m and a private key KS outputs a signature sign(m,KS).
Signature verification A binary verification function, test, which on input a

message m, a public key KP and a signature σ outputs 1 if σ is valid with
respect to KP and 0, if σ is invalid.

Often we shall just say that a signature scheme is defined by (gen, sign, test)
and not explicitly mention the key, message and signature spaces.

Sometimes (e.g., in [1/S98b] versus [1/S91]) one distinguishes between signa-
tures with appendix and signatures giving message recovery. The above definition
corresponds to the former, as the signature is appended to the message in the
sense that both σ and m are required inputs to test. In signature schemes with
appendix the signing process usually goes in two steps:

1. The message to be signed,m, is digested using a cryptographic hash function,
H, resulting in D = H(m).

2. The data D is processed using the private key of the signer resulting in a
signature sign(m,KS).

A potential signature σ on message m is verified in a similar two step process
(see Figure 1):

1. Compute D = H(m).
2. Verify that σ matches the digest D using the public key.

In schemes giving message recovery (part of) the message is recovered during
signature verification. Again the signing process goes in two steps:

1. Redundancy is added to the message, m resulting in data D.
2. The data D is processed using the private key of the signer resulting in a

signature sign(m,KS).

[1/S91], which can be used with RSA, prescribes that the input message is
at most (roughly) half the length of the modulus so that there is room for
redundancy. If the message is too long, only part of the message can be recovered,
and the rest is used as input for the verification process. In that case the first
step of the signature process goes as follows
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message, m

❅
❅

❅❘
H(m) signature, σ

❅
❅

❅❘

�
�

�✠
true, falsepublic key, KP ✲

Fig. 1. Verifying signature with appendix

1. Write m = m1||m2, where || denotes concatenation and construct D =
m1||H(m).

In this case test takes as input a partial message m2, the potential σ and the
public key and produces as output a pair (b,m), where

b =
{
0 if σ is invalid
1 if σ is valid

and m is the recovered message (only well-defined if b = 1). Testing goes in the
following two steps (see Figure 2), given m2, σ and KP :

1. Recover data D from σ using the public key.
2. Verify that the redundancy in D is correct and that D is of the form D =
m1||H(m1||m2). Return m1||m2 as the recovered message.

Thus in schemes with appendix as well as schemes giving message recovery
we can identify in the signing and verification process a step which processes
some data (denoted D) using the private key, respectively the alleged signature
using the public key. This step will in the following be denoted as the pure part
of the signature algorithm in order to differentiate it from the complete signa-
ture mechanism. Thus pure RSA is defined by the two modular exponentiation
functions (with the private and public exponent).

2.1 Security of Digital Signatures

As mentioned previously [GMR88] provided the first thorough definition of dig-
ital signatures. The following definition is based on that paper.

The strength of a signature scheme is measured as the achievement under a
given attack. The following four types of attacks are considered, with the most
powerful mentioned last.
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public key, KP signature, σ

❅
❅

❅❘

�
�

�✠
part of message ✲ message with redundancy

❄
recovered message

Fig. 2. Verifying signature with message recovery

Key only The adversary knows the public key of the signer.
Known message attack The adversary knows a number of message-signature

pairs but cannot influence the distribution of these messages.
Chosen message attack The adversary makes a list of messages and gets the

signature on each of these.
Adaptively chosen message attack In this type of attack the adversary can

get the correct signature from the signer in a number of rounds. In each
round the adversary can choose the messages to be signed based on the
signatures received so far.

Note that the ability to carry out a chosen message attack (adaptively or not) is
in many cases detrimental to the application of the signature scheme, as these
attacks basically allow the adversary to get signatures on arbitrary messages.
However, these scenarios are considered in order to allow for very strong attacks.
This will be more clear when the achievements or goal of the attack is described.
LetM denote the set of messages signed by the attacked signer during an attack.
Then the following three different achievements are considered:

Total break The adversary obtains the secret key or other equivalent informa-
tion allowing him to make signatures at will.

Selective forgery The adversary is able to make a signature on a message
m /∈ M chosen by himself.

Existential forgery The adversary is able to make a signature on some mes-
sage m /∈ M (the adversary may not control m).

The scheme is resistant to an attack with a given goal if for every polynomially
bounded adversary and for every c > 0 the probability of achieving the goal is
less than k−c for k sufficiently large (where the probability is over the random
choices of the attacker as well as the signer — k is the security parameter of the
scheme).
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Thus the highest level of security occurs when a scheme is secure against
existential forgery under adaptively chosen message attacks.

2.2 Security of Practical Schemes

In the following we briefly describe the security of RSA, Rabin and DSA in terms
of the definition given above.

RSA and Rabin Signatures It is easy to make an existential forgery in pure
RSA with public key (n, e) by selecting a positive, random number σ < n and
computing D = σe mod n. However, if RSA is combined with a hash function,
then it will be difficult to find a real message,m, such that D = H(m). Similarly,
if redundancy is added to the message as part of signing and removed again as
part of verification, then this attack will fail. The same goes for attacks based
on the homomorphic property of RSA:

me
1m

e
2 = (m1m2)e mod n.

Rabin’s signature scheme is constructed such that the ability to make a total
break in the pure scheme implies that the public modulus can be factored. Unfor-
tunately, a chosen message attack enables the adversary to find the factorisation
of n, as follows:

1. The adversary computes data D = x2 mod n, where x is chosen at random
and ask the signer to sign D.

2. The signature, σ, from the signer satisfies: σ2 = D mod n.
3. As D contains no information about which of the four square roots of D the

adversary knows, the adversary is able to factor n with probability 1
2 .

Thus, the security of pure Rabin signatures can be characterised as follows:

– existential forgery possible under known key attack
– total break possible under chosen message attack
– selective forgery impossible under known key attack (and under known mes-

sage attacks, where, for example, the signer signs messages that are selected
uniformly among the quadratic residues modulo n).

DSA and ElGamal Just as for RSA it is possible to make an existential
forgery of pure DSA and ElGamal signatures. As mentioned previously, DSA is
a variant of ElGamal. It uses system parameters p and q (both primes), where
q is of length 160 bits and divides p− 1, and a number g ∈ ZZ∗

p of order q. The
public key is an element y ∈ ZZ∗

p and the secret key is a number x between 1 and
q − 1 such that

y = gx mod p.
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Signing some data D ∈ {0, 1}160, interpreted as a number between 0 and q−1, is
a probabilistic process, where the signer chooses k ∈ ZZ∗

q at random and computes

r = (gk mod p) mod q
s = (D + xr)/k mod q

Signature verification is done as follows:

1. Compute

u1 = D/s mod q
u2 = r/s mod q

2. The signature is valid if r =
(
gu1yu2 mod p

)
mod q.

A correctly made signature will be accepted in this process as

gu1yu2 =
(
gD+xr

)1/s
= gk mod p.

The DSS standard prescribes that this signature system must be used with the
hash function SHA-1 given in [SHS95]. This allows longer messages to be signed,
and prevents some attacks that have been known since ElGamal signatures were
introduced in [EG85]. Without a hash function it is possible to make an existen-
tial forgery as follows. Initially choose a ∈ ZZp of order q and b ∈ ZZq at random
and compute

t = ayb mod p
r = t mod q
s = r/b mod q

Let u1 and u2 be defined as above (D, the data to be signed are still unknown).
Then we have to select a, b and D such that

gu1yu2 = t mod p.

But this is equivalent to
gD = y−rts mod p

and hence
gD = y−rasybs = y−rasyr = as mod p.

Thus if instead of choosing a at random we select a = gc for a random c, then
(r, s) is a correct signature on data D = cs mod q.

When ”pure DSA” is used with SHA-1 as prescribed, the above forgery is
not of much use, as the adversary would have to find a message m such that
H(m) = D — a problem which has no publicly described solution. Even though
there is some freedom in choosing, D, it is not known how to make even an
existential forgery.
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Schnorr Signatures These can for example be described in the same setting
as DSA. Thus system parameters p, q and g as above are given. The public key
is y = gx mod p, where x is the private key (some times g−x is used as public
key, but that makes no real difference for our purposes).

A signature on a message m is most easily described as a proof of knowledge
of the private key:

1. The prover (signer) chooses r ∈ ZZq at random and computes a = gr mod p.
2. Compute a challenge c = H(a,m)
3. The prover (signer) computes z = r + cx mod q.

Intuitively, this can be considered a proof of knowledge of x since x can be
computed if the prover is able to answer correctly on two different challenges
based on the same a.

A signature is the pair (c, z). It is correct if c = H(gzh−c,m). The security
of this scheme depends on the properties of H, but assuming H behaves like a
random oracle Schnorr signatures are secure against existential forgeries under
adaptively chosen message attacks.

3 Public Key Infrastructure

This and the following three sections describe practical aspects of using digital
signatures. First, certificates are discussed, as these on one hand constitute a
simple application of digitally signed messages and, on the other, enable other
applications.

In order to use digital signatures it is usually necessary to have a Public
Key Infrastructure (PKI) in place.1 As a signed message is verified against the
public key, it proves, assuming that the signature is not forged, that the message
originates from the person knowing the private key corresponding to the public
one. Thus the public key serves as the electronic identity, and the main purpose
of a PKI is to link this electronic identity with the owners real identity (or in
some cases with a pseudonym chosen by the owner).

In practice, this is done using public key certificates. A certificate is an elec-
tronic message stating that a given public key belongs to a certain person. It
is issued and digitally signed by a third party called a certification authority
(CA). Everybody knowing the public key of the CA can verify certificates issued
by that CA and hence use the public keys in these certificates. Two certificate
standards are given in [X5095,IS0].

While the CA is central for establishing a PKI, two other roles are often
involved:

1 A simple situation, where no particular PKI is required is in ”star shaped topoligies”,
where all participants only communicate securely with a single central party. In that
case the central party can maintain a table of the public keys of all other parties.
These, in turn, only need to know the public key of the central party.
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– A registration authority (RA) which verifies information about the user (in
particular the identity of the user) and links the public key to the user. In
some applications a number of local RAs are required where applicants must
show up in person before getting a certificate.

– A directory (D) which maintains a register of public information about users
and certificates. Certificates can be published in and hence retrieved from a
directory. The LDAP protocol [YHK95] is a standard protocol for accessing
such information.

A user registers at the registration authority and obtains a certificate from
the certification authority. Later the certificate can be used by either including
the certificate in the electronic messages or letting the counterpart obtain infor-
mation about the certificate from a third party such as the directory or the CA
itself. Figure 3 illustrates this.
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CA

✒✑
�✏
D

�
�

�
�

�
registration

certificate

❅
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❅

❅

query

❏
❏

❏
❏❏

user registered

✡
✡

✡
✡✡

publish certificate inf.

Fig. 3. Roles in a PKI

Since the purpose of a certificate is to link together a person and a public
key, it is of course important that the identification of that person as well as the
verification of the correctness of the key are done thoroughly: it must be ensured
that the name of the person is correct and that the person acknowledges that
the certified public key belongs to him.

Although other procedures exist, a certificate is typically issued as follows
using the (local) RA and the CA:

1. The applicant registers at the RA. Several options are possible here
– Electronic registration (e.g., identification against an email address).

This is often done today, but should not be used if the certificate is
to be used for non-repudiation (see Section 4).
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– Registration based on an already established relationship.
– Physical registration, where the applicant must show up in person and

the officer at the RA verifies the identity of the applicant.
In the last two cases the applicant may have to sign (by hand) an application
form (this form may contain a fingerprint of the public key, which is going
to be certified).

2. The RA informs the CA about the registration.
3. The CA sends a so-called Initial Authentication Key (IAK) to the user in a

sealed letter [PKI].
4. The applicant sends an electronic request for the certificate. In this request

the applicant identifies himself using the IAK (e.g., by computing a MAC
on the request) and proves knowledge of the private key corresponding to
the public one to be certified.

5. The CA returns the requested certificate, if the request is ok (and the public
key has not previously been certified).

However, no matter how many resources are put into the verification of the
information in certificates when they are issued, the PKI must support means
for revoking certificates. Most noteworthy, this will happen if the certified key-
pair is (suspected to be) compromised, but it could also be necessary in less
dramatic circumstance (e.g., if some information in the certificate is out-dated).
In case a certificate is revoked, the PKI must make sure that the change of status
is announced properly. This could for example be through announcements of
certificate revocation lists (blacklists) or by providing an on-line service, which
can always give the correct status of any given certificate in a secure way.

An important difficulty when establishing a PKI is to publish the public
key of the CA. This key is at the heart of the security of any system, as all
certificates issued by the CA are verified against this key. Thus someone who is
able to replace that key with another one will be able to issue (false) certificates,
and hence make signatures alleged to originate from someone else. Distribution
of the key of the CA can either be done ”out-of-band” (e.g., by publication
in newspapers or in letters when a user is registered) or by certifying it using
another CA. The latter may give rise to a hierarchy of CA’s in which only the
distribution of the root key will have to be done out-of-band.

4 Non-repudiation

Non-repudiation refers to the use of digital signatures for solving disputes. Thus
the digital signature, which is made as part of a transaction should be stored
and in the event of a dispute an arbiter must be able to verify it.

ISO provides a framework for non-repudiation in part I of ISO13888 [1/S97a],
and in part III [1/S97b] specific non-repudiation tokens are defined. The most
interesting are

Non-repudiation of origin Protects against the originators false denial of
having originated the message.
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Non-repudiation of delivery Protects against the recipients false denial of
having received and recognised the contents of the message (ISO uses the
term ”non-repudiation of receipt” to refer to a proof that the recipient has
just received the message).

In addition non-repudiation tokens are defined to support the electronic equiv-
alent of registered mail.

The tokens all follow a similar structure, so let us take a look at the non-
repudiation of origin token. It contains the following information, which is signed:

– A description of the non-repudiation policy for this token (i.e., what does
the token prove).

– Identification of the originator.
– Identification of the intended recipient(s).
– Identification of the authority generating the token (usually the originator).
– Date and time when the token was generated.
– Date and time when the message was sent.
– Description of signature mechanism (including hash function).
– Hash value of the message.

The difficult (and yet essential) part to provide in this token is the time stamp,
which is used to make the token unique and, in case of disputes, to determine
the exact time of the generation of the token. A possible scenario where correct
time stamps are important is:

User A signs a message stating that he owes person B 1000 dollars
and will pay this amount 2 months later. One month later A regrets and
revokes the certificate claiming that his private key may be compromised.
When B later wants to get his money, A refuses to pay claiming that
the signature was made after the certificate was revoked.

Obviously, if the initial message from A had an unforgeable time stamp, A could
not succeed with this claim.

In order to provide such time stamps a third party is needed. [1/S97a] defines
a time stamp token to contain the signature of the Time Stamp Authority on a
message containing

– A description of the non-repudiation policy for the time stamp
– Date and time when the time stamp was generated
– Description of signature mechanism (including hash function)
– Hash value of the message to be time stamped

Internet standards for time stamping protocols are developed in the PKIX work-
ing group [PKI]. Interestingly, the time stamp defined within PKIX in the current
version provides the option of associating additional information to the token in
order to prevent that the third party dates forward (e.g., the time stamp could
contain the most recent closing value of the Dow Jones Average). However, as
illustrated by the example above back dating is often a more serious problem.
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Two cryptographic solutions to this problem were proposed in [HS91]. In one
solution, the third party making the time stamps link the stamps together so
that back dating (before the previous time stamp) is not feasible. This solution
has the problem that solving a dispute involving time stamps may require as wit-
ness other parties having requested time stamps. The second solution proposes
to distribute the time stamp among a number of third parties (in a random and
unpredictable way).

5 Contract Signing

Contract signing refers to the problem of fairly exchanging signed documents
between two parties. By fair is meant that each (honest) party sending a signed
document is assured that if the other party gets his signature, then he will also
get the required signature from that party.

Using a trusted third party this problem has a trivial solution: Both parties
can send their signed documents to the third party, who after receiving both
documents verifies the signatures, and then forwards the signed documents to
the intended recipients.

As this solution is not satisfactory, it has been attempted to develop contract
signing protocols relying less on trusted third parties. In theory, this problem is
solved, since fair exchange of signed documents can be based on general crypto-
graphic techniques such as [GMW86].

However, the search for more practical solution has attracted much attention
(see [Dam94] for more references) and in the following we consider some of the
suggested schemes. These can be grouped in three categories:

Gradual release of signature Here each party takes turns releasing one or
more bits of the signature.

Gradual release of evidence Each party takes turns at releasing evidence,
which a third party will use to decide a possible dispute. The distinguishing
property compared to gradual release of the signature is that a party having
more computing power than the other cannot use this advantage to generate
additional evidence.

Optimistic protocols These protocols provide the exchange in such a way,
that if at any point a cheating party stops and is able to compute the sig-
nature of the honest party, then the honest party has so much information
that, with the help of the third party, the cheating party’s signature can be
computed.

5.1 Gradual and Verifiable Release of Signature

The concept of gradual and verifiable release of a secret was first introduced in
[BCDvdG88], which shows how a party can gradually release a secret discrete
logarithm (given two elements g and h of ZZ∗

p, where p is a prime, the secret is
the discrete logarithm of h with respect to g).
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The idea is that in one round the party holding the secret can prove that it
is in a certain interval, and in each round this interval is made smaller (e.g., the
interval could be halved in size for each round corresponding to releasing one
bit of the secret). In [Dam94] this technique was generalised using a special bit
commitment scheme. While [BCDvdG88] allows release of signatures that can be
expressed as the discrete logarithm, [Dam94] extended the scope to signatures
that can be expressed in a well-defined way using this new commitment scheme
(this includes RSA, Rabin and ElGamal signatures).

We do not go more into the details of these schemes but there is a rich
literature on such schemes.

5.2 Gradual and Verifiable Release of Evidence

If signatures are exchanged using the technique of gradually releasing a secret,
then a party, A with much computing power may have a substantial advantage
over one with very little computing power, as A will be able to search (exhaus-
tively) for missing bits. E.g., assume the signature is 320 bits (as in DSS). After
each party has released, say, 270 bits of the signature then party A my decide to
stop and search exhaustively for the remaining 50 bits. The other party having
much less computing power may not be able to retrieve the missing bits before
the signature is out-dated.

[BOGMR90] introduced a way to cope with this deficit. The exchange still
takes place in a number of rounds, but in each round each party releases infor-
mation, which increases the probability that an arbiter will accept the signature.
Thus at any point party A’s and B’s signature will be valid with probability pA

and pB, respectively. The idea is to keep pA and pB close to each other so that
neither A nor B will have any significant advantage in stopping the protocol.

[BOGMR90] suggests to achieve this as follows. Initially A and B agree on a
contract, c, setting the parameters for the exchange and sign this contract. This
signature does not count as a signature on the contract to be signed, and they
can freely exchange it. Now, in round i of the protocol, A signs a message saying
”c is valid with probability pi”. This signed message is sent to B, who returns a
similar, signed message to A. The probability, pi, is increased gradually in each
round (e.g., with 100 exchanges pi = i

100 for i = 1, 2, . . . , 100).
In case of a dispute a party will present the signed message containing the

highest value of pi to the arbiter, which simply decides to accept the signature
with probability pi (once the signature is accepted or rejected, all future verdicts
have the same outcome).

The disadvantage of this protocol is that each party has to make and verify
many signatures. In [Dam94] this was somewhat solved by replacing digital sig-
nature in each round with the preimage of a one-way function (e.g., a hash func-
tion). More precisely in the initial phase A signs c and (H(a1),H(a2), . . . ,H(an)),
where a1, a2, . . . , an are chosen at random. Similarly, B chooses b1, b2, . . . , bn at
random and signs c and the list (H(b1),H(b2), . . . ,H(bn)). In round i party A
reveals ai and B reveals bi. After ai and bi are revealed, the arbiter will accept
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A’s and B’s signatures, respectively, with probability i
n (more generally arbi-

trary probabilities can be associated with each ai and bi as part of the initial
contract).

While this is more efficient, it still requires a number of preimages to be signed
and stored. This can be avoided based on the technique for micropayments pre-
sented in [Ped97,RS97,HSW96,AMS97], as the list (H(a1),H(a2), . . . ,H(an))
can be replaced by Hn(a0), where a0 is chosen at random. B’s list is simi-
larly replaced by Hn(b0), for a random b0. In the i’th round A and B send
ai = Hn−i(a0), respectively bi = Hn−i(b0), to each other. This reduces storage
requirements, and the initially signed message will be shorter. In the i’th round
each party will have to iterate H n − i times in order to find ai, but if a good
hash function is chosen (e.g., SHA-1, [SHS95]) this can be done very fast. As
A (B) only has to remember the previous bi (ai) verification requires a single
computation with H in each step.

5.3 Optimistic Protocols

While the two types of exchange mentioned above both require a large number
of rounds in order to gradually increase the faith in the signature, optimistic
protocols aim at exchanging the signatures directly. In order to cope with dis-
honest parties, this is done in such a way that an honest party can be saved by
a third party. The first optimistic protocols for fair exchanges were published in
[ASW97]. In the following we sketch the protocols presented in [ASW98] for the
case of Schnorr signatures. The following concepts are used:

Reduced signature Briefly, a reduced signature is a partial signature. It can
be verified given the public key, and given additional information the correct
signature can be derived from the reduced one. A reduced Schnorr signature
(c, z) on message m is, for example, given by (c, u), where u = gz mod p. It
is correct if c = H(uh−c,m).

Verifiable encryption of homomorphic inverse Given a surjective homo-
morphism ϕ : G1 → G2, where G1 and G2 are groups, a verifiable encryption
of the inverse of some d ∈ G2 is an encryption of ϕ−1(d) for which it can be
proved that decryption gives a pre-image of d.

In the following consider the homomorphism ϕ : (ZZq,+) → (Gq, ·) defined by
x �→ gx, where Gq is a cyclic group of order q generated by g.

Assuming A wants to sign mA and B the message mB the protocol works as
follows:

1. A computes a Schnorr signature (cA, zA) on mA and the corresponding re-
duced signature (cA, uA), where uA = gzA . A sends (cA, uA) to B.

2. B verifies the reduced signature: c = H(uAh
−cA ,mA). If it is invalid, B

stops. Otherwise B signs mB to get (cB , zB) and the corresponding reduced
signature (cB, uB). The reduced signature is sent to A.

3. A verifies the reduced signature. If it is invalid, A stops. A encrypts zA under
the public key of the third party and proves that the encryption is an inverse
of uA under ϕ.
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4. B aborts if the proof is not accepted. Otherwise B encrypts zB under the
public key of the third party and proves that the encryption is an inverse of
uB under ϕ.

5. If A rejects the proof, the third party is invoked. See below. Otherwise A
sends zA to B.

6. B verifies that uA = gzA . If this is not satisfied B retrieves the signature
with the help of the third party. Otherwise, B has the required signature
and sends zb to A.

7. A verifies that uB = gzB . If this is satisfied, A has the required signature on
mB. Otherwise, A retrieves the signature with the help of the third party.

Please consult [ASW98] for details on verifiable encryption and a detailed proof
of security. In the following the security of the protocol is described informally.

If both parties follow the protocol, they will end up getting each others
signature. The interesting thing is what happens if something goes wrong. Up
to and including Step 3 neither A nor B has revealed their respective signature.
Thus after a failure nothing has to be done. The same is true if A’s proof in
Step 4 is rejected. So let’s consider failures in Step 5, 6 and 7.

A failure in Step 7 means that B got A’s signature, but A did not get B’s.
Now A can bring the encryption of zB to T and get the decrypted value. T
can do this without introducing security holes, as B would only have sent the
encryption of zB if he had received a correct encryption of zA (hence T can help
B if necessary).

A failure in Step 6 means that bothA andB have received correct encryptions
of zB and zA respectively. In this case, they will be able to get the decryptions
from T . However, in order to get zA, B must supply zB so that A can get it in
case B (being dishonest) claimed this error after getting the encryption of zA in
Step 4.

A failure in Step 5 means that A has provided a correct encryption of zA, but
B did not send one to A. Since B can get zA from T by using the mechanism
handling failures in Step 6 there are two possibilities, when A shows up at T :

– If B has not requested zA, T can mark the exchange as aborted, and will
never send zA to B (if at some previous point A has requested zA, T will
not mark the protocol as aborted).

– If B at some point has requested zA then T can immediately send zB to A
(as B had to supply it).

6 Electronic Payments

Payment systems allowing a person to pay electronically to another person are
essential for electronic commerce. As a result a large number of (Internet) pay-
ment systems have recently been developed. It is out of the scope of this paper to
describe all these systems. In stead a general model is presented and a few con-
structions of electronic cash are discussed, as these have drawn most attention
in the cryptographic community.
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6.1 Model

The following model is based on [AJSW97]. Electronic payments involve four
parties (or roles, as one entity in principle can play different roles). These are

– the payer,
– the payee (receiving the money)
– the issuing bank (the bank or financial institution of the payer)
– and the acquiring bank (bank or financial institution of the payee)

In a clean payment system structure, the payer will only have to deal with the
issuer and payee, while payee only has to deal with the payer and the acquirer.
Thus we have relations as depicted in Figure 4.

Payer

Issuer

Payee

Acquirer

setup

withdrawal

setup

deposit

payment

clearing

Fig. 4. Model of electronic payments

Most payment systems adhere to this model, but there are exceptions (e.g.,
some flows suggested by [FST95], and some options in [IBM], where the payer
can contact the acquirer or the payee may have to contact the issuer).

Based on this model a number of different types of payment systems are
possible.

Cash-like systems These are prepaid systems in which the user gets electronic
tokens representing money from the issuer.

Account based systems Here the payer sends a token to the payee, which
allows the acquirer, when the payee deposits it, to move the amount from
the account of the payer to that of the payee. Credit-card payments and
electronic cheques are common examples of such systems.

Indirect payment These are systems, where the payer instructs his bank di-
rectly to transfer money to the account of the payee. Such systems are typ-
ically applied from homebanking applications, where the payer initiates the
payment, but they can also be initiated by the payee (based on agreements
with the payer).

In the following we focus on cash-like systems, but first a few words on the
principles of account based payment systems. These roughly work as follows
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given any digital signature scheme. During set-up the user is given a certificate
from the issuer on the public key-pair used to sign payment messages. The issuer
uniquely links this key-pair to the (account of the) payer. A payment is simply
a signed message enabling the acquirer to transfer the paid amount from the
account of the payer to that of the payee. In SET encryption measures are
provided, which makes it possible to tunnel credit card information from the
payer to the acquirer through the payee, in such a way that the payee cannot
read this information (see [MV97] for more details on SET). Electronic cheques,
which provide an electronic equivalent of paper cheques, is another example of
an account based system (see [FST95,Cry]).

6.2 Cash-like Payment Systems

In a cash-like system, the payer withdraws electronic money at the issuer. During
payment some of this is transferred to the payee (this may happen as part of a
protocol in which a number of messages are exchanged), and finally the payee
can deposit the received money at the acquirer. Clearing between issuer and
acquirer takes place afterwards.

As these systems resemble normal cash much effort has been put into the
construction of such schemes supporting the same properties that real cash en-
joys. In particular real cash can be used anonymously and it can be transferred
between users (i.e., the payee can use received acting as a payer in another pay-
ment [CP93]). Furthermore, being prepaid, cash-like systems will only be used
for minor amounts, and operating them should therefore be inexpensive and
preferably fast (in terms of communication as well as computation).

As electronic cash can be authenticated (guaranteed) using digital signatures,
the main security problem is to prevent forgeries through copying. There are
basically two solutions to this:

– prevent copying using secure hardware (smart cards);
– prevent usage of copied cash by on-line queries to a central server.

For anonymous payments (and privacy protecting transactions in general) it
is important to identify the level of anonymity offered. In order to define these
properly, it is necessary to use the notion of a view as introduced by [GMR89].
We refer to [GMR89] for a formal definition and introduction of protocols and
views. Informally, the view of a party involved in the execution of some protocol
consists of

– All inputs given to that party.
– All messages received during the execution of the protocol.
– All random bits used by that party.

In principle one could add ”All message sent by that party”, but as these mes-
sages can be computed from the view defined above, they are usually excluded.

In the definition below both unconditional and computational anonymity is
considered. The term ”not feasible” means that under some cryptographic as-
sumption (e.g., the difficulty of factoring) the required task cannot be done, while
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”not possible” means that it cannot be done no matter how much computing
power is available.

A protocol provides untraceability for a party, A, if given the view of one
execution of the protocol with A it is not possible (feasible) to identify A (the
execution can not be traced to A).

A protocol provides unlinkability for a party, A, if it provides untraceability
and given all views of all other parties executing that protocol with A it is not
possible (feasible) to see which views originate from an execution with the same
party.

Obviously, a protocol only providing untraceability may not protect the
anonymity of A, since linking all A’s transactions together may identify A
uniquely.

In the following we describe two prepaid systems providing unconditional
anonymity, one on-line and one off-line. Both schemes are based on blind signa-
tures, which are briefly explained next.

6.3 Blind Signatures

As introduced in [Cha83] blind signatures enables a signer to sign a message
without seeing the message. More precisely, if the signer makes n signatures for
some n > 0 and later sees n pairs (mi, σi) where σi is the signature on mi then
the signer is not able to tell when he made any of these signatures.

At first, blind signatures seem like an odd idea, as we all learn to read docu-
ments carefully before signing them. However, blind signatures are intended to
be used for anonymous electronic money. The idea is that a bank issuing elec-
tronic coins (or cheques) can sign these using a blind signature scheme. When
the money has been spent and the recipient of the coin wants to deposit it,
the acquirer can tell that the coin is valid (because of the signature), but the
coin does not contain information which allows the issuer, acquirer and payee
together to tell who originally withdrew it.

The most famous example of blind signatures is based on RSA. With the
notation from the introduction this works as follows. In order to get a blind
signature on a message, m, the signer is requested to sign the number b =
reH(m) mod n, where r is chosen at random. Thus the signer computes and
returns bd mod n, from which the required signature, H(m)d, can be computed
as (bd)/r mod n.

6.4 On-Line Coin System

Given any blind digital signature scheme (e.g., based on RSA as described above)
an on-line coin system works as follows (see [Cha83]):

Withdrawal During withdrawal the payer gets a number of coins from the
issuer. Each coin is represented by the issuer’s signature, σ on H(m), where
m is a randommessage selected by the payer. Different coins (denominations)
can be implemented using different key-pairs at the issuer (as described in
the certificate of the issuer).
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Payment During payment of a coin the payer simply sends (m,σ) to the payee.
The payee asks the acquirer if the received coin can be accepted (to ensure
that it is not a copy of a previously spent coin) before accepting or rejecting
the payment.

Deposit Done during the payment transaction.

Since the issuer when making a blind signature can get no (Shannon) infor-
mation about (m,σ) the payment system provides unconditional unlinkability.

6.5 Off-Line Coin System

In the above system, the on-line query during the payment is necessary to prevent
that coins are spent more than once. In an off-line system it is not possible to
prevent such double-spending by cryptographic means alone (secure hardware is
needed). In stead [CFN90] suggested to enable identification of double-spenders
after the fact. Thus honest users are anonymous, while cheaters can be identified.
This can for example be done as follows based on RSA ([Bra94,Bra95,BBC+94]
present different schemes based on other blind signature schemes):

Withdrawal During withdrawal the payer prepares 2k messages of the form
H(mi)||H(mi ⊕ Id) for i = 1, 2, . . . , 2k, where Id is a unique identifier of the
payer, and k is a security parameter. Each of these 2k message are blinded
using a random number ri (as in Section 6.3) and sent to the issuer.
The issuer request to get (mi,mi ⊕ Id) plus the corresponding blinding fac-
tors, ri for k values of i. If all these are correct, the bank is assured that
most of the remaining messages are also constructed correctly, and these are
signed.
From the signature of the bank the payer can get a blind signature on each
unrevealed message H(mi)||H(mi ⊕ Id).

Payment The payee selects a random k-bits challenge, (c1, c2, . . . , ck) and sends
it to the payer. The payer responds with (mi,H(mi ⊕ Id)) if ci = 0 and
H(mi)||(mi ⊕ Id) if ci = 1. The payee then verifies that the k signatures are
correct.

Deposit During deposit the payee sends the received signed messages (plus
signature) and the challenge to the acquirer.
The acquirer looks up if this coin has been used before. If they have been
used with a different challenge c′ then ci = c′i for some i and hence the
acquirer has both mi and mi ⊕ Id and knows the identity of the payer.

If the payer does not cheat it is not feasible to identify the payer unless preimages
of H can be inverted. Please consult [CFN90] on how unconditional anonymity
can be achieved.

6.6 Micropayment

The above systems require verification of at least one signatures during each
payment. This may not be sufficiently efficient in systems requiring many pay-
ments of small amounts (in particular if this is done on a smart card). Such
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payments can for example be made efficiently using the technique mentioned in
Section 5. During payment the payer sends to the payee an = Hn(a0) as well
as a signature on an guaranteeing that an presents some value (say n = 100
and the total value is 10 dollars). After the payee has validated this signature,
the payer can make a number of successive payments of 10 cents by sending the
number an−i = Hn−i(a0)for the i’th payment. The payee only needs to remem-
ber the last value received. Validation of the i’th payment consists of verifying
that H(an−i) = an−(i−1), which can be done very efficiently.

Development of efficient schemes for micropayment has received considerable
attention recently. Other schemes are given in [DEC,JO97].

7 Conclusion

This paper has introduced the most widely applied digital signature schemes and
discussed some applications of these related to electronic commerce. The security
of the various protocols and mechanisms has only been described informally. As
sound cryptographic design requires proofs based on acceptable cryptographic
assumptions the reader is strongly encouraged to consult the original papers for
full proofs of the security.
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Abstract. This paper describes the state of the art for cryptographic
hash functions. Different definitions are compared, and the few theoreti-
cal results on hash functions are discussed. A brief overview is presented
of the most important constructions, and some open problems are pre-
sented.

1 Introduction

Hash functions are well known in computer science. They compress a string of
arbitrary length to a string of fixed length and are used to allocate as uniformly
as possible storage for the records of a file. For cryptographic applications, addi-
tional security requirements are necessary: informally, one requires that they are
hard to invert, and (in most cases) that it is hard to find colliding inputs. This
is achieved by creating a mapping that associates to an input string a ‘randomly
looking’ output string (note that formally this makes no sense, as hash functions
are deterministic mappings). As a consequence of these properties, hash func-
tions create a ‘unique’ relationship between the input and the hash value; there
are of course many inputs corresponding to a single output, but it is hard to
identify these.

Cryptographic hash functions can be used to protect the integrity of large
amounts of information (such as the content of a hard disk, a set of financial
transactions, a software program) by the integrity of a short string, the hash
result. This protection can be achieved by digitally signing this short string [31],
or by writing down the string on a piece of paper that is stored in a secure place.
This is analogous to conventional message encryption, that replaces the secrecy
of a large amount of information by the secrecy (and authenticity) of a secret
key; typically this key is much shorter than the message.

Hash functions have been used (and sometimes abused) for many other cryp-
tographic applications. Examples include

– the protection of pass-phrases (where the image of the pass-phrase under the
hash function is stored in the computer, rather than the pass-phrase itself);

– the commitment to a string without revealing it (see Damg̊ard et al. [27]).
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– the construction of Message Authentication Codes (MACs), by introducing
in the hash function a second parameter that is kept secret [5,7,70];

– key derivation, for example to derive session keys from a transaction number
and a master key.

The last two applications assume that the hash function keyed by a second
parameter yields a pseudo-random function, or a mapping that is hard to pre-
dict. Hash functions have also been used to instantiate ‘random oracles’ [9]; this
requires even stronger properties.

The remainder of this paper is organized as follows. Section 2 presents the
definitions and Sect. 3 discusses generic constructions and security results. Spe-
cific constructions are treated in Sect. 4, while conclusions and open problems
are presented in Sect. 5.

2 Definitions

One distinguishes between hash functions that have only a single input, and
hash functions that have a second input. The first type are sometimes called
MDCs or Manipulation Detection Codes; many authors refer to this type simply
as cryptographic hash functions, or even hash functions. If the second parameter
is secret, one calls these functions keyed hash functions; an important subclass
are MACs or Message Authentication Codes. Finally the second parameter can
also be public; examples in this class are the UOWHFs or Universal One-Way
Hash Functions.

Note that one should not confuse hash functions with checksums that are
used for error detection or correction (such as the well known Cyclic Redundancy
Checks or CRCs).

First we define one-way hash functions (OWHF) and collision resistant hash
functions (CRHF). Both classes of hash functions are studied in this paper. Then
we look at some related concepts, namely message authentication codes (MACs),
universal one-way hash functions (UOWHFs) and universal hash functions.

In the following the hash function will be denoted with h, and its argument,
i.e., the information to be protected with x. The image of x under the hash
function h will be denoted with h(x). It will be assumed that the description of
the hash function h is publicly known, and that it does not require any secret
information (except for the optional parameter, which may be secret). A second
assumption is that given the inputs, the computation of the hash result must be
“easy.”

2.1 One-Way Hash Function (OWHF)

The concept of one-way hash functions was introduced by Diffie and Hellman
in [31]. The first informal definition was apparently given by Merkle [59,60] and
Rabin [73]. A one-way hash function is a function h satisfying the following
conditions:
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1. The argument x can be of arbitrary length and the result h(x) has a fixed
length of n bits (with n ≥ 64 . . .80).

2. The hash function must be one-way in the sense that given a y in the image
of h, it is “hard” to find a message x such that h(x) = y (preimage resistant)
and given x in the domain of h and h(x) it is “hard” to find a message x′ �= x
such that h(x′) = h(x) (second preimage resistant).

Note that this last condition (finding a second preimage is “hard”) differs from
the intuitive concept of one-wayness, namely that it is “hard” to find a preimage
x given only h and the value of h(x). It is clear that for permutations or injective
functions only preimage resistance is relevant. The relation between preimage
resistance and second preimage resistance is discussed in [58,67].

The above definition is only informal. For example, one should specify the
distribution that is used to select y respectively x, and specify what “hard”
and “easy” means. The definition should also take into account that one can
always invert functions with a small range (by exhaustive search) and that one
can always precompute the function in a small set. There are many ways to
formalize the definition, and it is a non-trivial exercise to show which of these
are equivalent.

For a formal definition, we need to specify a model of computation. Rather
than probabilistic Turing machines (that are used traditionally in cryptogra-
phy), we will follow here Bellare and Rogaway [10] and use the RAM model
including pointers (see for example [22]); execution time is measured with re-
spect to that model. An adversary is a program for this model, written in some
fixed programming language. The adversary has access to random bits.1 The
running time includes the actual execution time and the length of the program
description.

The set of all integers will be denoted with IN. The alphabet considered is
the binary alphabet Σ = {0, 1}. For n ∈ IN, Σn is the set of all binary strings
of length n. The set of all strings of arbitrary length will be written as Σ∗. The
size of a set S is denoted with |S|. Let h be a function with domain D = Σ∗ and
range R = Σn. Note that in fact we will only consider inputs of bit length l(n),
with l(n) a function that satisfies l(n) > n. This is not a real restriction, since it
is not possible (in practice) to evaluate a function in inputs that are too large.

Definition 1. A one-way hash function H is a function with domain D =
Σl(n) and range R = Σn that satisfies the following conditions:

– preimage resistance: let x be selected uniformly in D and let M be an adver-
sary that on input h(x) uses time ≤ t and outputs M(h(x)) ∈ D. For each
adversary M ,

Pr
x∈D

{h(M(h(x))) = h(x)} < ε .

Here the probability is also taken over the random choices of M .

1 Returning a random integer in the interval [1, n] takes time Θ(log n).
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– 2nd preimage resistance: let x be selected uniformly in Σl(n) and let M ′ be
an adversary that on input x uses time ≤ t and outputs x′ ∈ D with x′ �= x.
For each adversary M ′,

Pr
x∈D

{M ′(x) = h(x)} < ε .

Here the probability is also taken over the random choices of M ′.

The above definition is only meaningful if t/ε is large; it is clear that t/ε ≤ 2n.
One can specify a constant as required by a given application.

Note that this model does not take into account precomputation, which can
be used to speed the computation of many preimages (as for example in Hellman
[49]).

2.2 Collision Resistant Hash Function (CRHF)

The fact that a function is one-way does not mean that it is hard to find two
colliding inputs; it will be shown in Sect. 3.2 that the effort to find a collision is
only the square root of the effort to find a (2nd) preimage. This motivates the
definition of a collision resistant function as a separate primitive. Note that some
authors call this a collision free hash function [24,25,26], or a collision intractible
hash function [89].

The first formal definition of a CRHF was given by Damg̊ard [24,25]. An
informal definition was given by Merkle in [60]. A collision resistant hash
function is a function h satisfying the following conditions:
1. The argument x can be of arbitrary length and the result h(x) has a fixed

length of n bits (with n ≥ 128 . . .160).
2. The hash function must be one-way, i.e., preimage resistance and second

preimage resistant.
3. The hash function must be collision resistant: this means that it is “hard”

to find two distinct messages that hash to the same result.

Finding a second preimage cannot be easier than finding a collision: therefore
the second preimage condition in this definition is redundant. However, preim-
age resistance is not necessarily implied by collision resistance (note that it is
required for certain applications). Damg̊ard provides some definitions and con-
ditions under which collision resistance implies preimage resistance [26]; see also
Gibson’s comment in [42].

Formalizing a collision resistant hash function is not as straightforward as
formalizing a one-way hash function. One cannot specify that there should not
exist an adversary that outputs a collision: since there are many colliding inputs
that are very short, there will be many efficient adversaries that can output a
pair of inputs that collide under x (just include two such inputs in the code).
The way out of this problem is to define collision resistance as the property of
a family H of hash functions, that is, a set of functions indexed by a parameter
S. For simplicity, it will be assumed that S is taken from the parameter space
Σs. Thus H is a mapping from D×Σs → R, and an individual function in this
family is denoted with hS : D → R.
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Definition 2. A collision-resistant hash function H is a function family with
domain D = Σl(n) and range R = Σn that satisfies the following conditions:

– the functions hS are preimage resistant and second preimage resistant (cf.
Definition 1).

– collision resistance: let F be a collision string finder that on input S ∈ Σs

uses time ≤ t and outputs either “?” or a pair x, x′ ∈ Σl(n) with x′ �= x such
that hS(x′) = hS(x). For each F ,

Pr
S
{F (H) �= “?”} < ε .

Here the probability is also taken over the random choices of F .

Again this definition is only meaningful if t/ε is large; it will follow from Sect. 3.2
that an upper bound is 2.24 · 2n/2.

2.3 Universal One-Way Hash Function

The concept of a UOWHF was introduced by Naor and Yung [64]. In [10], Bellare
and Rogaway give a concrete definition (rather than an asymptotic one) and
study practical constructions for this primitive under the name ‘target collision
resistant hash functions.’

Definition 3. A universal one-way hash function H is a function family
with domain D = Σl(n) and range R = Σn, that satisfies the following condition:

– Let F ′ = (F ′
1, F

′
2) be an adversary. F ′

1 is run first; it is an algorithm that
produces x and possibly some state information; this information is passed
on to F ′

2. Algorithm F ′
2 is given S, x and the state information and outputs

either ”?” or an x′ �= x such that hS(x′) = hS(x).
For each F ′ that runs in time ≤ t (that is, the sum of the running times of
F ′

1 and F ′
2),

Pr
S
{F ′(H) �= “?”} < ε .

Here the probability is also taken over the random choices of F ′.

The main difference with collision resistance is that here the input x is fixed
first, and then the parameter S is chosen. This implies that finding collisions for
a given value of S does not help an attacker.

Naor and Yung show that a UOWHF can be used to build a digital signa-
ture scheme [64]. Rompel [78] developed a (very inefficient) construction for a
UOWHF based on any one-way function; in this way he reduces a digital signa-
ture scheme to a one-way function, which is the weakest possible assumption. A
UOWHF can replace a CRHF in a digital signature scheme if the signer does
not intend to repudiate her signatures (see also Sect. 3.2).
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2.4 Message Authentication Code (MAC)

Message Authentication Codes have been used for a long time in the banking
community. However, MAC algorithms with good cryptographic properties were
only introduced in the late 1970s. The first reference to a MAC algorithm is a
1972 patent application by Simmons et al. (reference 10. in [81]).

Definition 4. A MAC algorithm is a function h satisfying the following con-
ditions:

1. The argument x can be of arbitrary length and the result hK(x) has a fixed
length of n bits (with n ≥ 32 . . . 64).

2. Given h and x, it is “hard” to forge a MAC on a new message, that is,
to determine hK(x) with a probability of success “significantly higher” than
1/2n. Even when many pairs {xi, hK(xi)} are known, where the xi have been
selected (sequentially) by the opponent, it is “hard” to compute hK(x′) for
any x′ �= xi.

The last attack is called an adaptive chosen text attack. One distinguishes be-
tween forgery attacks and key recovery attacks: a forgery allows to determine
the MAC on a new message; a key recovery attack is much more serious as it
allows to forge the MAC for an arbitrary message.

The exact security of a MAC algorithm can be expressed in terms of the
running time t of the adversary, the number of known and (adaptively) chosen
texts an adversary has access to, and the probability of success ε of the forgery
attack (see e.g., [7]).

A MAC algorithm can be used for message authentication between a sender
and a receiver who share a secret key K. In order to protect a message, the
sender applies the MAC algorithm to the message and appends the resulting
string to the message. On receipt of the message, the receiver recomputes the
MAC and verifies that it corresponds to the transmitted MAC value. An active
eavesdropper Eve can modify the message, but as she does not know the secret
key, she cannot predict the MAC value for the modified message.

2.5 Universal Hash Functions

Universal hash functions are combinatorial objects, which implies that they can
be defined without using a model of computation. They were introduced by
Carter and Wegman [15,86], who show that they can be applied to efficient un-
conditionally secure message authentication. In this way they found practical
constructions for the authentication codes introduced by Simmons in the 1970s
[80]. The first published reference to authentication codes is Gilbert et al. [44].
Other applications of universal hash functions include interactive proof systems,
pseudo-random number generation, complexity theory, and probabilistic algo-
rithms.

A universal hash function is a mapping from a finite set A with size a to a
finite set B with size b. For a given hash function h and for a pair (x, x′) with
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x �= x′ the following function is defined:

δh(x, x′) =
{
1 if h(x) = h(x′)
0 otherwise.

As above, a finite set of hash functions will be denoted family H of hash func-
tions. Now δH(x, x′) is defined as

∑
h∈H δh(x, x

′), or δH(x, x′) counts the number
of functions in H for which x and x′ collide. If a random choice of h is made,
then for any two distinct inputs x and x′, the probability that these two inputs
yield a collision equals δH(x, x′)/ |H|. For a universal hash function, the goal is
to minimize this probability together with the size of H.

Definition 5. Let ε be any positive real number. An ε-almost universal family
(or ε-AU family) H of hash functions from a set A to a set B is a family of
functions from A to B such that for any distinct elements x, x′ ∈ A

| {h ∈ H : h(x) = h(x′)} |= δH(x, x′) ≤ ε · |H| .
This definition states that for any two distinct inputs the probability for a colli-
sion is at most ε. In [15] the case ε = 1/b is called universal (the smallest possible
value for ε is (a− b)/b(a− 1)).

Definition 6. Let ε be any positive real number. An ε-almost strongly uni-
versal family (or ε-ASU family) H of hash functions from a set A to a set B is
a family of functions from A to B such that

– for every x ∈ A and for every y ∈ B, | {h ∈ H : h(x) = y} |=|H| /b,
– for every x1, x2 ∈ A (x1 �= x2) and for every y1, y2 ∈ B (y1 �= y2),

| {h ∈ H : h(x1) = y1, h(x2) = y2} |≤ ε· |H| /b.
The first condition states that the probability that a given input x is mapped to
a given output y equals 1/b. The second condition implies that if x1 is mapped
to y1, then the conditional probability that x2 (different from x1) is mapped to
y2 is upper bounded by ε. The lowest possible value for ε equals 1/b and this
family has been called strongly universal functions in [86]. Stinson shows that
for this family the first condition in the definition follows from the second one
[83].

An ε-almost strongly universal hash function family can be used in a similar
way as a MAC algorithm. The secret key K chooses a function in the family;
unlike the key for a MAC algorithm, the key can serve to authenticate a single
message only. An ε-almost universal hash function family can also provide mes-
sage authentication, but in addition its result needs to be encrypted (for example
using a one-time pad).

3 Generic Constructions and Attacks

First a general model is presented for iterated hash functions. Next generic at-
tacks are described, that is, attacks that are independent of the specific details of
the hash function. This section is concluded with a discussion of generic security
results for hash functions.
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3.1 A General Model for Iterated Hash Functions

Most known hash functions are based on a compression function with fixed size
inputs; they process every message block in a similar way. Lai and Massey call
this an “iterated” hash function [55]. The information is divided into t blocks x1

through xt. If the total number of bits is not a multiple of the block length, the
information is padded to the required length (using a so-called padding rule).
The hash function can then be described as follows:

H0 = IV
Hi = f(xi, Hi−1) i = 1, 2, . . . t
h(x) = g(Ht) .

The result of the hash function is denoted with h(x) and IV is the abbreviation
for Initial Value. The function f is called the round function or compression
function, and the function g is called the output transformation. It is often omit-
ted (that is, g is often the identity function). Two elements in this definition
have an important influence on the security of a hash function: the choice of the
padding rule and the choice of the IV . It is recommended that the padding rule
is unambiguous (i.e., there do not exist two messages that can be padded to the
same padded message); at the end one should append the length of the message;
and the IV should be defined as part of the description of the hash function
(this is called MD-strengthening after Merkle and Damg̊ard). In some cases one
can deviate from this rule, but this will make the hash function less secure and
may lead to trivial collisions or second preimages.

An alternative model is a tree structure, that allows for increased parallelism
and may result in different security conditions for the round function (see also
Sect. 3.3). For the time being it is rarely used in practice.

The general model for MAC algorithms is similar to that of MDCs; the use of
an output transformation is more common here. Bellare and Rogaway [10] show
that the above model does not work for a UOWHF, and they introduce a different
approach. Earlier Naor and Yung developed a different iterated construction for
a UOWHF in [64].

3.2 Generic Attacks

This section gives an overview of the known general attacks methods on MDCs.
A first class of attacks depend only on the size of the parameters, and not on the
specific hash function. The second class depends on the properties of the round
function f .

This taxonomy can be helpful to understand the security results presented in
Sect. 3.3, but can also serve as a caveat for designers and users of hash functions.

Attacks Independent of the Algorithm These attacks depend only on the
size n in bits of the hash result, and are independent of the specific details of



166 Bart Preneel

the algorithm. It is assumed that the MDC approximates a random function:
if this is not the case this class of attacks will be even more successful. For the
time being 264 operations is considered to be on the edge of feasibility. In view
of the fact that the speed of computers is multiplied by four every three years
(this is one of the formulations of Moore’s law), 270 operations is sufficient for
the next 5 to 10 years, but it will be only marginally secure within 15 years. For
applications that require protection for 20 years, one should try to design the
hash function such that an attack requires at least 280 operations.

Random (2nd) Preimage Attack. The opponent selects a random message and
hopes that a given hash result will be hit. If the hash function has the required
“random” behavior, his probability of success equals 1/2n with n the number of
bits of the hash result. This attack can be carried out off-line and in parallel,
which means that n should be at least 64.

If a significant number of messages can be attacked simultaneously, it is ad-
visable to select a larger value of n. In that case it is preferable to use a UOWHF
rather than a simple OWHF: as every instance will have a different parameter,
this prevents an attacker from amortizing his effort over many targets.

Birthday Attack. The birthday paradox states that for a group of 23 people,
the probability that at least two people have a common birthday exceeds 1/2.
Intuitively one expects that the probability is much lower. However, the number
of pairs of people in such a group equals 23 ·22/2 = 253. This can be exploited to
find collisions for a hash function as follows: an adversary generates r1 variations
on a bogus message and r2 variations on a genuine message. The expected num-
ber of collisions equals r1 · r2/n. The probability of finding a bogus message and
a genuine message that hash to the same result is given by 1− exp(−r1 · r2/2n),
which is about 63% when r = r1 = r2 = 2

n
2 . Finding the collision does not re-

quire r2 operations: after sorting the data, which requires O(r log r) operations,
comparison is easy. This attack was first pointed out by Yuval [87].

One can reduce the memory requirements for collision search by translating
the problem to the detection of a cycle in an iterated mapping. Indeed, any
mapping that is iterated on a finite set will eventually repeat, i.e., it will enter
a cycle. If the mapping is a random mapping (rather than a permutation), the
entry point to the cycle corresponds to a collision for the function (this algorithm
fails if the starting point belongs to the cycle, but this event has a negligible
probability). The detection of a cycle does not require storing all the values;
for example, the technique of distinguished points can be used (one only stores
special points, for example those points beginning with 30 zero bits). Cycle
detection techniques were first applied to collision search by Quisquater [71].
The expected number of function evaluations of his algorithm is 2

√
π/2 ·2n

2 ; the
storage requirements are negligible. In [85], van Oorschot and Wiener propose an
efficient parallel variant of this algorithm: the speed-up is linear with the number
of processors. They estimate that with a 10 million US$ machine, collisions for
MD5 (with n = 128) can be found in 21 days (in 1994). In order to make a
collision search infeasible, n should be at least 160 bits.
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For digital signatures, hash functions need to be collision resistant since oth-
erwise one can sign one message and later claim to have signed a different mes-
sage, or be held accountable for a different message. There is no way to prevent
a sender from performing this attack, although the occurrence of two messages
that hash to the same value might make him suspect. Outsiders can perform the
same attack if they can convince the signer to sign a message of their choice. The
sender can protect himself through randomizing the message just prior to signing
(or by randomizing the hash function as is done for a UOWHF, cf. Sect. 2.3).

Attacks Dependent on the Chaining This class of attacks depends on some
high level properties of the compression function f .

Meet-in-the-Middle Attack. This attack is a variation on the birthday attack,
but instead of comparing the hash results, one compares intermediate chaining
variables. The attack enables an opponent to construct a (2nd) preimage, which
is not possible for a simple birthday attack. The opponent generates r1 variations
on the first part of a bogus message and r2 variations on the last part. Starting
from the initial value and going backwards from the hash result, the probability
for a matching intermediate variable is again given by 1− exp(−r1 · r2/2n). The
only restriction that applies to the meeting point is that it cannot be the first or
last value of the chaining variable. The cycle finding algorithm has been extended
by Quisquater to perform a meet-in-the-middle attack with negligible storage
[72]. The attack can be precluded by avoiding functions f that are invertible
to the chaining variable Hi−1 and to the message xi (see also Theorem 1 in
Sect. 3.3).

Further extensions of this attack have been proposed by Coppersmith [19] and
Girault et al. [46] to break p-fold iterated schemes, i.e., weak schemes with more
than one ‘pass’ over the message as proposed by Davies [28]. Other extensions
take into account additional constraints on the message.

Fixed Point Attack. The idea of this attack is to look for an Hi−1 and xi such
that f(xi, Hi−1) = Hi−1. If the chaining variable is equal to Hi−1, it is possible
to insert an arbitrary number of blocks equal to xi without modifying the hash
result. Producing collisions or a second preimage with this attack is only possible
if the chaining variable can be made equal to Hi−1: this is the case if IV can
be chosen equal to a specific value, or if a large number of fixed points can be
constructed (e.g., if one can find an xi for a significant fraction of Hi−1’s). Of
course this attack can be extended to fixed points that occur after more than one
iteration. This attack can be made more difficult by appending a block count
and by fixing IV (MD-strengthening, see Sect. 3.1).

3.3 General Security Results

Research on hash functions has focussed on the question: which properties should
be imposed on f to guarantee that h satisfies certain properties? Two partial
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answers have been found to this question. The first result by Lai and Massey
[55] gives necessary and sufficient conditions for f in order to obtain an “ideally
secure” hash function h, that is, a hash function for which finding a preimage
takes time Θ(2n).

Theorem 1 (Lai–Massey). Assume that the padding contains the length of the
input string, and that the message x (without padding) contains at least 2 blocks.
Then finding a second preimage for h with a fixed IV requires 2n operations if
and only if finding a second preimage for f with arbitrarily chosen Hi−1 requires
2n operations.

Necessity of the condition is based on the following argument: if one can find
a second preimage for f in 2s operations (with s < n), one can find a second
preimage for h in 2(n+s)/2+1 operations with a meet-in-the-middle attack (cf.
Sect. 3.2).

A second result by Damg̊ard [26] and independently by Merkle [60] states
that for h to be a CRHF it is sufficient that f is a collision resistant function.

Theorem 2 (Damg̊ard–Merkle). Let f be a collision resistant function map-
ping l to n bits (with l − n > 1). If an unambiguous padding rule is used, the
following construction yields a CRHF:

H1 = f(0n+1 ‖ x1)
Hi = f(Hi−1 ‖ 1 ‖ xi) for i = 2, 3, . . . t .

Here ‖ denotes the concatenation of binary strings. The construction can be
improved slightly,2 and extended to the case where l = n + 1, at the cost of
an additional assumption on f (see [26] for details and Gibson’s comment in
[42]). It can also be extended to a tree construction, which allows for increased
parallelism [26].

We conclude this section with two other general results on the theory of hash
functions. Damg̊ard has showed in [25] that a collision resistant hash function
can be constructed if claw-free permutations exist; Russell has slightly weakened
this requirement to the existence of claw-free pseudo-permutations [79] (pseudo-
permutations are functions that cannot be distinguished from permutations).
Recently Simon [82] has provided a motivation to treat collision resistant hash
functions as independent cryptographic primitives. He showed that no provable
construction of a CRHF exists based on a “black box” one-way permutation,
i.e., a one-way permutation treated as an oracle.

4 An Overview of Constructions

This section briefly discusses three types of MDCs: MDCs based on a block
cipher, MDCs based on algebraic structures (modular arithmetic, knapsack, and
lattice problems), and custom designed MDCs. For a more detailed discussion,
the reader is referred to [67,68].
2 One can get rid of the extra “0” and “1” bits.
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4.1 MDCs Based on a Block Cipher

Several arguments can be given for designers of hash functions to base their
schemes on existing encryption algorithms. The first argument is purely histor-
ical: DES [37] was the first standard commercial cryptographic primitive that
was widely available; it seemed natural to construct hash functions based on this
block cipher. A second argument is the minimization of the design and imple-
mentation effort: hash functions and block ciphers that are both efficient and
secure are hard to design, and many examples that support this view can be
found in the literature. Moreover, existing software and hardware implementa-
tions can be reused, which will decrease the cost. The major advantage however
is that the trust in existing encryption algorithms can be transferred to a hash
function. The main disadvantage of this approach is that custom designed hash
functions are likely to be more efficient. This is particularly true because hash
functions based on block ciphers require a key change after every encryption.
Finally note that block ciphers may exhibit some weaknesses that are only im-
portant if they are used in a hashing mode. One also has to take into account
that in some countries export restrictions for block ciphers may be tighter than
those for hash functions.

The encryption operation E will be written as y = EK(x). Here x denotes
the plaintext, y the ciphertext, and K the key. The size of the plaintext and
ciphertext or the block length (in bits) will be denoted with r, while the key size
(in bits) will be denoted with k. In the case of the well known block cipher DES,
r = 64 and k = 56 [37]. The hash rate of a hash function based on a block
cipher is defined as the number of r-bit input blocks that can be processed with
a single encryption.

A distinction will be made between the cases n = r, n = 2r, and n > 2r. This
is motivated by the fact that most proposed block ciphers have a block length of
only 64 bits, and hence an MDC with a result at least twice the block length is
necessary to obtain a CRHF. Other proposals are based on a block cipher with
a large key, or on a block cipher with a modified key schedule.

Size of Hash Result Equal to the Block Length. If follows from Sect. 3.2
that these hash functions can only be collision resistant if the block length r is
at least 128 bits to 160 bits. Most present day block ciphers have only a block
length of 64 bits, but the AES (Advanced Encryption Standard), which NIST
intends to publish by 2001, will have a block length of 128 bits.

All schemes of this type proposed in the literature have rate 1. The first
‘secure’ construction for such a hash function was the ’85 scheme by Matyas et
al. [57]:

Hi = E⊕
s(Hi−1)(xi)

def= Es(Hi−1)(xi)⊕ xi .

Here s() is a mapping from the ciphertext space to the key space. This scheme
has been included in ISO/IEC 10118–2 [51], and it forms the main building block
for other hash functions based on block ciphers. This general construction is also
used in several custom designed hash functions (cf. Sect. 4.3).
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It is widely believed that this mapping is hard to invert, but there is no proof
of this. It is not even clear which assumptions have to imposed on the block cipher
to allow for such a proof. One can apply the following intuitive reasoning: either
one chooses the plaintext x, but then one has to find the key corresponding to
one plaintext/ciphertext pair, which is deemed to be infeasible; alternatively, one
chooses the key, but then one has to find for a given key a plaintext/ciphertext
pair with a known difference, which is also believed to be difficult. Therefore it
is conjectured that if the block cipher is ‘ideal’ (i.e., a keyed random one-way
permutation) no shortcut attacks exist, which implies that a collision attack
requires Θ(2r/2) operations and a (2nd) preimage attack Θ(2r) operations.

Preneel et al. show that 12 variants exist with a similar security level; they
can be obtained by applying an affine transformation to the inputs of two basic
schemes [69]. Moreover, the security level of these hash functions is limited by
min(k, r), even if the size of some internal variables is equal to max(k, r). One
such variant is widely known as the Davies-Meyer scheme (the real inventors are
probably Matyas and Meyer):

Hi = E⊕
xi
(Hi−1) .

It has the advantage that it extends more easily to block ciphers where key size
and block size are different.

Size of Hash Result Equal to Twice the Block Length. The goal of
double block length hash functions is to achieve a higher security level against
collision attacks. Ideally a collision attack on such a hash function should require
2r operations, and a (2nd) preimage attack 22r operations.

A series of proposals attempted to double the size of the hash result, for
example by iterating a OWHF; all of these succumbed to a ‘divide and conquer’
attack. A large class of proposals of rate 1 has the following form:

H1
i = EA1

i
(B1

i )⊕ C1
i

H2
i = EA2

i
(B2

i )⊕ C2
i ,

where A1
i , B

1
i , and C

1
i are binary linear combinations of H1

i−1, H
2
i−1, x

1
i , and x

2
i

and where A2
i , B

2
i , and C

2
i are binary linear combinations of H1

i−1, H
2
i−1, x

1
i , x

2
i ,

and H1
i . The hash result is equal to the concatenation of H1

t and H2
t . Knudsen

et al. showed that for all hash functions in this class, a preimage attack requires
at most 2r operations, and a collision attack requires at most 23r/4 operations
(for most schemes this can be reduced to 2r/2) [53].

The few proposals that survive till today have rate less than 1. Two important
examples are MDC-2 and MDC-4 with hash rate 1/2 and 1/4 respectively. They
have been designed by Bracht et al. [13], and are also known as the Meyer-
Schilling hash functions after the authors of the first paper describing these
schemes [63]. MDC-2 has been included in ISO/IEC 10118-2 [51] (in a more
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general form); it can be described as follows:

T 1
i = E⊕

u(H1
i−1)

(xi) = LT 1
i ‖ RT 1

i H1
i = LT 1

i ‖ RT 2
i

T 2
i = E⊕

v(H2
i−1)

(xi) = LT 2
i ‖ RT 2

i H2
i = LT 2

i ‖ RT 1
i .

Here the variables H1
0 and H2

0 are initialized with the values IV1 and IV2 re-
spectively, and the hash result is equal to the concatenation of H1

t and H2
t . The

ISO/IEC standard does not specify the block cipher; it also requires the spec-
ification of two mappings u, v from the ciphertext space to the key space such
that u(IV 1) �= v(IV 2). The best known preimage and collision attacks on MDC-
2 require 23r and 2r operations respectively (Lai and Massey [55]). However, it
is obvious that the compression function of MDC-2 is rather weak: preimage
and collision attacks on the compression function require at most 2r and 2r/2

operations (one fixes xi and varies H1
i−1 and H2

i−1 independently).
One iteration of MDC-4 consists of the concatenation of two MDC-2 steps,

where the plaintexts in the second step are equal to H2i−1 and H1i−1. The
rate of MDC-4 is equal to 1/4. The best known attack to find a preimage for
MDC-4 requires 22r operations. This shows that MDC-4 is probably more secure
than MDC-2 against preimage attacks. However, a collision for the compression
function of MDC-2 with a specified value forH1

i−1 andH
2
i−1 also yields a collision

for the compression function of MDC-4. Moreover, it has been demonstrated in
by Preneel and Knudsen [67,54] that collisions for the compression function
of MDC-4 can be found with 23r/4 encryptions and the storage of 23r/4 r-bit
quantities.

Merkle describes an interesting proposal in [60], for which he proves that
the compression function is collision resistant based on the assumption that the
underlying single block length scheme is secure. The simplest scheme (with rate
1/18.3 for DES) can be described as follows:

Hi = chop16

[
E⊕

0‖H1
i−1

(H2
i−1‖xi) ‖ E⊕

1‖H1
i−1

(H2
i−1‖xi)

]
.

Here Hi−1 is a string consisting of 112 bits, the leftmost 55 bits of which are
denoted H1

i−1, and the remaining 57 are denoted H2
i−1; xi consists of 7 bits only.

The function chopr drops the r rightmost bits of its argument. Note that this
construction is similar to MDC-2 (but much slower). The most efficient proposal
is more complex and use six invocations of the block cipher in two layers. Its
hash rate is equal to 0.27 for DES. Merkle’s proof for this proposal only showed
a security level of 252.5 against collisions; Preneel has improved this to 256 [67].

Even the schemes in this class that provide optimal security do not offer long
term collision resistance when used with DES; this will change with AES, which
will have a block and key length of 128 bits (key lengths of 192 and 256 bits will
also be provided).

Size of Hash Result Larger than Twice the Block Length. Knudsen
and Preneel also design a collision resistant compression function, but with par-
allel encryptions only [54]. They show how a class of efficient constructions for
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hash functions can be obtained by using non-binary error-correcting codes. Their
schemes can achieve a provable security level against collisions equal to 2r, 23r/2

(or more) and this with rates larger than 1/2; the security proof reduces the se-
curity of this scheme to an assumption on the single block length hash functions.
The internal memory of the scheme is however much larger than 2 or 3 blocks,
which implies that an output transformation is required.

Other Constructions. Extending earlier work by Merkle [59], Lai and Massey
[55] propose constructions for block ciphers with a key twice as long as the block
length (Tandem Davies-Meyer and Abreast Davies-Meyer). Both schemes have
rate equal to 1/2; the best known attacks for a preimage and a collision requires
22r respectively 2r encryptions. Faster schemes in this class have been developed
in [54].

Aiello and Venkatesan propose in [1] a construction to double the output of
a random function. In order for it to be usable for hashing, one needs to define
the key schedule of this larger ‘block cipher’. The construction by Aiello, Haber,
and Venkatesan [2] replaces the key schedule of DES by a function from the
MDx-family (cf. Sect. 4.3); several instances are combined by choosing different
(fixed) plaintexts.

4.2 MDCs Based on Algebraic Structures

First hash functions based on modular arithmetic are considered. Next hash
functions based on knapsack problems and lattices are presented. This section
is concluded with a short discussion of incremental hash functions.

MDCs Based on Modular Arithmetic. These hash functions are designed
to use the modular arithmetic hardware that is required to produce digital signa-
tures (for example, RSA [77]). The security of certain constructions can be based
on the hardness of some number theoretic problems. Moreover these schemes
are easily scalable. The disadvantage is that the underlying primitive has a rich
mathematical structure; this can be exploited in attacks that use the homomor-
phic structure and the fixed points of modular exponentiation (trivial examples
are 0 and 1); one also has to ensure that no small inputs occur.

A distinction is made between ‘ad hoc’ schemes, which have no provable
reduction to the underlying hard problem, and provably secure schemes. Schemes
in the first class are typically much more efficient, but many proposals have been
broken; however, it seems that recently designers have been more conservative
and designs survive longer.

Schemes Without Security Reduction. Most of these schemes uses a modulus
N , that is, the product of two large primes. The size of N in bits (denoted
with n) is typically between 512 and 1024. These hash functions can be useful
in combination with RSA [77] as digital signature scheme. However, this choice
poses the following practical problem: the person who has generated the modulus
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knows its factorization, and hence he has a potential advantage over the other
users of the hash function. One can try to design the hash function such that
knowledge of the factorization does not help in attacking it (this is probably
difficult to achieve). Alternatives are to use a trusted third party to generate
the modulus (for example, the modulus of the Certification Authority), or to
generate the modulus using a multi-party secure computation; recently practical
solutions for such a computation have been developed by Boneh and Franklin
[12] and Frankel et al. [40].

The most efficient schemes are based on modular squaring. An additional
argument for squaring is that any algorithm that can extract modular square
roots is reducible to a factoring algorithm (in random polynomial time). The best
scheme seems to be of the following form: Hi = (xi ⊕Hi−1)

2 mod N ⊕ Hi−1

[69].
It is essential to add redundancy to the message input. The first designs for

this redundancy were not very successful (see for example Girault [45], Girault
and Misarsky [47], and Coppersmith [20]). ISO/IEC SC27 has developed a new
proposal, that is currently at the Final Draft International Standard (FDIS)
level; it is called MASH-1 (for Modular Arithmetic Secure Hash) [51]:

Hi = ((xi ⊕Hi−1) ∨A)2 (mod N) ⊕Hi−1

here A = 0xF00...00, the four most significant bits in every byte of xi are set to
1111, and the output of the squaring operation is chopped to n bits. A complex
output transformation is added, which consists of a number of applications of
the compression function; its goal is to destroy all the remaining mathematical
structure. The final result is at most n/2 bits. The best known preimage and
collision attacks on MASH-1 require 2n/2 and 2n/4 operations [21]; they are thus
not better than brute force attacks. MASH-2 is a variant of MASH-1 which uses
exponent 28 + 1 [51]. This provides for an additional security margin.

Schemes With a Security Reduction. For several schemes there exists a security
reduction to a number theoretic problem that is believe to be difficult. However,
they are very slow: typically they hash log2 log2N bits per modular squaring (or
even per modular exponentiation).

Damg̊ard provides two hash functions for which finding a collision is provably
equivalent to factoring an RSA modulus [24]. Gibson proposes a construction
based on the discrete logarithm problem modulo a composite [43]. A third ap-
proach uses the discrete logarithm problem in a group of prime order p denoted
with Gp (Bellare et al. [6], after earlier work by Chaum et al. [18] and Brands).
Every non-trivial element of Gp is a generator. The hash function uses t random
elements αi from Gp (αi �= 1). The hash result is then computed as

Ht+1 =
t∏

i=1

αx̃i

i .
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Here x̃i is obtained by considering the string xi as the binary expansion of a
number and prepending 1 to it. This avoids trivial collisions when xi consists of
all zeroes.

MDCs Based on Knapsack and Lattice Problems. The knapsack problem
(which is a special case of the subset sum problem) of dimensions n and /(n)
can be defined as follows: given a set of n l-bit integers {a1, a2, . . . , an}, and an
integer S, find a vector x with components xi equal to 0 or 1 such that

n∑
i=1

ai · xi = S mod 2�(n) .

For application to hashing, one needs n > /(n). The knapsack problem is known
to be NP-hard; while this means that probably no feasible worst-case algorithms
for this problem exists, this does not tell much about the hardness of a random
instance. This problem was used in 1978 by Merkle and Hellman to construct the
first public-key encryption system [62]. However, almost all public-key schemes
based on the knapsack problem have been broken (see for example [65]), which
has given the knapsack a bad reputation. The appeal of the knapsack problem
(and related lattice based problems) lies in the fact that both hardware and
software implementations are very fast compared to schemes based on number
theoretic problems. Moreover, evaluation of a knapsack allows for significant
parallelism. Finally, interesting security reductions can be proved: examples are
the work for Impagliazzo and Naor [50] on knapsacks and that of Ajtai [3] for
lattices; Ajtai was able to prove that if the shortest vector in a lattice problem is
hard in the worst case, then the knapsack problem is hard on the average. How-
ever, some researchers believe that for realistic parameters, both these problems
are relatively easy. If they are right, knapsack and lattice problems are not useful
to practical cryptography.

Attacks on knapsacks often use the LLL lattice reduction algorithm [56] that
finds the shortest vector in a lattice (the algorithm performs in practice much
better than can be guaranteed). This reduction to the shortest vector problem
only works for /(n) > 1.0629 ·n. Knapsack problems become more difficult when
n ≈ /(n); however, the performance of the hash function decreases with the
value n− /(n). For n = /(n), the best known attack requires time O(2n/2) and
space O(2n/4). Impagliazzo and Naor summarize the state of the art in [50].
A different class of attacks are the algebraic attacks proposed by Camion and
Patarin [14] and optimized by Patarin in [66]; these attacks tend to work better
when n � /(n). The scheme of Damg̊ard [26] has been broken both using LLL
[52] and using algebraic techniques [66]. It is for the time being an open problem
whether a random knapsack with n = 1024, l = 512, and / = 512 is hard to
solve.

Impagliazzo and Naor describe an efficient construction for a UOWHF (cf.
Sect. 2.3) and provide a reduction of its security to that of the knapsack problem
[50]. Ajtai introduced a function that is one-way (or preimage resistant) if the
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problem of approximating the shortest vector in a lattice to polynomial factors
is hard [3]. Goldreich et al. have proved that the function is in fact collision
resistant [48].

Several multiplicative knapsacks have also been proposed; multiplicative no-
tation is used for non-Abelian groups. The earliest proposal dates back to ’77
(but it was quickly shown to be insecure). A recent example are the schemes by
Zémor [88] and Tillich and Zémor [84]. Their security is based on the hardness of
finding short factorizations in certain groups. In some cases one can even prove
a lower bound on the Hamming distance between colliding messages. Attacks
on these proposals (for certain parameters) can be found in [17,41]. Impagliazzo
and Naor also extend their construction on a UOWHF to multiplication in a
group [50].

Knapsack and lattice based hash functions have also the potential problem
that trapdoors may be inserted when the vectors are generated. Therefore it is
recommended that the instance generation is reproducible (for example, through
the use of a pseudo-random string generator or a hash function).

Incremental Hash Functions. A hash function (or any cryptographic prim-
itive) is called incremental if it has the following property: if the hash function
has been evaluated for an input x, and a small modification is made to x, re-
sulting in x′, then one can update h(x) in time proportional to the amount
of modification between x and x′, rather than having to recompute h(x′) from
scratch. If a function is incremental, it is automatically parallelizable as well.

This concept was first introduced by Bellare et al. [6]. They also made a
first proposal based on exponentiation in a group of prime order. Improved
constructions were proposed by Bellare and Micciancio [8] that consist of two
steps:

– First the message is divided into blocks; each block (together with its index)
is hashed using a conventional collision resistant hash function (restricted
to fixed length inputs). This is called the ‘randomization’ step as in the
analysis the hash function is treated as an ‘ideal’ hash function or random
oracle (which is a very demanding requirement).

– Next the different outputs are combined using a group operation. This can
be a group of large prime order in which the discrete logarithm problem
is hard, and modular addition. The first approach leads to a reduction to
the discrete logarithm problem, while the second leads to a reduction to the
‘weighted knapsack’ problem.

The same techniques can also be used to improve the lattice based hash function.
These schemes have the advantage that they are much more efficient than the
other schemes studied in this section. However, this comes at a cost of requiring
a collision resistant hash function, which also has to behave ‘perfectly random.’
This construction is remarkable, as it construct a collision resistant function
based on a one-way property (but with specific algebraic structure, so there is
no contradiction to the result of Simon [82] discussed in Sect. 3.3).
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4.3 Custom Designed MDCs

This section discusses a selection of custom designed hash functions, i.e., al-
gorithms that were especially designed for hashing operations. Most of these
algorithms use the Davies-Meyer approach (cf. Sect. 4.1): the compression func-
tion is a block cipher, ‘keyed’ by the text input xi; the plaintext is the value
Hi−1, which is also added to the ciphertext (feedforward).

In 1990, R. Rivest proposed MD4 [75], a hash function with a 128-bit result
based on 32-bit integer arithmetic. While this hash function proved to be not
sufficiently strong, the innovative design ideas have influenced many other de-
signs. The algorithms derived from it (with improved strength) are often called
the MDx-family. This family contains the most popular hash functions in use
today. Dobbertin has found collisions for MD4; his attack combines algebraic
techniques and optimization techniques such as genetic algorithms [32,33]. It
can be extended in such a way that even ‘meaningful’ collisions are obtained:
the complete message (except for a few dozen bytes) is under complete control
of the attacker. His attack also applies to the compression function of ‘extended
MD4’ [75], which consists of concatenating two loosely coupled instances of MD4.
Later Dobbertin showed that a reduced version of MD4 (2 rounds out of 3) is
not preimage resistant [35].

Following early attacks on MD4 by Merkle and den Boer and Bosselaers [29],
Rivest quickly designed a strengthened version, namely MD5 [76]. It was how-
ever shown by den Boer and Bosselaers [30] that the compression function of
MD5 is not collision resistant (but their collisions are of the form f(Hi−1, xi) =
f(H ′

i−1, xi), which is not immediately usable in practice). Dobbertin has ex-
tended his attack on MD4 to yield collisions for the compression function of
MD5, i.e., f(Hi−1, xi) = f(Hi−1, x

′
i), where he has some control over Hi−1 [34].

It is believed that it is feasible to extend this attack to collisions for MD5 itself
(that is, to take into account the IV ).

A second improved variant of MD4, the Secure Hash Algorithm, was proposed
by NIST [38] in 1993. The size of the hash result is increased from 128 to 160 bits
and the message words are not simply permuted but encoded with a shortened
cyclic code. After a few years, NSA discovered a certificational weakness in SHA;
apparently collisions can be found in less than 280 operations. Consequently a
new release of the standard was published. The new algorithm is called SHA-1
[39]. Recently Chabaud and Joux have published an attack that finds collisions
for SHA in 261 operations [16]; it is probably similar to the (classified) attack
developed earlier that prompted the upgrade to SHA-1.

Yet another improved version of MD4, called RIPEMD, was developed in
the framework of the EEC-RACE project RIPE [74]. Due to partial attacks by
Dobbertin [32], it was later upgraded by Dobbertin et al. to RIPEMD-128 and
RIPEMD-160, that have a 128-bit and a 160-bit result respectively [36]. Variants
with a 256 and 320-bit result have been introduced as well. Together with SHA-
1, RIPEMD-128 and RIPEMD-160 are the three custom designed hash functions
included in ISO/IEC 10118–3 [51].
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Merkle suggested in 1989 a software oriented one-way hash function called
Snefru [61]. It is based on large random substitution tables (2 Kbyte per pass)
and allows for a variable size of the result (128 or 256 bits). Biham and Shamir
have shown that Snefru-128 [11] is vulnerable to differential attacks. As a con-
sequence it is recommended to use 6 and preferably 8 passes, preferably with a
256-bit hash result. However, these measures increase the size of the substitution
tables and decrease the performance.

Two of the most recent designs are Tiger and Panama. Tiger was proposed
by Anderson and Biham [4]. It is tuned towards 64-bit processors and mixes
Snefru-type S-boxes (8 input bits and 64 output bits) with arithmetic operations.
Panama is a design of Daemen and Clapp [23]; it has been designed to take
advantage of the instruction-level parallelism in modern processors.

5 Conclusions and Open Problems

In spite of the popularity of cryptographic hash functions, very few theoretical
results are known in this area; it is clear that further research is necessary to
improve our understanding of these primitives. Collision resistance seems to be a
condition that is particularly hard to analyze. Some open problems are whether
it is possible to construct collision resistant hash functions based on weaker
assumptions, and whether any theory can be developed to support the current
constructions.

In the area of practical constructions, there is a need for more efficient hash
functions, the security of which is better understood. For hash functions based
on block ciphers, the main problem seems to be the assumptions on the block
cipher. From an application viewpoint, multiplicative knapsacks seem to be very
attractive (due to inherent parallelism and due to the fact that certain properties
can be proved). However, further research is necessary to assess their security.
Another research problem is to understand to which extent the current construc-
tions provide other security properties such as pseudo-randomness and partial
preimage resistance; both properties are related to the difficulty of inverting the
hash function if part of the input is known.
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Abstract. In 1982, Bennett and Brassard suggested a new way to pro-
vide privacy in long distance communications with security based on the
correctness of the basic principles of quantum mechanics. The scheme al-
lows two parties, Alice and Bob, sharing no secret information in the first
place, to exchange messages that nobody else can figure out. The only re-
quirement is a quantum channel and a normal phone line connecting the
two parties. The fact that quantum mechanics provides unconditional
secure communications is a remarkable result that cannot be achieved
by classical techniques alone. Apart from secure communication, cryp-
tography is also interested in tasks that aim at protecting one party
against a potentially dishonest peer. This scenario, called secure two-
party computation, is usually modelled by a function f(xA, xB) where
xA and xB are Alice’s and Bob’s secret input respectively. They would
like to execute a protocol that produces z = f(xA, xB) to both parties
without disclosing their secret input to the other party. The only infor-
mation about a secret input that can be leaked toward the other party
is what the output z itself discloses about it. Unlike secure communi-
cation, secure two-party computation does not assume that Alice and
Bob are honest. One honest party’s input should remain secret what-
ever the other party’s behaviour. It is well-known that in order to find
a protocol for secure two-party computation, one must have access to a
secure bit commitment scheme. Unfortunately, in 1996 Mayers showed
that no secure quantum bit commitment scheme exists. Similarly to the
classical case (where trapdoor one-way functions are needed) quantum
cryptography does not provide secure two-party computation for free. In
this paper, we discuss the possibilities and limits of quantum cryptog-
raphy for two-party computation. We describe the essential distinctions
between classical and quantum cryptography in this scenario.

1 Introduction

Quantum cryptography aims at designing cryptographic protocols with security
guaranteed by the fundamental laws of quantum mechanics. In 1982, Bennett
and Brassard [1] proposed two quantum protocols: Quantum key distribution
(QKD), and quantum coin tossing. Quantum key distribution allows two par-
ties, Alice and Bob, who share no information to agree on a common secret key
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k ∈ {0, 1}l for some l > 0. Typically, once Alice and Bob share k, Alice can
encrypt any message m ∈ {0, 1}l as c = m ⊕ k. The ciphertext c is then sent
to Bob over a normal channel that can be eavesdropped at will. It is well-known
that this encryption method (called the one-time pad) does not leak information
about m to an eavesdropper as long as k is unknown. This means that when-
ever a new message m has to be sent secretly, Alice and Bob first use QKD in
order to get a fresh secret key k that is used for encrypting m. The point here
is that no classical method whatsoever can achieve this without relying upon
some assumptions [42]. Classically, the security of secret-key exchange can be
based upon a computing time limitation an attacker can spend in order to find
the key [19]. However, it is very unlikely that one could prove that a secure
classical cryptosystem would guarantee absolute security against eavesdroppers
limited to spend only polynomial time. A proven security statement like this
would imply that P �= NP. On the other hand, if secret-key distribution is im-
plemented quantumly then security can be achieved under the only assumption
that the basic axioms of quantum mechanics are correct. This offers advantages
compared to the classical cryptosystems since the notion of security is indepen-
dent of the model of computation. This is important since it is possible that all
practical public-key cryptosystems are secure against attackers modelled by Tur-
ing machines but not against attackers modelled by quantum Turing machines.
As an example, RSA [39] and Diffie-Hellmann [19] cryptosystems are breakable
by quantum attackers since the quantum computer can factorize and extract
discrete logs in polynomial time [41].

The idea behind the Bennett-Brassard scheme for QKD [1,2] is that, any
eavesdropper trying to get information by intercepting the communication on
the quantum channel will be detected. This is because unknown quantum states
cannot be observed without disturbing the state irreversibly. The disturbance
can be detected by Alice and Bob by exchanging information over the public
channel. The scheme ensures them that if they don’t find too many errors it
is because no threatening eavesdropping occurred during the quantum trans-
mission. The key they are going to agree on should therefore be secret. Several
papers have been written about the security of the Bennett-Brassard scheme. In
[2], the scheme was shown secure against an attacker performing the so called
intercept-resend attack. Intercept-resend attacks are the ones where the attacker
keeps the original particles and resends others according to the outcome of a
complete test (complete tests will be defined in section 3.1). The security of the
scheme was shown against much stronger but still limited attackers in [6]. Very
recently, the proof of security has been extended to cover all possible cases sound
with quantum mechanics axioms [35]. It follows that quantum mechanics allows
to achieve one of the most important cryptographic task without any assump-
tion. Moreover, experimental implementations have demonstrated that quantum
cryptography is also practical [2,37,43,24].

What about the other protocol introduced by Bennett and Brassard in 1982
[1]: Quantum coin tossing? A coin tossing protocol takes place between Alice and
Bob and guarantees that a random bit r ∈ {0, 1} is generated [7]. Even when
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one party is dishonest the outcome of the coin toss is random. This means that
no dishonest party can influence the outcome. Unlike the protocol for QKD,
it was already known by the authors that the proposal could be broken by
a dishonest party able to produce and manipulate entangled quantum states.
Loosely speaking, an entangled quantum state is the state of several particles
such that:

– Observing one part of the system produces a random outcome and
– once the outcome is known, the state or the rest of the system is also known.

In other words, the state of each particle is correlated with the others. These
states are rather difficult to prepare and were out of reach back in 1982. Today
however, the entanglement needed in order to break the scheme can easily be
produced in laboratory. From the beginning, coin tossing already appeared more
difficult to achieve than QKD whereas classically, coin tossing is easier than
secret-key distribution [23].

The coin tossing protocol proposed by Bennett and Brassard was in fact im-
plementing a more powerful primitive called bit commitment. A bit commitment
scheme allows Alice to commit to the value of a bit in a way that prevents Bob
to learn it but also in a way that prevents Alice from changing her mind. A coin
tossing is easily achieved using a bit commitment scheme:

– Alice commits on a random rA ∈ {0, 1},
– Bob announces a random rB ∈ {0, 1},
– Alice unveils rA,
– Alice and Bob set r = rA ⊕ rB.

The advantage of considering bit commitment is that it allows to prove knowl-
edge of a statement without divulging it [10,20]. This kind of cryptographic task
is important for solving natural cryptographic problems like identification, Zero-
Knowledge proofs of Knowledge, etc... However there are tasks that even bit
commitment cannot help to solve.

An oblivious transfer is a protocol that allows Alice to send Bob x ∈ {0, 1}
in such a way that:

– Bob receives x with probability 1
2 and knows it. When x is not received, Bob

gets no information on x.
– Alice has no information on whether or not Bob received x.

Classically, it would be a major breakthrough if one could show that bit commit-
ment and oblivious transfer can be based on the same computational assump-
tions [23]. Oblivious transfer seems strictly more powerful than bit commitment
in the classical world. It allows to build bit commitment quite easily but the op-
posite will turn out to be true only if the existence of one-way functions implies
the existence of trapdoor one-way functions. Coin tossing, bit commitment and
oblivious transfer are all protocols involving two parties who want to cooperate
while respecting their privacy. The most general task one can imagine in this
model is the so called secure two-party computation (S2PC). A protocol for S2PC
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is a generic protocol between Alice and Bob taking as input the description of
a function f : {0, 1}N × {0, 1}N → {0, 1}M and secret strings xA, xB ∈ {0, 1}N

for Alice and Bob respectively. The output is the value f(xA, xB) that is made
available to both parties. The protocol is secure if

1. it computes the correct output and
2. it leaks, to each player, no more information than f(xA, xB) about the input

of the other party.

Although S2PC seems quite general, an oblivious transfer is sufficient in order
for a secure protocol to exists [26,18]. It follows that the most general primitive
for solving any secure two-party computation is oblivious transfer.

From the above, it is natural to ask if oblivious transfer can be implemented
quantumly. A positive answer would allow to base almost all modern cryptogra-
phy upon the correctness of quantum mechanics, that is upon the laws of physics
as we observe them. Oblivious transfer can therefore be seem as the Holy Grail
of quantum cryptography.

1.1 Overview

Basically, quantum mechanics allows to transmit information in a way that is
similar to a transmission through a binary symmetric channel. Quantum mechan-
ics, by virtue of the uncertainty principle, allows to encode information in such a
way that the receiver cannot decode it all the time. Measuring an arbitrary quan-
tum state destroys it and does not extract all the information. Measurements
are therefore not repeatable so the uncertainty about the measured state always
remains. This inherent noisiness is at the basis of all quantum protocols includ-
ing the one for secret-key distribution. Noisy channels, at least some of them, are
powerful cryptographic primitives since they allow to build secure protocols for
oblivious transfer [16]. In 1991, Bennett, Brassard, Crépeau and Skubiszewska
proposed a quantum protocol for oblivious transfer [5]. Their protocol assume
that Alice and Bob have access, as a black-box primitive, to a secure bit commit-
ment scheme. Under this assumption, several results about the security of the
scheme were shown [5,15,36,46]. The result of Yao [46], showed that the scheme
is secure according to the laws of quantum mechanics and given bit commitment
as a black-box. The result showed that bit commitment is sufficient to build a
quantum oblivious transfer whereas classically this seems impossible.

There were reasons to be optimistic in 1995; the Holy Grail was in sight.
Not for long though! In 1995, Mayers [32] broke the most serious candidate for
quantum bit commitment [12] (although at that time it was even not considered
as a candidate but as a genuine bit commitment scheme). Then, things got worse.
In 1996, Mayers [33] and independently Lo and Chau [27] have given a general
attack that can be applied on general quantum protocols for bit commitment.
Mayers’ construction [33,34] turns out to be so general that the existence of
quantum bit commitment, with security relying merely upon the correctness of
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quantum mechanics, was ruled out. Quantum bit commitment as its classical
counterpart, needs extra assumption in order to be implemented. However, the
classical and quantum assumptions can be of very different and independent
nature [40]. It is of interest to have different sets of independent and realistic
assumptions under which bit commitment and, more generally, oblivious transfer
are possible. This allows to choose the model (classical or quantum) that suited
the best the requirements of a particular application.

This paper describe the main steps in the search for secure quantum oblivious
transfer. We shall see how quantum mechanics principles help in implementing
a flavour of noisy channel as a primitive. We describe how to use this primi-
tive to implement oblivious transfer given a black-box for bit commitment. We
then describe Mayers’ attack that breaks any quantum bit commitment. The
description of the attack is a good starting point for getting accustomed to the
weirdness of quantum information. It exhibits highly non classical behaviour
and more importantly, it suggests how to look at quantum protocols in order
not to over classicize their behaviour. It has been demonstrated many times,
that thinking classically about the security of a quantum protocol can lead to
false conclusions.

1.2 Content

In section 2, we introduce the mathematical concepts that are used throughout
the paper. In section 3, we define quantum states and measurements using the
standard physical representation. In section 4 we describe the standard way to
encode obliviously classical information in quantum states. In section 5, we show
how to reduce quantum oblivious transfer to the oblivious quantum encoding
given a bit commitment scheme. In section 6 we describe Mayers’ attack against
any quantum bit commitment scheme. We conclude in section 7.

2 Mathematical Background

Here, we introduce a suitable vector space for the representation of quantum
objects. We then introduce the definitions and basic properties of linear operators
relevant to our discussion. More complete information can be found in almost
any book about the basic of linear algebra.

2.1 Vectors and Vector Spaces

In quantum mechanics, states, system evolutions and measurements are all rep-
resented by objects in a complex vector space. An appropriate vector space is
called Hilbert space which is, for our purposes, not different from the complex
vector space with the scalar or inner product defined. In the following we denote
by α∗ the complex conjugate of any number α ∈ C. Let u = (u1, . . . , un),v =
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(v1, . . . , vn) ∈ H be two arbitrary vectors which belong in the same arbitrary
Hilbert space H. The inner product 〈u,v〉 ∈ C between u and v is defined as

〈u,v〉 =
n∑

i=1

u∗
i vi.

From the inner product (or scalar product) we define the norm (or length)
‖v‖ of vector v ∈ H by ‖v‖2 = 〈v,v〉 ∈ R. Two vectors v and w are orthogonal
if 〈u,v〉 = 0. We say that a vector is normalized if its norm is 1. As usual, any
vector v ∈ H can be written as a linear combination of an infinite number of
possible basis. In the following, Hn stands for the n-dimensional Hilbert space. A
basis E = {e1, . . . , en} for Hn is said to be orthonormal if for all 1 ≤ i �= j ≤ n,
we have that 〈ei, ej〉 = 0 and ‖ei‖ = 1.

2.2 Dirac’s Notation

A very popular notation for vectors and operators in an Hilbert space is the
Dirac’s notation. In Dirac’s notation, vectors representing states are denoted by
a ket. For any vector v = (v1, . . . , vm) ∈ H, we write the state of a quantum
attribute by |v〉. One can see |v〉 as the column vector:

|v〉 =




v1

v2

...
vm


 .

The ket notation allows to simplify expressions. In particular, it is often con-
venient to drop the description of vector v using only symbolic notations. One
possible orthonormal basis for H2 is + = {(1, 0), (0, 1)}. Basis + is called the
standard or computational or rectilinear basis. The orthonormal vectors for the
standard basis are + = {|0〉, |1〉} = {|0〉+, |1〉+}. Another important orthonor-
mal basis in H2 is the diagonal basis × = {( 1√

2
, 1√

2
), (−1√

2
, 1√

2
) = {|0〉×, |1〉×}.

Together with the ket comes the bra notation. If v = (v1, . . . , vm) ∈ Hm then
the bra of v is noted 〈v| and is defined as 〈v| = (v∗1 , v

∗
2 , . . . , v

∗
m).

Bras and kets can be combined in order to denote operations. For u =
(u1, . . . , um),v = (v1, . . . , vm) ∈ Hm we have that 〈v|u〉 =

∑m
i=1 u

∗
i vi is the

inner product between u and v. Another operation sometime called the dyadic
is denoted by |u〉〈v| and is such that

|u〉〈v| =




u1v
∗
1 u1v

∗
2 . . . u1v

∗
m

u2v
∗
1 u2v

∗
2 . . . u2v

∗
m

...
...

...
...

umv∗1 umv∗2 . . . umv∗m


 .

For any v ∈ Hm, |v〉〈v| is a matrix V = {vij}1≤i,j≤m such that for all i �= j we
have vij = v∗ji and vii ∈ R. In the following and except when stated otherwise we
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shall use vectors with only real components. In this case, the bra and the ket of
vector v have the same components, the first one being v as a row vector and the
later being v as a column vector. The inner product between u = (u1, . . . , um) ∈
Rm and v = (v1, . . . , vm) ∈ Rm is simply

∑m
i=1 uivi.

2.3 Unitary Evolution

We shall see in next section that vectors in a Hilbert space represent quantum
states. The possible evolution of a quantum state can always be described by
a unitary transformation. We say that a transformation in a m-dimensional
Hilbert space is unitary if it can be written as a bijective mapping between
two orthonormal bases. The following transformation is unitary and acts in a
2-dimensional Hilbert space:

H : |0〉 �→ 1√
2
(|0〉 + |1〉)

|1〉 �→ −1√
2
(|0〉 − |1〉)

Any unitary transformation acting in a m-dimensional Hilbert space can easily
be written as a m×m matrix. We only have to label each column and each row
by one vector of the basis E = {e1, . . . , em} we start with. The matrix entry
labelled (ei, ej) contains the complex number αi,j that appears in front of vector
ej when the input state is ei. For example, the matrix form for H is:

H =

|0〉 |1〉
|0〉 1√

2
−1√

2

|1〉 1√
2

1√
2

=
1√
2

(
1 −1

1 1

)
.

In the following we will also use the sign shift operator S acting on vectors in
H2 and defined as

S : |0〉 �→ |0〉
|1〉 �→ −|1〉

For any vector v = (v1, v2) ∈ H2, S applied on v produces the vector v′ =
(v1,−v2). The matrix representation of S is

S =

(
1 0

0 −1

)
.

Any unitary transformation U has an inverse U−1 = U † where U † is the trans-
posed conjugate of U (also called the Hermitian conjugate). One important prop-
erty of unitary transforms is that they always preserved the inner product namely
(i.e. for all u,v ∈ H we have that 〈u|v〉 = 〈Uu|Uv〉).

Throughout this paper, we shall denote operators by capital letters. When
we write A ∈ H, we mean that A is an operator acting on vectors in H.
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2.4 Relevant Operators

A special case of operators, called Hermitians, will be useful in order to define
what is a measurement of a quantum state. An operator A ∈ Hn is Hermitian if
when A is expressed by n× n matrix {aij}1≤i,j≤n we have that

1. for all i ∈ {1, . . . , n} the element aii ∈ R. This means that all principal
diagonal elements are real.

2. for all i �= j, aij = a∗ji.

An Hermitian operator A is always such that A = A†. When A contains only
real elements, then A is Hermitian if and only if A is symmetric. Projections are
special cases of Hermitian operators:

Definition 1. An Hermitian operator P that satisfies P = PP is called a pro-
jection.

The condition P = PP translates what we intuitively consider a projection,
namely that a projection does not transform vectors that are parallel to the rays
on which it projects. One can show that A is Hermitian in Hm if and only if it
can be written for some l ≤ m as,

A =
l∑

i=1

aiPi (1)

where the Pi’s are projection operators projecting on mutually orthogonal rays.
We say that v is an eigenvector with eigenvalue a ∈ C if A is such that av = Av.
The zero vector 0 is not an eigenvector but a = 0 is a possible eigenvalue. The set
EA = {ai}l

i=1 is the set of eigenvalues of A and the decomposition appearing in
equation 1 is called the spectral decomposition of A. If #EA = m then the spec-
tral decomposition is unique and all projections are into orthogonal subspaces of
dimension 1 (i.e. they project on rays). One can verify that all Hermitian oper-
ators have only real eigenvalues. The following projection operators are relevant
to our discussion:

P0 =

(
1 0

0 0

)
,P π

4
=

1
2

(
1 1

1 1

)
,P π

2
=

(
0 0

0 1

)
and P 3π

4
=

1
2

(
1 −1

1 1

)
.

In the above, projection Pα for α ∈ {0, π
4 ,

π
2 ,

3π
4 } is the projection on the ray

(i.e. one dimensional subspace) at angle α with vector (1, 0). The projection
operator Pv on the ray parallel to the normalized vector v ∈ H is Pv = |v〉〈v|.
For instance, the above projections P0 = |0〉〈0|, P π

4
= |0〉×〈0|, P π

2
= |1〉〈1|, and

P 3π
4

= |1〉×〈1|.
The trace Tr(A) of an operator A ∈ H, is the sum of its principal diagonal

elements. More formally, we write

Tr(A) =
∑
e∈E

〈e|Ae〉 (2)

for any basis E for H. It is easy to verify that any projection P is such that
Tr(P ) = 1. The trace has the following properties:
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1. Tr(A + B) = Tr(A) + Tr(B),
2. Tr(cA) = cTr(A) for c ∈ C and
3. Tr(AB) = Tr(BA).

It follows from equation 1 that if A has eigenvalues EA then

Tr(A) =
∑

a∈EA

aTr(Pa) =
∑

a∈EA

a. (3)

We shall see in section 3.4 that general quantum states are modelled by a special
class of operators characterized by their traces:

Definition 2. An operator D is a density operator if Tr(D) = 1.

2.5 Space Extension

Two Hilbert spaces H1 and H2 can be merged together in order to get a larger
one H containing both of them. Let m1 and m2 the dimension of H1 and H2

and let E = {e1, . . . , em1} and F = {f1, . . . , fm2} be orthonormal bases for H1

and H2 respectively. We define the tensor product operation “⊗” that allows,
given E and F, to get a new orthonormal basis H for the m1m2 dimensional
Hilbert space H = H1⊗H2. The tensor product is dyadic operation acting upon
vectors. If vector e = (e1, . . . , em1) and f = (f1, . . . , fm2) then we define:

e⊗ f =




e1f1

e1f2

...
e1fm2

e2f1

...
em1fm2




. (4)

It is now possible to define H = H1 ⊗ H2 as the Hilbert space generated by
the orthonormal basis H = {e1 ⊗ f1, e1 ⊗ f2, . . . , em1 ⊗ fm2}. The tensor prod-
uct operation can also be generalized in order to deal with operators as well.
Assume A is an operator in the m1 dimensional Hilbert space H1 and A′ is an
operator in the m2 dimensional Hilbert space H2. Assume A = {aij}1≤i,j≤m1

and A′ = {a′ij}1≤i,j≤m2 are expressed as m1×m1 and m2×m2 squares matrices
respectively. The composite operator A⊗A′ ∈ H1 ⊗H2 is defined as

A⊗A′ =




a11A
′ a12A

′ . . . a1m1A
′

a21A
′ a22A

′ . . . a2m1A
′

...
...

...
...

am11A
′ am12A

′ . . . am1m1A
′


 .
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3 Quantum States

In quantum cryptography, classical information is encoded in the state of a
quantum system. In this section, we describe what is meant by a quantum state.
We shall define pure states as a special case of all quantum states. Complete
measurements of quantum states are also discussed. Finally, we introduce the
most general quantum states allowed by the theory: quantum mixture.

3.1 Maximal Tests

Before giving the definition of a quantum state, it is convenient to introduce
maximal quantum tests [38]. Suppose you want to observe the property of a
quantum system that can possibly take N different values. If the test you devise
allows to distinguish between all N possibilities, we say that it is a maximal
quantum test. A N -outcome measurement of this property implements a maximal
quantum test. A test that gives only partial information about the measured
property is said to be a partial test.

3.2 Pure States

If a quantum system is prepared in such a way that one can devise a maximal
quantum test that yields with certainty a particular outcome then we say that
the quantum system is in pure state. It follows that measuring several times a
pure state yields always the same outcome [38].

In quantum mechanics, pure states are described by normalized vectors in
some Hilbert space. If the maximal test for a pure state has n possible outcomes
then the state is described by a vector |φ〉 ∈ Hn. The polarization state of a
photon is the usual way to encode information in quantum cryptography. Pure
states for the polarization of a photon can be tested by a 2-outcome maximal test.
It follows that the polarization state (i.e. here we drop the word pure adopting
the convention that unless stated otherwise a state is pure) is described by a
normalized vector in H2. As an example, |0〉, |1〉, 1√

2
(|0〉 + |1〉) = H |0〉 and

1√
2
(−|0〉 + |1〉) = H |1〉 are all possible states for the polarization of a photon.

The pure state |0〉× = 1√
2
(|0〉+ + |1〉+) is said to be in superposition of pure

states |0〉+ and |1〉+.
It is easy to verify that the tensor product operation |φ〉 ⊗ |φ′〉 for φ ∈ H

and φ′ ∈ H′ preserves the purity of the two quantum states |φ〉 and |φ′〉. That
means that whenever |φ〉 ∈ H and |φ′〉 ∈ H′ are brought together then the new
composite system remains in pure state. This must be the case since the maximal
test in H for |φ〉 followed by the maximal test in H′ for |φ′〉 defined one maximal
test in H⊗H′ for |φ〉 ⊗ |φ′〉.

The time evolution of a pure state (and also for mixture as defined in section
3.4) is always unitary and any unitary transformation is a possible evolution of
a quantum state. Let U ∈ H2l be any unitary transformation acting on vectors
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in Hilbert space H2l =
⊗l

i=1 H2. Let E = {e1, e2, . . . , e2l} be a basis for H2l

and let |φ〉 ∈ H2l be any pure state in H2l . We have that

U |φ〉 = U

2l∑
j=1

αj |ej〉 =
2l∑

j=1

αjU |ej〉

for αj ∈ C and
∑

j |αj |2 = 1. This means that U is in fact applied simultaneously
to each element appearing in the superposition |φ〉. This kind of parallel com-
putation is very important for speeding up classical algorithms using quantum
phenomena. As we shall see in section 6, it has also important consequences in
cryptography.

3.3 Complete Measurements

We have seen that pure states are quantum states for which there exists a max-
imal test giving a predictable outcome (thus repeatable). Measurements are im-
plementations of the testing procedures. Quantum mechanics define complete
measurements as measurements implementing a maximal test for some quan-
tum states. Formally,

Definition 3. A complete or Von Neumann measurement of a quantum state in
Hn is described by an Hermitian operator M ∈ Hn with n distinct eigenvalues
EM = {a1, . . . , an}. Each eigenvalue a ∈ EM is a possible outcome for the
measurement.

From definition 3, the outcomes of a complete measurement M are in one to
one correspondence with the set of orthogonal projections PM appearing in M ’s
spectral decomposition, since the decomposition is unique when all eigenvalues
are distinct. Let Pa ∈ PM be the projection associated with eigenvalue a ∈ EM .
It is always possible to write Pa = |ψa〉〈ψa| for a normalized vector |ψa〉 that is
an eigenvector of M . Definition 3 does not describe the behaviour of complete
measurements but just the way they are modelled. In order to understand what
is a complete measurement, we have to specify what is the probability to observe
the outcome corresponding to any eigenvalues in EM and what happens to the
system once the outcome has been observed. This is where quantum measure-
ments and consequently quantum states differ from the classical ones. When a
system Φ in quantum state |φ〉 ∈ Hn is measured by a complete measurement
M , the following is always satisfied:

– The outcome corresponding to a ∈ EM is obtained with probability pφ(a) =
〈φ|Pa|φ〉.

– If a ∈ EM is the outcome then the state of Φ after the measurement is |ψa〉.
Any normalized vector |φ〉 ∈ Hn can be tested maximally by a complete mea-
surement M having projection Pa = |φ〉〈φ| in its spectral decomposition. The
outcome of M applied upon |φ〉 is predictable since the eigenvalue a satisfies
pφ(a) = 〈φ|Pa|φ〉 = 〈φ|φ〉〈φ|φ〉 = 1. It is always possible to find such an M so
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that normalized vectors really describe pure states. Since projections and nor-
malized vectors are in one to one correspondence, one can describe a pure state
by a projection as well. It follows that a pure state |φ〉 can always be written as
the projection operator Pφ = |φ〉〈φ|. From definition 2 and equation 1 we have
that any pure state Pφ is represented by a density operator but not all density
operators represent pure states, as we shall see in next section.

We have seen that complete measurements in Hn are modelled by Hermitian
operators M ∈ Hn having n distinct eigenvalues. The set of eigenvectors EM

for M defines a basis for Hn. It follows that a complete measurement can also
be described by a orthonormal basis F for Hn where each v ∈ F is a possible
outcome of M . Another equivalent way to specify a complete measurement is
a set of the n orthogonal projections PM in Hn appearing in M ’s spectral
decomposition. Each projection P ∈ PM is one of the possible orthogonal rays
on which M projects the initial state. Using this representation of complete
measurements, the following two complete measurements

M+ = {P0,P π
2
} and M× = {P π

4
,P 3π

4
}

will be used extensively in the following.

3.4 Mixed States

Suppose an observer is sitting next to a source of photons S. The dynamic of S is
such that with probability 1

2 a photon in state |0〉 is sent and with probability 1
2 a

photon in state |1〉 is sent. The behaviour of S can be described by a probability
distribution DS = {(1

2 , |0〉), (1
2 , |1〉)} over pure states in H2. Clearly, the next

photon π that is going to be transmitted by S is not in pure state since no
complete measurement can be defined such that the outcome will be predictable
by the observer. To verify this, observe that if M represents a maximal test on
DS then we have that p|0〉(a0) = p|1〉(a1) = 1 where a0 �= a1 are two eigenvalues
of M . Let p(a0) and p(a1) be the probability to observe a0 and a1 respectively
when the next photon transmitted by S is measured. We have that

p(a0) =
1
2
p|0〉(a0) =

1
2
p|1〉(a1) = p(a1) =

1
2
.

We conclude that no implementation of a maximal test is predictable when
applied on the next particle produced by S. The quantum state transmitted by
S is therefore not in pure state.

Definition 4. A quantum mixture is a probability distribution over pure states
in some Hilbert space H. Moreover, any quantum state is a quantum mixture.
In general we say that a quantum system is in a mixed state if it is not in pure
state.

Definition 4 does not say how a measurement behave when a mixed state is
observed. Let D = {(pi, |si〉)}l

i=1 be an arbitrary quantum mixture in Hilbert
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space H. We define the operator ρD ∈ H as

ρD =
l∑

i=1

pi|si〉〈si|. (5)

By definition, ρD is a density operator since each |si〉〈si| has trace 1. Equation
5 reminds us of the spectral decomposition except for the pure states |si〉’s that
are not necessarily orthogonal. Since ρD is Hermitian, it is always possible to
write

ρD =
l∑

i=1

pi|si〉〈si| =
m∑

i=1

p̃iPi (6)

where for all i �= j, Pi and Pj are orthogonal and
∑m

i=1 p̃i = 1. One consequence
of equation 6 is that two different mixtures D and D′ may share the same density
matrix. Let Psi = |si〉〈si| be the projection operator associated with the pure
state |si〉. We have that

ρD =
l∑

i=1

piPsi =
m∑

i=1

p̃iPi = ρD′

where D′ = {(p̃i, Pi)}m
i=1. The physical interpretation is that several and different

physical preparations can produce the same physical state.
If we return to our interpretation of a quantum mixture as a probability dis-

tribution over pure states, it becomes clear how behave a complete measurement
on it. Each time an observer performs a measurement on a quantum mixture
D, the measurement is applied on a random pure state |φ〉 ∈ H picked accord-
ing to D. Let ρD be the density operator for mixture D = {(pi, |si〉)}i. Let
M =

∑
i aiPi ∈ H be a complete measurement with outcomes (or eigenvalues)

EM = {ai}i and such that all Pi’s are orthogonal. The behaviour of M when
applied upon D satisfies the following:

– The probability pD(a) that the complete measurement M gives the outcome
a ∈ EM is

pD(a) =
∑

(p,|s〉)∈D
p〈s|Pa|s〉 = Tr(PaρD) (7)

where Pa is the projection associated to the eigenvalue a in the spectral
decomposition of M .

– After the outcome a has been observed,the state of the system becomes in
pure state Pa.

Since the statistics of a measurement are completely specified by the density
operator ρD, it follows that two mixtures D and D′ having the same density
operator ρD behave the same when they are measured. We conclude that two
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mixtures sharing the same density operator are indistinguishable by any physical
process.

As an example, consider the mixture D produces by the source S and the
new mixture D′ = {(1

4 , |0〉), (1
4 , |1〉), (1

4 , |0〉×), (1
4 , |1〉×)} produces by the source

S′. One can verify that

ρD′ =
1
4

(|0〉〈0| + |1〉〈1| + |0〉×〈0| + |1〉×〈1|)

=
1
4

((
1 0
0 0

)
+
(

0 0
0 1

)
+
(

1
2

1
2

1
2

1
2

)
+
(

1
2

−1
2−1

2
1
2

))

=
1
2

(
1 0
0 1

)

=
1
2
11 = ρD.

It follows that no physical process can distinguish between sources S and S′.
These two preparation methods are equivalent.

In the following we sometime denote quantum systems in H2 by qubits. As we
have seen, a qubit cannot store more than 1 classical bit of information since any
complete test on it has only two possible outcomes. This explains the analogy
between “qubits” and “bits”.

Henceforth, we shall write ρ ∈ H, for a density operator ρ, if it acts on vectors
in H.

4 Oblivious Encoding of Information

In this section we shall see that the indistinguishability between quantum mixed
states sharing the same density matrix leads to an encoding of classical informa-
tion that cannot be recovered with 100% reliability by the receiver. This kind
of encoding scheme is relevant to cryptography since it allows to perform non
trivial cryptographic tasks. For instance consider the classical binary symmetric
channel (BSC) that allows to send bits with error probability 0 < ε < 1

2 . The
transmission of a classical bit through a BSC does not disclose all information
to the receiver since the communication is noisy. The sender does not have all
the information neither since (s)he does not know whether the receiver got the
bit or its complement. Crépeau and Kilian [16] have shown that a BSC allows to
build a secure oblivious transfer protocol and thus provides all the power needed
for secure two-party computation. Noisy channels can also be used to imple-
ment secure secret-key distribution protocols as, for example, Wyner’s wire-tap
channel [45] or Maurer’s secret-key agreement from common information [30].
This oblivious encoding of information is what we would like to achieve based
on quantum mechanics. It would allow to see the quantum channel like a noisy
channel thus providing the power needed for secure two-party computation.
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4.1 The BB84 Coding Scheme

The BB84 coding scheme has been introduced by Bennett and Brassard [1] in
order to achieve quantum secret-key distribution. As we shall see, the coding
scheme can also be used in order to implement a wide variety of cryptographic
tasks using the same quantum transmission procedure. The coding implements
some kind of noisy transfer of a classical bit.

The idea behind the BB84 coding scheme is that classical bits 0 and 1 are
encoded by non-orthogonal states and therefore cannot be distinguished perfectly
by any measurement. For, we define the two following basis in H2:

– The rectilinear basis + = {|0〉+, |1〉+}
– The diagonal basis × = {|0〉×, |1〉×}.

Each vector in the rectilinear and diagonal basis will be the encoding of a classical
bit. The following quantum transmission scheme is the main tool used in almost
all quantum protocols. It is the standard quantum transmission between a sender
S and a receiver R:

BB84 Quantum Transmission

1. S picks a random b ∈R {0, 1} and a random θ ∈R {+,�},
2. R picks a random bθ ∈R {+,�},
3. S sends a photon π in quantum state |b〉θ through the quantum channel,

4. R measures π with the complete measurement M
bθ and records the outcome

bb = (0 if |0〉
bθ is observed,

1 if |1〉
bθ is observed.

One BB84 quantum transmission produces a photon π with polarization in
mixed state DBB84 = {(1

4 , |0〉+), (1
4 , |1〉+), (1

4 , |0〉×), (1
4 , |1〉×)}. From equation

6, the mixture DBB84 is described by the density operator

ρBB84 =
1
4

(|0〉+〈0| + |1〉+〈1| + |0〉×〈0| + |1〉×〈1|)

=
1
2
11.

On the receiving end, R measures π either with the complete measurement M+

or with M×, each being chosen with probability 1
2 . For any θ̂ ∈ {+,×} the

Hermitian operator M
bθ with eigenvalues E

bθ = {0, 1} can be written as

M+ = P0 = |0〉+〈0| =

(
1 0

0 0

)
and M× = P π

4
= |0〉×〈0| =

(
1
2

1
2

1
2

1
2

)
.

Suppose S sends π in state |0〉 (i.e. when S chooses b = 0 and θ = +) and R
measures in basis θ̂ = +. The probability p+(0) that R gets the outcome 0 thus
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setting b̂ = 0 = b is

p+(0) = 〈0|P0|0〉 = 〈0|
(

1 0

0 0

)
|0〉 = 〈0|0〉 = 1. (8)

If R would have chosen measurement M× instead then the probability p×(0) for
R to decode correctly would be

p×(0) = 〈0|P π
4
|0〉 = 〈0|

(
1
2

1
2

1
2

1
2

)
|0〉 = 〈0|(1

2
,

1
2

)〉 =
1
2
. (9)

Equations 8 and 9 show the property of obliviousness of the BB84 quantum
transmission. If R chooses θ̂ = θ then the decoded bit b̂ = b with probability 1.
However, if R chooses θ̂ �= θ then the decoded bit b̂ is completely random. The
BB84 coding scheme is symmetric and behaves the same way if the basis θ is ×
instead of + and if the bit b = 1 instead of 0. It follows that the probability ps

that b̂ = b is

ps = P
(
θ̂ = θ

)
+

1
2

P
(
θ̂ �= θ

)
=

3
4
. (10)

From equation 10 we conclude that if S and R follow the protocol honestly then
the BB84 quantum transmission implements a BSC with error probability 1

4 .

4.2 BB84 Is Oblivious

We now look at what happens when one party involved in a BB84 quantum
transmission does not behave according the rules. We shall see what advantage
a dishonest receiver R∗ gets by choosing complete measurements different from
M+ and M×.

The goal for R∗ is to figure out the bit b with better probability than 3
4 . In

other words, R∗ is looking for a complete measurement that allows to distinguish
between D0 = {(1

2 , |0〉+), (1
2 , |0〉×)} and D1 = {(1

2 , |1〉+), (1
2 , |1〉×)} more accu-

rately than measurements M+ and M×. Let ρ0 and ρ1 be the density operators
for D0 and D1 respectively. We have that

ρ0 =

(
3
4

1
4

1
4

1
4

)
and ρ1 =

(
1
4

−1
4

−1
4

3
4

)
(11)

Using equation 7, one can verify that

ps = P
(
b̂ �= b

)
=

1
4

(
Tr(P0ρ0) + Tr(P π

4
ρ0) + Tr(P π

2
ρ1) + Tr(P 3π

4
ρ1)
)

=
3
4
.

Let MB = {P π
8
,P 5π

8
} be the complete measurement with possible outcomes P π

8
=

|b0〉〈b0| and P 5π
8

= 112 − P π
8

= |b1〉〈b1| where b0 = (cos π
8 , sin

π
8 ) and b1 =
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(− sin π
8 , cos π

8 ). Assume R∗ measures π with MB and let p̃s(b) be the probability
to get b̂ = b when ρb is sent. We have that

p̃s(0) = Tr(P π
8
ρ0) = cos2

π

8
(12)

p̃s(1) = Tr(P 5π
8
ρ1) = cos2

π

8
. (13)

Equations 12 and 13 show that if R∗ wants to maximize its information about
b, he has advantage to apply measurement MB on π. In this case, the probability
to decode b correctly is about 85% instead of 3

4 when M+ or M× is applied. We
can show that MB is in fact the measurement that maximizes the probability to
decode b correctly. The spectral decomposition of density operators ρ0 and ρ1

is,

ρ0 =cos2
π

8
|b0〉〈b0| + sin2 π

8
|b1〉〈b1| and ρ1 =sin2 π

8
|b0〉〈b0| + cos2

π

8
|b1〉〈b1|.

This means that D0 = {(cos2 π
8 , |b0〉), (sin2 π

8 , |b1〉)} and D1 =
{(sin2 π

8 , |b0〉), (cos2 π
8 , |b1〉)}. Therefore, sending b using the BB84 coding

scheme behaves like if it was sent through a BSC with error probability sin2 π
8

whatever measurement R performs. It follows that the quantum state ρb for
any b ∈ {0, 1} does not carry more information than H(cos2 π

8 , sin
2 π

8 ) about b.
The BB84 coding scheme is therefore inherently oblivious.

The BB84 coding scheme hides completely S’s basis θ ∈ {+,×}. To see this,
consider the mixed state Dθ corresponding to a photon π polarized in basis θ.
We have that Dθ = {(1

2 , |0〉θ), (1
2 , |1〉θ)}. Let ρ+ and ρ× be the density operators

corresponding to D+ and D× respectively. One can easily verify that,

ρ+ =
1
2

(|0〉+〈0| + |1〉+〈1|)

=
1
2

(|0〉×〈0| + |1〉×〈1|)
= ρ×.

This implies that, given a BB84 photon π, it is impossible to figure out what
basis θ has been used by S. This holds for any quantum measurement R could
perform on π. The basis θ is perfectly concealed by the BB84 coding scheme.

4.3 BB84 as a Quantum Primitive

The BB84 coding scheme is the quantum ingredient of most quantum protocols
[1,2,12,17]. The difference between all these protocols is the classical communi-
cation taking place after the quantum transmission. The BB84 coding scheme
is a kind of universal cryptographic primitive. Typically, a quantum protocol
requires many BB84 transmissions upon which the classical part of the protocol
is based. The parties involved in the classical part communicate only via the
public channel. The classical phase is very often the only task dependent part
of a quantum protocol.
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In the following, we write 〈(b, θ), (̂b, θ̂)〉 ← BB84N to denote N inde-
pendent BB84 quantum transmissions of photons π1, π2, . . . , πN . S’s random
bits are b = b1, b2, . . . , bN and the N choices for the polarization bases are
θ = θ1, θ2, . . . , θN ∈ {+,×}N . The N particles π1, π2, . . . , πN that are sent
through the quantum channel are therefore in composite state |b1〉θ1 ⊗ |b2〉θ2 ⊗
. . .⊗ |bN 〉θN ∈ H2N . On each received particle πi, R performs the measurement
M

bθi
for θ̂i ∈ {+,×} providing the outcome b̂i.

5 From BB84 to Quantum Oblivious Transfer

The BB84 coding scheme shows similarities with the description of an oblivious
transfer. In BB84, the receiver gets the bit b with probability 1

2 (i.e. when θ̂ = θ).
The only difference between a BB84 transmission and an oblivious transfer is
that in the BB84 case, R does not know if he receives the bit or not.

One way to tell R whether or not he gets b, would be for S to announce
the basis θ used to transmit b. If the receiver finds out that θ̂ = θ then b̂ = b.
Otherwise, the bit received b̂ is not correlated with the bit sent. However, this
method allows R to cheat and receive b̂ = b all the time! R just stores the photon
he receives and waits (without disturbing it) for S to announce θ. Once R knows
θ, he measures the photon with measurement Mθ thus recovering b perfectly. One
way to overcome this problem would be to require R to commit on θ̂ and b̂ before
S announces θ. With probability κ > 0, S asks R to open the commitment. S
then verifies that whenever θ̂ = θ R obtained the outcome b̂ = b. If it is not the
case then S stops the execution. With probability 1−κ, S announces θ allowing
R to find out if he receives b. We have made a step forward but the method
does not implement an oblivious transfer yet. R has still a probability 1 − κ
not to be asked to open the commitment. This allows him to take a chance and
to commit on random values allowing him not to measure the received particle.
The probability of not being caught remains better than 1 − κ (i.e. in fact the
probability of being caught is κ

4 ).
The above construction is the idea behind the quantum oblivious transfer

protocol of Bennett, Brassard, Crépeau and Skuwbiszewska [5] called the BBCS
protocol. Below, we present a slight modification of the BBCS protocol allowing
Alice to send to Bob the bit x by oblivious transfer. N BB84 transmissions
are performed out of which about one half have been received perfectly. One
subset Sc, for c ∈ {0, 1}, contains the positions i such that θi = θ̂i whilst the
set S1−c contains the positions i such that θ̂i �= θi. The two sets S0 and S1

are announced to Alice without telling her the bit c. Alice encodes the bit x she
wants to transmit by OT using the bits in positions in Sq for a random q ∈ {0, 1}.
The encoding allows Bob to recover x if and only if q = c which happens with
probability exactly 1

2 . The protocol needs a bit commitment scheme in order to
be implemented securely. Let us assume that BC(w), for w ∈ {0, 1}, is a secure
commitment of bit w.
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BBCS QOT Scheme(x)

1. Alice and Bob execute 〈(b, θ), (bb, bθ)〉 ← BB84N where Alice is S and Bob is R,
2. Bob sends to Alice the commitments {(BC(bbi), BC(bθi))}Ni=1,
3. Alice selects a random subset of positions I ⊂ {1, . . . , N} that she announces to

Bob,
4. Bob opens {(BC(bbi), BC(bθi))}i∈I allowing Alice to verify that for all i ∈ I such thatbθi = θi it is the case that bbi = bi. If Alice finds errors she stops the execution else

let J = {1, . . . , N} \ I be the set of untested positions,
5. Alice announces θJ = {θi|i ∈ J}, Bob picks a random c ∈ {0, 1} and sets Sc =

{i ∈ J |θi = bθi}, S1−c = J \ Sc,
6. Bob announces (S0, S1) to Alice (he keeps c secret),
7. Alice picks q ∈R {0, 1} and announces q together with r = x⊕Li∈Sq

bi to Bob,

8. If q = c then Bob computes x = r ⊕Li∈Sc
bbi = r ⊕Li∈Sc

bi else Bob does not
receive x.

The security of the scheme is based upon the inability for Bob to decode reliably
the bi’s for all transmissions. Intuitively, the commitments ensure Alice that
Bob measured completely the particles he received before she announces θ =
θ1, . . . , θN . Therefore, it should be the case that there exists a z ∈ {0, 1} such
that the subset of positions Sz satisfies

|P
(⊕

i∈Sz

bi =
⊕
i∈Sz

b̂i

)
− 1

2
| ≤ 2−αN

for some α > 0. If Bob follows the protocol then for each photon πi we have that
θ̂i �= θi with probability 1

2 . We have seen that in this case, P
(
b̂i = bi|θ̂i �= θi

)
=

1
2 . It follows that there exists z ∈ {0, 1} such that #{i ∈ Sz|θ̂i �= θi} ≥ (1−µ)#Sz

2
for any µ > 0 as long as N is large enough. In that case, the bit

⊕
i∈Sz

bi cannot
be approximated by Bob. Since Alice encodes x in the XOR of all bits in Sq, for
a random q ∈ {0, 1}, with probability 1

2 we have that q = z and Bob is unable
to obtain information about x.

5.1 Security and Generalized Measurements

In this section we quickly review what is known about the security of the BBCS
protocol against dishonest parties that would take advantage of more elaborate
quantum processes. Complete measurements as described in section 3.3, are not
the only way an attacker can try to get extra information. Quantum mechanics
allows generalized measurements to be performed. General measurements can
extract information from a quantum state in such a way that the disturbance
caused by the measurement process is minimized. In particular, if one is willing
to get less information than what is achievable through a complete measurement,
then a generalized measurement (also incomplete) of the the original quantum
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state can be done with no complete destruction of the initial state. One example
of an incomplete measurement is the measurement that does nothing. This is
formally written as the identity operator 11 which has only one eigenvalue a = 1
and therefore is not a complete measurement (of course!). In general, incomplete
measurements are modelled by Hermitian operators with fewer distinct eigenval-
ues than the dimension of the Hilbert space in which they operate. They cannot
give more information than complete measurements do but can nevertheless be
completed later in order to get a complete measurement. For example, it is al-
ways possible to apply the useless measurement 11 on a quantum state |φ〉 and
later measures the untouched state |φ〉 with a complete measurement. The re-
sult is simply the same as if |φ〉 would have been measured completely the first
time. Or is it? One can see that even the useless measurement 11 allows to break
BBCS if no commitment was used. An incomplete measurement that gives in-
formation about the observed state |φ〉 must destroy a part of the initial state.
In general, more distinct eigenvalues your measurement has, more destructive it
is (an example of a non-trivial incomplete measurement is given in section 6.4).
Incomplete measurements can be useful to an attacker involved in a quantum
protocol (as we have seen with BBCS using no commitment). The reason is that
between the time the attacker performs the incomplete measurement and the
time the measurement is completed, some extra information is obtained (i.e. the
bases θ in the case of BBCS). With this extra information, the completion of
the measurement can be chosen more cleverly than before whilst giving more
information than if a complete measurement would have been chosen regardless
of the extra information.

We can already verify that Alice has no way to learn whether or not the
bit x has been received by Bob, as long as the commitments are concealing.
This, because Bob chooses randomly how to measure each photon πi and never
gives information that would allow Alice to figure out what measurements were
performed (if the commitments were not concealing Alice could easily find out!).
Therefore, given S0 and S1, Alice has no information about c ∈ {0, 1} such that
Sc contains the positions i where θi = θ̂i. It follows that no matter what Alice
tries, it is always the case that P (q = c) = 1

2 . Only Bob could cheat the protocol
by measuring photons π1, . . . , πN using measurements of its choice.

If we make the extra assumption that Bob only performs complete measure-
ments then the security of the scheme can be shown. To see how, assume that
Bob returns a commitment BC(θ̂, b̂) with the property that if θ = θ̂ then b̂ = b
with probability 1. It follows that Bob’s measurement is the complete measure-
ment Mθ. Clearly, Bob cannot get b more than half the time even once he gets
to know θ since after Mθ has been performed, the state of the original photon is
irreversibly destroyed. Another strategy for Bob would be to return a commit-
ment that has a small but nonzero probability of being caught (i.e. θ̂ = θ but
b̂ �= b) by applying complete measurements different than M+ and M×. This
strategy does not help Bob in increasing its chance to receive the bit x as shown
in [15].
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In [36], Bob was allowed to perform generalized measurements on single BB84
qubits. These measurements are strictly more powerful than complete measure-
ments but were shown not to allow Bob to cheat the protocol neither. The final
piece was provided by Yao [46] who showed that, given a perfectly secure bit
commitment scheme, QOT is secure against any strategy allowed by quantum
mechanics. The BBCS scheme can also be modified to deal with imperfect ap-
paratus whilst remaining secure.

5.2 Classical vs. Quantum Cryptography

Yao’s proof of security for the BBCS scheme holds relative to the existence of a
secure bit commitment scheme. It follows that the scheme described above does
not provide security for free (as it is for quantum key distribution) but rather,
reduce the security of QOT to the security of bit commitment. Nevertheless,
we achieved something classical cryptography does not: secure oblivious transfer
based on bit commitment. Classically, bit commitment can be built from any
one-way function but oblivious transfer requires trapdoor one-way functions. It
is very unlikely that one can find a proof that one-way functions and trapdoor
one-way functions are in fact the same thing [23]. In the classical world, bit com-
mitment is a weaker primitive than oblivious transfer. On the other hand, Yao’s
proof has shown that quantumly, oblivious transfer is reducible to bit commit-
ment. It follows that oblivious transfer can be based on a weaker assumption in
the quantum world (i.e. the existence of one-way functions) than in the classical
world.

6 Quantum Bit Commitment

The next important question is whether or not QOT can be shown secure under
the only assumption that quantum mechanics is correct. This would allow to
base any secure two-party computation upon the same principles than quantum
key distribution [31,35,6]. The first attempt to find a secure quantum bit com-
mitment scheme is as old as the first protocol for quantum key distribution [1].
This first scheme was known to be insecure but it was believed that a secure one
could be found. Several attempts were made in order to fix the original scheme
[11,12]. The last one was even claimed to be unbreakable [12]. Unfortunately,
two years later Mayers found a subtle flaw in the last proposal [32]. Afterward,
Mayers realized that the flaw he found was not only due to the particular broken
protocol but could be applied to a large class of quantum protocol for bit com-
mitment [33]. This has also been observed independently by Lo and Chau [27].
It is now known that no quantum bit commitment exists with security based
only on the correctness of quantum mechanics axioms [33,34].

In this section, we shall look at the general idea behind Mayers’ proof and
see why quantum mechanics completely forbids the existence of bit commitment.
Apart from being used in the proof of [33], concepts introduce here are of inde-
pendent interest. In particular, they show the striking difference between classical
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and quantum information. Quantum information will appear much more elusive
than its classical counterpart.

6.1 Purification

In this section we shall discuss the main tool needed in order to prove Mayers’
theorem. It is shown how a quantum mixture can be embedded in a pure state.
This process is called purification of a mixed state.

We start by considering an example taken from the BB84 coding scheme. Let
BB84(0) be the possible BB84 transmissions of classical bit b = 0:

BB84(0)

1. S picks a random θ ∈R {+,�},
2. S sends a photon π in quantum state |0〉θ through the quantum channel.

Clearly, the mixture associated with one transmission through BB84(0) is
D0 = {(1

2 , |0〉+), (1
2 , |0〉×)} which has density operator ρ0, as described in section

4.2. Now let us introduce a similar way to send one of the random state |0〉+
and |0〉× without requiring S to pick a random basis as in step 1 of BB84(0):

BB84∗(0)

1. S prepares |Ψ〉 = 1√
2
(|0〉 ⊗ |0〉+ + |1〉 ⊗ |0〉×) ∈ H4,

2. S keeps the first (the left one) particle and sends the other (the right one).
3. S measures in the standard basis “+” the particle he has kept. If the outcome is

0 then he sets θ = + otherwise he sets θ = ×.

In BB84∗(0), S never uses coin flips in order to determine which one of the two
possible states |0〉+ or |0〉× is going to be sent. The coin is provided by adding an
extra particle, called the auxiliary system (or ancilla), that is in superposition of
the two possible outcomes of the coin toss. The auxiliary system is entangled with
the particle that stores the qubit to be sent. When the the state of the auxiliary
system is measured then the state of the qubit can be determined. Before the
measurement, the states of the qubit and the auxiliary system were unknown.
To see this, consider the standard complete measurement that S applies on |Ψ〉.
The pure state |Ψ〉 can be written as

|Ψ〉 =
1√
2







1

0

0

0


+




0

0
1
2

1
2





 =




1√
2

0
1
2

1
2


 .

When S executes M+, he will observe the outcome P0 (i.e. which is the projection
on |0〉) with probability

p(0) = 〈Ψ ||(P0 ⊗ 112)Ψ〉 = 〈Ψ |
(

1 0
0 0

)
⊗ 112|Ψ〉 =

1
2
.
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This means that with probability 1
2 , S observes 0 and |Ψ〉 is projected in the

state

|Ψ0〉 = |0〉 ⊗ |0〉+. (14)

With probability also p(1) = 1 − p(0) = 1
2 , the standard measurement produces

the outcome 1 that projects the original state |Ψ〉 into |Ψ1〉 defined as

|Ψ1〉 = |1〉 ⊗ |0〉×. (15)

Equations 14 and 15 imply that the receiver R is going to receive |0〉+ with
probability p(0) = 1

2 and |0〉× with probability p(1) = 1
2 . On R’s point of view,

the mixed state he receives is D0 as it is for BB84(0). Since the density operators
of BB84(0) and BB84∗(0) are the same, R has no way to tell what preparation
S is using to send the qubit.

Now, consider the mixed state DB = {(cos2 π
8 , |b0〉), (sin2 π

8 , |b1〉)}, and its
purification

|ΨB〉 = cos
π

8
|0〉 ⊗ |b0〉 + sin

π

8
|1〉 ⊗ |b1〉.

If the leftmost particle is measured with the standard measurement M+ then
with probability pB(0) = cos2 π

8 the outcome 0 will be observed. We see that
pB(0) and p(0) (defined above) are not the same but, as we have seen in section
4.2, DB and D0 share the same density operator ρ0. The two purifications |Ψ〉
and |ΨB〉 are therefore two different purifications for the same mixed state.

It is always possible to replace a probabilistic procedure as BB84(0) by an
equivalent one where no coin toss is necessary. Consider an arbitrary mixture
D = {(pi, |si〉)}l

i=1 where each |si〉 belongs to the Hilbert space H. Let Hl be an
Hilbert space of dimension l = 2lg 2l�. A system ΨD ∈ Hl ⊗H in pure state

|ΨD〉 =
l∑

i=1

√
pi|i〉 ⊗ |si〉 (16)

is called a purification of D. The auxiliary system (the leftmost register) is used
to store indices of all possible coin toss outcomes. Let w ∈ {1, . . . , l} be written
in binary as Binary(w) = w0, w1, . . . , wl. A value for w is encoded in pure state
|w〉 = |w0〉 ⊗ |w1〉 ⊗ . . . ⊗ |wl〉 ∈ Hl. The state of equation 16 is guaranteed,
when the leftmost particle is measured with M+, to give the outcome w with
probability pw in which case the rightmost particle is projected in state |sw〉. This
is exactly the behaviour of mixed state D that is provided by the entanglement
of an auxiliary system with the pure states in D.

One strange thing about purifications is that it allows to perform operations
upon the result of a coin toss without knowing the outcome of the coin toss. For
instance, in BB84∗(0) it is not necessary for S to measure the register he keeps.
Not measuring it changes nothing to what R will receive, it is still the mixed
state D0 that is sent. But if S does not measure the kept register then he does
not know what state has actually been transmitted although he knows that it
has been chosen according to D0. The only way of doing this classically would
be to require the sender to forget what he had done.
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6.2 Purifying a Coin Toss

The most simple case of purification is probably the coin toss. Suppose that one
instruction in a quantum protocol requires to flip a biased coin C(p) as follows

C(p) =

{
1 with probability p,

0 with probability 1 − p.

Unlike classically, it is possible to store a coin toss in a quantum memory without
forcing the outcome. This is straightforward to achieve by preparing a quantum
register ΨC(p) in state

|ΨC(p)〉 =
√
p |1〉 +

√
1 − p |0〉.

By measuring |ΨC(p)〉 with measurement M+ one gets the outcome P0 with prob-
ability 1−p and the outcome P π

2
with probability p. As long as the measurement

is not performed, the register |ΨC(p)〉 keeps both possibilities in superposition.
The coin toss itself is a quantum object. Classically, a coins toss does not exist
until the outcome is known.

Assume that a quantum register is in mixed state ρ ∈ H and V0 and V1 are
two unitary transforms acting on states in H. One application of quantum coin
toss is the purification of the sequence of instructions:

1. Pick r ∈ {0, 1} such that P (r = 1) = p,
2. Apply Vr to ρ for some arbitrary density operator ρ ∈ H.

Let us define an unitary transformation V ∈ H2 ⊗ H acting on a one qubit
register ΨC(p) in addition to the register in state ρ. Transformation V simply
applies V0 to ρ if register |ΨC(p)〉 = |0〉 and applies V1 to ρ if |ΨC(p)〉 = |1〉. Let
E = {e1, . . . , em} be an orthonormal basis for H. Transformation V is defined
as

V : |0〉 ⊗ |e1〉 �→ |0〉 ⊗ V0 |e1〉
|0〉 ⊗ |e2〉 �→ |0〉 ⊗ V0 |e2〉
...

...
...

|0〉 ⊗ |em〉 �→ |0〉 ⊗ V0 |em〉
|1〉 ⊗ |e1〉 �→ |1〉 ⊗ V1 |e1〉
...

...
...

|1〉 ⊗ |em〉 �→ |1〉 ⊗ V1 |em〉.

The fact that both V0 and V1 are unitary ensures that V is also unitary. Using a
quantum coin toss and transformation V , one can purify the above instructions
as follows:

1. Prepare a register in state |ΨC(p)〉
2. Apply V |ΨC(p)〉 ⊗ ρ.
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It can easily be shown that both procedures generate the same mixture. Measur-
ing the leftmost register allows to select the coin toss outcome and consequently
which of V0 or V1 has been applied on the rightmost register.

In the above construction, the number of outcomes for the coin toss is irrel-
evant. Any coin toss distribution D = {(pi, i)}i can be purified the same way.

6.3 Purifying a Measurement

The purification process is not only possible on S’s side of the quantum channel.
It can also be done on the receiving end. Typically, R is supposed to measure a
particle π with some measurement M picked according to a distribution DM =
{(p1,M1), (p2,M2), . . . , (pl,Ml)}. A purification of such a process would allow
to perform all possible measurements in superposition until R wants to know
what measurement and what outcome he gets. When he does so, R gets the
outcome of a measurement picked according distribution DM .

Without loss of generality, let us assume that DM = {(p+,M+), (p×,M×)}.
The BB84 coding scheme corresponds to the special case p+ = p× = 1

2 . Assume
that a quantum register ΨC(p+) in state |ΨC(p+)〉 ∈ H2 contains a purification
of the coin toss C(p+) as described in the previous section. Let π be a qubit
that R is supposed to measure according to DM . We now define the unitary
transformation UM ∈ H2 ⊗H2 that perform the required purification:

UM :

coin︷︸︸︷
|0〉 ⊗

π︷︸︸︷
|0〉 �→ |0〉 ⊗ |0〉

|1〉 ⊗ |0〉 �→ 1√
2
|1〉 ⊗ (|0〉 + |1〉)

|0〉 ⊗ |1〉 �→ |0〉 ⊗ |1〉
|1〉 ⊗ |1〉 �→ 1√

2
|1〉 ⊗ (|0〉 − |1〉).

The register containing the coin toss is the auxiliary system of the purification.
Transformation UM stores the measurement in the auxiliary system and stores
the outcome in the system that encoded particle π initially. Let |b〉θ be a BB84
qubit and let |ΨC(p+)〉 be the purification of an arbitrary coin toss. One can verify
that

UM (|ΨC(p+)〉 ⊗ |b〉θ) =
√
p+|0〉 ⊗

(√
p+(0)|0〉 ±

√
p+(1)|1〉

)
+
√
p×|1〉 ⊗

(√
p×(0)|0〉 ±

√
p×(1)|1〉

)

where p
bθ (̂b) is the probability of the outcome b̂ whenever the initial state is

|b〉θ and the measurement is M
bθ. If the leftmost register is measured with M+

then the outcome P0 is obtained with probability p+ and the rightmost register
contains the possible outcomes of measurement M+ when applied to the BB84
state |b〉θ. Similarly, the outcome P π

2
is obtained with probability p× and the

rightmost register contains the possible outcomes of measurements M× when
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applied on |b〉θ. If measurement M+ is applied on the rightmost particle first,
an outcome b̂ is obtained without the measurement being completely specified.
The leftmost register is in superposition of all possible measurements that can
produce outcome b̂ when the initial state is |b〉θ. Purifying a random measure-
ment and measuring the rightmost register (the outcome register) allows to get
the outcome of an unknown measurement!

Suppose R is asked to perform a measurement M ∈ {M+,M×} according to
distribution DM on the particle π. Let |b〉θ ∈ H2 be an unknown BB84 state for
π that is received by R through the quantum channel. The following implements
a purification of this procedure given a register containing the coin toss |ΨC(p×)〉
for choosing according to DM :

1. R applies |ΨM 〉 = UM |ΨC(p×)〉 ⊗ |b〉θ.

The state |ΨM 〉 contains a superposition of both possible measurements. If
at some point after the BB84 transmission, R must announce the outcome of
a random measurement M

bθ for θ̂ ∈ {+,×} according to DM , then the mea-
surement M+ applied to the rightmost register gives a possible outcome. To fix
the measurement M , R only measures with M+ the leftmost register. If P0 is
obtained then the selected measurement was M = M+ otherwise M = M× was
selected. Applying UM to a coin toss C(1

2 ) register and a BB84 particle π purifies
R’s part of the BB84 transmission. The same technique can be used for sets of
any N possible measurements by using a N -outcome quantum coin toss.

The measurement M+ performed by R on the leftmost register does nothing
to the leftmost register and is formally defined as M = M+ ⊗ 112. It is an
incomplete measurement since it has only 2 distinct eigenvalues but acts in H4.

6.4 From One Purification to Another

In this section we shall argue that two purifications of the same mixed state are
in fact equivalent. By equivalent we mean that one can transform a purification
to another purification of the same mixture by acting only on the auxiliary part
of the purification. This is a result of Hughston, Jozsa and Wootters [22].

Let us consider the unitary transformation U∗ = SH (see section 2.3) acting
in H2 when applied on the auxiliary part of |Ψ〉:

(U∗ ⊗ 112)|Ψ〉 = (SH ⊗ 112)
1√
2

(|0〉 ⊗ |0〉+ + |1〉 ⊗ |0〉×)

=
1
2

((|0〉 − |1〉) ⊗ |0〉+ + (|0〉 + |1〉) ⊗ |0〉×)

=
1
2

((|0〉 − |1〉) ⊗ (cos
π

8
|b0〉 − sin

π

8
|b1〉) +

(|0〉 + |1〉) ⊗ (cos
π

8
|b0〉 + sin

π

8
|b1〉))

= cos
π

8
|0〉 ⊗ |b0〉 + sin

π

8
|1〉 ⊗ |b1〉

= |ΨB〉.
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Applying U∗ on the auxiliary part of |Ψ〉 transforms purification |Ψ〉 into pu-
rification |ΨB〉. This allows S to decide which preparation D0 or DB he wants to
use even after the particle is gone! S just prepares the purification of D0 and
sends to R the leftmost particle keeping the auxiliary system. If at some point
S wants to change his mind and wants to prepare the photon already sent using
preparation DB instead, then he just applies U∗ upon the auxiliary part.

The above construction is not a coincidence. Any pair of purifications |Ψ〉 and
|Ψ ′〉 for the same density operator is always related by an unitary transformation
acting only on the auxiliary part of the purifications [22]. Let Ψ ∈ Hm⊗Hn be a
purification of the density operator ρ ∈ Hn. The Schmidt decomposition [22,38]
allows to write |Ψ〉 as a sum of bi-orthogonal terms. This means that there
exists r ≤ min(m,n) (depending only on ρ) and two sets of orthonormal vectors
E = {ei}r

i=1 and F = {fi}r
i=1 in Hm and Hn respectively, such that1

|Ψ〉 =
r∑

i=1

√
αi|ei〉 ⊗ |fi〉 (17)

where as usual
∑

i |αi|2 = 1. In equation 17, the set {αi}r
i=1 is the set of eigen-

values of ρ ∈ Hn. Let |Ψ ′〉 ∈ Hm⊗Hn be another purification of density operator
ρ ∈ Hn. We make the assumption that the auxiliary system in Ψ ′ belongs to the
same Hilbert space Hm than the auxiliary system for Ψ . This can be done with-
out loss of generality by taking the larger Hilbert space whenever the auxiliary
systems for Ψ and Ψ ′ are defined in different Hilbert spaces. From the Schmidt
decomposition, there exists two sets of orthonormal vectors E′ = {e′i}r

i=1 and
F′ = {f ′i}r

i=1 such that

|Ψ ′〉 =
r∑

i=1

√
αi|e′i〉 ⊗ |f ′i〉. (18)

Clearly, the unitary transformation W ∈ Hm defined for all i ∈ {1, . . . , r} as

W : |ei〉 �→ |e′i〉

is such that

(W ⊗ 11n)|Ψ〉 = |Ψ ′〉

since the subsystem in Hn is the same mixed state ρ in both purifications. In
this case, it can be shown that F = F′.
1 More precisely, let |Ψ〉 ∈ H1 ⊗ H2 be an arbitrary pure state and let ρ = |Ψ〉〈Ψ |
be the associated projection. Let ρ1 = TrH1(ρ) and ρ2 = TrH2(ρ) be the par-
tial trace of ρ over H1 and H2 respectively. It is always the case that ρ0 and
ρ1 share the same nonzero eigenvalues (with the same multiplicity) {αi}ri=1 for
r ≤ min (Dim(H1),Dim(H2)). The Schmidt polar form of |Ψ〉 is described in equa-
tion 17 and is such that vectors in {ei}ri=1 and vectors in {fi}ri=1 are orthogonal.
This is why we call this a decomposition as a sum of bi-orthogonal terms.
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6.5 Purifying a Quantum Protocol

The main idea behind Mayers’ proof is that purifications can be applied not
only to the cases we have seen previously but to any sequence of instructions
that might occur in a protocol. One party can, without having any chance of
being caught, execute his part of the protocol at the quantum level, meaning
that every action is purified.

Let us first review what set of instructions one party involved in a quan-
tum protocol should be able to perform. The instructions should be enough to
execute what we considered intuitively a quantum protocol (that is basically a
pair of algorithms usually not quantum connected by a classical and a quantum
channels). The algorithm of party P defines, at each step, a transition function
from the actual view V ∈ V to the new view V ′ ∈ V for an arbitrary set of pos-
sible views V. The view V can be seen as the memory a player needs in order to
complete the execution of the protocol. The following describes what P should
be able to execute at step h > 0 given the view Vh−1 after step h− 1 (i.e. V0 is
the initial secret input if needed):

1. Picks a random bit r such that P (r = 1) = p and sets Vh = Vh−1 ∪ {(h, r)},
2. Computes a function f : V → V and sets Vh = Vh−1 ∪ {(h, f(V))},
3. Announces, through the classical channel, the value v ∈ {0, 1} of some mem-

ory register and sets Vh = Vh−1 ∪ {(h, v)},
4. Sends a qubit in state depending on the view V through the quantum chan-

nel,
5. Stores in memory a classical bit received through the classical channel,
6. Measures a qubit received through the quantum channel using measurement

M chosen according the view V . The outcome OM is added to the actual
view Vh = Vh−1 ∪ {(h,OM )} (note that not measuring the received qubit is
also covered by this case since it is equivalent to apply measurement 11).

Intuitively, if one party P can execute all these instructions then P can execute
any quantum protocol. As we have seen in sections 6.1,6.2, and 6.3, most of
the above instructions can be purified if they are considered isolated. The only
missing piece is how to compose them in a such a way that the properties of
purification remain. Suppose P has a quantum memory QM ∈ H where H is large
enough for storing all possible states in V. Suppose that initially P ’s quantum
memory QM ∈ H is in state |QM0〉 where QM0 is state V0 encoded in quantum
registers. During the course of actions, QM will evolve to a quantum mixture
since mixed states will be received through the quantum channel and entangled
registers will be sent. We denote by ρQM(h) the mixed state of QM after step h > 0.
P purifies each of the above instructions as follows:

1. P prepares a new quantum register in state |ΨC(p)〉. The quantum memory
is now in state ρQM(h) = ρQM(h− 1) ⊗ |ΨC(p)〉.

2. Let Uf ∈ H be an unitary transformation implementing f . It might be the
case that P has to append few quantum registers in some pure state |φ〉 in
order to satisfy the requirement that Uf is unitary. The new state of QM is
ρQM(h) = Uf (ρQM(h− 1) ⊗ |φ〉).
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3. P applies the standard measurement M+ on the quantum register Rv con-
taining v. He announces 0 if the outcome is P0 and announces 1 if the
outcome is P π

2
. The new state ρQM(h) for QM can be computed in terms of

ρQM(h− 1) as described in equation 7.
4. P simply sends away the quantum register containing the qubit to be sent.

This operation mixes the state of QM. The new state ρQM(h) is ρQM(h−1) with-
out register Rv (formally speaking ρQM(h) is the partial trace of ρQM(h − 1)
with respect to register Rv). The state of the qubit can be determined by
a sequence of coin tosses previously generated and other quantum registers.
The purification is performed by an easy generalization of the method de-
scribed in section 6.1.

5. P adds a new register in state |b〉 to QM where b ∈ {0, 1} is the bit received
through the classical channel. The new state is ρQM(h) = ρQM(h− 1) ⊗ |b〉.

6. In this case, P does not store the outcome but all possible outcomes of all
possible measurements as we have seen in section 6.3. It is always possible to
determine an unitary transformation UM which applies each measurement
specified by the state of some registers in QM. This is because the set of
registers involved in the choice of the measurement behaves like a set of
quantum coin tosses.

Suppose a protocol performed between P and P ′ has the property that the final
view of P ′ corresponds to the mixed state ρ′ ∈ H. If P purifies each step then
the state of the system Ψ that contains P ’s quantum memory QM plus all what
P ′ has generated and received during the execution, is in pure state |Ψ〉 ∈ H⊗H′

where H′ is the Hilbert space for P ′’s part of the system. Moreover, since P ’s
behaviour is indistinguishable from the non-purified execution of the protocol
(that is the main property of the purification process) we have that |Ψ〉 is a
purification of ρ′.

To get to know more about how to purify a quantum protocol, consult [33]
and [34].

6.6 Quantum Bit Commitment Is Impossible

We are now ready to conclude the impossibility of quantum bit commitment.
Suppose BC is a candidate for a secure quantum bit commitment scheme between
Alice, the sender, and Bob, the receiver. A secure protocol for bit commitment
must be

Concealing: Let ρBC(0) ∈ H′ and ρBC(1) ∈ H′ be the density operator corre-
sponding to the mixed state received by Bob when Alice commits 0 and 1
respectively. In order for the commitment to be concealing, it must be the
case that ρBC(0) ≈ ρBC(1).

Binding: Once the committing phase completed, Alice can open with success
only one bit b.

We show that if the concealing condition holds then necessarily the binding con-
dition does not. First, if ρBC(0) and ρBC(1) are sensibly different then they can
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be distinguished with good probability by a quantum measurement. For more
information about how distinguishable are different density operators, consult
[21]. In the following, we assume that ρBC(0) = ρBC(1) instead of being approxi-
matively the same. To see how to address the case where ρBC(0) and ρBC(1) are
close but not identical, consult [32]. Alice’s attack, that is described next, is the
same in both cases.

Assume that Alice purifies the commitment of b = 0 using the technique
describes in the last section. The resulting quantum system Ψ0 ∈ H ⊗ H′ that
contains Alice’s QM and what has been generated and received by Bob, is a
purification of ρBC(0). At revelation, Alice can open b = 0 since all information
that was needed in order to commit honestly to b = 0, is still accessible in QM.
After the revelation phase, Bob accepts the opening of b = 0 exactly as it is in
the honest case (this is what purification is all about).

Alice could have purified the commitment of b = 1 instead. This would result
in a quantum purification Ψ1 ∈ H⊗H′ for the mixed state ρBC(1) corresponding
to the commitment of b = 1. When Ψ1 is created, QM contains all the neces-
sary information to open b = 1. Since ρBC(1) = ρBC(0) it follows that |Ψ1〉 is a
purification of ρBC(0) as well.

Assume Alice wants to open b = 1. We now take full advantage of the purifi-
cation of ρBC(0). In last section, we have seen that for any pair of purifications
Ψ0 and Ψ1 for the same density operator ρBC(0) there exists an unitary transfor-
mation W ∈ H such that

|Ψ1〉 = (W ⊗ 11H′)|Ψ0〉.

Moreover, the transformation W depends only upon the protocol specification
and is independent on what Bob does. Alice can therefore open b = 1 after
having applied W on her part of the system (i.e. which is QM) just by following
the revelation protocol honestly.

In conclusion, here is the always successful attack against the quantum bit
commitment scheme BC:

1. Alice purifies the commitment of b = 0,
2. If Alice wants to open b = 0, she executes the revelation protocol from her

part of the purification stored in QM,
3. If Alice wants to open b = 1, she applies W on QM and follows the revelation

protocol for b = 1.

This strategy is indistinguishable from the honest one and therefore can be
applied to any candidate for a quantum bit commitment scheme. We conclude
that no quantum bit commitment exists.

7 Conclusion

It is now clear that in quantum cryptography, security in two-party games is
much more difficult to achieve than the security of Alice and Bob against the
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world. Security against the world is what is needed in order to achieve secret-key
distribution and that, quantum cryptography can do for free. However, two-party
games involve two parties that, although collaborative, do not trust the integrity
of the other. In this model, we discussed the fact that quantum oblivious transfer
is reducible to bit commitment which is not known/expected to be true in the
classical world. We have also seen that the security conditions for bit commit-
ment cannot be met by any purely quantum process. After Mayers’ had shown
that no quantum bit commitment exists, the spontaneous attitude was to try
taking advantage of subtle assumptions appearing in the theorem statement.
Most of those approaches use classical assumptions that have to hold only tem-
porarily. The goal being to build from such assumptions a commitment scheme
that is both concealing and binding even after the assumption is withdrawn.
Unfortunately, none of these attempts provided more than what classical cryp-
tography alone provides [13]. Mayers’ attack is now known to apply in scenarios
lying beyond the original statement of the no-go theorem. It can also be shown
that perfect quantum coin tossing is also impossible [28]. However, quantum
bit commitment is possible under physical (not computational assumptions). In
[40], it has been shown that if one party is restricted to perform a subset of all
possible generalized quantum measurements then quantum bit commitment is
possible. The subset of possible measurements can be chosen in such a way that
the assumption is likely to hold in any practical situation that will occur in a
foreseeable future. In other words, the existence of an unitary process that breaks
a quantum protocol does not necessarily imply that it can be implemented in
real life. There is an inherent asymmetry between the complexity of physical
processes involved in the execution of quantum protocols and those involved in
quantum algorithms breaking them. It is not clear if Mayers’ attack will be im-
plementable in real life for all practical quantum bit commitment protocols. It
would be interesting to characterize the physical complexity of the attack against
protocols designed to make it difficult to implement.

Although they aim at solving the same kind of problems, the structure of
quantum and classical cryptography differ. In a particular situation, one may
offer advantages over the other. One thing we did not talked about yet is the
possibility to use hybrid systems. Quantum encoding of information, like the
BB84 coding scheme, allows to send classical information in an oblivious way.
The receiver does not know for sure what was the original classical bit, and
the sender does not know whether or not the receiver got the bit sent. But the
sender, by announcing the transmission basis θ, allows the receiver to determine
whether or not he received the bit perfectly. This simple primitive, although not
powerful enough to provide bit commitment, cannot be done classically using no
assumptions. It would be interesting to see if it can be used in a purely classical
setting in order to weakened the classical assumptions required for a particular
task. We have already seen that it is the case for oblivious transfer based on bit
commitment; what about other cases?

In conclusion, quantum information is more elusive than its classical counter-
part. One must always take care when analyzing and reasoning about quantum
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protocols. Although the Holy Grail is not achievable quantumly (nor classi-
cally), quantum cryptography offers a good alternative to classical cryptography.
Quantum cryptography provides an independent framework to complexity-based
cryptography and several open questions remain in order to get a better under-
standing of its possibilities and limits.
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18. Crépeau, C., J. van de Graaf, and A. Tapp, “Committed Oblivious Transfer
and Private Multi-Party Computation”, Adavances in Cryptology, proceedings of
Crypto’95, Lecture Notes in Computer Sciences, Springer-Verlag, Vol. 963, 1995,
pp. 110 – 123. 186

19. Diffie, W. and M.E., Hellman,“New directions in cryptography”, IEEE
Transactions on Information Theory, vol. IT-22, 1976, pp. 644–654. 184

20. Goldreich, O., S. Micali, and A. Wigderson, “Proofs That Yield Nothing
but Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems”,
Journal Assoc. Comput. Mach., vol. 38, 1991, pp. 691–729. 185

21. Fuchs, C.A. and J. van de Graaf,“Cryptographic Distinguishability Measures
for Quantum Mechanical States”, Los Alamos preprint archive quant-ph/9712042,
December 1997. 212

22. Hughston, L. P., R. Jozsa,and W. K. Wootters, “A complete classification
of quantum ensembles having a given density matrix”, Physics Letters A, vol. 183,
pp. 14 – 18, 1993. 208, 209

23. Impagliazzo, R and S. Rudich, “Limits on Provable Consequences of One-Way
Permutations”, in the 24th ACM conference on the theory of computing, 1989.
185, 203

24. Jacobs, B.C. and J.D. Franson,“Quantum cryptography in free space”, Optics
Letters, vol. 21, no. 22, November 15, 1996. 184

25. Jozsa, J., “Fidelity for mixed quantum states”, Journal of Modern Optics,
vol. 41(12), pp. 2315 – 2323, 1994.

26. Kilian, J.,“Founding Cryptography on Oblivious Transfer”, Proceedings of the
20th Annual ACM Symposium on the Theory of Computing, Chicago, 1988,
pp. 20 – 31. 186

27. Lo, H.–K. and H.F. Chau, “Is quantum bit commitment really possible?”,
Physical Review Letters, vol 78, pp. 3410 – 3413 (1997). 186, 203

28. Lo, H.–K. and H.F. Chau, “Why quantum bit commitment
and ideal quantum coin tossing are impossible.” Available at
http://xxx.lanl.gov/ps/quant-ph/9711065. 213



216 L. Salvail

29. Lo, H.–K. and H.F. Chau,“Security of Quantum Key Distribution”, available
at http://xx.lanl.gov/list/quant-ph/9803006, March 1998.

30. Maurer, U.M.,“Protocols for Secret Key Agreement by Public Discussion Based
on Common Information”,Advances in Cryptology, proceedings of CRYPTO’92,
Lecture Notes in Computer Sciences vol. 740, Springer-Verlag, 1993, pp. 461–470.
196

31. Mayers, D., On the security of the quantum oblivious transfer and key distribu-
tion protocols, Advances in Cryptology, proceedings of Crypto’95, Lecture Notes
in Computer Sciences, Springer-Verlag, vol. 963, 1995, pp.124–135. 203

32. Mayers, D., “The trouble with quantum bit commitment”, LANL Report No.
quant-ph/9603015 (to be published). The author first discussed the result in
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Abstract. The fact that most presently-used cryptosystems cannot be
rigorously proven secure and hence permanently face the risk of being
broken motivates the search for schemes with unconditional security.
The corresponding proofs however must be based on information the-
ory rather than complexity theory. One reason for this is the lack of
known lower bounds on the running time of algorithms solving certain
computational problems such as the discrete-logarithm problem or the
integer-factoring problem. At the beginning of an information-theoretic
analysis of cryptosystems stands Shannon’s definition of perfect secrecy,
unquestionably the strongest possible security definition, and his well-
known inequality giving a lower bound on the key length of every per-
fectly secret cipher, thus suggesting that such a high level of confiden-
tiality cannot be realized in any practical scheme. This pessimism has
later been qualified by several authors who showed that unconditional
security can be achieved in many special but realistic scenarios. Some of
these approaches are described in this introductory overview article.

1 Computational versus Information-Theoretic Security

The security of many presently-used cryptosystems, e.g., of all public-key cryp-
tographic schemes, is based on the assumed hardness of computational problems
in number theory such as the integer-factoring problem (e.g., RSA [28]) or the
problem of computing discrete logarithms in certain finite cyclic groups (e.g.,
Diffie-Hellman [13]). Such a cryptosystem is called computationally secure.

Up to date, no practical cipher has been proven computationally secure.
Note first of all that it is an inherent fact that computational security can only
hold under certain assumptions on the adversary’s computer resources. In other
words, a computationally infinitely powerful opponent can break every system
of this type by exhaustive search over the key space.

One reason for the lack of proofs of cryptographic security is that in com-
plexity theory, actually proved lower bounds on the running time of algorithms
solving specific problems are either rather weak (and useless in cryptography)
or valid only in special computational models (e.g., [32]). Unfortunately, such
bounds are not directly useful neither since it can never be guaranteed that
the adversary is restricted to this particular model. So-called “provable compu-
tational security” is always conditional and means that an efficient reduction
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from a well-known problem that is believed to be hard, such as the discrete-
logarithm problem or the decisional Diffie-Hellman problem, to breaking the
proposed system can be given, thus showing that the cryptosystem is secure if
some widely-accepted standard complexity assumption is true (e.g., [11]).

Finally, it has been shown that the integer-factoring as well as the discrete-
logarithm problem can be solved in polynomial-time by a quantum computer,
i.e., a computing device that is able to exploit certain effects from quantum
mechanics [31]. The security of most public-key cryptographic protocols is based
on the hardness of at least one of these problems.

Consequently, practical computational security is always conditional and ad-
ditionally faces the risk of being broken by progress in the theory of efficient
algorithms or in hardware engineering. On the other hand it appears desirable
from both a scientific and practical point of view to design cryptosystems whose
security is not based on any assumptions and can be proven rigorously. Because
of the reasons discussed above, such security proofs must be based on informa-
tion theory (i.e., probability theory) rather than complexity theory. There have
been made various attempts at realizing this type of security, some of which we
describe in this overview paper.

The outline of the article is as follows. We start with an introduction to some
basic definitions and facts from probability and information theory (Section 2).
Then, a definition of perfect secrecy, undoubtedly the strongest possible security
definition in cryptography, is given (Section 3). Shannon’s pessimistic theorem
suggests that perfect secrecy is necessarily impractical. However, we describe a
number of approaches that could qualify this pessimism. All these constructions
have in common that some kind of limitations are needed on the amount of infor-
mation that an opponent obtains. Realistic scenarios have been described where
such an upper bound on the adversary’s knowledge can for instance be based
on noise, an inherent property of every physical communication channel (Sec-
tion 4). Motivated by these examples, a model has been presented and analyzed
that shows how two parties can generate a secret key from common randomness
by communication over an insecure but authentic (or even completely insecure)
channel (Sections 5 and 6).

2 Basic Concepts of Information Theory

Information theory goes back to Claude Shannon and his celebrated 1948 pa-
per [30]. Examples of good and detailed introductions into the field are [10]
or [5].

2.1 Probability-Theoretic Preliminaries

In this section we introduce some basic probability-theoretic concepts. For a
detailed introduction see for example [14].

Let X be a countable set. The distribution PX of a discrete random variable
X with range X is a mapping

PX : X −→ R≥0
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with
∑

x∈X PX(x) = 1. If X ⊂ R, the expectation of X is defined as

E [X ] :=
∑
x∈X

x · PX(x) .

Let f be a convex function. Then we have

E [f(X)] ≥ f(E [X ]) . (1)

Inequality (1) is called Jensen’s inequality. Most of the basic inequalities in
information theory follow directly from this inequality.

The joint distribution PX1X2···XN of N random variables is a probability
distribution over the set X1×X2×· · ·×XN . The random variablesX1, X2, . . . , XN

are called statistically independent if

PX1X2···XN (x1, x2, . . . , xN ) = PX1 (x1) · PX2(x2) · · ·PXN (xN )

for all x1, x2, . . . , xN , i.e., when the joint distribution equals the product of the
marginal distributions.

An event A is a subset of the range of a random experiment. By Prob [A] we
denote the probability of A, i.e., the sum of the probabilities of all the outcomes
belonging to A. The conditional distribution of X , given that the event A (with
Prob [A] > 0) occurs, is defined as

PX|A(x) :=
Prob [{X = x} ∩ A]

Prob [A]
.

As a special case, a random variable can be conditioned on the event

A := {Y = y}
that another random variable Y takes a particular value y. The resulting distri-
bution

PX|Y (x, y) := PX|Y =y(x)

is called the conditional distribution of X given Y . Note that the function
PX|Y (· , ·) with two arguments is not a probability distribution on X × Y, but
for every y ∈ Y, the function PX|Y (· , y) is a distribution on X .

2.2 Bar Kochba, Uncertainty, and Entropy

The following story has been reported about Bar Kochba (the “Son of the Star”),
leader of the Jews during their independence war in 135 B.C., who defended his
fortress heroically against a superior number of Romans [27].

“It is also said that Bar Kochba sent out a scout to the Roman camp who was
captured and tortured, having his tongue cut out. He escaped from captivity and
reported back to Bar Kochba, but being unable to talk, he could not tell in words
what he had seen. Bar Kochba accordingly asked him questions which he could
answer by nodding or shaking his head. Thus he acquired from his mute scout
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the information he needed to defend the fortress. [. . . ] It occurred to me that,
if the story of Bar Kochba were true, then he would have been the forefather of
information theory”.

In the so-called Bar-Kochba game, one player has to find out, by asking
yes/no-questions, what the second player has in mind. This game was extremely
popular among writers in Budapest at the beginning of this century. Regardless
of the (possibly adaptive) strategy of the questioner he cannot, with at most 20
questions, distinguish between more than 220, i.e., about one million, different
objects (because there are only 220 ways of answering the 20 questions differ-
ently). On the other hand, given that the object to be found comes from a set
of size at most n, then �log2 n� questions are always sufficient if the following
strategy is used. Let a fixed encoding of all the objects by binary strings of length
20 be defined. Then, the strategy is to ask whether the first, second, . . . bit of
the encoding is 1.

This example shows the close relationship between the Bar-Kochba game and
binary coding. For a random variable X that takes one of n = 2k values with
equal probabilities, the minimal average number of questions in the Bar-Kochba
game, as well as the minimal average codeword length of a prefix-free binary
code, is k. Note that this bound cannot be beaten even if a strategy is used with
variable codeword lengths for the different outcomes. We call this quantity the
uncertainty or entropy of X , denoted by H(X).

If the size of the range X of X is not a power of 2, then the average number
of questions required obviously lies between �log2 |X |� and �log2 |X |�. When
combining r independent realizations of the random variable X , the optimal
average number of questions required to learn all the outcomes together lies
between �log2 |X |r� and �log2 |X |r�. Taking such combinations into account, we
obtain for the entropy of X that

log2 |X | − 1
r
<

�log2 |X |r�
r

≤ H(X) ≤ �log2 |X |r�
r

< log2 |X |+ 1
r

for all r ≥ 1, hence
H(X) = log2 |X | . (2)

Equation (2) is called Hartley’s formula and gives the entropy of a uniformly
distributed random variable.

We consider an example of a random variable Y that is not uniformly dis-
tributed. Let Y = {a, b, c, d}, with PY (a) = 1/2, PY (b) = 1/4, PY (c) = PY (d) =
1/8. We conclude from the above that two questions are always sufficient, hence
H(Y ) ≤ 2. However, there is a better strategy of asking questions or equivalently,
a prefix-free code with a shorter average codeword length, namely,

a❀ 0 , b❀ 10 , c❀ 110 , d❀ 111 .

The average number of questions required when asking the bits of the codewords
is

1
2
· 1 + 1

4
· 2 + 1

8
· 3 + 1

8
· 3 =

7
4
(< 2) .
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On the other hand, this code (or strategy of asking questions) is optimal. Note
that in this example, the length of the codeword of a letter is log2(1/p), where p
is the probability of this letter. The quantity log2(1/p) is sometimes called the
unexpectedness of a elementary event with probability p.

A code is optimal if the length of every codeword is equal to the unexpect-
edness of the corresponding outcome. Hence, for a random variable X for which
each probability pi is of the form pi = 2−si for an integer si, we have

H(X) = p1 log2(1/p1) + p2 log2(1/p2) + · · · . (3)

Equation (3) is called Shannon’s formula, and is a generalization of Hartley’s
formula (2). By combining independent realizations of the random variable for
the encoding, one obtains that this formula gives the entropy of any discrete
random variable. The following definition was given by Shannon in 1948.

Definition 1. [30] The entropyH(X) of a random variable X with distribution
PX is given by

H(X) = H(PX) :=
∑
x∈X

−PX(x) · log2 PX(x) = E [− log2 PX ] .

◦
The joint entropy of random variables X1, X2, . . . , XN is the entropy of the joint
distribution, i.e.,

H(X1X2 · · ·XN ) := H(PX1X2···XN ) .

Moreover, Definition 1 also covers the case where the distribution is conditioned
on an event A. We write H(X |A) := H(PX|A) or, if A = {Y = y},

H(X |Y = y) := H(PX|Y =y) .

The entropy of a binary random variable with probability distribution [p, 1− p]
is given by the binary entropy function

h(p) := −p log2 p− (1 − p) log2(1− p)
(see Figure 1).

The entropy of a random variable X is always non-negative and upper
bounded by the binary logarithm of the cardinality of the range, i.e.,

0 ≤ H(X) ≤ log2 |X | . (4)

The second inequality, which is intuitively clear when taking into account the
discussion above, follows from Jensen’s inequality for concave functions:

H(X) = E [log2(1/PX)] ≤ log2(E [1/PX ]) = log2 |X | .
Equality on the left hand side of (4) holds if and only if there exists an element
x0 ∈ X with PX(x0) = 1, whereas equality on the right hand side is equivalent to
the fact that X is uniformly distributed over X , i.e., that PX(x) = 1/|X | holds
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1

10.50

Fig. 1. The Binary Entropy Function

for all x ∈ X . In the special case where the outcome of the random experiment is
a binary string of length n, the second inequality of (4) implies that the entropy
of the random variable can be equal to, but not exceed n.

For random variables X and Y , we have

H(XY ) ≤ H(X) +H(Y ) , (5)

with equality if and only if X and Y are statistically independent.

2.3 Conditional Entropy and Mutual Information

When considering inequality (5) it appears natural to interpret the (non-nega-
tive) quantity H(XY ) − H(X) as the entropy of the random variable Y when
X is given.

Definition 2. The conditional entropy of Y when given X is defined as

H(Y |X) := H(XY )−H(X) . (6)

◦
Note that in contrast to all previously introduced entropies such as H(X) =
H(PX), H(XY ) = H(PXY ), or H(Y |X = x) = H(PY |X=x), the conditional
entropy H(Y |X) is not the entropy of a specific probability distribution, but
rather the expected value of the entropies H(Y |X = x), i.e.,

H(Y |X) = EX [H(Y |X = x)] .

Equation (6) can be rewritten as

H(XY ) = H(X) +H(Y |X) .

This chain rule can be generalized as follows. For random variables X1, . . . , XN

and an event A we have

H(X1X2 · · ·XN |A) =H(X1|A)+H(X2|X1,A)+· · ·+H(XN |X1X2 · · ·XN−1,A).
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It is a fundamental property of the conditional entropy that

H(Y |X) ≤ H(Y ) , (7)

which is a consequence of inequality (5). (However, note that H(Y |X = x) >
H(Y ) is possible, as the following example illustrates. Let Y be 100 independent
flips of an unfair coin with Prob [“heads”] = 99.9%, and let X be the number
of “heads” in the sequence. Then, although of course H(Y |X) < H(Y ) holds,
we have

1.141 ≈ 100 · h(0.999) = H(Y ) < H(Y |X = 50) = log2

((
100
50

))
≈ 96.35 .

Of course the event {X = 50} is extremely unlikely.)
Informally spoken, inequality (7) can be interpreted as the fact that infor-

mation can never increase uncertainty. More precisely, the quantity

I(Y ;X) := H(Y )−H(Y |X) = H(X) +H(Y )−H(XY ) ≥ 0 (8)

is the amount of information that X gives about Y . The last expression of (8)
shows that I(Y ;X) is symmetric in its arguments, i.e., that

I(X ;Y ) = I(Y ;X)

holds. The quantity I(X ;Y ) is called the mutual information between X and Y .
Analogously, one can define I(X ;Y |A) := H(X |A)−H(X |Y,A) and

I(X ;Y |Z) := H(X |Z)−H(X |Y Z) = EZ [I(X ;Y |Z = z)] .

2.4 Graphical Representation of Information-Theoretic Quantities

Let X and Y be random variables. Then the quantities H(XY ), H(X), H(Y ),
H(X |Y ), H(Y |X), and I(X ;Y ) can be graphically represented as shown in Fig-
ure 2. The union of all inner regions corresponds to H(XY ). The representation

H(Y)

H(X|Y) I(X;Y) H(Y|X)

H(X)

Fig. 2. Two Random Variables

has the property that the quantity corresponding to the disjoint union of some
regions equals the sum of the quantities corresponding to these partial regions.
For a detailed discussion of this measure-theoretic representation of information-
theoretic quantities see [37].
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H(X)

H(Z)

H(X|YZ) H(Y|XZ)

H(Z|XY)

I(X;Y|Z)

I(X;Z|Y)

I(Y;Z|X)R(X;Y;Z)

H(Y)

Fig. 3. Three Random Variables

The case of three random variables is shown in Figure 3. Note that the
quantity corresponding to the region in the middle,

R(X ;Y ;Z) := I(X ;Y )− I(X ;Y |Z) ,
is symmetric in X , Y , and Z and can be negative. All the other regions represent
information-theoretic quantities that are always non-negative.

Figure 4 illustrates independent symmetric bits X and Y and Z := X ⊕ Y .
Figure 5 shows a Markov chain.

0 0

0

1

1 1

H(Y)

H(Z)

H(X)

-1

Fig. 4. Z = X ⊕ Y

3 Perfect Secrecy and Shannon’s Pessimistic Theorem

In the following we consider the problem of information-theoretically secure key
generation and message transmission over an insecure channel. This section con-
tains Shannon’s definition of perfect secrecy of a cipher and his well-known
theorem which appears to imply that unconditional security is necessarily com-
pletely impractical. In the following sections however it is demonstrated that
information theory cannot be used only to prove such pessimistic results. It is
somewhat surprising that when the models and security requirements are only
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H(X) H(Y)

H(Z)

H(U)

H(V)

H(W)

Fig. 5. A Markov Chain X → Y → Z → U → V →W

slightly modified, then practical information-theoretic security can be achieved
in many realistic scenarios.

Let us start with the classical scenario of a symmetric cryptosystem with
message M , key K, and ciphertext C (see Figure 6). The following security

Alice Bob

Eve

M C

K K

M
Encryption Decryption

Fig. 6. A Symmetric Cryptosystem

definition appears to be the strongest possible for such a cryptosystem.

Definition 3. [29] A cipher is called perfectly secret if the ciphertext reveals
no information about the message, i.e., if I(M ;C) = 0 holds. ◦
Equivalent characterizations of this condition are that M and C are statistically
independent, or that the best strategy of an eavesdropper who wants to obtain
(information about) the message from the ciphertext is to use only the a priori
knowledge about M and to discard C.

Perfect secrecy can even be achieved without any computation, as the exam-
ple in Figure 7 shows. As everyone can easily see, the ciphertext alone reveals
no information about the message at all in this example! (For more on “visual
cryptography,” see [26].)

This visual cipher is a graphical implementation of the one-time pad that
was already proposed by Vernam in 1926 [34]. Here, the message is a string
M = [m1,m2, . . . ,mN ] of length N , and the key is a uniformly distributed N -
bit string K = [k1, k2, . . . , kN ] which is independent of M . The ciphertext C is
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Fig. 7. Visual Decryption

computed from M and K by

C = [c1, c2, . . . , cN ] = [m1 ⊕ k1,m2 ⊕ k2, . . . ,mN ⊕ kN ] =:M ⊕K .

The one-time pad is perfectly secret. To see this, observe first than when
given the cleartext and the ciphertext, then the key is uniquely determined, i.e.,
H(K|MC) = 0. Furthermore, I(K;C|M) = N (remember than N is the block
length) follows then from H(K) = N and I(M ;K) = 0. Finally, I(M ;C) = 0
holds because H(C) ≤ log2 |C| = N . A graphical representation of the quantities
is given in Figure 8.

0 0

0

H(K)

H(C)

H(M)

H(M)

H(M)

-H(M)

N

Fig. 8. Perfect Secrecy of the One-Time Pad

Unfortunately, the price one has to pay here for perfect secrecy is that the
communicating parties must share a secret key which is at least as long as the
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message (and can only be used once). In view of this property, the one-time pad
appears to be quite impractical and can only offer an advantage in time: the
key can be safely transmitted whenever this is possible, and the message can be
secretly sent whenever this is needed.

However, Shannon showed that perfect secrecy cannot be obtained in a
cheaper way, i.e., that the one-time pad is optimal with respect to key length.

Theorem 4. [29] For every perfectly secret cryptosystem (with unique decod-
ability), we have

H(K) ≥ H(M) .

For a proof of Shannon’s theorem, note first that unique decodability means
H(M |CK) = 0. The graphic representation of the involved quantities is given

0

H(M) H(K)

H(C)

a b

c

-a

I(M;C) = 0

Fig. 9. The Proof of Shannon’s Theorem

in Figure 9. We have b ≥ a because I(C;K) ≥ 0, and

H(K) ≥ b− a+ c ≥ a− a+ c = H(M) .

This concludes the proof.

4 Optimistic Results by Limiting the Adversary’s
Information

Unfortunately, Shannon’s theorem implies that perfect secrecy is possible only
between parties who share a secret key of length at least equal to the entropy of
the message to be transmitted. Hence every perfectly secret cipher is necessarily
as impractical as the one-time pad. On the other hand, the assumption that
the adversary has a perfect access to the ciphertext is overly pessimistic and
unrealistic in general, since every transmission of a signal over a physical channel
is subject to noise.

Motivated by this, many models have been presented and analyzed in which
the information the adversary obtains is limited in some way, and which offer
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the possibility of information-theoretically secure key agreement and, under the
assumption that insecure channels are always available, secret message trans-
mission (using the one-time pad with the generated secret key).

The condition that the opponent’s knowledge is bounded can for instance be
based on noise in communication channels [36],[12],[1],[21], on the fact that the
adversary’s memory is limited [22],[9], or on the uncertainty principle of quantum
mechanics [2]. In this article, we describe a number of models that belong to the
first category.

4.1 Wyner’s Wire-Tap Channel

Consider the following (simple but generally unrealistic) situation first. Assume
that two parties Alice and Bob are connected by an authentic and noiseless
binary channel, and that a wiretapper Eve receives the bits sent over the channel
with some error probability ε > 0. In other words, her wire-tap channel is a
binary symmetric channel (BSC) with error probability ε (see Figure 10).

BSC(  )ε

BSC(  )ε

Bob 

Eve

. .
..

ε

ε

1−ε

1−ε

Alice 

Fig. 10. A Binary-Symmetric Wire-Tap Scenario

In this situation, Alice can send a message bitM to Bob by sending an N -bit
block [X1, X2, . . . , XN ], whereX1, X2, . . . , XN−1 are independent and symmetric
bits and XN is such that

X1 ⊕X2 ⊕ · · · ⊕XN =M .

Eve’s error probability when guessing the bit M with the optimal strategy is

p =
1− (1− 2ε)N

2
,

and converges to 1/2 exponentially fast in N . Moreover, the information that
Eve obtains aboutM from the noisy versions of X1, X2, . . . , XN does not exceed
1− h(p). By repeating this process, Alice and Bob can agree on a highly secret
key of arbitrary length.

The following, more general scenario of the wire-tap channel (see Figure 11)
was introduced and analyzed by Wyner [36] and simplified by Massey [16]. In
this setting, Alice and Bob are connected by a discrete memoryless channel
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Y|X
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Z|Y
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EveAlice

X Y Z

Bob

Fig. 11. Wyner’s Wire-Tap Channel

(characterized by its conditional probability distribution PY |X), whereas Eve
receives a noisy version Z of Bob’s channel output Y . Alice chooses the input to
the first channel according to some distribution PX .

It was shown in [36] that in this scenario, Alice and Bob can agree on a highly
secret key at a some rate in many situations (for instance in the case where all
the random variables are binary and the channels are binary-symmetric with
error probabilities not 1/2 and not 0 nor 1, respectively). Exact definitions of
the security requirements to such a key, as well as of the secret-key generation
rate, are given below.

However, the assumption that the adversary only receives a degraded ver-
sion of the legitimate receiver’s information is unrealistic in general. This fact
motivated the study of generalizations of Wyner’s model.

4.2 Broadcast Channels

Csiszár and Körner [12] considered the situation where the sender Alice is con-
nected to the receiver Bob by a discrete memoryless channel (with conditional
distribution PY |X), and where also the adversary Eve receives a noisy version Z
of X over a different channel (characterized by PZ|XY , i.e., the channels are not
necessarily independent). As before, Alice chooses the channels’ input X accord-
ing to some distribution PX . The broadcast scenario is illustrated in Figure 12.

M
C

D

DMC

Y|X
P

Z|XY
P

Alice Bob

Eve

X

Z

Y

Fig. 12. The Broadcast-Channel Scenario
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For this setting, the secrecy capacity CS(PY Z|X) has been defined as the
maximal rate at which Alice and Bob can generate a virtually secret key. Without
going into the details of the definitions and the key-generation protocols, we
remark that both the size of the generated secret key as well as the amount of
information leaked to the adversary are defined in terms of a rate, i.e., measured
as average information per channel use.

In [12], the following lower bound on the secrecy capacity, depending on the
conditional distribution PY Z|X , has been proved:

CS(PY Z|X) ≥ max
PX

[I(X ;Y )− I(X ;Z)] . (9)

In equality (9), the maximum is taken over all possible distributions PX of X .
Intuitively, this condition implies that if the legitimate partners initially have
some advantage over Eve in terms of the information about each other’s random
variables, then this advantage can be fully exploited to generate a secret key.

However, if Alice and Bob have no such advantage to start with, then gen-
erally no secret-key agreement is possible in this model. Let us for instance con-
sider the situation where the channels are independent and binary-symmetric
with error probabilities ε and δ (see Figure 13). In this special scenario, the

δ

ε

Alice Bob

Eve

X Y

Z

Fig. 13. Independent Binary-Symmetric Broadcast Channels

secrecy capacity is given by

CS(ε, δ) =
{
h(δ)− h(ε) δ > ε
0 otherwise .

In other words, secret-key agreement is impossible unless Bob’s channel is better
than Eve’s. Unfortunately, it may often be impossible to guarantee that the
adversary’s channel is noisier than the one of the legitimate partner.
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4.3 The Power of Interaction

The following example, given in [21], illustrates how much more powerful inter-
action can be in contrast to one-way transmission for unconditionally secure key
agreement. This is a motivation for the study of a more general model of secret-
key agreement from common information by insecure two-way communication.
We discuss this model in Section 5.

We start with the situation shown in Figure 13, where 0 < δ ≤ ε < 1/2. As
mentioned above, no secret-key agreement is possible. However, let us assume
an interactive variant of this model with an additional noiseless and insecure
but authentic channel. (Note that channels with virtually these properties often
exist in reality, e.g., telephone lines.) Surprisingly, the situation is now entirely
different although the additional channel can be perfectly overheard by Eve.

Observe first that the additional public-discussion channel allows to invert
the direction of the noisy channel between Alice and Bob by the following trick.
First, Alice chooses a random bit X and sends it over the noisy channel(s). This
bit is received by Bob as Y and by Eve as Z. Bob, who wants to send the message
bit C to Alice, computes C⊕Y and sends this over the noiseless public channel.
Alice computes (C ⊕ Y ) ⊕ X , whereas Eve can compute (C ⊕ Y ) ⊕ Z. This
perfectly corresponds to the situation where the direction of the main channel
is inverted (see Figure 14).

(C    Y)    Z

 C    Y
 C    Y

 C    Y

(C    Y)    X

(C    Y)    Z

 C    Y

(C    Y)    X

 C    Y

C

Z

X

δ

ε

δ

Y

ε

C

Alice Bob

Eve Eve

Alice Bob

Fig. 14. Inverting the Main Channel

The second crucial observation is that this is exactly the binary-symmetric
setting of Wyner’s wire-tap channel of Section 4.1, allowing secret-key agreement
at some rate. We conclude from this example that the possibility of feedback
from Bob to Alice can substantially improve the legitimate partners’ situation
towards a wire-tapping adversary.
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5 Interactive Secret-Key Agreement from Common
Randomness

5.1 The Scenario and the Secret-Key Rate

Maurer has proposed the following interactive model of secret-key agreement
by public discussion from common information [21]. The parties Alice and Bob
who want to establish a mutual secret key have access to realizations of random
variables X and Y , respectively, whereas the adversary knows a random variable
Z. Let PXY Z be the joint distribution of the random variables. Furthermore, the
legitimate partners are connected by an insecure but authentic channel, i.e., a
channel that can be passively overheard by Eve but over which no undetected
active attacks by the opponent, such as modifying or inserting messages, are
possible (see Figure 15).

P
XYZ

X Y

Z

Alice Bob

Eve

Fig. 15. Secret-Key Agreement by Public Discussion from Common Information

Note that it is natural to consider this model by the following reasons. First,
it is an interactive (i.e., two-way) generalization of Wyner’s and Csiszár and
Körner’s models. It is not necessary to assume the existence of noisy communi-
cation channels in this interactive setting because equivalents of such channels
can be obtained by the same trick as shown in Section 4.3 for inverting the
binary-symmetric channel. Secondly, the assumption that the parties have access
to correlated randomness appears to be realistic in many contexts. An example
of a possible physical implementation is described in Section 5.2.

In analogy to the previous models, where the channels could be used many
times independently, we assume here that the parties have access to a number of
independent realizations of the corresponding random variables. Consequently,
the so-called secret-key rate is defined in this model as the maximal rate at
which Alice and Bob can generate a highly secret key by communication over the
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insecure channel, where the required number of channel uses from the definition
of the secrecy capacity is replaced by the amount of randomness (i.e., the number
of realizations of X and Y ) necessary for the generation of a key of some length.

Definition 5. The secret-key rate S(X ;Y ||Z) of the distribution PXY Z is the
maximal number R with the following property. For every ε > 0, there is a
number N0 such that for all N ≥ N0, a protocol exists that uses authenticated
public discussion and satisfies the following conditions. (We denote the block of
the first N realizations of the random variable X, [X1, X2, . . . , XN ], by XN , and
analogous for Y and Z. Furthermore, let U be the entire communication held
over the public channel during the execution of the protocol.) There exist k-bit
strings S and S′ with

k > (R− ε)N , (10)
H(S |XNU) = 0 , (11)
H(S′ |Y NU) = 0 , (12)
Prob [S �= S′] < ε , (13)
I(S ; ZNU) < ε , (14)
H(S) > k − ε . (15)

In other words, these conditions guarantee that Alice (11) and Bob (12) can
generate almost uniformly distributed (15) keys of a certain length (10) that are
equal with high probability (13) and about which the adversary has virtually no
information (14). ◦

The notion of the secret-key rate is stronger than the one of secrecy capacity
in the sense that in the definition of CS(PY Z|X), it was required that the rate
at which Eve obtains information about the key is small, whereas here, the total
amount of information about the entire key must be negligible. (However, one
can show that the secret-key rates with respect to the weaker and the stronger
definitions are equal [19].)

The secret-key rate is a quite fundamental and mathematically interesting
property of a distribution PXY Z . One challenging problem in this context is to
enlighten the exact relationship between PXY Z and S(X ;Y ||Z), i.e., to deter-
mine the secret-key rate of a given distribution, or at least to decide whether the
rate is non-zero and secret-key agreement is possible in principle in a particular
situation. We discuss these questions in Section 6.

5.2 The Satellite Scenario and Phases of Secret-Key Agreement
Protocols

The following realistic special scenario was proposed in [21] and completely an-
alyzed in [25]. Assume that a satellite sends out random bits at very low sig-
nal power and that Alice, Bob, and Eve receive these bits over independent
binary-symmetric channels with error probabilities α, β, and ε, respectively (see
Figure 16).
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Fig. 16. The Satellite Scenario

In general, we may have to assume that Eve has a better antenna than the
legitimate partners, and hence a possibly substantially lower error rate. It is a
somewhat surprising fact that secret-key agreement is always possible in this
scenario (unless Eve has a noiseless access to the satellite bits or either Alice or
Bob obtains no information at all about these bits).

In the following, we describe a protocol for secret-key agreement in the satel-
lite scenario. Such a protocol is often interpreted as consisting of three phases.
As mentioned, Alice and Bob possibly start in a situation in which the adversary
has an advantage over the legitimate partners with respect to the information
about each other’s random variables. The objective of the first phase, advantage
distillation, is to generate an advantage over the opponent by exploiting the au-
thenticity of the public channel. However, Alice and Bob do generally not share
a mutual string after this phase. Hence, an interactive error-correction phase,
information reconciliation, is required. Finally, the resulting mutual but only
partially secret string must be transformed into a (shorter) highly secret string.
This final phase is called privacy amplification. In the illustration of the three
phases in Figure 17, the relations between the amounts of information that Bob’s
and Eve’s knowledge provide about Alice’s string are shown. The protocol steps
are described in detail in the next three sections. An interactive demonstration
of the phases is provided on the Internet [7].

5.3 Advantage Distillation

We assume the satellite scenario described in the previous section with error
probabilities 0 ≤ α, β < 1/2 and 0 < ε < min {α, β}, i.e., the adversary has an
initial advantage over the legitimate partners in terms of the error probabilities.
Let us consider N independent realizations of the random variables. Then, we
have

I(XN ;Y N ) =
N∑

i=1

I(Xi ; Yi) = N · (1− h(α(1 − β) + (1− α)β)) ,
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Fig. 17. Phases of a Secret-Key-Agreement Protocol

I(XN ;ZN ) =
N∑

i=1

I(Xi ; Zi) = N · (1− h(α(1 − ε) + (1− α)ε)) ,

I(Y N ;ZN ) =
N∑

i=1

I(Yi ; Zi) = N · (1 − h(β(1− ε) + (1− β)ε)) ,

i.e.,
I(XN ;Y N ) < min {I(XN ;ZN) , I(Y N ;ZN)} .

The basic idea of the advantage-distillation phase is that Alice and Bob use the
noiseless discussion channel for exchanging information about their bits in an
insecure but authentic way with the objective of identifying bits that are correct
with a higher probability than others. We describe two different protocols that
achieve this. The protocols are based on a repeat code and on the exchange
of parity-check bits. The repeat-code protocol is simpler to describe, but very
inefficient with respect to the required number of realizations of the random
variables, whereas the parity-check protocol appears to be quite efficient. For a
detailed analysis of the protocols, see for example [21],[20],[24].

Repeat-Code Protocol. The repeat-code protocol works as follows (see also
Figure 18). Let N be a fixed parameter. Alice chooses a random bit C and
computes

CN ⊕XN := [C ⊕X1, C ⊕X2, . . . , C ⊕XN ] ,

where CN stands for the repeat-code block [C,C, . . . , C] of length N . She sends
this “blinded” repeat-code block over the public channel. Bob computes from
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Fig. 18. The Repeat-Code Protocol

this the block (CN ⊕ XN ) ⊕ Y N , and sends an “accept” message over the
discussion channel if and only if the resulting block is a repeat-code block
(C′)N = [C′, C′, . . . , C′]. Note that this is exactly the situation where Alice
and Bob have either the same bit in all positions, i.e., XN = Y N , or opposite
values in each position, i.e., XN = Y N ⊕ 1N . It is intuitively clear that Alice
and Bob not only obtain an arbitrarily low probability of the event that C′ �= C
for large N this way, but also that they improve their position compared to the
opponent by accepting only in situations of apparently highly reliable transmis-
sion. However, also the adversary Eve, who can compute (CN ⊕ XN) ⊕ ZN ,
takes advantage of a greater value of N . It is a somewhat surprising result that
for arbitrary values of α, β < 1/2, and ε > 0, Alice and Bob end up in an
advantageous situation (both with respect to the error probabilities and to the
information about each other’s strings) for sufficiently large N .

We show this with respect to the error probabilities of Bob and Eve when
guessing the bit C for the special case α = β (which we can assume without
loss of generality because noise can always be added). We denote by αbe the
probability that the single bit 0 sent by Alice over the conceptual channel (i.e.,
C ⊕ X is sent over the public channel) is received (i.e., decoded) by Bob as b
and by Eve as e. Then we have

α00 = (1 − α)2(1− ε) + α2ε ,

α01 = (1 − α)2ε+ α2(1 − ε) ,
α10 = α11 = (1− α)α .
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We assume that N is an even integer. The probability γ that Bob accepts
the N -bit block sent by Alice and that C′ �= C holds is

γ = (α10 + α11)N ,

whereas the probability δ that Bob accepts and Eve guesses the bit incorrectly
is lower bounded by 1/2 times the probability of the event that the block (CN ⊕
XN) ⊕ ZN which Eve obtains consists of N/2 0’s and the same number of 1’s,
i.e.,

δ ≥ 1
2

(
N

N/2

)
α

N/2
01 · αN/2

01 ≈ 1
2
(2
√
α00α01)N .

Clearly, the actual message bit C is statistically independent of the block Eve
receives if this event occurs. It is not difficult to see that

2
√
α00α01 > α10 + α11

holds for α < 1/2 and ε > 0, meaning that Bob’s error probability decreases
asymptotically faster than Eve’s and is hence smaller for sufficiently large N .
One can even show that Eve has less information than Bob about the bit C for
sufficiently large N .

Parity-Check Protocol. The second protocol we discuss uses parity-check
bits and works as follows. Alice computes the parity bit X1 ⊕X2 and sends it
over the public channel. Bob accepts if and only if X1⊕X2 = Y1⊕Y2, i.e., if the
parities of Alice’s and Bob’s first two bits are equal. In this case, the values X1

and Y1 are chosen by Alice and Bob, respectively, for the next protocol round
(whereas otherwise, the bits are discarded). This step is repeated a number of
times. After this first round it may be necessary, depending on the initial error
probabilities, to carry out some additional rounds (see Figure 19).

It is not difficult to see that r rounds of the parity-check protocol are equiva-
lent to the repeat-code protocol with 2r-bit blocks with respect to the resulting
error probabilities. However, it is obvious that the parity-check protocol is much
more efficient.

5.4 Information Reconciliation

During advantage distillation, the partners Alice and Bob compute (possibly
distinct) strings SA and SB, respectively, about which the adversary also has
some information. At the end of the key-agreement protocol however, Alice’s
and Bob’s strings must be equal and highly secure, both with overwhelming
probability. The information-reconciliation phase consists of interactive error
correction and establishes the first of these two conditions.

After advantage distillation, Bob has more information about Alice’s string
than Eve has, and after information reconciliation, Bob should exactly know
Alice’s string. (A more general condition would be that after information recon-
ciliation, Alice and Bob share a string that is equally long as SA and SB.) This
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Fig. 19. Three Rounds of the Parity-Check Protocol

leads to a lower bound on the amount of error-correction information E that
must be exchanged. Namely, Bob must know SA completely with overwhelming
probability when given SB and E, i.e.,

0 ≈ H(SA |SB, E) ≥ H(SA |SB)−H(E) ,

and hence

H(E) >∼ H(SA |SB) .

On the other hand, the uncertainty of SA from Eve’s viewpoint can as well be
reduced by H(E) in the worst case when Eve learns E (see Figure 20).
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A good protocol for information reconciliation should both minimize the
amount of information leaked to the adversary and be efficient. Examples of
protocols satisfying both conditions are given in [6]. We sketch two examples of
these protocols. The first is optimal with respect to the information leaked but
completely inefficient, whereas the second protocol leaks more information but
is more efficient as well. Let us assume that Alice and Bob have finished the
advantage-distillation phase in the satellite model. In other words, Bob’s string
is a (good) estimate about Alice’s string, i.e., the same string with a (small)
number of errors.

Random-Label Protocol. The first, non-interactive, protocol works as fol-
lows. Alice randomly chooses a function f mapping {0, 1}n → {0, 1}m (where n
is the length of SA and SB and m can be roughly equal to H(SA|SB)) among all
such functions and sends (a description of) f together with f(SA) to Bob, who
determines the string S′

A with minimal Hamming distance from SB that satisfies
f(S′

A) = f(SA). According to the discussion above, and becausem ≈ H(SA|SB),
this protocol is optimal with respect to the leaked information. However, it is
completely inefficient, hence useless, by the following two reasons. First, the de-
scription of the random function f would require m2n bits. Furthermore, S′

A

cannot be efficiently determined from f , f(SA), and SB.

Binary-Search Protocol. The idea of the second protocol is to interactively
detect the positions where Alice’s and Bob’s strings differ and to correct these
errors. Alice and Bob start by comparing the parity bit, i.e., the XOR-sum, of
the bits in randomly but identically chosen substrings S′

A and S′
B of SA and

SB, respectively. If there are bit errors between the strings SA and SB, then the
resulting parity bits differ with probability 1/2 over the choice of the substrings.

If the parities are different, Alice and Bob have detected substrings containing
an odd number of errors with respect to each other, and they can locate one of
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them by partitioning the substring into two subsets of equal size, one of which
clearly contains an odd number of errors as well (and has different parity sums).
This splitting procedure is continued until the error is localized and can be
corrected by Bob (see Figure 21).
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Fig. 21. Finding and Correcting an Error by Comparing Parities

Alice and Bob repeat this procedure until all the errors are found and cor-
rected. If n is the length of the strings SA and SB, this protocol requires the
exchange of �log2 n� bits per error to be corrected. Hence it is efficient if the
strings of Alice and Bob differ in only a few bit positions.

After information reconciliation, Alice and Bob have agreed on a mutual
string S about which Eve has a possibly considerable amount of information
consisting of both a priori knowledge but also information (e.g., physical bits or
parities thereof) leaked during information reconciliation.

5.5 Privacy Amplification

Privacy amplification is the art of shrinking a partially secure string S to a
highly secret string S′ by public discussion. Hereby, the information of the ad-
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versary about S can consist of physical bits, of parities thereof, or other types
of information (see Figure 22).
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Fig. 22. Eliminating Eve’s Knowledge by Privacy Amplification

The following questions related to privacy amplification were studied and
answered in [4],[3]. What is a good technique of computing S′ from S? What
is the possible length of S′, depending on this shrinking technique and on the
adversary’s (type and amount of) information about S?

It is quite clear that the best technique would be to compute S′ (of length
r) from the n-bit string S by applying a random function f : {0, 1}n → {0, 1}r.
However, Alice and Bob would have to exchange r2n bits of information to
agree on such a function. On the other hand, there exist relatively small classes of
functions with “random-like” properties. Examples are so-called universal classes
of hash functions, which turned out to be useful for privacy amplification.

Definition 6. A class H of functions h mapping a set A to a set B is called
universal if for all x, y ∈ A, x �= y, we have

Prob h∈rH[h(x) = h(y)] =
1
|B| ,

where h ∈r H stands for the fact that h is chosen randomly in H according
to the uniform distribution. In other words, a function that is chosen randomly
from a universal class behaves like a completely random function with respect to
collisions. ◦
An example of a universal class of functions, mapping {0, 1}n to {0, 1}r, of car-
dinality 2n·r are the linear functions. There exist even smaller classes. For more
examples and lower bounds on the size of universal classes, see for example [33].

We analyze the following type of privacy amplification protocols. First, Alice
chooses a random function h from a fixed universal class H of hash functions
mapping n-bit strings to r-bit strings for some r to be determined, and sends
(the description of) h publicly to Bob, i.e., also Eve learns h. Then Alice and
Bob both compute S′ := h(S).
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Let us consider the question how long the virtually secure string S′ can be,
depending on the type and amount of Eve’s knowledge about S. Note first that
the fact that Eve has some information about a string S is another way of saying
that given Eve’s entire knowledge U = u about S, the random variable S is not
uniformly distributed, i.e.,

H(S |U = u) < n .

In this case we say that Eve has n−H(S|U = u) bits of (Shannon-) information
about S. Because the resulting string S′ must satisfy

H(S′ |C,U = u) ≈ r
(where r is the length of S′ and C is the communication held over the public
channel), privacy amplification can be interpreted as “distribution smoothing.”

Intuitively, one might think that if Eve has t bits of information about S,
then the length r of the resulting string S′ can be roughly n− t (see Figure 23).
This fact was shown to be correct if Eve has deterministic information about
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Fig. 23. Can Eve’s Knowledge Be Simply Cut Away by Universal Hashing?

S, i.e., if Eve knows the value g(S) for some fixed function g [4]. However, if
Eve’s information is not deterministic, it is not true in general that n− t secure
bits can be extracted when Eve has t bits of Shannon information about S,
as the following example shows. Let PS|U=u(s0) = 1/2 for some s0 ∈ {0, 1}n,
and PS|U=u(s) = 1/(2 · (2n − 1)) for all n-bit strings s �= s0. Then, we have
H(S|U = u) ≈ n/2, but no secure string S′ (of any length, let alone n/2) can be
extracted because Eve precisely knows S, hence also S′ = h(S), with probability
1/2 (where h is the randomly chosen hash function). This means that S′ cannot
be highly secure.

The answer to the question what a suitable information (or entropy) measure
is with the property that the above intuition (illustrated in Figure 23) is true,
was given in [3] as follows.

Definition 7. For a random variable X with distribution PX , the collision prob-
ability PC(X) is defined as

PC(X) :=
∑
x∈X

PX(x)2 .



Unconditional Security in Cryptography 243

The collision entropy or Rényi entropy (of order 2) of X is

H2(X) := − log2(PC(X)) = − log2(
∑
x∈X

PX(x)2) .

◦

The collision probability is the probability that two independent realizations of
the random variable X show the same value. Equivalently, it is the probability
of guessing a realization of X correctly with the optimal strategy on the basis
of an independent realization of X , where the distribution of X is unknown.
Jensen’s inequality implies

H2(X) = − log2(E [PX ]) ≤ E [− log2 PX ] = H(X) .

It was shown that Rényi entropy is a good information measure in the context
of privacy amplification by universal hashing. Theorem 8 (see also Figure 24)
implies that the intuitive fact illustrated in Figure 23 is true with respect to
Rényi instead of Shannon information.

Theorem 8. [3] Let S be an n-bit string with conditional distribution PS|U=u

(given Eve’s knowledge U = u about S) and Rényi entropy H2(S|U = u), let
G be the random variable corresponding to the random choice (with uniform
distribution) of a member g of a universal class H of hash functions mapping
n-bit strings to r-bit strings, and let S′ = G(S). Then

r ≥ H(S′|G,U = u) ≥ H2(S′|G,U = u) ≥ r − 2r−H2(S | U=u)

ln 2
.
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Intuitively, Theorem 8 states that if the length r of S′ is chosen as

r := H2(S |U = u)− s ,
where s is a security parameter, then the resulting string S′ is highly secret,
where the security increases exponentially in s.

Note that this result in not tight and can be improved in many cases. One
reason for this is the counterintuitive fact that Rényi entropy can be increased
by giving side information, so called spoiling knowledge. By using this property
it was shown in [8] that Rényi entropy of order α, for 1 < α < 2, is a good
measure with respect to privacy amplification as well.

One important question finally concerns the influence of the information
exchanged during the information-reconciliation phase on the Rényi entropy of
S from Eve’s point of view, hence on the length of the key that can finally be
generated. It was shown in [8] that learning r physical bits cannot reduce Rényi
entropy by significantly more than r but with negligible probability.

6 Generalizing the Model

The scenario where the parties receive independent noisy versions of the same
random source’s signal was completely analyzed in [25],[23]. Possible real-world
realizations of the required information source are a satellite sending random bits
at low signal power, a pulsar, a deep-space radio source, or randomly polarized
photons. However, many more general scenarios can be thought of where the
parties receive a different type of correlated information. The assumptions that
the parties obtain noisy versions of a common signal or that they have access
to a great number of independent realizations of the same random experiment
can be modified or dropped. An example is the scenario where Alice, Bob, and
Eve obtain a number of playing cards from the same stack [15]. As another
generalization, the adversary can be assumed to be more powerful. For instance,
it may often be unrealistic to guarantee that the opponent is only a passive
wire-tapper.

6.1 Arbitrary Random Variables

Let us have a closer look at the scenario of arbitrary correlated information, i.e.,
of an arbitrary random experiment PXY Z with many independent realizations
(see Figure 15). Note that this is exactly the setting for which the secret-key
rate S(X ;Y ||Z) is defined. In this general case it is a fundamental and natural
problem to determine S(X ;Y ||Z) for a given distribution PXY Z , or at least
to decide whether the quantity is non-zero. The following bounds depend on
information-theoretic quantities directly derived from PXY Z . The lower bound

max {I(X ;Y )− I(X ;Z) , I(Y ;X)− I(Y ;Z)} ≤ S(X ;Y ||Z)
is a consequence of the above-mentioned result by Csiszár and Körner [12] and
states that an existing advantage over the adversary can be fully (and even
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non-interactively) exploited to generate a secret key. As shown in the previous
sections, this bound is not tight: Secret-key agreement can also be possible in
scenarios where Alice and Bob start in a “bad” situation. On the other hand,
the following upper bound was shown in [21]:

S(X ;Y ||Z) ≤ min {I(X ;Y ) , I(X ;Y |Z)} . (16)

The bound (16) is quite intuitive and states that Alice and Bob cannot extract a
larger amount of secret key than the mutual information between their random
variables X and Y (with and without giving Eve’s random variable Z). However,
this bound is not tight neither and can be improved as follows. Trying to reduce
the quantity I(X ;Y |Z), the adversary Eve can send the random variable Z over
a channel, characterized by PZ|Z , in order to generate the random variable Z.
Clearly,

S(X ;Y ||Z) ≤ S(X ;Y ||Z) ≤ I(X ;Y |Z) (17)

holds for every such Z. This motivates the following definition of a new con-
ditional information measure, the intrinsic conditional mutual information be-
tween X and Y when given Z, which is the infimum of I(X ;Y |Z), taken over
all discrete random variables Z that can be obtained by sending Z over a chan-
nel, characterized by PZ|Z . The situation is illustrated in Figure 25. (Note that
R(X ;Y ;Z) ≥ 0 always holds for the particular Z which minimizes I(X ;Y |Z).)

H(X) H(Y)

H(Z)

H(Z)

I(X;Y   Z)

Fig. 25. The Intrinsic Conditional Information

Definition 9. For a distribution PXY Z , the intrinsic conditional mutual infor-
mation between X and Y when given Z, denoted by I(X ;Y↓Z), is

I(X ;Y↓Z) := inf

{
I(X ;Y |Z) : PXY Z =

∑
z∈Z

PXY Z · PZ|Z

}
,

where the infimum is taken over all possible conditional distributions PZ|Z . ◦
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Intuitively, the intrinsic conditional information I(X ;Y ↓Z) measures only the
information between X and Y , which is possibly reduced by Z, but not the
additional information brought in by giving Z. If for example X and Y are
independent symmetric bits and Z = X ⊕ Y , then we have I(X ;Y |Z) = 1, but
I(X ;Y↓Z) = 0.

It follows from the above that

S(X ;Y ||Z) ≤ I(X ;Y↓Z) .

The fundamental problem of generally determining S(X ;Y ||Z) for given PXY Z

has remained open, but there is some evidence that the intrinsic information is
exactly the right quantity linking the secret-key rate with the joint distribution
of X , Y , and Z.

Conjecture. S(X ;Y ||Z) = I(X ;Y↓Z) .

However, even the generally easier problem of completely characterizing the
distributions PXY Z for which S(X ;Y ||Z) > 0 holds, i.e., for which secret-key
agreement is possible in principle, has not been fully answered yet (see Figure 26).

S(X;Y || Z)

S(X;Y || Z) = 0I(X;Y   Z) = 0

> 0?
?

?
Agreement

Protocol

No Secret-Key Agreement Protocol Exists

Exists

P
XYZ  - Space

Secret-Key

Fig. 26. Characterizing when Secret-Key Agreement Is Possible

6.2 Secret-Key Agreement Secure against ACTIVE Adversaries

In all the previous models, we have assumed that the adversary is only a passive
wire-tapper or equivalently, that the public channel connecting Alice and Bob is
authentic. In many cases, secret-key agreement is even possible when dropping
this condition, i.e., when the adversary is able to modify or introduce messages
without being detected. See [17],[23],[35] for a discussion and analysis of this
model.

Note first that a protocol secure against active opponents cannot be guaran-
teed to work in every situation because Eve, who is assumed to have full control
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over the public channel, can block the channel permanently, preventing any com-
munication between the legitimate partners. Hence the best that can be achieved
by such a protocol is that Alice and Bob detect an adversary’s active attacks and
reject the outcome of the protocol unless secret-key agreement is successful (see
Figure 27). More precisely, it is required that if Eve chooses to remain passive,

....
accept, SA accept, SB

Alice Bob

X Y

Ur

U
2

U1

Eve

Z

or or

reject reject

Fig. 27. Unconditional Security Against Active Opponents

then secret-key agreement is successful (as in the passive-adversary model). On
the other hand, if Eve is active, then with overwhelming probability either Alice
and Bob both reject the outcome of the protocol, or secret-key agreement is suc-
cessful despite Eve’s attacks. (Note that it is not requested that both Alice and
Bob accept the outcome in the latter case. Such a perfect synchronization of the
acceptance decisions cannot be achieved in the presence of an active adversary,
who can always block the final message that makes the second party accept.)

Clearly, secret-key agreement can only be possible in the active-adversary
scenario if Alice and Bob have some initial advantage over Eve in terms of the
random variables X , Y , and Z. More precisely, this advantage must be such that
Eve is not able to perfectly simulate Alice towards Bob and vice versa. In terms
of the random variables, this is the condition that she cannot generate, using
her random variable Z, a random variable X with the property that given only
Y , X cannot be distinguished from X , and vice versa. Formally, this means that
there do not exist conditional distributions PX|Z or PY |Z such that either

PXY = PXY

or PXY = PXY holds, respectively. If one of these distributions existed, secret-
key agreement would be impossible because Bob could not tell Alice and Eve
apart (or vice versa).
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A surprising result however is that if secret-key agreement is possible also in
the presence of an active adversary, then asymptotically the same key-generation
rate as in the passive-adversary case can be achieved.

Finally, also privacy amplification can be executed in the case where the
adversary is active. However, the restrictions on the opponent’s knowledge about
the partially secret key must be stronger [23],[35]. The idea is to use the string S
twice, first as a key for unconditionally authenticating a message containing the
description of a randomly chosen hash function, and as the argument for this
function.

7 Concluding Remarks

We have described several techniques and results in the context of unconditional
security in cryptography. The mentioned possibility and impossibility results
can give a rough picture in what settings such provable confidentiality can be
achieved. It is an important point in this context that despite Shannon’s well-
known pessimistic result, unconditional security is not necessarily impractical.
A number of fundamental questions in this field are open today. In particular,
the ultimate goal is the realization of a system that is practical and provably
unconditionally secure simultaneously.
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