


Lecture Notes in Computer Science 2439
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen



3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo



Juan Julián Merelo Guervós
Panagiotis Adamidis
Hans-Georg Beyer
José-Luis Fernández-Villacañas
Hans-Paul Schwefel (Eds.)

Parallel Problem Solving
from Nature – PPSN VII

7th International Conference
Granada, Spain, September 7-11, 2002
Proceedings

1 3



Volume Editors

Juan Julián Merelo Guervós
Escuela Técnica Superior de Ingeniería Informática
18071 Granada, Spain
E-mail: jmerelo@geneura.ugr.es

Panagiotis Adamidis
Technological Educational Institute of Thessaloniki
Department of Informatics, 54101 Thessaloniki, Greece
E-mail: adamidis@it.teithe.gr

Hans-Georg Beyer
Hans-Paul Schwefel
University of Dortmund, Department of Informatics XI
44221 Dortmund, Germany
E-mail: beyer@ls11.cs.uni-dortmund.de
hps@udo.edu

José-Luis Fernández-Villacañas
Universidad Carlos III, Department of Signal Theory and Communications
Madrid, Spain
E-mail: pepe@tsc.uc3m.es

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Parallel problem solving from nature : 7th international conference ;
proceedings / PPSN VII, Granada, Spain, September 7 - 11, 2002. Juan Julián
Merelo Guervós ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2439)
ISBN 3-540-44139-5

CR Subject Classification (1998): F.1-2, C.1.2, D.1.3, I.2.8, I.2.6, I.2.11, J.3

ISSN 0302-9743
ISBN 3-540-44139-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergraphik
Printed on acid-free paper SPIN 10870237 06/3142 5 4 3 2 1 0



Preface

We are proud to introduce the proceedings of the Seventh International Con-
ference on Parallel Problem Solving from Nature, PPSN VII, held in Granada,
Spain, on 7–11 September 2002. PPSN VII was organized back-to-back with
the Foundations of Genetic Algorithms (FOGA) conference, which took place in
Torremolinos, Malaga, Spain, in the preceding week.

The PPSN series of conferences started in Dortmund, Germany [1]. From that
pioneering meeting, the event has been held biennially, in Brussels, Belgium [2],
Jerusalem, Israel [3], Berlin, Germany [4], Amsterdam, The Netherlands [5], and
Paris, France [6]. During the Paris conference, several bids to host PPSN 2002
were put forward; it was decided that the conference would be held in Granada
with Juan J. Merelo Guervós as General Chairman.

The scientific content of the PPSN conference focuses on problem-solving
paradigms gleaned from natural models, with an obvious emphasis on those that
display an innate parallelism, such as evolutionary algorithms and ant-colony
optimization algorithms. The majority of the papers, however, concentrate on
evolutionary and hybrid algorithms, as is shown in the contents of this book and
its predecessors. This edition of the conference proceedings has a large section on
applications, be they to classical problems or to real-world engineering problems,
which shows how bioinspired algorithms are extending their use in the realms of
business and enterprise.

In total, this volume contains 90 papers, which were selected from the 181
papers submitted to the conference organizers. This means that slightly fewer
than half the papers were accepted for inclusion in the conference proceedings,
which, at the same time, means that some papers of good quality could not be
selected for publication. Each paper was reviewed by at least three persons, and,
in some cases, up to five reviews were necessary to reach a decision. Most papers
had four reviews. Thus, we are very grateful to the volunteer reviewers who
offered their scientific expertise and time in order to come up with a decision
that was as fair as possible. We want also to thank all authors of submitted
papers for their participation.

The submission procedure was developed and maintained by Pedro Castillo
Valdivieso and Juan J. Merelo Guervós, inspired by the one developed by them
for the previous PPSN conferences. The submission, reviewing and Chairper-
son’s information systems were written in Perl and used a PostgreSQL relational
database system as the back-end. The submission process was mostly smooth,
and the system could take the heaviest loads without a glitch. All in all, the
system dealt with around 50 000 requests, with several requests per minute at
the moments of heaviest load.

Paper assignment was made using a combined greedy/evolutionary algorithm
that took into account keyword matches among reviewers and papers. The as-
signment could be considered successful, since few reviewers declined to review



VI Preface

their assigned papers because of a lack of relevant expertise; at the same time,
the average confidence in decisions was 1.7±0.7 (that is, between “Somewhat
High” and “Very High”, but closer to the former).

As usual, PPSN VII was a poster-only conference; that is, all papers were
presented as posters to facilitate personal discussion and the exchange of ideas
between the presenter and the audience. Although this might imply a smaller
audience than in the case of an oral presentation, the presenter of a paper has
a better chance of getting in touch with the people most interested in her/his
topic. Consequently, posters are not “second-class” papers, as they are usually
considered in some other conferences – they are just the means of presenting.
The 90 papers presented in the conference were grouped into five sessions of
about 18 papers each. To simplify the orientation within a poster session and to
allow the audience to get a global overview of all sessions, each poster session
was introduced by a person belonging to the organizing committee who gave a
brief overview of all papers presented within a session.

Only the three invited speakers presented a one-hour oral presentation of
their research results, geared towards providing inspiration to the conference
attendees. Alexander Nareyek (CMU), Roderic Guigó (IMIM, Barcelona, Spain),
and William Hart (Sandia Labs, NM, USA), gave keynote speeches on topics
that impinge on natural computation: the human genome project, applications
of artificial intelligence to computer games, and the relationship between the
fields of evolutionary computation and optimization.

Before the technical sessions began on September 9th, two one-day events
took place. Five workshops were organized at the Palacio de Congresos on Sept.
7th, and eleven tutorials took place in the same place the next day. We would
like to thank the corresponding chairs, David W. Corne (University of Reading,
UK) and Marc Schoenauer (INRIA, France).

Finally, we would like to thank the Departamento de Arquitectura y Tec-
noloǵıa de Computadores of the University of Granada, and the regional and
national governments who provided monetary support to the conference. Julio
Ortega took the job of filling all forms, and submitting and following-up on
them, and we are deeply indebted for this. EvoNet, the network of excellence in
evolutionary computation sponsored by the European Union, provided support
in the form of travel grants for five students.

Pedro Castillo took the tedious job of helping to maintain the website. The
other members of the GeNeura team (Maribel Garćıa, José Carpio, Vı́ctor Ri-
vas, Javi Garćıa, Brad Dolin, Linda Testa, Gustavo Romero, Jaime Anguiano,
Louis Foucart) also had to put up with some tasks related to the fact that
their boss was busy at something else (although that very fact, of course, also
relieved them of some burden). The other members of the Departamento de Ar-
quitectura y Tecnoloǵıa de Computadores and the Departamento de Ciencias de
Computación e Inteligencia Artificial also provided invaluable support. We are
also very grateful to the users of the submission system who were able to spot
bugs and communicate them to us in good time.



Preface VII

We expect that these proceedings will help to take the natural computation
field a bit further, to make it more aware of the problems out there, and, finally,
to make it conscious of its existence as a whole field, not as a fractured set of
fieldlets.

Granada, June 2002 Juan Julián Merelo Guervós
Panagiotis Adamidis

Hans-Georg Beyer
José Luis Fernández Villacañas

Hans-Paul Schwefel

References

1. Hans-Paul Schwefel, Reinhart Männer, editors. Proc. 1st Conf. on Parallel Problem
Solving from Nature, Vol. 496 of Lecture Notes in Computer Science, Dortmund,
Germany, October 1–3, 1991, Springer-Verlag.

2. Reinhart Männer, Bernhard Manderick, editors. Proc. 2nd Conf. on Parallel Prob-
lem Solving from Nature, Brussels, Belgium, September 28–30, 1992, Elsevier.

3. Reinhart Männer, Yuval Davidor, Hans-Paul Schwefel, editors. Proc. 3rd Conf.
on Parallel Problem Solving from Nature, PPSN III, Vol. 866 of Lecture Notes in
Computer Science, Springer-Verlag, 1994.

4. Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, Hans-Paul Schwefel, editors.
Proc. 4th Conf. on Parallel Problem Solving from Nature, Vol. 1141 of Lecture Notes
in Computer Science, Dortmund, Germany, September 1996, Springer-Verlag.

5. Thomas Back, Agoston E. Eiben, Marc Schoenauer, editors. Proc. 5th Conf. on Par-
allel Problem Solving from Nature, Vol. 1498 of Lecture Notes in Computer Science,
Dortmund, Germany, September 1998, Springer-Verlag.

6. Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton,
Juan Julián Merelo, Hans-Paul Schwefel, editors. Parallel Problem Solving from
Nature, PPSN VI, Vol. 1917 of Lecture Notes in Computer Science, Springer-Verlag,
2000.



PPSN VII Conference Committee

Conference Chair
Juan J. Merelo Guervós

University of Granada, Spain

Program Co-Chairs
Panagiotis Adamidis

Technological Educational Institute of Thessaloniki, Greece

Hans-Georg Beyer
University of Dortmund, Germany

and
José Luis Fernández Villacañas

Universidad Carlos III, Madrid, Spain

Electronic Program Chair
Pedro Castillo

University of Granada, Spain

Proceedings Chair
Hans-Paul Schwefel

University of Dortmund, Germany

Finance Chair
Julio Ortega

University of Granada, Spain

Tutorial Chair
Marc Schoenauer
INRIA, France

Workshop Chair
David Corne

University of Reading, UK



PPSN VII Steering Committee

Kenneth De Jong
George Mason University, USA

Agoston E. Eiben
Free University, Amsterdam, The Netherlands

Juan J. Merelo Guervós
University of Granada, Spain

Marc Schoenauer
INRIA, France

Hans-Paul Schwefel
University of Dortmund, Germany

Hans-Michael Voigt
Gesellschaft zur Förderung angewandter Informatik e.V. (GFaI), Germany

Xin Yao
University of Birmingham, UK



PPSN VII Program Committee

Agapie, Alexandru
Alander, Jarmo
Alba, Enrique
Altenberg, Lee
Arnold, Dirk
Bäck, Thomas
Banzhaf, Wolfgang
Barbosa, Helio
Ben Hamida, Sana
Berny, Arnaud
Bersini, Hugues
Bidaud, Philippe
Bonarini, Andrea
Booker, Lashon B.
Braunschweig, Bertrand
Bull, Larry
Burke, Edmund
Cagnoni, Stefano
Cantu-Paz, Erick
Coello, Carlos
Collet, Pierre
Cordon, Oscar
Cottam, Ron
Cotta-Porras, Carlos
Darwen, Paul James
Dasgupta, Dipankar
Davis, Dave
Deb, Kalyanmoy
De Jong, Ken
Delahaye, Daniel
Dorigo, Marco
Dozier, Gerry
Durand, Nicolas
Eiben, Gusz
Elorza-Tenreiro, Javier
Fernandez, Francisco
Fillipic, Bogdan
Fleming, Peter

Floreano, Dario
Fogarty, Terence
Fogel, Gary
Fonlupt, Cyril
Fonseca, Carlos
Freisleben, Bernd
Fukuda, Toshio
Furuhashi, Takeshi
Gallard, Raul
Gero, John
Ghosh, Ashish
Giannakoglou, Kyriakos
Goodman, Erik
Gottlieb, Jens
Graña, Manuel
Greenwood, Garry
Hao, Jin-Kao
Hart, Emma
Harvey, Inman
Hervás, C.
Herdy, Michael
Herrera, Francisco
Hidalgo, Ignacio
Horn, Jeff
Husbands, Phil
Iba, Hitoshi
Isasi, Pedro
Jansen, Thomas
Juille, Hughes
Julstrom, Bryan
Kang, Lishan
Kazarlis, Spyros
Keane, Andy J.
Keijzer, Maarten
Keller, Robert
Kennedy, Jim
Kita, Hajime
Knowles, Joshua

Kok, Joost
Krink, Thiemo
Kushchu, Ibrahim
Lamont, Gary
Lanzi, Pier Luca
Larrañaga, Pedro
Lattaud, Claude
Leriche, Rodolphe
Leung, Kwon Sak
Li, Yun
Liardet, Pierre
Louchet, Jean
Lozano, Manuel
Luchian, Henri
Lutton, Evelyne
Marchiori, Elena
Martin, Worthy
Merkle, Larry
Merz, Peter
Meyer, Jean-Arcady
Miller, Julian
Moraga, Claudio
Muehlenbein, Heinz
Oates, Martin
O’Reilly, Una May
Oudeyer, Pierre-Yves
Paechter, Ben
Paredis, Jan
Parmee, Ian
Paton, Ray C.
Pelikan, Martin
Petridis, Vasilios
Petrowski, Alain
Poli, Riccardo
Porto, Bill
Raidl, Guenther
Ratle, Alain
Reeves, Colin



PPSN VII Program Committee XI

Reynolds, Robert
Robilliard, Denis
Rojas, Ignacio
Rosca, Justinian
Ross, Peter
Rowe, Jonathan
Rowland, Jem
Roy, Rajkumar
Rudolph, Guenter
Ryan, Conor
Salomon, Ralf
Sánchez, Luciano
Sareni, Bruno

Sarma, Jayshree
Schaffer, David
Schwefel, Hans-Paul
Sebag, Michele
Sen, Sandip
Sendhoff, Bernhard
Sinclair, Mark C.
Sipper, Moshe
Smith, Alice E.
Smith, Jim
Spears, Bill
Talbi, El Ghazali
Tateson, Richard

Tettamanzi, Andrea
Thierens, Dirk
Tomassini, Marco
Tsahalis, Demosthenes
Tuson, Andrew
Valls-Ferrán, José-M.
Venturini, Gilles
Whitley, Darrell
Wu, Annie
Zalzala, Ali
Zitzler, Eckart



PPSN VII Tutorials

Carlos A. Coello Coello, CINVESTAV-IPN, Mexico
Evolutionary Multiobjective Optimization: Past, Present and Future

David Wolfe Corne, University of Reading, UK
Natural Computation in Bioinformatics

Natalio Krasnogor, University of Reading, UK
Memetic Algorithms

Jose A. Lozano and Pedro Larrañaga, University of the Basque Country, Spain
Optimization by learning and Simulation
of Probabilistic Graphical Models

Evelyne Lutton and Jacques Lévy Véhel, INRIA - Rocquencourt, France
Fractals and Evolutionary Algorithms

Daniel Merkle, University of Karlsruhe, Germany
and Martin Middendorf, Catholic University of Eichstätt-Ingolstadt, Germany
Ant Colony Optimization

Franz Rothlauf, University of Bayreuth, Germany
Representations for Genetic and Evolutionary Algorithms

Moshe Sipper, Ben-Gurion University, Israel
Go Forth and Replicate

Wolfgang Stolzmann, DaimlerChrysler AG, Germany
and Pier Luca Lanzi, Politecnico di Milano, Italy
An Introduction to Learning Classifier Systems

Darrell Whitley, Colorado State University, USA
Evaluating Evolutionary Algorithms



Table of Contents

Evolutionary Algorithms Theory

Random Dynamics Optimum Tracking with Evolution Strategies . . . . . . . . . 3
Dirk V. Arnold, Hans-Georg Beyer

On the Behavior of Evolutionary Global-Local Hybrids
with Dynamic Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Roger Eriksson, Björn Olsson

Measuring the Searched Space to Guide Efficiency:
The Principle and Evidence on Constraint Satisfaction . . . . . . . . . . . . . . . . . . 23

Jano I. van Hemert, Thomas Bäck

On the Analysis of Dynamic Restart Strategies
for Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Thomas Jansen

Running Time Analysis of Multi-objective Evolutionary Algorithms
on a Simple Discrete Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl,
Kalyanmoy Deb

Fitness Landscapes Based on Sorting and Shortest Paths Problems . . . . . . . 54
Jens Scharnow, Karsten Tinnefeld, Ingo Wegener

Performance Measures for Dynamic Environments . . . . . . . . . . . . . . . . . . . . . . 64
Karsten Weicker

Representation/Codification Issues

Direct Representation and Variation Operators
for the Fixed Charge Transportation Problem . . . . . . . . . . . . . . . . . . . . . . . . . 77

Christoph Eckert, Jens Gottlieb

On the Utility of Redundant Encodings
in Mutation-Based Evolutionary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Joshua D. Knowles, Richard A. Watson

Binary Representations of Integers and the Performance
of Selectorecombinative Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Franz Rothlauf



XVI Table of Contents

Variation Operators: Analysis, New Techniques

Parallel Varying Mutation in Deterministic and Self-adaptive GAs . . . . . . . 111
Hernán E. Aguirre, Kiyoshi Tanaka

Self-organizing Maps for Pareto Optimization of Airfoils . . . . . . . . . . . . . . . . 122
Dirk Büche, Gianfranco Guidati, Peter Stoll, Petros Koumoutsakos

On Fitness Distributions and Expected Fitness Gain of Mutation Rates
in Parallel Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

David W. Corne, Martin J. Oates, Douglas B. Kell

Opposites Attract: Complementary Phenotype Selection for Crossover
in Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B. Dolin, M.G. Arenas, J.J. Merelo

Theoretical Analysis of the Confidence Interval Based Crossover
for Real-Coded Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C. Hervás-Mart́ınez, D. Ortiz-Boyer, N. Garćıa-Pedrajas

Deterministic Multi-step Crossover Fusion:
A Handy Crossover Composition for GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Kokolo Ikeda, Shigenobu Kobayashi

Operator Learning for a Problem Class
in a Distributed Peer-to-Peer Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

M. Jelasity, M. Preuß, A.E. Eiben

Crossover Operator Effect in Function Optimization with Constraints . . . . 184
D. Ortiz-Boyer, C. Hervás-Mart́ınez, N. Garćıa-Pedrajas

Reducing Random Fluctuations in Mutative Self-adaptation . . . . . . . . . . . . . 194
Thomas Philip Runarsson

On Weight-Biased Mutation for Graph Problems . . . . . . . . . . . . . . . . . . . . . . . 204
Günther R. Raidl, Gabriele Kodydek,, Bryant A. Julstrom

Self-adaptive Operator Scheduling Using the Religion-Based EA . . . . . . . . . 214
René Thomsen, Thiemo Krink

Probabilistic Model-Building Genetic Algorithms
in Permutation Representation Domain Using Edge Histogram . . . . . . . . . . . 224

Shigeyoshi Tsutsui

From Syntactical to Semantical Mutation Operators
for Structure Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Dirk Wiesmann



Table of Contents XVII

Evolutionary Techniques: Coevolution

Parameter Control within a Co-operative Co-evolutionary
Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Antony Iorio, Xiaodong Li

The Effects of Representational Bias on Collaboration Methods
in Cooperative Coevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

R. Paul Wiegand, William C. Liles, Kenneth A. De Jong

Multiobjective Optimization

Parallel and Hybrid Models for Multi-objective Optimization:
Application to the Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Nicolas Jozefowiez, Frédéric Semet, El-Ghazali Talbi

Multiobjective Design Optimization of Merging Configuration
for an Exhaust Manifold of a Car Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Masahiro Kanazaki, Masashi Morikaw, Shigeru Obayashi,
Kazuhiro Nakahashi

Multi-objective Co-operative Co-evolutionary Genetic Algorithm . . . . . . . . . 288
Nattavut Keerativuttitumrong, Nachol Chaiyaratana, Vara Varavithya

Bayesian Optimization Algorithms for Multi-objective Optimization . . . . . . 298
Marco Laumanns, Jiri Ocenasek

An Evolutionary Algorithm for Controlling Chaos:
The Use of Multi–objective Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . 308

Hendrik Richter

Evolutionary Algorithms: New Techniques

On Modelling Evolutionary Algorithm Implementations
through Co-operating Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Panagiotis Adamidis, Vasilios Petridis

Permutation Optimization by Iterated Estimation
of Random Keys Marginal Product Factorizations . . . . . . . . . . . . . . . . . . . . . . 331

Peter A.N. Bosman, Dirk Thierens

Advanced Population Diversity Measures in Genetic Programming . . . . . . . 341
Edmund Burke, Steven Gustafson, Graham Kendall,
Natalio Krasnogor

Introducing Start Expression Genes
to the Linkage Learning Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Ying-ping Chen, David E. Goldberg



XVIII Table of Contents

Metamodel–Assisted Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Michael Emmerich, Alexios Giotis, Mutlu Özdemir,
Thomas Bäck, Kyriakos Giannakoglou

Limiting the Number of Fitness Cases in Genetic Programming
Using Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Mario Giacobini, Marco Tomassini, Leonardo Vanneschi

Resource-Based Fitness Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Jeffrey Horn

Evolution Strategy with Neighborhood Attraction
Using a Neural Gas Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Jutta Huhse, Thomas Villmann, Peter Merz, Andreas Zell

A New Asynchronous Parallel Evolutionary Algorithm
for Function Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Pu Liu, Francis Lau, Michael J. Lewis, Cho-li Wang

Fighting Bloat with Nonparametric Parsimony Pressure . . . . . . . . . . . . . . . . 411
Sean Luke, Liviu Panait

Increasing the Serial and the Parallel Performance
of the CMA-Evolution Strategy with Large Populations . . . . . . . . . . . . . . . . . 422

Sibylle D. Müller, Nikolaus Hansen, Petros Koumoutsakos

Adaptive Reservoir Genetic Algorithm with On-Line Decision Making . . . . 432
Cristian Munteanu, Agostinho Rosa

Genetic Algorithm Visualization Using Self-organizing Maps . . . . . . . . . . . . . 442
G. Romero, J.J. Merelo, P.A. Castillo, J.G. Castellano, M.G. Arenas

Generalised Regression GA for Handling Inseparable Function Interaction:
Algorithm and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Rajkumar Roy, Ashutosh Tiwari

Diversity-Guided Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Rasmus K. Ursem

Hybrid Algorithms: Neurogenetic Algorithms,
Evolutionary Techniques Applied to Neural Nets

Evolutionary Optimization of Heterogeneous Problems . . . . . . . . . . . . . . . . . . 475
Llúıs A. Belanche Muñoz

Automatic Recurrent and Feed-Forward ANN Rule
and Expression Extraction with Genetic Programming . . . . . . . . . . . . . . . . . . 485

Julian Dorado, Juan R. Rabuñal, Antonino Santos, Alejandro Pazos,
Daniel Rivero



Table of Contents XIX

Learning and Evolution by Minimization of Mutual Information . . . . . . . . . 495
Yong Liu, Xin Yao

Evolved RBF Networks for Time-Series Forecasting
and Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

V.M. Rivas, P.A. Castillo, J.J. Merelo

Hybrid Algorithms: Memetic, Other

Evolutive Identification of Fuzzy Systems for Time-Series Prediction . . . . . . 517
Jesús González, Ignacio Rojas, Héctor Pomares

HyGLEAM - An Approach to Generally Applicable Hybridization
of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Wilfried Jakob

Co-evolving Memetic Algorithms: Initial Investigations . . . . . . . . . . . . . . . . . 537
Jim Smith

Learning Classifier Systems

Consideration of Multiple Objectives
in Neural Learning Classifier Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Larry Bull, Matt Studley

On Using Constructivism in Neural Classifier Systems . . . . . . . . . . . . . . . . . . 558
Larry Bull

Initial Modifications to XCS for Use in Interactive Evolutionary Design . . . 568
Larry Bull, David Wyatt, Ian Parmee

First Results from Experiments in Fuzzy Classifier System Architectures
for Mobile Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

A.G. Pipe, B. Carse

TCS Learning Classifier System Controller on a Real Robot . . . . . . . . . . . . . 588
Jacob Hurst, Larry Bull, Chris Melhuish

Comparison of Different Techniques

Comparing Synchronous and Asynchronous Cellular Genetic Algorithms . . 601
Enrique Alba, Mario Giacobini, Marco Tomassini, Sergio Romero

Satellite Range Scheduling: A Comparison of Genetic, Heuristic
and Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

L. Barbulescu, A.E. Howe, J.P. Watson, L.D. Whitley

The LifeCycle Model: Combining Particle Swarm Optimisation,
Genetic Algorithms and HillClimbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Thiemo Krink, Morten Løvbjerg



XX Table of Contents

Metaheuristics for Group Shop Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
Michael Sampels, Christian Blum, Monaldo Mastrolilli,
Olivia Rossi-Doria

Experimental Investigation of Three Distributed
Genetic Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

Marco Tomassini, Leonardo Vanneschi, Francisco Fernández,
Germán Galeano

Model-Based Search for Combinatorial Optimization:
A Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

Mark Zlochin, Marco Dorigo

Evolutionary Algorithm Implementations

A Framework for Distributed Evolutionary Algorithms . . . . . . . . . . . . . . . . . . 665
M.G. Arenas, P. Collet, A.E. Eiben, M. Jelasity, J.J. Merelo,
B. Paechter, M. Preuß, M. Schoenauer

Optimisation of Multilayer Perceptrons
Using a Distributed Evolutionary Algorithm with SOAP . . . . . . . . . . . . . . . . 676

P.A. Castillo, M.G. Arenas, J.G. Castellano, J.J. Merelo, V.M. Rivas,
G. Romero

Applications

Off-Line Evolution of Behaviour for Autonomous Agents
in Real-Time Computer Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Eike Falk Anderson

A Parallel Evolutionary Algorithm
for Stochastic Natural Language Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

Lourdes Araujo

Evolutionary Learning of Boolean Queries
by Multiobjective Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

Oscar Cordón, Enrique Herrera-Viedma, Maŕıa Luque

Inferring Phylogenetic Trees Using Evolutionary Algorithms . . . . . . . . . . . . . 720
Carlos Cotta, Pablo Moscato

Towards a More Efficient Evolutionary Induction of Bayesian Networks . . . 730
Carlos Cotta, Jorge Muruzábal

Robust Multiscale Affine 2D-Image Registration
through Evolutionary Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Héctor Fernando Gómez Garćıa, Arturo González Vega,
Arturo Hernández Aguirre, José Luis Marroqúın Zaleta,
Carlos Coello Coello



Table of Contents XXI

Synthesizing Graphical Models Employing Explaining Away . . . . . . . . . . . . . 749
Ralf Garionis

Constructive Geometric Constraint Solving: A New Application
of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

R. Joan-Arinyo, M.V. Luzón, A. Soto

Multimeme Algorithms for Protein Structure Prediction . . . . . . . . . . . . . . . . 769
N. Krasnogor, B.P. Blackburne, E.K. Burke, J.D. Hirst

A Dynamic Traffic Model for Frequency Assignment . . . . . . . . . . . . . . . . . . . . 779
Hakim Mabed, Alexandre Caminada, Jin-Kao Hao, Denis Renaud

A Parameter-Free Genetic Algorithm
for a Fixed Channel Assignment Problem with Limited Bandwidth . . . . . . . 789

Shouichi Matsui, Isamu Watanabe, Ken-ichi Tokoro

Real-Coded Parameter-Free Genetic Algorithm
for Job-Shop Scheduling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Shouichi Matsui, Isamu Watanabe, Ken-ichi Tokoro

Clustering Gene Expression Profiles with Memetic Algorithms . . . . . . . . . . . 811
Peter Merz, Andreas Zell

Cellular Automata and Genetic Algorithms
for Parallel Problem Solving in Human Genetics . . . . . . . . . . . . . . . . . . . . . . . 821

Jason H. Moore, Lance W. Hahn

Evolutionary Graph Generation System and Its Application
to Bit-Serial Arithmetic Circuit Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Makoto Motegi, Naofumi Homma, Takafumi Aoki, Tatsuo Higuchi

Evaluating Multi-criteria Evolutionary Algorithms
for Airfoil Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

Boris Naujoks, Lars Willmes, Thomas Bäck, Werner Haase

Hyperheuristics: A Robust Optimisation Method Applied
to Nurse Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

Peter Cowling, Graham Kendall, Eric Soubeiga

Evolving the Topology of Hidden Markov Models
Using Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

René Thomsen

Solving a Real World Routing Problem
Using Multiple Evolutionary Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871

Neil Urquhart, Peter Ross, Ben Paechter, Ken Chisholm



XXII Table of Contents

Other Bioinspired Algorithms:
Cellular Automata, Ant Colony Optimization

An Ant Colony Optimization Approach
to the Probabilistic Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . 883

Leonora Bianchi, Luca Maria Gambardella, Marco Dorigo

When Model Bias Is Stronger than Selection Pressure . . . . . . . . . . . . . . . . . . 893
Christian Blum, Michael Sampels

Evolution of Asynchronous Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . 903
Mathieu S. Capcarrere

Improved Ant-Based Clustering and Sorting
in a Document Retrieval Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

Julia Handl, Bernd Meyer

An Adaptive Flocking Algorithm for Spatial Clustering . . . . . . . . . . . . . . . . . 924
Gianluigi Folino, Giandomenico Spezzano

Evolution of Asynchronous Cellular Automata for the Density Task . . . . . . 934
Marco Tomassini, Mattias Venzi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945



PPSN VII Workshops

International Workshop on Learning Classifier Systems 2002
– IWLCS 2002
Wolfgang Stolzmann, Pier Luca Lanzi, and Stewart Wilson

International Workshop on Memetic Algorithms III – WOMA-III
Natalio Krasnogor, William Hart, and Jim Smith

Multiobjective Problem Solving from Nature II – MPSN-II
Joshua Knowles

Neural and Evolutionary Computation in the Biosciences – ENB
Gary Fogel and David Corne

Real World Applications II – RWOEC
Rajkumar Roy and Ashutosh Tiwari



Random Dynamics Optimum Tracking
with Evolution Strategies

Dirk V. Arnold and Hans-Georg Beyer

Department of Computer Science XI, University of Dortmund
44221 Dortmund, Germany

{arnold,beyer}@ls11.cs.uni-dortmund.de

Abstract. Dynamic optimization is frequently cited as a prime applica-
tion area for evolutionary algorithms. In contrast to static optimization,
the objective in dynamic optimization is to continuously adapt the solu-
tion to a changing environment – a task that evolutionary algorithms are
believed to be good at. At the time being, however, almost all knowledge
with regard to the performance of evolutionary algorithms in dynamic
environments is of an empirical nature. In this paper, tools devised orig-
inally for the analysis in static environments are applied to study the
performance of a popular type of recombinative evolution strategy with
cumulative mutation strength adaptation on a dynamic problem. With
relatively little effort, scaling laws that quite accurately describe the be-
havior of the strategy and that greatly contribute to its understanding
are derived and their implications are discussed.

1 Introduction

Dynamic optimization is distinguished from static optimization in that in the
former, the objective function is not constant but varies with time. Dynamic op-
timization problems arise in many areas of engineering and computer science, as
for example in the determination of optimal control policies or in connection with
online job scheduling where new jobs arrive in the course of the optimization.
While the goal in static optimization is to locate an optimal solution rapidly and
accurately, the objective in dynamic optimization is to track a moving target as
closely as possible. Strategies for dynamic optimization thus need to continuously
adapt to changes in the environment.

In enumerations of potential domains of application of evolutionary algo-
rithms, dynamic optimization often takes one of the top spots. At the time being,
almost all knowledge with regard to the capabilities of evolutionary algorithms
in dynamic environments is based on empirical observations. An extensive sur-
vey of the literature of the field along with a collection of benchmark functions
and a discussion of methods that have been proposed to improve the perfor-
mance of evolutionary algorithms in dynamic environments has been compiled
by Branke [7]. Angeline [1] compares empirically the tracking performance of an
evolutionary algorithm employing a form of mutative self-adaptation with that
of a strategy using a simple heuristic for mutation strength adaptation. The

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 3–12, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



4 Dirk V. Arnold and Hans-Georg Beyer

fitness environment considered is a three-dimensional, spherically symmetric ob-
jective function that is shifted periodically either in a random fashion or on a
linear or a spherical path. Angeline observes that the self-adaptation mechanism
is not without problems in the dynamic case. In that same fitness environment,
Bäck [4] compares different variants of mutative self-adaptation and presents evi-
dence that seems to indicate that the lognormal self-adaptation used in evolution
strategies performs better than the variant of self-adaptation commonly used in
evolutionary programming. Salomon and Eggenberger [13] compare the perfor-
mance of evolution strategies with that of a breeder genetic algorithm on the
sphere, an ellipsoid, and Rastrigin’s function, where the coordinates are shifted
by a constant increment in every time step. The search space dimensionalities
they consider for the sphere are N = 10 and N = 30. Without quantifying the
term, they find that the sensitivity to the particular implementation of the strat-
egy and to its parameter values is much lower for the tracking task than it is in a
static environment. Without providing details, they also report to have observed
that recombination is not beneficial for tracking a moving target. Weicker and
Weicker [14] contrast self-adaptation of a single mutation strength with that of
N mutation strengths and adaptation of the full mutation covariance matrix and
find that in more rapidly changing environments, the adaptation of more than a
single mutation strength becomes unreliable. Droste [9] presents a first rigorous
analysis of the performance of a (1 + 1)-strategy on a discrete, dynamic objec-
tive function. However, focus in that paper is not on the tracking behavior of the
strategy but rather on the expected time required to first reach the optimum.
Finally, Bürger [8] reviews references from the field of population genetics that
are concerned with moving optima. Both the objective and the genetic operators
considered in those references differ substantially from the focus of the present
paper.

While useful for providing the reader with a first idea of the capabilities and
the limitations of evolutionary algorithms in dynamic environments, the results
of empirical studies are not always easy to interpret. It is not clear how difficult
the task of tracking is. Many of the experiments reported in the references listed
above have been conducted with large populations in low-dimensional search
spaces – a case that should arguably be comparatively easy to handle. It would
therefore be desirable to have scaling laws that describe the influence of the pa-
rameters of the strategies and of the fitness environment. Not only would such
scaling laws yield an improved understanding of the behavior of the strategies
and their operators and parameters, but they would also allow for the analytical
calculation of optimal strategy parameter values and for the comparison of the
performance of different strategy variants. In the realm of evolution strategies,
much work has been done towards deriving such scaling laws in simple static
environments. Many of the tools developed and the main results can be found in
the monographs by Beyer [6] and by Rechenberg [12]. In the present paper, we
will see that the tools developed for static environments can be applied to the
analysis of evolution strategies for dynamic optimization in real-valued search
spaces with relatively little effort. In particular, the tracking performance of the



Random Dynamics Optimum Tracking with Evolution Strategies 5

(µ/µ, λ)-ES with cumulative mutation strength adaptation is studied analyti-
cally for a spherically symmetric objective function the center of which is shifted
randomly in every time step. For that purpose, in Sect. 2 we briefly introduce
and motivate the choice of strategy and fitness environment. In Sect. 3, we an-
alyze the behavior of the strategy in the environment thus introduced for fixed
mutation strength. In Sect. 4, the performance of the mutation strength adap-
tation scheme is investigated. Finally, Sect. 5 concludes with a summary and a
discussion of directions for future research.

2 Preliminaries

In all of what follows, we assume real-valued objective functions IRN → IR. The
(µ/µ, λ)-ES with isotropic normal mutations in every time step generates λ off-
spring candidate solutions from a population of µ parents, where λ > µ, and
subsequently replaces the parental population by the µ best of the offspring.
Generation of an offspring candidate solution consists in adding a vector σz,
where z consists of independent, standard normally distributed components, to
the centroid of the parental population. The standard deviation σ of the com-
ponents of vector σz is referred to as the mutation strength, vector z as the
mutation vector. The average of those mutation vectors that correspond to off-
spring candidate solutions that are selected to form the population of the next
time step is the progress vector 〈z〉. Note that due to the definition of global
intermediate recombination, σ〈z〉 connects consecutive centroids of the popula-
tion. The choice of strategy is motivated both by the fact that it is relatively
amenable to mathematical analysis and by its proven good performance in static
settings.

No evolution strategy in real-valued search spaces is complete without a mu-
tation strength adaptation mechanism. It is necessary for the mutation strength
to be adapted continuously to fit the local characteristics of the objective func-
tion. Two mechanisms that are commonly used for the adaptation of the mu-
tation strength are mutative self-adaptation and cumulative mutation strength
adaptation. While the former is the more popular approach counting the number
of publications, we choose to analyze cumulative mutation strength adaptation
as it is known that mutative self-adaptation is unable to make full use of the ge-
netic repair effect in combination with global intermediate recombination. Also
note that while the original algorithm by Hansen and Ostermeier [11, 10] adapts
the entire mutation covariance matrix, the variant considered here uses isotropic
mutations and therefore only a single mutation strength.

The cumulative mutation strength adaptation mechanism relies on the con-
jecture that if the mutation strength is below its optimal value consecutive steps
of the strategy tend to be parallel, and if the mutation strength is too high con-
secutive steps tend to be antiparallel. For optimally adapted mutation strength,
the steps taken by the evolution strategy are uncorrelated. So as to be able
to reliably detect parallel or antiparallel correlations between successive steps,
information from a number of time steps needs to be accumulated. For the



6 Dirk V. Arnold and Hans-Georg Beyer

(µ/µ, λ)-ES, the accumulated progress vector s is defined by s(0) = 0 and the
recursive relationship

s(t+1) = (1− c)s(t) +
√
c(2− c)√µ〈z〉(t) , (1)

where c is a constant determining how far back the “memory” of the accumula-
tion process reaches. The mutation strength is updated according to

σ(t+1) = σ(t) exp
(‖s(t+1)‖2 −N

2DN

)
, (2)

where D denotes a damping constant. The term N in the numerator of the argu-
ment to the exponential function is the mean squared length of the accumulated
progress vector if consecutive progress vectors are stochastically independent.
The constants c and D are set to 1/

√
N and

√
N , respectively, according to

recommendations made by Hansen [11].
The sphere model is the set of all functions f : IRN → IR with

f(x) = g(‖x̂− x‖) ,
where g : IR → IR is a strictly monotonic function of the distance R = ‖x̂ − x‖
of a candidate solution x from the target x̂. The sphere model usually serves
as a model for fitness landscapes at a stage where the population of candidate
solutions is in relatively close proximity to the target and is most often studied
in the limit of very high search space dimensionality. So as to study the tracking
behavior of evolutionary algorithms, several authors ([1, 4, 13]) have added a
dynamic component to the sphere model by stipulating that the target x̂ varies
with time. Several modes of motion of the target are conceivable and have been
explored empirically. Examples include random motion, linear motion, and cir-
cular motion in search space. For the present paper, we restrict ourselves to
considering random motion and assume that the target at time step t + 1 is
given by x̂(t+1) = x̂(t) + δẑ, where vector ẑ consists of N independent, standard
normally distributed components. The standard deviation δ is a measure for
the speed of the target. The same model has been considered by Angeline [1],
Bäck [4], and Branke [7].

3 Dynamic Sphere

The analysis of the behavior of evolution strategies on the sphere model is greatly
simplified by the symmetries inherent in both the strategies and the environment.
Following an idea introduced by both Beyer [5] and Rechenberg [12], a vector z
originating at search space location x can be written as the sum of two vectors zA
and zB , where zA is parallel to x̂ − x and zB is in the hyperplane normal to
that. We will refer to zA and zB as the central and the lateral components of
vector z, respectively. We define the signed length zA of the central component
of vector z to equal ‖zA‖ if zA points towards the target and to equal −‖zA‖
if zA points away from it. Figure 1 illustrates the decomposition.



Random Dynamics Optimum Tracking with Evolution Strategies 7

R

rx

y

x̂

σz

σzA

σzB

Fig. 1. Decomposition of a vector z into central component zA and lateral compo-
nent zB for the sphere model. Vector zA is parallel to x̂ − x, vector zB is in the
hyperplane perpendicular to that. The starting and end points, x and y = x + σz, of
vector σz are at distances R and r from the target x̂, respectively

Using elementary geometry and denoting the respective distances of x and
y = x + σz from the target by R and r, it is easily seen that

r2 = (R− σzA)2 + σ2‖zB‖2

= R2
(

1− 2σ
R
zA +

σ2

R2 ‖z‖2
)
.

Moreover, we will see that in high-dimensional search spaces, progress of the
strategies requires σ � R, making it possible to expand the term in parentheses
around unity and to cut off after the linear term, yielding

r = R− σzA +
σ2

2R
‖z‖2 + . . . (3)

for the distance of y from the target.
Let us first consider the case that z is a mutation vector. Then, as muta-

tions are isotropic, we can without loss of generality assume that zA = z1 and
zB = (0, z2, . . . , zN )T, where the zi, i = 1, . . . , N , are independently drawn from
a standardized normal distribution. The squared length ‖zB‖2 of the lateral com-
ponent is the sum of squares of N−1 terms and as such χ2

N−1-distributed. Recall
that the χ2

N−1-distribution has mean N − 1 and standard deviation
√

2(N − 1).
With increasing search space dimensionality, the influence of the central com-
ponent zA on the squared length ‖z‖2 of a mutation vector decreases more
and more. In the limit of infinite search space dimensionality, the quotient
(‖z‖2 −N)/N tends to zero, and thus ‖z‖2 is well approximated by N . There-
fore, according to (3), the difference between the distance from the target of
the centroid of the parental population and the distance from the target of an
offspring candidate solution has normal distribution with mean −σ2N/2R and



8 Dirk V. Arnold and Hans-Georg Beyer

with variance σ2. Note that it is only the central component of a mutation vec-
tor that determines the fitness of the offspring candidate solution; in the limit of
infinite search space dimensionality, the contribution of the lateral component
is the same for all offspring and thus selectively neutral. This has been shown
more formally using an approach based on characteristic functions in [2].

For the sphere model, selection ensures that those offspring candidate solu-
tions with the smallest values of r form the population of the next time step.
Recombination averages those candidate solutions that are selected. The lateral
components of the mutation vectors are selectively neutral in that they con-
tribute a constant to the fitness of the offspring they generate. Thus, they are
independent. The lateral component of the progress vector is the average of the
lateral components of the mutation vectors that correspond to those offspring
candidate solutions that are selected. It is easy to see that its squared length
is N/µ, where the division by µ is due to the independence of the vectors be-
ing averaged. According to (3), the lateral component of the progress vector
increases the distance to the target by σ2N/2µR. The reduction of that term by
the factor µ in the denominator has been termed the genetic repair effect.

The central component of the progress vector is the average of those µ of the λ
mutation vectors that have the largest signed lengths of the central components.
The expected signed length of the central component of the progress vector
is thus cµ/µ,λ, where cµ/µ,λ ≥ 0 is the expected average of the first µ order
statistics of a sample of λ standard normally distributed, independent random
variables. An integral expression for cµ/µ,λ has been derived in [6]. According
to (3), the central component of the progress vector reduces the distance to
the target by σcµ/µ,λ. Note that while the gain term resulting from the central
components is linear in σ, the loss term resulting from the lateral components
grows quadratically. The range of useful mutation strengths is thus limited,
requiring σ � R as stipulated above.

So far, we have not considered the motion of the target. For the dynamic
sphere, in every time step, the target takes a random step δẑ, where ẑ consists
of N independent, standard normally distributed components. In effect, that
is the same as the centroid of the population taking a random step −δẑ. The
consequences of such a step have been investigated above: it leads to a increase
in distance from the target by δ2N/2R. Thus, the expected distance between
the target and the centroid of the population at the next time step is

E
[
R(t+1)

]
= R(t) − σcµ/µ,λ +

σ2N

2µR
+
δ2N

2R
, (4)

where the second and third terms on the right hand side result from the central
and lateral components of the progress vector and the fourth summand is a
consequence of the motion of the target.

After initialization effects have faded, the distance from the target of the cen-
troid of the population has a time-invariant distribution. A good approximation
to the mean of that distribution is obtained from (4) by ignoring fluctuations
and simply demanding that E[R(t+1)] = R(t) = R. Solving for R yields



Random Dynamics Optimum Tracking with Evolution Strategies 9

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0 8.0

mutation strength σ

di
st

an
ce

fr
om

th
e

ta
rg

et
R
/N

Fig. 2. Distance from the target R/N for a (3/3, 10)-ES with, from bottom to top,
δ = 0.5, 1.0, and 2.0. Search space dimensionality is N = 40. The crosses are measured
values, the lines reflect predictions from (5)

R =
N

2cµ/µ,λ

(
σ

µ
+
δ2

σ

)
. (5)

Figure 2 shows that the resulting predictions are quite accurate. The accuracy
increases further with increasing search space dimensionality. It can be seen
that it somewhat decreases with increasing mutation strength as some of the
assumptions made in the derivation of (3) are violated, but is very good in the
range of mutation strengths where R is small.

Using (5), the optimal mutation strength can be found by computing the
derivative with respect to σ and finding a root thereof. From

∂R

∂σ
=

N

2cµ/µ,λ

(
1
µ
− δ2

σ2

)

it follows that σ =
√
µδ is optimal, and (5) shows that the corresponding distance

from the target is

R =
Nδ√
µcµ/µ,λ

. (6)

That is, the distance from the target increases linearly with the speed of the
target and can be decreased by increasing the population size. This decrease is
due to the use of global intermediate recombination. To the reader acquainted
with the theory of evolution strategies on the sphere model, it will not come
as a surprise that from σ =

√
µδ with (6) it follows that the optimal mutation

strength is σ = µcµ/µ,λR/N . This relationship has long been known to hold for
the static sphere model. We now know that it holds as well when tracking a
moving target with random dynamics.



10 Dirk V. Arnold and Hans-Georg Beyer

4 Cumulative Mutation Strength Adaptation

Clearly, when using a mutation strength adaptation mechanism, there is no guar-
antee that the mutation strength that the strategy realizes is optimal; indeed, it
often is not. The performance of the cumulative mutation strength adaptation
mechanism on the static sphere model in the presence of noise has recently been
analyzed in [3]. It has been found that even in the absence of noise, the mutation
strength that the adaptation mechanism realizes is suboptimal due to the fact
that the optimum is approached and that the approach is not instantaneous,
leading to the strategy always trailing behind. The approach pursued in [3] can
be adapted to the dynamic sphere model as follows. Note that due to space
limitations, the derivation necessarily needs to remain sketchy at times.

As mutation vectors and progress vectors, the accumulated progress vector s
can be written as the sum of its central and lateral components, sA and sB .
We write sA for the signed length of the central component and as in Sect. 3
assume without loss of generality that at time t, the direction to the target is
such that sA = s1. Using (1) and for notational simplicity writing z instead
of 〈z〉 for the progress vector, we have

‖s(t+1)‖2 =
N∑
i=1

(
(1− c)s(t)

i +
√
c(2− c)√µz(t)

i

)2

= (1− c)2‖s(t)‖2 + 2(1− c)
√
c(2− c)µ

N∑
i=1

s
(t)
i z

(t)
i + c(2− c)µ‖z(t)‖2 .

The signed length of the central component of a vector equals the inner product
of that vector with a vector of length unity from the centroid of the population to
the target. Therefore, writing x for the centroid of the population and using (1),
we have

s
(t+1)
A =

(
(1− c)s(t) +

√
c(2− c)√µz(t)

)T x̂(t) + δẑ(t) − x(t) − σ(t)z(t)

R(t+1)

=
R(t)

R(t+1)

[
(1− c)

(
s

(t)
A +

δ

R(t)

N∑
i=1

s
(t)
i ẑ

(t)
i −

σ(t)

R(t)

N∑
i=1

s
(t)
i z

(t)
i

)

+
√
c(2− c)√µ

(
z

(t)
A +

δ

R(t)

N∑
i=1

ẑ
(t)
i z

(t)
i −

σ(t)

R(t) ‖z(t)‖2
)]

.

These two equations together with (2) describe the development from one time
step to the next of the squared length of the accumulated progress vector, the
signed length of its central component, and the mutation strength. In analogy
to the way we proceeded in Sect. 3, we ignore fluctuations and assume that all
quantities can be replaced by their expected values. Omitting time superscripts,
for the stationary case it follows that

‖s‖2 = (1− c)2‖s‖2 + 2(1− c)
√
c(2− c)√µsAcµ/µ,λ + c(2− c)N , (7)



Random Dynamics Optimum Tracking with Evolution Strategies 11

0.0

6.0

12.0

18.0

24.0

0.0 2.0 4.0 6.0 8.0

speed of the target δ

m
ut

at
io

n
st

re
ng

th
σ

Fig. 3. Mutation strength σ as a function of the speed of the target δ for, from bottom
to top, a (3/3, 10)-ES, a (6/6, 20)-ES, and a (12/12, 40)-ES. Search space dimensionality
is N = 40. The crosses are measured values realized by cumulative mutation strength
adaptation, the lines reflect optimal values σ =

√
µδ

where we have used the fact that E[zi] = 0 for i �= 1 due to symmetry reasons,
that

sA = (1− c)sA +
√
c(2− c)√µ

(
cµ/µ,λ − σN

µR

)
, (8)

where σsAcµ/µ,λ/R has been neglected as compared to sA as σ � R, and that

σ = σ exp
(‖s‖2 −N

2DN

)
. (9)

Solving (7), (8), and (9) for the mutation strength yields σ = µcµ/µ,λR/N .
Figure 3 demonstrates the accuracy of the result. The resulting distance R to the
target is given by (6). Comparison with the optimal mutation strength σ =

√
µδ

derived in Sect. 3 shows that cumulative mutation strength adaptation achieves
optimal performance on the sphere model with random dynamics of the target.

5 Conclusions

In this paper, we have studied the tracking performance of the (µ/µ, λ)-ES on
a variant of the sphere model with random dynamics of the target. A scaling
law that describes the dependence of the distance from the target on the muta-
tion strength has been found and solved analytically for the optimal mutation
strength. It has then been shown that cumulative mutation strength adaptation
works perfectly in that the optimal mutation strength is realized by the algo-
rithm. Thus, our results do not support the observation made by Branke [7] that
in dynamic optimization, evolutionary algorithms lose the diversity necessary for
exploring the search space.



12 Dirk V. Arnold and Hans-Georg Beyer

A goal of future research is the analysis of the performance of the (µ/µ, λ)-ES
on a variant of the sphere model where the motion of the target is deterministic
and linear. Cumulative mutation strength adaptation aims at achieving a step
length that eliminates correlations between successive steps. Linear motion of
the target can be expected to introduce correlations in the sequence of steps to
be taken and thus to lead to qualitatively new insights in the performance of
cumulative mutation strength adaptation in dynamic environments.

Acknowledgments

The first author is supported by the Deutsche Forschungsgemeinschaft (DFG)
under grant Be1578/6-3. The second author is supported by the DFG as a
Heisenberg fellow under grant Be1578/4-2.

References

1. P. J. Angeline. Tracking extrema in dynamic environments. In Proc. of the Sixth
International Conference on Evolutionary Programming, pages 335–345. Springer
Verlag, Heidelberg, 1997.

2. D. V. Arnold and H.-G. Beyer. Local performance of the (µ/µI , λ)-ES in a noisy
environment. In W. N. Martin and W. M. Spears, editors, Foundations of Genetic
Algorithms 6, pages 127–141. Morgan-Kaufmann, San Francisco, 2000.

3. D. V. Arnold and H.-G. Beyer. An analysis of cumulative mutation stength adap-
tation. In preparation, 2002.

4. T. Bäck. On the behavior of evolutionary algorithms in dynamic environments. In
Proc. of the 1998 International Conference on Evolutionary Computation, pages
446–451. IEEE Press, Piscataway, NJ, 1998.

5. H.-G. Beyer. Toward a theory of evolution strategies: Some asymptotical results
from the (1 +, λ)-theory. Evolutionary Computation, 1(2):165–188, 1993.

6. H.-G. Beyer. The Theory of Evolution Strategies. Natural Computing Series.
Springer Verlag, Heidelberg, 2001.

7. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers, Dordrecht, 2001.

8. R. Bürger. The Mathematical Theory of Selection, Recombination, and Mutation.
John Wiley & Sons, Chichester, 2000.

9. S. Droste. Analysis of the (1 + 1) EA for a dynamically changing objective func-
tion. In Proc. of the 2002 Congress on Evolutionary Computation. IEEE Press,
Piscataway, NJ, 2002.

10. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, 2001.

11. N. Hansen. Verallgemeinerte individuelle Schrittweitenregelung in der Evolutions-
strategie. Mensch & Buch Verlag, Berlin, 1998.

12. I. Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart, 1994.
13. R. Salomon and P. Eggenberger. Adaptation on the evolutionary time scale: A

working hypothesis and basic experiments. In Proc. of the Third Conference on
Artificial Evolution, pages 251–262. Springer Verlag, Heidelberg, 1997.

14. K. Weicker and N. Weicker. On evolution strategy optimization in dynamic en-
vironments. In Proc. of the 1999 Congress on Evolutionary Computation, pages
2039–2046. IEEE Press, Piscataway, NJ, 1999.



On the Behavior of Evolutionary Global-Local
Hybrids with Dynamic Fitness Functions

Roger Eriksson and Björn Olsson

Dept. of Computer Science, University of Skövde
Box 408, 54128 Skövde, Sweden

{roger.eriksson,bjorn.olsson}@ida.his.se

Abstract. This paper investigates the ability of evolutionary global-
local hybrid algorithms to handle dynamic fitness functions. Using a
model where fitness functions vary in ruggedness as well as in whether
changes occur gradually or abruptly, we evaluate the performance of
Baldwinian and Lamarckian hybrid strategies and find them capable of
locating and tracking a moving global optimum.

1 Introduction

Evolutionary global-local hybrids (hereafter referred to as hybrids) are Evolu-
tionary Algorithms (EAs) that include local search methods to increase their
efficiency, either in reducing the time to reach an adequate solution quality or
increasing the maximum quality in specified time. The role of evolution in such
hybrids is to perform global search, which seeks promising regions of the search
space, whereas the role of local search is to fine-tune promising solutions.

Hybrids have primarily been used in domains where special local search meth-
ods have been developed. When such local search methods are used, increases
in efficiency can often be attributed to their exploitation of problem specific
knowledge, (see e.g. [1] and [2] for successful applications in continuous and
combinatorial domains respectively). The inclusion of special local search meth-
ods therefore seem to be an efficient means of incorporating problem specific
knowledge. Another advantage of hybrids described in the literature is the ac-
celeration of evolution from a smoothing of the fitness landscape [3] [4]. A less
described advantage is the improvement of the fine-tuning capabilities.

Previous work on hybrids deals with static fitness functions, and their ability
to deal with dynamics is largely unknown. This paper aims to remedy this situa-
tion by investigating the ability of hybrids to deal with dynamic fitness functions.
If hybrids have this capacity, special measures such as the ones described in [5]
may not have to be used and we would therefore not have to compromise the
static efficiency. According to [6] there is a tension between designing and tuning
EAs for static fitness vs. dynamic functions - improved efficiency on one invari-
ably decreases the efficiency on the other. Our hypothesis is that hybrids are
able to handle dynamic fitness functions, without using any special measures.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 13–22, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



14 Roger Eriksson and Björn Olsson

The need to deal with dynamic fitness functions arises because many real-
world problems include time-varying changes to the fitness function. Unfortu-
nately, traditional EAs are generally poor at dealing with such dynamics since
they operate by converging the population on the most promising region of the
search space. A number of different approaches addressing this problem have
been suggested (see e.g. [5] for a survey).

As outlined by De Jong in [6], real-world dynamic fitness functions do not
appear to change in arbitrarily random ways but exhibit patterns of change
that can be discovered and exploited. De Jong offers a categorisation of the
corresponding fitness landscapes into:

– drifting landscapes, exhibiting gradual movement of the optima;
– landscapes undergoing significant morphological changes, where high fitness

peaks shrink and new peaks emerge from previously uninteresting regions;
– cyclic landscapes, which repeatedly visit a limited number of states; and
– landscapes which change abruptly and discontinuously.

This paper focuses on gradually and abruptly changing landscapes, and we inves-
tigate if two types of hybrids can handle these dynamic landscapes. Following [3],
we term these two types of hybrids Baldwinian and Lamarckian. A more thor-
ough description of the landscapes and algorithms tested appears in Chapter 2,
followed by experimental results in Chapter 3 and conclusions in Chapter 4.

2 Experimental Setup

The purpose of the experiments reported here is to investigate how evolutionary
global-local hybrids deal with dynamic fitness landscapes. For practical reasons
the scope of this investigation is limited in various ways defined below, e.g. in
that it only deals with a particular global search method and a particular local
search method. We feel however that the design decisions taken are relatively
commonplace and general. We also decided to evaluate the methods on randomly
generated fitness functions with particular characteristics. This differs from the
traditional use of test functions for evaluating EAs in that our results can be
generalised to all fitness functions with such characteristics and not just to a
particular test function. This approach has recently been used in several other
studies of EAs with dynamic fitness functions, e.g. [7], [8], and [9]. The remainder
of this section describes the fitness functions and how they were generated,
followed by a description of the methods evaluated, the experimental conditions,
and the metrics used for analysing the methods.

2.1 Fitness Functions

Fitness functions are constructed from component functions, each defining the
shape of a peak in a multidimensional landscape. Dynamics are then achieved
by altering the coordinates of the peaks over time. In this study a generation
is considered as the smallest unit of time, which means that all individuals are



On the Behavior of Evolutionary Global-Local Hybrids 15

evaluated on the same landscape. The alterations are performed according to a
fixed policy that defines the type of dynamics.

Here, a fitness function is a mapping from [xmin, xmax]n ⊆ IRn to IR, where
xmin = 0 and xmax = 100, defined as:

f(x, t) = max
i=1...k

gi(x, ai, ci(t), wi), (1)

where gi is a component function defining the shape of a peak with amplitude
ai, coordinates ci(t), and width wi at time step t, according to:

gi(x, ai, ci(t), wi) = ai exp(−d(x, ci(t))2/(2w2
i )), (2)

where d is the Euclidean distance function.
The goal is to acquire the fittest solution and track its progression through

the search space as closely as possible. Here, g1 represents the single global opti-
mum, with w1 = 20, and a1 = 100. Additional functions represent local optima
with wi = 4, and ai = min(90, g1(ci(t), a1, c1(t), w1) +hi), where hi is uniformly
selected from [0,max(0, 20(90− g1(ci(t), a1, c1(t), w1))/90)]. This has the effect
of preventing local optima in coordinates where g1 ≥ 90. The upper bound of hi
is set in proportion to g1 to assure that the amplitudes of local optima confer
information about the location of g1. The landscapes used in the experiments
either have local optima (denoted rugged) or not (denoted smooth). The dimen-
sionality and the maximum number of component functions were chosen to be as
challenging as possible and yet requiring reasonable computational resources. In
rugged landscapes the number of component functions was set to 10n to yield a
density of optima equivalent to that of a one-dimensional fitness function with 10
component functions. Landscapes with n = 4 then turned out to be challenging
enough to reveal limitations in all of the algorithms and yet requiring reasonable
computational resources.

Dynamics are achieved as follows. First all peaks are set at uniformly dis-
tributed coordinates. Then every ∆g generations the coordinates of all peaks
are changed by adding δj = s ·Nj(0, 1) to each cij(t), where s is the severity of
the change, and Nj(0, 1) are normally distributed random numbers not causing
cij(t+ 1) to go out of bound in any dimension j = 1 . . . n. An assumption of this
type of dynamics is that there is a similarity between the evaluated worth of the
new coordinates and the previous ones. Three different dynamics are used in the
experiments: static, gradual, and abrupt. Landscapes with static dynamics do
not change at all. Landscapes with gradual dynamics have ∆g = 1, and s = 1,
whereas those with abrupt dynamics have ∆g = 20, and s = 20. These dynamics
are similar to those used in [9].

2.2 Evolutionary Algorithms

Three different evolutionary algorithms were used in the experiments. These
differ in the way solutions are adapted, which is done either by Plain, Baldwinian,
or Lamarckian evolution. Algorithms using Plain evolution do not incorporate
local search, whereas the other algorithms are evolutionary global-local hybrids.



16 Roger Eriksson and Björn Olsson

Each candidate solution is directly represented by a real-valued vector x ∈
IRn, also operated on by the search operators. Variation is performed by uniform
crossover with probability 1, followed by normally distributed mutation of each
gene xi with probability 0.05 according to:

x′i = max(xmin,min(xmax, xi + 9.0 ·Ni(0, 1))) . (3)

The population consists of 100 individuals whose initial gene values are sampled
uniformly from [xmin, xmax] ⊆ IR. Selection is performed by binary tournaments
with replacement, as described in [10], and all individuals are replaced in each
generation. Each run is terminated after 200 generations.

The hybrid algorithms apply local search to every individual in the popula-
tion prior to their evaluation. After evaluation the corresponding locally optimal
solution is then either discarded (denoted Baldwinian evolution) or replaces the
individual (denoted Lamarckian evolution). The probability of replacement is 0
in Baldwinian evolution, and 1 in Lamarckian evolution. Other probabilities are
not considered in this paper for practical reasons. The local search method used
by the hybrid algorithms is the Polak-Ribiere variant of the conjugate gradi-
ent method described in [11], using Brent’s method for line optimisations. Local
search terminates when the last line optimisation fails to decrease the function
value by more than ±10−6, and a line optimisation terminates when accurate
to ±10−10. This choice of termination criteria was based on the observation
that lower accuracies caused local search to terminate before reaching the local
optimum if the individual was too distant.

3 Experiments and Results

A total of 18 experiments were conducted, one for each combination of evolution-
ary algorithm, landscape dynamics, and ruggedness, as described above. Each
experiment consists of 10 runs with different random seeds on each of 10 land-
scapes generated with different random seeds, i.e. 100 runs in total for each of
the 18 experiments. In addition to the best and average fitness of the population,
we also report the average innate fitness, defined as the average fitness value of
the population before local search is applied. We also report the diversity of the
population in each generation. The diversity of a population with p individuals,
of which u are unique, is here defined as:

Diversity =
2

p(u− 1)
√
n(xmax − xmin)2

u∑
i=1

u∑
j=i+1

d(xi,xj), (4)

where d(xi,xj) is the Euclidean distance between unique individuals xi and xj .
An assumption of this definition is that duplicate solutions do not contribute to
the diversity in the population.

An algorithm is said to be capable of handling a landscape if it is able to ac-
quire an optimal or near-optimal solution and then track its progression through
the search space until the run terminates.



On the Behavior of Evolutionary Global-Local Hybrids 17

0

20

40

60

80

100

0 50 100 150 200

Generation

(a)

Best Fitness
Average Fitness

Diversity * 100

0 50 100 150 200

Generation

(c)

0 50 100 150 200

Generation

(e)

0

20

40

60

80

100

0 50 100 150 200

Generation

(b)

0 50 100 150 200

Generation

(d)

0 50 100 150 200

Generation

(f)

Fig. 1. Plain evolution in landscapes of type: (a) smooth static, (b) rugged static, (c)
smooth gradual, (d) rugged gradual, (e) smooth abrupt, and (f) rugged abrupt.

3.1 Plain Evolution

Fig. 1(a) shows the behaviour of Plain Evolution (PE) in smooth static land-
scapes. PE quickly converges on the optimum in all runs. In rugged static land-
scapes some runs converge on local optima, as can be seen from the best fitness
not quite reaching the maximum value in fig. 1(b).

In smooth gradual landscapes (fig. 1(c)), PE initially locates and tracks the
optimum, but after converging close to the optimum it gradually loses its tracking
ability. The behaviour in rugged gradual landscapes (fig. 1(d)) is similar, with
peak values of best and average fitness being somewhat lower and decaying more
quickly, showing that PE is unable to handle the gradual landscapes.

In smooth abrupt landscapes PE locates the initial position of the optimum,
but after converging close to the optimum it fails to adapt to landscape changes.
In fig. 1(e) the initial increase in best and average fitness up to near optimal
values before the first change is followed by a failure to recover from this and
subsequent changes. Including local optima yields similar behaviour (fig. 1(f)),
but where the peak values of best and average fitness are somewhat lower before
the first landscape change. Clearly, PE cannot handle the abrupt landscapes.

3.2 Baldwinian Evolution

Fig. 2(a) shows the behaviour of Baldwinian Evolution (BE) in smooth static
landscapes. The best fitness is constantly at its maximum, since there is always
a solution that can be fully adapted by local search. The average fitness quickly



18 Roger Eriksson and Björn Olsson

0

20

40

60

80

100

0 50 100 150 200

Generation

(a)

Best Fitness
Average Fitness

Average Innate Fitness
Diversity * 100

0 50 100 150 200

Generation

(c)

0 50 100 150 200

Generation

(e)

0

20

40

60

80

100

0 50 100 150 200

Generation

(b)

0 50 100 150 200

Generation

(d)

0 50 100 150 200

Generation

(f)

Fig. 2. Baldwinian evolution in landscapes of type: (a) smooth static, (b) rugged static,
(c) smooth gradual, (d) rugged gradual, (e) smooth abrupt, and (f) rugged abrupt.

reaching the maximum shows that the population is quickly filled with such solu-
tions in all runs. The only selective pressure is for solutions that can be adapted
by local search. This can be seen from the average innate fitness increasing in
the first generations when there are solutions that cannot be adapted by lo-
cal search, and stagnating when the number of such solutions decreases. When
all solutions can be adapted, and therefore are equally fit, diversity continues
reducing somewhat, probably due to selection noise.

Including local optima has no effect on the best fitness, which is constantly at
its maximum value (fig. 2(b)). This means that there are solutions in the global
optimum’s basin of attraction in the initial population in all runs. However,
the number of such solutions is lower than in smooth landscapes, which gives
an initially lower average fitness. The number of solutions outside the global
optimum’s basin of attraction quickly decreases in the following generations and
the average fitness reaches its maximum. On smooth landscapes the only selective
pressure was for solutions that could be adapted by local search, but in this case,
due to the existence of local optima, there is also pressure for solutions in the
global optimum’s basin of attraction. This can be seen from the average innate
fitness increasing in initial generations when there are many solutions outside the
global optimum’s basin of attraction, and stagnating as the number decreases.
After this stagnation, when solutions are equally fit, diversity still decreases
somewhat, which is again probably due to selection noise.

In smooth gradual landscapes BE locates and tracks the optimum perfectly,
as can be seen in fig. 2(c) from the best fitness being at the maximum through
all runs. Note that the behaviour is almost identical to that in static landscapes.



On the Behavior of Evolutionary Global-Local Hybrids 19

The fact that average innate fitness and diversity have similar values to those in
the static landscapes indicates that adaptation to changes is mainly performed
by local search. Even when local optima are included (fig. 2(d)), BE locates and
tracks the optimum perfectly. The behaviour is again almost identical to that in
static landscapes. A difference between fig. 2(c) and 2(d) is that in the latter
the average innate fitness decreases after reaching its peak value, showing that
adaptation is increasingly performed by local search over the generations.

In smooth abrupt landscapes BE locates and tracks the optimum reasonably
well in all runs. This can be seen in fig. 2(e) from the best fitness always being at
or close to its maximum value through the run. After each change, the number
of solutions that cannot be fully adapted by local search increases, which is seen
as dips in the average fitness every 20th generation. However, the average fitness
always recovers before the next change. Average innate fitness and diversity have
similar values to those observed in static and gradual landscapes, indicating that
adaptation to changes is mainly performed by local search.

In rugged landscapes BE initially manages to locate and track the optimum
perfectly. This can be seen in fig. 2(f) from the best fitness always being at its
maximum in the first 60 generations. However, after the change in generation 60
it fails to find the optimum solution before the next change. From this point there
is also little or no progress in average innate fitness after each change, showing
that adaptation is mainly performed by local search in subsequent generations.

3.3 Lamarckian Evolution

Fig. 3(a) shows the behaviour of Lamarckian Evolution (LE) in static landscapes
without local optima. The behaviour is similar to that of BE, with the best
fitness being constantly at its maximum value, meaning that there is always
a solution available that can be adapted by local search. For LE, the number
of such solutions in the population increases at an even higher rate. This can
be seen from the average fitness reaching its maximum already in generation
2. Note that when LE is used, each solution is replaced by the optimum of its
basin of attraction, when evaluated. In this case all solutions except those that
cannot be adapted by local search are located in the global optimum’s basin
of attraction, and therefore nearly all solutions are replaced by the globally
optimal solution already in the initial population. This affects the diversity that
falls to its minimum value in generation 2. The average innate fitness quickly
reaches a near maximum value and then stays approximately at this value in
subsequent generations. Average innate fitness never reaches its maximum value
since mutations keep pushing individuals off the global optimum.

As for BE, the inclusion of local optima has no effect on the best fitness
measure since it is constantly at its maximum (fig. 3(b)). This means that there
are solutions in the global optimum’s basin of attraction in the initial popula-
tion in all runs. Also, the number of solutions in the global optimum’s basin
of attraction in the initial population is lower in this case than in the previous
case where there where no local optima, which can be seen from an initially
lower average fitness in fig. 3(b). The number of solutions outside the global



20 Roger Eriksson and Björn Olsson

0

20

40

60

80

100

0 50 100 150 200

Generation

(a)

Best Fitness
Average Fitness

Average Innate Fitness
Diversity * 100

0 50 100 150 200

Generation

(c)

0 50 100 150 200

Generation

(e)

0

20

40

60

80

100

0 50 100 150 200

Generation

(b)

0 50 100 150 200

Generation

(d)

0 50 100 150 200

Generation

(f)

Fig. 3. Lamarckian evolution in landscapes of type: (a) smooth static, (b) rugged static,
(c) smooth gradual, (d) rugged gradual, (e) smooth abrupt, and (f) rugged abrupt.

optimum’s basin of attraction quickly decreases in the following generations as
can be seen from the average fitness reaching its maximum value in generation
12, at which the diversity falls to its minimum. As can be seen in fig. 3(c) and
3(d) the behaviour of LE in the gradual landscapes is almost identical to that
in the static landscapes, i.e. it handles the landscapes perfectly in all runs.

LE also manages to locate and track the moving optimum perfectly in the
abrupt landscapes without local optima (fig. 3(e)). The only visible difference
in behaviour between abrupt and gradual landscapes is that the average innate
fitness in the abrupt landscapes drops to a low value immediately after a change
has occurred and then recovers to a near optimal value in the following genera-
tion. The reason for this drop is that solutions are more likely to be displaced far
from the global optimum after a change has occurred in the abrupt landscapes.
The instant recovery of the average innate fitness in the following generation is
because all solutions can be adapted by local search, as can be seen from the
constant maximum value of the average fitness. Note that the average innate
fitness drops to a lower level when LE is used than when BE is used. The rea-
son is that in LE the population is completely converged when a change occurs,
which is not the case in BE. When local optima are included, LE manages to
locate and track the moving optimum reasonably well in all runs. This can be
seen in fig. 3(f) from the best fitness always being at or near its maximum value
through the run. Although the best fitness drops below the maximum value in
generations 60 and 140, it always recovers completely before the next change.



On the Behavior of Evolutionary Global-Local Hybrids 21

4 Discussion and Conclusions

The results show that PE is incapable of handling the dynamic landscapes, which
seems to be due to changes occuring when the population is too converged. BE,
on the other hand, handled the gradual landscapes perfectly. It was also capable
of handling smooth abrupt landscapes, but it could only handle the first two
changes in the rugged abrupt landscapes. The failure of BE to adapt after the
first two changes seems to be caused by a converged population, despite the
fact that BE maintains diversity in the global optimum’s basin of attraction.
We hypothesise that this residual diversity is not enough for crossover to adapt
the individuals and that mutation is too slow to compensate. That would also
explain why the average innate fitness decreases after reaching its peak. LE
was found to be capable of handling both gradual and abrupt landscapes. This
supports our hypothesis that hybrids are able to handle dynamic landscapes
without any special measures. It is hard to say why LE is capable of handling all
landscapes as opposed to BE, since LE quickly causes the population to converge.
We hypothesise that LE, by back-substituting the result of local search to the
individuals, to some degree compensates for the reduced capability of evolution
to adapt the individuals. This would be a result of it being able to achieve
adaptation of the individuals within a basin of attraction without adaptation by
evolution, and in that it can speed up adaptation by evolution, e.g. the relatively
slow adaptation by mutation in a converged population. We also hypothesise
that it is advantageous to have individuals located at the centre of the global
optimum’s basin of attraction when changes occur.

Although comparing the algorithms is not an objective of this paper it is
tempting to draw the conclusion that local search improves the tracking be-
haviour as well as the best fitness value in each generation. However, the metrics
used in this study are not directly comparable since the algorithms with local
search require at least two function evaluations per individual, while plain evolu-
tion only requires one. The number of function evaluations per individual for BE
and LE was found to be fairly independent of the distance to the local optimum,
and stayed close to (but did not exceed) 50 in all of the runs.

For a fair comparison of the algorithms we need to adjust the number of gen-
erations between the changes so that they get comparable numbers of function
evaluations to adapt. We therefore conducted two additional experiments with
PE on abrupt landscapes, where the number of generations between changes
was extended so that the number of function evaluations was at least as many
as those of BE and LE. However, fig. 4 shows that PE fails to improve the
best fitness values from fig. 1(e) and 1(f). We can therefore conclude that local
search improves both the tracking behaviour and the best fitness values of the
evolutionary algorithms in the abrupt landscapes.

Since the hybrids are able to handle the dynamic landscapes without special
measures, and PE is not, it seems that adding local search is a viable alternative
to methods designed explicitly to deal with dynamics. In hybrids used for other
reasons – assuming a static landscape – we have seen that both BE and LE are
able to deal with dynamics, which is obviously useful if the landscape actually is



22 Roger Eriksson and Björn Olsson

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

Generation

(a)

Best Fitness
Average Fitness

Diversity * 100

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

Generation

(b)

Fig. 4. PE in abrupt landscapes at equal number of fitness evaluations as for BE and
LE: (a) smooth landscapes, (b) rugged landscapes.

dynamic. We are, however, just beginning to explore the behaviour of hybrids in
dynamic landscapes, and a number of issues need further investigation, includ-
ing the sensitivity of results to the length of runs and the dimensionality and
complexity of the landscapes. In the fairly simple landscapes used in this study
limitations were revealed suggesting the possibility of efficiency enhancements.

References

1. Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University
of California, San Diego (1994)

2. Land, M.: Evolutionary algorithms with local search for combinatorial optimiza-
tion. PhD thesis, University of California, San Diego (1998)

3. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems
1 (1987) 495–502

4. Whitley, D., Gordon, V.S., Mathias, K.: Lamarckian evolution, the Baldwin effect
and function optimization. In Davidor, Y., Schwefel, H.P., eds.: Proc. of the PPSN
III, Springer (1994) 6–15

5. Branke, J.: Evolutionary approaches to dynamic optimization problems - updated
survey. In: Proc. of the GECCO-2001 Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems. (2001) 27–30

6. De Jong, K.A.: Evolving in a changing world. In Raś, Z.W., Skowron, A., eds.:
11th Int. Symp. on Foundations of Intelligent Systems, Springer (1999) 512–519

7. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A.,
eds.: Proc. of the CEC. Volume 3., IEEE Press (1999) 1875–1882

8. Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary
environments. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala,
A., eds.: Proc. of the CEC. Volume 3., IEEE Press (1999) 2047–2053

9. Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: A genetic algorithm
approach. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A.,
eds.: Proc. of the CEC. Volume 3., IEEE Press (1999) 2031–2038

10. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation 4 (1997) 361–394

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes
in C: the art of scientific computing. 2nd edn. Cambridge University Press (1992)



Measuring the Searched Space
to Guide Efficiency: The Principle

and Evidence on Constraint Satisfaction

Jano I. van Hemert1 and Thomas Bäck1,2

1 Leiden Institute of Advanced Computer Science – Leiden University,
Niels Bohrweg 1, 2333 CA, Leiden
{jvhemert,baeck}@cs.leidenuniv.nl

2 Nutech Solutions GmbH
Martin-Schmeisser-Weg 15, D-44227 Dortmund

baeck@nutechsolutions.de

Abstract. In this paper we present a new tool to measure the efficiency
of evolutionary algorithms by storing the whole searched space of a run, a
process whereby we gain insight into the number of distinct points in the
state space an algorithm has visited as opposed to the number of func-
tion evaluations done within the run. This investigation demonstrates a
certain inefficiency of the classical mutation operator with mutation-rate
1/l, where l is the dimension of the state space. Furthermore we present
a model for predicting this inefficiency and verify it empirically using the
new tool on binary constraint satisfaction problems.

1 Introduction

Genetic operators are often taken for granted: they are used without knowledge
of the statistical properties behind the process. For almost every operator it is
very difficult to analytically determine its properties. In most cases doing some
quick runs with a choice of favourite operators seems sufficient to produce a
satisfactory result. Unfortunately this lack of knowledge may result in lower
performance in the final algorithm.

As an evolutionary algorithm is developed it grows, and at the same time
its complexity increases. When its development has finished, its creator starts a
quest for the most efficient parameters. This optimisation problem is in principle
unsolvable, but it is also necessary as many (even most) parameter settings are
unreasonable or lead to an inefficient algorithm.

In the optimisation process we need to take measurements that somehow
reflect the efficiency of the algorithm. Furthermore, due to stochastic differences
we need to do multiple runs with each setting of parameters. Measurements on
these experiments are often restricted to the accuracy, i.e., the percentage of
times a solution is found within a time limit, and to the speed, i.e., the average
number of evaluations it takes to find a solution. Although these properties are
probably seen as most important by end users, they do not tell the developer

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 23–32, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



24 Jano I. van Hemert and Thomas Bäck

much about what is going on inside. In general, we would like to gain insight
into what is actually going wrong—especially when a system does not live up to
expectations.

Here we propose a tool that provides a developer or a researcher with some
insight into the process of an algorithm that is searching for a solution. This tool
also aids in the verification of models of simplified evolutionary algorithms, of
which we show an example.

In the next section we shall define the searched space (as opposed to the
search space) of an evolutionary algorithm. Then, in Section 3, we define a mu-
tation operator. In Section 4 we model the chance that this operator will produce
unchanged copies and verify this model empirically in Section 5. Section 6 elab-
orates on the use of the tool in experiments on binary constraint satisfaction.
We finish with conclusions in Section 7.

2 The Searched Space

When an evolutionary algorithm is performing its search, it generates candidate
solutions. In essence, these are points from the whole possible state space1. When
working with discrete domains we can define this state space in terms of the
alphabet D = {d1, . . . , dm} and the number of variables l, also known as the
chromosome length.

Definition 1. State space: The total state space an evolutionary algorithm is
able to search in is defined as M = D1 × . . .×Dl. We assume all Di are equal,
thus we know that M = Dl and |M | = |D|l = ml.

Evolutionary algorithms are stochastic optimisation tools, which means that
a solution might not be found. The only proof of global convergence to a solution
is made under the assumption that we have unlimited time [4]. Thus for practical
reasons a limit is always set on the execution time of an evolutionary algorithm,
most often in the form of a maximum number of evaluations. This maximum
directly provides an upper bound to the number of points of the state space we
are able to visit. In reality, however, evolutionary algorithms in discrete domains
tend to visit less points than the maximum they are allowed to.

Definition 2. Searched space of an algorithm: The searched space S ⊂M is the
set of points taken from the state space that is visited by a particular evolutionary
algorithm during a run.

Insight into the searched space of an algorithm might help us in evaluat-
ing its performance. For instance, if the size of the searched space is one then
the algorithm has only visited one point of the state space. Except if it found
the solution in the first guess this is generally not what we want. At the other
extreme, if an algorithm’s searched space is just as large as the number of evalu-
ated points in the state space, we could argue that it has fully used its potential.
1 We use the term state space as opposed to search space to prevent confusion.



Measuring the Searched Space to Guide Efficiency 25

Nevertheless, in the case of an evolutionary algorithm, this is most probably not
what we would get, as such population-based algorithms tend to lose population
diversity: that is, the individuals in a population will become more alike as the
number of evaluations increases. To measure this we introduce resampling ratio:

Definition 3. Resampling ratio: First we define a revisit as a point in the state
space that we have seen before, i.e., it is already present in the searched space.
The resampling ratio is defined as the total number of revisits in a run di-
vided by the total number of evaluations in the same run: resampling ratio =
revisits/evaluations.

Of course due to its stochastic nature, an evolutionary algorithm has many
searched spaces. With a probability extremely close to one, for every run with
a different setting of the random number generator, another searched space is
produced. It is not the precise content of the searched space we examine here,
but its size related to the total number of evaluations performed.

3 Mutation k/l

A well known way of mutating chromosomes over a discrete alphabet is by chang-
ing every gene of the chromosome with some fixed probability pmutation = k/l.
This probability is often fixed by k = 1 because of both theoretical and empirical
evidence that show this is a near optimal setting for the mutation rate for many
problems with m = 2 [2, 7].

The mutation operator is shown in Algorithm 1. For every gene in the chro-
mosome a dice is thrown with l sides. If it shows a value equal or lower than k
we generate a new value for the gene by drawing a value uniform randomly from
the alphabet minus the current value. This way we make sure that a different
value will be chosen.

Algorithm 1 Mutation operator with probability k/l
for gene = 1 to l do

if (uniform random(l) <= k) then
c[gene] = uniform random(D − c[gene])

end if
end for

To test and analyse the mutation operator we need to embed it in an evo-
lutionary algorithm. Eventually we want to analyse the behaviour of the whole
algorithm. As this behaviour is influenced by probabilities we will need to keep
things as simple as possible. For this reason we will retain from solving a prob-
lem. Consequently no selection is performed as we have no fitness to optimise.
As we select nothing we can do without a population, or in other words we use
a population size of one and replace its only member in every generation with
its offspring generated by the mutation operator. The whole process is written



26 Jano I. van Hemert and Thomas Bäck

down in Algorithm 2. The lack of a selection procedure makes this algorithm not
qualified to be categorised as an evolutionary algorithm. However, we would like
to point out here that the resampling ratio will become only higher if a selection
process is added.

Algorithm 2 Main algorithm that simulates a (1,1) strategy without selection
for i = 1 to l do
c[i] = uniform random(Di)

end for
C = {c}
evaluations = 0
revisits = 0
while evaluations < 10, 000 do
c = mutate(c) // See Algorithm 1
evaluations = evaluations+1
if c ∈ C then

revisits = revisits+1
else
C = C ∪ {c}

end if
end while

During the run we take two important measurements; the number of evalu-
ations and the number of revisits. The set C symbolises the searched space so
far created by the evolutionary algorithm, it contains every unique point that
we have generated so far. Using this we can calculate the resampling ratio as
revisits/evaluations or, alternatively, as (|C| − evaluations)/evaluations.

4 A Simple Model

We show how the resampling ratio can be predicted for the algorithm in the
previous section by using the conjecture that all of the revisited points are caused
by the mutation operator producing unchanged individuals. That is

resampling ratio = P (mutate(c) = c).

Examining Algorithm 1 we can calculate the probability that chromosome c
is not changed. Every gene c[i] we look at in turn has an independent chance of
being changed.

Thus we can multiply every probability of a gene not being changed to get
the probability P (chromosome unchanged). We are left with calculating that one
gene is unchanged. Whenever the mutation operator decides to change a gene it
makes sure the gene gets a different value. Therefore, we need only consider the
chance the gene is left unchanged.

P (chromosome unchanged) =
(
1− pmutation

)l =
(
l − k
l

)l
(1)



Measuring the Searched Space to Guide Efficiency 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16

re
sa

m
pl

in
g 

ra
tio

domain size

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16

re
sa

m
pl

in
g 

ra
tio

domain size

Fig. 1. Modelling the chance of not changing a chromosome (left). Simulation of the
mutation operator with pmutation = 1/l, thus k = 1. Every point is averaged over 25
independent runs (right)

If we plot (1) against the length of the chromosome and setting k = 1 and
m = 16 we get Figure 1. It shows that the chance of not changing converges to
approximately 0.37 when l increases. We can further show this convergence by
looking at the limit when l approaches infinity:

lim
l→+∞

(
l − k
l

)l
= e−k (2)

For a mutation rate of 1/l we have k = 1 and that leads to:

P (chromosome unchanged) ≈ 0.37,

which is very high. We propose to use a rate that allows less than 1% of un-
changed chromosomes which we can achieve with k = 5 when l is large or a bit
lower for smaller values of l.

5 Verifying the Simple Model

We want to verify our model from Section 4 by simulating the algorithm pre-
sented in Section 3. We vary the chromosome length over 2, . . . , 16 and let the
algorithm run for 10,000 evaluations, setting k = 1 and m = 16. For every setting
we do 25 independent runs with different random seeds.

If we plot the measured resampling ratio we get Figure 1 in which we see
that indeed the number of revisited points in terms of ratio to the searched
space approaches 0.37 when l increases. The error between the model and the
measured values is quite low for a chromosome length higher than four.

The general outline of the figure corresponds with our model presented earlier
except for small chromosome lengths. This behaviour can easily be explained if
we examine the size of the state space in relation to the size of the searched
space, as depicted in Figure 2. When the values for chromosome length become



28 Jano I. van Hemert and Thomas Bäck

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16

|S
| /

 |M
|

chromosome length

 0

 0.1

 0.2

 0.3

 0.4

 1  1.5  2  2.5  3  3.5  4  4.5  5

re
sa

m
pl

in
g 

ra
tio

k

results
((l-k)/l)^l

e^(-k)

Fig. 2. Size of the searched space divided by the size of the state space (left). Varying
k with m = l = 16 and 25 independent runs per reported result (right)

too small the size of the state space will become smaller than the number of
generated points, which inevitably leads to more revisited points.

As a second test we fix m and l at 16 and vary the mutation rate pmutation =
k/l. We perform tests with k = 1, . . . , 5 where for every setting of k we do
25 independent runs. Figure 2 shows the resampling ratio together with two
estimations using our model (almost a perfect fit) and using the limit our model
converges to.

6 Practical Evidence with CSPs

To test our hypothesis of a negative influence of the mutation rate when it
is too small, we do a number of experiments on binary constraint satisfaction
problems. We shall look at the behaviour of the performance and accuracy of an
evolutionary algorithm when trying to solve increasingly difficult problems. We
do eight experiments where we test all combinations of crossover on/off, parent
selection on/off and survivor selection on/off. Each experiment will be repeated
with five different mutation rates to examine the impact of k.

Constraint satisfaction problems (csps) form a class of models represent-
ing problems that have as common properties, a set of variables and a set of
constraints. The variables should be instantiated from a discrete domain while
making sure the constraints that restrict certain combinations of variable instan-
tiations to exist, are satisfied. Examples of csps are k-graph colouring, 3-sat and
n-Queens.

In general, a csp has a set of constraints where each constraint can be over
any subset of the variables. Here, we focus on binary csps: a model that only
allows constraints over a maximum of two variables. At first, this seems a restric-
tion, but Tsang has shown [8] this is not the case proving that any csp can be
rewritten to a binary csp. Solving the general csp corresponds then to finding
a solution for the binary form.

The last ten years many different approaches have been tried to solve
constraint satisfaction problems using evolutionary algorithms. These include



Measuring the Searched Space to Guide Efficiency 29

Table 1. Features of the evolutionary algorithm that is used to solve binary csps. The
features in bold font are varied in the experiments

feature value

representation integer
chromosome length (l) number of variables in csp
fitness number of conflicts
population size 100
evolutionary model steady-state
parent selection linear ranked bias (2.0) [10] or randomly selected
survivor selection replace worst or randomly selected
mutation operator See Algorithm 1
mutation rate varied k in k/l
crossover operator uniform crossover or none
stop criterion solution found or 100,000 evaluations

heuristics [3], adaptive schemes [5] and local search operators [6]. Here we fall
back on the simplest approach, that is, an integer representation where each
gene corresponds to one variable in the csp. The gene can take any value from
the variable’s domain.

Our experiments consist of running our evolutionary algorithm with the fea-
tures in Table 1 on a set of randomly created instances of binary csps. The
table shows two selection steps, parent selection and survivor selection. The first
is used to determine who is to be subjected to the genetic operators, while the
second determines who is allowed to go to the next generation. These problem
instances are created such that some are more difficult to solve than others. We
create the test suite using the RandomCsp library [9] and choose Model E [1] as
the process whereby the instances are constructed. The difficulty of the problem
instances created by this process is controlled using a parameter p.

To verify the influence of different features of our evolutionary algorithm we
perform eight experiments, where in each experiment we test five different mu-
tation rates. Each test consists of many runs on many problem instances. Such
a test is performed in a manner that gives insight into the behaviour of the algo-
rithm when we use it to solve increasingly more difficult constraint satisfaction
problems.

We use the same number of variables (l = 15) and the same domain size
(m = 15) for each problem instance, which provides a state space with a size of
1515. The parameter p determines the difficulty of an instance, which gives an
overbounded estimate of the ratio of conflicts in an instance. It is varied from 0.10
to 0.38 2 in steps of 0.02, thereby increasing the difficulty of finding solutions.
At every step we create 25 instances and we let the evolutionary algorithm do
10 independent runs on each instance. This totals the number of runs for each
experiment to 5 mutation-rates∗15 steps∗25 instances∗10 runs = 18, 750 runs.
2 The value 0.38 is close to the point beyond which we can no longer produce solvable

problem instances.



30 Jano I. van Hemert and Thomas Bäck

no crossover, no parent selection, survivor selection

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

ra
tio

 o
f s

ol
ut

io
ns

 fo
un

d

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

av
er

ag
e 

re
sa

m
pl

in
g 

ra
tio

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

no crossover, parent selection, no survivor selection

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

ra
tio

 o
f s

ol
ut

io
ns

 fo
un

d

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

av
er

ag
e 

re
sa

m
pl

in
g 

ra
tio

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

no crossover, parent selection, survivor selection

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

ra
tio

 o
f s

ol
ut

io
ns

 fo
un

d

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

av
er

ag
e 

re
sa

m
pl

in
g 

ra
tio

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

crossover, no parent selection, survivor selection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

ra
tio

 o
f s

ol
ut

io
ns

 fo
un

d

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

av
er

ag
e 

re
sa

m
pl

in
g 

ra
tio

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5



Measuring the Searched Space to Guide Efficiency 31

crossover, parent selection, no survivor selection

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

ra
tio

 o
f s

ol
ut

io
ns

 fo
un

d

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

av
er

ag
e 

re
sa

m
pl

in
g 

ra
tio

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

crossover, parent selection, survivor selection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

ra
tio

 o
f s

ol
ut

io
ns

 fo
un

d

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

av
er

ag
e 

re
sa

m
pl

in
g 

ra
tio

p in Model E (csp difficulty)

k=1
k=2
k=3
k=4
k=5

During each run we measure the success rate and the resampling ratio. We
present averages of these measures per experiment per setting of the mutation
rate. The preceding figures are presented as follows: every row is one experi-
ment, with two graphs, the average success rates and the average resampling
ratio. Every figure contains five plots, one for each of the mutation rate settings
pmutation = k/l.

In two experiments the success rate drops to zero at p = 0.18, both of these
have no selection methods. We leave out the results of these experiments, but
we mention a difference between the resampling ratio in both experiments. With
crossover the resampling ratio drops to zero for all settings of k, while without
crossover we get the values predicted by the simple model.

The four experiments that have survivor selection show good performance in
success rate. In all of these the best mutation rates are either k = 3 or k = 4.
Using (1) and the fact that l = 15 we know that P (chromosome unchanged) is
0.0352 and 0.0095 for these two settings of k, very close to our hypothesis.

When using parent selection and not using survivor selection, the best mu-
tation rate is k = 1. Furthermore, performance drops significantly when k is
increased. The effect of crossover is mainly visible where we only have parent
selection. There it considerably boosts performance on success rate. At the same
time we witness a very low resampling ratio.

Whenever we see a good performance in success rate, we measure a low re-
sampling ratio. However, when we look at the experiment with crossover and
without any selection, we observe a low resampling ratio, but a very poor per-
formance in success rate.



32 Jano I. van Hemert and Thomas Bäck

7 Conclusions
We have presented a simple measuring tool that measures independently of the
evolutionary algorithm or any other algorithm that works by a repeated process
of generating points in the state space. Using this tool and a theoretical model we
have analysed a well known standard mutation strategy, moreover we have found
that this strategy might lead to inefficient behaviour in a simplified evolutionary
algorithm without selection.

To test our tool’s usefulness in practical environments, we have performed
a study on solving binary constraint satisfaction problems. Here the outcome is
that selection and mutation rate, when wrongly balanced, can have a devastating
effect on the performance. If the selection is strong and the mutation rate too
weak, we observe a high resampling ratio, which means that only few points in
the state space have been generated. This is a good indication of what is causing
the low performance.

Although the resampling ratio might be a good way of explaining what goes
wrong, it is not suitable for detecting when we may expect good performance.
Thus maintaining a healthy resampling ratio is not a guarantee for a successful
evolutionary algorithm in itself.

References

1. D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy, and Y.C.
Stamatiou. Random constraint satisfaction a more accurate picture. In G. Smolka,
editor, Principles and Practice of Constraint Programming — CP97, pages 107–
120. Springer-Verlag, 1997.

2. T. Bäck. The interaction of mutation rate, selection, and self-adaptation within
a genetic algorithm. In R. Manner and B. Manderick, editors, Parallel Problem
Solving from Nature II, pages 85–94. Springer, 1992.

3. S.H. Clearwater and T. Hogg. Problem structure heuristics and scaling behavior
for genetic algorithms. Journal of Artificial Intelligence, 81:327–347, 1996.

4. A.E. Eiben, E.H.L. Aarts, , and K.M. Van Hee. Global convergence of genetic
algorithms: an infinite markov chain analysis. In Proceedings of the First Interna-
tional Conference on Parallel Problem Solving from Nature, pages 4–12. Springer,
Berlin, 1991.

5. A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics, 4(1):25–46, 1998.

6. E. Marchiori and A. Steenbeek. A genetic local search algorithm for random binary
constraint satisfaction problems. In ACM Symposium on Applied Computing, pages
458–462, 2000.

7. H. Mühlenbein. How genetic algorithms really work: Mutation and hill-climbing.
In R. Manner and B. Manderick, editors, Parallel Problem Solving from Nature II,
pages 15–25. Springer, 1992.

8. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
9. J.I. van Hemert. Documentation of the RandomCsp library. Leiden University,

randomcsp version 1.5 edition, 2001. Available from
http://www.liacs.nl/˜jvhemert/randomcsp.

10. D. Whitley. The genitor algorithm and selection pressure: Why rank-based allo-
cation of reproductive trials is best. In J. David Schaffer, editor, Proceedings of the
Third International Conference on Genetic Algorithms (ICGA’89), pages 116–123,
San Mateo, California, 1989. Morgan Kaufmann Publishers, Inc.

http://www.liacs.nl/~jvhemert/randomcsp


On the Analysis of Dynamic Restart Strategies
for Evolutionary Algorithms

Thomas Jansen

George Mason University, Fairfax, VA 22030, USA
tjansen@gmu.edu

Abstract. Since evolutionary algorithms make heavy use of randomness
it is typically the case that they succeed only with some probability. In
cases of failure often the algorithm is restarted. Of course, it is desirable
that the point of time when the current run is considered to be a failure
and therefore the algorithm is stopped and restarted is determined by
the algorithm itself rather than by the user. Here, very simple restart
strategies that are non-adaptive are compared on a number of exam-
ples with different properties. Circumstances under which specific types
of dynamic restart strategies should be applied are described and the
potential loss by choosing an inadequate restart strategy is estimated.

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics applicable to
a wide range of problems. We concentrate on optimization here though we do
not think that the considerations presented are limited to that case. Due to the
random elements employed in EAs one typically observes behavior that varies
from run to run. In order to increase the probability of finding a good or even
optimal solution of the considered optimization problem, it is common practice
to do restarts. Then the choice of the point of time when the EA is stopped and
restarted is crucial. In principle, one can distinguish three different classes of ways
to choose a restart strategy just like for other parameters in EAs, e. g., mutation
probability or population size [1]. The first class is a static setting where a certain
number of steps is fixed in advance. Then one can discuss whether it is better
to spend a lot of time in one long run or in multiple short runs [10]. Unlike
other parameters such a static decision is unusual for restarting. The second
class comprises dynamic restart strategies. Here, the point of time for restarts is
determined by some fixed schedule that depends on the number of steps counted
over all runs or, equivalently, on the number of steps in the current run and the
sum of number of steps in all previous runs. In spite of the increased flexibility
compared to static choices dynamic restart strategies are seldom used in EAs. A
practical example proving the usefulness of dynamic, yet non-adaptive, strategies
are cooling schedules used for simulated annealing [9]. What is common practice
for determining the point of time for restarts are strategies from the third class,
namely adaptive restart strategies. Here, the restart strategy may depend on

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 33–43, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



34 Thomas Jansen

the complete history of the current and all previous runs. There are various
different implementations ranging from quite simple ones to quite sophisticated
statistical approaches [7]. We note that for EAs it is not necessary to restart the
algorithm completely. Partial restarts in the sense of re-initializing parts of the
population are possible [11]. Since we concentrate on restart strategies and not
on the underlying search algorithm, we will not discuss such mixed strategies.

We consider dynamic restart strategies, although they are not that commonly
used. We do this for several good reasons. Obviously, the three classes of strate-
gies form a hierarchy: static choices can be seen as degenerated dynamic ones,
dynamic strategies can be described as degenerated adaptive ones. Note that
self-adaptive strategies are a special case of adaptive strategies. Considering this
hierarchy we believe that it is sensible to prove results on the simpler cases be-
fore analyzing the more complex classes. Second, due to their simpler structure
such strategies are analyzable and allow for rigorous proofs of non-trivial state-
ments. Third, it will turn out that already simple dynamic restart strategies can
increase the performance of an EA enormously. Finally, typical adaptive restart
strategies explicitly express some assumptions about the objective function and
are therefore relatively easy to fool by constructing functions that do not meet
these assumptions. In fact, we will present one example where dynamic restart
strategies can be far superior to adaptive strategies that wait until the EA “gets
stuck” before restarting it.

Next we discuss briefly the baseline of theoretical analysis of EAs and build
our model in accordance to this. In Sect. 3 we present the EA we use to exemplify
our restart strategies and the different dynamic restart strategies we analyze. In
Sect. 4 we describe our example functions and motivate our choices. In Sect. 5
we derive results on one single run of the EA considered. We use these results
for the comparison of the dynamic restart strategies in Sect. 6.

2 Performance Analysis of EAs

We consider exact optimization of static pseudo-Boolean functions f : {0, 1}n →
IR. We assume that f is defined for all n ∈ IN (or at least infinitely many) and
are interested in the asymptotic behavior of an EA on f for n growing to infinity.
We neglect the choice of a stopping criterion and assume that the EA eventually
finds some global optimum with probability 1 within some number of steps as
in fact many EAs do [15]. Formally, let pf,t(n) denote the probability that some
fixed EA optimizes an objective function f : {0, 1}n → IR in at most t steps. For
all choices pf,t(n) is monotonic increasing with t. We consider only EAs where
pf,t(n) is strongly monotonic increasing and lim

t→∞ pf,t(n) = 1 holds for all f .
One typical measure is the expected optimization time, i. e., the expected

number of steps until some global optimum is found. Sometimes a function f is
typically efficiently optimized by some EA whereas in very rare cases it needs ex-
tremely long to optimize f . The expected optimization time may be exponential
in this case, misleadingly indicating that f is difficult for this EA. However, when
applying an appropriate restart strategy, this cannot happen: Assume that after



On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms 35

some number of steps Ts the EA has success probability pf,Ts(n) where Ts is
not too large and pf,Ts(n) is not too small. Then a restart strategy stopping and
restarting the EA after Ts steps leads to an acceptable expected optimization
time of Ts/pf,Ts(n).

Note, that in our approach we do not pose some limit on the computational
cost that optimization may take. This is fundamentally different from studies
where the computational cost is fixed and the goal is to find a restart strat-
egy that maximizes the expected gain while respecting this limit [2,5,10]. Our
approach is more similar to the analysis of algorithms, where one is interested
in the run time of an algorithm needed to perform a well-defined task without
imposing a predefined limit of the time the algorithm may spend.

3 Algorithmic Framework

In principle, any EA can serve as basis for the comparison. In order to allow
for an easy comparison it is desirable that the EA itself is well understood and
easy to analyze. However, it should exhibit a behavior that can be assumed to
be typical for EAs. This rules out extremely simple constructs like pure random
search that show no similarity to common EAs. We consider the (1+1) EA
to be a good compromise. It uses a population of size 1, bit-wise mutation
with mutation probability 1/n, and a deterministic selection, known as plus-
selection from evolution strategies. This algorithm is often studied and well-
understood [3,6,14,15]. It is known that it often performs at least comparable to
much more complicated and sophisticated EAs [8,12]. We do not claim that the
(1+1) EA behaves like more sophisticated EAs that may use crossover. But there
are objective functions where more sophisticated EAs behave like the (1+1) EA
on the classes of functions we introduce in the next section. Then, the restart
strategies we investigate will have the same effects on the EAs as they have on
the (1+1) EA. Thus, simplifying the analysis by choosing a simple EA does not
restrict the applicability of the obtained results.

Algorithm 1 ((1+1) EA with dynamic restarts)
1. r := 0
2. r := r + 1; tr := 0 Choose x ∈ {0, 1}n uniformly at random.
3. Create y from x by independently for each bit flipping it

with probability 1/n.
4. If f(y) ≥ f(x), then x := y.
5. tr := tr + 1
6. If restart(r) = tr, then continue at 2 else continue at 3.

Let T denote the minimal value of
∑
ti when x is some global maximum.

Then, we analyze the expected optimization time E (T ). We concentrate on
restart strategies where the length of intervals between two consecutive points of
time when a restart is done is increasing, thus each run not being shorter than
the preceeding run. This seems reasonable since long runs are a potential waste
of time when already short runs have a good success probability. We consider
two types of increasing dynamic restart strategies to be of special interest.



36 Thomas Jansen

Definition 1. An additive restart strategy restarta: IN→ IN is defined by s0, s ∈
IN and is given by restarta(r) := s0 +(r−1) ·s. A multiplicative restart strategy
restartm: IN → IN is defined by s0 ∈ IN, s ∈ IR with s > 1 and is given by
restartm(r) :=

⌈
s0 · sr−1

⌉
.

In order to further simplify our considerations we investigate one special
additive restart strategy ra and one special multiplicative restart strategy rm,
only. We believe that important properties of additive and multiplicative restart
strategies in general are captured by these two examples.

Definition 2. The additive restart strategy ra is defined by s0 = n log n, s =
n log n. The multiplicative restart strategy rm is defined by s0 = n log n, s = 2.

The length of the first run of the (1+1) EA is s0 = n log n for both strategies.
This choice is motivated by the fact that optimization of any function that has
a unique global optimum takes Ω(n log n) steps on average [3]. Therefore, we
consider it to be counterproductive to stop the (1+1) EA earlier.

4 Example Functions

We want to compare dynamic restart strategies in different situations. Thus we
are interested in functions exemplifying different situations as clearly as possible.
This can be done best with artificial, constructed objective functions. We are
only interested in functions where at least a perfect restart strategy can achieve
polynomial expected optimization time. Note, though, that the choice of an
inappropriate restart strategy can cause an overall inefficient optimization.

Definition 3. For n, k ∈ IN with k = O (1) let the functions SPk: {0, 1}n → IR,
SP2k: {0, 1}n → IR, and HSP:{0, 1}n → IR be defined by

SPk(x) :=



n · (i+ 1) if x = 1i0n−i with

i ∈ {0, k, 2k, . . . , �n/(3k)� k},
n−

n∑
i=1

xi otherwise,

SP2k(x) :=




n · (i+ 1) if
(
x = 1i0n−i

) ∨ (x = 0n−i1i
)

with
i ∈ {0, k, 2k, . . . , (�n/(3k)� − 1) k},

n · (n+ 1) if x = 1i0n−i with i = �n/(3k)� k,

n−
n∑
i=1

xi otherwise.

HSPk(x) :=




n · (i+ 1) if x = 1i0n−i

with i ∈ {0, k, 2k, . . . , �n/(3k)� k},
n+

n∑
i=1

xi if x1 = x2 = · · · = x�2n/3� = 0,

n−
n∑
i=1

xi otherwise.



On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms 37

For SPk there is a kind of short path starting in 0n. All points on the path
are of the form 1i0n−i and are formed of �n/(3k)� consecutive blocks of length
k. If a block consists only of 1-bits and this holds for all blocks to its left, too,
this is rewarded by n. For all points not on the path, each 1-bit in the string
reduces the function value by 1 making the first point of the path easy to find.
Obviously, the expected optimization time E (T ) will increase with k.

SP2k is very similar to SPk but with two short paths, both starting in 0n.
One of the form 1i0n−i leading to the unique global optimum, the other of the
form 0i1n−i leading to a local optimum. For symmetry reasons, the (1+1) EA
will reach the local optimum in about half of the runs. Then, a direct mutation
of at least (2/3)n − k bits is necessary to reach the optimum. Thus, the (1+1)
EA is very efficient in about half of the runs and very inefficient in about the
other half of the runs and thus very inefficient on average.

HSPk has a short path similar to the function SPk which is easy to find.
However, since once being at the beginning of the path it is much more likely to
go away from the path then to follow it, we expect that the success probability
pHSPk,t(n) is rather small for each t = nO(1).

5 Analysis Without Restarts

First, we investigate the behavior of the (1+1) EA without restarts. Results on
the success probability pf,t(n) are useful when analyzing restart strategies. The
more precise the upper and lower bounds on the success probability are, the
more precise statements on the expected optimization time of the (1+1) EA in
combination with different restart strategies can be concluded.

Theorem 1. There exist two constants c1, c2 ∈ IR+, such that given n, k ∈ IN
with k = O (1) for the (1+1) EA on SPk: {0, 1}n → IR the following holds:

∀t ≤ c1 · nk+1: pSPk,t(n) = e−Ω(n)

∀t ≥ c2 · nk+1: pSPk,t(n) = 1− e−Ω(n)

Proof. We consider a run and divide it into two disjoint phases. The first phase
starts with the random initialization and ends when the current string x for the
first time is of the form 1i0n−i with i ∈ {0, k, 2k, . . . , �n/(3k)� k}. The second
phase starts when the first phase ends and ends when the current string x is
equal to the unique global optimum. We claim that the probability that the first
phase does not end within the first

⌈
2en2

⌉
steps is bounded above by e−n/4.

We ignore steps ending the first phase by leading to some 1i0n−i with i > 0.
Obviously, this can only increase the probability of not ending the first phase.
The current string x has Hamming distance d(x) to the all zero string 0n with
d(x) > 0. The probability that the child y has Hamming distance at most d(x)−1
to 0n is bounded below by (1/n)(1 − 1/n)n−1 ≥ 1/(en), since it is sufficient to
mutate exactly one 0-bit in x. Such a child y has larger function value and will
replace x. After at most n such replacements the Hamming distance is reduced
to 0 and the first phase ends. Thus we are in the situation that we make random



38 Thomas Jansen

experiments where each experiment is a success with probability at least 1/(en).
The expected number of success in

⌈
2en2

⌉
trials is lower bounded by 2n. By

Chernoff bounds [13] the probability not to have at least n successes in
⌈
2ne2

⌉
trials is bounded above by e−n/4.

We claim that the probability that the second phase does not end within the
first

⌈
2enk �n/(3k)� k⌉ steps of this phase is bounded above by e−n/12. In the

second phase mutating exactly at most k 0-bits in the first block in x that con-
tains 0-bits yields a child y that replaces x. The probability of such a mutation is
bounded below by (1/n)k(1−1/n)n−k ≥ 1/

(
enk
)
. After at most �n/(3k)� k such

steps the global optimum is found. We argue as above and see that the proba-
bility not to have at least �n/(3k)� k such steps within 2enk �n/(3k)� k steps is
bounded above by e−�n/(3k)�k/4. Together this proves the second statement.

We now know that the number of different points in the search space encoun-
tered before x becomes some point 1i0n−i with i ∈ {0, k, 2k, . . . , �n/(3k)� k}
is bounded above by

⌈
2en2

⌉
with probability 1 − e−n/4. Thus, the probabil-

ity that for the first x of such form i ≥ n/12 holds is bounded above by
2en2 · (n/4)/

(
n

n/12

)
< e−n/12. Thus, with probability at least 1− e−n/12 at least

n/4 blocks that are all zero have to become all one. In a mutation that flips
one all zero block thereby generating an all one block, other blocks might flip as
well. However, the probability that in such a step l additional blocks become all
one is bounded above by (1/n)kl. Thus, we expect in n/9 such steps in total less
than (n/9) + (1/n)kl−1 blocks to become all one. Due to Chernoff bounds, the
probability that in total more then (2n/9)+2(1/n)kl−1 < n/4 blocks become all
one is bounded above by e−n/25. One such step has probability at most 1/nk.
Thus, we expect to have at most n/20 such mutations in nk+1/20 steps. Again
by Chernoff bounds, the probability to have at least n/10 such mutations in
nk+1/20 steps is bounded above by e−19n/1000. This implies that with probabil-
ity 1− e−9n/500 after nk+1/20 steps the global optimum is not reached. 	


Similarities between SPk and SP2k yield a similar result and allow us to reuse
parts of the proofs of Theorem 1 in the proof of the next theorem.

Theorem 2. There exist two constants c1, c2 ∈ IR+, such that given any n, k ∈
IN with k = O (1) for the (1+1) EA on SP2k: {0, 1}n → IR the following holds:

∀t ≤ c1 · nk+1: pSP2k,t(n) = e−Ω(n)

∀t ≥ c2 · nk+1: pSP2k,t(n) = 1/2−O (1/n)

∀t ≤ nn/4: pSP2k,t(n) = 1/2−Ω (1/n)

Proof. The first statement can be proved similarly to the proof of the first state-
ment in Theorem 1. The proof of the second statement is similar to the proof
of the second statement of Theorem 1. We extend the first phase until the first
point of time when the (1+1) EA reaches some x with SP2k(x) > SP2k (0n).
Since the path 1i0n−i contains one more element then the path 0i1n−i, the first
x on the path belongs to the 1i0n−i with probability at least 1/2. We consider
one step where x changes and want to estimate the probability that the path



On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms 39

is left in favor of the other path. Assume that x = 1i0n−i is the current string.
Then at least 2i bits have to mutate simultaneously in order to change the path.
The probability for such a mutation is bounded above by 1/n2i. In order to reach
the next point on the path it is sufficient to mutate at most k bits in the next
block that contains some 0-bits. The probability for such a mutation is bounded
below by (1/n)k(1− 1/n)n−k ≥ 1/

(
enk
)
. The value of i depends on the current

position of the path. It is at least k in the beginning and is increased by at least
k after each such step. Thus, the probability to leave the path before reaching
the optimum is bounded above by 2e/n.

The proof of the third statement is a combination of the proof of the second
statement in this proof and of the second statement in the proof of Theorem 1.
The path 0i1n−i is entered and not left with probability (1/2)− O (1/n). Once
the local optimum 0(�n/(3k)�−1)k1n−(�n/(3k)�−1)k is reached, a mutation of at
least (2/3)n − k bits is necessary. Such a mutation has probability at most
n−(2/3)n−k. Thus, the probability that such a mutations happens within nn/4

steps is bounded above by n(n/4)−(2/3)n+k ≤ n−n/3. 	

HSPk and SPk are similar, too. But in HSPk the Hamming distance to the

path can be increased by having 1-bits in the right third of x. Thus, it is possible
not to reach the path at all. This implies important differences.

Theorem 3. There exist two constants c1, c2 ∈ IR+, such that given any n, k ∈
IN with k = O (1) for the (1+1) EA on HSPk: {0, 1}n → IR the following holds:

∀t ≤ c1 · nk+1: pHSPk,t(n) = e−Ω(n)

∀t ≥ c2 · nk+1: pHSPk,t(n) = Ω
(
1/nk

)
∀t ≤ nn/4: pHSPk,t(n) = 1−O (1/nk)

Proof. The first statement can be proved similarly to the proof of the first state-
ment in Theorem 1. For the second and third statement it is crucial to give
estimations of the probability for reaching the path 1i0n−i. We know from the
proof of Theorem 1 that it is unlikely to find the path far from its beginning in
0n. From the ballot theorem [4] it follows that in fact with probability �2n/3� /n
the all zero string 0n is found. Now, let as assume that the current string x is 0n.
Then, the next child that replaces its parent can either be a point 1i0n−i on the
path or some point y different from 0n with y1 = y2 = · · · = y�2n/3� = 0. Note,
that once a path point is reached all subsequent current strings can only be path
points. Obviously, the probability to reach a path point is bounded above by
n−k +n−2k +n−3k + · · · = O

(
1/nk

)
while we reach some other point with prob-

ability at least (1/3)(1− 1/n)n−1 = Ω(1). On the other hand, the probability to
reach the path is bounded below by (1/n)k(1− 1/n)n−k = Ω

(
1/nk

)
. Thus, the

first point reached is on the path with probability Θ
(
1/nk

)
. Once on the path

the path is never left and we conclude from the proof of Theorem 1 that with
probability 1− e−Ω(n) within Θ

(
nk+1

)
steps we reach the global optimum.

For the third statement it is sufficient to note that the Hamming distance
to points on the path can only increase. In particular, as long as the Hamming



40 Thomas Jansen

distance to the path is bounded above by n/6, the Hamming distance is increased
with probability Ω(1) in each step. Thus with probability 1−O (1/nk) the point
0�2n/3�1�n/3� is reached before reaching any point on the path. Then, a mutation
of at least �n/3� bits simultaneously is necessary to reach the path and the third
statement follows similar to the proof of Theorem 2. 	


6 Comparison of Dynamic Restart Strategies

Now we apply the results from the previous section to obtain results for the (1+1)
EA with restarts. These results represent the behavior of such dynamic restart
strategies for any EA with a success probability converging to 1, converging to
some positive constant, and converging to 0 polynomially fast, like the (1+1)
EA on SPk, SP2k, and HSPk, respectively.

Theorem 4. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy rm has expected optimization time E (T ) = Θ

(
nk+1

)
on SPk.

Proof. The lower bound follows from Theorem 1. For the upper bound we con-
sider the first uninterrupted run of length at least c2nk+1 where c2 is the constant
from Theorem 1. After �(k log n)− (log log n) + log c2� restarts we have one run
of at least this length. The expected number of such runs before the global
optimum is found is bounded above by 2. Thus, E (T ) is bounded above by∑�(k logn)−(log log n)+log c2�+1
i=0 2i · n log n ≤ 8c2 · nk+1. 	

The order of growth of E (T ) with rm is optimal. Thus, for an easy to optimize

function it is good to have a restart strategy quickly increase the length of runs.

Theorem 5. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy ra has expected optimization time E (T ) = Θ

(
n2k+1/ log n

)
on SPk.

Proof. We can proof the upper bound similar to the proof of Theorem 4. After⌈
c2n

k/(log n)
⌉

restarts, we have a run of length at least c2nk+1. Thus, E (T ) is

bounded above by
∑�c2nk/(log n)�+1
i=1 i · n log n < 2c22 · n2k+1log n.

For the lower bound we consider the first
⌊
c1n

k/(log n)
⌋

runs of the (1+1)
EA. All runs have length at most

⌊
c1n

k/(log n)
⌋ · n log n ≤ c1n

k+1. Thus, all
runs have success probability e−Ω(n). The total length of theses runs is at least∑�c1nk/(log n)�
i=1 i · n log n = Ω

(
n2k+1

logn

)
. 	


In comparison with rm the restart strategy ra performs poorly. This is due
to the long time that is needed to have runs of sufficient length.

Theorem 6. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy rm has expected optimization time E (T ) = Θ

(
nk+1

)
on SP2k.

Proof. The proof can be done in the same way as the proof of Theorem 4. 	




On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms 41

Theorem 7. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy ra has expected optimization time E (T ) = Θ

(
n2k+1/ log n

)
on SP2k.

Proof. The proof can be done in the same way as the proof of Theorem 6. 	

Using additive or multiplicate restart strategies, it makes no difference for

the order of growth of E (T ) whether the success probability converges to 1 or
to some positive constant.

Theorem 8. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy rm has expected optimization time E (T ) = 2Ω(n/ logn) on HSPk.

Proof. Due to Theorem 3, on average Θ
(
nk
)

runs of length > c1n
k+1 are needed

to optimize HSPk. After n/ log n restarts the last run has length 2n/ log nn log n.
Since this is o

(
nn/4

)
, the success probability for each run is still o

(
1/nk

)
. So,

the optimum is not found after these restarts with probability 1− o(1). 	


Theorem 9. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy ra has expected optimization time E (T ) = Θ

(
n2k log n

)
on HSPk.

Proof. The proof of the upper bound follows roughly the same lines as the proof
of the upper bound of Theorem 5. After

⌈
c2n

k/(log n)
⌉

restarts the length of the
run (and all following runs) is bounded below by c2nk+1. Thus, this run and all
following runs have success probability Θ

(
1/nk

)
according to Theorem 3. Thus,

the expected number of runs that is needed on average is bounded above by
O
(
nk + nk/(log n)

)
= O

(
nk
)
. Then the total length of all runs is O

(
n2k log n

)
.

The lower bound can be proved in the same way. What is needed additionally
is the third statement from Theorem 3. As in the proof of Theorem 8 we see
from there that the steps taken after the

(
c2n

k+1
)
-step in all runs do not add

something significant to the success probability since we are considering only a
polynomial number of runs and a polynomial number of steps. 	


Compared to ra the strategy rm performs very poorly. This is due to the
fact that the length of the runs increases so quickly. Thus, for difficult functions
where the probability of finding an optimum at all is very small even for quite
long runs additive restart strategies are preferred.

7 Conclusions

We presented a framework for the evaluation of restart strategies different from
other settings: We compared the expected optimization time instead of fixing
the computational cost in advance. We restricted ourselves to dynamic restart
strategies, which are more complex than fixing some point of time for a restart
but less complex than adaptive restart strategies. We know that in applications
adaptive restart strategies are “state of the art.” But we believe that it makes
sense to begin theoretical investigations with a simpler and still interesting class.



42 Thomas Jansen

We described two classes of dynamic restart strategies and investigated one
additive strategy and one multiplicative strategy in detail. We employed the
simple (1+1) EA as the underlying search algorithm and presented three classes
of example functions with very different success probabilities. The time that is
typically spent optimizing these examples can be controlled via a parameter k.

We saw that it made almost no difference whether the success probability
within a polynomial number of steps is near to 1 or some other positive constant.
In both cases rm, which quickly increases the length of each run, is superior.
However, if the success probability stays close to 0 very long, ra is by far superior.
For ra the expected optimization is polynomial, for rm it is exponential. It is
easy to see that all functions that can be optimized with multiplicative restart
strategies in expected polynomial time can be optimized with additive restart
strategies in expected polynomial time, but the degree of the polynomial can be
larger. Here the quotient was of order Θ

(
nk/ log n

)
, with k any positive integer.

We saw that considering expected optimization time is reasonable when com-
paring restart strategies. The investigation of adaptive restart strategies within
this framework is subject to future research. Also open is the empirical compar-
ison of ra and rm not only on our examples but also in practical settings.

Acknowledgments

The author thanks Paul Wiegand for helpful discussions. The author was sup-
ported by a fellowship within the post-doctoral program of the German Aca-
demic Exchange Service (DAAD).

References

1. Th. Bäck. An overview of parameter control methods by self-adaptation in evolu-
tionary algorithms. Fundamenta Informaticae, 35:51–66, 1998.

2. E. Cantú-Paz. Single vs. multiple runs under constant computation cost. In Proc.
of he Genetic and Evolutionary Computation Conf. (GECCO 2001), page 754.
Morgan Kaufmann, 2001.

3. S. Droste, Th. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. CI 21/98, SFB 531, Univ. Dortmund, 1998. To appear in: TCS.

4. W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 1968.
5. A. S. Fukunaga. Restart scheduling for genetic algorithms. In Parallel Problem

Solving from Nature (PPSN V), LNCS 1498, pages 357–366. Springer, 1998.
6. J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for binary muta-

tions. Evolutionary Computation, 7(2):173–203, 1999.
7. M. Hulin. An optimal stop criterion for genetic algorithms: A Bayesian approach.

In Proc. of the Seventh International Conf. on Genetic Algorithms (ICGA ’97),
pages 135–143. Morgan Kaufmann, 1997.

8. A. Juels and M. Wattenberg. Hillclimbing as a baseline method for the evaluation of
stochastic optimization algorithms. In Advances in Neural Information Processing
Systems 8, pages 430–436. MIT Press, 1995.

9. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.



On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms 43

10. S. Luke. When short runs beat long runs. In Proc. of he Genetic and Evolutionary
Computation Conf. (GECCO 2001), pages 74–80. Morgan Kaufmann, 2001.

11. J. Maresky, Y. Davidor, D. Gitler, Gad A., and A. Barak. Selectively destructive
restart. In Proc. of the Sixth International Conf. on Genetic Algorithms (ICGA
’95), pages 144–150. Morgan Kaufmann, 1995.

12. M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm out-
perform hill climbing? In Advances in Neural Information Processing Systems.
Morgan Kaufmann, 1994.

13. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

14. H. Mühlenbein. How genetic algorithms really work. Mutation and hillclimbing.
In Proc. of the 2nd Parallel Problem Solving from Nature (PPSN II), pages 15–25.
North-Holland, 1992.

15. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Dr. Kovač, 1997.



Running Time Analysis
of Multi-objective Evolutionary Algorithms
on a Simple Discrete Optimization Problem

Marco Laumanns1, Lothar Thiele1, Eckart Zitzler1,
Emo Welzl2, and Kalyanmoy Deb3

1 ETH Zürich, Computer Engineering and Networks Laboratory, CH–8092 Zürich
{laumanns,thiele,zitzler}@tik.ee.ethz.ch

http://www.tik.ee.ethz.ch/aroma
2 ETH Zürich, Institute of Theoretical Computer Science, CH–8092 Zürich

welzl@inf.ethz.ch
3 Department of Mechanical Engineering, Indian Institute of Technology Kanpur

Kanpur, PIN 208 016, India
deb@iitk.ac.in

Abstract. For the first time, a running time analysis of population-
based multi-objective evolutionary algorithms for a discrete optimiza-
tion problem is given. To this end, we define a simple pseudo-Boolean
bi-objective problem (Lotz: leading ones - trailing zeroes) and investi-
gate time required to find the entire set of Pareto-optimal solutions. It
is shown that different multi-objective generalizations of a (1+1) evolu-
tionary algorithm (EA) as well as a simple population-based evolution-
ary multi-objective optimizer (SEMO) need on average at least Θ(n3)
steps to optimize this function. We propose the fair evolutionary multi-
objective optimizer (FEMO) and prove that this algorithm performs a
black box optimization in Θ(n2 logn) function evaluations where n is the
number of binary decision variables.

1 Introduction

Evolutionary Algorithms (EAs) are probabilistic search heuristics that mimic
principles of natural evolution. They are often used to solve optimization prob-
lems, in particular those with multiple objectives, for an overview see e.g. [1].
In multi-objective optimization, the aim is to find or to approximate the set of
Pareto-optimal (or non-dominated) solutions.

Existing theoretic work on convergence in evolutionary multi-objective opti-
mization has so far mainly dealt with the limit behavior [9,10,12,11,4,5,14]. Un-
der appropriate conditions for the variation and the selection operators, global
convergence to the Pareto set can be guaranteed in the limit.

In addition to that, we are often interested in a quantitative analysis, specif-
ically the expected running time for a given class of problems and the success
probability for a given optimization time. For single-objective evolutionary al-
gorithms many such results are contained in [8]. For the optimization of pseudo-
Boolean functions an extensive theory has been built up by Wegener et al., see

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 44–53, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Running Time Analysis 45

e.g. [16], Droste, Jansen, and Wegener [2,3], or for a methodological overview
[15].

Results on the running time of evolutionary algorithms in the multi-objective
case are rare. Scharnow et al. [13] analyze a (1+1)-EA under multiple, non-
conflicting objectives. The purpose of this paper is to present a first analysis of
different population-based multi-objective evolutionary algorithms (MOEAs) on
a two-objective model problem. In particular, the following results are described
in the paper:

– The well known “Leading Ones” problem is generalized to two dimensions.
The new problem class is called Lotz (Leading Ones - Trailing Zeros).

– A simple evolutionary multi-objective optimization algorithm is defined
(SEMO - Simple Evolutionary Multi-objective Optimizer). Its expected run-
ning time on the above problem is shown to be Θ(n3).

– The algorithm is improved by a fair sampling strategy of the population
(FEMO - Fair Evolutionary Multi-objective Optimizer). Its running time on
the above problem is Θ(n2 log n) with a high probability of 1−O(1/n) and
its expected running time is O(n2 log n).

The model problem and its characteristics are introduced in section 2. It
is a multi-objective extension of the “Leading Ones” problem which has been
thoroughly analyzed for example in [8] and [3]. The algorithms are described
and analyzed in sections 3 and 4. They are instances of a steady state (µ + 1)-
EA with variable population size and differ in the manner how the parents are
sampled from the population.

2 The Model Problem

As the example problem for this analysis, we consider the maximization of a
2-dimensional vector valued function, Lotz, which maps n binary decision vari-
ables to 2 objective functions.

Definition 1. The pseudo-Boolean function Lotz : {0, 1}n → IN2 is defined as

Lotz(x1, . . . , xn) =


 n∑
i=1

i∏
j=1

xj ,

n∑
i=1

n∏
j=i

(1− xj)



The abbreviation Lotz stands for “Leading Ones, Trailing Zeroes” and
means that we want to simultaneously maximize the number of leading ones and
trailing zeroes in a bit-string. The first component, the LeadingOnes function,
has been analyzed in detail in [8] and [3].

As there is no single search point that maximizes both components simul-
taneously, we want to find the whole set of non-dominated points based on
the concept of Pareto optimality, here defined for an m-objective maximization
problem with binary decision variables.



46 Marco Laumanns et al.

f2

1

1

1

00000000

11111111

11110**10******1

F

F

F

F

n

n−1

n−2

1

f

11110000

Fig. 1. Objective space of the Lotz function with n = 8

Definition 2 (Pareto optimality, Pareto set). Let f : X → F where X ⊆
{0, 1}n and F ⊆ IRm. A decision vector x∗ ∈ X is Pareto optimal if there
is no other x ∈ X that dominates x∗. x dominates x∗, denoted as x � x∗ if
fi(x) ≥ fi(x∗) for all i = 1, . . . ,m and fi(x) > fi(x∗) for at least one index i. The
set of all Pareto optimal decision vectors X∗ is called Pareto set. F ∗ = f(X∗) is
the set of all Pareto optimal objective vectors and denoted as the Pareto front.

The objective space of this problem can be partitioned into n+ 1 sets Fi, i =
0, . . . , n (see Fig. 1). The index i corresponds to the sum of both objective values,
i.e. (f1, f2) ∈ Fi if i = f1 +f2. Obviously, Fn represents the Pareto front F ∗. The
sub-domains Xi are defined as the sets containing all decision vectors which are
mapped to elements of Fi. They are of the form 1a0 ∗(n−i−2) 10b with a+ b = i
for i < n, and 1a0b with a+ b = n for Xn.

The cardinality of the Pareto set X∗ = Xn is |Xn| = n+ 1 and we also have
n + 1 Pareto optimal objective vectors as |Fn| = n + 1. The next set Fn−1 is
empty. For the remaining sets with i = 0, . . . , n − 2 we have |Fi| = i + 1 and
|Xi| = |Fi| ·2n−2−i. As a consequence, the decision space X contains 2n different
elements, which are mapped to |Fn|+

∑n−2
i=0 |Fi| = 1/2 ·n2 + 1/2 ·n+ 1 = O(n2)

different objective vectors.

2.1 How Difficult Is It to Find the Whole Pareto Set?

How long does it take to optimize the Lotz function? Droste et al. [3] have
proved that the expected running time of a (1+1)-EA on LeadingOnes is



Running Time Analysis 47

Θ(n2). Using the same algorithm with an appropriate generalization of the ac-
ceptance criterion (either accepting only dominating offspring or by using a
weighted sum as a scalar surrogate objective) will certainly lead to finding one
element of the Pareto set in the same amount of time.

To find all different Pareto optimal points with such a (1+1) EA we can
consider the multi-start option, i.e. to run to the EA several times, and collect
all non-dominated solutions in an archive. For the acceptance criterion based on
the dominance relation, the random variable describing the number of ones in
the final solution of each single run follows a binomial distribution with p = 0.5.
Hence the probability of finding the “outer” points of the Pareto set decreases
exponentially. This would mean that the running time of this strategy until all
Pareto optimal points are found is exponentially large in n.

Another possibility would be to use the multi-start option together with a
weighted sum of the objective values. However, an appropriate choice of the
weights is very difficult. In our case, equal weights would lead to the same sit-
uation as before, with a very low probability to reach the outer points. Any
other selection of weights will let the sequence of search points converge to one
of the outer points of the Pareto set. The remaining points must be found “on
the way”, but the probability of such events is not easy to calculate. Even if we
could supply n + 1 different weights corresponding to each of the n + 1 Pareto
optimal points, this strategy would still need (n+ 1) ·Θ(n2) = Θ(n3) steps.

Contrary to the multi-start option, one could relax the acceptance criterion
such that only dominated offspring are rejected. This allows to accept other
Pareto-optimal solutions once an element of the Pareto set has been found and
one could continue this process until all Pareto-optimal solutions have been
visited at least once. This concept has been implemented in the PAES algorithm
[6]. It finally leads to a random walk on or around the Pareto set, and the running
time of the algorithm could be calculated based on the cover time of the random
walk. A random walk on the path given by the n + 1 Pareto-optimal solutions
has a cover time of Θ(n2). As each move of this random walk needs a successful
mutation, whose probability is bounded above by 2/n, the whole process again
needs Θ(n3) steps.

A last possibility would be to use a simple strategy known from classical
multi-objective function optimization. In this case, we optimize only one objec-
tive, e.g. the number of leading ones, and constrain the other objective to be
strictly larger than its value obtained in the previous optimization run. There-
fore, we find all n+ 1 Pareto vectors in n+ 1 runs of a single-objective EA with
an additional constraint. At the best, this strategy again needs Θ(n3) steps.

The above discussion indicates that a (1+1) strategy may not be the best
approach for solving multi-objective optimization problems. Moreover, most of
the current multi-objective optimization algorithms use the concept of an archive
that maintains a set of Pareto optimal vectors of all decision vectors visited so
far. This indicates that the concept of a population is vital in multi-objective
evolutionary optimization. In the next sections, we propose and analyze two
simple population-based steady state EAs.



48 Marco Laumanns et al.

Algorithm 1 Simple Evolutionary Multi-objective Optimizer (SEMO)
1: Choose an initial individual x uniformly from X = {0, 1}n
2: P ← {x}
3: loop
4: Select one element x out of P uniformly.
5: Create offspring x′ by flipping a randomly chosen bit.
6: P ← P \ {z ∈ P |x′ � z}
7: if � ∃z ∈ P such that (z � x′ ∨ f(z) = f(x′)) then
8: P ← P ∪ {x′}
9: end if

10: end loop

3 A Simple Evolutionary Multi-objective Optimizer
(SEMO)

At first, we analyze a simple population-based multi-objective EA. This algo-
rithm contains a population of variable size that stores all non-dominated indi-
viduals. From this population a parent is drawn according to some probability
distribution and mutated by flipping a randomly chosen bit. For Algorithm 1 we
consider a uniform distribution for selecting the parent.

An appropriate archiving strategy [7] is assumed to prevent the population
from growing exponentially. For this study it suffices to ensure that a solution
is only accepted if it has different objective values (line 7).

3.1 Running Time Analysis of SEMO Applied to Lotz

The running time of an algorithm equals the number of necessary evaluations of
the objective function. For the analysis we divide the run of the SEMO into two
distinct phases: the first phase lasts until the first Pareto-optimal individual has
entered the population, and the second phase ends when the whole Pareto set
has been found.

Lemma 1 (Expected running time for phase 1). The expected running
time of Alg. 1 until the first Pareto-optimal point is found is O(n2).

Proof. Note that during this first phase the population will consist of one indi-
vidual only, as a mutation changing the objective values yields either a dominat-
ing or a dominated individual. Hence, if an offspring is accepted, it will replace
the parent from which it was produced. We consider the partition of the search
space into distinct subsets Xi as defined in section 2 and note that from any
subset Xi only points in Xj , j > i are accepted. As there is always a one-bit mu-
tation leading to the next subset, the probability of improvement is at least 1/n.
As there are at most n − 1 such steps necessary (Xn−1 is empty) the expected
time is at most n2. �



Running Time Analysis 49

Lemma 2 (Expected running time for phase 2). After the first Pareto-
optimal point is found, the expected running time of Alg. 1 until all Pareto-
optimal points are found is Θ(n3) and the probability that the running time is
less than n3/c(n) is less than (8e/c(n))n/2.

Proof. We partition this phase into n−1 different sub-phases. Sub-phase i lasts
from the time when i− 1 Pareto-optimal solutions have been found to the time
when the next solution is found. Ti is a random variable denoting the duration of
sub-phase i and the random variable T is the sum of these times. As we always
have a contiguous subset of the Pareto set, only the individuals corresponding
to the outer points of this subset can create a new Pareto-optimal point. The
probability ps(i) to sample such a candidate in phase i is at least 1/i and at
most 2/i. A subsequent mutation has a success probability of at least 1/n and
at most 2/n. Hence, ni/4 ≤ E(Ti) ≤ ni. As T =

∑n−1
i=1 Ti, 1/8n3 − 1/8n2 ≤

E(T ) ≤ 1/2n3 − 1/2n2.
To derive a lower bound of the running time which holds with a high probability
we consider the run after n/2 Pareto-optimal solutions have already been found.
In this case the probability to find a new Pareto-optimal solution is at most
4/n2. If we allow n3/c(n) trials, the expected number of successes S is at most
4n/c(n). With Chernoff’s inequality, the probability that we reach the required
n/2 + 1 successes to find the remaining solutions can be bounded as

P (S > n/2) ≤
(

e
1
8 c(n)−1

( 1
8c(n))

1
8 c(n)

)4n/c(n)

≤
(

8e
c(n)

) 1
2n

�

From the concatenation of the two phases the following Corollary can be derived.

Corollary 1 (Expected running time Alg. 1). The expected running time
of Alg. 1 until all Pareto-optimal points are found is Θ(n3).

For this problem, the simple population-based SEMO is at least as good as any
potential multi-objective adaptation of the (1+1)-EA discussed in the previous
section. But is there room for further improvement? As it takes about n2 steps
to find one Pareto-optimal point, there is no hope to find the whole Pareto set
in less time. But the time to generate all Pareto-optimal points can be reduced
substantially.

4 The Fair Evolutionary Multi-objective Optimizer
(FEMO)

The main weakness of the SEMO for the optimization problem under consider-
ation lies in the fact that a large number of mutations are allocated to parents
whose neighborhood has already been explored sufficiently. On the other hand,
an optimal sampling algorithm would use always the most promising parent at



50 Marco Laumanns et al.

Algorithm 2 Fair Evolutionary Multi-objective Optimizer (FEMO)
1: Choose an initial individual x uniformly from X = {0, 1}n
2: w(x)← 0 {Initialize offspring count}
3: P ← {x}
4: loop
5: Select one element x out of {y ∈ P |w(y) ≤ w(z) ∀z ∈ P} uniformly.
6: w(x)← w(x) + 1 {Increment offspring count}
7: Create offspring x′ by flipping a randomly chosen bit.
8: P ← P \ {z ∈ P |x′ � z}
9: if � ∃z ∈ P such that (z � x′ ∨ f(z) = f(x′)) then

10: P ← P ∪ {x′}
11: w(x)← 0 {Initialize offspring count}
12: end if
13: end loop

the border of the current population. Of course, this information is not available
in a black box optimization scenario.

The uniform sampling leads to a situation, where the Pareto-optimal indi-
viduals have been sampled unevenly depending on when each individual entered
the population. The following fair sampling strategy guarantees that the end all
individuals receive about the same number of samples.

Algorithm 2 implements this strategy by counting the number of offspring
each individual produces (line 6). The sampling procedure deterministically
chooses the individual which has produced the least number of offspring so far,
ties are broken randomly (line 5).

4.1 Running Time Analysis of FEMO Applied to Lotz

For the analysis of Algorithm 2 we focus only on the second phase as the first
phase is identical to the simple Algorithm 1 described before.

Once the first two Pareto-optimal points are found, there is exactly one
possible parent for each of the remaining n − 1 points. We are interested in
the number of mutations that must be allocated to each of these n − 1 parents
in order to have at least one successful mutation each that leads to the desired
child. Lemma 3 and 4 provide upper and lower bounds on the probability that
a certain number of mutations per parent are sufficient. In Theorem 1 these
probabilities are used to bound the running time of the FEMO algorithm.

Lemma 3 (Minimal success probability). Let p be the success probability
for each single mutation and c > 0 an arbitrary constant. With probability at
least 1 − n1−c all n − 1 remaining offspring have been constructed in at most
c · 1/p · log n mutation trials for each corresponding parent.

Proof. For each individual, the probability of having at least c · 1/p · log n non-
successful mutation is bounded above by



Running Time Analysis 51

(1− p)c·1/p·logn = (1− 1
1/p

)c/p log n = (1− 1
1/p

)1/p
c logn

≤
(

1
e

)c logn

=
1
nc

There are n−1 individuals that must be produced with the given number of trials.
These events are independent, so the probability that at least one individual
needs more than c/p · log n trials is bounded above by n−1

nc ≤ n1−c. �

Lemma 4 (Maximal success probability). Let k ∈ {1, . . . , n}, a = k/n,
and c > 0 be an arbitrary constant. The probability that k = a ·n individuals are
produced in c · 1/p · log n mutation steps each is not larger than (ea)−n

(1−c−c/n)
.

Proof. The probability that a parent has created a certain offspring within the
first t = c · 1/p · log n trials is 1 − (1 − p)t. The probability that this happens
independently for a selection of k such pairs can thus be bounded as

(1− (1− p)t)k ≤ (1− 1

nc
n+1
n

)an ≤ e− an

nc(n+1)/n = (ea)−n
(1−c−c/n)

�

Now we can translate the number of mutations that are needed into the running
time of Algorithm 2.

Theorem 1 (Running time bounds). With probability at least 1−O(1/n) the
number of objective function evaluations T Algorithm 2 needs from the discovery
of the first two Pareto-optimal points until the whole Pareto set has been found
lies in the interval [1/4 · 1/p · n log n, 2 · 1/p · n log n]. Hence, Prob{T = Θ(1/p ·
n log n)} = 1−O(1/n). Furthermore, E(T ) = O(1/p · n log n).

Proof. Let the Pareto-optimal points be indexed according to the order in which
they have entered the set P . Let k ∈ {0, . . . , n} be the index of the individual that
required the largest number of mutations to be produced. We apply Lemma 3
with c = 2 and notice that this individual k did not need more than 2/p · log n
trials with probability 1−O(1/n).
What remains to be shown for the upper bound is that no node will be sampled
more than t times during the algorithm. This can be guaranteed since there is
always a candidate x ∈ P with w(x) ≤ t (the element that has most recently
been added to P ). Hence, any element whose weight has reached t will never be
sampled again. As there are n such elements, each of which is sampled at most t
times, the total number of samples (steps) the algorithm takes does not exceed
T = n · t = 2 · 1/p · n log n.

For the lower bound we apply Lemma 4 with c = 1/2 and k = n/2. With a

probability of 1−√e−n(0.5−0.5/n)

there is an individual in the second half which
needs at least 1/2 · 1/p · log n trials. Hence, all individuals in the first half have
been sampled at least 1/2 · 1/p · log n − 1 times each. Of course, all individuals
in the second half must be sampled at least once. The summation over all nodes
gives a total number of samples of at least 1/4 · 1/p · n log n with probability
1−O(1/n).



52 Marco Laumanns et al.

Using the probability bound from Lemma 3 the expected running time can
be bounded as

(1/p · n log n)−1E(T ) ≤ 1 · P{0 ≤ T < 1}+ 2 · P{1 ≤ T < 2}+ . . .

≤ 2 +
∞∑
c=3

c · P{T ≥ k − 1}

≤ 2 +
∞∑
c=1

(c+ 2)n−c

≤ 2 +
n

(n− 1)2 +
2

n− 1
.

Hence, E(T ) = O(1/p · n log n). �

As before, the time to find the first one (or two) elements of the Pareto set can
be neglected and the total running time is mainly determined by Theorem 1. For
our case the mutation success probability is p = 1/n, which leads with a high
probability to a running time of Θ(n2 log n). This is a considerable improvement
in comparison to any multi-start strategy of a single objective EA and to the
SEMO algorithm.

5 Concluding Remarks

In this paper we have given first analytical results on the running time of evolu-
tionary algorithms for multi-objective optimization problems. We have defined
a bi-objective model problem and discussed different concepts of how to find the
whole set of Pareto-optimal solutions for this problem.

For a simple steady-state evolutionary multi-objective optimizer (SEMO) a
running time of Θ(n3) was proven, which is at least as good as any strategy based
on using a scalar surrogate objective function or multi-objective adaptations of
the (1+1)-EA.

We proposed FEMO, a new evolutionary multi-objective optimizer involv-
ing an archive or population and a fair sampling strategy. This algorithm im-
proves the running time substantially as it is able to find the whole Pareto set
in Θ(n2 log n) steps.

The FEMO algorithm uses information collected during the run and stored in
a population. For the first time it could be shown analytically that this concept
of a population-based EA leads to a provable advantage on a multi-objective
optimization problem compared to standard approaches based on scalarizing
functions.

In addition to its good running time behavior, the algorithm is simple and
problem- and representation-independent so that it might be easily and success-
fully applied to practical problems as well.



Running Time Analysis 53

Acknowledgments

The research has been funded by the Swiss National Science Foundation (SNF)
under the ArOMA project 2100-057156.99/1.

References

1. K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester, UK, 2001.

2. S. Droste, T. Jansen, and I. Wegener. A rigorous complexity analysis of the (1+1)
evolutionary algorithm for separable functions with Boolean inputs. Evolutionary
Computation, 6(2):185–196, 1998.

3. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276(1–2):51–81, 2002.

4. T. Hanne. On the convergence of multiobjective evolutionary algorithms. European
Journal Of Operational Research, 117(3):553–564, 1999.

5. T. Hanne. Global multiobjective optimization with evolutionary algorithms: Se-
lection mechanisms and mutation control. In Evolutionary Multi-Criterion Opti-
mization (EMO 2001), Proc., LNCS 1993, pages 197–212, Berlin, 2001. Springer.

6. J. D. Knowles and D. W. Corne. Approximating the non-dominated front using
the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–172,
2000.

7. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and
diversity in evolutionary multi-objective optimization. Evolutionary Computation,
10(3), 2002.

8. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač,
Hamburg, 1997.

9. G. Rudolph. Evolutionary search for minimal elements in partially ordered sets.
In Evolutionary Programming VII – Proc. Seventh Annual Conf. on Evolutionary
Programming (EP-98), San Diego CA, 1998. The MIT Press, Cambridge MA.

10. G. Rudolph. On a multi-objective evolutionary algorithm and its convergence to
the pareto set. In IEEE Int’l Conf. on Evolutionary Computation (ICEC’98), pages
511–516, Piscataway, 1998. IEEE Press.

11. G. Rudolph. Evolutionary Search under Partially Ordered Fitness Sets. In Pro-
ceedings of the International NAISO Congress on Information Science Innovations
(ISI 2001), pages 818–822. ICSC Academic Press: Millet/Sliedrecht, 2001.

12. G. Rudolph and A. Agapie. Convergence properties of some multi-objective evo-
lutionary algorithms. In Congress on Evolutionary Computation (CEC 2000), vol-
ume 2, pages 1010–1016, Piscataway, NJ, 2000. IEEE Press.

13. J. Scharnow, K. Tinnefeld, and I. Wegener. Fitness landscapes based on sorting
and shortest paths problems. This volume.

14. D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Graduate School of Engineering of
the Air Force Institute of Technology, Air University, June 1999.

15. I. Wegener. Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. Technical Report CI-99/00, SFB 531, Universität Dortmund, 2000.

16. I. Wegener. Theoretical aspects of evolutionary algorithms. In ICALP 2001, volume
2076 of LNCS, pages 64–78. Springer-Verlag, 2001.



Fitness Landscapes Based on Sorting
and Shortest Paths Problems

Jens Scharnow, Karsten Tinnefeld�, and Ingo Wegener�

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Abstract. The analysis of evolutionary algorithms is up to now limited
to special classes of functions and fitness landscapes. It is not possible to
describe those subproblems of NP-hard optimization problems where cer-
tain evolutionary algorithms work in polynomial time. Therefore, fitness
landscapes based on important computer science problems as sorting and
shortest paths problems are investigated here. Although it cannot be ex-
pected that evolutionary algorithms outperform the well-known problem
specific algorithms on these simple problems, it is interesting to analyze
how evolutionary algorithms work on these fitness landscapes which are
based on practical problems. The following results are obtained:

– Sorting is the maximization of “sortedness” which is measured by
one of several well-known measures of presortedness. The different
measures of presortedness lead to fitness landscapes of quite different
difficulty for EAs.

– Shortest paths problems are hard for all types of EA, if they are
considered as single-objective optimization problems, while they are
easy as multi-objective optimization problems.

1 Introduction

Our aim is to contribute to a theory of evolutionary algorithms (EAs) which
analyzes the expected optimization time of EAs on important and interesting
problems and classes of fitness functions. Nowadays, it is a vision to explain
the success of EAs on hard problems by identifying those instances of the prob-
lem where the considered EA finds the optimum in expected polynomial time.
In order to develop tools for such results EAs have to be analyzed in various
situations.

Fitness landscapes considered as typical ones have been described and ana-
lyzed in many papers (for an overview see Bäck, Fogel, and Michalewicz (1997)).
Moreover, interesting classes of fitness functions have been investigated, e.g.,
separable functions (Droste, Jansen, and Wegener (1998a)), monotone polyno-
mials of small degree (Wegener (2001)), long-path functions (Horn, Deb, and
Goldberg (1994), Rudolph (1997), Droste, Jansen, and Wegener (1998b)), and
� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part

of the Collaborative Research Center “Computational Intelligence” (SFB 531).

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 54–63, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Fitness Landscapes Based on Sorting and Shortest Paths Problems 55

royal road functions (Mitchell, Holland, and Forrest (1994), Jansen and Wegener
(2001a)). However, these are artificial functions and problems.

Here we choose the approach to investigate EAs on the most basic and im-
portant computer science problems, namely sorting (the maximization of the
sortedness) and shortest path problems. We do not and cannot expect EAs
to outperform Quicksort or Dijkstra’s algorithm. However, universal problem
solvers like EAs should be efficient on these simple problems.

Sorting can be considered as the problem of maximizing the sortedness.
Hence, the fitness of a permutation can be measured by one of the well-known
measures of presortedness. In Section 2, the corresponding fitness landscapes are
introduced and appropriate mutation operators are discussed. The analysis in
Section 3 shows that most measures of presortedness contain enough information
to direct the optimization by EAs. However, there is a well-known measure of
presortedness leading to a fitness landscape with large plateaus of search points
having equal fitness such that the optimization process gets stuck on such a
plateau.

Shortest path problems are multimodal optimization problems and EAs get
stuck in local but not global optima (for certain instances). In Section 4, we
describe this fitness landscape and an alternative as multi-objective optimization
problem. Moreover, we prove that only the multi-objective optimization problem
description directs the search of EAs efficiently. This is the first result of this
type for EAs.

2 Fitness Landscapes Based on Sorting Problems

Given a sequence of n distinct elements from a totally ordered set, sorting is
the problem of maximizing the sortedness. Hence, the search space is the set
of all permutations π on {1, . . . , n}. For our investigations we can identify π
with the sequence (π(1), . . . , π(n)) and the identity permutation is the optimal
one. If we try to solve sorting as such an optimization problem, we need a fitness
function f such that f(π) describes the sortedness of π. Such measures have been
introduced in the discussion of so-called adaptive sorting algorithms (see, e.g.,
Moffat and Petersson (1995)). We will investigate the five best-known measures
of presortedness and the corresponding fitness landscapes.

– INV(π) measures the number of pairs (i, j), 1 ≤ i < j ≤ n, such that
π(i) < π(j) (pairs in correct order),

– HAM(π) measures the number of indices i such that π(i) = i (elements at
the correct position),

– RUN(π) measures the number of indices i such that π(i+1) < π(i) (number
of maximal sorted blocks minus 1) leading to a minimization problem,

– REM(π) equals the largest k such that π(i1) < · · · < π(ik) for some i1 <
· · · < ik (length of the longest sorted subsequence),

– EXC(π) equals the minimal number of exchanges (of pairs π(i) and π(j)) to
sort the sequence again leading to a minimization problem.



56 Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener

Since we cannot see any advantage of crossover for sorting problems, we have
investigated only mutation-based EAs. Our mutation operator is based on the
following two simple operations:

– exchange(i, j) which exchanges the elements at the positions i and j,
– jump(i, j) where the element at position i jumps to position j while the other

elements between position i and position j are shifted in the appropriate
direction, e.g., jump(5,2) applied to (6,4,3,1,7,2,5) produces (6,7,4,3,1,2,5).

Mutation should allow any π′ to be produced from π with positive probabil-
ity. The usual mutation operator on the search space {0, 1}n flips each bit with
probability 1/n. This implies that the number of flipping bits is asymptotically
Poisson distributed with parameter λ = 1. Therefore, we have chosen the fol-
lowing mutation operator where at least one local change is performed:

– Choose s according to a Poisson distribution with parameter λ = 1 and
perform sequentially s+ 1 exchange or jump steps where for each step (i, j)
is chosen randomly among all pairs (k, l), 1 ≤ k, l ≤ n, k �= l, and it is
decided randomly whether exchange(k, l) or jump(k, l) is performed.

We also may consider only exchange or only jump steps. Finally, we have decided
to analyze the following evolutionary algorithm shortly called (1 + 1)EA which
resembles the well-known (1+1) evolution strategy:

– Choose the first search point π randomly.
– Repeat: Produce π′ by mutation from π and replace π by π′ if π′ is not

worse than π (f(π′) ≥ f(π) in the case of a maximization problem and
f(π′) ≤ f(π) otherwise).

In applications, one needs a stopping criterion. Here we consider the infinite
stochastic process (π1, π2, π3, . . .) where πt equals the permutation π after the
t-th step of the above algorithm and investigate the random variable called
optimization time which equals the first point of time t when πt is optimal.

3 The Analysis of the (1+1)EA on the Fitness
Landscapes Based on Sorting Problems

Here we analyze the performance of the (1+1)EA on the different landscapes
described by the fitness functions introduced in Section 2.

Theorem 1. The expected optimization time of the (1+1)EA on the fitness
landscape described by INV is bounded above by O(n2 log n) and bounded below
by Ω(n2).

Proof. Let π be the current search point, 1 ≤ i < j ≤ n, and π(i) > π(j), i.e.,
(i, j) is an incorrect pair. Then exchange(i, j) improves the fitness. Each specific
exchange operation has a probability of 1/(2en(n− 1)) to be the only operation
(1/e is the probability of performing a single operation, 1/2 the probability of



Fitness Landscapes Based on Sorting and Shortest Paths Problems 57

choosing an exchange operation and 2/(n(n−1)) the probability of choosing the
pair (i, j) or the pair (j, i)). Hence, the probability of increasing the fitness in the
presence of m incorrect pairs is at least m/(en(n − 1)) leading to an expected
waiting time (for an improvement) of O(n2/m). Since 1 ≤ m ≤ n(n − 1)/2
and since the fitness is never decreased, the expected optimization time can be
estimated by

c
∑

1≤m≤n(n−1)/2

n2/m = cn2H(n(n− 1)/2)

for H(N) := 1 + 1/2 + · · · + 1/N ≤ lnN + 1 leading to the proposed bound
O(n2 log n).

For the lower bound we only consider the final step leading to the optimum.
Independent of the number of exchange or jump operations chosen in this step,
it is necessary that the last operation changes a not sorted sequence into a
sorted one. This is possible by at most one exchange and at most two jump
operations (jump(i, i + 1) and jump(i + 1, i) have the same effect). Hence, the
success probability of the final step is bounded above by 3/(n(n − 1)) and,
therefore, the expected waiting time is bounded below by Ω(n2), i.e., by cn2 for
some c > 0 and large n. �

In the beginning the fitness typically is increased in successful steps by more than
one. This may change in the final stage of the optimization process. The sequence
(2, 3, . . . , n, 1) has n − 1 incorrect pairs and, in successful steps, the number of
incorrect pairs is halved on the average. This leads to an expected optimization
time of O(n2). The sequence (2, 1, 4, 3, . . . , n, n− 1) has n/2 incorrect pairs and,
in successful steps, the number of incorrect pairs is decreased only by one with
large probability. It can be shown that the expected optimization time on this
string equals Θ(n2 log n). It is more typical to have in the final stage more small
disordered subblocks than to have only few elements which belong to many
incorrect pairs. Hence, we believe that the expected optimization time equals
Θ(n2 log n).

Corollary 1. The expected optimization time of the (1 + 1)EA is Ω(n2) for
each fitness landscape based on the sorting problem, i.e., with a unique global
optimum.

Proof. The proof is contained in the proof of Theorem 1, since there we only
used the fact that there is a unique global optimum. �

Theorem 2. The expected optimization time of the (1 + 1)EA on the fitness
landscape described by REM equals Θ(n2 log n).

Proof. If REM(π) = k and j is a position not belonging to the longest sorted
subsequence, then there is a jump operator where j jumps to a position where
it increases the length of the sorted subsequence from k to k+ 1. The number of
these positions j equals n− k and, therefore, the success probability (increasing
the fitness), if REM(π) = k, is at least (n−k)/2en(n−1) leading to an expected



58 Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener

waiting time of O(n2/(n− k)). Summing up these values for k ∈ {1, . . . , n− 1}
we obtain the proposed bound.

For the lower bound it is essential that a single jump can change the REM
value by at most 1. The jumping element is first taken from the sequence (which
can decrease the length of any sorted subsequence by 1) and then inserted some-
where (which can increase the length of sorted subsequences by 1). Since an
exchange can be simulated by two jumps, exchange steps can increase the REM
value by at most 2. Let us consider the situation where REM(π) ≥ n− n1/2 for
the first time. Then REM(π) ≤ n−n1/2/2 with overwhelming probability, since
at least n1/2/4 jumps and exchanges in one step are very unlikely. If an element
of the longest sorted subsequence which has two neighbors from this sorted sub-
sequence jumps, this decreases the REM value by 1 while the probability that
an element outside the sorted subsequence jumps to a position increasing the
REM value equals 1/(n− 1) for each of these values. We can conclude that the
probability of increasing the REM value by a step with at least 10 exchanges
and/or jumps is so small that this does not happen within O(n2 log n) steps with
overwhelmig probability. This implies that we may consider only steps with a
single jump operation (increasing the expected optimization time at most by a
constant factor). If REM(π) = k, the success probability is bounded above by
(n− k)/(n(n− 1)) leading to a waiting time of Ω(n2/(n− k)). Summing up for
k = n− n1/2/2 to k = n− 1, we obtain the proposed lower bound. �

The upper bound of Theorem 2 holds for an arbitrary initial search point π.
However, jump operations are essential while the bounds of Theorem 1 for INV
even hold if we perform only jumps or only exchanges. Consider the situation of
π∗ = (2, . . . , n, 1) with REM(π∗) = n − 1. The plateau of search points π with
REM(π) = n−1 can be characterized by the “wrong element” i which can be at
one of the n − 1 “wrong positions” p �= i while all other elements are in sorted
order. Which exchange operations are accepted? Only those which exchange i
with one of the two neighbored elements and those which exchange i with one
of the elements i − 1 or i + 1. Hence, the probability of an accepted exchange
step is bounded above by 4/(n(n− 1)). The probability of accepting a step with
more than one exchange step is negligible. However, the sum of all |j − π(j)| is
decreased at most by 2 by a successful exchange step and we need (n− 1)/2 of
these steps for π∗ leading already to a waiting time of Ω(n3). However, using
the methods introduced by Jansen and Wegener (2001b) we can prove that the
expected optimization time equals Θ(n4) showing that the choice of the mutation
operator is essential.

Theorem 3. The expected optimization time of the (1 + 1)EA on the fitness
landscape described by HAM is bounded above by O(n2 log n).

Proof. The upper bound follows in the same way as in the proof of Theorem 2 by
proving that for HAM(π) = k there are at least n−k single exchange operations
increasing the HAM value. If element i is at position p �= i, then exchange(i, p)
increases the HAM value. Element i reaches its correct position and the element
leaving position i was not at its correct position. �



Fitness Landscapes Based on Sorting and Shortest Paths Problems 59

Considering only exchanges we can also prove a lower bound of Ω(n2 log n)
similarly to the lower bound proof of Theorem 2. Here the HAM value can be
increased by a single exchange step at most by 2. If HAM(π) is large, it is unlikely
that a step with more than 10 exchanges increases the HAM value. Moreover,
only exchanges of pairs (i, j) where π(j) = i and/or π(i) = j can increase the
HAM value.

Considering only jumps we can prove an upper bound of O(n4 log n), since
two special jumps can simulate an exchange step. However, the probability of
choosing these two jumps is bounded by O(1/n4). A lower bound for jump oper-
ations has to take into account that a single jump ((2, 3, . . . , n, 1)→ (1, 2, 3, . . . ,
n)) can increase the HAM value from 0 to n. However, we do not believe that
jumps help for this fitness landscape. Hence, for HAM exchanges play the role
which is played by jumps for REM.

Theorem 4. The expected optimization time of the (1 + 1)EA on the fitness
landscape described by EXC is bounded above by O(n3).

Proof. Obviously, EXC(π) ≤ n − 1 for all π. Since EXC(π) = 0 only for the
optimal π, it is sufficient to decrease the EXC value for at most n − 1 times.
The expected waiting time until the EXC value is decreased is bounded by
O(n2), since, by definition, there is at least one pair (i, j) such that its exchange
decreases the EXC value. This proves the theorem. �

Since two special jumps can simulate a given exchange step, we obtain for jumps
an O(n5) bound. It is not surprising that exchanges seem to be better than jumps
for this fitness function which is defined via the minimal number of exchange
operations.

All the fitness functions based on INV, REM, HAM, or EXC lead to fitness
landscapes which are easy for simple EAs. The expected optimization time can
depend essentially on the chosen mutation operator. Hence, it seems to be useful
to allow jumps and exchanges. However, we still have to investigate the fitness
landscape based on the number of runs (RUN). This is the perhaps best-known
measure of presortedness, since Mergesort is based on the idea of reducing the
number of runs efficiently. We prove that the expected optimization time is under
some reasonable assumptions exponential.

Theorem 5. Let n1/2 ≤ k ≤ n/2 and let π be chosen randomly among all
sequences with two runs of length k and n − k resp. The expected optimization
time of the (1+1)EA on the fitness landscape described by RUN and the random
initial string π is bounded below by 2Ω(n1/2) and the success probability within
2n

1/2
steps is exponentially small.

Proof. First, we investigate another algorithm which applies in each step one
randomly chosen jump operation and accepts the new string if it has two runs or
a single run. In the second case the algorithm stops with success. Let the string be
described by the two runs a1 < · · · < ak and bk+1 < · · · < bn where {a1, . . . , ak}
is a random subset of {1, . . . , n} of size k. Only if ak = k, we have only one



60 Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener

run and can stop. This happens for the initial string with the exponentially
small probabaility of 1/

(
n
k

)
. Otherwise, we choose a random element for a jump.

Each ai has a unique correct position in the b-run. All other jumps (except
one special case) lead to three runs and are not accepted. The special case is
a1 = 1, . . . , ak−1 = k−1, bk+1 = k and ak jumps to position k (or the dual case).
The crucial observation is the following. If we exclude the special situations
and count only accepted steps (this may be done for lower bounds) we have
for each element the same chance to jump to the correct position in the other
run. Hence, we obtain with probability k/n runs of lengths k + 1 and n− k − 1
and with probability 1 − k/n runs of lengths k − 1 and n − k + 1. Moreover,
the elements of the first run are chosen randomly among all objects. As long as
the critical parameter k, the length of the shorter run, is at least m := n1/2/2
the probability of finding the optimum or a special case as described above is
bounded by n/

(
n
m

)
= 2−Ω(n1/2 logn). Hence, this probability is exponentially

small for 2n
1/2

steps.
In order to reach a value of k = m we have to start from k = 2m and

to reach k = m before reaching k = 3m. A necessary condition is to have at
least m steps decreasing k among the next 3m steps. However, the probability
of a decreasing step is bounded by 3m/n = O(n−1/2). By Chernoff bounds,
the probability for the necessary condition is bounded by 2−Ω(n1/2 log n) and,
therefore, the probability that this happens within 2n

1/2
steps is exponentially

small.
Single exchange steps are almost useless. The exchange of the last element

of the first run and the first element of the second run is also a jump and may
change the lengths of the runs. All other accepted exchange steps exchange two
elements from both runs which does not change the lengths of the runs.

What is the effect of many jumps within an operation? With overwhelming
probability we do not perform more than nε/4 jumps in one step. This holds
for the Poisson distribution for each ε > 0. Therefore, an element jumping to a
position with a distance of more than nε/4 from each of the two correct positions
in the runs has to jump again such that we do not obtain more than two runs.
If we choose r different elements which have to jump, the probability that the
resulting sequence has at most two runs is bounded above (nε/n)r = n−(1−ε)r

while this probability is at least 1/(n− 1) for r = 1. Since the number of jumps
equals X + 1 where X has a Poisson distribution with λ = 1, the probability
of letting at least r elements jump is bounded by (2/(r − 1)!). Hence, we may
assume that all successful steps where r ≥ 2 elements jump shorten the shorter
run by r. Since the expected decrease of the shorter run during 3m steps caused
by this assumption is only O(mn−(1−ε)·2), we can generalize our estimates above
(with minor changes) to obtain the same results for the (1+1)EA. �

The last question is whether it is likely that we reach a situation with two
runs where the shorter one has a length of at least n1/2 and where the probability
that this run contains almost only very small or almost only very large elements
is tiny. In each situation it is more likely to increase the length of a short run



Fitness Landscapes Based on Sorting and Shortest Paths Problems 61

than to increase the length of a long run. However, for short runs there is a
non-vanishing probability of merging runs. Altogether, it seems to be very likely
that we reach a situation as described above. However, this has not been proved
rigorously here.

Our experiments have confirmed our statements discussed above. For 20 ≤
n ≤ 40, in almost all cases the length of the shorter run was at least 0.4n for
the first string with two runs. For n = 40, we have obtained the first string with
two runs on the average only after approximately 9 · 107 steps. For n = 60 this
happens only after 18 · 107 steps and the optimum is not reached after 5.7 · 109

steps. The fitness landscape based on RUN is difficult already for quite small n.

4 Fitness Landscapes Based on Shortest Paths Problems

Given n nodes and a distance matrix with positive entries dij the single-source-
shortest-paths problem (SSSP) is the problem to compute for each node v �= s
a shortest path from node s to node v. Using Dijkstra’s algorithm SSSP can be
solved in time O(n2). It seems to be a good idea to consider the search space of
all v = (v1, . . . , vn−1) ∈ {1, . . . , n}n−1 where vi �= i with the following interpre-
tation. We set s = n and obtain a graph where i has the single predecessor vi.
If this graph has a cycle, the individual is invalid with fitness ∞. Otherwise, we
get a tree rooted at s describing for each i �= s an s-i-path. As single-objective
problem the fitness equals the sum of the lengths of all s-i-paths. This may lead
to a needle-in-the-haystack landscape. If di,i−1 = 1 and dij = ∞, if j �= i − 1,
only the optimal tree where vi = i+ 1 has a fitness smaller than ∞.

Now we consider SSSP as a multi-objective optimization problem where we
have n−1 objectives namely the lengths of the s-i-paths. We use the same search
space with the fitness function f(v) = (f1(v), . . . , fn−1(v)) where fi(v) is the
length of the s-i-path in the graph described by v, if this graph contains such a
path, and fi(v) =∞, otherwise. The aim is minimization. The theory on shortest
paths problems implies that this multi-objective minimization problem has a
unique Pareto optimal fitness vector f∗ = (l∗1, . . . , l

∗
n−1) containing the lengths

of shortest s-i-paths and all Pareto optimal vectors describe graphs representing
a system of shortest paths. (A vector is called Pareto optimal if it is minimal
w.r.t. the partial order ≤ on (R∪{∞})n−1 where (a1, . . . , an−1) ≤ (b1, . . . , bn−1)
iff ai ≤ bi for all i.)

We may design variants of evolutionary algorithms for multi-objective min-
imization. However, a very simple variant again called (1+1)EA is an efficient
SSSP solver. We use the following mutation operator:

– Choose s according to a Poisson distribution with parameter λ = 1 and
perform sequentially s + 1 flips. A flip chooses randomly a position p ∈
{1, . . . , n− 1} and replaces vp by a random node w �= p.

The (1+1)EA chooses the first search point v randomly, creates v′ by the muta-
tion operator and replaces v by v′ iff f(v′) ≤ f(v).



62 Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener

Theorem 6. The expected optimization time of the multi-objective (1+1)EA on
SSSP is bounded above by O(n3).

We prove a more sophisticated bound. Let ti be the smallest number of edges
on a shortest s-i-path, mj := #{i | ti = j}, and T = max{j | mj > 0}. Then we
prove the upper bound

en2
∑

1≤j≤T
(lnmj + 1).

This bound has its maximal value Θ(n3) for m1 = · · · = mn−1 = 1. We also
obtain the bound O(n2T log n) which in the typical case where T is small is
much better than O(n3).

Proof. The proof is based on the following simple observation. Whenever fi(v) =
l∗i , we only accept search points v′ where fi(v′) = l∗i . Hence, we do not forget
the length of shortest paths which we have found (although we may switch to
another shortest path). Now we assume that we have a search point v where
fi(v) = l∗i for all i where ti < t. Then we wait until this property holds for all i
where ti ≤ t. For each node i where ti = t and fi(v) > l∗i there exists a node j
such that tj = t− 1, j is the predecessor of i on a shortest s-i-path of length t,
and fj(v) = l∗j . Then a mutation where only vi is flipped and obtains the value
j is accepted and leads to a search point v′ where fi(v′) = l∗i . The probability of
such a mutation equals 1/(e(n−1)2) (1/e the probability of flipping exactly one
position, 1/(n− 1) the probability of flipping the correct position, and 1/(n− 1)
the probability of flipping it to the right value). If we have r such nodes, the
success probability is at least r/(e(n − 1)2) and the expected waiting time is
bounded above by en2/r. The largest value for r is mt and we have to consider
each of the values mt, . . . , 1 at most once. Hence, the total expected time of this
phase is bounded above by en2(1 + 1

2 + · · ·+ 1
mt

) ≤ en2(lnmt + 1). Since t can
take the values 1, . . . , T we have proved the proposed bound. �

It is easy to show that the expected optimization time equals Θ(n3) in the
extreme case which is a needle-in-the-haystack landscape for single-objective
optimization.

5 Conclusion

Robust problem solvers should also solve the well-known simple optimization
problems efficiently. This has been investigated for the sorting problem (max-
imizing the sortedness based on some measure of presortedness) and shortest-
paths problems. For four out of five fitness landscapes described by the best-
known measures of presortedness simple EAs work very efficiently, although dif-
ferent types of local changes are essential. However, the last measure of presort-
edness leads to a fitness landscape which is difficult for EAs. There are instances
of shortest-paths problems which are difficult for black-box single-objective op-
timization. The modeling of the SSSP as multi-objective optimization problem



Fitness Landscapes Based on Sorting and Shortest Paths Problems 63

reflects the structure of the problem and the fitness vector reveals enough infor-
mation to direct the search of a simple EA. Usually, multi-objective optimiza-
tion is only used if no single-objective optimization problem contains the whole
structure of the problem. Here it has been shown that a multi-objective problem
model may lead to a simpler problem.

References

1. Bäck, T., Fogel, D.B., and Michalewicz, Z. (Eds.) (1997). Handbook of Evolutionary
Computation. Oxford University Press.

2. Droste, S., Jansen, T., and Wegener, I. (1998a). A rigorous complexity analysis
of the (1+1) evolutionary algorithm for separable functions with Boolean inputs.
Evolutionary Computation 6, 185–196.

3. Droste, S., Jansen, T., and Wegener, I. (1998b). On the optimization of unimodal
functions with the (1+1) evolutionary algorithm. Parallel Problem Solving from
Nature – PPSN V, LNCS 1498, 13–22.

4. Horn, J., Goldberg, D.E., and Deb, K. (1994). Long path problems. Parallel Prob-
lem Solving from Nature – PPSN III, LNCS 866, 149–158.

5. Jansen, T., and Wegener, I. (2001a). Real royal road functions - where crossover
provably is essential. Genetic and Evolutionary Computation Conf. – GECCO,
375–382.

6. Jansen, T., and Wegener, I. (2001b). Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same fitness. IEEE
Trans. on Evolutionary Computation 5, 589–599.

7. Mitchell, M., Holland, J.H., and Forrest, S. (1994). When will a genetic algorithm
outperform hill climbing. In J. Cowan, G. Tesauro, and J. Alspector (Eds.): Ad-
vances in Neural Information Processing Systems. Morgan Kaufman.

8. Petersson, O., and Moffat, A. (1995). A framework for adaptive sorting. Discrete
Applied Mathematics 59, 153–179.

9. Rudolph, G. (1997). How mutations and selection solve long path problems in
polynomial expected time. Evolutionary Computation 4, 195–205.

10. Wegener, I. (2001). Theoretical aspects of evolutionary algorithms. Int. Colloq. on
Automata, Languages, and Programming – ICALP, LNCS 2076, 64–78.



Performance Measures
for Dynamic Environments

Karsten Weicker

University of Stuttgart, Institute of Computer Science
Breitwiesenstr. 20–22, 70565 Stuttgart, Germany,
Karsten.Weicker@informatik.uni-stuttgart.de

Abstract. This article investigates systematically the utility of perfor-
mance measures in non-stationary environments. Three characteristics
for describing the goals of a dynamic adaptation process are proposed:
accuracy, stability, and recovery. This examination underpins the usage
of the best fitness value as a basis for measuring the three characteristics
in scenarios with moderate changes of the best fitness value. However,
for dynamic problems without coordinate transformations all considered
fitness based measures exhibit severe problems. In case of the recovery, a
newly proposed window based performance measure is shown to be best
as long as the accuracy level of the optimization is rather high.

1 Introduction

Research on evolutionary algorithms applied to non-stationary problems dates
back to the work by Goldberg and Smith (1987) and is still a topic of increasing
popularity. In the past 15 years a vast variety of problems was considered. How-
ever, most of the research is rather problem or technique oriented and, therefore,
deals with a specific niche in the space of the dynamic problems. There are only
few classifications of dynamic problems available trying to establish a foundation
for systematic research of dynamic optimization. Moreover, the even more im-
portant question concerning the comparability of several evolutionary algorithms
acting in dynamic environments is still unanswered. In static optimization, there
exist persistent reference quantities like the global optima and their fitness val-
ues. Not only these quantities might change over time in dynamic optimization,
there are also certain variants of the focus concerning the actual goals of such
an optimization. Within a formal framework this article specifies different goals
of dynamic optimization, summarizes and develops a number of possible perfor-
mance measures, and examines empirically how well these measures reflect the
different goals for problems from various problem classes.

2 A Classification of Dynamic Problems

There are only few very coarse grained classifications distinguishing alternat-
ing (or cyclic) problems, problems with changing morphology, drifting land-
scapes, and abrupt and discontinuous problems (cf. Collard, Escazut, & Gaspar,

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 64–73, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Performance Measures for Dynamic Environments 65

1997; De Jong, 2000). Other classifications are based on the parameters of prob-
lem generators (e.g. Branke, 1999). A third type of classification by Weicker
(2000) decomposes the dynamic problem, that is defined on the search space
Ω, into several components and the change of each component i is determined
by a sequence of coordinate transformations

(
c(t)
i

)
t∈N

with c(t)
i : Ω → Ω and

d(c(t)
i (ω1), c(t)

i (ω2)) = d(ω1, ω2) for all ω1, ω2 ∈ Ω and fitness rescalings
(

r (t)
i

)
t∈N

with r (t)
i ∈ R

+
0 .

An exemplary non-stationary fitness function is

f (t)(A) = max
1≤j≤hills

{
0, if d(A, optj) > 150
maxfitj

150−d(A,optj)
150 , otherwise

with A ∈ Ω = [−500, 500] × [−500, 500], euclidean distance d, and hills ran-
domly chosen local optima optj ∈ Ω – each local optima corresponds to one
component. The coordinate transformation for each component j is a linear
translation of length coordsev into a direction dirj which is randomly deter-
mined at the beginning and as soon as a point outside of Ω would be created.
The fitness rescaling is a factor fitchangej which is added to maxfitj . Again,
fitchangej ∈ [−fitsev, fitsev] is chosen randomly at the beginning and when
maxfitj would leave the range [0, 1]. In non-alternating problems the maxi-
mum hill with j = 1 must have maximal fitness in [0.5, 1] and all other hills in
[0,maxfit1].

Weicker (2000) defines several properties within the framework. In this work,
it is relevant whether the coordinate transformation is the identity mapping,
i.e. the coordinates are static. If this is not the case the coordinate dynamics
are constant over a period of time. Moreover, the fitness rescalings may be an
identity mapping too. Here it is of interest whether the overall best fitness value
may alter between various components.

Based on these properties the following problem classes are considered:

Class 1: coordinate translation, no fitness rescaling, no alternation
Problem instance: hills = 5 , coordsev = 7.5, fitsev = 0
Various hills are moving while their height remains constant and the best
hill remains best.

Class 2: coordinate translation, fitness rescaling, no alternation
Problem instance: hills = 5 , coordsev = 7.5, fitsev = 0.01
Various hills are moving while their height is changing, but the best hill
remains best.

Class 3: no coordinate translation, fitness rescaling, alternation
Problem instance: hills ∈ {2, 5} , coordsev = 0, fitsev = 0.01
The hills are not moving but changing their height leading to alternating
best hills.

Class 4: coordinate translation, fitness rescaling, alternation
Problem instance: hills ∈ {2, 5} , coordsev = 7.5, fitsev = 0.01
The hills are moving while changing their height and different hills take the
role of the best hill at different generations.



66 Karsten Weicker

The problem instances with 2 hills are chosen such that there is at least one
alternation while both hills are changing their height into the same direction.
This additional characteristic is supposed to be problematic when measuring the
performance. Note, that the fitness severity is chosen moderately in all classes.

3 Goals of Dynamic Optimization

The goal of an evolutionary search process in a dynamic environment is not only
to find an optimum within a given number of generations but rather a perpetual
adjustment to changing environmental conditions. Besides the accuracy of an
approximation at time t, the stability of an approximation is of interest as well
as the recovery time to reach again a certain approximation level.

The optimization accuracy at time t for a fitness function F and optimization
algorithm EA is defined as

accuracy(t)
F,EA =

F (best (t)
EA)−Min(t)

F

Max (t)
F −Min(t)

F

(1)

where best (t)
EA is the best candidate solution in the population at time t, Max (t)

F ∈
R the best fitness value in the search space, and Min(t)

F ∈ R the worst fitness value
in the search space. Note, that the accuracy is only well defined if the fitness
function is non-constant at each time step, i.e. the fitness landscape is not a
plateau covering the complete search space at any generation. The optimization
accuracy ranges between 0 and 1, where accuracy 1 is the best possible value.
It is also independent of fitness rescalings. This formula was introduced by Feng
et al. (1997) as a performance measure in stationary environments.

As a second goal, stability is an important issue in optimization. In the con-
text of dynamic optimization, an adaptive algorithm is called stable if changes
in the environment do not affect the optimization accuracy severely. Even in the
case of drastic changes an algorithm should be able to limit the respective fitness
drop. The stability at time t is defined as

stab(t)
F,EA = max{0, accuracy(t)

F,EA − accuracy(t−1)
F,EA} (2)

and ranges between 0 and 1. A value close to 0 implies a high stability. In the
case of mere drifting landscapes, e.g. classes 1 and 2, it is a means to gain insight
into the ability to track the moving optimum by observing the stability over a
period of time. However, the stability must not serve as the sole criteria since
it makes no statement on the accuracy level. In classes 3 and 4, the stability at
the generations where changes occur are of interest.

An additional aspect is the ability of an adaptive algorithm to react quickly
to changes. An algorithm has ε-reactivity at time t

react (t)
F,A,ε = min

{
t′ − t

∣∣∣ t < t′ ≤ maxgen, t′ ∈ N,
accuracy(t′)

F,A

accuracy(t)
F,A

≥ (1− ε)
}

∪ {maxgen − t}



Performance Measures for Dynamic Environments 67

where maxgen is the number of generations. A smaller value implies a higher
reactivity. This aspect of adaptation is especially of interest if the problem has
short phases of big severity alternating with extensive phases of no severity with
regard to the coordinate transitions or if the problem is alternating concerning
the fitness rescalings (with rather low severity for the coordinates).

4 Performance Measures

In the previous section, the goals of optimization in dynamic environments are
carefully defined using the accuracy. The accuracy is always a useful value, even
in cases where the fitness of best approximation by the algorithm is decreasing,
a situation where the overall best fitness could decrease or increase. But if the
overall best fitness is not known the accuracy cannot be computed. Since this
value might change, there is no common basis for assessment of the quality of a
solution. A good fitness value at one time can be a bad fitness value at another
time – but this is not transparent. Then, other means to assess the performance
of an algorithm are necessary.

Those performance measures can be classified by the knowledge they need.

– Knowledge on the position of the optimum is available (which is usually only
the case in academic benchmarks).

– Knowledge on the best fitness value is available.
– No global knowledge is available.

In order to enable a fair comparison of different algorithm with respect to
the question how they reach the goal of dynamic optimization, a single value for
the algorithm’s performance is gained by averaging over all generations (see De
Jong, 1975). In the following sections only the measures for one generation are
given.

4.1 Measures for Optimization Accuracy

The definition of the accuracy was used by Mori, Kita, and Nishikawa (1996)
as a performance measure averaged over a number of generations T . An almost
similar performance measure was used by Trojanowski and Michalewicz (1999)
where the normalization using the worst fitness value was omitted. They con-
sidered also only those time steps before a change in the environment occurs. If
more emphasis is to be put on the detection of the optimum, Mori, Kita, and
Nishikawa (1998) proposed a different weighting of those successful generations.
A more gradual approach seems to be the usage of the square error to the best
fitness value proposed by Hadad and Eick (1997).

In the case that no global knowledge is available, the following performance
measures are discussed and examined in the remainder of the paper.

currentBest (t)
F,EA = max{F (ω) | ω ∈ P (t)

EA}
currentBestOffl (t)

F,EA = max
1≤t′≤t

currentBest (t′)
F,EA



68 Karsten Weicker

currentAverage(t)
F,EA =

1

| P (t)
EA |

∑
ω∈P (t)

EA

F (ω)

windowAcc(t)
F,EA,W = max

{
F (ω)− windowWorst

windowBest − windowWorst

∣∣∣ ω ∈ P (t)
EA

}
with

windowBest = max{F (ω) | ω ∈ P (t′)
EA , t−W ≤ t′ ≤ t}

windowWorst = min{F (ω) | ω ∈ P (t′)
EA , t−W ≤ t′ ≤ t}

The majority of publications uses the best fitness value currentBest (t)
F,EA

to assess the quality of the algorithm (e.g. Angeline, 1997; Cobb, 1990; Das-
gupta & McGregor, 1992; Goldberg & Smith, 1987; Grefenstette, 1992; Hadad
& Eick, 1997; Lewis, Hart, & Ritchie, 1998; Mori et al., 1996; Vavak, Foga-
rty, & Jukes, 1996). This measure is better suited to dynamic problems than
currentBestOffl (t)

F,EA, the usual basis for offline performance (De Jong, 1975),
that compares incommensurable values from different generations (cf. Grefen-
stette, 1999). Branke (1999) uses a mixed approach where those values from
generations without environmental change are compared which requires global
knowledge on any possible change in the environment.

The average fitness value currentAverage(t)
F,EA is used as a performance mea-

sure e.g. by Dasgupta and McGregor (1992), Goldberg and Smith (1987), Mori
et al. (1996). Averaged over generations this leads to the online performance
measure of De Jong (1975), which was originally defined as the average over all
function evaluations since the start of the algorithm. Presumed that the popu-
lation size is constant and the algorithm is generational, the online performance
may be defined as mean currentAverage(t)

F,EA. Online performance reflects the
focusing of the search on optimal regions (see Grefenstette, 1992, 1999). In the
online performance actually each new created individual is supposed to con-
tribute a high fitness value. However, Cobb (1990) argued that this conception
might not be suited for many dynamic problems because focusing too much on
good fitness values might have negative effects on the adaptability.

Another approach to measure the accuracy without knowing the actual best
possible fitness is based on the assumption that the best fitness value will not
change much within a small number of generations. As a consequence a local
window of interest W ∈ N is introduced and the accuracy windowAcc(t)

F,EA,W is
measured within this window. This window based measure has not been used in
the experiments reported in the literature.

Alternatively to the fitness based measures, genotype or phenotype based
measures may be used to approximate the optimization accuracy. Though inde-
pendent of fitness rescalings, they require full global knowledge of the position
of the current optimum. There are two variants: Weicker and Weicker (1999)
used the minimal distance of the individuals in the population to the current
optimum ω∗ ∈ Ω and Salomon and Eggenberger (1997) used the distance of the
mass center ωcenter of the population to ω∗.



Performance Measures for Dynamic Environments 69

Table 1. Average accuracy and standard deviation for the genetic algorithm with and
without hypermutation

w/out hypermut. w/ hypermut.
problem avg sdv avg sdv
class 1 0.45 0.023 0.87 0.0049
class 2 0.45 0.018 0.87 0.0035
class 3 0.82 0.035 0.96 0.0054
class 3 (2 hills) 0.97 0.0029 0.99 0.00086
class 4 0.46 0.025 0.87 0.0031
class 4 (2 hills) 0.41 0.023 0.86 0.0019

bestDist (t)
F,EA = max

{
maxdist − d(ω∗, ω)

maxdist

∣∣∣ ω ∈ P (t)
EA

}

centerDist (t)
F,EA =

maxdist − d(ω∗, ωcenter )
maxdist

Where the first approach seems to be straightforward to assess the approximation
quality, the second performance measure is more difficult to interpret. It requires
that the population as a whole describes very closely the region of the optimum.

4.2 Measures for Stability and Reactivity

In this paper, the measures for stability and reactivity are defined by replacing
the accuracy in the definition of stability or reactivity by an accuracy measure
from the previous section. However, the genotype/phenotype based measures are
omitted in this examination since they also require global knowledge.

5 Empirical Results

5.1 Experimental Setup

To optimize the dynamic problems two genetic algorithms are used. Both al-
gorithms are based on a standard genetic algorithm where each search space
dimension is encoded using 16 bits, the crossover rate is 0.6, the bit flipping
mutation is executed with probability 1

32 , a tournament selection with tourna-
ment size 2 is used, and the algorithm runs for 200 generations. In addition to
this standard algorithm, a version using hypermutation with a fixed rate of 0.2
is used (cf. Grefenstette, 1999). Table 1 shows the accuracy averaged over 10
problem instances and 50 independent experiments for each instance as well as
the respective standard deviation. The GA with hypermutation performs supe-
rior – however the performance of both algorithms should be expressed by a
performance measure equally well.

5.2 Statistical Examination of the Measures

The goal of this investigation is to find some empirical evidence for the question
how good the various measures approximate the exact adaptation characteristics.



70 Karsten Weicker

Table 2. Ranking based on pairwise hypothesis tests concerning the MSE of the curves

standard GA GA with hypermutation

C
la

ss
1

C
la

ss
2

C
la

ss
3

C
la

ss
3

(2
hi

lls
)

C
la

ss
4

C
la

ss
4

(2
hi

lls
)

C
la

ss
1

C
la

ss
2

C
la

ss
3

C
la

ss
3

(2
hi

lls
)

C
la

ss
4

C
la

ss
4

(2
hi

lls
)

Accuracy:
best fitness 1 1 1 4 1 1 1 2 1 4 1 1
average fitness 2 2 2 3 2 2 4 3 2 3 3 3
window based 3 3 5 5 3 5 2 1 5 5 2 2
shortest distance 4 4 3 1 4 3 3 3 4 1 4 4
distance of center 5 4 3 2 5 4 5 5 2 2 5 5
Stability:
best fitness 1 1 1 1 1 1 1 1 1 1 1 1
average fitness 2 2 2 2 2 2 2 2 2 2 2 2
window based 3 3 3 3 3 3 3 3 3 3 3 3
0.05-Recovery:
best fitness 1 1 1 1 1 1 1 1 1 1 2 1
average fitness 3 3 3 3 3 3 3 3 3 3 3 3
window based 2 2 2 2 2 2 2 1 1 1 1 1

A first approach is based on the assumption that the curves of the performance
measures should match the curves of the respective exact values to guarantee
a meaningful statement of the performance measure. The second approach con-
siders the averaged performance values only and tests how well they correlate to
the averaged exact values.

In the first approach, the measurements are normalized (g(t) − Eg)/
√
Vg

where Eg is the expectancy value and Vg the variance. This makes the values of
different performance measures comparable since the values are independent of
the range of the values. To assess the similarity of the curves of the exact values h′

and the normalized performance measure g′, the mean square error MSEg′,h′ =∑maxgen
t=1 (g′(t)−h′(t))2 is computed. In order to get a statistical confidence of one

measure over another, a hypothesis test is carried out using the 500 independent
mean square errors of each performance measure. Those pairwise hypothesis tests
are used to establish a ranking concerning the suitability of the performance
measures. Student’s t-test is used as a hypothesis test with a significant error
probability of 0.05. Table 2 shows the results of this analysis.

In the second approach, the averaged measures at the end of a optimization
run are used to determine how well the algorithm performed on the problem.
Therefore, a statistical test is used to compute the correlation of the approxi-
mated measures to the exact measures. The input data for the correlation anal-
ysis are the averaged performance values of the 50 different runs of an algorithm
on a problem instance. (Since the recovery measures depend highly on the suc-
cessive generations, the values of generation 150 are used for those measures



Performance Measures for Dynamic Environments 71

Table 3. Percentage of problem instances with a high correlation to the exact averaged
value

standard GA GA with hypermutation

C
la

ss
1

C
la

ss
2

C
la

ss
3

C
la

ss
3

(2
hi

lls
)

C
la

ss
4

C
la

ss
4

(2
hi

lls
)

C
la

ss
1

C
la

ss
2

C
la

ss
3

C
la

ss
3

(2
hi

lls
)

C
la

ss
4

C
la

ss
4

(2
hi

lls
)

Accuracy:
best fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
average fitness 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1,0 1.0 1.0
window based 0.9 0.9 0.6 0.0 0.8 0.4 0.9 0.9 0.5 0.0 1.0 1.0
shortest distance 0.7 0.7 0.9 1.0 0.7 0.8 0.9 0.7 0.9 1.0 0.8 0.6
distance of center 0.7 0.7 0.9 1.0 0.7 0.9 0.7 0.4 0.9 0.5 0.6 0.3
Stability:
best fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
average fitness 1.0 1.0 0.4 0.0 1.0 1.0 0.0 0.2 0.0 0.0 0.0 0.0
window based 0.4 0.4 0.2 0.2 1.0 0.5 0.1 0.5 0.4 0.2 0.5 0.3
0.05-Recovery:
best fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.0 1.0 1.0 0.8
average fitness 1.0 1.0 0.4 0.2 1.0 1.0 0.3 0.3 0.0 0.0 0.1 0.1
window based 0.9 0.8 0.8 1.0 0.6 0.4 1.0 1.0 1.0 1.0 1.0 1.0

instead of the final performance values in generation 200). As statistical method
Spearman’s rank correlation is used. A series of data is considered to be highly
correlated if the Spearman’s rank correlation is positive and the two-sided sig-
nificance level of its deviation from zero is less than 0.001. The correlation is
computed for each of the ten instances of a problem class. Table 3 shows the
percentage of instances where a high correlation between exact value and per-
formance measure could be identified.

5.3 Discussion of the Results

The results concerning the accuracy show, that the averaged best fitness values
are a good indicator for all classes and both high and low quality algorithms.
However, the examination of the MSE shows that all fitness based measures have
severe problems with class 3 (2 hills) where only fitness rescalings are occuring,
in a misleading way. Especially the windows based measure has severe problems
with all class 3 instances. The MSE of the GA with hypermutation on class 2
indicates that the window based measures can be a better indicator than best
fitness although this is not approved by the averaged performance values.

Also, the stability is measured best using best fitness values. The average fit-
ness shows very poor results with the averaged performance values. The windows
based measure is insufficient regarding the MSE.

Concerning the recovery, the window based measure proofs to be equivalent
or superior to the best fitness in case of the high quality experiments (GA with
hypermutation).



72 Karsten Weicker

The good results of the averaged best fitness for the accuracy contradicts
partly the examination of the MSE. This indicates that especially in dynamic
environments averaged performance measures should be used and interpreted
carefully to rule out statistical effects.

6 Conclusions

This paper presents the first systematic approach to examine the usefulness
of performance measures in time-dependent non-stationary environments. The
goals of an adaptation process are discussed in detail and accuracy, stability,
and recovery are proposed as key characteristics. Existing performance measures
from literature are reviewed and a new window based performance measure is
proposed.

On a wide set of dynamic problems the measures are examined for an algo-
rithm with high accuracy and an algorithm generating low accuracy. Altogether
the best fitness value proves to be the best performance measure for problems
with moderate fitness severity – deficiencies exist for problems without coor-
dinate transitions and as a basis for recovery measures. In the latter case, the
window based measure exhibits a superior performance.

Future work has to examine problems with more severe fitness rescalings or
additional problem characteristics. Also an investigation concerning the validity
and strength of averaging performance values in dynamic domains is necessary.

References

Angeline, P. J. (1997). Tracking extrema in dynamic environments. In P. J. Angeline,
R. G. Reynolds, J. R. McDonnell, & R. Eberhart (Eds.), Evolutionary Program-
ming VI (pp. 335–345). Berlin: Springer. (Lecture Notes in Computer Science
1213)

Branke, J. (1999). Evolutionary algorithms for dynamic optimization problems: A
survey (Tech. Rep. No. 387). Karlsruhe, Germany: Institute AIFB, University
of Karlsruhe.

Cobb, H. G. (1990). An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent nonstationary
environments (Tech. Rep. No. 6760 (NLR Memorandum)). Washington, D.C.:
Navy Center for Applied Research in Artificial Intelligence.

Collard, P., Escazut, C., & Gaspar, A. (1997). An evolutionary approach for time
dependant optimization. International Journal on Artificial Intelligence Tools,
6 (4), 665–695.

Dasgupta, D., & McGregor, D. R. (1992). Nonstationary function optimization using
the structured genetic algorithm. In R. Männer & B. Manderick (Eds.), Parallel
Problem Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving
from Nature, Brussels 1992) (pp. 145–154). Amsterdam: Elsevier.

De Jong, K. (2000). Evolving in a changing world. In Z. Ras & A. Skowron (Eds.),
Foundation of intelligent systems (pp. 513–519). Berlin: Springer.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. Unpublished doctoral dissertation, University of Michigan.



Performance Measures for Dynamic Environments 73

Feng, W., Brune, T., Chan, L., Chowdhury, M., Kuek, C. K., & Li, Y. (1997). Bench-
marks for testing evolutionary algorithms (Tech. Rep. No. CSC-97006). Glasgow,
UK: Center for System and Control, University of Glasgow.

Goldberg, D. E., & Smith, R. E. (1987). Nonstationary function optimization using
genetic algorithms with dominance and diploidy. In J. J. Grefenstette (Ed.),
Proc. of the Second Int. Conf. on Genetic Algorithms (pp. 59–68). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In R. Männer
& B. Manderick (Eds.), Parallel Problem Solving from Nature 2 (Proc. 2nd Int.
Conf. on Parallel Problem Solving from Nature, Brussels 1992) (pp. 137–144).
Amsterdam: Elsevier.

Grefenstette, J. J. (1999). Evolvability in dynamic fitness landscapes: a genetic al-
gorithm approach. In 1999 Congress on Evolutionary Computation (pp. 2031–
2038). Piscataway, NJ: IEEE Service Center.

Hadad, B. S., & Eick, C. F. (1997). Supporting polyploidy in genetic algorithms
using dominance vectors. In P. J. Angeline, R. G. Reynolds, J. R. McDonnell,
& R. Eberhart (Eds.), Evolutionary Programming VI (pp. 223–234). Berlin:
Springer. (Lecture Notes in Computer Science 1213)

Lewis, J., Hart, E., & Ritchie, G. (1998). A comparison of dominance mechanisms
and simple mutation on non-stationary problems. In A. E. Eiben, T. Bäck,
M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature –
PPSN V (pp. 139–148). Berlin: Springer. (Lecture Notes in Computer Science
1498)

Mori, N., Kita, H., & Nishikawa, Y. (1996). Adaptation to a changing environment by
means of the thermodynamical genetic algorithm. In H. Voigt, W. Ebeling, &
I. Rechenberg (Eds.), Parallel Problem Solving from Nature – PPSN IV (Berlin,
1996) (Lecture Notes in Computer Science 1141) (pp. 513–522). Berlin: Springer.

Mori, N., Kita, H., & Nishikawa, Y. (1998). Adaptation to a changing environment
by means of the feedback thormodynamical geentic algorithm. In A. E. Eiben,
T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel Problem Solving from
Nature – PPSN V (pp. 149–158). Berlin: Springer. (Lecture Notes in Computer
Science 1498)

Salomon, R., & Eggenberger, P. (1997). Adaptation on the evolutionary time scale: A
working hypothesis and basic experiments. In J.-K. Hao, E. Lutton, E. Ronald,
M. Schoenauer, & D. Snyders (Eds.), Artificial Evolution: Third European Conf.,
AE’97 (pp. 251–262). Berlin: Springer.

Trojanowski, K., & Michalewicz, Z. (1999). Searching for optima in non-stationary
environments. In 1999 Congress on Evolutionary Computation (pp. 1843–1850).
Piscataway, NJ: IEEE Service Center.

Vavak, F., Fogarty, T. C., & Jukes, K. (1996). A genetic algorithm with variable range
of local search for adaptive control of the dynamic systems. In Proc. of the 2nd
Int. Mendelian Conf. on Genetic Algorithms. ?

Weicker, K. (2000). An analysis of dynamic severity and population size. In M. Schoe-
nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel
(Eds.), Parallel problem solving from nature – PPSN VI (pp. 159–168). Berlin:
Springer.

Weicker, K., & Weicker, N. (1999). On evolution strategy optimization in dynamic
environments. In 1999 Congress on Evolutionary Computation (pp. 2039–2046).
Piscataway, NJ: IEEE Service Center.



Direct Representation and Variation Operators
for the Fixed Charge Transportation Problem

Christoph Eckert and Jens Gottlieb

SAP AG, Neurottstr. 16, 69190 Walldorf, Germany
{c.eckert,jens.gottlieb}@sap.com

Abstract. The fixed charge transportation problem (FCTP) has been
tackled by evolutionary algorithms (EAs) using representations like per-
mutations, Prüfer numbers, or matrices. We present a new direct repre-
sentation that restricts search to basic solutions and allows using pro-
blem-specific variation operators. This representation is compared w.r.t.
locality and performance to permutations and Prüfer numbers. It clearly
outperforms all other EAs and even reaches the solution quality of tabu
search, the most successful heuristic for the FCTP we are aware of.

1 Introduction

A transportation problem (TP) involves shipping certain amounts of a commod-
ity from a set of sources, S = {1, . . . ,m}, to a set of destinations, D = {1, . . . , n}.
Each source i ∈ S has a capacity ai and each destination j ∈ D has a demand
bj . The goal is to determine the amounts xij shipped from i to j, such that
total transportation costs are minimized and capacity and demand constraints
are met. While the linear TP is solvable in polynomial time due to its linear cost
function [8], the fixed charge transportation problem (FCTP) is NP-complete [6]
since it considers fixed costs in addition to linear costs. The FCTP is stated as

minimize
∑
i∈S

∑
j∈D

cijxij + fijg(xij) (1)

with g(xij) =
{

1 if xij > 0
0 else for i ∈ S and j ∈ D (2)

subject to
∑
j∈D

xij = ai for i ∈ S (3)

∑
i∈S

xij = bj for j ∈ D (4)

xij ≥ 0 for i ∈ S and j ∈ D, (5)

where variable and fixed costs are given by cij and fij , respectively. The FCTP
is a linear TP if fij = 0 for all i, j, and it is trivial if m = 1 or n = 1 because
in this case only one solution exists, which is the global optimum. Therefore, we
assume fij > 0 for some i and j, m ≥ 2, and n ≥ 2.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 77–87, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



78 Christoph Eckert and Jens Gottlieb

An essential property of the FCTP is derived from linear programming theory
[8]: the global optimum is a basic solution of the underlying linear TP. Thus, it
is promising to restrict search to these candidates, as done in the most successful
heuristic we are aware of, the tabu search procedure from Sun et al. [11].

Evolutionary algorithms (EAs) were proposed for different TPs – including
the FCTP – but only the decoder-based approaches using permutations [12] or
Prüfer numbers [2,7] guarantee producing basic solutions. The matrix-based EA
[4] directly modifies transportation plans, but only guarantees at most m+n−1
positive entries in the transportation plan (xij), which may be also a non-basic
solution. Prüfer numbers exhibit poor performance compared to permutations,
which are slightly inferior to the matrix representation.

The goal of this paper is to develop a compact encoding that represents
only basic solutions of the linear TP and that enables direct manipulation of
transportation plans. This would allow working directly – i.e. without use of a
decoder – in the same search space that is indirectly explored by the decoders
based on permutations or Prüfer numbers. We base our study on publically
available benchmarks1 that have been discussed in [4,11].

Section 2 reviews representations that have been suggested for the FCTP
and introduces the new direct representation. The representations are examined
concerning their locality in section 3. Section 4 presents empirical results, also
including a comparison with tabu search. Conclusions are given in section 5.

2 Representations for the FCTP

2.1 The Permutation Representation

Permutations were applied to the linear TP [12] and the FCTP [2,4]. Transporta-
tion plans (xij) consist of m · n entries, which can be indexed by {1, . . . ,m · n}.
A permutation of these indices is decoded to (xij) by traversing the variables
xij in the order determined by the permutation, and assigning to each xij the
maximum value with respect to the constraints (3) and (4). This decoding pro-
cedure generates only basic solutions, and all basic solutions are represented by
at least one permutation. Uniform order based crossover and swap mutation are
suitable operators for this representation [2].

2.2 The Prüfer Number Representation

The Prüfer number representation relies on a bijective mapping between span-
ning trees in a complete graph with r nodes and strings of r − 2 node labels,
which are called Prüfer numbers [9]. Since basic solutions for the FCTP corre-
spond to trees in the transportation graph, Prüfer numbers were proposed for
the FCTP by Li et al. [7]. As their decoding procedure may produce infeasi-
ble solutions, additional repair mechanisms that allow decoding arbitrary Prüfer
numbers into feasible transportation plans were suggested [2]. This represen-
tation was used with one-point crossover and inversion as mutation operator
1 http://www.in.tu-clausthal.de/∼gottlieb/benchmarks/fctp



Direct Representation and Variation Operators 79

�

�

�

�

�

2

1

3

2

1

�
�
�

��
�

���

��
�

����
�
�

3

1

2

1

1

xij =
(

1 0 0
0 1 2

)
�

�

�

�

�

2

1

3

2

1

��
�

���

��
�

2
1

1

Fig. 1. A transportation graph (left), a basic solution (xij) (middle), and its forest
consisting of the edges E(x) = {(1, 1), (2, 2), (2, 3)} (right).

[2,7]. Prüfer numbers are clearly outperformed by the permutation representa-
tion, which is explained by their poor locality.

2.3 The Matrix Representation

Matrices offer a natural way to encode FCTP solution candidates, because they
directly represent transportation plans. They have been used by Vignaux and
Michalewicz for the linear transportation problem [12]. However, applying their
operators to the FCTP causes high fixed costs, since they tend to produce solu-
tions with many non-zero entries. Significantly better results for the FCTP were
reported by Gottlieb and Paulmann, who used operators generating solutions
with at most m + n − 1 positive entries [4]. Their approach is the most suc-
cessful EA for the FCTP until now. Nevertheless, it does not produce only basic
solutions and hence we are confident that there is room for further improvement.

2.4 A New Direct Representation

A basic solution has at most m+n− 1 positive entries in (xij), and the positive
entries form a tree in the transportation graph, respectively a forest if there are
less than m+ n− 1 non-zero entries. Thus, a basic solution x is represented by
the set of its edges E(x) = {(i, j) | xij > 0, i ∈ S, j ∈ D} and the corresponding
amounts. This encoding is very compact and allows efficient evaluation of the
solution. An example is shown in figure 1 for a FCTP instance withm = 2, n = 3,
a1 = 1, a2 = 3, b1 = 1, b2 = 1 and b3 = 2. In general, random basic solutions,
which are needed to initialize a population, can be generated by decoding random
permutations as decribed in section 2.1. The forest in figure 1 is constructed e.g.
by traversing the variables in the order x11, x12, x21, x22, x23.

Edge-Insert Cycle-Redistribution Mutation (EICR). Given the basic
solution x, a new edge (i, j) �∈ E(x) is selected randomly from S×D and inserted
into E(x). We distinguish two cases, which are depicted exemplarily in figure 2.
In case (a) there is a cycle in E(x) ∪ {(i, j)}, e.g. because |E(x)| = m + n − 1.
Then we can redistribute the amounts along that cycle by alternately decreasing
and increasing by the same value. This causes xij > 0 and xrs = 0 for some edge
(r, s) ∈ E(x), which is therefore deleted.

In case (b) there is no cycle, but we can easily produce one as follows. Since
(i, j) �∈ E(x) and each node must have an incident edge in E(x), we can randomly



80 Christoph Eckert and Jens Gottlieb

�

�

�

�

�

2

1

3

2

1

�
�
�

��
�

���

�
�
�

� �

1
1

1
1

(a) parent

�

�

�

�

�

2

1

3

2

1

��
�

���

��
�

2
1

1

(a) child

�

�

�

�

�

2

1

3

2

1

��
�

���

��
�

�
�� �

2
1

1

(b) parent

�

�

�

�

�

2

1

3

2

1

�
�
�

���

���

2

1

1

(b) child

Fig. 2. Examples for EICR: Inserting (1, 1) causes (1, 3) and (2, 1) being removed (case
(a)); insertion of (1, 2) causes inserting (2, 1) and removal of (1, 1) and (2, 2) (case (b)).

select two edges (i, s) and (r, j) with positive amounts. Inserting (i, j) and (r, s)
into E(x) yields a cycle of length 4, along which redistribution can take place
as in case (a). Here, at least one of the edges (i, s) and (r, j) is removed. This
operator produces a feasible new solution, which is always a basic solution.

Node Local Optimize Mutation (NLO). A node is selected randomly from
S ∪ D, and then all edges are checked that are incident to the selected node
but not contained in the current basic solution. For each edge, its insertion is
evaluated as done in case (a) of the EICR mutation; an edge is skipped if it does
not immediately yield a cycle (unlike case (b) of EICR). Then, the edge with
the best resulting objective value is selected. This resembles local optimization
according to the (1, λ)-strategy, where λ offspring of the current solution are
evaluated and the best offspring is selected. Note that only one node is selected
at a time and that NLO is completed after processing this node. We also consider
the (1 + λ)-strategy, where the offspring compete with the current solution, and
refer to the (1, λ) variant as NLO1, and to the (1 + λ) version as NLO2.

Distance-Cut Crossover (DCX). The motivation of this crossover is that
the child of two parents should inherit characteristics common in both parents,
and that remaining properties should stem from at least one of the parents. In
order to prevent too much similarity with a parent, the child should also have
roughly the same distance from both parents. Note that a similar idea has been
proposed for the traveling salesman problem, too [1].

Given the parents x and y, we insert half of the edges from E(y) \E(x) into
E(x). The edges are inserted sequentially, and each is processed identically as in
the EICR mutation. Although this procedure does not guarantee to preserve all
edges from E(x) ∩E(y), the child is mainly formed by edges from E(x) ∪E(y).
Figure 3 shows an example for DCX and an instance with m = n = 3.

3 Locality Analysis

3.1 Phenotypic and Genotypic Distance Metrics

An individual is viewed as duality of its genotype and phenotype, where the
phenotype is the solution itself – i.e. the transportation plan (xij) – and the
genotype is its representation, like e.g. a permutation, a Prüfer number, or a set



Direct Representation and Variation Operators 81

�

�

�

�

�

�

3

2

1

3

2

1

�
�
��
�
�

2

1
2 1

parent 1

�

�

�

�

�

�

3

2

1

3

2

1

�
�
�
�

�
�
�

1
1 1

2

1

parent 2

�

�

�

�

�

�

3

2

1

3

2

1

�
�
�

2

2
1

1

intermediate

�

�

�

�

�

�

3

2

1

3

2

1

�
�
�

�
�
�

�
�
�2 2

1
1

resulting child

Fig. 3. Example for DCX: The edges (1, 1) and (2, 3) are inserted from the second
parent into the first one, yielding the intermediate and the resulting child, respectively.

of edges and the corresponding amounts. Locality means that small changes in
genotype cause small changes in phenotype. Previous studies [2,3,5] showed that
locality is crucial for good performance of evolutionary search, and that it can
be quantified by similarity measures for both, genotypes and phenotypes.

The phenotypic distance of two transportation plans x, y is defined as

dP (x, y) := |E(x) \ E(y)|+ |E(y) \ E(x)| , (6)

which counts the number of different edges used by x and y. We compared
alternative phenotypic distances for the FCTP, including the one used in [2].
Since they are strongly correlated, we decided to use the most simple one.

In order to compare different representations, the representation-independent
genotypic distance is defined implicitly as follows:

1. Two identical genotypes have distance 0, i.e. dG(X,X) = 0 for genotype X.
2. Two distinct genotypes X,Y have distance dG(X,Y ) = k, k ≥ 1, if X can

be transformed to Y by k mutations.

Note that both dP and dG satisfy the metric conditions, namely identity, sym-
metry, and the triangular inequality.

3.2 Mutation Innovation

Given two genotypes X, Y with dG(X,Y ) = 1 and the corresponding phenotypes
x and y, the mutation innovation

MI (X,Y ) := dP (x, y) (7)

characterizes the phenotypic effects caused by a single application of the mu-
tation operator. Table 1 analyzes the distribution of MI for a representative
instance and the permutation representation (PE), the Prüfer number represen-
tation (PN) and the direct representation using different mutation operators.

The probability that a mutation operator does not affect the phenotype at
all is measured by P (MI = 0). While the mutation operator used by PE mostly
affects only the genotype, which implies high redundancy of that encoding, the
other representations are really innovative since the offspring’s phenotype mostly
differs from its parent. The operator NLO2 yields higher P (MI = 0) than NLO1,
because it prefers the parent over its offspring if the latter has worse fitness.



82 Christoph Eckert and Jens Gottlieb

Table 1. Comparison of mutation operators on instance n370e (m = 50, n = 100),
based on randomly generating 50 000 genotypes and applying mutation once to each.

DirectMeasure PE PN
EICR NLO1 NLO2

P (MI = 0) [%] 91.52 0.00 0.08 0.14 0.69
E(MI | MI > 0) 8.73 205.31 2.01 2.06 2.06
σ(MI | MI > 0) 7.50 39.47 0.11 0.24 0.25

The main measure for characterizing locality is E(MI |MI > 0), which repre-
sents the expected mutation innovation in the case that some phenotypic prop-
erty has actually been affected. PN has poor locality, because a single application
of the mutation operator produces an offpspring that is expected to differ in more
than 200 edges from its parent in the instance n370e. The permutation repre-
sentation achieves much higher locality since only about 8 edges are changed
during mutation. As distinct phenotypes differ in at least two edges, the locality
of the direct representation can be perceived as nearly perfect for all operators.

The standard deviation σ(MI |MI > 0) is another indicator of locality. While
we observe a high value for Prüfer numbers, the effects of mutation are more
predictable for the other representations. The direct representation yields small
values, showing the operators to have strongly limited impact on the phenotype.

3.3 Crossover Innovation and Crossover Loss

When analyzing crossover, we have to take into account that the offspring
strongly depends on its parents’ similarity. Therefore, we examine the effects
of crossover for parents of different genotypic distance. Given parent X1, we
produce X2 by k subsequent mutations, implying dG(X1, X2) ≤ k. Then, we
apply crossover and analyze the offspring Y concerning its parents. Let x1, x2

and y be the associated phenotypes, then the crossover innovation is defined as

CI (X1, X2, Y ) := min(dP (y, x1), dP (y, x2)) , (8)

the phenotypic distance between the offspring and the closer parent. This mea-
sures the ability of crossover to introduce new phenotypic material. Another
important measure is the crossover loss,

CL(X1, X2, Y ) :=
∣∣E(y) \ (E(x1) ∪ E(x2)

)∣∣+
∣∣(E(x1) ∪ E(x2)

) \ E(y)
∣∣ , (9)

which quantifies both parents’ phenotypic properties that the offspring did not
inherit during crossover. Figure 4 shows interesting measures based on CI and
CL for a representative instance, different parental genotypic distances k, and
the permutation representation (PE), the Prüfer number representation (PN)
and the direct representation using DCX and EICR as mutation.

The measure P (CI = 0) represents the probability for crossover producing a
child that is phenotypically identical to one of its parents. In the case of Prüfer



Direct Representation and Variation Operators 83

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

parental genotypic distance k

P(CI=0)

PE
PN

Direct

0

50

100

150

200

250

300

1 10 100 1000

parental genotypic distance k

E(CI|CI>0)

PE
PN

Direct

0

10

20

30

40

50

60

1 10 100 1000

parental genotypic distance k

σ(CI|CI>0)

PE
PN

Direct

0

20

40

60

80

100

120

140

1 10 100 1000

parental genotypic distance k

E(CL|CI>0)

PE
PN

Direct

Fig. 4. Empirical comparison of crossover operators on instance n370e (m = 50, n =
100), based on randomly generating 50 000 genotypes X1, transforming each X1 to X2

by k mutations, and producing offspring Y by applying crossover to X1, X2.

numbers, even for highest parental genotypic similarity k = 1 – i.e. both parents
differ only by a single mutation – crossover never produces offspring identical to
a parent. The permutation representation’s redundancy causes relatively high
values for k > 1. Only the direct representation always produces an offspring
identical to one of its parents for k = 1, which we perceive as ideal. For higher
k crossover is mostly innovative, which shows that the direct representation is
more compact and less redundant than the permutation representation. We re-
mark that P (CI = 0) = 1 for k = 0 (not shown in the figure) since all crossovers
preserve the parental phenotype if the parents are genotypically identical. Both,
the direct and the permutation representation are smooth regarding the transi-
tion from k = 0 to k = 1, whereas Prüfer numbers behave extremely as crossover
and mutation cannot preserve phenotypic properties.

The degree of innovation in case of actual innovation, E(CI |CI > 0), mainly
characterizes locality. Increasing values are expected (and confirmed by the fig-
ure) for increasing parental genotypic distance k. While PE and the direct rep-
resentation exhibit a comparable, smooth increase that indicates locality, PN
yields a dramatically high value even for k = 1, underlining a lack of locality.

The corresponding standard deviation σ(CI |CI > 0) shows that the direct
representation’s crossover innovation is predictable, like PE that yields a higher
deviation. The innovation of PN is hardly predictable due to the high deviations.



84 Christoph Eckert and Jens Gottlieb

Table 2. Obtained gap and duplicate ratio for selected benchmarks.

problem gap [%] duplicate ratio [%]
size Direct Directname
m n

PE PN
EICR NLO1 NLO2

PE PN
EICR NLO1 NLO2

bal8x12 8 12 0 0.12 0.00 0.01 0.00 19.40 3.04 2.84 23.19 26.56
ran4x64 4 64 0.82 21.55 0.29 0.33 0.21 7.69 0 0.50 4.24 3.94
ran14x18 14 18 2.12 13.44 1.73 2.42 1.72 14.07 0.20 1.50 16.22 22.07
ran16x16 16 16 2.19 11.01 1.39 1.22 1.90 17.59 0.07 1.43 13.34 36.91
n370e 50 100 20.81 78.01 6.66 4.35 5.09 46.26 0 0.11 13.54 83.05

The measure E(CL|CI > 0) characterizes the loss of phenotypic material if
the offspring differs from both parents. All representations yield an increasing
crossover loss for higher k, but only the direct representation and the permuta-
tion representation exhibit very low values that are slowly increasing for growing
k, which we claim to show the effectiveness of crossover. Prüfer numbers yield a
very high loss of phenotypic material, even for such small values like k = 10.

4 Results

4.1 Comparison of the Representations

The representations are evaluated in a performance comparison on a set of bench-
mark problems. We are using the same general EA setup as in our previous study
[2]: population size 100 (200 for n370e), parent selection by tournaments of size
2, crossover probability 1, mutation probability 1, steady-state replacement with
phenotypic duplicate elimination2, and a limit of 1 000 000 non-duplicate solu-
tions.

Solution quality is measured by the gap, defined as minEA/opt − 1 where
minEA and opt are the best solution found by the EA and the best known
solution3, respectively. Search efficiency is characterized by the duplicate ratio,
the ratio of rejected duplicates among all generated solutions. Table 2 presents
the average results obtained in 15 runs for each instance and representation.

Prüfer numbers (PN) yield worse gaps – even for the smaller problems –
than permutations (PE), as discussed and explained earlier in [2]. For most
small problems, the new direct representation is superior to PE. On the most
challenging instance n370e, which has a size that is larger by several orders
of magnitude, all variants of the direct representation clearly outperform the
permutation representation. The comparison among the direct representation’s

2 The worst individual in the population is replaced by the offspring, if its phenotype
is not already represented by some genotype in the population. This requires only
moderate additional computational efforts and significantly improves quality [10].

3 The global optimum is known except for the largest instance n370e. Thus, gaps
presented for n370e are lower bounds on the real gaps w.r.t. the global optimum.



Direct Representation and Variation Operators 85

variants is inconclusive on the smaller instances; on the most difficult instance,
the best gap is obtained by NLO-1, followed by NLO-2 and EICR.

While Prüfer numbers produce only very few duplicates, due to their poor
locality, some of the other representations produce a significant amount of dupli-
cates. The permutation representation produces many duplicates, corresponding
to the high values reported for P (MI = 0) in section 3.2. The direct representa-
tion is very efficient when EICR is used, but many duplicates are produced by
the variants of NLO. The strategy of NLO-2, which allows the parent being pre-
ferred to its offspring, causes a higher duplicate ratio than NLO-1. In particular
for n370e, the duplicate ratio of NLO-2 is not acceptable since most offspring
are rejected, making the search process inefficient.

Among the variants of the direct representation, NLO-1 is more promising
than NLO-2, because the former yields a better gap and a much smaller duplicate
ratio on n370e. There is a trade-off for EICR and NLO-1 concerning solution
quality and duplicate ratio. We discuss this trade-off by considering the total
CPU time needed for an EA run. The CPU times – not presented in detail here –
are summarized as follows. The fastest EAs are PN and the direct representation
with EICR, which are computationally equivalent. NLO-1 and NLO-2 need twice
the CPU time of EICR, and PE is three times slower than PN. In order to
compare EICR with NLO-1, we made EA runs with EICR and a time limit
identical to the time needed by an NLO run. Given the same CPU time, EICR
was not able to reach the solution quality of NLO-1 or NLO-2, and therefore
NLO-1 appears to be the best choice.

We also made experiments with the matrix representation that was the best
EA until now [4]: Its solution quality for n370e was clearly inferior to the new
representation, independent of which mutation operator is used. Thus, we per-
ceive the direct representation using NLO-1 as the most effective representation.

4.2 Comparison with Tabu Search

The solution quality obtained by the tabu search approach of Sun et al. [11] could
not be reached by any EA until now. In order to check whether the new direct
representation is competitive to tabu search, we analyzed the EA with NLO-1
in more detail. We found further improvements using a crossover probability
0.6 and a special parent-child replacement scheme: The offspring is rejected if
its phenotype is already represented in the current population, and otherwise
it replaces the worst parent. That means that the parent is always replaced in
case of mutation, and the worst parent is replaced if the offspring is produced by
both, crossover and mutation. Increasing the limit to 10 000 000 non-duplicate
solutions yields an additional improvement, but another increase of this limit
does not help, due to convergence of the population.

After all these fine-tuning steps, we obtained the results presented in table 3.
The gap for tabu search (TS) is based on a single run, personally communicated
to us by M. Sun, and the results for the EA are based on 15 runs per instance.
We observe a high potential of the EA since most runs beat tabu search and



86 Christoph Eckert and Jens Gottlieb

Table 3. Comparison of the best evolutionary algorithm with tabu search on instances
n370* of size m = 50, n = 100; instance n370d is omitted as it is identical to n370e.

Instance 0 1 2 3 4 5 6 7 8 9 a b c e

gap EA/best [%] 1.48 1.26 1.41 1.41 1.22 1.71 1.23 2.17 1.62 1.38 1.11 1.96 1.03 1.95
gap TS/best [%] 3.76 3.35 2.91 2.30 1.91 2.28 3.35 2.64 1.99 1.62 3.11 2.91 1.46 2.83
gap TS/EA [%] 2.25 2.07 1.48 0.87 0.68 0.56 2.10 0.47 0.36 0.24 1.98 0.92 0.43 0.86
EA wins 15 15 15 12 12 13 15 11 13 11 14 13 11 15

the EA obtains a better average gap on all instances. Note that the EA has
significantly improved all best known solutions.

However, we do not claim that the EA outperforms tabu search, because it is
quite difficult to compare the computational costs since different machines were
used and the tabu search code was not available to us. Since we allowed much
CPU time on a machine that we estimate as being much faster than the machine
Sun et al. were using, our results must be interpreted carefully. Our goal was to
demonstrate the ability of the EA to produce high-quality solutions.

5 Conclusions

We have developed a new direct representation and several variation operators
for the FCTP, which enable direct evolutionary search in the space of basic so-
lutions of the underlying TP. Our locality analysis shows the new representation
providing much more locality than decoder-based approaches. As its locality
is nearly perfect, the new representation allows highly effective exploration of
phenotypic neighbourhoods of promising solutions. This results in high solution
quality, superior to all other EAs applied to the FCTP so far. Fine-tuning even
allows beating the solution quality of tabu search, and new best solutions have
been found on all instances that could not be solved by exact methods until now.

As the overall results are excellent, it is challenging to investigate how this EA
could be further improved. We mention two ideas that may be worth studying,
(i) the incorporation of more powerful local search into the EA, and (ii) using an
adaptive mechanism to drive the population away from local optima that have
dominated the search for many subsequent generations.

References

1. B. Freisleben and P. Merz. New genetic local search operators for the traveling
salesman problem. In Proc. of PPSN IV, 890 – 899, 1996

2. J. Gottlieb and C. Eckert. A comparison of two representations for the fixed charge
transportation problem. In Proc. of PPSN VI, 345 – 354, 2000

3. J. Gottlieb, B. A. Julstrom, G. R. Raidl and F. Rothlauf. Prüfer numbers: a poor
representation of spanning trees for evolutionary search. In Proc. of Genetic and
Evolutionary Computation Conference, 343 – 350, 2001



Direct Representation and Variation Operators 87

4. J. Gottlieb and L. Paulmann. Genetic algorithms for the fixed charge transporta-
tion problem. In Proc. of 5th IEEE Int. Conf. on Evol. Comp., 330 – 335, 1998

5. J. Gottlieb and G. R. Raidl. Characterizing locality in decoder-based EAs for the
multidimensional knapsack problem. In Proc. of Artificial Evolution, 38 – 52, 1999

6. G. M. Guisewite and P. M. Pardalos. Minimum concave-cost network flow prob-
lems: Applications, complexity, and algorithms. Annals of Operations Research,
Vol. 25, 75 – 100, 1990

7. Y. Li, M. Gen and K. Ida. Fixed charge transportation problem by spanning tree-
based genetic algorithm. Beijing Mathematics, Vol. 4, No. 2, 239 – 249, 1998

8. G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley,
1998

9. C. C. Palmer and A. Kershenbaum. Representing trees in genetic algorithms. In
Proc. of 1st IEEE Conf. on Evolutionary Computation, 379 – 384, 1994

10. G. R. Raidl and J. Gottlieb. On the importance of phenotypic duplicate elimination
in decoder-based evolutionary algorithms. In Late Breaking Papers at the Genetic
and Evolutionary Computation Conference, 204 – 211, 1999

11. M. Sun, J. E. Aronson, P. G. McKeown and D. Drinka. A tabu search heuris-
tic procedure for the fixed charge transportation problem. European Journal of
Operational Research, Vol. 106, 441 – 456, 1998

12. G. A. Vignaux and Z. Michalewicz. A genetic algorithm for the linear transporta-
tion problem. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No.
2, 445 – 452, 1991



On the Utility of Redundant Encodings
in Mutation-Based Evolutionary Search

Joshua D. Knowles1 and Richard A. Watson2

1 IRIDIA - CP 194/6, Université Libre de Bruxelles
Ave. F. D. Roosevelt, 50, 1050 Brussels, Belgium

jknowles@ulb.ac.be
http://iridia.ulb.ac.be/˜jknowles/

2 DEMO, Volen Center for Complex Systems
MS018, Brandeis University, Waltham, MA 02454, USA

richardw@cs.brandeis.edu

Abstract. A number of recent works in the evolutionary computation
field have suggested that introducing large amounts of genetic redun-
dancy may increase the evolvability of a population in an evolutionary
algorithm. These works have variously claimed that the reliability of
the search, the final fitness achieved, the ability to cope with changing
environments, and the robustness to high mutation rates, may all be
improved by employing this strategy. In this paper we dispute some of
these claims, arguing that adding random redundancy cannot be gener-
ally useful for optimization purposes. By way of example we report on ex-
periments where a proposed neutral encoding scheme (based on random
Boolean networks) is compared to a direct encoding in two mutation-only
EAs, at various mutation rates. Our findings show that with the appro-
priate choice of per-bit mutation rate, the evolvability of populations
using the direct encoding is no less than with the redundant one.

1 Introduction

The neutral theory of evolution [7] states that a large fraction of mutations
are fitness neutral. At the molecular level, many genotypes (RNA) effectively
map to functionally equivalent phenotypes (proteins) and can form neutral net-
works [10] of genotypes separated by only one (or a few) point mutations. At a
higher level also, genetic regulatory networks [2] may exhibit neutrality between
the organization of the networks and their characteristic expression patterns.
The dynamics of populations evolving on such neutral networks are different
to those on adaptive landscapes [6]: they are characterized by long periods of
‘fitness stasis’ (where variation acts to increase the genetic diversity of the pop-
ulation, causing it to diffuse over the neutral network) punctuated by shorter
periods of rapid fitness increase (and loss of diversity) due to the discovery of a
‘portal’ [14] to a network of higher fitness. These dynamics, it is suggested, mean
that populations may be better able to evolve to higher fitness configurations
and less likely to fall prey to the usual problems of entrapment at local optima.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 88–98, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



On the Utility of Redundant Encodings 89

Some researchers in the evolutionary computation (EC) community ([1], [4],
[11], [12], [13], [15], [18]) have begun to address neutral theory in their work.
Some (e.g. [1],[15]) suggest that certain real-world problems, when represented
naturally, will exhibit a high degree of neutrality, and thus standard models of
the dynamics of populations evolving on (non-neutral) adaptive landscapes may
not be relevant. Others ([4], [11], [12], [13]) suggest that introducing artificial
redundancy into the representations of optimization problems may improve the
evolvability of solutions in an evolutionary algorithm. In particular, the latter
have variously claimed that the reliability of the search [12], the final fitness level
achieved, the ability to cope with changing environments, and the robustness to
high mutation rates [4], of EAs may all be improved by genetic redundancy.

The idea that a search process, that would otherwise be trapped at a local
optimum, may be able to traverse, or diffuse over, a neutral network and escape
to higher-fitness regions of the search space is intuitively appealing. However,
from an engineering point of view, we must be careful in embracing neutrality as
a generally advantageous property of a search space. There are, after all, other
ways to escape from local optima or decrease the likelihood of becoming stuck
at one—for example, using different variation operators, by employing diversity
maintenance techniques, and not least, by choosing another encoding scheme. At
present, it is poorly understood exactly what kind of neutrality is advantageous,
and under what circumstances such an advantage will be shown—it is clear that
not all types of genetic redundancy will be useful [5].

In [4], Ebner et al. describe several valuable conceptual features of redundant
encodings and the neutral networks that such encodings might afford. For exam-
ple, they suggest that the frequency distribution of phenotypes, the ‘reachability’
of phenotypes, the ‘innovation rate’ (the number of new phenotypes encountered
as a function of neutral walk length), and the extent of the neutral networks are
important characteristics of a redundant encoding and they provide correspond-
ing statistical measures for these features. Their discussion and examinations
using various artificially redundant encodings are valuable in understanding the
possible nature of redundancy and neutrality in different genotype to phenotype
mappings, and in assessing the possible utility of intrinsically redundant map-
pings in natural and engineering domains. However, we suggest that it is still
not clear when an encoding incorporating neutrality should be preferred over a
non-redundant encoding in cases where there is a choice. In this paper we wish to
point out that some simple suggestions of when neutrality will be advantageous
are inadequate, and incidentally, to contrast this with some other possibilities
that may be genuinely advantageous but have not yet been demonstrated.

The remainder of this paper is organized as follows. In the next section we
discuss why, in general terms, we would not expect the performance of EAs to
be improved by the introduction of arbitrary neutral networks. We also high-
light a number of results reported in the literature, which in our view do not
represent convincing demonstrations of the advantages of the employed redun-
dant encodings. In section 3 we describe a number of experiments that compare
a redundant versus a direct encoding, regarding their performance in otherwise



90 Joshua D. Knowles and Richard A. Watson

identical mutation-only EAs. Three distinct types of problem, H-IFF, MAX-
SAT, and NK landscapes are used for the comparison. The results of these
experiments are reported in section 4, and we review our findings in section 5.

2 Against Arbitrary Neutral Networks

Why should we believe that neutrality in a problem space is advantageous from a
search or optimization point of view? One simple way to understand the effect of
neutrality is that it may afford better exploration for a search process because, for
any method that follows fitness increases, a redundant encoding may have better
connectivity to other (perhaps fitter) phenotypes and thus fewer local optima.
All else being equal, even an arbitrary increase in connectivity—neutral networks
connecting arbitrary phenotypes—certainly provides a potential advantage for
optimization—[4], for example, provides illustrations of this advantage. However,
in engineering domains we are not necessarily required to keep ‘all else equal’. If
we have a choice about whether to include redundancy in an encoding scheme,
the advantages of doing so must be weighed against the potential advantages
of other alternatives. For example, we could provide ‘connectivity’ from any
local optimum to any point in the search space by using a simple hill-climber
that, in addition to considering neighbouring points in the search space, also
occasionally considers random points in the search space. Alternatively, we might
suppose that it would be preferable for neutral networks to increase connectivity
to nearby (but not immediately adjacent) points in the search space rather than
arbitrary points—but similarly, this could be provided by a simple mutation
hill-climber using a larger mutation rate.

A useful question for focusing our reasoning is the following. Why, if at all,
should a search method in a problem space with neutrality be able to find points
of higher fitness faster or more reliably than it would with additional random
exploration on a non-neutral space? For example, the expected time for a ran-
dom walk to change M variables to a specific configuration is exponential in
M , as is the expected time to jump from one point to another specific point
directly under M -point mutation. In some scenarios, the exploration of a pop-
ulation on a neutral network might not be described accurately by a random
walk, but favourable analyses are thus far absent. Of course, conceivably, a par-
ticular encoding, ‘natural’ or artificial, might provide some non-random bias in
the connectivity of points that has an a priori bias appropriate for a partic-
ular problem domain. However we do not yet have any suggestions for what
kind of neutrality is useful for what class of problems. Another possibility is
that, in certain scenarios, the structure of neutral pathways might be somehow
reorganized adaptively as evolution progresses. These possibilities, a useful a pri-
ori bias and/or an adaptive bias, in the connectivity of neutral networks could
provide a genuine adaptive advantage in certain classes of problems—but they
have not yet been demonstrated. In the meantime, it is difficult to see why any
kind of arbitrary increase in connectivity provided by random neutral networks,
whether inherent in the natural encoding of a problem space or added artificially,



On the Utility of Redundant Encodings 91

would provide an optimization advantage over much simpler search methods on
non-redundant encodings.

To provide a preliminary illustration of this reasoning we examine, by way of
example, a redundant encoding proposed by [4] and [13]. One particular en-
coding reported in this work, based on the operation of a random Boolean
network (RBN), appears to be favourable with respect to the various statis-
tical measures mentioned above. Furthermore, some experiments report results
that seem to show that this mapping aids evolutionary search in multi-modal
landscapes [4], [11]. However, it seems likely that the increased connectivity pro-
vided by the RBN encoding is arbitrarily structured, and that accordingly, the
optimization advantage seen in this experimental work could be provided by a
simpler method of random exploration. In general, an increased mutation rate is
a fairly unbiased means to increase random exploration (though not completely,
see [3]). Therefore, it seems unlikely that an arbitrary artificial redundant en-
coding could, in general, be better than increased mutation. One possible disad-
vantage of a higher mutation rate is an inability to retain good solutions should
they be discovered—however, the use of some elitism (retaining the best solu-
tion found so far) easily remedies this problem. Accordingly, the use of higher
mutation rates, in hill-climbers and GAs with elitism (steady-state variety), is
the alternative that we examine in some detail below.

3 Experimental Method

3.1 Encodings. In the experiments that follow, we will compare a direct en-
coding and a redundant encoding of binary strings. In this context, we use the
term “phenotype” to refer to the binary string of M bits that the fitness function
evaluates. The term “genotype” is reserved for the binary string that is under
the direct influence of the variation operators of the evolutionary algorithm. In
the direct encoding, the genotype is identical to the phenotype, and no ‘map-
ping’ step is necessary. In contrast, the genotype of the redundant encoding is
of length L > M bits, and represents a particular random Boolean network
(RBN), and its initial state (described below). The RBN is then iterated for a
fixed number of steps, and its final state represents the phenotype for which the
genotype encodes.

3.2 Aims. The experiments are designed to evaluate the following aspects of
performance of EAs using the random Boolean network encoding: (i) the distri-
bution of fitness levels achieved on relatively long runs, for the size of problem;
(ii) the rate of fitness increase; (iii) the robustness to the choice of mutation
rate; and (iv) changes in (i) and (ii) with respect to any controllable problem
features and problem size. We assess these aspects of performance by comparing
identical EAs operating on a direct encoding and an RBN encoding of the binary
phenotypes.

3.3 The RBN Encoding. An RBN is an iterated dynamical system described
over a set of V Boolean variables. The state of each variable at time t is dependent



92 Joshua D. Knowles and Richard A. Watson

on the state of W other variables at time t− 1. The new state is the result of a
Boolean function over these variables. In our experiments (following the setup
described in greater detail in [4]), the initial state of the variables, the wiring
determining which variables are dependent on which others, and the Boolean
state-update functions for each variable are all specified in the genotype and are
subject to evolutionary adaptation. The value of W is fixed at 3. The number
of variables V equals the phenotype length M , and the phenotype is determined
by running the Boolean network for 20 iterations and reading off the final state
of the variables. The problems we address are of length 32 and 64 bits. With the
RBN encoding, the genotypes associated with these phenotypes are of length
768 and 1728 bits respectively.

3.4 Mutation Rates. In our experiments we aim to evaluate the performance
of the RBN encoding in comparison to the use of a direct encoding, given an
appropriate choice of mutation rate. The question whether the RBN encoding
facilitates greater exploration (and thus evolvability) when mutation is restricted
to a single point per-genotype mutation is regarded here as irrelevant, since this
kind of mutation would never be used in practical EAs designed for use on
multi-modal fitness landscapes. Thus, we choose to compare the performance
of the two encodings in EAs using per-bit mutation, and we attempt to find
an appropriate rate of mutation for both encodings. All of our experiments are
carried out using per-bit (flip) mutation rates of 1/L, 2/L, 4/L and 8/L.

3.5 Problems. The problems that we use are all unconstrained binary string
problems, allowing straightforward use of the RBN encoding. None of the prob-
lems intrinsically possesses substantial neutral networks. Our interest here is
in evaluating if the introduction of neutrality through a redundant genotype-
phenotype mapping helps perform search in general, and not with the question
of how to perform search on landscapes that have intrinsic neutrality, such as
Royal stairways or NKp landscapes. Hence, for our problems we use NK land-
scapes [6], H-IFF, initially proposed in [17] and described more fully in [16], and
MAX-SAT [8]. The NK landscapes allow us to observe if relative performance
is affected by varying degrees of ruggedness or correlation. We use an NK land-
scape generator, [9], available as freeware, to generate landscapes of size N = 32.
We generate one problem each at levels of K = 2, 4, 8, 16, and these are labelled
NK2, NK4, NK8, and NK16, respectively, in the results section. The H-IFF
problem is hill-climber-hard, in that the two global optima (the all 0s string and
the all 1s string) are difficult to find by mutation, starting from a random string,
because contiguous blocks of both 0s and 1s of size two or greater are rewarded
by the hierarchical fitness function. Thus, strings tend to evolve toward local
optima (strings comprising sizable blocks of both 0s and 1s) with a very large
Hamming distance from the two global optima. This problem is very rugged and
it has been shown that mutation cannot be guaranteed to succeed in time less
than exponential in the problem size [16]. We use H-IFF instances of length 32
and 64 bits, labelled H-IFF32 and H-IFF64. MAX-SAT is a well-known NP-hard



On the Utility of Redundant Encodings 93

combinatorial optimization problem, and its real-world applications are many.
Our two instances are un-weighted 3-SAT problems generated using an algo-
rithm described in [8], for which freeware is available. The first has 32 variables
and 200 clauses (SAT32-200) and the second has 64 variables and 280 clauses
(SAT64-280), and both are satisfiable. We treat these 3-SAT instances as MAX-
SAT optimization problems, with fitness calculated as the proportion of satisfied
clauses.

3.6 The EAs: Hill Climber and Genetic Algorithm. We evaluate the
performance of the RBN in (i) a random mutation hill-climber (HC) and (ii) a
steady-state mutation-only genetic algorithm (GA). HC uses a (1+1) population
update: at each iteration, one random mutant of the current solution is generated
(independently of previous steps) and the mutant replaces the current solution
iff it is at least as fit. GA uses a population size of 100 and uses a steady-
state population update. At each iteration, a 2-tournament is used for selection
and replacement. In this, two members of the population are chosen at random
without replacement. The fitter of the two becomes the parent. The parent is
then replaced in the population, copied and a mutant of the copy is generated
and evaluated. The mutant then replaces the less fit of the two chromosomes
from the tournament, iff it is at least as fit. The two EAs using the random
Boolean network encoding are identical to HC and GA except for the encoding,
and are labelled HC-NN and GA-NN, respectively. We further use the shorthand
GA-NNm1 to denote GA-NN used with a mutation rate of 1/L, and similarly
for the other EAs and mutation rates. With all the algorithms we run until the
global optimum has been found (if known) or 4 million iterations have been
performed.

4 Simulation Results

Figure 1 presents four plots which give an insight into the difference between
algorithm runs with and without the RBN encoding. On NK2, all algorithms
reached the global optimum within the allotted number of iterations so that
there is no statistical difference in the final fitness values achieved. However, as
can be seen from the plot top left, maximum fitness is achieved much faster using
the direct encoding than with redundancy, in both GA and HC algorithms (the
best mutation rates for each from those rates tested were selected). The plot
at the top right shows the evolution of genetic diversity, defined as the sample
average probability that two randomly selected individuals differ at a randomly
chosen locus, as in [4]. In GA-NN’s population, diversity grows over time until
it stabilises near the maximum value of 0.5, indicating diffusion through the
neutral network of the global optimum. In contrast, GA has lost all genetic
diversity. However, the greater diversity in GA-NN’s population did not increase
its ability to find ‘shortcuts’ towards the optimum; it got there more slowly.
In the plot bottom left, the number of phenotypically neutral mutations are
plotted against iterations. The massive redundancy in the RBN encoding means
the number of neutral mutations is higher than in the direct encoding, at each



94 Joshua D. Knowles and Richard A. Watson

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0 200K 400K 600K 800K 1M

fit
ne

ss

iterations

NK2 - fitness

GA-NNm8
HC-NNm2

GAm4
HCm4 0

0.1

0.2

0.3

0.4

0.5

0 200K 400K 600K 800K 1M

di
ve

rs
ity

iterations

NK2 - diversity

GA-NNm8
GAm4

0

200K

400K

0 200K 400K 600K 800K 1M

ne
ut

ra
l m

ov
es

iterations

NK2 - phenotypically neutral moves

HC-NNm1
HCm1

HC-NNm4
HCm4

8
9

10
11
12
13
14

10000 100000 1e+06

im
pr

ov
in

g 
m

ov
es

log iterations

NK16 - improving moves

HC-NNm1
HCm1

HC-NNm4
HCm4

Fig. 1. Plots showing the evolution of (top left) fitness and (top right) diversity on NK2,
and the cumulative number of (bottom left) phenotypically neutral moves. For NK16
the cumulative number of fitness-improving moves is shown (bottom right) against log
iterations. All values are the mean of 30 independent runs. See text for discussion of
these plots.

mutation rate. However, in the plot bottom right (for the NK16 problem), where
we can see the cumulative number of mutations that lead to increases in fitness,
the characteristics of the HCs employing the RBN encoding do not appear to
benefit from the extra neutrality. In fact, we observe that the dynamics look
very similar in the four algorithms: a similar number of fitness improvements is
seen and the waiting times between them increase exponentially. The plots on
these problems are typical for all of the problems considered here.

The final fitness values that were recorded seem to indicate that the random
Boolean network encoding does not significantly benefit either GA or HC on
any problem, when an appropriate mutation rate is selected. Figures 2 and 3
present these results in the form of boxplots1. On NK16 (Figure 2), it appears
that GAm4 achieves the highest median value and, together with GAm2, it has
the best distribution of final values. With the hill-climbers, there appears to
be a marginal advantage to the redundant encoding. We also observe that HC-
1 Box plots graphically represent the distribution of a random variable. The centre

line represents the median, the length of the shaded box indicates the interquartile
range (IQR) and the whiskers extend out to the largest and smallest observations
within 1.5 times the IQR. Outliers are shown as small circles.



On the Utility of Redundant Encodings 95

G
A

m
1

G
A

m
2

G
A

m
4

G
A

m
8

G
A

−
N

N
m

1

G
A

−
N

N
m

2

G
A

−
N

N
m

4

G
A

−
N

N
m

8

0.70

0.72

0.74

0.76

0.78

Instance: NK16

H
C

m
1

H
C

m
2

H
C

m
4

H
C

m
8

H
C

−
N

N
m

1

H
C

−
N

N
m

2

H
C

−
N

N
m

4

H
C

−
N

N
m

8

0.70

0.72

0.74

0.76

0.78

0.80

Instance: NK16

G
A

m
1

G
A

m
2

G
A

m
4

G
A

m
8

G
A

−
N

N
m

1

G
A

−
N

N
m

2

G
A

−
N

N
m

4

G
A

−
N

N
m

8

0.73

0.74

0.75

0.76

0.77

0.78

Instance: NK8

H
C

m
1

H
C

m
2

H
C

m
4

H
C

m
8

H
C

−
N

N
m

1

H
C

−
N

N
m

2

H
C

−
N

N
m

4

H
C

−
N

N
m

8

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Instance: NK8

Fig. 2. Results from 100 independent runs on the two more rugged NK landscapes.

NN is more robust with respect to different mutation rates than is HC on this
problem. On NK8, GAm8 performs best. Once again there is more robustness
to mutation-rate choice in GA-NN, but the spread in final values is also greater.
There is little to choose between the performance of the best HC and HC-NN on
this problem although one might argue that the standard hill-climber with the
highest mutation rate (HCm8) seems to be best. On NK4, (Figure 3, top left),
HC appears to perform better than HC-NN. On the MAX-SAT problems (also
Figure 3) there is a clear difference in favour of the non-redundant encoding on
all plots shown2. The results on the H-IFF problem shown in Figure 3 are for
experiments with 64 bit H-IFF as opposed to the 16 bits used in [4]. Our results
demonstrate that on this size of problem the redundant encoding performs worse
than the non-redundant encoding, possibly indicating that performance does not
scale with the use of redundancy. Our results on H-IFF32 (not shown2), are also
consistent with this. Generalizing from all the plots, there does not seem to be
a difference in the spread of final fitness values achieved, using the standard and
redundant encodings, indicating that the RBN does not appear to increase the
reliability of the search.

2 GA results for SAT32-200 and NK4 are not shown because the global optimum is
found reliably by both GA and GA-NN at some of the mutation rates. These plots,
and others, can be obtained from the first author on request.



96 Joshua D. Knowles and Richard A. Watson

H
C

m
1

H
C

m
2

H
C

m
4

H
C

m
8

H
C

−
N

N
m

1

H
C

−
N

N
m

2

H
C

−
N

N
m

4

H
C

−
N

N
m

8

0.73

0.74

0.75

0.76

0.77

0.78

Instance: NK4

H
C

m
1

H
C

m
2

H
C

m
4

H
C

m
8

H
C

−
N

N
m

1

H
C

−
N

N
m

2

H
C

−
N

N
m

4

H
C

−
N

N
m

8

0.975

0.980

0.985

0.990

0.995

1.000

Instance: SAT32−200

G
A

m
1

G
A

m
2

G
A

m
4

G
A

m
8

G
A

−
N

N
m

1

G
A

−
N

N
m

2

G
A

−
N

N
m

4

G
A

−
N

N
m

8

0.96

0.97

0.98

0.99

1.00

Instance: SAT64−280

H
C

m
1

H
C

m
2

H
C

m
4

H
C

m
8

H
C

−
N

N
m

1

H
C

−
N

N
m

2

H
C

−
N

N
m

4

H
C

−
N

N
m

8

0.985

0.990

0.995

1.000

Instance: SAT64−280

G
A

m
1

G
A

m
2

G
A

m
4

G
A

m
8

G
A

−
N

N
m

1

G
A

−
N

N
m

2

G
A

−
N

N
m

4

G
A

−
N

N
m

8

250

300

350

400

450

Instance: H−IFF64

H
C

m
1

H
C

m
2

H
C

m
4

H
C

m
8

H
C

−
N

N
m

1

H
C

−
N

N
m

2

H
C

−
N

N
m

4

H
C

−
N

N
m

8

200

250

300

350

400

450

Instance: H−IFF64

Fig. 3. Results from 100 independent runs each on selected problems.

5 Conclusion

In this paper we have argued against the theory that adding random genetic
redundancy to the encoding of a problem will generally increase the search per-
formance of a correctly configured EA. The evidence in the literature given to
support the use of redundant encodings, we argued, only shows the increased
connectivity of the redundant space, and is not a sound demonstration of the
utility of the technique. In our experiments we found that when HCs and GAs are
provided with massively redundant genotypes based on a random Boolean net-
work, their performance does not improve, in terms of the final fitness achieved



On the Utility of Redundant Encodings 97

on relatively long runs. In addition, the RBN encoding does not appear to af-
fect the number of improving moves to reach a particular fitness value, or the
distribution in waiting times between them. Neither was the spread of final fit-
ness values achieved tighter for the RBN encoding (i.e. increased reliability was
not observed). On the positive side, the performance of the RBN-encoded al-
gorithms did seem to be more robust to the choice of per-bit mutation rate on
most problems. The findings reported here are of course very limited, and other
experiments may give different results. However, the consistent finding across
the problems tackled was that with an appropriate per-bit mutation rate, es-
cape from local optima and the improvement of fitness occur just as well in a
direct encoding as with the redundancy provided by the RBN encoding.

Acknowledgments

JK gratefully acknowledges the support of a European Commission Marie Curie
Fellowship, contract number: HPMF-CT-2000-00992.

References

1. L. Barnett. Netcrawling—optimal evolutionary search with neutral networks. In
Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001). IEEE
Service Centre, Piscataway NJ, 2001.

2. S. Bornholdt and K. Sneppen. Robustness as an evolutionary principle. Proceedings
of the Royal Society of London Series B-Biological Sciences, 267:2281–2286, 2000.

3. S. Bullock. Smooth operator? Understanding and visualising mutation bias. In
J. Kelemen and P. Sosik, editors, Sixth European Conference on Artificial Life,
pages 602–612, 2001.

4. M. Ebner, M. Shackleton, and R. Shipman. How neutral networks influence evolv-
ability. Complexity, 2002. (In press).

5. I. Harvey and A. Thompson. Through the labyrinth evolution finds a way: A silicon
ridge. In Proceedings of ICES96, pages 406–422. Springer-Verlag, 1996.

6. S. A. Kauffman. Adaptation on rugged fitness landscapes. In D. Stein, editor,
Lectures in the Sciences of Complexity, pages 527–618. Redwood City: Addison-
Wesley, 1989. SFI Studies in the Sciences of Complexity, Lecture Volume I.

7. M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge University
Press, 1983.

8. M. Motoki and R. Uehara. Unique solution instance generation for the 3-
satisfiability (3-SAT) problem. Technical Report C-129, Dept. of Math and Comp.
Sciences, Tokyo Institute of Technology, 1999.

9. M. A. Potter. An NK -landscape generator, 1997. Presented at the Workshop on
Test Problem Generators for Evolutionary Algorithms, at the 7th ICGA.

10. C. M. Reidys and P. F. Stadler. Neutrality in fitness landscapes. Appl. Math.
Comput., 117:321–350, 1998.

11. M. Shackleton, R. Shipman, and M. Ebner. An investigation of redundant
genotype-phenotype mappings and their role in evolutionary search. In Proceedings
of the 2000 Congress on Evolutionary Computation, pages 493–500, Piscataway,
NJ, 2000. IEEE Service Center.



98 Joshua D. Knowles and Richard A. Watson

12. R. Shipman. Genetic redundancy: Desirable or problematic for evolutionary adap-
tation? In Proceedings of the 4th International Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA). Springer-Verlag, 1999.

13. R. Shipman, M. Shackleton, M. Ebner, and R. Watson. Neutral search spaces for
artificial evolution: a lesson from life. In Artificial Life VII: Proceedings of the
Seventh International Conference. MIT Press, 2000.

14. E. van Nimwegen and J. P. Crutchfield. Metastable evolutionary dynamics: Cross-
ing fitness barriers or escaping via neutral paths? Bulletin of Mathematical Biology,
62(5):799–848, Sep 2000.

15. V. K. Vassilev and J. F. Miller. The advantages of landscape neutrality in digital
circuit evolution. In ICES, pages 252–263, 2000.

16. R. A. Watson. Analysis of recombinative algorithms on a non-separable building-
block problem. In Foundations of Genetic Algorithms VI, pages 69–89. Morgan
Kaufmann, 2001.

17. R. A. Watson, G. S. Hornby, and J. B. Pollack. Modeling building-block inter-
dependency. In Parallel Problem Solving from Nature - PPSN V, pages 97–106.
Springer-Verlag, 1998.

18. T. Yu and J. Miller. Neutrality and the evolvability of Boolean function landscape.
In Proceedings of the 4th European Conference on Genetic Programming (EuroGP),
volume LNCS 2038, page 204 ff. Springer-Verlag, 2001.



Binary Representations of Integers
and the Performance

of Selectorecombinative Genetic Algorithms

Franz Rothlauf�

Department of Information Systems
University of Bayreuth, Germany
franz.rothlauf@uni-bayreuth.de

Abstract. When using representations for genetic algorithms (GAs) ev-
ery optimization problem can be separated into a genotype-phenotype
and a phenotype-fitness mapping. The genotype-phenotype mapping is
the used representation and the phenotype-fitness mapping is the prob-
lem that should be solved.
This paper investigates how the use of different binary representations
of integers influences the performance of selectorecombinative GAs using
only crossover and no mutation. It is illustrated that the used represen-
tation strongly influences the performance of GAs. The binary and Gray
encoding are two examples for assigning bitstring genotypes to integer
phenotypes. Focusing the investigation on these two encodings reveals
that for the easy integer one-max problem selectorecombinative GAs
perform better using binary encoding than using Gray encoding. This is
surprising as binary encoding is affected with problems due to the Ham-
ming cliff and because there are proofs that show the superiority of Gray
encoding. However, the performance of selectorecombinative GAs using
binary representations of integers is determined by the resulting build-
ing blocks and not by the structure of the search space resulting from
the Hamming distances between the individuals. Therefore, the perfor-
mance difference between the encodings can be explained by analyzing
the fitness of the resulting schemata.

1 Introduction

Integer optimization problems are important in many real-world applications.
We know from previous work (Liepins & Vose, 1990; Rothlauf, 2001) that the
choice of a proper representation (genotype-phenotype mapping) is crucial for
the performance of genetic and evolutionary algorithms (GEAs). When solving
integer problems, binary representations of integers like Gray or binary encoding
are often used.

In this work we want to investigate how binary representations of integers in-
fluence the performance of selectorecombinative genetic algorithms (GAs) which
� Also with Illinois Laboratory of Genetic Algorithms, University of Illinois at Urbana-

Champaign, USA.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 99–108, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



100 Franz Rothlauf

only use crossover and selection and no mutation. The results show large differ-
ences in GA performance using different binary representations. Furthermore, we
see that selectorecombinative GAs perform better using binary encoding than us-
ing Gray encoding. This behavior of selectorecombinative GAs can be explained
by analyzing the fitness of the resulting schemata.

The paper is structured as follows. In the following section we provide the
basis and requisites for our investigations. Section 3 examines how different types
of binary representations of integers influence the performance of selectorecom-
binative GAs. We calculate the number of possible representations and present
empirical results. In section 4 we focus on the influence of binary and Gray en-
coding on GA performance. To explain the experimental results presented in
subsection 4.1 we analyze in subsection 4.2 the fitness of the resulting schemata
for one specific problem. The paper ends with concluding remarks.

2 Binary Representations
for Integer Optimization Problems

We present in subsection 2.2 the integer optimization problem we want to solve,
and in subsection 2.3 binary representations of integers.

2.1 Separating Representations from Optimization Problems

The following subsection provides some basic definitions for our discussion of
representations. When using some kind of representation, every optimization
problem can be decomposed into a genotype-phenotype mapping fg, and a
phenotype-fitness mapping fp (Liepins & Vose, 1990).

We define Φg as the genotypic search space where the genetic operators such
as recombination or mutation are applied to. An optimization problem on Φg
could be formulated as follows: The search space Φg is either discrete or contin-
uous, and the function f(x) : Φg → R assigns an element in R to every element
in the genotype space Φg. The optimization problem is defined by finding the
optimal solution x̂ = maxx∈Φg f(x), where x is a vector of decision variables (or
alleles), and f(x) is the fitness function. The vector x̂ is the global maximum.

When using a representation we have to introduce – in analogy to nature –
phenotypes and genotypes. Thus, the fitness function f can be decomposed into
two parts. The first maps the genotypic space Φg to the phenotypic space Φp,
and the second maps Φp to the fitness space R. Using the phenotypic space Φp
we get:

fg(xg) : Φg → Φp,

fp(xp) : Φp → R,

where f = fp ◦ fg = fp(fg(xg)). The genotype-phenotype mapping fg is the
used representation. fp represents the fitness function and assigns a fitness value
fp(xp) to every individual xp ∈ Φp. The genetic operators are applied to the
individuals in Φg that means on the level of genotypes.



Binary Representations of Integers 101

2.2 An Integer Optimization Problem

This subsection defines the integer optimization problem we want to use for
our investigations. We want to define an easy problem which is defined on the
phenotypes independently of the used representation.

We assume that the fitness function fp assigns a real number to every indi-
vidual xp ∈ N. Therefore, we get for fp:

fp(xp) : N→ R.

For our investigation we want to defined an integer-specific variation of the one-
max problem as

fp(xp) = xp. (1)

2.3 Binary Representations of Integers

In this subsection we briefly discuss the binary and Gray encoding as examples
for binary representations of integers.

If we encode integer phenotypes using binary genotypes we have to ask why
we do not use integer genotypes for encoding integer phenotypes. In general,
instead of using binary strings with cardinality χ = 2, higher χ-ary alphabets
could be used for the genotypes. When using a χ-ary alphabet for the genotypic
alleles, we are able to encode with one allele χ different phenotypes instead of
only 2 different phenotypes when using a binary alphabet.

Binary Encoding. When using the binary encoding, each integer value xp ∈
Φp = {0, 1, 2, . . . , xp,max} is represented by a binary string xg of length l =
log2(xp,max). The genotype-phenotype mapping fg is defined as xp = fg(xg) =∑l−1
i=0 2ixg,i , with xg,i denoting the ith bit of xg.
The binary encoding has problems associated with the Hamming cliff

(Schaffer, Caruana, Eshelman, & Das, 1989). The Hamming cliff describes the
effect that some neighboring phenotypes (the phenotypes have a distance of
one) are represented by completely different genotypes (the distance between
the genotypes is much larger than one). The distance d between two genotypes
xg and yg is defined by using the Hamming distance as dxg,yg =

∑l−1
i=0 |xg,i−yg,i|

and denotes the number of different alleles in the two genotypes. The distance
between two phenotypes xp and yp is defined as dxpyp = |xp − yp|.

Gray Encoding. To overcome problems with the Hamming cliff and the differ-
ent contribution of the alleles to the fitness of an individual when using the binary
encoding, the Gray encoding was developed (Gray, 1953; Caruana & Schaffer, 1988;
Schaffer, Caruana, Eshelman, & Das, 1989). When using Gray encoding the av-
erage contribution of an allele to the represented integer is the same for all alleles
in the bitstring.

The Gray encoded bitstring itself can be constructed in two steps. At first,
the phenotype is encoded using the binary encoding, and subsequently the binary



102 Franz Rothlauf

encoded string can be converted into the corresponding Gray encoded string. The
binary string x ∈ {0, 1}l = {x0, x1, . . . , xl−1} is converted to the corresponding
Gray code y ∈ {0, 1}l = {y0, y1, . . . , yl−1} by the mapping γ : B

l → B
l:

yi =

{
xi if i = 0,
xi−1 ⊕ xi otherwise,

where ⊕ denotes addition modulo 2. A Gray encoded string has the same length
l as a binary encoded string and the encoding is redundancy-free. Furthermore,
the representation overcomes the problems with the Hamming cliff. Every two
neighboring phenotypes (dxg,yg = 1) are encoded by neighboring genotypes
(dxp,yp = 1). This property gives Gray encoding an advantage over the binary
encoding when using mutation-based search operators (compare also subsection
4.1).

3 Performance of Crossover-Based GAs
Using Binary Representations

In the following we show for the integer one-max problem how the performance
of selectorecombinative GAs depends on the used representation.

3.1 Counting the Number of Binary Representations of Integers

We want to calculate the number of different genotype-phenotype mappings fg.
If we use a redundancy-

genotypes

phenotypes

mapping

0

000 001 010 011 100 101 110 111

1 2 3 4 5 6 7

Fig. 1. A random genotype-phenotype mapping.

free encoding the number of
genotypes is the same as
the number of phenotypes.
When using a binary repre-
sentation of length l we are
able to represent 2l different

phenotypes using a bitstring of length l. Therefore, the number of possible
genotype-phenotype mappings is 2l!. The number of different representations is
increasing exponentially with increasing l. One example for a possible genotype-
phenotype mapping is given in Figure 1.

If we use a binary representation and we encode eight different phenotypes
with a genotype of length l = 3, there are 23! = 40 320 different representations.
Encoding 16 different phenotypes with a bitstring of l = 4 already results in
more than 1013 different genotype-phenotype mappings. Therefore, to be able to
systematically investigate how GA’s performance depends on the used encoding
we must limit ourselves to a genotypic string length of l = 3 and assume without
loss of generality that the phenotype xp = 0 is always assigned to the individ-
ual xg = 000. Then, the number of different genotype-phenotype mappings is
reduced to (2l− 1)! = 7! = 5040. Every genotype-phenotype mapping represents
a different representation.



Binary Representations of Integers 103

0

20

40

60

80

100

120

6 8 10 12 14 16 18

fr
eq

ue
nc

y 
(n

um
be

r 
of

 r
ep

re
se

nt
at

io
ns

)

number of correctly solved sub-problems

gray

binary

(a) population size n = 20

0

10

20

30

40

50

60

70

80

90

6 8 10 12 14 16 18 20

fr
eq

ue
nc

y 
(n

um
be

r 
of

 r
ep

re
se

nt
at

io
ns

)

number of correctly solved sub-problems

gray binary

(b) population size n = 40

Fig. 2. Experimental results of the frequency of the number of correctly solved sub-
problems at the end of a run for all possible genotype-phenotype mappings. We present
results for 20 concatenated 3-bit problems. The genotype xg = 000 is always assigned
to the phenotype xp = 0 so there are (23 − 1)! = 5040 different possible genotype-
phenotype mappings. We use a GA with tournament selection without replacement of
size 2, uniform crossover, and no mutation. We perform 250 runs for each of the 5040
possible encodings.

3.2 Experimental Results

We present empirical results concerning the performance of selectorecombinative
GAs using different types of representations for the integer one-max problem
defined in subsection 2.2.

For our investigation we concatenate 20 integer one-max problems of size
l = 3. Each of the 20 phenotypic integers xp ∈ {0, . . . , 7} corresponds to 3 bits
in the genotype. Therefore, the length of a genotype is lxg = 60. The fitness of
an individual is calculated as the sum over the fitness of the 20 sub-problems.
The fitness of one sub-problem is calculated according to equation 1.

For our investigation we use a selectorecombinative GA using only uniform
crossover and no mutation. For selection we use tournament selection without
replacement of size 2. The population size is set either to n = 20 (Figure 2(a))
or n = 40 (Figure 2(b)). We performed 250 runs for each of the 5040 different
genotype-phenotype mappings, and each run was stopped after the population
was fully converged. A sub-problem is correctly solved if the GA is able to find the
best solution xp = 7. The average number of correctly solved sub-problems at the
end of the run gives us a measurement of the GA’s performance using one specific
representation. The more sub-problems can be solved correctly, the higher the
GA performance. As we limit ourselves to genotypes of length l = 3 and assign
xp = 0 always to xg = 000 there are 5040 different genotype-phenotype mappings
(representations).

Figure 2 presents the results of our experiments for the integer one-max prob-
lem. We show the distribution of the number of correctly solved sub-problems at
the end of a GA run when using different types of genotype-phenotype mappings.



104 Franz Rothlauf

The plots show results for all 5040 different genotype-phenotype mappings. The
ordinate counts the number of genotype-phenotype mappings (representations)
that allow a GA to correctly solve a certain number of sub-problems.

How can we interpret the data in Figure 2? Every bar indicates the number
of different genotype-phenotype mappings that allow a GA to correctly solve a
specific number of sub-problems. For example, the bar of height 77 at position
12.9 means that a GA correctly solves on average between 12.85 and 12.95 sub-
problems for 77 different genotype-phenotype mappings. The bar at position
17.0 means that there are only 7 (out of 5040) different genotype-phenotype
mappings that allow a GA to correctly solve on average between 16.95 and 17.05
sub-problems. The plot shows that the differences in GA performance are large
and that a GA with 20 individuals solves dependent on the used representation
between 6.5 and 17.1 sub-problems out of 20.

If we compare Figure 2(a) with Figure 2(b) we see that with increasing
population size there are still large differences in GA performance. The shapes
of the distributions are similar and are shifted with increasing population size
n towards a higher number of correctly solved sub-problems. To be able to
illustrate how the performance of GAs depends on the different representations
the population size n must be chosen relatively small. Using larger n would allow
GAs to solve all 20 sub-problems (due to the easiness of the problem) and we
would be not able to illustrate the performance differences using different types
of representations.

We see that different representations, that means assigning the genotypes
xg ∈ {0, 1}3 in a different way to the phenotypes xp ∈ {0, . . . 7}, change the
performance of GAs. For some representations GA performance is high, whereas
for some representations GA performance is low.

4 Performance of Binary and Gray Encoding

After we have seen that GA’s performance strongly depends on the used repre-
sentation, we focus in the following on the performance of two specific represen-
tations, namely Gray and binary encoding.

When using binary representations of integers there are 2l! different genotype-
phenotype mappings. Gray and binary encoding are two specific representations.
The arrows in Figure 2 indicate the performance of selectorecombinative GAs
using these two types of encodings. A GA with n = 20 using Gray encoding
correctly solves on average only 12.9 of the 20 sub-problems whereas when using
binary encoding on average 16.2 out of the 20 sub-problems are solved. It can be
seen that GAs using binary encoding perform much better than GAs using Gray
encoding. With increasing population size n both encodings perform better but
there is still a large performance difference between both encodings.

4.1 Experimental Results

To investigate the performance differences more closely we compare in Figure 3
GA performance when using binary encoding and Gray encoding. We show the



Binary Representations of Integers 105

0.7

0.8

0.9

1

20 40 60 80 100

pr
op

or
tio

n 
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size n

binary encoding
gray encoding

(a) Average proportion of cor-
rect building blocks at the end
of a GA run

20

22

24

26

28

30

32

34

20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n 
t c

on
v

population size n

binary encoding
gray encoding

(b) Number of generations

Fig. 3. GA performance for the integer one-max problem. Each sub-problem has length
3 and we concatenated m = 20 sub-problems. We show the average proportion of
correctly solve sub-problems at the end of a GA run (Figure 3(a)) and the average
length of a run (Figure 3(b)). GAs using the binary encoding are able to solve more sub-
problems and converge after a shorter number of generations. The error bars indicate
the standard deviation of the results.

average proportion of correctly solved sub-problems at the end of the run (Figure
3(a)) and the number of generations (Figure 3(b)) over the population size. As
before, we concatenated m = 20 sub-problems of length l = 3. Furthermore,
we use the same parameters for the GA as described in subsection 3.2 but only
change the population size n. The results confirm our previous observations and
show that selectorecombinative GAs using the binary encoding not only solve
a higher proportion of correct sub-problems but also solve the sub-problems in
shorter time.

To investigate how GA performance varies over the length of the sub-problems
we show in Figure 4 results for the proportion of correctly solved sub-problems
over the length l. The length l of the sub-problems varies from l = 2 to l = 10.
Therefore, the number of different integers that can be represented varies from
22 = 4 to 210 = 1024. As before we concatenate 20 sub-problems of length l and
use the same GA parameters as in subsection 3.2. The length of a genotype is
lxg = 20 ∗ l.

GA performance declines with increasing length l of the sub-problems. For
small problems (l = 2) GAs are able to correctly solve most of the 20 sub-
problems, whereas for large problems (l = 10) only a small fraction of sub-
problems can be solved. Comparing Gray and binary encoding shows that inde-
pendently of l GAs using binary encoding outperform GAs using Gray encoding.
With larger population size n = 40 (Figure 4(b)) GA performance increases.
However, using binary encoding still results in better GA performance.

The performance differences between Gray and binary encoding are surpris-
ing because we already noted in subsection 2.3 that the Gray encoding has no
problems with the Hamming cliff and the contribution of the alleles is uniformly.
Furthermore, other work has shown that the Gray encoding shows some advan-



106 Franz Rothlauf

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

pr
op

or
tio

n 
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

length l of sub-problem

binary encoding
gray encoding

(a) population size n = 20

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

pr
op

or
tio

n 
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

length l of sub-problem

binary encoding
gray encoding

(b) population size n = 40

Fig. 4. Proportion of correctly solved sub-problems at the end of a GA run versus the
length l of the sub-problems for the binary and Gray encoding. The plots are for the
integer one-max problem and a population size of n = 20 (Figure 4(a)) and n = 40
(Figure 4(b)). With increasing length l the performance of GAs is reduced. When using
Gray encoding the performance of a GA declines much stronger than when using binary
encoding. The error bars indicate the standard deviation of the results.

tage in comparison to binary encoding. (Rana & Whitley, 1997; Whitley & Rana, 1997;
Whitley, 1999). This work formulated a Free Lunch theorem for the use of Gray
encoding and mutation-based search approaches. GEAs using mutation as the
main search operator perform better when using the Gray encoding than when
using the binary encoding. The proof actually shows that the number of local
optima introduced by using the Gray encoding is smaller than when using the bi-
nary encoding. However, this proof is not in contrast to the results herein which
are obtained for selectorecombinative GAs and not for mutation-based search
algorithms. When using the Gray encoding all phenotypes with distance dp = 1
are also neighboring genotypes (dg = 1). Therefore, when using mutation-based
search approaches and Gray encoding, a small mutation of a genotype always
results in the corresponding phenotype and the performance of mutation-based
search approaches on easy problems must be higher when using Gray encoding.

However, in this work we focus not on mutation-based search methods but
use crossover as main search operator. Therefore, the correct method to measure
problem difficulty is to use schema analysis (Holland, 1975; Goldberg, 1989). The
performance of selectorecombinative GAs is determined by the building blocks
resulting from the used representation.

4.2 Schemata Analysis for Binary and Gray Encoding

This subsection analyzes the fitness of the schemata resulting from the use of
Gray versus binary encoding. We perform a static schema analysis and do not
consider the actual schemata a GA sees during the run. The analysis of the
fitness of the schemata reveals that using binary encoding makes the integer
one-max problem easier than using Gray encoding. Therefore, the performance
of selectorecombinative GAs is higher when using binary encoding.



Binary Representations of Integers 107

Table 1. Schemata fitness for the integer one-max problem using binary versus Gray
encoding. The integer one-max problem is completely easy for the binary encoding.
Using Gray encoding results in a more difficult problem, because some of the high
quality schemata have the same fitness as misleading schemata.

order 3 2 1 0
bi

na
ry

schema 111 11* 1*1 *11 **1 *1* 1** ***
fitness 7 6.5 6 5 4 4.5 5.5 3.5
schema 01* 0*1 *01 **0 *0* 0**
fitness 2.5 2 3 3 2.5 1.5
schema 10* 1*0 *10
fitness 4.5 5 4
schema 00* 0*0 *00
fitness 0.5 1 2

G
ra

y

schema 100 10* 1*0 *00 1** *0* **0 ***
fitness 7 6.5 5.5 3.5 5.5 3.5 3.5 3.5
schema 11* 1*1 *11 0** *1* **1
fitness 4.5 5.5 3.5 1.5 3.5 3.5
schema 01* 0*1 *01
fitness 2.5 1.5 3.5
schema 00* 0*0 *00
fitness 0.5 1.5 3.5

In Table 1, we present the average fitness of the schemata for the integer
one-max problem using binary and Gray encoding for l = 3. The numbers reveal
that for the integer one-max problem with binary encoding all schemata contain-
ing the global optimum xg = 111 are superior to their competitors. Therefore,
the integer one-max problem is easy and selectorecombinative GAs show a high
performance. The schema analysis for Gray encoding reveals that the schemata
containing the global optimum xg = 100 are not always superior to their com-
petitors. Therefore, the problem is not completely easy any more, and GAs
perform worse in comparison to using binary encoding.

The results show, that for selectorecombinative GAs some easy problems like
the presented integer one-max problem, are easier to solve when using the binary
encoding as when using the Gray encoding. When using selectorecombinative
GAs, neither the Hamming distances between the individuals nor problems with
Hamming cliffs are relevant for GA performance, but the schema analysis answers
the question if a problem is easy or difficult.

5 Conclusions

This paper investigates how binary representations of integers influence the per-
formance of selectorecombinative GAs.

It is well known, that when using representations every optimization prob-
lem can be separated into a genotype-phenotype mapping (the used representa-
tion) and a phenotype-fitness mapping (the optimization problem that should
be solved). This paper illustrates for binary representations of integers, that the
choice of a proper genotype-phenotype mapping is crucial for GA’s success. The
use of different representations results in large differences in GA performance.



108 Franz Rothlauf

The binary and Gray encoding are two well known possible binary represen-
tations of integers. Focusing on these two representations reveals for the easy
integer one-max problem, that for selectorecombinative GAs not Hamming dis-
tances between individuals, but schemata are important. We illustrate that the
analysis of the fitness of the resulting schemata for the easy integer one-max
problem can be used for explaining the differences in performance. It reveals,
that the use of the binary encoding results in building blocks of lower order than
the use of the Gray encoding. Therefore, when using Gray encoding the integer
one-max problem is more difficult and the performance of selectorecombinative
GAs is lower.

Our empirical analysis of GA performance has shown that the binary en-
coding results in higher performance than the Gray encoding. However, Figure
2(a) reveals that there are representations that even outperform the binary en-
coding. If we can theoretically describe the properties of these encodings and
systematically construct such representations, we would be able to increase the
performance of GAs and solve integer problems more efficiently.

References
Caruana & Schaffer, 1988. Caruana, R. A., & Schaffer, J. D. (1988). Representation

and hidden bias: Gray vs. binary coding for genetic algorithms. In Laird, L. (Ed.),
Proceedings of the Fifth International Workshop on Machine Learning (pp. 153–161).
San Mateo, CA: Morgan Kaufmann.

Goldberg, 1989. Goldberg, D. E. (1989). Genetic algorithms in search, optimization,
and machine learning. Reading, MA: Addison-Wesley.

Gray, 1953. Gray, F. (1953, March). Pulse code communications. U.S. Patent 2632058.
Holland, 1975. Holland, J. H. (1975). Adaptation in natural and artificial systems.

Ann Arbor, MI: University of Michigan Press.
Liepins & Vose, 1990. Liepins, G. E., & Vose, M. D. (1990). Representational issues

in genetic optimization. Journal of Experimental and Theoretical Artificial Intelli-
gence, 2 , 101–115.

Rana & Whitley, 1997. Rana, S. B., & Whitley, L. D. (1997). Bit representations with
a twist. In Bäck, T. (Ed.), Proceedings of the Seventh International Conference on
Genetic Algorithms (pp. 188–195). San Francisco: Morgan Kaufmann.

Rothlauf, 2001. Rothlauf, F. (2001). Towards a theory of representations for ge-
netic and evolutionary algorithms: Development of basic concepts and their ap-
plication to binary and tree representations. Doctoral dissertation, University of
Bayreuth/Germany.

Schaffer, Caruana, Eshelman, & Das, 1989. Schaffer, J. D., Caruana, R. A., Eshelman,
L. J., & Das, R. (1989). A study of control parameters affecting online performance of
genetic algorithms for function optimization. In Schaffer, J. D. (Ed.), Proceedings of
the Third International Conference on Genetic Algorithms (pp. 51–60). San Mateo,
CA: Morgan Kaufmann.

Whitley, 1999. Whitley, D. (1999). A free lunch proof for gray versus binary encod-
ings. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., & Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computa-
tion Conference: Volume 1 (pp. 726–733). San Francisco, CA: Morgan Kaufmann
Publishers.

Whitley & Rana, 1997. Whitley, D., & Rana, S. (1997). Representation, search, and
genetic algorithms. In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI-97) (pp. 497–502). AAAI Press/MIT Press.



Parallel Varying Mutation
in Deterministic and Self-adaptive GAs

Hernán E. Aguirre and Kiyoshi Tanaka

Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN
{ahernan,ktanaka}@gipwc.shinshu-u.ac.jp

Abstract. In this work we study varying mutations applied either serial
or parallel to crossover and discuss its effect on the performance of de-
terministic and self-adaptive varying mutation GAs. After comparative
experiments, we found that varying mutation parallel to crossover can be
a more effective framework in both deterministic and self-adaptive GAs
to achieve faster convergence velocity and higher convergence reliability.
Best performance is achieved by a parallel varying mutation self-adaptive
GA.

1 Introduction

Parameter control methods modify the values of the strategy parameters dur-
ing the run of the algorithm by taking into account the actual search process.
These methods are an alternative form to the common practice of tuning param-
eters “by hand” and are considered as one of the most important and promising
areas of research in evolutionary algorithms[1]. One of the approaches for pa-
rameter control in genetic algorithms (GAs) seeks to combine crossover with
(higher) varying mutation rates during the course of a run. It has been shown
that deterministically varying mutation rates over the generations and/or across
the representation can improve the performance of GAs[2],[3],[4]. Self-adaptive
mutation rate schedules inspired from Evolution Strategies[5] and Evolution-
ary Programming[6] have also been proposed to control the mutation rate of
generational and steady state GAs[4],[7],[8]. The principle of self-adaptation in-
corporates strategy parameters into the representation of individuals evolving
simultaneously strategy parameters and object variables. It is regarded as the
method having the advantage of reducing the number of exogenous parameters[8]
and is thought to be the most promising way of combining forms of control (pa-
rameters co-adaptation)[1].

From the application of operators standpoint, deterministic, adaptive, and
self-adaptive varying mutation GAs have been mostly designed similar to a
canonical GA. That is, crossover is applied with probability pc and then follows
mutation. Under these standard varying mutation approaches, higher mutations
are mostly applied serial to crossover. This rises questions regarding the inter-
ference that one operator could cause to the other and its possible impact on the

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 111–121, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



112 Hernán E. Aguirre and Kiyoshi Tanaka

performance and robustness of standard varying mutation algorithms in general
and self-adaptive mutation GAs in particular.

An alternative to standard varying mutation methods is to design approaches
that apply background mutation after crossover (or none at all) and higher
mutations only parallel to crossover. Such an approach could give an efficient
framework to achieve better balances for varying mutation and crossover in which
the strengths of the operators can be kept without interfering one with the other.

From this point of view, we explore a model of generational GA that applies
varying mutations parallel to crossover & background mutation putting the op-
erators in a cooperative-competitive stand with each other by subjecting their
offspring to extinctive selection[9],[10]. In previous reports we have discussed the
relevance of extinctive selection, adaptation, and mutation strategy[11],[12] to
the performance of parallel varying mutation GAs.

In this work, we built on [11] and especially focus on deterministic and self-
adaptive mutation GAs. After comparative experiments with several difficult,
large, and highly constrained 0/1 multiple knapsacks problems[13], we found
that varying mutation parallel to crossover can be a more effective framework in
both deterministic and self-adaptive GAs to achieve faster convergence velocity
and higher convergence reliability. Best performance is achieved by a parallel
varying mutation self-adaptive GA.

2 A GA with Serial Varying Mutation

A standard varying mutation GA, similar to canonical GAs, applies crossover
with probability pc followed by mutation with probability pm per bit. In the
absence of crossover (1− pc), mutation is applied alone. From the application of
operators standpoint, it can be said that the probability of crossover pc enables
an implicit parallel application of two operators. One of the operators is crossover
followed by mutation (CM) and the other one is mutation alone (M). It should
be noted that mutation in both CM and M is governed by the same mutation
probability pm and applies the same “bit by bit” mutation strategy. Fig. 1 (a)
illustrates a standard varying mutation GA.

Since pc is usually set to 0.6, and higher values are often used[1], it turns
out that mutation is mostly applied serial to crossover. In canonical GAs pm is
small, therefore the amount of diversity introduced by mutation either through
CM or M is modest. For the same reason, the disruption that mutation causes to
crossover in CM is also expected to be small. In varying mutation GAs, however,
mutations are higher and the combined effect of crossover and mutation in CM
and the effect of mutation alone in M should be carefully reconsidered.

In the case of CM, besides those cases in which crossover and mutation ag-
gregate in a positive manner or are neutral, those cases in which one of the
operators is working well but is being hampered by the other should also be
taken into account. For example, if mutation rates were high, although crossover
could be doing a good job it is likely that some of the just created favorable
recombinations would be immediately lost, before they become fix in the off-



Parallel Varying Mutation in Deterministic and Self-adaptive GAs 113

C

M

pc 1 - pc

λCM
(t)

λCM
(t) λM

(t)

M

pm

CM
C

M

pc 1 - pc

λCM
(t)

λCM
(t) λM

(t)

M

pm

CM

P(t) µ

Proportional Selection

λCM : λSRM

λCM

λCM

C

M λSRM

SRM

λ = λCM + λSRM

Extinctive Selection

pm
(CM)

CM

(µ < λ)

pm
(SRM)

µSRMP(t) µ

Proportional Selection

λCM : λSRM

λCM

λCM

C

M λSRM

SRM

λ = λCM + λSRM

Extinctive Selection

pm
(CM)

CM

(µ < λ)

pm
(SRM)

µSRM

(a) A Standard Varying Mutation GA (b) A GA with Parallel Varying Mutation

Fig. 1. Standard and Parallel Varying Mutation GAs

spring, due to the high disruption introduced by mutation. We can think of this
case as a mutation interference with crossover in the creation of beneficial re-
combinations. On the other hand, mutation could be working well but crossover
may produce poor performing individuals affecting the survivability of benefi-
cial mutations that can contribute to the search. We can think of this case as a
crossover interference with mutation in the introduction of beneficial mutations.

In the case of mutation alone M, its instantaneous effectiveness depends only
upon itself and does not diminish the effectiveness of other operator. High mu-
tations in M, when are harmful, will have a negative impact on the propagation
of beneficial recombinations already present in the parent population, but will
not affect their creation by crossover as high mutation can do it in CM. In the
following we refer to standard varying mutation GAs as varying mutation serial
to crossover.

3 A GA with Parallel Varying Mutation

3.1 Parallel Genetic Operators

An alternative to standard varying mutation GAs is to explicitly differentiate
the mutation operator applied parallel to crossover from the mutation operator
applied after crossover. We explore a model of GA that in addition to crossover
followed by background mutation (CM) it also explicitly applies parallel varying
mutation [9],[10]. To clearly distinguish between mutation operators the parallel
varying mutation operator is called Self-Reproduction with Mutation (SRM).
SRM parallel to CM implicitly increases the levels of cooperation to introduce
beneficial mutations and create beneficial recombinations. It also sets the stage
for competition between operators’ offspring. In the following we refer to GAs
that explicitly apply varying mutations only parallel to crossover as varying
mutation parallel to crossover.

3.2 Extinctive Selection

The model also incorporates the concept of extinctive selection that has been
widely used in Evolution Strategies. Through extinctive selection the offspring



114 Hernán E. Aguirre and Kiyoshi Tanaka

created by CM and SRM coexist and compete for survival (the number of par-
ents is smaller than the total offspring) and reproduction. Among the various
extinctive selection mechanisms available in the EA literature[14] we chose (µ, λ)
Proportional Selection.

The parallel formulation of genetic operators tied to extinctive selection cre-
ates a cooperative-competitive environment for the offspring created by CM and
SRM. The block diagram of the model is depicted in Fig. 1 (b). The number
of parents is µ, λ = λCM +λSRM is the total number of offspring, and λCM and
λSRM are the number of offspring created by CM and SRM, respectively. Both
λCM and λSRM are deterministically decided at the beginning of the run.

3.3 Mutation Rate Control in SRM

In this work we use deterministic and self-adaptive mutation rate controls in
SRM. The deterministic approach implements a time-dependent mutation sched-
ule that reduces mutation rate in a hyperbolic shape, originally proposed in [4]
and expressed by

p(t)
m =

(
ro +

n− ro
T − 1

t

)−1

(1)

where T is the maximum number of generations, t ∈ {0, 1, ···, T−1} is the current
generation, and n is the bit string length. The mutation rate p(t)

m varies in the
range [1/ro, 1/n]. In the original formulation ro = 2. Here we included ro as a
parameter in order to study different ranges for mutation. In the deterministic
approach the mutation rate calculated at time t is applied to all individuals
created by SRM.

To include self-adaptation, each individual incorporates its own mutation
probability within the representation. SRM to produce offspring first mutates
the mutation probability of the selected individual and then mutates the object
variable using the individual’s mutated probability. In this work we use the
self-adaptive approach originally proposed in [4],[8], which uses a continuous
representation for the mutation rate and mutates the mutation probability of
each individual by

p(t)
m (i) =

(
1 +

1− p(t−1)
m (i)

p
(t−1)
m (i)

exp(−γN(0, 1))

)−1

(2)

where i indicates the i-th individual, γ is a learning rate that control the speed
of self-adaptation, and N(0, 1) is a normally distributed random number with
expectation zero and standard deviation one. Note that individuals selected to
reproduce with SRM at generation t could have been created either by SRM or
CM at generation t − 1. Since the mutation rate of each individual is mutated
only by SRM, individuals created by CM do not carry an updated mutation rate.
Thus, the mutation rate of individuals that were created by CM at generation
t− 1 is first updated by



Parallel Varying Mutation in Deterministic and Self-adaptive GAs 115

p(t−1)
m (j) =

1
µSRM

µSRM∑
k=1

p(t−1)
m (k) (3)

where j indicates an individual created by CM at (t − 1), k indicates the indi-
viduals created by SRM at (t− 1) that survived extinctive selection, and µSRM
is the number of offspring created by SRM that survived extinctive selection. In
the case that no offspring created by SRM survived extinctive selection, p(t−1)

m (j)
is set to the mutation value of the best SRM’s offspring. SRM will mutate this
updated mutation in order to mutate the object variable.

4 Experimental Setup

The following GAs are used in our simulations. A simple canonical GA that
applies crossover followed by background mutation, denoted as cGA. A GA
with deterministic varying mutation serial (parallel) to crossover, denoted as
hGA (GA-hM). A GA with self-adaptive varying mutation serial (parallel) to
crossover, denoted as sGA (GA-sM). The GAs use either Proportional Selection
or (µ,λ) Proportional Selection. This is indicated by appending to the name of
the GA (µ) or (µ,λ), respectively1. All algorithms use fitness linear scaling and
mating is restricted to (xi,xj), i �= j, so a solution will not cross with itself.
For cGA, hGA, and sGA pc = 0.6 and for GA-hM and GA-sM the ratio for
offspring creation is set to λCM : λSRM = 1 : 1. Background mutation is set to
p

(CM)
m = 1/n. The learning rate for self-adaptation is set to γ = 0.2

In our study we use difficult, large and highly constrained, 0/1 multiple knap-
sack problems2 [13]. A 0/1 multiple knapsack problem consists of m knapsacks
(constraints) and n objects (size of the search space: 2n). Each knapsack is of
different capacity and each object has associated a profit. Also, there is a set
of weights for each object, one per knapsack. The objective of the problem is
to find the combination of objects such that profit is maximized but no knap-
sack is overfilled with objects’ weights. Besides m and n, other parameter of the
problem is the tightness ratio φ between knapsack capacities and object weights
(which implies a ratio between the feasible region and the whole search space).
By varying m, n, and φ, 0/1 multiple knapsack problems allows us to carefully
observe the behavior and scalability of the algorithms in these three important
aspects that are correlated to the difficulty of a problem.

The initial population is randomly initialized with a 0.25 probability for 1s.
The fitness function and penalty term is the same used in [15]. Results are
averaged over 50 runs and the number of generations is set to T = 5000.

5 Deterministic Varying Mutation

Deterministic mutation varies mutation rates with exactly the same schedule
whether it is applied serial (hGA) or parallel to crossover (GA-hM) and there-
1 a simple GA with (µ,λ) Proportional Selection is denoted GA(µ,λ)
2 http://mscmga.ms.ic.ac.uk/jeb/orlib/info.html



116 Hernán E. Aguirre and Kiyoshi Tanaka

GA(50,100)

hGA pm
(t=0)

(15,100) (50,100)
0.50
0.10
0.05

Generations

Fitness

0 1000 2000 3000 4000 5000
14000

16000

18000

20000

22000

GA(50,100)

GA-hM pm
(t=0)

(15,100) (50,100)
0.50
0.10
0.05

Generations

Fitness

0 1000 2000 3000 4000 5000
14000

16000

18000

20000

22000

(a) Serial to Crossover (b) Parallel to Crossover

Fig. 2. Deterministic Varying Mutation (m = 30, n = 100, φ = 0.25)

fore is an ideal candidate to isolate and observe the impact of higher muta-
tions in both models of GAs. Experiments are conducted using various popula-
tions (µ, λ) = {(15, 100), (50, 100), (100, 100)} and initial mutation probabilities
p

(t=0)
m = {0.50, 0.10, 0.05}. Fig. 2 (a) and (b) plot the average fitness of the

best-so-far individual over the generations illustrating the convergence behavior
by hGA and GA-hM, respectively. Results by GA (50,100) are also included for
comparison.

From Fig. 2 (a) we can observe that hGA’s convergence becomes faster
increasing extinctive pressure (reduce µ while keeping constant λ). However,
better final results were given by (µ,λ)=(50,100) rather than by (µ,λ)=(15,100).
Setting initial mutation probability to lower values also helps to speed up con-
vergence. These, however, do not help to increase the quality of the final results.
Note the initial flat periods in which the fitness of the best-so-far individual did
not improve. This is a clear indication of the disruption caused by high mutation
after crossover.

From Fig. 2 (b) we can see that increasing extinctive selection and reducing
initial mutation probability in GA-hM produce similar effects to those remarked
for hGA. Looking at both Fig. 2 (a) and Fig. 2 (b) becomes apparent that
varying mutation parallel to crossover is less disruptive than varying mutation
serial to crossover. Contrary to hGA, in the case of GA-hM there are no initial
flat periods and in all cases GA-hM converges faster than hGA for similar values
of (µ,λ) and p(t=0)

m . Also, as a consequence of this less disruptiveness, the initial
value set for varying mutation in GA-hM has a smaller impact on convergence
speed than it does in hGA. See for example GA-hM(50,100) for p(t=0)

m = 0.5 and
p

(t=0)
m = 0.05 and compare it with hGA for similar settings. Thus, GA-hM is

more robust than hGA to initial setting of mutation rate.
In GA-hM, similar to hGA, a (µ, λ)=(50,100) extinctive ratio gives better

final results than (µ, λ)=(15,100). In fact, note that GA-hM(15,100)’s final qual-
ity is not better than GA(50,100)’s that does not apply varying mutations.
A (15,100) extinctive selection turns out to be too strong for GA-hM. A less



Parallel Varying Mutation in Deterministic and Self-adaptive GAs 117

GA(50,100)

             sGA                 pm
(t=0)

(15,100)  (50,100)
          0.50
          0.25
          0.10
          0.05

Fitness

Generations
0 1000 2000 3000 4000 5000

17000

18000

19000

20000

21000

22000

GA(50,100)

         GA-sM               pm
(t=0)

(15,100)  (50,100)
          0.50
          0.25
          0.10
          0.05

Fitness

Generations
0 1000 2000 3000 4000 5000

17000

18000

19000

20000

21000

22000

(a) Serial to Crossover (b) Parallel to Crossover

Fig. 3. Self-Adaptive Varying Mutation p
(t=0)
m (i) = pmaxm (m = 30, n = 100, φ = 0.25)

strong selection pressure, such (50,100), gives a better chance to hM’s offspring
to compete with CM’s offspring, which in turn helps to improve the search pro-
cess.

6 Self-adaptive Varying Mutation

A self-adaptive scheme uses one mutation rate per individual, which are usually
set at t = 0 to random values in the range allowed for mutation. Two important
ingredients of self-adaptation are the diversity of parameter settings and the
capability of the method to adapt the parameters. It has been indicated that
some of the implementations of self-adaptation exploit more the diversity of
parameter settings rather than adapting them. However, it has also been argued
that the key to the success of self-adaptation seems to consist in using at the same
time both a reasonably fast adaptation and reasonably large diversity to achieve
a good convergence velocity and a good convergence reliability, respectively[8].

To observe the influence that the serial/parallel application of varying mu-
tations could have on the self-adaptive capability itself we avoid initial di-
versity of parameters. Experiments are conducted using populations (µ, λ) =
{(15, 100), (50, 100)} and mutation ranges of pm = [pminm , pmaxm ] = [1/n, {0.50,
0.25, 0.10, 0.05}]. In all cases initial mutation for each individual is set to the
maximum value allowed for the range, p(t=0)

m = pmaxm . Fig. 3 (a) and (b) plot the
average fitness of the best-so-far individual over the generations illustrating the
convergence behavior by sGA and GA-sM, respectively. Results by GA(50,100)
are also included for comparison.

From Fig. 2 and Fig. 3 it is worth noting the following. (i) Self-adaptive
mutation increases convergence speed compared to deterministic mutation either
serial or parallel to crossover. Looking at Fig. 3 (a) and Fig. 2 (a), note that in
sGA the initial flat periods observed in hGA have disappeared completely. Also,
looking at Fig. 3 (b) and Fig. 2 (b) we can see that GA-sM(50,100)’s fitness
picks up much earlier than GA-hM(50,100)’s for similar values of p(t=0)

m . Between



118 Hernán E. Aguirre and Kiyoshi Tanaka

sGA and GA-sM, however, looking at Fig. 3 (a) and (b) note that sGA can
match GA-sM’s convergence velocity only for small values of p(t=0)

m . This is an
indication that even in the presence of adaptation the convergence velocity of
a GA that applies varying mutation serial to crossover would depend heavily
on initial mutation rates, which is not an issue if adaptive mutation is applied
parallel to crossover. (ii) Contrary to deterministic varying mutation, conver-
gence reliability of self-adaptive mutation serial to crossover could be severely
affected, which becomes quite notorious if no initial diversity of parameters is
allowed. Note in Fig. 3 (a) that only the configurations of sGA(50,100) hav-
ing p(t=0)

m = {0.10, 0.05} achieved better final results than GA(50,100). On the
other hand, the initial lack of diversity of parameters does not affect convergence
reliability of GA-sM. Note in Fig. 3 (b) that for the same selection pressure
convergence reliability of GA-sM is similar for all values of p(t=0)

m . (iii) Similar to
deterministic varying mutation, better results are achieved by (µ, λ) = (50, 100)
rather than by (µ, λ) = (15, 100).

Next, we allow for initial diversity of parameters setting p(t=0)
m to a random

value between the minimum and maximum value allowed for mutation. In this
case, the disruption that higher serial mutation causes to crossover becomes less
apparent due to the initial diversity of parameters and convergence speed is
similar for both sGA and GA-sM. Convergence reliability of sGA also improves.
However, the negative impact on reliability remains quite significant for sGA (see
7). Fig. 4 (a) and (b) illustrates the fitness transition and the average flipped
bits (Log scale) by sGA and GA-sM both with random initial mutation rates
between [1/n,0.50]. Results for hGA and GA-hM are also included in Fig. 4 (a)
for comparison. From these figures note that sGA converges to lower fitness and
reduces mutation rates faster than GA-sM.

The self-adaptation principle tries to exploit the indirect link between fa-
vorable strategy parameters and objective function values. That is, appropriate
parameters would lead to fitter individuals, which in turn are more likely to sur-
vive and hence propagate the parameter they carry with them to their offspring.
A GA that applies varying mutation parallel to crossover as GA-sM can inter-
pret better the self-adaptation principle and achieve higher performance because
(i) inappropriate mutation parameters do not disrupt crossover, and (ii) it pre-
serves mutation rates (see Eq. (3)) that are being useful to the search. A GA
that applies varying mutation serial to crossover as sGA, however, can mislead
the mutation rate control because (i) appropriate parameters can be eliminated
due to ineffective crossover operations, and (ii) in sGA an appropriate parameter
implies parameters that would not affect greatly crossover. Thus, in sGA there
is a selective bias towards smaller mutation rates.

7 Convergence Reliability

To obtain a broader perspective on the performance of the GAs we apply them to
several knapsacks problems varying φ, m, and n. Each combination of φ, m, and
n defines a subclass of problem. Here we use totally 7 combinations of problem



Parallel Varying Mutation in Deterministic and Self-adaptive GAs 119

 hGA (50,100)
 GA-hM (50,100)
 sGA (50,100)       
 GA-sM (50,100)  

Generations

Fitness

1 10 100 1000
15000

16000

17000

18000

19000

20000

21000

22000

Generations

Flipped 
      Bits

GA-sM

sGA

1 10 100 1000
0

4

8

12

16

20

24

(a) Convergence Velocity (b) Average Number of Flipped Bits

Fig. 4. Convergence Velocity and Average Number of Flipped Bits (m = 30, n = 100,
φ = 0.25). p(t=0)

m = 0.5 for hGA and GA-hM. p(t=0)
m (i) = rand[1/n, 0.5] for sGA and

GA-SM

parameters (m = 30,n = 100, and φ = {0.75, 0.50, 0.25}; n = 100, φ = 0.25, and
m = {5, 10}; m = 30, φ = 0.25, and n = {250, 500}) and one random problem
for each combination. Fig. 5 (a), (b), and (c) plot the percentage error gap
between the best solutions’ average in 50 runs and the optimal value given by the
linear programming relaxation (the optimal integer solutions are unknown)[13].
The vertical bars overlaying the mean curves represent 95% confidence intervals.

Some important observations are as follows. (i) The performance of a sim-
ple GA (50,100) is by far superior to the canonical cGA(100), indicating that
extinctive selection is an important factor to increase the performance of GAs
in these constrained problems. (ii) GAs that combine extinctive selection with
varying mutations give better results than a simple GA with extinctive selection.
The difference in performance is more apparent for problems with higher diffi-
culty. (iii) The serial application of varying mutation seems not to affect much
the convergence reliability of GAs with deterministic schedules for mutation (see
hGA and GA-hM), but it seems to be detrimental to the convergence reliability
of the self-adaptive GA (see sGA and GA-sM).

Finally, we test the statistical significance of the results achieved by hGA,
GA-hM and sGA, GA-sM presented in Fig. 5 (a), (b), and (c). Fig. 5 (d)
shows results of the 6 corresponding two-factor factorial ANOVA, where Source
indicates the source of variation, df the degrees of freedom, F is the ratio be-
tween the mean square treatment and the mean square error, and Pval is the
p value (the smallest significant level α that would allow rejection of the null
hypothesis). Inspection of the p values under hGA,GA-hM reveals that there is
some indication of an effect due to the serial/parallel application of determin-
istic varying mutation, since Pval = 0.066 and Pval = 0.061 for φ and m are
not much greater than α = 0.05. However, looking under sGA,GA-sM, there is
indication of an strong main effect of applying self-adaptive varying mutation
serial/parallel to crossover.



120 Hernán E. Aguirre and Kiyoshi Tanaka

% Error Gap

Tightness Ratio (  )

 cGA (100)
 GA (50,100)

φ

 hGA (50,100)
 GA-hM (50,100)
 sGA (50,100)
 GA-sM (50,100)

0.250.50.75
0

2

4

6

8

10
% Error Gap

Knapsacks (m)

 hGA (50,100)
 GA-hM (50,100)
 sGA (50,100)
 GA-sM (50,100)

 cGA (100)
 GA (50,100)

0 5 10 30

2

4

6

8

10

(a) Ratio φ (m = 30, n = 100) (b) Knapsacks m (n = 100, φ = 0.25)

% Error Gap 

Objects (n)

 hGA (50,100)
 GA-hM (50,100)
 sGA* (50,100)
 GA-sM (50,100)

 cGA (100)
 GA (50,100)

100 250 500
0

2

4

6

8

10 hGA, GA-hM sGA, GA-sM
Source df � Pval � Pval
GA 1 3.40 0.066 13.33 0.000
� 2 1957.01 0.000 1001.62 0.000
GA-� 2 0.18 0.832 7.13 0.001
GA 1 3.53 0.061 29.08 0.000
� 2 763.67 0.000 1464.82 0.000
GA- � 2 0.41 0.663 12.36 0.000
GA 1 6.76 0.010 121.05 0.000
� 2 182.71 0.000 168.08 0.000
GA-� 2 6.66 0.002 0.09 0.910
MSE 294

(c) Objects n (m = 30, φ = 0.25) (d) Factorial ANOVA

Fig. 5. Convergence Reliability

8 Conclusions

We have studied the application of varying mutation either serial or parallel
to crossover and discussed its effect on the performance of deterministic and
self-adaptive varying mutation GAs. Experiments were conducted with several
0/1 multiple knapsacks problems. We found that mutation parallel to crossover
is more effective than mutation serial to crossover. In the case of deterministic
mutation GAs, a GA with varying mutation parallel to crossover showed faster
convergence and higher robustness to initial settings of mutation rate than a GA
with varying mutation serial to crossover. Also, an ANOVA gave some indica-
tion of higher convergence reliability by the parallel application of deterministic
varying mutation. In the case of self-adaptive GAs, the convergence velocity of
a parallel self-adaptive mutation GA was matched by a serial self-adaptive mu-
tation GA only when initial diversity of parameters was allowed. Convergence



Parallel Varying Mutation in Deterministic and Self-adaptive GAs 121

reliability was higher for the parallel varying self-adaptive mutation GA with
or without initial diversity of parameters. An ANOVA gave a strong indication
in this direction. Among deterministic and self-adaptive varying mutation GAs,
best performance was achieved by a parallel varying mutation self-adaptive GA.

References

1. A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter Control in Evolu-
tionary Algorithms”, IEEE Transactions on Evolutionary Algorithms, vol.3, no.2,
pp.124-141, 1996.

2. T. Fogarty, “Varying the Probability of Mutation in the Genetic Algorithm”, Proc.
3rd Int’l Conf. on Genetic Algorithms, Morgan Kaufmann, pp.104-109, 1989.

3. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, third revised and extended edition, 1996.

4. T. Bäck and M. Schutz, “Intelligent Mutation Rate Control in Canonical Genetic
Algorithms”, Proc. 9th Int. Symp. ISMIS’96, Lecture Notes on Artificial Intelli-
gence, vol. 1079, Springer, pp.158-167, 1996.

5. I. Rechenberg, “Cybernetic Solution Path of an Experimental Problem”, Royal
Aircraft Establishment Library,1965.

6. L.J. Fogel, A.J. Owens and M.J Walsh, Artificial Intelligence through Simulated
Evolution, Wiley, 1966.

7. J. Smith and T. C. Fogarty, “Self Adaptation of Mutation Rates in a Steady
State Genetic Algorithm”, Proc. IEEE Int’l. Conf. on Evolutionary Computation,
pp.318-326, 1996.

8. T. Bäck, “Self-adaptation”, Handbook of Evolutionary Computation, IOP and Ox-
ford University Press, pp. C7.1:1-13, 1997.

9. H. Aguirre, K. Tanaka and T. Sugimura, “Cooperative Model for Genetic Oper-
ators to Improve GAs”, Proc. IEEE Int’l Conf. on Information, Intelligence and
Systems, pp.98-106, 1999.

10. H. Aguirre, K. Tanaka, T. Sugimura and S. Oshita, “Cooperative-Competitive
Model for Genetic Operators: Contributions of Extinctive Selection and Parallel
Genetic Operators”, Proc. Late Breaking Papers 2000 Genetic and Evolutionary
Computation Conference, pp.6-14, 2000.

11. H. Aguirre, and K. Tanaka, “Parallel Varying Mutation Genetic Algorithms”, Proc.
IEEE Int’l. Conf. on Evolutionary Computation, pp.795-800, 2002.

12. M. Shinkai, H. Aguirre, and K. Tanaka, “Mutation Strategy Improves GA’s Per-
formance on Epistatic Problems”, Proc. IEEE Int’l. Conf. on Evolutionary Com-
putation, pp.968-973, 2002.

13. P.C. Chu and J. E. Beasley, “A Genetic Algorithm for the Multidimensional Knap-
sack Problem”, Journal of Heuristics, vol.4, pp.63-86, 1998.

14. T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford Univ. Press,
1996.

15. H. Aguirre, K. Tanaka and S. Oshita, “Increasing the Robustness of Distributed
Genetic Algorithms by Parallel Cooperative-Competitive Genetic Operators”,
Proc. 2001 Genetic and Evolutionary Computation Conference, Morgan Kauf-
mann, pp. 195-202, 2001.



Self-organizing Maps
for Pareto Optimization of Airfoils

Dirk Büche1, Gianfranco Guidati2, Peter Stoll2, and Petros Koumoutsakos1,3

1 Institute of Computational Science, Swiss Federal Institute of Technology (ETH)
CH-8092 Zürich, Switzerland
{bueche,petros}@inf.ethz.ch
http://www.icos.ethz.ch

2 Alstom (Switzerland) AG, Segelhof
CH-5405 Dättwil, Switzerland

{gianfranco.guidati,peter.stoll}@power.alstom.com
http://www.alstom.ch

3 NASA Ames Research Center, Moffett Field, CA, USA
http://www.arc.nasa.gov

Abstract. This work introduces a new recombination and a new mu-
tation operator for an accelerated evolutionary algorithm in the context
of Pareto optimization. Both operators are based on a self-organizing
map, which is actively learning from the evolution in order to adapt the
mutation step size and improve convergence speed. Standard selection
operators can be used in conjunction with these operators.
The new operators are applied to the Pareto optimization of an airfoil for
minimizing the aerodynamic profile losses at the design operating point
and maximizing the operating range. The profile performance is analyzed
with a quasi 3D computational fluid dynamics (Q3D CFD) solver for
the design condition and two off-design conditions (one positive and one
negative incidence).
The new concept is to define a free scaling factor, which is multiplied to
the off-design incidences. The scaling factor is considered as an additional
design variable and at the same time as objective function for indexing
the operating range, which has to be maximized. We show that 2 off-
design incidences are sufficient for the Pareto optimization and that the
computation of a complete loss polar is not necessary. In addition, this
approach answers the question of how to set the incidence values by
defining them as design variables of the optimization.

1 Introduction

Real-world application often include multiple and conflicting objectives. A so-
lution to such a problem represents always a compromise between the different
objectives. The set of the best compromise solutions is referred as the Pareto
set, characterized that starting from a Pareto solution, one objective can only
be improved at the expense of at least one other objective.

Evolutionary Algorithms (EAs) are a standard tool for Pareto optimization.
EAs perform a population-based search, which allows approximating the Pareto

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 122–131, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Self-organizing Maps for Pareto Optimization of Airfoils 123

front in a single optimization run by evolving the population in a cooperative
search towards the Pareto front.

In Pareto optimization, work has been performed in the development of se-
lection operators and especially fitness assignment techniques for Pareto opti-
mization, while the recombination and mutation operators are often copied from
simple single-objective algorithms and are non-adaptive over the optimization
run.

In single objective optimization, however, the key component is the muta-
tion operator. The operator exploits knowledge from the evolution to adapt a
mutation distribution in order to focus on areas of promising solutions. The Co-
variance Matrix Adaptation (CMA) [5] embeds information about the path of
successful mutations (evolution path) in a covariance matrix. This leads to a
significant performance gain, compared to non-adaptive EAs.

The evolution path for multi-objective optimization is far more unclear than
for single objective optimization, since the population converges in a cooperative
search towards the Pareto front and not to a single optimum. Since different
solutions in the population converge towards different locations on the Pareto
front, the mutation distribution can not be described by one covariance matrix
and has to differ between the solutions.

Thus, we introduce a new adaptation method for the mutation step size in
Pareto optimization using the self-organizing maps (SOM) of Kohonen [6]. The
method is inspired by the work of Milano et al. [8], who develop the first SOM for
single objective optimization. The SOM is continuously trained on the current
best solutions and thus is tracking the evolution path in a learning process. The
SOM adapts the mutation step size such that it focuses on areas of promising
solutions in order to generate an accelerated convergence.

The aerodynamic design of modern aircraft wings as well as rotor blades from
various areas as turbo machinery, helicopters, and wind energy plants relies
significantly on the design of 2D cuts (profiles), which are then stacked to a
3D wing or blade. This simplification omits 3D flow effects but is adequate
for the design due to the large aspect ratios between span and chord. Real 3D
calculations are often performed for the design assessment, after the actual design
process. The profiles can be designed individually or can be taken from a profile
family.

The aerodynamic performance of a profile is mainly characterized by the
thermodynamic losses at the design operating condition and by the operating
range. The operating range can be described by the possible variation of the
inlet flow angle from the design condition (incidence variation) until separation
or stall occurs. These two characteristics are conflicting, thus requiring a set of
profile designs for different compromises manifested on a Pareto front.

This paper is organized as follows: First, the principles of EAs for Pareto
optimization are introduced, followed by a description of the SOM and the mod-
ifications for the learning in an EA. The new algorithm is illustrated on a test
problem. Finally, an automated loop for the Pareto optimization of an aero-
dynamic profile concerning losses and operating range is described. The loop



124 Dirk Büche et al.

comprises the new optimization algorithm, a profile generation tool and a CFD
analysis tool. The properties of the resulting profiles are discussed.

2 Multi-objective Evolutionary Algorithms

The selection operator is often considered as a key operator for multi-objective
evolutionary algorithms (MOEAs). It consists of the fitness assignment and the
selection mechanism itself. The dominance criterion in combination with niching
techniques is most popular for the fitness assignment [11], in order to select on
average the less dominated solutions and preserve diversity in the population,
respectively. Another key element is elitism [11], a technique of storing always
the current best solutions in an archive. For a multi-objective problem, the elite
solutions are the current nondominated solutions. The archive is then partici-
pating in the selection process.

The Nondominating Sorting Genetic Algorithm (NSGA-II) [2] and the
Strength Pareto Evolutionary Algorithm (SPEA2) [12] are two common rep-
resentatives of MOEAs and implement all of the previously stated techniques.

These algorithms, however, do not describe a mutation or recombination
operator. To compare the performance on continuous problems, the authors of
SPEA2 and NSGA-II use the polynomial distributed mutation and the simulated
binary crossover of Deb et al. [1]. Both methods do not implement any learning
process, so they do not exploit any knowledge from the evolution path.

2.1 Self-organizing Maps

Self-organizing maps (SOM) [6] define a mapping of a highly dimensional input
space R

n onto a regular lattice of s reference vectors (neurons). The lattice con-
tains a fixed m-dimensional connectivity between the neurons, which is usually
of lower dimension than the input space. Figure 1 illustrates a SOM with 25
neurons and a two-dimensional quadrilateral lattice, i.e. n = 2, s = 25, and
m = 2. A reference vector wi ∈ R

n is associated to each neuron i.
The response of the network to an input xj ∈ R

n is defined as the best
matching neuron c:

c(xj) = arg min
i
{||xj − wi||} (1)

The SOM can be trained on a set of input data xj . To each xj the response c is
computed and all SOM neurons are updated so as to become closer to the input
xj by the update rule:

wnewi = woldi + h(c, i) · (xj − wi), i = 1...s, (2)

where h(c, i) is the so-called neighborhood kernel, defined so as h(c, c) = 1,
h(c, i) ≥ 0 ∀ wi. We use a kernel, which is known as bubble kernel, defined
by:

h(c, i) =
{
α , if r(c, i) < r0
0 , otherwise , (3)



Self-organizing Maps for Pareto Optimization of Airfoils 125

+ 

Fig. 1. SOM with 25 neurons [circles] and 2D quadrilateral lattice [thin lines]. A ran-
dom simplex of adjacent neurons is created [bold line]. Within the simplex a uniformly
distributed random point [plus symbol] is generated.

where α is the learning rate, r(c, i) is the Euclidean distance between node c
and i in the lattice and r0 defines the bubble size. The neighborhood function
allows approximating a given distribution in an ordered fashion, by preserving
neighborhood relationships. One update with all input dates is referred to as one
training epoch.

2.2 Self-organizing Maps
for Multi-objective Evolutionary Algorithms

Here we use the SOM for the approximation of the Pareto front. To this aim we
set connectivity m of the lattice to one dimension less than the objective space,
that is the same dimension as the Pareto front; also, since the SOM is defined
in design space, the dimension n of its reference vectors is equal to the number
of design variables. The SOM is trained on the current parent population of
the optimization process in order to approximate the parent population in an
ordered fashion. Any selection operator like SPEA2 or NSGA-II can select the
parent population.

We define a recombination operator by using the SOM. The SOM is trained
on the design variables of the parent population. Thus, choosing a random point
within the area that is covered by the SOM represents an intermediate recombi-
nation of the parent population. The recombination procedure chooses randomly
a simplex of adjacent neurons in the lattice, and generates a recombined point
u from a uniform probability distribution within the simplex (Figure 1).

In addition, a mutation operator is defined in order to generate points outside
the area covered by the SOM. Normally distributed random numbers are added
to the new point u by:

uk ← uk +
σ√
n

N(0, 1), k = 1...n, (4)

where σ is the step size and is set equal to the Euclidean length of a randomly
chosen edge of the simplex. This leads to an adaptive step size over the opti-
mization process, since the SOM is adapting from a random initialization to an



126 Dirk Büche et al.

ordered approximation of the Pareto front. The step size differs for all possible
simplexes of the SOM.

2.3 Experimental Results

The performance of the SOM-MOEA is analyzed for the two-objective test func-
tion of Fonseca and Fleming [4]:

f1/2 = 1− exp

(
−

n∑
i=1

(
xk ±

√
1/n

)2
)

(5)

with x1...n ∈ [−1, 1]. The exact Pareto front is obtained for x1...n = t, −√1/n ≤
t ≤ √1/n. The number of design variables is set to n = 10. An optimization
run is started with the SOM-MOEA and a population size of 60 individuals. A
simple selection operator is used, which selects only the current nondominated
solutions in an elitistic fashion. In order to keep diversity within the selected set,
the clustering algorithm of SPEA2 is used, allowing a maximum number of 30
nondominated solutions.

A one-dimensional SOM is initialized with s = 20 neurons, a learning rate
α = 0.05 and random values for the reference vectors wi. After each generation,
the SOM is trained with 30 training epochs on the selected set. The initial
population is randomly generated. Figure 2 shows the initial population and
SOM for two dimensions of the design space and for the objective space. Consider
that a simplex for this SOM is a straight line.

The optimization run is started computing in total 3.000 solutions. The final
population is shown in Figure 3. The figure shows that the SOM is aligned
along the analytical Pareto front in design space, and the objective values of the
final population are well distributed along the Pareto front. The step size σ of
the mutation in Equ. 4 is related to the length of a simplex, i.e. for this one-
dimensional network it is equal to the distance between two adjacent neurons.
The ratio of the initial and final step size is equal to the distance between
adjacent neurons of the SOM in Figure 2 and Figure 3.

3 Automated Design of Aerodynamic Profiles

We consider the automated profile design in the context of a constraint Pareto
optimization. An optimization loop is implemented comprising the SOM-MOEA,
a profile generation tool and a computational fluid dynamics (CFD) analysis tool.

The profile generator describes the profile by a set of Bezier splines. The
spline parameters are coded in a set of engineering parameters, specifying e.g.
the profile length, the nose and trailing edge radius, the curvature distribution,
etc. Subdividing the profile in several splines is common in profile design [7] [10].
The transformation of the spline parameters to engineering parameters simplifies
the comparison and illustration of different profile parameter sets.



Self-organizing Maps for Pareto Optimization of Airfoils 127

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Design Space

x
1

x 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Objective Space

f
1

f 2

Fig. 2. Initialization of the SOM-MOEA for the two-objective problem of Fonseca and
Fleming with 10 design variables: Random population [crosses], random 1-dim. SOM
[connected circles] and analytical Pareto front [line] in a 2-dim subspace of the design
space and in the objective space.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Design Space

x
1

x 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Objective Space

f
1

f 2

Fig. 3. SOM-MOEA after 50 generations (3000 evaluated solutions). The SOM alignes
in the design space along the Pareto front.

The flow analysis is performed with MISES [3], a quasi 3D computational
fluid dynamics (Q3D CFD) solver, which solves the Euler equation with an
integral, viscous boundary layer formulation. It takes into account the change in
the streamline thickness along the profile (quasi 3D).



128 Dirk Büche et al.

3.1 Objective Functions

An aerodynamic profile should be optimal concerning its performance at design
condition as well as for off-design conditions. This can be achieved by different
approaches.

One approach is to follow a design philosophy, which can be specified by
e.g. a Mach number or pressure distribution, maybe in conjunction with a non-
dimensional shape factor of the boundary layer like H12. Since the behavior of
the design philosophy for certain profiles under off-design conditions is known,
it is assumed to be sufficient to match the philosophy at design condition. This
approach is used in the manual design process, the inverse design process (see
e.g. [7], [10]) or in a direct optimization process (see e.g. [9]) and the quality of
the result relies directly on the quality of the considered philosophy.

A second approach is the calculation of various incidences in order to ap-
proximate the loss polar of the profile as given in Fig. 4, which specifies the
behavior of the profile over the complete operating range. A disadvantage is the
large number of flow calculations, which are needed to specify the polar as in the
optimization of [7]. Furthermore, there is the problem of how many incidences
should be computed and for which values.

Our preference is on the second approach, since the first does not allow
discovering new design philosophies and is difficult to apply to transonic or 3D
flows. In addition, we present two modifications in order to improve the second
approach. First, we formulate a Pareto optimization problem in order to obtain a
family of profiles and not one single compromise solutions. The family represents
all compromises between the conflicting objectives of minimizing the losses at the
design condition and increasing the operating range. Second, we do not compute
the complete loss polar and show that it is sufficient to compute 3 different
incidences in order to assess a profile. The 3 calculations are performed for the
design condition, i.e. 0◦ incidence and for one positive incidence I1 and one
negative I2. The key concept is to define I1 and I2 variable by a free multiplier
θ:

I1 = 1.0 · θ (6)
I2 = −0.8 · θ (7)

This definition takes into account that the positive incidence I1 is more critical
for stall than I2. The incidence multiplier θ is an additional design variable.

The profile losses for the 3 incidences are summed to the first objective
function f1. For small values of θ, the losses are computed at small incidences.
An optimization for small values of θ leads profiles which have minimal losses
in the vicinity of the design condition, while for large values of θ, profiles are
optimized for a large incidence range. Thus, θ is not only used as free design
variable, but also as second objective function f2. To both objectives penalties
are added for violated constraints and the exact objective functions are given
by:



Self-organizing Maps for Pareto Optimization of Airfoils 129

max(f1), f1 = θ − p1 (8)

min(f2), f2 =
3∑
i=1

(li) + p1 + p2 + p3 + p4, (9)

where li is the profile loss for the incidence i and p1 to p4 are 4 penalties, which
are non-zero, if the corresponding constraint is violated.

p1 is a penalty for the convergence of the CFD solver and is equal to the
number of failed incidence calculations. Especially for large incidences, the con-
vergence may fail due to flow separation. p2 is a linear penalty on the deviation
of the exit flow angle β to the design exit flow angle βdesign at design condition,
if the deviation exceeds an absolute value of |β − βdesign| > δβ. p3 is a linear
penalty on the profile area A, if A is smaller than the minimal area Amin. The
minimal area is defined by the mechanical forces on the profile and the stress
limit.

The free design variables are the parameters from the profile generator and
the incidence multiplier θ. In total there are 15 design variables.

3.2 Optimization Results

An optimization run is performed for a profile design at an inlet Mach number
of 0.67, a desired flow turning of 12◦ and δβ = 0.1◦. The SOM-MOEA of Sec.
2.3 is used, except the maximal size of the selected set is increased to 50. In total
10.000 solutions are evaluated. Among all evaluated solutions, 5.461 solutions do
not violate any constraints and generate a Pareto front of 283 solutions (Fig. 4).
Consider that the incidence multiplier is to be maximized and the losses are to
be minimized. The Pareto front underlines the conflict in optimizing the two ob-
jectives. For small incidence multipliers, the losses are low, since all 3 incidences
are computed almost at the design point. For large incidence multipliers, the loss
increases for two reasons. First, the flow is computed at larger incidences leading
to higher losses and second, the profile losses are higher at the design condition,
since the design has to be more robust for converging at the high incidences.
Two Pareto solutions are marked in the figure and their loss polar is given in
Fig. 4. The minimal losses are at about 1.4%. The attainable operating range
is considered to be bounded by the double of the minimal losses [7]. Solution A
contains the smaller incidence multiplier and the loss polar shows lower losses
close to the design incidence than solution B, but comprises a smaller operating
range. For solutions A and B, the operating range is about 14.4◦ and 15.5◦,
respectively. Both polars are characterized by a smooth and continuous increase
of losses over the absolute incidence. This indicates a soft stall behavior. Fig. 5
contains the profile shape. Solution A shows the smaller nose radius as well as
the smaller maximal thickness.

4 Conclusions

A self-organizing map (SOM) is introduced as mutation and recombination op-
erator for Pareto optimization. The network is actively learning from the current



130 Dirk Büche et al.

4 5 6 7 8 9
4

4.5

5

5.5

6

6.5

7

7.5

8

Incidence Multiplier

S
u

m
 o

f 
P

ro
fi
le

 L
o

s
s
e

s

A 
o

o
  B

−5 0 5

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

incidence
lo

s
s

design A
design B

Fig. 4. Pareto front [left] for the profile optimization, and loss polar [right] for two
selected Pareto solutions.

design A
design B

Fig. 5. Profile shape for the two selected Pareto solutions.

nondominated solutions. The SOM comprises the principle of cooperative search
by interpolating the current nondominated front, thus it is sharing information
about successful design variables values along the Pareto front. The mutation
step size is related to the distance of neighboring neurons in the SOM. It varies
within the network and is adaptive over the optimization run. The SOM rep-
resents a first step in the direction of developing mutation and recombination
operators which are especially designed for Pareto optimization and which are
able to learn from the evolution in order accelerate the convergence.

The second part describes a formulation for the Pareto optimization of com-
pressor profiles for minimal losses and maximal operating range, which operates
with a minimal number of incidence calculations. The key feature is the defini-
tion of a multiplier for the incidences, which is used at the same time as design
variable and objective function. This optimization introduces the concept of gen-
erating profile families in a single cooperative optimization run by using a Pareto
optimization algorithm.

Acknowledgments

The first author would like to acknowledge support from the Commission for
Technology and Innovation, Switzerland (Project 4817.1) and Alstom (Switzer-
land) AG.



Self-organizing Maps for Pareto Optimization of Airfoils 131

References

1. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems, No. 9 (1995) 115–148

2. Deb K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist nondominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. Parallel Problem
Solving from Nature VI Conference (2000) 849-858.

3. Drela, M., Youngren, H.: A User’s Guide to MISES 2.53. MIT (1998)
4. Fonseca, M.C., Fleming, P.J.: Multi-objective genetic algorithms made easy: Selec-

tion, sharing and mating restrictions. Proceedings of the 1st International Confer-
ence on Genetic Algorithms in Engineering Systems: Innovations and Applications,
London, UK, (1995) 45-52

5. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation, Vol. 9, No. 2 (2001) 159-195

6. Kohonen T.: Self-organizing maps. Springer series in information sciences, 3rd ed.
(2001)

7. Köller U., Mönig, R., Küsters, B., Schreiber, H.-A.: Development of Advanced
Compressor Airfoils for Heavy-Duty Gas Turbines, Part I: Design and Optimiza-
tion. ASME Journal of Turbomachinery, Vol. 122, No. 3 (1999) 397-405

8. Milano, M., Schmidhuber, J., Koumotsakos P.: Active Learning with Adaptive
Grids. International Conference on Artificial Neural Networks, Vienna, Austria
(2001)

9. Naujoks, B., Willmes, L., Haase, W., Bäck, T., Schütz, M.: Multi-Point Airfoil Op-
timization Using Evolution Strategies, ECCOMAS 2000, Barcelona, Spain (2000)

10. Trigg, M.A., Tubby, G.R.,Sheard, A.G.: Automatic Genetic Optimization Ap-
proach to Two-Dimensional Blade Profile Design for Steam Turbines ASME Jour-
nal of Turbomachinery, Vol. 121, No. 1, (1999) 11-17

11. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: An-
alyzing state-of-the-art, Evolutionary Computing, Vol. 8, No. 2., MIT Press, Cam-
bridge, MA (2000) 125-147

12. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm for Multiobjective Optimization. EUROGEN 2001, Athens,
Greece (2001)



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 132–141, 2002.
© Springer-Verlag Berlin Heidelberg 2002

On Fitness Distributions and Expected Fitness Gain
of Mutation Rates in Parallel Evolutionary Algorithms

David W. Corne1, Martin J. Oates2, and Douglas B. Kell3,∗

1 Department of Computer Science, University of Reading, UK
d.w.corne@reading.ac.uk

2 Evosolve Ltd, Stowmarket, Suffolk, UK
moates@btinternet.com

3 Institute of Biological Sciences, University of Wales, Aberystwyth, UK
dbk@aber.ac.uk

Abstract. Setting the mutation rate for an evolutionary algorithm (EA) is con-
founded by many issues. Here we investigate mutation rates mainly in the con-
text of large-population-parallelism. We justify the notion that high rates
achieve better results, using underlying theory which notices that paralleliza-
tion favourably alters the fitness distribution of a mutation operator. We derive
an expression which sets out how this is changed in terms of the level of paral-
lelization, and derive further expressions that allow us to adapt the mutation
rate in a principled way by exploiting online-sampled landscape information.
The adaptation technique (called RAGE - Rate Adaptation with Gain Expecta-
tion) shows promising preliminary results. Our motivation is the field of Di-
rected Evolution (DE), which uses large-scale parallel EAs for limited numbers
of generations to evolve novel proteins. RAGE is highly suitable for DE, and is
applicable to large-scale parallel EAs in general.

1 Introduction

Setting the mutation rate for an evolutionary algorithm (EA) is complicated by the
fact that much depends on various details of the EA and the application. Nevertheless,
much published work provides generally accepted guidelines. An overall consensus,
justified by theory [3,4,9] is that a rate of 1/L (where L is chromosome length) is
often near-optimal (this can also be said of experimental biology [5]). When they
have engaged in comprehensive parametric investigations in specific cases, research-
ers (e.g. [4]) have sometimes found that higher rates are better. Bäck also notes [4]
that the optimal rate seems to increase with λ in a (1 + λ) evolution strategy, but that
no useful analytical results are known. However, the general suitability of 1/L in
standard (i.e. serial implementation) settings has been more often confirmed than
challenged. Thus, Oates et al [10] find a wide range of optimal mutation rates, with
this range tending to include 1/L. Meanwhile, recent theoretical work of note has
studied the competent design of parallel EAs [7], but the issue of mutation rate in this
context has been little explored.

                                                          
∗ Present address: Dept Chemistry, UMIST, PO Box 88, MANCHESTER M60 1QD



On Fitness Distributions and Expected Fitness Gain of Mutation Rates      133

When we consider mutation rate setting in parallel EAs, there is a straightforward
intuitive argument for high rates. These generally make higher-fitness mutants avail-
able, but with low probabilities; however, the larger the population, the better the
chances of a high-rate yielding such mutants. In particular, parallelization means that
this benefit is not at the expense of time. If we can evaluate P mutants in parallel,
then we can regard the mutation operation as having effectively changed in nature.
That is, we can evaluate P mutants in unit time, and can take the ‘result’ of the paral-
lelized operation to be the fitness of the best of them. The mathematics of this follow.

1.1 Notes on Relevance and Applicability

Improved and cheaper hardware, and the wider availability and use of cluster-based
computation, now makes the use of parallel implementations of EAs more feasible,
and indeed such is now increasingly widespread. This heralds a need for better under-
standing of parallel EA design. Cantú-Paz [7], among others, is paving the way re-
garding several aspects of parallel EA design. Here we focus on mutation rate setting.

One relevant parallel EA application (which the authors are working on) is in the
protein engineering/biotechnology community, and is called ‘Directed Evolution’
(DE). This refers to (what amounts to) the application of EAs to the discovery of
novel proteins [1,2,12]. Consider, for example, the task of finding a protein which can
bind to a particular area of a virus, and remain thermostable at body temperature. To
address this in DE, a population of proteins is artificially evolved. They undergo
selection, mutation and other operations in the normal way. There are, of course,
many problems with this as regards its in silico implementation, since we know far
too little about protein folding to implement the representation correctly, let alone
estimate a novel protein’s fitness. The trick, however, is that DE works entirely bio-
logically. The ‘representation’ of a protein is actually via a gene encoding its overex-
pression (i.e. many copies are present) within a suitable cell (typically the bacterium
E. coli). The cell’s metabolism naturally produces the protein itself, and fitness comes
from direct measurement of the protein’s efficacy regarding the target activities of
interest. Mutation is typically done by using so-called ‘sloppy’ or ‘error-prone’ ver-
sions of the Polymerase Chain reaction (PCR) in an in vitro step. Many details are of
course omitted here, but none which alters the fact that the range of potentially appli-
cable DE strategies essentially matches much of the space of EA designs. In particu-
lar, the biotechnology (with ‘high-throughput screening’) currently allows up to some
1,000,000 mutants to be evaluated per generation, and mutation rate is fully control-
lable (essentially by varying the conditions of the PCR reaction). DE is a technology
with immense potential for novel and highly beneficial protein products, but the
‘search spaces’ are massive, and much depends on appropriate design and param-
eterization of DE strategies.

1.2 A Note on Related Work

Seminal work by Fogel and co-authors (e.g. [8] and subsequent papers) relates
closely to that described here, but there are subtle differences in approach and appli-



134      David W. Corne, Martin J. Oates, and Douglas B. Kell

cability which are worth noting. In [8] and related work, Fogel et al., like us, essen-
tially recognize that repeated applications of genetic operators yield valuable infor-
mation which can be employed to choose and parameterize the operator(s) more
wisely. In [8] however, this is done essentially using extensive offline prior sampling
(consuming significant numbers of fitness evaluations). Apart from our focus on the
way that applicable mutation rates increase with parallelization, the main difference
in this work is that we derive an approach which can be applied online, exploiting
theory (relying on our restricted attention to standard mutation of k-ary chromo-
somes) which enables us to choose from among many appropriate rates having only
sampled (in principle) a single rate previously This work is hence more applicable in
cases where time saving in highly-parallelized EAs) is a premium concern.

2 Fitness Distributions and Expected Fitness Gain

Imagine a mutation operator which, with respect to a given parent, has n possible
fitness outcomes (f1, f2,…,fn). The fitness distribution gives, for each f1, the chance the
mutant will have that fitness. E.g. consider a mutation operator which flips a single
randomly chosen bit in a binary string of length L, and where the fitness function is
MAX-ONES, in which we seek to maximize the number of 1s in the string. If L=100
and the parent has fitness 80, then the fitness distribution can be written as ((79,
0.8),(81, 0.2)); i.e. the chance of the mutant having fitness 79 is 0.8, and the chance of
it having fitness 81 is 0.2 (and fitness 82 zero). In contrast, an operator which flips
two randomly chosen (but distinct) genes gives approximately: ((78, 0.64), (80, 0.32),
(82, 0.038)).

‘Expected fitness gain’ essentially means what we expect the result of the mutation
to yield in terms of a fitness improvement, keeping in mind that mutants less fit or
equally fit as the parent will yield zero gain. Throughout, we assume a simple (but
powerful) EA model which corresponds to a (1+ λ)-ES where λ is essentially the
population size, which (by default) we assume is fully parallelized. Thus raising λ, up
to the limit of parallelization, does not increase the elapsed time between generations.
Consequently, an operator’s fitness distribution is changed (since it now returns the
‘best of  λ’ mutants), and so therefore is the expected fitness gain per generation. We
argue that this expected gain increases faster for high-rate operators than for low-rate
operators, and consequently there is a point or threshold (in terms of λ, which we will
hereon simply call P) at which the higher rate becomes preferable.

2.1 Exploiting Parallelism Leads to Improved Fitness Distributions

From hereon we will work with the gain distribution, which only considers non-
worse mutants. In the first case above, this is ((80, 0.8), (81, 0.2)), showing, for ex-
ample, that the result of a mutation will be no change in fitness 80% of the time. For
two-gene mutation it is ((80, 0.962), (82, 0.038)). It is natural to ask, what is the ex-
pected gain in one application of the operator? This is the sum of outcomes weighted



On Fitness Distributions and Expected Fitness Gain of Mutation Rates      135

by their probabilities. In the one-gene case this is 80.2, and in the two-gene case it is
80.076.

However, if we can suitably exploit parallelism, the gain distributions of higher
rate operators become more favourable, and ‘overtake’ those with conservative distri-
butions. Some simple intuition for this can follow from our running example. Imagine
that we are able to evaluate 20 fitnesses in parallel. A single operator application (i.e.
in unit time) now yields 20 mutants, from which we take the best. Now, the gain
distribution of the single-gene operator is approximately ((80, 0.0115), (81, 0.9885)),
in which the chance of achieving 81 is precisely the chance that not all of the 20 mu-
tants were neutral (i.e. 1 − (1 − 0.2)20). But the gain distribution of the two-gene op-
erator is now ((80, 0.461), (82, 0.539)). The expected fitness achieved after one time
unit is therefore 80.9885 in the one-gene case and 81.078 in the two-gene case, so the
higher rate operator has the more favourable distribution.

More generally, the ‘P-parallelization of µ’ is an operator which applies µ to the
same parent P times in parallel, and the returned result is the best of these P (or the
parent). P-parallelized µ has a gain distribution which we can state as follows, using
Blickle and Thiele’s analysis of tournament selection [6]. We will assume r distinct
fitness outcomes, and give the gain distribution of µ in the form
((f1,p1),(f2,p2),…,(fr,pr)) where the terms’ meanings are obvious from the examples
above. An intermediate step is to note the ‘cumulative gain distribution’
((f1,π1),(f2,π2),…,(fr,πrr)) where πi is the probability of the mutant’s fitness being either
f1 or worse, hence:

∑
=

=
r

j
ji f

1

π
(1)

and we can also note of course that π1 = f1 and πr  = 1.
We can now write, following [6], the gain distribution of the P-parallelised opera-

tor as ((f1,q1),(f2,q2),…(fr,qr)) where qi = πi

P − πi−1

P, in which it is implicit that π0 = 0.
What is of particular interest is the expected fitness per application of the operator. P-
parallelisation changes this, from:

∑
=

=
r

i
iiE pff

1       to: 
∑∑

=
−

=

−==
r

i

P
i

P
ii

r

i
iiE fqff

1
1

1

)( ππ
(2)

A key point is that the P-parallelisation of a ‘high-rate’ operator µH will often achieve
a better expected gain than the P-parallelisation of its ‘low-rate’ counterpart µL. By
simple calculations and approximations (which we shall omit), we can show, for
example, that in a case with just three fitness outcomes and distributions as follows:

)),(),,(),,(( 332211 LfLfLf , )),(),,(),,(( 332211 HfHfHf

where H3 > L3 and L3 ≈ 0 then P-parallelized µH exceeds P-parallelised µL in expected
fitness gain when  P > (H1

P − L1

P)/H3, from which two observations are apparent: first,
if L1 > H1 then any value of P will lead to a better expected gain for the ‘high-rate’
operator. At first this seems odd, but notice that L1 and H1 denote the probabilities in
the respective cases that the gain will be zero. Hence, since L1 > H1 the chance of at
least some gain is necessarily higher for the high-rate operator. Otherwise, in the



136      David W. Corne, Martin J. Oates, and Douglas B. Kell

more normal situation H1 > L1, the expression reflects arguably modest needs in
population size for parallelized µH to outperform parallelized µL.

To express the more general case for two operators µ1 and µ2, where (without loss
of generality) µ1 has a better expected fitness gain than µ2 when both are P-
parallelised, first, we can rearrange equation (2) to become:

r
P

rrr
PP

E ffffffff +−++−+−= −− 11232121 )(...)()( πππ
and we can simplify this by considering only cases where fitness levels increase in
units (hence fk – fk+1 always equals –1), and obtain:

∑
−

=

−=
1

1

r

i

P
irE ff π

Now, given two operators µ1 and µ2, we can simply derive:

∑∑
−

=

−

=

−=−
1

1

1

1
22 )()()()(

r

i

P
i

r

i

P
iEE ff 11 µµµµ ππ

When this exceeds zero, the P-parallelization of µ1 will have a better expected gain
than that of µ2. One general observation can now be made. In the limit as P becomes
very large, the dominant terms are those involving the cumulative probabilities with
the highest indices, and we can write:

))()(()()()()( 2111212 µµµµµµ1 rr
P

r
P

rEE ppPff −≈−≈− −− ππ
Hence, in the limit, the superiority of µ1 over µ2 after P-parallelization is guaranteed
as long as µ1 has a better chance than µ2 of finding the highest fitness.

Finally, we mention some illustrative calculations in the context of MAX-ONES
with L=100. Space issues preclude a fuller display, but we note for example that for a
parent with fitness 50, P-parallelized mutation at 9/L starts to outperform (in terms of
expected gain) a similar parallelization of 1/L at P = 3. When fitness of parent is 80,
the expected gain of P-parallelised 1/L is outperformed by that of 10/L at P = 362.

2.2 Adapting Rates in Parallel EAs Based on Expected Fitness Gain

A wider applicability emerges from recasting entries in the gain distribution in terms
of numbers of point mutations and the fitness/distance correlation. That is:

)()(),( ,
1

1 xcmdxmp ij

L

j
ji ⋅= ∑

=
+

(3)
in which we assume the operator under consideration is per-bit flip mutation on bi-
nary strings with rate m, and x stands for a specific parent, rather than a fitness.
Meanwhile, p1+i(m,x) stands for the chance of a mutant of x having the ith fitness better
than that of x, while dj(m) gives the chance of the operator yielding a mutant j Ham-
ming units distant from x, and cj,i(x) gives the proportion of mutants j Hamming units
away from the parent which have the fitness indexed by i. The summation goes up to
L, which is the highest Hamming distance attainable. Notice that:



On Fitness Distributions and Expected Fitness Gain of Mutation Rates      137







−= −

j

L
mmmd jLj

j )1()(
(4)

In particular, it does not depend on the landscape under consideration, while cj,i(x)
expresses the detailed fitness/distance correlation map in the region of x, and does not
depend on the mutation rate. Also, we reserve  p1 to stand for the following

∑
=

−=
H

i
ipp

2
1 1

(5)
Where H is the highest fitness attainable. Now, imagine the requirement to set suit-
able parameters for a parallel (1+P)-EA. By substituting equations (3) and (5) into (2)
(via (1) and (4)), we can find the expected fitness gain per generation for any parent
and any mutation rate, and we will suppose that a good rate to set per generation is
one which maximizes this expected gain. However we need data for equation (3). The
term dj(m) is analytically accessible, but cj,i(x) will generally be unknown. Data perti-
nent to it will normally be available, however, and we now propose a method for
approximating cj,i(x) from online sampled fitnesses. This leads to a principled tech-
nique for adaptively resetting the mutation rate in such EAs after each generation.
The dependence on straightforward bit-flip (in general, k-ary) mutation is partly a
restriction on applicability, but also the key enabling factor, since this makes equation
(4) available, which in conjunction with sampled data allows us to estimate gains for
arbitrary rates, even though we may have sampled at only one rate.

We outline the approach first, and then set it out in detail. The essential idea is that
mutation rate will be reset between generations based on expected gain. We assume,
in the present work, a (1+P)-EA. In generation 0, P mutants of a randomly generated
initial solution are generated; by the time we complete generation g, we have gener-
ated gP mutants, and have thus obtained P items of data from which to build an ap-
proximation of cj,i(x)  for each of g parents x. This is used, together with equations (1–
5), to find a good rate to use for generation g+1. A rather necessary further approxi-
mation stems from the fact that our sample model of  cj,i(x) is silent with regard to
individuals which are fitter than the current best – but the current best is (in a (1+P)-
EA) the parent from which we will be generating mutants. To get around this, we set
the mutation rate one generation ‘out of phase’. Another difficulty is that we do not
yet have a direct analytical route to find the m with maximal expected gain; how we
deal with this and other issues is set out in the pseudocode description which follows.
Before that, some further notation will serve to clarify the way that we handle ap-
proximations to cj,i(x).

Given an arbitrary problem, but assuming a binary encoding, and per-bit flip mu-
tation, let cf,j,g stand for the proportion of individuals which have fitness g among
those which are j Hamming distant from an individual with fitness f. Notice that cj,i(x)
is generally an approximation to cj,g(x) for any given x with fitness f. In cases such as
MAX-ONES (and many others, including some classes of rugged landscapes) the
approximation is exact, but in general note that, where X = {x |f(x) = f}:

∑
∈

=
Xx

gjgjf xc
X

c )(
||

1
,,,



138      David W. Corne, Martin J. Oates, and Douglas B. Kell

i.e. it is an average over all x with the same fitness. Intuitively, we might expect the
approximation to improve with j. Next we define: nf,j,g to be the number of points
sampled by a search algorithm which have fitness g, are mutants of a point with fit-
ness f, and are j Hamming distant from their parent. By also defining sf,j as the total
number of samples found so far which are j units distant from a parent with fitness f,
we can now note that the operational approximation to cf,j,g is: nf,j,g/sf,j. We simplify
matters by assuming a modestly-sized integer range.of fitnesses. In some cases in
practice, however, it may be pragmatic (at least for the purposes of the calculations
for setting the mutation rate), to map the range of fitnesses found so far onto a limited
number of ‘fitness levels’, each standing for a fixed range, e.g. J3 may capture all
fitnesses between 0.7 and 0.8.

Now we can describe our routine for adaptively setting mutation rates in a fully-
parallel (1+P)-EA. We assume that the time between generations (fitness evaluation)
is significant enough for us to ignore the modest overhead in this routine.

1. Initialise: start with a randomly generated initial solution (our ‘best-so-far’ b),
and set an initial rate m . Initialize z values si,j, for i from 1 to z, and reserve space
for  z2L values nf,j,g, initialized to 0.

2. Generate: Produce a set M = {m1,m2,…,mp}containing P mutants of the best-so-
far solution, and evaluate the fitness f(mi) of each mi.

3. Calibrate: We now have P items of data with which we can improve (or initially
construct) an approximation to cf(b),j,g. For each individual mi:

Where h is the Hamming distance between b and mi, increment sf(b),h by 1.
If  f(mi) > f(b), increment nf(b),h,f(mi) by 1.

4. Adapt: We now reset the mutation rate as follows, essentially by calculating what
the best rate ‘should’ have been in the current generation, and setting that for the
next generation.
With reference to equation (5), approximate p1+i(m,b), for i >1, by setting cj,g(b) =
nf(b),j,g /sf(b),j for all g > f(b) and all j up to and including the most distant mutants of
b which have been sampled. Then, assigning i ∈ {1,2,3…H} for convenience,
such that fitness i is the ith in a ranked list of fitnesses in improving order starting
with f(b), calculate:

jij

L

j
ji snmdbmp ,1,,1

1
1 /)(),( ⋅= ∑

=
+

 for i > 1 and then 
∑

=

−=
H

i
ipp

2
1 1

for each of a range of values of m from 1/L to 10/L.
Using the results, and equations (1–6), we can then calculate fE(m) for the P-
parallelised version of each rate m. Although requiring precision, the calculations
are essentially straightforward and speedy, and arbitrarily many rates may be tried
(e.g. 100), within an arbitrary range which perhaps goes beyond 10/L. Finally, set
m to be that rate which returned the best value of fE(m).

5. Book-keeping: At this stage we reset the best-so-far solution b to be the fittest
individual from the set M∪{b}.

6. Iterate: If a termination condition is reached, stop. Else, Return to step 2.

We will call this technique RAGE (rate-adaptation with gain-expectation)



On Fitness Distributions and Expected Fitness Gain of Mutation Rates      139

3 Experiments

Here we report on preliminary testing of RAGE to establish proof-of-principle. We
see its primary niche as being large-scale-parallel EAs, with limited numbers of gen-
erations. In these experiments we test the straightforward hypothesis that the theoreti-
cal basis of RAGE, and hence the justification behind each renewed rate setting per
generation, should improve results over elementary methods. Later work will com-
pare RAGE against other suitable mutation-rate adaptation techniques.

 We used RAGE on four test problems: MAX-ONES with L = 100, and three sim-
ple deceptive problems with block sizes 3, 4, 5, with L = 90, 100, 100 respectively.
For each, we experiment with two-scenarios: a (1+100)-EA run for 20 iterations, and
a (1+1000)-EA run for 10 iterations. For each of these 8 cases, we try 10 versions of
RAGE, differing only in the initial mutation rate in the first iteration (after which
RAGE ‘kicks in’), which ranged from 1/L to 10/L in steps of 1/L. Our comparative
technique is a straightforward fixed mutation rate throughout, again trialled for each
of the 10 rates between 1/L and 10/L.  Each experiment was repeated for 50 trials.

Table 1. Comparison between RAGE and fixed-rates on MAX-ONES and Deceptive (block
sizes 3, 4 and 5) using (1+100) and (1+1,000)-EAs

Problem
Method
 (population size)

RAGE vs
Fixed

Best RAGE/
Best fixed

Best
fixed rate

(1+100), 20 gens 8 / 2 / 0 96.98 / 95.88 2/LMAX-ONES
(1+1000), 10 gens 7 / 3 / 0 94.74 / 94.48 4/L
(1+100), 20 gens 9 / 1 / 0 105.98/105.82 2/LDeceptive,

block size 3 (1+1000), 10 gens 7 / 3 / 0 104.54 / 104.02 4/L
(1+100), 20 gens 6 / 4 / 0 105.14 / 105.06 2/LDeceptive,

Block size 4 (1+1000), 10 gens 7 / 3 / 0 106.65 / 105.84 4/L
(1+100), 20 gens 9 / 1 / 0 103.6 / 100.66 2/LDeceptive,

Block size 5 (1+1000), 10 gens 7 / 3 / 0 101.52 / 102.26 4/L

Table 1 summarises the results, in the following way. Taking for example the row
for the deceptive problem, block size 3, using a (1+100)-EA, column 3 summarises
the results of 10 pairwise statistical comparisons, one for each mutation rate in the set
{1/L, 2/L, …, 10/L}. In the comparison for 3/L, for example, a standard statistical test
was performed comparing 50 trials of RAGE using 3/L as the initial rate, with 50
trials using 3/L as the fixed rate in each generation. We score 1 for a ‘win’ if RAGE
was found superior with confidence at least 99%, 1 for a ‘loss’ if the fixed rate was
superior, and 1 for a tie if the comparison was not conclusive. Column 3 adds these
scores for each of the 10 rates. In column 4, the best RAGE mean result is shown
(best of the 10 RAGE experiments with different initial rates) and is compared with
the best fixed-rate mean result (best of the 10 fixed-rate experiments with different
fixed rates). Column 5 indicates which rate gave the ‘best fixed-rate’ result in col-
umn 4.



140      David W. Corne, Martin J. Oates, and Douglas B. Kell

Clearly, RAGE consistently outperforms fixed-rates, whatever the fixed rates are
set at. The prospects for RAGE are therefore quite promising, Also, as generally ex-
pected, significantly higher rates than 1/L work best, increasing with population size,
although there is too little data here on that topic to allow any further discussion Fi-
nally, though there is evidence that RAGE is a worthwhile technique, insufficient
tests have been performed so far to establish it as a generally useful rate adaptation
scheme. We discuss this point further below.

4 Concluding Discussion

By considering the concept of the ‘gain’ distribution of the per-bit flip mutation op-
erator, we have been able to derive expressions which allow us to see how the gain
distribution varies with mutation rate m and how it changes when the mutation opera-
tion is parallelised in the context of a (1+P)-ES. These investigations are particularly
applicable to rate setting in parallel EA implementations, insofar as expected fitness
gain is a good measure of the quality of an operator. By using online sample ap-
proximations to the exact expressions, we have proposed a routine called RAGE
(Rate Adaptation with Gain Expectation), which is suitable for setting mutation rates
on a per-generation basis in parallel EAs. Preliminary results show fairly convinc-
ingly that RAGE outperforms fixed-rate schemes for a wide range of fixed rates.

The background to the theory included here, and the subsequent proposed RAGE
method, is the authors’ interest in finding a principled way to control mutation in
very-large-scale-parallel evolutionary algorithms. The application of chief interest is
Directed Evolution (as discussed in section 1.3), and the RAGE method can be used
in that context. The DE application brings with it certain constraints and preferences
which affect the choice of rate adaptation technique used (and EA technique in gen-
eral)  One major point is that very large populations are possible in DE, and conse-
quently a considerable amount of appropriate landscape (fitness) data are available at
each generation, so it would seem to be sensible to employ a technique which ex-
ploited this data as far as possible (rather than use, for example, deterministic fixed
rates). A further issue is that using distinct and adaptive rates per individual (such as
employed in modern evolution strategies) or distinct and adaptive rates per gene, are
both (although ultimately possible) currently infeasible in the context of large-scale
DE. The choice of adaptive mutation strategies in DE is thus practically limited to
per-generation adaptation.

The essential point about the theory in section 2 is the ability to estimate the gain
distribution of any mutation rate based on online-sampled landscape information seen
to date (section 2.3). Calculating expected fitness gain is one way to exploit this esti-
mated gain distribution, but ongoing work is exploring other methods, since expected
gain per se, which is essentially an average, is likely to be unduly influenced by high
probabilities for modest gains, hence perhaps unwisely favouring lower rates.

Finally, although we focus on a (1+P)-ES, the ideas underlying RAGE are cer-
tainly not restricted to this specific selection method. By building a model of land-
scape structure information as time progresses, RAGE-like adaptation can in theory



On Fitness Distributions and Expected Fitness Gain of Mutation Rates      141

be used to infer a promising rate with which to mutate any selected parent, via ap-
pealing to landscape information pertaining to the fitness of that parent. Developing
similar techniques for recombination operators is less straightforward, however this is
possible and is the topic of ongoing work.

Acknowledgements

We thank the BBSRC (the UK Biotechnology and Biological Sciences Research
Council) for financial support, and Evosolve (U.K. registered charity number
1086384) for additional support during this work.

References

 1. Arnold, F. M. (ed). Evolutionary protein design. Advances in Protein Chemistry, vol. 55.
Academic Press, San Diego, 2001.

 2. Arnold F. Combinatorial and computational challenges for biocatalyst design. Nature
2001;409:253-7.

 3. Bäck T, Optimal Mutation Rates in Genetic Search, Proc. 5th ICGA, pp 2 – 9, 1993.
 4. Bäck T, Evolutionary Algorithms in Theory and Practice, OUP, 1996.
 5. Baltz, RH. Mutation in Streptomyces. In: Day L, Queener S, editors. The Bacteria, Vol 9,
Antibiotic-producing Streptomyces. Academic Press, 1986:61-94.

 6. Blickle, T., Thiele, L. (1995). A Mathematical Analysis of Tournament Selection, in L.J.
Eshelman (ed.) Proc. 6th International Conference on Genetic Algorithms, Morgan Kauf-
mann, pp. 9–16.

 7. Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Kluwer Aca-
demic Publishers.

 8. Fogel, D.B. and Ghozeil, A. (1996). Using Fitness Distributions to Design More Efficient
Evolutionary Computations, in Proceedings of the 3rd International Conference on Evolu-
tionary Computation, IEEE, pp. 11-19.

 9. Mühlenbein, H. How genetic algorithms really work: I. Mutation and Hillclimbing, in
R.Manner, B. Manderick (eds), Proc. 2nd Int'l Conf. on Parallel Problem Solving from
Nature, Elsevier, pp 15-25.

 10. Oates, M. and Corne, D. Overcoming Fitness Barriers in Multi-Modal Search Spaces, in
Foundations of Genetic Algorithms 6 (2000), Morgan Kaufmann.

 11. Rechenberg I, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution, Frommann-Holzboog, Stuttgart,1973

 12. Voigt CA, Kauffman S & Wang ZG. Rational evolutionary design: The theory of in vitro
protein evolution. In: Arnold FM, editor. Advances in Protein Chemistry, Vol 55, 2001:79-
160.



Opposites Attract:
Complementary Phenotype Selection for

Crossover in Genetic Programming

Brad Dolin1,2, M.G. Arenas2, and J.J. Merelo2

1 Computer Science Department
Stanford University

Stanford, CA 94305 (USA)
2 Department of Architecture and Computer Technology

University of Granada
CP 18071 – Granada (Spain)

{brad,maribel,jmerelo}@geneura.ugr.es

Abstract. Standard crossover in genetic programming (GP) selects two
parents independently, based on fitness, and swaps randomly chosen
portions of genetic material (subtrees). The mechanism by which the
crossover operator achieves success in GP, and even whether crossover
does in fact exhibit relative success compared to other operators such as
mutation, is anything but clear [14]. An intuitive explanation for success-
ful crossover would be that the operator produces fit offspring by combin-
ing the “strengths” of each parent. However, standard selection schemes
choose each parent independently of the other, and with regard to overall
fitness rather than more specific phenotypic traits. We present an algo-
rithm for choosing parents which have complementary performance on a
set of fitness cases, with an eye toward enabling the crossover operator
to produce offspring which combine the distinct strengths of each parent.
We test Complementary Phenotype Selection in three genetic program-
ming domains: Boolean 6-Multiplexer, Intertwined Spirals Classification,
and Sunspot Prediction. We demonstrate significant performance gains
over the control methods in all of them and present a preliminary analysis
of these results.

1 Introduction

Standard crossover in genetic programming (GP) selects two parents indepen-
dently, based on fitness, and swaps randomly chosen portions of genetic material
(subtrees). The mechanism by which the crossover operator achieves success in
GP, and even whether crossover does in fact exhibit success over other operators
such as mutation, is anything but clear [14]. Intuitively, we reason that this op-
erator allows two individuals to combine their “strengths” to produce even more
highly fit offspring.

In bit string genetic algorithms (GA), the idea has firm theoretical grounding.
The most basic form of GA crossover consists of selecting a single crossover

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 142–152, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Opposites Attract: Complementary Phenotype Selection 143

point along the bit string, dividing each parent’s bit string at that point, and
swapping the resultant fragments to produce two children. Holland [10] defines
“schemata” as genotypically similar bit string patterns. Goldberg [7] goes on
to show that crossover allows different individuals to combine these successful
building blocks in order to produce even fitter offspring. Mutation takes on the
rather auxiliary role of ensuring diversity. As such, the functional significance
and practical performance gains of crossover in genetic algorithms are widely
accepted.

Although some preliminary analogues to GA schema theory have begun to
emerge for GP [8, 18, 17, 20], a theory of crossover’s evolutionary role in GP is
not nearly as complete. As such, the idea that GP crossover works by combining
building blocks of possible solutions is appealing, though as yet, speculative.
Even still, GP “building block”-esque hypotheses are used in the literature [11,
19, 22].

Indeed, there is even some work which aims to discredit the building block hy-
pothesis for GP crossover. Angeline [2] demonstrates with his “headless chicken”
experiment that crossing over one parent with a randomly generated tree per-
forms as well or better than standard crossover. His conclusion is that crossover
plays the functional role of “macromutation” rather than “building block en-
gine,” as in GAs.

Recent research [14] demonstrates that standard crossover, overall, presents
a small advantage over just mutation, though the advantage is highly depen-
dent on parameter settings and problem domain. Koza [12] demonstrates for the
Boolean 6-multiplexer problem that when crossover is used, the addition of the
mutation operator presents little or no advantage. In another experiment with
the same problem, Koza shows that crossover and cloning significantly outper-
forms mutation and cloning; however, the results are made less interpretable by
the fact that a 90% crossover rate is used in the former case, but only a 10%
mutation rate in the latter.

Traditional selection methods include fitness proportionate (roulette wheel),
rank, and tournament; see Table 1. Fitter individuals have a higher probability of
selection, but no effort is made to “match” crossover parents based on genotypic
or phenotypic characteristics. We conjecture that crossover could achieve higher
performance if parents were chosen to have complementary abilities.

This work presents a selection method, Complementary Phenotype Selection
(CPS), which chooses parents whose strengths – as measured over a finite set of
fitness cases – are complementary. The goal is to produce offspring (via genetic
recombination) which combine the distinct abilities of each parent (phenotypic
recombination). We test the new operator in three distinct genetic program-
ming domains – Boolean 6-Multiplexer, Two-Spirals Classification, and Sunspot
Prediction – and demonstrate significant performance gains in all of them.

The rest of the paper is organized as follows: Sec. 2 discusses related work;
Sec. 3 describes the CPS algorithm; Sec. 4 presents three experiments; Sec. 5
gives some conclusions and a brief analysis; and Sec. 6 discusses ideas for future
work.



144 B. Dolin, M.G. Arenas, and J.J. Merelo

2 Related Work

Researchers have experimented with several variants to both parent selection
and the workings of the crossover operation itself. Ryan maintains one subpop-
ulation of highest-performing individuals, and another subpopulation of adept
but smaller individuals; crossover parents are selected one from each population,
to reduce premature convergence [21]. Hinterding and Michalewicz [9] augment
a highly-modified GA for a constrained parameter optimization problem with a
selection procedure that takes the parents’ overlap of satisfied constraints into
account. However, the selection procedure is only a minor detail of the algorithm
and its effects are not analyzed experimentally. Watson and Pollack [24] experi-
ment with variable size individuals to represent subsets of genes. Crossover, then,
simply produces the union of the subsets, so that genetic building blocks are di-
rectly combined. O’Reilly [15] combines crossover with local search techniques.

An extensive literature review has uncovered only one work in GP dealing
with crossover parent selection based on complementary performance on fitness
cases. Abrams [1] experiments with a method of parent selection which attempts
to maximize total fitness and fitness case coverage using a constant linear weight-
ing scheme. The selection method is tested in 50 independent runs on each of
80 different Boolean functions of arity 3. Population sizes of 1000 and 5 (for
diagnostic purposes) are utilized. The control method is tournament selection,
but the paper lacks crucial information about the implementation, such as the
tournament size. When the population size is 1000, the complementary selection
method outperforms the tournament method on nearly all problems; when the
population size is 5, the two methods are essentially indistinguishable.

Unfortunately, we cannot readily draw conclusions from these results because
of the lack of details regarding the control method. The complementary selection
implementation itself suffers from the weakness that it is only defined to work on
Boolean “hit-or-miss” fitness cases. An additional shortcoming is the presence
of a weight constant used in evaluating possible parent pairs, which seems to be
problem- dependent. In this work, we present a flexible complementary selection
method which works with fitness cases of arbitrary (and even heterogeneous)
data types. Furthermore, our method requires no special weights or constants
to be set. Most importantly, we test our method in a variety of distinct GP
domains, and against a variety of control selection methods.

3 Complementary Phenotype Selection Algorithm

It should first be noted that the parent selection algorithm we present here is
relevant only in GP domains which make use of “fitness cases.” This means that
each individual in the population is tested over some finite, representative set
of problem examples, and each individual’s fitness is based on performance over
this set. Use of fitness cases is typical in genetic programming; see Sec. 4 for
examples. The selection algorithm can be described simply. Assume that there
are N total fitness cases, and each individual’s performance against each case is



Opposites Attract: Complementary Phenotype Selection 145

recorded. Better(A[i], B[i]) means that individual A’s score on fitness case i is
better than B’s score on fitness case i. Fitness(A) gives the fitness which results
from having the array of scores A. Then, to select the parents for each crossover
operator application:

1. Choose the first parent (the mother) using a typical selection method. Here
we use the fitness proportionate selection method. Let M be the array of
scores against each fitness case obtained by the mother.

2. Consider each individual in the population as a father candidate. Let F
be the array of scores against each fitness case obtained by a given father
candidate. We define BF,M as the imaginary “best-case offspring” array of
scores against each fitness case. The score for each fitness case, 0 ≤ i < N ,
is computed as:

BF,M [i] =
{
F [i] if Better(F [i],M [i])
M [i] otherwise .

3. Choose the father F which maximizes Fitness(BF,M ). If there is a tie, choose
the father with the highest overall fitness. If there is still a tie, choose ran-
domly from among these best.

In other words, the algorithm chooses a mother using a standard selection
method, then chooses a father whose strengths complement the mother’s weak-
nesses. Note that, as presented above, the algorithm can be used regardless of
the data type used to record performance on each fitness case (e.g., Boolean,
double). Indeed, different fitness cases may even record performance using dif-
ferent data types. Furthermore, the algorithm makes no restrictions on how total
fitness is calculated (if at all) based on fitness cases: a sum or weighted average
may be appropriate, though other methods – such as niching (fitness sharing) [6]
and/or Pareto multi-objective optimization [7] – may be just as easily utilized.

The computational cost of evaluating a father candidate for selection is mini-
mal: we must determine the N fitness case values for BF,M (normally, taking the
maximum or minimum value for each case), and compute BF,M ’s fitness (nor-
mally, simply summing the array). Most notably, no additional tree executions
(fitness evaluations) are required. However, father candidate evaluations will
grow with the square of population size, since each crossover operation requires
that all father candidates be evaluated. Although in practice this computer time
is minimal when compared to fitness evaluations, for truly large populations
one could – for example – search for father candidates from a fixed-size random
sample of the population [1].

Note that the functionality of the crossover operator itself is standard. Follow-
ing [12], in each parent we randomly select an internal node with 90% probability
or a leaf node with 10% probability, and swap the subtrees rooted in these nodes.

4 Experiments

The parameter settings here closely follow Koza [12]. We note here those which
are common to all experimental conditions. The population size is 1000. We use



146 B. Dolin, M.G. Arenas, and J.J. Merelo

Table 1. Selection schemes. CPS is the new experimental condition; the remaining
methods serve as controls

CPS Complementary Phenotype Selection, as presented above. The mother
is chosen using FPS, below

FPS Fitness Proportionate Selection with “greedy over-selection”1 [12]. In
standard FPS, the probability of selection is directly proportional to
fitness

RANK Linear rank selection [4]. The probability of selecting the ith most fit
individual is inversely proportional to i

TOURN-2 Tournament selection [5]. Two individuals are chosen at random, and
the highest-fitness individual is selected. A tournament size of 2 is used
extensively in the GA literature, and is not very greedy

TOURN-5 Tournament selection with a tournament size of 5
TOURN-7 Tournament selection with a tournament size of 7. A tournament size of

7 is used extensively in the GP literature, and is very greedy

90% crossover and 10% reproduction (cloning). The maximum tree depth is 17.
A crossover operation which results in a deeper tree is attempted again after
redoing random node selection, for a maximum of 5 tries; if the tree is still too
deep, we select new parents and try again. The generative method for the initial
random population is “ramped half- and-half,” [12] with a maximum initial tree
depth of 6. Elitism is used, so that the best individual from each generation is
automatically copied into the next.

Results are based on statistics taken over 30 independent runs for each ex-
perimental condition. For each experiment, we report results for the 6 different
selection schemes given in Table 1.

Java Evolving Objects (JEO) [3], part of the DREAM project [16], was used
to implement the experiments. Source code is available at:
http://dr-ea-m.sourceforge.net.

4.1 Boolean 6-Multiplexer

This problem is taken from [12]. The goal is to learn an arity-6 Boolean function
which functions like an electronic circuit. The first two bits are address bits
which together single out one of the remaining four data bits. Each input to the
function is a setting for all six bits; each output is the Boolean value of the data
bit singled out by the address bits. We test each individual over all possible bit
settings, yielding 26 = 64 fitness cases.

The set of terminals is a set of 6 Boolean variables, one for each bit {A1, A2,
D1, D2, D3, D4}. The set of functions is {AND, OR, NOT, IF-THEN-ELSE}.
IF-THEN-ELSE returns ARG2 if ARG1, else ARG3.
1 When using fitness proportionate selection, we use “greedy over-selection” so that we

have an 80% chance of choosing an individual from the top 32% of the population,
and a 20% chance of choosing an individual from the bottom 68% of the population.
At least with FPS, Koza [12] has demonstrated significant performance gains with
this technique.



Opposites Attract: Complementary Phenotype Selection 147

An individual scores a “hit” on a fitness case if its Boolean output matches
the target value for the function. A run is terminated if any individual scores all
64 hits, with a limit of 20 generations. Fitness is computed as

1
1 + (64−NumHits) .

For complementary crossover selection, Better(A[i], B[i]) is true whenever A[i]
constitutes a hit but B[i] does not.

We plot predicted probability of run success at each generation in Fig. 1. Note
that CPS significantly outperforms the other methods, solving the problem with
greater than 90% probability by generation 8; by this generation, the next best
method (TOURN-7) has roughly a 50% probability of success. We also calculate
Koza’s “computational effort” [12]: the least number of fitness evaluations one
would need to perform in order to have 99% probability of a successful run, using
optimal run restarts. This figure is 12,185 for CPS and 27,079 for the next best
method, TOURN-7, or more than double the number of fitness evaluations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss

Generation

CPS
FPS
RANK
TOURN-2
TOURN-5
TOURN-7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss

Generation

CPS
FPS
RANK
TOURN-2
TOURN-5
TOURN-7

Boolean 6-Multiplexer Intertwined-Spirals Classification

Fig. 1. Cumulative probability of run success by each generation for the Boolean 6-
Multiplexer Problem (left) and the Intertwined Spirals Classification Problem (right).
Equivalently, the fraction of runs we would expect to have completely solved the prob-
lem by each generation

4.2 Intertwined Spirals Classification

Lang and Whitbrock [13] introduced the rather difficult problem of using an
artificial neural network to distinguish between two intertwined spirals. Koza
[12] has used GP to solve the problem, using a population size of 10,000. We
solve a reduced version of the problem which is more suitable to gathering reliable
statistics, using only the innermost 60 points out of the original 194 in the data
set. The goal is to evolve a function which takes as input the (x, y) coordinate
of a point and returns a negative value if it belongs to one of the intertwined
spirals and a non-negative value if it belongs to the other. Each of the 60 data
points is a fitness case for this problem.



148 B. Dolin, M.G. Arenas, and J.J. Merelo

The set of terminals consists of {X, Y, R}, the variables for the given coor-
dinate, as well as a double-float constant R between, −1 and 1, which takes on
a fixed random value each time it is newly created in the initial generation. The
set of functions is {+, -, *, %, SIN, COS, IF-LTE}. The modulus (%) func-
tion returns 1 when the denominator is 0. The special arity-4 function IF-LTE
returns argument ARG3 if (ARG1 ≤ ARG2), and returns ARG4 otherwise.

An individual scores a “hit” on a fitness case if and only if its output is
positive on a point from the first spiral, or negative on a point from the second
spiral. A run is terminated if any individual scores all 60 hits, with a limit of 20
generations. Fitness is computed as

1
1 + (60−NumHits) .

For complementary crossover selection, Better(A[i], B[i]) is true whenever A[i]
constitutes a hit but B[i] does not.

We plot cumulative probability of run success in Fig. 1. CPS so clearly dom-
inates the other methods that we need not calculate computational effort.

4.3 Sunspot Prediction

The goal of this problem is to evolve a function which models the number of
sunspots in a given year, based on an initial part of Wolf Sunspot Data (from
1700 to 1763). Following Angeline [2], we attempt to predict the value for a
given year based on the values from 1, 2, 4, and 8 years previous2. We record
the absolute error for each of these 64− 8 = 56 fitness cases.

As such, the set of terminals is {S1, S2, S4, S8, R} – one variable repre-
senting the number of sunspots in each of the specified previous years, as well
as the double-float constant R described in Sec. 4.2. The set of functions is the
arithmetic operators {+, -, *, %, SIN, COS}.

We do not define “hits” for this problem. Fitness is computed as

1
1 +NMSE

,

where NMSE is the normalized mean squared error over all fitness cases. A
run is terminated after 50 generations. For complementary crossover selection,
Better(A[i], B[i]) is true whenever A[i] is smaller (less absolute error) than B[i].

We plot the expected NMSE (taken over 30 experiments) of the best indi-
vidual in the population at each generation in Fig. 2. Of course, lower error is
better, and the CPS method reaches lower values, and reaches these values more
quickly, than the other methods.

2 Actually, since, like Angeline, we do not divide the data into a test set and training
set, this problem is properly a modeling rather than prediction task. Of course, it
suffices for the purpose of comparing selection methods.



Opposites Attract: Complementary Phenotype Selection 149

4

5

6

7

8

9

10

11

12

13

14

15

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 M
ea

n 
S

qu
ar

ed
 E

rr
or

Generation

CPS
FPS
RANK
TOURN-2
TOURN-5
TOURN-7

Fig. 2. Expected value for the most fit individual’s normalized mean squared error at
each generation, for the Sunspot Prediction Problem

5 Analysis and Conclusions

The experiments above demonstrate that on the given set of problems, the Com-
plementary Phenotype Selection (CPS) method has substantial performance
gains over the other selection methods. Intuitively, we might reason that by
selecting parents which have complementary performance over a set of fitness
cases, we are able to produce fitter or more robust offspring. Indeed, that CPS
chooses complementary parents can be easily verified empirically. For example,
Table 2 gives the number of fitness case hits (out of 64) covered by one or
both parents for the Boolean 6-Multiplexer Problem, averaged over all crossover
operations done on the first generation3. Because this statistic measures the
combined strength of the average parent pair, we call it “complementarity.” It
can be plainly seen that CPS very quickly chooses parents which together cover
much of the set, whereas the other methods choose less complementary pairs.

One might raise the objection that the high performance of CPS is not due to
complementarity, but merely to a side effect of the selection algorithm – namely
that it may be greedier than the others. However, an empirical analysis on the
Boolean 6-Multiplexer proves otherwise. CPS’s greediness, as measured by the
average number of hits of selected parents, is more or less in the middle of the
studied control methods, as seen in Table 2; but CPS’s performance, as we have
demonstrated, is top-notch. Thus, greediness alone cannot account for CPS’s
high performance.

6 Future Work

The current implementation of CPS uses fitness proportionate selection to select
the mother. We will test other selection methods for the mother.
3 The analysis at generation 0 is uncomplicated by already terminated runs and results

of selection pressures from previous generations. An investigation of more long-term
run dynamics is forthcoming.



150 B. Dolin, M.G. Arenas, and J.J. Merelo

Table 2. Complementarity and greediness for the Boolean 6-Multiplexer Problem,
averaged over all crossover operations performed on the initial generation

Method Combined Parent Coverage Average Parent Hits
(Complementarity) (Greediness)

CPS 62.9364 37.0498
FPS 52.5041 38.3097
RANK 51.5374 36.6758
TOURN-2 51.6375 36.6769
TOURN-5 53.1725 39.6783
TOURN-7 53.6014 40.4397

Since CPS relies on combining distinct parent phenotypes, it may be ben-
eficial to explicitly “cultivate” phenotypically distinct individuals in the popu-
lation. To this end, we will experiment with combined use of CPS and niching
(fitness sharing) [6].

CPS increases the chances of having a total solution “disjunctively distri-
buted” between the two selected parents. Trying many crossover operations be-
tween such parents, and giving more tries to more complete complementary
pairs, is intuitively appealing. Thus, it may be useful to experiment with “brood
selection” methods [23].

The analysis we present above of the functional underpinnings of CPS is far
from complete. We know that CPS poses advantages beyond those of greediness,
but the question of whether we are actually combining “building blocks” remains
unanswered. Future work will attempt to better understand the dynamics of the
selection algorithm and possible reasons for its success. One important area for
exploration will consider how CPS affects population diversity.

Finally, we have seen that the CPS algorithm is highly domain-independent.
It will be interesting to test its effectiveness on more problems, especially more
difficult ones than those included for the above analysis. Moreover, CPS need
not be restricted to just Genetic Programming. We will see how it fares in
Genetic Algorithms applications, as well as other techniques from Evolutionary
Algorithms.

Acknowledgments

Brad Dolin thanks the US Fulbright Program and the Spanish Fulbright Com-
mission for supporting this research. The JEO source code [3] is part of the
Distributed Resources Evolutionary Algorithm Machine (DREAM IST-1999-
12679) project [16].



Opposites Attract: Complementary Phenotype Selection 151

References

1. Zoe Abrams. Complimentary selection as an alternative method for population re-
production. In John R. Koza, editor, Genetic Algorithms and Genetic Programming
at Stanford 2000, pages 8–15. Stanford Bookstore, Stanford, California, 94305-3079
USA, June 2000.

2. Peter J. Angeline. Subtree crossover: Building block engine or macromutation?
In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, pages 9–17, Stanford University, CA, USA, 13-16
July 1997. Morgan Kaufmann.

3. M.G. Arenas, B. Dolin, J.J. Merelo, P.A. Castillo, I. Fdez de Viana, and M. Schoe-
nauer. JEO: Java evolving objects. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2002, 2002.

4. J.E. Baker. Reducing bias and inefficiency in the selection algorithm. In Intl. Conf.
on Genetic Algorithms and their Applications, 1985.

5. Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in
genetic algorithms. TIK-Report 11, TIK Institut fur Technische Informatik und
Kommunikationsnetze, Computer Engineering and Networks Laboratory, ETH,
Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzerland,
December 1995.

6. David Goldberg and J. Richardson. Genetic algorithms with sharing for multi-
modal function optimization. In Proceedings of the Second International Confer-
ence on Genetic Algorithms, pages 41–49, 1987.

7. David Goldberg. Genetic Algorithms in Search, Optimiazation, and Machine
Learning. Addison-Wesley, 1989.

8. Thomas Haynes. Phenotypical building blocks for genetic programming. In
Thomas Back, editor, Genetic Algorithms: Proceedings of the Seventh International
Conference, pages 26–33, Michigan State University, East Lansing, MI, USA, 19-23
July 1997. Morgan Kaufmann.

9. R. Hinterding and Z. Michalewicz. Your brains and my beauty: parent matching
for constrained optimisation. In Proceedings of the 5th Int. Conf. on Evolutionary
Computation, 1998.

10. John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

11. Hitoshi Iba and Hugo de Garis. Extending genetic programming with recombi-
native guidance. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances
in Genetic Programming 2, chapter 4, pages 69–88. MIT Press, Cambridge, MA,
USA, 1996.

12. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

13. K.J. Lang and M.J. Witbrock. Learning to tell two spirals apart. In Proceedings
of the 1988 Connectionist Model Summer School, pages 52–59. Morgan Kaufmann,
1988.

14. Sean Luke and Lee Spector. A revised comparison of crossover and mutation in
genetic programming. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Gold-
berg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings
of the Third Annual Conference, pages 208–213, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.



152 B. Dolin, M.G. Arenas, and J.J. Merelo

15. Una-May O’Reilly and Franz Oppacher. Hybridized crossover-based search tech-
niques for program discovery. Technical Report 95-02-007, Santa Fe Institute, 1399
Hyde Park Road Santa Fe, New Mexico 87501-8943 USA, 1995.

16. B. Paechter, T. Baeck, M. Schoenauer, M. Sebag, A.E. Eiben, J. Merelo, and
T.C. Fogarty. DREAM: A distributed resource evolutionary algorithm machine.
In Congress on Evolutionary Computation, CEC 2000, volume 2, pages 951–958,
2000.

17. Riccardo Poli and W. B. Langdon. A new schema theory for genetic programming
with one-point crossover and point mutation. Technical Report CSRP-97-3, School
of Computer Science, The University of Birmingham, B15 2TT, UK, January 1997.
Presented at GP-97.

18. Riccardo Poli. General schema theory for genetic programming with subtree-
swapping crossover. Technical Report CSRP-00-16, University of Birmingham,
School of Computer Science, November 2000.

19. Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines in genetic
programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in
Genetic Programming 2, chapter 9, pages 177–202. MIT Press, Cambridge, MA,
USA, 1996.

20. Justinian P. Rosca. Analysis of complexity drift in genetic programming. In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 286–294, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

21. Conor Ryan. Pygmies and civil servants. In Kenneth E. Kinnear, Jr., editor,
Advances in Genetic Programming, chapter 11, pages 243–263. MIT Press, 1994.

22. Terence Soule, James A. Foster, and John Dickinson. Using genetic programming
to approximate maximum clique. In John R. Koza, David E. Goldberg, David B.
Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the
First Annual Conference, pages 400–405, Stanford University, CA, USA, 28–31
July 1996. MIT Press.

23. W. A. Tackett and A. Carmi. The unique implications of brood selection for genetic
programming. In Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

24. R.A. Watson and J.B. Pollack. Symbiotic combination as an alternative to sexual
recombination in genetic algorithms. In Parallel Problem Sovling From Nature,
PPSN 2001, pages 425–434, 2001.



Theoretical Analysis of
the Confidence Interval Based Crossover

for Real-Coded Genetic Algorithms

C. Hervás-Mart́ınez, D. Ortiz-Boyer, and N. Garćıa-Pedrajas

Department of Computing and Numerical Analysis
University of Córdoba, Córdoba 14071, Spain
{chervas,ma1orbod,npedrajas}@uco.es

Abstract. In this paper we study some theoretical aspects of a new
crossover operator for real-coded genetic algorithms based on the statis-
tical features of the best individuals of the population. This crossover is
based on defining a confidence interval for a localization estimator us-
ing the L2 norm. From this confidence interval we obtain three parents:
the localization estimator and the lower and upper limits of the confi-
dence interval. In this paper we analyze the mean and variance of the
population when this crossover is applied, studying the behavior of the
distribution of the fitness of the individuals in a problem of optimization.
We also make a comparison of our crossover with the crossovers BLX-α
and UNDX-m, showing the robustness of our operator.

1 Introduction

Binary-coded genetic algorithms (GAs) find the optimization of real valued func-
tions too difficult. The binary representation of the chromosomes evenly dis-
cretizes the real domain, so, binary substrings representing each parameter with
a desired precision are concatenated to form a chromosome. The main problem
is that, if the number of variables is large, the length of the chromosome is too
long. A solution to this problem is the real codification of the chromosomes,
where each gene is a floating point number that represents a variable of the
function to be optimized.

In recent years, several real-coded GAs for non-linear function optimization
of continuous variables, using floating-point representation, have been studied
[1][2][3][4][5][6][7][8][9]. These GAs have outperformed binary-representations in
function optimization. Theoretical studies of real-coded GAs have also been per-
formed [10][11][12][13]. These studies analyze the distribution of the offspring
generated by crossover operators with the assumptions that the population size
is sufficiently large, so it can be treated by a probability distribution. A recent
work [9] analyzes the sampling bias of the crossover operator in optimization
problems where the optimum is in a corner of the search space. Multi-parental
extension of crossover has been studied in [14][15][16].

In this paper we focus our attention on the dynamic of the distribution
of the population subject to the confidence interval based crossover. We make

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 153–161, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



154 C. Hervás-Mart́ınez, D. Ortiz-Boyer, and N. Garćıa-Pedrajas

two hypothesis: (1) The genes are normally distributed and, (2) the genes of
the fittest individuals are also normal and independent from the distribution of
the genes of the whole population. We propose a parameter estimator of the
genes belonging to the fittest individuals based on minimizing the dispersion
function induced by the L2 norm. Then, using the associated distribution of the
statistical estimator we construct (1 − α) confidence intervals (CI). Using this
estimator and the lower and upper limits of the confidence interval we propose a
new multi-parental crossover operator, which is based on learning the statistical
features of localization and dispersion of the best individuals of the population.
The algorithm is adaptive, as on each generation the parameters of localization
and dispersion must be recalculated for obtaining the new confidence intervals
of each gene.

This paper is organized as follows, Section 2 describes in detail the proposed
crossover operator using L2 norm; Section 3 analyzes the statistical features
of the population once the crossover operator is applied; Section 4 defines an
optimization problem in terms of a real-coded genetic algorithm and shows the
results of applying our operator to different functions, and a comparison among
CIXL2, BLX-α, and UNDX-m crossovers; finally Section 5 states the conclusions
of our work.

2 Confidence Interval Based Crossover

In this study we will work with the i-th gene without loss of generality. Let β
be the set of N individuals that forms the population and β∗ ⊂ β the subset
of the n fittest individuals, and q the number of genes on each chromosome.
Let us assume that the genes, βi, of the chromosomes of the individuals in β∗

are independent random variables, then we can consider βi a random variable
with a continuous distribution H(βi). With a localization parameter of the form
µβi , we have the model βi = µβi + ei, for each i = 1, . . . , q, being e1 a random
variable.

If we assume that the n fittest individuals form actually a simple random
sample (βi1 , βi2 , . . . , βin) of the distribution of the fittest individuals of the pop-
ulation βbi , the model can be written:

βbij = µb + eij , for j= 1, 2, . . . , n. (1)

Let us consider the L2 norm, defined as ‖βbi ‖2 =
√∑n

j=1(βbij)2, then we
can define the dispersion function, D2, induced by the L2 norm as: D2(µb) =√∑n

j=1(βbij − µb)2. The estimator using this dispersion function of the localiza-

tion parameter is the mean of the distribution βbi , that is, µ̂b = β̄bi .
The sample mean estimator is a good linear estimator, so it has the proper-

ties of unbiasedness and consistency, and when the distribution of the genes is
normal, it follows a normal distribution N(µb, σ2

b/n). Under these assumptions
we have a bilateral confidence interval for the localization of the genes using the



Theoretical Analysis of the Confidence Interval Based Crossover for RCGAs 155

sample mean as localization parameter. This confidence interval, for a confidence
coefficient 1− α, has the form:

I1−α(µb) =
[
β̄bi − tn−1,α/2

Sb√
n

; β̄bi + tn−1,α/2
Sb√
n

]
, (2)

where Sb =
[∑n

j=1(βbij − β̂bi )2/(n− 1)
]1/2

is the standard deviation, and tn−1 is
a Student t of n− 1 degrees of freedom.

2.1 Crossover Operator Method

From the confidence interval of 2 we build three individuals that are considered
the parents of the proposed crossover. These three parents are formed by: all
the lower limit values of the confidence intervals of the genes, individual CILL;
all the upper limit values of the confidence intervals of the genes, individual
CIUL; and all the means of the confidence intervals of the genes, individual CIM.
These individuals divide the domain of the gene values into three subintervals:
ILi ≡ [ai, CILLi), IMi ≡ [CILLi, CIULi], and IRi ≡ (CIULi, bi].

The interval based crossover operator using L2 norm, CIXL2, creates an
offspring βs, from an individual of the population, βf = (βf1 , β

f
2 , . . . , β

f
p ), and the

three individuals CILL, CIUL, and CIM obtained from the confidence interval.
We consider these four individuals and their fitness (being f(β) the fitness value
of individual β) and distinguish three cases depending on the position of βf in
one of the three subintervals defined above. These three cases are:

Case 1: βfi ∈ ILi . If f(βf ) > f(CILL) then βsi = r(βfi − CILLi) + βfi else
βsi = r(CILLi − βfi ) + CILLi.

Case 2: βfi ∈ IMi . If f(βf ) > f(CIM) then βsi = r(βfi − CIMi) + βfi else
βsi = r(CIMi − βfi ) + CIMi.

Case 3: βfi ∈ IRi . If f(βf ) > f(CIUL) then βsi = r(βfi − CIULi) + βfi else
βsi = r(CIULi − βfi ) + CIULi.

where r is a uniform random number belonging to [0, 1].

3 Analysis of CIXL2 Crossover

Theoretical results so far are developed for genetic algorithms using binary-
codified chromosomes. Due to the fact that the domain of real-valued genes is
infinite and uncountable, there are serious difficulties in investigating the evolu-
tion of this kind of GAs from a theoretical point of view. Qi and Palmieri [10][12]
have derived some properties of genetic operators. In these works, the object of
study is the changes in the population density function along the genetic evolu-
tion considering a population of infinite size.

We focus our attention on the change of the population density function after
a CIXL2 crossover has been performed, and on the change of the localization
parameters mean and variance.



156 C. Hervás-Mart́ınez, D. Ortiz-Boyer, and N. Garćıa-Pedrajas

Let us assume that the gene involved in the crossover, βfi , is within the confi-
dence interval, βfi ∈ IMi . We consider that in the j-th generation βfi ∈ N(µ, σ2),
and that, provided that the population is sufficiently large, the sample of the
fittest individuals of the population is also normally distributed, βbi ∈ N(µb, σ2

b );
and that the two distributions are independent. With these assumptions the
distribution of the mean of the confidence interval, CIMi, follows a normal dis-
tribution, CIMi = β̄bi ∈ N(µb, σ2

b/n).
We have two possible events, f(βf ) > f(CIM) with a probability p, and

f(βf ) < f(CIM) with a probability 1 − p. In the first case the distribution of
the offspring is normal, as it is a linear combination of normal distributions,
βsi = (1 + r)βfi − rCIMi:

βsi ∈ N((1 + r)µ− rµb, (1 + r)2σ2 + r2σ2
b/n). (3)

At the beginning of the evolution σ2 � σ2
b and µ �= µb, due to the fact

that the subpopulation of the n fittest individuals is a subset of the population
of individuals. Along the evolution, due to the selection process, µ → µb and
σ2 → σ2

b , yielding:

βsi → N(µb, σ2
b ((1 + r)2 + r2/n)). (4)

In the second case, f(βf ) < f(CIM), the distribution of the offspring is
normal, as it is a linear combination of normal distributions, βsi = (1+r)CIMi−
rβfi :

βsi ∈ N((1 + r)µb − rµ, (1 + r)2σ2
b/n+ r2σ2), (5)

and, following the same reasoning above:

βsi → N
(
µb, σ

2
b

(
(1 + r)2/n+ r2)) . (6)

So, it follows that the distribution of the generated offspring by means of
this crossover will be a mixture of normal distributions, and so a normal itself,
of mean:

E(βsi ) = pµb + (1− p)µb = µb, (7)

and variance:

V (βsi ) = p2σ2
b ((1 + r)2 + r2/n) + (1− p)2σ2

b ((1 + r)2/n+ r2)

= σ2
b

[
p2
(

(1 + r)2 +
r2

n

)
+ (1− p)2

(
(1 + r)2

n
+ r2

)]
. (8)

We can conclude that the variance of the fittest individuals decreases every
generation if we choose n in function of the values of p and r. For example, for
p = 0, n must fulfill, n > (1+r)2

1−r2 , for p = 1/2, n > 1+2r+2r2

3−2r−2r2 , and for p = 1,

n > r2

−2r−r2 . So, if we always choose an individual whose fitness value is above



Theoretical Analysis of the Confidence Interval Based Crossover for RCGAs 157

DCIP of population
DCI of the best individuals

DCIP of population after crossover
Individuals

Individuals proyected on axis  x1x2
Best individuals

Best  individuals proyected on axis x1x2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
x1 -2

-1.5
-1

-0.5
0

0.5
1

1.5
2

x2

0

4000

f(x)

0

5

10

15

20

25

-2 -1 0 1 2

I
n
d
i
v
i
d
u
a
l
s
 
n
u
m
b
e
r

x2

I2
L I2

CI I2
R

CILL2 CIUL2CIM2

Best individuals distribution
Population distribution

Population distribution after crossover

Fig. 1. Effect of the CIXL2 crossover over a population

the average fitness of the population, p = 1, the variance of the offspring will
decrease in the next generation.

Figure 1 shows the effect of the CIXL2 crossover over the population of
individuals. The crossover moves the population to the fittest individuals, that
is µ→ µb, and σ2 → σ2

b .

4 Optimization of Functions by Means
of a Real-Coded GA

We have applied CIXL2 to an optimization problem of real functions, g : S → R,
where S ⊂ Rq. We have individuals of length q and an initial population of
N = 100 individuals randomly generated in the space S. Each individual is a
real-valued vector xk, k ∈ 1, 2, . . . , N .

The optimization problem consists of the minimization of f , so the fitness of
each individual, f(x), is computed using an exponential scaling f(x) = 1

g(x)+1 .
The new population is obtained selecting the best individual of the popula-

tion, the rest N − 1 individuals are selected by means of a tournament selection
method with two individuals. Over this population we applied crossover with a
probability of 0.6. The offspring always substitutes its parent.

An individual is selected for mutation with a probability of pmi = 0.1. Once
selected, each gene of the individual is mutated with a probability pmg = 0.5. The
mutated individual always substitutes its parent. We have used three mutation
operators: Non-uniform, continuous and modal discontinuous. The evolution is
stopped after 5000 generations.

4.1 Experimental Results

We have compared CIXL2 crossover with two of the most interesting current
crossovers UNDX-m [5] and BLX-α [17]. We have considered 4 functions of the
set proposed by Eiben and Bäck [18]. These functions are:



158 C. Hervás-Mart́ınez, D. Ortiz-Boyer, and N. Garćıa-Pedrajas

Table 1. Results of the three crossover operators over the test functions

Function
Crossover Sphere Rastrigin Schwefel Ackley

Mean SD Mean SD Mean SD Mean SD
CIXL2 3.3e-16 9.7e-17 6.2e-02 1.4e-01 6.6e-08 7.3e-08 1.3e-04 1.2e-04
BLX-α 3.0e-15 1.5e-15 3.4e+01 8.0e+00 5.5e-01 2.1e-01 1.8e-07 8.1e-08
UNDX-1 9.6e-11 2.4e-10 2.7e+01 5.7e+00 3.8e+00 2.6e+00 4.8e-01 6.9e-02
UNDX-2 4.8e-11 5.3e-11 3.8e+01 5.5e+00 6.4e+00 3.5e+00 1.2e+00 2.1e-01
UNDX-4 2.3e-10 2.9e-10 4.4e+01 6.7e+00 9.0e+00 4.7e+00 1.7e+00 2.1e-01

Table 2. Statistical Tamhane tests of the three crossover operators. The table shows
the difference, I−J , between the mean with CIXL2 crossover, I, and the other crossover
J , and the significance of this difference using a Tamhane test

Function
Crossover Sphere Rastrigin Schwefel Ackley

(I − J) Sign. (I − J) Sign. (I − J) Sign. (I − J) Sign.
BLX-α -2.6e-15 0.003 -3.4e+01 0.000 -5.5e-01 0.000 1.2e-04 0.076
UNDX-1 -9.5e-11 0.930 -2.7e+01 0.000 -3.7e+00 0.013 -4.7e-01 0.000
UNDX-2 -4.8e-11 0.171 -3.8e+01 0.000 -6.3e+00 0.003 -1.1e+00 0.000
UNDX-4 -2.2e-10 0.279 -4.3e+01 0.000 -8.9e+00 0.002 -1.6e+00 0.000

Function Expression Range
Hypersphere g1(x) =

∑q
i=1 x

2
i xi ∈ [−5.12, 5.12]

Rastrigin g2(x) =
∑q
i=1(x2

i − 10 cos(2πxi) + 10) xi ∈ [−5.12, 5.12]

Schwefel g3(x) =
∑q
i=1

(∑i
j=1 xj

)2
xi ∈ [−65.536, 65.536]

Ackley g4(x) = 20 + e− 20e
(
−0.2
√

1/q
∑q
i=1 x

2
i

)
xi ∈ [−30, 30]

−e(1/q
∑q
i=1 cos(2πxi))

For all the functions q = 30, the minimum is in xm = (0, 0, . . . , 0) and
g(xm) = 0. g1 is unimodal and separable, g2 is multimodal and separable, g3 is
unimodal and nonseparable, and g4 is multimodal and nonseparable.

In a previous work[19] the optimal values of the confidence coefficient, 1−α,
and the number of fittest individuals, n, were obtained. For all the functions (1−
α) = 0.7 and n = 5, except for the Ackley function where n = 30. The evolution
was repeated ten times for each test function, and the best individual was selected
as the final result of the evolution. The results of applying the operators CIXL2,
BLX-0.5 and UNDX-m (m ∈ {1, 2, 4}), are shown on Table 1. For each crossover
we show the mean and standard deviation of the 10 experiments.

The comparison of the results of the different crossover operators has been
made by means of an analysis of variance considering the crossover operator as
factor. Table 2 summarizes the results obtained with a Tamhane test. This test
was used because a previous Levene test showed that the covariance matrix of
the populations were different. From these tests we can conclude that CIXL2



Theoretical Analysis of the Confidence Interval Based Crossover for RCGAs 159

0

5

10

15

20

0 500 1000 1500 2000 2500

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
CIXL2
BLX- 
UNDX-1
UNDX-2
UNDX-4

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
CIXL2
BLX- 
UNDX-1
UNDX-2
UNDX-4

(a) (b)

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
CIXL2
BLX- 
UNDX-1
UNDX-2
UNDX-4

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
CIXL2
BLX- 
UNDX-1
UNDX-2
UNDX-4

(c) (d)

Fig. 2. (a) Averaged fitness of the best individual in 10 runs for Sphere, (b) Rastrigin,
(c) Schwefel, and (d) Ackley

crossover achieved the best results for the functions g1, g2, and g3, and BLX-0.5
is better than CIXL2 in the function g4.

For the Ackley function we carried out an ANOVA III test with three factors:
mutation operator, number of fittest individuals (n), and confidence coefficient
(1 − α). The best results where achieved with n = 30, 1 − α = 0.7, and a
continuous modal mutation. The value of n = 30 shows that for multimodal and
nonseparable functions we need more information about the best individuals of
the population, and not only the information contained in a small subset of the
best individuals.

Figures 2abc show that CIXL2 crossover converges faster the other two
crossovers. Figure 2d shows how CIXL2 and BLX-0.5 achieved the best results,
being their performance better than the results of UNDX-m.

5 Conclusions

We have shown that the CIXL2 crossover has the effect of driving a population
to the subset of the fittest individuals. This property makes this crossover a very
robust operator with a high exploitation ability within the confidence interval,



160 C. Hervás-Mart́ınez, D. Ortiz-Boyer, and N. Garćıa-Pedrajas

and a low exploitation ability near the bounds of the confidence interval. The
analysis guarantees that the operator will converge to fittest individuals of the
population if the parameters are correctly chosen.

We have also tested the performance of CIXL2 crossover, comparing it with
two of the most effective crossover so far developed, BLX-α and UNDX-m. This
comparison showed that the crossover is able to perform better than UNDX-m
in all the test functions and better than BLX-α in three out of four functions.

The proposed operator learns the localization and dispersion statistics of the
best individuals of the population along the evolution. The inspiration of the op-
erator is sociological, it is common in nature the existence of highly hierarchical
populations where only a subset of the population mates. The major disadvan-
tage of the operator is the assumption of the normality and independence of the
genes, such hypotheses are always subject to discussion. Nevertheless, the are
studies[10] that show that the repeated application of the uniform crossover oper-
ator leads to asymptotic independence among the coordinates with the marginal
densities of each coordinate unchanged. In such cases where the hypothesis of
normality cannot be assured, we can use a confidence interval based on the
median.

As future work we are developing a new crossover operator based on uni-
lateral confidence intervals. This approach is interesting, as bilateral confidence
intervals[20][9] present a sampling bias for functions which have their optimum
at, or near, the boundary of the search space.

Acknowledgement

This work has been financed in part by the project TIC2001-2577 of the Spanish
CICYT and FEDER funds.

References

1. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking.
Complex Systems (1991) 139–167

2. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-
shemata. In Whitley, L.D., ed.: Foundation of Genetic Algorithms 2, San Mateo,
Morgan Kaufmann (1993) 187C3.3.7:1–C3.3.7:8.–202

3. Janikow, C.Z., Michalewicz, Z.: An experimental comparison of binary and float-
ing point representations in genetic algorithms. In: Proc. of the Fourth Inter-
national Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San
Mateo (1991) 31–36

4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York (1992)

5. Ono, I., Kobayashi, S.: A real-coded genetic algorithm for function optimization
using unimodal normal distribution crossover. In: 7th International Conference on
Genetic Algorithms, Michigan, USA, Michigan State University, Morgan Kaufman
(1997) 246–253



Theoretical Analysis of the Confidence Interval Based Crossover for RCGAs 161

6. Ono, I., Kita, H., Kobayashi, S.: A robust real-coded genetic algorithm using uni-
modal normal distribution crossover augmented by uniform crossover: Effects of
self-adaptation of crossover probabilities. In Banzhaf, W., Daida, J., Eiben, A.E.,
Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Genetic and Evolu-
tionary Computation Conf. (GECCO’99), San Francisco, CA, Morgan Kaufmann
(1999) 496–503

7. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms:
Operators and tools for behavioural analysis. Artificial Inteligence Review (1998)
265–319 Kluwer Academic Publisherr. Printed in Netherlands.

8. Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent recombination with simplex
crossover in real coded genetic algorithms. In: PPSN. Volume VI., Springer-Verlag
(1999) 657–664

9. Tsutsui, S., Goldberg, D.E.: Search space boundary extension method in real coded
genetic algorithms. Information Science 133 (2001) 229–247

10. Qi, X., Palmieri, F.: Theoretical analysis of evolutionary algorithms with an infi-
nite population size on continuous space. part i: Basic properties of selection and
mutation. IEEE Trans. Neural Networks 5 (1994) 102–119

11. Qi, X., Palmieri, F.: Theoretical analysis of evolutionary algorithms with an infinite
population size on continuous space. part ii: Analysis of the diversification role of
crossover. IEEE Trans. Neural Networks 5 (1994) 120–128

12. Nomura, T.: An analysis on crossorvers for real number chromosomes in an in-
finite population size. In: Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI’97), NAGOYA, Aichi, Japan (1997) 936–941

13. Kita, H., Ono, I., Kobayashi, S.: Theoretical analysis of the unimodal normal dis-
tribution crossover for real-coded genetic algorithms. In: IEEE International Con-
ference on Evolutionary Computation ICEC’98, Anchorage, Alaska, USA (1998)
529–534

14. Eiben, A., Raué, P.E., Ruttkay, A.: Genetic algorithms with multi-parent recom-
bination. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: The 3rd Conference on
Parallel Problem Solving from Nature. Number 866 in Lecture Notes in Computer
Science. Springer-Verlag (1994) 78–87

15. Eiben, A., Schippers, C.: Multi-parent’s niche: n-ary crossovers on nk-landscapes.
In Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P., eds.: The 4rd Confer-
ence on Parallel Problem Solving from Nature. Number 1141 in Lecture Notes in
Computer Science. Springer, Berlin (1994) 319–328

16. Tsutsui, S., Ghosh, A.: A study of the effect of multi-parent recombination in real
coded genetic algorithms. In: Proc. of the ICEC. (1998) 828–833

17. Eshelman, L.J.: The CHC adaptive search algorithm: How to safe search when
engaging in non-traditional genetic recombination. In: Foundations of Genetic
Algorithms. Morgan Kaufman Publisher, San Mateo (1991) 256–283

18. Eiben, A., Bäck, T.: Multi-parent recombination operators in continuous search
spaces. Technical Report TR-97-01, Leiden University (1997)

19. Hervás, C., Ortiz, D.: Operadores de cruce basados en estad́ısticos de localización
para algoritmos genéticos con codificación real. In Alba, E., Fernandez, F., Gomez,
J.A., Herrera, F., Hidalgo, J.I., Lanchares, J., Merelo, J.J., Sánchez, J.M., eds.:
Primer Congreso Español De Algoritmos Evolutivos y Bioinspirados (AEB’02),
Mérida, Spain (2002) 1–8

20. Eshelman, L.J., Mathias, K.E., Schaffer, J.D.: Crossover operator biases: Exploit-
ing the population distribution. In: Proceedings of the Seventh International Con-
ference on Genetic Algorithms. (1997) 354–361



Deterministic Multi-step Crossover Fusion:
A Handy Crossover Composition for GAs

Kokolo Ikeda1 and Shigenobu Kobayashi1

Interdisciplinary Graduate School of Science and Engineering
Tokyo Institute of Technology

psyche@fe.dis.titech.ac.jp, kobayasi@dis.titech.ac.jp

Abstract. Multi-step crossover fusion (MSXF) is a promising crossover
method using only the neighborhood structure and the distance measure,
when heuristic crossovers are hardly introduced. However, MSXF works
unsteadily according to the temperature parameter, like as Simulated
Annealing. In this paper, we introduce deterministic multi-step crossover
fusion (dMSXF) to take this parameter away. Instead of the probabilistic
acceptance of MSXF, neighbors are restricted to be closer to the goal
solution, the best candidate of them is selected definitely as the next
step solution. The performance of dMSXF is tested on 1max problem
and Traveling Salesman Problem, and its superiority to conventional
methods, e.g. uniform crossover, is shown.

1 Introduction

Genetic Algorithm (GA) is one of the most effective approximation algorithm
for optimization problems, and many applications had been done [Nagata 97].
An important characteristic of GA, comparing with other optimization methods
like simulated annealing (SA), is that GA holds multiple search points and their
information is exchanged. New solutions, called children, are generated by a
crossover operator, and they are expected to inherit favorable features of parent
solutions.

However, in order to apply GA to a new problem, it is often very difficult
to design adequate crossover operator for the problem, especially in discrete
or combinatorial domains. Even for the traveling salesman problem (TSP), a
benchmark problem which has the simple definition and slight constraints, over
ten years and ton of efforts were required to develop better crossovers generat-
ing children which satisfy constraints and inherit favorable features of parents
[Reinelt 1994]. For most cases, to develop adequate crossover on a problem, the
user must become familiar with the problem deeply, not only familiar with GA.
Though the first choice for many users may be the uniform crossover (UX) or the
multi-point crossover, they often generate many lethal children on the problem
with severe constraints.

Multi-step crossover (MSX)[Yamada95] is a crossover which is defined in
a problem-independent manner using a neighborhood structure and a distance
measure. It is relatively easier to provide both of them, as they are very common

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 162–171, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Deterministic Multi-step Crossover Fusion 163

for most problems, than to design a special, heuristic crossover operator. Further,
MSX generates children step by step tracking their neighborhood, then new
candidate can be easily modified to satisfy constraints. We consider that these
characteristics greatly encourage GAs to be used on various fields.

Multi-step Crossover Fusion. (MSXF)[Yamada 96] introduced Metropolis
criterion to MSX, regarding the quality of a candidate, and performed very well
on scheduling problems. However, for using MSXF the user must fix the temper-
ature parameter T , and it is immediately predicted that this parameter affects
intensified impact on the performance of MSXF. As the scaling of fitness value
differs depending on the stage of search, it is often difficult, or troublesome, to
settle the adequate temperature. We consider this difficulty prevents the possi-
bility of the wider utilization of MSXF.

In this paper, we propose a modified MSXF which works without sensitive
parameter T ; this will help users to utilize GA easier. Though it is one of sales
points and easily accepted that such MSXFs can be simply mounted with two
common notions, the neighborhood structure and the distance, we also claim
one other point that our proposal method can search efficiently, and performs
better than conventional crossover methods.

2 About MSXF, and the Proposal of dMSXF

Given parent solutions p1 and p2, MSXF executes a short-term navigated local
search from p1 to p2; p1 changes step by step tracking its neighborhood, and p2
is referred to which direction the search is navigated. The outline of MSXF is
described as follows.

1. Set the search point x1 = p1.
2. /Step k/ prepare the neighborhood of xk, N(xk). (Note: when the number

of the neighborhood is too big to enumerate, N(xk) should be limited to the
size µ randomly sampled neighbors. )

3. Sort yi ∈ N(xk) in ascending order of distance d(yi, p2).
4. Select yi from N(xk) with a probability inversely proportional to the rank.
5. /Metropolis criterion/ Accept yi if f(yi) is superior to f(xk), otherwise ac-

cept with probability exp(−∆V/T ), where ∆V = f(xk)− f(yi).
6. Go to the process 4. if not accepted.
7. Let the next step point xk+1 be yi, and go to the process 2. until some

termination condition, e.g. step k reaches to kmax, is satisfied.
8. The best solution among x1...xkmax is used for the next generation (following

some rules).

If the distance to p2 were not regarded at the process 3., this crossover would
behave as SA. On the other hand, if the quality of solutions were not regarded
in the process 5., this procedure just connect p1 and p2, as MSX. MSXF is
considered as the algorithm that has favorable characteristics of both SA and
crossovers. Figure 1(left) shows the aspect of MSXF search.



164 Kokolo Ikeda and Shigenobu Kobayashi

p1 p2

60

50

45

MSXF

45

60

55

50

35

45

 dMSXF

...

step1 step2

55

35

40 p1 p2

50 5045 45

65

55

65

Fig. 1. The aspect of MSXF(left), dMSXF(right): Each circle represents a solution,
the number in the circle is the value of the solution to be maximized. Each edge (or
arrow) represents a connection as neighbors, bold arrow is a transition of one step. For
MSXF, × means the rejection of a transition

However, the behavior of MSXF greatly depends on the parameter T . If T
is too high, almost all candidate yi is accepted independent on its quality, and
children just walk from p1 to p2, as MSX. On the other hand, if T is too low,
almost all deterioration of yi nearer to p2 is rejected, and children just mill around
a sub-optimum, as a local search, because MSXF not necessarily assure every
candidate yi is nearer than xk to p2. Adequate temperature varies depending
not only on the problem but also the stage of search. Even in the study of SA,
the control of temperature is still one of the most important topics to effect its
performance.

Consequently, we modify MSXF to work without T ; just by selecting the best
solution of neighborhood candidates in the deterministic manner. For navigating
its search to the direction toward p2, every member of neighborhood candidates
yi must be restricted to satisfy d(yi, p2) < d(xk, p2). We call this modified
version deterministic Multi Step Crossover Fusion, dMSXF.

dMSXF searchs regarding both quality of solutions and distance to p2, with-
out being troubled by temperature parameter T . We note that dMSXF is not
the case of MSXF with T = 0; though MSXF with T = 0 cannot accept any
deterioration and should be caught to a suboptimal, dMSXF necessarily move
toward p2 even in the case that all candidates are inferior to the current solution.
So, even when p1 and p2 are both suboptimal, dMSXF can find better interspace
solutions. The procedure of dMSXF is simpler than MSXF, described as follows.

1. Set search point x1 = p1.
2. (Step k) prepare the µ neighbors of xk, N(xk). All of yi ∈ N(xk) must satisfy
d(yi, p2) < d(xk, p2).

3. Select the best solution yi ∈ N(xk).
4. Let the next step point xk+1 be yi, and go to 2. until step k reach to kmax

or xk equals to p2.
5. The best solution among x1...xkmax is introduced instead of p1. Next p2 will

pick up another solution p3, and p2 search to the direction toward p3.



Deterministic Multi-step Crossover Fusion 165

Figure 1(right) shows the aspect of dMSXF search. To claim not only that
dMSXF is easily designed but also that the performance of dMSXF can be
superior to conventional methods, e.g. uniform crossover, we apply our proposal
method dMSXF to 1max problem and TSP in the following sections. Though
dMSXF may lose a favorable aspect of SA which original MSXF holds, as the
price for paying for its handy composition by taking the parameter T away, the
algorithm will show the sufficient and robust performance on these problems.

3 Analysis on 1max Problem

1max problem is the most primitive benchmark problem on bitstrings. No cor-
relation exists between any bits, the fitness value of a solution is calculated as
the number of 1.

3.1 The Case of Conventional Crossovers

For 1max problem, it is predicted that uniform crossover (UX) performs better
than multi-point crossovers, because it is no sense to deal adjacent loci in a mass.
To confirm this, we apply a GA with these crossovers to 1max problem that the
length of string Lbit = 1000. MGG model [Satoh 1996] is used as the alternation;
in each generation,

1. All solutions are coupled randomly, i.e. Npop/2 couples are made, where Npop
is the population size.

2. Each couple, parents, generate Ccross children by a crossover.
3. The best and the second-best solutions in the family, i.e. parents and chil-

dren, are introduced instead of parents.

Within one generation, Ccross ·Npop/2 children are created and evaluated.
Here we set Npop = 20 and Ccross = 200. To judge clearly, no mutation operator
is introduced. We run these GAs 50 times, and the performance is measured
as the average of final best values, the standard deviation of them, and the
averaged number of generations for one convergence. Here a GA is considered to
be converged when no progress of its best value is found within 20 generations.
Results are summarized in Table 1, and the superiority of UX is shown.

Table 1. Performance of conventional GA on 1max problem

operater best value av. std. generation
Uniform Crossover 992.16 2.09 47.66
20point Crossover 924.90 7.65 55.14
10point Crossover 858.45 11.07 55.54
5point Crossover 803.85 10.62 56.09

It is of course that the more children are generated in a family, the better so-
lution is found and introduced. Further, this fact directly effects on the final per-
formance of GAs. We apply the GA with UX, changing Ccross = 10, 20, 50, 200,



166 Kokolo Ikeda and Shigenobu Kobayashi

and summarize the results in Table 2. The reason why GA with smaller Ccross
fails is that the amount of progress from parents to the best child is too small.

Table 2. Effect of the number of children Ccross

operater Ccross best value av. std. generation
UX 200 992.16 2.09 47.66

50 983.64 3.79 55.24
20 970.50 4.52 63.95
10 946.30 8.54 74.40

Progress Rate (PR) is used to measure the performance of an algorithm,
especially of Evolutionary Strategy (ES) [Markon 2001]. PR is the expectation
value of the progress per a step, under a condition. Here we define PR of a
crossover as the averaged amount of progress, from the better of the parents to
the best of the family. For example, the fitness of a parent p1 is 70, p2 is 80, and
three children with the fitness 65, 75, 90 are generated, the amount of progress
is 90− 80 = 10. It is considered that the bigger PR of a crossover is, the better
the crossover is.

Here, we set Lbit = 100, and p1 =

1..x︷ ︸︸ ︷
000..000

x+1..100︷ ︸︸ ︷
111..111, p2 =

1..x︷ ︸︸ ︷
111..111

x+1..100︷ ︸︸ ︷
000..000

complementarily. x is the parameter to decide the bias of parents quality, p1 and
p2 are comparable in quality when x = 50. PR of UX(Ccross = 100) is measured
on condition 1 ≤ x ≤ 99 and shown in Figure 2(left, solid line).

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
es

s 
R

at
e

x: Value of P2.  (p1:100-x)

UX
UXr

dMSXF

dMSXF

UX

UXr

4

6

8

10

12

14

16

18

20

22

24

26

0 50 100 150 200 250 300 350 400

P
ro

gr
es

s 
R

at
e

Num of Children(UX); 

UX
UXr

dMSXF

Fig. 2. Progress Rate of UX, UXr, and dMSXF; on the case changing parents quality
x (left) and on the case changing the number of children Ccross (right)

We can observe that, when one of parents is much superior to another, x ≤ 30
or 70 ≤ x, UX can produce no solution better than the parent. The reason why is,
the sampling of UX is concentrated to the middle region of parents, and cannot



Deterministic Multi-step Crossover Fusion 167

Table 3. An Example of dMSXF on 1max problem: kmax = 3, µ = 3. Lbit =
10, p1 =0000111111, p2 =1111110000, here m=8. Bars on bits of xk means the differ-
ence between xk and p2, hats on bits means the introduction from p2

p1 step 1 step 2 p2

(base solution xk) 0̄0̄0̄0̄111̄1̄1̄1̄ (6) 110̄0̄111̄1̄01̄ (7) 1111111̄001̄ (8)
1̂1̂0011110̂1 (7) ↪→ 1100110̂0̂00̂ (4)

0000111111 (6) 0001̂110̂111 (6) 111̂0110̂101 (7) 1111110000 (6)
0000110̂0̂0̂1 (3) 111̂1̂1110̂01 (8) ↪→

produce children similar to one of them. To fix this difficulty, modified UX (we
call UXr temporally) can be introduced; the probability of selecting locus of p1
(50% in UX) is randomly selected in every crossovers. PR of UXr(Ccross = 100)
is shown in Figure 2(left, broken line). UXr can produce better solution even in
x = 20 or x = 80, but when x = 50 PR of UXr is smaller than of UX.

3.2 dMSXF for 1max Problem

To apply our proposal method dMSXF on 1max problem, a neighborhood struc-
ture must be introduced. When p1 differs from p2 at m loci, yj ∈ N(xk) is
created by introducing about m/kmax loci of p2 that differs from xk. yj is surely
nearer to p2 than xk in the sense of Hamming distance. After kmax steps, xkmax
will be almost same to p2. Table 3 shows an example.

After kmax steps, kmax·µ children are created, and p1 is replaced with the best
of family. In a generation, every solution fix its navigating solution p2, create
children, and are replaced. So, the total number of children per a generation
is kmax ·µ ·Npop. To compare fairly, this number should be equal to of UX,
Ccross ·Npop/2. Herewith, we set kmax = 10, µ = 5. PR of dMSXF is shown in
Figure 2(left, dotted line). We can see that dMSXF can produce better solutions
than UX in all x.

Next, we investigate the effect of the number of children. We set (kmax, µ)
to (4, 2), (6, 3), ..., (20, 10), and Ccross = 2·kmax·µ. Figure 2(right) shows the PR
of dMSXF, UX, and UXr where x = 50; the more children can be created, the
greater superiority of dMSXF to UX or UXr is shown.

We showed PR of dMSXF is greater than UX. Finally, we show GA using
dMSXF performs better than of UX. As 6 sets of (kmax, µ) are tested, all of
algorithms are comparable in the meaning of the calculated amount. Lbit is set
to 1000, Npop is 20, and 50 trials each are done, results are summarized in Table
4. Original MSXF is also applied, with the same neighborhood as dMSXF, and
the temperature parameter T = 1, 2.

The error of the best dMSXF is 0.16%, this is 1/5 of UX. Further, it is
shown that dMSXF is robust to the parameter (kmax, µ). In contrast, original
MSXF with T = 2 performs much worse than with T = 1. In conclusion, our
proposal method performs robustly better than UX even in the problem in which
building-blocks are well separated, like as 1max problem.



168 Kokolo Ikeda and Shigenobu Kobayashi

Table 4. Performance of UX, UXr, dMSXF, and MSXF using T = 1, 2

operater parameters children per generation best value av. std. generations

UX Ccross = 200 2000 992.16 2.09 47.66
UXr Ccross = 200 2000 986.50 3.52 51.30

dMSXF kmax = 5, µ = 20 2000 996.13 2.27 41.36
kmax = 7, µ = 14 1960 997.23 1.58 39.50
kmax = 10, µ = 10 2000 997.89 1.22 37.75
kmax = 14, µ = 7 1960 998.40 1.36 36.66
kmax = 20, µ = 5 2000 998.25 1.08 36.10
kmax = 50, µ = 2 2000 997.25 1.75 39.55

MSXF kmax=14, µ=7, T =1 1960 996.39 2.97 48.69
kmax=14, µ=7, T =2 1960 985.79 4.70 55.60

4 An Application for Traveling Salesman Problem

Traveling Salesman Problem (TSP) is the problem to find a Hamilton cycle that
has the shortest tour length on the graph, where the length is the sum of weights
of edges on a tour. TSP is a classic NP-hard problem, and a lot of approximation
algorithms have been proposed [Reinelt 1994].

The Edge Assembly Crossover (EAX) proposed in [Nagata 97] is the
state of the art crossover, GA with EAX performs extremely well as against
other solvers [Shimodaira 1999]. In this section, we perceive the original EAX as
the uniform crossover of elements, AB-cycles, and improve its performance by
using dMSXF.

4.1 About the Edge Assembly Crossover

When the parent tour-A and tour-B are given, EAX creates children from them
as follows. Figure 3 is a sample of it.

1. Divide edges on G′ into AB-cycles, where G′ is the graph obtained by over-
lapping tour-A and tour-B. A cycle generated by tracing edges of tour-A and
tour-B alternatively on graph G′ is defined as AB-cycle. (Fig. 3c)

2. Construct a E-set by choosing AB-cycles on the basis of some criterion.
3. Generate an intermediate individual by applying the E-set to tour-A in the

XOR manner, i.e. by removing edges of tour-A included in the E-set from
tour-A, and adding edges of tour-B included in the E-set to it. (Fig. 3d)

4. Modify the intermediate individual into a valid one by merging its sub-tours.
This modification is deterministic. (Fig. 3e)

Since several criterions of choosing AB-cycles are conceivable, the random
selection and a heuristic selection were introduced in [Nagata 97]. At the random
selection, each AB-cycles is chosen randomly with probability 0.5, and the EAX
that adopts this method is called EAX-rand (Fig. 4a). EAX-rand is taken as
the uniform crossover of building blocks, AB-cycles. On the other hand, the
heuristic selection chooses all AB-cycles that satisfy a condition regarding its
tradeoff between exploitation and exploration.



Deterministic Multi-step Crossover Fusion 169

(a) tour-A

(b) tour-B

(c1) an AB-cycle

(c2) an AB-cycle

(d) intermediate tour

(e) valid tour, a child of EAX

generate

apply (c1) to (a) in the XOR manner

modify

Fig. 3. A sample of EAX: (a) tour-A and (b) tour-B are given, AB-cycles (c1)(c2) are
generated, (d) an intermediate tour is created by mixing tour-A and a set of AB-cycles
with XOR manner, (e) the valid tour is generated by modifying the intermediate tour

4.2 dMSXF Applied for TSP

Another selection method is introduced in [Nagata 2000], to choose only one
from AB-cycles that satisfy a condition. By applying an AB-cycle on tour-A,
the child similar to tour-A is gained; the child walks a step from tour-A to
tour-B. The EAX that adopts this method is called EAX-1AB (Fig. 4b).

EAX-1AB produces many children around tour-A, and the best one is intro-
duced to the next generation instead of tour-A. Though this manner resembles
to ES (Fig. 4d), it is remarkable that all children yj around tour-A is nearer to
tour-B than tour-A, i.e. d(yj , tour-B) ≤ d(tour-A, tour-B), where the distance
is measured as the number of edges mismatch between A and B. Therefore,
EAX-1AB should be taken as the case kmax = 1 of dMSXF, rather than ES.

Herewith we extend EAX-1AB to the multi-step version (Fig. 4c), and com-
pare these algorithms on 7 benchmarks. Ccross is set to 10 for EAX-rand and
EAX-1AB, (kmax, µ) = (4, 6)or(5, 8) for dMSXF respectively. We run them 30
times on each settings, here the number of finding the optimum, the averaged
error(%), and the averaged time(sec) for one run by a Windows PC with 1GHz
CPU, are recorded.

Table 5 shows the results. We can see that EAX-1AB and dMSXF perform
better than original EAX. Further, dMSXF works efficiently compared with 1-
step version, EAX-1AB. Though Ccross = 10 (recommended by Dr. Nagata) may
be too small, experiencially larger Ccross for EAX-1AB yields little improvement
and much computational cost.



170 Kokolo Ikeda and Shigenobu Kobayashi

A B

30

40

25

45

...the best, 
(introduced instead of A)

apply AB-cycles {1,2,4}

{2,5}

{2,3,4,5}

{3,5}

A B

45

30

50

...the best,
(introduced instead of A)

apply one AB-cycle {2}

{3}

{5}

A B

45

30

50

apply one AB-cycle {2}

{3}

{5}

35

40

55

30

45

20
the best,
(introduced instead of A)

A

35

40

60

55

45

...the best, 
(introduced instead of A)

(a) EAX-rand (b) EAX-1AB

(d) An ES(c) dMSXF

Fig. 4. The aspect of search: (a)EAX-rand, (b)EAX-1AB, (c)dMSXF, and (d)an ES.
Now parent A is focused, some children (small circles with their tour length) are created
with each manner: (a) apply about a half set of AB-cycles to A, (b) apply one AB-cycle
to A, (c) /1st step/ apply one AB-cycle to A, select the best of children, x2, /2nd step/
apply one AB-cycle to x2, ... (d) introduce a mutation to A regardless of other solution

Table 5. Performance of EAX-original, EAX-1AB, and dMSXF on TSP

EAX-rand EAX-1AB dMSXF
instances Npop opt. error time opt. error time opt. error time

att532 300 10 0.025 29 23 0.006 20 27 0.002 24
rat575 300 3 0.020 47 8 0.012 27 17 0.006 30
rat783 300 20 0.006 72 28 0.001 42 30 0 49

pcb1173 300 2 0.023 172 10 0.017 71 12 0.010 79
pr2392 300 0 0.034 657 18 0.048 365 23 0.026 473
fl3795 300 2 0.028 2716 11 0.009 1768 17 0.006 2301

fnl4461 1000 0 0.031 10876 3 0.002 6952 8 0.001 9784

In this paper we compared only three GAs based on similar operators, they
are considered to be extremely superior to other approaches for TSP. For exam-
ple, branch-and-cut algorithm [Padberg 1991] solved the att532 problem exactly,
but required over than 5 hours on IBM 3090/600 computer, and a GA for TSP
Asparagos96 [Schleuter 1997] requires 95 minutes on UltraSparc 170MHz ma-
chine.



Deterministic Multi-step Crossover Fusion 171

5 Conclusion and Future Work

Multi-step crossover fusion (MSXF) is a promising method using only the neigh-
borhood structure and the distance measure, when heuristic crossovers are hardly
introduced. However, MSXF works unsteadily according to the temperature
parameter, like as SA. In this paper, we introduced deterministic multi-step
crossover fusion (dMSXF) to take this parameter away. The performance of dM-
SXF was tested on 1max problem and Traveling Salesman Problem, and its
superiority to conventional methods, e.g. uniform crossover, was shown. We be-
lieve dMSXF is very promising in three senses, the design simplicity, the search
efficiency, and the behavior robustness.

For the future work, the selection of the neighborhood structure still remains
as a problem to be solved. In common with other neighborhood searches as SA,
the performance of dMSXF varies depending on its neighbors to be sampled.
So, some guidance for introducing an adequate neighborhood structure to a new
problem should be structured.

References

Markon 2001. Sandor Markon, Dirk V.Arnold, Thomas Bäck, Thomas Beielstein, and
Hans-Georg Beyer : Thresholding - a Selection Operator for Noisy ES, Congress
on Evolutionary Computation, pp. 465-472 (2001)

Nagata 97. Nagata, Y. and Kobayashi, S. : Edge Assembly Crossover: A High-power
Genetic Algorithm fot the Traveling Salesman Problem, Proceedings of the 7th
International Conference on Genetic Algorithms, pp. 450-457 (1997)

Nagata 2000. Nagata, Y. : Genetic Algorithm for Traveling Salesman Problem using
Edge Assembly Crossover: its Proposal and Analysis, Doctoral thesis (2000)

Padberg 1991. Padberg, M. and G.Rinaldi: A Branch-and-Cut Algorithm for the Res-
olution of Large-Scale Symmetric Traveling Salesman Problems, SIAM Review,
Vol.33, No.1 pp.60-100 (1991)

Reinelt 1994. G.Reinelt, The Traveling Salesman: Computational Solutions for TSP
Applications. Vol.840 of Lecture Notes in Computer Science, Springer-Verlag
(1994)

Satoh 1996. H.Satoh, M.Yamamura, and S.Kobayashi : Minimal Generation Gap
Model for GAs Considering Both Exploration and Exploitation, Proc. of IIZUKA,
pp.494-497 (1996)

Schleuter 1997. Gorges-Schleuter, M. : Asparagos96 and the Traveling Salesman Prob-
lem, Proc. of the 1997 IEEE International Conference of Evolutionary Computa-
tion, pp.171-174 (1997)

Shimodaira 1999. Hisashi Shimodaira: A Diversity Control Oriented Genetic Algo-
rithm (DCGA): Development and Experimental Results, Proceedings of the Ge-
netic and Evolutionary Computation Conference, pp. 603-611 (1999)

Yamada 96. Yamada, T. and Ryohei, N. : Scheduling by Generic Local Search with
Multi-Step Crossover, Proceedings of the 4th conference on 4th PPSN, pp. 960-969
(1996);

Yamada95. Yamada, T. and Nakano, R.: A GA with multi-step crossover for job-
shop scheduling problems, Proc. of Int. Conf. on GAs in Engneering Systems:
Innovations and Applications (GALESIA) ’95, pp.146-151 (1995)



Operator Learning for a Problem Class
in a Distributed Peer-to-Peer Environment�

Márk Jelasity1,��, Mike Preuß2, and A.E. Eiben1

1 Free University of Amsterdam, Amsterdam, The Netherlands
jelasity@cs.vu.nl, gusz@cs.vu.nl

2 University of Dortmund, Dortmund, Germany
mike.preuss@uni-dortmund.de

Abstract. This paper discusses a promising new research direction, the
automatic learning of algorithm components for problem classes. We fo-
cus on the methodology of this research direction. As an illustration, a
mutation operator for a special class of subset sum problem instances is
learned. The most important methodological issue is the emphasis on the
generalisability of the results. Not only a methodology but also a tool
is proposed. This tool is called DRM (distributed resource machine),
developed as part of the DREAM project, and is capable of running dis-
tributed experiments on the Internet making a huge amount of resources
available to the researcher in a robust manner. It is argued that the DRM
is ideally suited for algorithm learning.

1 Introduction

This paper discusses a promising new research direction, the automatic learning
of algorithm components for problem classes. The main contribution of this paper
is threefold. First, we emphasize the importance of an appropriate methodology
that allows researchers to produce generalizable knowledge over a problem class
rather than a problem instance. Second, we propose a tool that might be ideally
suitable for generating such knowledge automatically. Finally, both the method-
ology and our proposed tool are illustrated via an example: a search operator
for a special class of subset sum problem instances is learned.

In the recent years much research effort has been devoted to methods that
try to improve heuristic search through some form of learning. To motivate
our approach, let us elaborate on its relationship with these methods. The way
different approaches generate knowledge can be categorized along at least two
dimensions. The first is defined by the distinction between research performed
manually and automatic learning. The second is defined by the scope of the
� This work is funded as part of the European Commission Information Society Tech-

nologies Programme (Future and Emerging Technologies). The authors have sole
responsibility for this work, it does not represent the opinion of the European Com-
munity, and the European Community is not responsible for any use that may be
made of the data appearing herein.

�� Also in RGAI, MTA-SZTE, Szeged, Hungary

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 172–183, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Operator Learning for a Problem Class 173

knowledge. This scope can be a single problem instance or a whole class of
problems. We will call the later type of knowledge durable knowledge referring
to its generality and long term relevance. As it should be clear already we will
focus on automatically generating durable knowledge here. It is useful however
to examine the three other classes generated by the two dimensions described
above.

Problem instance specific knowledge generated manually is the unfamous fine
tuning process of a given algorithm on a specific problem. Besides of being time
consuming, the scientific relevance of such knowledge is questionable due to its
restricted scope.

The idea of automatically learning problem instance specific knowledge is
very common. It includes all approaches that apply some form of adaptation or
learning during the optimization process. The generated knowledge is normally
not considered scientifically important and is discarded after the completion of
the algorithm. The large field of self-calibrating algorithms (which include the
meta-GA approach) belongs to this class [7,3]. The main idea is that the values
of different algorithm parameters are automatically tuned on the fly to achieve
optimal performance while solving a problem. Another successful idea is build-
ing probabilistic representations of the fitness landscape based on the solutions
evaluated during the search and generating new candidate solutions based on
this knowledge [14]. If applied as heuristic optimizers, cultural algorithms can
be classified into this category as well. They do not fix any knowledge represen-
tation offering a more abstract framework for learning based on the performance
of the developing population [15].

Durable knowledge is often not generated automatically, partly due to the
large computational requirements. One example is [5], where different opera-
tors were tested on many random instances of an infinite problem class (NK-
landscapes). Using these results it is possible to predict the behavior of these
operators on unseen instances of the problem class. Before optimizing an in-
stance of this class, one can directly chose the best operator.

This paper will argue for the usefulness and feasibility of automatically gener-
ating durable knowledge. Usefulness does not need too much explanation: in the
case of (practically or theoretically) interesting problem classes this learning can
provide us with better algorithms over a whole problem class and can also help
us understand this problem class better through the analysis of the collected
knowledge. The importance of durable knowledge was emphasized also in [12].
The question of feasibility is not so evident. Producing durable knowledge can
be an expensive and slow process. However, distributed systems on wide are
networks offer a natural solution to problems that require a huge amount of
resources.

With the overall success of the Internet distributed computation is getting
more and more attention [6,17]. Systems exist that can utilize resources available
in the form of e.g. the idle time of computers on the Internet [16,18]. As part
of the DREAM project ([13]) such a computational environment was developed,
the DRM (distributed resource machine). The DRM—unlike e.g. SETI@home—



174 M. Jelasity, M. Preuß, and A.E. Eiben

is based on cutting-edge peer-to-peer (P2P) and Java technology. This allows it
to be scalable, robust and flexible [11].

If we consider that many research and engineering institutions solve instances
from the same problem class routinely on a large scale anyway, with an addi-
tional layer on top of their network (in the form of a distributed computational
environment like the DRM) durable knowledge can be generated even more ef-
ficiently.

The outline of the paper is as follows. In Section 2 we elaborate on the
methodology that allows us to learn durable knowledge. Section 3 is devoted to
the DRM, the tool we will use to learn an operator for our example problem
class. We also describe our empirical results on the example learning problem.
Section 4 concludes the paper.

2 Methodology

In this section we outline a methodology that supports the generation of durable
knowledge. We interpret knowledge as algorithmic knowledge, i.e. we want to
learn what type of algorithm is optimal on (or at least well-tailored to) a given
problem class. More specifically, we are after a good evolutionary algorithm for
a problem class, so the search space of our learning task – which we call the al-
gorithm space – consists of all EAs. Here we can make further choices and reduce
the task to finding good variation operators, recombination and/or mutation. In
case of mutation, the algorithm space would be the space of all possible unary
operators acting as part of the evolutionary algorithm solving problems of the
given class. The size and complexity of the algorithm space depends on how the
possible mutation operators are represented. In general, there are no restrictions
on this representation. It is possible to define the space simply by a single pa-
rameter, e.g. pm of a fixed bit-flip operator, but using arbitrary expressions from
a suitable syntax, e.g. LISP known from genetic programming, is also possible.

Once the algorithm space is defined the learning algorithm cooperates with
the basic EA. In general, there are no restrictions on the learning algorithm.
In this paper we use an evolutionary algorithm for this purpose, so our method
works roughly as follows. A number of problem instances are provided (e.g., by a
random instance generator) and different variants of the basic EA is run on these
instances. The variants are defined by the mutation operator it uses and these
mutation operators form the points of the learning space. The learning EA per-
forms evolutionary search over these points. Evaluating such a point amounts to
evaluating the mutation operator it represents by performing independent runs
with the given operator on many problem instances. The value of the operator is
obtained by the quality of solutions of the basic EA using it. Clearly, this implies
very extensive computations which motivates our usage of DRM, cf. section 3.

2.1 An Example Problem Class

An important precondition of gaining generalizable knowledge is a well defined
problem class on which algorithms can be compared [4]. For the purpose of this



Operator Learning for a Problem Class 175

paper we use the subset sum problem as an example. It is an NP-hard com-
binatorial optimization problem. Besides, it is known where the hard instances
lie [1].

In the subset sum problem we are given a set W = {w1, w2, . . . , wn} of n
positive integers and a positive integer M . The task is to find a V ⊆ W such
that the sum of the elements in V is closest to, without exceeding, M . For this
problem it is possible to define a problem instance generator. Let us assume
that a triple (n, k, d) is given where n is the set size as above and d ∈ [0, 1] is
called the density of the problem. The set W is created by drawing wi randomly
from the interval [0, 2k] with a uniform distribution for i = 1, . . . , n and let M
be the sum of a random subset of W of size [nd]. We will denote the generated
problem class by SubSum(n, k, d). Our running example in the paper will be
SubSum(100, 100, 0.1).

It is essential that the problems in a problem class exhibit some common
structure in some sense, some similarity that can be exploited and converted to
durable knowledge. Note that structure as meant here arises from a combination
of an algorithm and a problem class. For a fixed algorithm space the problem
class is structured (non-random) if the behavior (performance) of the different
algorithms shows some regularities on different instances from the problem class.
The lack of such regularities would indicate that the algorithm space in question
and the problem class are not related: there is nothing to be learned.

The graph in Figure 1 shows such regularities here with respect to a simple
(1+1) EA. The EA uses a binary representation with every bit representing the
presence of a given set element in the candidate subset, and a a bit-flip mutation.
Different EAs correspond to different mutations, defined by the mutation rate.
Figure 1 plots the performance of such mutation rates, defined as the distance
from the desired sum (to be minimized) of their “hosting” EA. Each point in
the curve was generated using 100 runs on different instances, all runs until
10000 evaluations. The instances for different mutation probability values were
different as well.

Figure 1 provides a confirmation that there is a link between mutation op-
erators and algorithm quality: there are some regularities to be exploited, there
is something to learn. It is important to note that this is not necessarily all the
regularity we can find. Therefore, we are also interested in other algorithms that
might exploit other regularities. The very essence of our approach is that we
try to explore and discover as much similarity as possible, using other, richer
algorithm spaces.

2.2 An Example Algorithm Space

In the case of SubSum(100, 100, 0.1) let us fix the (1+1) EA applied until 10000
evaluations with the binary representation mentioned above. The algorithm
space we will use is given by the mutation operator which is defined by two
parameters: p01 defines the probability of flipping a 0 to 1, and p10 defines the
probability of flipping a 1 to 0. If p01 = p10 then we get the traditional bit flip
mutation. This choice of representation involves domain knowledge as well [9].



176 M. Jelasity, M. Preuß, and A.E. Eiben

1e+27

1e+28

1e+29

1e+30

1e+31

1e+32

0 0.05 0.1 0.15 0.2 0.25

be
st

 s
ol

ut
io

n

mutation probability

average
variance

Fig. 1.

Since the density of the problem is relatively low, it might be better if the op-
erator can express a bias towards solutions that contain more 0s than 1s. Our
mutation operator can express this bias.

3 A Suitable Tool: DRM

3.1 DRM Structure

The interested reader is kindly asked to refer to [11,10] for a detailed description
of the DRM. A main feature of the DRM is that applications are implemented on
it in the conceptual framework of multi-agent systems. In fact, the agents are the
threads of the distributed applications. They are mobile, they can communicate
with each other and they can make decisions based on the state of the DRM or
the application they participate in.

As applications are multi-agent applications, the main task of the DRM is to
support these agents. The framework is implemented in Java language which pro-
vides mobility and security. Furthermore, to maximize scalability and robustness,
the DRM is a pure P2P system, which relies mainly on epidemic protocols [2].
This means that the computers participating in a DRM know only a limited
number of other computers from the same DRM. Via exchanging information
with these peers only, information spreads as gossip (or epidemic) through the
DRM.

3.2 Experiment Structure

To run an application on the DRM one has to think in terms of a multi-agent
system. Designing an experiment involves designing the behavior of one or more



Operator Learning for a Problem Class 177

types of autonomous agents that should perform our experiment. The main con-
cerns in our case are robustness also at the experiment level, not only at the level
of the DRM, and the mechanism of distributing information and computation
over the DRM.

Our parallelization approach is roughly based on island models. That is, every
agent hosts an island where a local population is evolved. The major challenge
is however to design a communication mechanism that is robust and scales well
in a wide area network environment.

Island Communication. The overall structure of the proposed design mirrors
the structure of the DRM itself. We use completely identical islands that com-
municate using epidemic protocols. Note that it is not an evident design decision;
even though the DRM itself is pure P2P, it is possible to design an agent system
where one of the agents plays the role of the server of the experiment while the
others are the clients.

Our decision is based on our and others’ recent findings that indicate the
power of our epidemic protocol concerning scalability and robustness [10]. These
features are most important in a highly distributed environment like the DRM
where network communication goes over a wide-area network and the number
of available machines is not known in advance.

At first, the root island is started up by the experimenter who also provides a
maximum number of tasks to be computed as a parameter. Each task is an island
which is supposed to run the high-level learning EA until a given termination
criterion.

Note that the actual number of involved machines depends on their avail-
ability and reachability from the root island. The latter is influenced by network
separating devices like firewalls between the available machines. Due to the uti-
lized P2P technology, machines do not necessarily need a direct path to each
other. Information spreads like an epidemic throughout the DRM in an undi-
rected manner via a chain of islands to finally reach the destination.

Task distribution is done by self-replication of islands according to the load
balancing algorithm laid out in [11]. In short, an island that encounters an empty
machine sends half of its own tasks there. In contrast to other possible scenarios
of parallel experiment startup, we distribute tasks dynamically during experi-
ment run.

Just like the DRM layer which utilizes incomplete databases for node com-
munication, the islands have an incomplete experiment database called the job-
cache. Every job-cache entry holds the address of another island and its attached
value. The address/value table is merged with the one of a remote island by ex-
changing messages using a randomly selected address and cut to the defined
maximum database size. While the expected number of islands doing an experi-
ment may be lower than the number of DRM nodes and thus the job-cache can
be smaller, it inherits the advantageous properties of the DRM database, namely
information spreading speed and the very low probability of the experiment get-
ting partitioned. Algorithms running within an island may put data into this



178 M. Jelasity, M. Preuß, and A.E. Eiben

job-cache

island

learning algorithm

values from
other islands

value to spread

communication
with remote islands

Internet (remote islands)

island

job-cache
learning algorithm

island

job-cache
learning algorithm

island

job-cache
learning algorithm

island

job-cache
learning algorithm

island

job-cache
learning algorithm

Fig. 2. left: learning algorithm and job-cache communicating within an island, right:
example of an incompletely connected set of islands running the same experiment

repository and regular job-cache message interchange will spread these values
to other islands in logarithmic time. Figure 2 illustrates messaging between the
algorithm and the job-cache (left) and the interconnection of islands via their
job-caches (right). For experiments with many islands, these do not necessarily
know all other islands because values are not only transferred directly but also
indirectly by traversing several job-caches.

Prerequisites of Learning. Learning a good mutation operator for our exam-
ple, SubSum(100,100,0.1), while varying only two parameters (p01 and p10) may
not seem very hard, but a first analysis utilizing a grid search over the most in-
teresting area (see Figure 3) reveals at least three difficulties. First, evaluations
of one specific operator on different problem instances display a dangerously
high variance. The learning algorithm therefore has to average the results of
several runs. Second, the approximated fitness landscape as depicted in Figure 3
clearly indicates a wide, almost flat area for p01 > 0.25. A path-based optimiza-
tion method depends on a good start point if the neighborhood of the actual
solution does not offer any progress. An exploration-based technique can solve
this problem although it typically needs more evaluations. Third, the parameter
p10 has only minor influence on the fitness of the operator for most regions. It
increases the search-space but gives little help to finding good solutions if the
first parameters value is too high.

To summarize, a successful learning algorithm for this problem class has to
be able to cope with a very noisy function and should apply exploration as well
as local search.

Learning Algorithm. Based on these prerequisites, we chose a population-
based EA as learning algorithm. In a parallel environment there are at least two
ways of implementing a population. First, every island may run a pure local
search algorithm and integrate search results of the remote islands from time
to time. Second, each island may keep a population on its own and add remote
results as they become available. Concerning the DRM, the second approach



Operator Learning for a Problem Class 179

   5e+30
   5e+29
   5e+28
   5e+27
   5e+26

00.050.10.150.20.250.30.35

0
0.1

0.2
0.3

0.4
0.5

1e+26

1e+27

1e+28

1e+29

1e+30

1e+31

1e+32

p01

p10

Fig. 3. Performance of the operator described in Section 2.2. Average of 100 runs (each
on a new randomly generated problem instance from SubSum(100, 100, 0.1)) per point

is favorable because wide-area network communication is unreliable and rather
slow. Nevertheless, both methods have been tested. To prevent the search from
getting stuck, the employed selection/replacement operator does not allow for
old solutions to survive and thus equals EA comma-selection.

As described above, islands can distribute preliminary results to their neigh-
bors by putting them into the job-cache. Solutions exchanged in our case are the
best mutation operators available in the local population.

In the following, we discuss the details of the learning algorithm from the
viewpoint of a single island. Every new generation starts with reading the avail-
able remotely computed solutions from the job-cache and merging them with
the current parent population. Offspring is generated by each time choosing two
solutions from the result and applying intermediate recombination, followed by
Gaussian mutation. We evaluate the newly created mutation operator by select-
ing the appropriate (1+1) EA from the defined algorithm space and applying it
5 times to randomly generated instances of the SubSum(100,100,0.1) problem
class.

The next generation’s parent population is then constructed by selecting the
best mutation operators found in the offspring. Note that each solution sent by
another island will influence the learning process until replaced by its originator.
This rule resembles a shared memory concept known from parallel hardware and
differs significantly from migration. As a consequence, new islands starting up
inherit a set of solutions with acceptable quality after connecting to any other
island.

Let m denote the number of remotely computed solutions available. As long
as m = 0, the learning algorithm equals a (µ, λ) ES, µ and λ meaning the sizes of
the local parent population and the offspring, respectively. In the experiments we
used λ = 5 and µ = 4. However, as soon as solutions from remote islands arrive,
(µ, λ) changes to a (µ+m,λ) ES. To keep up selection pressure and thus ensure
a good local search capability we also increase the number of offspring solutions



180 M. Jelasity, M. Preuß, and A.E. Eiben

Table 1. Accumulated results for four different types of experiments

single machine single machine DRM DRM
(1, 5) (4, 20) (1 +m, 5 + 4m) (4 +m, 20 + 4m)

best fitness 1.67e26 1.56e26 1.92e26 2.038e26
best evaluation no. 640 682.6 451.5 521.5
concurrent islands 1 1 3.9 4.2
AES 240 232.5 187.5 195.5
success rate 50% 80% 100% 100%
best operator p01 0.066 0.048 0.048 0.066
best operator p10 0.634 0.515 0.545 0.589

created within a generation by a factor λr (=4), resulting in a (µ+m,λ+λrm)
ES. Note that the upper bound of m equals the maximum number of entries of
the job-cache.

A possible danger is that bad solutions may remain in the job-cache if islands
become unavailable due to e.g. network failure. However, for a realistic scenario
this is not true on the long run because usually the number of tasks exceeds
the size of the job-cache so that old information is gradually removed from the
system.

3.3 Experimental Results

Table 1 shows the accumulated results for four types of experiments, namely
the (1, λ) and (µ, λ) ES on a single machine and the (1 + m,λ + λrm) and
(µ + m,λ + λrm) ES running on the DRM. All values are averages over 10
runs per experiment type. The best fitness measures the quality of the best
mutation operator in terms of the best subset sum solution found by the (1+1)
EA using this operator. Let us note that according to the t-test the differences
between the values of the best solutions for the four algorithms are not significant
(for α = 0.05). best evaluation no. gives the number of root island evaluations
needed to generate the best solution. As mentioned in the previous section 5
tests are done with each operator variant so the number of mutation operators
tested is best evaluation no./5. From the grid search depicted in Figure 3 we
knew in advance that mutation operators with an average fitness below 1e27
exist and are already near the optimum. We therefore computed the success
rate as the fraction of experiments with a best fitness below this upper bound.
The average number of evaluations to solution (AES) gives the number of root
island evaluations needed to reach this level. The last two rows show the found
mutation operator parameters p01 and p10.

The best results are found sooner on the DRM, this is a side-effect of the fact
that many populations work in parallel. The table does not directly reveal the
actual speedup of the system. However it was proven in [11] that the speedup is
almost linear for any application that is distributed the way our present appli-
cation was.

The optimal mutation parameters found by the algorithm show a consistent
pattern. The ratio p01/p10 is close to 0.1 which is as a matter of fact the density



Operator Learning for a Problem Class 181

parameter of the problem class SubSum(100,100,0.1). It is also notable that
the mutation operator corresponding to the optimal parameters outperforms
the optimal one-parameter mutation. This can be seen clearly by comparing
the value of the best solutions found to the performance of the one parameter
mutation shown in Figure 1. This illustrates the possible benefits of learning
more complex operators.

Even in the case of our simple example when the operator space was defined
by two real parameters it is quite clear that searching this space is much more
effective with the automatic approach than using an exhaustive search. To illus-
trate this, consider that visualizing the whole [0, 1]2 space in the quality shown
in Figure 3 would require 160000 runs of the underlying (1+1) EA. Even this
quality is hardly enough to draw any consistent conclusions over the location
of the global optimum due to the high variance. Compared to this our DRM
application needed only around 500 runs to learn a very good quality operator.
It is of course not surprising that evolutionary search is much better than ex-
haustive search. This remark is useful only to point out that this quite trivial
fact holds in the case of operator learning as well, which is another argument for
the automatic acquisition of durable knowledge.

Finally, let us note that all experiments have been run from behind a fire-
wall, using a 56k dial-in network connection. This may increase island distri-
bution time and block several messages directly targeted at the root island but
demonstrates the applicability of the DRM technology even under the worst
conditions.

4 Conclusions and Future Perspectives

In this paper we have argued for the importance of learning algorithm compo-
nents for problem classes. The durable knowledge that results from this process
can be directly applied to improve algorithms or it can be analyzed further to
gain scientific insight into a problem class. A tool was suggested that is suit-
able for performing this kind of expensive learning by utilizing the idle time of
any computers connected to the Internet. The feasibility of the approach was
demonstrated on the problem class SubSum(100,100,0.1).

An interesting possibility for future applications is the possibility of develop-
ing self-improving software packages. The different copies of the software could
communicate through the Internet and exchange information with the help of
the DRM or a similar P2P environment that uses epidemic protocols for com-
munication. This process can be completely transparent to the user and due
to the P2P approach it could scale very well to millions of copies without any
special investment. At this level a learning algorithm could gradually improve
the performance of the software via evolving durable knowledge based on the
experience on the problems people are trying to solve with the software. Note
that this application area is not restricted to learning heuristic operators. An
arbitrary component of a software can be improved provided an appropriate
evaluation method is available.



182 M. Jelasity, M. Preuß, and A.E. Eiben

Acknowledgments

The authors would like to thank the other members of the DREAM project for
fruitful discussions, the early pioneers [13] as well as the rest of the DREAM
staff, Maribel Garćıa Arenas, Emin Aydin, Pierre Collet and Daniele Denaro.

References

1. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr, and
J. Stern. An improved low-density subset sum algorithm. Computational Com-
plexity, 2:111–128, 1992.

2. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database man-
agement. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC’87), pages 1–12, Vancouver, Aug. 1987. ACM.

3. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, July
1999.

4. Á. E. Eiben and M. Jelasity. A critical note on experimental research methodology
in EC. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002) [8], pages 582–587.

5. A. E. Eiben and C. A. Schippers. Multi-parent’s niche: n-ary crossovers on NK-
landscapes. In W. Ebeling, I. Rechenberg, H.-P. Schwefel, and H.-M. Voigt, editors,
Parallel Problem Solving from Nature - PPSN IV, volume 1141 of Lecture Notes
in Computational Science, pages 319–328. Springer-Verlag, 1996.

6. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 1999.

7. J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16(1):122–128, 1986.

8. IEEE. Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002). IEEE Press, 2002.

9. M. Jelasity. A wave analysis of the subset sum problem. In T. Bäck, editor,
Proceedings of the Seventh International Conference on Genetic Algorithms, pages
89–96, San Francisco, California, 1997. Morgan Kaufmann.

10. M. Jelasity, M. Preuß, M. van Steen, and B. Paechter. Maintaining connectivity
in a scalable and robust distributed environment. In H. E. Bal, K.-P. Löhr, and
A. Reinefeld, editors, Proceedings of the 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid2002), pages 389–394, Berlin,
Germany, 2002.

11. M. Jelasity, M. Preuß, and B. Paechter. A scalable and robust framework for
distributed applications. In Proceedings of the 2002 Congress on Evolutionary
Computation (CEC 2002) [8], pages 1540–1545.

12. M. Jelasity. Towards automatic domain knowledge extraction for evolutionary
heuristics. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN VI,
volume 1917 of Lecture Notes in Computational Science, pages 755–764. Springer-
Verlag, 2000.



Operator Learning for a Problem Class 183

13. B. Paechter, T. Bäck, M. Schoenauer, M. Sebag, A. E. Eiben, J. J. Merelo, and
T. C. Fogarty. A distributed resoucre evolutionary algorithm machine (DREAM).
In Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000),
pages 951–958. IEEE, IEEE Press, 2000.

14. M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of optimization by building
and using probablistic models. Technical Report 99018, Illinois Genetic Algorithms
Laboratory, 1999.

15. R. G. Reynolds. Cultural algorithms: Theory and applications. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, Advanced Topics
in Computer Science, pages 367–377. McGrow-Hill, 1999.

16. SETI@home. http://setiathome.ssl.berkeley.edu/.
17. A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and

Paradigms. Prentice Hall, 2002.
18. United Devicestm. http://ud.com/.



Crossover Operator Effect in Function
Optimization with Constraints�

D. Ortiz-Boyer, C. Hervás-Mart́ınez, and N. Garćıa-Pedrajas

Departament of Computing and Numerical Analysis, University of Córdoba
C2 Building, Campus of Rabanales s/n, E-14071 Córdoba, Spain

{ma1orbod,chervas,npedrajas}@uco.es

Abstract. Most real-world optimization problems consist of linear cost
functions subject to a set of constraints. In genetic algorithms the tech-
niques for coping with such constraints are manifold: penalty functions,
keeping the population in the feasible region, etc. Mutation and crossover
operators must take into account the specific features of this kind of prob-
lems, as they are the responsible of the generation of new individuals.
In this work, we make an analysis of the influence of the selection of
the crossover operator in the problem of function optimization with con-
straints. We focus our work on the crossover operator because this op-
erator is the most characteristic of genetic algorithms. We have used a
test set that includes functions with linear and non-linear constraints.
The results confirm the importance of crossover operator, as great dif-
ferences are observed in the performance of the studied operators. The
crossover based on confidence intervals shows the most robust behavior.

1 Introduction

There is no method for determining the global optimum of a general nonlin-
ear programming (NLP) problem. This kind of problems only have a solution
when the cost function and the constraints have certain properties, many of such
properties are not common in real-world problems. Genetic algorithms (GAS)
in general, and most specifically real coded genetic algorithms (RCGAs), are
parallel stochastic search algorithms, robust and widely used in optimization of
functions without constraints in such cases where classical methods fail in finding
an optimum.

Using GAs in the optimization of functions with constraints requires mech-
anisms to incorporate the constraints into the evolutionary process. A major
group of methods maintains all the individuals in the feasible region, and does
not allow the existence of individuals that do not fulfill any constraints. The
other approach is to allow the existence of individuals outside the feasible re-
gion, but penalizing them heavily.

In this context the mechanisms of mutation and crossover have a major
impact as the creation of new individuals relies on them. Operators suitable for
� This work has been financed in part by the project TIC2001-2577 of the Spanish

CICYT and FEDER funds

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 184–193, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Crossover Operator Effect in Function Optimization with Constraints 185

a problem of optimization without constraints may not be suitable for a problem
that restricts the search space. The concept of exploration and exploitation must
be reformulated in the problems of optimization with constraints. So, it is very
interesting a study of the behavior of the most successful crossover operators in
an environment where there are constraints in the search space.

In this work, we center our interest in the crossover operator as this operator
plays a central role in RCGAs. In fact, it may be considered to be one of the
algorithm’s defining features, and it is one of the components to be borne in
mind to improve the RCGAs behavior [1]. In this context, it is fundamental the
ability of crossover operators to solve the balance between the exploration an
exploitation of the search space, which is associated to the intervals determined
by the extremes of the domain of the genes and by the corresponding alleles of
the parents chosen for crossing [1].

This study encompasses different kind of crossovers widely used for opti-
mization problems without constraints, and a new crossover based on confidence
intervals whose features make it appropriate for coping with constraints. We have
used two set of functions for comparing the operators. The first one is formed by
functions whose constraints define a convex search space where it is easy to keep
the individuals without introducing additional penalty functions. The second
one consists of real-world problems with non-linear constraints where penalty
are used.

This paper is organized as follows. Section 2 formulates the problem of nonlin-
ear programming and explains succinctly the most common techniques for treat-
ing with constraints. Section 3 is dedicated to a brief description of the tested
crossovers with a special attention to the confidence interval based crossover.
Section 4 explains the experimental setup and describes the test problems. Sec-
tion 5 shows the results obtained with the different operators. Finally, Section 6
states the conclusions of our work.

2 Nonlinear Programming Problem

The general nonlinear programing problem is stated as follows:

find x which optimizes f(x), x = (x1, ..., xp)
subject to:

gi(x) ≤ 0, j = 1, ..., q
hi(x) = 0, j = q + 1, ..., p

(1)

gi and hi can be linear or non-linear functions. f and the constraint functions
gi and hi must fulfill certain properties to ensure that a global optimum could
be found with some probability.

Different methods have been developed for the solution of problems of opti-
mization with constraints, these methods are included into two broad categories:
direct and indirect methods. Indirect methods try to convert the NLP problem
into several linear problems, but that is not always feasible. Direct methods are
based on obtaining successive solutions using classical methods modified in a



186 D. Ortiz-Boyer, C. Hervás-Mart́ınez, and N. Garćıa-Pedrajas

certain way to consider the constraints in order to avoid the generation of non-
feasible solutions. Most of these methods are local search methods that depend
on the existence of the derivative of the cost function. That means that these
methods are not robust in search spaces that are discontinuous, multimodal or
noisy.

One of the most interesting tools for solving NLP is the use of real-coded
genetic algorithms. For coping with constraints RCGAs use different techniques,
such as, preservation of feasibility, penalty functions, searching for feasibility
and other hybrids [2] [3]. The first two are the most commonly used and both of
them count with a wide variety of algorithms. We will briefly explain these two
philosophies.

2.1 Maintaining the Population in the Feasible Region

These methods define mutation and crossover operators that guarantee that the
generated individuals fulfill the constraints, this way the population is kept in
the feasible region.

One of the most used of this kind of methods is GENOCOP (GEnetic al-
gorithm for Numerical Optimization for COnstrained Problems), developed by
Michalewicz [4]. This method takes advantage of the features of convex spaces
and can be used for any optimization problem with linear constraints. GENO-
COP consists of removing as much variables of the problem as the number
of equality equations, simplifying the search space. The remaining inequality
equations define a convex search space where intervals could be defined for the
variable to take values. These intervals are dynamic and depend on the removed
variables.

The main disadvantages of this method are: (i) it needs an initial feasible
population and so a method for generating it, and (ii) it can be applied only to
problems with linear constraints.

2.2 Penalty Functions

This technique is one of the most used when there are non-linear constraints.
It consists of introducing cost functions that penalize the individuals that are
outside the feasible region. The fitness of j individual is defined as fitnessj(x) =
f j(x)±Qj , where Qj represents the penalty of a non-feasible individual or the
cost to make it feasible. If the individual is in the feasible region Qj = 0.

Most penalty methods use a set of functions, fi (1 ≤ i ≤ p), for constructing
the penalty function. Function fi measures the violation of constraint i in the
following way:

fi(x) =
{

max{0, gi(x)}, if 1 ≤ i ≤ q
|hi(x)|, if q + 1 ≤ i ≤ p (2)

There is a wide variety of penalty methods. In this work, as the form of the
penalty function is not the object of our study, we will use the most straightfor-
ward, Qj =

∑p
i=1 fi(x).



Crossover Operator Effect in Function Optimization with Constraints 187

3 Crossover Operators

GAs are search methods of general purpose whose operators establish a balance
between exploitation and exploration of the search space. Crossover operator
plays the major role, it combines the features of two or more parents to generate
one or more offsprings. The underlying idea is that the exchange of information
among good parents will produce better offsprings.

Most crossover operators generate individuals within the limits of the parents.
In this way, the crossover operator implements a depth search or exploitation,
leaving the wide search or exploration in the hands of the mutation operator.
This politics, although intuitively natural, makes the population converge to
inner points of the search space, producing a fast diminishing of the diversity of
the population that usually ends in the premature convergence to a suboptimal
solution.

Recent studies on the application of BLX-α [5] and fuzzy connectives based
crossovers [6] in optimization of functions without constraints have confirmed
the interesting performance of the crossover operators that generate individuals
in both exploitation and exploration regions. The exploration introduced by
these operators is restricted to the neighborhood of the parents, so it is not an
alternative to the wide exploration that is carried out by the mutation operator.
If the operator establishes a good balance between exploration (or extrapolation)
and exploitation (or interpolation) it is possible to avoid the loss of diversity and
the premature convergence.

However, in optimization with constraints, it is not clear whether the use of
crossover operators with and exploration component is and advantage, as it could
produce too many non-feasible individuals. That is the reason why we consider
interesting to carry out a study of the influence of crossovers with and without
exploration component in the optimization of functions with constraints.

Let βf1 = {βf1
1 , βf1

2 , ..., βf1
i , ..., β

f1
p } and βf2 = {βf2

1 , βf2
2 , ..., βf2

i , ..., β
f2
p } be

two parents with p genes. We consider in out study the crossover operators that
are described in the following paragraphs.

3.1 Discrete Crossover

An offspring βs = {βs1, βs2, ..., βsi , ..., βsp}, is obtained where βsi is chosen randomly
from the set {βf1

i , β
f2
i } [7]. It is an exclusively exploiting operator.

3.2 Aritmetic Crossover

Two offsprings βs1 ={βs11 , βs12 , ..., βs1i , ..., β
s1
p } and βs2 ={βs21 , βs22 , ..., βs2i , ..., β

s2
p }

are created, where βs1i = λβf1
i + (1− λ)βf2

i and βs2i = λβf2
i + (1− λ)βf1

i , where
λ is a constant [4]. This crossover tends to generate solutions near the center
of the search space. In our experiments, following the bibliography, we have set
λ = 0.5.



188 D. Ortiz-Boyer, C. Hervás-Mart́ınez, and N. Garćıa-Pedrajas

3.3 BLX-α Crossover

An offspring βs = {βs1, βs2, ..., βsi , ..., βsp} is generated where βsi is chosen randomly
in the interval [βmin − I · α, βmax + I · α]. Being cmax = max(βf1

i , β
f2
i ), cmin =

min(βf1
i , β

f2
i ) and I = cmax − cmin [5]. For α = 0.5, the probability that the

genes of the offsprings take values within and without the interval of the values
of their parents is the same. In [1] different values of α are tested obtaining a
best value of α = 0.5.

3.4 Logic Crossover

Four monotone non-decreasing functions are defined: F , S, M and L from
[ai, bi] × [ai, bi] to [ai, bi], where ai, bi ∈ � are the bounds of the gene’s values.
For obtaining F , S, M and L the fuzzy connectives t-norm, t-conorm, averaging
functions and a generalized compensation operator Ĉ are used respectively [8].
Of these four families of fuzzy connectives the best results are obtained using
logic family [9].

If we consider Q ∈ {F, S,M,L} we can generate βs = {βs1, βs2, ..., βsi , ..., βsp}
where βsi = Q(βf1

i , β
f2
i ), i = 1, 2, ..., p. M function is clearly exploiting while

F and S are more exploring, L is relaxedly exploiting. Of the four offsprings
generated the best two substitute their parents.

3.5 Extended Fuzzy Crossover

This operator [10] is an extension of the fuzzy recombination operator [11]. In
this operator, the probability that a gene βsi of an offspring takes a value zi
is given by the distribution p(zi) ∈ {φβf1i , φµ, φβf2i }, where φ

β
f1
i

, φµ and φ
β
f2
i

are triangular probability distributions. Three offsprings are generated, each
one using one the probability distributions, and the two best are chosen. The
probability of generating genes within the exploiting interval [βf1

i , β
f2
i ] is higher

than the probability of generating genes in the exploring intervals [ai, β
f1
i ] and

[βf2
i , bi].

3.6 Crossover Based on Confidence Intervals

Let β be the set of N individuals that form a population and let β∗ ⊂ β be
the set of the n best ones, according to their fitness value. If we consider that
each one of the genes of the chromosomes of β∗ is normally distributed, we
can define three individuals: those formed by the lower bounds (CILL), upper
bounds (CIUL) and means (CIM) of the confidence intervals of each gene:

CILLi = βi − tn−1,α/2
Sβi√
n

; CIULi = βi + tn−1,α/2
Sβi√
n

; CIMi = βi

being βi, i = 1, . . . , n, the mean of each gene, Sβi the standard deviation of
the individuals of the population, tn−1,α/2 a value obtained from a student´s t



Crossover Operator Effect in Function Optimization with Constraints 189

distribution with n−1 degrees of freedom and α the probability of a gene of not
belonging to its confidence interval.

The individuals CILL and CIUL divide each gene’s domain, Di, into three
subintervals IL, ICI and IR (see Figure 1a), such that Di ≡ IL ∪ ICI ∪ IR and

IL ≡ [ai, CILLi); ICI ≡ [CILLi, CIULi]; IR ≡ (CIULi, bi]

The interval IIC is a confidence interval built from the best n individuals of
the population. The probability of a gene of belonging to the confidence interval
(the exploitation interval) is 1− α.

So, both parameters α and n, set the adequate balance between exploration
and exploitation for each kind of problem. In a previous work [12] we have found
optimum values for the parameters: (1− α) = 0.7 and n = 5.

This crossover operator will create, from an individual of the population
βf = (βf0 , β

f
1 , . . . , β

f
i , . . . β

f
p ) ∈ β, and the individuals CILL, CIUL and CIM, a

single offspring βs in the following way:

– βfi ∈ IL: if the fitness of βf is higher than CILL then βsi = r(βfi −CILLi)+
βfi , else βsi = r(CILLi − βfi ) + CILLi.

– βfi ∈ ICI : if the fitness of βf is higher than CIM then βsi = r(βfi −CIMi) +
βfi , else βsi = r(CIMi − βfi ) + CIMi.

– βfi ∈ IR: if the fitness of βf is higher than CIUL then βsi = r(βfi −CIULi)+
βfi , else βsi = r(CIULi − βfi ) + CIULi.

Where r is a random number belonging to [0,1]. From this definition it is clear
that the genes of the offspring always take values between the best parent βf

and one of CILL, CIUL or CIM. If βf is far from the other parent, the offspring
will probably suffer an important change, and vice-versa. The first circumstance
will appear mainly in the first stages of evolution and the second one in the last
stages.

4 Experimental Setup

4.1 Problems with Linear Constraints

We have chosen three functions f1, f2, and f3 [4] that cover the three possi-
ble situations: constraints that are only inequalities (f1), constraints that are
only equalities (f2), and constraints that are a combination of both (f3). These
functions and their optimum values are shown on Table 1.

For the optimization of these functions we will use the GENOCOP method.
Mutation and crossover operators must be modified in order to generate only
feasible individuals.

4.2 Problems with Non-linear Constraints

We have chosen two problems both for their complexity and their interest in the
field of experimental sciences. These problems are the distribution of electrons
in a sphere and the shape optimization of a cam [13].



190 D. Ortiz-Boyer, C. Hervás-Mart́ınez, and N. Garćıa-Pedrajas

Table 1. Functions with linear constraints.

Function Optimum
f1(x, y) = −10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5 − 10y − 0.5

∑5
i=1 x

2
i f1(x∗,y∗)=-213

subject to:
6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5 10x1 + 10x3 + y ≤ 20
0 ≤ xi ≤ 1 0 ≤ y

f2(x) =
∑10
i=1 xi

(
ci + ln

xi∑10
i=1 xi

)
f2(x∗)=-47.760765

subject to:
x1 + 2x2 + 2x3 + x6 + x10 = 2 x3 + x7 + x8 + 2x9 + x10 = 1
x4 + 2x5 + x6 + x7 = 1 x ≥ 0.000001, (i = 1, ..., 10)
c1 = −6.089, c2 = −17.164, c3 = −34.054, c4 = −5.914, c5 = −24.721,
c6 = −14.986, c7 = −24.100, c8 = −10.708, c9 = −26.662, c10 = −22.179

f3 = (x) = x0.6
1 + x0.6

2 − 6x1 − 4x3 + 3x4 f3=(x)=-4.5142
− 3x1 + x2 − 3x3 = 0 x1 + 2x3 ≤ 4
x2 + 2x4 ≤ 4 x1 ≤ 3
x4 ≤ 1 0 ≤ xi, (i = 1, 2, 3, 4)

Distribution of the Electrons in an Sphere

This problem, known as the Thomson problem, consists of finding the lowest
energy configuration of p point charges on a conducting sphere, originated with
Thomson’s plum pudding model of the atomic nucleus. This problem is represen-
tative of an important class of problems in physics and chemistry that determine
a structure with respect to atomic positions.

Potential energy for p points (xi, yi, zi) is defined as

f(x,y, z) =
∑p−1
i=1

∑p
j=i+1

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)− 1
2

subject to :
x2
i + y2

i + z2
i = 1, i = 1, ..., p

(−1,−1,−1) ≤ (xi, yi, zi) ≤ (1, 1, 1)

(3)

This problem has a lot of local minima, whose number increases exponentially
with p. For our experiments p = 25[13].

Shape Optimization of a Cam

The problem consists of maximizing the arc of the valve opening for one rotation
of a convex cam with constraints on the curvature and on the radius of the cam.
The function to optimize is:

f(r) = πr2
v

(
1
p

∑p
i=1 ri

)
subject to :

2ri−1ṙi+1ċos(2π/5(p+ 1)) ≤ ri(ri−1 + ri+1), i = 0, ..., p+ 1
r−1 = r0 = rmin, rp+1 = rmax, rp+2 = rp

− α ≤
(

ri+1−ri
2π/5(p+1)

)
≤ α

(4)

rmin = 1.0, rmax = 2.0, rv = 1.0 and α = 1.5[13].
We assume that the shape of the cam is circular over an angle of 6/5π of its

circumference, with radius rmin. The design variables ri, i = 1, ..., p, represent
the radius of the cam at equally spaced angles distributed over an angle of 2/5π.



Crossover Operator Effect in Function Optimization with Constraints 191

Table 2. Results for the test problems. AF: Averaged fitness of the best individual
on the 10 experiments; SDF: Standard deviation of AF; AG: Averaged number of
generations; SDG: Standard deviation of AG; BF: Best fitness; BG: Generation when
the best individual was achieved.

NLP with linear constraints
Crossover f1 f2 f3

AF SDF AG SDG BF BG AF SDF AG SDG BF BG AF SDF AG SDG BF BG
Conf. Int. -210.82 2.17 15.8 0.63 -213.00 18 -47.66 0.00 338 48.51 -47.66 390 -4.48 0.01 5.8 0.63 -4.51 8
BLX-α -209.13 4.13 60.4 46.18 -212.94 130 -47.65 0.01 321.6 22.91 -47. 66 334 -4.50 0.02 23.2 4.23 -4.51 12
Discrete -204.05 2.35 54.6 21.97 -207.95 76 -47.65 0.02 378 16.22 -47.66 382 -4.47 0.01 24.6 2.36 -4.50 28
Arithmetic -185.01 8.73 32.8 14.80 -203.34 20 -47.43 0.14 271.4 28.77 -47.27 226 -4.42 0.04 24.2 1.85 -4.49 24
Ext. Fuz. -198.01 6.04 48.6 12.31 -205.58 54 -47.65 0.01 316.4 12.18 -47.66 318 -4 .49 0.02 17.4 7.26 -4.51 12
Logical -183.40 8.59 19 2.56 -198.08 20 -47.60 0.06 235.8 99.07 -47.66 292 -4.48 0.0 2 25 2.56 -4.50 28

NLP with non-liner constraints
Crossover Sphere Cam

AF SDF BF BG AF SDF BF BG
Conf. Int. 281.69 2.38 279.21 2990 3.97 0.25 4.35 5000
BLX-α 280.50 0.82 279.34 3000 2.94 0.31 3.35 5000
Discrete 310.49 4.30 303.32 2980 3.96 0.21 4.40 5000
Arithmetic 328.73 5.69 322.06 2.930 4.67 0.02 4.69 5000
Ext. Fuz. 288.26 1.36 285.72 3000 3.47 0.99 4.28 5000
Logical 321.56 4.85 314.02 2770 3.73 0.13 3.86 4990

4.3 Setup of the RCGA

We will have a population of 100 individuals, with a crossover probability of
pc = 0.6, a mutation probability of pg = 0.005, and a tournament selection
method with elitism. As mutation operator we will use uniform mutation as its
versatility makes it suitable for a wide range of problems. For every problem we
made ten experiments using the library of evolutionary computation jclec.

For the problems with linear constraints the stop criterion establishes a
threshold of minimum improvement in the averaged fitness during a predefined
number of generations. For f1 we will use a threshold of 0.005 in 5 generations,
for f2 0.001 in 15 generations, and for f3 0.05 in 15 generations. These values of
the threshold reflect the different complexities of the problems.

For the problems with non-linear constraints the stop criterion is a fixed
number of generations, 2000 for the problems of electron distribution and 5000
for the shape optimization of a cam.

5 Results

Table 2 shows the results obtained for the test problems. For f1 function the
crossover based on confidence intervals achieves the best results and converges
faster than the other crossovers. For f2 function all crossovers achieve compar-
ative results, with an AF slightly better of the crossover based on confidence
intervals. For f3 the results are also very similar, BLX-α achieves the best value
of AF, but the crossover based on confidence intervals converges faster. BLX-α,
extended fuzzy and based on confidence intervals crossovers reach the optimum
value in one of their experiments.

For the electron distribution problem, BLX-α and confidence interval based
crossover achieve similar results, the former has a slightly better AF and the
latter a slightly better BG. For the shape optimization of a cam problem BLX-α
obtains the worst results, arithmetic crossover obtains the best results, followed
by the crossover based on confidence intervals.



192 D. Ortiz-Boyer, C. Hervás-Mart́ınez, and N. Garćıa-Pedrajas

(a)

  
  

   
I i

L

a i b iC I LL i

Di

C I ULi

I i
CI

C I Mi

β i
f

I i
R

β i
s

-215

-210

-205

-200

-195

-190

-185

-180

-175

0 20 40 60 80 100 120

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
Conf. Int.

BLX- 
Discrete

Arithmetic
Extended Fuzzy

Logical

(b)

(c)

-47.5

-47

-46.5

-46

-45.5

-45

0 50 100 150 200 250 300 350 400

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
Conf. Int.

BLX- 
Discrete

Arithmetic
Extended Fuzzy

Logical

-4.55

-4.5

-4.45

-4.4

-4.35

-4.3

-4.25

0 5 10 15 20 25

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
Conf. Int.

BLX- 
Discrete

Arithmetic
Extended Fuzzy

Logical

(d)

(e)
280

290

300

310

320

330

340

350

0 500 1000 1500 2000

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
Conf. Int.

BLX- 
Discrete

Arithmetic
Extended Fuzzy

Logical

-8

-6

-4

-2

0

2

4

6

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v
e
r
a
g
e
 
f
i
t
n
e
s
s
 
o
f
 
t
h
e
 
b
e
s
t
 
i
n
d
i
v
i
d
u
a
l
 
i
n
 
1
0
 
r
u
n
s

Generation

α
Conf. Int.

BLX- 
Discrete

Arithmetic
Extended Fuzzy

Logical

(f)

Fig. 1. (a) Graphic representation of the crossover based on confidence intervals; (b)
Average fitness of best individuals in 10 runs for f1; ; (c) Idem for f2; (d) Idem for f3;
(e) Idem for electron distribution problem; (f) Idem for shape optimization of a cam.

Figures 1bcd show the convergence of the crossovers for the f1, f2 and f3
functions. The figures show clearly that the confidence interval based crossover
converges faster than the other crossovers, specially for f2 and f3 functions.
Figures 1e and 1f show the same effect for the two problems with non-linear
constraints. It is interesting to note that of the analyzed crossovers the crossover
based on confidence intervals is the most robust, although it could be outper-
formed in some problems.

6 Conclusions

In this work we have shown the influence that the crossover operator has over a
problem of optimization with linear and non-linear constraints. We have proved



Crossover Operator Effect in Function Optimization with Constraints 193

that the crossover based on confidence intervals is the most robust. That result
shows that the dynamic balance between exploration and exploitation of this
operator is suitable for this kind of problems.

BLX-α crossover, whose performance in optimization problems without con-
straints is very good, fails in problems with non-linear constraints. This behavior
gives us a hint of its possible vulnerability in this environment.

Our future research work is centered in deepening the study of the crossover
operators adding new test problems, and considering a larger number of cross-
overs. Also, the relation between mutation and crossover operators must be settle
as they are closely related.

References

1. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms:
Operators and tools for behavioural analysis. Artificial Inteligence Review (1998)
265–319 Kluwer Academic Publisherr. Printed in Netherlands.

2. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained param-
eter optimization problems. Evolutionary Computation 4 (1996) 1–32

3. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization. Evolutionary Computation 7 (1999) 19–
44

4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York (1992)

5. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-
shemata. In Whitley, L.D., ed.: Foundation of Genetic Algorithms 2, San Mateo,
Morgan Kaufmann (1993) 187C3.3.7:1–C3.3.7:8.–202

6. Herrera, F., Herrera-Viedma, E., Lozano, E., Verdegay, J.L.: Fuzzy tools to improve
genetic algorithms. In: Second European Congress on Intelligent Techniques and
Soft Computing. (1994) 1532–1539

7. Mühlebein, H., Schlierkamp-Voosen, D.: Predictive models for breeder genetic
algorithm i. continuos parameter optimization. Evolutionary Computation (1993)
25–49

8. Mizumoto, M.: Pictorial representations of fuzzy connectives. part i: Cases of t-
norms, t-conorms and averaging operators. Fuzzy Sets Systems 31 (1989) 217–242

9. Herrera, F., Lozano, M., Verdegay, J.L.: Fuzzy connectives based crossover op-
erators to model genetic algorithms population diversity. Fuzzy Sets Systems 92
(1997) 21–30

10. Herrera, F., Lozano, M.: Gradual distributed real-coded genetic algorithms. IEEE
Transactions on Evolutionary Computation 4 (2000) 43–63

11. Voigt, H.M., Mühlenbein, H., Cvetkovic, D.: Fuzzy recombination for the breeder
genetic algorithms. In Eshelman, L., ed.: The 6th International Conference Genetic
Algorithms, San Mateo, CA, Morgan Kaufmann (1995) 104–111

12. Hervás, C., Ortiz, D.: Operadores de cruce basados en estad́ısticos de localización
para algoritmos genéticos con codificación real. In Alba, E., Fernandez, F., Gomez,
J.A., Herrera, F., Hidalgo, J.I., Lanchares, J., Merelo, J.J., Sánchez, J.M., eds.:
Primer Congreso Español De Algoritmos Evolutivos y Bioinspirados (AEB’02),
Mérida, Spain (2002) 1–8

13. Dolan, E.D., More, J.J.: Benchmarking optimization software with cops. Technical
Report ANL/MCS-TM-246, Argonne National Laboratory (2000)



Reducing Random Fluctuations
in Mutative Self-adaptation

Thomas Philip Runarsson

Science Institute, University of Iceland
tpr@hi.is

Abstract. A simple method of reducing random fluctuations experi-
enced in step-size control under mutative self-adaptation is discussed.
The approach taken does not require collective learning from the popu-
lation, i.e. no recombination. It also does not require knowledge about the
instantiations of the actual random mutation performed on the object
variables. The method presented may be interpreted as an exponential
recency-weighted average of trial strategy parameters sampled by a lin-
eage.

1 Introduction

The paper discusses a method of reducing mean step-size (σ) fluctuations un-
der mutative self-adaptation. Any proposed method capable of reducing these
fluctuations will contribute to improved performance [3, p. 325]. One means of
achieving this goal is by using collective learning based on the current pop-
ulation, that is by using recombination in the strategy parameter space. The
method presented relates to this technique, but by using an exponential recency-
weighted average of trial strategy parameters sampled via the lineage, not by
the population. Alternatively, a more sophisticated derandomized approach to
self-adaptation [4] could be employed. The method presented here is also related
to this technique, but does not require knowledge about the realized steps (z),

z(g+1)
ι = σ(g+1)

ι N(0, 1) (1)

x(g+1)
ι = x

(g)
r;λ + z(g+1)

ι

for the given step-size variation σ
(g+1)
ι . Here x denotes the object variable and

index r;λ represents the individual assigned the rank r (the rth best out of λ),
at any given discrete generation (g).

Reductions in step-size fluctuations are especially important in the case where
individual step sizes are used, i.e. each object variable has its own corresponding
mean step-size. For simple evolution strategies with small populations the self-
adaptation, of individual step sizes, will often fail [5]. Another important domain
of application are noisy environments. For example, the fitness function may be
noisy [2], or simply the ranking itself may be noisy [7].

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 194–203, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Reducing Random Fluctuations in Mutative Self-adaptation 195

The work presented is motivated by the need for a simple and efficient parallel
implementation of evolutionary algorithms using mutative self-adaptation. What
is implied by a more efficient implementation is that the communication between
individuals in a population should be minimal. The paper is organized as follows.
In section 2 a short overview will be given on mutative step-size self-adaptation.
This is followed by a section describing the proposed technique for reducing
random fluctuations in mutative self-adaptation. An experimental study is then
presented in section 4, in order to evaluate the technique empirically. Finally, a
discussion and some conclusions are given in section 5.

2 Mutative Step-Size Self-adaptation

In mutative step-size self-adaptation the mutation strength is randomly changed.
It is only dependent on the parent’s mutation strength, the parent step-size
multiplied by a random number. This random number is commonly log-normally
distributed. Other distributions are equally plausible [2,4] and the techniques
described in the following section will still be applicable.

The isotropic mutative self-adaptation for a (µ, λ) evolution strategy (σES),
using the log-normal update rule, is as follows [8],

ηι = σ
(g)
r;λ exp(N(0, τ2

o )), (2)

x(g+1)
ι = x

(g)
r;λ +N(0, η2

ι ), ι = 1, . . . , λ

where the parent is randomly sampled, r ∈ [1, µ], anew for each ι, τo � c(µ,λ)/
√
n

and the step size is updated in the following discrete generation by setting
σ

(g+1)
r;λ = ηr;λ. Similarly, the non-isotropic mutative self-adaptation rule is [8],

ηι,j = σ
(g)
(r;λ),j exp

(
N(0, τ ′2) +Nj(0, τ2)

)
, (3)

x
(g+1)
ι,j = x

(g)
(r;λ),j +Nj(0, η2

ι,j), ι = 1, . . . , λ, j = 1, . . . , n

where τ ′ = ϕ/
√

2n and τ = ϕ/
√

2
√
n. The step-size is updated as before by

setting σ(g+1)
r;λ = ηr;λ.

The primary aim of the step-size control is to tune the search distribution
so that maximal progress in maintained. For this some basic conditions for
achieving optimal progress must be satisfied. The first lesson in self-adaptation
is taken from the 1/5-success rule [6, p. 367]. The rule’s derivation is based on
the probability we that the offspring is better than the parent. This probability
is calculated for the case where the optimal standard deviation is used ŵe, from
which it is then determined that the number of trials must be greater than
or equal to 1/ŵe if the parent using the optimal step-size is to be successful.
Founded on the sphere and corridor models, this is the origin of the 1/5 value.

In a mutative step-size control, such as the one given by (2), there is no
single optimal standard deviation being tested, but rather a series of trial step



196 Thomas Philip Runarsson

sizes ηι, ι = 1, . . . , λ/µ centered1 around the parent step size σr;λ. Consequently,
the number of trials may need to be greater than that specified by the 1/5-
success rule. If enough trial steps for success are generated near the optimal
standard deviation then this trial step-size will be inherited via the corresponding
offspring. This offspring will necessarily also be the most likely to achieve the
greatest progress and hence be the fittest. The fluctuations on σr;λ (the trial
standard deviations ηι) and consequently also on the optimal mutation strength,
will degrade the performance of the ES. The theoretical maximal progress rate
is impossible to obtain. Any reduction of this fluctuation will therefore improve
performance [3, p. 315]. If random fluctuations are not reduced, then a larger
number of trials must be used (the number of offspring generated per parent)
in order to guarantee successful mutative self-adaptation2. This may especially
be the case for when the number of free strategy parameters increases, as in the
non-isotropic case.

3 Reducing Random Fluctuations

Random fluctuations are reduced for the strategy-parameters, generated by the
mutative rules (2) or (3), by letting the following weighted average be inherited
to the next generation,

σ
(g+1)
ι,j = σ

(g)
(r;λ),j + χ

(
η

(g+1)
ι,j − σ(g)

(r;λ),j

)
, j = 1, . . . , nσ (4)

where nσ = 1 or nσ = n respectively. By considering the (1, λ) strategy, one
notices that this is an exponential recency-weighted average for a given lineage,

σ
(g+1)
(1;λ),j = (1− χ)g+1σ

(0)
(1;λ),j +

g+1∑
i=1

χ(1− χ)g+1−iη(i)
(1;λ),j j = 1, . . . , nσ (5)

since (1 − χ)g+1 +
∑g+1
i=1 χ(1 − χ)g+1−i = 1, and when (1 − χ) is less than 1,

the weight decreases exponentially according to the exponent of (1− χ). When
χ = 1 the method is equivalent to the canonical approach presented in the
previous section. As the average number of trials generated increases (λ/µ) the
more likely it will become that the optimal step-size is generated and successful.
In this case a value of χ closer to 1 is reasonable. However, if the generated
step-size is only an approximation of the optimal one, then a value of χ around
0.2 is more appropriate.

This averaging has the effect of reducing the step-size variations passed on
between generations although the variation within a generation remains the
same. If one would like to retain the same variation between generations a larger
learning rate must be used. That is E

[
exp

(
N(0, τ2)

)]
should be the same as

1 The expected median is σr;λ.
2 Some algorithms force a lower bound on the step-size to avoid search stagnation, at

this point the mutative self-adaptation is ineffective.



Reducing Random Fluctuations in Mutative Self-adaptation 197

E
[
1 + χ(exp

(
N(0, τ̄2)

)− 1)
]
. For the isotropic mutation the corrected learning

rate would then be,

τ̄2
o = 2 ln

(
1
χ

(
exp

(
τ2
o

2

)
− (1− χ)

))
(6)

and so if χ = 1 then τ̄o = τo. Similarly, for the non-isotropic mutation,

ϕ̄2 = 2
υ ln

(
1
χ

(
exp

(
ϕ2υ

2

)
− (1− χ)

))
(7)

where υ = 1
2n + 1

2
√
n , and for χ = 1 then ϕ = ϕ̄.

The new update rules are equivalent to that of (2) and (3), with the corrected
learning rates (6) and (7), and the inclusion of (4). For example, the new isotropic
mutative self-adaptive rules becomes,

ηι = σ
(g)
r;λ exp

(
N(0, τ̄2

o )
)

x
(g+1)
ι,j = x

(g)
(r;λ),j +Nj(0, η2

ι ), j = 1, . . . , n

σ(g+1)
ι = σ

(g)
r;λ + χ

(
ηι − σ(g)

r;λ

)
, ι = 1, . . . , λ. (8)

where 0 < χ ≤ 1 and r ∈ [1, µ].
At this point it may appear more intuitive, given the multiplicative nature

of the mutative self-adaptation, to use geometric averaging. In this case the
geometrical equivalent of (4) is,

σ
(g+1)
ι,j =

(
σ

(g)
(r;λ),j

)(1−χ)(
η

(g+1)
ι,j

)χ
, j = 1, . . . , nσ (9)

and the learning rates may be simply corrected by setting τ̄ = τ/χ or ϕ̄ = ϕ/χ.
This is again a weighted average over the entire lineage. The same technique is
used by rescaled mutations [6, p. 197], but with some subtle differences. The aim
here is to reduce random fluctuations by averaging. The intention of rescaled
mutation is, however, to produce larger σ changes which should result in a more
reliable detection of the direction of change [2] for noisy fitness functions. The
rescaled mutations use a variable κσ ≡ 1/χ and scale up the trial mutation
strength by a factor k ≈ √n during mutation. This will not be done here.

In a noisy environment it may be necessary to reduce random fluctuations
for the estimated object variables. This can be done in an equivalent manner to
that of the strategy parameters in (4). The inherited object variables are then,

xι,j = x
(g)
(r;λ),j +Nj(0, η2

ι ) (10)

x
(g+1)
ι,j = x

(g)
(r;λ),j + χ

(
xι,j − x(g)

(r;λ),j

)
(11)

where the fitness is computed based on object vector xι in (10). Alternatively,
one may view this as some form of genetic repair [3] based on the lineage, not
on the population.



198 Thomas Philip Runarsson

(1, 5)σ/σ̄ES
(1, 10)σ/σ̄ES
(1, 100)σ/σ̄ES

number of function evaluations × 1
10

m
ea

n
be

st
fu

nc
ti

on
va

lu
e

10

10

10

10

10

10

10

10

5

0

−5

−10

−15

−20

−25

−30

200 600400 10008000

Fig. 1. Noiseless sphere model experiment using the isotropic mutation. The dark lines
correspond to the new scheme σ̄ES (χ = 0.2) and the gray lines to the canonical σES.
The sub-figure shows the first few generation in linear scale.

4 Experimental Studies

In this section the behavior of the proposed approach will be examined for the
sphere model,

min f(x) =
n∑
k=1

x2
k (12)

where n = 30, and the noisy sphere model [2],

max g(x) = 1−
n∑
k=1

x2
k +N(0, σ2

ε ) (13)

where n = 10. Although these models are simple, they do serve the present
purpose of verifying the technique.

4.1 Noiseless Sphere Model

Isotropic Mutation. The first experiment aims to examine whether the canon-
ical (1, λ)σES using the isotropic mutative self-adaptive rule, (2) or (8) for χ = 1,
can be improved by setting χ to a smaller value, say χ = 0.2. The runs using



Reducing Random Fluctuations in Mutative Self-adaptation 199

(1, 5)σ̂/σ̄ES
(1, 10)σ̂/σ̄ES
(1, 100)σ̂/σ̄ES

number of function evaluations × 1
10

m
ea

n
be

st
fu

nc
ti

on
va

lu
e

10

10

10

10

10

10

10

10

5

0

0

−5

−10

−15

−20

−25

−30

200 600400 1000800

Fig. 2. Noiseless sphere model experiment using the isotropic mutation. The dark lines
correspond to the weighted average σ̄ES (χ = 0.3) and the gray lines to the geometrical
average σ̂ES (χ = 0.5). The sub-figure shows the first few generation in linear scale.

the averaging of σ according to (4) are denoted by σ̄. The initial step-size σ(0)

is 2/
√

12 and the object variables are randomly initialized in [−1, 1].
A total of 1000 independent runs are performed and the average best function

value versus number of function evaluations plotted in figure 1, for λ = 5, 10,
and 100. For χ = 0.2 there is a performance enhancement for the (1, 5)σ̄ES and
(1, 10)σ̄ES strategies. However, as the number of trials is increased to 100, the
canonical approach (1, 100)σES (or (1, 100)σ̄ES with χ = 1) is better. This is as
predicted, the greater the number of trials performed the likelier it becomes that
the trial mutation created is close the optimal. As a consequence more weight
should be put on this estimate, that is χ should be closer to 1.

Notice that the performance of the (1, 10) is better than that of the (1, 5)
strategy3 in the canonical case, but this is not the case when the random
fluctuations have been reduced by setting χ = 0.2.

The same experiment is again repeated and this time the arithmetical style
averaging of (4) is compared with the geometrical style averaging of (9). This
version is denoted by (1, λ)σ̂ES. In this experiment an attempt is made to
optimize χ. It is found that in the case of σ̄ES the performance is best and

3 Theoretically, for the sphere model, optimal progress is obtained when λ ≈ 5 and
the mutation strength is optimal.



200 Thomas Philip Runarsson

10

10

10

10

10

10

10

10

5

0

−5

−10

−15

−20

−25

−30

200 600400 10008000

(1, 100)σES
(1, 100)σ̂ES (χ = 0.4)

(1, 100)σ̄ES (χ = 0.2)

(10/10(a), 100)σES
(10/10(i), 100)σES

(1, 25)σ̄ES (χ = 0.2)

number of function evaluations × 1
100

m
ea

n
be

st
fu

nc
ti

on
va

lu
e

Fig. 3. Noiseless sphere model experiment using the non-isotropic mutation. The sub-
figure shows the first few generation in linear scale. The legend lists the different
strategies in order from worst to best.

similar in the range 0.2 < χ < 0.4. For the σ̂ES the best performance is in
the range 0.4 < χ < 0.6. The σ̄ES (χ = 0.3) and σ̂ES (χ = 0.5) are therefore
compared. The average of 1000 independent runs are plotted in figure 2, where
one can see that, for the noiseless sphere model, the σ̄ES is slightly better.

Non-isotropic Mutation. In the second experiment the first experiment is
repeated using the non-isotropic mutation with ϕ = 1. Again 1000 independent
runs are performed and the result plotted in figure 3. This time the mutative self-
adaptation fails for the canonical (1, 100)σES – the search stagnates. In order to
avoid this problem two new strategies are introduced, both using recombination
in the strategy parameter space. The first one uses intermediate recombination,

ηι,j =
( 1
µ

µ∑
k=1

σ
(g)
(k;λ),j

)
exp

(
N(0, τ ′2) +Nj(0, τ2)

)
(14)

and is denoted by (µ/µ(i), λ). The non-isotropic mutation is included on the
right-hand-side of (14). The second is an arithmetical recombination, including
the mutation,

ηι,j = 1
2

(
σ

(g)
(r;λ),j + σ

(g)
(k;λ),j

)
exp

(
N(0, τ ′2) +Nj(0, τ2)

)
(15)



Reducing Random Fluctuations in Mutative Self-adaptation 201

0 200 400 600 800 1000
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

(10/10(i,d), 100)σES

(10/10(a,d), 100)σES

(1, 10)σ̄, x̄ES (χ = 0.2)
(10/10(i,i), 100)σES

(10/10(a,i), 100)σES

number of function evaluations × 1
100

m
ea

n
be

st
fu

nc
ti

on
va

lu
e

Fig. 4. Noiseless sphere model using non-isotropic mutation and recombination in both
strategy and object parameter space. The versions listed in the legend are ordered based
on performance, from worst to best.

denoted (µ/µ(a), λ), where k ∈ [1, µ] is sampled randomly and anew for each j.
By using recombination on the strategy parameters, search stagnation is avoided.
It is also noticed that arithmetical recombination performs better than interme-
diate recombination. However, in terms of the number of function evaluation
needed, the newly proposed scheme still performs best. For the (1, 100) strategy
the search does not stagnate for the case when χ = 0.2. In order to achieve faster
progress the number of trial is reduced down to a (1, 25) strategy, but going down
to (1, 10) will result in failure4. Clearly a greater number of trials will be needed
for success as the number of free parameters increases. An attempt to use the
geometrical averaging of (9) resulted in faster initial progress and then search
stagnation. It seems that arithmetical averaging has a tendency towards larger
mutation strengths than geometrical averaging.

The final experiment introduces recombination in the object parameter space.
Two versions are tested. The first is again an intermediate recombination and
mutation,

x
(g+1)
ι,j =

1
µ

µ∑
k=1

x
(g)
(k;λ),j +Nj(0, η2

ι,j) (16)

4 Unpredictable behavior is observed, where the step-size may keep growing in size.



202 Thomas Philip Runarsson

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000
0

1

2

3

4

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000
0

1

2

3

4
σε = 1.0

σε = 1.0

σε = 0.3

σε = 0.3

σε = 0.1

σε = 0.1

generation #

generation #

generation #

generation #
(1, 60)σ̄ES

(1, 60)σ̄ES

(1, 60)σES

(1, 60)σES

<
R
>

<
R
>

<
σ
∗
>

<
σ
∗
>

Fig. 5. Noisy sphere model experiments. The plots on the left are from the new
technique σ̄ES and on the right the canonical approach σES.

denoted here by (µ/µ(,i), λ) and the second dominant recombination and muta-
tion,

x
(g+1)
ι,j = x

(g)
(k;λ),j +Nj(0, η2

ι,j) (17)

where k ∈ [1, µ] is sampled randomly and anew for each j. This version is
denoted by (µ/µ(,d), λ). The recombinations in object parameter space are used
in conjunction with recombination in strategy parameter space resulting in four
different strategies: (µ/µ(i,d), λ), (µ/µ(a,d), λ), (µ/µ(i,i), λ), and (µ/µ(a,i), λ). In
order to make a fair comparison, the new technique is allowed to use the weighted
average for the object variables as defined by (11). It is interesting to observe
that now it becomes possible to switch to a (1, 10) scheme without any problems.
Using geometrical averaging (9) will also result in search stagnation for this
experiment and is therefore omitted. The results, averaged over 1000 independent
runs are presented in figure 4. The best results are, nevertheless, achieved using
intermediate recombination on the object variables.

4.2 Noisy Sphere Model

The final experiment is based on simulations performed in [2]. This involves
the noisy sphere model (13), where the object parameters are initialized in
[− 1√

10
, 1√

10
], and an isotropic mutation with σ(0) = 1 and τo = 0.7 is used.



Reducing Random Fluctuations in Mutative Self-adaptation 203

In this experiment the value of χ is varied as a function of the noise level σε in
(13). The noise levels σε are 0.1, 0.3, and 1.0 and the corresponding values of χ
chosen are 0.1, 0.06, and 0.02. For the three different noise levels 300 independent
runs are performed using a (1, 60) strategy. The new method uses the averaging
(11) for the object variables.

Instead of plotting mean function values, the mean distance to the optimum,
R = ‖x‖, is depicted versus the generation number. Additionally, the mean
normalized step-size, σ∗ = nσ/R, is plotted against the generation number.
The behavior of the new scheme is similar to that of the rescaled mutations
technique in [2], as seen in figure 5. The canonical approach on the other hand
has difficulties coping with the noisy function.

5 Discussion and Conclusion

The update rule of (4) is not unlike the update rules used in reinforcement
learning, where χ is a step-size parameter. When using a constant χ more weight
is put on the strategy parameters used recently rather than long-past ones.
This makes sense when tracking the nonstationary problem of self-adaptation.
Furthermore, the greater the number of trials generated (≈ λ/µ) the more
reliable the selected strategy parameters become.

For noisy functions smaller χ values were used. At the later stage of search,
say after generation g′, the problem of self-adaptation becomes essentially sta-
tionary. In this case it may be reasonable to set χ = 1/(g − g′), and so all
estimates after g′ are equally weighted. That is, (4) becomes an incremental
implementation of a simple-average.

A technique for reducing of random fluctuations in mutative self-adaptation
has been presented and some experimental results given. Self-adaptive rules using
individual step sizes commonly fail. The proposed method may be a simple means
of alleviating this problem.

References

1. H.-G. Beyer. Toward a theory of evolution strategies: self-adaptation. Evolutionary
Computation, 3(3):311–347, 1996.

2. H.-G. Beyer. Evolutionary algorithms in noisy environments: theoretical issues and
guidelines for practice. Computer Methods in Applied Mechanics and Engineering,
186(2–4):239–267, 2000.

3. H.-G. Beyer. The Theory of Evolution Strategies. Springer-Verlag, Berlin, 2001.
4. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in

evolution stategies. Evolutionary Computation, 2(9):159–195, 2001.
5. A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized approach to self-

adaptation of evolution strategies. Evolutionary Computation, 2(4):369–380, 1995.
6. I. Rechenberg. Evolutionstrategie ’94. Frommann-Holzboog, Stuttgart, 1994.
7. T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary

optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294,
September 2000.

8. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New-York, 1995.



On Weight-Biased Mutation for Graph Problems

Günther R. Raidl1, Gabriele Kodydek1, and Bryant A. Julstrom2

1 Vienna University of Technology, Vienna, Austria
2 St. Cloud State University, St. Cloud, MN, USA

{raidl,kodydek}@ads.tuwien.ac.at, julstrom@eeyore.stcloudstate.edu

Abstract. Many graph problems seek subgraphs of minimum weight
that satisfy the problems’ constraints. Examples include the degree-
constrained minimum spanning tree and traveling salesman problems.
Low-weight edges predominate in optimal solutions to these problems,
and the performance of evolutionary algorithms for them is often im-
proved by biasing their operators to favor these edges. From the distri-
butions of edges’ ranks in optimal solutions to these two problems, we
identify probabilities for edges that minimize the average expected time
until mutation chooses them for inclusion in a solution. On instances of
the degree-constrained minimum spanning tree problem, an evolution-
ary algorithm performs better with this operator than with alternative
mutations. These results are not replicated on instances of the traveling
salesman problem, where the inclusion of one edge in a tour requires the
inclusion of another dependant edge.

1 Introduction

Given a weighted, undirected graph, many graph problems seek a subset S of the
graph’s edges that satisfies a set of constraints and has minimum total weight.
These include the familiar traveling salesman problem (TSP), in which the edges
in S form a Hamiltonian tour; the degree-constrained minimum spanning tree
problem (d-MSTP) [6,7], in which S is a spanning tree with degree no greater
than a bound d; the leaf-constrained spanning tree problem [1], in which S is a
spanning tree with at least L leaves; the biconnectivity augmentation problem
[8], in which S augments a spanning tree so that the resulting network is 2-
connected; and many others.

Some of these problems, such as the unconstrained minimum spanning tree
problem and the identification of the shortest path between two vertices, can
be solved to optimality in polynomial time. Most, including those listed above,
are NP-hard. It is not likely that fast algorithms exist to solve these problems
exactly, so we turn to heuristics, including evolutionary algorithms (EAs).

It is not surprising—and we verify below—that low-weight edges predominate
in optimal solutions to such problems. This suggests that in EAs, crossover and
mutation, which build representations of novel solutions from existing represen-
tations, should be biased so as to favor edges of lower weight. Several researchers
have investigated such schemes [3,4,9,10].

This work is supported by the Austrian Science Fund (FWF), grant P13602–INF.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 204–213, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



On Weight-Biased Mutation for Graph Problems 205

Among them, Julstrom and Raidl examined weight-biased crossover opera-
tors in EAs for the TSP and the d-MSTP [5]; favoring low-weight edges improved
the performance of these algorithms. We extend that inquiry to mutation and de-
rive probabilities for selecting edges to be incorporated into candidate solutions.
These probabilities are optimal in the sense that they minimize the expected
time to include edges of optimal solutions. For the d-MSTP, we compare a mu-
tation based on this analysis to four others. This theoretically approximately
optimal scheme increases the probability of finding optimal solutions and re-
duces the number of iterations usually used. Applied to the TSP, the advantages
of weight-biased approaches are generally smaller because mutation that intro-
duces one edge into a tour necessarily introduces a second as well.

2 Distribution of Edges in Optimal Solutions

It is reasonable that optimally low-weight trees, tours, and other structures in
weighted graphs should contain high proportions of low-weight edges. This sec-
tion confirms and quantifies this observation for the degree-constrained minimum
spanning tree and traveling salesman problems on complete graphs G = (V,E)
with n = |V | nodes and m = |E| = n · (n− 1)/2 edges. Let S be the set of edges
in a solution, so that |S| = n− 1 for the d-MSTP and |S| = n for the TSP.

We examine two kinds of instances of both problems. Euclidean instances
consist of distinct points chosen randomly in a square region of the plane; edge
weights are the Euclidean distances between each pair of points. Uniform in-
stances consist of edge weights chosen randomly and independently from a spec-
ified interval. 1 000 instances of each type were generated with n = 20, 50, and
100 nodes. For the d-MSTP, the degree bound d was set to three for the Euclidean
instances; note that for such instances there always exists an unconstrained mini-
mum spanning tree whose degree does not exceed five. On the uniform instances,
we consider d = 3 and d = 5.

All these instances were solved to optimality by an algorithm found in the
ABACUS branch-and-cut solver [11]. We assign each edge a rank r, 1 ≤ r ≤ m,
by sorting the edges of an instance according to increasing weights (ties are
broken randomly). Figure 1 plots the probabilities p(r) that an edge of rank r
appears in an optimal solution. Only the portions of the curves where p(r) is
significantly larger than zero are plotted.

Note that the sum of the probabilities p(r) is |S|:
m∑
r=1

p(r) = |S| . (1)

As predicted, the optimal solutions consist mostly of low-rank—i.e., short—
edges. Further, for each kind of problem and each fraction k ∈ (0, (n−1)/2], the
probability p(�k · n�) is approximately constant across all values of n� 1.

Table 1 illustrates this by listing, for each problem kind and size, the number
R of least-cost edges among which α = 50, 90, and 99 percent of the edges of an



206 Günther R. Raidl, Gabriele Kodydek, and Bryant A. Julstrom

0

20

40

60

80

100

20 40 60 80 100 120

p(
r)

  [
%

]

rank r of edge

3-MSTP/Euc., n=20
3-MSTP/uni., n=20
5-MSTP/uni., n=20

0

20

40

60

80

100

50 100 150 200 250 300

p(
r)

  [
%

]

rank r of edge

3-MSTP/Euc., n=50
3-MSTP/uni., n=50
5-MSTP/uni., n=50

0

20

40

60

80

100

0 100 200 300 400 500 600

p(
r)

  [
%

]

rank r of edge

3-MSTP/Euc., n=100
3-MSTP/uni., n=100
5-MSTP/uni., n=100

0

20

40

60

80

100

20 40 60 80 100 120

p(
r)

  [
%

]

rank r of edge

TSP/Euc., n=20
TSP/uni., n=20

0

20

40

60

80

100

50 100 150 200 250 300

p(
r)

  [
%

]

rank r of edge

TSP/Euc., n=50
TSP/uni., n=50

0

20

40

60

80

100

0 100 200 300 400 500 600

p(
r)

  [
%

]

rank r of edge

TSP/Euc., n=100
TSP/uni., n=100

Fig. 1. The probability that an edge appears in an optimal solution as a function of
its rank, shown for the 3-MSTP, the 5-MSTP, and the TSP on Euclidean and uniform
instances of size n = 20, 50, and 100.

Table 1. Numbers R of least-cost edges for each problem class and size n = 20, 50, 100
among which α = 50%, 90%, and 99% of optimal solutions’ edges are found and
corresponding fractions k = R/n.

3-MSTP/Euc. 3-MSTP/uni. 5-MSTP/uni. TSP/Euc. TSP/uni.
α \ n 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100
50% R 12 31 63 11 27 54 10 25 51 15 37 72 16 40 80

k 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.8 0.7 0.7 0.8 0.8 0.8
90% R 33 89 179 24 63 126 23 60 120 53 134 257 41 107 217

k 1.7 1.8 1.8 1.2 1.3 1.3 1.2 1.2 1.2 2.7 2.7 2.6 2.1 2.1 2.2
99% R 63 165 323 41 113 228 40 110 223 107 296 586 67 183 373

k 3.2 3.3 3.2 2.1 2.3 2.3 2.0 2.2 2.2 5.4 5.9 5.9 3.4 3.7 3.7

optimal solution are located, i.e., the smallest rank R for which the cumulated
probability

R∑
r=1

p(r) ≥ α · |S| . (2)

Table 1 also shows corresponding fractions k = R/n, which are quite independent
of n for each problem class and each α.

An effective heuristic mutation operator should introduce edges depending
on the probabilities with which they appear in optimal solutions. To do this, we
identify a closed-form expression pA(r) that approximates p(r).

Fig. 1 shows that p(r) decreases approximately exponentially with r, partic-
ularly in the Euclidean instances of the two problems. Thus we choose

pA(r) = ar with 0 < a < 1 . (3)



On Weight-Biased Mutation for Graph Problems 207

The base a should be chosen so that
m∑
r=1

pA(r) =
m∑
r=1

ar =
a− am+1

1− a = |S| . (4)

Since am+1 is negligible for problems of even moderate size, we ignore it to obtain

m∑
r=1

pA(r) ≈ a

1− a ⇒ a ≈ |S|
|S|+ 1

. (5)

Fig. 2(a) in Sect. 3.2 plots pA(r) = ar with a = |S|/(|S|+ 1) for the 3-MSTP
instances with 100 nodes. It approximates the empirical probabilities p(r) with
high accuracy; the mean square error is less than 0.076%. For the 100-node
Euclidean instances of the TSP, the mean square error is less than 0.014%. For
uniform instances, the error is slightly larger.

3 Optimal Edge-Selection Probabilities

In genetic algorithms, mutation is understood to (re)introduce into the popula-
tion novel or lost genetic material. In graph problems like the d-MSTP and the
TSP, the m =

(
n
2

)
edges of the graph comprise the pool from which this material

is drawn.
Purely random mutation chooses each edge to include in a solution according

to uniform probabilities; each edge may be chosen with probability 1/m. We
apply the analysis of Section 2 to identify non-uniform probabilities, associated
with the edges’ ranks, that are optimal in the following sense: Over all edges e∗

in an optimal solution S∗, the average expected number of edge selections until
e∗ is chosen is minimal.

Let q(r) be the probability that an edge-selection scheme chooses the edge
er whose rank is r. The expected number of selections until er is chosen for the
first time is

EX (er) = 1/q(r) . (6)

Let e∗ be an edge in an optimal solution S∗. The probability that e∗ has rank
r (1 ≤ r ≤ m) is p(r)/|S|, where p(r) is the probability that er appears in an
optimal solution. The expected number of edge selections until e∗ is chosen for
the first time is the weighted sum

EX (e∗) =
m∑
r=1

p(r)/|S|
q(r)

=
1
|S|

m∑
r=1

p(r)
q(r)

. (7)

Because
∑m
r=1 q(r) = 1, we can replace q(m) by 1−∑m−1

i=1 q(i) in (7) and write

EX (e∗) =
1
|S|

(
m−1∑
r=1

p(r)
q(r)

+
p(m)

1−∑m−1
i=1 q(i)

)
. (8)



208 Günther R. Raidl, Gabriele Kodydek, and Bryant A. Julstrom

To identify selection probabilities q(r) that minimize EX (e∗), we partially
differentiate EX (e∗) with respect to each q(r) and set these derivatives equal to
zero:

∂EX (e∗)
∂q(1)

=
1
|S|

(
− p(1)
q(1)2 +

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0

∂EX (e∗)
∂q(2)

=
1
|S|

(
− p(2)
q(2)2 +

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0

· · ·
∂EX (e∗)
∂q(m− 1)

=
1
|S|

(
− p(m− 1)
q(m− 1)2 +

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0 (9)

This system of m− 1 equations can be simplified to

p(1)
q(1)2 =

p(2)
q(2)2 = · · · = p(m− 1)

q(m− 1)2 =
p(m)

(1−∑m−1
i=1 q(i))2

=
p(m)
q(m)2 . (10)

Let ϕ = p(r)/q(r)2. Then

q(r) =

√
p(r)
ϕ

(11)

and since
m∑
i=1

q(i) = 1 =
1√
ϕ

m∑
i=1

√
p(i) , (12)

we conclude that

ϕ =

(
m∑
i=1

√
p(i)

)2

and q(r) =

√
p(r)∑m

i=1

√
p(i)

. (13)

3.1 EX (e∗) for Three Edge-Selection Strategies

The optimal edge-selection probabilities q(r) identified in (13), when substituted
into equation (7), yield the following average expected number of edge-selections
until an edge e∗ of an optimal solution is chosen:

EX ∗(e∗) =
1
|S|

m∑
r=1

p(r)√
p(r)

/∑m
i=1

√
p(i)

=
1
|S|

(
m∑
r=1

√
p(r)

)2

. (14)

We replace p(r) by the approximation pA(r) = ar to obtain

EX ∗(e∗) ≈ 1
|S|

(
m∑
r=1

√
ar

)2

=
1
|S|
(√

a− a(m+1)/2

1−√a
)2

. (15)



On Weight-Biased Mutation for Graph Problems 209

Since a(m+1)/2 is orders of magnitudes smaller than
√
a even for moderate prob-

lem sizes, we ignore it. Further, replacing a by |S|/(|S|+ 1) according to (5), we
obtain:

EX ∗(e∗) ≈ a

|S| (1−√a)2 =
1

(|S|+ 1)
(

1−
√

|S|
|S|+1

)2 = (16)

=
(√
|S|+

√
|S|+ 1

)2
. (17)

Thus, EX ∗(e∗) = O(|S|) = O(n).
Consider the same expected value when edges are selected according to uni-

form probabilities: for all r = 1, . . . ,m, qU (r) = 1/m. Since
∑m
r=1 p(r) = |S|,

EXU (e∗) =
1
|S|

m∑
r=1

p(r)
1/m

=
m

|S|
m∑
r=1

p(r) = m. (18)

Similarly, let edges’ probabilities be proportional to p(r): for all r = 1, . . . ,m,
qP (r) = p(r)/|S|. Then

EX P (e∗) =
1
|S|

m∑
r=1

p(r)
p(r)/|S| =

|S|
|S|

m∑
r=1

1 = m. (19)

For both, uniform and p(r)-proportional probabilities, EX (e∗) = m = O(n2),
while for the optimal probabilities, EX ∗(e∗) = O(n).

3.2 Approximately Optimal Edge-Selection Probabilities

Replacing p(r) by the approximation pA(r) = ar in (13) yields a closed-form
expression for the optimal edge-selection probabilities qA(r):

qA(r) =

√
pA(r)∑m

i=1

√
pA(i)

=
√
ar∑m

i=1

√
ai

=
√
ar

√
a−a(m+1)/2

1−√a
=

(1−√a) ar/2√
a− a(m+1)/2 (20)

Again, a(m+1)/2 
 √a, and we ignore it. Again, we replace a with |S|/(|S|+ 1)
according to (5). Thus:

qA(r) ≈ (1−√a) ar/2√
a

= a
r
2

(
1√
a
− 1
)

=
( |S|
|S|+ 1

) r
2
(√
|S|+ 1
|S| − 1

)
(21)

Fig. 2(b) plots the probabilities qA(r), qU (r), and qP (r) for instances of the
3-MSTP on n = 100 nodes.



210 Günther R. Raidl, Gabriele Kodydek, and Bryant A. Julstrom

0

20

40

60

80

100

0 100 200 300 400 500 600

p A
(r

) 
 [

%
]

rank r of edge

(a)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

q(
r)

  [
%

]

rank r of edge

(b) qA(r)
qP(r)
qU(r)

Fig. 2. (a) Approximation of p(r) by pA(r) = ar for the 3-MSTP on n = 100 nodes, and
(b) corresponding edge-selection probabilities qA(r) (approximately optimal), qP (r)
(proportional to pA(r)), and qU (r) (uniform).

4 Biasing Mutation for the d-MSTP

We consider an EA for the d-MSTP as described in [9]. Mutation is performed
by including a random new edge into a feasible solution and removing another
randomly chosen edge from the introduced cycle such that the degree constraint
is never violated. If a selected edge already appears in the current solution or
the degree constraint cannot be met, the selection is repeated. We apply the
following strategies for selecting the edge to be included.

UNIF: Each edge is randomly chosen with probability qU (r) = 1/m.

OPTEX: Edges are selected according to the approximately optimal selection
probabilities qA(r) with respect to EX (e∗).

To perform this edge-selection efficiently, we derive a random edge-rank R ∈
{1, 2, . . . ,m} from a uniformly distributed random number U ∈ [0, 1).

In order to ensure that R has the approximate probability density qA(r) of
(21), we use the inverse of the corresponding cumulative distribution function
F (r):

F (r) =
r∑
i=1

qA(i) ≈
r∑
i=1

a
i
2

(
1√
a
− 1
)

=
√
a− a(r+1)/2

1−√a
(

1√
a
− 1
)

=

= 1− ar/2 = 1−
( |S|
|S|+ 1

) r
2

. (22)

The inverse of F (r) is

r =
2 log(1− F (r))

log |S| − log(|S|+ 1)
. (23)

R can be calculated from U by setting F (r) = U in (23) and rounding:

R =
⌊

2 log(1− U)
log |S| − log(|S|+ 1)

⌋
mod m+ 1 . (24)

Finding the modulus and adding one ensures that R will be a valid edge rank.



On Weight-Biased Mutation for Graph Problems 211

PROPP: Each edge is selected with probability qP (r) = p(r)/|S| ≈ ar/|S|. As
with OPTEX, the implementation uses a uniform random number U transformed
by the inverse of the distribution function:

F (r) =
r∑
i=1

ai

|S| = 1−
( |S|
|S|+ 1

)r
. (25)

This yields

R =
⌊

log(1− U)
log |S| − log(|S|+ 1)

⌋
mod m+ 1 . (26)

Nβ: This edge-selection strategy is based on normal distributions as proposed
in [9]. The rank of a selected edge is

R = �|N · β · n|� mod m+ 1 , (27)

where N is a normally distributed random number with mean zero and standard
deviation one. β controls the biasing towards low-cost edges.

INVW: Each edge e ∈ E is selected according to probabilities inversely pro-
portional to the edge weights w(e). Such a technique was used in [3] for choosing
edges during recombination for the TSP.

5 Experiments on the d-MSTP

The five mutation operators were compared in a steady-state EA for the 3-MSTP
as described in [9]. The algorithm represents candidate solutions as sets of their
edges. Feasible initial solutions are created by a random spanning tree algorithm
based on Kruskal’s MST algorithm. A new feasible offspring is always derived
by performing edge-crossover and mutation. Edge-crossover is based on a ran-
dom spanning tree algorithm applied to the united edge-sets of two parents. In
contrast to [9], no heuristics are used during initialization and recombination.
Parents for crossover are selected in binary tournaments with replacement. Each
offspring replaces the worst solution in the population except when it duplicates
an existing solution.

In the experiments, we considered 50 randomly created Euclidean instances
of each size n = 50, 100, and 200. The population size was 2n, and the EA
terminated if an optimal solution (determined by branch-and-cut) had been
reached or the number of evaluations exceeded 5000n.

Runs were performed on each instance with each mutation. For normal-
distribution-based edge-selection Nβ , β was set to 0.75, 1, 1.5, 2, and 3. Table 2
shows, for each size n and each operator, the percentage of runs that identified
optimal solutions and the average number of evaluations in these runs. The best
values are printed in bold.



212 Günther R. Raidl, Gabriele Kodydek, and Bryant A. Julstrom

Table 2. Results of the EA for the 3-MSTP with each mutation on Euclidean instances
of size n = 50, 100, and 200: percentages of runs that found optimal solutions (%-hits)
and average numbers of evaluations of those runs in thousands (eval/1000).

n UNIF OPTEX PROPP N0.75 N1 N1.5 N2 N3 INVW
50 %-hits 98 100 100 48 68 94 100 98 98

eval/ 1000 54.0 11.7 16.9 40.9 25.0 10.6 15.0 11.4 20.4
100 %-hits 66 100 88 20 46 82 90 94 86

eval/ 1000 288.2 49.1 67.0 160.8 96.1 93.8 46.8 61.7 115.4
200 %-hits 8 96 78 6 46 64 76 66 46

eval/ 1000 887.5 198.7 246.1 452.3 382.0 223.9 216.9 195.4 618.6

OPTEX performed best on all three sizes; it found optimal solutions on nearly
all the instances, and its average numbers of evaluations are among the lowest.
Those mutations with lower numbers of evaluations exhibit significantly poorer
hit rates. UNIF needed on average the most evaluations, followed by INVW and
N0.75. Experiments on uniform instances showed similar tendencies.

6 Biased Mutation for the TSP

In comparison to the d-MSTP, incorporating biased edge-selection techniques
into mutation of an EA for the TSP is more difficult. A commonly used mutation
operator for the TSP acting on a permutation representation is inversion.

This operator can be modified to include a specific new edge selected by
one of the above strategies: We invert the substring beginning after the selected
edge’s first node and ending with the selected edge’s second node.

Note, however, that in addition to the selected edge, a second new edge is
implicitly included. This second edge depends on the first edge and the current
tour; it cannot be chosen according to the edge-selection strategy.

This side-effect strongly influences the idea of biased mutation and is ex-
pected to affect performance. Experiments with the TSP similar to those with
the d-MSTP did not show significant differences among the edge-selection meth-
ods.

7 Conclusions

The rank-based probabilities with which edges appear in optimal solutions of
Euclidean and uniform instances of the d-MSTP and the TSP were empirically
analyzed and approximated by an exponential function. We then derived proba-
bilities qA(r) for selecting edges to be incorporated into candidate solutions of an
EA during mutation such that the average expected number of edge-selections
until finding an edge of an optimal solution is minimized.

Using the degree-constrained minimum spanning tree problem, five different
edge-selection strategies for mutation were described and compared. With the
scheme using the approximately optimal probabilities qA(r), the EA identified
optimal solutions most often and with comparatively few iterations.



On Weight-Biased Mutation for Graph Problems 213

On the traveling salesman problem, however, mutation that introduces one
edge always introduces a second as well. While the first may be chosen according
to certain probabilities, the second depends on the first and on the current
tour. This side-effect overwhelms the differences between the various mutation
operators. This analysis nonetheless suggests that mutation that includes edges
according to probabilities derived in the proposed way might be effective in EAs
for graph problems in which the introduction of one edge does not require the
inclusion of others.

References

1. N. Deo and P. Micikevicius. A heuristic for a leaf constrained minimum spanning
tree problem. Congressus Numerantium, 141:61–72, 1999.

2. C. Fonseca, J.-H. Kim, and A. Smith, editors. Proceedings of the 2000 IEEE
Congress on Evolutionary Computation. IEEE Press, 2000.

3. J. J. Grefenstette. Incorporating problem specific knowledge into genetic algo-
rithms. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages
42–60. Morgan Kaufmann, 1987.

4. B. A. Julstrom. Very greedy crossover in a genetic algorithm for the Traveling
Salesman Problem. In K. M. George, J. H. Carroll, E. Deaton, D. Oppenheim,
and J. Hightower, editors, Proceedings of the 1995 ACM Symposium on Applied
Computing, pages 324–328. ACM Press, 1995.

5. B. A. Julstrom and G. R. Raidl. Weight-biased edge-crossover in evolutionary
algorithms for two graph problems. In G. Lamont, J. Carroll, H. Haddad, D. Mor-
ton, G. Papadopoulos, R. Sincovec, and A. Yfantis, editors, Proceedings of the 16th
ACM Symposium on Applied Computing, pages 321–326. ACM Press, 2001.

6. J. Knowles and D. Corne. A new evolutionary approach to the degree constrained
minimum spanning tree problem. IEEE Transactions on Evolutionary Computa-
tion, 4(2):125–134, 2000.

7. M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha. Comparison of algorithms
for the degree constrained minimum spanning tree. Technical report, CSIRO Math-
ematical and Information Sciences, Clayton, Australia, 1999.

8. I. Ljubic and J. Kratica. A genetic algorithm for the biconnectivity augmentation
problem. In Fonseca et al. [2], pages 89–96.

9. G. R. Raidl. An efficient evolutionary algorithm for the degree-constrained mini-
mum spanning tree problem. In Fonseca et al. [2], pages 104–111.

10. G. R. Raidl and C. Drexel. A predecessor coding in an evolutionary algorithm for
the capacitated minimum spanning tree problem. In C. Armstrong, editor, Late
Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference,
pages 309–316, Las Vegas, NV, 2000.

11. S. Thienel. ABACUS – A Branch-And-CUt System. PhD thesis, University of
Cologne, Cologne, Germany, 1995.



Self-adaptive Operator Scheduling
Using the Religion-Based EA

René Thomsen and Thiemo Krink

EVALife Group, Dept. of Computer Science, University of Aarhus, Bldg. 540
Ny Munkegade, DK-8000 Aarhus C, Denmark

{thomsen,krink}@daimi.au.dk

Abstract. The optimal choice of the variation operators mutation and
crossover and their parameters can be decisive for the performance of
evolutionary algorithms (EAs). Usually the type of the operators (such
as Gaussian mutation) remains the same during the entire run and the
probabilistic frequency of their application is determined by a constant
parameter, such as a fixed mutation rate. However, recent studies have
shown that the optimal usage of a variation operator changes during the
EA run. In this study, we combined the idea of self-adaptive mutation
operator scheduling with the Religion-Based EA (RBEA), which is an
agent model with spatially structured and variable sized subpopulations
(religions). In our new model (OSRBEA), we used a selection of different
operators, such that each operator type was applied within one specific
subpopulation only. Our results indicate that the optimal choice of oper-
ators is problem dependent, varies during the run, and can be handled by
our self-adaptive OSRBEA approach. Operator scheduling could clearly
improve the performance of the already very powerful RBEA and was
superior compared to a classic and other advanced EA approaches.

1 Introduction

Using evolutionary algorithms (EAs) entails the issue of setting various param-
eters, such as population size, mutation and crossover probabilities, as well as
choosing the right variation operators. Previous studies have shown that these
settings are dependent on the actual optimisation problem and the optimal set-
tings change during the run of the EA (see e.g. [1]).

Many authors have previously tried to tackle this problem. One possibility is
to use self-adaptation in which the EA parameters become a part of the genome
and are evolved during the evolutionary process (e.g. [2], [3], and [4]). Another
approach related to self-adaptation is to model the EA individuals as mobile
agents that can decide, which operator settings they prefer by interpreting their
spatial position in a n-dimensional world as operator parameter values [1]. The
idea in this approach is that individuals are attracted to good parameter settings
and can track and cluster around good settings if the optimal settings change
during the run.

The problem of choosing the most suitable variation operators is two-fold.
First, the most promising types of operators (e.g. n-point crossover, arithmetic

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 214–223, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Self-adaptive Operator Scheduling Using the Religion-Based EA 215

crossover, etc.) have to be found that can deal with the problem. Second, the
parameters of the operator (e.g. how often they are applied) are usually problem
dependent and change over time. For instance, uniform or n-point crossover
might be valuable in the beginning of the evolutionary process, but their ability
to create useful solutions gradually diminishes. Towards the end of the EA run
they often become obsolete, since there is only very little genetic variance left.

Lawrence Davis introduced a scheme that can deal with the problem of util-
ising the operators [5]. His idea was to adapt the operator probabilities based on
their observed performance during the run, i.e. reward operators for being suc-
cessful. Perhaps, the closest approach to our technique presented in this paper,
is the operator scheduling with variable sized subpopulations by Schlierkamp-
Voosen and Mühlenbein [6]. Their approach is to structure the population into
as many subpopulations as types of operators, such that each subpopulation
uses its own operator. The goal is that operators compete for control by shifting
subpopulation sizes, i.e. the most successful subpopulation (having the currently
best operator) gains individuals (resources) and can utilise its specific operator
when needed. The size of the subpopulations is determined globally by a qual-
ity and a gain criterion and updated every n-th generation. The subpopulation
model corresponds to a classic island or tagging model with no structure inside
the subpopulation.

In a previous study, we introduced the so-called Religion-Based EA (RBEA)
[7], partly resembling ideas from the diffusion model [8] (a two-dimensional world
with interactions restricted to neighboured individuals), patchwork models (in-
dividuals as mobile multi-agents) [1], and island models (semi-separation of sub-
populations; here: religions) [9, C6.3]. Our motivation for the study presented in
this paper was the superior performance of the RBEA compared to other simple
and spatial EA techniques and the possibility to extend the approach further by
assigning specific mutation operators to the subpopulations (religions). We call
our new self-adaptive method the operator scheduling RBEA (OSRBEA).

Compared to Schlierkamp-Voosen and Mühlenbein’s approach, the subpop-
ulations in the OSRBEA are spatially structured and self-organised inside and
in relation to each other. Furthermore, the subpopulation sizes are a result of
local competition and recruitment of individuals from different subpopulations.

2 The Operator Scheduling Religion-Based EA

Apart from the interest in human culture and religion, religious concepts and
the history of their impact on human civilisations can serve as a great source of
inspiration for population models. The OSRBEA was inspired along these lines
regarding the emergent effects of religions on populations.

Religious rules typically include the commitments to reproduce, to believe
in no other religions, and to convert non-believers, which provide the means for
a propagation of the religion. New members are acquired by reproduction and
religious education or by conversion. Not surprisingly, there is strong competition
among different religions.



216 René Thomsen and Thiemo Krink

The two main inspirations from real world religions in the OSRBEA are the
competition for new believers by conversion and the restriction of matings to
individuals that belong to the same religion. The result of these considerations
is a hybrid of an evolutionary algorithm and a spatial multi-agent system with
competing subpopulations.

The OSRBEA consists of three components: a world, religions, and a popula-
tion of individuals. The world is represented as a two dimensional grid (see figure
1), in which each cell has eight neighbours and the edges of the grid are wrapped
to form a torus. The size of the world is determined by the world dimension pa-
rameter (e.g. 25 refers to a 25×25 grid). Furthermore, a cell can contain either
one or no individual. The religions define the subpopulations in which the indi-
viduals are grouped.

individuals

grid cell

movement direction

interaction 
range

Fig. 1. Example of a 5×5 OSRBEA world. Gray-scales indicate religion memberships.
The individual in the centre can only interact with other individuals within its inter-
action range, i.e. it can mate with either of the two black individuals to its top and
left. Furthermore, it can try to convert one of the two gray individuals below and to
its right-bottom.

At initialisation, all religions have the same size, which varies during the run
within the bounds of the minimum believers and maximum believers thresholds,
while the overall population size remains constant. Each individual consists of
the attributes religion, location, and the genome. The religion attribute defines
to which religion the individual belongs and can only be changed if the indi-
vidual is converted to another religion. The individual’s position in the world is
determined by its location attribute, whereas the genome defines its position in
the search space. Furthermore, we extended the original RBEA by associating a
specific mutation operator to each religion, such that individuals are mutated by
the operator of their religion. In the study presented in this paper, the number of
religions was three using Gaussian mutation with fixed variance, Gaussian muta-
tion with a variance annealing scheme, and Gaussian mutation with SOC-based
variance. The operators are further described in section 3. The pseudo-code for
the OSRBEA algorithm is shown in figure 2.



Self-adaptive Operator Scheduling Using the Religion-Based EA 217

procedure OSRBEA
begin

initialise(p) //p is the EA population
evaluate(p)
while (not termination-condition) do

begin
random walk(p)
convert(p)
mate(p)
for each individual i in p do

mutate(i) with mutation operator
specified by individual i’s religion

evaluate(p)
end

end

Fig. 2. The pseudo-algorithm of the OSRBEA.

The OSRBEA works as follows: First, all individuals are initialised and evaluated
according to the objective function. Afterwards, all individuals consecutively
perform the actions random walk, convert, mate, mutate, and evaluate.

The random walk action moves an individual to a randomly selected neigh-
bour cell, provided that it is vacant. Further, individuals can change the religion
of other believers by using the convert action, such that individual a converts
a neighbour b of a different religion if its fitness is better. However, conversions
are constrained such that an individual cannot be converted if its religion has
only minimum believers many members left or the religion size of the converting
individual is already as large as maximum believers. The purpose of these con-
straints is to avoid extinction/super growth of religions and thereby premature
loss/dominance of mutation operators. This convert scheme is simpler than the
probabilistic scheme of the original RBEA (see [7] for further details) and turned
out to be superior in our preliminary experiments.

The execution of the mate action creates an offspring with a neighboured
individual of the same religion using arithmetic crossover. If the offspring is
fitter than one or both of its parents then it will substitute the parent with
the worst fitness. However, if an individual belongs to a small religion with a
size equal to minimum believers then it can also try to mate with individuals
of other religions in its neighbourhood. The mate action is executed after the
random walk and convert action to ensure that the offspring cannot replace its
parent before the parent gets the opportunity to convert other individuals.

Finally, some of the individuals are mutated according to the mutation prob-
ability pm using the mutation operator specified by their religion attribute and
their fitness scores are re-evaluated.

The entire process is repeated for a fixed number of fitness evaluations. Note
that the indices of the individuals are shuffled after each transformation to avoid
artefacts from a sequential application of the convert and random walk actions.



218 René Thomsen and Thiemo Krink

3 Mutation Operators

The mutation operators used in this study were Gaussian mutation operators
using three different variance schemes: (i) a fixed variance scheme with a variance
of one, (ii) an annealing scheme using 1/(1 + generation), and (iii) a SOC-
based variance scheme introduced in [10]. The SOC-based variance is non-fixed
and non-decreasing with σ2 = PL(2), where PL is the power law distribution.
Power law distributed numbers can be generated by the so-called sandpile model
as shown in [10] or simply by using PL(α) = 1/u1/α, where u ∼ U(0, 1) is
uniformly distributed, and α is a parameter, which determines the shape of the
distribution. In this study we used a fixed value of α = 2.

4 Experiments

In order to evaluate the OSRBEA we performed several experiments on com-
monly used numerical benchmark problems (see section 4.3 for a short descrip-
tion of the problems).

The algorithms used for comparison were a simple EA with SOC-based vari-
ance mutation (SOCEA), the original RBEA with SOC-based variance mutation
(SOCRBEA), and the new OSRBEA. Each algorithm was tested regarding the
20 and 50 dimensional instances of the benchmark problems presented in section
4.3. The number of fitness evaluations were 500.000 and 1.500.000 for the 20 and
50 dimensions respectively. Each of the experiments was repeated 30 times, and
the average fitness of the best individual throughout the evolutionary process
was recorded.

For a fair comparison between the algorithms, we tried all combinations of
the following variation operators on each of the problems: one-point crossover,
uniform crossover, arithmetic crossover, Gaussian mutation with fixed variance,
annealed variance, and SOC-based variance. We found that arithmetic crossover
with SOC-based variance mutation yielded superior results compared to other
operator choices for all benchmark problems. Therefore, we only report the re-
sults of the SOCEA and the SOCRBEA for comparison, which used this com-
bination of operators.

4.1 SOCEA Settings

We used the following parameters in the SOCEA: population size = 400, muta-
tion probability (pm) = 0.75, crossover probability (pc) = 0.90, and tournament
selection with a tournament size of two. As mentioned in section 4 the SOCEA
used Gaussian mutation with SOC-based variance and arithmetic crossover as
variation operators. Further, we used elitism with an elite size of one to keep the
overall best solution found in the population.



Self-adaptive Operator Scheduling Using the Religion-Based EA 219

4.2 SOCRBEA and OSRBEA Settings

In both the SOCRBEA and the OSRBEA, we used the following parameters:
population size = 399, world dimension = 22, minimum believers = 50, maxi-
mum believers = 299, and mutation probability (pm) = 0.75. The pc parameter
was not used, since the crossover operation was part of the mate action. The
SOCRBEA used Gaussian mutation with SOC-based variance, whereas the OS-
RBEA used all three variants of the Gaussian mutation operator (see section 3
for details). Both algorithms used arithmetic crossover and elitism of size one
was applied within each religion.

4.3 Benchmark Problems

In our experiments we used the following six numerical benchmark problems
with 20 and 50 dimensions:

Ackley: f(x) = 20 + e− 20 · exp(−0.2 ·
√

1
n
·∑n

i=1 x
2
i )− exp( 1

n
·∑n

i=1 cos(2πxi) where
−30 ≤ xi ≤ 30

Rastrigin: f(x) =
∑n
i=1(x2

i − 10 · cos(2πxi) + 10) where −5.12 ≤ xi ≤ 5.12

Griewank: f(x) = 1
4000 ·

∑n
i=1(xi−100)2−∏n

i=1 cos(
xi−100√

i
)+1 where −600 ≤ xi ≤ 600

Rosenbrock: f(x) =
∑n−1
i=1 (100 · (xi+1 − x2

i )
2 + (xi − 1)2) where −100 ≤ xi ≤ 100

Sphere function: f(x) =
∑n
i=1 x

2
i where −100 ≤ xi ≤ 100

Step function: f(x) =
∑n
i=1(�xi + 0.5�)2 where −100 ≤ xi ≤ 100

All problems are minimisation tasks and have their global optimum at 0.0.

5 Results

To access the quality of the new operator scheduling extension we compared
the OSRBEA with the SOCEA and the SOCRBEA using the six numerical
benchmark problems described in section 4.3. Table 1 summarises the results of
the various experiments. The mean column shows the mean best fitness value
found after 30 runs using 500.000 (20D) and 1.500.000 (50D) fitness evaluations
respectively and best column shows the best found solution among the 30 runs.
The standard deviations were very small compared to the differences between
the mean fitness values for the three algorithms (data not shown).

The OSRBEA found much better solutions for all benchmark problems com-
pared with the SOCEA and the SOCRBEA. However, as expected, the conver-
gence speed of the SOCRBEA and the OSRBEA turned out to be slower in the
beginning of the runs compared to the SOCEA, because of the much lower gene
flow in the RBEA models caused by restricted mating.

Regarding the Ackley 50D problem, the OSRBEA seems to converge slower
than the SOCEA and the SOCRBEA, which is because of a few runs with inferior
results indicating occasional problems with performance robustness. However,



220 René Thomsen and Thiemo Krink

Table 1. Results obtained from the experiments with the numerical benchmark prob-
lems.

SOCEA SOCRBEA OSRBEA
Problem Mean Best Mean Best Mean Best
Ackley (20D) 0.22195 0.13659 0.14065 0.09681 0.01860 0.01317
Ackley (50D) 0.38523 0.33497 0.24596 0.19433 0.12607 0.00696
Rastrigin (20D) 1.19592 0.13746 0.56267 0.05364 0.00215 0.00143
Rastrigin (50D) 3.76457 0.86996 3.06669 0.33156 0.58143 0.00086
Griewank (20D) 0.53399 0.34956 0.39838 0.21496 0.01185 0.00745
Griewank (50D) 0.89486 0.79609 0.64339 0.37256 0.00468 0.00159
Rosenbrock (20D) 54.491 45.308 36.933 27.478 19.292 15.458
Rosenbrock (50D) 241.783 189.246 146.518 116.864 48.436 41.943
Sphere (20D) 0.29622 0.18239 0.00427 0.00226 0.00440 0.00271
Sphere (50D) 2.14901 1.45932 0.00205 0.00139 0.00201 0.00136
Step (20D) 0.0 0.0 0.0 0.0 0.0 0.0
Step (50D) 0.3 0.0 0.0 0.0 0.0 0.0

the final OSRBEA results at the end of the run are better than in all other
tested algorithms.

The performance of the SOCEA was always worse compared to both the
SOCRBEA and the OSRBEA. Figures 3(a) to 3(h) show the average fitness
curves of the best individuals in the three algorithms for four of the six bench-
mark problems, which illustrate these characteristics. In case of the Sphere and
Step benchmark problems (not shown in figure 3) the overall performance and
convergence speed of the SOCRBEA and OSRBEA were very similar.

During the evolutionary process we observed a shifting balance of power
(number of believers in each religion) between the religions, thus changing the
frequency of applying specific mutation operators. Typically, the course-grained
operators, such as the Gaussian mutation with fixed and SOC-based variance
were favoured in the beginning of the run, whereas the more fine-grained muta-
tion with annealed variance took over towards the end, fine-tuning the candidate
solutions. Figure 4(a) and 4(b) show examples of this shifting-balance between
the operators during the execution of the OSRBEA with the Griewank (50D)
and the Rastrigin (50D) problems.

6 Discussion

In this paper we have introduced a new spatial operator scheduling technique
called the OSRBEA, which extends our original Religion-Based EA (RBEA).
The algorithm is a hybrid between an EA and a spatial multi-agent system with
competing subpopulations (religions), where each subpopulation is associated
with a specific mutation operator.

The results of our experiments show that this extension can improve the
performance significantly. The OSRBEA was capable of obtaining good solutions



Self-adaptive Operator Scheduling Using the Religion-Based EA 221

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F
itn

es
s

#Evaluations

Ackley (20D)

SOCEA
SOCRBEA

OSRBEA

0

1

2

3

4

5

0 300000 600000 900000 1.2e+06 1.5e+06

F
itn

es
s

#Evaluations

Ackley (50D)

SOCEA
SOCRBEA

OSRBEA

0

0.5

1

1.5

2

2.5

3

0 100000 200000 300000 400000 500000

F
itn

es
s

#Evaluations

Rastrigin (20D)

SOCEA
SOCRBEA

OSRBEA

0

1

2

3

4

5

6

7

8

0 300000 600000 900000 1.2e+06 1.5e+06

F
itn

es
s

#Evaluations

Rastrigin (50D)

SOCEA
SOCRBEA

OSRBEA

0

0.5

1

1.5

2

0 100000 200000 300000 400000 500000

F
itn

es
s

#Evaluations

Griewank (20D)

SOCEA
SOCRBEA

OSRBEA

0

0.5

1

1.5

2

0 300000 600000 900000 1.2e+06 1.5e+06

F
itn

es
s

#Evaluations

Griewank (50D)

SOCEA
SOCRBEA

OSRBEA

0

20

40

60

80

100

0 100000 200000 300000 400000 500000

F
itn

es
s

#Evaluations

Rosenbrock (20D)

SOCEA
SOCRBEA

OSRBEA

0

100

200

300

400

500

600

700

800

0 300000 600000 900000 1.2e+06 1.5e+06

F
itn

es
s

#Evaluations

Rosenbrock (50D)

SOCEA
SOCRBEA

OSRBEA

Fig. 3. Performance comparison between the SOCEA, SOCRBEA, and OSRBEA. The
graphs show the average fitness of the best individual in 30 runs versus the number of
fitness evaluations.



222 René Thomsen and Thiemo Krink

on all six benchmark problems and its convergence speed towards the end of the
run was remarkably fast compared to the SOCEA and the SOCRBEA. Note
that the latter two algorithms were already superior compared to a simple EA
and the original RBEA regarding all six benchmark problems.

50

100

150

200

250

300

350

0 100000 200000 300000

#B
el

ie
ve

rs

Iteration

R1 - Annealed Variance
R2 - SOC-Based Variance

R3 - Fixed Variance

(a) Griewank (50D)

50

100

150

200

250

300

350

0 50000 100000 150000 200000
#B

el
ie

ve
rs

Iteration

R1- Annealed Variance
R2 - SOC-Based Variance

R3 - Fixed Variance

(b) Rastrigin (50D)

Fig. 4. Religion size (number of believers) dynamics for each religion R1, R2, and R3
during the optimisation process.

In most experiments the OSRBEA used less than 300.000-600.000 fitness
evaluations (depending on the problem dimensionality) to obtain a good solu-
tion. This low requirement of fitness evaluations is particulary interesting re-
garding real world applications where fitness evaluations are typically the most
computational expensive part of the algorithm.

The good performance of the OSRBEA can be partially contributed to the
spatial structure of the population and its division into religions (subpopulations)
with the additional mating restriction reducing the flow of genetic information,
thus keeping the genetic variance in the population high (see [11] for more de-
tails). Moreover, the assignment of special operators to each of the religions
allows the OSRBEA to take advantage of the most suitable operator. In this
respect the scheduling of the operators was controlled in a self-adaptive manner
using the quality of the individuals as a feedback mechanism. This scheme seems
to be very successful but other convert strategies should be investigated.

Furthermore, our preliminary experiments indicate that the interaction range
and world dimensionality play a key role regarding the convergence abilities of
the OSRBEA. Further investigations of these parameters could lead to addi-
tional performance improvements. Moreover, our results indicate that the opti-
mal choice of an operator varies throughout the run and is problem dependent.

In future studies we plan to investigate whether the proposed method is ad-
vantageous on real world problems, such as multiple sequence alignment and
evolution of hidden Markov model topologies. These problems would most likely
benefit from the OSRBEA utilising the specialised operators during the evo-
lutionary process. Finally, it would be interesting to compare the OSRBEA
with other operator scheduling techniques, such as the competing subpopula-
tions scheme [6] and the operator reward strategy by Davis [5].



Self-adaptive Operator Scheduling Using the Religion-Based EA 223

7 Acknowledgements

The authors would like to thank the colleagues at EVALife for valuable comments
on early versions of the manuscript. This work was supported by the Danish
Natural Science Research Council.

References

1. Krink, T. and Ursem, R.K.: Parameter Control Using the Agent Based Patchwork
Model. In: Proceedings of the Second Congress on Evolutionary Computation
(CEC-2000), Vol. 1. San Diego, CA, USA (2000) 77–83

2. Bäck, T.: Self-Adaptation in Genetic Algorithms. In: F. J. Varela, P.B. (ed.):
Proceedings of 1st European Conference on Artificial Life. MIT Press (1992) 263–
271

3. Eiben, A.E., Sprinkhuizen-Kuyper, I.G., and Thijssen, B.A.: Competing Crossovers
in an Adaptive GA Framework. In: Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation (1998) 787–792

4. Smith, J.E. and Fogarty, T.C.: Self Adaptation of Mutation Rates in a Steady State
Genetic Algorithm. In: Proceedings of the 1996 IEEE International Conference on
Evolutionary Computing, IEEE Press (1996) 318–323

5. Davis, L.: Adapting Operator Probabilities in Genetic Algorithms. In: Schaffer,
J.D. (ed.): Proceedings of the Third International Conference on Genetic Algo-
rithms (ICGA III) (1989) 61–69

6. Schlierkamp-Voosen, D. and Mühlenbein, H.: Strategy Adaptation by Competing
Subpopulations. In: Davidor, Y., Schwefel, H.P., and Maenner, R. (eds.): Pro-
ceedings of the Third International Conference on Parallel Problem Solving from
Nature (PPSN III) (1994) 199–208

7. Thomsen, R., Rickers, P., and Krink, T.: A Religion-Based Spatial Model For
Evolutionary Algorithms. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X.,
Lutton, E., Merelo, J.J., and Schwefel, H.P. (eds.): Parallel Problem Solving from
Nature (PPSN VI) (2000) 817–826

8. Whitley, D.: Cellular Genetic Algorithms. In: Forrest, S. (ed.): Proceedings of the
Fifth International Conference on Genetic Algorithms, Morgan Kaufman (1993)
658

9. Bäck, T., Fogel, D.B., Michalewicz, Z., et al. (eds.).: Handbook on Evolutionary
Computation. IOP Publishing Ltd and Oxford University Press (1997).

10. Krink, T., Rickers, P., and Thomsen, R.: Applying Self-Organised Criticality to
Evolutionary Algorithms. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X.,
Lutton, E., Merelo, J.J., and Schwefel, H.P. (eds.): Parallel Problem Solving from
Nature (PPSN VI) (2000) 375–384

11. Thomsen, R. and Rickers, P. Introducing Spatial Agent-Based Models and Self-
Organised Criticality to Evolutionary Algorithms. Master’s thesis, University of
Aarhus, Denmark (2000)



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 224–233, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Probabilistic Model-Building Genetic Algorithms
in Permutation Representation Domain

Using Edge Histogram

Shigeyoshi Tsutsui

Department of Management and  Information Science, Hannan University
5-4-33 Amamihigashi, Matsubara, Osaka 580-5802 Japan

��������������	�
��
��
���������
������	�
��
�����������

Abstract. Recently, there has been a growing interest in developing evolution-
ary algorithms based on probabilistic modeling. In this scheme, the offspring
population is generated according to the estimated probability density model of
the parent instead of using recombination and mutation operators. In this paper,
we have proposed probabilistic model-building genetic algorithms (PMBGAs)
in permutation representation domain using edge histogram based sampling al-
gorithms (EHBSAs). Two types of sampling algorithms, without template
(EHBSA/WO) and with template (EHBSA/WT), are presented. The results
were tested in the TSP and showed EHBSA/WT worked fairly well with a small
population size in the test problems used. It also worked better than well-known
traditional two-parent recombination operators.

1 Introduction

Recently, there has been a growing interest in developing evolutionary algorithms
based on probabilistic models [Pelikan 99b], [Larranaga 02]. In this scheme, the off-
spring population is generated according to the estimated probabilistic model of the
parent population instead of using traditional recombination and mutation operators.
The model is expected to reflect the problem structure, and as a result it is expected
that this approach provides more effective mixing capability than recombination op-
erators in traditional GAs. These algorithms are called probabilistic model-building
genetic algorithms (PMBGAs) or estimation of distribution algorithms (EDAs). In a
PMBGA, better individuals are selected from an initially randomly generated popula-
tion like in standard GAs. Then, the probability distribution of the selected set of in-
dividuals is estimated and new individuals are generated according to this estimate,
forming candidate solutions for the next generation. The process is repeated until the
termination conditions are satisfied.

Many studies on PMBGAs have been performed in discrete (mainly binary) do-
main and there are several attempts to apply PMBGAs in continuous domain. How-
ever, a few studies on PMBGAs in permutation representation domain are found. In
this paper, we propose an approach of PMBGAs in permutation representation do-
main, and compare its performance with traditional recombination operators. In this
approach, we develop an edge histogram matrix from the current population, where
an edge is a link between two nodes in a string. We then sample nodes of a new string
according to the edge histogram matrix. We will call this method the edge histogram
based sampling algorithm (EHBSA). We tested the algorithm in the Traveling Sales-



Probabilistic Model-Building Genetic Algorithms      225

man Problem (TSP), a typical, well-known optimization problem in permutation rep-
resentation domain. The results showed EHBSA worked fairly well on the test prob-
lems used. Section 2 of this paper gives a brief overview of PMBGAs. In Section 3,
the two proposed EHBSAs are described. The empirical analysis is given in Section 4.
Section 5 concludes the paper.

2 A Brief Overview of PMBGAs

According to [Pelikan 99b], PMBGAs in binary string representation can be classified
into three classes depending on the complexity of models they use; (1) no interac-
tions, (2) pairwise interactions, and (3) multivariate interactions. In models with no
interactions, variables are treated independently. Algorithms in this class work well
on problems which have no interactions among variables. These algorithms include
the PBIL [Baluja 94], cGA [Harik 98], and UMDA [Mhlenbein 96] algorithms. In
pairwise interactions, some pairwise interactions among variables are considered.
These algorithms include the MIMIC algorithm [De Bonet 97], the algorithm using
dependency trees [Baluja 97]. In models with multivariate interactions, algorithms use
models that can cover multivariate interactions. Although the algorithms require in-
creased computational time, they work well on problems which have complex inter-
actions among variables. These algorithms include ECGA [Harik 99] and BOA [Pe-
likan 99a, 00].

Studies to apply PMBGAs in continuous domains have also been made. These in-
clude continuous PBIL with Gaussian distribution [Sebag 98] and a real-coded variant
of PBIL with iterative interval updating [Servet 97]. In [Gallagher 99], the PBIL is
extended by using a finite adaptive Gaussian mixture model density estimator. The
UMDA and MIMIC were introduced in continuous domain. All above algorithms do
not cover any interactions among the variables. In EGNA [Larranaga 99], a Gaussian
network learns to estimate a multivariate Gaussian distribution of the parent popula-
tion. In [Bosman 99], two density estimation models, i.e., the normal distribution, and
the histogram distribution are discussed. These models are intended to cover multi-
variate interaction among variables. In [Bosman 00a], it is reported that the normal
distribution models have shown good performance. In [Bosman 00b], a normal mix-
ture model combined with a clustering technique is introduced to deal with non-linear
interactions. In [Tsutsui 01a, b], an evolutionary algorithm using marginal histogram
models in continuous domain was proposed.

A study on PMBGAs in permutation domain is found in [Robles 02]. In it,
PMBGAs are applied to solving TSP using two approaches. One is to use discrete
PMBGAs and the other is to use continuous PMBGAs. In applying discrete
PMBGAs, several different Bayesian network structures are compared. In applying
continuous PMBGAs, the correct tour is obtained by sorting the vectors of real num-
bers. PMBGAs are also applied to solve job shop scheduling problems and graph
matching problems [Larranaga 02].

3 Edge Histogram Based Sampling Algorithm (EHBSA)

This section describes how the edge histogram based sampling algorithm (EHBSA)
can be used to (1) model promising solutions and (2) generate new solutions by
simulating the learned model.



226      Shigeyoshi Tsutsui

st
1 = ( 0,  1,  2,  3,  4 )

st
2 = ( 1,  3,  4,  2,  0 )

st
3 = ( 3,  4,  2,  1,  0 )

st
4 = ( 4,  0,  3,  1,  2 )

st
5 = ( 2,  1,  3,  4,  0 )

0 3.1  2.1  2.1  3.1
3.1   0 4.1  3.1  0.1
2.1  4.1   0    1.1  3.1
2.1  3.1  1.1   0    4.1
3.1  0.1  3.1  4.1   0

(a) P(t) (b) EHMt

st
1 = ( 0,  1,  2,  3,  4 )

st
2 = ( 1,  3,  4,  2,  0 )

st
3 = ( 3,  4,  2,  1,  0 )

st
4 = ( 4,  0,  3,  1,  2 )

st
5 = ( 2,  1,  3,  4,  0 )

0 3.1  2.1  2.1  3.1
3.1   0 4.1  3.1  0.1
2.1  4.1   0    1.1  3.1
2.1  3.1  1.1   0    4.1
3.1  0.1  3.1  4.1   0

0 3.1  2.1  2.1  3.1
3.1   0 4.1  3.1  0.1
2.1  4.1   0    1.1  3.1
2.1  3.1  1.1   0    4.1
3.1  0.1  3.1  4.1   0

(a) P(t) (b) EHMt

Fig. 1. An example of symmetric edge histogram
matrix for N = 5, L = 5, Bratio = 0.04

3.1 The Basic Description of the Algorithm

An edge is a link or connection between two nodes and has important information
about the permutation string. Some crossover operators, such as Edge Recombination
(ER) [Whitley 89] and enhanced ER (eER) [Starkweather, 91] which are used in tra-
ditional two-parent recombination, use the edge distribution only in the two parents
string. The basic idea of the edge histogram based sampling algorithm (EHBSA) is to
use the edge histogram of the whole population in generating new strings.

The algorithm starts by generating a random permutation string for each individual
population of candidate solutions. Promising solutions are then selected using any
popular selection scheme. An edge histogram matrix (EHM) for the selected solutions
is constructed and new solutions are generated by sampling based on the edge histo-
gram marix. New solutions replace some of the old ones and the process is repeated
until the termination criteria are met. This algorithm can be seen as a permutation
version of the algorithm which uses marginal histogram models proposed in [Tsutsui
01a, b].

3.2 Developing Edge Histogram Matrix

Let string of kth individual in population P(t) at generation t represent as st

k = (πt

k(0),
π t

k(1), ..., π t

k(L-1)). (π t

k(0), π t

k(1), ..., and π t

k(L-1)) are the permutation of (0, 1, ..., L-
1), where L is the length of the permutation. Edge histogram matrix EHMt (et

i,j) (i, j
=0,1, .., L-1) of population P(t) is symmetrical and consists of L2 elements as follows:







=
≠++= ∑ =

ji

jisse
t
k

N

k ij
t
kjiji

t

 if                       0                       

 if     ))()((
1 ,,,

εδδ                (1)

where N is the population size, δ
ij
(st

k
) is a delta function defined as



 =+∧=∧−∈∃

=
                                                                              othersise   0

]) mod)1(()(}1,1,0{[   if   1
)(

,

jLhihLhh
s

t

k

t

kt

kji

ππ
δ

�
    (2)

and ε (ε>0) is a bias to control pressure in sampling nodes just like those used for
adjusting the selection pressure in the proportional selection in GAs. The average
number of edges of element et

i,j in EHMt is 2LN/(L2-L) = 2N/(L–1). So, ε is determined
by a bias ratio Bratio (Bratio > 0) of this average number of edges as

ratio1

2
B

L

N

−
=ε                          (3)

A smaller value of Bratio reflects the real distribution of edges in sampling of nodes
and a bigger value of Bratio will give a
kind of perturbation in the sampling
(see Section 3.3). An example of
EHMt is shown in Fig. 1.

Although we defined a symmet-
ric EHMt, i.e., ei,j = ej,i, which is app-
licable to problems such as a
symmetric TSP, but here we must
note that we need to define an



Probabilistic Model-Building Genetic Algorithms      227

asymmetric EHMt for problems such as a asymmetric TSP or scheduling problems
with permutation representation. An asymmetric EHMt can be easily defined by a
equation similar to Eq. 1.

3.3 Sampling Methods

In this subsection, we describe how to sample a new string from the edge histogram
matrix EHMt. We propose two types of sampling methods; one is an edge histogram
based sampling algorithm without template (EHBSA/WO), and the other an edge his-
togram based sampling algorithm with template (EHBSA/WT).

3.3.1 Edge histogram based sampling algorithm without template (EHBSA/WO)
In EHBSA/WO, a new individual permutation c[] is generated straightforwardly as
follows:

1. Set the position counter p ← 0.
2. Obtain first node c[0] randomly from [0, L–1].
3. Construct a roulette wheel vector rw[] from EHMt as rw[j] ← et

c[p],j (j=0, 1, .., L–1).
4. Set to 0 previously sampled nodes in rw[] (rw[ c[i] ] ← 0 for i =0, .., p).
5. Sample next node c[p+1] with probability ∑ −

=
1

0 ][/][ L

j jrwxrw using roulette wheel rw[].
6. Update the position counter p ← p+1.
7. If p<L–1, go to Step 3.
8. Obtain a new individual string c[].

Here, note that the EHBSA/WO is only applicable to problems where the absolute
position of each node in a string has no meaning, such as in the TSP. This sampling
method is similar in part to the sampling in Ant Colony Optimization [Dorigo 96].

3.3.2 Edge histogram based sampling algorithm with template (EHBSA/WT)
EHMt described in Section 3.2 is in a marginal edge histogram. It has no explicit
graphical structure. EHBSA/WT is intended to make up for this disadvantage by us-
ing a template in sampling a new string. In generating each new individual, a template
individual is chosen from P(t) (normally, randomly). The n (n > 1) cut points are ap-
plied to the template randomly. When n cut points are obtained for the template, the
template should be divided into n segments. Then, we choose one segment randomly
and sample nodes for the segment. Nodes in other n–1 segments remain unchanged.
We denote this sampling method by EHBSA/WT/n. Since average length of one seg-
ment is L/n, EHBSA/WT/n generates new strings which are different L/n nodes on
average from their templates. Fig. 2 shows an example of EHBSA/WT/3. In this ex-
ample, nodes of new string from after
cut[2] and before cut[1] are the same as
the nodes of the template. New nodes
are sampled from cut[1] up to, but not
including, cut[2] based on the EHMt.

The sampling method for EHBSA/
WT/n is basically the same as that of the
EHBSA/WO as follows:

cut[0] cut[1] cut[2]

template T[]

new string c[]

sampling
EHMt

segment0 segment1 segm
cut[0] cut[1] cut[2]

template T[]

new string c[]

sampling
EHMt

segment0 segment1 segm

Fig. 2. An example of EHBSA/WT/3



228      Shigeyoshi Tsutsui

 1. Choose a template T[] from P(t) .
 2. Obtain sorted cut point array cut[0], cut[1], .., cut[n–1] randomly.
 3. Choose a cut point cut[l] by generating random number l∈ [0, n–1].
 4. Copy nodes in T[] to c[] from after cut[(l+1) mod n] and before cut[l].
 5. Set the position counter p ← (cut[l] – 1 + L) mod L.
 6. Construct a roulette wheel vector rw[] from EHMt as rw[j] ← et

c[p],j (j=0, 1, .., L–1).
 7. Set to 0 copied and previously sampled nodes in rw[] (rw[c[i]] ← 0 for i =

cut[(l+1) mod n], .., p).
 8. Sample next node c[(p+1) mod L] with probability ∑ −

=
1

0 ][/][ L

j jrwxrw using roulette
wheel rw[].

 9. Update the position counter p ← (p+1) mod L.
 10. If (p+1) mod L ≠ cut[(l+1) mod n], go to Step 6.
 11. Obtain a new individual string c[].

4 Empirical Study

4.1 Experimental Methodology

4.1.1 Evolutionary models
Here, we describe evolutionary models for EHBSA/WT, EHBSA/WO, and two-
parent recombination operators, respectively. All these models are basically the same
as steady state models.

(1) Evolutionary model for EHBSA/WT: 
Let the population size be N, and let it, at time t, be represented by P(t). The popu-
lation P(t+1) is produced as follows (Fig. 3):

 1. Edge histogram matrix EHMt

described in Subsection 3.2
is developed from P(t)

 2. A template individual T[] is
selected from P(t) randomly.

 3. EHBSA/WT described in
Subsection 3.3.2 is per-
formed using EHMt and T[],
and generate a new individ-
ual c[].

 4. The new c[] individual is
evaluated.

 5. If c[] is better than T[], then T[] is replaced with c[], otherwise T[] remains,
forming P(t+1).

(2) Evolutionary model for EHBSA/WO: Evolutionary model for EHBSA/WO is
basically the same as the model for EHBSA/WT except EHBSA/WO does not use
a template T[]. New string c[] compares randomly selected individual i[] in P(t),
and if c[] is better than i[], i[] is replaced with c[].

N

EHMt

c[]

T[]
select better one

T[]

P(t)

t = t+1

N

EHMt

c[]

T[]
select better one

T[]

P(t)

t = t+1

Fig. 3. Evolutionary model for EHBSA/WT



Probabilistic Model-Building Genetic Algorithms      229

(3) Evolutionary model for two-parent recombination operators: To compare the
performance of proposed methods with the performance of traditional two-parent
recombination operators, we designed an evolutionary model for two-parent re-
combination operators. For fair comparison, we design it as similar as possible to
that of the EHBSA. We generate only one child from two parents. Using one child
from two parents is already proposed for designing the GENITOR algorithm by
Whitley et al. [Whitley 89]. In our generational model, two parents are selected
from P(t) randomly. No bias is used in this selection. Then we apply a recombina-
tion operator to produce one child. This child is compared with its parents. If the
child is better than the worst parent, then the parent is replaced with the child.

4.1.2 Test suit and Performance Measures
We tested the algorithm in the Traveling Salesman Problem (TSP), a typical, well-
known optimization problem in permutation representation domain. The following
well-known data files have been used in this empirical study: 24 cities gr24, 48 cities
gr48, and 76 cities pr76. The gr24 and gr48 are used in the study of TSP with EDA in
[Robles 02]. We compared EHBSA with popular order based recombination opera-
tors, namely, the original order crossover OX [Oliver 87], the enhanced edge recom-
bination operator eER [Starkweather 91], and the partially mapped crossover [Gold-
berg 89]. We also tried to compare EHBSA with results in [Robles 02] on gr24 and
gr48.

Ten runs were performed. Each run continued until the optimum tour was found,
the population was converged, or evaluations reached Emax Values of Emax were 50000,
500000, and 1000000 for gr24, gr48, and pr76, respectively. Population sizes of 60,
120, 240 were used for EHBSA, and 60, 120, 240, 480,960 for other operators, re-
spectively. As to the bias ratio Bratio in Eq. 3, Bratio values of 0.03, 0.015, and 0.005 were
used for gr24, gr48, and pr76, respectively.

We evaluated the algorithms by measuring their #OPT (number of runs in which
the algorithm succeeded in finding the optimum tour), ANE (average number of
evaluations to find the global optimum in those runs where it did find the optimum),
and Aver (average length of best solution in each run). Here, a lower value of ANE
means a more effective search capability of an algorithm.

4.1.3 Blind Search
In solving TSP using GAs, mutation operators play an important role. Several types of
mutation operators are proposed. Also, it is well known that combining GAs with
local optimization methods or heuristics greatly improve the performance of the algo-
rithms. Many kinds of heuristics for TSP are proposed [Johnson 02]. For example, in
[Ulder 90], Ulder et al. combined GAs with 2-opt heuristics and the algorithm showed
greatly improved performance. In [Nagata 97], Nagata et al. proposed a high-power
crossover operator for TSP which includes a kind of heuristics in the operator.

In this experiment, we use no mutation and no heuristic to see the pure effect of
applying proposed algorithms. Thus, the algorithm is a blind search.

4.2 Empirical Analysis of Results

Results in gr24 are shown in Table 1. EHBSA/WO found the optimum tour 7, 9, and
6 times with N = 60, 120, and 240, respectively. On the other hand, EHBSA/WT/n



230      Shigeyoshi Tsutsui

found the optimum tour 10 times for all experiments. The ANEs of EHBSA/WT/2
and EHBSA/WT/3 were 9141, and 9523, respectively, showing good performance.
Thus, we can see the performance of EHBSA/WT is much better than EHBSA/WO.
In the other operators, eER showed good performance. The eER with N = 240, 480,
and 960 found the optimum tour 10 times and the ANE for N = 240 was 13394, which
is a little larger than EHBSA/WT/n with N = 60. OX showed worse performance than
eER although PMX showed the worst performance. Comparing the performance of
EHBSA/WT with other operators, EHBSA/WT is slightly better than eER and is
much better than OX and PMX. One big difference between EHBSA/WT and eER is
that EHBSA/WT requires a smaller population size to work than eER. To compare
EHBSA with results in [Robles 02] we see the results with discrete representation
(here referred to as discrete EDA). In [Robles 02], it is shown that the discrete EDA
without local optimization does not find the optimum tour.

Table 1. Results of gr24

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

EHBSA/WO 7 16328 1281 9 23637 1273 6 44853 1280

EHBSA/WT/2 10 9141 1272 10 17978 1272 10 35604 1272

EHBSA/WT/3 10 9523 1272 10 18251 1272 10 32956 1272

EHBSA/WT/4 10 10677 1272 10 17652 1272 10 33606 1272

EHBSA/WT/5 10 11170 1272 10 20489 1272 10 36078 1272

OX 0 - 1345 1 22449 1303 4 34140 1296 1 48674 1301 0 - 1484

eER 1 4738 1299 7 6237 1276 10 13394 1272 10 23785 1272 10 42767 1272

PMX 0 - 1492 0 - 1414 2 23191 1341 1 49442 1316 0 - 1572

Other PMBGA*

Optimum: 1272
E max = 50000, B ratio = 0.03

* Best data without heuristic using discrete EDA in [Robles 02] . Maximum evaluation is 50000

#OPT=0, ANE is not available, best length = 1328 with MIMIC, best Aver = 1439 with EBNA

Population Size N

Model 96012060 240 480

Results in gr48 are shown in Table 2. EHBSA/WO could not find the optimum
tour in gr48. On the other hand, EHBSA/WT/n again found the optimum tour 10
times for all experiments except EHBSA/WT/4 and EHBSA/WT/2 with N = 60. The
ANEs for EHBSA/WT/3 and EHBSA/WT/5 were 85387 and 89799, respectively,
showing good performance. Thus, we can see again the performance of EHBSA/WT
is much better than EHBSA/WO. In the other operators, eER showed weaker per-
formance than EHBSA/WT/n in gr48, but better performance than OX. The best
#OPT of eER is 5 with N = 960 and the ANE of this case is 166286, much larger than
EHBSA/WT/n. PMX could not find the optimum tour. Comparing the performance of
EHBSA/WT with discrete EDA in [Robles 02] is impossible because both termination
conditions are different in gr48.

Results in pr76 are shown in Table 3. EHBSA/WO could not find the optimum
tour in pr76. On the other hand, EHBSA/WT/n found the optimum tour several times.
With N = 60, EHBSA/WT/2, 3, 4, and 5 found the optimum tour 4, 4, 9, and 10 times,
respectively. With N = 120, EHBSA/WT/2, 3, 4, and 5 found the optimum tour 9, 9,
9, and 10 times, respectively, showing the best performance. Thus, we can see the
performance of EHBSA/WT is much better than the performance of EHBSA/WO in
this experiment, too. In the other operators, eER found the optimum tour only 1 time



Probabilistic Model-Building Genetic Algorithms      231

with N = 480 and 3 times with N = 960, showing worse performance than EHBSA/
WT. OX and PMX could not find the optimum tour.

From the results described above, we can see that EHBSA/WT/n worked fairly
well in the test problems used. It also worked better than popular traditional two-
parent recombination operators. In EHBSAs, the population size appears to be a cru-
cial parameter as with traditional GAs. But one interesting feature of EHBSA/WT/n is
that it requires smaller population size than traditional two parent recombination op-
erators. This may be an important property of EHBSA/WT/n. In our experiments, we
used a blind search. When we combine EHBSA/WT/n with some heuristics, we may
expect that it works well with a smaller population size. As to the number of cut
points, a smaller number of n work well with problems with smaller numbers of cit-
ies, and a larger number of n work well with problems with larger numbers of cities;
i.e., gr24: n = 2, gr48: n = 3, and pr76: n = 5.

Table 2. Results of gr48
#O

PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

EHBSA/WO 0 - 5212 0 - 5316 0 - 5773

EHBSA/WT/2 6 102691 5053 10 174125 5046 10 299391 5046

EHBSA/WT/3 10 85387 5046 10 134597 5046 10 240391 5046

EHBSA/WT/4 9 82701 5047 10 126444 5046 10 237260 5046

EHBSA/WT/5 10 89799 5046 10 157041 5046 10 257486 5046

OX 0 - 5527 0 - 5268 0 - 5200 1 162154 5099 2 287852 5082

eER 0 - 5653 0 - 5233 0 - 5098 2 95075 5072 5 166286 5058

PMX 0 - 8285 0 - 7374 0 - 6859 0 - 6116 0 - 5860

Other PMBGA*

Optimum: 5046

E max = 500000, B ratio = 0.015

* Best data without heuristic using discrete EDA in [Robles 02] . Maximum evaluation was set to 50000

#OPT=0, ANE is not available, best length = 6104 with MIMIC, best Aver = 6717 with MIMIC

Model

Population Size N

60 120 240 480 960

Table 3. Results of pr76

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

#O
PT ANE Aver

EHBSA/WO 0 - 119136 0 - 128208 0 - 142206

EHBSA/WT/2 4 360128 108352 9 457147 108174 7 871319 108201

EHBSA/WT/3 4 248091 108385 9 472719 108171 8 853801 108201

EHBSA/WT/4 9 341482 108247 9 607544 108247 0 - 108496

EHBSA/WT/5 10 494674 108159 10 797963 108159 0 - 108807

OX 0 - 129603 0 - 121642 0 - 116591 0 - 113412 0 - 112259

eER 0 - 142003 0 - 122217 0 - 111839 1 109119 3 394887 108507

PMX 0 - 236827 0 - 213528 0 - 187601 0 - 164883 0 - 158515

Other PMBGA

Optimum: 108159

E max = 1000000, B ratio = 0.005

not available

Model

Population Size N

60 120 240 480 960



232      Shigeyoshi Tsutsui

5 Conclusions

In this paper, we have proposed probabilistic model-building genetic algorithms
(PMBGAs) in permutation representation domain using the Traveling Salesman
Problem (TSP), a typical, well-known optimization problem in permutation represen-
tation domain and compare its performance with traditional recombination operators.
In this approach, we developed an edge histogram model from the current population.
Two types of sampling algorithms, EHBSA/WO and EHBSA/WT, were presented.
The results showed EHBSA/WT worked fairly well with a smaller size of population
on the test problems used. It also worked better than well-known traditional two par-
ent recombination operators.

There are many opportunities for further research related to the proposed algo-
rithms. The effect of parameter values of Bratio, number of cut point of the template n,
and size of population N, on the performance of the algorithm must be further investi-
gated. We experimented with EHBSAs using a blind search to test the pure mixing
capability of the proposed algorithms. But we must test the algorithms with appropri-
ate heuristics in problems with large numbers of cities. Analyzing the time complexity
of the algorithm, and applying EHBSAs to other permutation problems, such as job
shop scheduling problems, also remain for future work.

Acknowledgments

The authors gratefully acknowledge Prof. David E. Goldberg and Dr. Martin Pelikan
for their valuable comments on PMBGAs during my stay at IlliGAL in 2001.

This research is partially supported by the Ministry of Education, Culture, Sports,
Science and Technology of Japan under Grant-in-Aid for Scientific Research number
13680469, and a grant to RCAST at Doshisha University from Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References

[Baluja 94] Baluja, S.: Population-based incremental learning: A method for interacting genetic
search based function optimization and coemptive learning, Tech. Rep. No. CMU-CS-94-163,
Carnegie Mellon University (1994).

[Baluja 97] Baluja, S. and Davies: Using optimum dependency-trees for combinatorial optimiza-
tion: learning the structure of the search space, Tech. Rep. No. CMU-CS-97-107, Carnegie
Mellon University (1997)

[Bosman 99] Bosman, P. and Thierens, D.: An algorithmic framework for density estimation
based evolutionary algorithms, Tech. Rep. No. UU-CS-1999-46, Utrecht University (1999).

[Bosman 00a] Bosman, P. and Thierens, D.: Continuous iterated density estimation evolutionary
algorithms within the IDEA framework, Proc. of the Optimization by Building and Using
Probabilistic Models OBUPM Workshop at the Genetic and Evolutionary Computation Con-
ference GECCO-2000, pp.197-200 (2000).

[Bosman 00b] Bosman, P. and Thierens, D.: Mixed IDEAs, Tech. Rep. No. UU-CS-2000-45,
Utrecht University (2000).

[De Bonet 97] De Bonet, J. S., Isbell, C. L. and Viola, P.: MIMIC: Finding optima by estimating
probability densities, In Mozer, M. C., Jordan, M. I., and Petsche, T. (Eds): Advances in neu-
ral information processing systems, Vol. 9, pp. 424-431. (1997).



Probabilistic Model-Building Genetic Algorithms      233

[Goldberg 89] Goldberg, D. E.: Genetic algorithms in search, optimization and machine
learning, Addison-Wesley publishing company (1989).

[Harik 98] Harik, G., Lobo, F. G., and Goldberg, D. E.: The compact genetic algorithm, Proc. of
the Int. Conf. Evolutionary Computation 1998 (ICEC 98), pp. 523-528 (1998).

[Harik 99] Harik, G: Linkage learning via probabilistic modeling in the ECGA, Tecnical Report
IlliGALReport 99010, University of Illinois at Urbana-Champaign, Urbana, Illinois (1999).

[Larranaga 99] Larranaga, P., Etxeberria, R., Lozano, J.A., and Pena, J.M.: Optimization by
learning and simulation of Bayesian and gaussian networks, University of the Basque Country
Technical Report EHU-KZAAIK -4/99 (1999).

[Dorigo 96] Dorigo M., Maniezzo, V. and Colorni, A.: The Ant System: Optimization by a Col-
ony of Cooperating Agents, IEEE Trans. on Systems, Man, and Cybernetics-Part B, Vol. 26,
No. 1, pp. 29-41 (1996).

[Mhlenbein 96] Mhlenbein, H and Paa, G.: From recombination of genes to the estimation of
distribution I. Binary parameters, Proc. of the Parallel Problem Solving from Nature - PPSN
IV, pp. 178-187 (1996).

[Pelikan 99a] Pelikan, M., Goldberg, D. E., and Cantu-Paz, E.:  BOA: The Bayesian optimization
algorithm, Proc. of the Genetic and Evolutionary Computation Conference 1999 (GECCO-
99), Morgan Kaufmann, San Francisco, CA (1999).

[Pelikan 99b] Pelikan, M., Goldberg, D. E., and Lobo, F. G. : A survey of optimization by build-
ing and using probabilistic models, Technical Report IlliGAL Report 99018, University of Il-
linois at Urbana-Champaign (1999).

[Pelikan 00] Pelikan, M., Goldberg, D. E., and Cantu-Paz, E.: Linkage problems, distribution
estimate, and Bayesian network, Evolutionary Computation, Vol. 8, No. 3, pp. 311-340
(2000).

[Sebag 98] Sebag, M. and Ducoulombier, A.: Extending population-based incremental learning to
continuous search spaces, Proc. of the Parallel Problem Solving from Nature - PPSN V, pp.
418-427 (1998).

[Servet 97] Servet, I. L., Trave-Massuyes, L., and Stern, D.: Telephone network traffic overload-
ing diagnosis and evolutionary computation techniques, Proc. of the Third European Confer-
ence on Artificial Evolution (AE 97), pp. 137-144 (1997).

[Larranaga 00] Larranaga, P., Etxeberria, R., Lozano, J. A., and Pena, J. M.: Optimization in con-
tinuous domains by learning and simulation of Gaussian networks, Proc. of the 2000 Genetic
and Evolutionary Computation Conference Workshop Program, pp. 201-204 (2000).

[Robles 02] Robles, V., Miguel, P. D., and Larranaga, P.: Solving the traveling salesman problem
with EDAs, Estimation of Distribution Algorithms,  Larranaga, P. and Lozano, J. A. (eds),
Kluwer Academic Publishers, Chapter 10, pp. 211-229 (2002).

[Larranaga 02] Larranaga, P. and Lozano, J. A. (eds): Estimation of distribution algorithms, Klu-
wer Academic Publishers (2002).

[Tsutsui 01] Tsutsui, S., Pelikan, M., and Goldberg, D. E.: Evolutionary Algorithm using Mar-
ginal Histogram Models in Continuous Domain, Proc. of the 2001 Genetic and Evolutionary
Computation Conference Workshop Program, pp. 230-233 (2001).

[Nagata 97] Nagata, Y. and Kobayashi, S.: Edge assembly crossover: A high-power genetic algo-
rithm for the traveling salesman problem, Proc. of the 7th Int. Conf. on Genetic Algorithms,
Morgan Kaufmann, pp. 450-457 (1997).

[Johnson 02] Johnson, D. S, and McGeoch, L. A.: Experimental analysis of heuristics for the
STSP, The Traveling Salesman Problem and its Variations, Gutin and Punnen (eds), Kluwer
Academic Publishers, Chapter 1 (to appear).

[Oliver 87] Oliver, I., Smith, D., and Holland, J.: A study of permutation crossover operators on
the travel salesman problem, Proc. of the 2nd Int. Conf. on Genetic Algorithms, pp. 224-230
(1987).

[Starkweather, 91] Starkweather, T., McDaniel, S., Mathias, K, Whitley, D, and Whitley, C.: A
comparison of genetic sequence operators, Proc. of the 4th Int. Conf. on Genetic Algorithms,
Morgan Kaufmann, pp. 69-76 (1991).

[Whitley 89] Whitley, D., Starkweather, T., and Fuquay, D.: Scheduling problems and traveling
salesman problem: The genetic edge recombination operator, Proc. of the 3rd Int. Conf. on
Genetic Algorithms, Morgan Kaufmann (1989).

[Ulder 90] Ulder, N., Pesch, E., van Laarhoven, P., Bandelt, and Aarts, E.: Improving TSP ex-
change heuristics by population genetics, Proc. of the Parallel Problem Solving from Nature -
PPSN  (1990).



From Syntactical to Semantical Mutation
Operators for Structure Optimization

Dirk Wiesmann

FB Informatik, LS 11, Univ. Dortmund, 44221 Dortmund, Germany
wiesmann@LS11.cs.uni-dortmund.de

Abstract. The optimization of structures is important for many indus-
trial applications. But the problem of structure optimization is hardly
understood. In the field of evolutionary computation mostly syntacti-
cal (pure structure-based) variation operators are used. For this kind of
variation operators it is difficult to integrate domain-knowledge and to
control the size of a mutation step. To gain insight into the basic problems
of structure optimization we analyze mutation operators for evolutionary
programming. For a synthetic problem we are able to derive a semanti-
cal mutation operator. The semantical mutation operator makes use of
domain knowledge and has a well-defined parameter to adjust the step
size.

1 Introduction

The problem of structure optimization occurs in many practical applications. As
an example take the synthesis of chemical plants, where various processing units,
interconnected by material streams, form a complex network, which structure
has to be optimized [4]. Another example is the evolution of artificial neural
network structures [10]. But the problem of structure optimization is hardly
understood. In the field of evolutionary computation mostly syntactical (pure
structure-based) variation operators are used. For this kind of variation oper-
ators it is difficult to integrate domain-knowledge and to control the size of a
mutation step. To gain insight into the basic problems of structure optimization
with evolutionary algorithms, we analyze mutation operators for evolutionary
programming systems. Within the scope of evolutionary programming (EP) the
evolution of Mealy automata is studied. An automaton is represented as a di-
rected graph. The nodes are representing the states of the automaton and the
edges are representing the state transitions. Every edge is labeled with an in-
put and an output symbol. In the original work of Fogel et al. [6] the mutation
operator is working on the graph structure of the automaton. There are five
random mutation operators that affect the graph structure in different ways.
The effect of a mutation event on the input/output behavior of the automaton
is not obvious. In this paper we propose two variation operators which are not
motivated by a random variation of the graph structure, but by the effect of a
variation on the input/output behavior of the automaton. For simplification we
regard only deterministic finite automata (DFA). In the following we first give

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 234–243, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



From Syntactical to Semantical Mutation Operators 235

a short overview on the topic of finite automata and present some well known
properties we will refer to later on. After that, we discuss the traditional muta-
tion operators used in EP. Then two alternative approaches are presented and
evaluated.

2 Deterministic Automata

Finite automata are a formal representation for the analysis of sequential logic
systems. For each point in time a finite automaton is in a state q of a finite
nonempty set of states Q. In every step the automaton reads a symbol wi ∈ Σ,
writes a symbol yi ∈ Ω and changes its state according the mapping δ : Q×Σ →
Q. Automata of this kind are called deterministic Mealy automata and can be
described by the system (Q,Σ,Ω, qo, δ, γ). Where Q is a finite nonempty set
of states, Σ the finite input alphabet, Ω the finite output alphabet, q0 ∈ Q the
initial state, δ : Q×Σ → Q the state transition mapping, and γ : Q×Σ → Ω the
output function. Thus, a Mealy automaton computes a function f : Σ∗ → Ω∗,
where Σ∗ denotes the set of all finite strings of symbols from the alphabet Σ.
In the following we will focus on decision problems. An input string w ∈ Σ∗

is said to be accepted, iff the automaton is in a final state after reading w. An
automaton A of this kind is denoted as a DFA and can be described as a system
A = (Q,Σ, q0, δ, F ), where F ⊆ Q is the set of final (accepting) states. The set of
all strings accepted by A is denoted as the regular language L(A). The language
Ln ⊆ Σn consists only of strings of a fixed length n. Thus, Ln(A) is the set of
all strings of fixed length n accepted by the DFA A.

We will propose a mutation operator which is based on the operations in-
tersection, union, and negation of regular languages. All algorithms can work
efficiently on DFAs [2]:

Theorem 1. Given a DFA A accepting the language L(A) a DFA A′ for the
complement L(A) can be computed in linear time O(|Q|).

Proof. The set F of the final states needs only to be interchanged with the set
Q \ F . ��

Theorem 2. Given two DFAs A1 and A2 accepting the languages L(A1) and
L(A2) a DFA A accepting the language L(A2)∪L(A2) can be computed in time
O(|Q1||Q2||Σ|).

Proof. The DFA A is constructed as follows. Let Q = Q1 ×Q2, and q0 the pair
of the initial states from A1 and A2. Then let F = {(qi, qj) | qi ∈ F1 ∨ qj ∈ F2}
and δ((qi, qj), a) = (δ1(qi, a), δ2(qj , a)) with 0 ≤ i < |Q1|, 0 ≤ j < |Q2|. ��

Theorem 3. Given two DFAs A1 and A2 accepting the languages L(A1) and
L(A2) a DFA A accepting the language L(A2)∩L(A2) can be computed in time
O(|Q1||Q2||Σ|).



236 Dirk Wiesmann

Proof. L(A1) ∩ L(A2) = (L(A1) ∪ L(A2)). ��
In the following we will apply these operations to minimum state DFAs only, i.e.
DFAs with the minimum number of states.

Theorem 4. If at first the unreachable states are eliminated from a DFA A, and
then the equivalence class automaton A′ is constructed, then A′ is equivalent to
A and has the minimum number of states.

The proof and further details can be found in [2]. The set of unreachable states
of a DFA can be computed by a depth first search starting in the initial state, in
time O(|Q||Σ|). The non equivalent states can be computed in time O(|Q|2|Σ|).

3 Evolutionary Programming

In the scope of evolutionary programming (EP), the evolution of finite automata
has been studied since the 1960s [6, 5]. The starting point of the research was the
question whether a simulated evolution on a population of contending algorithms
is able to produce some kind of artificial intelligence. Intelligent behavior was
considered to be the ability to predict an event in a given environment and to
react on this event to meet a given goal. For the purpose of simplification, the
environment was modeled as a sequence of symbols taken from a finite alphabet
Σ. The algorithms were represented by Mealy automata reading the sequence
of symbols. Every symbol the automaton reads, activates a state transition,
and produces one output symbol from the finite alphabet Ω. The task of the
EP system was to evolve an automaton that correctly predicts, i.e. produces,
the next symbol to appear in the environment on the bases of the sequence of
symbols it has previously observed. Thus, the number of wrong predictions was
minimized.

An EP system works on the graph representation of an automaton [6]. An
automaton is represented by a directed graph. The nodes represent the states of
the automaton, and the edges correspond to the state transitions. Every edge is
labeled by an input and an output symbol. Five different mutations are derived
from the graph description: change of an output symbol, change of a state tran-
sition, addition of a state, deletion of a state, and change of the initial state. The
mutation operator selects with equal probability a certain mode of mutation and
applies it to an individual. Depending on the mode of mutation the nodes and
edges are selected with equal probability. The number of mutations per offspring
is chosen with respect to a probability distribution [5]. A recombination operator
was proposed but not implemented.

The graph representation of an automaton and the resulting five modes of
mutation have two advantages. Firstly, every single mode of mutation can be
performed efficiently. Provided that the graph is stored as an adjacency list,
every change of an output symbol and every mutation of a state transition needs
only linear time in the number |Q| of nodes. To add or to delete a state needs
quadratic time. The change of the initial state can be done in constant time.



From Syntactical to Semantical Mutation Operators 237

Since the deletion of a state and the change of the initial state are only allowed
when the parent automaton has more than one state, every mutation leads to
a feasible representation of an automaton, but the resulting automaton is not
necessarily minimal. In particular, there can be nodes and even whole subgraphs
that are not reachable from the initial state.

A potential drawback of the mutation may be that every single mode of
mutation is based solely on the structure of an automaton. Thus, the standard
mutation is a syntactical operator. The size of a mutation, e.g., the length of a
mutation step, is directly related to the complexity of the structural modifica-
tion. A mutation that deletes a state and changes a state transition has greater
influence on the structure than a mutation that only changes a symbol of the
output alphabet. Thus, the impact on the input/output behavior is not con-
sidered here. Even the influence of two mutations of the same mode may vary
significantly (see section 5.1). Moreover, it is difficult to find a suitable distance
measure (metric), which measures the structural difference of two automata. Es-
pecially for the gradual approximation of a solution in a large search space, it is
important that mutation will prefer small steps in the search space (regarding a
suitable distance measure). By using EP to evolve programs in the form of sym-
bolic expressions it has been observed that preferring mutations with a small
effect has some advantages [1]. A formal approach is presented in [3]. By defin-
ing two related distance measures within the geno- and the phenotype space, so
that neighboring elements have similar fitness, problem-specific knowledge was
incorporated into the variation operators. The metric allows one to reason about
the distance of individuals and the size of mutation steps in a formal framework.
The size of a mutation is correlated with the change in the fitness value and
is not directly based on the structural modifications within the representation
of an individual. The requirements on the mutation operator are described in
section 5.2. By the example of a synthetic problem, where a Boolean function
has to be found based on the complete training set, it was shown, that systems
which fulfill the requirements have a significant advantage [3].

To simplify our consideration we focus on DFAs in the following. In general
this restriction to decision problems is not too strong [7].

4 Fitness Function and Distance of DFAs

Let S ⊂ Σ∗ be a finite subset and T = {(w, f(w))|w ∈ S} a training set.
Based on the training set a DFA has to be found which accepts the language
L(A) := f−1(1) for a function f : Σ∗ → {0, 1}. The EP system has to evolve
DFAs which will generalize from the training set to L(A).

For simplicity, we restrict the problem space in two ways. First, we only
consider languages with strings of fixed length n. Furthermore, the search will
be based on the complete training set Tv. For a function f : Σn → {0, 1} and the
training set Tv = {(w, f(w)) | w ∈ Σn} a DFA has to be found which accepts
the language Ln(A) := f−1(1). Thus, A must achieve:

∀(w, 1) ∈ T is w ∈ Ln(A) and ∀(w, 0) ∈ T is w �∈ Ln(A).



238 Dirk Wiesmann

The effects of the restrictions will be discussed later. The fitness function F (A) :=
|{(w, f(w)) ∈ Tv | f(w) = 1 ⇔ w ∈ Ln(A)}| counts the number of strings on
which the DFA A classifies correctly.

Now, how can we measure the similarity of two DFA A and B? The distance
dn of A and B should be the number of strings on which A and B disagree:

dn(A,B) = |Ln(A)|+ |Ln(B)| − 2|Ln(A) ∩ Ln(B)|

The maximum difference in fitness values of two DFA is dn(A,B). Note that the
fitness calculation is based on Tv. The distance measure dn : Σn×Σn → IN is a
metric. Imagine that all strings from Σn are sorted in lexicographical order. A
language Ln can then be represented as a bit-string of length |Σn|. The i-th bit
equals 1, if the i-th string from Σn is in the language Ln. Otherwise the i-th bit
equals 0. Thus, dn equals the hamming distance between the bit-strings belong-
ing to the corresponding languages. Obviously, this distance measure can not
distinguish between two structural different DFAs accepting the same language.

5 Proposals for EP Mutation Operators

5.1 Weighted Mutation

The first proposal for a new mutation operator is motivated by the observation
that the fitness calculation can provide more information than the pure fitness
value. To compute the fitness of a given DFA for every word in the training set
a path beginning at the initial state has to be traversed.

In order to assess the influence of a mutation event every node (state) is
assigned a weight index with initial value 0. Every time a node is visited during
fitness calculation the weight index is incremented by 1. After fitness calculation
on the complete training set, the weights give an upper bound for a change in
the fitness value caused by mutation.

Let us consider the following example. Let Σ4 = {0, 1}4 and let L4 =
{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} be the language of all strings with
an even number of 0’s and an even number of 1’s of length 4. Figure 1 shows the
graph representation (state diagram) of an automaton with the corresponding
weights after fitness calculation on the complete training set Tv. In three cases
the DFA draws the wrong decision on Tv.

Now, let us discuss the impact of different mutations: The state q2 has a
relative high weight of 15. If the state q2 is deleted by a mutation event, then
the fitness changes by at most 15. In comparison, the deletion of state q5 can
change the fitness by the value of 3 at most. By ranking the states according to
their weights, states with a lower weight can be mutated with higher probabil-
ity than states with a higher weight. State transitions can be mutated likewise.
Transitions beginning in a state with a lower weight will be mutated with higher
probability than transitions beginning in a state with a higher weight. The in-
sertion of new states will take place with higher probability between states with
a lower weight.



From Syntactical to Semantical Mutation Operators 239

q1

q4

q5

q2

q3

1
1

0

0

0

0

1

1

1

0

(16) (15)

(12) (8)

(3)

Fig. 1. DFA with weighted states (weights in parenthesis) after fitness evaluation on
the complete training set T4 for the language L4 of all strings with an even number of
0’s and an even number of 1’s. State q1 is initial and final state.

This approach allows the definition of a reasonable probability distribution on
mutation events for every single mode of mutation. But it is not obvious how the
different modes of mutation should be weighted among each other. For example,
should transitions be mutated with higher probability than states? Should we
mutate states with a low weight more often than transitions beginning in a state
with a high weight? Additionally, even with respect to Tv the upper bound may
turn out to be a bad estimate for the real change in fitness. E.g., an improvement
and a decline of the fitness may cancel out each other. These observations show
once again the problems of variation operators purely based on the structure,
even when additional information is available.

5.2 Metric Based Mutation

In order to overcome the deficiencies described above, we first post some formal
requirements on the mutation operator. Let G be the genotype space. Here G
consists of all graph representations of DFAs A accepting a language Ln(A) ⊆
Σn. Since we consider minimum state automata only, G is finite. Let dG : G ×
G → IN be a suitable metric on G. Without loss of generality we restrict our
discussion to the reduced mutation operator m′ : G × Ωm′ → G with the finite
probability space (Ωm′ , Pm′). With probability Pm′(m′(u) = v) := Pm′({ω ∈
Ωm′ | m′(u, ω) = v}) the mutation operator m′ changes an element u ∈ G to a
new element v ∈ G. The first rule assures that from each point u ∈ G any other
point v ∈ G can be reached in one mutation step.

Guideline M 1 The mutation m′ should fulfill:

∀u, v ∈ G : Pm′(m′(u) = v) > 0.

Moreover small mutations (with respect to dG) should occur more often than
large mutations.

Guideline M 2 The mutation m′ should fulfill: ∀u, v, w ∈ G :

(dG(u, v) < dG(u,w)) ⇒ (Pm′(m′(u) = v) > Pm′(m′(u) = w))



240 Dirk Wiesmann

The mutation should not prefer any search direction, e.g. should not induce a
bias by itself.

Guideline M 3 The mutation m′ should fulfill: ∀u, v, w ∈ G :

(dG(u, v) = dG(u,w)) ⇒ (Pm′(m′(u) = v) = Pm′(m′(u) = w)) .

A motivation of the guidelines and a discussion of a suitable metric can be found
in [3, 9]. We will now design a mutation operator in accordance to the guidelines
which uses the metric dn defined in section 4. The mutation will make use of the
efficient synthesis operations for DFAs presented in section 2.

The first step in mutating the DFA A to a DFA b is to randomly choose a
step size K with 0 ≤ K ≤ |Σn|. The mutation operator will choose a subset
Mn ⊆ Σn with |Mn| = K. Every word w ∈ Σn will be selected with the same
probability p for the set Mn. Thus we have

P (K = k) = pk · (1− p)|Σn|−k.
To obtain a fast selection of the set Mn we assume that every word can be
addressed by a index i ∈ {0, . . . , |Σn| − 1}. If the word at position i was already
selected for the set Mn, then the word with index (i + l) will be chosen next
with probability p · (1− p)l−1. The random variable L with

P (L = l) = p · (1− p)l−1

describes the relative position of the next word that will be chosen. Thus L is
geometrical distributed with parameter p. If p = 1/|Σn| then the expected size
of the set Mn will be 1.

The set Mn is split in two sets Xn and Y n with:

∀x ∈ Xn : x ∈ Ln(A), ∀y ∈ Y n : y �∈ Ln(A) and Xn ∪ Y n = Mn.

No x ∈ Xn should be accepted by the DFA B. The DFA B should only accept
all y ∈ Y n. On every other input string A and B should agree. Thus, it is
dn(A,B) = K. For the partitioning in the sets Xn and Y n the DFA A has to be
tested K times (cost: K ·n). To obtain B two DFA AX and AY are constructed
with:

Ln(AX) = Σn \Xn and Ln(AY ) = Y n.

With this, we get B as Ln(B) = (Ln(A) ∩ Ln(AX)) ∪ Ln(AY ).
AX and AY are constructed as follows. For every xi ∈ Xn = {x1, . . . , x|X

n|}
we construct an automaton Axi that accepts only the string xi, thus Ln(Axi) =
{xi}. This automaton has n + 2 states. Figure 2 shows the structure of a DFA
only accepting the string a = a1 . . . an. Thus, we have:

Ln(AX) = Ln(Ax1) ∪ . . . ∪ Ln(Ax|Xn|).

For every yi ∈ Y n = {y1, . . . , y|Y
n|} we construct an automaton Ayi only ac-

cepting the string yi as well. With Ln(Ayi) = {yi} we have:

Ln(AY ) = Ln(Ay1) ∪ . . . ∪ Ln(Ay|Y n|).



From Syntactical to Semantical Mutation Operators 241

q0

qn+2

q2q1

10

1

0

......a1 a2 a3 an

a1

a2 a3

qn+1

Fig. 2. The structure of a DFA on Σn = {0, 1}n. The DFA only accepts the string
a = a1 . . . an. The final state is hatched and q0 is the initial state.

After each synthesis operation the resulting DFA will be minimized. An EP
system using this mutation operator is called a MBEP system.

Theorem 5. The constructed mutation operator fulfills the guidelines M1, M2
and M3.

Proof. The guideline M 1 is fulfilled because for every step size k ∈ {0, . . . , |Σn|}
every subset Mn ⊆ Σn with |Mn| = k has a probability pk · (1− p)|Σn|−k > 0 to
be chosen. According to the design of the operator, every language Ln ⊆ Σn can
be generated. The guideline M 2 is fulfilled because for k1 < k2 it is guaranteed
that P (K = k1) > P (K = k2), and all subsets Mn ⊆ Σn with |Mn| = K have
an equal probability of being chosen. This also implicates that guideline M 3 is
also fulfilled. ��

6 Experiments

For reasons discussed in section 7 a direct comparison between EP and MBEP
is not possible. Due to its design the MBEP system searches for languages with
strings of fixed length n. An EP system can operate on strings of arbitrary
length. A (1+1)-MBEP system was tested on two different languages. The first
language Lneven consists of all strings of length n with an even number of 0’s
and an even number of 1’s. The second language Lnfel consists of all strings
of length n where the last symbol equals the first. The initial start point was
chosen by random selection of an element from the set of all languages with
strings of length n with equal probability. We used a constant setting p = 1/2n,
but a dynamic adaptation of the parameter p is also possible. The number of
generations (mutations) until the language was found the first time were averaged
over 50 independent runs (Table 1). One has to keep in mind that the time needed
for a mutation depends on the length n of the strings, the step size K, and the
size of the DFAs. The mutation operator is efficient in these sizes but more time-
consuming than standard EP mutation (see sections 3 and 5.2 and [3]). For 500
mutations the MBEP system needs for n = 4, n = 6, and n = 8, about 1, 4, and
16 seconds, respectively (on a Sparc Ultra 10/300). It is not surprising that the
evolution process for both languages need similar amounts of time.



242 Dirk Wiesmann

Language Runs Generations
L4
even 50 118.09

L6
even 50 725.06

L8
even 50 3956.78

Language Runs Generations
L4
fel 50 133.18

L6
fel 50 696.34

L8
fel 50 4056.26

Table 1. Number of generations averaged over 50 independent runs until the (1 + 1)-
MBEP system found the language the first time.

To explain this observation, recall the bit-string representation from section 4.
Assume a bit-string of length |Σn| is given for every DFA. At the i-th position
the bit-string has a 1 if the DFA draws the right decision for the i-th string.
Otherwise this position holds a 0. The fitness function is identical to counting
the number of 1’s in the bit-string. Thus, the fitness function equals the counting-
ones problem [8] on a string of length |Σ|n. Since the MBEP mutation operator
is based on the metric dn, all languages Ln have the same difficulty to be found.

7 Problems

The MBEP system is subject to substantial restrictions. The system can only
work on regular languages with strings of fixed length n. But this restriction
could be weakened. Prior to a mutation step a string length could be chosen with
respect to a probability distribution. Then the mutation operator operates only
on strings of the chosen length. The restriction that the MBEP system can only
work on the complete training set is much stronger. In its current implementation
the system has no generalization ability. Due to the construction of the DFAs
(see Figure 2), cycles over final states cannot occure. Strings that are too long
or too short are kept in a non-accepting state. This problem may be solved by
setting transitions starting in state qn+1 (see Figure 2) randomly to states in
{q0, . . . , qn+1}. Additionally states in {q0, . . . , qn+1} have to be final states with
a certain probability. Unfortunately, first experiments have shown that under
this condition the resulting DFAs may become very large. The size of a DFA
depend on the size of the incomplete training set. If the training set is too small
the DFAs may become too large.

8 Conclusion

In this work we have discussed the mutation operator in evolutionary program-
ming as an example of structure optimization. We proposed two alternative mu-
tation operators for structure optimization. The operators are using additional
information to improve the search process. The weighted mutation operator uses
information that results from the fitness calculation. The (”semi-syntactical”)
weighted mutation operator clarifies the problems of structure variations. Even
when additional information is available it remains difficult to choose an appro-
priate mode of mutation. The (semantical) metric-based mutation operator was



From Syntactical to Semantical Mutation Operators 243

able to control these problems. A MBEP system has shown its performance on
a synthetic problem. For practical (industrial) applications it will be difficult
to translate the available domain-knowledge into a metric. Furthermore the ex-
istence of synthesis operations for semantical variations is not always ensured.
Nevertheless, with certain restrictions it is possible to apply the metric-based
design approach [11, 4].

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft as part of
the collaborative research center “Computational Intelligence” (531).

References

1. K. Chellapilla. Evolving computer programs without subtree crossover. IEEE
Transactions on Evolutionary Computation, 1(3):209–216, 1997.

2. P. J. Denning, J. B. Dennis, and J. E. Qualitz. Machines, Languages, and Com-
putation. Prentice-Hall, Englewood Cliffs, 1979.

3. S. Droste and D. Wiesmann. Metric based evolutionary algorithms. In R. Poli,
W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty, editors,
Genetic Programming, Proc. of EuroGP’2000, Edinburgh, April 15–16, 2000, vol-
ume 1802 of LNCS, pages 29–43, Berlin, 2000. Springer.

4. M. Emmerich, M. Grötzner, and M. Schütz. Design of graph-based evolutionary
algorithms : A case study of chemical process networks. Evolutionary Computation,
9(3):329–354, 2001.

5. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, New York, 1995.

6. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated
Evolution. Wiley, New York, 1966.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

8. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač,
Hamburg, 1997.

9. G. Rudolph. Finite Markov chain results in evolutionary computation: A tour
d’horizon. Fundamenta Informaticae, 35(1-4):67–89, 1998.

10. B. Sendhoff. Evolution of Structures: Optimization of Artificial Neural Structures
for Information Processing. Shaker, Aachen, 1998.

11. T. Slawinski, A. Krone, U. Hammel, D. Wiesmann, and P. Krause. A hybrid
evolutionary search concept for data-based generation of relevant fuzzy rules in
high dimensional spaces. In Proc. of the Eighth Int’l Conf. on Fuzzy Systems
(FUZZ-IEEE’99), Seoul, Korea, Aug. 22–25, 1999, pages 1431–1437, Piscataway,
NJ, 1999. IEEE Press.



Parameter Control within a Co-operative
Co-evolutionary Genetic Algorithm

Antony Iorio and Xiaodong Li

School of Computer Science and Information Technology
RMIT University, Melbourne VIC 3001, Australia

{iantony,xiaodong}@cs.rmit.edu.au

Abstract. Typically GAs have a number of fixed control parameters
which have a significant effect upon the performance of the search. This
paper deals with the effects of self-adapting control parameters, and the
adaptation of population size within the sub-populations of a coevolu-
tionary model. We address the need to investigate the potential of these
adaptive techniques within a co-evolutionary GA, and propose a number
of model variants implementing adaptation. These models were tested
on some well known function optimisation problems. The experimental
results show that one or more of the model variants yield improvements
over the baseline co-evolutionary model.

1 Introduction

Recently, ecological models of the co-evolution of species have inspired new ap-
proaches for GAs [1,2,3]. Potter and De Jong have proposed a Co-operative
Co-evolutionary Genetic Algorithm (CCGA-1) [1] architecture involving multi-
ple co-evolving sub-populations, each dealing with separate parameters of the
problem. Sub-populations are evolved much like a typical GA with selection, re-
combination and mutation operations. The co-evolutionary aspect of this model
results from individuals evaluated in terms of individuals from the other sub-
populations. This leads to co-operation between sub-populations to attain a
mutual goal. By evolving the sub-populations in a modular fashion the problem
is also being broken down, assisting the progress of the search, especially with
separable problems [1]. This model has been applied to a variety of problem
domains with notable success by Potter and De Jong [1,4].

Another technique which has been found to improve the performance of GAs
is the adaptation of algorithm control parameters. Control parameters of GAs are
usually fixed during a run, whereas self-adaptation occurs when control parame-
ters such as mutation or cross-over rate are represented within the chromosome
as a parameter. As a result, they undergo the same evolutionary processes as the
problem parameters within the chromosome. Like co-evolution, this is another
means of providing a GA with more flexibility to conduct it’s search effectively
and allows the algorithm to adapt itself to the problem during a run [7,8]. For
more information the reader can refer to Eiben et al. [5] where a survey of work
in the field of parameter control is provided.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 247–256, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



248 Antony Iorio and Xiaodong Li

Intuitively, the two combined approaches of co-evolution and parameter con-
trol should improve the performance of a GA. In this paper we propose a number
of model variants of the CCGA-1 which utilise the GAVaPS adaptive population
sizing rule originally proposed by Arabas [6]. Bäck et al. [9] has also demonstrated
the improvements which result from combining the GAVaPS with self-adaptation
of control parameters.

We study the performance of the adaptive CCGA-1 variants on a number of
test function optimisation problems. For the purposes of our comparative study,
we use the same test functions that Potter and De Jong used in their original
paper [1].

The paper is organized as follows: Section 2 describes the CCGA-1 originally
proposed by Potter and De Jong [1], along with our extensions to the CCGA-1
using self-adaptive genetic operators (e.g., mutation and crossover) and adaptive
sub-population size. Section 3 describes the experimental setup including the
performance metrics. Section 4 presents the results, showing that one or more
adaptive CCGA-1 variants always performs better than the baseline CCGA-1
upon all of the test functions. The Conclusion summarizes our observations and
discusses directions for future research.

2 The Co-operative Co-evolutionary Algorithm
with Adaptation

The CCGA-1 model provides a simple model in which it is relatively easy to
integrate a variety of evolutionary approaches, while still maintaining the fun-
damental co-evolutionary behaviour of the algorithm. Consequently, we have
chosen the CCGA-1 as a suitable approach to evaluate the performance of self-
adaptive crossover and mutation, and the adaptation of sub-population sizes
according to the Relative Life-Time and auxiliary population rules [9].

2.1 The CCGA-1 Model

We begin with a description of the fundamental co-evolutionary algorithm em-
ployed within our study. The co-operative co-evolutionary genetic algorithm in
Figure 1, provides separate populations or species (s), (where the subscript (s)
represent the sub-population number) for each parameter in the problem do-
main.

The co-dependent evolution of the parameters is consistent with biological
mutualism in that the fitness evaluation of a new individual is done in terms of
how much the fittest individuals from the other sub-populations (previous gen-
eration) contribute towards it’s fitness. In other words the algorithm determines
how well an individual co-operates with individuals from other sub-populations;
the ultimate outcome being a maximisation in co-operation and overall fitness.

2.2 Self-adaptive Mutation, Crossover, and the Selection Process

We have applied self-adaptation similar to that used by Bäck et al. [9]. This
requires control parameters of mutation and cross-over to be represented within



Parameter Control within a Co-operative Co-evolutionary Genetic Algorithm 249

gen = 0
for each sub-population s do begin

Pops(gen) = randomly initialised population
evaluate fitness of each individual in Pops(gen)

end for
while termination condition = false do begin

gen = gen + 1
for each sub-population s do begin

select Pops(gen) from Pops(gen - 1) based on fitness
apply genetic operators to Pops(gen)
evaluate fitness of each individual in Pops(gen)

end for
end while

Fig. 1. The Co-operative co-evolutionary genetic algorithm of Potter and De Jong [1].

a chromosome. Each sub-population represents a population of individuals for
a particular parameter from the problem domain. The self-adaptive control pa-
rameters are encoded in the last two sub-strings of each chromosome, within
each sub-population.

The process of self-adaptive mutation we have applied is a two step process;
the bits encoding mutation rate at the end of the chromosome are mutated, and
the resulting new mutation rate is decoded to be used upon the remaining bits
of the chromosome.

Self-adaptive crossover rates are decoded from a sub-string within a chro-
mosome as well. Crossover occurs with a two-point crossover over the entire
chromosome after a proportion of the least fit individuals ranked in terms of
their fitness, is killed from the sub-population. Two parents are chosen from
the remaining sub-population using tournament selection. The probability of
crossover for two parents is determined from the average of the two encoded
crossover rates. A random number is generated between 0 and 1. If the number
is within the range of the average self-adaptive cross-over rate, the parents are
mated. The resulting two offspring are mutated with their respective mutation
parameters, and reinserted into the existing population. If the crossover test does
not succeed the parents are mutated with their respective mutation parameters
and reinserted into the sub-population. This process is repeated until the num-
ber of individuals which were killed off are replaced. If the number of individuals
which are reinserted is odd, one of the replacement individuals is automatically
mutated and reinserted into the population.

2.3 Adaptive Sub-population Size

The GAVaPS [6] rule applied to the sub-populations of the CCGA-1, gives indi-
viduals a relative life-time (RLT ) at the time of creation, which is in proportion
to the average fitness of individuals within the population. Bäck et al. [9] recon-



250 Antony Iorio and Xiaodong Li

stituted the RLT rules for the problem of function minimisation, which is the
variation of the RLT rules we will be applying (equations (1), (2), and (3)).

MinLT and MaxLT refer to the static minimum and maximum life-times
an individual can have. An individual i with a fitness worse than, or equal to
the average, can expect a RLT closer to MinLT. Likewise, an individual which
has a fitness better than the average, can expect a RLT closer to the maximum
value. AvgFit is a measure of the average fitness within the sub-population,
and WorstFit and BestFit are measures of fitness for the least and most fit
individuals respectively.

RLT (i) = MinLT + η.
WorstF it− fitness(i)
WorstF it−AvgFit iffitness(i) ≥ AvgFit . (1)

RLT (i) =
1
2

(MinLT +MaxLT ) + η.
AvgF it− fitness(i)
AvgFit−BestF it (2)

iffitness(i) < AvgFit .

η =
1
2

(MaxLT −MinLT ) . (3)

SubPopSize(t+ 1) = SubPopSize(t) +AuxSubPopSize(t)−D(t) . (4)

AuxSubPopSize(t) = SubPopSize(t)·p . (5)

With every generation the RLT value of each individual is decremented by 1.
When the RLT reaches zero, the individual is removed from the sub-population,
unless the individual is the fittest individual. This is equivalent to an elitist
strategy.

Within the approach of Bäck et al. [9] eventually all individuals die from old
age. Bäck conjectured the high selection pressure resulting from population size
minimisation contributed to finding good self-adaptive cross-over and mutation
rates. However, this approach can potentially lead to premature convergence
with an insufficiently large population. This issue was addressed by applying the
auxiliary replacement equations (4) and (5) proposed by Arabas et al. [6]. Com-
bined with a relatively small maximum life-time for individuals, an appropriate
level of selection pressure can be maintained, while introducing new individuals
with each generation. At each generation t, an auxiliary population AuxPop-
Size(t) is added, and the least fit individuals D(t) are deleted. The fraction of
new individuals added to the current sub-population is determined by p, where
SubPopSize(t) is the sub-population’s size at that generation. The auxiliary pop-
ulation is added on using the same selection process applied to the replacement
of culled individuals.



Parameter Control within a Co-operative Co-evolutionary Genetic Algorithm 251

Table 1. Descriptions of the algorithm designations.

Algorithm designation description

CCGA-1 Baseline co-evolutionary model

CCGAM CCGA-1 with self-adaptive mutation rate

CCGAMX CCGAM with self-adaptive crossover rate

CCGAAP CCGA with adaptive sub-population sizing

CCGAMAP CCGAAP with self-adaptive mutation rate

CCGAMXAP CCGAAP with self-adaptive crossover rate

3 Experimental Design

The CCGA-1 was evaluated with a number of adaptive variations as shown in
Table 1 using the parameters of Table 2. We employed a cap of 500 individuals
for the adaptive sub-population size to make sure the sub-populations did not
increase in size to an unnecessarily large number. The models we investigated
were tested on the same set of functions used by Potter and De Jong [1] (see
Table 3).

For each run of a particular algorithm, we terminated after 200,000 eval-
uations. For each function we conducted 30 runs and acquired the best mean
fitness and standard deviation for each of the 200,000 evaluations over those 30
runs. A count of the number of function evaluations is used as a time metric for
establishing a comparative baseline performance between the models. This was
done for two reasons, firstly the CCGA-1 model has a significantly larger num-
ber of evaluations per generation, although its overall performance is typically
better than a single population GA. Secondly, the adaptation of population size
within a number of the models results in a varying number of evaluations per
generation.

4 Results

Table 4 presents the best mean fitness after 200,000 evaluations for each of the
models upon each test function. A number of comparative plots of each algo-
rithm’s performance are provided for each test function investigated in Figure 2.
The performance of each algorithm is ranked in terms of the best results found for
a particular algorithm variation and test function within Table 51. The ranked
value is between 0 and 5, where a ranking of 5 represents the best performance of
a particular algorithm and test function. The ranked values are summed across
test functions, for each algorithm. The sum provides an indication of the overall
ranking of the algorithms investigated.

1 The CCGAMAP and CCGAMXAP are so close in their best individual found for
the Rosenbrock function, that the ranking is split evenly between them.



252 Antony Iorio and Xiaodong Li

Table 2. Algorithm parameters and features.

Parameter Value

chromosome representation 16 bits for a function variable,
and 8 bits for each self-adaptive
parameter.

chromosome length 32 bits

selection rank selection and
tournament selection

genetic operators two-point crossover with
bit-flip mutation

static crossover probability 0.6

static mutation probability 1/(chromosome length)

self-adaptive mutation probability range 0.001 to 0.25

self-adaptive crossover probability range 0.6 to 1.0

kill percentage 10%

sub-population size 100 (initial size which is fixed for all
CCGA-1 model variants which do
not incorporate adaptive sizing)

maximum sub-population size 500 (the maximum size of a
sub-population within the CCGA-1
models incorporating adaptive sizing)

sub-population initialisation random

MinLT 1

MaxLT 4

p 0.7

Table 3. Test functions utilised to evaluate the performance of the algorithms. n is
the dimension of the function, and R is the range of the function variables.

Name Function n R

Rastrigin f1(−→x ) = 10. 0n +
∑n

i=1(x2
i − 10. 0 cos(2πxi)) 20 [-5.12,5.12]

Schwefel f2(−→x ) = 418. 9829n−∑n

i=1 xi sin(
√
|xi|) 10 [-500,500]

Griewangk f3(−→x ) = 1 +
∑n

i=1
x2
i

4000 −
∏n

i=1 cos( xi√
i
) 10 [-600,600]

Ackley f4(−→x ) = 20 + e− 20. e
(−0.2

√
1n
∑n

i=1
x2
i )

−e( 1n
∑n

i=1
(cos 2πxi)) 30 [-30,30]

Rosenbrock f5(−→x ) = 100(x2
1 − x2)2 + (1− x1)2 2 [-2.048,2.048]

We observe from Figure 2 that one or more of the adaptive CCGA-1 models
evaluated, performs better than the baseline CCGA-1 upon all of the test func-
tions.



Parameter Control within a Co-operative Co-evolutionary Genetic Algorithm 253

Table 4. Best fitness and standard deviation after 200,000 evaluations.

Algorithm Rastrigin Schwefel Griewangk Ackley Rosenbrock

CCGA-1 0.1540 0.08393 0.04734 0.01227 0.02046
±0.3687 ±0.09581 ±0.02994 ±.005645 ±0.03322

CCGAM 1.921 1.874 0.3494 1.247 0.005109
±1.317 ±6.833 ±0.1364 ±0.5214 ±0.01043

CCGAMX 2.708 1.045 0.3017 0.9333 0.004421
±1.425 ±4.594 ±0.1431 ±0.5245 ±0.005681

CCGAP 0.001311 0.0006013 0.03431 0.005765 0.03454
±0.005653 ±0.0008367 ±0.03394 ±0.001606 ±0.07332

CCGAMAP 2.078 0.02420 0.06615 7.646 0.002995
±4.411 ±0.05113 ±0.02763 ±2.579 ±0.005983

CCGAMXAP 0.9237 0.01351 0.05635 6.359 0.002943
±1.914 ±0.03134 ±0.02054 ±3.228 ±0.006692

Table 5. Comparative ranking of the algorithms upon the test functions, in terms of
the best individual found after 200,000 evaluations.

Test function CCGA-1 CCGAM CCGAMX CCGAAP CCGAMAP CCGAMXAP

Rastrigin 2 4 6 1 5 3

Schwefel 4 6 5 1 3 2

Griewangk 2 6 5 1 4 3

Ackley 2 4 3 1 6 5

Rosenbrock 4 3 2 5 1.5 1.5

Total 14 23 21 9 19.5 14.5

End Ranking 2 5 4 1 3 2

Bäck et al. [9] hypothesized that the main source of the improvement in his
experimentation of adaptive and self-adaptive GAs was the adaptation of the
population size. This is consistent with our observations as well, in that the
CCGAAP outperforms the CCGA-1 upon the Schwefel, Rastrigin, Griewangk,
and Ackley functions. From Table 5 we see that the CCGAMXAP also performs
as well as the CCGA-1 baseline. It is apparent that the CCGAMXAP per-
forms significantly better upon the Rosenbrock and Schwefel functions, where
the CCGA-1 performs more poorly.

5 Conclusion

We have established that one or more of the adaptive models performs better
than the baseline CCGA-1 on all of the test functions we investigated.

To summarise, we have made the following observations:



254 Antony Iorio and Xiaodong Li

0.001

0.01

0.1

1

10

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

b
e
s
t 
in

d
iv

id
u
a
l

evaluations

Ackley function

’ccga-1’
’ccgam’

’ccgamx’
’ccgaap’

’ccgamap’
’ccgamxap’

0.0001

0.001

0.01

0.1

1

10

100

1000

0 50000 100000 150000 200000

b
e
s
t 
in

d
iv

id
u
a
l

evaluations

Schwefel function

’ccga-1’
’ccgam’

’ccgamx’
’ccgaap’

’ccgamap’
’ccgamxap’

0.01

0.1

1

10

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

b
e
s
t 
in

d
iv

id
u
a
l

evaluations

Griewangk function

’ccga-1’
’ccgam’

’ccgamx’
’ccgaap’

’ccgamap’
’ccgamxap’

0.001

0.01

0.1

1

10

100

1000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

b
e
s
t 
in

d
iv

id
u
a
l

evaluations

Rastrigin function

’ccga-1’
’ccgam’

’ccgamx’
’ccgaap’

’ccgamap’
’ccgamxap’

0.001

0.01

0.1

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

b
e
s
t 
in

d
iv

id
u
a
l

evaluations

Rosenbrock function

’ccga-1’
’ccgam’

’ccgamx’
’ccgaap’

’ccgamap’
’ccgamxap’

Fig. 2. Best fitness performance of the adaptive CCGA-1 algorithms upon the Ackley,
Schwefel, Griewangk, Rastrigin, and Rosenbrock functions.



Parameter Control within a Co-operative Co-evolutionary Genetic Algorithm 255

– The CCGAAP model performs as well or better on all functions except the
Rosenbrock function. This suggests that some form of adaptive population
sizing can generally yield improvements to the CCGA-1. The application of
the RLT rule assists in removal of individuals from within sub-populations
which are deemed to make a poor contribution towards the fitness evalua-
tion. At the same time, the lifespan of these individuals is sufficient for any
beneficial future contributions to be made.

– All the models incorporating self-adaptation obviously involve some degree
of learning to establish appropriate mutation and/or crossover rates as the
algorithm progresses. This learning is part of the search process, and it is
undertaken by each individual in each sub-population. We can see from the
experimental results (Figure 2) that self-adaptive CCGA-1 models generally
converge quite slowly and also prematurely. We hypothesize that the poor
performance of these models is the result of the large number of self-adaptive
parameters involved in the search. Within these models we are not just
searching for good solutions, but also good control parameters. As a result
the search space is significantly larger than it would be otherwise. Within
the self-adaptive CCGA-1 models we are searching a much larger number
of parameter values, which suggests significant time is taken away from the
search for good solutions.

– We observe improvements with both the CCGAMAP and CCGAMXAP over
the baseline CCGA-1 upon the Schwefel and Rosenbrock function. Compared
with the approach of Bäck et al [9] where the population diminishes over
successive generations, the sub-populations in our approach do not diminish,
but increase in size towards a cap of 500 individuals. It is reasonable to con-
clude in our case that the selection pressure resulting from the comparatively
smaller maximum life-time for individuals helps to remove individuals with
unsuitable self-adaptive mutation and crossover values.

– Because of the nature of the CCGA-1 model which separates the object
variables into sub-populations, we mutate each of the object variables inde-
pendently within a self-adaptive scheme. This results in a greater exploration
of the search space. It also suggests that good results upon uniform fitness
landscapes such as the Rosenbrock function can be expected, where a high
degree of exploration is desirable to find a good direction in the search. In
contrast, CCGAAP is not as effective upon the Rosenbrock function although
it demonstrated effective performance upon the other test functions.

– The RLT rule, with a short maximum lifetime of 4 introduces significant
selection pressure to the search, by allowing individuals which have not con-
tributed after 4 generations to die off and be replaced. This is the element
of the CCGAMXAP and CCGAMAP model which provides a force for the
survival of relatively fitter individuals within sub-populations.

Overall we see that adaptively sizing the sub-populations using the RLT rule
yields the largest improvements, and further research in the area of adaptively
sizing sub-populations would be desirable. The highly adaptive nature of the



256 Antony Iorio and Xiaodong Li

models we investigated suggests that they may be suitable for optimisation prob-
lems involving non-stationary environments [10].

References

1. Potter, M. A., De Jong, K. A.: A Cooperative Co-evolutionary Approach to Function
Optimization. In: Davidor, Y., Schwefel, H.-P., Manner R. (eds.): Parallel Problem
Solving from Nature PPSN-III., Proceedings of the International Conference on
Evolutionary Computation, Lecture Notes in Computer Science Vol. 866. 249–257
(1994)

2. Husbands, P. and Mill, F.: Simulated Co-Evolution as The Mechanism for Emergent
Planning and Scheduling. In: Belew, R. and Booker, L. (eds.): Proceedings of The
Fourth International Conference on Genetic Algorithms 264–270 (1991)

3. Hillis, W. D.: Co-evolving Parasites Improve Simulated Evolution as an Optimiza-
tion Procedure. In: Langton, C. G., Taylor, C., Farmer, J. D., and Rasmussen, S.
(eds.): Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity
Vol. X 313–324 (1991)

4. Potter, M. A., and De Jong, K. A.: Cooperative Co-evolution: An Architecture for
Evolving Coadapted Subcomponents. In: Evolutionary Computation, Vol. 8., No.1,
1–29, (2000)

5. Eiben, A., Hinterding, R. and Michalewicz, Z. Parameter Control in Evolutionary
Algorithms. In: IEEE Transactions on Evolutionary Computation Vol. 3 No. 2 124–
141 (1999)

6. Arabas, J., Michalewicz Z., and Mulawka, J.: GAVaPS - A Genetic Algorithm with
Varying Population Size. In: IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on Evolutionary Computation Vol. 1.
73–78 (1994)

7. Bäck, T. and Schutz, M.: Intelligent mutation rate control in canonical genetic al-
gorithms. In: Ras, Z. W. and Michalevicz, M. (eds.): Foundations of Intelligent
Systems, Ninth International Symposium ISMIS’96, Lecture Notes in Artificial In-
telligence, Vol. 1079. 158–167 (1996)

8. Hinterding, R.: Gaussian mutation and self-adaptation for numeric genetic algo-
rithms. In: Proceedings of 1995 IEEE International Conference on Evolutionary
Computation 384–389 (1995)

9. Bäck, Th., Eiben, A. E. and van der Vaart, N. A. L.: An empirical study on GAs
without parameters. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E.,
Merelo, J. J., and Schwefel, H.-P.(eds.): Parallel Problem Solving from Nature —
PPSN V, Lecture Notes in Computer Science Vol. 1917 315–324 (2000)

10. Grefenstette, J.J.: Genetic Algorithms for changing environments. In: Manner,
R. and Manderick, B. (eds.): Parallel Problem Solving from Nature — PPSN II.
Elsevier Science Publishers B.V., 137-144 (1992)



The Effects of Representational Bias
on Collaboration Methods

in Cooperative Coevolution

R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

George Mason University, Fairfax, VA 22030, USA
paul@tesseract.org, {wliles,kdejong}@gmu.edu

Abstract. Cooperative coevolutionary algorithms (CCEAs) have been
applied to many optimization problems with varied success. Recent em-
pirical studies have shown that choices surrounding methods of collabo-
ration may have a strong impact on the success of the algorithm. More-
over, certain properties of the problem landscape, such as variable in-
teraction, greatly influence how these choices should be made. A more
general view of variable interaction is one that considers epistatic link-
ages which span population boundaries. Such linkages can be caused by
the decomposition of the actual problem, as well as by CCEA represen-
tation decisions regarding population structure. We posit that it is the
way in which represented problem components interact, and not neces-
sarily the existence of cross-population epistatic linkages that impacts
these decisions. In order to explore this issue, we identify two different
kinds of representational bias with respect to the population structure of
the algorithm, decompositional bias and linkage bias. We provide analy-
sis and constructive examples which help illustrate that even when the
algorithm’s representation is poorly suited for the problem, the choice of
how best to select collaborators can be unaffected.

1 Introduction

Coevolutionary Algorithms (CEAs) are interesting extensions to traditional Evo-
lutionary Algorithms (EAs). While fitness in an EA is determined objectively,
fitness in a CEA is determined subjectively based on how an individual interacts
with other individuals. In cooperative coevolution, individuals that participate
in successful interactions (collaborations) are rewarded while unsuccessful col-
laborations are punished.

In this paper, we focus on the particular class of cooperative coevolutionary
algorithms (CCEAs) defined by [1,2]. A standard approach to applying CCEAs
to an optimization problem starts by trying to identify some reasonable static
decomposition of the problem representation into components represented by
each population. So, for example, if given a function of m variables to optimize,
one might choose to put each variable in a separate CCEA population. Once
a decomposition is established, the fitness of components in one population is
estimated by choosing one or more collaborators from the other populations.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 257–268, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



258 R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

There have been several attempts to understand how collaborators are best
chosen in this paradigm. Early work suggested that these choices were tied to the
amount of epistatic interaction among the function variables [1,3]. In a CCEA
that uses an N-variable decomposition for such fitness landscapes, this leads to
the notion of cross-population epistasis, and to the simple intuition that increas-
ing amounts of cross-population epistasis will require more complex collabora-
tion mechanisms. Unfortunately, the issue is more complicated than this. For
example, the simplest collaboration method seems to work best when applying
a CCEA to a non-linearly separable, quadratic problem despite the existence of
cross-population epistasis [4].

This paper extends and clarifies these issues by focusing on how optimization
problems are represented in a CCEA. We identify two kinds of representational
bias, decompositional bias and linkage bias, and show how these biases affect
choices of collaboration method. The paper is laid out as follows. In the next
section, we will briefly outline some background regarding existing analyses of
coevolutionary algorithms, the cooperative coevolutionary architecture on which
we will be focusing, and some of the choices surrounding collaboration in this
algorithm. The third section discusses what we believe to be the important
characteristics of problems, namely decomposability and epistasis. The fourth
and fifth sections take the two kinds of representational bias in turn, first dis-
cussing the implications of decompositional bias with respect to collaboration,
then those of linkage bias. The final section will conclude by discussing our im-
proved understanding how problem characteristics affect choices of collaboration
methodology.

2 Cooperative Coevolution

2.1 Existing Analysis of Coevolutionary Algorithms

Much of the analysis of coevolutionary algorithms has focused on their com-
plicated dynamics. For example, considerable effort has been spent trying to
understand how one can measure progress in a system where individual fitnesses
are subjective in order to help identify some of the pathological behaviors ex-
hibited by these algorithms [5,6,7]. Additionally, some basic theoretical work
uses ideas from simple genetic algorithm theory provided by [8], and applies
them to competitive coevolution [9]. That work explores the mechanics of a sim-
ple competitive coevolutionary algorithm from an evolutionary game theoretic
viewpoint. [10] extended this model to analyze cooperative coevolution for the
purposes of investigating their potential as optimizers.

One of the issues of considerable practical significance for coevolutionary al-
gorithms is how to assess the fitness of an individual in one population (species)
when that fitness depends in part on the individuals in other populations
(species). The theoretical models typically assume “full mixing” in the sense
that an individual’s fitness is determined by a complete set of “interactions”
with all other species. In the simple case that each of the coevolving p popula-



The Effects of Representational Bias 259

tions contains i individuals, the number of “interactions” per fitness evaluation
is ip−1.

As a consequence, there is strong practical motivation to estimate fitness by
selecting only a small subset of the possible interactions, particularly when p�
2. This process is usually accomplished by selecting a small number “partners”
[3] or “collaborators” [1] from the other species whose interactions are the basis
of fitness estimates. Immediate questions arise as to: 1) how many partners, 2)
how to select the partners, and, in the case of multiple interactions, 3) how to
combine the results of multiple interactions into a single fitness estimate. The
answers to these questions are far from simple and depend on a number of factors
including 1) whether the coevolutionary model is competitive or cooperative, and
2) the degree and type of cross-population epistasis present [1,11,2,3,4,12].

2.2 Collaboration in CCEAs

Our focus is on understanding these issues for cooperative coevolutionary mod-
els, in particular for the CCEA architecture developed in [1,2]. In this model
there is a single global fitness function for the entire system, but the search
space has been decomposed into a number of independent subspaces, each of
which is explored in parallel by independent EA populations. In this case, in
order to evaluate the fitness of an individual in one population, one or more
collaborators must be selected from the other populations in order to assemble
a complete object for a global evaluation.

A variety of studies including [1,3,4] suggest that, if the degree of cross-
population epistasis is not too strong, then selecting the current best individual
from each of the other populations and performing a single global fitness evalu-
ation is a surprisingly robust collaboration mechanism. When there is a strong
degree of epistasis, a more complex strategy involving more than one collabora-
tor from each of the other populations and a less greedy selection method for
those collaborators can improve performance.

Finally, if multiple function evaluations are involved for each subcomponent,
how can one combine these results to obtain a single fitness value? Here the
literature is fairly consistent in recommending assigning the maximum value
obtained as the fitness.

2.3 Representation in CCEAs

However, for the practitioner, there are still a number of questions to be answered
including how to decompose a complex problem in a way that leads to an effective
CCEA-based solution. This is a familiar question for standard EAs, e.g. deciding
how best to represent problems (such as Traveling Salesperson problems) to
achieve good EA-based solutions. For CCEAs, representations must additionally
involve decompositions into separately evolving subcomponents.

The difficulty for the CCEA practitioner is that there is seldom sufficient a
priori information to select an “optimal” representation or even one with suffi-
cient knowledge to make informed choices about the appropriate collaboration



260 R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

mechanism to use. However, it is clear that any choice of representation intro-
duces a bias in the system that can potentially have strong effects on a particular
collaboration strategy.

Intuitively, CCEA representation biases are a result of the granularity of the
decomposition (how many subcomponents) and the resulting epistatic interac-
tions among the subcomponents. The focus of this paper will be on understand-
ing these biases and their effects on collaboration mechanisms.

3 Research Methodology

In order to better control for the representational properties that we feel are
important to choices of CCEA collaboration mechanisms, this paper focuses on
pseudo-boolean functions, that is the objective value is assessed by mapping bi-
nary strings of length n to real values, F : {0, 1}n → �. The two representational
properties of interest are decomposability and epistasis.

3.1 Decomposability

For our purposes, a function is considered decomposable if it can be decomposed
into a sum of some number of smaller independent functions. These functions
do not necessarily have to be identical. More formally, a function F is decom-
posable if there exist a set of independent functions, {f1, f2, . . . , fm} such that
F(x) =

∑m
i=1 fi(xi). Some types of problems are rendered more tractable for

optimization because of this property since optimization can be done as m in-
dependent optimizations [13].

For pseudo-boolean functions, each xi refer to partitions of the main string,
or building blocks of the problem. Of particular interest are m-decomposable
functions, i.e., those for which an m block decomposition exists, but no finer
grained partition exists.

An example of a bit-wise decomposable problem (i.e., m = string length) is
the classic OnesMax problem in which fitness is the sum of all the 1 bits in the
string. A familiar example of a problem that is not decomposable (i.e., m = 1)
is the LeadingOnes problem. Both of these problems are defined formally in the
following sections.

Ideally, for such problems, one would like to map each decomposable unit
into a CCEA population. In general, however, the practitioner and the CCEA
don’t have explicit decomposability information. As a consequence, a CCEA can
be mismatched in terms of the number of populations and what gets mapped
into each population. We refer to this as the decompositional bias of a CCEA.

3.2 Epistasis

This notion of decomposability is intimately tied to the ideas of epistasis. For
pseudo-boolean functions we define epistasis to mean non-linear interactions
between bit positions in the problem [14]. So, for example, a highly epistatic
pseudo-boolean function like LeadingOnes is 1-decomposable while the non-
epistatic OnesMax problem is fully decomposable.



The Effects of Representational Bias 261

Of interest here is the kind of epistasis that a decomposition exhibits (e.g.,
[12]). Epistatic interactions can be positive in the sense that the contribution of
a piece of the representation due to its non-linear interaction with other pieces
have the same kind of impact on fitness as the contribution of the piece itself;
however, the magnitude of that impact depends on the value of the other pieces
involved in the interaction. Similarly, epistatic interactions can be negative in
the sense that the impact of the individual pieces involved have the opposite
effect on fitness as the contribution of their non-linear combinations, but again
the magnitude of this opposing contribution depends on the pieces involved. In
addition, one can have epistatic interactions in which neither the sign nor the
magnitude of the effect can be predicted from the individual components. As we
will see, the particular form of epistasis has an important effect on collaboration
mechanisms.

3.3 Experimental Framework

In the following sections we will construct several problems that exhibit these
properties and we analyze them both formally and empirically. For the empiri-
cal studies we used a CCEA with the following properties. A steady state GA
was used for evolving each of the populations. Each steady state GA uses a
ranked-based selection method, such that a single offspring replaces the worst
individual each generation Bit-flip mutation was applied at a rate of 1/r, where
r is the number of bits of individuals in a given population. Parameterized uni-
form crossover was applied 100% of the time to produce a single offspring in
such a way that there was a 0.2 probability of swapping any given bit. As part
of the reported experiments, we varied the number of populations, p, but in all
cases the number of individuals in each population was 10.

During preliminary sensitivity experiments, various algorithm parameter val-
ues were used. These included generational versus steady state models, propor-
tional versus ranked-based selection methods, different population sizes, different
variational operators (and rates). Though not reported in this paper, the results
were consistent with our reported findings. Our choices for the final algorithm
were based on performance results.

4 The Effects of Decompositional Bias on Collaboration

Obviously, different problems have different degrees of decomposability that may
or may not be reflected in the particular CCEA representation chosen. Since
decomposability information is not generally available for difficult optimization
problems, our focus here is on the case where there is some kind of mismatch
between the CCEA representation and a problem’s “natural” decomposition.
The question here is not whether such mismatches make the problem harder to
solve. This will clearly happen for some problems [1,3,12,4]. Instead, the question
is whether adopting more complex collaboration methods can alleviate such
mismatches.



262 R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

4.1 Controlling Decompositional Bias Experimentally

In order to answer this question, we need to have problems in which we can
explicitly control their inherent decomposability. For pseudo-boolean functions
this is not difficult to do. One simply defines a function in terms of the sum of
m independent subfunctions which are themselves not decomposable. A simple
example is obtained by choosing a non-decomposable function of k bits and
concatenating m of these k-bit blocks to form a km-bit problem the value of
which is just the sum of the individual functional blocks.

More formally, let F : {0, 1}n → � be some objective function over a binary
string of length n = mk and f : {0, 1}k be some non-decomposable function over
a binary string of length k. Then, given x ∈ {0, 1}n,

F (x) =
m−1∑
i=0

f(mi)

where mi represents the ith block of k bits in x.
From a practitioner’s point of view, barring any problem specific knowl-

edge, the simplest way to represent pseudo-boolean functions is to break up bit
strings of length n into p blocks and assign each block to a different popula-
tion. Hence, a decompositional mismatch of the representation may be due to
over-decomposition (p > m) or under-decomposition (p < m). If there are more
populations than there are decomposition blocks, there is likely to be strong
interaction between populations in the system with respect to the problem, i.e.,
cross-population epistasis. If p < m, the advantage of the parallelism of coevo-
lutionary search is sacrificed.

4.2 Effects of Collaboration Methods

We begin to answer the question of whether problems introduced by decomposi-
tional bias can be alleviated by more complex collaboration methods by observ-
ing that, if there is no cross-population epistasis, a simple selection method for
collaboration is sufficient. If the two populations represent independent pieces
of the problem, then optimizing one population independently of the other will
result in the complete optimization of the problem. As long as the collabora-
tors chosen for each population member are the same, it doesn’t matter how
we chose the collaborator. However, it does matter how many collaborators we
choose, since picking more than one will incur more unnecessary computational
cost in the way of objective function evaluations. Therefore, in the absence of
cross-population epistasis, selecting the single best individual 1 from the other
populations for collaboration is sufficient. In fact, one could pick this individual
randomly, as long as it was the same individual for each member of the popula-
tion during a given generation. The point isn’t that any partnering scheme will
1 ”Best” here means the most fit individual(s) in other population(s) from previous

evaluation.



The Effects of Representational Bias 263

Table 1. Steady state CCEA results on the LeadingOnes problem. Each value repre-
sents the mean number of evaluations needed to reach the optimum out of 50 trials.
From the top left conrner, proceding clockwise, the tables represent data for decompo-
sitional biases created using two, four, eight and sixteen populations.

p = 2 # Collaborators p = 4 # Collaborators
1 2 3 1 2 3

s-best 8016.7 16015.4 24654.2 s-best 8801.1 17602.1 26198.9
s-rand 8989.8 17247.7 25191.8 s-rand 10155.5 18757.9 28372.5

p = 8 # Collaborators p = 16 # Collaborators
1 2 3 1 2 3

s-best 9821.52 19825.08 29018.32 s-best 11247.20 22350.32 33468.88
s-rand 12734.86 22134.34 32052.24 s-rand 19233.78 30089.90 41995.38

result in a better collaboration than another, but that since each population can
essentially be optimized independently, we only need a consistent sample from
which to establish a collaboration.

So why would a more complicated collaboration selection method be needed?
Recall that how one chooses collaborators is essentially a choice about how one
samples the potential interactions with the other population. There has to be a
reason to believe that more than one sample is needed, or that sampling with a
particular bias (say choosing the best) will result in a poor characterization of
the relationship between the populations. Either way, some interaction between
the populations is certainly needed to justify this. More than simply having such
epistasis is at issue, however.

Consider the LeadingOnes problem, f(x) =
∑k
i=1
∏i
j=1 xj . This problem is

certainly not decomposable. Further, if we aggregate m of them, we can study
the effects of running a CCEA when the number of populations p is >= m.

In order to study the effects of collaboration on such situations, we con-
structed the following experiment. Using the CCEA described in the Method-
ology section, we experimented with a concatenated LeadingOnes problem. In
this particular case there were 128 bits in the total bit string of the problem,
subdivided evenly into m = 2 blocks. A total of 6 collaboration selection meth-
ods were used. The number of collaborators chosen for a given evaluation was
varied (1, 2,&3) and two selection biases were used: s-best and s-random (with-
out replacement). We varied the number of populations, p, but in all cases the
number of individuals in each population was 10. The results for p = 2 through
p = 16 in Table 1 show the average number of evaluations it took the algorithms
to reach the optimum (50 trials each). Unless otherwise stated, confidence levels
for all tests are 95%.

The Tukey-Means test indicates that in all cases choosing one collaborator
is clearly better. This might at first be puzzling since there is clearly cross-
population epistasis present when p > 2. However, note that a mutation which
turns some bit to 1 in an individual in the first population will always result
either a neutral or positive change in fitness, regardless of the contents of the
other population. The reverse is true, as well. In addition, this decomposition is



264 R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

Table 2. Steady state CCEA results on the LeadingOnes-OnesMax problem. Each
value represents the mean number of evaluations needed to reach the optimum out of
50 trials. From the top left conrner, proceding clockwise, the tables represent data for
decompositional biases created using two, four, eight and sixteen populations.

p = 2 # Collaborators p = 4 # Collaborators
1 2 3 1 2 3

s-best 15592.9 30846.8 48259.6 s-best 15549.4 30974.6 45445.7
s-random 16000.7 31320.6 46406.9 s-random 16381.6 30319.4 44736.0

p = 8 # Collaborators p = 16 # Collaborators
1 2 3 1 2 3

s-best 14014.40 28969.24 44172.40 s-best 14247.10 27911.04 41735.98
s-random 17343.58 28795.78 45252.94 s-random 21653.86 33975.28 47792.74

also asymmetric for p = 4 in that the second and fourth populations will remain
relatively unimportant to the first and third populations for some time during
the evolution, since each LeadingOnes subproblem is solved left-to-right.

One observation that can be made is that by changing the number of popu-
lations, the mutation rate is effectively being increased (recall that the mutation
is 1/r, where r is the number of bits per individual in each population). Such
issues may be relevant, consequently we ran all population oriented experiments
in the paper (including the preceding one) using a constant 1/64 mutation rate.
The results (not reported) remain consistent with those reported here.

We can make the problem slightly more interesting by making the right-
hand side of the bit string play a more important role. We will do this by
scaling the LeadingOnes part by k and subtracting OnesMax from the total, i.e.,
f(x) = k

∑k
i=1
∏i
j=1 xj −

∑k
i=1 xi. Now not only will the right side matter, but

there is some tension between individual bit contributions to fitness and those
of their non-linear interactions. Moreover, this tension is ”one directional” in a
sense. Take the string: ”11 00 00 . . .” as an example. Flipping the fourth bit to a
one will decrease the fitness slightly if the third bit remains 0, while flipping both
the third and fourth bits will increase the fitness. However, the same is not true
on the other side. Flipping the third bit while the fourth bit remains 0 will also
increase fitness. So some of the interactions have this property of sign-dependent
epistasis, while others will not. In addition, the linear effects of the bits are very
muted compared to the non-linear effects due to the scaling issue.

Using the same experimental setup as before, we studied the effects of col-
laboration on LeadingOnes-OnesMax. The results for p = 2 through p = 16 in
Table 2 show the average number of evaluations it took the algorithms to reach
the optimum (50 trials each).

In all cases there was no statistical reason to choose another collaboration
method other than the single best individual from the other populations. Not
only does this increased decompositional bias not alter the collaboration method-
ology, it appears as though this problem becomes easier for the CCEA to solve,
not harder. This turns out to be statistically significant only for the p = 8 and
p = 16 cases (not shown) where there is one or two ”best” collaborators chosen.



The Effects of Representational Bias 265

So far, these experiments confirm what we see in practice, namely that the
simple collaboration method involving just the best individuals from each pop-
ulation is quite robust even when there is cross-population epistasis. However,
what is still not clear is when it fails. To understand that better, we focus on
the the various forms of cross-population epistasis.

5 The Effects of Linkage Bias on Collaboration

The decompositional bias of the previous section focused on potential mis-
matches between a problem’s “natural” decomposition into m components and
the number of CCEA populations p used. Even if p = m, there is still the ques-
tion as to whether the CCEA breaks up the string so that each “natural” block is
assigned its own population. If not, breaking up tightly linked bits can result in
significant cross-population epistasis. In general, the degree to which linked bits
in a block are assigned to the same population for the purposes of representation
can be thought of as linkage bias.

5.1 Controlling Linkage Bias Experimentally

Again it isn’t hard to construct a way of controlling this bias. We define a
mask over the entire bit string which specifies to which population a given bit
belongs,M∈ {1, 2, . . . , p}n. Note that in the case of these mask definitions, the
superscript suggests repetition, and not an exponent. For problems like those
in the previous section involving a series of m concatenated non-decomposable
r-bit blocks, a mask which corresponds to the most biased linkage (i.e. is more
closely aligned with the real problem) is Ms = 1r2r . . . pr. Coming up with a
mask which is highly pathological is very problem dependent, but a mask which
will turn out to be commonly quite bad is Mh = (123 . . . p)r. Here every bit in
a block is distributed to every population, resulting in the likelihood of a high
degree of cross-population epistasis.

As noted earlier, any increase in the amount of cross-population epistasis is
likely to make a problem more difficult to solve using a CCEA. The question at
hand is whether adopting a more complex collaboration method can alleviate
these difficulties. By applying different types of masks, which distribute different
pieces of the blocks of the problem to different degrees, we can explore the affect
that varying degrees of linkage bias have on collaboration methods.

5.2 Effects of Collaboration Methods

We begin by considering again the LeadingOnes-OnesMax problem, assuming
m = p = 2. Using theMs = 11 . . . 1 22 . . . 2 mask presents us the same problem
we’ve already discussed, where there is no cross-population epistasis, while the
mask Mh = 1212 . . . 12 2121 . . . 21 creates a situation with very strong cross-
population epistasis. Using the same experimental setup as before, we studied
the effects that these two masks had on the choice of collaboration methods.
The results are presented in Table 3.



266 R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

Table 3. Steady state CCEA results on the LeadingOnes-OnesMax problem. Each
value represents the mean number of evaluations needed to reach the optimum out of
50 trials. The left table represents a linkage bias which uses the Ms mask, while the
right uses the Mh mask.

Ms # Collaborators Mh # Collaborators
1 2 3 1 2 3

s-best 15592.9 30846.8 48259.6 s-best 15305.4 28939.1 45756.5
s-random 16000.7 31320.6 46406.9 s-random 17862.5 32802.2 47439.4

Table 4. Steady state CCEA results of the LeadingPairedOnes-OnesMax problem.
Each value represents the mean value obtained after 100,000 function evaluations out
of 50 trials. The left table represents a linkage bias which uses theMs mask, while the
right uses the Mh mask.

Ms # Collaborators Mh # Collaborators
1 2 3 1 2 3

s-best 3328.9 2086.5 1590.1 s-best 647.6 705.6 761.0
s-random 3366.7 2152.0 1784.1 s-random 1247.3 1383.4 1469.1

Differences between the means for s-best and s-random groups for Mh are
significant for one and two collaborators, but not for three. There are no sta-
tistically significant differences between these groups (for the same number of
collaborators) for the simpler linkage bias.

Once again simply distributing the epistatic linkages across the popula-
tion boundaries is insufficient to require that a more complicated collabora-
tion method be used. This may seem surprising at first, but note that, for this
particular problem, introducing such masks does not change the type of cross-
population epistasis, only its degree. Moreover, although not germane to our
question, it is interesting to note that in this particular case it seems that in-
creasing the mixing seems to improve performance versus the Ms mask (this is
significant for all but the 3-random case). In the case of our generational CCEA
experiments, this was true to statistical significance for all groups.

What we have failed to construct so far is a case of the most difficult form
of cross-population epistasis: namely, when neither the sign nor the magni-
tude of the interaction can be reliably predicted. There is a simple change to
the current problem that will result in cross-population epistasis of this type,
namely by changing the LeadingOnes component to count only paired ones.
More formally, we defined a LeadingPairedOnes-OnesMax problem given by
f(x) = 2k

∑k
i=1
∏ i

2−1
j=1 (xjxj+1)−∑k

i=1 xi. Interestingly, this problem is so much
more difficult that the optimum was frequently never found. As a consequence
Table 4 represents the mean fitness values obtained after a constant 100,000
evaluations (here higher is better).

Now we see exactly the reverse situation. Although it is clearly better to select
a single collaborator when there are no cross-population epistatic linkages of this
type, as soon as those linkages are spread across populations a more complex
collaboration mechanism is required. In the latter case, increasing the number of



The Effects of Representational Bias 267

collaborators does in fact result in statistically improved performance, as does
picking the individual randomly rather than greedily. However, in theMs case,
with the exception of the three collaborator groups, there is no statistical reason
to pick randomly over picking the best.

6 Conclusions

Choosing an effective representation of a problem is a critical design decision for
any EA-based problem solving. In the case of CCEAs, representation decisions
involve additional choices as to how to decompose a problem effectively. With-
out sufficient a priori knowledge about a particular problem (the usual case),
particular representations can introduce biases related to the degree to which
they match the underlying problem characteristics. This in turn can affect the
choice of collaboration mechanism to be used.

Using several well understood pseudo-boolean functions, we explored the
effects of two kinds of representational bias (decomposition bias and linkage
bias) on collaboration mechanism choices. We were able to show, somewhat
surprisingly, that decompositional bias does not appear to dramatically affect
the choice of collaboration mechanisms. For the practitioner, this means that the
standard collaboration mechanism of choosing the single best individual from
each of the other subpopulations is reasonably robust across decompositional
biases.

Equally surprising was the fact that this same collaboration mechanism can
be robust across different linkages biases as well, but not always. To understand
this better, the cross-population epistatic interactions resulting from these link-
age biases were studied in more detail. In some cases these interaction are pos-
itively or negatively correlated with fitness, in the sense that, though the mag-
nitude of the fitness change depends on the relationship between the linear and
non-linear pieces of the problem, the sign does not. The standard collaboration
mechanism worked fine for these cases.

However, in the case where both the sign and the magnitude of the fitness con-
tribution are uncorrelated, the standard collaboration mechanism breaks down
and a more complex mechanism is required. Intuitively, in such situations addi-
tional samples are required to obtain reasonable estimates of fitness.

Clearly, the results presented here are preliminary in nature, and a more
thorough examination of these issues is needed. However, we believe these results
already provide useful guidance to the CCEA practitioner. An interesting open
question for EA design in general is whether this notion of different types of
epistasis will also help clarify the effects of gene linkages within a genome.

References

1. M. Potter and K. De Jong. A cooperative coevolutionary approach to function
optimization. In Y. Davidor and H.-P. Schwefel, editors, Proceedings of the Third
International Conference on Parallel Problem Solving from Nature (PPSN III),
pages 249–257. Springer-Verlag, 1994.



268 R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong

2. M. Potter. The Design and Analysis of a Computational Model of Cooperative
CoEvolution. PhD thesis, George Mason University, Fairfax, Virginia, 1997.

3. L. Bull. Evolutionary computing in multi-agent environments: Partners. In Thomas
Baeck, editor, Proceedings of the Seventh International Conference on Genetic Al-
gorithms (ICGA), pages 370–377. Morgan Kaufmann, 1997.

4. R. Paul Wiegand, William Liles, and Kenneth De Jong. An empirical analysis of
collaboration methods in cooperative coevolutionary algorithms. In Spector [15],
pages 1235–1242.

5. R. Watson and J. Pollack. Coevolutionary dynamics in a minimal substrate. In
Spector [15], pages 702–709.

6. S. Ficici and J. Pollack. Challenges in coevolutionary learning: Arms–race dynam-
ics, open–endedness, and mediocre stable states. In Adami et al, editor, Proceedings
of the Sixth International Conference on Artificial Life, pages 238–247, Cambridge,
MA, 1998. MIT Press.

7. D. Cliff and G. F. Miller. Tracking the red queen: Measurements of adaptive
progress in co–evolutionary sumulations. In Proceedings of the Third European
Conference on Artificial Life, pages 200–218. Springer–Verlag, 1995.

8. M. Vose. The Simple Genetic Algorithm. MIT Press, 1999.
9. S. Ficici and J. Pollack. A game-theoretic approach to the simple coevolutionary

algorithm. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
and H.-P. Schwefel, editors, Proceedings of the Sixth International Conference on
Parallel Problem Solving from Nature (PPSN VI), pages 467–476. Springer-Verlag,
2000.

10. R. Paul Wiegand, William Liles, and Kenneth De Jong. Analyzing cooperative
coevolution with evolutionary game theory. In D. Fogel, editor, Proceedings of
CEC 2002. IEEE Press, 2002. (To appear).

11. J. Paredis. Coevolutionary computation. Artificial Life Journal, 2(3), 1996.
12. L. Bull. On coevolutionary genetic algorithms. Soft Computing, 5:201–207, 2001.
13. R. Salomon. Performance degradation of genetic algorithms under coordinate rota-

tion. In L. Fogel, P. Angeline, and T. Bäck, editors, Proceedings of the Fifth Annual
Conference on Evolutionary Programming, pages 153–161. MIT Press, 1996.

14. Yuval Davidor. Epistasis variance: A viewpoint on ga-hardness. In G. Rawlins, edi-
tor, Foundations of Genetic Algorithms (FOGA), pages 23–35. Morgan Kaufmann,
1990.

15. L. Spector, editor. Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO) 2001. Morgan Kaufmann, 2001.



Parallel and Hybrid Models
for Multi-objective Optimization:

Application to the Vehicle Routing Problem

Nicolas Jozefowiez1, Frédéric Semet2, and El-Ghazali Talbi1

1 LIFL, USTL, 59655 Villeneuve d’Ascq CEDEX, France
{jozef,talbi}@lifl.fr

2 LAMIH, UVHC, 59393 Valenciennes CEDEX, France
frederic.semet@univ-valenciennes.fr

Abstract. Solving a multi-objective problem means to find a set of so-
lutions called the Pareto frontier. Since evolutionary algorithms work on
a population of solutions, they are well-adapted to multi-objective prob-
lems. When they are designed, two purposes are taken into account: they
have to reach the Pareto frontier but they also have to find solutions all
along the frontier. It is the intensification task and the diversification
task. Mechanisms dealing with these goals exist. But with very hard
problems or benchmarks of great size, they may not be effective enough.
In this paper, we investigate the utilization of parallel and hybrid models
to improve the intensification task and the diversification task. First, a
new technique inspired by the elitism is used to improve the diversifica-
tion task. This new method must be implemented by a parallel model
to be useful. Second, in order to amplify the diversification task and the
intensification task, the parallel model is extended to a more general
island model. To help the intensification task, a hybrid model is also
used. In this model, a specially defined parallel tabu search is applied to
the Pareto frontier reached by an evolutionary algorithm. Finally, those
models are implemented and tested on a bi-objective vehicle routing
problem.

1 What is to Solve a Multi-objective Problem?

The solution of a multi-objective problem (MOP) is not a unique optimal solu-
tion but a set of solutions called the Pareto frontier. These solutions, called
Pareto optimal solutions, are the non-dominated solutions. A solution y =
(y1, y2, . . . , yn) dominates1 a solution z = (z1, z2, . . . , zn) if and only if ∀ i ∈
{1 . . . n}, yi ≤ zi and ∃ i ∈ {1 . . . n}, yi < zi.

But obtaining the complete set of Pareto optimal solutions for a multi-
objective problem may be impossible to attain. That fact tends to discard exact
methods. Instead, a good approximation to the Pareto set is sought. In this case,
while solving a MOP, two purposes must be reached. On one hand, the algorithm
1 In this paper, we assume that all the objectives must be minimized.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 271–280, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



272 Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi

0

10

20

30

40

50

60

70

80

90

100

800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350

ba
la

nc
e

total length

Benchmark 3

Best TabuRoute

Pareto Frontier

0

10

20

30

40

50

60

70

80

90

100

1000 1200 1400 1600 1800 2000 2200 2400 2600

ba
la

nc
e

total length

Benchmark 4

Best TabuRoute

Pareto Frontier

Fig. 1. Comparison between the Pareto frontier and the best solution of TabuRoute.

must converge to the optimal Pareto frontier. It is called the intensification task.
On the other hand, a good approximation of the optimal Pareto frontier is re-
quired. The identified solutions should be well diversified along the frontier. It
is called the diversification task.

Existing mechanisms are used to take those two goals into account. For ex-
ample, one way to improve the intensification task is to arrange the solutions
according to the Pareto dominance. It is what ranking methods like NSGA [16]
do. The diversification task can be improved by ecological niche methods like
the sharing [6]. However, with very hard instances or large scale benchmarks,
these methods may not be sufficient. In this paper, we investigate the utiliza-
tion of the parallelization and the hybridization to improve the intensification
task and the diversification task. Section 2 describes the parallel multi-objective
evolutionary algorithm (MOEA) we use as well as a new method to help the di-
versification task. Section 3 presents the hybrid model and a specially designed
multi-start tabu search. Section 4 shows an implementation of those techniques
for a bi-objective Vehicle Routing Problem (VRP). Finally, in section 5, the con-
tribution of the different mechanisms is evaluated in order to show their interest.

2 A Parallel MOEA

While developing a MOEA for a bi-objective VRP, the authors observe that the
best-known solutions for one of the criteria were bad for the other objective.
It seemed that the algorithm tended to converge prematurely to an area of the
objective space. Then the used sharing method [6] was not able to fill the gap
to the best-known solutions for one of the criteria (figure 1). In this article, we
propose a technique, the Elitist Diversification, whose purpose is to maintain the
population of the MOEA diversified. It is inspired by the elitism. The elitism is a
way to speed up and improve the intensification task. It consists in maintaining
an archive that will contain the Pareto solutions encountered during the search.
Some solutions of this archive are included into the main population of the
MOEA at each generation. In the elitist diversification, other archives are added.
Those archives contain the solutions that are Pareto optimal when one of the



Parallel and Hybrid Models for Multi-objective Optimization 273

max f1

min fn

min f1

min fn

min f1
min f2max f2min f2

max fn

max f1

min fn

min f1

min fn

min f1
min f2max f2min f2

max fn

max f1

min fn

min f1

min fn

min f1
min f2max f2min f2

max fn

Elementary Brick

Fig. 2. The parallel model - the toric structure is not shown in order not to obfuscate
the figure. The standard elitist archive is present in each island.

criteria is maximized instead of being minimized. For example, in the case of a
bi-objective problem where f1 and f2 are the two objective functions, there are
three archives. One is the standard elitist archive which contains the solutions
that are Pareto optimal when both f1 and f2 are minimized. A second archive
corresponds to the Pareto front when f1 is minimized and f2 is maximized. The
last archive corresponds to the case where f1 is maximized and f2 is minimized.
As in the elitism strategy, solutions from these new archives are included into
the population of the MOEA at each generation. The role of the solutions of the
new archives is to attract the population toward unexplored areas, and then to
avoid the algorithm to converge prematurely to an area of the objective space.
However, if all the archives are embedded in the same MOEA, the improvement
of the diversification task is less important. This leads to the co-operative model
that is the elementary brick in figure 2. In this model, an island has only one
new archive. The standard elitist archive is present in each island. With a certain
period in terms of the number of generations, the islands exchange their standard
elitist archives. The communication topology is shown in figure 2.

To speed up the search and help the intensification task and the diversifica-
tion task, a more general island model is defined. It consists in using more than
one elementary brick. The connection between the islands is shown in figure 2.
Therefore, an island has four neighbors. Two of them have the same kind of
second archive. The communication between the islands is defined as follows: an
island sends its standard elitist archive to all its neighbors. But it only sends
the elitist diversification archive to the two neighbors that have the same kind
of archive. It means the neighbors that are not in the same elementary brick.



274 Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi

3 A Hybrid Model

The principle of the hybridization is the following one: first, an approximation
of the Pareto frontier is obtained using a MOEA; then, a local search2 is applied
in order to improve the approximation of the Pareto frontier. Therefore, the role
of the hybridization is to help the intensification task. This model has already
been studied in [4] and [17]. In [4], the local method was a simple local search,
it cannot avoid local optima. Furthermore, it uses an aggregation method which
needs to be correctly tuned and which is not able to find all the Pareto optimal
solutions. Finally, for each solution of the frontier of the MOEA, only one new
solution can be found. The method introduced in [17] has the main drawback to
be very costly and it cannot be parallelized to reduce the computational time
needed. Moreover, this method is not able to avoid the local optima.

The method introduced now,Π2-TS (Parallel Pareto Tabu Search) deals with
those difficulties. It is based on a tabu search approach. The starting points are
the solutions of the Pareto set found by the MOEA. Thus, the meta-heuristic can
escape from local optima. Furthermore, each tabu search correspond to a parallel
process. No aggregation method is used. The selection of the next solution is
based on the Pareto dominance. The neighborhood associated with the current
solution can be partitioned into three subsets N1, N2 and N3. N1 contains the
neighbors that dominate the current solution. N2 includes the neighbors that do
not dominate the current solution and are not dominated by the current solution
either. N3 is the subset of neighbors that are dominated by the current solution.
Then, the next solution is the more dominating individual of N1. If N1 is empty,
N2 and N3 are considered in sequence.

The tabu search algorithm does not provide a unique solution, but a set of
solutions that are not dominated. Therefore, a small archive is associated with
each tabu search. It contains all the non-dominated solutions found during the
search.

To intensify the search, each tabu search focuses on a limited area of the
objective space. An example of space restriction in a bi-objective case is shown
in figure 5.

4 Application to a Bi-objective VRP

4.1 A Bi-objective VRP

The Vehicle Routing Problem (VRP) is a well-known problem often studied since
the end of the 50’s. Many practical applications exist for various industrial areas
(eg. transport, logistic, workshop problem ...). The VRP has been proved NP-
hard [10] and applied solution methods range from exact methods [7] to specific
heuristics [8], and meta-heuristics [8][14][13].

2 Here, the term local search is used in a general way. As a matter of fact, it can be a
local search, a tabu search, a simulated annealing ...



Parallel and Hybrid Models for Multi-objective Optimization 275

(a) (b)

Fig. 3. (a) is better-balanced than (b), but (b) does not artificially improve the balance.

The most elementary version of the vehicle routing problem is the Capacitated
Vehicle Routing Problem (CVRP). The CVRP is a graph problem that can be
described as follows : n customers must be served from a unique depot a quantity
qi of goods (i = 1, . . . , n). To deliver those goods, a fleet of vehicles with a
capacity Q is available. A solution of the CVRP is a collection of tours where
each customer is visited only once and the total tour demand is at most Q.

Existing studies of the VRP are almost all concerned with the minimization
of the total distance only. The model studied here introduces a second objective
whose purpose is to balance the length of the tours. This new criterion is ex-
pressed as the minimization of the difference between the length of the longest
tour and the length of the shortest tour. As far as we know, the balancing of
the tours as a criterion has been studied in two other cases [9][15]. However, the
balance of a solution was not expressed in the same way.

4.2 A Parallel Pareto Genetic Algorithm

The implemented MOEA is based on a generational Genetic Algorithm (GA).
The GAs have widely been used to solve multi-objective problems, as they are
working on a population of solutions [3]. Two implementations of the GA were
implemented. They differ by the crossovers they use. In a first version, the RBX
[13] and the split crossover, which is based on the GA defined by C. Prins [14],
are used. The split crossover does not work well on benchmarks with clustered
customers. With those benchmarks, the split crossover is replaced by the SBX
crossover [13]. The mutation operator is the Or-opt. It consists in moving 1 to
3 consecutive customers from a tour to another position in the same tour or to
another tour. A 2-opt local search is applied to each tour of each solution. It has
three purposes: it allows the solution to be less chaotic, it can improve the total
length, and it does not allow the second criterion to be distorted (as shown in
figure 3).

In order to favor the intensification task and the diversification task, multi-
objective mechanisms are used. The ranking function NSGA [16] is used. To
maintain diversity along the Pareto frontier, we use a sharing technique that aims
to spread the population along the Pareto frontier by penalizing individuals that
are strongly represented in the population. The used elitism is the one defined
in section 2.

Preliminary experiments have shown that the second criterion is easier to
solve than the first one. Therefore, to save computational resources, only the
part of the parallel model corresponding to the minimization of the total length
and the maximization of the second criterion was implemented. Moreover, main-



276 Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi

Archive

Archive
min/min

min/max

Intermediary

Population
New 

population

Mutated
Individuals

Main
Population

2

2 3

41 56

67

7

Fig. 4. The genetic algorithm.

bound

bound

starting point
Γ

Fig. 5. Restriction of the objective space.

taining the archives is costly. To avoid that and a too strong pressure, we use
a small archive, as shown by Zitzler and Thiele [19]. To reduce the size of the
archive, a clustering algorithm, average linking method [12], is used. It has been
proved to work well with data such as the Pareto frontier [19].

The structure of the GA is summarized in figure 4. The different steps are:
1. Selection: SUS. 4. Mutation. 7. Updating of the archives.
2. Elitism. 5. 2-opt local search.
3. Recombination. 6. Replacement.

4.3 A Parallel Pareto Tabu Search for the VRP

The model proposed in section 3 is used. The following implementation of Π2-
TS is made. The starting points are the Pareto frontier found by the GA. The
neighborhood operator is the or-opt. The tabu list is defined as follows: when
a customer is moved from a tour, it cannot be put back into that tour for N
iterations. As suggested in [5], the solutions that violate the capacity constraint
can be accepted. The zone from the objective space associated to a tabu search is
defined as follows: they are the solutions so that the distance between a solution
and the line of slope 1

2 which goes through the starting point is smaller than a
value Γ . It is illustrated in figure 5.



Parallel and Hybrid Models for Multi-objective Optimization 277

Table 1. Contribution to the diversification task.

Problem E(W, Wo) E(Wo, W)
1 (50) 0.84 0.94
2 (75) 0.73 0.67
3 (100) 0.83 0.74
4 (150) 0.85 0.74
5 (199) 0.86 0.79
11 (120) 0.92 0.91
12 (100) 0.93 0.82

5 Evaluation

The evaluation3 was done on the standard benchmarks of Christofides [2]. More
precisely on the benchmarks numbers 1, 2, 3, 4, 5, 11 and 12. They correspond
to CVRP instances. The first five benchmarks correspond to maps where the
customers are uniformly distributed on the map, while benchmarks 11 and 12
correspond to clustered maps.

To evaluate the contribution of the elementary brick parallel model, we use
the entropy measure [11][1]. The entropy indicator gives an idea about the di-
versity of a Pareto front in comparison with another Pareto front. It is defined
as follows: Let PO1 and PO2 be two sets of solutions. Let PO∗ be the set of
optimal Pareto solutions of PO1 ∪ PO2. Let Ni be the cardinality of solutions
of PO1 ∪ PO∗ which are in the niche of the ith solution of PO1 ∪ PO∗. Let ni
be the cardinality of solutions PO1 which are in the niche of the ith solution
of PO1 ∪ PO∗. Let C be the cardinality of the solutions of PO1 ∪ PO∗. Let
γ =

∑C
i=1

1
Ni

be the sum of the coefficients affected to each solution. The more
concentrated a region of the solution space, the lower the coefficient of its solu-
tions. Then the following formula is applied to evaluate the entropy E of PO1
relatively to the space occupied by PO∗:

E(PO1, PO2) =
−1
lg γ

C∑
i=1

(
1
Ni

ni
C

lg
ni
C

) (1)

The results are shown in table 1. In this table, E(W, Wo) is the entropy of
the algorithm with the elitist diversification compared to the algorithm without.
E(Wo, W) is the reverse. Except for the first benchmark, the new mechanism im-
proves the diversity. For the first benchmark, the GA was able to reach the best
solution for the first objective without the new mechanism which is therefore use-
less. Moreover, the new mechanism has the effect to slow down the convergence
for the second objective (figure 6). However, this consequence is compensated
by the tabu search of the hybridization. It can also be avoided by using the full
parallel model described in section 2. To save computational resources for the
convergence to the total distance objective which is more difficult, only half of
the model was implemented. Furthermore, it can be dealt by the hybridization.
3 The results can be found at the url http://www.lifl.fr/$\sim$jozef.

http://www.lifl.fr/$sim $jozef


278 Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi

0

2

4

6

8

10

12

14

16

18

20

22

520 540 560 580 600 620 640 660 680 700

ba
la

nc
e

total length

Vrpnc 1

With diversification mechanism
Without diversification mechanism

0

10

20

30

40

50

60

70

80

800 850 900 950 1000 1050 1100 1150 1200 1250

ba
la

nc
e

total length

Vrpnc 3

With diversification mechanism
Without diversification mechanism

Fig. 6. Two examples of Pareto frontiers for the instances 1 and 3.

Table 2. Contribution of the parallelization.

Problem E(P, NP) E(NP, P) C(P, NP) C(NP, P)
1 (50) 0.86 0.78 0.75 0.25
2 (75) 0.85 0.69 0.91 0.08
3 (100) 0.90 0.73 1.00 0.00
4 (150) 0.90 0.78 0.85 0.15
5 (199) 0.91 0.71 0.88 0.12
11 (120) 0.94 0.70 0.73 0.27
12 (100) 0.92 0.83 0.70 0.30

In order to show the interest of the general parallel model, we have compared
with the results obtained when only one island is used. The measures used are
the entropy measure E, which has already been used before, and the contribution
measure C. It quantifies the domination between two sets of non-dominated so-
lutions. The contribution of a set of solutions PO1 relatively to a set of solutions
PO2 is the ratio of non-dominated solutions produced by PO1. Let D be the set
of solutions in PO1 ∩ PO2. Let W1 (resp. W2) be the set of solutions in PO1
(resp. PO2) that dominate some solutions of PO2 (resp. PO1). Let L1 (resp.
L2) be the set of solutions in PO1 (resp. PO2) that are dominated by some
solutions of PO2 (resp. PO1). Let N1 (resp. N2) be the other solutions of PO1
(resp. PO2): Ni = POi \ (C∪Wi∪Li). Let PO∗ be the set of Pareto solutions of
PO1∪PO2. So, ‖PO∗‖ = ‖D‖+‖W1‖+‖N1‖+‖W2‖+‖N2‖. The contribution
of a set PO1 relatively to PO2 is stated as follows:

C(PO1, PO2) =
‖D‖

2 + ‖W1‖+ ‖N1‖
‖PO∗‖ (2)

The results are given in table 2, where P is for Parallel algorithm and NP for
Non-Parallel algorithm.

To quantify the contribution of the local search, the generational distance [18]
is used. Normally it is used between a front and the optimal one. But regarding
the GA front, the front given by the local search can be considered as an optimal
one. The results are reported in table 3 for five different runs for each problem.

One of the main problems in multi-objective optimization is that optimal
Pareto frontiers are not known. We can only compare the value obtained for the



Parallel and Hybrid Models for Multi-objective Optimization 279

Table 3. Contribution of the local search.

Problem Run 1 Run 2 Run 3 Run 4 Run 5
1 (50) 0.37 0.48 0.29 0.53 3.39
2 (75) 1.89 0.60 2.33 1.46 1.15
3 (100) 0.41 0.81 1.13 0.62 0.85
4 (150) 24.16 1.73 3.67 3.71 1.82
5 (199) 6.11 20.40 5.13 2.89 4.54
11 (120) 12.44 3.44 1.10 2.18 4.50
12 (100) 1.31 0.99 0.41 2.01 0.62

Table 4. Comparison with the best-known total length.

Problem Best-known Best found % Avg. found %
1 (50) 524.61 524.61 0.00 525.89 0.24
2 (75) 835.26 840.00 0.56 846.19 1.38
3 (100) 826.14 829.43 0.39 832.62 0.78
4 (150) 1028.42 1059.09 2.98 1069.32 3.97
5 (199) 1291.45 1353.52 4.80 1365.56 5.73
11 (120) 1042.11 1042.11 0.00 1047.49 0.51
12 (100) 819.56 819.56 0.00 819.56 0.00

total length criterion with the best-known solutions. The results are shown in
table 4.

6 Conclusion

In this paper, we have investigated the utilization of parallel and hybrid meta-
heuristics to improve the intensification task and the diversification task. First,
a new mechanism, the elitist diversification, was proposed to favor the diversi-
fication. Its utilization leads us to the design of a parallel model that improves
the intensification and the diversification. Second, a tabu search, Π2-TS, was
specially designed for the hybridization with a MOEA. These methods were im-
plemented and tested on a bi-objective Vehicle Routing Problem. The measures
show that the proposed techniques ensure a better convergence to the Pareto
frontier and help the diversification of the found set. Furthermore, the imple-
mented algorithm leads to good results for the VRP studied.

References

1. Basseur, M., Seynhaeve, F., Talbi, E-G.: Design of multi-objective evolutionary
algorithms: application to the flow-shop scheduling problem. Proceedings of 2002
Congress on Evolutionary Computation (2002)

2. Christofides, N., Mingozzi, A., Toth, P., Sandi, C.: Combinatorial optimization.
Chapter 11. John Wiley (1979)

3. Coello Coello, C. A.: An updated survey of GA-based multiobjective optimization
techniques. Technical Report RD-98-08, LANIA, Mexico (1998)



280 Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi

4. Deb, K., Goel, T.: A hybrid multi-objective evolutionary approach to engineering
shape design. Proceedings of Evolutionary Multi-criterion Optimization Confer-
ence (2001) 385–399

5. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle
routing problem. Management Science, Vol. 40 (1994) 1276–1290

6. Goldberg, D. E., Richardson, J.: Genetic algorithms with sharing for multi-modal
function optimization. Proceedings of the Sec. Int. Conf. on Genetic Algortihms
(1987) 41–49

7. Laporte, G.: Exact algorithms for the traveling salesman problem and the vehicle
routing problem. Les Cahiers du GERAD G-98-37 (1998)

8. Laporte, G., Gendreau, M., Potvin, J-Y., Semet, F.: Classical and modern heuris-
tics for the vehicle routing problem. Les Cahiers du GERAD G-99-21 (1999)

9. Lee, T., Ueng, J.: A study of vehicle routing problems with load-balancing. Int. J.
Physical Distribution and Logistics Management, Vol. 29 No. 10 (1999) 646–658

10. Lenstra, J. K., Rinnooy Kan, A. H. G.: Complexity of vehicle routing and schedul-
ing problem. Networks, Vol. 11 (1981) 221–227

11. Meunier, H., Talbi, E-G., Reininger, P.: A multiobjective genetic algorithm for
radio network optimization. Proceedings of the 2000 Congress on Evolutiorary
Computation (2000) 314–324

12. Morse, J. N.: Reducing the size of non-dominated set: Prunning by clustering.
Computers and Operations Research, Vol. 7 No. 1-2 (1980) 55–56

13. Potvin, J-Y., Bengio, S.: The vehicle routing problem with time windows part II:
genetic search. INFORMS Journal on Computing, Vol. 8 No. 2 (1996)

14. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. In Proceedings of MIC’2001 (2001)

15. Ribeiro, R., Loureno, H. R.: A multi-objective model for a multi period distribution
management problem. In Proceedings of MIC’2001 (2001)

16. Srivinas, N., Deb, K.: Multiobjective optimization using non-dominated sorting in
genetic algorithms. Evolutionary Computation, Vol. 2 No. 3, (1995) 279–285

17. Talbi, E-G., Rahoual, M., Mabed, M. H., Dhaennens, C.: A hybrid evolutionary
approach for multicriteria optimization problems: Application to the flow shop.
Proceedings of Evolutionary Multi-criterion Optimization Conference (2001) 416–
428

18. Van Veldhuizen, D. A., Lamont, G. B.: On measuring multiobjective evolutionary
algorithm performance. Proceedings of 2000 Congress on Evolutionary Computa-
tion (2000)

19. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Transaction on Evolutionary Com-
putation, Vol. 3 No. 4 (1999) 257–271.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 281–287, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Multiobjective Design Optimization of Merging
Configuration for an Exhaust Manifold of a Car Engine

Masahiro Kanazaki1, Masashi Morikaw2,
Shigeru Obayashi1, and Kazuhiro Nakahashi2

1 Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
kanazaki@mail.cc.tohoku.ac.jp

http://www.reynolds.ifs.tohoku.ac.jp/edge/
2 Dept. of Aeronautics and Space Engineering, Tohoku University, Sendai 980-8579, Japan

Abstract. Multiobjective design optimization system of exhaust manifold
shapes for a car engine has been developed using Divided Range Multiobjective
Genetic Algorithm (DRMOGA) to obtain more engine power as well as to
achieve less environmental impact. The three-dimensional manifold shapes are
evaluated by the unstructured, unsteady Euler code coupled with the empirical
engine cycle simulation code. This automated design system using DRMOGA
was confirmed to find Pareto solutions for the highly nonlinear problems.

1 Introduction

To improve intake/exhaust system performance of a car engine, many design
specifications are required. In addition, car engines today are required not only to
have more engine power, but also to be more environmentally friendly. Exhaust gas
should be kept at high temperature in the exhaust pipe especially at low rpm
conditions because the catalyst located at the end of the exhaust pipe will absorb more
pollutant in high temperature conditions. Exhaust gas should also be led from the
piston chambers to the exhaust manifold smoothly to maximize the engine power
especially at high rpm conditions. Such design usually has to be performed by trial
and error through many experiments and analyses. Therefore, an automated design
optimization is desired to reduce technical, schedule, and cost risks for new engine
developments.

In the previous study, the design system that could account for multiple design
objectives has been developed and the exhaust manifold excellent at the emission
control was obtained [1]. However, the engine power was not improved very well,
because the baseline manifold was for the car engine of a popular car. In this paper,
the high power engine of a sports car is considered for multiobjective optimization to
increase the engine power as well as to reduce the environmental impact. The baseline
manifold is shown in Fig. 1.

To further improve the design optimization system, this paper employs Divided
Range Multiobjective Genetic Algorithm (DRMOGA) [2]. DRMOGA have the
advantage over the previous MOGA [1], because it can retain diversity of the
population better than MOGA.



282      Masahiro Kanazaki et al.

Fig. 1. The initial manifold shape and design variables as junction positions on pipe
centerlines

2 Formulation of the Optimization Problem

2.1 Objective Functions

The objective functions considered here are to maximize the gas temperature at the
end of the exhaust pipe at 1,500 rpm and to maximize the charging efficiency at 6,000
rpm, where the charging efficiency indicates the engine power. These two objectives
are function of a flow over an engine cycle. A flow field of a manifold shape is
computed by solving a unsteady three-dimensional inviscid flow code [3]. Unsteady
boundary conditions for a flow to and from a manifold are simultaneously computed
by using the one-dimensional, empirical engine cycle simulation code [1, 4].

2.2 Divided Range Multiobjective Genetic Algorithm

In this study, the automated design optimization system is developed by using
DRMOGA [2]. DRMOGA is characterized by the operation where the individuals are
divided into subpopulations.

DRMOGA procedure (Fig. 2) can be explained as follows. First, initial individuals
are produced randomly and evaluated. Second, the division of individuals is
performed based on the ranking of individuals sorted by values of a focused objective
function fi. Assuming m subpopulations for N individuals, N/m individuals will be
allocated to each subpopulation. Then in each subpopulation, the existing MOGA is
performed. After MOGA is performed for k generations, all of the individuals are
gathered and they are divided again according to another objective function fj. This
focused function will be chosen in turn.



Multiobjective Design Optimization of Merging Configuration      283

Fig. 2. Procedure of DRMOGA

DRMOGA is known to enhance the population diversity and to produce a better
Pareto front [2]. The subdivision of the population based on alternative objective
functions prevents the premature convergence to a Pareto front segment and
introduces migration of individuals to neighboring Pareto front segments.

In this study, MOGA utilized real-number cording [5], the Pareto ranking method
[6], BLX-0.5 [5] and Best-N selection [7] and mutation rate was set to 0.1. Function
evaluations in MOGA were parallelized on SGI ORIGIN2000 supercomputer system
at the Institute of Fluid Science, Tohoku University. For DRMOGA, k was set to 8
and number of subpopulation was set to 2.

2.3 Geometry Definition

To generate a computational grid according to given design variables, an automated
procedure to find a pipe junction from pipe centerlines was developed in the previous
study [1] as shown in Fig. 3. In this method, temporary background grids are first
generated from the given centerlines. Then the overlap region of the pipes is
calculated and removed. The advancing-front method [8] is then applied to generate



284      Masahiro Kanazaki et al.

the computational surface grid by specifying the junction as a front. With this method,
various merging configurations can be generated only by specifying the merging
points on the pipe centerline.

In this study, the initial manifold shape is taken from an existing engine with four
pistons as shown in Fig. 1. Topology of the merging configuration is kept unchanged.
The pipe shape traveling from the port #2 to the outlet is also fixed. Three merging
points on the pipe centerlines, junctions #1-3, are considered as design variables. Pipe
centerlines of #1, 3 and 4 are then deformed similarly from the initial shapes to meet
the designed merging points. The pipe shapes are finally reconstructed from the given
pipe radius. This method allows the automated grid generation for arbitrary merging
configuration defined by the pipe centerlines.

This study considered two design cases. The first case assumes a constant pipe
radius for all pipes, therefore only three merging points are to be designed. In the
second case, the pipe radius of the entire exhaust manifold is considered as a design
variable because the pipe radius is known important for the performance of the
exhaust manifold from the experiences at the industry. The pipe radius will change
from 83% to 122% of the original radius. In the second case, three merging points and
the pipe radius are to be designed simultaneously.

3 Design Optimization of an Exhaust Manifold

3.1 Design Problems

In this study, two design problems were considered. First, the design optimization of
merging points was performed (Case 1). The population size was set to 32. The
evolution was advanced for 25 generations.

Fig. 3. Surface definition with arbitrary pipe junction



Multiobjective Design Optimization of Merging Configuration      285

Second, the merging points and pipe radius were optimized at the same time
(Case 2). In this case, the population size was set to 64. The evolution was advanced
for 29 generations.

Fig. 4. All solutions produced by DRMOGA plotted in the objective function space; (a) Case 1,
merging points optimization, (b) Case 2, merging points and pipe radius optimization

3.2 Comparison of Solution Evolutions

In Case 1, Pareto solutions were found as shown in Fig. 4(a). Many solutions achieve
much higher charging efficiency than the initial geometry. These results suggest that
the merging points are effective design variables to improve in the charging efficiency
that indicates the engine power. However, the improvement in the temperature
remained marginal.

In Case 2, Pareto solutions were found as shown in Fig. 4(b). Improvements in
both objective functions were achieved. The Pareto front also confirms the tradeoff
between the two objectives. This result suggests that the pipe radius is effective to
maximize the temperature at the end of the exhaust manifold.

3.3 Comparison of Designed Shapes of Selected Pareto Solutions

Manifold geometries taken from two Pareto solutions in Case 1 are shown in
Fig. 5(a). The initial shape is drawn with the mesh in a dark color. The solution A
achieved the highest charging efficiency and the solution B achieved the highest
temperature. The distance from the merging point #1 to #3 of the solution A became
longer than that of the initial manifold. Such a merging shape is expected to reduce
the interaction of the exhaust gas led from chambers and thus to lead to a high
charging efficiency. On the other hand, the solution B has the tendency such that the
distance from one junction to others becomes shorter.

Manifold geometries taken from four Pareto solutions in Case 2 are shown in
Fig. 5(b). The solution C in Case 2 shows the same tendency as the solution A in



286      Masahiro Kanazaki et al.

Case 1. The pipe radii of solutions C and D remained almost unchanged compared
with that of the initial manifold. On the other hand, the solutions E and F achieved
much higher temperature than the solutions B in Case 1. Moreover, their pipe radii
became larger than that of the initial manifold. These comparisons reveal the tradeoff
in maximizing the charging efficiency and the temperature of the exhaust gas.

Fig. 5. Manifold shapes of selected from Pareto solutions; (a) Case 1, merging points
optimization, (b) Case 2, merging points and pipe radius optimization

4 Concluding Remarks

An improved design optimization system of an exhaust manifold of a car engine has
been developed. The design system employs DRMOGA. The three-dimensional
manifold shapes are evaluated by the unstructured, unsteady Euler code coupled with
the empirical engine cycle simulation code. Computational grids were automatically
generated from the designed merging points on pipe centerlines. The initial
configuration of the manifold was taken from an existing high power engine with four
cylinders.



Multiobjective Design Optimization of Merging Configuration      287

At first, the manifold shape was optimized by three merging points on the pipe
centerlines, assuming the pipe radius constant. The present system found optimal
solutions mainly improved in the charging efficiency. This result suggests that the
merging configuration is very effective to improve the charging efficiency.

The second case optimized both the pipe radius and merging points. Not only the
charging efficiency but also the exhaust gas temperature was improved in this case.
This result suggests that the pipe radius is important to improve the exhaust gas
temperature. The present system has successfully found solutions that have less
environmental impact and more engine power simultaneously than the initial design.
The resulting Pareto front also reveals the tradeoff between the two objectives.

Acknowledgements

We would like to thank Powertrain Research Laboratory in Mazda Motor Corporation
for providing the one-dimensional empirical engine cycle simulation code and the
engine data. The calculations were performed by using the supercomputer, ORIGIN
2000 in the Institute of Fluid Science, Tohoku University.

References

1. M. Kanazaki, S. Obayashi and K. Nakahashi, “The Design Optimization of Intake/Exhaust
Performance of a Car Engine Using MOGA,” EUROGEN 2001, Athens, Sep. 19-21, 2001,
postproceedings in print.

2. T. Hiroyasu, M. Miki and S. Watanabe, “The New Model of Parallel Genetic Algorithm in
Multi-Objective Optimization Problems (Divided Range Multi-Objective Genetic
Algorithm),” IEEE Proceedings of the Congress on Evolutionary Computation 2000, Vol.
1, pp.333-340, 2000.

3. D. Sharov, and K. Nakahashi, “Reordering of 3-D Hybrid Unstructured Grids for Lower-
Upper Symmetric Gauss-Seidel Computations,” AIAA J., Vol. 36, No. 3, pp. 484-486,
1998.

4. K. Ohnishi, H. Nobumoto, T. Ohsumi and M. Hitomi, “Development of Prediction
Technology of Intake and Exhaust System Performance Using Computer Simulation,”
MAZDA Technical Paper (in Japanese), No. 6, 1988.

5. L. J. Eshelman and J. D.Schaffer, “Real-coded genetic algorithms and interval schemata,”
Foundations of Genetic Algorithms2, Morgan Kaufmann Publishers, Inc., San Mateo, pp.
187-202, 1993.

6. C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:
formulation, discussion and generalization,” 5th International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, San Francisco, pp. 416-423, 1993.

7. K. A. De Jong, “An Analysis of the Behavior of a Class of Genetic Adaptive System,”
Doctoral Dissertation, University of Michigan, Ann Arbor, 1975.

8. Y. Ito and K. Nakahashi, “Direct Surface Triangulation Using Stereolithography (STL)
Data,” AIAA Paper 2000-0924, 2000.



Multi-objective Co-operative Co-evolutionary
Genetic Algorithm

Nattavut Keerativuttitumrong2, Nachol Chaiyaratana1, and Vara Varavithya2

1 Research and Development Center for Intelligent Systems
2 Department of Electrical Engineering

King Mongkut’s Institute of Technology North Bangkok
1518 Piboolsongkram Rd., Bangkok 10800, Thailand

{nchl,vara}@kmitnb.ac.th

Abstract. This paper presents the integration between two types of
genetic algorithm: a multi-objective genetic algorithm (MOGA) and a
co-operative co-evolutionary genetic algorithm (CCGA). The resulting
algorithm is referred to as a multi-objective co-operative co-evolutionary
genetic algorithm or MOCCGA. The integration between the two algo-
rithms is carried out in order to improve the performance of the MOGA
by adding the co-operative co-evolutionary effect to the search mecha-
nisms employed by the MOGA. The MOCCGA is benchmarked against
the MOGA in six different test cases. The test problems cover six differ-
ent characteristics that can be found within multi-objective optimisation
problems: convex Pareto front, non-convex Pareto front, discrete Pareto
front, multi-modality, deceptive Pareto front and non-uniformity in the
solution distribution. The simulation results indicate that overall the
MOCCGA is superior to the MOGA in terms of the variety in solutions
generated and the closeness of solutions to the true Pareto-optimal solu-
tions. A simple parallel implementation of MOCCGA is described. With
an 8-node cluster, the speed up of 2.69 to 4.8 can be achieved for the
test problems.

1 Introduction

A genetic algorithm has been established as one of the most widely used tech-
nique for multi-objective optimisation. This is because the parallel search nature
of genetic algorithm makes the task of approximating Pareto front of optimal
solutions in one optimisation run becomes possible. From early developments in
the eighties (Schaffer, 1984; Fourman, 1985) to the introduction of a direct rela-
tionship between Pareto-optimality and a fitness function (Horn and Nafpliotis,
1993; Fonseca and Fleming, 1993), research interests in this branch of evolution-
ary computation remain strong. Regardless of the methodology employed, the
ultimate aim of multi-objective optimisation using a genetic algorithm remains
the same: to identify the solutions that approximate the true Pareto-optimal
solutions.

Various types of genetic algorithm are currently available for use in multi-
objective optimisation (Hajela and Lin, 1992; Horn and Nafpliotis, 1993; Fonseca

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 288–297, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Multi-objective Co-operative Co-evolutionary Genetic Algorithm 289

and Fleming, 1993; Zitzler and Thiele, 1999). Although a number of applications
have been benefited from the use of such algorithms, as the search space or prob-
lem size increases, the performance of the algorithm always degrades. As a result,
the non-dominated solution set identified by the algorithm may highly deviate
from the true Pareto front. In addition, the coverage of the Pareto front by the
solutions generated may also be affected. This is because the issue regarding
the relationship between the problem representation and the size of search space
has rarely been discussed in the context of algorithm development for use in
multi-objective optimisation. Nonetheless, various techniques for single-objective
optimisation using a genetic algorithm are available for solving the problem in-
duced by an increase in problem size. One possible technique involves an insertion
of a co-operative co-evolutionary effect into the search algorithm. A genetic al-
gorithm that exploited such strategy is known as a co-operative co-evolutionary
genetic algorithm or CCGA (Potter and De Jong, 1994). In contrast to other co-
evolutionary genetic algorithms where the co-evolutionary effect found among
sub-populations is the result of a competition for survival by the individuals,
the co-evolutionary effect in the CCGA is produced by a co-operation among all
species. In brief, a species member in the CCGA represents a part of the decision
variable set where all species will co-operatively produce complete solutions to
the problem. Each species member will then independently evolve using a stan-
dard genetic algorithm mechanism. By partitioning the problem in this manner,
the search space that each sub-population has to cover would significantly re-
duce. Although the CCGA is originally developed for use in single-objective
optimisation, the co-operative co-evolutionary effect can also be embedded into
a genetic algorithm which is designed for multi-objective optimisation.

In this paper, the co-operative co-evolutionary effect as described by Pot-
ter and De Jong (1994) will be integrated into a genetic algorithm called a
multi-objective genetic algorithm or MOGA (Fonseca and Fleming, 1993). The
MOGA is chosen for this case because of its simplicity and the clear defini-
tion regarding the relationship between the Pareto-optimality level of a solution
and its corresponding fitness value. The modified MOGA will be referred to as
a multi-objective co-operative co-evolutionary genetic algorithm or MOCCGA
throughout the paper. Note that the co-operative co-evolutionary effect can also
be integrated into other types of genetic algorithm that are designed for use in
multi-objective optimisation. In addition to the proposed integration between
two genetic algorithms, possible approach for parallel implementation of the de-
veloped algorithm will also be discussed in this paper.

The organisation of this paper is as follows. In section 2, the background
on the multi-objective genetic algorithm (MOGA) and the co-operative co-
evolutionary genetic algorithm (CCGA) will be discussed. The integration be-
tween the MOGA and the CCGA will be explained in section 3. In addition, the
test problems that will be used to assess the performance of the MOGA will also
be given in this section. In section 4, the benchmarking results and discussions
are given. Section 5 describes the parallel implementation of MOCCGA and its
test results. Finally, conclusions are drawn in section 6.



290 Nattavut Keerativuttitumrong, Nachol Chaiyaratana, and Vara Varavithya

2 Multi-objective Genetic Algorithm and Co-operative
Co-evolutionary Genetic Algorithm

Two types of genetic algorithm that will be integrated together are the multi-
objective genetic algorithm (MOGA) and the co-operative co-evolutionary ge-
netic algorithm (CCGA). A brief description of the algorithms follows.

2.1 Multi-objective Genetic Algorithm

The multi-objective genetic algorithm (MOGA) was first introduced by Fonseca
and Fleming (1993). The MOGA functions by seeking to optimise the compo-
nents of a vector-valued objective function. Unlike single-objective optimisation,
the solution to a multi-objective optimisation problem is a family of points known
as the Pareto-optimal set. Each point in the set is optimal in the sense that no
improvement can be achieved in one component of the objective vector that does
not lead to degradation in at least one of the remaining components. Given a set
of possible solutions, a candidate solution is said to be Pareto-optimal if there
are no other solutions in the solution set that can dominate the candidate solu-
tion. In other words, the candidate solution would be a non-dominated solution.
Assuming, without loss of generality, a minimisation problem, an n-dimensional
cost vector a is said to be dominating another n-dimensional cost vector b if,
and only if, a is partially less than b (a p < b), i.e.

a p < b↔ ∀i = 1, . . . , n : ai ≤ bi ∧ ∃i = 1, . . . , n : ai < bi (1)

By identifying the number of solutions in the solution set that dominate
the solution of interest, a rank value can be assigned to the solution. In other
words, the rank of a candidate solution is given by the number of solutions in
the solution set that dominate the candidate solution. After a rank has been
assigned to each solution, a fitness value can then be interpolated onto the solu-
tion where a genetic algorithm can subsequently be applied in the optimisation
procedure. Note that since the aim of a search by the MOGA is to locate Pareto-
optimal solutions, in essence the multi-objective optimisation problem has also
been treated as a multi-modal problem. Hence, the use of additional genetic
operators including the fitness sharing and mating restriction procedures is also
required. However, in addition to the usual application of the fitness sharing and
mating restriction procedures in the decision variable space (Fonseca and Flem-
ing, 1995), they can also be carried out in the objective value space (Fonseca and
Fleming, 1993). A comprehensive description of the MOGA which covers other
advanced topics including goal attainment and priority assignment strategies
can be found in Fonseca and Fleming (1998).

2.2 Co-operative Co-evolutionary Genetic Algorithm

The co-operative co-evolutionary genetic algorithm (CCGA) was first introduced
by Potter and De Jong (1994). The CCGA functions by introducing an explicit



Multi-objective Co-operative Co-evolutionary Genetic Algorithm 291

notion of modularity to the optimisation process. This is done in order to provide
reasonable opportunity for complex solutions to evolve in the form of interacting
co-adapted sub-components. In brief, the CCGA explores the search space by
utilising a population which contains a number of species or sub-populations.
In contrast to other types of genetic algorithm, each species in the CCGA rep-
resents a variable or a part of the problem which is needed to be optimised. A
combination of an individual from each species will lead to a complete solution to
the problem where the fitness value of the complete solution can be found in the
usual way. This value of fitness will be assigned to the individual of interest that
participates in the formation of the solution. After the fitness values have been
assigned to all individuals, the evolution of each species is then commenced using
a standard genetic algorithm. Although the CCGA has been successfully used
in various applications, its performance can reduce in the circumstance where
there are high interdependencies between the optimisation function variables.
In order to solve this problem, Potter and De Jong (1994) have suggested that
the fitness of a species member should be obtained after combining it with the
current best individuals or the randomly selected individuals from the remain-
ing species depending upon whether which combination yields a higher fitness
value. This helps to increase a chance for each individual to achieve a fitness
value which is appropriate to its contribution to the solution produced. A com-
prehensive description of the CCGA and the summary of its applications can be
found in Potter and De Jong (2000).

3 MOCCGA and Test Problems

By combining the MOGA and the CCGA together, the resulting algorithm can
be referred to as a multi-objective co-operative co-evolutionary genetic algorithm
or MOCCGA. Similar to the CCGA, each species in the MOCCGA represents
a decision variable or a part of the problem which is needed to be optimised.
However, instead of directly assigning a fitness value to the individual of interest
which participates in the construction of the complete solution, a rank value
will be determined first. Similar to the MOGA, the rank of each individual will
be obtained after comparing it with the remaining individuals from the same
species. Then a fitness value can be interpolated onto the individual where a
standard genetic algorithm can be applied within each sub-population. Note
that in this investigation, the fitness sharing strategy utilised in the MOCCGA
is similar to the one described in Fonseca and Fleming (1993) where the fitness
sharing is carried out in the objective space.

In order to assess the performance of the MOCCGA, the MOCCGA will
be benchmarked against the MOGA in six optimisation test cases. These six
test problems are developed by Zitzler et al. (2000) for use in multi-objective
optimisation benchmarking. The problems are minimisation problems with m
decision variables and two objectives. Brief descriptions of the test problems are
summarised in Table 1. Each test problem represents different aspects of multi-
objective optimisation problems. The benchmarking results will be displayed and
discussed in the following section.



292 Nattavut Keerativuttitumrong, Nachol Chaiyaratana, and Vara Varavithya

Table 1. Descriptions of the test problems.

Test Problem Characteristic

T1 Convex Pareto front
T2 Non-convex Pareto front
T3 Discrete Pareto front containing several non-contiguous convex parts
T4 Multi-modality
T5 Deceptive Pareto front
T6 Non-uniformity in the solution distribution in the search space

Table 2. Common parameter settings for both the MOGA and the MOCCGA.

Parameter Value

Selection method Stochastic universal sampling (Baker, 1989)
Crossover probability 0.7
Mutation probability 0.01

4 Benchmarking Results and Discussions

The MOCCGA will be benchmarked against the MOGA in six test cases de-
scribed in section 3. The common parameter settings for both the MOGA and
the MOCCGA are displayed in Table 2.

The parameter settings which vary from one test problem to the others are the
number of generations, the number of species (for the case of the MOCCGA), the
number of individuals and the length of binary chromosome. These parameters
are set to accommodate the size of search space in each problem. Although the
settings are different for each problem, the parameter values are chosen such that
the total numbers of objective evaluations are the same for both the MOGA and
the MOCCGA. Also recall that the objective values are evaluated twice for each
individual in the MOCCGA using the strategy based on the one described in
Potter and De Jong (1994).

In this investigation, each algorithm is run five times using different initial
populations. Then the search results from all runs are combined where the non-
dominated solutions are subsequently extracted from the overall results. The
non-dominated solutions located by the MOGA and the MOCCGA from all test
cases are displayed in Figures 1-3.

Firstly, the range of variety in solutions found is considered. The MOCCGA
can identify the solutions which cover the whole Pareto front in the cases of T1,
T2 and T4. In contrast, the MOGA can locate the solutions which indicate the
boundary of Pareto front only in the case of T5. From these observations, the
performances of the MOGA and MOCCGA are lowest with the problem that
has a discrete Pareto front (T3) or a non-uniform distribution of solutions in
the search space and along the Pareto front (T6). This means that although the
co-operative co-evolutionary effect can help improving the performance of the



Multi-objective Co-operative Co-evolutionary Genetic Algorithm 293

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA      
MOGA        
Pareto front

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA      
MOGA        
Pareto front

(a) (b)

Fig. 1. (a) Non-dominated solutions and the true Pareto front of the test problem T1,
(b) Non-dominated solutions and the true Pareto front of the test problem T2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA  
MOGA    
g(x) = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA      
MOGA        
Pareto front

(a) (b)

Fig. 2. (a) Non-dominated solutions and the boundary for g(x) = 1 in the test problem
T3, (b) Non-dominated solutions and the true Pareto front of the test problem T4.

search algorithm in the context of the Pareto front coverage, this additional effect
is insufficient for the algorithm to cope with the discrete and non-uniformity
features of the optimisation problems.

Moving onto the consideration on the closeness of non-dominated solutions
to the true Pareto-optimal solutions. The MOCCGA has proven to be highly
efficient in all test problems. In particular, most of solutions identified by the
MOCCGA in the test problems T1, T2, T3, T4 and T6 dominate the correspond-
ing solutions identified by the MOGA. The only test problem at which the
MOGA can identify non-dominated solutions that are reasonably close to the
true Pareto-optimal solutions is the problem T5. Moreover, the non-dominated
solutions identified by the MOCCGA in the cases of T2 and T6 are also the
true Pareto-optimal solutions. In overall, the introduction of co-operative co-
evolutionary effect can improve the genetic algorithm performance in terms of
the Pareto front coverage and the number of solutions found which are close to
the true Pareto-optimal solutions.



294 Nattavut Keerativuttitumrong, Nachol Chaiyaratana, and Vara Varavithya

5 10 15 20 25 30
0

5

10

15

20

25

30

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA      
MOGA        
Pareto front

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA      
MOGA        
Pareto front

(a) (b)

Fig. 3. (a) Non-dominated solutions and the true Pareto front of the test problem T5,
(b) Non-dominated solutions and the true Pareto front of the test problem T6.

5 Parallel Implementation of MOCCGA

Genetic algorithms inherit a high degree of parallelism. A large portion of tasks
that operated on a population of individuals can be performed without depen-
dency. Examples of parallel tasks in GAs include objective function evaluations
and genetic operators. Parallel computing can improve the performance of GAs
in two ways, increasing population size to solve complex problem or reducing
computation time. Many parallel implementations of GAs have been purposed.
Some of the parallel GAs can be found in Spiessens and Manderick (1991) and
Gorges-Scheleuter (1990).

In parallel GAs, the entire population is partitioned into sub-populations.
The sub-population can consist of complete strings representing the whole deci-
sion variable sets or portion of strings. Each sub-population is processed by an
assigned processor. At each iteration, sub-populations interact with each other,
according to GAs, by exchanging information between processors. In multipro-
cessor systems, the cost of exchanging information is considered as an overhead.
The performance of parallel GAs is therefore limited by the amounts of infor-
mation that need to be exchanged between sub-populations. For this reason,
reducing information exchanges between processors is one approach of improv-
ing the performance of parallel GAs. In simple GAs, the algorithm has access
to all individuals of the population. However, the information of all individuals
is not required to maintain the performance of GAs. The parallel GAs can take
advantage of this fact and exchange only a subset of available information. For
example, only the best individuals are exchanged between sub-populations. The
performance improvement is obtained not only by less communication overhead
but also high diversity of chromosome to avoid premature convergent. Hart, et
al. (1996) studied the effects of relaxed synchronization on parallel GAs in which
an improvement on execution time was shown. The effects of chromosome mi-
gration was investigated by Matsumura, et. al. (1997). Each processor executes
the genetic operations on a set of chromosome and exchange information to only
its neighbours based on different network topologies.



Multi-objective Co-operative Co-evolutionary Genetic Algorithm 295

Species N−1

    − Selection
    − Crossover
    − Mutation

Rank calculation
Objective calculation

Decode

Fitness calculation

basic operators
    − Selection
    − Crossover
    − Mutation

Rank calculation
Objective calculation

Decode

Fitness calculation

basic operators
    − Selection
    − Crossover
    − Mutation

Rank calculation
Objective calculation

Decode

Fitness calculation

basic operators
    − Selection
    − Crossover
    − Mutation

Rank calculation
Objective calculation

Decode

Fitness calculation

basic operators
    − Selection
    − Crossover
    − Mutation

Rank calculation
Objective calculation

Decode

Fitness calculation

basic operators
    − Selection
    − Crossover
    − Mutation

Rank calculation
Objective calculation

Decode

Fitness calculation

Start

Species 1Species 0

P
ro

ce
ss

 0

P
ro

ce
ss

 1

P
ro

ce
ss

 N

Species N−1Species 1Species 0

P
ro

ce
ss

 0

P
ro

ce
ss

 1

P
ro

ce
ss

 N

Generation 2

Generation 2

basic operators

Fig. 4. Implementation of parallel MOCCGA. The communication occurs before the
objective function calculation.

As the price to performance ratio of computers has dropped in a rapid rate,
high performance computing platforms can be built by interconnecting a group
of PCs, so called a cluster. The clusters have been implemented widely and
their application domains have been extended into many new areas. Patrick, et.
al. (1997) has proposed a distributed genetic algorithm for cluster environment
in which a set of library functions for performing parallel genetic operations is
provided. However, the parallel implementation of MOCCGA requires different
details. In MOCCGA, operations in ranking calculation, selection, and crossover
require information accesses within the same species. Information from different
species is required only in the objective value calculation. Therefore partitioning
the MOCCGA based on species can reduce amounts of information exchange and
simplify the program coding. Figure 4 shows the problem partitioning based on
Single Program Multiple Processors paradigm. The parallel process starts from
a single node and creates parallel process on a set of computers. Each process
responsible for one species or a group of species. The information exchange as
well as synchronisation is carried out at the beginning of the objective calculation
stage.

In original MOCCGA, the fitness calculation strategy prevents communica-
tion reduction since fitness calculation for each species require the whole species
information in order to have a complete gene pool. The objective values are
calculated from two combinations; firstly,the decision variable (after decode the
string) of individual in the current species is combined with the best decision
variable from other species, and secondly, the decision variable of the current
species is combined with the decision variable of individual from other species in
random. The objective values of both cases are then compared and the better one
is selected. The communication at the beginning of objective calculation involves
the broadcast of the best decision variable of individuals and the whole decision
variable of the species to all other processes. The communication performance



296 Nattavut Keerativuttitumrong, Nachol Chaiyaratana, and Vara Varavithya

Table 3. Performance results of the parallel MOCCGA: The execution time is shown
in second. The number of individuals in small, medium, and large problems is equal to
100, 500, and 1000 individuals, respectively. The small, medium, and large problems
are processed, respectively, for 100, 20, and 10 generations. In Bcast, the standard
MPI bcast() library is used in the program. The divide and conquer broadcast using
send() and receive() is used in Log P results. The speedup results are calculated using
Bcast results.

Small Medium Large

Bcast Log P SpeedUp Bcast Log P SpeedUp Bcast Log P SpeedUp

1 53.83 59.05 1 299.55 331.95 1 721.48 754.92 1
2 32.16 34.14 1.6 194.53 205.49 1.5 490.72 529.50 1.4
4 19.17 19.15 2.7 129.12 128.31 2.3 355.32 352.28 2.0
8 11.90 10.41 4.8 89.99 86.55 3.3 268.61 260.54 2.69

can be improved using divide and conquer approach in which log2 P commu-
nication steps are adequate for P processes. The parallel version of MOCCGA
was developed using C language and MPI library. The performance results were
measured from a 8-node cluster. The number of test species is fixed to 32. An
individual is encoded as a binary of 10 bits. The stochastic universal sampling
was used in the selection process. The test problem T1 is selected in the test.
We have considered three problem sizes, small, medium, and large problem. The
test results are shown in Table 3

The speed up of parallel MOCCGA is quite satisfactory. We considered two
approaches of broadcasting objectives value, using MPI Bcast function library
and customize decision value broadcast based on the divide and conquer tech-
nique. The results show slightly different in performance. The custom broadcast
has better performance results for the 4 and 8 processors. The performance
improvement results from the parallelism in communication.

6 Conclusions

In this paper, the integration between two types of genetic algorithms are pre-
seted: an MOGA and a CCGA. The MOCCGA has been benchmarked against
the MOGA in six test cases. The search performance of the MOGA can be im-
proved by adding the co-operative co-evolutionary effect to the algorithm. A
parallel implemetation of MOCCGA was described.

References

1989. Baker, J. E.: An analysis of the effects of selection in genetic algorithms, Ph.D.
Thesis. Computer Science Department, Vanderbilt University, Nashville, TN (1989)

1993. Fonseca, C. M. and Fleming, P. J.: Genetic algorithms for multiobjective opti-
mization: Formulation, discussion and generalization. Genetic Algorithms. Proceed-
ings of the Fifth International Conference, Urbana-Champaign, IL (1993) 416–423



Multi-objective Co-operative Co-evolutionary Genetic Algorithm 297

1995. Fonseca, C. M. and Fleming, P. J.: Multiobjective genetic algorithms made
easy: Selection, sharing and mating restriction. The Second International Confer-
ence on Genetic Algorithms in Engineering Systems: Innovations and Applications
(GALESIA’95), Sheffield, UK (1995) 45–52

1998. Fonseca, C. M. and Fleming, P. J.: Multiobjective optimization and multiple
constraint handling with evolutionary algorithms - Part 1: A unified formulation.
IEEE Transactions on Systems, Man, and Cybernetics 28(1) (1998) 26–37

1985. Fourman, M. P.: Compaction of symbolic layout using genetic algorithms. Pro-
ceedings of the First International Conference on Genetic Algorithms and Their Ap-
plications (1985) 141–153

1990. Gorges-Scheleuter, M.: Explicit parallelism of genetic algorithms through popu-
lation structures. Parallel Problem Solving from Nature (1990) 150–159

1992. Hajela, P. and Lin, C. Y.: Genetic search strategies in multicriterion optimal
design. Structural Optimization 4 (1992) 99–107

1996. Hart, W. E.,Baden, S., Bekew, R. K. and Kohn, S.: Analysis of the numer-
ical effects of parallelism on a parallel genetic algorithm. Proceeding of the Tenth
International Parallel Processing Symposium (1996) 606–612

1993. Horn, J. and Nafpliotis, N.: Multiobjective optimization using the niched pareto
genetic algorithm. IlliGAL Report No. 93005, Department of Computer Science,
Department of General Engineering, University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL (1993)

1997. Matsumura, T., Nakamura, M. and Okech, J.: Effect of chromosome migration
on a parallel and distributed genetic algorithm. International Symposium on Parallel
Architecture, Algorithm and Networks (ISPAN’97) (1997) 357–612

1997. Patrick D., Green, P. and York, T.: A distributed genetic algorithm environment
for unix workstation clusters. Genetic Algorithms in Engineering Systems: Innova-
tions and Applications (1997) 69–74

1994. Potter, M. A. and De Jong, K. A.: A cooperative coevolutionary approach to
function optimization. Proceedings of the Third International Conference on Parallel
Problem Solving from Nature (PPSNIII), Jerusalem, Israel (1994) 249–257

2000. Potter, M. A. and De Jong, K. A.: Cooperative coevolution: An architecture
for evolving coadapted subcomponents. Evolutionary Computation 8(1) (2000) 1–29

1984. Schaffer, J. D.: Some experiments in machine learning using vector evaluated
genetic algorithms, Ph.D. Thesis. Vanderbilt University, Nashville, TN (1984)

1991. Spiessens, P., and Manderick, B.: A massively parallel genetic algorithm: Im-
plementation and first analysis. The Fourth International Conference on Genetic
Algorithms (1991) 279–285

1999. Zitzler, E. and Thiele, L.: Multiobjective evolutionary algorithms: A compara-
tive case study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation 3(4) (1999) 257–271

2000. Zitzler, E., Deb, K. and Thiele, L.: Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation 8(2) (2000) 173–195



Bayesian Optimization Algorithms
for Multi-objective Optimization

Marco Laumanns1 and Jiri Ocenasek2

1 ETH Zürich, Computer Engineering and Networks Laboratory, CH–8092 Zürich
laumanns@tik.ee.ethz.ch

http://www.tik.ee.ethz.ch/aroma
2 VUT Brno, Faculty of Information Technology, Bozetechova 2, CZ - 612 66 Brno

ocenasek@fit.vutbr.cz
http://www.fit.vutbr.cz/˜ocenasek

Abstract. In recent years, several researchers have concentrated on
using probabilistic models in evolutionary algorithms. These Estima-
tion Distribution Algorithms (EDA) incorporate methods for automated
learning of correlations between variables of the encoded solutions. The
process of sampling new individuals from a probabilistic model respects
these mutual dependencies such that disruption of important building
blocks is avoided, in comparison with classical recombination operators.
The goal of this paper is to investigate the usefulness of this concept in
multi-objective optimization, where the aim is to approximate the set of
Pareto-optimal solutions. We integrate the model building and sampling
techniques of a special EDA called Bayesian Optimization Algorithm,
based on binary decision trees, into an evolutionary multi-objective op-
timizer using a special selection scheme. The behavior of the resulting
Bayesian Multi-objective Optimization Algorithm (BMOA) is empiri-
cally investigated on the multi-objective knapsack problem.

1 Introduction

The Estimation of Distribution Algorithms (EDAs) [5,8] also called probabilistic
model-building evolutionary algorithms have attracted a growing interest during
the last few years. Recombination and mutation operators used in standard EAs
are replaced by probability estimation and sampling techniques to avoid the
necessity to specify certain EA parameters, to avoid the disruption of building
blocks and to enable solving of non-linear or even deceptive problems having
considerable degree of epistasis.

In multi-objective optimization the usual goal is to find or to approximate the
set of Pareto-optimal solutions. Research in the design of multi-objective evolu-
tionary algorithms has mainly focused on the fitness assignment and selection
part. In contrast, the variation operators could be used from the single objective
case without modification, which gave them only little attention. Some studies
indicate, however, that the existence of multiple objectives influences the suc-
cess probabilities of mutations which in turn has consequences for the choice of

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 298–307, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Bayesian Optimization Algorithms for Multi-objective Optimization 299

the mutation strength [7,3]. For recombination it is unclear whether combining
parents that are good in different objectives improve the search as they could
create good compromise offspring [2], or whether they contain such incompat-
ible features that a combination does not make sense, thus advocating mating
restrictions. The fact that recombination generally is a “contracting” operator
might also conflict with the goal to reach a broad distribution of Pareto-optimal
solutions.

In this study we investigate the use of EDAs for multi-objective optimization
problems to overcome the aforementioned difficulties when creating offspring
from a set of diverse parents from different trade-off regions. The next section
introduces the Bayesian Optimization Algorithm (BOA) as a special EDA based
on the Bayesian network model. It summarizes disadvantages of Bayesian net-
work and introduces BOAs based on decision trees. We derive our own incre-
mental equation for construction of decision trees and demonstrate the algorithm
for decision tree construction. In section 3 a new Multi-objective BOA is pro-
posed. We derive design guidelines for a useful selection scheme in connection
with the construction of the probabilistic model and develop a new operator
based on ε-archives [4]. Section 4 demonstrates the applicability of the approach
using the multi-objective knapsack problem and compares the results to other
multi-objective evolutionary algorithms.

2 Bayesian Optimization Algorithm (BOA)

One of the most general probabilistic models for discrete variables used in EDAs
is the Bayesian network (BN). It is able to encode any dependencies of variables
that can obtain one out of a finite set of values.

2.1 Structure of Bayesian Network

A Bayesian network for the domain of possible chromosomes X = (X0, . . . ,
Xn−1) represents a joint probability over X. The BN representation consists of
2 parts, a set of conditional independence assertions and a set of local conditional
distributions, that allow us to construct a global joint probability distribution
of chromosome from the local distributions of genes.

The first part, the set of conditional independence assertions, is expressed by
a dependency graph, where each gene corresponds to one node in the graph. If
the probability of the value of a certain gene Xi is affected by value of other gene
Xj , then we say that “Xi depends on Xj” or “Xj is a parent variable of Xi”.
This assertion is expressed by existence of edge (j, i) in the dependency graph.
A set of all parent variables of Xi is denoted Πi, it corresponds to the set of all
starting nodes of edges ending in Xi.

In the example of Fig. 1 (left), genes X0, X2 are independent and the value of
X1 is affected by X0 and X2. Under this assertion we can write the probability
of whole chromosome (X0, X1, X2) as the product of local distributions:

p(X0, X1, X2) = p(X0) · p(X2) · p(X1|X0, X2) (1)



300 Marco Laumanns and Jiri Ocenasek
 

x1  

x2 x0 x2 

x0 
0         1 

0         1 p(X1|1*) 

p(X1|00) p(X1|01) 

Fig. 1. Example of dependency graph for n = 3 (left) and decision tree (right)

Now we will focus on the second part of BN representation – the set of local
distributions. For simplicity let’s consider binary genes. In the case of gene X0
resp. X2 from our example this local distribution is unconditional and can be
estimated from the population by simple counting individuals where X0 = 1
resp. X2 = 1 and dividing it by the size of population N . In the case of gene X1
the gene depends on X0 and X2, so the local distribution is conditional and can
be expressed by the following table:

X0, X2 00 01 10 11
p(X1 = 1|X0, X2) ... ... ... ...

(2)

The dots in the second row denote values estimated from the population by

p(X1 = 1|X0, X2) = m(X1 = 1, X0, X2)/m(X0, X2).

With this Bayesian network we are able to determine the probability of each
concrete chromosome X = (x0, x1, x2).

The most important and also most time-consuming part of EDA is the al-
gorithm for construction of the probabilistic model from the population. Most
methods for automated learning of probabilistic models have been adopted from
the area of data mining. When a significant building block is detected among
the solutions in the population, the information about dependency of its genes
is added to the model.

The original BOA algorithm uses a hillclimbing algorithm to step-by-step
improve the Bayesian network. It starts with independent genes (no edges are
present between nodes of dependency graph), such that the local probabilities
are unconditional. Then in each step the algorithm examines all possible edges
and it adds the “best edge” to the network. By the term “best edge” we mean
the edge which does not introduce any cycle in the dependency graph and which
improves the score most. The quality of each edge is expressed by the Bayes-
Dirichlet metric (BDe, see [1]). This equation measures the bias in the probability
distribution of combinations of genes in the population. For further details on
various types of EDAs see the exhaustive survey [5].

2.2 Binary Decision Trees Based BOA

The problem with the BN approach is that after introducing one more parent
variable of Xi, the number of columns of the conditional distribution table of
Xi doubles, making the computation time of the BDe metric exponentially in-
creasing with the number of parents. In previous versions of BOA the number
of possible parents was limited to k, making the BDe computable in real time.



Bayesian Optimization Algorithms for Multi-objective Optimization 301

 
0                 1 

p(x3) = 0.0 p(x3) = 1.0         p(x3) = 1.0   p(x3) = 0.0 

x2  

x1 

x0

     0                 1   0                 1     

 

Fig. 2. Example of construction of the decision tree for variable X3, n = 4, and final
decision tree for variable X3

A better divide-and-conquer approach is based on binary decision trees, firstly
proposed for EDAs in [6].

The model is composed of the set of trees, one tree is for each variable. The
dependence assertions are expressed by existence of splitting nodes and the local
probabilities are stated in leaf nodes. A set of all parent variables of Xi denoted
Πi corresponds to the set of all decision nodes of i-th tree.

Decision trees are a more accurate model than Bayesian network. They allow
us to describe the dependencies of alleles (gene values). Let us consider our first
example from Fig. 1. Assume that if X0 = 1, then the value of X1 does not
depend on X2, but when X0 = 0, then the value of X1 depends on both X0 and
X2. Because p(X1|10) = p(X1|11) = p(X1|1∗), this would reduce the number of
table columns in (2), as can be seen in the following table:

X0, X2 00 01 1∗
p(X1 = 1|X0, X2) ... ... ...

(3)

This situation can be expressed by a decision tree (see Fig. 1, right). Each
variable which determines the X1 value corresponds to one or more split nodes
in the tree, each leaf determines p(X1) among the individuals fulfilling the split
conditions on the path from the root.



302 Marco Laumanns and Jiri Ocenasek

A further advantage of decision trees lies in the low complexity of their build-
ing. The step of adding a new split node is easy to evaluate by the metric – it
splits only one column in the local distribution table. From the Bayes-Dirichlet
metrics (BDe) we derived the incremental equation for adding one new binary
split:

Gain(Xi, Xj) =

∑
r∈{0,1}

∑
s∈{0,1}

Γ (mr,s + 1) · Γ (
∑

r∈{0,1}

∑
s∈{0,1}

(mr,s + 1))

∑
r∈{0,1}

Γ (
∑

s∈{0,1}
(mr,s + 1)) · ∑

r∈{0,1}
Γ (

∑
s∈{0,1}

(mr,s + 1))
(4)

where Xi is the variable for which the tree is being constructed, Xj is the parent
variable – possible split, and mr,s is the number of individuals having Xi = r
and Xj = s. Note that the splitting is done recursively, so mr,s is determined
only from the subpopulation being splitted. We often use the logarithm of this
metric, which avoids multiplication operations. Another method for construction
of decision trees straight from the BDe metric can be found in [6]. Additionally
this paper proposed a leaf-merge operator to obtain decision graphs instead of
decision trees.

As result of model construction a set of decision trees is obtained, see Fig. 2.
The dependencies are acyclic, so there exists a “topological” ordering of genes
o0, o1, . . . , on−1 such that parents Πi are from the set {o0, o1, . . . , oi−1}. When
generating a new binary chromosome, the independent gene Xo0 is generated
first, by “flipping the coin” according to its single leaf node. Then, other genes
are generated in the o1, . . . , on−1 order. The generation of Xi is driven by actual
values of parent variables Πi, the decision tree traversal ends up in one of the
leaf nodes which describe the probability p(Xi = 1).

3 Multi-objective BOA

For the design of a multi-objective BOA some important aspects have to be taken
into account, some due to the existence of multiple objective, others from the
necessity of the probabilistic model building techniques. Preliminary tests with
a simple (µ+ λ)-strategy and fitness assignment based on the dominance grade
have shown that a trivial multi-objective extension leads to poor performance.
The population is likely to converge to an “easy to find” region of the Pareto set,
as already noticed by [9], and duplicate solutions are produced repeatedly. The
resulting loss of diversity leads to an insufficient approximation of the Pareto
set and is especially harmful for building a useful probabilistic model. Therefore
the following design requirements are essential:

1. Elitism (to preclude the problem of gradual worsening and enable conver-
gence to the Pareto set)

2. Diversity maintenance in objective space (to enable a good approximation
of the whole Pareto set)

3. Diversity maintenance in decision space (to avoid redundancy and provide
enough information to build a useful probabilistic model)



Bayesian Optimization Algorithms for Multi-objective Optimization 303

Algorithm 1 Select(A,P, µ, ε)
Input: old parent set A, candidate set P , minimum size µ, approximation factor ε
Output: new parent set A′

for all x ∈ P do
B := {y ∈ A|� log fi(y)

log ε � = � log fi(x)
log ε � ∀ objective functions i}

if B = ∅ then
A := A ∪ {x}

else if ∃y ∈ B such thatx � y then
A := A \B ∪ {x}

end if
end for
A′ := {y ∈ A| 	 ∃z ∈ A : z � y}
D := A \A′
if |A′| < µ then

Fill A′ with µ− |A′| individuals y ∈ D in increasing order of |{z ∈ A′ ∪D|z � y}|
end if
Return: A′

Algorithm 2 (µ+ λ, ε)-BMOA
A := ∅
while |A| < µ do

Randomly create an individual x.
A := Select(A, {x}, µ, ε)

end while
while Termination criteria not fulfilled do

Create Bayesian Model M from A.
Sample λ new individuals from M .
Mutate these individuals and put them into B.
A := Select(A,B, µ, ε)

end while

3.1 A New Selection Operator

From the existing selection/archiving operators in evolutionary multi-objective
optimization, the ε-Archive [4] has been designed to meet the requirements 1 and
2 above. This method maintains a minimal set of solutions that ε-dominates all
other solutions generated so far. However, as this set can become very small, the
scheme has to be modified to provide enough decision space diversity. The new
selection operator is described in Alg. 1. The idea is that now also dominated
individuals are allowed to survive, depending on the number of individuals they
are dominated by.

3.2 The (µ+ λ, ε)-BMOA

The combination of the selection operator (Alg. 1) and the variation based on the
probabilistic model described in Section 2.2 results in a Bayesian Multi-objective
Optimization Algorithm described in Alg. 2. In this (µ+λ, ε)-BMOA, µ denotes



304 Marco Laumanns and Jiri Ocenasek

3000

3200

3400

3600

3800

4000

3000 3200 3400 3600 3800 4000 4200

f2

f1

Pareto set
"t=012000"
"t=100000"

3000

3200

3400

3600

3800

4000

3000 3200 3400 3600 3800 4000 4200

f2
f1

Pareto set
"t=012000"
"t=100000"

Fig. 3. Development of the population of (500+500, ε)-BMOA on the KP-100-2 for ε =
10−6 (left) and ε = 0.005 (right) after t = 12000 and t = 100000 function evaluations

the (minimum) number of parents that survive to the next generation being the
input to build the model, λ the number of samples from the model in one gener-
ation and ε the factor that determines the granularity of the approximation. As
the Bayesian model M we used the set of decision trees described in section 2.2.

4 Experimental Results

In recent research activities in the field of multi-objective meta-heuristics the
0/1 knapsack problem has become a standard benchmark. Results of several
comparative case studies are available in the literature, accompanied by test
data through the Internet. The problem can be stated as KP-n-m:

Maximize fj(x) =
∑n
i=1 xi · pi,j

s.t. gj(x) =
∑n
i=1 xi · wi,j ≤Wj

xi ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ m
(5)

where pi,j and wi,j are the elements of the profit and the weight matrices, re-
spectively, and Wj the j-th weight constraint. n denotes the number of binary
decision variables and m the number of objectives and constraints. The repre-
sentation of a solution as a bit string chromosome of length n is straightforward.
Infeasible solutions are decoded using a greedy repair mechanism for the calcu-
lation of the objective values without changing the genotype of the individuals.
The problem is NP-hard, and the exact Pareto set can only be computed for
small instances.

4.1 Results of (µ+ λ, ε)-BMOA

In this section we report results of the BMOA on the knapsack problem (5)
with m = 2 objectives to demonstrate the applicability of the approach. Each



Bayesian Optimization Algorithms for Multi-objective Optimization 305

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
u

m
b

e
r 

o
f 
P

a
re

to
 o

p
ti
m

a
l 
s
o

lu
ti
o

n
s

objective function evaluations

mu=200, epsilon=0.00001
mu=200, epsilon=0.002

mu=500, epsilon=0.00001
mu=500, epsilon=0.002
mu=500, epsilon=0.005

0.001

0.01

0.1

1

0 20000 40000 60000 80000 100000120000140000160000180000200000

e
m

p
ir
ic

a
l 
e

p
s
il
o

n

objective function evaluations

mu=200, epsilon=0.00001
mu=200, epsilon=0.002

mu=500, epsilon=0.00001
mu=500, epsilon=0.002
mu=500, epsilon=0.005

Fig. 4. Average number of Pareto-optimal solution contained in the population (left)
and empirical approximation quality εmin (right) for KP-100-2 for different µ and ε
values

individual sampled from the model is additionally mutated by flipping each
bit independently with probability 1/n. Together with the results from [4] this
guarantees that in the limit the non-dominated population members converge
to a representative subset of the Pareto set of (5) in the sense that each Pareto-
optimal point is ε-dominated by at least one population member.

Fig. 3 shows the development of the population for different ε values for a
typical run. With a small ε, it can be seen that the population is more con-
centrated near the middle of the Pareto set compared to the larger ε value,
where the population is distributed more evenly and broadly. Fig. 4 displays
the number of Pareto-optimal solutions found and the empirical approximation
quality εmin 1 over time. It indicates how the algorithm can be tuned by differ-
ent settings of the µ and ε values. For larger values of both parameters, more
dominated individuals will be allowed in the population: Whereas a large ε value
means that the individuals have to compete for less available “slots”, a larger
µ simply enlarges the storage. More individuals lead to a more accurate model
estimation, but if the fraction of dominated individuals is large, a lot of sam-
pling (and search) effort is wasted on exploring previously visited regions and
thereby increasing the running time. The possibility to tune the approximation
resolution via the ε value is an advantage compared to other existing strategies
for diversity maintenance.

4.2 Comparison with Other MOEAs

In order to evaluate BMOA with respect to other MOEAs we use the results
of the comparative case study from [10] and focus on the large instances of the
knapsack problem with n = 750.
1 εmin := Min{ε ∈ IR+| ∀x ∈ {0, 1}n ∃y ∈ IR with (1 + ε)f(y) ≥ f(x)}



306 Marco Laumanns and Jiri Ocenasek

Table 1. Results of the coverage measures C(BMOA,*) (first entry per cell),
C(*,BMOA) (second entry) and of the hypervolume difference S(*)-S(BMOA) (third
entry) to compare the (3000 + 3000, 10−6)-BMOA with NSGA-II, PESA, SPEA, and
SPEA2 after t = 480000 function evaluations, median of 30 runs

* NSGA-II PESA SPEA SPEA2
KP-750-2 0.71, 0.00, 0.006 0.71, 0.00, 0.008 0.52, 0.00, 0.009 0.58, 0.00, 0.013
KP-750-3 0.56, 0.00, 0.009 0.64, 0.00, 0.015 0.63, 0.00, 0.014 0.48, 0.00, 0.016
KP-750-4 0.72, 0.00, 0.010 0.97, 0.00,−0.003 0.99, 0.00,−0.003 0.80, 0.00, 0.008

Table 1 compares BMOA to different algorithms using the Coverage (C)
and the Hypervolume (S) metric. C(A,B) denotes the relative number of non-
dominated individuals contained in the population of algorithm B that are dom-
inated by at least one individual from the population of algorithm A of a given
point in time. S(A) denotes the relative volume of the objective space dominated
by the solutions of algorithm A. The (3000+3000, 10−6)-BMOA is able to domi-
nate more than half of the other algorithms’ populations on nearly all instances,
with the best results on the four-objective problem. The other algorithms are
not able to dominate any of BMOA’s non-dominated points, but they generally
find a broader distribution as the hypervolume values indicate. Because of its
relatively large population size, the BMOA proceeds much slower and it requires
more CPU time due to the estimation of the probabilistic model.

5 Conclusion
In this paper we discussed the use of Estimation of Distribution Algorithms for
optimization problems involving multiple criteria. A Bayesian Multi-objective
Optimization Algorithm (µ+λ, ε)-BMOA has been designed using a probabilistic
model based on binary decision trees and a special selection scheme based on ε-
archives. The convergence behavior of the algorithm can be tuned via the values
of µ, the minimal population size to estimate the probabilistic model, and ε, the
approximation factor.

The empirical tests on the 0/1 multi-objective knapsack problem show that
the BMOA is able to find a good model of the Pareto set for the smaller instances.
In order to find also the outer region of the Pareto set, large µ and ε values
are required, which slows down the optimization process considerably. Further
research could assess MBOA on other multi-objective combinatorial optimization
problems with stronger variable interactions and on continuous problems.

From the decision-aid point of view it would be interesting to exploit the
Bayesian model also outside the algorithm itself. The compact description of the
model could assist a decision maker who can analyze the decision trees to get
more insight into the structure of the Pareto set and to learn about correlations
in the decision problem at hand.

Acknowledgments
This research has been carried out under the financial support of the Research
intention no. CEZ: J22/98: 262200012 - ”Research in information and control sys-



Bayesian Optimization Algorithms for Multi-objective Optimization 307

tems” (Ministry of Education, CZ), the research grant GA 102/02/0503 ”Parallel
system performance prediction and tuning” (Grant Agency of Czech Republic)
and the Swiss National Science Foundation (SNF) under the ArOMA project
2100-057156.99/1.

References

1. D. Heckerman, D. Geiger, and M. Chickering. Learning bayesian networks: The
combination of knowledge and statistical data. Technical report, Microsoft Re-
search, Redmont, WA, 1994.

2. J. D. Knowles and D. W. Corne. M-PAES: A memetic algorithm for multiobjective
optimization. In Congress on Evolutionary Computation (CEC 2000), volume 1,
pages 325–332, Piscataway, NJ, 2000. IEEE Press.

3. M. Laumanns, G. Rudolph, and H.-P. Schwefel. Mutation control and convergence
in evolutionary multi-objective optimization. In MENDEL 2001. 7th Int. Conf. on
Soft Computing, pages 24–29. Brno University of Technology, 2001.

4. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and
diversity in evolutionary multi-objective optimization. Evolutionary Computation,
10(3), 2002.

5. M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of optimization by building
and using probabilistic models. IlliGAL Report No. 99018, 1999.

6. M. Pelikan, D. E. Goldberg, and K. Sastry. Bayesian optimization algorithm,
decision graphs, and occams razor. IlliGAL Report No. 2000020, 2000.

7. G. Rudolph. On a multi-objective evolutionary algorithm and its convergence to
the pareto set. In IEEE Int’l Conf. on Evolutionary Computation (ICEC’98), pages
511–516, Piscataway, 1998. IEEE Press.

8. J. Schwarz and J. Ocenasek. Multiobjective bayesian optimization algorithm for
combinatorial problems: Theory and practice. Neural Network World, 11(5):423–
441, 2001.

9. D. Thierens and P. A. N. Bosman. Multi-objective mixture-based iterated density
estimation evolutionary algorithms. In Proc. of the Genetic and Evolutionary Com-
putation Conference (GECCO-2001), pages 663–670. Morgan Kaufmann, 2001.

10. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization. In K. Giannakoglou et al.,
editors, Evolutionary Methods for Design, Optimisation, and Control, 2002.



An Evolutionary Algorithm
for Controlling Chaos: The Use

of Multi–objective Fitness Functions

Hendrik Richter

Fraunhofer–Institut für Produktionstechnik und Automatisierung
Nobelstrasse 12, D–70569 Stuttgart, Germany

hir@ipa.fraunhofer.de

Abstract. In this paper, we study an evolutionary algorithm employed
to design and optimize a local control of chaos. In particular, we use
a multi–objective fitness function, which consists of the objective func-
tion to be optimized and an auxiliary quantity applied as an additional
driving force for the algorithm. Numerical results are presented illustrat-
ing the proposed scheme and showing the influence of employing such a
multi–objective fitness function on convergence of the algorithm.

1 Introduction

Recently, it has been shown that evolutionary algorithms are a promising tool
for analyzing and controlling nonlinear dynamical systems, see, e.g. [15,11,13].
Evolutionary algorithms are remarkably useful if the objective function to be
maximized (or minimized) cannot be written as a mathematical expression and
has unknown mathematical properties such as continuity and existence of deriva-
tives. This frequently occurs if the objective function can be determined only
numerically. In nonlinear dynamics, particularly if chaotic behaviour is involved,
we often face the situation that closed–form (algebraic) solutions cannot be found
and we thus have to base our experiments on numerical studies. So, the problem
of identification [10,17], modelling [14] and forecasting [15] chaotic system as well
as designing and optimizing a control of chaos [16,6,13,7] has been successfully
solved using evolutionary algorithms.

In this paper we study some refinements for an evolutionary algorithm re-
cently proposed to design and optimize a local control of chaos [13]. In particular,
we use a multi–objective fitness function to improve convergence and speed of
optimization. This multi–objective fitness function consists of the objective func-
tion to be optimized and an auxiliary quantity used as an additional driving force
for the algorithm. Our main result is that employing such a fitness function has a
positive effect on convergence speed, particularly if this additional driving force
supports optimizing the objective function in terms of the physical meaning.

The paper is structured as follows. In Sec. 2 local control of chaos and con-
troller design is briefly summarized. The evolutionary algorithm and the multi–
objective fitness function are discussed in Sec. 3. Our numerical results are pre-
sented in Sec. 4, and conclusion are drawn in Sec. 5. The following notation

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 308–317, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



An Evolutionary Algorithm for Controlling Chaos 309

is used throughout. R
n denotes the n–dimensional Euclidean space; R

n×m the
set of all real n ×m–matrices; eigi(A), i = 1, 2, . . . , n is the i–th eigenvalue of
A ∈ R

n×n; AT is the transpose of a matrix A and if A is positive–definite, we
write A > 0.

2 Summary of Local Control of Chaos

We consider a discrete–time dynamical system

x(k + 1) = f(x(k), u(k)), (1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector and k =
0, 1, 2, . . ., which displays chaotic behavior for a constant input u(k) = ū and
builds the chaotic attractor AR. Furthermore, we assume that the system (1)
has an unstable equilibrium point x̄ (such that f(x̄, ū)− x̄ = 0), which we intend
to stabilize by means of local control. To that end, we define a feedback matrix
G ∈ R

m×n and a state–space region of control (SSRC) W ⊂ R
n, which contains

the equilibrium point x̄, to employ the local control

u(k) = ū−G(x(k)− x̄),∀x(k) ∈W (2)
u(k) = ū = const. ∀x(k) �∈W. (3)

The SSRC W is specified by

W = {x ∈ R
n|(x− x̄)TP (x− x̄) < c}, (4)

where P ∈ R
n×n, with P = PT > 0, and c > 0. So, the matrices G and P

as well as the constant c have to be determined for local controller design. In
the following we outline the design procedure, referring to [12,13] for detailed
discussion. We expand the right hand side of (1) into a Taylor series about x̄
and insert the state feedback (2) to obtain

x(k + 1)− x̄ =(A−BG)(x(k)− x̄) + h(x(k)), (5)

where A = ∂f
∂x

∣∣∣
x=x̄
u=ū

, B = ∂f
∂u

∣∣∣
u=ū
x=x̄

and the map h(x) comprises the terms of

second and higher order of the Taylor expansion. So, we can formally write

x(k + 1)− x̄ = HL · (x(k)− x̄) +HN (x(k)) · (x(k)− x̄) (6)

with HL = A−BG and HN (x(k))·(x(k)−x̄) = h(x(k)). For a controllable matrix
pair (A,B), a feedback matrix G can be calculated to place the eigenvalues of
HL within the unit disc, which defines the (stabilizing) matrix G, e.g. [5], p.198.
For such a stable matrix HL, the Lyapunov equation

HT
LPHL − P = −Q (7)



310 Hendrik Richter

is fulfilled for any given Q = QT > 0. This defines the matrix P . To obtain
finally the constant c, we put the matrix

Q(x) = Q−HN (x)TPHL −HT
LPHN (x)−HN (x)TPHN (x) (8)

for the previously defined P and calculate its leading principal minors

∆i(x), i = 1, 2, . . . , n, (9)

that is, the determinants of the (i×i)–matrices in the upper left–hand side corner
of Q(x). Finally, we get the constant c by solving the constraint optimization
problem

max
c

c > 0, subject to∆i(x) > 0, i = 1, 2, . . . , n, ∀x : (x− x̄)TP (x− x̄) ≤ c, (10)

which can be done by Sequential Quadratic Programming (SQP), e.g. [3], p.304.
So, all feasible matrices Q = QT > 0 (which define the matrix P = PT > 0

via eq. (7)) may be regarded as a bounded subset of a parameter space. An
optimal SSRC W can be found by looking for the optimal parameter values
within this set. In this context, optimal means to find a SSRC W which allows
(in average) fastest control from a given initial state on the chaotic attractor
AR. The evolutionary algorithm considered in the next section aims to reach
this goal.

3 The Evolutionary Algorithm

3.1 The Multi–objective Fitness Function

The average time to achieve control can be specified by the relative sojourn; that
is, the percentage of the trajectory on the chaotic attractor AR being within the
SSRC W . This relative sojourn can be approximated by the natural measure, [9],
p.78,

µ(AR,W ) = lim
K→∞

kW (AR ∩W )
K

, (11)

where kW (AR ∩W ) is the quantity of time the trajectory on AR stays in W
during the time interval 0 ≤ k ≤ K. Since the goal of optimization is to achieve
control as fast as possible, the measure (11) needs to be maximized. So, eq. (11)
is the objective function and the optimization problem to be solved reads

max
Q

µ(AR,W (Q)) subject to Q = QT > 0. (12)

In our previous works [13] we used this measure as fitness function. How-
ever, it turned out that there might be cases where it is advantageous to use
information about the volume of the SSRC W as well to drive the evolutionary
algorithm. In other words, we intend to use an auxiliary quantity (the volume
of the SSRC) as a driving force for the evolutionary algorithm. The physical in-
terpretation of this idea is the following. The measure (11) is large if the overlap



An Evolutionary Algorithm for Controlling Chaos 311

between the chaotic attractor AR and the SSRC W is large. Such an overlap
can be obtained by either a large SSRC or a (smaller) SSRC which is oriented
in such a way that it covers large parts of AR. In this line of reasoning, orienta-
tion is mainly addressed by the driving force measure while size is addressed by
volume. The idea is to employ both driving forces in the fitness function.

The volume V of the SSRC W assigned by (4) is

V (Q) =
π
n
2

Γ (n2 + 1)

√√√√√ cn

n∏
i=1
eigi(P )

, (13)

where Γ (n2 + 1) is the Gamma function of n
2 + 1. Here, V (Q) is linked to P by

the Lyapunov equation (7) and to c by the solution of (10). So, we can define
the multi–objective fitness function

F (Q) = µ(AR,W (Q)) + αV (Q) (14)

with α being a scaling parameter to be specified. To summarize, in order to solve
the optimization problem (12) we use an evolutionary algorithm which solves the
problem

max
Q

F (Q) subject to Q = QT > 0. (15)

3.2 Algorithmic Structure

An evolutionary algorithm is a systematic yet probabilistically driven optimiza-
tion method for finding the largest (or smallest) value of an arbitrarily given
function, which bears some features of natural evolution [4,1,8]. Following this
outline we use the following algorithmic structure to solve the given optimization
problem (15).

Algorithm.

1. Generate a set M1 of symmetric, positive-definite matrices Q which are used
to determine the fitness function F (Q). Their entries are initialized randomly
and cover the domain of feasible Q uniformly. Define the scaling factor α.
Put k := 1.

2. Calculate the fitness function F (Q),(14), for every matrix Q of the set Mk.
3. Use tournament selection to select matrices for which the value of the fitness

function is above average.
4. Create a new set from the matrices chosen in (3.) by recombination.
5. Do random alteration in the elements of the matrices created in (4) by

mutation. Rename the resulting set Mk+1.
6. Go back to (2.) and put k := k + 1, until a maximal value of the fitness

function or another termination criterion is reached.



312 Hendrik Richter

Mutation

Recombination

Selection

Fitness

Initialization

k := 1

Mk
r

Mk+1 k := k + 1

Mk F ki

Mk
s F ki

�

�

↓

↓ ↓

↓ ↓

↓

←

↑

Fig. 1. Structure of the evolutionary algorithm

3.3 Representation and Operators

In this subsection we detail the algorithm given above (see also Fig. 1).

(i) Representation and initialization.
The set of matrices to be optimized over (population of l individuals) consists
of l elements at steps k = 1, 2, . . . ,K:

Mk =
(
Qk1 Q

k
2 . . . Q

k
l

)
,

where

Qki ∈ R
d, Qki =

(
Qki
)T

> 0, i = 1, 2, . . . , l, d =
n

2
(n+ 1).

Here, the matrices Qki are matrices Q at step k. For initialization, symmetric ma-
trices are generated whose entries are realizations of a random variable normally
distributed on [0, γ]. Matrices which are positive–definite are included into M1.
Such a representation results in a search space of n2 (n+ 1) in which l individuals
are supposed to evolve toward the optimum.



An Evolutionary Algorithm for Controlling Chaos 313

(ii) Fitness.
The fitness function

F ki : R
d → R

delivers a quantitative evaluation about every matrix Qki , i = 1, 2, . . . , l of Mk

at every step k by the following procedure: Given Qki , we use (7) to compute
P ki , (10) to determine cki , (4) to calculate W k

i , and (14) gives finally F ki .

(iii) Selection.
Tournament selection uses the selection operator

s : R
h × R

l → R
h, h = ld

that produces the set Mk
s from the set Mk and its l fitness values F ki . For this

purpose, a matrix pair (Qki , Q
k
j ) is taken from Mk at random l times where

the subscripts i, j, i �= j are independently chosen as realizations of an integer
random variable uniformly distributed on [1, l]. If F ki ≥ F kj then Qki is included
in Mk

s , otherwise Qkj .

(iv) Recombination.
The recombination operator

r : R
h × R

l → R
h

produces a set Mk
r from the elements of Mk

s Again, l random choices of the
matrix pairs (Qki , Q

k
j ) are made, now with Qki , Qkj being element of Mk

s . Each

time, a new matrix Q := Fki
Fki +Fkj

Qki + Fkj
Fki +Fkj

Qkj is calculated, and inserted into

Mk
r . Such a rule for calculating the new Q is motivated by the assumption that

a matrix from Mk
s (and therefore from Mk) with a higher fitness should have

more influence on the elements of Mk
r (and hence on Mk+1) than a matrix with

lower fitness. This reflects the common sense argument that it is more likely to
find a matrix with higher fitness near a matrix with high fitness than near a

matrix with low fitness. Since Fki
Fki +Fkj

> 0 and Fkj
Fki +Fkj

> 0, it is guaranteed that

all matrices from Mk
r are again symmetric and positive–definite.

(v) Mutation. The mutation operator

m : R
d → R

d

is applied to every matrix Qki in Mk
r . It randomly performs one of the following

operations with the probabilities p1, p2 and p3, where p1 + p2 + p3 = 1.

1 The matrix Qki remains unchanged.
2 A diagonal element of Qki is changed. An entry qjj of Qki is updated as fol-

lows: The index j is a realization of an integer random variable uniformly
distributed on [1, n]. Then, a realization of a random variable normally dis-
tributed on [0, β] is added to the previous value of qjj .



314 Hendrik Richter

3 An off diagonal element of Qki is changed. To update an entry qjh of Qki , the
indices j, h are first independently chosen as realizations of an integer random
variables uniformly distributed on [1, n]. Then, a realization of a random
variable normally distributed on [0, β] is added to the previous value of qjh.
To preserve the symmetry of the updated matrix Qki , we set qhj = qjh.

After the alteration of entries of Qki (action (2) and (3)) we must check if the
changed matrix is still positive–definite. If this is not the case, the action is
repeated (most probably the indices of the chosen entry and the value of entry
alteration will then be different) until the renewed matrix becomes positive–
definite. After the mutation operator is applied to all matrices of Mk

r , the stored
best matrix is inserted by replacing a randomly chosen matrix. This set is called
Mk+1; the procedure starts again with the evaluation of fitness.

4 Numerical Results

As a numerical example we consider the generalized Hénon map [2]

x(k + 1) =



u(k)− x3(k)2 − 0.1x4(k)

x1(k)
x2(k)
x3(k)


 . (16)

With the nominal input u(k) = ū = const., the system has the equilibrium
points

x̄(1,2) =
−1.1±√1.21 + 4ū

2
(1, 1, 1, 1)T .

The system (16) exhibits chaotic behavior for ū = 1.76 for which the Lyapunov
exponents λ1 = 0.1538, λ2 = 0.1418, λ3 = 0.1189, and λ4 = −2.7171 can be
determined. In the following we consider the local control of the equilibrium
point x̄(1) = −1.1+

√
1.21+4ū
2 (1, 1, 1, 1)T .

Table 1. Settings of the evolutionary algorithm

Setting Symbol Value

Population size l 16
Maximum number of generations K 100
Width of initial population γ 20000
Probability for no mutation p1 0.3
Probability for mutation of diagonal element p2 0.35
Probability for mutation of off diagonal element p3 0.35
Mutation strength β 1250



An Evolutionary Algorithm for Controlling Chaos 315

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

k

µ

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

k

µ

a) b)

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

k

µ

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

k

µ

c) d)

Fig. 2. Time evolution of the objective function (12) in 15 consecutive runs of the
algorithm, a) α = 0, b) α = 1, c) α = 10, d) α = 100

The feedback matrix G = (0, 0,−1.7723,−0.1)T was chosen, so that eigi(A−
BG) = 0, i = 1, . . . , 4. Now, we optimize the local control using the evolutionary
algorithm proposed in the previous section. Fig. 2 shows the results of the time
evolution for the objective function (12) for different values of the scaling factor
α, where the best individual per generation and run is recorded. Tab. 1 gives
a listing of the used parameter values. These values were found in introductory
numerical experiments and ensure satisfactory performance for all tested α as
well as observability of certain effects discussed in the following. As a comparison,
the time evolution for not using a multi–objective function (α = 0) is shown in
Fig. 2a. For each value of α, 15 consecutive experiments were carried out with
the evolutionary algorithm for different randomly chosen initial populations. The
evolution starts from low values of the objective function. This is plausible when
we take into account that the likelihood for finding a matrix Q with high measure
µ at random, scales with the dimension of search space. This also indicates that
a pure random search for Q is not likely to be successful option for solving
such problems. Furthermore, it can be seen in Fig. 2 that using the additional
information about the volume of W has generally a positive effect on the speed
with which the measure µ(AR,W ) moves towards the supposed optimum. There



316 Hendrik Richter

Table 2. Results of the evolutionary algorithm where the maximum (max), mean and
standard derivation (std) over the 15 consecutive runs are given

k α = 0 α = 1 α = 10 α = 100
max mean std max mean std max mean std max mean std

10 0.0400 0.0123 0.0091 0.0330 0.0150 0.0075 0.0390 0.0152 0.0096 0.0300 0.0115 0.0082
50 0.0955 0.0805 0.0123 0.1035 0.0824 0.0131 0.1140 0.0859 0.0205 0.1190 0.0825 0.0209
100 0.1300 0.1186 0.0085 0.1345 0.1174 0.0114 0.1325 0.1174 0.0113 0.1360 0.1183 0.0112

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

k

F

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

k

F

a) b)

Fig. 3. Time evolution of the re–normalized fitness function (15) in 15 consecutive runs
of the algorithm, a) α = 1, b) α = 100

are at least some evolutions which show faster convergence, while evolutions
starting from another initial population tend to evolve slower, see also Tab. 2.
An interpretation for these results is that a heavy weighting of the volume as
an auxiliary driving force for the algorithm leads to a larger diversity in the
individuals and thus to a larger variety if only the measure for these individuals
is taken into account. In other words, there might be evolutions that produce
matrices Q for which a large volume but a small measure is associated. For small
values of α this is regulated via the fitness function and selection. For large α
this is not mandatory. As a result, some evolutions tend to speedup in term of
convergence of the objective function, while other slowdown. To illustrate this
point of view, we consider the re–normalized fitness function F := F√

1+α2 , see
Fig. 3. Here, we see that for the (re–normalized) fitness the slowdown effect for
evolution can not be observed.

5 Conclusion

We have studied an evolutionary algorithm for designing and optimizing a local
control of chaotic systems. It determines the optimal SSRC W using a Lyapunov
approach to local control. We have taken advantage of a multi–objective fitness
function, which applies information about the volume of the SSRC W as well
as the values for the objective function, the measure of the chaotic attractor
within the SSRC µ(AR,W ), to drive the algorithm. Numerical results have been



An Evolutionary Algorithm for Controlling Chaos 317

presented to demonstrate the given algorithm. In the numerical experiments
we noted that the convergence speed can be increased by employing such an
auxiliary driving force for the algorithm, particularly since this additional driv-
ing force has a sound physical meaning and supports optimizing the objective
function.

References

1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, New
York (1996)

2. Baier, G., Klein, M.: Maximum hyperchaos in generalized Hénon maps. Phys. Lett.
A151 (1990) 281-284

3. Fletcher, R.: Practical Methods of Optimization. John Wiley, Chichester (1987)
4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addision-Wesley, Reading MA (1989)
5. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs NJ (1980)
6. Lin, C.T., Jou, C.P.: Controlling chaos by GA-based reinforcement learning neural

network. IEEE Trans. Neural Networks 10 (1999) 846-859
7. Marin, J., Solé, R.V.: Controlling chaos in unidimensional maps using macroevo-

lutionary algorithms. Phys. Rev. E65 (2002) 026207/1-6
8. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.

3rd edn. Springer-Verlag, Berlin Heidelberg New York (1996)
9. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge

(1993)
10. Packard, H.N.: A genetic learning algorithm for the analysis of complex data.

Complex Systems 4 (1990) 543-572
11. Paterakis, E., Petridis, V., Kehagias, A.: Genetic algorithm in parameter estima-

tion of nonlinear dynamical systems. In: Eiben, A.E., Bäck,T., Schoenauer, M.,
Schwefel, H.P. (eds.): Parallel Problem Solving from Nature - PPSN V. Springer-
Verlag, Berlin Heidelberg New York (1998) 1008-1017

12. Richter, H., Reinschke, K.J.: Local control of chaotic systems: A Lyapunov ap-
proach. Int. J. Bifurcation and Chaos 8 (1998) 1565-1573

13. Richter, H., Reinschke, K.J.: Optimization of local control of chaos by an evolu-
tionary algorithms. Physica D144 (2000) 309-334

14. Rodriguez–Vázquez, K., Fleming, P.J.: Multi-objective genetic programming for
dynamic chaotic systems modelling. In: Congress on Evolutionary Computation,
CEC’99, Washington, D.C., USA, (1999) 22-28

15. Szpiro, G.G.: Forecasting chaotic time series with genetic algorithms. Phys. Rev.
E55 (1997) 2557-2568

16. Weeks, E.R., Burgess, J.M.: Evolving artificial neural networks to control chaotic
systems. Phys. Rev. E56 (1997) 1531-1540

17. Yadavalli, V.K, Dahulee, R.K., Tambe, S.S., Kulkarni, B.D.: Obtaining functional
form of chaotic time series evolution using genetic algorithm. Chaos 9 (1999) 789-
794



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 321–330, 2002.
© Springer-Verlag Berlin Heidelberg 2002

On Modelling Evolutionary Algorithm Implementations
through Co-operating Populations

Panagiotis Adamidis1 and Vasilios Petridis2

1 Dept of Informatics, Technological Educational Institute of Thessaloniki, Greece 541 01
2 Dept of Electrical & Computer Eng., Aristotle University of Thessaloniki, Greece 540 06

Abstract. In this paper we present a framework for modelling Simple and Par-
allel Evolutionary Algorithm implementations as Co-operating Populations.
Using this framework, a method called Co-operating Populations with Different
Evolution Behaviours (CoPDEB), for generalizing and improving the perform-
ance of Parallel Evolutionary Algorithms (PEAs) is also presented. The main
idea of CoPDEB is to maintain a number of populations exhibiting different
evolution behaviours. CoPDEB was tested on three problems (the optimization
of a real function, the TSP problem and the problem of training a Recurrent Ar-
tificial Neural Network), and appears to significantly increase the problem-
solving capabilities over PEAs with the same evolution behaviour on each
population. This paper also studies the effect of the migration rate (Epoch) and
the population size on the performance of both PEAs and CoPDEB.

1 Introduction

The effectiveness of Evolutionary Algorithms (EAs), is limited by their ability to
balance the need for a diverse set of sampling points, with the desire to quickly focus
search upon potential solutions. Exploration is achieved through the recombination of
data structures (which represent candidate solutions). The data structures constitute
the population of the EA, which is evolved towards the optimum, concentrating
search in those areas of higher fitness (exploitation).

The objective of this paper is twofold. First, we introduce a framework for model-
ling Evolutionary Algorithm implementations. A multi-level recursive model at dif-
ferent levels is defined (Co-operating populations). This model allows the imple-
mentation of any type of EA in any kind of hardware layout. According to the defini-
tion, one has a range of representation methods, population structures, selection
methods, parameters, operators and mechanisms to choose from.

Although separating individuals into independent populations is a natural way to
achieve a better balance of exploration and exploitation for a particular problem, the
above problem of choice still remains. The Parallel EA (PEA) paradigms use the
same evolution behaviour on each population. One still has to optimize each EA
configuration, trying to select the most appropriate operators, parameters, mecha-
nisms and communication methods [1, 2, 4].

The second objective of this paper is to propose a method for overcoming the
problem of choice, using a variety of selection mechanisms, operators, communica-
tion methods, and parameters. The optimization method is called Co-operating



322      Panagiotis Adamidis and Vasilios Petridis

Populations with Different Evolution Behaviours (CoPDEB), and according to it,
each population uses a different evolution behaviour in order to overcome the prob-
lem of operator selection and improve the performance of cgPEAs.

Our results show that CoPDEB significantly outperforms cgPEAs where each
population evolves using the same configuration.

2 Definition of “Co-operating Populations”

We define a model called Co-operating Populations (CoP), in order  to model a type
of complex EA-like system, with the following characteristics:

• The system is composed of a finite number of items at each of several levels
• Each item functions as a global random search method emulating natural evolu-

tion.
• The structure of the items at each level depends on the structure of the items of all

lower levels.
• The structure of the items at the same level is similar.
• Items on the same level can exchange some information, which might be the result

of some processing, while maintaining their structure.

CoP can be informally described as follows. Populations of individuals live on is-
lands that are able to communicate with each other. At a second level, populations of
islands can form a larger entity with each island regarded as an individual. At a
higher level, these larger entities can also form a population with each one regarded
as an individual. The procedure can be continued to the required level. Offsprings are
created by applying evolutionary operators to a population of individuals. An indi-
vidual can be a string, an island of individuals or an entity at a higher level. Genetic
evolution takes place according to a set of rules regarding selection, recombination
and mutation.

Definition:  CoP k  is defined recursively over k as a four-tuple which denotes level-k
of the model

CoP k   =  <  CoP k-1 ,  t,  Reproduction,  Structure  > (1)
with initial level defined for k=0 as:

CoP 0   =  <  P0 ,  t,  Reproduction,  Structure  >              (2)
where:

CoP k-1   is the level  k-1 of the model
P0   is the initial population of chromosomes
t is the termination criterion
Reproduction  is used to advance one generation at level k:

Reproduction = < epoch, selection, operators, mechanisms, parameters > (3)

• epoch:  the number of completed generations at the lower level k-1, before a new
generation at level k can be generated. At initial level 0 (CoP 0), epoch=1.

• selection:  selection methods used (proportionate selection, tournament selection,
ranking selection, steady state selection, Boltzmann selection, etc.)



On Modelling Evolutionary Algorithm Implementations      323

• operators:  a tuple of evolutionary operators used in the transition from population
at time t, to the population at time t+1. Operators include recombination and muta-
tion, along with their variations, inversion, hill-climbing, etc.

• mechanisms:  general mechanisms such as elitism, replacement method, fitness
scaling, fitness ranking, evolution of operators, migration strategy etc.

• parameters:  selection methods parameters (selection probabilities, tournament
size, binary tournament probability, etc.), and operator parameters (mutation rate,
recombination probability, size of an individual, migration rate, etc.).

Structure  of  the CoP can be described as a six-tuple
Structure = < popsize, demesize, demestruct, λ, topology, popalloc > (4)

• popsize:  the number of individuals of a population
• demesize:  the size of each neighborhood/deme.
• demestruct:  the structure of the neighborhood/deme.
• λ:  the number of available processing nodes.
• topology:  the physical interconnection between processing nodes.
• popalloc:  the specific configuration used for mapping population(s) to node(s)

3 Initial level of Co-operating Populations (CoP0)

One of the most important characteristics of the CoP model is its hierarchical and
recursive structure. The definition of each level depends on the previous one. Final
level is always the initial level 0 (CoP0). CoP0 can describe both massively parallel
(fine-grained or cellular) EAs and simple (serial) EA implementations. The specific
elements of the Reproduction and Structure tuples will finally determine the type of
the EA that will be implemented. According to (1), we have to define the initial
population P0, the termination criterion, the Reproduction tuple and the Structure
tuple.

The definition of population P0, includes the representation (any type) and the ini-
tialization of P0. The use of adaptive encoding  usually improves performance.

The initial level determines the termination of the whole model.

The Reproduction tuple is defined as follows:

• According to the model definition epoch is equal to 1
• selection denotes the scheme used to choose the parents that will take part in the

reproduction of the children. Appropriate selection schemes can be used [3, 5].
• operators refer to recombination and mutation with their variations.
• mechanisms refer to the general techniques that improve the performance of the

algorithm (e.g. fitness scaling, parent replacement methods, etc.). Elitism is also a
mechanism. Very frequent is also the use of a mechanism that adapts the operator
probabilities [9].

• parameters include all selection scheme parameters (selection probabilities, tour-
nament size, number of reproductive trials etc.), operator parameters (mutation
rate, recombination probability), length of chromosomes etc.



324      Panagiotis Adamidis and Vasilios Petridis

The Structure tuple is defined as follows:
• popsize denotes the population size, which may also be adaptive
• In case of fine-grained PEAs where individuals are allowed to mate only within a

neighborhood (deme), demesize denotes the size of the neighborhood. When de-
mesize is equal to popsize, there are no neighborhoods and the population is “pan-
mictic”.

• demestruct denotes the structure (shape) of the neighborhood. Shape of deme may
be a cross, square, line etc. Demes overlap by an amount that depends on their
shape and size.

• λ  denotes the number of available processors. In serial EAs, the whole population
is usually assigned to one processor. On the contrary, in the case of fine-grained
PEAs, each individual is ideally assigned to one processor.

• topology denotes the actual connection topology between the available processors
at level 0.

• popalloc defines the way that the population is allocated to each processor.

4 Co-operating Populations at Level 1 (CoP 1 )

CoP1, depends on CoP0. Each individual of CoP1 is a CoP0 and corresponds to an
island. Each island has its own population, which evolves in parallel with the popula-
tion of the other islands. The population of an island constitutes a population of pos-
sible solutions of the problem at hand.

The main representative and the most well studied paradigm of CoP1, is the
coarse-grained PEAs (cgPEAs) and specifically the island model. Each island of
cgPEAs corresponds to a CoP0 model, relatively isolated from each other. Isolation
helps maintain genetic diversity. Migration of individuals from a CoP0 to another is a
possibility. Each individual of CoP0  corresponds to a gene. We can have demes at

CoP1 level by allowing migration and reproduction between neighboring CoP0.

In order to define CoP1, we have to define CoP0, the termination criterion, the

Reproduction tuple and the Structure tuple. CoP0  has been defined in section 3. The

termination criterion of CoP1 is the termination of the previous level CoP0.
The Reproduction tuple is defined as follows:

• epoch equals to the completed number of generations at level 0, before a new gen-
eration is created at level 1. We are at the same generation of CoP1, as long as the
population of each CoP0 evolves independently. In cgPEA, epoch is equal to the
frequency of migration between islands.

• selection denotes the method used to choose each and every CoP0 that will be used
to produce the next generation. The selection methods used in previous level can
be used here, after establishing a CoP0 fitness. In cgPEAs, selection denotes the
method used to choose the individuals to migrate.

• the two evolutionary operators (recombination and mutation) can be implemented
in CoP1 as well. Here, each CoP0 corresponds to an individual. So, recombination
can be implemented by combining the populations of two (or more) CoP0 parents.
Mutation can be implemented in a lot of different ways (exchanging the position of



On Modelling Evolutionary Algorithm Implementations      325

two genes (i.e. individuals at CoP0) of CoP1, or randomizing the value of a gene
(re-initialing an individual of a CoP0, etc).

• mechanisms refer to general techniques that improve the performance of the algo-
rithm (e.g. conditional initialization of a CoP0 population). Migration scheme must
also be defined here.

• parameters refer to operator parameters, selection method parameters, migration
parameters etc. In cgPEAs it denotes the number of individuals that migrate be-
tween islands (migration rate).

The Structure tuple is defined as follows:

• popsize equals the number of available CoP0.
• demesize equals to the number of CoP0 that interact during the creation of a new

generation.
• demestruct denotes the structure of the CoP0 neighborhoods.
• λ equals the number of processors available to level 1.
• topology denotes the actual connections between the available processors.

popalloc refers to the allocation of CoP0 to the available processors. One or more
CoP0 can be assigned to one or more processors. In cgPEA implementations, each
processor is usually assigned one CoP0.

CoPDEB is an instance of CoP1 like cgPEAs. The difference in evolution behavior
comes from the different configuration of each island, at level 0. A different evolu-
tion behavior (appropriate operators, parameters, and mechanisms) for each popula-
tion. These configurations are integrated in the same evolutionary engine.

5 Implementation Issues of Coarse-Grained PEAs and CoPDEB

Both cgPEAs and CoPDEB are completely specified by defining all the components
of CoP1  four-tuple introduced earlier in section 2. The following is a description of
the components of the tuple that we adopted in our implementations.

The Reproduction tuple for both cgPEAs and CoPDEB is as follows:

• epoch values used in our experiments vary between 1 and 500 generations.
• Best individual from each population is selected to migrate
• No operators are used to process individuals, prior to migration.
• One individual from each population is migrated (parameters).
• Migration strategy: Each island sends its best individual to every population, and

receives the best individual from all the other islands. Incoming individuals replace
random individuals of receiving island (excluding the best one). (mechanisms)

The components of the Structure tuple are as follows:

• Eight islands were used (popsize)
• Since demesize  is equal to popsize, no demes are defined
• Number of available processors (λ) is eight.
• topology is static. All available processors are directly or indirectly connected to

each other.



326      Panagiotis Adamidis and Vasilios Petridis

• The algorithms can be implemented on any machine or network. Processors are
able to communicate with each other. Each island is allocated on a different proc-
essor. Any population can be allocated to any processor (popalloc).
The implementation of cgPEAs and CoPDEB would be the same if the model at

level 0 (CoP0) was the same. We tried to choose the best configuration for the CoP0

model in the case of cgPEAs, where each island evolves under the same evolution
behaviour. In the case of CoPDEB, each CoP 0  model evolves using a different con-
figuration.

P0, the initial population of each island is randomly created, after the encoding for
each problem is determined. Since CoPDEB focuses on the effect of different evolu-
tion behaviours, we use the same encoding on all populations.

Implementation of Structure tuple of CoP0 for both cgPEAs and CoPDEB: Popu-
lation size (popsize) is equal to the number of individuals per population. As the
population of each island is “panmictic” demesize is equal to popsize (no demes).
Since the whole population is allocated to one processor (λ=1), topology is not de-
fined.

We focus on the effect of the Reproduction tuple, which is responsible for the
emergence of the different evolution behaviour exhibited by each CoP0.

5.1 Reproduction Tuples

By definition the epoch value of cgPEAs is equal to 1, since every generation, a new
population is produced.

Selection has to be balanced with variation from recombination and mutation. We
use fitness proportionate selection with “roulette wheel” (in order to maintain a large
genotypic diversity of the population), in combination with linear dynamic scaling
method (proportionate selection without scaling was found to be less effective in
keeping a steady pressure towards convergence).

Initial results, with different types of recombination on the first two problems (see
section 6), has lead us to choose adaptive multi-point recombination.

On line adaptation of recombination parameters, and fitness scaling are also used.
In order to accelerate the search we used a hill-climbing like operator called “pheno-
type mutation” [7] applied only to the best individual. Elitism is also used.

Since we do not want to solve the TSP problem, but rather focus on the better op-
timization and search capabilities of CoPDEB over cgPEAs, we did not alter substan-
tially the behaviour of the algorithm used in the previous two problems. In this con-
text we did not use any specific operators, codings or mechanisms.

Different evolution behaviour is mainly the result of different Reproduction tuples
The different parameter settings for each population of CoPDEB are not the best, and
are not tuned to the specific test problems. Under these restrictions the specific im-
plementation of CoPDEB is not optimal. Thus the better search capabilities and the
improved performance of CoPDEB are due to the combination of the different evolu-
tion behaviour of each population and not due to better population configurations.

In the case of CoPDEB, since popsize of CoP1  is eight, we have to define eight
Reproduction tuples.

By definition the epoch value is equal to 1, and it is the same with cgPEAs.



On Modelling Evolutionary Algorithm Implementations      327

In order to keep differences from cgPEAs to a minimum, and choose configura-
tions that are not better from the cgPEAs configuration, we have chosen to use on
each population: fitness proportionate selection with “roulette wheel” in combination
with linear dynamic scaling method, hill-climbing operator “phenotype mutation”,
elitism, retaining only the best individual at each generation, adaptive recombination
probability and mutation rate (except when stated otherwise).

Their different characteristics are described below. For convenience of reference,
the populations are numbered from 1 to 8:
Population 1: Its configuration is identical to configuration of cgPEA populations.
Population 2: Different recombination operator. It handles (recombines) genes and

not whole individuals. For each gene, it uses one point recombination separating
it into two parts. Then, each new gene of the offspring is created taknig the most
significant part from the better parent and the least significant part from the
worst. This technique produces new chromosomes with small perturbations of
their values in the proximity of the chromosome value of the better parent
(MSP_LSP operator).

Population 3: Recombination operator that functions like MSP_LSP, but it creates the
offspring with the least significant part of the best parent and the most signifi-
cant part of the worse. This allows for small perturbations of the chromosome
values, in the proximity of the chromosome value of the worse parent
(LSP_MSP).

Population 4: It uses two point recombination instead of multi-point recombination.
Population 5: Number of cutting points is set equal to half the number of genes.
Population 6: We use uniform crossover, instead of multi-point recombination
Population 7: Adaptive parameter probabilities in favor of mutation. Here we can

maintain a higher value of mutation rate, in order to increase exploration of the
search space, and mitigate the problem of premature convergence.

Population 8: Configuration of Population 1, without adaptation of recombination
probability and mutation rate. Constant smaller recombination probability (0.2) and
larger mutation rate. The configuration has the same objective with Population 7.

6 Optimization Problems – Experimental Results

Three problems were used to test the performance of CoPDEB over cgPEAs.
First problem: Training a fully connected Recurrent Artificial Neural Network

(RANN) to generate two limit cycles, in the form of two sinusoidal functions of dif-
ferent amplitudes and frequencies [8]. The RANN has 5 neurons (35 trainable
weights), two of which are output units. Since every weight is encoded in a 16 bit
string, the genotype strings are 35x16=560 bits long, resulting in a search space of
2560=3.77x10168 different values. Different input levels (0.2 and 0.8) had to lead the
two output units in different oscillations.

The second problem is the optimization function proposed by Rastrigin [10]:



328      Panagiotis Adamidis and Vasilios Petridis

f x nA x A xi i

n

( ) ( cos( ))= + −∑ 2

1

ω            (3)

n=20;     A=10;     ω=2π;     -5.12 < xi < 5.12;
The local minima are located at a rectangular grid with size 1. The global mini-

mum is at xi=0, i=1...,n, giving f(x)=0.
The third problem is the well-known combinatorial Travelling Salesperson prob-

lem. We have taken a symmetric TSP problem from the TSPLIB, a library of travel-
ling salesperson and related problem instances. We have chosen a moderate size
problem with 29 cities in Bavaria, in order to be able to conduct a large number of
experiments.

Initially, we tested the performance of the eight independent configurations on the
first two problems running a set of 100 experiments for each configuration. The re-
sults (omitted due to lack of space) show that the configuration of “Population 1”
used in cgPEAs has better performance for both problems. Then, we performed two
sets of experiments for comparison purposes. The first set concerns CoPDEB, and the
second concerns a cgPEA with the evolution characteristics of population 1. Since
cgPEAs use the best configuration we can claim that the comparison between cgPEAs
and CoPDEB is general, adequate, objective, and not biased to the specific imple-
mentations. In the case of RANN, each set comprises 90 experiments, that is 15 ex-
periments for six different epoch values. The epoch values used were: 1, 2, 5, 10, 20,
and 50 generations. Population size for each island was set to 200 individuals. The
experiments showed an improved performance of CoPDEB over cgPEAs. The suc-
cess rate of CoPDEB was, in the worst case, doubled (Fig 1).

Using CoPDEB, the percentage of the experiments that were stuck at local optima
was decreased, and it kept decreasing as the Epoch value was increasing. CoPDEB
usually failed because the generation limit (10000 gen.) was reached. cgPEA experi-
ments failed due to the generation limit even more times (Fig 3), but this is because
they have a smaller success percentage than CoPDEB. In the case of cgPEA, most of
the failures were due to being stuck at local optima (Fig 2, 3). Thus we can assume
that CoPDEB improves the exploration of the search space. CoPDEB requires smaller
number of generations to train the RANN as well (Fig 4).

The second problem (less computational expensive than RANN) was also used to
test extensively the effect of different epoch values on the performance of CoPDEB

0%

20%

40%

60%

80%

1 2 5 10 20 50
Epoch

S
uc

ce
ss

 P
er

ce
nt

ag
e

CoPDEB cgPEA

0%

20%

40%

60%

80%

1 2 5 10 20 50
Epoch

L
oc

al
 o

pt
im

a

CoPDEB cgPEA

      Fig. 1. Successful experiments (RANN)      Fig. 2. Experiments stuck at local optima



On Modelling Evolutionary Algorithm Implementations      329

and cgPEAs. In this case, each set comprises 4500 experiments. Epoch values rang-
ing from 1 to 500 generations were used. The population values used were: 50, 100
and 200 individuals per island. The results are the mean values from 100 runs.

The results confirm the improved performance of CoPDEB over cgPEAs (Fig 5)
which depends on the epoch value. The mean error improves in both paradigms, as
the epoch value increases. The results also show a high linear correlation between
epoch values and mean errors. The tendency of mean errors to decrease as epoch
increases is greater for CoPDEB.

The rate of improvement of the CoPDEB performance with epoch is also in-
creased, as population per island is increased. This is not the case for cgPEAs. As the
epoch value increases, the number of generations to converge is also increased.
(Fig 6).

The final problem (TSP) was used in order to check the better performance of
CoPDEB in combinatorial problems. Epoch values 1 and 10 were tested. The popula-
tion of each island was 50 individuals. As we have already pointed out, the CoPDEB
configuration used is not optimal in solving the TSP problem. Better performance of
CoPDEB over cgPEAs is observed in this problem too.

7 Discussion – Conclusions

Our results propose that infrequent migration helps to avoid premature convergence
of all populations, though some of them may have converged prematurely at a local

0%

20%

40%

60%

80%

100%

1 2 5 10 20 50
Epoch

Pe
rc

en
ta

ge
 (

ge
n.

 li
m

it)
CoPDEB cgPEA

0

100
0

200
0

300
0

400
0

500
0

600
0

700
0

800
0

1 2 5 10 20 50
Epoch

M
ea

n 
no

 o
f 

ge
ne

ra
ti

on
s

CoPDEB cgPEA

Fig. 3. Stopped at the generation limit (RANN).            Fig. 4. Successful experiments

50 indiv per island

0
2
4
6
8

10
12

1 3 10 20 50
100 200 300 500

Epoch

M
ea

n 
E

rr
or

cgPEA

CoPDEB
50 individuals per island

0

1000

2000

3000

4000

1 3 10 20 50
100 200 300 500

Epoch

M
ea

n 
G

en
er cgPEA

CoPDEB

Fig. 5. Performance on Rastrigin funtion               Fig. 6. Average number of generations



330      Panagiotis Adamidis and Vasilios Petridis

optimum. Without migration at all, these populations would have converged even
earlier. When communication is infrequent, populations investigate different parts of
the search space and contain different genetic information, which when introduced to
converged populations, help them escape from local optima.

Loss of diversity is observed in case of high frequency of migration. Though, very
frequent communication helps to quickly exploit promising areas of the search space,
it can also direct all populations to the same areas of the search space, thus loosing
diversity and useful genetic material and information about the search space, and
leading to premature convergence of all populations.

Two distinct cases for choosing optimal configurations:
• Solution to a specific problem: One should use as much a priori knowledge as

possible, in order to construct different populations with operators mechanisms
and parameters found to tackle successfully the problem at hand.

• Constructing a general tool, or when little is known about the nature of the prob-
lem: Integration of a variety of tools, in the same evolutionary engine is important.
Elitism and hill-climbing operator could be used in all populations. Use different
types of recombination on different populations. Use either small or large mutation
rates in accordance with the recombination probabilities. Operator probabilities
could be adaptive, but not against the diversity of each population. Adaptive con-
nection topology can lead to better results and performance.
The results of our work with CoPDEB have shown it to be capable of improving

the performance of the cgPEA model, achieving speedup and providing better explo-
ration and exploitation of the search space.

References

1. P. Adamidis and V. Petridis,  On the Parallelization of Artificial Neural Networks and
Genetic Algorithms, .Intern. J. Computer Math. 67 (1998), 105-125.

2. E. Alba, J.M. Troya, A Survey of Parallel Distributed Genetic Algorithms, Complexity
4(4) (1999), 31-52.

3. T. Blickle and L. Thiele,  A comparison of selection schemes used in evolutionary algo-
rithms, Evolutionary Computation (Winter 96), 4 (4) (1996), 361-394

4. E. Cantú-Paz, A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et
Systems Repartis 10, No. 2 (1998) pp. 141-171

5. U.K. Chakraborty, K. Deb, and M. Chakraborty, Analysis of selection algo-
rithms: A Markov chain approach, Evolutionary Computation  4 (2) (Summer
1996), 133-167

6. D.E. Goldberg, H. Kargupta, J. Horn, and E. Cantu-Paz, “Critical Deme Size for Serial and
Parallel Genetic Algorithms”, IlliGAL Report No. 95002, Illinois Genetic Algorithms
Lab., Univ of Illinois at Urbana-Champaign, 1995

7. V. Petridis and S. Kazarlis, Varying quality function in genetic algorithms and the cutting
problem, in “Proc First IEEE CEC”, vol I, pp. 166-169, IEEE, 1994

8. V. Petridis and A. Papaikonomou, Recurrent Neural Networks as Pattern Generators, in
“Proc IEEE International Conference on Neural Networks”, pp. 872-875, 1994

9. M. Srinivas and L.M. Patnaik, Adaptive Probabilities of Crossover and Mutation in Ge-
netic Algorithms.  IEEE Transactions on Systems, Man and Cybernetics, 24 (4).

10. Törn, A., & Zilinskas, A. (1989).  Global Optimization.  Lecture Notes in Computer Sci-
ence, vol 350, Berlin: Springer-Verlag.



Permutation Optimization by Iterated
Estimation of Random Keys Marginal Product

Factorizations

Peter A.N. Bosman and Dirk Thierens

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{Peter.Bosman,Dirk.Thierens}@cs.uu.nl

Abstract. In IDEAs, the probability distribution of a selection of so-
lutions is estimated each generation. From this probability distribution,
new solutions are drawn. Through the probability distribution, various
relations between problem variables can be exploited to achieve efficient
optimization. For permutation optimization, only real valued probability
distributions have been applied to a real valued encoding of permuta-
tions. In this paper, we present two approaches to estimating marginal
product factorized probability distributions in the space of permuta-
tions directly. The estimated probability distribution is used to identify
crossover positions in a real valued encoding of permutations. The re-
sulting evolutionary algorithm (EA) is capable of more efficient scalable
optimization of deceptive permutation problems of a bounded order of
difficulty than when real valued probability distributions are used.

1 Introduction

Any reasonable optimization problem has some structure. Using this structure
can aid the search for the optimal solution. In black box optimization, this struc-
ture is a priori unknown. In order to still be able to exploit problem structure,
induction must be performed on previously evaluated solutions.

Holland [9] showed that in the simple GA with one point–crossover, problem
structure is only exploited if it is expressed by short substrings of closely located
gene positions. If such related genes are not closely located, they are likely to be
disrupted by one–point crossover. Thierens and Goldberg [18] showed through
the investigation of uniform crossover that the effect of such disruption on prob-
lems with non–linear interactions between groups of bits results in an exponen-
tial growth of the required population size as the problem length l increases. On
the other hand, Harik, Cantú-Paz, Goldberg and Miller [7] showed that for a
crossover operator that does not disrupt such building blocks of related genes,
the required population size scales with

√
l instead of exponentially.

In general, to prevent bad scaling behavior of an EA, we need to respect the
structure of the optimization problem. Describing the structure of a set of sam-
ples can be done by estimating its probability distribution. Subsequently drawing

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 331–340, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



332 Peter A.N. Bosman and Dirk Thierens

more samples from this probability distribution leads to a statistical inductive
type of iterated search. Such algorithms have been shown to give promising
results for both binary and real valued spaces [2,8,12,13,14,15,16,17].

Our goal in this paper is to show how this technique can be used for per-
mutation problems. The necessity for problem structure exploitation is found in
permutation spaces as well, since permutation problems can be constructed that
deceive simple permutation GAs [10] in a similar manner as is done for simple
binary GAs [5] on which the simple GA is known to scale–up exponentially [18].

The remainder of this paper is organized as follows. In section 2 we present
the representation of permutations that we will work with along with two per-
mutation problems that are used in the experiments. A brief overview of IDEAs
and its first application to permutation problems is given in section 3. Section 4
describes the estimation of probability distributions over permutations. We test
our new IDEAs in section 5. Some conclusions are drawn in section 6.

2 Random Keys and Permutation Optimization Problems

We use the random keys encoding of permutations, which was proposed by
Bean [1]. The main advantage of random keys is that no crossover operator can
create unfeasible solutions. A random key sequence r is a vector of real values.
Each of these real values is usually defined to be in [0, 1]. The integer permutation
p that is encoded by r can be computed in O(|r|log(|r|)) time by sorting r in
ascending order (rp0 ≤ rp1 ≤ . . . ≤ rp|r|−1), which we denote by p = sort(r).
As an example, we have that sort(0.61, 0.51, 0.62, 0.31) = (3, 1, 0, 2).

We will test our algorithms on two problems introduced by Knjazew [11].
Both problems are a sum of subfunctions fsub that regard random key substrings:

f(r) =
|ι|−1∑
j=0

fsub(rιj ) (1)

In eq. 1, ι is a vector of index clusters that defines the indices of the complete
random keys sequence that each subfunction will regard. So rιj indicates the
random keys found at positions (ιj)0, (ιj)1, . . . , (ιj)|ιj |−1. Each random key index
appears in at least one index cluster. For example, if ι = ((0, 1), (2), (2, 3, 4)), we
have f(r) = fsub(r0, r1) + fsub(r2) + fsub(r2, r3, r4).

In the problems that we use in this paper, each index cluster has length κι.
The optimum for the subfunction is a random keys sequence that encodes the
permutation (0, 1, . . . , κι − 1). To define the subfunction, a distance measure is
used. This distance from any permutation p to the optimum equals κι−|lis(p)|,
where lis(p) is the longest increasing subsequence in p. For example, if p =
(1, 2, 0, 4, 3), then lis(p) ∈ {(1, 2, 4), (1, 2, 3)}. Furthermore, κι − |lis(p)| = 5−
3 = 2. Note that the reverse permutation (κι − 1, κι − 2, . . . , 0) is the only
permutation with a distance of κι − 1. The subfunction is defined as follows:

fsub(r) =
{

1− |lis(sort(r))|
κι if |lis(sort(r))| < κι

1 if |lis(sort(r))| = κι (2)



Permutation Optimization by Iterated Estimation 333

The fully deceptiveness of the subfunction makes the problem hard for any
EA that doesn’t identify the boundaries of the index clusters [10,18] and as a
result disrupts the non–linear relations between the genes imposed by fsub .

In the first problem that we shall use to experiment with, the index clusters
are mutually disjoint. This problem is therefore additively decomposable. To avoid
the possibility that static crossover operators are biased in optimization because
the genes contributing to each subfunction are closely located, the locations for
each ιloose

j are chosen loosely, meaning as well spread as possible.

ιloose
j = (j, j + |ι|, j + 2|ι|, . . . , j + (κι − 1)|ι|) (3)

In the second problem, the j–th index cluster shares its first position with
index cluster j−1 and its last position with index cluster j+1. This overlapping
property makes the problem significantly more difficult as there are no clear
index cluster boundaries. For simplicity, the overlapping index cluster vector
ιoverlap is encoded tightly. Optimal solutions are now only given by random key
sequences r such that sort(r) = (0, 1, . . . , l− 1), where l is the problem length.

ιoverlap
j = (j(κι − 1), j(κι − 1) + 1, j(κι − 1) + 2, . . . , j(κι − 1) + κι − 1) (4)

3 IDEAs and ICE

We assume to have a cost function C(z) of l problem variables z0, z1, . . . , zl−1
that, without loss of generality, should be minimized. For each zi, we introduce
a stochastic random variable Zi and let P θ(Z) be a probability distribution that
is uniform over all z with C(z) ≤ θ and 0 otherwise. Sampling from P θ(Z) gives
more samples with an associated cost ≤ θ. Moreover, if we have access to P θ

∗
(Z)

such that θ∗ = minz{C(z)}, drawing only a single sample results in an optimal
solution. This rationale underlies the IDEA (Iterated Density Estimation Evolu-
tionary Algorithm) framework [2] and other named variants [8,12,13,14,15,16,17].

Problem structure in the form of dependencies between the problem variables,
is induced from a vector of selected solutions by finding a suitable probabilistic
model M. A probabilistic model is used as a computational implementation of
a probability distribution PM(Z). A probabilistic model consists of a structure
ς and a vector of parameters θ. The elementary building blocks of the proba-
bilistic model are taken to be probability density functions (pdfs). A structure ς
describes what pdfs are used and the parameter vector θ describes the values for
the parameters of these individual pdfs. A factorization is an example of a struc-
ture ς. A factorization factors the probability distribution over Z into a product
of pdfs. In this paper, we focus on marginal product factorizations (mpfs). In
the binary and real valued case, an mpf is a product of multivariate joint pdfs.
This product is represented by a vector of mutually exclusive vectors of random
variable indices, which we call the node vector ν. An example in the case of
l = 3 and binary random variables Xi, is given by Pν(X ) = P (X0, X1)P (X2),
meaning ν = ((0, 1), (2)). Once a structure ς is given, the parameters for the mul-
tivariate pdfs have to be estimated. The way in which this is done, is predefined



334 Peter A.N. Bosman and Dirk Thierens

on beforehand. Often, this corresponds to a maximum likelihood estimate, such
as a frequency count for binary random variables. As a probability distribution
can thus be identified using only the structure ς, we denote it by Pς(Z).

These definitions are used in the IDEA by selecting �τn� samples (τ ≥ 1
n )

in each iteration t and by letting θt be the worst selected sample cost. The
probability distribution P̂ θtς (Z) of the selected samples is then estimated, which
is an approximation to the uniform probability distribution P θt(Z). New samples
can then be drawn from P̂ θt(Z) to replace some of the current samples.

A special instance of the IDEA framework is obtained if selection is done
by taking the top �τn� best samples from the population, τ ∈ [ 1

n , 1], we draw
n− �τn� new samples, and the new samples replace the current worst n− �τn�
samples in the population. This results in the use of elitism such that θ0 ≥ θ1 ≥
. . . ≥ θtend . We call the resulting algorithm a monotonic IDEA.

Since the random keys are essentially a real valued domain, real valued IDEAs
can directly be applied to permutation problems. Such an approach based upon
normal probability distributions was proposed by Bosman and Thierens [3] as
well as by Robles, de Miguel and Larrañaga [15]. However, the study by Bosman
and Thierens [3] showed that this does not lead to very effective permutation
optimization. The main problem with this approach is that solutions are not pro-
cessed in the permutation space but in the largely redundant real valued space.
To overcome this problem, a crossover operator was proposed [3]. This crossover
operator reflects the dependency information learned in a factorization. Two
parents are first selected at random. In the case of an mpf, the crossover opera-
tor then copies the values at the positions indicated by a vector in ν from one of
the two parents. This is repeated until all vectors in ν have been regarded. Thus,
whereas the IDEA is used to find the mpf, crossover is used instead of proba-
bilistic sampling to generate new solutions. The resulting algorithm is called ICE

(IDEA Induced Chromosome Elements Exchanger). Using ICE instead of a pure
real valued IDEA gives significantly better results. The results are comparable
with the only other EA that learns permutation structure information, which
is the OmeGA by Knjazew [11]. The OmeGA is essentially a fmGA that works
with random keys. The dependency information in this normal ICE is how-
ever still induced using normal distributions estimated over a largely redundant
space, which may introduce false dependency information. To improve induction
in ICE, we propose to induce these dependencies in the space of permutations
directly by interpreting the random keys as permutations. This is the topic of
the next section.

4 Estimating Random Keys Marginal Product Factorized
Probability Distributions from Data

For each problem variable ri we introduce a random variable Ri. Since the ran-
dom keys encode permutations, the symantics of the Ri differ from those of bi-
nary or real valued random variables. We let R = (R0, R1, . . . , Rl−1) and write
the vector of selected samples as S = (r0, r1, . . . , r|S|−1), ri = (ri0, r

i
1, . . . , r

i
l−1).



Permutation Optimization by Iterated Estimation 335

The multivariate joint pdf over a subset of the random keys Rv is defined by
the probability at a certain random key subsequence rv. It can be computed by
counting the frequency in S of the permutation sort(rv) represented by rv:

P̂ (Rv)(rv) =
1
|S|

|S|−1∑
i=0

{
1 if sort((ri)v) = sort(rv)
0 otherwise (5)

To define the random keys marginal product factorized probability distribu-
tion, it should be noted that the size of the alphabet for a multivariate joint
factor P̂ (Rνi) is |νi|!. Since the individual factors are taken to be independent
of each other, the alphabet size of the whole mpf is

∏|ν|−1
i=0 |νi|!. However, the

total number of possible permutations equals l!. Therefore, to construct a prob-
ability distribution over all possible permutations of length l, we must normalize
the product of the multivariate marginals

∏|ν|−1
i=0 P̂ (Rνi)(rνi). To illustrate, as-

sume that r0 < r1 and r2 < r3. Then there are 4!
2!2! = 6 permutations of length

4 in which this is so, such as r0 < r1 < r2 < r3 and r0 < r2 < r3 < r1.
This implies that the correct factorization of the probability distribution is
given by P̂((0,1),(2,3))(R0, R1, R2, R3) = 2!2!

4! P̂ (R0, R1)P̂ (R2, R3). Concluding, the
marginal product factorized probability distribution over all l variables becomes:

P̂ν(R)(rL) =
∏|ν|−1
i=0 |νi|!
l!

|ν|−1∏
i=0

P̂ (Rνi)(rνi) (6)

To find a factorization given a sample vector S of data, we use an incremental
greedy algorithm to minimize a metric that represents a trade–off between the
likelihood and the complexity of the estimated probability distribution. This is
a common approach that has been observed to give good results [2,8,12,14].

The factorization learning algorithm starts from the univariate factorization
in which all variables are independent of each other ν = ((0), (1), . . . , (l − 1)).
Each iteration, an operation that changes ν is performed such that the value of
the penalization metric decreases. This procedure is repeated until no further
improvement can be made. For the learning of random keys mpfs, we propose
three possible operations. The operation that decreases the penalization metric
the most, is actually performed. The first operation is a splice operation that
replaces νi and νj (i �= j) with νi � νj , increasing the complexity of the fac-
torization. The second operation is a swap operation in which two factors νi
and νj may exchange an index. This operator allows to correct for lower order
decision errors and is therefore always preferred over the application of a splice
operation. The third operation is a transfer operation in which an index is re-
moved from one factor νi and added to another factor νj . This last operator is
able to correct for some additional special cases of lower order decision errors [4].
A metric that has often proved to be successful, is known as the Bayesian In-
formation Criterion (BIC). It scores a model by its negative log–likelihood, but
adds a penalty term that increases with the model complexity (|θ|) and the size
of the sample vector (|S|) [2]:



336 Peter A.N. Bosman and Dirk Thierens

BIC(M|S) = −
|S|−1∑
i=0

ln
(
P̂M(R)(ri)

)
︸ ︷︷ ︸

+
1
2

ln(|S|)|θ|︸ ︷︷ ︸
Error(P̂M(R)|S) Complexity(P̂M(R)|S)

(7)

The AIC metric is an alternative to the BIC metric. The AIC metric is
similar to the BIC metric, but the complexity term is only given by the number
of parameters |θ|. The penalization in the AIC metric is too weak compared to
that in the BIC metric to give good results when normal probability distributions
are estimated [3]. However, if we use frequency tables to estimate the pdfs in
eq. 6, |θ| grows factorially with an increase of any νi. Therefore, the penalization
in the AIC will in this case most likely not be too weak. Because of the factorial
growth of the number of parameters to be estimated however, we must limit the
maximum factor size κν in any practical application (we used κν = 7).

This direct limitation on the maximum order of interaction that can be pro-
cessed, can be avoided by using default tables [6]. In a default table, the proba-
bilities are explicitly specified for a subset of all available entries. For the absent
entries, a default value is used, which is the average probability of all absent val-
ues. One straightforward way to use default tables, is to only specify the average
frequency for each entry that occurs in the sample vector. By doing so, no factor
can give rise to more parameters than |S|. We may still require |S| = O(κι!)
when there are subproblems with a maximum length of κι that need to be ex-
haustively sampled. However, when we must combine lower order solutions to
get solutions of a higher order, the default tables can give us a much more ef-
ficient representation of the few good solutions to the subproblems. This latter
issue is a important benefit of using local structures in probability distributions.
A local structure allows for a more explicit representation of dependencies be-
tween values that can be assigned to random variables instead of dependencies
between the random variables themselves. As a result, less parameters need to
be estimated. Probabilistic models that are capable of expressing more complex
dependencies now become eligible for selection when using a penalization metric,
whereas otherwise non–local structure models expressing similar dependencies
would never have been regarded because of the large number of (redundant) pa-
rameters the impose [6]. The use of local structures has been shown by Pelikan
and Goldberg [14] to allow for efficient optimization of very difficult hierarchical
deceptive optimization problems that exhibit dependencies between combina-
tions of values for large groups of variables.

To use default tables, the random keys for each factor νi are converted
into integer permutations. The list of selected permutations is then sorted in
O(|νi||S|log(|S|)) time and the frequencies are counted in O(|νi||S|) time. Note
that we can’t map the random keys to integers for faster sorting because the in-
tegers would become too large to efficiently represent as the factor size increases.

An additional operation that can be useful when using crossover on random
keys, is random rescaling. With random rescaling, a block of random keys that
is transferred to an offspring in crossover, is scaled to a subinterval of [0, 1]
with probability p�. If for instance (0.1, 0.2, 0.3) is scaled to [0.9, 0.95], we get



Permutation Optimization by Iterated Estimation 337

(0.9, 0.925, 0.95). Note that this doesn’t change the permutation that is encoded.
Rescaling allows for dependencies between the building blocks to be exploited and
increases the chance that they are combined properly. To ensure a large enough
number of intervals so that the blocks can be ordered, we set this number to l.

5 Experiments

We have tested the new approach to learning a probability distribution over
random keys by using it in monotonic ICE. We applied the algorithms to the
additively decomposable deceptive permutation problem with κι = 5 and the
overlapping problem with κι = 4. We used the rule of thumb by Mühlenbein
and Mahnig [12] and set τ to 0.3. All results were averaged over 30 runs.

An mpf over random keys as defined in eq. 6, differs from the traditional def-
inition for binary or real valued domains. This difference results in an additional
requirement for using default tables for random keys, which is a cutoff value
ξ ∈ [0, 1] indicating the maximum default table length ξ|S|. During the creation
of a factorization in the greedy factorization learning algorithm, no operation is
allowed to create a factor with a default table longer than ξ|S|. Without this
restriction, there would be an premature drift towards large factors. In this pa-
per, we use a cutoff value of ξ = 0.3. For a thorough explanation, we refer the
interested reader to a specialized technical report [4].

To get a good impression of the impact of different model building choices, we
tested a varied ensemble of combinations. Figure 1 shows the scale–up behavior
of all tested algorithms to obtain the optimal solution in all of the 30 runs on a
log–log scale. A linear relationship on this scale indicates a polynomial scale–up
behavior. Similar figures are obtained for the minimally required population size
and the running time. The actual scaling coefficients are computed with a least
squares line fit. The best scaling behavior is obtained when frequency tables
are used in combination with the AIC metric. The use of the transfer operation
shows a benefit over using only the splice and swap operations.

In figure 2, the results for the overlapping problem are tabulated. The maxi-
mum tested population size was n ≤ 105. The results show the minimal require-
ments on the algorithms to solve the problem optimally or the performance at
n = 105. No algorithm was capable of optimizing the problem without using
random rescaling. If random rescaling is used, the overlapping deceptive prob-
lem can be solved optimally for n ≤ 105 quite efficiently. However, we have now
applied random rescaling, knowing that overlapping subproblems exist. Since
we normally are not aware of this information, it is of great interest to see the
implication of random rescaling on solving the additively decomposable prob-
lems. If the structure of additively decomposable problems is correctly found,
introducing random rescaling should not matter. However, if the index cluster
boundaries are not completely found, random rescaling may introduce additional
disruptiveness to the crossover operation. This can indeed be seen in figure 1 as
the scaling coefficients worsen as p� increases. The variant of ICE that uses nor-
mal distributions is not capable of solving the problem at all for p� = 0.5. For



338 Peter A.N. Bosman and Dirk Thierens

4000

6000

8000
10000

20000

40000

60000

80000
100000

200000

400000

600000

15 30 50 75

A
ve

ra
ge

 r
eq

ui
re

d 
nu

m
be

r 
of

 e
va

lu
at

io
ns

l

Normal ICE BIC S
Frequency Tables ICE AIC SW
Frequency Tables ICE BIC SW

Frequency Tables ICE BIC STW
Default Tables ICE BIC SW

Default Tables ICE BIC STW

Additively decomposable problem
Algorithm O(lx.xx)

ICE Oper. Metric p� n Eval. Time
N S BIC 0.0 1.61 2.06 3.70
N S BIC 0.1 1.71 2.79 4.33
N S BIC 0.5 —— —— ——
P SW AIC 0.0 1.23 1.68 4.07
P SW AIC 0.1 1.42 2.14 4.58
P SW AIC 0.5 1.64 4.14 7.07
P SW BIC 0.0 1.34 1.82 4.26
P SW BIC 0.1 1.43 1.69 4.51
P SW BIC 0.5 2.13 3.87 6.84
P SWT BIC 0.0 1.23 1.68 4.08
P SWT BIC 0.1 1.33 1.71 4.01
P SWT BIC 0.5 1.75 2.77 5.61

PDT SW BIC 0.0 1.25 1.87 4.71
PDT SW BIC 0.1 1.71 2.21 5.13
PDT SW BIC 0.5 3.80 4.36 8.19
PDT SWT BIC 0.0 1.32 1.87 4.80
PDT SWT BIC 0.1 1.81 2.28 4.88
PDT SWT BIC 0.5 3.32 4.45 8.29

Fig. 1. Results on the additively decomposable deceptive problem (κι = 5). On the
left, the required average number of evaluations as a function of the problem length l on
a log–log scale are shown. The straight lines indicate polynomial scale–up behavior. On
the right, the polynomial scaling coefficients with respect to the population size n, the
average required evaluations and the average actual running time for the tested ICE

variants are shown. The algorithms are indicated by N for the use of normal pdfs, P for
the use of permutation pdfs using frequency tables and PDT for the use of permutation
pdfs using default tables. The factorization search operations are indicated by S for
the splice operation, W for the swap operation and T for the transfer operation.

Additively overlapping problem
Algorithm |ι| = 3, κι = 4 |ι| = 6, κι = 4

ICE Oper. Metric p� n subs Eval. n subs Eval.
N S BIC 0.0 100000 2.17 643674 100000 4.07 1579354
N S BIC 0.1 100000 2.70 1066013 100000 4.87 2585035
N S BIC 0.5 100000 2.87 4111057 100000 5.40 45423314
P SW AIC 0.0 21000 3.00 222893 100000 5.20 1654022
P SW AIC 0.1 1900 3.00 21022 16000 6.00 328135
P SW AIC 0.5 1500 3.00 18982 11000 6.00 442256
P SW BIC 0.0 21000 3.00 250336 100000 5.00 1224018
P SW BIC 0.1 1600 3.00 19088 22000 6.00 576436
P SW BIC 0.5 1500 3.00 22520 18000 6.00 1116807
P SWT BIC 0.0 19000 3.00 210534 100000 5.00 1259755
P SWT BIC 0.1 1400 3.00 16998 20000 6.00 538037
P SWT BIC 0.5 1200 3.00 16759 12000 6.00 798334

PDT SW BIC 0.0 70000 3.00 684962 100000 5.00 1374018
PDT SW BIC 0.1 4750 3.00 42999 18000 6.00 302783
PDT SW BIC 0.5 1500 3.00 13586 80000 6.00 1116019
PDT SWT BIC 0.0 50000 3.00 473512 100000 5.00 1416019
PDT SWT BIC 0.1 4000 3.00 35371 13000 6.00 202301
PDT SWT BIC 0.5 1500 3.00 12641 70000 6.00 1050020

Fig. 2. Results for all algorithms on the overlapping deceptive permutation problem
with κι = 4; subs stands for the average number of subfunctions solved optimally. The
abbreviations are the same as those in figure 1.



Permutation Optimization by Iterated Estimation 339

p� = 0.1, the scaling behavior is not effected too much, so in general we would
suggest the use of a small p�. However, it would be interesting to see whether
the results can be improved by setting p� adaptively by for instance looking at
the rate of success of applying random rescaling and by changing p� accordingly.

The overhead in the scaling results are smaller for the AIC metric than for
the BIC metric. This is a result of the smaller penalization in the AIC metric,
which results in larger factors for smaller population sizes. This can lead to overly
complex models, for which reason the BIC metric is often preferred. In our case
however, it introduces a useful bias for correctly finding the index clusters. The
best scaling results are expected to be obtained when the AIC metric is used in
combination with the splice, swap and transfer operation.

6 Discussion and Conclusions

We have proposed a new tool for finding and using the structure of permuta-
tion problems in evolutionary optimization by estimating mpfs in the space of
permutations. By using this probabilistic information to exchange the random
keys that encode the permutations in a crossover operator, we obtain the ICE

algorithm. ICE has been shown to scale up efficiently on deceptive additively
decomposable permutation problems of a bounded difficulty and to furthermore
give promising results on difficult overlapping deceptive permutation problems.

The use of default tables indicates a slightly larger overall requirement on
the computational resources used by ICE . However, the scaling behavior is not
effected too much. The advantage of default tables in that they allow more
complex models to compete in model selection, is more likely to stand out on
hierarchical deceptive problems. Empirical verification of this expectation, com-
bined with the results presented in this paper, would lead us to conclude that
the use of default tables with a small probability at using random rescaling is the
most effective allround optimization variant of ICE for permutation problems.

Although good results have been obtained, mpfs are not well suited for prob-
lems with overlapping building blocks. To this end, Bayesian factorizations in
which gene positions may be dependent on other gene positions are likely to
be more appropriate. Using the tools proposed in this paper, Bayesian factor-
izations may be learned, although it is to be expected that the use of a greedy
learning algorithm that introduces one dependency at a time, will also have lower
order decision error problems. To overcome this problem, new operators will be
required or some effective means of using the distances between random keys.

Finally, although our results are encouraging, we have only used a limited
number of test problems. An interesting next effort would be to investigate the
performance on real–world problems and provide a comparison with other EAs.

References

1. J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing, 6:154–160, 1994.



340 Peter A.N. Bosman and Dirk Thierens

2. P. A. N. Bosman and D. Thierens. Advancing continuous IDEAs with mixture
distributions and factorization selection metrics. In M. Pelikan and K. Sastry,
editors, Proceedings of the Optimization by Building and Using Probabilistic Mod-
els OBUPM Workshop at the Genetic and Evolutionary Computation Conference
GECCO–2001, pages 208–212. Morgan Kaufmann, 2001.

3. P. A. N. Bosman and D. Thierens. Crossing the road to efficient IDEAs for permu-
tation problems. In L. Spector et al., editor, Proc. of the Genetic and Evolutionary
Computation Conf. – GECCO–2001, pages 219–226. Morgan Kaufmann, 2001.

4. P. A. N. Bosman and D. Thierens. Random keys on ICE : Marginal product fac-
torized probability distributions in permutation optimization. Utrecht University
Technical Report UU–CS–2002–xx., 2002.

5. K. Deb and D. E. Goldberg. Sufficient conditions for deception in arbitrary binary
functions. Annals of Mathematics and Artificial Intelligence, 10(4):385–408, 1994.

6. N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure.
In E. Horvitz and F. Jensen, editors, Proc. of the 12th Conference on Uncertainty
in Artificial Intelligence (UAI-96), pages 252–262. Morgan Kaufmann, 1996.

7. G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s ruin prob-
lem, genetic algorithms, and the sizing of populations. Evolutionary Computation,
7(3):231–253, 1999.

8. G. Harik and D. E. Goldberg. Linkage learning through probabilistic expression.
Comp. methods in applied mechanics and engineering, 186:295–310, 2000.

9. John H. Holland. Adaptation in Natural and Artifical Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

10. H. Kargupta, K. Deb, and D. E. Goldberg. Ordering genetic algorithms and de-
ception. In R. Männer and B. Manderick, editors, Parallel Problem Solving from
Nature – PPSN II, pages 47–56. Springer Verlag, 1992.

11. D. Knjazew. Application of the fast messy genetic algorithm to permutation and
scheduling problems. IlliGAL Technical Report 2000022, 2000.

12. H. Mühlenbein and T. Mahnig. FDA – a scalable evolutionary algorithm for the
optimization of additively decomposed functions. Evol. Comp., 7(4):353–376, 1999.

13. A. Ochoa, H. Mühlenbein, and M. Soto. A factorized distribution algorithm us-
ing single connected bayesian networks. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature – PPSN VI, pages 787–796. Springer Verlag, 2000.

14. M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic
algorithms. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Pro-
ceedings of the GECCO–2001 Genetic and Evolutionary Computation Conference,
pages 511–518. Morgan Kaufmann, 2001.

15. V. Robles, P. de Miguel, and P. Larrañaga. Solving the traveling salesman problem
with EDAs. In P. Larrañaga and J.A. Lozano, editors, Estimation of Distribution
Algorithms. A new tool for Evolutionary Computation. Kluwer Academic, 2001.

16. R. Santana, A. Ochoa, and M. R. Soto. The mixture of trees factorized distribution
algorithm. In L. Spector et al., editor, Proc. of the GECCO–2001 Genetic and
Evolutionary Computation Conference, pages 543–550. Morgan Kaufmann, 2001.

17. S.-Y. Shin and B.-T. Zhang. Bayesian evolutionary algorithms for continuous
function optimization. In Proceedings of the 2001 Congress on Evolutionary Com-
putation – CEC2001, pages 508–515. IEEE Press, 2001.

18. D. Thierens and D.E. Goldberg. Mixing in genetic algorithms. In S. Forrest,
editor, Proceedings of the fifth conference on Genetic Algorithms, pages 38–45.
Morgan Kaufmann, 1993.



Advanced Population Diversity Measures
in Genetic Programming

Edmund Burke, Steven Gustafson�, Graham Kendall, and Natalio Krasnogor

ASAP Research, School of Computer Science & IT
University of Nottingham, UK

{ekb,smg,gxk,nxk}@cs.nott.ac.uk

Abstract. This paper presents a survey and comparison of significant
diversity measures in the genetic programming literature. This study
builds on previous work by the authors to gain a deeper understanding
of the conditions under which genetic programming evolution is success-
ful. Three benchmark problems (Artificial Ant, Symbolic Regression and
Even-5-Parity) are used to illustrate different diversity measures and to
analyse their correlation with performance. Results show that measures
of population diversity based on edit distances and phenotypic diversity
suggest that successful evolution occurs when populations converge to a
similar structure but with high fitness diversity.

1 Introduction

Maintaining population diversity in genetic programming is cited as crucial in
preventing premature convergence and stagnation in local optima [1][2][3][4][5].
Diversity describes the amount of variety in the population defined by the genetic
programming individuals structure or their performance. The number of different
fitness values (phenotypes) [6], different structural individuals (genotypes) [7],
edit distances between individuals [3] [8], and complex and composite measures
[9] [10] [11] are used as measures of diversity.

In this paper, we examine previous uses and meanings of diversity, compare
these different measures on three benchmark problems and extend our original
study [12] with additional experiments, new analysis and new measures. Pop-
ulation diversity is related to almost every aspect of program evolution and
extending the research in [12] will lead to a deeper understanding of evolution in
genetic programming. As far as the authors are aware, all the significant diversity
measures that occur in the genetic programming literature are reported.

2 Diversity Measures

Measures of diversity attempt to quantify the variety in a population and some
methods attempt to control or promote diversity during evolution. The follow-
ing section surveys both measures that provide a quantification of population
� Corresponding author

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 341–350, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



342 Edmund Burke et al.

diversity and methods used to actively promote and maintain diversity within
genetic programming.

2.1 Population Measures

A common type of diversity measure is that of structural differences between
programs. Koza [13] used the term variety to indicate the number of different
genotypes populations contained. Landgon [7] argues that genotypic diversity is a
sufficient upper bound of population diversity as a decrease in unique genotypes
must also mean a decrease in unique fitness values.

Keijzer [10] measures program variety as a ratio of the number of unique in-
dividuals over population size and subtree variety as the ratio of unique subtrees
over total subtrees. Tackett [14] also measures structural diversity using subtress
and schemata frequencies. D’haeseleer and Bluming [11] define behavior and fre-
quency signatures for each individual based on fitness and gene frequencies, re-
spectively. The correlation between individuals’ respective signatures represents
the phenotypical and genotypical diversity.

When tree representations of genetic programs are considered as graphs, indi-
viduals can be compared for isomorphism [5] to obtain a more accurate measure
of diversity. Determining graph isomorphism is computationally expensive for
an entire population and not straightforward for genetic programs. However,
counting the number of nodes, terminals, functions and other properties can be
used to determine whether trees are possible isomorphs of each other.

McPhee and Hopper [1] investigate diversity at the genetic level by tagging
each node created in the initial generation. Root parents, the parents whose tree
has a portion of another individual’s subtree swapped into it during crossover,
are also tracked. McPhee and Hopper found that the number of unique tags
dramatically falls after initial generations and, by tracking the root parents, after
an average of 16 generations, all further individuals have the same common root
ancestor.

Phenotypic measures compare the number of unique fitness values in a popu-
lation. When the genetic programming search is compared to traversing a fitness
landscape, this measure provides an intuitive way to think of how much the pop-
ulation covers that landscape. Other measures could be created by using fitness
values of a population, as done by Rosca [5] with entropy and free energy. En-
tropy here represents the amount of disorder of the population, where an increase
in entropy represents an increase in diversity.

2.2 Promoting Diversity

Several measures and methods have been used to promote diversity by measuring
the difference between individuals. These methods typically use a non-standard
selection, mating, or replacement strategy to bolster diversity. Common meth-
ods are neighborhoods, islands, niches, and crowding and sharing from genetic
algorithms.



Advanced Population Diversity Measures in Genetic Programming 343

Eschelman and Schaffer [15] use Hamming distances to select individuals
for recombination and replacement to improve over hill-climbing-type selection
strategies for genetic algorithms. Ryan’s [2] “Pygmie” algorithm builds two lists
based on fitness and length to facilitate selection for reproduction. The algorithm
maintains more diversity, prevents premature convergence and uses simple mea-
sures to promote diversity. De Jong et al [8] use multiobjective optimisation to
promote diversity and concentrate on non-dominated individuals according to a
3-tuple of <fitness, size, diversity>. Diversity is the average square distance to
other members of the population, using a specialised measure of edit distance
between nodes. This multiobjective method promotes smaller and more diverse
trees.

McKay [4] applies the traditional fitness sharing concept from Deb and Gold-
berg [16] to test its feasibility in genetic programming. Diversity is the number
of fitness cases found, and the sharing concept assigns a fitness based on an
individual’s performance divided by the number of other individuals with the
same performance. McKay also studies negative correlation and a root quartic
negative correlation in [9] to preserve diversity. Ekárt and Németh [3] apply fit-
ness sharing with a novel tree distance definition and suggest that it may be
an efficient measure of structural diversity. Bersano-Begey [17] track how many
individuals solve which fitness cases and a pressure is added to individuals to
promote the discovery of different or less popular solutions.

3 Experiment Design

Our initial study of population diversity measures [12] highlighted that phe-
notypic measures appeared to better correlate with better fitness. Runs which
had better fitness in the last generation also tended to have higher phenotypic
diversity measures. This appears to go against conventional wisdom in genetic
programming which says that runs must converge to an “exploitation” phase
where diversity is lost to focus on better individuals. However, it does agree
with the intuitive idea that proper evolution needs diversity to be effective.

In this study we extend our original analysis [12] with new experiments and
new measures of population diversity which we have adapted from diversity
promoting methods. In analysing results, we measure the Spearman correlation
[18] between diversity and fitness and examine standard deviations, minimum
and maximum values and the diversity of all populations in every run and the
best fitness of those populations.

Three common problems are used with common parameter values from pre-
vious studies. For all problems, a population size of 500 individuals, a maximum
depth of 10 for each individual, a maximum depth of 4 for the tree genera-
tion half-n-half algorithm, standard tree crossover and internal node selection
probability of 0.9 for crossover is used. Additionally, each run consists of 51
generations, or until the ideal fitness is found.

The Artificial Ant, Symbolic Regression and Even-5-Parity problems are
used. All three problems are typical to genetic programming and can be found in



344 Edmund Burke et al.

many studies, including [13]. The artificial ant problem attempts to find the best
strategy for picking up pellets along a trail in a grid. The fitness for this problem
is measured as the number of pellets missed. The regression problem attempts
to fit a curve for the function x4 + x3 + x2 + x. Fitness here is determined by
summing the squared difference for each point along the objective function and
the function produced by the individual. The even-5-parity problem takes an
input of a random string of 0’s and 1’s and outputs whether there are an even
number of 1’s. The even-5-parity fitness is the number of wrong guesses for the
25 combinations of 5-bit length strings. All problems have an ideal fitness of low
values (0=best fitness).

To produce a variety of run performances, where we consider the best fitness
in the last generation, we designed three different experiments, carried out 50
times, for each problem. The first experiment, random, performs 50 independent
runs. The experiment stepped-recombination does 50 runs with the same random
number seed, where each run uses an increasing probability for reproduction
and decreasing probability for crossover. Initially, probability for crossover is
1.0, and this is decreased by 0.02 each time (skipping value 0.98) to allow for
exactly 50 runs and ending with reproduction probability of 1.0 and crossover
probability 0.0. The last experiment, stepped-tournament, is similar but we begin
with a tournament size of 1 and increment this by 1 for each run, until we reach
a tournament size of 50. In the random and stepped-tournament experiments,
crossover probability is set to 1.0 and the tournament size in random and stepped-
recombination is 7. The Evolutionary Computation in Java (ECJ), version 7.0,
[19] is used, where each problem is available in the distribution.

The following measures of diversity were introduced previously and are briefly
described as they are collected for each generation in every run. Genotype and
phenotype diversity count the number of unique trees for the genotype measure
[7] and the number of unique fitness values in a population represents the pheno-
type measure [6]. The entropy measure is calculated for the population as in [5],
where “pk is the proportion of the population P occupied by population partition
k”, −∑k pk · logpk . A partition is assumed to be each possible different fitness
value, but could be defined to include a subset of values. Pseudo-isomorphs
are found by defining a 3-tuple of <terminals,nonterminals,depth> for each indi-
vidual and the number of unique 3-tuples in each population is the measure. Two
identical 3-tuples represent trees which could be isomorphic. Edit distance 1
and 2 is the edit distance between individuals used by de Jong et al [8] (referred
to as “ed 1” in the graphs) and an adapted version of Ekárt and Németh [3]
(“ed 2”). Every individual in the population is measured against the best fit in-
dividual. This measure is then divided by the population size. The first measure
(ed 1) is a standard edit distance measure where two trees are overlapped at
the root node. Two different nodes, when overlapping, score a distance of 1 and
equal nodes get 0. The edit distance is then the sum of all different nodes and
normalised by dividing it by the size of the smaller tree. The second measure (ed
2) is slightly adapted back to its original formulation in [20] where the difference



Advanced Population Diversity Measures in Genetic Programming 345

between any two nodes is 1. The difference between two trees is then (defined in
[3]):

dist(T1, T2) =
{
d(p, q) if neither T1 nor T2 have any children
d(p, q) + 1

2 ∗
∑m
l=1 dist(sl, tl) otherwise

Where T1, T2 are trees with roots p, q and possible children (m total) subtrees
s, t. Two trees are brought to the same tree structure by adding “null” nodes
to each tree. Note that the differences near the root have more weight, a pos-
sibly convenient description for genetic programming as it has been noted that
programs converge quickly to a fixed root portion [1].

The Spearman correlation coefficient is computed as [18] 1− 6
∑N

i=1
d2
i

N3−N . Where
N is the number of items (50 runs), and di is the distance between each run’s
rank of performance and rank of diversity in the last generation. A value of -1.0
represents negative correlation, 0.0 is no correlation and 1.0 is positive correla-
tion. For our measures, if we see ideal low fitness values, which will be ranked in
ascending order (1=best,. . .,50=worst) and high diversity, ranked where (1=low-
est diversity and 50=highest diversity), then the correlation coefficient should be
strongly negative. Alternatively, a positive correlation indicates that either bad
fitness accompanies high diversity or good fitness accompanies low diversity.

4 Results

Graphs of the 50 runs for all three experiments and all three problems were ex-
amined, along with minimum, maximum and standard deviations of best fitness
and population diversity measures. Also, the Spearman correlation coefficient
was calculated, correlating the diversity measures with best fitness across each
set of 50 runs. This study involved 450 runs of 51 generations each, adding to
a previous study [12] of the same size with different random seeds and different
measures of diversity. While all three problems showed the same general trends,
we focus on the artificial ant and even-5-parity.

Figure 1 shows for the artificial ant problem and random experiment, that
diversity measures and fitness varied widely. The most dramatic activity occurs
early with runs being similar until around generation 10, where they become
quite varied. However, from Table 1 we can see several interesting phenomenon.
First, by noting the genotype measure and best fitness standard deviations for
the artificial ant experiment, we see little variance of best fitness (11.2,15.4,15.9)
but large variance of genotype diversity (18.3,120.1,44.2). Also note that the
genotype diversity for the random experiment in artificial ant and even-5-parity
have very high minimum and maximum values, where the other measures mini-
mum and maximum does not differ across experiments. This information leads
us to believe that the genotype diversity measure does not suggest a strong
correlation with varying run performance. Note how the other measures have
consistent variation, as does fitness.

Using the Spearman correlation coefficient we investigated whether runs that
produced good fitness had low/high diversity, where ties in ranks were solved by



346 Edmund Burke et al.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

generation

 ant problem, random experiment, fitness vs. generation

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40 45 50

generation

 ant problem, random experiment, entropy vs. generation

15

20

25

30

35

40

45

50

55

60

65

70

0 5 10 15 20 25 30 35 40 45 50

generation

 ant problem, random experiment, phenotype vs. generation

340

360

380

400

420

440

460

480

500

0 5 10 15 20 25 30 35 40 45 50

generation

 ant problem, random experiment, genotype vs. generation

Fig. 1. 50 runs of best fitness per generation for the artificial ant random experiment
and a graph for each of the diversity measures of entropy, phenotype and genotype
diversity.

splitting the rank among the tying items (add possible ranks and average). Re-
membering that negative correlation (values close to -1.0) suggest high diversity
is correlated with good performance (as we want to minimize fitness). Table 1
shows that high negative correlation is seen most consistently with entropy and
phenotype diversity. In fact, only these two measure always produce negative
correlation, indicating that a high phenotype variance and entropy values ac-
company the best fit runs.

Figure 2 shows graphs for the same problem where every populations’ best
fitness and edit distance diversity measure are plotted. The artificial ant and
even-5-parity graphs shown here demonstrate a very interesting phenomenon.
Notice that best fitness values (close to 0) also consistently have low edit distance
diversity, meaning that for populations containing the best fit individuals, those
populations are similar to the best fit individual. The even-5-parity problem
indicates that best fitness only occurs in populations that have low edit distance
diversity. The artificial ant problem shows that poor fitness tends to occur in
populations with higher edit distance diversity and also better populations have
low edit distance diversity.

While the phenotypic measures seem to indicate that better performance is
accompanied with higher diversity, the edit distance diversity results appear to



Advanced Population Diversity Measures in Genetic Programming 347

Table 1. Problems artificial ant and even-5-parity with experiments random (rand),
stepped-tournament (step-t) and stepped-recombination (step-r). Values are from the
final population. Best fitness (“b.fit”) is the best fitness in the final generation. The
Spearman coefficient shows perfect correlation with 1.0, negative correlation with -1.0
and no correlation with 0.0. Bold numbers are mentioned in the text and negative
correlation indicates that best fitness is correlated with high diversity measure values.

artificial ant problem
spearman min max standard dev

random step-t step-r random step-t step-r random step-t step-r
b.fit - - - 0.0 39.0 0.0 50.0 0.0 73.0 11.221 15.378 15.944
gene 0.2673 -0.0533 0.5110 402.0 491.0 1.0 476.0 271.0 487.0 18.339 120.109 44.238
isom 0.4135 0.0874 0.5816 75.0 339.0 1.0 291.0 67.0 354.0 66.0767 74.3093 63.1815
phene -0.2214 -0.2029 -0.0079 24.0 57.0 1.0 54.0 13.0 62.0 8.2239 9.4150 7.3103
entro -0.358 -0.597 -0.4506 0.4829 1.3339 0.0 1.2927 0.6010 1.3498 0.1939 0.2584 0.1958
ed1 -0.0128 -0.4799 -0.1646 0.0876 0.5082 0.0 0.3746 0.0558 0.8245 0.0890 0.0824 0.1110
ed2 0.2874 -0.4196 -0.0606 0.4864 7.0751 0.0 3.5343 0.5201 6.0184 1.3466 0.7675 1.0564
even-5-parity problem

spearman min max standard dev
random step-t step-r random step-t step-r random step-t step-r

b.fit - - - 3.0 12.0 4.0 15.0 3.0 15.0 1.8762 2.2670 2.7734
gene 0.1788 -0.3165 0.3295 412.0 482.0 9.0 470.0 269.0 484.0 14.0285 103.544 38.224
isom 0.2388 0.2221 0.3500 45.0 89.0 1.0 119.0 23.0 123.0 10.0312 19.2771 20.2564
phene -0.7326 -0.7796 -0.8494 6.0 16.0 1.0 15.0 3.0 15.0 1.8999 2.3756 2.3427
entro -0.6978 -0.7317 -0.763 0.5431 0.9444 0.0 0.8996 0.0176 0.8829 0.08168 0.1840 0.1439
ed1 0.5628 0.4044 0.5853 0.0737 0.3664 0.0426 0.7840 0.0520 0.8484 0.0644 0.1296 0.1286
ed2 0.3806 0.3344 0.4738 0.3917 2.5040 0.1786 5.277 0.2846 3.4607 0.4327 0.8776 0.7364

contradict that by suggesting that better performance is in populations with low
edit distance diversity. In fact, these results indicate something quite interesting,
that genetic programming is most successful when populations converge to a
similar structure but in a manner which preserves diversity.

Figure 3 demonstrates that when the Spearman correlation is calculated for
every population during evolution (150 runs total for each problem) how the
different diversity measures correlate with performance during evolution. For
the different problems some diversity measures correlate better at different times
during evolution. Notice the early random behaviour around generations 5-10,
the same time of divergence in the graphs in Figure 1 and also the general point
of convergence of root ancestors, described in [12] [1].

5 Conclusions

The measures of diversity surveyed and studied here indicate that genotype
diversity may not be useful for capturing the dynamics of a population, because
of the low correlation. This is also suggested in [2][10]. The fitness based measures
of phenotypes and entropy appear to correlate better with run performance.
The measures of edit distance diversity, one being a traditional edit distance
and the other giving more weight to differences near the root, seem to provide
useful information about populations with good/poor performance. Better fit
individuals come from populations with low edit distance diversity, meaning that
the population is similar to the best fit individual. This information accompanied



348 Edmund Burke et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80

po
pu

la
tio

n 
di

ve
rs

ity
 m

ea
su

re

best fitness in population per generation

ant fitness vs ed 1

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80

po
pu

la
tio

n 
di

ve
rs

ity
 m

ea
su

re

best fitness in population per generation

ant fitness vs ed 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16

po
pu

la
tio

n 
di

ve
rs

ity
 m

ea
su

re

best fitness in population per generation

parity fitness vs ed 1

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16

po
pu

la
tio

n 
di

ve
rs

ity
 m

ea
su

re

best fitness in population per generation

parity fitness vs ed 2

Fig. 2. The best fitness per population is plotted (x axis) against that population’s
edit distance diversity (ed1, ed2). Here, low fitness is better for both the artificial ant
and even-5-parity problems.

with our previous results seem to suggest that populations converge to a similar
structure but keep high diversity.

Moreover, if we consider the curves for edit distance diversity (ed1, ed2)
together with those for phenotype diversity (phenes, entropy) in Figure 3, during
most of evolution edit distance diversity correlates positively and phenotype
diversity negatively with high fitness. These results taken together show that
the fitness landscapes defined by the genetic operators chosen and the fitness
function used for the problems studied are uncorrelated, i.e., individuals with
low edit distance have very different phenotype characteristics (e.g. fitness). This
in turn suggests that the search capabilities of the algorithms studied in this
paper might be impaired.

While the edit distance measures are expensive, if they prove useful in pre-
dicting successful runs we could attempt to find accurate approximations or limit
their use to defined generational intervals. Finally, results showed that evolving
populations have diversity values which fluctuate between positive and negative
correlation with best fitness and this behaviour varied among the studied prob-
lems. This paper also indicates the need to carefully define diversity measures
and the goal of those measures (high or low values) when using diversity to assess
or alter genetic programming evolution.



Advanced Population Diversity Measures in Genetic Programming 349

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

sp
ea

rm
an

 c
or

re
la

tio
n

generation

 ant problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

sp
ea

rm
an

 c
or

re
la

tio
n

generation

 parity problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

sp
ea

rm
an

 c
or

re
la

tio
n

generation

 regression problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

Fig. 3. For each problem, the Spearman correlation between a populations diversity
and best fitness is calculated across all runs. Note the fluctuations between negative,
no and positive correlation as the populations change during evolution.

6 Future Work

Current research includes studying new problems, tracking root ancestors and
other measures during evolution, and applying methods to promote diversity
while using different measures to determine their effects. Fitness landscape dis-
tance correlation is also being investigated.

References

1. N.F. McPhee and N.J. Hopper. Analysis of genetic diversity through population
history. In W. Banzhaf et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference, Florida, USA, 1999. Morgan Kaufmann.

2. C. Ryan. Pygmies and civil servants. In K.E. Kinnear, Jr., editor, Advances in
Genetic Programming, chapter 11, pages 243–263. MIT Press, 1994.

3. A. Ekárt and S. Z. Németh. A metric for genetic programs and fitness sharing.
In R. Poli et al., editors, Proceedings of the European Conference on Genetic Pro-
gramming, volume 1802 of LNCS, pages 259–270, Edinburgh, 15-16 April 2000.
Springer-Verlag.

4. R.I. McKay. Fitness sharing in genetic programming. In D. Whitley et al., editors,
Proceedings of the Genetic and Evolutionary Computation Conference, pages 435–
442, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.



350 Edmund Burke et al.

5. J.P. Rosca. Entropy-driven adaptive representation. In J.P. Rosca, editor, Pro-
ceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 23–32, Tahoe City, California, USA, 9 July 1995.

6. J.P. Rosca. Genetic programming exploratory power and the discovery of func-
tions. In J.R. McDonnell et al., editors, Proceedings of the Fourth Conference on
Evolutionary Programming, pages 719–736, San Diego, CA, 1995. MIT Press.

7. W.B. Langdon. Evolution of genetic programming populations. Research Note
RN/96/125, University College London, Gower Street, London WC1E 6BT, UK,
1996.

8. E.D. de Jong, R.A. Watson, and J.B. Pollack. Reducing bloat and promoting
diversity using multi-objective methods. In L. Spector et al., editors, Proceedings
of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 7-11
July 2001. Morgan Kaufmann.

9. R.I. McKay and H.A. Abbass. Anticorrelation measures in genetic programming.
In Australasia-Japan Workshop on Intelligent and Evolutionary Systems, 2001.

10. M. Keijzer. Efficiently representing populations in genetic programming. In P.J.
Angeline and K.E. Kinnear, Jr., editors, Advances in Genetic Programming 2,
chapter 13, pages 259–278. MIT Press, Cambridge, MA, USA, 1996.

11. P. D’haeseleer. Context preserving crossover in genetic programming. In Proceed-
ings of the 1994 IEEE World Congress on Computational Intelligence, volume 1,
pages 256–261, Orlando, FL, USA, June 1994. IEEE Press.

12. E. Burke, S. Gustafson, and G. Kendall. Survey and analysis of diversity measures
in genetic programming. In (Accepted as a full paper) Proceedings of the Genetic
and Evolutionary Computation Conference, 2002.

13. J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

14. W.A. Tackett. Recombination, Selection, and the Genetic Construction of Com-
puter Programs. PhD thesis, University of Southern California, Department of
Electrical Engineering Systems, USA, 1994.

15. L.J. Eshelman and J.D. Schaffer. Crossover’s niche. In S. Forrest, editor, Proceed-
ings of the Fifth International Conference on Genetic Algorithms, pages 9–14, San
Mateo, CA, 1993. Morgan Kaufman.

16. K. Deb and D.E. Goldberg. An investigation of niche and species formation in
genetic function optimization. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, Washington DC, 1989.

17. T.F. Bersano-Begey. Controlling exploration, diversity and escaping local optima
in GP. In J.R. Koza, editor, Late Breaking Papers at the Genetic Programming
Conference, Stanford University, CA, July 1997.

18. S. Siegel. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Book
Company, Inc., 1956.

19. S. Luke. ECJ: A java-based evolutionary comp-utation and genetic programming
system, 2002. http://www.cs.umd.edu/projects/plus/ecj/.

20. S.-H. Nienhuys-Cheng. Distance between Herbrand interpretations: a measure
for approximations to a target concept. In N. Lavraĉ and S. Dẑeroski, editors,
Proceedings of the 7th Internations Workshop on Inductive Logic Programming.
Springer-Verlag, 1997.



Introducing Start Expression Genes
to the Linkage Learning Genetic Algorithm

Ying-ping Chen1 and David E. Goldberg2

1 Department of Computer Science and Department of General Engineering
University of Illinois, Urbana, IL 61801, USA

ypchen@illigal.ge.uiuc.edu
2 Department of General Engineering

University of Illinois, Urbana, IL 61801, USA
deg@uiuc.edu

Abstract. This paper discusses the use of start expression genes and
a modified exchange crossover operator in the linkage learning genetic
algorithm (LLGA) that enables the genetic algorithm to learn the link-
age of building blocks (BBs) through probabilistic expression (PE). The
difficulty that the original LLGA encounters is shown with empirical re-
sults. Based on the observation, start expression genes and a modified
exchange crossover operator are proposed to enhance the ability of the
original LLGA to separate BBs and to improve LLGA’s performance on
uniformly scaled problems. The effect of the modifications is also pre-
sented in the paper.

1 Introduction

Regardless of one’s point of view, the 1975 publication of Holland’s Adapta-
tion in Natural and Artificial Systems [1] was an important event in the history
of evolutionary computation. That book presented a self-consistent view of ge-
netic algorithm processing. While many remember building blocks, the schema
theorem, and the like, most have forgotten or ignored Holland’s call for the evo-
lution of tight linkage and its importance in powerful and general adaptation
processes. One exception to this widespread set of circumstances is Harik’s link-
age learning genetic algorithm (LLGA) [2,3,4]. In that work, the (gene number,
allele) style coding scheme with introns [5,6,7,8,9,10,11,12] is used to permit
GAs to learn tight linkage of building blocks (BBs) through probabilistic ex-
pression (PE). Harik’s scheme combines moveable genes, introns, and a special
expression mechanism to create an evolvable genotypic structure that makes
linkage learning natural and viable for GAs. This combination of data structure
and mechanism led to successful linkage learning, particularly on badly scaled
problems with badly scaled BBs. Interestingly, the nucleation procedure was less
successful on problems with uniformly scaled BBs, and this paper seeks to better
understand why this was so and to correct the deficiency.

In particular, this paper introduces the use of start expression genes and
a modified exchange crossover operator in the LLGA to improve the LLGA’s

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 351–360, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



352 Ying-ping Chen and David E. Goldberg

performance on uniformly scaled problems. In contrast to the original LLGA, in
which every intron (and/or gene) is possibly the point of interpretation of the
child, only start expression genes can be the new point of interpretation after
crossover in the modified LLGA. Our experiments show that the LLGA with
start expression genes and the proposed modified exchange crossover operator
is able to overcome the difficulty encountered by the original LLGA.

In this study, we focus on the problems with building-block structure. The
problems are assumed decomposable in some way. However, they are not nec-
essarily linearly separable like the test problems used in this paper. For a more
detailed definition and discussion of BBs, readers can refer to other materi-
als [13]. Furthermore, by uniformly scaled BBs, we mean that all BBs contribute
to the fitness equally. By badly scaled BBs, we mean that some BBs contribute
to the fitness more than the others do, and the contributions might be irregular.

The paper starts with a brief review of the LLGA. Section 2 provides a fun-
damental background of the previous work on the LLGA. Section 3 investigates
the difficulty encountered by the original LLGA when working on uniformly
scaled problems. Section 4 proposes a mechanism to overcome the difficulty. It
describes start expression genes and the modified exchange crossover operator
in detail. Section 5 concludes the paper.

2 Brief Review of the LLGA

In this section, we briefly review the LLGA. Readers who are interested in more
detail should refer to other materials [2,3,4]. The LLGA is generational, and the
following topics directly related to this paper are reviewed in this section:
1. chromosome representation;
2. the exchange crossover operator;
3. the mechanisms making the LLGA work.

Each of these topics is discussed in the remainder of this section.

2.1 Chromosome Representation

In the LLGA, chromosome representation is mainly composed of
– moveable genes;
– introns;
– probabilistic expression.

Each of them is described as follows.
The LLGA chromosome consists of moveable genes encoded as (gene number,

allele) pairs and is considered as a circle. The genes in the LLGA are allowed to
reside anywhere in any order in the chromosome, while those in traditional GAs
are unmoveable and fixed at their own loci.

In order to create a genotypic structure capable of expressing linkage, introns
are included in the chromosome. Introns act as non-functional genes, which have
no effect on fitness. By using introns, genes no longer have to connect to one
another, and linkage can be expressed more precisely. Strictly speaking, the term



Introducing Start Expression Genes 353

0 or 1

(3,1)

(3,0)

50% : 50%

(a) Gene 3 is expressed as 0
with probability 0.5 and 1 with
probability 0.5.

0 or 1

(3,1) (3,0)

l−δ

   : 1−δ /lδ/l

δ

(b) Gene 3 is expressed as 0
with probability δ/l and 1 with
probability 1− δ/l.

Fig. 1. Probability distributions of gene 3’s alleles represented by PE chromosomes.

intron refers to a noncoding segment of a gene. In our system, genes are discrete
entities and either a gene codes or does not, and it is in this sense that we use the
term intron as a noncoding gene. In our system, strings of “introns” combine to
form intergenic region, extragenic region, or pseudogene, and these terms would
perhaps be preferable to the use of the term intron. Nonetheless, our meaning
is clear and is accurate in the limited sense indicated.

Furthermore, the method of probabilistic expression (PE) was proposed to
preserve diversity at the building-block level. A PE chromosome contains all
possible alleles for each gene. For the purpose of evaluation, a chromosome is
interpreted by selecting a point of interpretation (POI) and choosing for each
gene the allele occurring first in a clockwise traversal of the circular chromosome.
After interpretation, a PE chromosome is expressed as a complete string and
evaluated. Besides, the POI is selected on the individual when crossover happens.

As a consequence, a chromosome represents not a single solution but a
probability distribution over the range of possible solutions. Figure 1 illus-
trates the probability distribution over possible alleles of gene 3 of the chro-
mosome. Hence, when different POI are selected, a PE chromosome might be
interpreted as different solutions. Figure 2 shows 3 genes of a PE chromosome
composed of 6 genes. If point A is the POI, the chromosome will be consid-
ered as ((5,1) (4,0) (4,1) (3,0) (3,1) (5,0)) and interpreted as ((5,1)
(4,0) (4,1) (3,0) (3,1) (5,0))⇒ ***001, where the struck genes are shad-
owed by their complement genes. And, if point B is the POI, the chromosome will
be considered as ((4,0) (4,1) (3,0) (3,1) (5,0) (5,1)) and interpreted as
((4,0) (4,1) (3,0) (3,1) (5,0) (5,1)) ⇒ ***000.

If we consider a PE chromosome as containing exactly one copy of some
shadowed gene, we can generalize PE to let a chromosome contain more than
one copy of a shadowed gene. Therefore, the extended probabilistic expression
(EPE) can be defined with a parameter k encoded with which a chromosome
can contain at most k copies of a shadowed gene. Figure 3 shows an example of
EPE-2 chromosomes.

2.2 The Exchange Crossover Operator

In addition to PE and EPE, the exchange crossover operator is another key
feature for the LLGA to learn linkage. The exchange crossover operator is defined



354 Ying-ping Chen and David E. Goldberg

(5,1)

(4,0)

(4,1)

(5,0)

(3,1)

(3,0)

A

B

Fig. 2. Different points of interpre-
tation might interpret a PE chromo-
some as different solutions.

Point of interpretation

(5,1)

(5,0)

(4,0)

(4,1)

(5,0)

(3,1)

(3,1)
(3,0)

Fig. 3. An example of EPE-2 chro-
mosomes. Each gene can have at
most 2 complement genes.

on a pair of chromosomes. One of the chromosomes is the donor, and the other is
the recipient. The operator cuts a random segment of the donor, selects a grafting
point at random on the recipient, and grafts the segment onto the recipient. The
grafting point is the POI of the generated offspring. Starting from the POI,
redundant genetic material caused by injection is removed right after crossover
to ensure the validity of the offspring.

2.3 The Mechanisms Making the LLGA Work

By integrating PE and the exchange crossover operator into traditional GAs, the
LLGA is able to solve difficult problems without prior knowledge of good linkage.
Traditional GAs have been shown to perform poorly on difficult problems [14]
without such knowledge. To better decompose and understand the working of
the LLGA, Harik [3] identifies and analyzes two mechanisms of linkage learning:
linkage skew and linkage shift. Linkage skew occurs when an optimal BB is
successfully transferred from the donor to the recipient, its linkage gets tighter.
Linkage shift occurs when an optimal BB resides in the recipient and survives
an injection, its linkage gets tighter. With these two mechanisms, the linkage of
BBs can evolve, and tightly linked BBs are formed during the process.

3 A Critique of the Original LLGA

The LLGA was original, provocative, and interesting. It works quite well on
badly scaled problems. Unfortunately, it performs poorly on uniformly scaled
problems. To better understand that failure, we investigate what the LLGA is
supposed to do and observe how and why it fails.

3.1 What Is the LLGA Supposed to Do?

One of the main motivations behind the LLGA was to permit a GA to gather
genes belonging to different BBs separately and tightly. Note that there are two
things needed here. Not only do individual BBs need to be tight, they also need
to be separate to permit effective BB exchange via crossover. Harik’s analysis of
skew and shift addresses the tight linkage side of the ledger, but it says little or
nothing about the evolution of separate BBs.



Introducing Start Expression Genes 355

��
��
��

��
��
���
�
�
�

Gene of BB 2
Gene of BB 1 Gene of BB 3

Gene of BB 4

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

0

50

100

150

200

Generation

Fig. 4. In a successful run, the original LLGA is able to correctly separate the four
BBs and make each of them tightly linked.

In selectionist schemes, sometimes good things happen of their own accord,
so we examine a four-BB problem and see if separate and tight linkage can be
evolved. In particular, we use the original LLGA with EPE-2 to solve a problem
composed of four uniformly scaled order-4 traps [15] with value 3.0 at u=0 ones,
value 0.0 at u=3 ones, and value 4.0 at u=4 ones. In this experiment, we use the
following parameter settings which are arbitrarily chosen and not fine tuned. The
population size is 300, the tournament size is 3, the crossover rate is 1.0, and 800
introns are encoded in the chromosome. Then, we examine typical individuals
at generations 0, 50, 100, 150, and 200 shown in Fig. 4.

At generation 0, the genetic materials are randomly distributed in the chro-
mosome. Later, some genes are getting together to form sub-BBs at generation
50. Longer sub-BBs are formed at around generations 100 and 150. At the end
of the run, the four BBs are formed in the individual.

As we can see in this case, the LLGA actually constructs four separate and
tight BBs as desired. We call the process nucleation that correctly separates the
BBs and gets them tightly linked. This might seem to put an end to the matter,
but we examine a run that did not go this way.

3.2 How Does the LLGA Fail?

The process above yields results along the lines of those hoped for. However,
it is not the only result we might get when solving four uniformly scaled BBs.
Another possible result is that genes of different BBs get together to form a
single, intertwined building block.

By examining the results of an unsuccessful run of the same experiment
shown in Fig. 5, we can easily observe the process of forming an intertwined
building block. We call the process misnucleation.

The genetic materials are initially randomly distributed in the chromosome.
At generation 50, sub-BBs are being constructed gradually. At generations 100
and 150, we can see that two of the four BBs tend to intertwine each other.
Finally, only two BBs are correctly identified and separated. The other two BBs
are intertwined as they were a single BB.



356 Ying-ping Chen and David E. Goldberg

��
��
��

��
��
���
�
�
�

Gene of BB 2
Gene of BB 1 Gene of BB 3

Gene of BB 4

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

0

50

100

150

200

Generation

Intertwined BB

Fig. 5. In an unsuccessful run, the original LLGA cannot correctly separate the four
BBs. An intertwined BB of two actual BBs is formed during the process.

In this case, two BBs formed an intertwined BB along the process. The
intertwined BB was treated as a single BB in the chromosome, and the LLGA
could only make it tight instead of separated. Hence, the real BBs cannot be
identified in this situation. The intertwined BB prevented the BBs from mixing
well and effectively, and therefore, also prevented the problem from being solved.

3.3 Separation Inadequacy: Key Deficiency of the Original LLGA

Based on the results above and those from a good number of experiments, the
original LLGA seems only able to deal with a very small number (around 2 to
5) of uniformly scaled BBs. Misnucleation becomes very likely to happen when
the number of BBs gets slightly larger because the nature of uniformly scaled
problems requires all BBs to be identified and separated at the same time, but
the original LLGA has no mechanism to do that. Therefore, the original LLGA
performs poorly on uniformly scaled BBs.

By revisiting the two linkage learning mechanisms, we find that there are
only two categories of genetic materials:

1. the genetic materials that affect the solution;
2. the genetic materials that do not affect the solution.

Neither the linkage skew nor the linkage shift separates different BBs and makes
each of them tightly linked. What they actually do is make the linkage of those
genetic materials that improve the solution quality tighter, no matter the genetic
materials belong to the same BB or not. The original LLGA does not have an
appropriate mechanism for BB separation.

The same argument is also applicable to the exponentially scaled problems.
When the LLGA solves an exponentially scaled problem, it deals with the BBs
one by one. Fitness scaling causes the salient BB to be processed first, next most
salient, and so on. Therefore, the original LLGA can easily handle exponentially
scaled problems because it in fact faces only one BB at a time.

Due to the lack of BB separation mechanism, any power to separate BBs
is delivered by the schema theorem [1,16]. To see this, consider that schemata



Introducing Start Expression Genes 357

Point of interpretation
(5,1)

Find the start

(4,0)

(4,1)

(3,0)

(5,0)

(3,1)

of the offspring
Point of interpretation

expression gene

Grafting point

Fig. 6. After selecting the grafting
point on the recipient, the near-
est start expression gene before the
grafting point is then the point of
interpretation of the offspring.

Point of interpretation
(5,1)

(4,0)

(4,1)

(3,0)

(3,1)

(5,0)

Cutting point

Materials to transfer

Fig. 7. After selecting the cutting
point on the donor, the genetic ma-
terial after the cutting point and be-
fore the current point of interpreta-
tion is transferred.

with shorter defining lengths are favored and then become more tightly linked
so that disruption by crossover can be avoided. Hence, the BBs are sometimes
formed under this circumstance. Also because the power to separate BBs from
the schema theorem is not enough, the original LLGA usually cannot correctly
separate more than five BBs at the same time.

4 Start Expression to Improve Nucleation Potential

Knowing this limitation of the original LLGA, what we should do now is to
improve nucleation and separation of BBs. In the original LLGA, any point
can be a POI. Such a design provides no advantage for BB separation at the
chromosome-representation level because totally random POI create the insta-
bility of BB formation. In order to overcome this, we introduce the use of start
expression genes, the only possible POI. This should lower the instability of BB
formation and improve nucleation potential during the evolutionary process. We
also modify the exchange crossover operator so it can work with start expression
genes. The modified exchange crossover operator uses the POI of the donor as
one of the cutting points to further reduce the randomness of BB formation.
Additionally, in the modified LLGA, PE is used instead of EPE-k. In the re-
mainder of this section, we will discuss these modifications in detail. The results
show that the modifications indeed make the LLGA able to correctly identify
and separate uniformly scaled BBs.

4.1 How Do Start Expression Genes Work?

Start expression genes are special introns. While in the original LLGA, all genes
and introns can be the points of interpretation of the child after crossover, only
start expression genes can be the points of interpretation in the modified LLGA.

In the original LLGA, when doing the exchange crossover operator, the graft-
ing point selected on the recipient is the new POI of the generated offspring. In
the modified LLGA, although the grafting point can still be located at any gene
or intron, the POI of the offspring is no longer the grafting point. The new POI
is the nearest start expression gene before the grafting point. Therefore, after the
grafting point is randomly chosen, we find the the first start expression gene just



358 Ying-ping Chen and David E. Goldberg

��
��
��

��
��
���
�
�
�

Gene of BB 2
Gene of BB 1 Gene of BB 3

Gene of BB 4 sion gene
Start expres−

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��

0

50

100

150

200

Generation

Fig. 8. Using the modified LLGA to solve a four uniformly scaled order-4 traps.

before the grafting point and make it the POI of the child. The genetic material
between the start expression gene and the grafting point is first transferred to
the child, then the segment from the donor, and finally the rest of the recipient.
Figure 6 illustrates how start expression genes work. The black circles are start
expression genes of the chromosome.

4.2 The Modified Exchange Crossover Operator

By modifying the exchange crossover operator, we create a further relationship
between the genetic operator and the POI. The modified exchange crossover
operator can reduce randomness of BB formation and improve nucleation po-
tential.

The original exchange crossover operator cuts a random segment from the
donor and injects the segment into the recipient. In order to reduce the random-
ness, the modified exchange crossover operator selects only one cutting point
at random. The other cutting point used by the modified exchange crossover
operator is always the gene or intron just before the POI of the donor. At the
PE-chromosome level, the operation is like the one-point crossover; while at the
expressed-string level, the operation is like the uniform crossover. Figure 7 shows
the portion of the genetic materials to be transferred.

The modified exchange crossover operator works as follows:
1. select a grafting point at random on the recipient;
2. determine the POI of the child as described in Sect. 4.1;
3. copy the genetic materials between the current POI and the grafting point

to the child;
4. select the cutting point at random on the donor;
5. graft the genetic materials between the cutting point and the POI of the

donor to the child;
6. copy the rest genetic materials of the recipient to the child;
7. remove the duplicate genes and introns of the child to ensure the validity.

4.3 The Effect of the Modifications

Now we use the modified LLGA to repeat the same experiment in Sect. 3. The
modified LLGA has an extra parameter: the number of start expression genes



Introducing Start Expression Genes 359

2 4 6 8 10 12 14
−2

0

2

4

6

8

10

Number of building blocks

N
um

be
r 

of
 b

ui
ld

in
g 

bl
oc

ks
co

rr
ec

tly
 s

ep
ar

at
ed

Modified LLGA
Original LLGA

(a) The number of BBs cor-
rectly separated at the same
time. The results are averaged
over 50 runs.

2 4 6 8 10 12 14
0 

10

20

30

40

50

Modified LLGA
Original LLGA

N
um

be
r 

of
 r

un
s 

in
 w

hi
ch

th
e 

pr
ob

le
m

 is
 s

ol
ve

d

Number of building blocks

(b) The number of runs in
which the problem is solved in
the 50 runs.

Fig. 9. Using the modified LLGA to solve problems of different number of BBs.

(ns). In this experiment, ns = 20. Figure 8 shows that the modified LLGA can
correctly separate the four uniformly scaled order-4 traps.

In addition to those experiments on four BBs, we vary the number of BBs
to see if the modified LLGA can do better to separate uniformly scaled BBs on
larger problems. We still use order-4 traps in this experiment. Except for the
number of BBs, all parameters are identical to the previous experiments.

Figure 9 shows that the original LLGA failed if the number of BBs is greater
than 6. It cannot separate the BBs and reliably solve the problem. According
to the results, equipped with start expression genes and the modified exchange
crossover operator, the modified LLGA is capable of separating BBs correctly.

More work along these lines needs to be done to study parameter settings of
the LLGA on larger problems. These proof-of-principle results correctly identify
a key problem with the original LLGA and demonstrate a promising solution
path. We believe that it should lead to scalable linkage learning.

5 Conclusions
Harik took Holland’s call for the evolution of tight linkage and developed the
LLGA, which employs introns and probabilistic expression to make the link-
age learning natural and viable. A drawback of the original LLGA is the need
for an exponentially growing population size to solve uniformly scaled problems
mainly because the original LLGA has no proper mechanism to separate uni-
formly scaled BBs. This paper introduces start expression genes to the LLGA for
identifying and separating BBs. It also proposes a modified exchange crossover
operator to work with start expression genes so that the BB separation capabil-
ity can be fully exploited. The empirical results show that the modified LLGA
indeed has superior ability to correctly identify and separate BBs.

More work needs to be done to understand parameter settings on larger
problems. These proof-of-principle results shown in this paper (1) identify a key
problem with the original LLGA and (2) show a promising solution path. It
should lead to scalable linkage learning.



360 Ying-ping Chen and David E. Goldberg

Acknowledgments
The authors would like to thank Martin Pelikan and Kumara Sastry for many
useful discussions and valuable comments.

The work was sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grant F49620-00-0163. Research funding
for this work was also provided by a grant from the National Science Founda-
tion under grant DMI-9908252. The US Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the National Science Foundation, or the U.S. Government.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, MI (1975)

2. Harik, G.R., Goldberg, D.E.: Learning linkage. FOGA 4 (1996) 247–262
3. Harik, G.R.: Learning Gene Linkage to Efficiently Solve Problems of Bounded

Difficulty Using Genetic Algorithms. Unpublished doctoral dissertation, University
of Michigan, Ann Arbor, MI (1997) (Also IlliGAL Report No. 97005).

4. Harik, G.R., Goldberg, D.E.: Learning linkage through probabilistic expression.
Computer Methods in Applied Mechanics and Engineering 186 (2000) 295–310

5. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive
crossover in genetic programming. In: Proceedings of the Workshop on GP: From
Theory to Real-World Applications. (1995) 6–22

6. Andre, D., Teller, A.: A study in program response and the negative effects of
introns in genetic programming. In: Proceedings of GP-96. (1996) 12–20

7. Haynes, T.: Duplication of coding segments in genetic programming. In: Proceed-
ings of NCAI-96. (1996) 344–349

8. Lindsay, R.K., Wu, A.S.: Testing the robustness of the genetic algorithm on the
floating building block representation. In: AAAI/IAAI, Vol. 1. (1996) 793–798

9. Wineberg, M., Oppacher, F.: The benefits of computing with introns. In: Proceed-
ings of GP-96. (1996) 410–415

10. Wu, A.S., Lindsay, R.K.: A survey of intron research in genetics. PPSN IV (1996)
101–110

11. Levenick, J.R.: Swappers: Introns promote flexibility, diversity and invention. In:
Proceedings of GECCO-99. (1999) 361–368

12. Iba, H., Terao, M.: Controlling effective introns for multi-agent learning by genetic
programming. In: Proceedings of GECCO-2000. (2000) 419–426

13. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Ge-
netic Algorithms. Kluwer Academic Publishers, Boston, MA (2002)

14. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of
ICGA-93. (1993) 38–45

15. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. FOGA 2 (1993)
93–108

16. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Unpublished doctoral dissertation, University of Michigan, Ann Arbor, MI (1975)
(University Microfilms No. 76-9381).



Metamodel–Assisted Evolution Strategies

Michael Emmerich1, Alexios Giotis3, Mutlu Özdemir1,
Thomas Bäck2, and Kyriakos Giannakoglou3

1 Informatik Centrum Dortmund, Center for Applied Systems Analysis, Joseph
von Fraunhoferstr. 20, D-44227 Dortmund, Germany

emmerich@icd.de
2 NuTech Solutions GmbH

Martin Schmeißer Weg 15, D-44227 Dortmund, Germany
baeck@nutechsolutions.de

http://www.nutechsolutions.com
3 National Technical University of Athens, Dept. of Mechanical Engineering

Athens, Greece
{agiotis,kgianna}@central.ntua.gr

Abstract. This paper presents various Metamodel–Assisted Evolution
Strategies which reduce the computational cost of optimisation problems
involving time–consuming function evaluations. The metamodel is built
using previously evaluated solutions in the search space and utilized to
predict the fitness of new candidate solutions. In addition to previous
works by the authors, the new metamodel takes also into account the
error associated with each prediction, by correlating neighboring points
in the search space. A mathematical problem and the problem of design-
ing an optimal airfoil shape under viscous flow considerations have been
worked out. Both demonstrate the noticeable gain in computational time
one might expect from the use of metamodels in Evolution Strategies.

1 Introduction

Evolution Strategies (ES) are a powerful tool for global optimisation in high-
dimensional search spaces. However, their known weakness is that they require
a high number of evaluations. Similar problems may be reported for other
population–based methods, such as the widely used Genetic Algorithms. In op-
timisation problems with time–consuming evaluation software (applications in
the field of aeronautics are typical examples) this renders the total CPU cost to
be prohibitive for industrial use. A way for keeping this cost as low as possible
is through the use of a surrogate evaluation tool, i.e. the so–called metamodel;
a relevant literature survey can be found in [3], at least from the viewpoint
of applications in aeronautics. The Metamodel–Assisted Evolution Strategies
(MAES) can be applied for global optimisation with any time–consuming evalu-
ation method, especially in industrial design optimisation. Extending a previous
work by the same authors [5], a new enhanced metamodel is employed herein. In
the course of evolution, the metamodel’s role is to point to the most promising

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 361–370, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



362 Michael Emmerich et al.

individuals that will be re–examined through the time–consuming evaluation
software. The use of the metamodel prerequisites the existence of a database
and procedure for optimally selecting the database subset to be used for its
construction.

Various metamodels can be devised. In the past, Giannakoglou et al [4] uti-
lized radial basis function networks as surrogate models. Other algorithmic vari-
ants that use metamodels in evolutionary optimisation can also be found in the
literature (for instance, in Jin et al. [6]).

In the present study, we will extend the use of metamodels, as described in
[5], by incorporating a local error estimation technique that enables the opti-
misation method to estimate the reliability of the approximated function values
and to exploit further this information. The error estimation is based on the
local density and clustering of points and on estimates of local correlations. A
search criterion is used, which considers both the local error estimation and the
fitness estimation. Furthermore, it will be demonstrated that the step-size self-
adaptation is preserved despite the use of the metamodel. Unlike [5], which made
use of small population size ES, in the present paper ES with large population
size will be employed; to the authors experience, the latter is best suited for
global optimisation.

This paper is organised as follows. The metamodel is first introduced and then
the ES along with the search criterion based on fitness and error estimations are
described. For the assessment of the proposed method, artificial landscapes and
an airfoil optimisation problem will be analysed.

2 Kriging and Local Error Estimation

A metamodel approximates a multivariate function using points that have al-
ready been evaluated. It is a reasonable assumption to consider that the time
required for building the metamodel is negligible compared to the CPU cost for
an exact evaluation, at least in real world problems. Thus, a metamodel is to be
considered as a fast surrogate model to the exact evaluation software.

Henceforth, x1, . . . ,xm ∈ R
n will denote previously evaluated candidate so-

lutions and y = (y1, . . . , ym) := (f(x1), . . . , f(xm)) are results from the exact
evaluations associated with each one of the aforementioned solutions. Using any
interpolation method, the estimation function f̂ returns the exact value yi, at
the data sites xi, i = 1, . . . ,m. In this paper, the metamodel is based on Kriging
techniques, which provide estimates to the fitness values of new candidate solu-
tions. Kriging stands for an isotropic interpolation method which can deal with
irregularily distributed points in the search space. We recall that an interpola-
tion method is called isotropic if f̂ depends exclusively on distances ‖ x − xi ‖
from neighbouring points instead of the absolute value of x and the direction
x − xi. Kriging was originated by the mining engineer Krige, who used this
method to estimate ore concentrations in gold mines. Later, Kriging was formu-
lated rigorously by Matheron [9]. In recent years it has been used in geostatistics
[12] and in metamodelling and optimisation [8,11,2]. Kriging assumes that that



Metamodel–Assisted Evolution Strategies 363

each measured value of the objective function f is the realisation of an isotropic
n-dimensional Gaussian stochastic process with unknown mean β ∈ R and co-
variance function of the form c(s, t) = σ2rθ(s, t). Here σ2 > 0 and θ are unknown
and

rθ(s, t) := exp(−θ ‖ s− t ‖2) (1)

Note that this kernel allows to estimate values that are lower than the minimal
values of �y. An alternative kernel function would be rθ(s, t) := exp(−θ ‖ s−t ‖).
For this function the optima of the Kriging approximation are the same as the
optima in the set of measured values {y1, . . . , yn} (cf. [7]).

In order to construct an approximation by Kriging, unknown parameters
(β, σ, θ) have to be estimated by the maximum likelihood method. This is done
by solving a minimisation problem with a local search method.

n log σ̂2(θ̂) + log det R(θ̂)→ min

β̂ = [ITR(θ̂)I]−1ITR(θ̂)−1y (2)

σ̂2(θ̂) =
1
n

[y − Iβ̂]TR(θ̂)−1[y − Iβ̂]

R(θ̂) := [rθ̂(xi,xj)]

Once θ̂ has been obtained, estimations of function values at new points can be
computed as follows

f̂(x) := β̂ + (y − Iβ̂)TR(θ̂)−1r(x; θ̂), with r(x; θ̂) := [rθ̂(xi,x)] (3)

The mean squared error of this estimation is estimated as follows

ˆMSE(x) = σ2 − σ2[I; r(x, θ̂)T ]
[

0 I
I R(θ̂)

]−1 [
I

r(x; θ̂)

]
(4)

The value of ˆMSE depends on the correlation of the landscape as well as on the
local density of points. This has been illustrated in Figure 1. From this figure
it comes out that the approximation is precise at the points that have been
evaluated and more precise in regions with a high point density. In this region
the ˆMSE is low. The approximation is also precise, if a point lies between two
data points for which exact measurements exist. This illustrates that Kriging
takes into account the clustering of points. The right part in Figure 1 f shows a
sinusoidal function with doubled frequency with the same points xi, i = 1, . . . , 8
being evaluated. In this case the correlation between neighbouring points is much
weaker, which worsens the quality of the function approximation. The increased
difficulty has an effect on the ˆMSE prediction too, which is much more pessimistic
in that case.

Although it has been stated that the metamodel’s CPU cost could be safely
neglected in real word optimisation problems with time–consuming evaluation
methods, the real CPU cost of the Kriging method depends mainly on the num-
ber of evaluated sites and not so much on the dimension of the search space. In or-
der to estimate θ, repetitive inversions of the covariance matrix R(θ̂) are needed.



364 Michael Emmerich et al.

Evaluated Points

Estimated Function
MSE

Original Function

1050−5−10−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

1050−5−10−2

−1.5

−0.5

0

0.5

1

1.5

2
Original function

MSE
Estimated Function

Exact Evaluations

Fig. 1. Interpolation with Kriging: Original function, approximation and error-
estimation for the one-dimensional function sin(x) (left) and sin(2x) (right).

The CPU cost for this inversion is in O(m3) and this determines the asymptotic
time complexity of the metamodelling algorithm, which is O(Noptm3 + nm2)
(Nopt is the number of iterations for the local minimisation of the MSE with
Nopt ≈ 200). Note that the time complexity for calculating ˆMSE and f̂ is in
O(nm2), once the metamodel has been built.

The Kriging metamodel used in this work is based on the k nearest neighbours
at each point, so it will be referred to as local metamodel. The value of k has
been set to 20. Any further increase in k seems to slightly improve the results
but, at the same time, increases the computation time significantly. The Kriging
algorithm is the one proposed by Padula et al. [7] with pseudo inversion of the
covariance matrix. One building and evaluation of the local metamodel takes
about 0.2 seconds on a Pentium III, 1GHz PC. Failed evaluations are treated
by penalizing them with the worst feasible value multiplied by 10. It is also
recommended to increase k for highly dimensioned search spaces or in case that
the exact evaluation tool is time–consuming.

3 Metamodel Assisted Evolution Strategies

It is known that ES are powerful and robust optimisation tools. They are estab-
lished as standard tools in practical optimisation. In an ES, parameter vectors
(search points) x ∈ R together with one or many step-size parameter(s) σ ∈ R

+

form an individual. A set of individuals is termed a population. Modern (µ, κ, λ)-
ESs usually work with increased populations. They can be easily adapted to
different computing environments and representations. In this study they will
be used for continuous parameter optimisation.

The (µ, κ, λ)-ES has first been applied by Schwefel [10]. Within any genera-
tion, mutation and recombination operators are applied to generate λ offspring
from µ parents. In order to form a new generation, the best from the µ + λ
individuals are selected. Individuals that exceed the age of κ generations are
eliminated from the selection procedure.

Throughout this study we employed the mutative self adaptation suggested
by Ostermeier [10] with a single global step-size. According to [10], a discrete re-



Metamodel–Assisted Evolution Strategies 365

combination operator has been used for the object variables and an intermediate
recombination for the step-size parameter. A recommended strategy variant for
complex multimodal problems is the (15, 5, 100)-ES. Thanks to the large parent
population size, the recombination operator becomes beneficial. Furthermore,
the selection pressure λ/µ ≈ 7 is high enough to enable the self-adaptation of
step sizes. The maximum life time of 5 generations makes the strategy robust,
even in the presence of discontinuities.

In this work, the metamodel will be used to accelerate the (15, 5, 100)-ES.
As in Trosset and Torczon [11], direct optimisation in continuous spaces will be
combined with metamodelling techniques. A fitness criterion based on both the
estimated value and the estimated local variance of the prediction model is used
by setting up a search criterion to estimate the potential outcome of a computer
experiment:

Sc(x) := f̂(x)− w
√

ˆMSE(x). (5)

In the MAES, this criterion Sc is used to pre-select s (0 < s < λ) individuals out
of λ offspring, in order to evaluate them exactly. Only the individuals with the
lowest values for Sc are chosen for this. The behaviour for w = 1 and for w = 0
will be studied. In the latter case, Sc reduces to Sc,w=0(x) = f̂(x). The difference
between both criteria is that with w = 0 the most promising candidate solutions
are selected whereas with w = 1 this concept is extended to still unexplored
search areas, by considering the estimation error and additionally selecting the
individuals with a potential of good performance. Thus, it is recommended to
use Sc in order to make the whole algorithm more robust.

The parameter w can be used to increase the influence of the error term. Its
value should be increased in complex problems. On the other hand, the algorithm
will converge faster to a local optimum if w is low. The value of w = 1.0 is used
as default throughout this study.

The number of individuals that are selected for exact evaluations is an im-
portant parameter. About 10 exact evaluations per generation is a figure that
turned out to perform well. It allows to get enough iterations for making the
step-size adaptation work and also to have a sufficient amount of new infor-
mation for areas of the search space, which are of interest in the forthcoming
iteration. Over and above to the individuals which are pre-selected by the search
criterion(s), individuals which outperform the so-far best individual are also ex-
amined through the exact evaluation tool. By this measure, the algorithm can
hardly be trapped in artificial local optima.

With the proposed metamodel assisted selection scheme it is possible for the
ES not only to learn from promising individuals but also to memorize and make
use of search points with bad performance, by accessing the long term memory
of the evolution’s history.

In order to increase the metamodel’s performance each run is started using
a randomly initialised population of 100 individuals, which has been exactly
evaluated. From this population the 15 best individuals have been selected in
order to build the starting population for the ES.



366 Michael Emmerich et al.

 (15,5,100)−ES
 (2,5,10)−ES

1000

100

10

1

0.1

0.01

0.001

0.0001

1e−05

1e−06
0 200 400 600 800 1000

MAES−KRIGING−MSE
MAES−KRIGING

MAES−KRIG−MSE−2−8

10

1

0.1

0.01

0.001

0.00010 200 400 600 800 1000

(15,5,100)−ES
(2,5,10)−ES

MAES−KRIGING−MSE
MAES−KRIGING

MAES−KRIG−MSE−2−8

Fig. 2. Average plots of 20 runs on sphere function. Fitness value (right) and the global
step-size (left) vs the number of exact evaluations.

Six different strategy variants have been compared in this study:

– (15, 5, 100)-ES: The canonical (15, 5, 100)-ES with random starting popula-
tion of 100 individuals.

– (2, 5, 10)-ES: The canonical (2, 5, 10)-ES with a random starting population
of 10 individuals.

– MAES-KRIGING-MSE: Metamodel–Assisted (15, 5, 100)-ES - 10 individu-
als are exactly evaluated per generation, selected using criterion Sc,w=1.

– MAES-KRIG-MSE-2-8: Metamodel–Assisted (15,5,100)-ES - 2 individuals
are pre-selected using Sc,w=1 and 8 individuals by f̂ , per generation.

– MAES-KRIGING: Metamodel–Assisted (15,5,100)-ES - 10 individuals are
pre-selected using the criterion f̂ .

4 Studies on Artificial Landscapes

In order to prove the general applicability of our approach and learn about
their global and local convergence behaviour (speed, reliability), experiments on
artificial landscapes have been conducted. The algorithms employed started with
a randomly selected population of λ individuals, all of them exactly evaluated.
The initial step-size was set to 5% of the variables range. The first test function
was a simple sphere function (

∑n
i=1 x

2
i , x ∈ [−10, 10]n ⊂ R

n). It has been selected
to demonstrate the different local search characteristics of the strategy variants
and to investigate their ability to adapt step-sizes.

The result shows that despite the large population size, it is still possible
to self-adjust step-sizes by mutative self-adaptation within a comparably low
number of exact evaluations. Another conclusion drawn from these computations
is that the convergence behaviour is not seriously affected if the search criterion
f̂ is replaced (partly) by Sc,w=1. However, it can be seen that the strategies that
only employ f̂ as pre-selection criterion are slightly better than those also using
Sc,w=1.

The second function is the multimodal Keane’s Bump problem 3, which is
denoted as follows:



Metamodel–Assisted Evolution Strategies 367

Fig. 3. Keane’s function plotted in 2-dimensions for a cut of the search space. The
optimum is indicated by the black spot in the upper right corner of the contour plot.

min−|
∑n
i=1(cos4 xi)− 2 ∗∏n

i=1(cos2(xi))|√∑n
i=1 i ∗ x2

i

, (6)

n∏
i=1

xi > 0.75,
n∑
i=1

xi <
15n
2
, x ∈]0, 10[n⊂ R

n

This problem is characterized by a nonlinear boundary and a high number of
local optima. The optimal solution is located near the constraint boundary.

The global convergence behaviour of different strategies was investigated (cf.
4). The (15, 5, 100)-ES performs much better than the (2, 5, 10)-ES. This indi-
cates that strategies with a small population size are not robust for such prob-
lems. In contrast to the previous study, it now matters which search criterion is
applied. Runs using Sc,w=1 perform much better (in average) than those guided
only by the function estimation with Kriging f̂ . Here we get the desired effect
that the strategy concentrates not only on the most promising solutions but
makes also evaluations in unexplored regions of the search space that have a
high potential of containing better solutions.

In the case of complex multimodal functions it is typical that MAES based
on Kriging start by yielding a wide margin and that later they are overtaken
by the (15, 5, 100)-ES. This is contradictory to what often occurs in unimodal
functions. The fact that the (15, 5, 100)-ES overtakes the Kriging variants in the
long term, might be explained by the fact that this strategy adapts the step-size
much slower and the high step-size makes it easier to escape from local optima.

Though they work with the same number of iterations the (2, 5, 10)-ES leads
to very bad results in the Keane function problem. This should be noticed in
contrast to what is often believed, viz. that only small populations lead to good
results when working with time consuming evaluations. This is certainly applica-



368 Michael Emmerich et al.

 (15,5,100)−ES
 (2,5,10)−ES

800 900 10007006005004003002001000−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

MAES−KRIGING−MSE
MAES−KRIGING−MSE−2−8

MAES−KRIGING

Fig. 4. Results on 20 dimensional Keane Function using the Kriging approximator:
Averaged fitness histories for 20 runs (left) and a histogram for the best found values
in the 20 runs after 1000 exact evaluations (right) are plotted.

ble for simple convex and unimodal functions. But EAs are not intended to solve
problems, where the function topology is simple and for which other (faster) op-
timization tools can be recommended. ES are used in real-world application with
highly nonlinear and multimodal characteristics.

5 Airfoil Shape Optimisation

This problem deals with the redesign of a 2D airfoil (the starting profile is
the well known RAE 2822 ) in order to minimize the drag coeficient (CD) and
maximize the lift coefficient (CL) at certain flow conditions. These are: Re =
6.2×106, M∞ = 0.75, α∞ = 2.734o where Re stands for the freestream Reynolds
number based on the chord length, M∞ for the freestream Mach number and
α∞ for the freestream flow angle. The transition was fixed on both sides at 3%
of the chord.

For the parameterization of each shape one circle for the leading edge and
two Bezier curves with five control points each have been used. The leading and
trailing edge positions were fixed and the total number of design parameters was
equal to 22.

The simulation tool was M. Drela’s MSES analysis software [1] which at the
aforementioned flow conditions yields CL = 0.748, CD = 0.0235. One evaluation
takes about 1min on a Pentium III 1GHz PC. The cost function was defined as

F = CD +
10
CL

(7)



Metamodel–Assisted Evolution Strategies 369

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

100 200 300 400 500 600 700 800 900 1000

C
os

t F
un

ct
io

n

Exact Evaluations

ES
MAES-KRIGING

MAES-KRIG-MSE

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

y

x

ES
MAES-KRIGING

MAES-KRIG-MSE
Initial RAE 2822

Fig. 5. Left: Average convergence histories of 3 runs of the airfoil shape optimization
problem with the ES and MAES using one and both selection criteria. Right: Initial
airfoil profile and the optimal ones computed using ES and MAES.

Working with a (15,5,100) strategy, average convergence histories are shown
in fig.5 (left) with the conventional ES and MAES using one and both selection
criteria. Each curve is the average of three optimization tasks. This plot indicates
that the MAES technique is capable of reducing the computing cost compared
to the conventional ES. On the right part of figure 5, the initial RAE 2822 and
the new optimal profiles are illustrated.

6 Conclusions

The use of metamodels in the context of ES–based optimisation algorithms was
proved to offer economy in computing time. This economy results from the fewer
exact evaluations that this method requires. It proved advantageous to use the
metamodel not only for predicting the fitness value of new individuals but also for
guessing the error associated with these predictions. In particular, the function
estimation contributes mostly to reduction of the computational time whereas
the error estimation helps to increase the global convergence reliability in com-
plex multimodal problems. It was also proved that the metamodel does not harm
the self-adaptivity properties of the method and that populations of increased
size with good exploration capabilities can be used with low computing cost.

Acknowledgement

The support from bilateral Personnel Exchange Programme between Greece and
Germany (IKYDA 2000) is acknowledged.



370 Michael Emmerich et al.

References

1. M. Drela and M.B. Giles. Viscous–Inviscid Analysis of Transonic and Low Reynolds
Number Airfoils. AIAA Journal, 25 (10):1347–1355, 1987.

2. M.A. El-Beltagy, P.B. Nair, and A.J. Keane. Metamodelling Techniques for Evolu-
tionary Optimisation of Computationally Expensive Problems: Promises and Lim-
itations. In A.E. Eiben M.H. Garzon V. Honavar M. Jakiela W. Banzhaf, J. Daida
and R.E. Smith, editors, Proc. of GECCO, Int’l Conf. on Genetic and Evolutionary
Computation, Orlando 1999, pages 196–203. Morgan Kaufman, 1999.

3. K.C. Giannakoglou. Design of optimal aerodynamic shapes using stochastic opti-
mization methods and computational intelligence. Progress in Aerospace Sciences,
(38(1)):43–76, 2002.

4. K.C. Giannakoglou, A.P. Giotis, and M. Karakasis. Low-cost genetic optimization
based on inexact pre-evaluations and the sensitivity analysis of design parameters.
Inverse Problems in Engineering, (9):389–412, 2001.

5. A. Giotis, M. Emmerich, B. Naujoks, K. Giannakoglou, and Th. Bäck. Low cost
stochastic optimisation for engineering applications. In Proc. Int’l Conf. Indus-
trial Applications of Evolutionary Algorithms, EUROGEN2001, Athens, GR, Sept.
2001, Barcelona, 2001. CIMNE.

6. Y. Jin, M. Olhofer, and B. Sendhoff. Managing Approximation Models in Evo-
lutionary Aerodynamic Design Optimisation. In CEC 2001 Int’l Conference on
Evolutionary Computation, Las Vegas, volume 1, pages 592–599, Piscataway NJ,
2001. IEEE Press.

7. A. Padula. Interpolation and pseudorandom function generators. Senior honors
thesis, University, Dept. of Computational and Applied Mathematics, Rice Uni-
versity, Houston, TX, 2000.

8. A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness land-
scape approximations. In A.E. Eiben, Th. Bäck, M. Schönauer, and H.-P. Schwe-
fel, editors, Parallel Problem Solving by Nature, volume V of LNCS, pages 87–96,
Berlin, 1998. Springer-Verlag.

9. J. Sacks, W.J. Welch, W.J. Mitchell, and H.-P. Wynn. Design and analysis of
computer experiments. Statistical Science, (4):409–435, 2000.

10. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, 1995.
11. M.W. Trosset and V. Torczon. Numerical optimization using computer experi-

ments. Technical report, Institute for Computer Applications in Science and En-
gineering ICASE TR 9738, NASA Langley Research Center, Hampton Virgina,
1997.

12. H. Wackernagel. Multivariate Geostatistics. Springer Verlag, Berlin, 1998.



Limiting the Number of Fitness Cases
in Genetic Programming Using Statistics

Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi

Computer Science Institute, University of Lausanne
1015 Lausanne, Switzerland

{Mario.Giacobini,Marco.Tomassini,Leonardo.Vanneschi}@iis.unil.ch

Abstract. Fitness evaluation is often a time consuming activity in ge-
netic programming applications and it is thus of interest to find criteria
that can help in reducing the time without compromising the quality
of the results. We use well-known results in statistics and information
theory to limit the number of fitness cases that are needed for reliable
function reconstruction in genetic programming. By using two numerical
examples, we show that the results agree with our theoretical predictions.
Since our approach is problem-independent, it can be used together with
techniques for choosing an efficient set of fitness cases.

1 Introduction

The problem of determining adequate training samples of data is extremely
common in the machine learning field and, of course, it is shared by genetic
programming (GP). While the issue has received quite a bit of attention in
domains such as artificial neural networks [5], it has almost been ignored, to our
knowledge, in the case of GP. A noteworthy exception is the book by Banzhaf
et al. [2] but, although interesting, the discussion is at an introductory level and
does not provide quantitative criteria for the practitioner.

Genetic Programming is by its very nature a time consuming program induc-
tion method, a drawback that is obviously compensated for in many instances
by its flexibility. Now, for most real world applications of GP it is well known
that fitness evaluation is by far the most time consuming operation. It would
thus be interesting to establish criteria that can help the researcher to limit the
time spent in this phase as much as possible without compromising results in
terms of quality and, possibly, generalization capability. One is thus confronted
with two problems: how to select a sufficient number of fitness cases and how
to choose those fitness cases in such a way that they are effective in driving the
learning process towards a solution.

Here we approach the former problem i.e., how to significantly bound the
number of fitness cases that have to be examined, from a standard statistical
and information-theoretical viewpoint. Indeed well-known results of parametric
statistics can be brought to bear on the problem directly and allow to reduce
the number of fitness cases keeping a fixed significance level with a given, user-
determined probability. A second starting point, apparently different from the

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 371–380, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



372 Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi

previous one, makes use of the concept of information entropy. By using a couple
of simple functions, we show that both approaches allow to fundamentally limit
the number of fitness cases and also that they agree in providing the same
qualitative bounds.

Several works have approached the second problem i.e., how to choose sig-
nificant test cases, from an heuristical point of view with the aim of somehow
sorting, cutting, or reordering the fitness cases is such a way that they are more
useful [3,4]. Other techniques use co-evolution of the fitness cases [6]. Since our
criteria are problem-independent, it is clear that the two approaches are orthog-
onal; thus, our results can usefully be combined with good heuristics for choosing
the current set of fitness cases.

The article is organized as follows. The next section introduces the funda-
mental statistical concepts that are used and explains their relevance to GP.
Section 3 does the same for the quantity of information and entropy as applied
to function reconstruction. Section 4 describes the functions to be used for the
simulations and the GP parameters. Section 5 presents and discusses the results
of the simulations and, finally, section 6 gives our conclusions and hints to future
work and possible extensions.

2 Statistics

An important concept of statistics is parameter estimation (see e.g. [9]). The
fundamental idea is the following: let {X1, . . . , XN} be a random sample of
observations from a distribution that is specified up to a vector of unknown
parameters. Whereas in probability theory it is usual to suppose that all of the
parameters of a distribution are known, the opposite is true in statistics, where
a central problem is to use the observed data to make inferences about the
unknown parameters. Two kinds of parameter estimates are of interest: point
estimates and interval estimates. Point estimates provide a single value for a
parameter. In the case of interval estimates, rather than stating a certain value
for our estimate of a given unknown parameter, we specify an interval in which
we estimate that the parameter lies and we attach a degree of confidence to the
estimate. For example, suppose that {X1, . . . , XN} is a sample from a normally
distributed population having unknown mean µ and known variance σ2. It can
be shown [9] that x̄ = 1

N

∑N
i=1 xi is the maximum likelihood estimator for µ.

However, we don’t expect that the sample mean x̄ will exactly equal µ, but
rather that it will be close. Hence, rather than a point estimate, it is sometimes
more valuable to be able to specify an interval for which we have a certain degree
of confidence that µ lies within.

2.1 Interval Estimates Applied to GP Fitness Evaluation

Let us consider a classical GP problem where the target function g is defined
on N fitness cases, i.e. g : {x1, ..., xN} → IR. Let also Π be a population of
m individuals, Π = {A1, ..., Am} ⊂ Π∗, where Aj : {x1, ..., xN} → IR for j ∈



Limiting the Number of Fitness Cases 373

{1, ...,m}. Let f : Π∗ → IR be the fitness function of the GP, which associates a
real value

fAj =
N∑
i=1

| fAji − gi |

to each member Aj of a population Π, where fAji is the value for the fitness
case xi of the individual Aj , and gi is the value of the target function g for the
same fitness case. Such a choice of the fitness function, instead of a more classical
mean squared error, does not influence the statistical results of this paper. From
now on we will write xAji for | fAji − gi |.

The mean distance of the individual Aj from the target function g is

x̄Aj =
1
N

N∑
i=1

x
Aj
i

so the mean distance of all the individuals x̄ is

x̄ =
1
m

m∑
j=1

x̄Aj =
1
mN

m∑
j=1

N∑
i=1

x
Aj
i =

1
N

N∑
i=1

1
m

m∑
j=1

x
Aj
i

A well-known result in statistics, the Central Limit Theorem [9], tells us that,
whatever the original distribution of the fitness cases, since we are summing
many independent estimates, the set of the fitness cases will approach a normal
distribution. Therefore x̄ is normally distributed (x̄ ∼ N(µ, σ)). A standard
result for the confidence interval gives [9]

P

(
x̄− tα/2

(
σ√
n

)
< µ < x̄+ tα/2

(
σ√
n

))
≥ 1− α.

Where 1− α (0 < α < 1) is the confidence with which we can expect the mean
to be contained in the given interval. That is, 1 − α percent of the time the
interval will be found to contain the mean. The tα/2 is the Student cumulative
distribution with n − 1 degrees of freedom such that the mean deviates from
its true value in the interval (−tα/2, tα/2). The t-distribution is tabulated and
can be easily computed. The variance σ2, and thus the standard deviation σ is
unknown but can be estimated by the sample variance s.

If we set K = 2tα/2(s/
√
n), the length of the confidence interval, we get a

function relating such an interval K and the number of fitness cases n:

n =
(

2tα/2
s

K

)2

Thus, n is the number of fitness cases that must be used in order for the mean
fitness to be estimated to be in the confidence interval K with a given probability
1− α.



374 Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi

3 Entropy

Let Y be a discrete random variable that takes values in the range {y1, ..., yN},
such that P (Y = yi) = pi, for i ∈ {1, ..., N}. The information content is defined
as I(Y = yi) = −C(loga pi), where C and a are two positive constants [1].

Given a discrete random variable Y , we cannot know for sure which of its
values y1, ..., yN will occur. Consequently, we don’t know how much information
I(p1), ..., I(pN ) we will be receiving, so that we may regard the information
content of Y itself as a random variable which we denote as I(Y ). Clearly it
has a range {I(p1), ..., I(pN )}. The expectation value (mean) of I(Y ) is called
entropy and is denoted by H(Y ):

H(Y ) = E(I(Y )) = −C
N∑
j=1

pj loga(pj).

In the case where pj = 0, the quantity pj loga(pj) is not well defined and it is
conventionally assumed to be zero.

Such a quantity has two important properties (see [1]):
(i) H(Y ) ≥ 0, and H(Y ) = 0 iff Y takes one of its values with certainty;
(ii) H(Y ) ≤ C loga(N) with equality iff Y is uniformly distributed.

3.1 Entropy and Function Reconstruction

The concept of entropy of a random variable, described in the previous section,
can be easly applied to a discrete target function of a classical GP optimisation
problem.

If we take as sample space in a probability space the set of the fitness cases
of a GP discrete target function, S = {x1, ..., xN}, we can see the target function
g : {x1, ..., xN} → {y1, ..., yM} ⊂ IR as a random variable. The function g, in
fact, perfectly satifies the definition of a discrete random variable as a mapping
from the sample space S of a probability space to a finite subset R of IR.

It is therefore possible to calculate the entropy H(g(x)) of this function:

H(g(x)) = −C
N∑
j=1

pj loga(pj),

where pj = P (g(x) = yj) for j ∈ {1, ...,M}. Such a measure will indicate the
quantity of information needed to determine the function itself.

The two properties of the entropy of a random variable Y (see section 3)
assure that 0 ≤ H(g(x)) ≤ C loga(N), where a and C are two positive constants
and N is the number of fitness cases. Since we can choose a and C, we can set
them to values such that the entropy would always be contained in the interval
[0, 1]. Taking a = e we have to set C = 1/ ln(N).

For a GP discrete target function it exists a minimum number of sampling
points such that the function can be completely reconstructed. The entropy of



Limiting the Number of Fitness Cases 375

the target function, i.e. the average amount of information associated to the
function, will therefore determine the minimum number of fitness cases to be
considered for a reliable reconstruction of the target function itself.

4 Experimental Setting

To test the validity of our assumptions we have decided to set an experimental
phase with the evolution, by a classical GP, of two simple functions. Since in this
paper we limit ourselves to discrete functions (continuous functions are treated
in a similar way), we have decided to evolve a boolean function and a discrete
step function.

In the first experiment the target function is the seven variables boolean
function g such that g(x1, ..., x7) = ((x1∧x2)∨x3). Such a function has 27 = 128
fitness cases. In the GP evolution we have used as operation set the two boolean
connectors and (∧) and or (∨), and as terminals the set of all the seven boolean
variables x1, ..., x7.

In the second experiment the target function is the following step function,
defined on the interval [0, ..., 99] of the natural numbers, therefore with 100 fitness
cases:

g(x) =




40 if x ∈ [0, 40)
70 if x ∈ [40, 70)
95 if x ∈ [70, 95)
100 if x ∈ [95, 100)

As terminal set in the GP evolution we have given the variable x and the five
constants 0, 40, 70, 95, 100. For the operation set, four operators IF1, IF2, IF3,
IF4 are supplied: IF1(x, α, β) returns α if x ∈ [0, 40) and β otherwise, while
IF2, IF3 and IF4 do the same when x ∈ [40, 70), when x ∈ [70, 95) and when
x ∈ [95, 100) respectively (α and β can either be a terminal symbol or an operator
symbol).

For the evolutions we have used a classical GP with a random initial popu-
lation of 200 individuals with maximum initial depth of 6. In the reproduction
phase, a size 10 tournament selection operator is used to select a parent popu-
lation of 180 individuals to which a standard crossover (with maximum depth
of 17) and a standard mutation (with probability 0.1) is applied to produce 180
offsprings. An elitist successor operator is then used to replace the old popula-
tion with a new one. In each of the 100 generations a set of a given percentage of
fitness cases is randomly chosen with uniform probability between all the possi-
ble fitness cases (as proposed in [8]), and every individual of each population is
evaluated on the same set of fitness cases.

5 Experimental Results

The aim of the two experiments described in the previous section is to show the
statistical behavior of the GP evolutions when the number of considered fitness



376 Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

fitness cases number (n)
co

nf
id

en
ce

 in
te

rv
al

 (
K

)

Fig. 1. The curve relating the confidence interval K and the number of fitness cases n
for the boolean function g(x1, ..., x7) = ((x1 ∧ x2)∨ x3) with α = 0.01 and tα/2 = 2.59.

cases is decreased. For such a purpose the GP tool has been run 50 times for
each percentage of fitness cases. Our intent is to show, with the experimental
evidence, how the number of times the GP converges (i.e. finds the optimal
solutions) decreases when the percentage of the fitness cases used in the evolution
decreases.

5.1 Boolean Function

As we have said in section 4, in the first experimental phase the chosen target
function is the seven variables boolean function g(x1, ..., x7) = ((x1 ∧ x2) ∨ x3).
For the interval estimation of the function, we need the sample mean x̄ and
the sample standard deviation s. We have decided to calculate these values over
a sample set of 1000 random possible solutions, obtaining x̄ = 0.411492 and
s = 0.480703.

On the other hand, this boolean function takes the value 1 on 80 over the 128
fitness cases (and the value 0 on the remaining 48 cases). Thus, the Bernoulli
random variable Y = g(x1, ..., x7) associated to this function is such that p1 =
P (Y = 1) = 0.625 and p0 = P (Y = 0) = 0.375. These information are sufficient
to calculate the entropy H(Y ) of the function:

H(Y ) =
1

ln(128)
[(p0 ln(p0)) + (p1 ln(p1))] = 0.1363

Since the total number of fitness cases is 128, an entropy of the function of 0.1363
tells that the minimal number of fitness cases needed to determine the function
itself is the 13.63% of 128, i.e. there exist a set of 17.5 fitness cases by which it
is possible to completely determine the function.

A typical behavior of the interval estimate curve relating the confidence in-
terval and the number of fitness cases can be seen in figure 1, for a probability
level of α = 0.01 (see section 2.1). It is interesting to note that the confidence
interval drastically increases in the neighborhood of the entropy of the function.

The experimental results, tabulated in figure 2, confirm our assumptions:
when the number of fitness cases is greater than the entropy the behavior of the



Limiting the Number of Fitness Cases 377

Fig. 2. Statistics of the evolutions for the function g(x1, ..., x7) = ((x1 ∧ x2) ∨ x3): for
different numbers of fitness cases the table shows the percentages of the evolutions that
converge (i.e. find the optimal solution), have a flat behavior (i.e. no evolution occurs),
and have an oscillating behavior (i.e. obtains unreliable results).

20 40 60 80 100
0

20

40

60

80
100 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

20 40 60 80 100
0

20

40

60

80
20 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

20 40 60 80 100
0

20

40

60

80
10 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

20 40 60 80 100
0

20

40

60

80
5 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

Fig. 3. Three sample GP runs for the boolean function with n = 100, n = 20, n = 10
and n = 5 fitness cases respectively. When n is greater than the function entropy
(17.5 fitness cases), the curves are mostly convergent. While when n is lower than the
function entropy, the curves show an oscillating behavior.

GP runs doesn’t significantly change, and therefore the confidence interval stays
almost constant. On the contrary, when the number of fitness cases is lower than
the entropy of the function, the statistics of the GP runs drastically change. The
algorithm doesn’t seem to have enough information to build the target function
and we start observing an oscillating behavior of the best individual found (see
figure 3). Such a result is consistent with the confidence interval which increases
drastically below the entropy value (see figure 1).



378 Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

fitness cases number (n)
co

nf
id

en
ce

 in
te

rv
al

 (
K

)

Fig. 4. The curve relating the confidence interval K and the number of fitness cases n
for the step function with α = 0.01 and therefore tα/2 = 2.59.

Fig. 5. Statistics of the evolutions for the step function: for different numbers of fitness
cases the table shows the percentages of the evolutions that converge (i.e. find the
optimal solution), have a flat behavior (i.e. no evolution occurs), and have an oscillating
behavior (i.e. obtains not unreliable results).

5.2 Step Function

Also in the second experimental phase, the step function defined in section 4,
we need the sample mean value x̄ and the sample standard deviation s to draw
the curve of the confidence interval K as a function of the fitness cases number
n (figure 4). We have, in this case too, decided to calculate these values over
a sample set of 1000 random possible solutions, obtaining x̄ = 31.1453 and
s = 19.5185.

On the other hand, the random variable Y = g(x) associated to this target
function takes four different values {40, 70, 95, 100} with probability p40 = 0.4,
p70 = 0.3, p95 = 0.25 and p100 = 0.05 respectively. The entropy of the function
H(Y ) is thus:

H(Y ) =
1

ln(100)

∑
i∈{40,70,95,100}

pi ln(pi) = 0.2658

The minimal number of fitness cases needed to determine the function is therefore
26.58, since the total number of fitness cases is 100.

As can be seen in figure 5, for this test function we have the same statistical
behavior as that of the boolean function (see section 5.1). When the number of
fitness cases is greater than the entropy of the function we observe a normal con-
vergence behavior. While with a number of fitness cases lower than the entropy



Limiting the Number of Fitness Cases 379

20 40 60 80 100
0

500

1000

1500

2000

100 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

20 40 60 80 100
0

500

1000

1500

2000

30 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

20 40 60 80 100
0

500

1000

1500

2000

20 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

20 40 60 80 100
0

500

1000

1500

2000

5 fitness cases

generation

m
ax

im
al

 fi
tn

es
s

Fig. 6. Three sample GP runs for the boolean function with n = 100, n = 30, n = 20
and n = 5 fitness cases respectively. When n is greater than the function entropy
(26.5 fitness cases), the curves are mostly convergent. While when n is lower than the
function entropy, the curves show an oscillating behavior.

we start observing oscillating curves (see figure 6). Such a result is consistent
with the confidence interval which increases drastically below the entropy value
(see figure 4).

In light of the results obtained here, it can be said that the approach called
stochastic sampling, which uses only one fitness case in individual fitness evalu-
ation suggested in [2,7] cannot, in general, give reliable results. Nevertheless, it
can be justified in robotics, the case presented by the authors, given that fitness
evaluation is very costly and the environment extremely variable. To asses its
validity, one should nevertheless show that time averages can be substituted for
ensemble averages, which is true in the limit for ergodic processes only.

6 Conclusions and Future Work

In this paper we have started from the idea that the number of fitness cases
that we need to take into account in GP fitness evaluation can fundamentally
be limited by statistical and information-theoretic considerations. Some well-
established results, such as the Central Limit Theorem and interval estimation
of distribution parameters, leads us straightforwardly to formal results which are
in agreement with those that are obtained from entropy considerations. These
results have been confirmed experimentally for two simple, but typical, function



380 Mario Giacobini, Marco Tomassini, and Leonardo Vanneschi

induction problems in GP. Below the lower limit for the number of fitness cases,
the confidence interval for the mean widens very quickly and an oscillating be-
havior sets in, while for a number of fitness cases equal or slightly larger than
the minimum, the convergence behavior is reliable and stable.

Our results are of a statistical nature and thus they do not depend on the
particular problem. In other words, they tell us how many fitness cases one has
to take into account on the average for any problem in order to reach significant
results but not how these fitness cases should be chosen for maximum efficacy.
Some previous works have tackled the latter problem heuristically, and thus
could be used together with our criteria to not only reduce the number of fitness
cases, but also to select the most significant ones.

Future work is scheduled to simulate more functions, including the continuous
case, in order to further confirm the good results obtained here. Another related
problem in machine learning, and thus in GP, is generalization. Generalization,
which is the capability of a solution to correctly explain new data not used in
the training process, has links to the selection of fitness cases and should thus
be tackled next.

References

1. D. Applebaum. Probability and Information: An Integrated Approach. Cambridge,
Cambridge, UK, 1996.

2. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming,
An Introduction. Morgan Kaufmann, San Francisco CA, 1998.

3. C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning
in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors,
Parallel Problem Solving from Nature- PPSN III, volume 866 of Lecture Notes in
Computer Science, pages 312–321, Heidelberg, 1994. Springer-Verlag.

4. C. Gathercole and P. Ross. Tackling the boolean even N parity problem with genetic
programming and limited-error fitness. In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages 119–127,
San Francisco, CA, USA, 1997. Morgan Kaufmann.

5. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, London,
UK, 1999.

6. W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors,
Artificial Life II, volume X of SFI Studies in the Sciences of Complexity, pages
313–324, Redwood City, CA, 1992. Addison-Wesley.

7. P. Nordin and W. Banzhaf. Genetic programming controlling a miniature robot.
In E.V. Siegel and J.R. Koza, editors, Working Notes for the AAAI Symposium on
Genetic Programming, pages 61–67. MIT Press, Cambridge, MA, 1995.

8. B.J. Ross. The effects of randomly sampled training data on program evolution.
In D.Whitley, D.Goldberg, and E. Cantu-Paz, editors, GECCO 2000 Proceedings
of the Genetic and Evolutionary Computation Conference, pages 443–450. Morgan
Kaufmann, 2000.

9. S. M. Ross. Introduction to Probability and Statistics for Engineers and scientists.
Academic Press, New York, 2000.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 381–390, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Resource-Based Fitness Sharing

Jeffrey Horn

Department of Mathematics and Computer Science
Northern Michigan University

Marquette, Michigan, 49855 USA
jhorn@nmu.edu

http://cs.nmu.edu/~jeffhorn

Abstract. This paper introduces a new algorithm for sharing to induce niching
and speciation.  Resource-based fitness sharing is a compromise between the
very natural method of resource sharing and the practical technique of fitness
sharing.  Fitness sharing was meant to simulate resource sharing for function
optimization problems, in which there are no explicit resources to share.  Fit-
ness sharing therefore cannot resolve resource-defined niches as can resource
sharing.  However, selection operators seem to have great difficulty handling
the non-linear interactions among shared fitnesses under “natural resource
sharing”.  To obtain the benefits of both methods, we propose a sharing func-
tion that utilizes actual resources but in a form similar to that of fitness sharing,
resulting in a set of linear equations for equilibrium, and hence much simpler
dynamics under selection.  The superiority of this compromise is demonstrated
on a resource-coverage problem.

1 Introduction

Resource sharing seems to be nature’s way to induce speciation (niching) during
evolution.  Fitness sharing [1] was inspired by resource sharing, and was meant to
simulate it for function optimization, in which explicit resources are not present.
Whenever explicit resources, such as reward for classification tasks, can be identified,
it has been generally assumed that explicit sharing of the resources was more natural
and more appropriate than fitness sharing.   But resource sharing appears to induce
much more complex dynamics than fitness sharing [2].  It appears that the path to
equilibrium can be so difficult for resource sharing that it is likely to lose key species
along the way, and so never reach the optimal equilibrium.  Fitness sharing, on the
other hand, because it does not deal explicitly with the actual resources, cannot in
general have the same equilibria as resource sharing, and therefore can only approxi-
mate the optimal species distributions.  We propose a compromise between the two,
resource-based fitness sharing, which uses the resources explicitly, so that the equi-
librium points are the correct ones, while keeping the equilibrium calculations simple
(linear), as in fitness sharing.  The result is an algorithm with the natural fit of re-
source sharing, and the speed and simplicity of fitness sharing.



382      Jeffrey Horn

2 Background

Sharing methods [3], in which the objective fitness of an individual in the population
is reduced because of the need to share limited resources with competitors (including
copies of itself), are typically incorporated into artificial evolution in order to promote
diversity, to find multiple solutions [3], or to evolve a group of “cooperative” indi-
viduals or species [2,4].  In general, members of a single species are similar but may
have different genotypes.  In this paper however, we limit our analysis to species that
consist of a single genotype.  Thus each distinct genotype defines a species.  A popu-
lation P of size N can be partitioned into subsets of identical individuals (e.g., species
A, B, C, …K) with subset sizes that sum to N (e.g., nA + nB  + nC + … + nK  = N).  A
niche is the set of resources “covered”, or “utilized”, by a species.  The terms niche
and species, and the terms niching and speciation, are hence used interchangeably in
this paper, as they are in much of the literature.

2.1 Fitness Sharing

Fitness sharing was introduced by Goldberg and Richardson in 1987 [1].  Under fit-
ness sharing, the objective fitness fi of an individual i is degraded by the presence of
nearby individuals:

.
),(∑

∈

=
 Pj 

i
sh,i

jiSh

f
  f

(1)

Here fsh,i   is the “shared fitness” of individual i.  The sharing function, Sh(i,j), is a
decreasing function of the “distance” d(i,j) between individuals i and j, as typically
measured in genotypic or phenotypic space.  A widely used sharing function is the
linearly decreasing triangular sharing function:





 −= <

otherwise.

    ),(for  
),(

0

1
),( shjid

jid

sh  jiSh
σ

σ
(2)

2.2 Resource Sharing

Resource sharing is applied to problems in which objective fitness is directly propor-
tional to the resources covered.  Sharing means that where coverage overlaps, the
resources (e.g., credit for examples correctly classified [4]) are divided among the
individuals.  Thus in the situation in Figure 1, the objective fitness for each copy of
species A is fA, while the shared fitness is

.
CABAA nn

 f
nn

f
n

- f - ff
f

  

ACABAC AB A 
       sh,A ++++=

(3)



Resource-Based Fitness Sharing      383

Fig. 1. A resource sharing scenario, with three overlapping species A, B, C

2.3 Shape Nesting

The task of placing arbitrary, two dimensional shapes on a two dimensional “sub-
strate”, minimizing unused (uncovered) substrate, or maximizing the number of
shapes placed, while avoiding overlap of shapes, is a known NP-Hard problem [5,6].
Heuristic algorithms are desired by industries (e.g., paper, steel) in which many small
shapes need to be cut from large “blanks” or “cutting stock”.  In this paper we con-
sider a subclass of the problem, in which the shapes to be nested are identical [6].

3 A Real Test of Niching

David Goldberg originally suggested (personal communication, 1994) that we look at
how fitness sharing behaves on a flat fitness landscape, such as a “plateau function”.
At the time, many new multi-objective genetic algorithms were having great success
[7,8] by combining a Pareto selection pressure with fitness sharing.  Niching on the
Pareto optimal front means competition on a flat fitness function, what Horn, et. al.
termed equivalence class sharing [7].  Many researchers hoped that niching would
promote diversity within this non-dominated set, perhaps “covering” the Pareto front.
But what equilibrium population distributions are possible over an equivalence class?

3.1 Fitness Sharing on a Hat Function

We assume a one-dimensional fitness function f(x) = 1  for  40 ≤ x ≤ 200, and f(x) = 0
otherwise, where x is an integer between 0 and 255.  Thus f is simply a discrete “hat”
function:  zero everywhere except on a plateau of high fitness, as in Figure 2 upper
left.  We assume any encoding of the single decision variable x as a finite length
chromosome, such as an eight bit binary coded integer.

In a one-dimensional nesting problem, x can be seen as the coordinate of the center
of each piece, with the length of the piece being σsh. The function can be seen as rep-



384      Jeffrey Horn

resenting the substrate.  The substrate would stretch from location (40 -•  σsh / 2)  to
(200 + σsh / 2), with a total length of 160 + σsh .  Any piece with center coordinate  x <
40 or 200 < x would have fitness 0 because it would extend beyond the substrate.

In Figure 2 we show the results of a typical run of a GA on the function f.  The
population size is 2560, giving an expected number of 10 copies of each possible
species in the initial random population.  Only selection is applied (binary tournament
selection) each generation, using the shared fitness values, with σsh set to 20.  This
means the substrate actually extends from x = 30 to x =210, the total length of each
piece is 20, and a maximum of nine of these pieces can be fit onto the substrate.

The four graphs in Figure 2 show the species counts (where each integer value of x
is a separate species) over the run.  By generation 5 the non-global optima have been
eliminated from the population.  We also see an “edge effect”, where the niches at the
very edges of the hat accumulate population share more quickly than other niches.
“Internal niches” are in turn affected by the growth of the edge niches.  Those niches
exactly σsh units distant from the edges grow almost as quickly as the edge niches.
Similarly, niches σsh units in from these niches grow almost as quickly, and so on.  By
generation 180, the only niches remaining in the population are those that are exactly
a multiple of σsh  distant from both edges.  Thus the steady-state population consists
of non-overlapping (non-competing) species.

Fig. 2. Performance of fitness sharing (with selection only) on a hat function

Fitness sharing appears to have potential to evolve solutions to shape nesting prob-
lems.  But it is limited by the simplicity of its distance metric (e.g., radial symmetry).
It seems appropriate for one-dimensional problems, or multi-dimensional problems
with spherical pieces to place (i.e., sphere packing).   But what about, for example,
placing squares in two dimensions?

f(x)
1

0

f(x)
1

0



Resource-Based Fitness Sharing      385

3.2 Resource Sharing (in One Dimension)

A seemingly more natural approach to this type of problem would be resource shar-
ing, since an explicit resource, the substrate, can be identified.  We can simply dis-
cretize the substrate via a grid, and for each discrete element of the substrate, share it
equally among the pieces “covering” that element.  For example, if a particular
population distribution resulted in eight pieces overlapping at a particular element of
the substrate, then each such piece would receive one eighth of the credit for covering
this element, and that one eighth credit would be added to each piece’s fitness total.

This approach holds the promise of being more general than fitness sharing (al-
though it could be computationally expensive) since it can accommodate any shape
piece, taking into account the exact amount of overlap between pieces, rather than
approximating the overlap via a fixed niche radius (i.e., fixed piece diameter, which
would likely be that of its bounding sphere).

In Figure 3 we present the results of two typical runs of this algorithm.1  In both
runs we use a small search space:  there are only 32 different locations (x value of its
center) for each piece, requiring only five bits to encode.  Each piece is exactly three
units wide.  Therefore each piece extends out 1.5 units to the right and left of its x
coordinate.  Thus two pieces with centers x0 and x1 with | x1 - x0 | = 3 would be up
against each other, with no overlap and with no wasted substrate in between.  At most
10 pieces (squares) can be lined up on this substrate with no overlap.  Population size
is 400, binary tournament is the selection method, and no exploration (i.e., no cross-
over or mutation) is attempted.

At the top of Figure 3, we see the initial random distribution of generation 0. Note
that two squares on the left (at positions 0 and 1) and one on the right (at position 31)
extend beyond the substrate (the bold rectangle) and have fitness 0.  These are soon
eliminated, but after 400 generations, the population has not converged to a set of
non-overlapping species.  We observed this situation as typical of our runs with
“regular” resource sharing as described above.  Why isn’t the performance of re-
source sharing at least comparable to that of fitness sharing, on this type of problem?

Fig. 3. Resource sharing performance on a one-dimensional nesting problem

                                                          
1 We thank Todd Marshall for conducting these experiments as an NMU Directed Study.



386      Jeffrey Horn

Horn [4] finds surprising complexity in the dynamics of resource sharing when
more than two overlapping species/niches are involved.  The equilibrium equations
for fitness sharing and resource sharing, for the general case of k niches, always in-
volve solving a system of k equations in k unknowns.  But while the fitness sharing
equations are always linear, the degree of the equations for resource sharing grows
polynomially in k.  Horn noticed more complex convergence even for only three
niches, showing overshoots in the expected proportions of species as the population
converges to the equilibrium.  Perhaps what we have seen here is an indication that
nature does not have an easy time with the highly non-linear dynamics of resource
sharing among many overlapping niches.  Perhaps the computational complexity of
equilibrium equations for a sharing method is a direct measure of the complexity of
the actual population dynamics of species selection.

3.3 Resource-Based Fitness Sharing (in One Dimension)

What if we could combine the benefits of both types of sharing?  What if we could
have the resource-based “niche resolution” of resource sharing along with the (appar-
ently) simpler convergence to equilibrium of fitness sharing?  In other words, what if
we could “linearize” the equilibrium equations of resource sharing, without getting
away from the resource-based sharing mechanism entirely?  Here is one attempt to do
so:

∑
∀

=

 species Y

Sh,X
YXX

X

fn

f
   f

,   
 .

(4)

The above is the general equation for the proposed resource-based fitness sharing
(RFS). A concrete example, for the three overlapping niches A, B, and C in Figure 1,
would be:

.
  ACAB A 

A

fnfnfn

f
f

CBA

Sh,A

++
=

Thus this formulation is a single fraction with a first degree polynomial for the
niche count (denominator), as in fitness sharing, but with each species’ contribution
to the niche count being proportional to the actual overlap (fX,Y), as in resource shar-
ing.

In Figure 4 we present the results of some runs of RFS on the one-dimensional
nesting problem.  In these runs, the substrate width is 200 units and the width of each
square is 20.  Squares can be centered at any of the 200 locations through the sub-
strate.  The population size is 4000 so that in expectation there will be 20 copies of
each possible species in the initial random population.  Again, we look only at selec-
tion (binary tournament); no mutation or crossover is used.

At generation 0 all of the species are represented.  By generation 2 (not shown),
the hanging pieces (zero fitness) have been eliminated.  Generation 107 shows some
evidence of an “edge effect”.  And by generation 225 the only remaining species are



Resource-Based Fitness Sharing      387

the ten members of the “ideal tiling”.2  Each species is represented by approximately
400 copies, which is the equilibrium distribution.  We claim this is a typical run.

Fig. 4. RFS on a one-dimensional nesting problem

3.4 Resource-Based Fitness Sharing in Two Dimensions

Encouraged by the success of RFS in one dimension, we attempt a two-dimensional
problem.  Here the substrate is itself a square, of size 40 by 40 units, while the piece
size (the smaller squares, to be placed) are of width 10 units.  Thus a single ideal
tiling exists:  a four by four array.  There are 40*40 = 1600 different possible loca-
tions (species).  We conduct two experiments:  large population with selection only,
and small population with mutation as the discovery operator.

In the first experiment, we look at selection only.  A population size of 16000
yields an expected ten copies of each possible species in the initial random population
(generation 0 in Figure 5, upper left).  In the typical run portrayed in Figure 5, by
generation 400 only the sixteen members of the optimal tiling are left, each repre-
sented by approximately 1000 copies.  In Figure 5 bottom, histograms of the sub-
population sizes for the sixteen species of the ideal tiling show an apparent “corner
effect” at generation 25, on the way to a uniform distribution at generation 400.

In our second experiment we test RFS with a discovery operator.  In this case we
choose Gaussian mutation:  each generation, with a probability pm = 0.01 both the x
and y coordinates of an individual are individually adjusted3 by a pseudo-random

                                                          
2 A tiling is an ideal nesting in the sense that no substrate is wasted (unused) between pieces.
3 A simple chromosome repair mechanism is applied after mutation:  if the mutated x or y

coordinate is off of the substrate, it is set equal to the nearest edge of the substrate.



388      Jeffrey Horn

amount, normally distributed around a mean of 0 with a standard deviation of 5.  A
small population size (N=500) is chosen so as to rely on mutation-based exploration
to discover some of the 16 members of the ideal tiling.  Figure 5 displays some of the
results of a typical run.  The top of Figure 5 shows the initial random population.
Figure 5, bottom, shows that after 1200 generations all 16 members of the ideal tiling
have been found and are being maintained.  (Mutation continues to generate varia-
tions, but RFS selection allocates few copies to non-optima.)

Fig. 5. RFS (with N = 16000 and selection only) on a two-dimensional nesting problem.

4 Discussion

The combination of selection and a sharing method seem to have potential for appli-
cation to problems in nesting, tiling, layout, packing, and trim minimization [6].
Using “edge effects” and “corner effects”, the two operators seem able to select one
of many possible subsets of species to cover available resources efficiently.  But sur-
prisingly, the more natural-seeming algorithm of explicit resource sharing appears to
induce overly complex dynamics, a phenomenon perhaps foretold in the computa-
tional complexity of our models of sharing equilibrium.  By combining the simplicity
of the fitness sharing method with the use of explicit resources as a measure of niche
overlap, however, we might be able to obtain the best of both techniques.



Resource-Based Fitness Sharing      389

Fig. 6. RFS, with N=500 and using mutation, on the same 2D problem.

As one such synthesis of fitness sharing and resource sharing, RFS needs more in-
vestigation, including theoretical analysis as well as empirical work.  In the short
term, existing theory techniques for niching methods can be applied, including equi-
librium analysis, infinite population models, and Markov chains [2,3,4], to verify that
RFS is a robust niching method with stable equilibria4.

Empirical extensions of this work include trying arbitrary and irregular shapes,
both for the pieces and the substrate5.  Long-term directions include 3D layout prob-
lems, packing of non-identical pieces, and comparing results with those of alternative
algorithms (e.g., clustering) to see if RFS can find a “niche” as a practical algorithm.

                                                          
4 This should be straightforward to show, as we note that RFS is equivalent to fitness sharing

with a distance metric d(X,Y)= fX -  fXY  and a niche radius σsh = fX .  Substituting these values
into Equations 1 and 2 (fitness sharing) yields Equation 4 (RFS) after some algebraic ma-
nipulation.  Thus we can choose to view RFS as a refinement of fitness sharing for resource-
based problems, rather than as an improvement (linearization) of nature’s methods.

5 Such applications would call for rotation as a third decision variable.



390      Jeffrey Horn

References

1. Goldberg, D. E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function
Optimization.  In:  Grefenstette, J. (ed.):  Proceedings of the 2nd International Conference on
Genetic Algorithms.  Lawrence Erlbaum Associates, Hillsdale, New Jersey (1987) 1-8

2. Horn, J.:  The Nature of Niching:  Genetic Algorithms and the Evolution of Optimal, Coop-
erative Populations.  Ph.D. thesis, University of Illinois at Urbana-Champaign, (UMI Dis-
sertation Services, No. 9812622) (1997)

3. Mahfoud, S. W.:  Niching Methods for Genetic Algorithms. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1995)

4. Horn, J.,  Goldberg, D. E., Deb. K.:  Implicit Niching in a Learning Classifier System:
Nature’s Way, Evolutionary Computation, 2(1)  (1994) 37-66

5. Dighe, R., Jakiela, M. J.: Solving Pattern Nesting Problems with Genetic Algorithms: Em-
ploying Task Decomposition and Contact Detection Between Adjacent Pieces. Evolutionary
Computation 3(3) (1996) 239-266

6. Kendall, G.:  Applying Meta-Heuristic Algorithms to the Nesting Problem Utilising the No
Fit Polygon.  Ph.D. thesis, University of Nottingham (2000)

7. Horn J., Nafpliotis, N., Goldberg, D. E.:  A Niched Pareto Genetic Algorithm for Multi-
objective Optimization.  Proceedings of 1st IEEE International Conference on Evolutionary
Computation, Volume 1. IEEE Service Center, Piscataway, New Jersey (1994) 82-87

8. Horn, J.:  Multicriterion Decision Making.  In:  Bäck, T., Fogel, D. (ed.s):  The Handbook
of Evolutionary Computation.  Oxford University Press, New York (1997) F1.9:1-15



Evolution Strategy with Neighborhood
Attraction Using a Neural Gas Approach

Jutta Huhse1, Thomas Villmann2, Peter Merz1, and Andreas Zell1

1 University of Tübingen, Inst. of Computer Science
D–72076 Tübingen, Sand 1, Germany

{huhse,pmerz,zell}@informatik.uni-tuebingen.de
2 University of Leipzig, Clinic for Psychotherapy and Psychosomatic Medicine

D–04107 Leipzig, Karl–Tauchnitz–Str.25, Germany
villmann@informatik.uni-leipzig.de

Abstract. In evolution strategies with neighborhood attraction (EN)
the concepts of neighborhood cooperativeness and learning rules known
from neural maps are transferred onto the individuals of evolution strate-
gies. A previous approach, which utilized a neighborhood relationship
adapted from self-organizing maps (SOM), appeared to perform as well
as or even better than comparable conventional evolution strategies on
a variety of common test functions. In this contribution, an EN with a
new neighborhood relationship and learning rule based on the idea of
neural gas is introduced. Its performance is compared to the SOM-like
approach, using the same test functions. It is shown that the neural gas
approach is considerably faster in finding the optimum than the SOM
approach, although the latter seems to be more robust for multi-modal
problems.

1 Introduction

Evolutionary algorithms (EAs) are stochastic search algorithms inspired by prin-
ciples of biological evolution working simultaneously on a large number of poten-
tial problem solutions. Thereby, these solutions are judged by an external cost
function, called fitness.

The power of neural networks (NNs) arises from complex, dynamic connec-
tions between quite simple calculation units (called neurons) working in a mas-
sively parallel manner. These features enable neural networks to be both robust
and adaptive.

The combination of neural networks and EAs offers new possibilities to in-
crease the power of adaptive approaches. Two main directions can be identified:
the first one is to apply EAs to optimize a neural network whereas the second one
deals with the transfer of methods from neural networks onto the framework of
EAs. For the first type of combining EAs and NNs many examples can be found
in the literature. For the second type however, as already stated in [1], there are
only a few approaches of incorporating aspects of artificial neural networks into
evolutionary algorithms.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 391–400, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



392 Jutta Huhse et al.

Taking this into account, in this paper we focus on such hybrid systems which
combine EAs with neural maps as a special type of neural networks. Examples
are Kohonen’s widely-used self-organizing map (SOM) [2] and the topology rep-
resenting network (TRN) [3]. The main paradigm of neural map learning dis-
tinguishing it from other network types is the incorporation of neighborhood
oriented learning, i. e. neighboring neurons try to adapt in a similar fashion.

Based on previous work, where an Evolution strategy with Neighborhood
attraction (EN) on the basis of Kohonen’s SOM was introduced and compared
to conventional evolution strategies [4], here we present a new neighborhood and
attraction scheme for this EN, based on neural gas (NG) [5].

First, an introduction to neural maps is given in section 2. Then, based on
the description of the SOM inspired EN (subsection 3.1) an EN with a new,
neural gas like neighborhood is explained in subsection 3.2. This new approach
is analyzed using several well-known test functions (section 4) and the results
are given in section 5.

2 Neural Maps

Neural maps as tools for (unsupervised) topographic vector quantization project
data from a (possibly high-dimensional) input space V ⊆ IRDV onto a position
in some output space (neuron lattice) A, such that a continuous change of a
parameter of the input data should lead to a continuous change of the position of
a localized excitation in the grid. This property is called neighborhood preserving
(topographic) mapping. In the most widely used neural map algorithm, the self-
organizing map (SOM) [2], the N neurons are arranged a priori on a fixed grid, i.
e. the ri ∈ A denote the positions of the neurons in the grid A. Usually the grid
is chosen as a hypercube, but other structured arrangements are also admissible.

Other algorithms, such as the TRN, based on the neural gas algorithm (NG)
[5,6], do not specify the topological relations among neurons in A in advance, but
dynamically adapt the neighborhood structure according to the data distribution
during learning.
Associated with each neuron is a weight vector (or reference vector) wr ∈ IRDV .
The mapping is realized by ΨV→A : v �→ s (v) = arg minr∈A ‖ v −wr ‖, where
‖ v − wr ‖ is the Euclidean distance between a given input signal v and the
weight vector wr. The neuron s is referred to as the winner or best–matching
unit. During learning the weight vectors are adapted according to

∆wr = ε · hσ (r, s,v) (v −wr) . (1)

Thereby hσ (r, s,v) is the neighborhood function usually chosen to be of Gaus-
sian shape

hσ (r, s,v) = exp

(
− (d (r, s (v)))2

2σ2

)
(2)

where d (r, s (v)) is a certain distance measure defined on the set A. For SOM,
d (r, s (v)) is evaluated in the grid A, whereas for TRN, it is evaluated in the



Evolution Strategy with Neighborhood Attraction 393

input (problem) space V. With hσ (r, s,v), a neighborhood oriented cooperative-
ness for learning is installed which is triggered by the neighborhood range σ of
the neighborhood function. During the learning process usually σ as well as the
learning rate ε decrease to small values referred to as remaining cooperativeness
σfinal and learnability εfinal of the network. In the beginning of the adaptation
the neighborhood range and the learning rate are high which corresponds to a
rough but fast learning whereas in the convergence phase the rough adaptation
is replaced by a fine tuning. The first phase is indicated by a high cooperative-
ness between the neurons which realizes a high information transfer. In the fine
tuning phase the neurons act more or less separately with an only small (nearest
neighbor) but not vanishing communication.

3 Evolution Strategies with Neighborhood Attraction

As mentioned above there are not many approaches that incorporate concepts
of neural networks into EA to improve EA-performance [7,1]. This fact certainly
holds also for the special combination of neural maps and ES. Here, we concen-
trate on evolution strategies with neighborhood attraction (EN) [4]. The idea
behind EN is to transfer the neighborhood and the learning rule known from neu-
ral maps onto the originally unstructured individuals of an ES to concentrate
the individuals around the optimum.

3.1 SOM-Neighborhood Attraction EN

The SOM-Neighborhood attraction EN (SOM-EN) introduced by Huhse and
Zell [4,8] works as follows:

The neighborhood between the µ parent individuals is constituted by arrang-
ing them on an orthogonal, elastic grid. As known from the SOM, each individual
can be identified by its fixed grid position. Two individuals ai and aj are grid
neighbors if they are directly connected on the grid; i.e. hσ = 1 (see equ. 2). If
no direct grid connection exists, they are not neighbors (hσ = 0).

In contrast to conventional ES and SOM, the initial values of the object
variables of the EN individuals are not assigned randomly. Rather, the problem
space is divided into equally sized hypercubes, each of them corresponding to
one grid position. The object variables of the associated individual are initialized
with equally distributed random values within the ranges of its hypercube.

As is customary in ES, the EN individuals are evaluated using a certain
fitness function.

For the evolutionary variation an EN-specific operator – the neighborhood
attraction – is introduced which manipulates the EN individuals according to one
learning step in a SOM (cf. 1). Each parent individual aP is successively selected.
Among all its (direct grid) neighbors the best neighbor aNb is determined. If the
fitness value of the neighbor is better than the fitness value of the parent, the
EN-specific neighborhood attraction is applied: An offspring individual aO is
produced by attracting the parent individual aP towards its best neighbor aNb
(see Fig. 1).



394 Jutta Huhse et al.

a
N2

a
Nbb

a
P

a
N1

a

a
N3

a
O

Fig. 1. Neighborhood attraction in SOM-EN

In detail, the variation is realized on the level of the object variables by equa-
tion 3, with the neighborhood attraction operator (equ. 4). The neighborhood
relations are retained unchanged.

xO = xP +∆xP (3)
∆xP = δ · (xNb − xP ) (4)

Thereby, the neighborhood attraction factor δ defines the strength of the attrac-
tion along the difference vector. One parent individual can produce nO offspring
by varying δ.

If the fitness value of the parent is considered better than those of all its
neighbors aNj a ”simple conventional” mutation (referred to as ES-mutation
here) is performed. nO offspring are generated according to equ. 5.

z =N (0, 1)
seff = 1

ndmin
∆xP = seff · z

(5)

z is a vector of normally distributed random numbers. The effective step size
seff is determined by 1

n , the reciprocal number of object variables and by the
distance dmin = min(‖xP − xNj‖) to the nearest neighbor. Thus, a mutation
which jumps over a neighbor and an entanglement of the grid becomes less likely.
During the contraction of the grid the effective step sizes decrease due to the
influence of dmin.

Deviating from the in ES commonly used (µ+ λ)- or (µ, λ)-selection scheme
[9] – where the µ individuals which go to the next generation are selected from
all µ parent plus all λ offspring individuals or only from all λ offspring, resp. –
a parental selection scheme is used here, which resembles brood selection known
from genetic programming [10]. Selection is performed for every parent aP and
its nO offspring separately. Each parent contributes exactly one individual to
the next generation. If the nO offspring have been produced by neighborhood
attraction, the parent is always replaced by its best offspring, even if the off-
spring’s fitness is worse (similar to (µ, λ)-selection). Allowing such temporary



Evolution Strategy with Neighborhood Attraction 395

fitness decrease, an individual can pass through a local optimum towards better
fitness values. If the nO offspring have been produced by ES-mutation, the best
of the parent and its offspring is selected (similar to (µ + λ)-selection). Using
parental selection, one the one hand, the grid neighborhood is not disrupted
by the selection process, and, on the other hand, diversity of the population is
better maintained.

3.2 Neural Gas Attraction EN

Now, we propose a new neighborhood and attraction scheme, the neural gas
attraction EN (NG-EN). According to the idea in the NG mentioned above,
we define the topological neighborhood hσ for the individuals depending on
their distances d(ai, aj) in the problem space. The neighborhood radius for
each individual aP is determined by its average (Euclidean) distance d̂E =
1
n

∑
i (‖ xi − xP ‖) to all other individuals. All individuals aNj inside this radius

are considered to be neighbors of aP .
Like in SOM-EN, variation of the individuals is performed on each parent

individual aP separately: All its neighbor individuals aNj are ranked according
to their increasing distances to aP , as it is known from NG. The neighborhood
hσ decreases with the neighbor’s rank and with time (equ. 7). Then aP places
λ offspring in different directions, offspring aOi in direction to the neighbor aNi
with rank i.

In analogy to the neural gas algorithm [5,6,3], the attraction rules from equa-
tions (1), (2) and (4) are rewritten as

∆xP (i) = ε(t) · hσ(i, t) · (xNi − xP ) (6)

hσ(i, t) = exp
(−rank(i)

σ(t)

)
(7)

σ(t) = σi · (σf/σi)(t/tmax)

ε(t) = εi · (εf/εi)(t/tmax)

with
δ(i, t) = ε(t) · hσ(i, t) and δ ∈ [δmin, δmax].

Fig. 2 shows the neighborhood attraction δ decreasing with time and rank.
Two applicable parameter settings were chosen: While σi = 5, σf = 0.05 and
tmax = 30000 are constant, εi and εf were set to either εi = 0.0075 and εf =
0.00375 (left) or εi = 0.02 and εf = 0.01 (right). The initial value for the resulting
δ is in compliance with suggestions made for the δ used in SOM-EN [8].

As in the SOM-EN, this neural gas neighborhood attraction is performed
only if aP is not better than its neighbors. Otherwise the ES-mutation known
from (5) is applied.

4 Test Functions

To investigate the new neighborhood attraction scheme we conducted thorough
test series on an exhaustive test set of well-known optimization tasks also used



396 Jutta Huhse et al.

0

0.005

0.01

0.015

0.02

0 10000 20000 30000 40000

delta_0(t)
delta_1(t)
delta_2(t)
delta_3(t)
delta_4(t)

0

0.005

0.01

0.015

0.02

0 10000 20000 30000 40000

delta_0(t)
delta_1(t)
delta_2(t)
delta_3(t)
delta_4(t)

Fig. 2. Neighborhood attraction factor δi decreasing with time t and rank i. Left: for
the neural gas parameter settings (σi = 5, σf = 0.05, εi = 0.0075, εf = 0.00375),
right: (σi = 5, σf = 0.05, εi = 0.02, εf = 0.01)

Table 1. Test functions

app. name reference dim. opt.
f1 Sphere model [11] var. 0
f2 Generalized Rosenbrock’s function [11] var. 0
f3 Step function [11] var. 0
f6 Schwefel’s double sum (function 1.2) [14,13] var. 0
f9 Ackley’s function [15] var. 0
f15 Weighted sphere model [16] var. 0
f16 Fletcher and Powell const. [17] 5 0
f18 Shekel-5 [18] 4 -10.1532
f19 Shekel-7 [18] 4 -10.4029
f20 Shekel-10 [18] 4 -10.5364
f21 Griewangk-n2 [18] var. 0
f22 Griewangk-n10 [18] var. 0
f23 Galar [19] var. 2.00686
f24 Kowalik [20,13] 4 0.0003075
q1 Hyperellipsoid, parallel to axes [21] var. 0
q2 Hyperellipsoid, randomly oriented [21] var. 0

sdp Sum of different powers [22] var. 0

in e. g. [11,12,13] and in former investigations on the SOM-EN (see Table 1).
The dimensions were set to 20, as long as there were no other ranges predefined.
In those cases the highest acceptable dimension was chosen.

5 Test Series

For each function of the test bed, two variants of the NG-EN were compared to
the SOM-EN1. The parameter settings are given in Table 2.
1 Comparisons of the SOM-EN to conventional ES concerning convergence velocity

and robustness can be found in [4] and [23].



Evolution Strategy with Neighborhood Attraction 397

Table 2. Parameter settings

strategy µ nO tmax = γmax δ σi σf δmin δmax εi εf

SOM-EN 10 4 30000 0.01 - - - - - -
NG-EN 10 4 30000 - 5 0.05 1e-5 0.02 0.02 0.01
NG-EN 10 4 30000 - 5 0.05 1e-5 0.02 0.0075 0.00375

These settings are based on previous parameter studies made for NG-EN [24]
and on experience in using SOM-EN [8].

The results were averaged out over 20 runs.
Table 3 summarizes the results of the test series. For each optimization task

(column app), the table shows how the three tested strategies (grid-neighbor-
hood, neural-gas neighborhood with εi = 0.02, εf = 0.01 and neural-gas neigh-
borhood with εi = 0.0075, εf = 0.00375) perform according to the number of
function evaluations needed to reach the optimum (# evals) and according to
how often the method converged, i. e. how often the optimum was found (#
conv.). The best results are indicated by (•).

Due to the preliminary limited number of generations, none of the strategies
was able to find the optimum (defined as fopt(x) = 1e-10) of the applications
f2, q1, q2 and sdp in time (although for e.g. sdp a value f(x) = 1e-8) could be
reached). Therefore, no comparisons are shown for those test functions.

Concerning the convergence velocity, it can be seen that the NG-EN with
εi = 0.02 is almost always the fastest, the only exception is function f3. For most
test functions, it is considerably faster than SOM-EN, outperforming SOM-EN
by a factor ≈ 2 (f1, f21, f22, f23), factor ≈ 3 (f9, f16) or even factor ≈ 5
(f19). The parameter setting εi = 0.0075, however, results in a noticeably slower
convergence. It is almost slower than NG-EN with εi = 0.02 (again, f3 is the
only exception), and often comparable to or a bit slower than SOM-EN. For
the test functions f9, f16, f19 and f24, it is by a factor ≈ 1.5 − 3 faster than
SOM-EN.

Having a look at the robustness of the three strategies, it can be seen that for
some test functions all strategies are rather good in finding the optimum. For f1,
f6 and f15 the optimum was always found; for f16, f19 and f21 all three strategies
showed a similar good reliability. But it can also be seen, that in seven out of
ten cases, the SOM-EN was more often able to find the optimum. Especially for
function f9 and f22 the differing reliability is obvious, while for f16 and f24 the
NG-EN shows better results.

Since the functions where NG-EN shows less reliability are multi-modal ones,
these observations have led to the assumption, that the NG-EN gets more often
stuck in local optima. Due to the predefined grid-neighborhood in SOM-EN, two
neighboring individuals in different local optima can still attract each other and
pull each other out of the local optimum. In the NG-EN approach, however, the
neighborhood is defined depending on the distance of the individuals. Therefore,
it is more likely that only those individuals which are stuck in the same local
optimum are considered neighbors. Thus, an attraction that leads out of the
local optimum is not likely.



398 Jutta Huhse et al.

Table 3. Comparing NG neighborhood and SOM neighborhood

app. neighb. εi # evals # conv.

f1 grid - 72010 • 20
f1 n-gas 0.02 • 30010 • 20
f1 n-gas 0.0075 72010 • 20
f3 grid - • 503687 • 17
f3 n-gas 0.02 765943 15
f3 n-gas 0.0075 565642 16
f6 grid - 168010 • 20
f6 n-gas 0.02 • 157210 • 20
f6 n-gas 0.0075 195610 • 20
f9 grid - 248010 • 15
f9 n-gas 0.02 • 72010 6
f9 n-gas 0.0075 168010 9
f15 grid - 88810 • 20
f15 n-gas 0.02 • 72816 • 20
f15 n-gas 0.0075 108010 • 20
f16 grid - 170833 17
f16 n-gas 0.02 • 64210 • 20
f16 n-gas 0.0075 132010 18
f18 grid - 18676 • 18
f18 n-gas 0.02 • 12010 15
f18 n-gas 0.0075 20010 14
f19 grid - 54325 • 19
f19 n-gas 0.02 • 11510 16
f19 n-gas 0.0075 18510 16
f20 grid - 15610 • 20
f20 n-gas 0.02 • 10410 15
f20 n-gas 0.0075 17904 19
f21 grid - 72010 • 19
f21 n-gas 0.02 • 40010 16
f21 n-gas 0.0075 96010 • 19
f22 grid - 83086 • 13
f22 n-gas 0.02 • 44454 9
f22 n-gas 0.0075 102010 4
f23 grid - 23010 • 20
f23 n-gas 0.02 • 12010 13
f23 n-gas 0.0075 29010 18
f24 grid - 752010 12
f24 n-gas 0.02 • 556010 11
f24 n-gas 0.0075 556245 • 17



Evolution Strategy with Neighborhood Attraction 399

6 Conclusions

An evolution strategy with neighborhood attraction (EN) incorporates the neigh-
borhood and learning rule known from neural maps into evolution strategies.
Starting from the SOM inspired EN which defines a grid neighborhood between
the individuals, an EN with a new neighborhood attraction scheme (NG-EN)
was introduced in this paper. The NG-EN dissolves the fixed SOM neighbor-
hood structure and uses a neural gas approach which dynamically adapts the
neighborhood structure during learning. The NG-EN approach was compared to
the SOM-EN on a basis of exhaustive test series. Although the SOM-EN is still
a bit more reliable, especially in solving highly multi-modal optimization tasks
with deep and steep local optima, the NG-EN was able to find the optimum of
all optimization tasks. It could be shown that for almost all test functions the
NG-EN is apparently faster than SOM-EN in finding the optimum.

References

1. Pal, S.K., Mitra, S.: Neuro fuzzy pattern recognition : methods in soft computing.
Wiley, New York (1999)

2. Kohonen, T.: Self-Organizing Maps. Springer Verlag, Berlin (1995)
3. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7

(1994)
4. Huhse, J., Zell, A.: Evolution strategy with neighborhood attraction. In Bothe,

H., Rojas, R., eds.: Proceedings of the Second ICSC Symposium on Neural Com-
putation – NC 2000, ICSC Academic Press, Canada/Switzerland (2000) 363–369

5. Martinetz, T., Schulten, K.: A ”Neural-Gas” network learns topologies. In Koho-
nen, T., Mäkisara, K., Simula, O., Kangas, J., eds.: Proc. International Conference
on Artificial Neural Networks (Espoo, Finland). Volume I., Amsterdam, Nether-
lands, North-Holland (1991) 397–402

6. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector
quantization and its application to time-series prediction. IEEE Trans. on Neural
Networks 4 (1993) 558–569

7. Villmann, T.: Evolutionary algorithms and neural networks in hybrid systems. In
Verleysen, M., ed.: Proceedings of 9th European Symposium on Artificial Neural
Networks – ESANN’2001, Evere, Belgium, D-facto (2001)

8. Huhse, J., Zell, A.: Investigating the influence of the neighborhood attraction
factor to evolution strategies with neighborhood attraction. In Verleysen, M.,
ed.: Proceedings of 9th European Symposium on Artificial Neural Networks –
ESANN’2001, Evere, Belgium, D-facto (2001) 179–184

9. Schwefel, H.P.: Numerische Optimierung von Computer-Modellen mittels der Evo-
lutionsstrategie. Birkhäuser, Basel, Stuttgart (1977) Volume 26 of Interdisciplinary
Systems Research, German.

10. Altenberg, L.: The evolution of evolvability in genetic programming. In Kinn-
ear, K.E., ed.: Advances in Genetic Programming. Complex Adaptive Systems,
Cambridge, MIT Press (1994) 47–74

11. deJong, K.: An analysis of the behaviour of a class of genetic adaptive systems.
Master’s thesis, University of Michigan (1975)



400 Jutta Huhse et al.

12. Bäck, T.: A user’s guide to genesys 1.0. Technical report, University of Dortmund,
Department of Computer Science

13. Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley and Sons, New York
(1995)

14. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester
(1981)

15. Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Boston (1987)

16. Schwefel, H.P.: Evolutionary learning optimum–seeking on parallel computer ar-
chitectures. In Sydow, A., Tzafestas, S.G., Vichnevetsky, R., eds.: Proceedings of
the International Symposium on Systems Analysis and Simulation 1988, I: The-
ory and Foundations, Akademie der Wissenschaften der DDR, Akademie-Verlag,
Berlin (1988) 217–225

17. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimiza-
tion. Comp. J. 6 (1963) 163–168

18. Törn, A., Žilinskas, A.: Global Optimization. Volume 350 of Lecture Notes in
Computer Science. Springer, Berlin (1989)

19. Galar, R.: Simulation of local evolutionary dynamics of small populations. Bio-
logical Cybernetics 65 (1991) 37–45

20. Schwefel, H.P.: Numerische Optimierung von Computer-Modellen mittels der Evo-
lutionsstrategie. Volume 26 of Interdisciplinary systems research. Birkhäuser, Basel
(1977)

21. Hansen, N., Ostermeier, A., Gawelczyk, A.: Über die Adaptation von allgemeinen,
Koordinatensystem-unabhängigen, normalverteilten Mutationen in der Evolution-
sstrategie: Die Erzeugendensystemadaption. Technical report, Technische Univer-
sität Berlin (1995)

22. Ostermeier, A., Gawelcyk, A., Hansen, N.: A derandomized approach to self-
adaptation of evolution strategies. Evolutionary Computation 2 (1995) 369–380

23. Huhse, J., Zell, A.: Evolution strategy with neighborhood attraction - A robust
evolution strategy. In Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt,
H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E., eds.:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), San Francisco, California, USA, Morgan Kaufmann (2001) 1026–1033

24. Huhse, J., Villmann, T., Zell, A.: Investigation of the neighborhood attraction
evolutionary algorithm based on neural gas. In: Proceedings of the Sixth Interna-
tional Conference on Neural Networks and Soft Computing (ICNNSC) (to appear).
Lecture Notes in Computer Science, Springer (2002)



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 401–410, 2002.
© Springer-Verlag Berlin Heidelberg 2002

A New Asynchronous Parallel Evolutionary Algorithm
for Function Optimization∗

Pu Liu1, Francis Lau2, Michael J. Lewis1, and Cho-li Wang2

1 Department of Computer Science, Binghamton University – SUNY,
Binghamton, N.Y., 13902, USA

{pliu1,mlewis}@binghamton.edu
2 Department of Computer Science and Information Systems,
The University of Hong Kong, Pokfulam Road, Hong Kong

{fcmlau,clwang}@csis.hku.hk

Abstract. This paper introduces a new asynchronous parallel evolutionary
algorithm (APEA) based on the island model for solving function optimization
problems. Our fully distributed APEA overlaps the communication and
computation efficiently and is inherently fault-tolerant in a large-scale
distributed computing environment. For the scalable BUMP problem, our
APEA algorithm achieves the best solution for the 50-dimension problem, and
is the first algorithm of which we are aware that can solve the 1,000,000-
dimension problem. For other benchmark problems, our APEA finds the best
solution to G7 in fewer time steps than [16,17], and finds a better solution to
G10 than [17].

1 Introduction

Evolutionary Algorithms (EAs) imitate nature’s evolutionary process to solve
complex problems. Their population-based searching mechanism makes them
eminently suitable to be run in parallel on a massive scale. Traditionally, parallel EAs
follow one of three models: the master-slave (or farming) model, the island model, or
the cellular model. The island model is most popular [4] since it is easy to implement
on a local area network with standard workstations. In the island model, the
population is divided into subpopulations called demes, and each evolves separately
on different processors with local memory. With some migration frequency, the
demes exchange individuals to prevent premature convergence of subpopulations.
This exchange requires communication in implementations of the model.

When implementing the island model, most algorithms adopt a synchronous
approach [4]. That is, demes synchronize with one another when migration occurs and
individuals are exchanged. The intervals of time between migrations are called epochs
[4], and all EA processes stop at the end of each epoch to wait for all the others. This
barrier synchronization after each epoch results in considerable overhead, and allows

                                                          
∗ This work was partially supported by National Science Foundation (NFS) Instrumentation

Grant EIA9911099.



402      Pu Liu et al.

the slowest processor to determine the speed of the algorithm. When loads are not
balanced on all processors, especially when the number of processors is large,
synchronous algorithms often perform poorly.

Evolution in nature is an asynchronous process. Individuals migrate independently
from one population to another without central control or full coordination between
populations. This is also the most efficient way to overlap the computation and
communication in a parallel algorithm. But most parallel EAs are synchronous [1-7],
presumably because of the seemingly complicated exchange of individuals. The few
asynchronous algorithms require a central server to manage exchange of individuals
[8], which also limits scalability and introduces additional software overhead.

In this paper, we introduce a new asynchronous parallel evolutionary algorithm
(APEA), based on the island model, in which all communication operations are non-
blocking. Each processor executes without waiting for network communication
between epochs. In contrast to the synchronous algorithms, which scale poorly, our
APEA achieves improved performance with additional processors. In addition, APEA
is inherently fault-tolerant to failures in underlying computing environments. This is
especially important for time-consuming computational problems.

We have implemented our APEA in both PVM [18] and MPI [19]. Using the PVM
version of APEA, we solved a scalable optimization BUMP problem [10-16]. The
extreme high dimensional BUMP problem allows us to test both the scalability and
efficiency of APEA. In the literature, the largest BUMP problem solved is the 50
dimension problem [10]. Our APEA achieves a better solution for the 50 dimension
BUMP, and finds a solution for the 1,000,000 dimension BUMP using a 256-node
YH-4 MPP supercomputer. With the MPI version of APEA, we tested some widely
used benchmark problems, namely G7 [16,17], and G10 [16,17]. Our APEA achieves
the best solution for each, and for G10, our APEA finds a solution that is better than
the best solution claimed in the literature [17].

The rest of this paper is organized as follows. Section 2 introduces the function
optimization problem briefly, then describes our asynchronous parallel evolutionary
algorithm and discusses its properties and our approaches to improve convergence
characteristics. In the following sections, results of our solution for several benchmark
problems are discussed. Concluding remarks are provided in the final section.

2 Asynchronous Parallel Evolutionary Algorithm

2.1 Background

Many real world problems involve complex, non-linear, multi-constraint, mixed
format (e.g. integers and floating point numbers) aspects that conventional algorithms
cannot solve accurately or in reasonable time. Our goal is to solve numerical
optimization problems, which are characterized by what are called the “3 S’s”,
namely (super non-linear, super multi-peaked and super dimensional).

We solve the following general function optimization problem:

)X(fmax          nT
n21 R)x,...,x,x(X ∈=

subject to

n,...,2,1i,Ru,Rl,uxl iiiii =∈∈≤≤
q,...,2,1i,0)X(gi =≤



A New Asynchronous Parallel Evolutionary Algorithm for Function Optimization      403

2.2 The New Algorithm

Assuming a subpopulation with N individuals is assigned to each of NPROC
processors, each processor executes the same process G, as follows, to steer the
asynchronous parallel computation:

PROCESS G
1. t=0
2. Initialize P(t)={X1, X2, …, Xn}
3. Evaluate P(t)
4. While (not terminated) do
5.    If  (any  message arrived) then
6. Xnew = Recv_Individual()
7.    else  Xnew = Local_Generate()
8.    P'(t) = P(t)∪{Xnew}
9.    P(t) = select N best individuals from P'(t);
10.   Locate Xbest in P(t);
11.   If (t mod T = 0) and (Xbest changed)  then
12.       Send Xbest to Q other process(es)
13.   t = t+1
14. END WHILE

Line 5 checks the receiving buffer to see if a new message has arrived. This operation
can be implemented by the “probe” communication primitive, which is provided by
both PVM and MPI. Due to the non-blocking communication of Line 5, along with
Line 12, the processes never wait for one another. That is, they run completely
asynchronously, and the slowest process does not slow down the others. Thus, there is
no need for a load-balancing mechanism. Furthermore, APEA is inherently fault-
tolerant because it will continue to execute even when some nodes fail. This
significant characteristic is especially important for large and time-consuming
computational problems.

We also note that if the incoming individual in Line 6 is eliminated through
selection in Line 9, then the immigration is useless. Because communication between
processors is expensive, we should avoid this situation if possible. Line 12 ensures
that only the individual with the best fitness migrates to the other demes. Likewise,
Line 9 ensures that the worst individual is eliminated in each iteration. This allows the
immigrated individual to have a high probability of surviving in its new deme.

The algorithm is SPMD; all processors run the same process G, and neither central
control nor synchronous communication is required. This makes APEA scalable and
suitable for solving complex problems via MPP supercomputers.

To be appropriate for parallel systems that are both loosely and tightly coupled,
APEA contains two parameters to control the parallel granularity of APEA. Parameter
Q indicates the number of processors with which one processor communicates when a
new best individual is found within its deme. Parameter T determinates the frequency
of individual migration. Together, Q and T determinate the total communication cost
during each iteration of APEA. Thus, the parallel granularity and communication
costs can be adjusted dynamically by altering the values of these parameters.

Unfortunately, the effects of these parameters on the quality of solutions are not
well understood, especially in the asynchronous mode. Cantu-Paz has presented



404      Pu Liu et al.

models that predict the effects of the parameters on the population size of demes and
on migration rate [4]. However, this investigation considered that migration occurs
only after each population converges, which assumes a synchronous algorithm. We
discuss the setting of parameters based on the experimental results in Section 3.

Evolutionary programming and genetic algorithms are also applicable to produce a
new offspring X’. For efficiency, our Local_Generate () method uses a multi-parent
crossover [9]. The offspring X’ is generated by parents Xi’, i = 1, 2, … , m as follows.

∑
=

′=′
m

i
ii XaX

1

where the coefficients ai are chosen randomly and subject to

1a
m

1i
i =∑

=
, 

m,...,2,1i,5.1a5.0 i =≤≤−

To solve constrained optimization problems, Michalewicz presented a comparison
study of existing evolutionary algorithms [10]. According to this study, the existing
algorithms are grouped as follows: (1) methods based on preserving feasibility of
solutions, (2) methods based on penalty functions, (3) methods based on the
superiority of feasible solutions, and (4) other hybrid methods. We choose the third
method for its simplicity of implementation.

Frequently used termination criteria for EAs include running the algorithm until:
(1) a satisfactory solution is found; (2) a fixed time limit is reached; or (3) all the
individuals in the population are the same and no further improvement is possible.
Our APEA uses the latter criterion. When individuals in a deme are all the same, its
process broadcasts a ‘termination’ message and APEA terminates.

2.3 Related Work

There are many algorithms that explore alternative migration schemes and
communication models to try to make parallel genetic algorithms (Ga’s) more
efficient. Muhlenbein [20] proposed a totally asynchronous cellular PGA, which runs
on MIMD parallel computers. In this algorithm, individuals are distributed in a 2-D
world. Each individual selects a partner for mating in its neighborhood. The active
and intelligent individuals decide when to migrate and control the inter-processor
communication. Hart [21] and Alba [22] applied this idea to a coarse-grain PGA
whose subpopulations are distributed across p processors in a two-dimensional grid.
Both report that the asynchronous algorithms outperformed their equivalent
synchronous counterparts in real time. In this kind of “active” asynchronous PGA,
when migration occurs, at least two messages, a request and a response, are needed.
In most cases, communication-fault-handling is also needed to accomplish the
migration of one individual. Our APEA uses a larger population of passive
individuals. The migration of one single individual only uses one message to send the
individual. The extra overhead is the probe, which doesn’t incur much overhead.

Grefenstette [23] proposed three variations of the master-slave PGA with the one
population maintained by the master, and use synchronous communication. Based on
master-slave method, Martin [24] introduced a centralized coarse-grain PGA in which
the migration is fully asynchronous. One drawback of this algorithm is its scalability,
which is limited by its centralization, which we have eliminated in our APEA.



A New Asynchronous Parallel Evolutionary Algorithm for Function Optimization      405

3 Numeric Experiments

The APEA is implemented by PVM and MPI under different hardware environments.
The BUMP problem was solved via a MPP supercomputer YH-4 by PVM, and the
other problems were solved on a 16-node PC cluster connected by a 100Mb/s Fast
Ethernet switch. Each cluster node consists of a 300MHz Pentium II processor with
128MB of memory, running Linux 2.2.14 with MPICH 1.2.1.

When implemented by MPI, we used functions MPI_Iprobe(), MPI_Recv() and
MPI_Isend(). The blocking MPI_Recv() is used only after MPI_Iprobe() returns
“true”. Both MPI_Iprobe() and MPI_Isend() are non-blocking. For the PVM version,
we used similar functions pvm_probe(), pvm_recv() and pvm_mcast().

3.1 The BUMP Problem

The BUMP problem is described in [11] as follows:

∑

∑ ∏−
≡

=

= =

n

1i

2
i

n

1i

n

1i
i

2
i

4

n

ix

)x(cos2)x(cos
)X(f (1)

where 10x0 i << ,  i = 1, 2, 3, …, n (2)

subject to 75.0x
n

1i
i >∏

=
(3)

and n5.7x
n

1i
i <∑

=
(4)

In 1994, Keane proposed the BUMP problem [11] in optimum structural design,
and subsequently published several papers [12, 13, 14] discussing the problem.
Because of its scalability, the BUMP problem has been used as a general benchmark
problem to test optimization algorithms [16].

There are several potential difficulties in solving this problem. First, the objective
function fn(X) is a nonlinear multimodal function of high dimension. Second, the
global optimum is defined by the nonlinear constraint (3) above. When the dimension
of the BUMP problem increases, the product in (3) is difficult to calculate (because of
overflow). In fact, when n is greater than 20, a majority of constraint-handling
methods have difficulty returning a high quality solution [9, 15, 16].

EI-Beltagy used metamodeling techniques for the BUMP problem and got some
numerical results when n=2 and n=5 [15]. By incorporating some problem-specific
knowledge, Michalewicz introduced an evolutionary operation called geometrical
crossover and reported in [16] that when n=20 the best solution achieved was
0.803553 and when n=50, the best solution was 0.8331937. For n=20, the result Tao
Guo reported in [9] is 0.803619. But when n is greater than 50, there is no published
result of which we are aware. The expensive computation stunts sequential
algorithms. Because evolutionary algorithms are inherently parallel, if we want to
solve high dimensional BUMP problem, an obvious promising way is to parallelize
the sequential algorithm.



406      Pu Liu et al.

In addition, for a solution vector X(x1, x2,..., xn), the value of the numerator  does
not change no matter the order of x1, x2,..., xn. However, the value of the denominator
may change only when the order of x1, x2,..., xn changes. In fact, the value of fn(X)
achieved by a solution vector X(x1, x2,..., xn) is no better than the one achieved by the
vector X*(x*1, x*2,..., x*n) where x*1, x*2,..., x*n is the non-increasing sequence of x1,
x2,..., xn. So we add a mutation operation sort() to function Local_Generate().

Recalling the nonlinear constraint (3), the sorting process is necessary when n is
fairly great, i.e. 400, because a product of 400 random numbers ranging from 0 to 10
is liable to overflow or underflow during calculation, even though the final product
does not overflow or underflow. For example, if the first 100 random numbers are
greater than 2, then the temporary product will be greater than 2100 or less than 2-100

both of  which are far beyond the capability of most architectures. Fortunately, for the
descending sequence vector X*(x*1, x*2,..., x*n), we can use an algorithm to calculate
the product and avoid the above situation in many cases. The algorithm multiplies a
running product by a small value then the product is in danger of overflowing, and
multiplies in a large value when it is in danger of underflowing.

According to the research of Michalewicz [16], the constraint (4) has no effect on
the optimal results, so we also ignore constraint (4) in our experiments.

To verify the efficiency and effectiveness of the APEA, we have completed
numerical experiments for n = 50, 100, 200, 300, 400, 500, 1500.

Table 1. Results for n = 50 to 1500

Dimension 50 100 200 300
Best Result 0.8352620 0.8448539 0.8468442 0.8486441
Dimension 400 500 1500
Best Result 0.8511074 0.8504975 0.8449622

From Table 1, when n equals 50, we achieved the best results of which we are aware.
In order to compare with other algorithms, we display the whole solution here. F(X) is

0.83526201238794 with ∏
=

50

1i
iX = 0.75000291468818, where

X = {6.28324314967593, 3.16959135278874, 3.15587932289134, 3.14221834166447,
3.12875141132280, 3.11533720178037, 3.10135016319809, 3.08867068084463,
3.07467526362337, 3.06187302198439, 3.04886636373126, 3.03519777233540,
3.02235650101037, 3.00791087929595, 2.99431484723465, 2.98078207510642,
2.96617535809182, 2.95213454834831, 2.93826263614623, 2.92347051874431,
0.48770508444941, 0.48608797212231, 0.48388281752034, 0.48168154669018,
0.47901882085524, 0.47712972009898, 0.47501098097910, 0.47259800785213,
0.47128211104035, 0.46871206605219, 0.46726830592743, 0.46606878481357,
0.46376534354877, 0.46204633230610, 0.45965521445116, 0.45884822857585,
0.45717243025277, 0.45481532957423, 0.45342381481910, 0.45166163748202,
0.45021480667760, 0.44845064437796, 0.44673980402160, 0.44526519733653,
0.44338085480658, 0.44213030342910, 0.44043946842174, 0.43904935652294,
0.43874135178293,       0.43634175968446}

We set out to determine, via a state-of-the-art MPP supercomputer, the highest
dimension BUMP problem we could solve by APEA. We had to speed up the conver-



A New Asynchronous Parallel Evolutionary Algorithm for Function Optimization      407

gence rate without compromising the quality of solution. Parameters T and Q affect
both aspects, but unfortunately, it is difficult to predict their exact effects. We
performed two groups of experiments to find effective values. The first group
observes Q with fixed n and T, while the second group observes T with fixed n and Q.
Table 2 contains parts of our experimental results.

Table 2. Results of APEA with NPROC=128, n=1000

T = 200 Q = 2
Q Iterations Results T Iterations Results
2 14653 0.844219

3
100 11830 0.8410597

2 14115 0.844219
3

100 8867 0.8410594
4 5187 0.839243

3
200 14653 0.8442193

4 4998 0.838898
1

200 14115 0.8442193
6 3130 0.833761

7
300 12095 0.8448454

6 3996 0.842186
6

300 12389 0.8448539
8 30169 0.841935 400 11329 0.8410598
8 28877 0.842598 400 11720 0.8421879

We observe that as communication increases, the algorithm converges and the
solution degrades. Based on Table 2, we choose Q=10 and T=300 and get the
following numerical results in Table 3:

Table 3. Results of APEA with NPROC=256, Q=10, T=300

N Terminated t Time (s) Solutions
1 10000 20072 313 0.8455810
2 10000 16385 260 0.8456407
3 20000 24236 382 0.8452293
4 20000 22169 344 0.8455882

When n = 100,000, NPROC=128, APEA converged with t = 46252 and solution
0.8448940. The total execution time was 7106 seconds. When n=1,000,000,
NPROC=128, we terminated APEA after 16 hours calculation with t=6027 and result
0.8445861. For n=10,000,000, system resources were exhausted.

3.2 Benchmark Problems Solved by APEA Using MPI

1. G7 [16][17]: Minimize

45)7()10(2)11(7

5)1(2)3()5(4

)10(1614)(

2
10

2
9

2
8

2
76

2
5

2
4

2
32121

2
2

2
1

+−+−+−+
+−+−+−+

−+−−++=

xxx

xxxx

xxxxxxxxf

subject to:



408      Pu Liu et al.

10,...,2,1,1010
0303)4(2)8(5.0

07)8(1263

0402)6(85

0122528
06142)2(2

0217810
012072)3(4)2(3

09354105

6
2
5

2
2

2
1

10
2

921

4
2

32
2
1

10921

65212
2
1

8721

4
2
3

2
2

2
1

8721

=≤≤−
≥++−−−−−

≥+−−−
≥++−−−−

≥++−−
≥+−+−−−

≥−++−
≥++−−−−−

≥−+−−

ix
xxxx

xxxx

xxxx

xxxx
xxxxxx

xxxx
xxxx

xxxx

i

The global minimum is known to be f(X*) = 24.3062091 [16][17],  where

X* = ( 2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
1.430574, 1.321644, 9.828726, 8.280092, 8.375927)

The APEA always achieves the optimal solution with fewer iterations. Table 3
provides the best results  under different parameters. The Algorithm CEALM in [17]
and other algorithms listed in [17] do not reach the global optimal every time. APEA
achieves the optimal value for each of the ten separate runs.

Table 4. The results of G7 with NPROC = 16

NPROC T Q Median time(s) Result
1 0 0 39 24.3062090690560

12 1 2 18 24.3062090685401
04 30 4 21 24.3062090683975
78 30 8 28 24.3062090683429
416 1 16 43 24.3062090683032
0

Table 3 shows that increasing communication improves the quality of the solution on
average but requires more time to converge.

2. G10 [16][17]: Minimize 321 xxx)x(f ++=

          subject to

8,...,5,4,100010
100001000
100001000

10000100
025001250000

012501250
0333.8333310033252.833

0)(01.01
0)(0025.01

0)(0025.01

3

2

1

55383

442572

1461

58

475

64

=≤≤
≤≤
≤≤

≤≤
≥+−−

≥+−−
≥+−−

≥−−
≥−+−

≥+

ix
x
x

x
xxxxx

xxxxxx
xxxx

xx
xxx

xx

i

−

The global minimum is said to be f(X*)=7049.330923 [17], where

X* = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)



A New Asynchronous Parallel Evolutionary Algorithm for Function Optimization      409

The algorithm CEALM in [17] and other algorithms listed in [16, 17] do not find this
value. Our APEA finds a better solution to be f(X) = 7049.24802055468081 where

X = ( 579.30828537221191, 1359.96826293047116, 5109.97147225199751,
182.01783328980514, 295.60114110998057, 217.98216670925277,
286.41669217921429, 395.60114110996898)

The parameters of APEA are set as follows: NPROC= 4, T=10, Q=2. Each time,
APEA converges at the solution above in no more than 26 seconds. In contrast, the
sequential simulation of APEA converges at a much worse solution quickly.

4 Conclusion

In this paper, we describe an effective asynchronous parallel evolutionary algorithm
and get a series of best solutions for the BUMP problem and other benchmark
problems. Still, there are many other issues that should need further research, such as
the effect of different Q and T on numerical result, and the topology of neigh-
borhoods.

References

1. H. T. Yang, “A Parallel Genetic Algorithm Approach to Solving the Unit Commitment
Problem: Implementation on the Transputer Networks,” IEEE Transactions on  Power
Systems, Vol. 12, No.2, pp. 661-668, 1997.

2. A. Wu, K. Y. Wu, R. M. M. Chen, Y. Shen, “Parallel Optimal Statistical Design Method
with Response surface modeling using genetic algorithms,” Circuits, Devices and Systems,
IEE Proceedings-, Vol. 145, No.1, 1998.

3. J. D. Lohn, “A Circuit Representation Technique for Automated Circuit Design,” IEEE
Transactions on  Evolutionary Computation, Vol. 3, No. 3, pp. 205-219, 1999.

4. E. Cantu-Paz, “Markov Chain Models of Parallel Genetic Algorithms,” IEEE Transactions
on  Evolutionary Computation, Vol. 4, No. 3, pp. 216-226, 2000.

5. P. B. Grosso, “Computer Simulations of Genetic Adaptation: Parallel Subcomponent
Interaction in a Multi-locus Model,” Ph.D. Dissertation, University of Michigan, 1985.

6. L. A. Anbarasu et al., “Multiple Sequence Alignment by Parallely Evolvable Genetic
Algorithms,” in A. S. Wh(ed.) Proceedings of the 1999 Genetic and Evolutionary
Computation Conference Workshop Program, Orlando, Fla, July 13, 1999, pp. 154-156.

7. H. Lienig, “A Parallel Genetic Algorithm for Performance-Driven VLSI Routing,” IEEE
Transactions on  Evolutionary Computation, Vol. 1, No.1, pp. 29-39, 1997.

8. K. Kojima, W. Kawamata, et al, “Network Based Parallel Genetic Algorithm using Client-
Server Model”, in Proceedings of the Conference on Evolutionary Computation 2000, pp.
244-250.

9. T. Guo, L. S. Kang, “A New Evolutionary Algorithm for Function Optimization,” Wuhan
University Journal of Natural Sciences, Vol. 4, No. 4, pp. 409-414, 1999.

10. Z. Michalewicz and M. Schoenauer, “Evolutionary Algorithms for Constrained Parameter
Optimization Problems,”  Evolutionary Computation, Vol. 4, No. 1, pp. 1-32, 1996.

11. A. J. Keane, “Experiences with Optimizers in Structural Design,” in Proceedings of the
Conference on Adaptive Computing in Engineering Design and Control 94, ed. (I. C.
Parmee, Plymouth, 1994), pp. 14-27.



410      Pu Liu et al.

12. A. J. Keane, “A Brief Comparison of Some Evolutionary Optimization Methods,”
Proceedings of Applied Decision Technologies (Modern Heuristic Methods), 1995.

13. A. J. Keane, “Genetic Algorithm Optimization of Multi-peak Problems: Studies in
Convergence and Robustness.” Artificial Intelligence in Engineering, 1995.

14. A. J. Keane, “Passive Vibration Control Via Unusual Geometric: Application of Genetic
Algorithm Optimization to Structural Design,” Journal of Sound and Vibration, 1995.

15. M. A. EI-Beltagy, et al. “Metamodeling Techniques For Evolutionary Optimization of
Computationally Expensive Problems: Promises and Limitations.” Genetic Algorithms and
Classifier Systems, 1999.

16. Z. Michalewicz, S. Esguvel et al., “The Spirit of Evolutionary Algorithms.” Journal of
Computing and Information Technology, Vol. 7,  pp. 1-18, 1999.

17. M. J. Tahk, B. C. Sun, “Coevolutionary Augmented Lagrangian Methods for Constrained
Optimization.” IEEE Transactions on  Evolutionary Computation, Vol. 4, No. 2, 2000.

18. Sunderam, V. S., “PVM: A Framework for Parallel Distributed Computing.” Con-
currency: Practice and Experience, Vol. 2, No. 4, pp. 315-339, December, 1990.

19. “MPI: A Message-Passing Interface Standard.” Message Passing Interface Forum, 1994.
20. Heinz Muhlenbein, “Evolution in Time and Space - The Parallel Genetic Algorithm”, In

Gregory J.E. Rawlins, Editor, Foudation of Genetic Algorithms 1, Page 316-337, San
Mateo, CA, USA, 1991, Morgan, Kaufmann.

21. William E. Hart, Scott Baden, Richard K. Belew, Scott Kohn ,  “Analysis of the
Numerical Effects of Parallelism on a Parallel Genetic Algorithm”, Proc 10th Intl.
Parallel Processing Symp. pp 606-612, 1996.

22. Enrique Alba, Jos M Troya Dpto. de Lenguajes y Ciencias de la Computation, “An
Analysis of Synchronous and Asynchronous Parallel Distributed Genetic Algorithms with
Structured and Panmictic Islands”, Future Generation Computer Systems, 17(4):451-465,
January 2001.

23. Grefenstette J. J., “Parallel adaptive algorithms for function optimization”, Tech. Rep. No.
CS-81-19, Vanderbilt University, Computer Science Department, Nashville, TN, 1981.

24. Martin F. J., Trelles-Salazar O., Snadoval F., “Genetic algorithms on LAN-message
passing architectures using PVM: Application to the routing problem”, In Davidor Y.
Schwefel H. –P., Manner R., Eds., Parallel Problem Solving from Nature, PPSN III,
p.534-543, Springer-Verlag (Berlin), 1994.



Fighting Bloat with
Nonparametric Parsimony Pressure

Sean Luke and Liviu Panait

Department of Computer Science, George Mason University
Fairfax, VA 22030 USA

http://www.cs.gmu.edu/˜sean/
http://www.cs.gmu.edu/˜lpanait/

Abstract. Many forms of parsimony pressure are parametric, that is
final fitness is a parametric model of the actual size and raw fitness val-
ues. The problem with parametric techniques is that they are hard to
tune to prevent size from dominating fitness late in the evolutionary
run, or to compensate for problem-dependent nonlinearities in the raw
fitness function. In this paper we briefly discuss existing bloat-control
techniques, then introduce two new kinds of non-parametric parsimony
pressure, Direct and Proportional Tournament. As their names suggest,
these techniques are based on simple modifications of tournament se-
lection to consider both size and fitness, but not together as a com-
bined parametric equation. We compare the techniques against, and in
combination with, the most popular genetic programming bloat-control
technique, Koza-style depth limiting, and show that they are effective in
limiting size while still maintaining good best-fitness-of-run results.

1 Introduction

One of the foremost challenges to scaling genetic programming (GP) is bloat,
the tendency for genetic programming individuals to grow in size as evolution
progresses, relatively independent of any justifying improvements in fitness. It is
not uncommon for the average size of an individual to grow over three orders of
magnitude in just fifty generations. This is a serious stumbling block to genetic
programming, as it slows the evolutionary search process, consumes memory,
and can hamper effective breeding. Bloat produces a sort of Zeno’s paradox,
slowing successive generations by so much that it places a cap on GP’s useful
runtime.

Bloat is not a problem unique to genetic programming. It occurs in a wide va-
riety of arbitrary-length representations, including neural networks, finite state
automata, and rule sets. Indeed, the earliest known report of bloating (and of
approaches to deal with it) involves evolving Pitt-approach rule systems [1]. How-
ever, because GP is the most popular arbitrary-length representation technique,
the lion’s share of papers on the subject have been in the GP literature.

As discussed in [2], bloating is a hotly debated topic in GP theory; and
there is also presently no silver bullet to deal with it. The genetic programming

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 411–421, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



412 Sean Luke and Liviu Panait

literature uses a large number of different techniques to counter bloat, each with
its own advantages and disadvantages. By far the most popular such technique
is restricting breeding to only produce children less than some maximal tree
depth. A distant second is parsimony pressure, where the size of an individual
is a factor in its probability of being selected.

In this paper we examine two new approaches to parsimony pressure, and
report on their success in managing population size while retaining reasonable
best-fitness-of-run results as compared to Koza-style tree depth limitation. These
techniques are based on modifications of the well-studied tournament selection
method, which picks N random individuals with replacement, then selects the
fittest individual from that pool. We modify tournament selection to consider
parsimony as well as fitness, but retain the nonparametric features which make
tournament selection popular.

2 Previous Bloat Control Techniques

Modification and Restriction Techniques. The most common approach to
bloat control, at least in the GP literature, is maximal depth restriction [3]. Here,
when a child is created by removing a subtree from a parent and replacing it
with another subtree (as is done in subtree crossover or subtree mutation), and
the child exceeds a maximal depth limit, then the child is rejected and a copy of
the original parent takes its place in the new generation. The standard maximal
depth limit for tree-based GP is 17. It is also possible, but much less common,
to place size restrictions on the child rather than depth restrictions. Pseudo-
hillclimbing [4] is a recent restriction approach: when a child is generated, its
fitness is immediately assessed. If its fitness is not superior to its parent’s fitness,
it is rejected and a copy of its parent takes its stead in the new generation. Note
that this approach is very similar to depth restriction in mechanism, except that
oddly it does not compare size at all, yet is reasonably successful at limiting
tree growth. This gives some insight into why depth restriction and pseudo-
hillclimbing are successful: they limit growth not only by capping size but by
injecting large numbers of parents directly into later generations. As parents are
generally smaller than their children (hence the bloat), this has a stunting effect,
but at a cost in diversity.

As GP parse trees may generally be viewed as computer functions, one obvi-
ous way to counter bloat is to perform code editing to optimize those functions.
One paper [5] reports strong results with this approach, but there is evidence
that editing may lead to premature convergence [6]. Finally, a number of pa-
pers (for example [7]) have investigated allowing GP parse trees to adapt, on a
component-by-component basis, the probability that a given component will be
chosen for crossover. This bloat-control technique is known as explicitly defined
introns.

Parsimony Pressure. Parsimony pressure is the popular bloat-control tech-
nique outside of GP, and is gaining popularity within GP as well. Most such



Fighting Bloat with Nonparametric Parsimony Pressure 413

parsimony pressure computes fitness as a linear function of an individual’s raw
fitness and its size (for example, [8]), though there are some nonlinear examples
as well [9]. For a more complete survey of linear and other kinds of parametric
parsimony pressure, see [10].

The trouble with parametric parsimony pressure is that it is parametric.
We mean this in the statistical sense: it considers the actual values of size and
fitness together in a parametric statistical model for selection: the experimenter
must stipulate, in effect, that N units of size are worth M units of raw fitness.
Stipulating this function is problematic when fitness is a nonlinear function of
actual “worth”, as is often the case: fitness functions are typically ad-hoc. It may
well be that a difference between 0.9 and 0.91 in fitness is much more significant
than a difference between 0.7 and 0.9. Parametric parsimony pressure can thus
give size an unwanted advantage over fitness when the difference in fitness is only
0.01 as opposed to 0.2. This is also a problem because the relative significance of
exact size and fitness parameters changes during the course of a run. For example,
size-parameter dominance may arise late in evolution, when subtle differences
in fitness become important. Notice that these issues are similar to those which
gave rise to the preference of tournament selection and other nonparametric
selection procedures over fitness-proportionate selection.

One approach to fixing this is to adapt the size parameter as the evolutionary
run progresses [11], except that such techniques must usually rely on problem-
specific analysis. Another recent approach, pareto parsimony pressure, eschews
parametric techniques and instead treats size as a second objective in a pareto-
optimization scheme. Pareto optimization is used when the evolutionary system
must optimize for two or more objectives at once, and it is not clear which ob-
jective is “more important”. An individual A is said to pareto-dominate another
individual B if A is as good as B in all objectives, and better than B in at
least one objective. One possible use of pareto dominance is to stipulate that an
individual’s fitness is the number of peers it dominates. Unfortunately, the tech-
nique has so far had mixed results in the literature. Some papers report smaller
trees and the discovery of more ideal solutions [12,13], but tellingly they omit
best-fitness-of-run results. Another reports the mean best-fitness-of-run, but it
is worse than when not using the technique [14].

3 Two New Parsimony Pressure Techniques

The two new techniques we propose here are modifications of the tournament
selection operator. The techniques are double tournament, where individuals
must pass two layers of tournaments (one by size, one by fitness) to be selected;
and proportional tournament, where the tournament sometimes picks by size,
and sometimes by fitness.

Double Tournament. The double tournament algorithm selects an individual
using tournament selection: however the tournament contestants are not chosen
at random with replacement from the population. Instead, they were each the



414 Sean Luke and Liviu Panait

winners of another tournament selection. For example, imagine if the “final”
tournament has a pool size of 7: then seven “qualifier” tournaments are held as
normal in tournament selection, and the winners go on to compete in the “final”
tournament. Double tournament has been previously used to select for both
fitness and diversity [15]. We suggest it may be used for parsimony pressure by
having the “final” tournament select based on parsimony while the qualifying
tournaments select based on fitness (or vice versa). The algorithm has three
parameters: a fitness tournament size Sf , a parsimony tournament size Sp, and
a switch (do-fitness-first) which indicates whether the qualifiers select on fitness
and the final selects on size, or (if false) the other way around.

Our initial experiments revealed that even Sp values as small as 2 put too
much pressure on parsimony, and the fitnesses of the resulting individuals were
statistically significantly worse than with no parsimony pressure at all. In order
to rectify this matter, we permit Sp to hold real values between 1.0 and 2.0. In
this value range, two individuals participate to the tournament; with probability
Sp/2 the smaller individual wins, else the larger individual wins. Ties are broken
at random. Thus Sp = 1 is random selection, while Sp = 2 is the same as a plain
parsimony-based tournament selection of size 2.

Proportional Tournament. This technique is even simpler. The proportional
tournament algorithm selects an individual using tournament selection as usual,
using some fixed tournament size S. However, a proportion of tournaments will
select based on parsimony rather than on fitness. A fixed parameter R defines the
proportion, where higher values of R imply more of an emphasis towards fitness:
R = 1 implies that all tournaments will select based on fitness, while R = 0.5
implies that tournaments will select on fitness or size with equal probability.

4 Experiments

The bloat-control technique most used in the literature is Koza-style depth lim-
iting, and we, like most of the literature, compare our technique against it. In
future work, we will also compare against linear or pareto parsimony pressure.
To this end, we performed two experiments. The first experiment compared
depth limiting against Double and Proportional tournaments, while the second
compared plain depth limiting against depth limiting in combination with the
tournaments. We wish to emphasize that although these techniques are being
used for GP in this paper, they are general techniques which are representation-
independent.

The experiments used population sizes of 1000, with 50-generation runs. The
runs did not stop when an ideal individual was found. Runs with plain depth
limiting used plain tournament selection with a tournament size of 7. We chose
four problem domains: Artificial Ant, 11-bit Boolean Multiplexer, Symbolic Re-
gression, and Even-5 Parity. We followed the Koza-standard parameters specified
in these four domains as set forth in [3], as well as its breeding, selection, and
tree generation parameters. Artificial Ant used the Santa Fe food trail. Symbolic



Fighting Bloat with Nonparametric Parsimony Pressure 415

Regression used no ephemeral random constants. To compare means for statis-
tical significance, we used ANOVAs with a 95% confidence. The evolutionary
computation system used was ECJ 7 [16].

Our results are graphed as follows. For the Double Tournament, we set Sf = 7
and let Sp range from 1.0 to 2.0 by increments of 0.1. We experimented with
setting do-fitness-first to false (leftmost methods in the graphs), and to true (the
next set of methods). For the Proportional Tournament, we set S = 7, and let R
range from 1.0 down to 0.5 by decrements of 0.05. In all graphs, lower fitnesses
were better, and the rightmost bar represents plain depth-limiting alone.

4.1 First Experiment

The first experiment compared plain depth limiting against Double and Propor-
tional Tournament, using the four problem domains listed above. We ran 50 runs
per technique per problem domain, and plotted the mean best-fitness-of-run and
the average tree size per run. The fitness results are shown in Figure 2, and the
tree size results in Figure 1.

Results. For most problems, there existed non-extreme settings for both Dou-
ble and Proportional Tournaments which maintained fitness with significantly
smaller tree sizes than plain depth limiting, often by wide margins. In the Sym-
bolic Regression domain, Double and Proportional Tournaments both improved
on plain depth limiting in tree size and fitness, but never in a statistically signifi-
cant manner. As we noted in a previous paper [10], plain depth limiting performs
very well in Symbolic Regression. Overall, Double Tournament Sp values in the
1.4–1.6 range did reasonably well. The sweet spot for Proportional Tournament
was around R = 0.7, which always performed nearly identically to plain depth
limiting (other settings could do much better depending on the problem). The
particular setting of do-fitness-first did not have a significant effect.

4.2 Second Experiment

Reasonable settings of Double and Proportional Tournament either equalled or
outperformed plain depth limiting, but not by as wide a margin as we would
have hoped. We wondered how well combining each of these two methods with
depth limiting would perform against just plain depth limiting alone. In our
second experiment we compared the combinations against depth limiting, once
again doing 50 runs per technique, then plotted the best fitness per run and the
average tree size per run. The fitness results are shown in Figure 4, and the tree
size results are shown in Figure 3.

Results. This time judicious settings of Sp or R dramatically outperformed plain
depth limiting in all four domains. Overall, Double Tournament Sp values in 1.2–
1.6 had equal fitness to plain depth limiting, while significantly outperforming it
in tree size, often halving the size. The sweet spot for Proportional Tournament
was again around R = 0.7, which always halved tree size while maintaining



416 Sean Luke and Liviu Panait

Artificial Ant

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

100

200

300

400

500

600
M

ea
n

T
re

e
S

iz
e

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � � �

Even-5 Parity

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

200

400

600

M
ea

n
T

re
e

S
iz

e
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � � � �

11-Bit Boolean Multiplexer

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

200

400

600

M
ea

n
T

re
e

S
iz

e
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � �

Symbolic Regression

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

200

400

600

M
ea

n
T

re
e

S
iz

e
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � �

Fig. 1. Mean tree sizes for various parsimony pressure methods, as compared compared
to plain depth limiting (labeled D). Distributions are plotted with boxplots. Propor-
tional Tournament is labeled P, with the given ratio value R. Double Tournament is
labeled T1 (do-fitness-first false) or T2 (do-fitness-first true), with the given tourna-
ment size Sp. The mean of each distribution is indicated with an ×. Lower values are
better. Techniques statistically superior to plain depth limiting are marked with ↓;
techniques statistically inferior are marked with ↑



Fighting Bloat with Nonparametric Parsimony Pressure 417

Artificial Ant

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

10

20

30

40
B

es
tF

itn
es

s
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

Even-5 Parity

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

2.5

5

7.5

10

12.5

B
es

tF
itn

es
s

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � �

11-Bit Boolean Multiplexer

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

200

400

600

B
es

tF
itn

es
s

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � �

Symbolic Regression

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

0.5

1

1.5

2

B
es

tF
itn

es
s

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � �

Fig. 2. Best fitness of run for various parsimony pressure methods, as compared com-
pared to plain depth limiting (labeled D). Distributions are plotted with boxplots.
Proportional Tournament is labeled P, with the given ratio value R. Double Tourna-
ment is labeled T1 (do-fitness-first false) or T2 (do-fitness-first true), with the given
tournament size Sp. The mean of each distribution is indicated with an ×. Lower values
are better. Techniques statistically superior to plain depth limiting are marked with ↓;
techniques statistically inferior are marked with ↑



418 Sean Luke and Liviu Panait

Artificial Ant

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

50

100

150

200

250
M

ea
n

T
re

e
S

iz
e

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � � � � �

Even-5 Parity

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

100

200

300

400

M
ea

n
T

re
e

S
iz

e
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � � � � � �

11-Bit Boolean Multiplexer

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

50

100

150

200

250

M
ea

n
T

re
e

S
iz

e
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � � � � � �

Symbolic Regression

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

20

40

60

80

100

M
ea

n
T

re
e

S
iz

e
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � � � � � � � � � � � � � � � � �

Fig. 3. Mean tree sizes for various parsimony pressure methods in combination with
depth limiting, as compared compared to plain depth limiting alone (labeled D). Dis-
tributions are plotted with boxplots. Proportional Tournament is labeled P, with the
given ratio value R. Double Tournament is labeled T1 (do-fitness-first false) or T2 (do-
fitness-first true), with the given tournament size Sp. The mean of each distribution is
indicated with an ×. Lower values are better. Techniques statistically superior to plain
depth limiting are marked with ↓; techniques statistically inferior are marked with ↑



Fighting Bloat with Nonparametric Parsimony Pressure 419

Artificial Ant

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

10

20

30

40
B

es
tF

itn
es

s
of

R
un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

Even-5 Parity

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

2.5

5

7.5

10

12.5

B
es

tF
itn

es
s

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � �

11-Bit Boolean Multiplexer

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

200

400

600

B
es

tF
itn

es
s

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � � � � � �

Symbolic Regression

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D
Parsimony Pressure

0

0.5

1

1.5

2

B
es

tF
itn

es
s

of
R

un

T1: 1 1.2 1.4 1.6 1.8 2 T2: 1 1.2 1.4 1.6 1.8 2 P: 1 .9 .8 .7 .6 0.5 D

� � � � � � � �

Fig. 4. Best fitness of run for various parsimony pressure methods in combination
with depth limiting, as compared compared to plain depth limiting alone (labeled D).
Distributions are plotted with boxplots. Proportional Tournament is labeled P, with
the given ratio value R. Double Tournament is labeled T1 (do-fitness-first false) or T2
(do-fitness-first true), with the given tournament size Sp. The mean of each distribution
is indicated with an ×. Lower values are better. Techniques statistically superior to
plain depth limiting are marked with ↓; techniques statistically inferior are marked
with ↑



420 Sean Luke and Liviu Panait

statistically equivalent fitness. Again, the particular setting of do-fitness-first
did not have a significant effect.

5 Conclusions and Future Work

When it comes to fitness, plain depth limiting is hard to beat. The techniques
discussed in this paper all had statistically equivalent best-fitness-of-run results
as depth limiting, but not better. However they were able to achieve these results
while lowering the tree size. Double Tournament and Proportional Tournament
by themselves could only lower total tree size slightly in comparison to plain
depth limiting. However, when combined with depth limiting, they significantly
outperformed depth limiting alone, yielding tree sizes at half the normal size
while maintaining an equivalent best fitness of run. Given their simple imple-
mentation and general applicability, we think that nonparametric tournament-
based parsimony pressure is worth consideration in a GP system in combination
with depth limiting. As future work we hope to examine the applicability of
these techniques to non-GP environments as well, and in comparison with other
parsimony pressure methods.

References

1. Stephen F. Smith. A Learning System Based on Genetic Adaptive Algorithms.
PhD thesis, Computer Science Department, University of Pittsburgh, 1980.

2. Sean Luke. Issues in Scaling Genetic Programming: Breeding Strategies, Tree Gen-
eration, and Code Bloat. PhD thesis, Department of Computer Science, University
of Maryland, A. V. Williams Building, University of Maryland, College Park, MD
20742 USA, 2000.

3. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

4. Terence Soule and James A. Foster. Removal bias: a new cause of code growth
in tree based evolutionary programming. In 1998 IEEE International Conference
on Evolutionary Computation, pages 781–186, Anchorage, Alaska, USA, 5-9 May
1998. IEEE Press.

5. Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic pro-
gramming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 215–223, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

6. Thomas Haynes. Collective adaptation: The exchange of coding segments. Evolu-
tionary Computation, 6(4):311–338, Winter 1998.

7. Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns
and destructive crossover in genetic programming. In Peter J. Angeline and K. E.
Kinnear, Jr., editors, Advances in Genetic Programming 2, pages 111–134. MIT
Press, Cambridge, MA, USA, 1996.

8. Donald S. Burke, Kenneth A. De Jong, John J. Grefenstette, Connie Loggia Ram-
sey, and Annie S. Wu. Putting more genetics into genetic algorithms. Evolutionary
Computation, 6(4):387–410, Winter 1998.



Fighting Bloat with Nonparametric Parsimony Pressure 421

9. Jeffrey K. Bassett and Kenneth A. De Jong. Evolving behaviors for cooperating
agents. In International Syposium on Methodologies for Intelligent Systems, pages
157–165, 2000.

10. Sean Luke and Liviu Panait. Lexicographic parsimony pressure. In W. B. Langdon
et al, editor, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO2002). Morgan Kaufmann, 2002.

11. Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and parsimony in
genetic programming. Evolutionary Computation, 3(1):17–38, 1995.

12. Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckhart Zitzler. Multiobjective
genetic programming: Reducing bloat using spea2. In Proceedings of the 2001
Congress on Evolutionary Computation CEC2001, pages 536–543, COEX, World
Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30 May 2001.
IEEE Press.

13. Edwin D. DeJong, Richard A. Watson, and Jordan B. Pollack. Reducing bloat and
promoting diversity using multi-objective methods. In Lee Spector, Erik D. Good-
man, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen,
Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 11–18, San Francisco, California, USA, 7-11 July 2001. Morgan Kauf-
mann.

14. Aniko Ekart and S. Z. Nemeth. Selection based on the pareto nondomination cri-
terion for controlling code growth in genetic programming. Genetic Programming
and Evolvable Machines, 2(1):61–73, March 2001.

15. Markus Brameier and Wolfgang Banzhaf. Explicit control of diversity and effective
variation distance in linear genetic programming. In James A. Foster, Evelyne
Lutton, Julian Miller, Conor Ryan, and Andrea G. B. Tettamanzi, editors, Genetic
Programming, Proceedings of the 5th European Conference, EuroGP 2002, volume
2278 of LNCS, pages 37–49, Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

16. Sean Luke. ECJ 7: An EC system in Java. http://www.cs.umd.edu/projects
/plus/ec/ecj/, 2001.



Increasing the Serial and the Parallel
Performance of the CMA-Evolution Strategy

with Large Populations

Sibylle D. Müller1, Nikolaus Hansen2, and Petros Koumoutsakos1

1 Institute of Computational Science, ETH Zürich
8092 Zürich, Switzerland

{muellers,petros}@inf.ethz.ch
2 Fachgebiet für Bionik, Technische Universität Berlin

13355 Berlin, Germany
hansen@bionik.tu-berlin.de

Abstract. The derandomized evolution strategy (ES) with covariance
matrix adaptation (CMA), is modified with the goal to speed up the al-
gorithm in terms of needed number of generations. The idea of the mod-
ification of the algorithm is to adapt the covariance matrix in a faster
way than in the original version by using a larger amount of the infor-
mation contained in large populations. The original version of the CMA
was designed to reliably adapt the covariance matrix in small popula-
tions and turned out to be highly efficient in this case. The modification
scales up the efficiency to population sizes of up to 10n, where n ist the
problem dimension. If enough processors are available, the use of large
populations and thus of evaluating a large number of search points per
generation is not a problem since the algorithm can be easily parallelized.

1 Introduction

One of the commonly proposed advantages of evolution strategies (ES’s) is that
they can be easily parallelized, see e.g. Schwefel (1995) or Bäck, Hammel, and
Schwefel (1997). ESs with λ children per generation (population size λ) are
usually parallelized by distributing the function evaluation for each of the λ
children on a different processor. When the number of children is smaller than
the number of available processors, the advantage of using ES’s in parallel cannot
be fully exploited. Consequently, for a large number of processors the algorithm
should be able to use a large population efficiently.

In this article, we consider a derandomized ES with covariance matrix adap-
tation (CMA-ES) for which experimental results (Hansen and Ostermeier, 1997,
2001) show a clear convergence velocity improvement when compared to other
ES’s. The primary feature of the CMA-ES is its reliability in adapting an arbi-
trarily oriented scaling of the search space in small populations. The algorithm
is in particular independent of any orthogonal transformation of the coordinate
system.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 422–431, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Increasing the Serial and the Parallel Performance 423

When optimizing considerably complex, e.g. highly nonseparable functions,
the adaptation time becomes the limiting factor for the performance of the CMA-
ES if the problem dimension n exceeds a certain threshold, usually n ≥ 10.
That is, the number of generations to adapt the covariance matrix of the search
distribution to the function topology is the prominent factor for the degraded
performance of the algorithm. The reason is that in the CMA-ES (n2 + n)/2
elements of the symmetric covariance matrix C need to be adapted while the
search process itself needs only to adjust n variables. Interestingly, for popu-
lation sizes greater than 20 the adaptation time (i.e., the time to adapt the
(n2 + n)/2 elements of the covariance matrix) becomes practically independent
of the population size (Hansen 1998) . That means, the performance in num-
ber of function evaluations decreases linearly with increasing population size.
Alternatively, the implementation of the original CMA-ES on massively parallel
computer architectures, e.g. the Beowulf cluster with hundreds of processors,
supplies no substantial advantage compared to the use of twenty processors. On
remarkably complex functions, the time complexity is of O(n2), independent of
the population size and the processor number.

How can we use the CMA-ES efficiently on massively parallel architectures
with hundreds of processors? How can we increase the efficiency of the CMA-
ES, when a large population is preferable to a small one due to other reasons?
To increase λ alone does not help shortening the adaptation time as pointed
out above. Additionally, a faster adaptation mechanism must be implemented
being comparably reliable. The idea that we present in this paper is to increase
the adaptation rate of the covariance matrix compared to the original algo-
rithm, without losing its reliablity by exploiting a larger amount of information
per generation. This is possible because an increased population should contain
more information ready to be exploited in order to obtain a reduced adaptation
time. Compared to the original adaptation mechanism the proposed modifica-
tion would usually require much fewer function evaluations when λ is large but
could be slightly less effective within small populations.

The working principles of the original algorithm, the CMA-ES, referred to as
Orig-CMA here, are outlined in Section 2 and the modifications are presented
in Section 3. In Section 4, the simulation results are discussed and Section 5
provides a conclusion.

2 Algorithm of the CMA-ES

Following Hansen and Ostermeier (2001) , in the (µI, λ)-CMA-ES the λ offspring
of generation g + 1 are computed by

x
(g+1)
k = 〈x〉(g)

µ + σ(g)B(g)D(g)z
(g+1)
k , k = 1, . . . , λ, (1)

where
〈x〉(g)

µ =
1
µ

∑
i∈I(g)

sel

x
(g)
i (2)



424 Sibylle D. Müller, Nikolaus Hansen, and Petros Koumoutsakos

represents the center of mass of the selected individuals of generation g, and I(g)
sel

is the set of indices of the selected individuals of generation g, with |I(g)
sel | = µ.

The random vectors z from Equation (1) are N (0, I) distributed (n-dimensional
normally distributed with expectation zero and the identity covariance matrix)
and serve to generate offspring for generation g+1. They can be used to calculate
〈z〉(g+1)

µ analogously to 〈x〉(g)
µ . The columns of B(g) represent eigenvectors of the

covariance matrix C(g). D(g) is a diagonal matrix whose elements are the square
roots of the eigenvalues of C(g). Hence, the relation of B(g) and D(g) to C(g)

can be expressed by

C(g) = B(g)D(g)
(
B(g)D(g)

)T
and C(g)b

(g)
i =

(
d

(g)
ii

)2
· b(g)
i (3)

where b(g)
i represents the i-th column of B(g). Each covariance matrix corre-

sponds to a hyperellipsoid which defines the surface of equal probability to place
offspring. Here, the eigenvectors of the covariance matrix define the orientation
of the hyperellipsoid and the eigenvalues define the lengths of its axes.

The evolution path p(g+1)
c is calculated by

p(g+1)
c = (1− cc) · p(g)

c +
√
cc · (2− cc) ·

√
µ

σ(g)

(
〈x〉(g+1)

µ − 〈x〉(g)
µ

)
︸ ︷︷ ︸
=
√
µB(g)D(g)〈z〉(g+1)

µ

(4)

and is used to build the covariance matrix of generation g + 1

C(g+1) = (1− ccov) ·C(g) + ccov · p(g+1)
c

(
p(g+1)
c

)T
. (5)

The update of C is done with a symmetric matrix of rank one (right summand
in Equation (5)). The strategy parameters cc ∈]0, 1] and ccov ∈ [0, 1[ determine
the accumulation time for the evolution path p

(g+1)
c and the change rate of

the covariance matrix, respectively. Note that for cc = 1 in Equation (4) the
evolution path reduces to

√
µBD〈z〉µ which is the mean mutation step of the

last generation. Also, the update of C is independent of the adaptation of the
global step size.

For the adaptation of the global step size, the evolution path p(g+1)
σ that is

not scaled by D(g) is calculated by

p(g+1)
σ = (1− cσ) · p(g)

σ +
√
cσ · (2− cσ) · √µB(g)〈z〉(g+1)

µ︸ ︷︷ ︸
=B(g)

(
D(g)

)−1(
B(g)

)−1 √µ
σ(g)

(
〈x〉(g+1)

µ −〈x〉(g)
µ

) (6)

and its length is used to compute the step size for generation g + 1

σ(g+1) = σ(g) · exp

(
1
dσ

‖p(g+1)
σ ‖ − χ̂n
χ̂n

)
, (7)



Increasing the Serial and the Parallel Performance 425

where χ̂n = E [||N (0, I)||] is the expected length of a (0, I)-normally distributed
random vector and χ̂n is approximated by χ̂n ≈

√
n
(
1− 1

4n + 1
21n2

)
. The strat-

egy parameter cσ ∈]0, 1] determines the accumulation time for the evolution
path p(g+1)

σ , and dσ is a damping parameter.
The default strategy parameter setting, discussed in Hansen and Ostermeier

(2001) in detail, is as follows:

cc = 4
n+4 , ccov = 2

(n+
√

2)2 , cσ = 4
n+4 , dσ = c−1

σ + 1 (8)

Initial values are p(0) = 0,p(0)
σ = 0 and the initial covariance matrix C(0) is the

identity matrix I.

3 Modified Algorithm

All modifications solely regard Equation (5) that describes the change of the
covariance matrix, i.e., the change of the mutation distribution shape, and ccov.
Everything else, in particular the global step size adaptation mechanism remains
unchanged in this paper. We add to Equation (5) the following term:

Z(g+1) =
1
µ

∑
i∈I(g+1)

sel

B(g)D(g)z
(g+1)
i

(
B(g)D(g)z

(g+1)
i

)T

= B(g)D(g)


 1
µ

∑
i∈I(g+1)

sel

z
(g+1)
i

(
z

(g+1)
i

)T (
B(g)D(g)

)T
(9)

that is a symmetrical n× n matrix with rank min(µ, n) (with probability one).
The modification of Equation (5) then reads

C(g+1) = (1− ccov) ·C(g) + ccov

(
αcov ·p(g+1)

c

(
p(g+1)
c

)T
+ (1−αcov) ·Z(g+1)

)
(10)

where 0 ≤ αcov ≤ 1. Note that for αcov = 1 Equation (10) and Equation (5)
are identical and the original CMA-ES is restored. Decreasing αcov changes the
parameterized algorithm continuously. Results are presented for αcov = 0 and
αcov = 1

µ and compared with the original CMA algorithm, where αcov = 1, in
Section 4.

Since the rank of Z(g+1) is larger than 1, more information is passed to
the covariance matrix in each generation. Thus, the adaptation becomes more
reliable. Therefore, the adaptation time 1/ccov can be decreased, or in other
words, the learning rate ccov can be increased yielding a higher adaptation speed.
For αcov = 1, ccov is used as in Equation (8). For αcov = 0, experiments showed
that

ccov = min
(

1,
2µ− 1

(n+ 2)2 + µ

)
. (11)



426 Sibylle D. Müller, Nikolaus Hansen, and Petros Koumoutsakos

Table 1. Convex quadratic test functions and stopping criteria.

Name Function
Sphere fsphere =

∑n
i=1(xi)2

Ellipsoid felli =
∑n
i=1(1000

i−1
n−1 xi)2

Cigar fcigar = x2
1 +

∑n
i=2(1000xi)2

trades of reasonably well the reliability and the adaptation speed of the covari-
ance matrix adaptation, and is thus chosen in the strategies with 0 ≤ αcov < 1.
A closed expression for ccov has yet to be found that can be used in both types
of strategies represented by αcov = 1 and 0 ≤ αcov < 1.

Equations (9) and (10) are analyzed to motivate the coefficients 1
µ in Equa-

tion (9) and αcov in conjunction with (1 − αcov) from Equation (10). Under
random selection, the symmetric matrix

∑
i∈Isel

zi(zi)T =
∑
i∈Isel




z2
i1 zi1zi2 · · · zi1zin

zi2zi1 z2
i2 · · · zi2zin

...
...

. . .
...

zinzi1 zinzi2 · · · z2
in


 (12)

from Equation (9) has diagonal elements that are χ2
µ distributed and off-diagonal

elements with expectation zero. With E
[∑

i∈Isel z
2
ij

]
= µ, j = 1, . . . , n, we have

that
E
[
Z(g+1)

]
=

1
µ
B(g)D(g) µI (B(g)D(g))T = C(g) (13)

under the given selection model. Equation (13) is the reason for choosing the
coefficient 1

µ in Equation (9). With E [p(g+1)
c (p(g+1)

c )T ] = C(g) (Hansen 1998)

and E [Z(g+1)] = C(g), we conclude from Equation (10) that E [C(g+1)] = C(g).
This is the reason for choosing (1− αcov) in conjunction with αcov in Equation
(10).

To compare the strategies with different αcov, the functions shown in Table 1
are tested. Tests are carried out in the dimensions n = [2, 3, 5, 10, 20, 40, 80]
and for parent numbers µ = [2, 	n/4
, 	n/2
, n, 2n, 4n, 	n2/4
, 	n2/2
, n2] with
a population size of λ = 4µ. Initial values are set to 〈x〉(0)

µ = 1 and σ(0) = 1.
The search is terminated as soon as fstop = 10−10 is reached.

4 Discussion of the Results

Three different strategy variants are presented: New-CMA, where αcov = 0;
Orig-CMA, where αcov = 1; and Hybr-CMA, where αcov = 1

µ . Note that for
µ = 1, Hybr-CMA is identical to Orig-CMA. The simulation results for the
various strategies are analyzed from two different point of views:

Serial performance. We analyze the number of overall function evaluations to
reach fstop. This is the appropriate point of view if optimization is performed



Increasing the Serial and the Parallel Performance 427

on a single processor or on a small number of processors that does not exceed
the smallest sensible population size λ, usually five to ten. In this case the
number of function evaluations is an appropriate measure for the time to
reach fstop.

Parallel performance. We analyze the number of generations to reach fstop.
When a larger number of processors is available, it becomes interesting to
evaluate the number of generations to reach fstop, especially if λ is equal
to the number of processors. In this case, the number of generations is an
appropriate measure for the time to reach fstop in a single run.

First, we discuss the serial performance on fsphere as shown in Figure 1, up-
per left. For λ < 10n the performance of Orig-CMA and Hybr-CMA are similar
as expected. For larger population sizes, Hybr-CMA becomes faster than Orig-
CMA by a factor of up to three. This effect cannot be attributed to a faster
adaptation of the distribution shape because on fsphere the shape is optimal al-
ready at the beginning. The reason for the better performance of Hybr-CMA is
the faster adaptation of the overall variance of the distribution. Originally, the
cumulative path length control (Equations (6) and (7)) facilitates the adaptation
of the global step size, i.e. the adaptation of the overall variance. The parameter
that tunes the adaptation speed (dσ in Equation (7)) was (a) chosen conserva-
tively resulting in a somewhat slower but more robust algorithm (Hansen and
Ostermeier 2001 , Section 5.1) and (b) chosen w.r.t. small population sizes that
realize smaller progress rates than larger populations per generation and there-
fore demand slower adaptation rates. Consequently, for µ > n and αcov � 1
the distribution adaptation in Equation (10) can successfully contribute to the
adapation speed of the overall variance in Hybr-CMA because the change rate
ccov >

1
n . This is the presumable reason for the observed speed-up on fsphere.

Even though this effect seems to be advantageous at first sight, it may become
disadvantageous if the distribution adaptation influences the magnitude of the
overall variance significantly. While the path length control is shown to adapt
nearly optimal step lengths even for µ > 1 (at least for µ < λ < n, Hansen
1998), the distribution adaptation as described in Equation (10) acquires too
small step lengths rapidly, if—unlike on fsphere—the optimal step length re-
mains constant over time (i.e. in a stationary environment). When the optimal
step length decreases significantly fast over time, as on fsphere, this can be an
advantage. However, an algorithm that adapts drastically too small variances in
a stationary environment is not preferable in general. This suggests an upper
limit for reasonable population sizes, arguable at λ ≈ 10n.

Next, the serial performance of the strategy variants on felli and fcigar is
evaluated. The most prominent effect in these results is the dependency on λ.
The smallest λ = 8 (and even a smaller λ for n = 5) performs best in all cases.
For example, if n = 20 the decline of the serial performance between λ = 8 and
λ = 80 amounts roughly to a factor of 5.5 (on fcigar) and 7.5 (on felli) for Orig-
CMA and of 1.7 (on felli) and 4.5 (on fcigar) for Hybr-CMA. Considering the
serially optimal λ = 8, the performance difference between Orig-CMA and Hybr-
CMA is small. This leads to the conclusion that the introduced modifications in



428 Sibylle D. Müller, Nikolaus Hansen, and Petros Koumoutsakos

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dimension

fu
nc

tio
n 

ev
al

ua
tio

ns
 (

 S
ph

er
e 

) 

 λ=8

 λ=4*N

 λ=N

 λ=2*N

 λ=8*N

 λ=16*N

 λ=4*N2

10
0

10
1

10
2

10
2

10
3

 λ=8

dimension

ge
ne

ra
tio

ns
 (

 S
ph

er
e 

) 

 λ=4*N

 λ=4*N2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dimension

fu
nc

tio
n 

ev
al

ua
tio

ns
 (

 E
lli

ps
e 

) 

 λ=8

 λ=4*N

 λ=4*N2

10
0

10
1

10
2

10
2

10
3

10
4

 λ=8

dimension

ge
ne

ra
tio

ns
 (

 E
lli

ps
e 

) 

 λ=4*N

 λ=N

 λ=2*N

 λ=8*N

 λ=16*N

 λ=4*N2

Fig. 1. Number of function evalutations (left) and number of generations (right)
over the problem dimension for the sphere function (above) and the ellipse func-
tion (below). The Orig-CMA (− − −) and the Hybr-CMA (—) are plotted for
λ = 8, n, 2n, 4n, 8n, 16n, 4n2 if curves are far apart, or for λ = 8, 4n, 4n2.



Increasing the Serial and the Parallel Performance 429

Hybr-CMA yield at least similar, if not slightly better serial performance even
for µ = 2 and λ = 8 in the tested cases.

Comparing New-CMA with the other strategy variants where λ = 8 reveals
a significant result on fcigar (Figure 2). While Orig-CMA and Hybr-CMA need
about 500n function evaluations to reach fstop, New-CMA needs about 120n2

function evaluations. Using the evolution path pc in Equation (10) in addition
with a cumulation parameter of cc ≈ 1

n in Equation (4) yields this impressive
speed-up of Orig-CMA and Hybr-CMA. Although detected in earlier investiga-
tions (Hansen and Ostermeier 2001), this speed-up is noteworthy in that a com-
pletely adaptable covariance matrix with n2+n

2 free parameters can be adapted to
certain topologies in O(n) function evaluations. Since this observation on fcigar
is the major difference between Hybr-CMA and New-CMA, the latter algorithm
is excluded from the remaining discussion.

While the differences between Orig-CMA and Hybr-CMA are marginal for
λ = 8, the picture changes in favor of Hybr-CMA when the population size is
increased. For λ = 8, the scaling of the needed function evaluations w.r.t. the
problem dimension (i.e. the slope of the graphs) is linear on fsphere and fcigar,
but it is almost quadratic on felli. For λ ∝ n, the scaling of Hybr-CMA becomes
nearly quadratic, regardless whether the scaling is linear or quadratic for λ = 8.
This is in contrast to Orig-CMA where the scaling always deteriorates when λ is
increased from a constant value to λ ∝ n. As a result, Hybr-CMA performs never
worse and often greatly better than Orig-CMA if λ ∝ n. This clear advantage can
of course be expected only if µ ∝ λ, e.g. µ ≈ λ/4 as chosen in our investigations.
Concluding these observations, Hybr-CMA must be undoubtedly preferred w.r.t.
its serial performance if µ > 3 and n > 5.

Second, we discuss the parallel performance that comes into play if λ is
chosen considerably large. This means that we concentrate the discussion of
parallel performance on the cases where λ ∝ n and λ = 4n2.

Certainly, the difference in performance between Orig-CMA and Hybr-CMA
discussed above translates to the parallel case. Hybr-CMA outperforms Orig-
CMA overall and on any single function, if λ  8 (assuming µ ≈ λ/4). There-
fore, it is more interesting to interpret the parallel strategy behavior in relation
to λ. The parallel performance of Orig-CMA does not change dramatically when
λ is increased. The improvement never exceeds a factor of two in dimensions
up to 80. In contrast to Orig-CMA, where the parallel performance is less de-
pendent on λ, Hybr-CMA shows a vigorous improvement when λ is increased.
For example, increasing λ from n to 8n, i.e. by a factor of eight, improves the
parallel performance by a factor greater than four on felli.

However, the most impressive result concerns the scaling of Hybr-CMA with
respect to the number of generations where λ ∝ n. When λ ≤ 10n, Orig-CMA
scales (nearly) quadratically w.r.t. the number of generations on all functions
except on fsphere. The same observation holds for Hybr-CMA for λ = 8. How-
ever, when λ is increased to be proportional to n in Hybr-CMA, the number of
generations scales linearly with the problem dimension on all convex quadratic
test functions. On fsphere, the scaling for λ ∝ n is even slightly sublinear. The



430 Sibylle D. Müller, Nikolaus Hansen, and Petros Koumoutsakos

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dimension

fu
nc

tio
n 

ev
al

ua
tio

ns
 (

 C
ig

ar
 )

 

 λ=8

 λ=4*N

 λ=4*N2

10
0

10
1

10
2

10
2

10
3

 λ=8

dimension

ge
ne

ra
tio

ns
 (

 C
ig

ar
 )

 

 λ=4*N
 λ=N
 λ=2*N

 λ=8*N

 λ=16*N

 λ=4*N2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dimension

fu
nc

tio
n 

ev
al

ua
tio

ns
 (

 C
ig

ar
 )

 

 λ=8

 λ=4*N

 λ=4*N2

10
0

10
1

10
2

10
2

10
3

10
4

10
5

 λ=8

dimension

ge
ne

ra
tio

ns
 (

 C
ig

ar
 )

 

 λ=4*N

 λ=N

 λ=2*N

 λ=8*N

 λ=16*N

 λ=4*N2

Fig. 2. Number of function evaluations (left) and number of generations (right) over
the problem dimension for the cigar comparing Orig-CMA with Hybr-CMA (above)
and the cigar comparing Orig-CMA with New-CMA (below). The Orig-CMA (−−−)
and the Hybr-CMA or New-CMA (—) are plotted for λ = 8, n, 2n, 4n, 8n, 16n, 4n2 if
curves are far apart, or for λ = 8, 4n, 4n2.



Increasing the Serial and the Parallel Performance 431

roughly linear scaling for λ ∝ n is the main improvement of the new Hybr-CMA
compared with Orig-CMA.

5 Conclusions

We presented a modified algorithm derived from the derandomized evolution
strategy with covariance matrix adapation. Our goal was to devise a technique
with which we can optimize in fewer number of generations than with the original
strategy, allowing to exploit the often emphasized feature of evolution strategies
being easily parallelizable.

This goal is achieved for population sizes up to λ = 10n. Choosing αcov = 1
µ

and µ ≈ λ/4, the modified algorithm seems to efficiently exploit the information
prevalent in the population and reveals mainly linear time complexity for pop-
ulation sizes proportional to n and up to 10n, if fully parallelized. This means
we were able to reduce the time complexity roughly from O(n2) to O(n).

For µ = 1, the modified algorithm is identical with the original one (as-
suming identical recombination weights in the latter). With increasing µ, the
performance improves remarkably compared with the original algorithm. In our
tests, the modified algorithm with αcov = 1

µ reveals no disadvantage compared
with the original one. Only for population sizes larger than 10n the adjustment
of the overall variance becomes problematic. As a conclusion, the efficiency of
the adaptation of the distribution shape in large populations seems to be sat-
isfying for the moment. Future work will address further developments for the
adaptation of the global step size.

References

Bäck et al., 1997. Bäck, T., Hammel, U., and Schwefel, H.-P. (1997). Evolutionary
computation: Comments on the history and current state. IEEE Transactions on
Evolutionary Computation, 1(1):3–17.

Hansen, 1998. Hansen, N. (1998). Verallgemeinerte individuelle Schrittweitenregelung
in der Evolutionsstrategie. Eine Untersuchung zur entstochastisierten, koordinaten-
systemunabhängigen Adaptation der Mutationsverteilung. Mensch und Buch Verlag,
Berlin. ISBN 3-933346-29-0.

Hansen and Ostermeier, 1997. Hansen, N. and Ostermeier, A. (1997). Convergence
properties of evolution strategies with the derandomized covariance matrix adapta-
tion: The (µ/µI, λ)-CMA-ES. In Zimmermann, H.-J., editor, EUFIT’97, 5th Eu-
rop. Congr. on Intelligent Techniques and Soft Computing, Proceedings, pages 650–
654, Aachen, Germany. Verlag Mainz.

Hansen and Ostermeier, 2001. Hansen, N. and Ostermeier, A. (2001). Completely
derandomized self-adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195.

Schwefel, 1995. Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-
Generation Computer Technology Series. John Wiley & Sons Inc., New York.



Adaptive Reservoir Genetic Algorithm
with On-Line Decision Making

Cristian Munteanu and Agostinho Rosa

LaSEEB, Instituto de Sistemas e Robotica, Instituto Superior Tecnico
Av. Rovisco Pais 1, Torre Norte, 6.21, 1049-001 Lisboa, Portugal

{cristi,acrosa}@laseeb.ist.utl.pt
http://laseeb.ist.utl.pt

Abstract. It is now common knowledge that blind search algorithms
cannot perform with equal efficiency on all possible optimization prob-
lems defined on a domain. This knowledge applies also to Genetic Algo-
rithms when viewed as global and blind optimizers. From this point of
view it is necessary to design algorithms capable of adapting their search
behavior by making use in a direct fashion of the knowledge pertaining
to the search landscape. The paper introduces a novel adaptive Genetic
Algorithm where the exploration/exploitation is directly controlled du-
ring evolution using a Bayesian decision process. Test cases are analyzed
as to how parameters affect the search behavior of the algorithm.

1 Introduction

According to the No Free Lunch Theorems [11] there are no algorithms either
deterministic or stochastic behaving the same on the complete set of search and
optimization problems defined on a finite and discrete domain [11]. A blind a-
pproach to the optimization problem, as well as the global optimizer paradigm
are therefore out-ruled. We introduce a Genetic Algorithm that adjusts its be-
havior (exploitation or exploration) based on an on-line decision taken over the
fitness landscape on which the search focuses. This algorithm is not anymore
blind, in the sense that it uses the current status of the search on the fitness land-
scape, while modifying its search behavior, according to stagnation or progress
encountered during the search process. The algorithm builds on a former variant
introduced by the authors in [7] called Adaptive Reservoir Genetic Algorithm
(ARGA). The convergence within finite time, with probability 1 of ARGA, was
shown to hold in [8], while a real-world application focusing on finding the best
Hidden Markov Model classifier for a Brain Computer Interface task, was dis-
cussed in [9]. The present article introduces ARGAII, a variant of ARGA, that
bears the basic architecture of ARGA, improving however the control mecha-
nism by employing a Bayesian decision process. Based on the current status of
the search a decision is taken whether to keep exploiting the search space or
switch to exploration. Following a classification of adaptation in Evolutionary
Computation (EC) in [4], ARGAII fits within the ”dynamic adaptive” class of
adaptive Evolutionary Algorithms (EA).

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 432–441, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Adaptive Reservoir Genetic Algorithm with On-Line Decision Making 433

2 Algorithm Presentation

2.1 ARGA’s Basic Architecture

ARGA proposes a novel mechanism for mutating the individuals in a GA popu-
lation in corroboration with the selection algorithm. In a standard GA [3] each
chromosome in the population can be mutated, depending on a given mutation
probability. ARGA, however restricts mutations to a subpopulation of chromo-
somes, called reservoir which has its individuals mapped onto a fixed size po-
pulation. The number of chromosomes in the reservoir is called diameter and is
adapted during run. If there is no improvement in the best fitness found during
a certain number of generations, the diameter of the reservoir grows, in order to
obtain a larger diversity in the population and to recast the search in a better
niche of the search space. When this event occurs (i.e. an improvement beyond a
certain threshold) the diameter of the reservoir is reset to the initial value. The
algorithm is given in pseudo-code, as follows:

ARGA ()
{-Start with an initial timer counter: t.
-Initialize a random population: P(t) within specific bounds.
-Set the initial value of reservoir’s diameter Delta to Delta_0.
-Compute fitness for all individuals.
while not done do
-Increase the time counter.
-Select parents to form the intermediate population by applying
binary tournament.
-Perform mutation on reservoir
{-Select reservoir Rho(t), by choosing in a
binary tournament the less fitted Delta individuals
in the intermediate population.

-Perform mutation on Rho(t) with a random rate in
(0,P_mutation].

-Introduce mutants in the intermediate population by
replacing the former Rho(t) with mutants.}

-Perform (one-point) crossover on intermediate
population with a rate P_crossover.
-Form the population in the next generation by
applying a k-elitist scheme to intermediate population.
-Compute the new fitness for all individuals.
-Adjust the diameter of the reservoir: Delta(t).

od}

The basic structure described in the pseudo-code holds both for ARGA as well as
for the improved variant ARGAII, the only difference being the way the diameter
is adjusted in ARGAII. More details about ARGA can be found in [7].



434 Cristian Munteanu and Agostinho Rosa

2.2 Reservoir Adjustment in ARGAII

In ARGA the adjustment of the reservoir’s diameter ∆(t) is first done by com-
paring the best individual in the current generation t with the best individual in
the previous generation t−1. If there is an improvement of the best fitness found
beyond a certain threshold ε, the diameter is reset to its initial value ∆0. Other-
wise, in ARGA a constant rate c > 0 is added to ∆(t−1) and the integer part of
the sum is taken to be the new reservoir’s diameter ∆(t). However, in ARGAII
a more complex decision is taken when there is no fitness improvement, and
this involves a Bayesian decision process. In both cases, ARGA and ARGAII,
if the reservoir ρ(t) becomes bigger than the size of the population again the
diameter is reset to its initial value ∆0. Thus, the reservoir is reset in ARGA
on two distinct events: once there is a better than current best individual found
in the population, or when the reservoir grows (due to stagnation in finding a
better peak) as to fill the whole population. After the reservoir is reset, the al-
gorithm starts exploiting the neighborhood of the already found or current best
individual. The reservoir grows while no other better individual is found, the
algorithm starts exploring more the search space until the cycle is repeated with
the finding of a new better peak, or until the reservoir grows to the size of the
population. In ARGAII the following decision is taken: if the algorithm is not
finding a better peak, however the region searched by the algorithm has a high
fitness landscape ruggedness, the diameter of the reservoir stays the same. In
this case, due to the high ruggedness of the search space currently explored, the
diameter shouldn’t grow, as we estimate that continued exploitation might be
productive on such a landscape. If the algorithm is not finding a better peak, but
the region where ARGAII explores has a low ruggedness, the diameter grows, as
to increase exploration to more promising regions of the search space.

Landscape Ruggedness in ARGAII. In the literature there exist several
characteristics of the fitness landscape that differentiate between landscapes that
are rugged and multi-peaked, from those that are smooth, or uni-peaked. Such
measures are the distribution of the local optima, the modality or the rugged-
ness of the landscape. In [6] the authors define modality as being the number of
the local optima of a fitness landscape and show how this measure is related to
the difficulty of finding the global optimum by GAs and hill climbers. In [5] the
author following the first fitness landscape analysis by Wright (1932) and a ran-
dom walk method that extracts useful landscape features, by Weinberger (1990),
defines the ruggedness of the fitness landscape by using the auto-correlation func-
tion of a time series of the fitness values of points sampled by a random walk on
the landscape. A landscape that will have the auto-correlation coefficient close
to 1 or -1 will be considered smooth, while if the coefficient is close to zero,
the landscape is considered highly rugged. Also based on a random walk on the
landscape, several information measures were defined in [10] to better charac-
terize the landscape. For ARGA we propose a more precise measure that is also
amenable to a generation-by-generation processing. A random walk on the whole
landscape to calculate the correlation coefficient is not feasible computationally,



Adaptive Reservoir Genetic Algorithm with On-Line Decision Making 435

as we would have to apply it in each generation. Also, we are more interested
in finding the characteristics of the landscape in the region where the algorithm
converges, a correlation coefficient on the landscape where ARGA converges
being more difficult and out of hand to define. Thus, a cluster of points Ξ is
designated each generation to represents points in the region of convergence of
ARGAII. For each point x ∈ Ξ having fitness value f(x) a local search (LS)1 is
performed as to yield the peak of the basin of attraction in which x lied. This
peak has fitness value f∗. We call drills the points that suffer a LS process. All
distinct fitness values f∗ found for the drills in Ξ form a set Ψ . Thus, we have
the following (generally non-injective) mapping x ∈ Ξ �→ Ψ . The measure of
ruggedness is the cardinal of the set Ψ , that is φ =| Ψ |. Most often, drilling
yields solutions having better fitness than the current best. In these cases, the
best fitted drill replaces the current best individual, on the spot.

Clustering in ARGAII. ARGAII applies a clustering algorithm each gener-
ation to determine the sub-population that is currently converging. We define
convergence in terms of homogeneity at the genotypic level, thus a convergent
sub-population is a sub-population for which the chromosomes are similar at
the genotypic levels. As we will use real parameters coded binary, homogeneity
will be taken at the coded level of the representation (real valued parameters).
The convergent sub-population is considered to be the most populated cluster
after performing a cluster-tree algorithm on the whole population. Let this clus-
ter be Θ. The population of drills Ξ is chosen with respect to Θ as follows: A)
If the biggest cluster corresponds to the cluster in which the current optimum
lies, then choose at random K drills to form the set Ξ. If there are not enough
elements in the cluster to choose K drills, then compute the mean and standard
deviation of the individuals in the cluster. For each (real-valued) parameter in-
dexed j in the chromosomes pertaining to the cluster, we compute the mean µj
and standard deviation sj and we generate the remaining up to K drills, as a
string of values taken as samples from the uniform distribution centered on µj
with deviation sj , that is U(µj , sj). B) If the biggest cluster does not contain the
current optimum, it is supposed due to takeover, that this optimum will pertain
to the biggest cluster in a few next generations. Thus, Ξ is generated uniformly
as before, but centered on the current optimum, with the standard deviation
computed over the biggest cluster. In both cases the cardinal of the set Ξ is kept
to be K. The clustering approach thus yields the subpopulation that converges
(i.e. the biggest cluster), and the drills, that should be taken around the space
where the algorithm focuses its search. The drills are randomly chosen from in-
dividuals in the biggest cluster. After ”drilling” the search space we come up
with φ distinct peaks that where found. φ will be an estimate of the ruggedness
of the search space in the region where the algorithm converges (i.e. focuses its
search).

1 For this particular implementation we employed a Nelder–Mead simplex direct search
method.



436 Cristian Munteanu and Agostinho Rosa

The clustering method used is a hierarchical tree clustering with the cutoff
value of 0.95, that gives a fairly good consistency of the clustering method [2].

Bayesian Decision in ARGAII. The decision process is taken each generation
before adjusting the reservoir size ∆. The hypothesis H0 is that the optimum
is not around in the space searched by ARGAII, while hypothesis H1 is that
the optimum lies somewhere in the space where ARGAII focuses its search. The
costs involved in the decision process are C10 being the cost of choosing H1 when
H0 is true, and C01 the cost of choosing H0 when H1 is true. Thus, we have the
following decision:

λ(φ) =
p1(φ)
p0(φ)

H0
<
>

H1

P (H0)C10

[1− P (H0)]C01

where λ is the likelihood function, φ is the cardinal of the set Ψ , the a priori
probability of H0 being P (H0), and the a priori probability for H1 being [1 −
P (H0)]. However, we don’t have any a priori knowledge about the likelihood
functions p0(φ) and p1(φ), only the heuristical argument that as φ increases
the likelihood that H0 will be true decreases (i.e. p0(φ) decreases), while the
likelihood that H1 will be true, increases (i.e. p1(φ) increases). Without any a
priori information, we should take the simplest model, that is p0(φ) decreases
linearly, and p1(φ) increases linearly with the same absolute slope. We propose
the following likelihood functions to be used:

p0(φ) =
2

K + 1
·
(

1− φ+ 1
K + 2

)
; p1(φ) =

2
(K + 1)(K + 2)

· (φ+ 1), φ = 0 . . .K

Again, having no a priori information about the probability P (H0), this will
be taken equal to 0.5 (the two hypothesis are a priori equally probable). The
parameter of the decision process will be γ = C10

C01
.

Diameter Adjustment in ARGAII. After computing the decision that
should be taken for the adjustment of the reservoir’s diameter, we proceed
with the adjustment itself: we use an intermediate variable δ initialized as
δ(0) = ∆(0). The initialization is done at the beginning of the run, whenever a
better best fitness is discovered, and whenever the size of the reservoir grows to
the size of the population N . If no better best fitness value has been found from
the last generation to the current and if H0 was decided to hold true, then:

∆(t) =
{
δ(t),with δ(t) = �δ(t− 1) + c� if [(δ(t− 1) + c] = �δ(t− 1) + c�
∆(t− 1), δ(t) = δ(t− 1) + c otherwise

If no better best fitness value has been found from the last generation to the
current and if H1 was decided to hold true, then:

∆(t) =
{
δ(t),with δ(t) = �δ(t− 1)� if [(δ(t− 1)] = �δ(t− 1)�
∆(t− 1), δ(t) = δ(t− 1) otherwise

where [·] denotes the integer part of ”·” and �·� is the upper integer towards
infinity of ”·”.



Adaptive Reservoir Genetic Algorithm with On-Line Decision Making 437

3 Test Problem and Experimental Results

ARGA has been tested on real-valued functions (one defined by the authors,
and another classical test function) to analyze the search behavior of ARGAII
in comparison to ARGA and to a more standard variant of GA, and also for
studying the influence of the γ parameter. For brevity we will call an ”optimum”
point a local optimum which is the best point found at the end of the run.

3.1 Escaping Trap Local Optima

We construct a multimodal function, called F1 that contains both smooth peaks
and wide valleys as well as a highly rugged landscape concentrated in a small
region of the search space. The function is ideal for analyzing ARGAII, because
decision shifts when passing from smooth peaks, to the highly rugged landscape
and therefore, the capacity to escape the local and smooth optima to the more
promising region of the search space can be analyzed. The function is given
in Fig.1. The initial population is taken within the bounds x ∈ [5, 5.5] and

Fig. 1. Function F1

y ∈ [14, 14.5] as we want to test if the algorithm gets trapped (see, Fig.1). The
function is: F1 = 0.2 · fit1 + fit2, where: a = 1; b = 5.1

4π2 ; c = 5
pi ; d = 6; e = 10; f =

1
8π ; fit1 = exp(−(x − 2)8 − (y − 2)8) · (cos(100(X − 2)2 + 50(Y − 2)2))2; fit2 =
1/(a(y−bx2 +cx−d)2 +e(1−f)cos(y) ·cos(x)+log(x2 +y2 +1)+e); We compare
ARGAII to ARGA having the same common parameters and to a Standard GA
with k-elitist selection on top of a binary tournament selection. The parameters
of the strategies are given in Tab.1.

The results are given in Fig.2 which displays statistics over 100 independent
runs for each algorithm: ARGAII, ARGA, SGA. For each algorithm we plot



438 Cristian Munteanu and Agostinho Rosa

Table 1. Strategies’ parameters for F1

Strategy-Parameter ARGAII (1A,1B,1C) ARGA SGA (2A,2B,2C)
Population size: N 30 30 30
Crossover rate: Pc 0.8 0.8 0.8
Mutation rate: Pm max 0.5 max 0.5 (2A)0.1,(2B)0.01,(2C)0.001

Max. no. generations: 300 300 300
k (elitism) 5 5 5

c 0.4 0.4 not present
∆0 5 5 not present
ε 10−14 10−14 not present
γ (1A)0.5,(1B)1,(1C)2 not present not present
K 5 not present not present

the best fitness over the run, three curves being generated and representing the
maximal, average and minimum value of the best fitness for each generation, over
all 100 runs. The optimal points, found at the end of the runs are plotted in a
separate graph. From Fig.2 one can note the following: The evolution of the GA
comprises two phases: first, the algorithm searches the trap local optima, and
when it is capable of escaping from it the algorithm goes to the second phase:
searching in the more promising region: where the landscape is highly rugged.
The greatest variability between runs is recorded due to different moments when
the transition between the two phases occurs. Thus we have:

I) ARGA achieves both the worst robustness (96 distinct optimum points in
100 runs) and the biggest (worst) transition moment variability when compared
to all variants of ARGAII.

II) ARGAII(1B) performs better in terms of robustness of the solution found
in 100 runs it finds 5 distinct optimum points in the search space, while ARGAII
(1A) and ARGAII(1C) find each one 8 distinct points. In terms of variability of
the moment of transition, the smallest variability is encountered in ARGAII(1C)
and the biggest in ARGAII(1B).

III) As expected, all variants of SGA perform worse (low robustness and qual-
ity of solution) than ARGA and ARGAII, and this is due to its low adaptability
(fixed mutation rates).

IV) SGA(2A) is able to escape the local optima with relatively low variability
but it has also the worst robustness: 5 distinct points. The rest of the instances
of SGA most often converge to points outside the most promising region. The
lowest variability is achieved by SGA(2B), that is, 3 distinct optimal points.

3.2 Highly Multimodal and Multidimensional Landscapes

Next, the Ackley test function [1] (denominated as F2) was employed for testing
ARGAII in comparison to ARGA. The function is highly rugged as well as
highly dimensional: a variant with 20 variables (dimensions) being employed.
SGA was not used in comparison due to the complexity of F2 as opposed to
the lack of potential of SGA. The strategies’ parameters are given in Tab.2. The



Adaptive Reservoir Genetic Algorithm with On-Line Decision Making 439

0 50 100 150 200 250 300 350
0

0.2

0.4

0 50 100 150 200 250 300 350
0

0.2

0.4

0 50 100 150 200 250 300 350
0

0.2

0.4

ga
m

m
a=

0.
5 

ga
m

m
a=

1 
ga

m
m

a=
2 

ARGAII: Best fitness evolution in 100 runs

Generation 
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

ARGAII: Placement of the optimum point in the search space 

Y 

X 

Y 

Y 

0 50 100 150 200 250 300 350
0

0.2

0.4
ARGA: Best fitness evolution in 100 runs 

Generation 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

ARGA: Placement of the optimum point in the search space 

Y 

X 

0 50 100 150 200 250 300 350
0

0.2

0.4

0 50 100 150 200 250 300 350
0

0.2

0.4

0 50 100 150 200 250 300 350
0

0.2

0.4

SGA: Best fitness evolution in 100 runs 

Generation 

P
m

=
0.

1 
P

m
=

0.
01

 
P

m
=

0.
00

1 

−2 −1 0 1 2 3 4 5 6 7
0

5

10

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

1.5

2

2.5

−4 −3 −2 −1 0 1 2 3
0

5

10

15

SGA: Placement of the optimum point in the search space 

Y 

Y 

Y 

X 

Fig. 2. Results for the F1 function. Left side: Each graph plots three curves: maximum,
average, and minimum best fitness, statistics being calculated over 100 runs. Right side:
Placement of the optimal solutions encountered in 100 runs

original Ackley function is minimized, however our variant F2 is maximized, and
therefore F2 represents an inverted version of Ackley’s function scaled by adding
the value 25. The optimum is located in the origin, and has fitness value equal
to 25.

The results are given in Fig.3 which plots three curves representing the max-
imal, average and minimum value of the best fitness for each generation, over
5 independent runs. From the plot it follows that: a)ARGA performs poorly
compared to ARGAII as one can note that in all cases ARGAII reaches above
20 fitness levels, while ARGA reaches bellow 20, performing the same number
of functions evaluations as ARGAII. b) the influence of γ parameter is different
from that in F1. Thus, for F2 the influence of the respective parameter is smaller
than that for F1, however, the dispersion of the curves plotting the best fitness
during evolution, is smallest in the case of ARGAII(1A).



440 Cristian Munteanu and Agostinho Rosa

Table 2. Strategies’ parameters for F2

Strategy-Parameter ARGAII (1A,1B,1C) ARGA
Population size: N 60 60
Crossover rate: Pc 0.8 0.8
Mutation rate: Pm max 0.5 max 0.5

Max. no. generations: 1500 1500
k (elitism) 5 5

c 0.4 0.4
∆0 5 5
ε 10−14 10−14

γ (1A)0.5,(1B)1,(1C)2 not present
K 5 not present

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30
0 200 400 600 800 1000 1200 1400 1600

0

10

20

30
0 200 400 600 800 1000 1200 1400 1600

0

10

20

30
ARGAII: Best fitness evolution in 5 runs 

ga
m

m
a=

0.
5 

ga
m

m
a=

1 
ga

m
m

a=
2 

Generation 

0 500 1000 1500 2000
0

20

40

ARGA: Best fitness evolution in 5 runs 

Generation 

Fig. 3. Results for the F2 function. Each graph plots three curves: maximum, average,
and minimum best fitness, statistics being calculated over 5 runs

3.3 Discussion of Results

For F1 the results obtained point out that: employing equal costs in taking the
wrong decision (i.e. γ = 1) was beneficial in terms of robustness of the best
solution found at the end of the run (see ARGAII(1B)). When a higher cost
was allocated to deciding that the optimum is nearby when actually it was far
away (i.e. C10), higher than the cost allocated to deciding that the optimum is
far, when it was actually close (i.e. C10), this lead to a more dynamic strategy
(ARGAII(1C)). It proved out to be more efficient in terms of escaping the initial
local optimum, but worse when it comes to finding a robust solution, as expected;
the strategy is more explorative, and might miss the good points from lack
of sufficient exploitation. For F2, the influence of the γ parameter is not so
dramatic, therefore, we assume that in this case any value of this parameter can
be chosen resulting in a similar behavior for ARGAII. The experiment shows that
γ has an effect of additional control over the search mechanism. If no information
about the search space is known, a unitary value for γ should be adopted: equal
costs for the two possible wrong decisions.



Adaptive Reservoir Genetic Algorithm with On-Line Decision Making 441

4 Conclusions

Employing a direct on–line control to the process of adaptation by including a
decision process has proved to be efficient in comparison to a similar algorithm
not having incorporated the decision process. The results show that ARGAII
is better in terms of discovering good solutions within a small number of gen-
erations, for the test functions used. ARGAII proves itself more robust (in the
case of F1), and converging to better solutions (in the case of F2), than ARGA.
ARGA needs more generations to achieve the same performance as ARGAII2.
It is important to note that ARGAII makes the assumption that a promising
region is a region with high ruggedness. On problems for which this assumption
doesn’t hold, ARGAII is expected not to work well, as in this case the deci-
sion process would be meaningless. The algorithm may be improved at the level
where clustering is performed, better and faster variants of clustering should
be sought, as this stage gives indirectly the estimate of the ruggedness. Further
analysis will be done on a wider test suite, on real world applications, such as
the image enhancement problem requiring optimizing complex criteria. ARGAII
will be extended to deal with discrete optimization problems.

References

1. Baeck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York (1996)

2. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press
(1974)

3. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison–Wesley (1989)

4. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Compu-
tation: A Survey. Proceeings of IEEE ICEC97 (1997) 65–69

5. Hordijk, W.: A Measure of Landscapes. Evol. Comput. 4 4 (1996) 335–360
6. Horn, J., Goldberg, D.: Genetic Algorithm Difficulty and the Modality of Fitness

Landscapes. FOGA3, Morgan Kauffman (1995) 243–269
7. Munteanu, C., Lazarescu, V.: Global Search Using a New Evolutionary Framework:

The Adaptive Reservoir Genetic Algorithm. Complexity Intnl. 5 (1998)
8. Munteanu, C., Rosa, A.: Adaptive Reservoir Genetic Algorithm: Convergence

Analysis. Proceedings of EC’02, WSEAS (2002) 235–238
9. Obermaier, B., Munteanu, C., Rosa, A., Pfurtscheller, G.: Asymmetric Hemisphere

Modeling in an Off-line Brain-Computer Interface. IEEE Trans. on Systems, Man,
and Cybernetics: Part C. 31 4 (2001) 536–540

10. Vassilev, V., Fogarty, T., Miller, J.: Information Characteristics and the Structure
of Landscapes. Evol. Comput. 8 1 (2000) 31–60

11. Wolpert, D. H., Macready, W. G.: No Free Lunch Theorems for Optimization.
IEEE Trans. on Evol. Comput. 1 1 (1997) 67–82

2 The CPU time spent in one ARGAII generation is about 1.7 times bigger than the
CPU time spent in one ARGA generation, due mainly to the computational overhead
of the LS method



Genetic Algorithm Visualization
Using Self-organizing Maps

�� ������� 	�	� 
������ ��� ��������� 	��� ���������� ��� 
��� �����

���������� 	
 ����������� ��� �	������ ����	�	��
���������� 	
 �������
������ �� �����������
�� ��� � ������� !"����#

�$����% ���������	
	��������	� �&'% �������	
	��������	�

��������� ��� ����� ����� �� 	������( 	
 ��	����	���� �	�������	�
�������)���	� ��� ������*�� �� ���������	� 	
 �������)���	� �	 �	�� (���
+�	(� ������������	��� ��	*����� "��
$,�����)��� -��� !",-# ��� ����

	� ������������	��� ������� ��� ��	.����	�� /� �	( 	( ��0����� (���
	
 �������� �� ",- ��+� �� �	�� 	� ���� ���1���� 
	� �� �������)���	�
���+�

� �������	�
��

������������ ��������� ��� ������� � ���� ������ �� ���� ���������� ���
����������� ��� ��������� ���� ���� ������ ����������� �� ���� ��� ���������
��� �!�������� �� ������ ����������� �� ��� ������� ������� ���� ��� ����� ���
������ �� ��� ��������� �� � ���"������� ���#� $������������ ��� %������� ��
��Æ���� ��� �� ��� ���� ���� �� ����� � ���������� �������� �� ��������� �����
���%��� �������

� ����� ����� �!����� �� ��� &������ �� ��� ��������� ����� ������� ����
���� %� ����� � ����� �� '����� ������ ���������� ���%��� ������� ���� �
����� ����������� ��� ������������ �� ��� &������ �� ��� ��������� ����������
������ ��� ���� �� ���� ��� ���������� ��� ��������� �� ��� ��������� %���� ���"
�������� ��� ������� �� ��� ������ ����� %���� �!������� �� �� �� '��"���� ���
��������� ����������� (������)����� �� �������� �� � ������ ������ ��� �������
���� ���%���* ���� %� ������������� ��� ������ %������� �� ��� ���������� ���
� ����� %� ���'���� �%��� ����� ���������� ��������� ���������� ��� �����"
���� ���������

+�� ���� �� ��� ����� �� ������)�� �� ����� �, -������ . �������� � ������'������
��� ����������� �� �������)����� ������&���� -������ / ������%�� ��� ����� �� ���
��� �� ���������������� �������)����� ��� ������� �������� 0� �������� 1 ��� 2
 � ��� ��� ��� ������ �� �������� ��� -3
 %���� �������)����� ������ ��������
�� ���� ����� �� � ������ �� ���������������� ���%����� 3����! ��� ����������
������ ������� �� ��

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 442–451, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Genetic Algorithm Visualization Using Self-organizing Maps 443

2 Visualization Techniques

�����������	
 ���
����� ��� ���
 ���� �
 �� �	� ���� ������� �	 �������
� ��

���� �
 �
 �
������� �	��� �� �� 	�� ����
� �	��� �� ������� �� �	�� � �	���
�
�	����� ���� ���
����� ��	���� � ������
� �	� � ������ �
������
��
� 	� ��
��	����	
��� ��	�����

�����������	
 ���
����� ��
 �� ������� �
�	 ������� �����	���� ���	���
� �	
�� �	��	��
� �������� 

� ���� �� ����	 !� ��� ���������� �������
� ����� �� ��
	���� "�� �����#
��
����	
 	� � ��	���� �	����	
$ 	� �� ��
	���� "�� ���������� �
������#
����	
 	� �� �������
����	
$� %
 �	�� ��	������ �	� 	� ���� ��
	���� �
�
��
	����� ��
 �� ���������� �� 	
���

� 
�� ��� �����������	 &	� ��
 ��� ���� ��	����� 	��� ��
� ��
�����	
��
�	 �	� ��
 ��� � ������� 	� �� ��	����� 	� �� ��	����	
��� ���	����� 	�
�	� ��
 ��� �� ���� ��	����� �
�� �	� ����� ��
�����	
� �	 � ������� 	� ��
�����
� ����� 	� �� ���	���� �� 	����
���

��� ����	
���� ����������

���������
� ��
	����� �� �� ������� �
� 	����� �����������	
 ���
���� ����
�
 �� ��	����	
��� �	�������	
 '���� (	������� �
 �
��������)� ��
	����� ��
������� �	 � ��
��� 
����� ������ '�
���� *��������� ��	� '�
��� ����
�� ����
	� �� '�
��� 	� 	��� �
����������

��	 �+������ 	� ��� ��� '���� ,"�$ �	� �� -
���+ ��	���� "��� �����	

.$ �
� '���� ."�$ �	� �� *�������
 ��	���� "��� �����	
 /$� ��� 0�
� 	� ���#
����
����	
 �� ���
����� �� ���� �	� ��� ��	������ 1	�������� ��
 � �	��
�	����+ '�
��� �� ����� ���������� �
 �����#	�2������ ��	������ ��	 ���������#
��	
 ���
����� ��
 �� ���� ��	� ����� 	�2������ ����� ���������� 	� ��	� �	��
�	���
���	
 	� ��� 	� ����

%
 �� ��	�� ��	������ '�
��� �� �� ��������	
 	� �� �	�����	
��
� ��
���	

����������
� � �
� � �	� �� ������ �� ��
	���� �������
�� %
 	��� ��	�����
��0� �� �������
� �������
 ��	���� "�13$ �� ��
 �� �� ��
�� 	� �� ��� ���
�
 �
����� ����	� �������
��� 4	� � ��
���� ��	������
� "53$ ��	����� �� ��
 ��
�� ������ 	� �������
� ��� �� 	�2������ ���	���� 	� ��� ������ 	� �Æ���
���
3�
	���� �����������	
 ���� �� ��� �
� �	����� 	� �		� ������� �	����	
� ����

��� ����	
���� ��������

�� ��
	���� �� �� �������
����	
 	� � ��	���� �	����	
� 4	� �
 ���� ��	����
��0� ��
�����
� �� *�������
 ��
���	
 �	� 	
� ����
��	
� ��	���� �
 4����� ."�$�
�� ��
 �� � ���� 
����� 	� � ��
��� ����
� �������
��
� � ���� ������ %
 ��
��+�������	
 	� �� -
���+ ��
���	
 �	� ��	 ����
��	
�� ��	���� �
 4�����
,"�$� �� ��
 �� �� ������ �� � ���� 	� ���� 
������ 	� � ��� ����
� �������
��
�
�� ������ 	� � �
� �� 4	� �� �13 �� ��
 �� �
 �
����� ����	� �������
��
� � ���
��	�� �� ������� 4	� � 5�
���� 3�	������
� "53$ ��	���� �� ��
 �� � ����



444 G. Romero et al.

������������ 	� 	
������ �� 	�� �����	��� 
	���	��� �� ������
�� ��������
����	
��	���� 	

��� �� �� ��� ��� ��������� �� ��� ��
�������

���� �� 	 
��� ���� �	� �� ����	
����� ��	� �� �	������� ���� ��� ����

�����	�� 	
������� 	�� �� ��� ���	

� 	� �	�� 	� ������� ��������� ���������
��� ����
�� ����
���� ����� �� 
��� ���������� �� �	� �
�� ������ 	� 	 ��������
�� ��������� ��� ����
� 	���	�� ���� ��� ��������� 	�� ����
���� ���� 	
�
����������	
 ��	
��� ����� �� �������� �� 	����
��� ���� �	��  !������ "#�

$�������	��
�� ���� �	� �� ����	
��	���� ������� �� ��� ������	
 ���������
�	���� �� ���������� 	�� 	� ���� ������	
 ���������	���� �� ��%����� ��� ��%�����
����
��� ����� �� �� ��	��	�� �	� �� ����� ��� !� 	 ��%����� �	� �� ����	
��	����
�	� �� �� �����	�� ��� ����� ���� �� ������	
 ���������	�����

��� �����	�
��� �� ��� �� �� ���	����

&������ 	� ��� �����	����'� �	�	 ��

 ���
� 	 ������� �� ��� ��	�� �� ��� ����
	����
	� ��	� ����� (	�� ����
������ �	� �� ��	�� ��� 	 
��� 	� ��� ��	�� ��
	� ���
�����	�� 	
������� )�	� ������ �� ��������� �*����+ )�	� 	��	� �� ���
��	��� ��	�� 	�� ����� �*�
����+ ��� �������� �� �������� �� ������ " 	�����
��� ��������� 	���� ��	� ��
������ 
��� 
��� 	�� ��� ���� ���� 	��� !��
	�
�����	���� �	� �� ���	���� ��� 	�� �� ��� �������� �� ,�

���� ����� 	 
�� �� �����	���� 	���� ��� ��� 	
������ �� ������� �� 	 ����
�
����� ��� ��������	��
� ������� 	���� ��� ���
� �������� -������ �����	

�� ����� �������� �	� �� ���� �� �*��	�� �����	���� 	���� ��� �������� �� 	�
	
�������

��� �����	�
��� �� ������ �� �� ���	����

!������ �	�	 ��� 	�� �����	����� �	� �� ���� 	� ��� �	� ���� �������
��� ������ �� ��� ���
�����	�� �������� .�� �� ��� 	/�� ��	��	��� �� ���
��
����	�� �����	���� �� ��� 
	�� �� ���� �����	����� ������ ��� �������� 0� �����
��� ���� �� ����	
��	���� �� �	� ��

�� ��� ������� ��� ������ 	�� ���� �� ��
�� �� ������� 
��� �� ��� ��	��� ��	�� ��� ���� ������� ���� �� �� ������ ��� �����

��� ������ �� ���
����� �	� �� ����	
���� ����� ��������� 	�� �����������
������� 1 �# 	�� 2 �# ���� �� 	 �
�� 	���� ��� ��� �� ������ �	
�� �� ���
�����
��� �������� �� ������ " ����� ��� ��������� 	�� ���
���� ������� ��� ��	���
��	��� ���	

� �� ���
� 
��� �� ��� �	�	 ��� 	�� �����	����� 	�� 	� ��� �	�
��� ����������� ����� �����	���� ����� �	�	 �	� ��� 	�� ��	� ����� ��������
	��� $�������	��
� ���� �� ���	

� ��Æ��
� �� 	�������

3 Multidimensional Visualization

(��� ���������� ��� ����	
��	���� 	�� 
����� �� ������������ �	�	 ��������� ��
�� ��� ��	� ����� �	��	�
��� ���� �� ��� �� ��� �	�� ��	� ��	� ������ �� 
�����
�� ����� ���������� ��� ����� 	�� ��� ������
� �*�������� �� �� ������ ����

���	����3 ����� ��
�� ��� ��� ������ �������� 	�� ��� 	� ��� ���� ���������



Genetic Algorithm Visualization Using Self-organizing Maps 445

������� ��		�
����� �	 ��� ������ ��� �������	 ��������� �	�������� �� ���� �	
�	�� ��� �	�������� ��� ���� �����	���� ������� �� ��� ���
��� �����������	
���� ���� �� �����	���	 � ������ ��� �	�������� �� ��
�������� ���� ���
��
�� �����	���	 ��	� 
� �	���

��� ��� �	���������� �� ����������	����� ����� � ������ �� ����	���� ������
�����	����� ���� �� � ����� �����	��� �	 ������� �������
�� �� � ��  �����	���	�
!��	 ����	��������� 	����� ������ � �����������	����� ������� ����� ��� ��	�
	����������	 
������ ��� ���� �����	 �� ��� ����������	����� ������ �����	����
�� ��� ��		����������	 �� ��� �����������	����� ������� !��	� ����	���������
������	 ��� �������� �� �	 ����������	�
��� 	����� "#$� �%&�

!� ���	��� ��� ��		���������� ��� ��	�����	 
������ ����	 �� ���� �����	 �	
�	��� !��	� ��	�����	 ��� 
� ������� ��	����� �� ��� ����������	����� ������
	��� �	 '�������� ��	������

!���� ��� ���� ���(������ ������	 ���� ��)����� 	�������	 ��� ���*��		�	�
+� # % ,-���� ���	 � 	���� �� ������	 ��� ��� ��	�����	�� ���(������ �����
�����	 ���� 	������ ��������� �� ����� ������������� ������.��� ��� 	��������
���	�������� /��� �� ��� ���� ���� *���� ��� ��������� ��������� �����	�	
"012& #3%� /�����4	 ���(������ #5%� ���������� ��������� �����	�	 "112& #6%�
���������� ��	����� �����	�	 "172& #8%� *�����	 
�	�� ���	 #9%� 	��������������
���	 "/:;& #<%� ����

=����� ������	� ��*� 012� ��� ��������������� ����� 
�� ���� �� ������ ����
������ 	��������	� ��������� ������	� 	��� �	 /�����4	 ���(������� 112 ���
172� ��� ������ ��������� 	��������	� 
�� ���� ��� ��������������� �����	���
!��� ��	� �����	��� ����� ��	�����	 ��� ���
�� ���	 ��� ��� ��������� �.�������
��� 	������ ��� ����� 	���� �� � ���� 	���

/�����������������	 "/:;& #<% ��� � ���� �	���������� ��������� ������� 
�
0����		�� !��� ,������ ����� ������ ��� �����	���	 �� ���� ������� ��� �	�
�� 	�������������� ������ ������*	� !�� /:; ��������� �	 
�	�� �� ��	�����	���
���������� ��������� +� ������	 � �������� ���	����� ������� ���� ��� ����
�����	����� 	���� �� ��� ����	� ;�� ����	� �� ������	� �	����� ���� � ����
�����	����� ������� ��� ���	 ��� ������� �	 � ������� ���� ���� �����	�����
	���� ���� � ������ !�� �������� �� �������� ���	����� ����	 ���� ��� �������
���	���	 ��� ������� ��	����� 
������ ��� �����	� 0����	 ���� ��� ���� ���� �����
�� ��� ����� 	���� ��� ������ �� ����
� ��� ����	 �� ��� /:;� !�� /:;
��� ���	 	��� �	 � ���	��� ��������� ���� �� ����������	����� ����� 2�	�� ���
/:; ��	 ��� ����
����� �� ����������� >������������� ����
����� ����	 ���� ���
������* ��� ��������� �� ������������ �����	 �� ��	 ���� ����������� 
������ 2
��� ����� �	 �		�������� ���� ��� ��� ���� �� �	 ������ ��� ?��� ��� ��� ������	
������	� ���� ��� ���� �����	 ��� ����	������ ���� ����������	����� 	���� ��
��� �����������	����� ���� �� ��� �����	 ��� 
� ���(����� ������� ��������� ���
����� �����		� /:; ��	 ��� �������� �� 
���� �
�� �� ����	���� ��� �����	

������ 	����	 ��� ��	��� ���� �� ��	 
��� ��������



446 G. Romero et al.

4 The Onemax Problem

��� � ������ 	
���� �� ���
� � 
��	 �	 
�� ������ �� ���������� 
�� ����
���

����� � �

��

���

��� �� � ��� ��
�

�
����� �
 �	 � ��	� ������� �
 �	 �	��� ��� ��������� ��� ��	�����
���
��
����  �� ������ �	 � 	���� ������� ����
��� !��� 
�� ������ �� �����"
	���	 �	 	��� �	 
�� ������ �� �����	���	 ������	�	 #����� 
�� ���� ���$��
���� ������� ��
	 ������ �����	� 
�� ������ �� ��� ��
��� �� %�
 ����	
���!	 �������
����  � 
�&� � ��& �� 
�� 	���� �� 
��	 ����
���� ���� ��� �
	
��� ��� 
!� �����	���� ��
	�

0

1

0 1

on
em

ax
 v

al
ue

x

0
1

x
0

1
y

0

1

2

onemax value

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

fit
ne

ss
 v

al
ue

max
avg

��� ��� ���

���� �� ���	
 �� 	� ����� ����	��� ��� �� ��� ��� 	�� ��� ����
���
� ��� � �	�


��
�
 	�� ���	 �� 	� �� ��� ���
 �����	���
 ��� � 
� �� ����
 � ��� ��

 �� 	����� 	���� �� 
��	 ������ �	 
�� 	�
 �� ������ 	
����	 �� #��� ���
� �

�����	��
�� �� 
�� ������ ���
�� 	���� ��

�
�  �� �����
	 �� ��

�
��� 
�� ���
��	

� � ���� ��� � � � � ��� !�
� �� � ��� ���  ���� ��� � ����� �� 	����� �"
���	� ���
���	�	
��� ��
���� �� ����	 �� ��� �
��� ���	�	
��� ��
���� �� ���	� ��  ��� ���

�� !��	
 ��� 
�� ��	
 ��		��� 	��
���	 
� 
��	 �������

'��� � �	 ����
�� 
��� (� 
�� ����� ��� ���)
 	�� � 	��
��� �	 � ���
��
�� ��

�
���� �� �"�����	���� ����
���� *� 
��	 ��	�	 � ��
������	���� 	�����

��
��� �	�� 	��
��� (� �	 ����		���� �	 	��� ������ !� ��� ����� 
� �	� +,- ���
��
������	���� 	����� ��� ���.��
���� *� ��� ���������
	 !� �	� � � ��� ���

��	 �������

 �� #�	
 	
�� �	 
� 
���� 
�� ���� �	 � #�	
 ��������� 
�� ��� !�	 
������
!�
� ������ ����
	 	���
�� ���� �

���

�
�  ��� 
�� 	��
���	 �������� �� 
��

����
������ �����
�� �/�� ��� ���.��
�� ���� 
�� +,-�  �� ��	�
	 !���
���.��
��� 	��
���	 �� 
�� ������� !�
� � � ���� ���� 
�� ������ 
������ ���
!�	 ��
 ���� 	�
�	���
���� �	 ��� �� 	��� �� #���� 0�

,�����	�� +,- ���)
 �� � ������
 ���.��
���� ��
 ��� �� ��

�� 
��� ��
#���� 0�  � ��

�� 
�� ��� �
 ��	 
� �� 
������ ���� �������� 1�!� ��	
���



Genetic Algorithm Visualization Using Self-organizing Maps 447

48
52
50
51

52 49
50

52
48

42
50

56
51
50

46
51 37 42

46

50
49
46
47
51

49 54 43 46
43

58 47

59 49
54 47

48
40
54

50

45
41
48
49
43

57 43 48
50
47
49

46 50 51
56

48
53

40
44 48 47 49

54 55 44 50

50
43
51

55 46

40
48
52
49
55
53

51
52 51 49 59

51
50
52

57
64

49
65

46
50
52
53
57

68

63
64
66
69

66
64
65
67

64

64

77 65 65

66 64
70 66 64

65

65 67 65

64
66 64

63
64
67
66

67
64 65

66
69
64

64
66
67
68
69
65

64
66
67
69
63
65
71
72

72
63
66
67
64
65

68
69
64
65

65
68

64
66

75
76 76 78

77 76

77 80

77
76

75
77
76

78

75

75

76

76
77
75

77

77
75
76

80
81
79
77
78
75
76

75
77
78
79
76

� � ��
82
81 83 81

82 80 83

82

81

81 80

81

85
83
80
82
81

80
82
81

81

84 84 85

84

87

88

85 85

85
84

88
87
86
84
85

87
86
85
84

100
99
98

98

�� �� ��

���� �� ���	
���� �� ��
��� �������� ��
� � ��� ����
� ��� ������ ����� ����

�
���

� � ��� 
�� ���
 �����
� ��
 !��
�� ����
� ��� 
��  
��� �����
� �����
 "
�#


����� ��� 
��

�� ������ ��	�
� ���� �
���

�
� � ��� ��	�� 
� ������ � �����
 
��
 	�� 	������


�� ������
	�� �����	�	
	�� �� ���� ����� ���
�
���

�

�
��	�
� 	� ����

�
	
� ����
��

� ����� �� 
�� ������ �� �	�����
 ��	�
� 	
� �����  
���� ���� �� 
��� ����
��� ���� � �� �� !� � ���� ����
 
�	� 	���� ��� �����	�� � �����
 �� ����

�
�

���� ��	�
� 	�� �� �����
�� 	� 
��� ��� ��� ���� � �� �� "�����
	�� 
�� ���� #$
��� �� �� ������� 
�� ��
�	��� �����
 ��� �� ���� 	�  ���� %�

&� � ��� ����� 	� � ��

�� �� ��
 
�� #$ 	� ��	��� ��� �������	�� ���
��� 
�� ���� ��	�
� �� 	� 
�� 
��'���
 ������� ��� 
�� ���
� �� �� 
�� ��

��'
�	��
 ���� ���  ��
 �	�
��� ��  ���� % ���� 
�� 	�	
	�� ������ ������
	���
$� 	��	�	����� ��� �������� �����
�� 	
� � ()* �� ���	�	�	
	�� �� ��	�� ) ��
+ ��� ����� ���	
	��� ���
 �� 
��� ��� �  
���� ����� ������ ()� &��
 ������
���� �� 
�� ������
	�� ������� 
� ��

�� ����
	���� ��
	� 	
  ��� 
�� ��
	���
	� ������
	�� ,)� $� ��

�� ����
	��� ��� ������ 	��	�	����� ��	�
 
� 
�� �	��
'
��

�� ����� ���� 
�� ��
	��� 	� ����
���

-��	.� 	
� 
�� ����	��� ���� ���� 
�� ����������� ������� 
����� ��
	���
	� ���� �������� /	
� 
��  ��
 ��� 
���� 	� ��
 � ����� ����������� �	���
	���
�� 	� 	
� 
�� ������� ��	� ��� ���� ��	�	��
�� 
�� ������� 	
� 
�� ����	���
�

���
� ���� �	�	���  
���� 	��	�	����� ��� ������
�� 
� ���'������
�� �����
�� 
�� ����

!� �������	��� .������� ����
 
�� ����
	�� ��������� ����� �� 
� 	������

�� ��� �����
�� &� � ��� ��	�� 
� 
�� 
�� ���� ��
��� 	
� ���� ���
	�	'
����	���� �������� �� ����
�� �	Æ���
��



448 G. Romero et al.

50
47

52
51 50

50
47
49

50
52

40 46 51

43
44

53
50
49
51

55
59
52
54

59

48
43
42

50
51
49

57
54

37 43
40

50
48
46

54
51

43
46

51
49
50

54
52
51
58
53

43 46

52
48
47
51
49

56

50
46
41

47 55
48

56
57

44
49
45
50
51
52
48

51
55
49
52
48
53

57 64 65

65

64
66

63
64

67
65

64
65

66
67
69

64
66
67
65

68
69 72

64
67
68
69
70

77

64
65
66

63
64
65

64
65
66
67

65
67
63
64

63
68
69
71
67
64
66
65

72

75

77
78
75
76

78
77
76

80
79

75
76 78

76 80

78
76
75

81
75
79
78
77
76

� � ��

80

80
82
81

81 83
82

82
80
81

83

80
82
81

85
82
83

84

85
84

84
88
87
85
86

85
87
86

87
88

87
86
84
85

88
100
99
98

�� �� ��

���� �� ���	
���� �� ��
��� �������� ��
� � ��� ����
� ��� �
�
��
� ����� ����

�
���

� � ��� 
�� ���
 �����
� ��
 !��
�� ����
� ��� 
��  
��� �����
� �����
 "
�#


����� ��� 
��

5 The Rastrigin Problem

��� �����	
	� ����	�� 	�

����� � � �� �

��

���

��� � � ���������� �� � ������� �����

��� ��� �����	����� � � �� ��� � � ��� ��� 
 �!� �	�	�� �� "��� 	� ��
��� ��	�� � �� �� �� � � � � � 	� #� $
�� % &� ��� ��� ��� � ��� �� ��� �����	
	�
����	�� ��� ��� ��� �&� �	����	���� ��� ��	� ���������	��	� �� ��	� ����	�� 	�
��� ��	������ �� ���' �!���	�� �� �	��� &���� (� �� 	������� �� ��� �	������
���� ��� 
 �!� �	�	�� 	���������

#� ��	� ����) ��� ���*���	�� �(�� ��� +,- ���	��� &	�� ������ ��	��� ������
���� � �'����!� 	� �

�� 
	(� � �� ' � ���  �	��� �� 	�������	��� ���� ���
��.���� 	� $
�� � ��(��� ���� �	��� ��� !� ���������/

� ��� 	�	�	� ������ ��� ��	�� 	� ���.��� ' �� ����� �� 	� ��(��� �  ��� �����
�� ��� ������ ����� ���� $
�� ������

� 0	(���	�' ��������� &	�� �	�� �� ��� ��� ��	�� �(� (�� ��� ���(��
�� �� ���
���	�� 
 �!� 	� � �� �� � � � � � 	�

1	2� &� �� &	�� ��� ������ ���! ��) &�  ��2 ��� � !����� &�' �� ���	�	�

��� +,- ��� �� (	�� 	"��	�� �������� 3�& 	������ �� ������ ��	��� ���� �

��



Genetic Algorithm Visualization Using Self-organizing Maps 449

0
5

10
15
20
25
30
35
40
45

-4 -2 0 2 4

R
as

tr
ig

in
 v

al
ue

x

-3 -2 -1 0 1 2 3
x -3 -2

-1
0 1

2
3

y

0
10
20
30
40
50
60

Rastrigin value

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100

fit
ne

ss
 v

al
ue

avg
min

��� ��� ���

���� �� ���	
 �� 	� ��
	����� ����	��� ��� �� ��� ��� 	�� ��� ����
���
� ��� � �	�


��
�
 	�� ���	 �� 	� �� ��� ���
 �����	���
 ��� � 
� �� ����
 � ��� ��

�� ������ ���� 	�
��� ��� ��� �	�
���� ��� �� ���� 
� 
� � �� �� � � � � � ��
�
���� � ����� ��� 	������
�� �� ��� ��� ������
���� 	������ ����� ���� 
�
����� �� � ������ ������ �
�� ��	� �� ��
� ������
�� �� �� ���� 
� �����  !�"�

#� ��� ������ �	� ����� �� ��� ������ ��	������ � �� �� � � � � � � �� ���
����� �� ����� ���� ����� �
�� �
����� ���� ��� �������

$�� �
� �
%������� ������� �����
��� 	������
��� �
��  ����� ��
���
�	 !����� �" �� �
��  �	 ��
��� �
�� �������� 	�
��� !����� �" ��&

� $�� ������� ������ 
��
�
���� ���� ��� 
�
�
� 	�	���
�� �� ��	��������
���� �
%�������� 
� ����� �!�" ���� �� �	���� �� ���� ��� �	� 
� ����� �!�"
���� ���� ����	� ��� ������� �� ��� �	�

� #� ��� ����� �	 
� �
Æ���� �� ������ ��� ������
�� �� ��� 
��
�
�����
������� ����� �� �������� �� �
�
�� 
��
�
����� � �
�
�� 
��
�
���� ��
�� 
� �
���� ���� '
�� ��� ������ �	 
� ���� ��
�� � 
� 
� �������
����� �
��  ��� �
�� ������ � �� ����
�� ����� � ���� ��� ������ ����
��� �������

� (��� �� �� ������ 
��
�
���� �� �� 	�������� ���� ��� ��� �� 
� ���
���� �	� $�
� �����)� �		�� �
�� ��� ��� ����� ����

6 Conclusions and Future Work

*+, 
�  ���� ��� ��� ��� �� ����
�
����
��� ���
�� �� 
� �� �� 		�
��
�� �����
� ����
��� �
���
-�
�� ���	
�� �� 	������� �
�� � ��
���
�� �
��
�
����
��� ������

�� 
� ��� ��� �
�� �� 	������� 
������
�� ���� �����
�� 
�	����� ���
�
���
-�
�� ���� #�
�
� ����� �
�� ������� ��
��� �	� ���� ��� ����� �	��
�� �� ���	��� �� �
������ ���� �
��� ���� 
�
�
�
-�
�� �� �
����
�� �� ���
	�	���
��� ��� �������� ��
��� �	� �� �� 
� ���� ������ �� ��� �
�� ��
� 
�� ���� ��� ���� �� ��� ������ �� ��� ������
���� 	�������



450 G. Romero et al.

227.532
156.955
216.38

248.156
153.893
189.009

223.286
117.549
167.418

190.996
155.761
102.312

190.02
211.564
183.349

166.735
197.906
166.036

143.035
208.571
219.891

140.391
184.617
175.077

196.536
168.271
191.902

200.131
181.621
169.005

171.147
209.931
224.135

129.183
253.897
163.109

205.985
212.367
268.13

127.964
198.269
194.563

268.798
221.831
149.079

160.209
181.711
178.063

179.937
149.72
200.217

156.695192.184
186.157
106.185
165.082

179.04
206.381

168.127
163.262
178.227

144.893180.294
202.06

259.661
184.195122.655

177.937
176.385
174.39

202.442
173.956

180.716
202.068

203.684
199.568
177.639

204.538
164.418
215.91

225.155
162.83

179.867
180.56
211.063

196.46181.399
172.199

214.403
177.102165.587135.068218.489

240.396206.714
207.701
180.421
185.223

205.222
185.768
223.581

134.142
218.997
231.097

171.041
189.574
173.854

196.791
201.146

185.111
185.399
174.323

264.717
184.404
151.804

266.917
190.23

189.469

176.981
203.168
134.486

163.614
264.304
224.589
130.22

197.818
214.142
190.244

198.075
170.404
179.487

139.053
158.776
199.894

157.521207.004
248.751
159.774
204.105

163.192
209.625

129.745
121.156
189.047

145.369
217.295
239.337

204.218
179.01
203.44
192.204

255.456
228.391
166.15

229.938
197.889
237.832

212.101
113.64

172.638
181.165

204.441
184.23
177.779

166.069
207.215
128.097

142.816
212.839

111.548
203.092
224.36

167.236
222.281
189.095

230.657
116.974
228.932

240.327
175.537
184.96

156.512

170.097
171.687
140.308

276.419
174.834

177.389
230.037

165.86
199.393
218.914

165.567
179.203
156.298

215.752
202.855
184.665

204.817
160.241
179.249

112.632
163.242

267.443
147.98186.645

198.332
150.941
158.419

96.0029
164.577
183.837

196.172
202.663
173.176
196.25

197.128
152.161
183.641

235.966
202.637
166.665

135.786
163.739
84.0108

176.015
197.067

208.354
198.521
159.376

166.472
149.865
245.953

219.262
184.727
171.847

172.274
133.67

205.795
165.168
201.516

172.315
222.122
164.569

198.649
160.485
203.029
177.926

153.256
174.057
183.787

172.74
178.055

267.828
219.234

155.859
215.708

156.807
159.657
165.793

139.84
215.088
199.021

196.943
160.752
185.977

182.433
228.863
204.767

165.615
151.193

186.278
160.435

241.41
181.15

112.557
149.329
153.456

213.118
179.26
128.257

192.9
214.532

228.993
186.785
182.886

219.375
127.33

127.485

164.64
176.354
147.244

187.838
180.564
180.667

245.855200.663
118.398

155.203
220.727

171.625
246.653

230.71
212.441

211.915
190.519

179.578
168.286
161.524

136.038
190.065
155.009

116.84
203.425
167.735

207.836
178.369

221.546
190.952
219.529

169.238
138.757
186.948

198.864
212.656144.513

190.725
193.283
197.407

171.012
171.741
235.662

128.505
145.92

185.189

236.942
158.872

193.394
153.485

224.871
227.604
248.952

223.298
192.813
184.898

174.345
189.44
179.442

156.27
216.164
181.185

181.111
190.07
185.607

234.652
211.08
200.875

152.568
233.048

169.528
195.461
167.559

215.809
188.2

177.34

140.626
129.288
208.376

147.836202.302
182.909

230.598
167.268

209.034
173.017
163.844

205.42
156.766
197.554

252.594
153.015227.18

201.181
200.302
195.278

231.117
151.757

182.165
121.882
169.447

196.569
221.282
175.199

202.644
137.523
258.935

151.781
178.266
118.715

155.841
170.361

226.314
194.968

200.341
143.209
124.728

172.119
199.809
166.91
205.093

174.514
166.98

190.736

197.669
168.184

174.524
163.806
193.96

148.89
157.957
186.703

190.482
156.948
180.765

204.61
124.638
167.177

159.18
239.157
141.405

207.206
158.929
217.974

168.972
167.509
138.199

162.958
182.983
212.783

177.241
174.306
232.447
244.547

143.929
184.593
205.784

180.754137.355172.272
197.146

152.907
179.771
227.332

162.368
145.006
194.407

138.042
182.241
116.434

154.606
143.404
161.106

149.932
178.663
197.814

164.895
192.19161.585

255.014
155.699
248.796

140.9
187.909
154.489

192.679
208.603

153.879
166.903
190.781

145.925
173.174

251.081
157.94195.565

230.931
190.569
147.576

162.522
274.46
180.772

194.553
178.914
211.432

161.288
189.566

225.081
180.613
145.793

191.274
181.187

228.198
154.401

177.28
175.357

153.39
222.286
174.099

128.151
203.429
176.673

245.675
167.8

236.191

153.791
205.023
138.464

196.377
174.635
147.149

218.664
210.719
198.826

190.685
179.745
174.629

213.041
186.011
190.75

169.077
162.82

174.995

208.844
190.442
154.988

179.644
173.069
169.819

204.537
184.096
138.134

166.03
207.367
213.458

215.07
190.198
141.296

125.822
171.17

194.852

147.162
140.341
177.793

38.5804 30.915339.2503
37.2599

38.9249
38.7244
37.2472

36.198

32.4701
36.6918
37.5301

32.1927
30.938
33.6532
30.4164

30.0014
37.2498
34.1716

26.1173
26.2151
38.7974

34.5014

39.2934
39.1476
38.9506

37.5472
39.03

35.3024
38.5481

39.248438.2929
37.829

34.8253
34.2093

31.077
37.5281
36.4898

36.5087

36.4668
35.8651
36.358

37.3521 38.7778 37.7722

38.8529
31.1096
36.3669

27.8431
26.5319
26.2934

38.5396 35.988
36.45

38.9945
35.8102

36.3161 35.470234.8318
39.364638.5378

38.4511
38.0436 37.557

38.7186 38.6817

38.941
36.1438
34.367

38.1662

28.3207
28.0225

35.3405
30.9189
39.4841

31.3358
31.9663
37.7664

36.3602 35.5913
34.1046

38.9966
38.2329
32.5292

33.38
31.5291

35.4287
33.9443

32.3759
28.2309
27.3907

33.2701
31.6771 35.3268

32.7202
35.3276
39.0797
36.0725

39.4291
38.3731 31.925838.0841

36.601737.858
28.574

37.9736
33.6256

29.7652
37.9498 39.3191

39.2029 29.1011 38.7065

38.7527
34.3128

13.7802

13.2471
16.2653
14.1377
16.0875

15.3777
15.7577
15.237

16.2001
16.2012

16.2275
14.0319

16.2807
15.6954

15.2824
12.7088

12.2111
15.1879
15.036

16.0342
16.0372

14.8182
13.2103
15.507

15.1781

14.8731
14.868715.2834

16.1066
15.6212
15.5922

15.2055

14.4168
14.3017
14.293

14.8936
16.3336
15.8782

14.5563
16.1797
16.0368

13.5311
13.1166
13.0218

10.5339
15.4679
14.9319

15.62
15.0141
15.7743

15.64215.9074

16.2759

� �� ��

4.33333
6.41048
4.64877

6.08084
6.9695

5.62974
6.84978
6.62513

6.71918

5.98685
5.516395.79787

5.08042
5.30698

6.24167
6.07185
6.29292

6.64906
6.60599
6.08724
7.10458

6.887076.889046.64623
6.60567

7.02793 6.59468

0.394084
0.928518

0.0929112

0.779866
0.629995
0.645845

0.310282
0.105529
0.834013

0.919239

0.00303264
0.00306135
0.00311695

�� �� ���

���� �� ���	
���� �� ������� �������� ��
� � ��� ����
� ��� ������ ����� ���� �

���
����
�
 � ���  !��"
�� ���
 �����
� ��
 #��
�� ����
 !��"
�� "
��� �����
�

�����
 �
�
����� ���"
� 

174.099
192.184
159.376

248.156
214.142
171.147

227.532
219.891
180.772

141.296
154.988
197.814

166.88
152.907
205.093

189.44
116.434
167.735

219.053
173.176
182.165

156.948
175.227
228.863

248.796
204.767
258.935

210.803
127.485
180.667

185.189
155.009
212.783

200.846
166.03
161.524

230.889
167.268
147.162

154.489
176.673
174.995

196.377
174.635
147.149

197.669
166.612
161.288

190.569
205.023
189.009
155.761

222.286
185.399
184.195

162.368
200.302252.594 106.185

140.46
221.546
197.146

156.955
175.077
156.695

199.021
147.576
169.005

127.33
216.38
145.369
196.46

223.581
129.288
181.185

146.924
152.047
227.604

167.418
196.25

140.308

217.974
177.34
183.641

167.501
132.143
171.687

196.501
189.047
195.565

187.838
177.793
180.564

160.435
149.329

155.859
184.096

186.703
228.932
193.96

167.177
203.294
236.191

176.385 223.298
231.809

215.708
190.244
140.626
197.407

202.513
221.831
177.639

171.398
215.088
198.269

268.13
157.642
138.464

127.964
203.429
113.64

128.151
194.852
194.563

179.203
230.037
149.079

184.727
136.52
166.15

151.804
197.889
237.832

201.516
197.554
184.665

164.569
102.312
118.715

171.847
196.172
183.837

204.105
202.06

140.341

259.661
121.882
212.656

189.095
190.996
199.894

191.902
208.376
183.349

25.6975
23.3606

25.267
22.1589
23.253

23.2194 23.6893

24.8885
25.3873

15.8782
20.1932
23.916

24.9421

25.3987

22.683720.8624
24.6357
25.6627
21.5791

21.8471
23.1948
25.108

24.0795
22.6962
24.7102

24.3047

24.3881
20.8914
22.9321

24.0912
24.0092
23.6007

23.6181
21.0465
20.3215

25.3374
23.8985
23.3199

20.0283
23.7966
24.8849

23.2706
23.7044
24.1831

23.118
19.3454

24.7855
23.827

23.5897

23.2886
24.4601
24.9767

24.9667

21.6325
21.3236
18.9421

25.1003
23.507318.8068

25.6313
25.1375
24.9601

18.6274
20.1288
21.9117

20.9075
22.5989
22.5244
22.6239

24.6343

21.1436
24.6093
24.1402

23.53

22.7883
22.3479
20.6469

25.0183
18.1128
19.1969

22.8357
22.6322
25.1856

22.2446
24.645

22.9714
19.6356

22.1917
24.5465
22.8493

24.164720.5138 23.5568

6.88904
7.02793

5.08042
5.30698

6.24167
6.07185

6.59468 4.64877

6.41048
6.08724
7.10458

6.64906
6.64623
6.60567

6.887076.82959
6.84978

6.85992
6.62513

5.79787 6.70546
6.33295

5.98685
5.51639

4.33333

5.62974
6.29292

6.08084
6.71918
6.9695

� �� ��

2.32958

2.25729
2.14825
1.53357

2.09384
2.16817

1.41164
1.90797
2.40497

2.4388
2.26411
2.52731

0.519144
0.629995
0.645845

0.105529
0.834013

0.0929112
0.69619

0.677028
0.919239
0.928518

0.2378
0.499893
0.416135

0.331015
0.055524
0.367094

0.66644
0.580047
0.677814

0.766185
0.722562
0.589607

0.744116
0.628739
0.328894

0.306931
0.451163
0.394084

0.00303264
0.00306135
0.00311695

$� �� ���

���� �� ���	
���� �� ������� �������� ��
� � ��� ����
� ��� �
�
��
� ����� ����

�
��  !��"
�� ���
 �����
� ��
 #��
�� ����
 !��"
�� "
��� �����
� �����
 �
�%


����� ���"
� 



Genetic Algorithm Visualization Using Self-organizing Maps 451

��������	
����

���� ���� �	� 
��� �������� �� �	�� 
� ��� �������� ����� ��������������

������� !���� 	�� ����������"# �$

���������

�� ���� ��� �	
 ������ ���� ���������	
��	�� ����	�� �	
�	� ������	 � �����

�����

�� ���� ������� ������	 �����	����	 �	� ������ �������
� ���� �
!�� "�� ���� �
!�

#	�$� %�&� ' �%%� ���(�

)� �	
 ��% *+�	�!� � %, $�� �- ��&��
% -� �,�&�$� ��&� 
�&� � �.�/&��	� $�%,���%�0

&��	 �	
 �	&� �/&�$� �	���%�%� 1	 ����� �� ��� ��� �	���	����	�� ��	����	�� �	 ���
�������	� �	� �	��������	��	�������	� �
���
 ��� !"#$%&'� ��!�% 2232�� 4/&�0

�� ���5�

�� �� �%&���� �� ��%���� ������ �������
 ��� ������	 �����	����	� ��� �	
�	 ' �%%�

4�-� 
� ���2�

2� 6�7� 8����	 6 � � 	�	��	�� �����	! -� 
�&� %& ,/&, � �	���%�%� �((( )��	
*
�����	
 �	 ��������
� ��!�% �9�3�9�� ��(��

(� '� ���� &�	�% �	
 6� �:� �,�&� �, $���	�� /����	�	& �	���%�%� � %��- � !�	�;�	!

	�, �� 	�&<� = -� 	�	 ���	� �����	! �- 
�&� %�&%� �((( )��	
�����	
 �	 ������
�������
� 5���53�2�� ���>�

>� ?�/���% ��	/=� % ��/���� @� ���%�	 6��	 ��
� ��� ���, � �	
�%%�� �  ��,%&

	�	��	�� � �.�/&��	 ��&��
� 1	 (������	 ����
��� �	 #���+�� ������ �������

�(#��,---'� ��!�% �)3�9� �� �� �999�

5� 8� 8��	!�� ��8� ��
�� �	
 8� @��&���	�&��	� �,�&�
���	%��	�� /�,%&� $�%,���;�0

&��	 ,%�	! !,�
�
 &�, %� ��/�	�/�� ���� & ��%��/� ���� & �6 �9���� 1�� ����
�	

��%�� /� ��	&� � 8�	 6�%�� ��� 6,	� �> ���5�

�� �� *���	�	� ��� 8��-04 !�	�;�	! ���� 1	 ��������	�
 �� ��� �(((� $��,�� >5�

��!�% ��(�3��59� ���9�



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 452–461, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Generalised Regression GA for Handling Inseparable
Function Interaction: Algorithm and Applications

Rajkumar Roy and Ashutosh Tiwari

Department of Enterprise Integration, School of Industrial and Manufacturing Science,
Cranfield University, Cranfield, Bedford, MK43 OAL, United Kingdom (UK)

{r.roy,a.tiwari}@cranfield.ac.uk

Abstract. Interaction among decision variables is inherent to a number of real-
life engineering design optimisation problems. There are two types of variable
interaction: inseparable function interaction and variable dependence. The aim
of this paper is to present an Evolutionary Computing (EC) technique for han-
dling complex inseparable function interaction, and to demonstrate its effec-
tiveness using three case studies. The paper begins by devising a definition of
inseparable function interaction, identifying the challenges and presenting a re-
view of relevant literature.  It then briefly describes Generalised Regression GA
(GRGA) for handling complex inseparable function interaction in multi-
objective optimisation problems. GRGA is applied to a complex test problem
and two real-life engineering design optimisation case studies that exhibit com-
plex inseparable function interaction. It is shown that GRGA exhibits better
convergence and distribution of solutions than NSGA-II, which is a high-
performing evolutionary-based multi-objective optimisation algorithm. The pa-
per concludes by presenting the future research directions.

1 Introduction

Real-life engineering design optimisation problems, as opposed to the theoretical
problems (test cases), are those that are encountered in industry. Some examples of
these problems are the design of aerospace structures for minimum weight and the
surface design of automobiles for improved aesthetics. Along with multiple objec-
tives, constraints, qualitative issues and lack of prior knowledge, most real-life design
optimisation problems also involve interaction among decision variables. In spite of
its immense potential for real-life problems, lack of systematic research has plagued
the field of interaction for a long time. This can mainly be attributed to the lack of
sophisticated techniques, and inadequate hardware and software technologies. How-
ever, in the last two decades, some research has been carried out in this area espe-
cially in the field of statistical data analysis [1]. This has been further augmented in
the recent past with the growth of computational intelligence techniques like Evolu-
tionary Computing (EC), Neural Networks (NNs) and Fuzzy Logic (FL). This paper
focuses on the development of an evolutionary-based algorithm for handling complex
variable interaction in multi-objective optimisation problems.



Generalised Regression GA for Handling Inseparable Function Interaction      453

2 Types of Variable Interaction

In an ideal situation, desired results could be obtained by varying the decision vari-
ables of a given problem in a random fashion independent of each other. However,
due to interaction this is not possible in a number of cases, implying that if the value
of a given variable changes, the values of others should be changed in a unique way
to get the required results. The two types of variable interaction are discussed below.

Inseparable Function Interaction: The first type of interaction among decision
variables, known as inseparable function interaction, is the main focus of this paper.
This interaction occurs when the effect that a variable has on the objective function(s)
depends on the values of other variables in the function [2] (Fig. 1). This interaction,
therefore, manifests itself as cross-product terms in the objective function(s).

y

A1 A2

B=B2

B=B1

1

4

2

3

y

A1 A2

B=B2

B=B1

1

4

2

3

y

A1 A2

B=B2

B=B1

1

4

2
3

                                          (a)                     (b)        (c)

Fig. 1. Examples of inseparable variable interaction (a) No interaction (b) Synergistic interac-
tion (c) Anti-synergistic interaction [3]

Variable Dependence: The second type of interaction among decision variables,
known as variable dependence, is discussed in detail by Tiwari and Roy [4]. This
interaction occurs when the variables are functions of each other, and hence cannot be
varied independently.

3 Challenges Posed by Inseparable Function Interaction

Complex inseparable function interaction poses a number of challenges for multi-
objective optimisation algorithms. A GA operates on the building blocks, growing
them and mixing them with each other in an attempt to solve the search problem at
hand. The inseparable function interaction causes problems for a GA by making it
more difficult for it to build these building blocks [5]. Furthermore, in its presence, a
multi-objective optimisation problem cannot be decomposed into simpler parts.
Hence, a GA requires updating all decision variables in a unique way in order to
attain the desired results. With a generic search operator, this becomes a difficult task
for the GA. Furthermore, even if a set of Pareto-optimal solutions are obtained, it is
difficult to maintain them since any change in one variable must be accompanied by
related changes in others in order to remain on the Pareto front. The difficulties that
inseparable function interaction may create for a GA are multiple local fronts, decep-
tive fronts, discontinuities in the Pareto front and inherent bias in the search space [6].



454      Rajkumar Roy and Ashutosh Tiwari

4 Techniques for Handling Inseparable Function Interaction

In GA literature, the inseparable function interaction is termed as epistasis. The GA
community defines epistasis as the interaction between different genes in a chromo-
some [7]. A review of literature reveals that the Evolutionary-based Techniques for
handling Inseparable Function Interaction (ETIFIs) can be classified into two broad
categories based on the approach used for the prevention of building block disruption.
These categories are briefly discussed below.

− Managing Race between Linkage Evolution and Allele Selection: Linkage is de-
fined as the logical grouping of building block components to facilitate their
growth and mixing. This strategy handles epistasis on the basis of the observation
that the force that causes the evolution of linkage is, in effect, in a race against the
force of allele selection. In order to make the GA successful, this strategy proposes
three main ways of managing this race: manipulating the representation of solu-
tions, using specialised operators and avoiding the race between linkage evolution
and allele selection [5].

− Modelling Promising Solutions: A different way to cope with the disruption of
partial solutions is to change the basic principle of recombination. In this approach,
instead of implicit reproduction of important building blocks and their mixing by
selection and two-parent recombination operators, new solutions are generated by
using the information extracted from the entire set of promising solutions. Global
information about the set of promising solutions can be used to estimate their dis-
tribution, and new solutions can be generated according to this estimate. A general
scheme of the algorithms based on this principle is called the Estimation of Distri-
bution Algorithm (EDA) [8].

A number of research questions remain unanswered regarding the theory of insepara-
ble function interaction (epistasis). However, from the practical point of view a num-
ber of applications have been developed as discussed above. But these techniques can
only deal with single-objective optimisation problems, defined in discrete domains.
The few ETIFIs that are available for dealing with real search spaces have limited
capability in terms of handling any significant inseparable function interaction.
Therefore, this paper addresses the above-identified research gap by presenting an
ETIFI ‘Generalised Regression GA (GRGA)’ for dealing with hybrid-valued (with
integer and real variables) multi-objective optimisation problems.

5 Generalised Regression GA (GRGA)

For any continuous portion of the Pareto front, there is a unique relationship involv-
ing objective functions. This relationship is difficult to obtain analytically, and even if
it is found, it has limited usefulness since mapping from function space to variable
space is very complex. However, the existence of a relationship among objective
functions of Pareto solutions necessarily implies that corresponding relationship(s)
exist among the decision variables of these solutions [9].



Generalised Regression GA for Handling Inseparable Function Interaction      455

To explain the above concept, consider a simple two-objective optimisation prob-
lem having f1 and f2 as the two objective functions. For any continuous portion of the
Pareto front, there exists a Function F involving f1 and f2. Suppose the problem has
two decision variables x1 and x2 that define the functions f1 and f2 i.e. f1 and f2 can be
expressed as f1(x1,x2) and f2(x1,x2), leading to F1.

.0)2,1(1

,0))2,1(2),2,1(1(

,0)2,1(

=⇒
=

=

xxF

xxfxxfF

ffF (1)

This proves the statement made earlier that there is existence of relationship(s)
among the decision variables of the solutions belonging to any continuous portion of
the Pareto front. GRGA aims to explore this relationship using non-linear multi-
variable regression analysis [1]. It uses the relationship thus obtained [10]:

− To perform periodic and final re-distribution of solutions for aiding their spread
over the current front.

− To use history of change of regression coefficients for guiding the search towards
the global Pareto front.

− To use rate of change of regression coefficients for determining the termination
condition of the algorithm.

As depicted in Fig. 2, GRGA encodes the above-mentioned solution strategy in C++.
A high performing evolutionary-based multi-objective optimisation algorithm,
NSGA-II [11] has been chosen as the optimisation engine for GRGA.  However,
since GRGA is completely modular, it can also be used with any other multi-
objective optimisation algorithm for enhancing the algorithm performance in han-
dling problems with complex inseparable function interaction. GRGA uses a distri-
bution algorithm for periodically spreading out solutions over their current front [10].

In the following sections, GRGA is applied to a complex test problem and two
real-life case studies. The complex inseparable function interaction in these problems
makes them particularly difficult for multi-objective optimisation algorithms. These
applications compare the performance of GRGA to that of NSGA-II. All the tests
reported here correspond to 100 population size, 500 generations, 0.8 crossover prob-
ability, 0.05 mutation probability, and simulated binary crossover with 10 crossover
distribution index and 50 mutation distribution index. These values are typically used
in literature for these parameters. It was observed that the relative results from
NSGA-II and GRGA do not change significantly with the change in these values. The
results form the typical set obtained from 10 runs with different random number seed
values. No major variation was observed in the results with the change in seed values.

6 Test Problem

This test problem is derived using the tuneable (parametric) Reverse Engineered Test
Bed (RETB), proposed by Tiwari et al. [12]. The RETB parameters are chosen here
with an aim to attain a problem that has two objectives, convex Pareto front, biased



456      Rajkumar Roy and Ashutosh Tiwari

search space and multiple local Pareto fronts. The equation of this test problem is
given below, and the search space represented by it is visually depicted in Fig. 3.

( ) ( )[ ]

( ) .12,10,28cos)22exp(2)2,1(

,12,10),()
6.0

)/1(2()2,1(2

,12,10,14exp1
)4exp(1

1
)2,1(1

≤≤∀−−=
≤≤∀×−=

≤≤∀−−
−−

=

xxxxxxI

xxIIfxxf

xxxxxf

π

(2)

Optimisation

Start

Ranks = 0?

Regression analysis on 
all clusters

Remainder 
(generation_no.,10=0)?

Re-distribution of clusters 
having cor. coeff. > 0.7

Optimisation

Clustering followed by regression 
analysis on all clusters

Changes in 
correlation and 

regression 
coefficients? 

Re-distribution of all clusters
having cor. coeff. > 0.7

Identification of relationship(s)
among decision variables of 

Pareto-optimal solutions

Stop

Yes

Yes

No

No

No

Yes

Correlation 
coefficient > 0.7 for at 

least one cluster?

Optimisation

Clustering followed by regression 
analysis on all clusters

Yes

No

Modification of reg. coeffs. for 
clusters having cor. coeff. > 0.7

Clustering in variable space

Fig. 2. Generalised Regression GA (GRGA) [10]



Generalised Regression GA for Handling Inseparable Function Interaction      457

Experimental Results: The results obtained by applying GRGA and NSGA-II to this
problem are shown in Fig. 3. The γ (convergence metric) and ∆ (diversity metric)
values corresponding to these results are shown in Table 1 [11].

Fig. 3. Experimental results from test problem

Table 1. Performance metrics

Performance metrics γ ∆

NSGA-II 0.856745 0.090002Optimisation
algorithms GRGA 0.035642 0.080121

Discussion of Results: The following observations can be made from Fig. 3.

− GRGA exhibits better convergence as compared to NSGA-II. This is supported by
Table 1 that shows that the γ value of GRGA is an order less than that of NSGA-II.
This is because in this problem, the NSGA-II solutions have converged prema-
turely to one of the local fronts. GRGA addresses this drawback of NSGA-II
through periodic modification of regression coefficients using the history of search
observed in previous generations. This guides the search towards the global Pareto
front by preventing it from getting trapped in local fronts.

− In this problem, both NSGA-II and GRGA exhibit satisfactory diversity.

Fig. 4. Welded beam design [13]

7 Design of a Welded Beam

In this problem, a beam needs to be welded on another beam and must carry a certain
load (Fig. 4) [13]. The objectives of the design are to minimise the cost of fabrication

NSGA-II Solutions
GRGA Solutions



458      Rajkumar Roy and Ashutosh Tiwari

and the end deflection. Here, the overhang portion of the beam and the applied force
(F) are specified, making the cross-sectional dimensions of the beam (b, t) and the
weld dimensions (h, l) as the variables. This problem has four constraints, which arise
from the allowable strengths of the material and the practicality requirements.

The mathematical model of this design is given below. This equation assumes the
following values: overhang portion = 14 inch, F = 6,000 lb force, allowable shear
strength = 13,600 psi and allowable yield strength = 30,000 psi.

,0

{ } .
)

2
)(25.012/

2
(707.02

)
2

)(
2

(25.0)5.014(000,6
'',2/000,6'

,0000,6
3

)0282346.01(022.746,64)(4

,0)(3,0
2

/000,504000,30)(2

)
2

)(
2

(25.0/)'''(
2

''
2

'600,13)(

,
3

/1952.2)(2_

),0.14(04811.0
2

10471.1)(1

thlhl

thll
hl

tbtxg

hbxgbtxg

thllx1gsConstraint

btxfDeflectionEndMinimise

ltblhxfCostMinimise

++

+++
==

≥−−=

≥−=≥−=

≥++++−=

==

++==

ττ

ττττ

(3)

Experimental Results: The results obtained by applying GRGA and NSGA-II to this
problem are shown in Fig. 5.

                                 (a)                                                             (b)

Fig. 5. Experimental results from welded beam design (a) NSGA-II (b) GRGA (Units: deflec-
tion in inches and cost in cost units)

Discussion of Results: The salient observations from Fig. 5 are as follows.

− The problem has a search space that is biased towards high values of cost and low
values of deflection.

− In this case, the absence of multiple local fronts makes it possible for both NSGA-
II and GRGA to converge to the Pareto front. Due to the inherent bias in the search
space, NSGA-II is unable to locate those Pareto-optimal solutions that correspond
to low values of cost and high values of deflection. However, since GRGA con-
verges to the Pareto front, it is able to determine the relationships involving deci-
sion variables that define the Pareto front. Since GRGA uses these values to redis-
tribute the final solutions, a well-defined Pareto front is attained.

− GRGA reveals that the Pareto front of this problem corresponds to h = 0.422, l =
2.465 and t = 9.990. Therefore, to attain any solution on the Pareto front, the de-



Generalised Regression GA for Handling Inseparable Function Interaction      459

signer needs to fix h, l and t to these values, and choose a value for b based on
his/her preferences.

8 Design of a Machine Tool Spindle

This design is shown in Fig. 6 [14]. The four variables in this problem are the dimen-
sions of the spindle (l, do, da, db). Two of these variables are real (l, do) and the rest
two are discrete (da, db). This problem involves the minimisation of the volume of the
spindle and the static displacement under the force F. This problem has nine con-
straints that include variable bounds and limits on the maximum radial run-out of the
spindle nose.

Fig. 6. Design of a machine tool spindle [14]

The mathematical model of this design is given below. This equation assumes the
following values: dom = 25 mm, da1 = 80 mm, da2  = 95 mm, db1 = 75 mm, db2 = 90 mm,
p1 = 1.25, lk = 150 mm, lg = 200 mm, a = 80 mm, E = 210,000 N/mm2, F = 10,000 N,
∆a= ∆b = 0.0054 mm, ∆ = 0.01 mm, dra = drb = -0.001 mm, da must be chosen from
{80,85,90,95} and db from {75,80,85,90}.

Preload.rbd,bdrbdbcStiffnessBearing

Preload,radadradacStiffnessBearing

odbdbIInertiaofMomentodadaIInertiaofMoment

BearingBackofRunoutRadialb

BearingFrontofRunoutRadiala,indle_Nosenout_of_SpMaximum_Ru

l

a
baaxgbdodpxgodomdxg

bdbdxgbdbdxgadadxg
adadxglklxggllx1gsConstraint

lbc

aac

l

a

ac

F

baI

alI

aEI

Fa
xfntDisplacemeStaticMinimise

odbdlodadaxfSpindleofVolumeMinimise

===

===

−==−==

=∆
=∆=∆

≤∆−∆−∆+∆=≤−=≤−=

≤−=≤−=≤−=

≤−=≤−=≤−=⇒

++++=⇒

−+−=⇒

9/109/1
35400_

,
9/109/1

35400_

),
44

(049.0__),
44

(049.0__

,____

,____

,0)()(9,01)(8,0)(7

,02)(6,01)(5,02)(4

,01)(3,0)(2,0)(

],2

2
2

)1[()1(
3

3

)(2)_(

)],
22

()
22

()[4/()(1)__( π (4)

Experimental Results: The results obtained from this problem are shown in Fig. 7.



460      Rajkumar Roy and Ashutosh Tiwari

                                (a)                                                                 (b)

Fig. 7. Experimental results from design of machine tool spindle (a) NSGA-II (b) GRGA
(Units: displacement in mm and volume in mm3)

Discussion of Results: The salient observations from Fig. 7 are as follows.

− Due to the two discrete variables in this problem, the search space is discontinuous
that leads to multiple local fronts. The discontinuity in the search space also makes
the global Pareto front discontinuous, making it a combination of parts of several
local fronts. Furthermore, there is bias in the search space.

− Here, NSGA-II gets trapped in a local front but GRGA successfully locates the
global Pareto front, including all its parts. The reasons for this behaviour are simi-
lar to the ones given in Sect. 6. In this problem, both NSGA-II and GRGA exhibit
satisfactory diversity. GRGA also reveals to the designer that the Pareto front of
this problem corresponds to l = 187.78, da = 95 and db = 90.

9 Future Research Activities and Conclusions

The current limitations of GRGA and the corresponding future research activities are:

− The performance of GRGA is dependent on how accurately the relationship among
decision variables can be represented by RA. Hence, use of more sophisticated
non-linear modelling tools have the potential of improving its performance.

− The distribution strategy used in GRGA needs to be further improved to make it
more scalable with respect to the number of objectives and dimensions.

− GRGA is not capable of dealing with dependence among decision variables and
qualitative issues such as manufacturability and designers’ special preferences.

This paper focuses on inseparable function interaction. It presents an evolutionary-
based optimisation algorithm, GRGA, which is capable of handling complex insepa-
rable function interaction in multi-objective optimisation problems. GRGA is applied
to a test problem and two real-life engineering design optimisation case studies that
exhibit complex inseparable function interaction. The performance of GRGA is com-
pared to that of a state-of-the-art multi-objective optimisation algorithm, NSGA-II. It
is observed that GRGA exhibits better convergence and distribution of solutions than
NSGA-II in handling problems that have complex inseparable function interaction.



Generalised Regression GA for Handling Inseparable Function Interaction      461

Acknowledgements

The authors wish to acknowledge the support of the Engineering and Physical Sci-
ences Research Council (EPSRC) – Grant No. GR/M 71473, Nissan Technical Centre
– Europe (NTCE) and Structural Dynamics Research Corporation (SDRC) UK.

References

1. Draper, N.R. and Smith, H.: Applied regression analysis. John Wiley and Sons, Inc., New
York, USA (1998)

2. Taguchi, G.: System of experimental design. Clausing, D. (ed.), UNIPUB/Kraus Interna-
tional Publications, vol. 1 and 2, New York, USA (1987)

3. Phadke, M.S.: Quality engineering using robust design. Prentice-Hall International Inc.,
London, UK (1989)

4. Tiwari, A. and Roy, R.: Variable dependence interaction and multi-objective optimisation.
Accepted for publication: Genetic and Evolutionary Computation Conference (GECCO-
2002), New York (USA), 9-13 July (2002)

5. Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty
using genetic algorithms. PhD. thesis, Computer science and engineering, University of
Michigan, USA (1997)

6. Deb, K.: ‘Multi-objective genetic algorithms: Problem difficulties and construction of test
problems’. Evolutionary computation, vol. 7, no. 3 (1999) 205-230

7. Beasley, D., Bull, D. and Martin, R.: An overview of genetic algorithms: Part 2, research
topics. University computing, 15(4) (1993) 170-181

8. Muhlenbein, H. and Paab, G.: From recombination of genes to the estimation of distribu-
tions I. Binary parameters. In: Parallel Problem Solving from Nature IV (PPSN-IV), Lec-
ture notes in computer science, 46-55, Springer-Verlag, Berlin, Germany (1996)

9. Tiwari, A., Roy, R., Jared, G. and Munaux, O.: Interaction and multi-objective optimisa-
tion. In: Spector, L., Goodman, E., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen,
S., Dorigo, M., Pezeshk, S., Garzon, M. and Burke, E. (eds.). Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), 671-678, Morgan Kaufmann
Publishers, San Francisco, USA (2001)

10. Tiwari, A.: Evolutionary computing techniques for handling variable interaction in engi-
neering design optimisation. PhD Thesis, School of Industrial and Manufacturing Science,
Cranfield University, UK (2001)

11. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. KanGAL Report No. 200002, Kanpur Genetic Algorithms
Laboratory (KanGAL), Indian Institute of Technology (IIT), Kanpur, India (2000)

12. Tiwari, A., Roy, R., Jared, G. and Munaux, O.: Evolutionary-based techniques for real-life
optimisation: Development and testing. Accepted for publication: Applied Soft Computing
(ASC) Journal, Elsevier Science, Netherlands (2002)

13. Deb, K., Pratap, A. and Moitra, S.: Mechanical component design for multi-objective
using elitist non-dominated sorting GA. In: Parallel Problem Solving from Nature V
(PPSN-V), Lecture notes in computer science, 859-868, Springer-Verlag, Germany (2000)

14. Coello, C.A.C.: An empirical study of evolutionary techniques for multiobjective optimi-
zation in engineering design. PhD Thesis, Department of Computer Science, Tulane Uni-
versity, New Orleans, LA, USA (1997)



Diversity-Guided Evolutionary Algorithms

Rasmus K. Ursem

EVALife, Dept. of Computer Science, University of Aarhus, Bldg. 540
Ny Munkegade, DK-8000 Aarhus C, Denmark

ursem@daimi.au.dk

Abstract. Population diversity is undoubtably a key issue in the per-
formance of evolutionary algorithms. A common hypothesis is that high
diversity is important to avoid premature convergence and to escape
local optima. Various diversity measures have been used to analyze al-
gorithms, but so far few algorithms have used a measure to guide the
search.
The diversity-guided evolutionary algorithm (DGEA) uses the well-
known distance-to-average-point measure to alternate between phases
of exploration (mutation) and phases of exploitation (recombination and
selection). The DGEA showed remarkable results on a set of widely used
benchmark problems, not only in terms of fitness, but more important:
The DGEA saved a substantial amount of fitness evaluations compared
to the simple EA, which is a critical factor in many real-world applica-
tions.

1 Introduction

A major problem in evolutionary algorithms (EAs) is that simple EAs have a
tendency to converge to local optima. This premature convergence is caused by
several algorithmic features, particularly selection pressure and too high gene
flow between population members. First, a high selection pressure will quickly
fill the population with clones of the better fit individuals, simply because their
survival probability is too high compared to intermediate fit solutions. Diver-
sity declines after a short while, and, because the population consists of similar
individuals, the algorithm will have difficulties escaping the local optimum rep-
resented by the population. However, lowering the selection pressure is rarely an
option because this will often lead to an unacceptable slow convergence speed.
Second, high gene flow is often determined by the population structure. In sim-
ple EAs any individual can mate with any other individual. Consequently, genes
spread fast throughout the population and the diversity drops quickly with fit-
ness stagnation as a prevalent outcome.

Several studies have been carried out with the conflicting goals of maintaining
a diversity that allows rapid convergence and still avoid premature convergence.
Most studies fall in one of the following three categories:

1. Complex population structures to lower gene flow, e.g., the diffusion model
[1, C6.3], the island model [1, C6.4], the multinational EA [2], and the
religion-based EA [3].

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 462–471, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Diversity-Guided Evolutionary Algorithms 463

2. Specialized operators to control and assist the selection procedure, e.g.,
crowding [4], deterministic crowding [5], and sharing [6].

3. Reintroduction of genetic material, e.g., random immigrants [7], mass ex-
tinction models [8], [9], and [10].

Diversity is undoubtably closely related to the performance of evolutionary
algorithms, especially when attempts are made to overcome the problems of
avoiding premature convergence and escaping local optima. Maintaining high
diversity is particulary important for optimization of dynamic and multiobjec-
tive problems. For dynamic problems high diversity increases the chances of
relocating the peak after a change in the landscape, simply because the pop-
ulation covers a larger part of the search space. Algorithms for multiobjective
optimization seek to report many tradeoffs between the conflicting objectives.
Hence, higher diversity allows the algorithm to discover a larger part of the
so-called Pareto front and thus report multiple tradeoffs between the objectives.

Diversity measures are traditionally used to analyze evolutionary algorithms
rather than guide them. However, diversity measures have been used to control
EAs in at least three studies. The Diversity-Control-Oriented Genetic Algorithm
[11] use a diversity measure based on Hamming distance to calculate a survival
probablility for the individuals. A low Hamming distance between the individ-
ual and the current best individual is translated into a low survival probability.
Hence, diversity is preserved through the selection procedure. Another approach
is the Shifting-Balance Genetic Algorithm [12]. The SBGA calculates a so-called
containment factor between two subpopulations, which is based on Hamming
distances between all members of the two populations. The distance is calcu-
lated between each member of population A and all members of population B.
The factor determines the ratio between individuals selected on fitness and indi-
viduals selected to increase the distance between the two populations. A third,
and more distantly related, approach is the Forking GA, which uses specialized
diversity measures to turn a subset of the population into a subpopulation [13].
Two variants of the Forking GA exists. The first variant operates on the geno-
type, whereas the second type base the division on distances in the search space
(on the phenotype).

2 The Diversity-Guided EA

The idea behind the DGEA is simple. Unlike most other EAs the DGEA uses a
diversity measure to alternate between exploring and exploiting behavior. To use
a measure for this purpose it has to be robust with respect to i) the population
size, ii) the dimensionality of the problem, and iii) the search range of each of
the variables. An immediate measure for N -dimensional numerical problems is
the “distance-to-average-point” measure defined as:

diversity(P ) =
1

|L| · |P | ·
|P |∑
i=1

√√√√ N∑
j=1

(sij − sj)2



464 Rasmus K. Ursem

DGEA main
t = 0
Initialize population P (0)
Evaluate population P (0)
mode = "Exploit"
while(not(termination condition)) {

t = t+1
if(diversity(P (t))< dlow)

mode = "Explore"
elseif(diversity(P (t))> dhigh)

mode = "Exploit"

if(mode == "Exploit")
Select next generation P (t) from P (t− 1)
Recombine P (t)

else
Mutate P (t)

Evaluate population P (t)
}

Fig. 1. Pseudocode for the DGEA.

where |L| is the length of the diagonal1 in the search space S ⊆ R
N , P is the

population, |P | is the population size, N is the dimensionality of the problem,
sij is the j’th value of the i’th individual, and sj is the j’th value of the average
point s. The pseudocode for the DGEA is listed in Fig. 1.

The DGEA applies diversity-decreasing operators (selection and recombina-
tion) as long as the diversity is above a certain threshold dlow. When the diversity
drops below dlow the DGEA switches to diversity-increasing operators (muta-
tion) until a diversity of dhigh is reached. Hence, phases with exploration and
phases with exploitation will occur (see Fig. 2). Theoretically, the DGEA should
be able to escape local optima because the operators will force higher diversity
regardless of fitness.

If dlow = dhigh the algorithm will maintain a diversity close to the given
threshold value, which is particulary useful for dynamic and multiobjective op-
timization tasks.

An important issue is to apply a mutation operator that rather quickly
increases the distance-to-average-point measure. Otherwise, the algorithm will
stay in “explore”-mode for a long time. A straightforward idea for a measure-
increasing mutation operator is to use the average point of the population to
calculate the direction of each individual’s mutation. The individual is then mu-
tated with the Gaussian mutation operator, but now with a mean directed away
from the average point (see Fig. 3). The purpose of this mutation operator is
to force the individuals away from the population center. Preliminary results

1 Assuming that each search variable xk is in a finite range, i.e., xkmin ≤ xk ≤ xkmax.



Diversity-Guided Evolutionary Algorithms 465

1 2 3 4 5

7 8

E
xp

lo
ita

tio
n

Time

6

E
xp

lo
ita

tio
n

E
xp

lo
ita

tio
n

E
xp

lo
ra

tio
n

E
xp

lo
ra

tio
n

E
xp

lo
ita

tio
n

E
xp

lo
ita

tio
n

E
xp

lo
ra

tio
n

10

E
xp

lo
ra

tio
n

9

E
xp

lo
ita

tio
n

Fig. 2. Phases in the DGEA. The boxes denote the search space, the dotted circles
indicate the diversity and position of the population. The mode is shown as the ver-
tical text between the pictures, i.e. exploitation lowers the diversity in picture 1 and
transforms it into picture 2.

Search space

Average point

Fig. 3. Directed mutation in the DGEA.

indicated that scaling the normalized direction vector by 0.001 turned out to
give the best results.

3 Experiments and Results

The experiments were performed using real-valued encoding, a population size
of 400 individuals, binary tournament selection, and an elitism of 1 individ-
ual. Probability of mutating an entire genome was pm = 0.75 and probability
for crossover was pc = 0.9. The compared algorithms all use variants of the
standard Gaussian mutation operator (see below for further details). The mu-
tation operator scales the randomly generated numbers by 20% of the length of
the search intervals, which is just to make the operator problem independent.
The algorithms use an arithmetic crossover with one weight for each variable.
All weights except one are randomly assigned to either 0 or 1. The remaining



466 Rasmus K. Ursem

weight is set to a random value between 0 and 1. In preliminary experiments
this hybrid between uniform and arithmetic crossover showed better performance
than traditional uniform and arithmetic crossover. Two sets of experiments were
conducted: i) the traditional comparison between different algorithms and ii)
experiments on diversity.

3.1 Traditional Optimization

The algorithms used in the comparison are the “standard EA” (SEA), the self-
organized criticality EA (SOCEA), the cellular EA (CEA), and the diversity-
guided EA (DGEA). They all use the above parameters. The SEA uses Gaussian
mutation with zero mean and variance σ2 = 1/

√
t+ 1. The SOCEA is a standard

EA with non-fixed and non-decreasing variance σ2 = POW (10), where POW (α)
is the power-law distribution2. The purpose of the SOC-mutation operator is to
introduce many small, some mid-sized, and a few large mutations. The effect of
this simple extension is quite outstanding considering the effort to implement it
(one line of code). The reader is referred to [10] for additional information on
the SOCEA. Further, the CEA uses a 20×20 grid with wrapped edges. The grid
size corresponds to the 400 individuals used in the other algorithms. The CEA
uses Gaussian mutation with variance σ2 = POW (10), which allows comparison
between the SOCEA and this version of the CEA. Mating is performed between
the individual at a cell and and a random neighbor from the four-neighborhood.
The offspring replaces the center individual if it has a better fitness than the
center individual. Finally, the DGEA uses the Gaussian mutation operator with
variance σ2 = POW (1) and mean calculated as described in Sect. 2. The diver-
sity boundaries were set to dlow = 5 · 10−6 and dhigh = 0.25, which proved to be
good settings in preliminary experiments.

The algorithms were compared using four standard benchmark problems.
Each algorithm was tested on three variants of the problems; a 20 dimensional,
a 50 dimensional, and a 100 dimensional. The number of generations was set to
50 times the dimensionality of the test problem, i.e., 20D = 1000 generations,
50D = 2500 generations, and 100D = 5000 generations. The four (minimization)
problems are:

Ackley F1(x) = 20 + e− 20 exp


−0.2

√√√√ 1
n

n∑
i=1

x2
i


−

exp

(
1
n

n∑
i=1

cos(2π · xi)
)

where − 30 ≤ xi ≤ 30

2 Power-law distributed numbers can be generated by x = 1/u1/α, where u ∼ U(0, 1)
is uniformly distributed, and α is a parameter determining the shape of the distri-
bution. Another approach used in [10] is to log the avalanche sizes in the so-called
sandpile model [14].



Diversity-Guided Evolutionary Algorithms 467

Griewank F1(x) =
1

4000

n∑
i=1

(xi − 100)2 −
n∏
i=1

cos
(
xi − 100√

i

)
+ 1

where − 600 ≤ xi ≤ 600

Rastrigin F1(x) =
n∑
i=1

(x2
i − 10 cos (2πxi) + 10)

where − 5.12 ≤ xi ≤ 5.12

Rosenbrock F1(x) =
n−1∑
i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2)

where − 100 ≤ xi ≤ 100

The results listed in Table 1 clearly show that the DGEA outperforms the other
algorithms by several magnitudes. In preliminary tests the DGEA continued
to improve the fitness at the end of the fixed number of generations. Hence,
better fitness was obtained if the DGEA ran until it stagnated, which is here
defined to be 500 generations without fitness improvement. The results for this
optimization are listed in the column denoted DGEA*.

From the pseudocode listed in Fig. 1 it seems that the DGEA should be
somewhat faster than other algorithms, because the evolutionary operators are
used less frequently (although the diversity calculation might be more expen-
sive). Table 2 lists the runtime for the tested algorithms. According to these
experiments the DGEA uses less time than even the simple standard EA.

3.2 Investigations on Diversity

Low diversity is often blamed for being the main reason for premature conver-
gence. The principal argument is that a population of clones is likely to get
trapped in a local optimum. However, low diversity might increase the chances
of producing fitter offspring because the population will be located in the vicin-
ity of an optimum. Table 3 shows the average diversity and mode for each test
problem. The data points are recorded at each fitness improvement after the first
period of fitness stagnation, which is defined to be 20 consecutive generations
with no fitness improvement3.

Two interesting conclusions can be drawn from the results in Table 3. First,
the diversity appears to be surprisingly low when improvement occurs4. Second,
almost no improvement occurs during the exploration phases. This is particulary
interesting because it can help save a substantial amount of fitness evaluations
during the exploration periods – an important feature for time-consuming eval-
uation of real-world problems. A variant (DGEA2) without evalution during
3 This is to eliminate the noise in the beginning of a run.
4 The range of the diversity measure is 0 to 0.5.



468 Rasmus K. Ursem

Table 1. Average fitness of the SEA, the SOCEA, the CEA, and the DGEA. 20D
problems were optimized for 1000 generations, 50D for 2500, and 100D for 5000 gener-
ations. The results in the column DGEA* were obtained by running the DGEA until
the best fitness was constant for 500 generations.

Problem SEA SOCEA CEA DGEA DGEA*
Ackley 20D 2.49431 0.63380 0.23972 8.05E-4 3.36E-5
Ackley 50D 2.87039 1.52580 0.65169 4.61E-3 2.52E-4
Ackley 100D 2.89336 2.22080 1.14013 0.01329 9.80E-4
Griewank 20D 1.17195 0.93078 0.64280 7.02E-4 7.88E-8
Griewank 50D 1.61642 1.14741 1.03284 4.40E-3 1.19E-3
Griewank 100D 2.25001 1.62948 1.17907 0.01238 3.24E-3
Rastrigin 20D 11.12678 2.87524 1.25016 2.21E-5 3.37E-8
Rastrigin 50D 44.67488 22.46045 14.22400 0.01664 1.97E-6
Rastrigin 100D 106.21298 86.36449 58.38013 0.15665 6.56E-5
Rosenbrock 20D 8292.320 406.490 149.056 96.007 8.127
Rosenbrock 50D 41425.674 4783.246 1160.078 315.395 59.789
Rosenbrock 100D 91250.300 30427.636 6053.870 1161.550 880.324

Table 2. Milliseconds used by the SEA, the SOCEA, the CEA, and the DGEA. Av-
erage of 100 runs with 5000 generations on each of the four 100D problems.

Problem SEA SOCEA CEA DGEA
Ackley 100D 1128405 1528864 2951963 864316
Griewank 100D 1171301 1562931 3656724 969683
Rastrigin 100D 1124925 1513691 2897793 819691
Rosenbrock 100D 1087615 1496164 2183283 883811
Total 4512246 6101650 11689763 3537501
Percentage 100% 135.2% 259.1% 78.4%

exploration was investigated to see if it was possible to save fitness evaluations.
The optimization results and the percentage of evaluations used by DGEA2
compared to DGEA and SEA are listed in Table 4. It should be noted that
the DGEA2 uses a special kind of elitism during the explorative phases. In this
elitism operator the best individual from the previous exploit-phase overwrites
a random individual in the population, whereas the worst individual is over-
written during the exploitation phases. This special scheme is used to avoid the
evaluation of individuals during the explorative phases.

4 Conclusions

The experiments revealed a number of interesting features of the DGEA in rela-
tion to optimization tasks. First, the DGEA outperformed the other algorithms



Diversity-Guided Evolutionary Algorithms 469

Table 3. Average diversity and current mode for the DGEA after first stagnation
period. Data points are recorded when fitness improvement is detected, i.e., 100% in
the Exploit column means that all improvements occured in Exploit mode. Each row
is the average of 100 runs.

Problem Diversity Exploit Explore
Ackley 20D 0.000388 100.00% 0.00%
Ackley 50D 0.000764 100.00% 0.00%
Ackley 100D 0.001082 100.00% 0.00%
Griewank 20D 0.000253 100.00% 0.00%
Griewank 50D 0.000662 100.00% 0.00%
Griewank 100D 0.000932 100.00% 0.00%
Rastrigin 20D 0.002056 100.00% 0.00%
Rastrigin 50D 0.002379 100.00% 0.00%
Rastrigin 100D 0.002817 100.00% 0.00%
Rosenbrock 20D 0.000601 99.99% 0.01%
Rosenbrock 50D 0.001134 99.91% 0.09%
Rosenbrock 100D 0.001562 99.91% 0.09%

Table 4. Average fitness of DGEA, average fitness of DGEA2, and number of fitness
evaluations in percentage used by DGEA2 compared to DGEA and SEA. Number of
generations are: 20D = 1000 generations, 50D = 2500, and 100D = 5000 generations
(same as Table 1).

Fitness Evaluations in DGEA2
Problem DGEA DGEA2 vs. DGEA vs. SEA
Ackley 20D 8.05E-4 1.01E-3 70.1% 64.0%
Ackley 50D 4.61E-3 4.36E-3 74.3% 67.9%
Ackley 100D 0.01329 0.01311 77.0% 70.5%
Griewank 20D 7.02E-4 1.11E-3 94.2% 86.7%
Griewank 50D 4.40E-3 3.96E-3 94.8% 87.3%
Griewank 100D 0.01238 9.94E-3 95.4% 87.9%
Rastrigin 20D 2.21E-5 6.88E-4 58.6% 53.2%
Rastrigin 50D 0.01664 0.03699 61.9% 56.3%
Rastrigin 100D 0.15665 0.15613 64.1% 58.4%
Rosenbrock 20D 96.007 86.891 89.9% 82.7%
Rosenbrock 50D 315.395 295.680 90.3% 83.0%
Rosenbrock 100D 1161.550 758.040 90.5% 83.2%
Average 80.1% 73.4%

by several magnitudes on all test problems – it is clearly capable of escaping local
optima. Second, the EA part (crossover, selection, and mutation) of the DGEA
has lower running time than the standard EA, which again has lower running
time than most other EAs. Third, the number of fitness evaluations may be



470 Rasmus K. Ursem

reduced by approximately 25% compared with the standard EA, because the
fitness is constant during the explorative phases. Reducing fitness evaluations is
highly desireable for real-world applications, because the evaluation is often the
time-critical factor in such applications. However, the results showed some vari-
ation in the reduction percentages, which indicates that this could be problem
dependent.

In a more general context this study show the importance of both high and
low diversity in optimization. High diversity allows the algorithm to escape local
optima whereas low diversity ensures progress when fine-tuning the solutions.

Future work includes testing various variants of the algorithm. For instance,
annealing the diversity thresholds dlow and dhigh could lead to improvements,
because it may be an advantage to decrease dlow near the end of the optimization.
Further, investigations on a set of real-world problems are necessary to verify the
results in a more realistic context. A number of system identification problems
from control engineering are currently being investigated. Preliminary results
from these studies are very encouraging.

References

1. Bäck, T., Fogel, D.B., Michalewicz, Z., and others, (eds.): Handbook on Evolu-
tionary Computation. IOP Publishing Ltd and Oxford University Press, (1997)

2. Ursem, R.K.: Multinational Evolutionary Algorithms. In: Proceedings of the
Congress of Evolutionary Computation (CEC-99), Angeline, P.J., Michalewicz, Z.,
Schoenauer, M., Yao, X., and Zalzala, A. (eds.), Vol. 3. 1633–1640 (1999)

3. Thomsen, R., Rickers, P., and Krink, T.: A Religion-Based Spatial Model For
Evolutionary Algorithms. In: Parallel Problem Solving from Nature – PPSN VI,
Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., and
Schwefel, H.P. (eds.), Vol. 1. 817–826 (2000)

4. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, MI, (1975). Dissertation Abstracts
International 36(10), 5140B, University Microfilms Number 76-9381

5. Mahfoud, S.: Crowding and preselection revisited. Technical Report 92004, Illinois
Genetic Algorithms Laboratory (IlliGAL), (1992)

6. Goldberg, D.E. and Richardson, J.: Genetic Algorithms with Sharing for Mul-
timodal Function Optimization. In: Genetic Algorithms and their Applications
(ICGA’87), Grefenstette, J.J. (ed.), 41–49. Lawrence Erlbaum Associates, Pub-
lishers, (1987)

7. Cobb, H.G. and Grefenstette, J.F.: Genetic Algorithms for Tracking Changing
Environments. In: Proceedings of the 5th International Conference on Genetic
Algorithms, Forrest, S. (ed.), 523–530 (1993)

8. Thomsen, R. and Rickers, P.: Introducing Spatial Agent-Based Models and Self-
Organised Criticality to Evolutionary Algorithms. Master’s thesis, University of
Aarhus, Denmark, (2000)

9. Greenwood, G.W., Fogel, G.B., and Ciobanu, M.: Emphasizing Extinction in Evo-
lutionary Programming. In: Proceedings of the Congress of Evolutionary Compu-
tation, Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A.
(eds.), Vol. 1. 666–671 (1999)



Diversity-Guided Evolutionary Algorithms 471

10. Krink, T., Thomsen, R., and Rickers, P.: Applying Self-Organised Criticality to
Evolutionary Algorithms. In: Parallel Problem Solving from Nature – PPSN VI,
Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., and
Schwefel, H.P. (eds.), Vol. 1. 375–384 (2000)

11. Shimodaira, H.: A Diversity Control Oriented Genetic Algorithm (DCGA): Devel-
opment and Experimental Results. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H.,
Honavar, V., Jakiela, M., and Smith, R.E. (eds.), Vol. 1. 603–611 (1999)

12. Oppacher, F. and Wineberg, M.: The Shifting Balance Genetic Algorithm: Im-
proving the GA in a Dynamic Environment. In: Proceedings of the Genetic and
Evolutionary Computation Conference, Banzhaf, W., Daida, J., Eiben, A.E., Gar-
zon, M.H., Honavar, V., Jakiela, M., and Smith, R.E. (eds.), Vol. 1. 504–510 (1999)

13. Tsutsui, S., Fujimoto, Y., and Ghosh, A.: Forking Genetic Algorithms: GAs with
Search Space Division Schemes. Evolutionary Computation 5, 61–80 (1997)

14. Bak, P.: How Nature Works. Copernicus, Springer-Verlag, New York, 1st edition,
(1996)



Evolutionary Optimization
of Heterogeneous Problems

Llu��s A� Belanche Mu�noz

Dept� de Llenguatges i Sistemes Inform�atics�
Universitat Polit�ecnica de Catalunya�

c�Jordi Girona Salgado ��� ����	 Barcelona
 Spain�
belanche�lsi�upc�es

Abstract� A large number of practical optimization problems involve
elements of quite diverse nature
 described as mixtures of qualitative and
quantitative information
 and whose description is possibly incomplete�
In this work we present an extension of the breeder genetic algorithm that
represents and manipulates this heterogeneous information in a natural
way� The algorithm is illustrated in a set of optimization tasks involving
the training of di�erent kinds of neural networks� An extensive experi�
mental study is presented in order to show the potential of the algorithm�

� Introduction

Real�world data come from many di�erent sources� described by mixtures of nu�
meric and qualitative variables� These variables include continuous or discrete
numerical processes� symbolic information� etc� In particular� qualitative vari�
ables might have a di�erent nature� Some are ordinal in the usual statistical
sense �i�e�� with a discrete domain composed by k categories� but totally ordered
w�r�t a given relation	 or nominal �discrete but lacking an order	� The data may
also come with their own peculiarities �vagueness� uncertainty� incompleteness	�
and thus may require completely di�erent treatments�

For Evolutionary Algorithms �EA	� this translates in the introduction of a
coding system �a suitable representation	 for all the information not directly
representable in the chosen chromosomic language� In practical terms� this in�
volves the use of binary �or small cardinality	 alphabets �as in classical genetic
algorithms� GA	 or real�valued quantities �as in Evolution Strategies� ES	� This
can be seen as a pre�processing that is not part of the original task� and as such
may have deep consequences in the structure of the problem�

On the one hand� the algorithm receives an indirect and biased feedback �via
the 
tness function	� One may argue that the decoding �even a complex one	 can
be seen as part of the genotype�to�phenotype development� While this posture
makes sense in living organisms� in arti
cial systems data representation is a
crucial factor for a successful learning process and can have a great impact on
performance� The choice of representation should be as faithful as possible� in
the sense that the relations between the represented entities should correspond

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 475–484, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



476 Llúıs A. Belanche Muñoz

to meaningful relations between the original data items� The possibility of in�
jecting knowledge in the genetic operators about the kind of structures they are
manipulating is also an appealing idea� Indeed� the choice of a representation
scheme should not be made alone� but in conjunction with the genetic operators�
A set of genetic operators that allows important partial solutions to propagate
and does not permit invalid or unimportant ones to succeed is likely to enhance
overall performance� For example� a good tree representation should be able to
represent all possible trees �and only trees� and be �continuous� �i�e�� similar
representations should develop similar trees� �	
� Furthermore� genetic operators
should generate only valid trees �or repair invalid trees after generation�� In this
way� higher�order gene interactions can be worked out in a controlled way�

On the other hand� unwanted gene interactions �epistatic phenomena� are one
of the headaches in designing EA solutions� Problems with little or no epistasis
are trivial to solve �e�g� by hillclimbing�� However� highly epistatic problems may
be extremely di�cult to solve� since they can prevent the formation of useful
building blocks� and are prone to deception� These interactions are very likely
to appear as a side e�ect of the chosen coding scheme� Finally� results involving
genes that encode information may be di�cult to interpret in isolation� being
the case that they do not represent any specic feature�

In this work� we extend the expressive power of the breeder genetic algorithm

�BGA� ��
 allowing it to manipulate heterogeneous information� We then apply
it to a set of optimization tasks involving the training of a heterogeneous neural
network� The results illustrate how performance and readability are enhanced�

� The Breeder Genetic Algorithm

The Breeder Genetic Algorithm ��
 is in midway between GAs and ESs� While
in GA selection is stochastic and loosely inspired in natural selection� the BGA
uses truncation selection� in which only the best individuals �usually a xed per�
centage � of the population size �� are to be recombined and mutated� Genetic
operators are applied by randomly picking two parents until the number of o��
spring equals � � q� Then� the former q best elements are re�inserted into the
population� forming a new generation of � individuals that replaces the previous
one� The BGA selection mechanism is then deterministic �there are no probabil�
ities�� extinctive �the best elements are guaranteed to be selected and the worst
are guaranteed not to be selected� and q�elitist �the best q elements always sur�
vive from a generation to the next�� For the BGA� the typical value is q � 	�
This is a form of the comma strategy ��� �� since the parents are not included
in the replacement process� with the exception of the q previous best� Note that�
given that q is xed� only � needs to be specied� since � � �� q�

The BGA uses a direct representation� that is� a gene is a decision variable
�not a way of coding it� and its allele is the value of the variable� An immediate
consequence is that� in the absence of other conditionings as constraint handling�
the tness function equals the function to be optimized� In addition� the algo�
rithm does not self�optimize any of its own parameters� as is done in ES and



Evolutionary Optimization of Heterogeneous Problems 477

in some meta�GAs ���� Chromosomes are thus potential solution vectors x of n
components� where n is the problem size� This is of crucial importance since�

�� It eliminates the need of choosing a coding function for real numbers
	� It opens the way to the direct manipulation of di
erent kinds of variables�

other than real numbers �e�g�� fuzzy� discrete� as single genes�
�� It permits the design of data�dependent genetic operators�

The BGA is mainly driven by recombination �very much as an ordinary GA��
with mutation regarded as an important but background operator intended to
reintroduce some of the alleles lost in the population� This view is conceptually
right for GAs� because alphabet cardinality is usually very small �two� in most
cases�� However� for those algorithms that make use of real�valued alleles �like the
BGA� mutation has to be seen in the double role of solution ne�tuner �for very
small mutations� and as the main discovery force �for moderate ones�� In fact�
the initial BGA formulation remarked the synergistic e
ect of the combined and
iterated application of recombination and mutation to extract the most from an
EA �	�� We now brie�y describe di
erent possibilities for the genetic operators�

��� Recombination

Any operator mixing the genetic material of the parents is called a recom�
bination operator� In a BGA� recombination is applied unconditionally� Let
x � �x�� � � � � xn�� y � �y�� � � � � yn� be two selected individuals x�y such that
x �� y� Let z � �z�� � � � � zn� be the result of recombination and � � i � n� The
following are some of the more common possibilities to obtain an o
spring z�

Discrete Recombination �DR�� Set zi � fxi� yig �with equal probability��

Line Recombination �LR�� Set zi � xi � ��yi � xi�� with a xed � � ��� ���

Extended Intermediate Recombination �EIR�� Set zi � xi � �i�yi � xi��
with �i � ���� � � �� chosen with uniform probability� The � � � parameter
expresses the degree to which o
spring can be generated out of the parents�s
scope� an imaginary line that joins them in R� More precisely� �jyi � xij is the
maximum fraction of the distance between parents where the o
spring can be
placed� either left to the leftmost parent or right to the rightmost parent� Rea�
sonable values should not exceed � � ���� since the bigger the �� the more the
e
ect of the parents is diminished in creating o
spring�

Fuzzy Recombination �FR�� This operator replaces the uniform pdf �prob�
ability distribution function� by a bimodal one� with the two modes located at
xi� yi� It thus favours o
spring values close to either of the parents� and not in
any intermediate point with equal probability� as with previous operators� The
label �fuzzy� comes from the fact that the two parts of the pdf resemble fuzzy
numbers �triangular in the original formulation ����� fullling the conditions�



478 Llúıs A. Belanche Muñoz

xi � ejyi � xij � t � xi � ejyi � xij yi � ejyi � xij � t � yi � ejyi � xij

stating that o�spring t lies in one �or both� of the intervals� being e � � the
fuzzy number�s spread� the same for both parts� The favour for o�spring values
near the parents is thus stronger the closer the parents are� In the simplest case
�e 	 ��
� the two parts meet at the median and this point has zero probability�

��� Mutation

A mutation operator is applied to each gene with probability n�� so that� on
average� one gene is mutated for each individual� Let z 	 �z�� � � � � zn� denote the
result of mutation of an individual x� The elements of z are formed as follows�

Discrete Mutation �DM�� Set zi 	 xi�sign �rangei �� with sign � f�����g
chosen with equal probability� rangei 	 ��r�i � r�i �� � � ���� ��
� and

� 	
k��X

i��

�i�
�i

where �i � f�� �g taken from a Bernouilli probability distribution such that
Pr��i 	 �� 	 �

k
� In this setting k � N� is a parameter originally related to the

precision with which the optimum was to be located� In practice� the value of
k is related to the expected value of mutation steps� the higher k is� the more
�ne�grained the resultant mutation operator is� The factor � sets the maximum

step that mutation is allowed to produce w�r�t� the range r�i � r
�

i � of variable i�

Continuous Mutation �CM�� Same as DM with � 	 ��k�� where � � �� ��
with uniform probability�

� Extension of the BGA to Heterogeneous Problems

We consider basic data peculiarities most likely to be found in real applications�
The BGA representation as well as the workings of the corresponding genetic
operators are described� The algorithm manipulates the involved variables as a
unique entity at all levels� Obviously� real�valued variables are directly treated
as such� initialized at random within a pre�declared range� and recombined and
mutated with the operators described in �x���� and �x�����

Ordinal m�valued variables are represented as positive natural numbers in the
interval ��m� an initialized at random within the interval� For recombination�
there are three possibilities� which mimic the real�valued operators� DR �gen�
erally valid but ignores the order�� LR �respects the order�� and EIR �idem�
needs an � parameter�� Some preliminary investigations lead to the choice of LR
�� 	 ��
�� that is� the median of the parents� Mutation involves an increase �to
the immediately following value w�r�t� the linear order� or a decrease �idem� but
in the opposite sense�� and the decision is taken with equal probability�



Evolutionary Optimization of Heterogeneous Problems 479

Nominal m�valued variables are also represented as an interval ���m�� but no
order relation is assumed� The clear choice for recombination is DR� being the
only one explicitly assuming no underlying order� Mutation is realized by switch�

ing to a new value in the interval� with equal probability�

Fuzzy quantities� The extension to handle fuzzy numbers is given by a tuple of
reals �three in the general case� two if the chosen representation is symmetric��
Linguistic variables are described by their anchor points on the abscissa axis
�e�g�� four in the case of trapezoidal membership functions��

Recombination of fuzzy numbers is taken as the corresponding extension
of the operators for real�valued quantities� In particular� for EIR the mode is
obtained following its formula �involving the selection of ��� and the spread is
computed using the formula with the same �� This makes sense since the spread
is usually proportional to the mode� Fig� ��� provides an example�

1 2 3 4 5 6

Fig� �� EIR recombination for fuzzy numbers with � � ����� and � � ����
uniformly chosen in ������� ����	
 Mode and spread for the two parents are
�
�� �
� and �
�� �
�
 The thicker number is the result of recombination
 As for
real numbers� the value of � makes o�spring resemble its bigger parent more
a factor of �

�
� than its smaller one
 The mode is �
� and the spread �
��


Mutation of fuzzy numbers is also developed as an extension of the real�
valued operators� by taking into account that mode and spread are collectively
expressing a single �fuzzy� number� Both continuous and discrete operators can
be used� as follows� The change on the mode is determined using the respective
formulas� The change on the spread uses the same sign and � �which are the
terms depending on probabilities� as used for the mode�

For linguistic variables� recombination is also an extension of the operators for
real�valued quantities� For EIR� the procedure is analogous as for fuzzy numbers�
that is� using the same � for all the involved quantities� In this case� however� the
source of uncertainty is di	erent� and there is no need for the o	spring spreads
to be in a proportion to their modes similar to that of the parents� and other
operators could be conceivable� Fig� �
� provides an example� In mutation� a
single step change is proposed according to the formulas� which a	ects all the
constituting points �modes and spreads� in the same way�

Missing values are dealt with in a specially meaningful way� They are initially
generated according to the estimated probability of a missing value in the vari�



480 Llúıs A. Belanche Muñoz

1 2 3

Fig� �� EIR recombination for trapezoidal linguistic terms� with � � ���� and
� uniformly chosen in ������� ������ and equal this time to �	�� for clarity	 The
thicker set is the result of recombination	 In this case� both parents are equally
responsible of the obtained o
spring �� � ����	

able� This makes sense since for variables containing high numbers of missing
values� the probability of placing one in the corresponding gene increases� If this
probability is zero a missing value could still be introduced by mutation �sig�
naling the temporal loss of a gene or trait�� A mutation operator sets a missing
value in the allele with a certain probability �usually very low�� If this change
leads to improved performance� it will be retained� A missing value cannot be
mutated back to a non�missing one� A de�nite value can only be recovered by
recombination to the �non�missing� gene of another individual�

Recombination is treated as discrete �DR� whenever at least one of the par�
ents have a missing trait� This is coherent with the philosophy of EA� recom�
bination stands for the transmission of the parents�s genetic material to their
o	spring� If a parent is lacking a gene� this characteristic has to be given the
chance to be passed on� Besides� if the trait or gene is lacking for both parents� it
will be so for the o	spring� since nothing can be 
invented from scratch� �this is
the role of mutation�� In summary� given � a recombination operator �possibly
heterogeneous�� it is extended to a �X �where X denotes the missing value� as�

�X �xi� yi� �

��
�
��xi� yi� if xi �� X � yi �� X
DR�xi� yi� if xi � X � yi � X
X otherwise

where � denotes exclusive�or� All this manipulation for missing values di	ers
from the one that results by treating it as any other value� for its generation
and propagation would be carried out blindly� The proposed treatment has the
added appeal of being simple� and natural from the point of view of an EA in
the sense that it is taken as a missing gene and is independent of the data type�



Evolutionary Optimization of Heterogeneous Problems 481

� A Case Study in Neural Network Training

��� The BGA as a Neural Network Trainer

Evolutionary methods are immediate candidates for neural network optimiza�
tion� being the case that they may alleviate the problem of local minima� How�
ever� when coding an ANN into a GA chromosome� highly complex interactions
may develop� due to the in�uence that a given weight on a hidden unit has on the
whole network computation� The usual binary representation of the real�valued
weights carries with it extra interactions between non�neighbouring genes� thus
inducing strong epistatic e�ects in GA processing� In these conditions� it is at
least doubtful that the building block hypothesis can hold� A concise review on
the generic use of evolutionary learning algorithms for neural optimization is
given in ��� �	� To the best of our knowledge� the BGA has only been used for
some speci
c neural optimization tasks or application examples ��� �	�

��� Heterogeneous Neural Networks

These arti
cial networks are built out of neuron models de
ned as a mapping
h  �Hn � R� Here �Hn is a cartesian product of an arbitrary number n of
source sets� These source sets may be extended reals �Ri � Ri � fXg� extended
families of �normalized� fuzzy sets �Fi � Fi � fXg� and extended 
nite sets of
the form �Oi � Oi � fXg� �Mi � Mi � fXg� where each of the Oi has a full
order relation� while theMi have not� The special symbol X extends the source
sets and denotes the unknown element �missing information�� behaving as an
incomparable element w�r�t� any ordering relation� According to this de
nition�
neuron inputs are vectors composed of n elements among which there might be
reals� fuzzy sets� ordinals� categorical and missing data ���	�

An heterogeneous neuron computes a similarity index� followed by a classical
squashing non�linear function with domain in ��� �	�We use in this work a Gower�

like similarity index ��	 in which the computation for heterogeneous entities is
constructed as a weighed combination of partial similarities over single variables�
This coe�cient has its values in the real interval ��� �	 and for any two objects
i� j given by tuples of cardinality n� is given by the expression

sij �

Pn

k��gijk �ijkPn

k���ijk

where gijk is a similarity score for objects i� j according to their value for variable
k� These scores are in the interval ��� �	 and are computed according to di�erent
schemes for numeric and qualitative variables� In particular� for a continuous
variable k and any two objects i� j the following similarity score is used

gijk � �s

�
jvik � vjkj

supi�j jvik � vjkj

�

Here� vik denotes the value of object i for variable k and �s�z� � ��� z��� � � ��
The similarity measure used for categorical variables is the overlap



482 Llúıs A. Belanche Muñoz

gijk �

�
� if vik � vjk
� if vik �� vjk

The �ijk is a binary function expressing whether both objects are comparable

or not according to their values w�r�t� variable k� as follows�

�ijk �

�
� vik �� X and vjk �� X
� otherwise

For variables representing fuzzy sets� if Fi is an arbitrary family of fuzzy sets
in X� and �A� �B � Fi� the following similarity relation s is used�

s� �A� �B	 � sup
u�X

fmin ��
�A�u	� � �B�u		g

Notice that this measure is re
exive in the strong sense and also symmetric�
As for the activation function� a modi�ed version of the classical logistic is used
���� which is an automorphism �a monotonic bijection	 in ��� ��

The framework has provision for other types of variables� as ordinal or lin�
guistic� and other kinds of combination for the partial similarities� The resulting
heterogeneous neuron is sensitive to the degree of similarity between its weight
vector and a given input� both composed in general by a mixture of continu�
ous and discrete quantities �possibly with missing data� and can be used for
con�guring heterogeneous arti�cial neural networks �HNN	�

� An Experimental Study

Seven learning tasks taken from the Proben repository ��� are studied� alto�
gether representative of the kinds of variables typically found in real problems�
while displaying di�erent degrees of missing information �from �� to ���	� Their
main characteristics are displayed in Table ��

For every data set� the available documentation is analysed in what concerns
type and meaning of variables� allowing an assessment on the more appropriate
treatment� Missing information is also identi�ed� Speci�cally� some originally
�continuous� variables are treated as ordinal since this makes much more sense
than to consider them as continuous� Examples would be number of times preg�

nant or heart pulse� There are also variables that� besides being endowed with a
total order relation� display a source of vagueness �coming from their subjective

character	 that has to be modeled� This is the case of� for instance� the temper�

ature of extremities �cold� cool� normal� warm	 or the abdominal distension

�none� slight� moderate� severe	� These variables are treated as linguistic
by respecting the number and order of the �initially crisp	 values� In absence of
more precise information� the cut points are set at the ��� level� as is usually
done� Besides� some continuous variables are converted to triangular fuzzy num�
bers with a low fuzziness �roughly estimated at a ����	 re
ecting the uncertainty
derived from their imprecise measurements�



Evolutionary Optimization of Heterogeneous Problems 483

Table �� Basic features of the data sets� Def� �default accuracy�� Missing �percentage
of missing values�� Missing�� �percentage of cases with at least one missing value��

Name Type �Cases Def� Missing Missing�� In�Out Data
Pima Diabetes C 	
� 
��� ���
 ���� � � � 
R� �N� �I
Credit Card C 
�� ���� ��
� ��� �� � � 
R� �N� �I
Horse Colic C �
� 
��� �
�� ���� �� � � �R� �N���I
Heart Disease C ��� ���� �
�� 
	�� �� � � �R� 
N� �I
Solar Flares R ��

 � ��� ��� � � � �R� �N� �I
Sinus�Cosinus R ��� � ��� ��� � � � �R� �N� �I
SISO�Bench R ��� � ��� ��� � � � �R� �N� �I

�C classi�cation R regression� �R real N nominal I ordinal�

Four di�erent architectures are studied� composed of a hidden layer of �� ��
�� and �� neurons plus as many output units as required by the task� The data
sets are split in 	 folds� and ten �
���
���
� partitions are formed� such that
each of the 	 folds appears exactly twice as a validation fold� twice as a test� and
� times as one of the  training folds� For each con�guration� ten runs are carried
out� varying the initial conditions of the BGA� set to � � �

� � � �	� The task
is to minimize the normalized root square error �NRSE� on the training part�
until 
� 


 error evaluations are used in each run� Test errors are computed
using the network that produced the lowest error in its validation part�

As a reference� two standard neural networks are also trained in the same
conditions� treating all information as real�valued quantities� as is the case in
standard neural learning systems� Speci�cally� the standard scalar�product neu�
ron plus a bias weight� using a logistic as activation function �MLP� and a radial
basis function neuron �RBF� based on Euclidean distance� plus a Gaussian with
its own variance �to be learned�� The BGA is here used in its original formula�
tion� The obtained generalization results are summarized in Table �� where mean
test NRSE is displayed� averaged over the four architectures�

Table �� Results for each data set� averaged over the four architectures� An asterisk
��� means that the result is worse than any of the other two� in the sense that for all
of the four architectures� Mann�Whitney tests for �greater than� are signi�cant at the
�� level �w�r�t� both of the other two models�� The average is given as an indication�

Problem MLP net RBF net HNN net

Pima Diabetes ��
�� ��		� ��� ��	��
Horse Colic ����
��� ��	�� ��	��
Heart Disease ��

���� ����
 �����
Credit Card ��
		 ��	�� ��� �����
Solar Flares �������� ����� ����	
Sinus�Cosinus ����� ����� ��� �����
SISO�Bench ����� ����� ��� �����
Average ��
�
 ����� ����




484 Llúıs A. Belanche Muñoz

Table �� Heterogeneous weights of a hidden neuron for the Horse Colic problem�

� Name Type Value
� Rectal temperature �celsius� fuzzy number ����� ���

	 Temperature of extremities linguistic cold cool normal warm

TEMPERATURE

� Mucous membranes color nominal 
normal pink�

�� Nasogastric reux PH fuzzy number ���� ���
�� Abdominocentesis appearance nominal 
cloudy�

The readability of the obtained solutions is illustrated in Table �� We show
part of the weights of a hidden neuron taken at random from one of the networks
delivered by cross�validation for the Horse Colic problem� Linguistic terms are
shown in graphical form� whereas triangular fuzzy numbers are shown in nu�
merical form �rounded to one decimal� for clarity� Notice the obtained linguistic
term is almost symmetric� a characteristic found by the algorithm itself�

Acknowledgements� This work is supported by the Spanish CICYT TAP��������

References

�� Palmer� C�C�� Kershenbaum� A� Representing trees in genetic algorithms� In B�ack�
Th�� Fogel D�B�� Michalewicz� Z� �Eds�� Handbook of Evolutionary Computation�
IOP Publishing � Oxford Univ� Press� �����

�� M�uhlenbein� H�� Schlierkamp�Voosen� D� Predictive Models for the Breeder Genetic
Algorithm� Evolutionary Computation� � ���� �	���� �����

�� B�ack� Th� Evolutionary Algorithms in Theory and Practice� Oxford Press� �����
�� Voigt� H�M�� M�uhlenbein� H�� Cvetkovic� D� Fuzzy recombination for the continuous

Breeder Genetic Algorithm� In Procs� of ICGA��	�
	� Balakrishnan� K�� Honavar� V� Evolutionary design of neural architectures � a pre�

liminary taxonomy and guide to literature� Technical report CS�TR��	���� Dept� of
Computer Science� Iowa State Univ�� ���	�

�� Yao� X� Evolving Arti�cial Neural Networks� Procs� of the IEEE� ������ �����
�� De Falco� I�� Iazzetta� A� Natale� P�� Tarantino� E� Evolutionary Neural Networks

for Nonlinear Dynamics Modeling� In Procs� of PPSN V� Amsterdam� �����
�� Zhang� B�T�� M�uhlenbein� H� Evolving Optimal Neural Networks Using Genetic

Algorithms with Occam�s Razor� Complex Systems� ����� �������� �����
�� Gower� J�C� A General Coe�cient of Similarity and some of its Properties� Biomet�

rics� ��� �	������ �����
��� Vald�es J�J�� Belanche� Ll�� Alqu�ezar� R� Fuzzy Heterogeneous Neurons for Imprecise

Classi�cation Problems� Intl� Journal of Intelligent Systems� �	���� ��	����� �����
��� Belanche� Ll� Heterogeneous neural networks� theory and applications� Ph�D� The�

sis� Universitat Polit�ecnica de Catalunya� Barcelona� Spain� �����
��� Prechelt� L� Proben�� A set of Neural Network Benchmark Problems and Bench�

marking Rules� Facult�at f�ur Informatik� Univ� Karlsruhe� Tech� Rep� ������ �����



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 485–494, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Automatic Recurrent and Feed-Forward ANN Rule
and Expression Extraction with Genetic Programming

Julian Dorado, Juan R. Rabuñal, Antonino Santos,
Alejandro Pazos, and Daniel Rivero

Univ. da Coruña, Facultad Informática, Campus Elviña, 15071 A Coruña, Spain
{julian,juanra,nino,ciapazos}@udc.es

danielrc@mail2.udc.es

Abstract. Various rule-extraction techniques using ANN have been used so far,
most of them being applied on multi-layer ANN, since they are more easily
handled. In many cases, extraction methods focusing on different types of
networks and training have been implemented. However, there are virtually no
methods that view the extraction of rules from ANN as systems which are
independent from their architecture, training and internal distribution of
weights, connections and activation functions. This paper proposes a rule-
extraction system of ANN regardless of their architecture (multi-layer or
recurrent), using Genetic Programming as a rule-exploration technique.

1 Introduction

Artificial Neural Networks (ANN) are systems which are easily implemented and
handled. These and other features make them optimal for problem-solving in various
areas. However, many developers and researchers avoid their use, since they consider
them as “black boxes”, that is, they are systems which produce certain response
outputs from a series of inputs, while the process through which those outputs are
produced remains unknown. For that reason, in fields such as medicine, where their
use is highly recommended, people do not consider ANN to be accountable, due to
the fact that the reason for their right functioning and the solutions they contribute
cannot be explained. An example could be medical diagnosis. A computational
system designed for diagnosis should be able to explain the reason for that diagnosis
and how it was reached.

Nevertheless, Expert Systems (ES) are able to explain the solution or response
achieved, which is their main core and also their guarantee of success. Therefore, this
paper tries to develop a system which carries out an automatic extraction of rules
from already trained ANN, thus obtaining the knowledge that an ANN obtains from
the problem it solves.

Different rule-extraction techniques using ANN have been used so far, always
applied to multi-layer ANN due to the fact that they are more easily handled. These
networks also have a limited capacity with regard to the knowledge which can be
distributed among their connections.

As may be inferred, the extraction of rules and expressions from recurrent ANN is
more complicated, due to the fact that past states intervene in neural activation, and



486      Julian Dorado et al.

that their capacity of distributed knowledge is considerably higher than that of multi-
layer ANN, since there are no restrictions to neural connectivity. If, besides, recurrent
ANN are used in dynamic problems where certain time characteristics such as the
prediction of time series intervene, the task of extracting by means of the methods
developed so far becomes harder, if not impossible for most of them.
Therefore, the system presented can be applied to every ANN kind. For that reason,
the system should comply with a series of requirements [1]:

- It should have no ANN architecture requirements: A rule-extraction
mechanism which can work with every type of neural network, including
those which are highly interlinked or recurrent.

- It should have no ANN training requirements: Many of the proposed
algorithms are based on a given ANN training process for which rule-
extraction is designed. Therefore, they are not valid for other training sets.

- It should be correct: It is desirable that the rules describe the ANN as
accurately as possible.

- It should have a highly expressive level: Rule language (syntax)
characterises the compactness of the extracted symbolic language. Usually,
powerful languages are desirable, due to the fact that a very compact and
easy to understand rule language can be produced.

2 State of the Art

2.1 Genetic Programming

Some people thinks that Cramer and Fuji, who published on evolving programs in
1985 and 1987 at the very first ICGA conference [2][3], are the pioneers of Genetic
Programming (GP). But still others think that Friedberg from 1958 and 1959, who
evolved machine language programs [4][5], is really the pioneer.

John Koza created the term which titles the book “Genetic Programming” [6]. This
book establishes formally the bases of GP used nowadays. Later, the same author
published “Genetic Programming II” [7], and, recently, “Genetic Programming III”
[8]. Both explore new possibilities of GP.

Different branches derive form GP. One of the most promising ones with regard to
Knowledge Discovery (KD) is that of fuzzy rules [9][10]. This branch derives from
the union between fuzzy logic and systems based on rules (SBR). Fuzzy rules can be
obtained by means of Evolutionary Computation (EC) with the technique known as
Automatically Defined Functions (ADF) [7], which represent an evolution of the
concept called “Classical Genetic Programming”.

2.2 ANN Rule Extraction

Several authors have studied the relationship between ANN and fuzzy rules [11] [12]
[13]. Most results establish that equivalence by means of a process of consecutive
approaches. Apart from being purely theoretical solutions, they require a great
number of rules in order to approach the ANN functioning [13]. Jang’s and Sung’s
work [11] is rather different, given that they provide an equivalence between radial
ANN and fuzzy systems where a finite number of rules or neurons is required, though
in this case it is limited to a fixed ANN architecture.



Automatic Recurrent and Feed-Forward ANN Rule      487

Andrews [14][15] identifies three rule-extraction techniques: “decompositional”,
“pedagogical” and “eclectic”. The first one refers to extraction at the neuron level.
The second one treats the ANN as a black box, where, by means of applying inputs to
the network, a backward to forward analysis of the neurons in the hidden layers is
carried out, extracting the corresponding rules. The third one uses the ANN
architecture and the input-output pairs as a complement to a symbolic training
algorithm.

Towell and Shavlik [16] apply the first technique using the connections between
neurons as rules based on simple transformations. This limits extraction to those
networks with a given multi-layer architecture and few process elements [14]. Thrun
[17] has developed the main approach by means of using the second technique, titled
“Validity Interval Analysis” (VIA). The algorithm uses linear programming
(SIMPLEX), applying value intervals to each neuron’s activations in each layer. The
system extracts “possibly correct” rules through the ANN by means of a backward
and forward propagation of those intervals. This algorithm has, in the worst of cases,
exponential complexity, due to the fact of using linear programming. Other
approaches using the second technique are RULENEG algorithms [18] and DEDEC
ones [19], which use an ANN in order to extract rules from another ANN’s training
set. However, those rule-extraction techniques which focus exclusively on the training
data lose the generalization capacity which ANN have. Other rule-extraction
techniques are [20] [21] [1], which are based on previously debated approaches.

GAs have recently been used for finding and extracting ANN, due to the
advantages offered by evolutionary techniques for searching in complex systems [22].
The second technique (pedagogical) uses a GA where the chromosomes are multi-
condition rules based on intervals or value ranks applied to the ANN inputs. These
values are obtained from the training parameters. Wong and Leung have used PG for
knowledge discovery from databases (KDD) developing a system called LOGENPRO
(Logic grammar based GP) [23]. It uses first order logic to represent knowledge. This
is the first aproximation that shows the advantages of GP for KDD.

3 Fundamentals

One of the most important aspects of any rule-extraction system is the optimization of
the rules obtained from the ANN analysis. It should be kept in mind that the extracted
rules may be contained in general rules, and many of the logical expressions obtained
may be simplified if they are written in a different way. Therefore, the optimization of
rules consists of simplifying and carrying out symbolic operations on the rules.
Depending on the extraction method and on the type of rules obtained, various
optimization techniques can be applied. They can be classified into two main groups:
imbibed optimization methods and a posteriori methods. The latter are usually a
syntactic analysis algorithm applied to the rules obtained in order to simplify them.
For instance [24] uses Prolog as programming language for a post-processing of the
rules obtained. Imbibed optimization techniques are used for rule-extraction
algorithms which intrinsically cause the algorithm to produce rules which are more
and more optimal. An example may be the technique of depth penalization used in
GP. Conceptually, when the adaptation level of a GP individual is evaluated (tree) its
capacity is reduced a certain degree according to the number of terminal and non-



488      Julian Dorado et al.

terminal nodes that the tree has. Thus the existence of simple individuals is
dynamically fostered. Therefore, if we are searching for rules (syntactic trees), the
appearance of simple (optimization) rules is intrinsically favoured.

Another thing to be taken into account when applying the extraction algorithm is
its modus operandi. As previously discussed, extraction techniques can be classified
into three main groups: “decompositional”, “pedagogical” and “eclectic”. EC has
been applied in this paper, and specifically GP as building algorithm of a syntactic
tree which reflects a set of rules as similar as possible to the functioning of an ANN.
A symbolic regression has been applied to the input-output patterns. These patterns
are input sequences applied to an ANN and the outputs obtained from it. This type of
technique can be termed as “pedagogical”, where the ANN is treated as a “black
box”. This is an advantage, given that it is not necessary to know how an ANN works
internally. However, a rule-extraction algorithm which can work with “black box”
structures should be able to implement some kind of mechanism which allows a priori
incorporation of the knowledge obtained from the “black box”, thus reducing
considerably the search space of the system rules. These structures are known as
“grey box”. This is possible thanks to the fact that in GP the number and type of
terminal and non-terminal elements which intervene in the search process can be
determined. For instance, if we know that an ANN carries out classification tasks, the
type of terminal nodes can be determined as Boolean, avoiding floating point levels.
This offers a great advantage, given that all the possible combinations of
mathematical operations can be eliminated beforehand.

4 Description of the System

The main method proposed for the extraction of ANN rules is the use of EC, due to
the fact that it has been proved to be very useful at search tasks, where the solution
space increases exponentially with regard to the problem to be solved. The use of GP
is proposed since it offers the advantage of having a way of representing and
structuring information by means of a semantic tree. This tree diagram is a natural
way of representing a rule which can be easily understood by human beings.

The proposed system will be tested contrasting its correct functioning with other
existing extraction techniques based on classification tasks. The cases are the breast-
cancer diagnosis and the lethal hepatitis one. In these cases, the direct extraction of
rules from those data will be proven with the purpose of extracting the rules
pertaining to each network by means of training ANN. Finally, the algorithm will be
tested with recurrent ANN for time-series prediction tasks. A RANN trained for
predicting a laboratory chaotic time series (such as the Mackey-Glass) will be used.

In each case, the work is initially based on obtaining an ANN for solving the
problem. Once the ANN are designed and trained, the same test and training values
are used for generating a second data pattern which will be used for finding the rules
acquired by the ANN in the training process (Fig.1). The rule-extraction algorithm, as
discussed before, is based on GP. This search technique allows problem solving by
means of the automatic generation of algorithms and expressions. These expressions
are codified in the shape of a tree. In order to create this tree, we must specify which
nodes will be terminals (leaves) and which will be functions (non terminals). The
difference is that some of them will be able to have offspring and the others will not.



Automatic Recurrent and Feed-Forward ANN Rule      489

Fig. 1. Rule extraction process

When terminal and functions operators are specified, it is necessary to specify their
types: each node will have a type, and the functions will require a specific type to
their offspring [25]. This ensures that the trees thus generated satisfy the user’s
grammar. Besides, both specified operator sets must comply with two requirements:
closure and sufficiency, i.e. it must be possible to build correct trees with the specified
operators, and the solution to the problem must be able to be expressed by means of
those operators. Depending on the problem to be solved, mathematical and
trigonometrical functions (sine, cosine, square,…), logic operators (AND, OR, NOT)
have been used as operators, together with the typical operations +, -, *, and % which
is the protected division (avoid dividing by zero). Thus, logic operators have been
basically selected for classification tasks, dispending with mathematical operations.
On the opposite side, it is necessary to use them for prediction, due to the nature of
the outputs of the ANN which deal with this type of problem.

5 Results

5.1 Classification Problems

ANN have shown their extreme usefulness for tasks in which having an input
sequence we must decide whether those values correspond to a certain classification.
As it was debated before, various  problems of medical diagnosis have been used in
order to train ANN so that they produce it. The first data set used was the detection of
lethal hepatitis cases. For this purpose we used a database obtained from UCI [26]. It
contains 155 examples for two classifications: 32 deaths, and 123 alive cases. There
are 19 attributes, 13 of which are Boolean while 6 have discrete values. An multi-
layer architecture ANN with 9 neurons in only one hidden layer and with tangent
hyperbolic activation functions was trained with these examples, obtaining a fitness of
100% of cases. The extraction of rules has been applied to this ANN and the fitness
value obtained is the correct classification of 98.75% of cases.

(IF X2 THEN 0.8826
ELSE  (IF ( (IF X2 THEN 0.8859
                    ELSE X18)<0.6247)
          THEN  (IF (IF ((IF X6  THEN 0.9800
                                       ELSE 0.6205)>0.9380)
                                 THEN (NOT X12)
                                 ELSE X7)
                           THEN X18

                           ELSE 0.8826)
          ELSE  (IF X13 THEN X18

                                  ELSE 0.2338)))

(X1)   age
(X2)   sex: men,woman
(X3)   steroid: no,yes
(X4)   antivirals:no, yes
(X5)   fatigue: no, yes
(X6)   malaise: no, yes
(X7)   anorexia: no, yes
(X8)   liver big: no, yes
(X9)   liver firm: no, yes
(X10)  spleen palpable: no, yes

(X11)  spiders: no, yes
(X12)  ascites: no, yes
(X13)  varices: no, yes
(X14)  bilirubin
(X15)  alk phosphate
(X16)  sgot
(X17)  albumin
(X18)  protime
(X19)  histology: no, yes(1)

 

OUTPUT 
Training 

Set 

INPUT 
Training 

Set 

Training 
Process 

ANN RULE 
Extraction 

RULES 



490      Julian Dorado et al.

This results were obtained with the following operators:

- Constants: 20 random values in the range [0,1]
- Variables: 19 inputs: 13 boolean and 9 continuous
- Operators: <, >, =, AND, OR, NOT, IF-ELSE on Boolean and Real values

Table 1. Comparison to other existing rule extraction methods

Method Accuracy Ref. Method Accuracy Ref
OUR
C-MLP2LN
k-NN, k=18, Manhattan
FSM + rotations
LDA
Naive Bayes
IncNet + rotations
1-NN

98.75 %
96.1 %
90.2 %
89.7 %
86.4 %
86.3 %
86.0 %
85.3 %

[24]
[24]
[24]
[27]
[27]
[28]
 [27]

ASR
FDA
LVQ
CART
MLP with BP
ASI
LFC
Default

85.0 %
84.5 %
83.2 %
82.7 %
82.1 %
82.0 %
81.9 %
79.4 %

[27]
[27]
[27]
[27]
[27]
[27]
[27]

The next data set corresponds to the detection of breast cancer. We also have a
database obtained from UCI [26]. It contains 699 examples for two classifications:
458 cases of benign cancer (65.5%) and 241 cases of malign cancer (34.5%). There
are 9 attributes, all of then are discrete.

Various ANN have been trained. However, 100% of classifications was never
reached. The rate of success was 98.28% with one hidden layer with 7 neurons and
neurons with linear activation function. The same architecture with tangent hyperbolic
activation functions has improved the success rate up to 98.68%.

The value of the best fitness obtained for this latter ANN is a right classification in
99.71% of cases (using the outputs produced by the ANN). However, in order to draw
a right comparison to other rule extraction techniques, the algorithm is directly
applied to the set of initial input-output patterns (dispensing with the ANN outputs).
In this case, the global fitness value obtained is the correct classification of 99.28% of
cases. The rules obtained are the following (2):

 (IF (((0.9<X1) OR  (IF (X1>0.4)
                            THEN (((0.3>X7) AND (X1<>X4)) AND (X6>0.2))
                            ELSE FALSE))
                         OR (((0.3<X2) AND (X5>0.4))
                        AND  (IF (X9<>X4)
                                   THEN (X1<>X4)
                                   ELSE (X3>0.4))))
THEN   (IF ((X3>0.4) OR (X5>0.4))
              THEN (0.0<>X6)
              ELSE ((0.9<X1) OR (0.4<X6)))
ELSE   (IF  (IF (0.4>X8)
                    THEN (0.3>X3)
                   ELSE (X3=0.6))
             THEN (0.9<X1)
             ELSE   (IF (X3>0.4)
                           THEN  (IF (0.3<>X4)
                                         THEN (0.4>X8)
                                         ELSE (0.4<X6))
                          ELSE (X3>X5))))

(X1)  clump thickness
(X2)  uniformity of cell size
(X3)  uniformity of cell shape
(X4)  marginal adhesion
(X5)  single epithelial cell size
(X6)  bare nuclei
(X7)  bland chromatin
(X8)  normal nucleoli
(X9)  mitoses

(2)



Automatic Recurrent and Feed-Forward ANN Rule      491

Table 2. Comparison to other existing rule extraction methods

Method Accuracy Ref. Method Accuracy Ref
OUR
C-MLP2LN
IncNet
k-NN
Fisher LDA
MLP with BP

99.28 %
99.0 %

97.1
97.0
96.8
96.7

[24]
[28]
[24]
[27]
[27]

Bayes (pairwise dependent)
Naive Bayes
DB-CART
LDA
LFC, ASI, ASR
CART

96.6
96.4
96.2
96.0

94.4-95.6
93.5

[27]
[27]
[29]
[27]
[27]
[29]

5.2 Forecast of Time Series

It is necessary to use RANN architectures for the prediction of time series and for
modelling this type of problems. The extraction of rules from ANN with recurrent
architecture has an additional challenge, since these ANN are characterised by their
huge capacity of representation and distributed knowledge among their connections.
This can be specifically applied to time and dynamic problems. The problem to be
solved will be the prediction of a classical chaotic laboratory time series: the Mackey-
Glass series [30]. The following results show that the rules to be obtained from this
ANN should incorporate mechanisms for treating time values. Therefore, non-
terminal nodes representing mathematical and trigonometrical operations will be
used, together with input variables at previous n moments (Xn). Most of these time
series cases are structures with a single input and a single output. The input
corresponds to a number value at the t moment, while the system’s output is the
prediction of the number value at t+1. The Mackey-Glass equation is an ordinary
differential delay equation (3).

)(
)(1

)(
tbx

τtx

τtax

dt

dx
c −

−+
−=

Choosing τ = 30, the equation becomes chaotic, and only short-term predictions
are feasible. Integrating the equation (3) in the rank [t, t + δt] we obtain:

+
∆+
∆−=∆+ )(

2
2

)( tx
tb

tb
ttx 








−+

−+
−∆++

−∆+
∆+

∆
)τ(1

)τ(
)τ(1

)τ(
2
α

tx

tx

ttx

ttx

tb

t
cc

The first step is obtaining a RANN which emulates the behaviour of the time
series. The RANN that we used has three neurons with tangent hyperbolic activation
function with total interconnection. The training files used correspond to the first 200
values of the time series (Fig.3). The RANN resulting from the training process which
has yielded the least mean square error (MSE=0.000072) may be seen in Fig.2.

Once we have obtained the RANN, we try to obtain by means of symbolic
regression the rules and the expressions which direct its functioning. For this purpose
we have used a test file containing the first 1000 values of the time series. These 1000
values are transferred to the RANN, obtaining the corresponding outputs. Using the
input-output file, we run the GP algorithm.

(3)

(4)



492      Julian Dorado et al.

Different combinations of terminal and function elements and GP parameters have
been tried, and the following have been used:

- Arithmetic functions: +, -, *, % (protected division)
- Constants: 10 random values in [0,1]         Variables:  Xn, Xn-1, Xn-2, Xn-3
- Selection algorithm: Tournament Population size: 1000 individuals
- Crossover rate: 95% Mutation rate: 4%
- Parsimony level: 0.0001

Fig. 2. RANN that emulate the Mackey-Glass function

Besides, the elitist strategy has been used, not allowing the loss of the best
individual. The rule expressed as a mathematical function is the following:

 ((Xn * ((((((Xn * (Xn * Xn-2)) % Xn-2) * (((0.9834 * (((((Xn * (Xn-2 %

Xn-3)) * Xn-3) * Xn-3) % Xn-3) % (Xn % Xn-3))) % Xn-3) % ((Xn-2 * Xn-2)

% Xn-3))) % Xn-3) * Xn-2) % Xn-2)) % ((Xn * Xn-2) % Xn-3) * 0.9834))

This function obtains a fitness value (normalised) on the 1000 values produced by
the RANN of 0.0029. The next graph compares the values produced by  the function
forecast (4) and the RANN forecast.

Error

TestTraining

200 10000
0

0.2

0.4

0.6

0.8

1.0
ANN forecast

Function forecast

Fig. 3. Comparative between the RANN forecast and the function forecast (4)

(4)

1 3

2

1,874

9,979

-0,989

1,742

-8,219

-1,943
1,676 -0,202

-6,081

Input Output



Automatic Recurrent and Feed-Forward ANN Rule      493

6 Conclusions

As inferred from the results presented, the GP-based rule extraction algorithm
considerably improves the existing methods, being applicable to any ANN
architecture, whether recurrent or feed-forward. Depending on the task for which the
ANN has been designed, the types of operators on which GP works might be varied.

As discussed in the introduction, the four features required by a rule-extraction
system are faithfully approached in this case. By means of applying EC, ANNs are
treated as black boxes, where only the inputs and the outputs they produce are
considered. And it does not depend neither on their architecture nor on their training
algorithm. The rules extracted from the ANN are so similar to the ANN’s functioning
as the fitness value produced by the algorithm, and as expressive as the semantic level
used by the GP’s codified expression trees. Therefore, we may say that GP-based
algorithms fit the needs of  the rule-extraction systems.

7 Future Works

A possible development is to apply GP not only to obtain rules, but also operability
ranks of ANN. It would be like a validation system for the functioning of an ANN for
the problem to be solved. Not only the initial training set which carries out the
adjustment should be used for this purpose, but also new input data sets should be
created simulating all the possible variations of values in which could enter the ANN.

Another future development will be the analysis of the different parameters
intervening in the algorithm’s correct functioning, according to the type of problem
solved by the ANN. It should be treated not as a black box, but as a grey one, where,
for instance, the ANN’s activation function is known, being incorporated as one of the
operators of GP, and analysing which are the rules extracted by this operator.

In order to accelerate the rule-extraction process, it is possible to use a network of
computers and so the rule search will be distributed and concurring, exchanging rules.

Acknowledgements

This work has been supported by the Univ. A Coruña project  “Extracción de reglas
de RNA mediante CE” and CICYT TIC2000-0120-P4-03 of the Spanish government.

References

1. Tickle, A.B.; Andrews, R.; Golea, M.; Diederich, J. ”The truth will come to light:
directions and challenges in extracting the knowledge embedded within trained artificial
neural networks”. IEEE Transaction on Neural Networks, vol. 9 nº 6, pp 1057-1068, 1998.

2. Cramer, N.L. “A Representation for the Adaptive Generation of Simple Sequential
Programs”, Grefenstette: Proc. of 1st International Conference on GA, 1985.

3. Fujiki C. “Using the Genetic Algorithm to Generate Lisp Source Code to Solve the
Prisoner's Dilemma”, International Conf on GAs, pp. 236-240, 1987.

4. Friedberg R. “A learning machine: Part I”, IBM Journal, pp. 2-13, 1958.
5. Friedberg R.M., Dunham B., North J.H. “A learning machine: Part II”, IBM Journal of

Research and Development, 3(3) 282-287, 1959.



494      Julian Dorado et al.

6. Koza J. “Genetic Programming. On the Programming of Computers by means of Natural
Selection”. The Mit Press, Cambridge, Massachusetts, 1992.

7. Koza J. “Genetic Programming II: Automatic Discovery of Reusable Programs”. The Mit
Press, Cambridge, Massachusetts, 1994.

8. Koza J., Forrest H., Andre D., Keane M. “Genetic Programming III: Darwinian Invention
and Problem Solving”. Morgan Kaufmann Publishers, San Francisco, 1999.

9. Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R.: “Advances in Knowledge
Discovery and Data Mining”. AAAI/MIT Press, 1996

10. Bonarini A.: ''Evolutionary Learning of Fuzzy Rules: Competition and Cooperation'', Fuzzy
Modelling: Paradigms and Practice, W. Pedrycz (Ed.), Kluwer Academic Press, 1996

11. Jang J., Sun C. “Functional equivalence between radial basis function networks and fuzzy
inference systems”. IEEE Transactions on Neural Networks, vol. 4, pp 156-158, 1992.

12. Buckley J.J., Hayashi Y., Czogala E. “On the equivalence of neural nets and fuzzy expert
systems”, Fuzzy Sets Systems, Nº 53, pp 129-134, 1993.

13. Benítez J. M., Castro J. L., Requena I. “ Are artificial neural networks black boxes? “ IEEE
Transactions on Neural Networks, vol. 8, nº 5, pp 1156-1164, 1997.

14. Andrews R. Diederich J., Tickle A. “A Survey and Critique of Techniques For Extracting
Rules From Trained ANN”. Knowledge Based Systems 8, pp 373-389, 1995.

15. Andrews R., Cable R., Diederich J., et al: “An evaluation and comparison of techniques for
extracting and refining rules from ANN”, QUT NRC Technical report, 1996.

16. Towell G., Shavlik J. W. “Knowledge-Based ANN”. AI, 70, pp 119-165, 1994.
17. Thrun S. “Extracting rules from networks with distributed representations”. NIPS, G.

Tesauro, D. Touretzky, T. Leen (eds), MIT Press, 1995.
18. Pop E., Hayward R., Diederich J. “RULENEG: Extracting Rules from a Trained ANN by

Stepwise Negation”. Queensland University of Technology, Neurocomputing Research
Centre. QUT NRC Technical report, 1994.

19. Tickle A. B., Orlowski M., Diedrich J. “DEDEC: A methodology for extracting rules from
trained artificial neural networks”. Queensland Univ. of Technology, Neurocomputing
Research Centre. Technical report, 1996.

20. Chalup S., Hayward R., Diedrich J. “Rule extraction from artificial neural networks trained
on elementary number classification task”. Queensland University of Technology,
Neurocomputing Research Centre. QUT NRC Technical report, 1998.

21. Visser U., Tickle A., Hayward R., Andrews R. “Rule-Extraction from trained neural
networks: Different techniques for the determination of herbicides for the plant protection
advisory system PRO_PLANT”. Proc. of the rule extraction from trained ANN workshop,
Brighton, UK, pp 133-139. 1996.

22. Keedwell E., Narayanan A., Savic D. “Creating rules from trained neural networks using
genetic algorithms”. IJCSS, vol. 1, Nº 1, pp 30-42. 2000.

23. Wong M.L., Leung K.S.: “Data Mining using Grammar Based Genetic Programming and
Applications”, Kluwer Academic Publishers, 2000.

24. Duch W., Adamczak R., Grabczewski K.: “A new methodology of extraction, optimisation
and application of crisp and fuzzy logical rules”, IEEE Trans. on N.N., vol. 11, nº 2, 2000.

25. Montana D.J.: “Strongly Typed Genetic Programming”, Evolutionary Computation, The
MIT Press, pp. 199-200, Cambridge, MA, 1995.

26. Mertz C., Murphy P.: UCI repository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-data-bases.

27. Ster B., Dobnikar A.: “Neural networks in medical diagnosis: Compararison with other
methods”, A. Bulsari et al. eds, Proc. Int. Conf. EANN’96, pp. 427-430, 1996.

28. Jankowski N., Kadirkamanathan V.: “Statistical Control of RBF-like Networks for
Classification”, 7th International Conf. on ANN, pp. 385-390, Lausanne, Switzerland, 1997.

29. Shang N., Breiman L.: “Distribution based trees are more accurate”, Int. Conf. On Neural
Information Processing, vol. 1, pp. 133-138, Hong Kong, 1996.

30. Mackey M., Glass L.: “Oscillation and chaos in physiological control systems”, Science,
pp. 197-287, 1977.



Learning and Evolution by Minimization
of Mutual Information

Yong Liu1 and Xin Yao2

1 The University of Aizu
Aizu-Wakamatsu, Fukushima 965-8580, Japan

yliu@u-aizu.ac.jp
2 School of Computer Science, The University of Birmingham

Edgbaston, Birmingham, UK
X.Yao@cs.bham.ac.uk

Abstract. Based on negative correlation learning [1] and evolution-
ary learning, evolutionary ensembles with negative correlation learning
(EENCL) was proposed for learning and designing of neural network en-
sembles [2]. The idea of EENCL is to regard the population of neural
networks as an ensemble, and the evolutionary process as the design of
neural network ensembles. EENCL used a fitness sharing based on the
covering set. Such fitness sharing did not make accurate measurement on
the similarity in the population. In this paper, a fitness sharing scheme
based on mutual information is introduced in EENCL to evolve a diverse
and cooperative population. The effectiveness of such evolutionary learn-
ing approach was tested on two real-world problems. This paper has also
analyzed negative correlation learning in terms of mutual information on
a regression task in the different noise conditions.

1 Introduction

Neural network ensembles adopt the divide-and-conquer strategy. Instead of us-
ing a single network to solve a task, an neural network ensemble combines a
set of neural networks which learn to subdivide the task and thereby solve it
more efficiently and elegantly [1]. However, designing neural network ensembles
is a very difficult task. It relies heavily on human experts and prior knowledge
about the problem. Based on negative correlation learning [1] and evolutionary
learning, evolutionary ensembles with negative correlation learning (EENCL)
was proposed for learning and designing of neural network ensembles [2]. The
idea of EENCL is to regard the population of neural networks as an ensemble,
and the evolutionary process as the design of neural network ensembles.

The negative correlation learning and fitness sharing [3] were adopted in
EENCL to encourage the formation of species in the population. The idea of
negative correlation learning is to encourage different individual networks in the
ensemble to learn different parts or aspects of the training data, so that the en-
semble can better learn the entire training data. In negative correlation learning,
the individual networks are trained simultaneously rather than independently or

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 495–504, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



496 Yong Liu and Xin Yao

sequentially. This provides an opportunity for the individual networks to interact
with each other and to specialize.

Fitness sharing refers to a class of speciation techniques in evolutionary com-
putation [4]. The fitness sharing used in EENCL was based on the idea of the
covering set that consists of the same training patterns correctly classified by
the shared individuals. This fitness sharing cannot accurately measure the simi-
larity between two individuals. For example, even two individuals have the same
covering set, the outputs of two individuals can be quite different. A more accu-
rate similarity measurement between two neural networks in a population can
be defined by the explicit mutual information of output variables extracted by
two neural networks. The mutual information between two variables, output Fi
of network i and output Fj of network j, is given by

I(Fi;Fj) = H(Fi) +H(Fj)−H(Fi, Fj) (1)

where H(Fi) is the entropy of Fi, H(Fj) is the entropy of Fj , and H(Fi, Fj)
is the joint differential entropy of Fi and Fj . The equation shows that joint
differential entropy can only have high entropy if the mutual information between
two variables is low, while each variable has high individual entropy. That is,
the lower mutual information two variables have, the more different they are. By
minimizing the mutual information between variables extracted by two neural
networks, two neural networks are forced to convey different information about
some features of their input.

In this paper, negative correlation learning is firstly analyzed in terms of min-
imization of mutual information on a regression task. Secondly, a fitness sharing
based on mutual information is introduced into EENCL. Through minimization
of mutual information, a diverse and cooperative population of neural networks
can be evolved by EENCL. The effectiveness of such evolutionary learning ap-
proach was tested on two real-world problems.

The rest of this paper is organized as follows: Section 2 explores the con-
nections between the mutual information and the correlation coefficient, and
explains how negative correlation learning can be used to minimize mutual in-
formation. Section 3 analyzes negative correlation learning via the metrics of mu-
tual information. Section 4 describes EENCL for evolving a population of neural
networks, and explores the connections between fitness sharing and mutual in-
formation. Section 5 presents experimental results on EENCL by minimizing
mutual information. Finally, Section 6 concludes with a summary.

2 Minimizing Mutual Information
by Negative Correlation Learning

2.1 Minimization of Mutual Information

Suppose the output Fi of network i and the output Fj of network j are Gaus-
sian random variables. Their variances are σ2

i and σ2
j , respectively. The mu-

tual information between Fi and Fj can be defined by Eq.(1) [5]. The dif-



Learning and Evolution by Minimization of Mutual Information 497

ferential entropy h(Fi) and h(Fj) are given by h(Fi) = 1
2 [1 + log(2πσ2

i )] and
h(Fj) = 1

2 [1 + log(2πσ2
j )]. The joint differential entropy h(Fi, Fj) is given by

h(Fi, Fj) = 1 + log(2π) +
1
2

log[σ2
i σ

2
i (1− ρ2

ij)] (2)

where ρij is the correlation coefficient of Fi and Fj

ρij =
E[(Fi − E[Fi])(Fj − E[Fj ])]

σ2
i σ

2
j

(3)

By substituting Fi, Fj , and Eq. (2) in (1), we get

I(Fi;Fj) = −1
2

log(1− ρ2
ij) (4)

From Eq.(4), we may make the following statements:

1. If Fi and Fj are uncorrelated, the correlation coefficient ρij is reduced to
zero, and the mutual information I(Fi;Fj) becomes very small.

2. If Fi and Fj are highly positively correlated, the correlation coefficient ρij is
close to 1, and mutual information I(Fi;Fj) becomes very large.

Both theoretical and experimental results [6] have indicated that when indi-
vidual networks in an ensemble are unbiased, average procedures are most ef-
fective in combining them when errors in the individual networks are negatively
correlated and moderately effective when the errors are uncorrelated. There is
little to be gained from average procedures when the errors are positively corre-
lated. In order to create a population of neural networks that are as uncorrelated
as possible, the mutual information between each individual neural network and
the rest of population should be minimized. Minimizing the mutual information
between each individual neural network and the rest of population is equivalent
to minimizing the correlation coefficient between them.

2.2 Negative Correlation Learning

We consider estimating y by forming an neural network ensemble whose output
is a simple averaging of outputs Fi of a set of neural networks. Given the training
data set D = {(x(1), y(1)), · · · , (x(N), y(N))}, all the individual networks in the
ensemble are trained on the same training data set D

F (n) =
1
M
ΣM
i=1Fi(n) (5)

where Fi(n) is the output of individual network i on the nth training pattern
x(n), F (n) is the output of the neural network ensemble on the nth training
pattern, and M is the number of individual networks in the neural network
ensemble.

The idea of negative correlation learning is to introduce a correlation penalty
term into the error function of each individual network so that the mutual in-
formation among the ensemble can be minimized. The error function Ei for



498 Yong Liu and Xin Yao

individual i on the training data set D = {(x(1), y(1)), · · · , (x(N), y(N))} in
negative correlation learning is defined by

Ei =
1
N
ΣN
n=1Ei(n) =

1
N
ΣN
n=1

[
1
2

(Fi(n)− y(n))2 + λpi(n)
]

(6)

where N is the number of training patterns, Ei(n) is the value of the error
function of network i at presentation of the nth training pattern, and y(n) is
the desired output of the nth training pattern. The first term in the right side
of Eq.(6) is the mean-squared error of individual network i. The second term pi
is a correlation penalty function. The purpose of minimizing pi is to negatively
correlate each individual’s error with errors for the rest of the ensemble. The
parameter λ is used to adjust the strength of the penalty.

The penalty function pi has the form

pi(n) = −1
2

(Fi(n)− F (n))2 (7)

The partial derivative of Ei with respect to the output of individual i on the
nth training pattern is

∂Ei(n)
∂Fi(n)

= Fi(n)− y(n)− λ(Fi(n)− F (n))

= (1− λ)(Fi(n)− y(n)) + λ(F (n)− y(n)) (8)

where we have made use of the assumption that the output of ensemble F (n)
has constant value with respect to Fi(n). The value of parameter λ lies inside
the range 0 ≤ λ ≤ 1 so that both (1 − λ) and λ have nonnegative values. The
standard back-propagation (BP) [7] algorithm has been used for weight adjust-
ments in the mode of pattern-by-pattern updating. That is, weight updating of
all the individual networks is performed simultaneously using Eq.(8) after the
presentation of each training pattern. One complete presentation of the entire
training set during the learning process is called an epoch. Negative correlation
learning from Eq.(8) is a simple extension to the standard BP algorithm. In fact,
the only modification that is needed is to calculate an extra term of the form
λ(Fi(n)− F (n)) for the ith neural network.

From Eq. (8), we may make the following observations. During the train-
ing process, all the individual networks interact with each other through their
penalty terms in the error functions. Each network Fi minimizes not only the
difference between Fi(n) and y(n), but also the difference between F (n) and
y(n). That is, negative correlation learning considers errors what all other neu-
ral networks have learned while training an neural network.

3 Simulation Results

In order to understand how negative correlation learning minimizes mutual in-
formation, this section analyzes it through measuring mutual information on a
regression task in three cases: noise free condition, small noise condition, and
large noise condition.



Learning and Evolution by Minimization of Mutual Information 499

3.1 Simulation Setup

The regression function investigated here is

f(x) =
1
13

[
10sin(πx1x2) + 20

(
x3 − 1

2

)2

+ 10x4 + 5x5

]
− 1 (9)

where x = [x1, . . . , x5] is an input vector whose components lie between zero
and one. The value of f(x) lies in the interval [−1, 1]. This regression task has
been used by Jacobs [8] to estimate the bias of mixture-of-experts architectures
and the variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x(k)(l), y(k)(l)), l = 1, · · · , L, L = 500, k =
1, · · · ,K, K = 25, were created at random. Each set consisted of 500 input-
output patterns in which the components of the input vectors were indepen-
dently sampled from a uniform distribution over the interval (0,1). In the noise
free condition, the target outputs were not corrupted by noise; in the small noise
condition, the target outputs were created by adding noise sampled from a Gaus-
sian distribution with a mean of zero and a variance of σ2 = 0.1 to the function
f(x); in the large noise condition, the target outputs were created by adding
noise sampled from a Gaussian distribution with a mean of zero and a variance
of σ2 = 0.2 to the function f(x).

A testing set of 1024 input-output patterns, (t(n), d(n)), n = 1, · · · , N , N =
1024, was also generated. For this set, the components of the input vectors were
independently sampled from a uniform distribution over the interval (0,1), and
the target outputs were not corrupted by noise in all three conditions.

Each individual network in the ensemble is a multilayer perceptron with one
hidden layer. All the individual networks have five hidden nodes in an ensemble
architecture. The hidden node function is defined by the logistic function. The
network output is a linear combination of the outputs of the hidden nodes.

For each estimation of mutual information among an ensemble, twenty-five
simulations were conducted. In each simulation, the ensemble was trained on
a different training set from the same initial weights distributed inside a small
range so that different simulations of an ensemble yielded different performances
solely due to the use of different training sets. Such simulation setup follows the
suggestions from Jacobs [8].

3.2 Measurement of Mutual Information

The average outputs of the ensemble and the individual network i on the nth
pattern in the testing set, (t(n), d(n)), n = 1, · · · , N , are denoted respectively
by F (t(n)) and F i(t(n)), which are given by

F (t(n)) =
1
K
ΣK
k=1F

(k)(t(n)) (10)

and
F i(t(n)) =

1
K
ΣK
k=1F

(k)
i (t(n)) (11)



500 Yong Liu and Xin Yao

where F (k)(t(n)) and F
(k)
i (t(n)) are the outputs of the ensemble and the indi-

vidual network i on the nth pattern in the testing set from the kth simulation,
respectively, and K = 25 is the number of simulations. The correlation coefficient
between network i and network j is given by

ρij =
ΣN
n=1Σ

K
k=1

(
F

(k)
i (t(n))− F i(t(n))

)(
F

(k)
j (t(n))− F j(t(n))

)
√
ΣN
n=1Σ

K
k=1

(
F

(k)
i (t(n))− F i(t(n))

)2
ΣN
n=1Σ

K
k=1

(
F

(k)
j (t(n))− F j(t(n))

)2

(12)

From Eq.(4), the integrated mutual information among the ensembles can be
defined by

Emi = −1
2
ΣM
i=1Σ

M
j=1,j �=ilog(1− ρ2

ij) (13)

The integrated mean-squared error (MSE) on the testing set can also defined by

Etest mse =
1
N
ΣN
n=1

1
K
ΣK
k=1

(
F (k)(t(n))− d(n)

)2
(14)

3.3 Experimental Results

The results of negative correlation learning for the different values of λ at epoch
2000 are given in Table 1. For the noise free condition, the results suggest that
Etest mse appeared to decrease with increasing value of λ. The mutual infor-
mation Emi among the ensemble decreased as the value of λ increased when
0 ≤ λ ≤ 0.5. However, when λ increased further to 0.75 and 1, the mutual infor-
mation Emi had larger values. The reason of having larger mutual information
at λ = 0.75 and λ = 1 is that some correlation coefficients had negative val-
ues and the mutual information depends on the absolute values of correlation
coefficients.

For the small noise (variance σ2 = 0.1) and large noise (variance σ2 = 0.2)
conditions, the results show that there were same trends for Emi and Etest mse
in both noise free and noise conditions when λ ≤ 0.5. That is, Emi and Etest mse
appeared to decrease with increasing value of λ. However, Etest mse appeared to
decrease first and then increase with increasing value of λ. Choosing a proper
value of λ is important, and also problem dependent. For the noise conditions
used for this regression task and the ensemble architectured used, the perfor-
mance of the ensemble was optimal for λ = 0.5 among the tested values of λ in
the sense of minimizing the MSE on the testing set.

4 Evolving Neural Network Ensembles

In EENCL [2], an evolutionary algorithm based on evolutionary programming [9]
has been used to search for a population of diverse individual neural networks
that solve a problem together. Two major issues were addressed in EENCL,



Learning and Evolution by Minimization of Mutual Information 501

Table 1. The results of negative correlation learning for different λ values at epoch
2000.

Noise free Small noise (σ2 = 0.1) Large noise (σ2 = 0.2)
λ Emi Etest mse Emi Etest mse Emi Etest mse
0 0.3706 0.0016 6.5495 0.0137 6.7503 0.0249

0.25 0.1478 0.0013 3.8761 0.0128 3.9652 0.0235
0.5 0.1038 0.0011 1.4547 0.0124 1.6957 0.0228
0.75 0.1704 0.0007 0.3877 0.0126 0.4341 0.0248

1 0.6308 0.0002 0.2431 0.0290 0.2030 0.0633

including exploitation of the interaction between individual neural design and
combination, and automatic determination of the number of individual neural
networks in an ensemble. The major steps of EENCL are given as follows [2]:

1. Generate an initial population of M neural networks, and set k = 1. The
number of hidden nodes for each neural network, nh, is specified by the user.
The random initial weights are distributed uniformly inside a small range.

2. Train each neural network in the initial population on the training set for
a certain number of epochs using negative correlation learning. The number
of epochs, ne, is specified by the user.

3. Randomly choose a group of nb neural networks as parents to create nb
offspring neural networks by Gaussian mutation.

4. Add the nb offspring neural networks to the population and train the off-
spring neural networks using negative correlation learning while the remain-
ing neural networks’ weights are frozen.

5. Calculate the fitness of M +nb neural networks in the population and prune
the population to the M fittest neural networks.

6. Go to the next step if the maximum number of generations has been reached.
Otherwise, k = k + 1 and go to Step 3.

7. Form species using the k-means algorithm.
8. Combining species to form the ensembles.

There are two levels of adaptation in EENCL: negative correlation learning at
the individual level and evolutionary learning based on evolutionary program-
ming (EP) [9] at the population level. Forming species by using the k-means
algorithm in EENCL [2] is not considered in this paper.

Fitness sharing used in EENCL is based on the idea of covering the same
training patterns by shared individuals. The procedure of calculating shared
fitness is carried out pattern-by-pattern over the training set. If one training
pattern is learned correctly by p individuals in the population, each of these p
individuals receives fitness 1/p, and the rest of the individuals in the population
receive zero fitness. Otherwise, all the individuals in the population receive zero
fitness. The fitness is summed over all training patterns.

Rather than using the fitness sharing based on the covering set, a new fit-
ness sharing based on the minimization of mutual information is introduced in



502 Yong Liu and Xin Yao

EENCL. In order to create a population of neural networks that are as un-
correlated as possible, the mutual information between each individual neural
network and the rest of population should be minimized. The fitness fi of in-
dividual network i in the population can therefore be evaluated by the mutual
information:

fi =
1∑

j �=i I(Fi, Fj)
(15)

Minimization of mutual information has the similar motivations as fitness shar-
ing. Both of them try to generate individuals that are different from others,
though overlaps are allowed.

5 Experimental Studies

This section investigates EENCL with minimization of mutual information on
two benchmark problems: the Australian credit card assessment problem and the
diabetes problem. Both data sets were obtained from the UCI machine learn-
ing benchmark repository. They are available by anonymous ftp at ics.uci.edu
(128.195.1.1) in directory /pub/machine-learning-databases.

The Australian credit card assessment problem is to assess applications for
credit cards based on a number of attributes. There are 690 patterns in total.
The output has two classes. The 14 attributes include 6 numeric values and 8
discrete ones, the latter having from 2 to 14 possible values.

The diabetes data set is a two-class problem that has 500 examples of class
1 and 268 of class 2. There are 8 attributes for each example. The data set is
rather difficult to classify. The so-called “class” value is really a binarized form
of another attribute that is itself highly indicative of certain types of diabetes
but does not have a one-to-one correspondence with the medical condition of
being diabetic.

In order to tell the difference between EENCL and EENCL with minimiza-
tion of mutual information. We name the later approach as EENCLMI. The
experimental setup is the same as the previous experimental setup described
in [10,2]. The n-fold cross-validation technique [11] was used to divide the data
randomly into n mutually exclusive data groups of equal size. In each train-and-
test process, one data group is selected as the testing set, and the other (n− 1)
groups become the training set. The estimated error rate is the average error
rate from these n groups. In this way, the error rate is estimated efficiently and
in an unbiased way. The parameter n was set to be 10 for the Australian credit
card data set, and 12 for the diabetes data set, respectively.

All parameters used in EENCLMI except for the number of training epochs
were set to be the same for both problems: the population size M (25), the
number of generations (200), the reproduction block size nb (2), the strength
parameter λ (0.5), the minimum number of cluster sets (3), and the maximum
number of cluster sets (25). The number of training epochs ne was set to 3
for the Australian credit card data set, and 15 for the diabetes data set. The
used neural networks in the population are multilayer perceptrons with one



Learning and Evolution by Minimization of Mutual Information 503

Table 2. Comparison of accuracy rates between EENCLMI and EENCL for the Aus-
tralian credit card data set. The results are averaged on 10-fold cross-validation. Mean
and SD indicate the mean value and standard deviation, respectively.

Simple Averaging Majority Voting Winner-Takes-All
Methods Mean SD Mean SD Mean SD
EENCLMI 0.864 0.038 0.870 0.040 0.868 0.039
EENCL 0.855 0.039 0.857 0.039 0.865 0.028

Table 3. Comparison of accuracy rates between EENCLMI and EENCL for the di-
abetes data set. The results are averaged on 12-fold cross-validation. Mean and SD
indicate the mean value and standard deviation, respectively.

Simple Averaging Majority Voting Winner-Takes-All
Methods Mean SD Mean SD Mean SD
EENCLMI 0.771 0.049 0.777 0.046 0.773 0.051
EENCL 0.766 0.039 0.764 0.042 0.779 0.045

hidden layer and five hidden nodes. These parameters were selected after some
preliminary experiments. They were not meant to be optimal.

5.1 Experimental Results

Tables 2–3 show the results of EENCLMI for the two data sets, where the en-
sembles were constructed by the whole population in the last generation. Three
combination methods for determining the output of the ensemble have been
investigated in EENCLMI. The first is simple averaging. The output of the en-
semble is formed by a simple averaging of output of individual neural networks
in the ensemble. The second is majority voting. The output of the greatest num-
ber of individual neural networks will be the output of the ensemble. If there is
a tie, the output of the ensemble is rejected. The third is winner-takes-all. For
each pattern of the testing set, the output of the ensemble is only decided by the
individual neural network whose output has the highest activation. The accuracy
rate refers to the percentage of correct classifications produced by EENCLMI.
In comparison with the accuracy rates obtained by three combination methods,
majority voting and winner-takes-all outperformed simple averaging on both
problems. Simple averaging is more suitable to the regression type of tasks.
Because both problems studied in this paper are classification tasks, majority
voting and winner-takes-all are better choices.

Tables 2–3 compare the results produced by EENCLMI and EENCL us-
ing three combination methods. Majority voting supports EENCLMI, while
winner-takes-all favors EENCL. Since the only difference between EENCLMI
and EENCL is the fitness sharing scheme used, the results suggest that com-
bination methods and fitness sharing are closely related to each other. Further
studies are needed to probe the relationship of these two.



504 Yong Liu and Xin Yao

6 Conclusions

Minimization of mutual information has been introduced as a fitness sharing
scheme in EENCL. Compared with the fitness sharing based on the covering
set originally used in EENCL [2], mutual information provides more accurate
measurement on the similarity. By minimizing mutual information, a diverse
population can be evolved.

This paper has also analyzed negative correlation learning in terms of mutual
information on a regression task in the different noise conditions. Unlike inde-
pendent training which creates larger mutual information among the ensemble,
negative correlation learning can produce smaller mutual information among the
ensemble.

References

1. Y. Liu and X. Yao. Simultaneous training of negatively correlated neural net-
works in an ensemble. IEEE Trans. on Systems, Man, and Cybernetics, Part B:
Cybernetics, 29(6):716–725, 1999.

2. Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation
learning. IEEE Transactions on Evolutionary Computation, 4(4):380–387, 2000.

3. Y. Liu and X. Yao. Towards designing neural network ensembles by evolution. In
Parallel Problem Solving from Nature — PPSN V: Proc. of the Fifth International
Conference on Parallel Problem Solving from Nature, volume 1498 of Lecture Notes
in Computer Science, pages 623–632. Springer-Verlag, Berlin, 1998.

4. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, MA, 1989.

5. J. C. A. van der Lubbe. Information Theory. Prentice-Hall International, Inc.,
2nd edition, 1999.

6. R. T. Clemen and R. .L Winkler. Limits for the precision and value of information
from dependent sources. Operations Research, 33:427–442, 1985.

7. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Explorations in the Microstructures of Cognition,
Vol. I, pages 318–362. MIT Press, Cambridge, MA, 1986.

8. R. A. Jacobs. Bias/variance analyses of mixture-of-experts architectures. Neural
Computation, 9:369–383, 1997.

9. D. B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence. IEEE Press, New York, NY, 1995.

10. D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and
Statistical Classification. Ellis Horwood Limited, London, 1994.

11. M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society, 36:111–147, 1974.



Evolved RBF Networks for Time-Series
Forecasting and Function Approximation

V.M. Rivas1, P.A. Castillo2, and J.J. Merelo2

1 Dpto. Informática, Univ. de Jaén
E.P.S., Avda. de Madrid, 35, E.23071, Jaén (Spain)

vrivas@ujaen.es
http://wwwdi.ujaen.es/˜vrivas

2 Dpto. de Arquitectura y Tecnoloǵıa de Computadores, Univ. de Granada
Fac. de Ciencias, Campus Fuentenueva, S/N. E.18071, Granada (Spain)

todos@geneura.ugr.es
http://geneura.ugr.es

Abstract. An evolutionary algorithm with specific operators has been
developed to automatically find Radial basis Functions Neural Networks
that solve a given problem. The evolutionay algorithm optimizes all the
parameters related to the neural network architecture, i.e., number of
hidden neurons and their configuration. A set of parameters to run the
algorithm is found and tested against a set of different problems about
Time-series forecasting and function approximation. Results obtained
are compared with those yielded by similar methods.

Keywords: RBF, evolutionary algorithms, EO, functional estimation,
time series forecasting.

1 Introduction

Radial Basis Function (RBF) were used by Broomhead and Lowe in [3] to in-
troduce the Radial Basis Function Neural Networks (RBFNN). Traditionally,
a RBFNN is thought as a two-layer, fully connected, feed-forward network, in
which hidden neuron activation functions are RBF, most times Gaussian func-
tions. The main problem in RBFNN design concerns establishing the number of
hidden neurons to use and their parameters: a center point and one or more radii
(or widths) per hidden neuron. Once the centers and the radii have been fixed,
the weights of the links between hidden and output layers can be calculated an-
alytically using Singular Value Decomposition [17] or any algorithm suitable to
solve lineal algebraic equations. So, this paper focuses on the elements of an evo-
lutionary algorithm (EA) designed to find the best components of the RBFNN
attempting to solve a given problem. This algorithm is tested against two dif-
ferent kind of problems: time-series forecasting and function approximation.

The rest of the paper is organized as follows: section 2 describes some of the
methods used to solve automatic generation of neural nets; section 3 shows our
proposed solution, and describes the evolutionary computation paradigm we use

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 505–514, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



506 V.M. Rivas, P.A. Castillo, and J.J. Merelo

(EO). Next section (4) briefly describes the procedure followed to tune the EA
parameters, as well as the experiments run and the results obtained; and finally,
our conclusions and proposals of future work can be read in section 5.

2 State of the Art

There exist several papers that address the problem of automatic neural net
design, as for instance the one by Yao [23]. There also some others centering
on RBFNN automatic design, and in this sense the paper by Leonardis and
Bischof [10] offers a good overview. Generic methods found in bibliography can
be divided in three classes:

1. Methods in which the number of radial basis functions must be given
a priori; after this, computing the values for the centers and the radii is done
choosing points randomly from the training set or performing any kind of
clustering method with them [13].

2. Growing methods. These methods try to build a net by adding neurons to
an initially empty hidden layer. An example is Orthogonal Least Squares [5],
based on a mechanism called forward selection, that adds hidden neurons to
an initially empty net until the approximation error is under a prespecified
threshold. An improvement over this algorithm is Regularised OLS [6], based
on regularised forward selection, in which high hidden-to-output weight val-
ues are penalized using a penalty term, a process termed regularization [2].
Later, in [14], Orr newly used forward selection as the growing mechanism,
and delete-1 (or leave-one-out) and generalized cross-validation as the meth-
ods to stop adding neurons. Cross-validation is used to compute the gen-
eralization error of many different nets in competition one with each other,
halting the algorithm when that error reaches a minimum. Other methods of
the same characteristics are Resource Allocation Networks [15], and Grow-
ing Cell Structures [7], which try to estimate the centers using hill-climbing
techniques, making them liable to fall in local optima.

3. Finally, there are also pruning methods which start with an overspecified
RBFNN and, iteratively, remove hidden neurons and/or weights. Leonardis
and Bischof’s algorithm [10] can be classified as a pruning method, in which
the Minimum Description Length measure (MDL) is used to achieve a re-
duction in the complexity of the RBFNN. According to the MDL principle, a
set of RBF describing the training data with the shortest possible encoding
are selected among a larger set. Pruning methods tend to be very restrictive,
and find suboptimal networks.

Special attention must be paid to the use of evolutionary algorithms to
the construction of neural nets. Some reviews on this topic can be found in [1],
and [23].

Initially, evolutionary algorithms usually tried to optimize only one of the
parameters of the neural net (number of neurons, topology, or learning rate,
amomg others), leaving the rest fixed. Currently, a different methodology can be
found in the work by Castillo et al. [18,19], in which evolutionary algorithms are



Evolved RBF Networks for Time-Series Forecasting 507

used to create good Multilayer Perceptrons (MLPs), optimizing all the parame-
ters at the same time, and obtaining very good results. A similar and previous
example can be found in Merelo’s [11], where a neural network called Learning
Vector Quantization (LVQ) is genetically optimized. Nevertheless, both Castillo
and Merelo’s methods cannot be applied directly to the construction of RBFNN
since their genetic operators are geared toward their specific network architec-
ture.

Regarding RBFNN evolution, some good initial works are the papers by
Carse and Fogarty in [4], and Whitehead and Choate [22]. Carse determined the
RBFNN architecture by using operators adapted from some others previously
used in evolution of fuzzy inference. Genes, representing RBFNN, were com-
posed of pairs of centers and widths, and although they were allowed to change
in size, a maximum size was fixed when running the algorithm. On the other
hand, Whitehead and Choate chose a different way to make RBFNN evolve. In
this case only one net was evolved, being the individuals of the evolutionary
algorithm the hidden neurons of that net. Individuals were forced to compete
and cooperate trying to cover the search space as much as possible while main-
taining the minimum number of hidden neurons. The main problem the authors
faced was the choice of the fitness function given that a trade-off between coop-
eration and competition had to be found. The final solution depends on many
parameters that have to be properly fixed for the problem being studied. The
number of neurons is also an “a priori” given parameter. Section 4 compares
results obtained by our algorithm with those obtained by Case and Fogarty, and
Whitehead and Choate on a time-series forecasting problem.

Recent papers include Gonzalez et al., as in [9], where expert mutation op-
erators are created to evolve RBFNN in a much more complex way, which also
results in higher computational requirement. And it is also very interesting the
work by Rivera et al. [20], who offered a new point of view to the problem of
building RBFNN. In their work, many hidden neurons cooperate, compete and
are modified using fuzzy evolution to finally obtain a net that solves the task
being studied. The term fuzzy evolution comes from the fact that a table com-
posed of fuzzy rules determines which operator must be applied to a given unit
in order to improve its behaviour. Both González and Rivera’s works are good
examples of how guided search can be carried out to improve the final results.
Some of the results showed in section 4 are related to these researchers’ work.

3 EvRBF

The method introduced in this work uses an evolutionary algorithm, EvRBF,
to build RBFNN. EvRBF creates RBFNN with optimum predictive power by
finding the number of neurons in the hidden layer, and their centers and radii.

The evolutionary algorithm itself has been programmed using the evolution-
ary computation paradigm, EO (Evolving Objects), current version is 0.9.2
[21], and can be found at http://eodev.sourceforge.net. Its main advantage
is that what can be evolved is not necessarily a sequence of genes (bitstring or
floating point values), but any data structure implementing any kind of subject



508 V.M. Rivas, P.A. Castillo, and J.J. Merelo

to which a fitness or cost function can be assigned. Moreover, in accordance with
Michalewicz’s ideas published in [12], EO allows evolutionary algorithms to deal
directly with the data structures most suited for solving a problem, instead of
dealing with representation of that solution (that should then be decoded to
obtain the solution itself). As a result, the way operators perform can be defined
without regarding the specific way the net is implemented. Thus, in what follows,
EvRBF algorithm is defined making no mention to the real implementation of
the net.

EvRBF uses a standard evolutionary algorithm with fixed size population,
tournament selection, and elitist replacement policy. Two kind of operators,
mutation-like and crossover-like, have been specifically created. The algorithm
finishes when a previously specified number of generations has been reached.

3.1 Binary Operators

Binary operators are applied to two RBFNN, returning only one. These are the
operators currently implemented:

– Multipoint recombination. It randomly takes a few hidden neurons from
the first net and replaces them by an equal number of randomly chosen
neurons from the second net.

– Average recombination. This operator chooses hidden neurons from the
first net, using a probability of 0.5. For each chosen neuron a random one is
chosen in the second net. Then, the values for the center and radii are set to
the average of both.

3.2 Unary Operators

Given that in a RBFNN the weights from hidden neurons to output ones can be
easily computed, the unary or mutation-like operators affect the hidden neuron
components, centers and radii, in their quantities and values, but not to the
hidden-to-output weights.

– Hidden neuron adder. This operator creates a new neuron with random
values for centers and radii (every value in the range allowed for any of the
different dimensions of the input space).

– Hidden neuron remover. This operator removes a randomly chosen hid-
den neuron of the net.

– Center creep. It changes the values for the centers applying a Gaussian
distortion. For each dimension of the center point, the Gaussian function is
centered on the current value and it is as wide as the radius applied to that
dimension in that neuron.

– Radius creep. Changes the values for the radius applying another Gaussian
distortion. The Gaussian is centered on the current value and is as wide as
the range of each dimension of the input space.

– Randomize centers. Changes the values of the centers of the hidden neu-
rons to random values in the range allowed for each dimension of the input
space.



Evolved RBF Networks for Time-Series Forecasting 509

– Randomize radii. Changes radii values randomly, always with values in
the corresponding range of each input space dimension.

– Closest hidden neuron remover. Given a hidden neuron, it computes
the euclidean distance between all the centers, and deletes one of the closest
two that have been found.

– Half hidden neuron remover. Removes every hidden neuron of a net
applying a probability equal to 0.5.

3.3 The Breeder

Every new generation is created in the following way:

1. Select a few individuals using tournament selection of fixed size.
2. Delete the rest of the population.
3. Generate new individuals applying the operators to individuals selected at

step 1.
4. Set the weights of the new individuals using SVD.
5. Remove the useless neurons from the net, i.e., those whose weights to output

neurons are very close to 0.
6. Evaluate the net, and set its fitness.

This algorithm always maintains the same number of individuals, thus once
tournament selection, performed with 3 individuals, has finished, the operators
are applied as many times as needed until the population reaches its fixed size.

As can be seen, a net’s fitness is calculated using a three step procedure.
Firstly, the net is trained using a set of training samples. Secondly, SVD is used
to set the values for the weights and useless neurons are removed. Finally, the
fitness value itself is computed as 1 divided by the root mean square error, as
eq. 1) shows:

fitness =
1√∑n−1

i=0
(yi−o(xi))2

n

(1)

where yi is the expected output, o(xi) is the output calculated by the net, and
n is the number of input-output pairs composing the validation set of samples.
None of these pairs has been used to train the net.

Finally, the full EvRBF algorithm is described as follows:

1. Load a training, a validation and a test sets of samples (if no validation
data set is provided, then the training set is split in 75% for the training
procedure, and 25% for the validation procedure).

2. Create a first generation of individuals (i.e., RBFNN) with a random number
of hidden neurons and with random values for centers and radii.

3. Set the fitness of those individuals belonging to the first generation.
4. Apply the breeder an “a priori” given number of generations.
5. Fully train the nets of the last generation.
6. Compute the generalization error of last generation nets using the test set

of samples.



510 V.M. Rivas, P.A. Castillo, and J.J. Merelo

Table 1. Parameters used to run all the experiments described along this section.

Parameter Value Parameter Value
Elitism 0.1 Population 50

Multipoint Recombination 0.5 Average Recombination 1
Neuron Adder 0.5 Neuron Remover 1
Center creep 1 Radius creep 0.25

Random Center 4 Random Radii 2
Closest Remover 2 Half Remover 0.5

4 Experiments and Results

4.1 Determination of the Parameters

A set of guided experiments was carried out to set the values of the different
parameters used to run the algorithm. A classification problem was chosen to
avoid gearing those values toward the solution of one of the problems discussed
later on this section. In order to set the value of a given parameter, the rest
of parameters have been fixed to a default value. Then, a set of values for the
parameter to determine has been chosen. For each of those values, the algorithm
has been run 5 times. When all the values have been used, average values over the
5 runs related to generalisation error and net size have been analysed. Finally, the
value that produced the best results is assigned to the parameter. For instance,
every operator has been tested using the values 0, 0.25, 0.5, 1, 2, and 4, and
leaving the other operators to the value of 1. Table 1 shows the values this
method found.

Analysing the values in table 1, it can be concluded that the algorithm is
focusing on searching the space, mainly to set the correct values for the centers.
At the same time, it is trying to keep the number of centers as short as possible
by deleting close neurons. This is an important feature of EvRBF given that the
net size is not used to compute the net fitness, but the algorithm avoids growing
overspecified nets.

4.2 EvRBF Applied to Time-Series Forecasting and Function
Approximation

EvRBF was tested in various forecasting time-series problems and function ap-
proximation, using in all the cases the parameters seen above.

B.1. Time-Series Forecasting

As Whitehead and Choate in [22] and Case and Fogarty in [4], the Mackey-Glass
time-series has been used as described in [13]. In this case, the value of t+ 85 is
being predicted using the values recorded in t, t − 6, t − 12, and t − 18, with a
training data set composed of 500 samples.



Evolved RBF Networks for Time-Series Forecasting 511

Table 2. Results obtained by Case & Fogarty, Whitehead & Choate and EvRBF
on Mackey-Glass time-series forecasting. EvRBF obtains as good results as Case and
Fogarty did, without imposing restrictions to the number of neurons. Whitehead’s
method behaves better given that it performs a guided search, although only when
many hidden neurons are provided the error falls an order of magnitude.

Algorithm Normalised Error Number of neurons
Carse & Fogarty 0.25 40
Carse & Fogarty 0.18 60
Carse & Fogarty 0.15 100

Whitehead & Choate 0.18 50
Whitehead & Choate 0.11 75
Whitehead & Choate 0.05 125

EvRBF 0.177± 0.004 72± 3

Table 2 shows the results obtained with the different methods. The error is
expressed as the root-mean-squared error over the test set, divided by the stan-
dard deviation of the set of correct outputs. The test data set also contains 500
input-output pairs. Values related to EvRBF are averaged over 10 independent
runs, and 100 generations were produced on each of such runs.

Results on this problem show that EvRBF behaves as well as the algorithm
developed by Case and Fogarty, with the advantage that no restriction have
to be imposed to the algorithm regarding the maximum number of neurons
allowed. EvRBF can evolve both the number of neurons and the centers and
radii for them, and everything done with fast operators and half the number
of generations. With respect to results provided by Whitehead and Choate, the
error yielded by EvRBF is similar, although not better, when the number of
neurons is also comparable. For larger number of neurons the approximation
is consequently better. This can only be explained taking into account that
EvRBF is currently doing blind search, and it does not include methods for
local searching.

Fig. 1 represents the evolution of best, worst and average fitness (figure on
the left) as well as size of the best net, maximum, minimum and average sizes
(figure on the right) along generations for this problem. As can be seen, size is
kept stable while fitness improves during the time EvRBF is run.

B. Function Approximation

The functions we have used have been borrowed from [20], and they are defined
as follows:

wm2(x) = sin(2πx), x ∈ [−1, 1]
dick(x) = 3x(x− 1)(x− 1.9)(x+ 0.7)(x+ 1.8), x ∈ [−2.1, 2.1]

nie(x) = 3ex
2
sin(πx), x ∈ [−1, 1]

pom(x) = e−3xsin(10πx), x ∈ [−1, 1]
Table 3 shows the results obtained with EvRBF compared to those obtained

by methods found in [16], [9], and [20]. This results have been obtained running



512 V.M. Rivas, P.A. Castillo, and J.J. Merelo

10

15

20

25

30

35

0 20 40 60 80 100

Fit
ne

ss

Generations

Evolution of Fitness on the Mackey-Glass Time-Series Forecasting problem

Best Fitness
Average Fitness

Worst Fitness

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Siz
e

Generations

Evolution of Net Sizes on the Mackey-Glass Time-Series Forecasting problem

Best net’s size
Maximum size
Minimum size
Average size

Fig. 1. Figures representing the evolution of fitness (left) and size (right) along gener-
ations on the Mackey-Glass Time-Series problem. As it is seen on the right hand side
graph, size tends to converge even as there are no check or bounds limit.

Table 3. Comparison of results provided by EvRBF and the methods described by
Pomares in [16], González in [8], and Rivera in [20]. In all of the problems, except in the
last one, EvRBF obtains better results, although the nets obtained are slightly larger.

Algorithm WM2 Dick Nie Pom
MSE Size MSE Size MSE Size MSE Size

Pomares 0.026 10 0.46 7 0.0020 10 0.114 12
González 0.006 6 0.30 5 2.87x10−5 5 0.066 8
Rivera 0.08 7 0.22 7 1.34x10−4 6 0.123 8
EvRBF 1.19x10−4 10.5 0.05 8.3 1.03x10−5 8.5 0.49 6.10

Table 4. Results obtained by EvRBF on approximation of the functions defined as
wm2, dick, nie, and pom.

Problem MSE Size
Min. (Size) Max. (Size) Average Min. Max. Average.

wm2 3.40x10−5 (12) 3.05x10−4 (9) 1.2x10−4±0.9x10−4 8 14 11± 2
Dick 0.01 (9) 0.14 (8) 0.05± 0.04 7 9 8.3± 0.8
Nie 6.32x10−7 (10) 3.00x10−5 (7) 1.03x10−5±1.07x10−5 7 10 8.5± 1.6
Pom 0.44 (7) 0.52 (4) 0.49± 0.03 4 8 6.1± 1.5

the algorithm 10 times, always with the same parameters. Only the best net
found at the end of each execution has been taken into account. Thus, values in
table 3 corresponding to EvRBF shows average values. Table 4 shows detailed
information about minimum, maximum, and average error and size, related to
the best nets found at the end of the 10 executions.

Table 3 shows how EvRBF obtains better results in all the functions, except
the one used by Pomares in [16]. Although EvRBF does not establishes any
limit to the number of hidden neurons, this number is quite similar to the rest
of methods, but obtains a better approximation to the functions. In this case,



Evolved RBF Networks for Time-Series Forecasting 513

despite EvRBF operators are doing blind search, results show that they are
covering the search space in a quite good way.

5 Conclusions

An evolutionary algorithm designed to automatically configure RBF Neural Nets
has been introduced. The computational framework used to develop this algo-
rithm allows it to handle the solutions to the problems themselves, instead of rep-
resentations of those solutions. Thus, new operators have been designed without
regarding the specific implementation of the individuals, but trying to perform
a successful search over the input space.

A set of fixed parameters, found testing the algorithm against a classifica-
tion problem, has been used in problems of time-series forecasting and function
approximation. Results show that this algorithm minimizes differences to ex-
pected outputs while maintaining an acceptable number of hidden neurons in
every RBFNN. This happens despite the fact that number of hidden neurons is
not taking into account when the EA compares two individuals trying to decide
which of them is better than the other, a critical point for this kind of methods.
Results also show that despite being more parameter-free, the algorithm obtains
always reasonable results, and sometimes better results than the other evolving
RBF algorithms.

Future work must provide operators that locally tune the solutions found by
current operators that make a blind search. New methods for locally training the
nets and also well known methods intended to choose centers for the RBFNN,
all of them present in literature, are being investigated. This methods will be
implemented as operators for the EA, so that more accurate networks be found
with the shortest number of hidden neurons.

Acknowledgment

This work has been supported in part by projects CICYT TIC99-0550 and IN-
TAS 97-30950.

References

1. A.V. Adamopoulos, E.F. Georgopoulos, S.D. Likothanassis, and P.A. Anninos.
Forecasting the MagnetoEncephaloGram (MEG) of Epilectic Patients Using Ge-
netically Optimized Neural Networks. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO’99, volume 2, pages 1457–1462. Morgan-
Kaufmann Publ., July 1999.

2. C.M Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995. ISBN 0-19-853849-9 (hardback) or 0-19-853864-2 (paperback).

3. D.S. Broomhead and D. Lowe. Multivariable Functional Interpolation and Adap-
tative Networks. Complex Systems, 11:321–355, 1988.

4. B. Carse and T.C. Fogarty. Fast evolutionary learning of minimal radial basis func-
tion neural networks using a genetic algorithm. In T.C. Fogarty, editor, Proceedings
of the Evolutionary Computing, AISB Workshop’96, pages 1–22. Springer-Verlag,
1996.



514 V.M. Rivas, P.A. Castillo, and J.J. Merelo

5. S. Chen et al. Orthogonal Least Squares algorithm for constructing Radial Basis
Function Networks. IEEE Trunsactions on Neural Networks, 2(2):302–309, 1991.

6. S. Chen et al. Regularised Orthogonal Least Squares Learning for Radial basis
function Networks. Submitted to International Journal Control, 1995.

7. B. Fritzke. Supervised learning with growing cell structures. In J.D. Cowan, G.
Tesauro, and J. Aspector, editors, Advances in Neural Information Processing Sys-
tems, volume 6, pages 255–262. Morgan Kaufmann, 1994.

8. J. González, I. Rojas, H. Pomares, and J. Ortega. Rnf neural networks, multiobjec-
tive optimization and time series forecasting. Lecture Notes in Computer Science,
(2084):498–505, 2001.

9. J. González, I. Rojas, H. Pomares, and M. Salmerón. Expert mutation operators for
the evolution of radial basis function neural networks. Lecture Notes in Computer
Science, 2084:538–545, June 2001.

10. A. Leonardis and H. Bischof. And efficient MDL-based construction of RBF net-
works. Neural Networks, 11:963–973, 1998.

11. J.J. Merelo and A. Prieto. G-LVQ a combination of genetic algorithms and LVQ.
In D.W. Pearson, N.C. Steele, and R.F. Albrecht, editors, Artificial Neural Nets
and Genetic Algorithms. Springer-Verlag, 1995.

12. Zbigniew Michalewicz. Genetic algorithms + data structures = evolution programs.
Springer-Verlag, NewYork USA, 3 edition, 1999.

13. J. E. Moody and C. Darken. Fast learning in networks of locally tuned processing
units. Neural Computation, 2(1):281–294, 1989.

14. M.J.L. Orr. Regularisation in the Selection of Radial Basis Function Centres. Neu-
ral Computation, 7(3):606–623, 1995.

15. J. Platt. A resource-allocating network for function interpolation. Neural Compu-
tation, 3(2):213–225, 1991.

16. H. Pomares, I. Rojas, J. Ortegaa, J. González, and A. Prieto. A systematic ap-
proach to self-generating fuzzy rule-table for function approximation. IEEE Trans.
Syst., Man., and Cyber., 30:431–447, 2000.

17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, 2nd edition, 1992.

18. P.A. Castillo; J. Carpio; J. J. Merelo; V. Rivas; G. Romero; A. Prieto. Evolving
multilayer perceptrons. Neural Processing Letters, 12:115–127, October 2000.

19. P.A. Castillo; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop: Global Op-
timization of Multilayer Perceptrons using GAs. Neurocomputing, Vol. 35/1–4,
pp.149–163, 2000.

20. A.J. Rivera, J. Ortega, M.J. del Jesus, and J. Gonzalez. Aproximación de funciones
con evolución difusa mediante cooperación y competición de rbfs. In Actas del I
Congreso Español de Algoritmos Evolutivos y Bioinspirados, AEB’02, pages 507–
514, February 2002.

21. J. J. Merelo; M. G. Arenas; J. Carpio; P. Castillo; V. M. Rivas; G. Romero; M.
Schoenauer. Evolving objects. pages 1083–1086, 2000. ISBN: 0-9643456-9-2.

22. B. A. Whitehead and T.D. Choate. Cooperative-Competitive Genetic Evolution
of Radial Basis Function Centers and Widths for Time Series Prediction. IEEE
Transactions on Neural Network, 7(4):869–880, July 1996.

23. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, 1999.



Evolutive Identification of Fuzzy Systems
for Time-Series Prediction

Jesús González, Ignacio Rojas, and Héctor Pomares

Department of Computer Architecture and Computer Technology
E.T.S. Ingenieŕıa Informática

University of Granada
E. 18071 Granada (Spain)

Abstract. This paper presents a new algorithm for designing fuzzy sys-
tems. It automatically identifies the optimum number of rules in the
fuzzy knowledge base and adjusts the parameters defining them.
This algorithm hybridizes the robustness and capability of evolutive al-
gorithms with multiobjective optimization techniques which are able to
minimize both the prediction error of the fuzzy system and its complex-
ity, i.e. the number of parameters. In order to guide the search and ac-
celerate the algorithm’s convergence, new specific genetic operators have
been designed, which combine several heuristic and analytical methods.
The results obtained show the validity of the proposed algorithm for the
identification of fuzzy systems when applied to time-series prediction.

Keywords: Fuzzy systems, evolution, multiobjective optimization.

1 Introduction

A time series is a sequence of values S = {s1, s2, ..., st} that reflect the evolution
of a measure over time. Each sample si ∈ S is taken at regular time intervals
and is the result of measuring a certain characteristic of a physical or synthetic
phenomenon. The goal of time series prediction is to make an accurate forecast
of succeeding values in a sequence, based on the current value and on some of
the preceding values.

Fuzzy systems have been shown to be efficient tools for this type of problem,
due to their local-learning capabilities, their versatility, their simplicity and their
interpolation possibilities [20,12]. However, they require previous knowledge of
the number of rules that comprise the knowledge base, the membership functions
that define these rules, and their consequents. The determination of the above
parameters is not an easy task, due to the non linear dependencies within the
system. The bibliography contains references to different algorithms that tackle
this problem, with varying degrees of success [20,16,14,10].

Evolutive algorithms [9,6,13] are problem-solving techniques based on natural
evolution. They work by successively applying genetic operators to a population
of potential solutions to a problem, and then selecting the best solutions for
the next generation. This process is repeated until the population converges

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 517–526, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



518 Jesús González, Ignacio Rojas, and Héctor Pomares

to a quasi-optimum solution to the problem. Because of their robustness and
easy hybridization, evolutive algorithms are ideal for the identification of fuzzy
systems.

This paper proposes the hybridization of an evolutive algorithm using mul-
tiobjective optimization techniques and analytical methods to determine the
optimum structure of a fuzzy system and to adjust the values of its parameters.

2 Description of the Fuzzy System

Let us consider the sequence of measures S taken from a certain phenomenon
F . Let st ∈ S be the last measure in the sequence, henceforth called the current
measure, ∆ a delay or lag interval and H the prediction interval or horizon.
Analytically, the problem of predicting the subsequent values in a time series
can be written as:

ŝt+H = f(st, st−∆, ..., st−(d−1)∆) (1)

where f can be taken as a function that models the phenomenon F and which is
capable of estimating the output produced at the instant t+H after the current
measure and from the d− 1 previous measures obtained with a lag of ∆.

After setting the parameters H and ∆, the problem can be approached as
one of functional approximation, in which it is necessary to model an unknown
function f with d inputs. For a sequence of t measures, we can generate a set of
n = t−H − (d− 1)∆ samples of the unknown function f as shown in Table 1.

To simplify the notation, we take xjk = sj+(k−1)∆ and xj = (xj1, x
j
2, ..., x

j
d) =

(sj , sj+∆, ..., sj+(d−1)∆) = sj . With this notation, the problem can be formu-
lated as the approximation of an unknown function f from a set of samples
X = {(xj , yj) : xj ∈ �d, yj = f(xj) ∈ �, j = 1, 2, ..., n}. A fuzzy system to
approximate this function can be expressed according to the following rule set:

IF x1 is Xi
1 AND ... AND xd is Xi

d

THEN y = Ri ∀i = 1, ...,m (2)

where Xi
k, with k = 1, ..., d is the membership function associated with the input

variable xk in the i-́th rule and Ri is the consequent of the rule. Each consequent
Ri is a constant or singleton scalar value and represents the contribution to the
output by the i-́th rule. A fuzzy system with this type of rule is known as a
zero-order Takagi-Sugeno fuzzy system [11].

The degree of activation of the i-́th rule is calculated by the equation:

αi(xj) =
d∏
k=1

µik(xjk) (3)

where µik(xjk) is the degree of membership of the variable xjk within the mem-
bership function Xi

k.



Evolutive Identification of Fuzzy Systems for Time-Series Prediction 519

Table 1. Generation of samples from a sequence of measures.

j sj yj = f(sj)
1 (s1, s1+∆, ..., s1+(d−1)∆) sH+1+(d−1)∆

2 (s2, s2+∆, ..., s2+(d−1)∆) sH+2+(d−1)∆
...

...
...

j (sj , sj+∆, ..., sj+(d−1)∆) sH+j+(d−1)∆
...

...
...

n (st−H−(d−1)∆, ..., st−H) st

The system output is obtained by summing the activation of each of the rules
weighted by its consequent, and then dividing the result by the total activation
of the rules:

F (xj) =

m∑
i=1

αi(xj)Ri
m∑
i=1

αi(xj)
(4)

Due to the dispersed nature of the samples within the input space, gaussian
membership functions are recommended to resolve this problem. Because they
are continuous and derivable, they produce a smoother output and improve the
system’s interpolation capability. The membership functions used in this study,
therefore, are of the following form:

µik(xj) = e
−
(‖xjk−cik‖

ri
k

)2

(5)

It is a complex task to identify the number of fuzzy rules required to model
the phenomenon F in such a way as to achieve a balance between the system’s
complexity and its prediction error, together with the location of these rules
within the input space (values of their centres cik and amplitudes rik). To obtain
a fuzzy system with a low prediction error rate, it is normally necessary to possess
a large number of fuzzy rules. On the other hand, we generally wish to obtain a
simple fuzzy system, even if the prediction error rate is moderately high, because
simple systems possess a higher interpolation capacity. Obviously, we must find
a compromise between the precision required of the system and its subsequent
complexity. To tackle this problem, rather than using classical indices such as
Akaike’s Information Criterion or the Minimum Description Length parameter
[1,15], or an auxiliary fuzzy system [16,14], we have opted for a multiobjective
evolutive algorithm.

3 Development of a New Evolutive Algorithm

An evolutive algorithm [13] is the result of adapting a genetic algorithm [9] to a
particular problem, replacing the bit-chain representation of potential solutions



520 Jesús González, Ignacio Rojas, and Héctor Pomares

by a data structure that is more natural and closer to the problem. This enables
us to obtain more exact solutions and facilitates the design of genetic operators
that include specific knowledge and heuristics. For the problem of identifying
fuzzy systems, the choice of a flexible representation that provides direct access to
any of the system parameters and makes it possible to handle different-structured
fuzzy systems in a uniform way is a fundamental necessity for a good solution.

As well as introducing specific knowledge, we have added the capability of
carrying out a multiobjective search to minimize both the prediction error of the
fuzzy system and the number of parameters it contains.

3.1 Incorporation of Specific Knowledge

The introduction of specific knowledge into an evolutive algorithm helps speed
up convergence and also helps with the restrictions that must be met by valid
solutions to the problem. This knowledge is introduced by designing specific
operators for the problem; these operators study the solutions before they are
altered, and attempt to correct or improve them, rather than simply performing
a blind modification.

The use of a representation of the solutions based on bit chains greatly ham-
pers this task, as the alteration of a single bit may lead to very different changes
in the final solution depending on the position of the bit; moreover, they consid-
erably restrict the precision of the solutions obtained [13]. These disadvantages
make it necessary to introduce a representation that provides direct access to
any of the parameters of the fuzzy system.

3.1.1 Representation of the Solutions. The most natural representation
structure for a fuzzy system F is the set of m fuzzy rules F = {〈ci, ri, Ri〉 :
i = 1, ...,m}. Each fuzzy rule is determined by its centre ci = (ci1, ..., c

i
d), by

its amplitude ri = (ri1, ..., r
i
d) and by its consequent Ri. This structure provides

free access to each of the rules that comprise the fuzzy system, and enables us
to vary its position, amplitude or consequent, in a simple and efficient way, thus
facilitating the design of the genetic operators.

3.1.2 Removing Fuzzy Rules. In order to determine the optimum structure
of the fuzzy system, we must incorporate genetic operators to carry out structural
alterations to the solutions. The removal of a rule reduces the complexity of the
fuzzy system, but also has a greater or lesser effect on the prediction error,
depending on which rule is eliminated. The OLS algorithm is applied to the
fuzzy system to minimize the effect of this interaction [3,19] as a prior step to
the alteration. The latter algorithm has been mentioned in the literature as a
means of calculating the consequents of the fuzzy rules in an optimum way, but
it possesses another very important characteristic, too. It calculates an output
error reduction coefficient for each rule. The higher the coefficient , the more
sensitive is the rule and the greater is the error produced if it is removed.



Evolutive Identification of Fuzzy Systems for Time-Series Prediction 521

After calculating the fuzzy system error reduction coefficients, each rule is as-
signed a probability of being eliminated; this probability is inversely proportional
to the error reduction coefficient. A randomly-selected rule is then removed. After
this alteration, the Cholesky decomposition is applied to the covariance matrix
in order to calculate the consequents of the rules in an optimum way [14].

3.1.3 Division of Fuzzy Rules. This genetic operator is complementary
to the previous one. Its purpose is to detect the area within the input space
where the greatest prediction error occurs and to add a new fuzzy rule there to
minimize the system error.

To do this, it is first necessary to study the contribution of each error to the
total system error, by means of the following equation:

ei =
n∑
j=1

αi(xj)
m∑
i2=1

αi2(xj)

∣∣F (xj)− yj∣∣, i = 1, ...,m (6)

where n is the number of training samples and m is the number of rules within
the system.

A large value of ei means that the i-́th rule is not sufficient to cover the zone
of the input space where it is located, and so a division probability is assigned to
each rule. This probability is directly proportional to the rule’s contribution to
the output error. A rule is then randomly selected to be divided, thus generating
two new rules that cover the same input space as did the previous single rule. By
this method, the system adds a fuzzy rule where it most contributes to reducing
the total system error. After the rule has been divided, the consequents of the
system are readjusted by applying the Cholesky decomposition.

3.1.4 Mutation of Fuzzy Systems. This operator is intended to maintain
the diversity of the population. When it is applied, it produces random effects
on fuzzy systems and helps the algorithm to explore new zones within the search
space. The alterations made only affect the location or amplitude of the fuzzy
rules, while the structure of the system remains constant.

To choose the fuzzy rule to be altered, the OLS algorithm is used to estimate
the sensitivity of the rules and to assign a selection probability, in the same way
as was done for the rule-elimination operator. When the rule has been altered,
the Cholesky decomposition is used to calculate the optimum consequents for
the remaining rules.

3.1.5 Crossover of Fuzzy Systems. This operator receives two fuzzy sys-
tems and returns another two, which combine the genetic information stored by
their progenitors. The information exchange is carried out at the level of the
rules. One of the two progenitors is chosen, and then a random number of rules
are selected to be exchanged with the other progenitor. Each rule selected is ex-
changed for that of the other progenitor that is closest to it in the input space.



522 Jesús González, Ignacio Rojas, and Héctor Pomares

In this way the two systems derived from the crossover store information from
their two progenitors, thus avoiding the occurrence of systems with overlapping
rules, thanks to the locality principle imposed in the exchange process.

3.2 Multiobjective Optimization

Multiobjective optimization consists of finding solutions to a problem in which
various objectives must be minimized simultaneously. In principle, no objective
is favoured at the expense of any other, and if the objectives are not independent,
there is no global minimum for the problem. Such is the case in the identifica-
tion of fuzzy systems; when the number of system parameters is minimized, the
output error normally increases.

In this type of problem, the algorithm must find the set of solutions that
achieve an equilibrium between all the objectives so that the final user can
choose the best solution according to his/her preferences or necessities.

For an evolutive algorithm to perform a multiobjective search, it is only nec-
essary to change the evaluation stage of the population to take all the objectives
into account, while the other stages of the algorithm remain unaltered. In the
bibliography, various approaches to carry out such a modification are proposed
[17,5,18].

3.2.1 Evaluation Function. The evaluation function must assign an apti-
tude to each individual in the population with respect to each of the objectives
to be minimized. As a result of this evaluation, the aptitude of the individuals
becomes a vector in which each of the components indicates the aptitude of the
individual with respect to a particular objective. For the problem in question,
the aptitude of a fuzzy system F takes the form a(F ) = 〈e(F ), c(F )〉, in which
the first component evaluates its prediction error and the second component,
the complexity. The Root Mean Squared Error (RMSE) is used as a measure of
the error e(F ):

e(F ) =

√√√√√
n∑
j=1

(F (xj)− yj)2

n
(7)

where F (xj) represents the output of the fuzzy system for the input xj and yj

is the expected output for this input.
The number of fuzzy rules comprising a fuzzy system c(F ) is used to measure

its complexity.

3.2.2 Assignation of Pseudo-aptitude. The assignation of pseudo-apti-
tudes is done as in MOGA [5] to distribute the selection pressure between indi-
viduals suitably and to enable the evolutive algorithm to continue as if it were
carrying out a single-objective search.



Evolutive Identification of Fuzzy Systems for Time-Series Prediction 523

3.2.3 Sharing of Pseudo-aptitudes. The means of calculating pseudo-
aptitudes described in the previous section favours non-dominated solutions.
This form of elitism may lead to a premature convergence to the first non-
dominated solution that appears. To avoid this and to maintain the diversity of
the population, a pseudo-aptitude sharing mechanism must be introduced into
the algorithm [7,4]. This reduces the aptitude differences between these super-
individuals and the rest of the population, so that the former do not reproduce
too fast and saturate the population in succeeding generations.

For this purpose, a niche-creation strategy is used within the population.
Two individuals are considered members of the same niche if the distance be-
tween them is less than a given threshold or minimum distance σ. The following
operator was designed to measure the distance between two fuzzy systems:

d(Fh, Fl) =

mh∑
i1=1

min
{∥∥chi1 − cli2∥∥ : 1 ≤ i2 ≤ ml

}
mh +ml

+

+

ml∑
i2=1

min
{∥∥cli2 − chi1∥∥ : 1 ≤ i1 ≤ mh

}
mh +ml

(8)

where mh and ml are the number of fuzzy rules in the systems Fh and Fl and
where chi1 and cli2 are their centres.

The aptitude of each individual Fh is multiplied by a factor δh ≥ 1 that is
directly proportional to the number of individuals belonging to its niche. This
factor δh is calculated by:

δh =
ν∑
l=1

µh,l (9)

where ν is the number of systems comprising the population of the evolutive
algorithm and µh,l measures the degree of membership of the system Fl to the
niche defined by Fh. The following equation is used to calculate µh,l:

µh,l =

{
1−

(
d(Fh,Fl)

σ

)2
si d(Fh, Fl) < σ

0 otherwise
(10)

This mechanism prevents a non-dominated solution from saturating the pop-
ulation in just a few generations, as the more copies that are created, the more
its aptitude increases.

4 Results

To test the algorithm presented in the previous section, we chose the Mackey-
Glass Chaotic Time Series, generated according to the following equation:

st+1 = (1− b)st +
ast−τ

1 + s10
t−τ

(11)



524 Jesús González, Ignacio Rojas, and Héctor Pomares

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

500 550 600 650 700 750 800 850 900 950 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(a) (b)

Fig. 1. Mackey-Glass Time Series (dashed line) and system output with 12 rules (solid
line). (a) Training exapmples. (b) Test examples.

Table 2. Different methods and prediction errors.

Method RMSE
Linear prediction method 0.55
Auto-Regressive Model 0.19

T-Norma: Prod. 0.0907L-X. Wang
T-Norma: Mı́n. 0.0904

NN Cascade Correlation 0.06
6th Order Polynomials 0.04

D. Kim and C. Kim 5 MFs/var. 0.0492
(Genetic algorithm 7 MFs/var. 0.0423
+ Fuzzy system ) 9 MFs/var. 0.0379

NN Backpropagation 0.02
ANFIS (NN + Fuzzy Logic) 0.007

10 rules 0.009proposed algorithm
12 rules 0.007

When τ ≥ 17, the above equation has a chaotic behaviour. Following previous
studies [21], we set parameter values at a = 0.2, b = 0.1 and τ = 17. The lag
interval was set at ∆ = 6 and the horizon at H = 6. In accordance with the
procedure described in Section 2 1000 samples were generated, with the form
((st, st−6, st−12, st−18), st+6). The first 500 were used to train the system and the
final 500, to validate it. The evolutive algorithm was run with a population size
of 50 for 100 generations and a search was made for solutions with 8-15 rules.
Of the final set of solutions, the fuzzy systems with 10-12 rules are outstanding,
and the prediction errors of these are presented in Table 2. Figure 1 shows the
output of the 12-rule fuzzy system for the training and validation data.

Table 2 shows some of the methods proposed in the bibliography to approach
this problem, together with the corresponding prediction error. Evidently, the
algorithm presented in the present study obtains much better results than those



Evolutive Identification of Fuzzy Systems for Time-Series Prediction 525

of the other methodologies, and even equals the excellent results obtained in
1993 by Jang with the ANFIS system [10].

5 Conclusions

This paper proposes an evolutive algorithm that is capable of identifying an
appropriate number of rules and parameter values of a fuzzy system, in an auto-
matic fashion. The algorithm proposed can directly evolve a population of fuzzy
systems and does not require any intermediate codification, thus facilitating the
incorporation of specific knowledge and heuristics into the genetic operators.
The algorithm uses analytical methods to calculate the optimum consequents of
the rules.

The possibility of carrying out a multiobjective search greatly simplifies the
task of identifying the optimum fuzzy system. By reformulating the problem as
one of “finding the fuzzy system that minimizes both the prediction error and
the number of fuzzy rules”, the algorithm automatically searches for solutions
that constitute a compromise between the two objectives, and returns a set of
non-dominated solutions so that the final user can choose the solution that best
suits his/her needs.

The results obtained show that the hybridization of evolutive algorithms with
the OLS algorithm and the use of multiobjective optimization techniques can be
adapted perfectly to the problem of identifying the optimum structure and the
parameters of a fuzzy system.

References

1. H. Akaike. Information Theory and Extension of the Maximum Likelihood Princi-
ple, pages 267–810. Akademia Kiado, Budapest, 1973.

2. V. Chankong and Y. Y. Haimes. Multiobjective Decision Making Theory and
Methodology. North-Holland, New York, 1983.

3. S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning
algorithm for radial basis function networks. IEEE Trans. Neural Networks, 2:302–
309, 1991.

4. K. Deb and D. E. Goldberg. An investigation of niches and species formation in
genetic function optimization. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 42–50, San Mateo, CA,
1991. Morgan Kaufmann.

5. C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective optimiza-
tion: Formulation, discussion and generalization. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 416–423, San
Mateo, CA, 1993. Morgan Kaufmann.

6. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

7. D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-
modal function optimization. In J. J. Grefenstette, editor, Genetic Algorithms and
Their Applications: Proceedings of the Second International Conference on Genetic
Algorithms, pages 41–49, San Mateo, CA, 1987. Morgan Kaufmann.



526 Jesús González, Ignacio Rojas, and Héctor Pomares

8. A. E. Hans. Multicriteria optimization for highly accurate systems. In W. Stadler,
editor, Multicriteria Optimization in Engineering and Sciences, Mathematical Con-
cepts and Methods in Science and Engineering, volume 19, pages 309–352, New
York, 1988. Plenum Press.

9. J. J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

10. J. S. R. Jang. Anfis: Adaptive network-based fuzzy inference system. IEEE Trans.
Syst., Man, Cybern., 23:665–685, May 1993.

11. J. S. R. Jang, C. T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing.
Prentice–Hall, ISBN 0-13-261066-3, 1997.

12. D. Kim and C. Kim. Forecasting time series with genetic fuzzy predictor ensemble.
IEEE Trans. Fuzzy Systems, 5(4):523–535, Nov. 1997.

13. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 3rd edition, 1996.

14. H. Pomares, I. Rojas, J. Ortega, J. González, and A. Prieto. A systematic approach
to a self-generating fuzzy rule-table for function approximation. IEEE Trans. Syst.
Man and Cyber. - Part B, 30(3):431–447, 2000.

15. J. Rissanen. Modelling by shortest data description. Automatica, 14:464–471, 1978.
16. I. Rojas, H. Pomares, J. Ortega, and A. Prieto. Self-organized fuzzy system gen-

eration from training examples. IEEE Trans. Fuzzy Systems, 8(1), Feb. 2000.
17. J. D. Schaffer. Some Experiments in Machine Learning using Vector Evaluated

Genetic Algorithms. Ph.d. dissertation, Vanderbilt University, Nashville, TN, 1984.
TCGA file No. 00314.

18. N. Srinivas and K. Dev. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1995.

19. L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approximation,
and orthogonal least squares learning. IEEE Trans. Neural Networks, 3:807–814,
1992.

20. L. X. Wang and J. M. Mendel. Generating fuzzy rules by learning from examples.
IEEE Trans. Syst. Man and Cyber., 22(6):1414–1427, November/December 1992.

21. B. A. Whitehead and T. D. Choate. Cooperative-competitive genetic evolution of
radial basis function centers and widths for time series prediction. IEEE Trans.
Neural Networks, 7(4):869–880, July 1996.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 527–536, 2002.
© Springer-Verlag Berlin Heidelberg 2002

HyGLEAM - An Approach to Generally Applicable
Hybridization of Evolutionary Algorithms

Wilfried Jakob

Forschungszentrum Karlsruhe, Institute for Applied Computer Science,
P.O. Box 3640, 76021 Karlsruhe, Germany

jakob@iai.fzk.de

Abstract. Most successful applications of Evolutionary Algorithms to real
world problems employ some sort of hybridization, thus speeding up the
optimization process but turning the general applicable Evolutionary Algorithm
into a problem-specific tool. This paper proposes to combine Evolutionary
Algorithms and generally applicable local searchers to get the best of both
approaches: A fast, but robust tool for global optimization. The approach
consists of four different kinds of hybridization and combinations thereof,
which are tested and compared using five commonly used benchmark functions
and three real world applications. The results show the superiority of two
hybridization types, with which reductions in the number evaluations of up to a
factor of 100 could be achieved.

1 Motivation

When looking to the papers reporting about real world applications at the major EA
conferences in the last ten years, it becomes clear that nearly all of them used some
sort of hybridization with problem-specific local searchers or they applied other
means of inserting problem-specific knowledge into the evolutionary process like e.g.
special genetic operators. The commonly paid price for the achieved speed-up is the
lost in generality of the resulting hybrid.

Already Holland suggested in 1975 to use GAs as a kind of preprocessor and
finalize the optimization with local searchers [1]. 24 years later Goldberg and Voess-
ner [2] pointed out that is not easy to find an appropriate procedure for distributing the
computing time between global and local search and came to the conclusion that this
is still an open question. They also stressed that nearly all serious EA applications use
some sort of hybridization but that there is still a lack of investigations on suitable
types of integration, which are not related to specific applications or limited to certain
problem fields.

This paper contributes to this discussion by

• using only general applicable local searchers,

• comparing three well-known types of hybridization, a modified form of one type,
and meaningful combinations of them

• introducing a new method of controlling the interaction of the basic algorithms, and

• testing the approach with a wide range of different types of applications to check
the generality of the approach.



528      Wilfried Jakob

2 Methods of Hybridization

For a generally applicable hybridization of an EA, four general alternatives exist:

1. Pre-optimization of the start population
This can be applied to the entire population or a fraction of it, and it provides the
evolution with valid solutions of more or less good quality to start with.

2. Post-optimization of the EA results
EAs are known to converge slowly. Thus, an improvement can be expected by
stopping the evolution after approaching the area of attraction of the global opti-
mum and leaving the rest to the local search.

3. Direct integration
Optimizing every or the best offspring of one mating only causes the EA to operate
over the peaks of the fitness landscape exclusively rather than to treat the valleys
and slopes, too. The offspring’s genotype can be updated (Lamarckian evolution)
or left unchanged (Baldwinian evolution). As both methods which are usually
applied to domain-specific local searchers are controversially discussed in litera-
ture [3, 4], this was also investigated. Orvosh and Davis recommend updating 5%
of the accepted offsprings only [5].

4. Delayed direct integration
Variant of direct integration, where the evolution works on its own until a criterion
similar to the one used for switching from evolutionary to local search for post-
optimization is fulfilled.

Pre-optimization can be combined with the other methods, while a fusion of direct
integration and post-optimization does not appear to be meaningful.

3 Basic Algorithms Used for Hybridization

To comply with the goal of general applicability, the EA must allow for combinatorial
optimization and parameter strings of dynamic length as required by some applica-
tions like design optimization [6] or collision-free robot path planning [7]. Especially
because of the last requirement, GLEAM (General Learning Evolutionary Algorithm
and Method) [7,8], an EA comprising elements of real coded GAs and the Evolution
Strategy (ES) was chosen for testing, see also [9]. Among others, GLEAM uses mu-
tation operators influenced by the ES in so far, as small parameter changes are more
likely than greater ones. Mutation can also change the gene order and add or delete
genes in the case of dynamic chromosomes. GLEAM uses ranking-based selection
and elitist offspring acceptance. It is stressed that the introduced hybridization shall
work with any other EA, too.

Suitable local search algorithms must be derivation-free and able to handle restric-
tions in order to preserve the general applicability of the resulting hybrid. Two well-
known procedures from the sixties were chosen, since they meet these requirements
and are known to be powerful local search procedures: The Rosenbrock algorithm
[10] using one start point and the Complex method [11], because it can exploit multi-
ple start points as they are delivered by an EA. The Rosenbrock procedure stops when
the rate of changes of the main search direction decreases below a certain value and



HyGLEAM - An Approach to Generally Applicable Hybridization      529

when the distances covered become too small. This is controlled by an external strat-
egy parameter, here called precision. The Complex procedure stops when no
improvement is achieved in five consecutive iterations. Schwefel gives a detailed
description of both algorithms together with experimental results [12].

As this paper focuses on hybridization and due to the lack of space the basic algo-
rithms have been described here very briefly only and the interested reader is referred
to given literature.

4 Controlling the Basic Algorithms

Concerning real world problems neither the structure of the fitness landscape nor the
optimum or its area of attraction are known in advance. But as computation of the
fitness function frequently is time-consuming, it is possible to perform more sophisti-
cated calculations to estimate when to switch from global to local search.

Fig. 1 shows the typical pro-
gress of an EA run. Stagnation
phases of the overall quality can
be identified easily, e.g. A, B or
C. But which one shall be se-
lected for terminating the evolu-
tion? This cannot be derived
from stagnation only. A better
measure is the genotypic diver-
sity within the population. If the
population consists of a few ge-
notypically different sub-popu-
lations (niches) only, which are
of minor difference, then stagna-
tion can be expected, which
provides little chance for greater progress. Hence, stagnation phases like in Fig. 1 may
be used to trigger a check for niche constitution. Another trigger may be the number
of generations without offspring acceptance.

4.1 Distance Measures for Chromosomes

To estimate the genotypic diversity, distance measures for chromosomes must be
defined, which quantify the parameter distance, the different gene ordering, and the
common genes in the case of dynamic chromosomes. Distance functions reported in
literature are often too specialized for the problem on hand, rather than to serve as a
solution here [9]. Measures should be independent of the application in so far as they
must not be influenced by actual parameter ranges or the number of genes and should
be within a fixed range. The measures defined here vary between 0 (identity) and 1
(maximum difference). They comply with the four metric axioms, but the proofs and
the calculation of distmax are omitted here due to the lack of space. They can be found
on the following web page: http://www.iai.fzk.de/~jakob/hy_gleam/

quality

generations

usually unknown optimum

A

B
C

Fig. 1. Typical progress during the run of an EA



530      Wilfried Jakob

Fixed-Length Chromosomes with Irrelevant Gene Order. For this chromosome
type, the calculation of the parameter distance ∆par of two chromosomes C1 and C2 is
sufficient. It is defined as follows:

( ) ∑
= −

−
=∆

n

i ii

ii

par lbub

parpar

n
CC

1

2,1,
21

1
, (1)

where n: number of all parameters of all genes
pari,j: i-th parameter of chromosome j
lbi, ubi: lower and upper limits of the i-th parameter

Fixed-Length Chromosomes with Relevant Gene Order. The positional difference
pd1,2(Gi) of one gene Gi of two fixed-length chromosomes C1 and C2 is defined by their
sequential numbering and the calculation of the absolute difference of their indices.
This leads to the positional distance of two chromosomes ∆pos:

( ) ( )∑
=

=∆
len

i
ipos Gpd

dist
CC

1
2,1

max
21

1
, (2)

where len: length of the chromosomes (len > 1)
distmax: distance maximum of all genes within one chromosome

For distmax two cases for odd and even chromosome lengths must be considered:

2

2

max,

len
dist even =        

2

12

max,

−= len
dist odd

(3)

The overall distance ∆ of fixed-length chromosomes with relevant ordering is defined
as the mean of ∆par and ∆pos.

Variable-Length Chromosomes. The goal is to determine the precise difference of
similar chromosomes, while the exact value of discrepancy of dissimilar ones is of
less interest. So the resulting measure may be inexact for more different chromo-
somes, thus yielding a less complex formula which reduces the computational effort
for the fairly frequent distance calculations.

For two chromosomes C1 and C2 the set of common genes Gcom may not be empty.
Otherwise, the overall distance is set to 1. As genes in chromosomes of variable
length may occur several times, they are treated in the sequence of their indexing and
∆par and ∆pos are defined over Gcom, where distmax is taken from the shorter chromosome.
This may lead to an oversized value of ∆pos, which may exceed 1 especially for
chromosomes with large differences. Thus, ∆pos is limited to 1 and the error is
accepted, as it increases with the chromosome difference.

The difference of the presence of genes ∆gp in two non-empty chromosomes is cal-
culated as follows:

))(),(max(

)(
1

21 ClenClen

Gcard com
gp −=∆ (4)



HyGLEAM - An Approach to Generally Applicable Hybridization      531

The overall distance ∆ of variable-length chromosomes is defined as the mean of
the three distances, with ∆gp being weighted three times, because ∆par and ∆pos are
defined over the common set of genes only.

4.2 Control Criteria for the Basic Algorithms

For estimating the genotypic diversity the individuals are assumed to be in linear
order. A niche is formed by adjacent individuals with a fitness greater than half of the
global best and with ∆ being smaller than the strategy parameter ε. The fitness thresh-
old is introduced to ignore chromosomes of less quality, as they do not contribute to
niching of individuals of high fitness. The center individual of a niche is called its
representative. Niches, whose representatives differ by less than ε, are merged
regardless of their position. The resulting amount of niches N and the maximum dif-
ference of their representatives ∆N,max are compared to the strategy parameters εPop and
Nmax and the population is considered to be converged, if:

PopN
ε≤∆ max,    and   maxNN ≤ (5)

If this criterion is fulfilled the evolutionary search is stopped and the results are
handed over to the local searchers for post-optimization or the local procedures are
added to the process of offspring generation in case of delayed direct integration.

5 Experimental Results

In the experiments, five test functions taken from GENEsYs [13] and three real world
problems were used. Here, they shall be described very briefly only and the interested
reader is referred to the literature.

• Schwefel’s sphere in the range of [-1010,1010] and with a target value of 0.01, a
unimodal problem known to be easy for ES, but hard for GA.

• Shekel’s foxholes, a simple multimodal function, easy for EA, but hard for local
searchers (target value: exact minimum)

• Generalized Rastrigin function (target value: 0.0001) and

• Fletcher’s function (target value: 0.00001), both of considerable complexity

• Fractal function with an unknown minimum. Target value here: -0.5 (from [13]).

• Design optimization of a micro optical communication device considering fabrica-
tion tolerances as described in detail in [14]. Despite its only 3 parameters, the task
involves some difficulty, because it is of extreme multimodal nature.

• The resource optimization is based on the scheduling task of 87 batches in chemi-
cal industry, where varying numbers of workers are required during the different
batch phases [15]. The maximum number of workers per shift (human resource) and
the production time shall be reduced to the largest possible extent. Restrictions like
due dates of batches, necessary pre-products from other batches, and the availability



532      Wilfried Jakob

of shared equipment must also be adhered to. Allocation conflicts are solved by the
sequence of the batches within a chromosome. But as this can be overwritten by
suitable changes of the starting times, the combinatorial aspect is limited.

• The objective of the robot path planning task is to move a robot along a line as
straightly as possible from a starting to a destination point and avoid collisions with
itself and some obstacles by controlling the robot axis motors [7]. As the number of
necessary motor commands is not known in advance, the chromosomes must be of
dynamic length and the order of the commands is essential. Due to a command
which tells the robot control to keep the actual motor settings for a specified amount
of control cycles, this task has both integer and real parameters.

Table 1. Properties of the eight test cases and the results for the algorithms applied separately

Success rate for best runExperiment Combi-
natorial
optim.

Parame-
ters

Modality Implicit
restric-
tions

GLEAM Rosen-
brock

Com-
plex

Sphere no 30  real unimodal no 0 100 0
Foxholes no   2  real multimod. no 100 3 1
Rastrigin no 20  real multimod. no 100 0 0
Fletcher no   5  real multimod. no 100 10 10
Fractal no 20  real multimod. no 100 0 0
Design no   3  real multimod. no 100 15 12
Resource (yes) 87  int multimod. yes 94 0 0
Robot Path yes dynamic

mixed
multimod. yes 100 0 0

These test cases cover a wide range of different application types, as shown in
Table 1. The shortcuts and strategy parameters of the algorithms and hybrids, used in
the figures below, are as follows:
• G: GLEAM: the population size (p)
• R: Rosenbrock: precision: 10-2 (s), 10-4 (m), 10-6 (l), 10-8 (xl), 10-9 (xxl)
• C: Complex: none
• Ri: Rosenbrock-initialized start population. Percentage of pre-
• Ci: Complex-initialized start population. optimized individuals
• PR: Rosenbrock post-optimization: see below
• PC1S: Complex post-optimization: each solution is 1 start point (1S)
• PC1C: Complex post-optimization: all solutions form 1 start complex (1C)
• GR, GC: Direct Integration of Rosenbrock or Complex: Lamarck-rate (l), local

optimization of all or only the best offspring of one mating (all, best)
• GdR, GdC: Delayed direct integration with Rosenbrock and Complex respectively

The niching is controlled by three parameter settings for ε and εPop, P1=(0.005,
0.01), P2=(0.002, 0.005), P3=(0.001, 0.002), and by Nmax which varies between 2
(p<20) and 5 (p>90) with the population size. The success rate and the average
amount of evaluations based on 100 runs (resource and the design task: 50 runs) for
each parameterization (job) are taken for comparison. For the resource and the robot
problem the local searchers work on the parameters only and leave the combinatorial
aspects to the EA. A total of 182,000 jobs consuming 7 cpu-years on 22 sun work-
stations (ultra sparc) were needed for the experiments.



HyGLEAM - An Approach to Generally Applicable Hybridization      533

5.1 Results of the Test Cases

In Fig. 2 the results of the best jobs with 100% success rates are shown for each test
case and hybridization method, and they are compared with the best run of GLEAM.
Schwefel’s sphere is somewhat exceptional, as GLEAM has no success despite the
unimodality of the problem. The success of the Rosenbrock procedure is more or less
unrealistic, because no one would start with such an extreme precision, and with less
there is no success at all up to high precision. The post-optimization is mentioned in
brackets, because even the unsuccessful runs deliver very-high-quality solutions. The
results of Shekel’s Foxholes show that a fairly easy task for an EA, but hard for local
searchers, cannot be improved largely by hybridization. The EA solves the problem
so well that the overhead imposed by hybridization is too costly. The Rastrigin func-
tion shows an unusual behavior in so far, as GLEAM still works with extremely small
population sizes leaving little or no room for improvements by hybridization. In Fig. 3
this case is compared with the typical behavior of an EA using the robot path planning
task. With population sizes below a certain value, success rates are expected to drop
and the number of evaluations to increase. For the resource and the robot tasks, spe-
cial precisions of the Rosenbrock algorithm of 0.6 and 0.5 respectively were neces-
sary, as there was no convergence with any standard setting. Due to the extended
chromosome types of the last two tasks, further niching control parameterizations
were tested, and P0 (0.04, 0.08) led to a remarkable success for resource optimization.
Together with Fletcher’s function, this task yields the most impressive improvements,
while the very difficult fractal function and the design problem show significant suc-
cess, too.

Fig. 2. Results for each test case and hybridization method reaching a 100% success rate. The
best jobs per parameterization are shown and compared. Acronyms see above list

Schwefel's Sphere

28,4

14,1

6,4

0

5

10

15

20

25

30

R,xxl (PR,p10,
xl,P2)

GR,p5,l GdR,p5,l,P3

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Shekel's Foxholes

1,451,44
0,9

1,5

0

1

2

3

4

5

6

7

G,p5  Ri  
p5,s,
100%

     Ci      
p5, 
40%

 GR  
p20,s,
best,Ri

   GC    
p5,all  

GdR
p10,s,

all,P3,Ri

GdC
p20,all,
P3,Ci

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Generalized Rastrigin Function

47,4
51,7

43,7

0

10

20

30

40

50

60

70

80

90

G,p5 Ri,p5,
s,100%

Ci,p5,
20%

PR,p90,
P2

GR,p5,
m

GR,p5,
m,Ri

GdR,p5,
m,P3

GdR,p5,
m,P2,Ri

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Fletcher's Function

10,2

483,6

4,7 4,6
0

50

100
150
200
250

300
350
400

450
500

G,p600 Ri
p30,m,
100%

   Ci    
p30,

100%

GR
p5,m,Ri

   GC   
p5

  GdR   
p5,

m,P2

GdC
p5,P3

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)



534      Wilfried Jakob

Fig. 2 (cont.). Results for each test case and hybridization method reaching a 100% success
rate. The best jobs per parameterization are shown and compared. Acronyms see above list

The examined hybridization approaches reach their limits, when the ordering of a
dynamic amount of genes is of vital importance to success, as it is the case with the
robot example. No relevant improvement can be stated in this case.

5.2 Comparison of the Different Kinds of Hybridization

The different kinds of hybridization are compared on the basis of the achieved
improvement of the best job compared to the best GLEAM job. This cannot be done
for Schwefel’s sphere, because GLEAM was not successful. But it can be stated that

Fractal Function

195,1

30,0 30,5
40,6

0
100
200
300
400
500
600
700
800
900

1000
1100

G,p20 Ri
p100,
s,20%

  Ci    
p5, 

20%  

PR 
p210,
xl,P2

  GR   
p5,s, 
Ri   

GC
p10

 GdR  
p5,s, 
P2  

GdC 
p10,
P2

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Design Optimization

1,0

5,8

1,0

0

2

4

6

8

10

12

14

16

18

G
p210

Ri
p120,
l,5%

Ci 
p120,
10%

PC1C
p70,
P3

  GR  
p10,
m,l5

GC
p5,
l100

GdR
p5,l,
P1

GdC
p5,P3

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Resource Optimization

63,0

3858,2

69,5 67,0
0

500

1000

1500

2000

2500

3000

3500

4000

G,p1000     GR    
p5

   GR  
p5,Ri

GdR
p5,P1

GdR
p5,P0

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Robot Path Planning

302,4312,3 306,6

0

50

100

150

200

250

300

350

G,p150 Ri,p90,10% Ci,p120,20%

ev
al

u
at

io
n

s 
(t

h
o

u
sa

n
d

)

Generalized Rastrigin Function

0

20

40

60

80

100

120

140

160

180

200

5 10 20 30 40 50 70
population size

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s 

ra
te

 [%
]

evaluations success rate

Robot Path Planning

0

200

400

600

800

1000

1200

30 60 90 120 150 180 210 240 270 300
population size

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s 

ra
te

 [%
]

evaluations success rate

Fig. 3. GLEAM jobs: Untypical success of the Rastrigin function at very small population
sizes and usually observed behavior in case of the robot path planning task (100 runs per
setting).



HyGLEAM - An Approach to Generally Applicable Hybridization      535

post-optimization and (delayed) direct integration yield very good results, see Fig. 2.
Furthermore, the robot task will not contribute to the comparison, as there was no
improvement worth mentioning. In Fig. 4 the results of the remaining test cases are
summarized.

Fig. 4. Comparison of the different kinds of hybridization. Empty fields indicate no sufficient
success rate (below 100%), while flat fields stand for fulfilling the optimization task, but with
greater effort than GELAM. For PC1S no 100% success rate was reached in any test case.

Conclusions

From the extensive investigation of 13 different kinds of hybridization, based on eight
test cases comprising one challenging unimodal problem, simple and complex multi-
modal tasks, and real world problems involving combinatorial optimization as well as
dynamic parameter strings, the following conclusions can be drawn, see also Fig. 4:

1. Though post-optimization improves the results obtained by the EA in most cases, it
does not lead to sufficient success, as the introduced control mechanism based on
niche detection does not guarantee a stop of evolution only, when the area of the
attraction of the global optimum is reached.

2. Direct or delayed direct integration of the Rosenbrock procedure works in all cases
and yields very good results as long as the problem is not too simple like in the
case of Shekel’s foxholes. Pure Lamarckian evolution and local optimization of the
best offspring in nearly all cases is superior to Baldwinian evolution or optimiza-
tion of all offsprings of one mating. The delayed integration based on the niching
control algorithm improves the undelayed version by up to 20% less evaluations.
Small population sizes between 5 and 20 are sufficient.

R
i

C
i

P
R

P
C

1S

P
C

1C G
R

G
R

,R
i

G
C

G
C

,C
i

G
d

R

G
d

R
,R

i

G
d

C

G
d

C
,C

i

Rastrigin
Foxholes

Design
Fractal

Resource
Fletcher

0

20

40

60

80

100

120

Rastrigin

Foxholes

Design

Fractal

Resource

Fletcher



536      Wilfried Jakob

3. Pre-optimization helps in most cases but direct integration is better.

4. Hybridization with the Complex algorithm does not always work, but if it does,
superior results can be produced. Hybridization with the Rosenbrock procedure is
more reliable, but not always as successful as using the Complex.

Although these conclusions are based on the test cases investigated, it can be as-
sumed that they are not limited to them. Thus, it can be recommended to use delayed
or undelayed direct integration of the Rosenbrock algorithm to speed up the EA while
maintaining the properties of reliable global search and general applicability. With the
Rosenbrock procedure, evaluations were found to be reduced by the magnitude of 60
and by using the Complex algorithm instead, a factor of up to 100 can be achieved.

This paper was written using the terms and definitions of VDI/VDE 3550 [16].

References

1. Holland, H.J.: Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor (1975)

2. Goldberg, D.E, Voessner, S.: Optimizing Global-Local Search Hybrids. In: W. Banzhaf et
al. (eds.): Proc. GECCO’99, Morgan Kaufmann, San Mateo, CA (1999) 220-228

3. Whitley, D., Gordon, V., Mathias, K.: Lamarckian Evolution, The Baldwin Effect and
Funct. Opt. In: Davidor, Y. et al.: Proc. PPSN III, LNCS 866, Springer, Berlin (1994) 6-14

4. Gruau, F., Whitley, D.: Adding Learning to the Cellular Development of Neural
Networks: Evolution and the Baldwin Effect. Evol. Comp. 1, Vol.3 (1993) 213-233

5. Orvosh, D., Davis, L.: Shall We Repair? Genetic Algorithms, Combinatorial Optimization,
and Feasibility Constraints. In: Forrest, S. (ed): 5th ICGA, M. Kaufmann (1993) 650

6. Jakob, W., Quinte, A., et al.: Opt. of a Micro Fluidic Component Using a Parallel EA and
Simulation Based on Discrete Element Methods. In: Hernandez, S., et al.: Computer Aided
Design of Structures VII, Proc. of OPTI’01, WIT Press, Southampton (2001) 337-346

7. Blume, C.: GLEAM - A System for Intuitive Learning. In: Schwefel, H.P., Männer, R.
(eds.): Proc. of PPSN I, LNCS 496, Springer, Berlin (1990) 48-54

8. Blume, C., Jakob, W.: GLEAM – an Evolutionary Algorithm for Planning and Control
Based on Evolution Strategy. Conf. Proc. GECCO 2002, Vol. Late Breaking Papers,
(2002)

9. Jakob, W.: HyGLEAM: Hybrid GeneraL-purpose Evolutionary Algorithm and Method.
In: Callaos, N. et al. (eds.): Proc. SCI’2001, Vol. III, IIIS, Orlando, (2001) 187-192

10. Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least Value of a
Function. Comp. Journal 3 (1960) 175-184

11. Box, M.J.: A New Method of Constrained Optimization and a Comparison with Other
Methods. Comp. Journal 8 (1965) 42-52

12. Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, Chichester (1995)
13. Bäck, T.: GENEsYs 1.0, ftp://lumpi.informatik.uni-dortmund.de/pub/GA
14. Gorges-Schleuter, M., Jakob, W., Sieber, I.: Evolutionary Design Optimization of a

Microoptical Collimation System. In: Zimmermann,  H.J. (ed.): Proc. Eufit’98, Verlag
Mainz, Aachen (1998) 392-396

15. Blume, C., Jakob, W.: Cutting Down Production Costs by a New Optimization Method.
In: Proc. of Japan-USA Symposium on Flexible Automation. ASME (1994)

16. Beyer, H.-G., et al.: Evolutionary Algorithms – Terms and Definitions. VDI/VDE-Richtli-
nie-3550, Blatt 3, Gründruck (Engl. vers. to be published in 2002). VDI, Düsseldorf
(2001)



Co-evolving Memetic Algorithms:
Initial Investigations

Jim Smith

Intelligent Computer Systems Centre
University of the West of England

Bristol BS16 12QY, UK
james.smith@uwe.ac.uk,

Abstract. This paper presents and examines the behaviour of a system
whereby the rules governing local search within a Memetic Algorithm
are co-evolved alongside the problem representation. We describe the
rationale for such a system, and the implementation of a simple version
in which the evolving rules are encoded as (condition:action) patterns
applied to the problem representation, and are effectively self-adapted.
We investigate the behaviour of the algorithm on a test suite of problems,
and show significant performance improvements over a simple Genetic
Algorithm, a Memetic Algorithm using a fixed neighbourhood function,
and a similar Memetic Algorithm which uses random rules, i.e. with the
learning mechanism disabled.
Analysis of these results enables us to draw some conclusions about the
way that even the simplified system is able to discover and exploit differ-
ent forms of structure and regularities within the problems. We suggest
that this “meta-learning” of problem features provides a means both of
creating highly scaleable algorithms, and of capturing features of the
solution space in an understandable form.

1 Introduction

The performance benefits which can be achieved by hybridising Evolutionary Al-
gorithms (EAs) with Local Search(LS) operators, so-called Memetic Algorithms
(MAs), have now been well documented across a wide range of problem domains
such as combinatorial optimisation [1], optimisation of non-stationary functions
[2], and multi-objective optimisation [3]. See [4] for a comprehensive bibliogra-
phy. Commonly in these algorithms, the Local Search improvement step is per-
formed on each of the products of the generating (recombination and mutation)
operators, prior to selection for the next population.

There are three principal components which affect the workings of the LS
algorithm. The first is the choice of pivot rule, which is usually either Steepest
Ascent or Greedy Ascent. The second component is the “depth” of local search,
which can vary from one iteration, to the search continuing to local optimality.
Considerable attention has been paid to studying the effect of changing these
parameters within MAs e.g. [5].

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 537–546, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



538 Jim Smith

The third factor is the choice of neighbourhood function, which can be
thought of as defining a set of points that can be reached by the application
of some move operator to a point. We can consider the graphs defined by differ-
ent move operators as “fitness landscapes” [6]. Merz and Freisleben [7] discuss
a number of statistical measures which can be used to characterise fitness land-
scapes, and have been proposed as potential measures of problem difficulty. They
show that the choice of move operator can have a dramatic effect on the efficiency
and effectiveness of the Local Search, and hence of the resultant MA.

In some cases, domain specific information may be used to guide this choice.
However, it has recently been shown that the optimal choice of operators can
be not only instance specific within a class of problems [7, pp254–258], but also
dependant on the state of the evolutionary search [8]. The idea that periodically
changing the move operator may provide a means of escape from local optima by
redefining the neighbourhood structure, has been demonstrated in the Variable
Neighbourhood Search algorithm [9].

The aim of this work is to provide a means whereby the definition of the
local search operator used within a MA can be varied over time, and then to
examine whether evolutionary processes can be used to control that variation,
so that a beneficial adaptation takes place. In order to accomplish this aim, we
must address four major issues. The first of these is the representation of LS
operators in a form that can be processed by an evolutionary algorithm, and
the choice of of initialisation and variation operators. The second is the credit
assignment mechanism for assigning fitness to the LS population members. The
third is the choice of population structures and sizes, along with selection and
replacement methods for managing the LS population. Finally, we require a set
of experiments, problems and measurements designed to permit evaluation and
analysis of the behaviour of the system. This paper represents the first stage of
this analysis.

2 Rule-Based Adaptation of Move Operators

The representation chosen for the LS operators is a tuple <Search Depth,
Pivot Rule, Pairing, Move>. The first two elements are self-explanatory. Val-
ues for Pairing are taken from the set {Linked, Random,Fitness Based}. When
the Local Search phase is applied to a member of the solution population, the
value of the Pairing in the corresponding member of the LS population is exam-
ined. If the value is Linked then that LS member is used to act on the solution. If
the Pairing takes one of the values Random or Fitness Based then a selection is
made from the available (i.e. unlinked)members of the LS population according.
By making this variable part of the rule and subject to evolution, the system can
be varied between the extremes of a fully unlinked system,(in which although
still interacting the two populations evolve separately), and a fully linked sys-
tem. In the latter the LS operators can be considered to be extra genetic material
which is inherited and varied along with the problem representation, in an ex-
actly analogous way to the inheritance of strategy parameters in Self Adapting



Co-evolving Memetic Algorithms: Initial Investigations 539

EAs. We note that “Self-Adaptation” can be considered as co-evolution with
hereditary symbiosis, i.e. where the two populations share a common updating
mechanism.

The representation chosen for the move operators was as condition:action
pairs, which specify a pattern to be looked for in the problem representation,
and a different pattern it should be changed to. Although this representation
at first appears very simple, it has the potential to represent highly complex
moves via the use of symbols to denote not only wildcard characters but also
the specifications of repetitions and iterations. Further, permitting the use of
different length patterns in the two parts of the rule gives scope for cut and
splice operators working on variable length solutions.

While the framework that we have describe above is intended to permit a
full exploration of several research issues, we shall initially restrict ourselves to
considering a simple system, and examining its behaviour on a well understood
set of binary encoded test problems. For these initial investigations we therefore
restricted the LS operators to a single improvement step, a greedy acceptance
mechanism, and full linkage. This restriction to what are effectively self-adaptive
systems provides a means of dealing with the credit assignment and population
management isssues noted above.

We also initially restrict ourselves to considering only rules where the condi-
tion and action patterns are of equal length and are composed of values taken
from the set {0,1,#}.The last of these is a “don’t care” symbol which is only
allowed to appear in the condition part of the rule.

The neighbourhood of a point i is defined by finding the (unordered) set
of positions where the substring denoted by condition is matched in the rep-
resentation of i. For each of these a new string is then made by replacing the
matching substring with the action pattern. To give an example, if we have a
solution represented by the binary string 1100111000 and a rule 1#0:111, then
this matches the first, second, sixth and seventh positions, and the neighbour-
hood is the set {1110111000, 11111111000, 1100111100,1100111110}. Note that
in this initial work we do not considered the string as toroidal.

3 Related Work

The COMA system can be related to a number of different branches of research,
all of which offer different ways of perspectives and means of analysing it’s be-
haviour. Space constraints preclude a full discussion of each of these, so we will
briefly outline some of these perspectives.

Although we are not aware of other algorithms in which the LS operators
used by an MA are adapted in this fashion, there are other examples of the
use of multiple LS operators within evolutionary systems. Krasnogor and Smith
[8] describe what they call a “MultiMemetic Algorithm”, in they used a simple
Self-Adaptive mechanism to evolve the choice of which a fixed set of static LS
operators (“memes”) should be applied to individual solutions. They report that
their systems are able to adapt to use the best meme available for different
instances of TSP.



540 Jim Smith

As noted above, if the populations are of the same size, and are considered
to be linked, then this instantiation of the COMA framework can be considered
as a type of Self Adaptation. The use of the intrinsic evolutionary processes
to adapt search strategies, and the conditions necessary, is well documented
e.g. for mutation step sizes [10,11], mutation probabilities [12], recombination
operators[13,14] and general variation operators [15], amongst many others.

If the two populations are not linked, then we have a co-operative coevo-
lutionary system, where the fitness of the members of the LS population is
assigned as some function of the relative improvement they cause in the “so-
lution” population. Co-operative co-evolutionary (or “symbiotic”) systems have
been used with good reported results for function optimisation [16,17,18] and
Bull conducted a series of more general studies on the conditions necessary for
co-operative co-evolution to occur [19,20,21]. These issues will be explored in
future work.

If we were to simply apply the rule selected from in the LS population (possi-
bly iteratively) to transform an individual solution, without considering a pivot
rule, then we could also view the system as a type of “developmental learning”
akin to the studies in the evolution of Genetic Code [22]

COMA differs from the last two paradigms because the LS population can
potentially modify the genotypes within the solution population. This phase of
improvement by LS can be viewed as a kind of lifetime learning, which leads nat-
urally to the question of whether a Baldwinian approach might be preferable to
the Lamarkian Learning currently implemented. However, even if a Baldwinian
approach was used, the principal difference between the COMA approach and
the co-evolutionary systems above lies in the use of a pivot rule within the LS,
such that detrimental changes are rejected.

Finally, and perhaps most importantly, we should consider that if the same
rule has an improving effect on different parts of a solution chromosome over as
number of generations, then the evolution of rules can be seen as a process of
learning generalisations about patterns within the problem representation, and
hence the solution space. This point of view is akin to that of Learning Classifier
Systems. For the case of unlinked fitness-based selection of LS operators, insight
from this field can be used to guide the credit assignment process.

4 The Test Suite and Experimental Set-Up

In order to examine the behaviour of the system it was used with a set of variants
of a test function whose properties are well known. This was a sixty four bit
problem composed of 16 subproblems of Deb’s 4-bit fully deceptive function
given in [23]. The fitness of each subproblem i is given by its unitation u(i) (i.e.
the number of bits set to 1):

f(i) =
{

0.6− 0.2u(i) : u(i) < 4
1 : u(i) = 4 (1)

In addition to a “concatenated” version (which we will refer to as 4-Trap), a
second “distributed”version (Dist-Trap)was used in which the subproblems were



Co-evolving Memetic Algorithms: Initial Investigations 541

interleaved i.e. sub-problem i was composed of the genes i, i+ 16, i+ 32, i+ 48.
This separation ensures that even the longest rules allowed in these experiments
would be unable to alter more than one element in any of the subfunctions.

A third variant of this problem (Shifted-Trap) was designed to be more dif-
ficult than the first for the COMA algorithm to learn a single generalisation,
by making patterns which were optimal in one sub-problem, sub-optimal in all
others. This was achieved by noting that each sub-problem as defined above is
a function of unitation, and therefore can be arbitrarily translated by defining
a 4-bit string and using the Hamming distance from this string in place of the
unitation. Since we have 16 sub-problems, we simply used the binary coding of
the sub-problem’s index as basis for its fitness calculation.

We used a generational genetic algorithm, with deterministic binary tourna-
ment selection for parents and no elitism. One Point Crossover (with probability
0.7) and bit-flipping mutation (with a bitwise probability of 0.01) were used on
the problem representation. These values were taken as “standard” from the lit-
erature, bearing in mind the nature of the 4-Trap function. Mutation was applied
to the rules with a probability of 0.0625 of selecting a new allele value in each
locus (the inverse of the maximum rule length allowed to the adaptive version).

For each problem, 20 runs were made for each population size {100,250,500}.
Each run was continued until the global optimum was reached, subject to a max-
imum of 1 million evaluations. Note that since one iteration of LS may involve
several evaluations, this allows more generations to the GA, i.e. we compare
algorithms strictly on the basis of the number of calls to the evaluation function.

The algorithms used are: a “vanilla” GA i.e. with no use of Local Search
(GA), a simple MA using one iteration of greedy ascent over the neighbourhood
at Hamming distance 1 (MA), a version of COMA using a randomly created
rule in each application, (i.e. with the learning disabled) (RandComa), variants
of COMA using rules of fixed lengths in the ranges {1, . . . , 9} (1-Coma,. . .,9-
Coma), and finally an adaptive version of COMA (A-Coma). For A-Coma the
rule lengths are randomly initialised in the range [1,16]. During mutation, a
value of +/− 1 is randomly chosen and added with probability 0.0625, subject
to staying in range.

5 Comparison Results

Figure 1 shows the results of these experiments as a plot of mean time to opti-
mum for 4-Trap with three different population sizes. When an algorithm failed
to reach the optimum in all twenty runs, the mean is taken over the successful
runs, and this number is shown. The error bars represent one standard deviation.
It should be noted that the scale on the y-axis is logarithmic. We can see that
the GA and MA,and 1-Coma algorithms fail to find the optimum as frequently,
or when they do as fast, for the smaller population sizes. For all population sizes
there is greater variance in the performance of these three algorithms than for
the other variants.

Because the variances are unequal, we applied the conservative Tamhane’s T2
test to the solution times for the successful runs to detect statistically significant



542 Jim Smith

GA MA Ran
d

ad-c
oma 1-co
ma

2-co
ma

3-co
ma

4-co
ma

5-co
ma

6-co
ma

7-co
ma

8-co
ma

9-co
ma

Algorithm

5

10

50

100

500

1000
800

Eva
luat

ions
 /10

00

Pop. 100
Pop. 250
Pop. 500

15
14

1819
18

Fig. 1. Times to optimum for the 4-Trap function. Note logarithmic y-axis

differences in performance. The GA, MA and 1-coma algorithms are significantly
slower than the rest at the 5% level for a population of 100. For a population size
of 250 the GA and MA algorithms are significantly slower. When the population
size is increased to 500, the worse performance seen with the GA and MA is no
longer significant, according to this conservative test. However, the Rand-Coma
is now significantly slower than all but the GA, MA and 2-Coma. 1-Coma is
significantly slower than all but the GA, and 2-Coma is slower than all but GA,
MA and Rand-Coma.

In short, what we can observe is that for fixed rule lengths of between 3 and
9, and for the adaptive version, the COMA system derives performance benefits
from evolving LS rules. Significantly, and unlike the GA and MA, the COMA
algorithm does not depend on a certain size population before it is able to solve
the problem reliably. This is indicative of a far more scaleable algorithm.

Figure 2 shows the results of the experiments on the variants of the trap
functions. For the “Shifted” trap function, the performances of the GA and MA
are not significantly different from those on the unshifted version. this refelects
the fact that these algorithms solve the sub-problems independently and are
“blind” to whether the optimal string for each is different. When we examine
the results for the COMA algorithms, we see slower solution times than on the
previous problem, resulting from the fact that no one rule can be found which will
given good performance in every subproblem. However we see a similar pattern
of reliable problem solving for all but 1-Coma and 2-Coma. Analysis reveals that
even these last two are statistically significantly better than GA or MA for all
but the largest population size. Interestingly, the RandComa algorithm performs
well here, probably as a natural consequence of using a random rule every time,
so promoting diversity in the rule base.

Considering Dist-Trap, we first note that the GA, MA and Rand-COMA
failed to solve the function to optimality in any run, regardless of population
size. The poor results of the GA can be attributed to the mismatch between the
distributed nature of the representation and the high positional bias of the 1-



Co-evolving Memetic Algorithms: Initial Investigations 543

GA MA Ra
nd

A-
co

ma
1-c

om
a

2-c
om

a
3-c

om
a

4-c
om

a
5-c

om
a

6-c
om

a
7-c

om
a

8-c
om

a
10

50

100

500

1000

Ev
alu

ati
on

s/1
00

0

Pop 500
Pop 100
Pop 250

"Shifted" Trap function

A-
co

ma

1-c
om

a

2-c
om

a

3-c
om

a

4-c
om

a

5-c
om

a

6-c
om

a

7-c
om

a

8-c
om

a

9-c
om

a

10

50

100

500

1000

"Distributed" Trap Function

19

13

16

16
14

14

19

12

8

17

18

15

16

14

5

1
1

13

18

14
4

1012

Fig. 2. Times to optimum for the Shifted-Trap and Dist-Trap. Note logarithmic y-axis.
Error bars omitted for clarity

point Crossover used. When we consider the action of the bitflipping LS operator
on a subproblem, this will lead towards the sub-optimal solution, whenever the
unitation is 0,1 or 2, and the greedy search of the neighbourhood will also lead
towards the deceptive optimum 75% of the time when the unitation is 3. This
observation helps us to understand the poor results of the simple MA, and the
1-Coma algorithm.

When we examine the other COMA results, noting that the success rate
is less than for the other problems, we again see the same pattern of better
performance for the adaptive version and fixed rulelengths in the range 3-5,
tailing off at the extreme lengths. Note that although the mean solution time
drops for long rule length, so too does the number of successful runs which we
take as our primary criterion. We also note that the failure of the RandComa
algorithm indicates that some learning is required here.

6 Discussion and Analysis

The results given above are promising from the point of view of improved opti-
misation performance, but require some analysis and explanation. The deceptive
functions used were specifically chosen because GA theory suggests that they are
solved by finding and mixing optimal solutions to sub-problems. When we con-
sider the results, we can see that the performance is best on 4-Trap, with a rule
length of 4, which would support the hypothesis that the system is “learning”
the structure of the sub-problems. Although not immediately apparent from the
logarithmic scales, the solutions times here are less than half those on the other
problems.

However we should note that the algorithms are not aware of the sub-problem
boundaries. On 4-Trap and Shifted-Trap, for lengths of 4 or less occasionally, and
always for lengths greater than 4, the changes made will overlap several sub-
problems. This must always happen for Dist-Trap. It is clear from the results



544 Jim Smith

0 5 10 15 20
0

20

40

60

80

100
4-Trap

0 25 50
Generations

0

20

40

60

80

100
Shifted Trap

0 25 50
0

20

40

60

80

100

Length (x10)
Specificity (%)
Unitation(%)
Best Fitness

Distributed trap

Fig. 3. Analysis of Evolving Rules by Function Type

with different rule lengths, and from the distributed problem, that there is a
second form of improvement working on a longer timescale., which does not
arise simply from the use of random rules.

In order to examine the behaviour of the algorithm we plotted the population
means of the effective rule length (only relevant for A-Coma), the “specificity”
(i.e. the proportion of values in the condition not set to #) and the “unitation”
(the proportion of bits in the action set to 1), and also the highest fitness in the
population (with 100 as the optimum) as a function of the number of elapsed
generations. Figure 3 shows the A-Coma results averaged over 20 runs on each
of the three problems, with a population of 250. We also manually inspected the
evolving rule bases on a large number of runs for each problem.

For the 4-Trap function (left hand graph), the system rapidly evolves medium
length (3 − 4), general (specificity < 50%) rules whose action is to set all the
bits to 1 (mean unitation approaches 100%). Note that in the absence of selec-
tive pressure (i.e. the pivot rules meant that the solutions were left unchanged),
all three of these values would be expected to remain at their initial values, so
these changes result from beneficial adaptation. Closer inspection of the evolv-
ing rulebase confirms that the optimal subproblem string is being learned and
applied.

For the Shifted-Trap function, where the optimal sub-blocks are all differ-
ent (middle) the rule length decreases more slowly. The specificity also remains
higher, and the unitation remains at 50%, indicating that different rules are
being maintained. This is borne out by closer examination of the rule sets.

The behaviour on Dist-Trap is similar to that on 4-Trap, albeit over a longer
timescale. Rather than learning specific rules about sub-problems, which cannot
possibly be happening (since no rule is able to affect more than one locus of
any subproblem), the system is apparently learning the general rule of setting
all bits to 1.

The rules are generally shorter than for 4-Trap, (although this is slightly
obscured by the averaging) which means that the number of potential neighbours



Co-evolving Memetic Algorithms: Initial Investigations 545

is higher for any given rule. Equally, the use of wildcard characters, coupled with
the fact that there may be matches in the two parts of the rules, means that
length of the rules used defines a maximum radius in Hamming space for the
neighbourhood, rather than a fixed distance from the original solution. Both
of these observations, when taken in tandem with the longer times to solution,
suggest that when the system is unable to find a single rule that matches the
problems’ structure, a more diverse search using a more complex neighbourhood
is used, which slowly adapts itself to the state of the current population of
solutions.

7 Conclusions

We have presented a framework in which rules governing LS operators to be
used in memetic algorithms can be co-evolved with the population of solutions.
A simple version was implemented which used Self-Adaptation of the patterns
defining the move operators, and this was shown to give improved performance
over both GAs and simple MAs on the test set. We showed that the system
was able to learn generalisations about the problem when these were useful.
We also noted that the COMA algorithms were far less dependant on a critical
population size to locate the global optima, and suggested that this indicates a
far more scaleable type of algorithm.

The test set used here was designed to maximise different types of difficulty
for COMA, namely deception, inappropriate representation ordering, and multi-
ple different optima. Although space precludes their inclusion, we have repeated
these experiments with a wide range of different problem types and found simi-
lar performance benefits. Clearly further experimentation and analysis is needed,
and there are many issues to be explored, however we believe that this paper
represents the first stage in a promising line of research.

References

1. Merz, P., Freisleben, B.: A comparion of Memetic Algorithms, Tabu Search, and
ant colonies for the quadratic assignment problem. In: Proceedings of the 1999
Congress on Evolutionary Computation, IEEE Service Center (1999) 2063–2070

2. Vavak, F., Fogarty, T., Jukes, K.: A genetic algorithm with variable range of
local search for tracking changing environments. In Voigt, H.M., Ebeling, W.,
I.Rechenberg, Schwefel, H.P., eds.: Proceedings of the Fourth Conference on Par-
allel Problem Solving from Nature, Springer Verlag (1996) 376–385

3. Knowles, J., Corne, D.: A comparative assessment of memetic, evolutionary and
constructive algorithms for the multi-objective d-msat problem. In: Gecco-2001
Workshop Program. (2001) 162–167

4. Moscato, P.: Memetic algorithms’ home page. Technical report,
http://www.densis.fee.unicamp.br/˜moscato/memetic home.html (2002)

5. Hart, W.E.: Adaptive Global Optimization with Local Search. PhD thesis, Uni-
versity of California, San Diego (1994)

6. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
The University of New Mexico, Albuquerque, NM (1995)



546 Jim Smith

7. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In
Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization, McGraw Hill
(1999) 245–260

8. Krasnogor, N., Smith, J.: Emergence of profitiable search strategies based on a
simple inheritance mechanism. In Spector, L., Goodman, E., Wu, A., Langdon,
W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke,
E., eds.: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, Morgan Kaufmann (2001) 432–439

9. Hansen, P., Mladenovic̀, N.: An introduction to variable neighborhood search. In
Voß, S., Martello, S., Osman, I.H., Roucairol, C., eds.: Meta-Heuristics: Advances
and trends in local search paradigms for optimization. Proceedings of MIC 97
Conference. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)

10. Schwefel, H.P.: Numerical Optimisation of Computer Models. John Wiley and
Sons, New York (1981)

11. Fogel, D.: Evolving Artificial Intelligence. PhD thesis, University of California
(1992)

12. Back, T.: Self adaptation in genetic algorithms. In Varela, F., Bourgine, P., eds.:
Towards a Practice on Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, MIT Press (1992) 263–271

13. Schaffer, J., Morishima, A.: An adaptive crossover distribution mechanism for ge-
netic algorithms. In J.J.Grefenstette, ed.: Proceedings of the Second International
Conference on Genetic Algorithms, Lawrence Erlbaum (1987) 36–40

14. Smith, J., Fogarty, T.C.: An adaptive poly-parental recombination strategy. In
Fogarty, T.C., ed.: Evolutionary Computing 2, Springer Verlag (1995) 48–61

15. Smith, J., Fogarty, T.: Adaptively parameterised evolutionary systems: Self adap-
tive recombination and mutation in a genetic algorithm. In Voigt, Ebeling, Rechen-
berg, Schwefel, eds.: Proceedings of the Fourth Conference on Parallel Problem
Solving from Nature, Springer Verlag (1996) 441–450

16. Husbands, P.: Distributed co-evolutionary genetic algorithms for multi-criteria
and multi-constraint optimisiation. In Fogarty, T., ed.: Evolutionary Computing:
Proceedings of the AISB workshop. LNCS 865, Springer Verlag (1994) 150–165

17. Paredis, J.: The symbiotic evolution of solutions and their representations. In
Eshelman, L.J., ed.: Proceedings of the Sixth International Conference on Genetic
Algorithms, Morgan Kaufmann (1995) 359–365

18. Potter, M.A., DeJong, K.: A cooperative coevolutionary approach to function
optimisation. In Davidor, Y., ed.: Proceedings of the Third Conference on Parallel
Problem Solving from Nature, Springer Verlag (1994) 248–257

19. Bull, L.: Artificial Symbiology. PhD thesis, University of the West of England
(1995)

20. Bull, L.: Evolutionary computing in multi agent environments: Partners. In Back,
T., ed.: Proceedings of the Seventh International Conference on Genetic Algo-
rithms, Morgan Kaufmann (1997) 370–377

21. Bull, L., Holland, O., Blackmore, S.: On meme-gene coevolution. Artificial Life 6
(2000) 227–235

22. Keller, R.E., Banzhaf, W.: The evolution of genetic code in genetic programming.
In Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M.,
Smith, R.E., eds.: Proceedings of the Genetic and Evolutionary Computation Con-
ference. Volume 2., Orlando, Florida, USA, Morgan Kaufmann (1999) 1077–1082

23. Back, T., Fogel, D., Michalwicz, Z.: Handbook of Evolutionary Computation.
Volume 1. Oxford University Press (1997)



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 549–557, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Consideration of Multiple Objectives
in Neural Learning Classifier Systems

Larry Bull and Matt Studley

Intelligent Autonomous Systems Lab
Faculty of Computing, Engineering & Mathematical Sciences

University of the West of England
Bristol BS16 1QY, U.K.

{larry.bull,matthew.studley}@uwe.ac.uk

Abstract. For effective use in a number of problem domains Learning
Classifier Systems must be able to manage multiple objectives. This paper
explicitly considers the case of developing the controller for a simulated mobile
autonomous robot which must achieve a given task whilst maintaining
sufficient battery power. A form of Learning Classifier System in which each
rule is represented by an artificial neural network is used. Results are presented
which show it is possible to solve both objectives when the energy level is
presented as an input along with sensor data. A more realistic, and hence more
complex, version of the basic scenario is then investigated.

1 Introduction

If autonomous artificial entities are to be used in complex problem domains they must
be able to consider multiple objectives. This paper examines a simple multiobjective
scenario using a form of Learning Classifier System (LCS) [16] in which each rule is
represented by a neural network (NCS) [6]. The case of a mobile autonomous robot
which must find the shortest path to a goal state whilst maintaining appropriate
battery power is investigated. To date, there has been very little work considering
multiple objectives with LCS or reinforcement learning techniques in general: Dorigo
and Colombetti [e.g. 12] presented a hierarchical approach in which a number of pre-
trained LCS considered one goal each and a higher-level LCS learned to switch
between the controllers appropriately; and Karlsson [17] has presented a similar
scheme for multiple Q learners [26]. Others have used reinforcement learning for
multiple sequential goals [e.g. 27]. Many artificial life "simulated world" experiments
are loosely related to this area since the organisms must often find food to exist or
reproduce whilst avoiding predators [e.g. 1]. The use of evolutionary computing
techniques for multiobjective optimization [e.g. 10] is also loosely related.

The paper is arranged as follows: the next section describes the LCS architecture
used and in Section 3 a simple two-objective maze task is presented with results. In



550      Larry Bull and Matt Studley

Section 4 complexity is added to the scenario, moving it closer to the envisaged robot
implementation, with all results and future work discussed in Section 5.

2 A Neural Learning Classifier System

The neural learning classifier system used here is based on Wilson’s ZCS [28].

2.1 ZCS

ZCS is a "Zeroth level" Learning Classifier System without internal memory, where
the rule-base consists of a population (P) of condition/action rules in which the con-
dition is a string of characters from a ternary alphabet {0,1,#} and the action is
represented by a binary string. Associated with each rule is a fitness scalar which acts
as an indication of the perceived utility of that rule within the system. This fitness of
each rule is initialised to a predetermined value termed f0.

Reinforcement in ZCS consists of redistributing fitness between subsequent
"action sets", or the matched rules from the previous time step which asserted the
chosen output or "action". A fixed fraction (β) of the fitness of each member of the
action set ([A]) at each time-step is placed in a "common bucket". A record is kept of
the previous action set [A]-1 and if this is not empty then the members of this action
set each receive an equal share of the contents of the current bucket, once this has
been reduced by a pre-determined discount factor (γ). If a reward is received from the
environment then a fixed fraction (β) of this value is distributed evenly amongst the
members of [A]. Finally, a tax (τ) is imposed on all matched rules that do not belong
to [A] on each time-step in order to encourage exploitation of the fitter classifiers.
Wilson [28] notes that this is a change to the traditional LCS bucket brigade
algorithm [17] since there is no concept of a rule bid, specificity is not considered
explicitly, and the pay-back is reduced by 1-γ on each step.

ZCS employs two discovery mechanisms, a panmictic genetic algorithm (GA) [15]
and a covering operator. On each time-step there is a probability p of GA invocation.
When called, the GA uses roulette wheel selection to determine two parent rules
based on fitness. Two offspring are produced via mutation (probability µ) and
crossover (single point with probability χ). The parents then donate half of their
fitnesses to their offspring who replace existing members of the rule-base. The
deleted rules are chosen using roulette wheel selection based on the reciprocal of rule
fitness. If on some time- step, no rules match or all matched rules have a combined
fitness of less than φ times the rule-base average, then a covering operator is invoked.

Bull and Hurst [5] have recently shown that ZCS is capable of optimal
performance due to its use of action set fitness sharing (this result contrasts with a
number of previous discussions, e.g. [29][8][20][7][21][4]). Here rule fitnesses
approach a similar value with rule numerosity indicating utility. However, parameter
setting is a crucial aspect of ZCS; to enable the fitness sharing process to occur



Consideration of Multiple Objectives in Neural Learning Classifier Systems      551

effectively appropriate settings, particularly for the learning rate, must be found for a
given task. Current work is examining just how robust ZCS is to parameters settings.

2.2 A Neural Rule Representation

As LCS are applied to more complex domains the traditional ternary encoding can
become limiting (e.g. see [27] for early discussions). Bull and O’Hara [e.g. 6] have
examined the use of a neural rule representation scheme for LCS whereby each rule is
represented by a multi-layered perceptron (MLP), following from a number of
investigations which have made use of other complex rule representations, such as
fuzzy logic [e.g. 25] and numerical S-expressions [2]. Since their inception LCS have
been compared to neural networks, both conceptually [e.g. 13] and functionally (e.g.
[9][24][11]). Bull [3] has suggested that the neural representation scheme is
particularly suited to the use of LCS for autonomous robotics as "atoms" of behaviour
need not be defined a priori, giving the system greater flexibility; actions can be
functions of inputs. A new potential benefit from the incorporation of the neural
paradigm into LCS is highlighted here.

The representation scheme is related to the use of evolutionary computing
techniques to evolve neural networks in general (e.g. see [31] for an overview). In
contrast to the majority of that work, an LCS-based approach is coevolutionary, the
aim being to develop a number of (small) cooperative neural networks to solve the
given task, as opposed to the evolution of one (large) network. That is, a
decompositional approach is proposed. Whilst a number of schemes presented to aid
the traditional approach could be used within NCS, such as development [e.g. 14], the
simple approach appears sufficient here. SANE [22] is most similar to NCS, however
SANE coevolves individual neurons within an LCS-based framework rather than
small networks of neurons.

The neural scheme works as follows. On receipt of a sensory input (each rule has
one input node per input feature), each member of the rule base processes the input in
the usual manner for a feedforward MLP using sigmoid transfer functions. All rules
have an "extra" output node which signifies whether it should be considered for the
current input. Unless this node has the highest activation level on a system cycle, the
given rule’s condition matches the input and it is tagged as a member of the current
match set [M]. Rules propose the action with the highest activation in the output layer
node on a cycle, i.e. there is one per action. An action is selected from those
advocated by the rules comprising [M] as usual for the chosen underlying LCS
architecture.

Rules are represented to the GA as a concatenated string of weights where full
connectivity is assumed. Bull and O’Hara [6] discuss the role of the reproduction cost
in ZCS, suggesting it may remove rules which never match an input and hence whose
fitness remains at f0 which may disrupt the fitness sharing equilibrium. It can also be
seen to reduce the initial "runaway" success of those rules in high payoff niches; the
reproductive cost gives the fitness sharing process chance to have an effect within the
rule base. It may also be suggested that the reinforcement component, due to  the one-



552      Larry Bull and Matt Studley

step delay in the rule updating of the traditional bucket brigade algorithm, disrupts the
fitness sharing process; when the GA fires, the rules in the current [A] have reduced
fitnesses, i.e. they will be away from the equilibrium fitness, which makes them
susceptible to deletion. However, this can also be viewed as having a beneficial effect
on the fitness sharing process as it may aid the suppression of rules in the more
frequently visited (updated) niches from gaining a disruptive advantage, particularly
early on. Note Wilson’s [29] triggered niche GA scheme addresses this problem and
the use of such a GA within ZCS and its effects on the fitness sharing process is
currently under investigation.

Hence all processing, apart from the matching procedure and the mutation operator
(Gaussian on satisfaction of µ per gene), remains the same as that described in
Section 2.1 for this paper.

3 A Simple Multiobjective Task

As noted in the introduction, the case of a mobile autonomous robot which must find
the shortest path to a goal state whilst maintaining appropriate battery power is
considered here. The aim being to move to a real robot platform once expected
behaviour is established.

Figure 1 shows a version of the well known Woods 1 [28] maze task which is a
two dimensional rectilinear 5x5 toroidal grid. To create two objectives, sixteen cells
are blank, seven are blocked (B), one contains a power source (P), and the last is the
goal state (G). The NCS is used to develop the controller of a simulated robot which
must traverse the maze in search of the goal state. It is positioned randomly in one of
the blank cells and can move into any one of the surrounding eight cells on each
discrete time step, unless it is blocked. If the robot moves into the goal cell the system
receives a reward from the environment, and the task is reset, i.e. food/energy
replaced and the robot randomly relocated. Similarly, if the robot moves into the
power source cell the system receives a reward from the environment, and the task is
reset. The reward received in either case depends upon the robot’s internal energy
level ε, randomly set from the range [0.0, 1.0] at the start of each trial. If the robot
goes to the goal state and ε > 0.5 it receives 1000 otherwise 1. The opposite is true for
reaching the power source.

On each time step the robot receives a sensory message which describes the eight
surrounding cells. The message is encoded as a 16-bit binary string with two bits
representing each cardinal direction. A blank cell is represented by 00, goal by 11,
power by 01 and blocked cells by 10. The message is ordered with the cell directly
above the robot represented by the first bit-pair, and then proceeding clockwise
around it. The robot is also able to sense its internal energy value (single real
number).

The trial is repeated 40,000 times and a record is kept of a moving average (over
the previous 50 trials, after [28]) of how many steps it takes for the NCS robot to
move into a goal cell or a power cell on each trial. Optimum performance is 1.7 steps



Consideration of Multiple Objectives in Neural Learning Classifier Systems      553

to the goal under the single objective scenario. The average value of the reward
received by the robot per trial is also recorded in this way. For the last 2000 trials the
GA is switched off and a deterministic action selection scheme is used whereby the
action with largest total fitness in [M] is picked (after [5]). All results presented are
the average of ten runs unless otherwise stated.

Figure 2 shows how NCS is able to solve the multiobjective task. Here each rule
has seventeen input, six hidden and nine output nodes. The parameters used were:  P
= 6000, f0 = 20, β = 0.9, γ = 0.3, τ = 0.1, µ = 0.02, χ= 0.5, p = 0.25, φ = 0.5. Figure
2(a) shows a typical run under which, for both goal finding and power source finding,
NCS takes around three steps during the first 38,000 trials, before giving roughly
optimal performance under the deterministic mode. Note this is not the average of ten
runs as the stochastic nature of the energy level assignment causes variance in the
number of trials in which either cell is reached and hence averaging obscures
underlying behaviour. Figure 2(b) shows how the reward received by the robot rises
to about 900 after 10,000 trials and 1000 under deterministic action selection. That is,
the NCS controller has learnt when, and the shortest route, to reach either the goal
state or power cell depending upon its internal energy level.

Fig. 1. A simple Multiobjective maze.

4 Towards Robotics: Dynamic Internal State

In the above scenario the (random) level of internal energy remained constant
throughout a trial and reward levels were determined simply. In effect two traditional
payoff landscapes existed, the robot experiencing either depending upon the assigned
ε. More realistically, as the robot moves, the level of internal energy should decrease
and the reward received for reaching the power source or goal state should be a
function of the energy level.

Figure 3 shows the performance of NCS on the simple maze task where the initial
random energy level (range [0.5, 1.0]) was decreased by 0.01 per move and the
reward received for reaching the power source was 1000(1-ε), whilst that for reaching
the goal was 1000ε. All parameters were as before except χ=0.1 and trials were run
for longer. Figure 3(a) again shows a typical single run during which NCS learns the
shortest path to either objective. Figure 3(b) shows how it gradually learns to improve
the amount of reward received. Optimal performance is difficult to ascertain here but



554      Larry Bull and Matt Studley

with half as many power source trials to goal state trials, each taking the optimal
number of steps in either case, an average reward of around 600 is eventually seen.

Fig. 2. NCS performance on the simple multiobjective task.

Therefore a simple approach to the consideration of more than one objective in the
learning task of an LCS, where a non-trivial relationship exists between them, is
possible. Future work will examine how well this scales to more than two objectives
and more complex relationships thereby exploiting the neural representation scheme.

5 Conclusions

For Learning Classifier Systems to be effective in a number of complex problem
domains they must be able to consider multiple objectives. This paper has examined
developing the controller of a mobile autonomous robot which must achieve a given
task whilst maintaining sufficient battery power. Results showed it is possible for
NCS to solve both objectives when a random energy level is presented as an input
along with sensory data. Here two payoff landscapes are experienced by the learner,
one for low internal energy and one for high. A more complex version of the basic
scenario was then examined under which the payoff landscape was a function of the



Consideration of Multiple Objectives in Neural Learning Classifier Systems      555

internal energy level and hence the position of the robot at any given time was an
increasingly significant factor in action choice. NCS was again shown able to perform
well under such circumstances. It is important to note just how different this scenario
is from single objective tasks: the payoff landscape is dynamic, changing shape under
the influence of the learner’s actions.

Fig. 3. NCS performance with movement cost and functional reward.

NCS’s ability to form generalizations across payoff levels was highlighted in [6].
The dynamic payoff aspect of multiobjective problems makes the use of rule
prediction accuracy for fitness [29] problematic, although Wilson’s [30] suggestion
of using a neural network payoff predictor for each rule represents a way to overcome
such difficulties. This is currently under investigation by the authors, as are
comparisons with other possible approaches to multiobjective reinforcement learning,
such as hierarchies.

The results of this work are now being moved to a real robot platform after [18]. In
that work a version of ZCS has been presented which learns to discretize continuous
input spaces and considers real-time in the reinforcement process. Their scheme also
relies upon the delay in bucket brigade updates to encourage optimal generalizations
over the input space. Use of the neural rule structure is being added to the architecture
(TCS) to develop controllers for multiobjective tasks.



556      Larry Bull and Matt Studley

Acknowledgements

Thanks to the members of the Learning Classifier Systems Group at UWE for many
useful discussions during this work.

References

1. Ackley, D. & Littman, M. (1992) Interactions Between Learning and Evolution. In C.G.
Langton, C. Taylor, J.D. Farmer & S. Rasmussen (eds) Artificial Life II, Addison Wesley,
pp487-510.

2. Ahluwalia, M. & Bull, L. (1999) A Genetic Programming-based Classifier System. In W.
Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela & R.E. Smith (eds)
GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference.
Morgan Kaufmann, pp11-18.

3. Bull, L. (2001) A Brief Note on the use of Constructivism in Neural Classifier Systems.
UWE Learning Classifier Systems Group Technical Report 01-006. Available from
http://www.csm.uwe.ac.uk/lcsg.

4. Bull, L. (2002) On Accuracy-Based Fitness. In L. Bull, P-L. Lanzi & W. Stolzmann (eds)
Soft Computing: Special Issue on Learning Classifier Systems 6 (3).

5. Bull, L. & Hurst, J. (2001) ZCS: Theory and Practice. UWE Learning Classifier Systems
Group Technical Report 01-001. To appear in Evolutionary Computation.

6. Bull, L. & O’Hara, T. (2001) NCS: A Simple Neural Classifier System. UWE Learning
Classifier Systems Group Technical Report 01-005.

7. Butz, M., Goldberg, D.E. & Stolzmann, W. (2000) The Anticipatory Classifier System and
Genetic Generalization. IlliGAL Report No. 2000032, University of Illinois at Urban-
Champaign, USA.

8. Cliff, D. & Ross, S. (1994) Adding Temporary Memory to ZCS. Adaptive Behaviour
3:101-150.

9. Davis, L. (1989) Mapping Neural Networks into Classifier Systems. In J.D. Schaffer (ed)
Proceedings of the Third International Conference on Genetic Algorithms, Morgan
Kaufmann, pp375-378.

10. Deb, K. (2001) Evolutionary Multiobjective Optimization Algorithms. Wiley.
11. Dorigo, M. & Bersini, H. (1994) A Comparison of Q-learning and Classifier Systems. In

D. Cliff, P. Husbands, J-A. Meyer & S.W. Wilson (eds) Proceedings of the Third
International Conference on Simulation of Adaptive Behaviour: From Animals to Animats
3. MIT Press, pp248-255.

12. Dorigo, M. & Colombetti, M. (1998) Robot Shaping. MIT Press.
13. Farmer, J.D. (1989) A Rosetta Stone for Connectionism. Physica D 42:153-187.
14. Gruau, F. & Whitley, D. (1993) Adding Learning to the Cellular Developmental Process: a

Comparative Study. Evolutionary Computation 1(3):
15. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan

Press.
16. Holland, J.H. (1976) Adaptation. In R. Rosen & F.M. Snell (eds) Progress in Theoretical

Biology, 4. Plenum.
17. Holland, J.H. (1986) Escaping Brittleness. In R.S. Michalski, J.G. Carbonell & T.M.

Mitchell (eds) Machine Learning: An Artificial Intelligence Approach, 2. Morgan
Kauffman, pp48-78.



Consideration of Multiple Objectives in Neural Learning Classifier Systems      557

18. Hurst, J., Bull, L. & Melhuish, C. (2002) ZCS and TCS Learning Classifier System
Controllers on Real Robots. UWE Learning Classifier Systems Group Technical Report
02-002.

19. Karlsson, J. (1997) Learning to Solve Multiple Goals. PhD Dissertation, Rochester.
20. Kovacs, T. (2000) Strength or Accuracy? A Comparison of Two Approaches to Fitness

Calculation in Learning Classifier Systems. In P-L. Lanzi, W. Stolzmann & S.W. Wilson
(eds) Learning Classifier Systems: From Foundations to Applications, Springer, pp194-
208.

21. Lanzi, P-L. & Wilson, S.W. (2001) Toward Optimal Classifier System Performance in
Non-Markov Environments. Evolutionary Computation 8(4):393- 418.

22. Moriarty, D.E & Miikulainen, R. (1997) Forming Neural Networks through Efficient and
Adaptive Coevolution. Evolutionary Computation 5(2): 373-399.

23. Schuurmans, D. & Schaeffer, J. (1989) Representational Difficulties with Classifier
Systems. In J.D. Schaffer (ed) Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, pp328-333.

24. Smith, R.E. & Cribbs, B. (1994) Is a Learning Classifier System a Type of Neural
Network? Evolutionary Computation 2(1): 19-36.

25. Valenzuela-Rendon, M. (1991) The Fuzzy Classifier System: a Classifier System for
Continuously Varying Variables. In L. Booker & R. Belew (eds) Proceedings of the
Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, pp346-353.

26. Watkins, C. (1989) Learning from Delayed Rewards. PhD Dissertation, Cambridge.
27. Wiering, M. & Schmidhuber, J. (1997) HQ-Learning. Adaptive Behaviour 6(2): 219-246
28. Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System. Evolutionary Computation

2(1):1-18.
29. Wilson, S.W. (1995) Classifier Fitness Based on Accuracy. Evolutionary Computation

3(2):149-177.
30. Wilson, S.W. (2000) State of XCS Classifier System Research. In P-L. Lanzi, W.

Stolzmann & S.W. Wilson (eds) Learning Classifier Systems: From Foundations to
Applications, Springer, pp63-82.

31. Yao, X. (1999) Evolving Artificial Neural Networks. Proccedings of the IEEE
87(9):1423-1447.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 558–567, 2002.
© Springer-Verlag Berlin Heidelberg 2002

On Using Constructivism in Neural Classifier Systems

Larry Bull

Intelligent Autonomous Systems Laboratory
Faculty of Computing, Engineering & Mathematical Sciences

University of the West of England
Bristol BS16 1QY, U.K.
larry.bull@uwe.ac.uk

Abstract. For artificial entities to achieve true autonomy and display complex
life-like behaviour they will need to exploit appropriate adaptable learning
algorithms. In this sense adaptability implies flexibility guided by the
environment at any given time and an open-ended ability to learn novel
behaviours. This paper explores the potential of using constructivism within the
neural classifier system architecture as an approach to realise such behaviour.
The system uses a rule structure in which each is represented by an artificial
neural network. Results are presented which suggest it is possible to allow
appropriate internal rule complexity to emerge during learning and that the
structure indicates underlying features of the task.

1 Introduction

Neural Constructivism (NC) [e.g. 1] proposes a scenario whereby the representational
features of the cortex are built through the interactions of the learning entity’s
development processes and its environment. This paper examines the feasibility of a
constructive approach to realize flexible learning within a machine learning
architecture which combines neural networks, reinforcement learning and evolution-
ary computing. Reinforcement learning techniques have been used to control autono-
mous entities [e.g. 2]. However, in most cases the entities can carry out only pre-
specified actions or combinations thereof, where acquired knowledge can sometimes
guide the latter. Conversely, biological systems, through sensory input and motor
actions, acquire new information and organize it into operational knowledge which
then shapes future behaviour. Approaches which generate knowledge not simply by
combining existing knowledge but by producing knowledge which brings new
functionality to the system are fundamental to the realization of truly autonomous
entities. The aim of this paper is to show it may be possible to move toward artificial
entities which exhibit such life-like qualities through NC, based around a new version
of the Learning Classifier System (LCS) [3] framework - the Neural Classifier System
(NCS) [4].

The production of autonomous intelligence requires the consideration of a number
of issues including, but not limited to: the learning architecture, which must be



On Using Constructivism in Neural Classifier Systems      559

flexible and responsive to environmental change, open ended, with automatic shifts in
computational effort; and the knowledge representation, needed to provide
generalization abilities over the input-action space thereby reducing the size of
internal models, the inclusion of dimensions such as temporal context, and be scalable
to an increase in sensory input. The field of reinforcement learning is concerned with
many of these issues (see [5] for an overview). LCS are a class of reinforcement
learner with a number of features which potentially enable them to consider many of
the issues within a coherent whole.

It has recently been shown that a very simple LCS based on Holland’s ideas can
perform optimally, Wilson’s ZCS [6], through its use of fitness sharing [7]. Bull and
O’Hara [8] have shown how a simple LCS framework can allow aspects of Holland’s
original framework to be realised effectively through a neural network-based rule
representation scheme - NCS. They show NCS is capable of optimal performance, the
automatic formation of default hierarchy-like structures and has the potential to
maintain multiple lines of internal induction. In this paper the emergence of
appropriate rule complexity is considered.

The paper is arranged as follows: the next section briefly describes NCS and
Section 3 the simple maze task. In Section 4 the use of neural constructivism within
the system is presented. Finally, all results are discussed.

2 NCS: A Simple Neural Learning Classifier System

NCS [8] is based on the ZCS [6] Learning Classifier System. It periodically receives
an input from its environment, determines an appropriate response based on this input
and performs the indicated action, usually altering the state of the environment.
Desired behaviour is rewarded by providing a scalar reinforcement. Internally the
system cycles through a sequence of performance, reinforcement and discovery on
each discrete time-step.

The NCS rule-base consists of a population of P multi-layered perceptrons
(MLPs). Each rule is encoded as a string of connection weights; full connection is
assumed. Weights are initialised randomly. Also associated with each rule is a fitness
scalar initialised to a predetermined value f0.

On receipt of a sensory input, each rule has one input node per input feature, all
members of the rule-base process the input in the usual manner for an MLP. Each rule
has an "extra" output node which signifies whether its output should be considered
for the current input. If this node does not have the highest activation level, the given
rule’s condition "matches" the input and it is tagged as a member of the current match
set [M]. An action is selected from those advocated by the rules comprising [M].
Rules propose an action by having their highest activation on a given output layer
node. Action selection in NCS is performed by a simple roulette wheel selection
policy based on fitness. Once an action has been selected, all rules in [M] that
advocate this action are tagged as members of the action set [A] and the system
executes the action.



560      Larry Bull

Reinforcement in NCS is done under the implicit bucket brigade [6] which is
closely related to Sutton’s TD(0) algorithm [9] and consists of redistributing fitness
between subsequent [A]. A fixed fraction (β) of the fitness of each member of [A] at
each time- step is placed in a "common bucket". A record is kept of the previous
action set [A]-1 and if this is not empty then the members of this action set each
receive an equal share of the contents of the current bucket, once this has been
reduced by a pre-determined discount factor (γ). If a reward is received from the
environment then a fixed fraction (β) of this value is distributed evenly amongst the
members of [A]. Finally, a tax (τ) is imposed on all matched rules that do not belong
to [A] on each time-step in order to encourage exploitation of the fitter classifiers.
That is, all matching rules not in [A] have their fitnesses reduced by factor τ thereby
reducing their chance of being selected on future cycles.

NCS employs two discovery mechanisms, a genetic algorithm (GA)[10] operating
over the whole rule-set at each instance (panmictic) and a covering operator. On each
time-step there is a probability p of GA invocation. When called, the GA uses roulette
wheel selection to determine two parent rules based on fitness. Two offspring are
produced via mutation and crossover (single point). The parents then donate half of
their fitnesses to their offspring who replace existing members of the population. The
deleted rules are chosen using roulette wheel selection based on the reciprocal of
fitness.

If on some time-step, [M] is empty or has a combined fitness of less than φ times
the population average, then a covering operator is invoked. A random rule is created
which matches the environmental input. The new rule is given a fitness equal to the
population average and inserted into the population over writing a rule selected for
deletion as before.

Typical parameters used [8] are: Rule-base (P) = 1000, initial rule fitness (f0 ) =
20.0, learning rate (β) = 0.8, discount factor (γ) = 0.3, tax (τ) = 0.1, cover trigger (φ) =
0.5, GA rate per time step (p) = 0.25, crossover rate = 0.5, and per gene Gaussian
mutation rate (µ) = 0.02.

3 A Simple Maze Task

3.1 Woods 1

Figure 1(a) shows the well-known Woods 1 [6] maze task which is a two dimensional
rectilinear 5x5 toroidal grid. Sixteen cells are blank, eight contain trees and one
contains food. The NCS is used to develop the controller of a simulated robot which
must traverse the map in search of food. It is positioned randomly in one of the blank
cells and can move into any one of the surrounding eight cells on each discrete time
step, unless occupied by a tree. If the robot moves into the food cell the system
receives a reward from the environment (1000), and the task is reset, i.e. food is
replaced and the robot randomly relocated.



On Using Constructivism in Neural Classifier Systems      561

On each time step the robot receives a sensory message which describes the eight
surrounding cells. The message is encoded as a 16-bit binary string with two bits
representing each cardinal direction. A blank cell is represented by 00, food (F) by 11
and trees (t) by 10 (01 has no meaning). The message is ordered with the cell directly
above the robot represented by the first bit-pair, and then proceeding clockwise
around it.

The trial is repeated 20,000 times and a record is kept of a moving average (over
the previous 50 trials, after [6]) of how many steps it takes for the NCS robot to move
into a food cell on each trial. If it moved randomly Wilson calculates performance at
27 steps per trial, whilst the optimum is 1.7 steps. For the last 2000 trials the GA is
switched off and a deterministic action selection scheme is used whereby the action
with largest total fitness in [M] is picked (after [7]). All results presented are the
average of ten runs.

Fig. 1. Woods 1 (a) and NCS performance in the maze (b).

Figure 1(b) shows how standard NCS is able to solve the maze optimally. Here
each rule has sixteen input, four hidden and nine output nodes. The parameters used
were as given in Section 2. It can be seen that NCS takes around three steps to food
during the first 18,000 trials, before giving optimal performance under the
deterministic mode.

3.2 Continuous Inputs and Actions: Less Restricted Behavioural Repertoires

As noted in the introduction, one restriction of many approaches to autonomous
entities is the a priori fixing of the types of behaviour the system may exhibit. That is,
working at a similar level to that of Woods 1, motor control for "go forward" is
calculated and fixed, as they are for turns, etc. The learning entity then attempts to
combine such "atoms" of behaviour to achieve the set task. However, depending on
the level and number of different atoms, potential behaviour is restricted under this
scheme. Harvey et al. [e.g. 11] have shown it is possible to evolve neural network
controllers where system output is a (complex) function of input; they connect



562      Larry Bull

neurons directly to motors, with activation converted to power, thereby avoiding the
need to prescribe atoms of behaviour.

Very little work exists on the use of LCS to solve multi-step tasks where the input
and output spaces are real-valued, those using fuzzy logic being the only known
examples (see [12] for an overview). NCS can of course also be used in such cases.
To demonstrate this simply, Woods 1 has been slightly modified.

Here the robot receives the same sensory input from its surroundings as before but
these are random real values over predefined ranges: a blank cell is represented by the
range [0.0<x<0.1], food by [0.9<x<1.0] and trees by [0.4<x<0.5]. Hence each neural
rule contains eight input nodes, one for each sensory direction. Actions are given via
two output nodes, each imagined as directly controlling one motor of a two-driving-
wheeled autonomous robot. To give the eight possible actions of the original task,
outputs are discretised into three ranges: low [-1.0<x< -0.3], medium [-0.3<x<0.3]
and high [0.3<x<1.0]. Hence with both output neurons giving a high response the
robot moves north, when node 1 is high and node 2 is medium it moves northeast,
when node 1 is high and node 2 is low it moves east, and so on. The last two
combinations (low,medium and low,low) both move the robot northwest. Hence
networks consist of eight input nodes, four hidden layer nodes and three output nodes,
the latter being linear. Whilst this is a crude approximation of a continuous space
model it allows for the demonstration of the capability required of NCS.

Fig. 2. NCS performance in Woods 1 with continuous valued inputs and actions.

Given the more complex relationship between the inputs and actions the extra
matchset membership node mechanism is simplified: when the node gives a positive
response to an input the rule does not join [M].

Figure 2 shows NCS gives very similar performance as in the discrete case and
gives optimal performance under deterministic action selection. That is, NCS appears
able to learn effectively in multi-step tasks where the actions are a function of the
inputs implying it may be used without predefined behavioural atoms. Parameters
were as before except β = 0.9.



On Using Constructivism in Neural Classifier Systems      563

4 Neural Constructivism in NCS

One neurobiological theory for the emergence of complex reasoning within brains
postulates that the dynamic interaction between neural growth mechanisms and the
environment drives the learning process, known as neural constructivism [e.g. 1].
This is in contrast to the related evolutionary selectionist idea which emphasises
regressive mechanisms whereby initial neural over-connectivity is pruned based on a
measure of utility [e.g. 13]. The scenario for constructionist learning is that, rather
than start with a large neural network, development starts with a small network.
Learning then adds appropriate structure, particularly through growing/pruning
dendritic connectivity, until some satisfactory level of utility is reached. In this way
the building of a representation of the problem space is both flexible and tailored to
the problem by the learner’s interaction with it. Therefore suitable, specialized neural
structure need not be specified a priori.

Redding et al. [14] have used heuristics to add hidden nodes to an MLP during
training, showing an ability to develop suitable structure whilst learning a given task.
The use of evolutionary computing techniques to allow for the emergence of
appropriate complexity in neural networks has been examined by Harvey et al. [e.g.
11]. Here an evolutionary gradualism mechanism is used such that the length of the
genotypes can increase to an appropriate size over time; extra nodes can be added to
the network through a mutation-like operator during reproduction. Other population-
level techniques which allow for an appropriate increase in genotype complexity
include duplication [15], where a given genotype has the potential to double in length,
and symbiogenesis [e.g. 16], where genotypes from separate coevolving populations
can merge.

4.1 A Simple Process of Constructivism

The basic concept of neural constructivism can be used within NCS, termed NCSc, to
allow for the emergence of appropriate rule complexity to a given task. Here each
rule can have one or more of a fixed number of nodes in its hidden layer fully
connected to the input and output layers. With some probability(ψ) such connections
for another unconnected node can be added and/or removed from the last connected
node with a given probability (ϖ) during reproduction. Hidden nodes are coded on
the right-most end of genotypes and the crossover point is chosen using the rule with
fewest connected nodes. In this way no other considerations for what is implicitly a
variable length representation are needed; the weights for unconnected nodes are
simply zero. This aspect of the system is open to future investigation.

4.2 Results

Figure 3(a) shows the performance of NCSc on the simple maze task where rules
started with one connected node in the hidden layer. The parameters used were as



564      Larry Bull

before but P=2000, ψ=0.01 and  ϖ=0.01. It can be seen that optimal performance is
obtained in the simple maze. Figure 3(b) shows the average number of connected
nodes in the hidden layer of the rules. Here the neural constructivism mechanism
causes an increase in the number of hidden nodes connected before achieving optimal
performance, although there is an expected cost in terms of time taken whilst average
connectivity increases. On average, rules use two or three hidden layer nodes here.
Examination of the resulting rules shows a degree of spatial heterogeneity. For
example, three of the four locations in the top left corner of Woods 1 (Figure 1a) are
typically handled by a rule proposing a move southeast (as noted in [8]). The
remaining location is often handled by another rule advocating the necessary move
east. Inspection shows that the three-move rule typically contains three hidden nodes,
whereas the single move rule contains two hidden nodes. That is, the building of a
representation of the problem space has been tailored to the problem by NCSc’s
interaction with it under the constructivism process.

Fig. 3. NCSc performance with single initial hidden nodes.

Figure 4 shows the performance of NCSc with the same parameters and started with
four hidden nodes connected, i.e. as in Figure 2 but with constructivism sampling rule
connectivity. It can be seen that the average number of hidden nodes drops slightly
over the trials with the system solving the task. Hence no significant disruption to the
learning process appears to occur when NCSc is started with what is known to be an
appropriate degree of rule complexity. It can also be noted that there is less pressure
to prune average rule connectivity. Future work will examine the sensitivity of the
system to ψ and ϖ.



On Using Constructivism in Neural Classifier Systems      565

Fig. 4. NCSc performance with four initial hidden nodes.

5 Conclusions

The LCS approach to artificial learning entities would appear to, potentially at least,
encompass many of the key aspects raised in the introduction. This paper has
explored the use of constructivism within the neural classifier system architecture as
an approach to aid the realization of complex/appropriate autonomous behaviour,
exploiting NCS’s basis in evolutionary computing. Future work will consider the
growth of recurrent connections for non-Markov mazes (after [8]).

NCS uses a neural network to form generalizations over the space of possible
inputs and outputs, producing rules for the high payoff actions only. Typically,
reinforcement learning approaches attempt to build generalizations over the full
input- action space. When the number of such states is large, neural networks have
been used to learn the payoff values, one for each possible action [e.g. 5]. However,
this cannot easily be used for tasks where the action space is continuous. NCS uses
the genetic algorithm to design neural networks to generalize at a level which enables
continuous actions. The ability to, and utility of, learning systems to construct full
payoff maps in complex problem domains remains open to question; for increasingly
complex spaces, sufficient sampling to build accurate, complete models becomes
increasingly difficult. However, a version of NCS has been presented which attempts
to form complete maps using accuracy-based fitness [4] and future work will explore
its behaviour in comparison to the system used here. The payoff-based version has an
advantage in that it can form generalizations across payoff levels (see [8] for
discussions). Wilson [17] has suggested that each rule in an accuracy-based system



566      Larry Bull

maintain its own network to produce the Q/payoff value for a given input, i.e. as done
in reinforcement learning. The utility of this approach is currently under
investigation.

The use of fuzzy logic within the neural structures (e.g. see [18] for an overview)
is currently being investigated as this would appear to ease both the use of memory
(e.g. see [19] for discussions) and the reinforcement learning process (e.g. see [12] for
discussions) for fuzzy LCS. One of the potential benefits of fuzzy reasoning for
autonomous entities being the characteristically graceful switch between actions
rather than possibly abrupt change for slight changes in input (see [20] for initial
results).

Techniques which further exploit the evolutionary computing basis of LCS are also
being investigated, such as parameter self-adaptation [e.g. 21] which has been shown
to improve on-line performance by annealing GA disruption and to improve response
to environmental change [22].

References

1. Quartz, S.R & Sejinowski, T.J. (1997) The Neural Basis of Cognitive Development: A
Constructionist Manifesto. Behavioural and Brain Sciences 20(4): 537-596.

2. Mataric, M.J. (1997) Reinforcement Learning in the Multi-Robot Domain. Autonomous
Robotics 4(1): 73-83.

3. Holland, J.H. (1976) Adaptation. In R. Rosen & F.M. Snell (eds) Progress in Theoretical
Biology, 4. Plenum.

4. Bull, L. & O’Hara, T. (2001a) A Neural Rule Representation for Learning Classifier
Systems. UWE Learning Classifier Systems Group Technical Report 01-002. Available
from http://www.cems.uwe.ac.uk/lcsg.

5. Sutton, R.S. & Barto, A.G. (1998) Reinforcement Learning. MIT Press,
6. Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System. Evolutionary Computation

2(1):1-18.
7. Bull, L. & Hurst, J. (2001) ZCS: Theory and Practice. UWE Learning Classifier Systems

Group Technical Report 01-001. Available from http:// www.cems.uwe.ac.uk/lcsg. To
appear in Evolutionary Computation.

8. Bull, L. & O’Hara, T. (2001b) NCS: A Simple Neural Classifier System. UWE Learning
Classifier Systems Group Technical Report 01-005. Available from http://
www.cems.uwe.ac.uk/lcsg.

9. Sutton, R.S. (1996) Generalization in Reinforcement Learning: Successful Examples
using Sparse Coarse Coding.  In D.S. Touretzky, M.C. Mozer & M. Hasselmo (eds)
Advances in Neural Information Processing Systems: Proceedings of the 1995
Conference, MIT Press, pp1038-1044.

10. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of
Michigan Press.

11. Harvey, I., Husbands, P. & Cliff, D. (1994) Seeing the Light: Artificial Evolution, Real
Vision. In D. Cliff, P. Husbands, J-A. Meyer & S.W. Wilson (eds) From Animals to
Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive
Behaviour. MIT Press, pp392-401.



On Using Constructivism in Neural Classifier Systems      567

12. Bonarini, A. (2000) An Introduction to Fuzzy Learning Classifier Systems. In P- L. Lanzi,
W. Stolzmann & S.W. Wilson (eds) Learning Classifier Systems: From Foundations to
Applications. Springer, pp83-106.

13. Edelman, G. (1987) Neural Darwinism: The Theory of Neuronal Group Selection. Basic
Books.

14. Redding, N.J., Kowalcyzk, A. & Downs, T. (1993) Constructive Higher-Order Network
Algorithm thet is Polynomial Time. Neural Networks 6:997-1010.

15. Lindgren, K. & Nordhal, M.G. (1995) Cooperation and Community Structure in Artificial
Ecosystems. Artificial Life 1(1) 15-38.

16. Bull, L., Fogarty, T. & Pipe, A. (1995) Artificial Endosymbiosis. In  In F. Moran, A.
Mereno, J.J. Merelo & P. Chaon (eds) Advances in Artificial Life - Proceedings of the
Third European Conference on Artificial Life. Springer Verlag, pp273-289.

17. Wilson, S.W. (2000) State of XCS Classifier System Research. In P-L. Lanzi, W.
Stolzmann & S.W. Wilson (eds) Learning Classifier Systems: From Foundations to
Applications, Springer, pp63-82.

18. Tsoukalas, L.H. & Uhrig, R.E. (1997) Fuzzy and Neural Approaches in Engineering.
Wiley.

19. Furuhashi, K., Nakaoka, K., Morikawa, K. & Uchikawa, Y. (1993) Controlling Excessive
Fuzziness in a Fuzzy Classifier System. In S. Forrest (ed) Proceedings of the Fifth
International Conference on Genetic Algorithms. Morgan Kaufmann, pp635.

20. Bull, L. & O’Hara, T. (2002) Accuracy-based Neuro and Neuro Fuzzy Classifier Systems.
UWE Learning Classifier Systems Group Technical Report 02-001. Available from
http://www.cems.uwe.ac.uk/lcsg.

21. Bull, L. Hurst, J. & Tomlinson, A. (2000) Self-Adaptive Mutation in Classifier System
Controllers. In J-A. Meyer, A. Berthoz, D. Floreano, H.Roitblatt & S.W. Wilson (eds)
From Animals to Animats 6 - The Sixth International Conference on the Simulation of
Adaptive Behaviour, MIT Press.

22. Hurst, J. & Bull, L. (2001) A Self-Adaptive Classifier System. In P-L. Lanzi, W.
Stolzmann & S.W. Wilson (eds) Advances in Learning Classifier Systems: Proceedings of
the Third International Workshop on Learning Classifier Systems. Springer, pp70-79.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 568–577, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Initial Modifications to XCS for Use
in Interactive Evolutionary Design

Larry Bull, David Wyatt, and Ian Parmee

Faculty of Computing, Engineering & Mathematical Sciences,
University of the West of England, Bristol

{Larry.Bull,David2.Wyatt,Ian.Parmee}@uwe.ac.uk

Abstract. Learning classifier systems represent a technique by which various
characteristics of a given problem space may be deduced and presented to the
user in a readable format. In this paper we present results from the use of XCS
on simple tasks with the general multi-variable features typically found in
problems addressed by an Interactive Evolutionary Design process. That is, we
examine the behaviour of XCS with versions of a well-known single-step task
and consider the speed of learning and the ability to respond to changes. We
introduce a simple form of supervised learning for XCS with the aim of
improving its performance with respect to these two measures. Results show
that improvements can be made under the new learning scheme and that other
aspects of XCS can also play a significant role.

1 Introduction

Interactive Evolutionary Design (IED) [14], [12] moves away from the use of
evolutionary computing techniques within a rigid optimization environment and
instead utilizes them as generators and gatherers of optimal design information. Such
information may relate to the characteristics of variables and variable sensitivity,
constraints and degree constraint satisfaction and the nature of conflict between
multiple design objectives.  The hypothesis being that initially ill-defined conceptual
design problems can evolve through the close interaction of the designer with
machine-based adaptive search processes where solutions generated from such
processes provide information that supports a better understanding of the problem
domain. The off-line processing of this information promotes related change to the
problem space hence supporting the capture of designer experiential knowledge and
intuition within subsequent adaptive search. The approach involves the capture of
designer experiential knowledge and intuition within adaptive search processes
through an iterative designer/machine-based refinement of the design space. Initial
machine-based search within a relatively ill-defined design space supports exploration
outside of initial constraint, objective and parameter bounds through the designer’s
consideration of initial results and subsequent re-definition of the space. This last
aspect of the process is of interest to us here: we consider a way in which to enhance
the presentation of results from a given iteration of the search process through the use
of learning classifier systems (LCS) [10]. That is, we are interested in the use of XCS
[18] as a data miner in problems where the speed of learning is important as is the



Initial Modifications to XCS for Use in Interactive Evolutionary Design      569

ability to respond to changes made by the user in the underlying design space, i.e.
between iterations of the IED process.

XCS has been shown to perform well on a number of benchmark data mining tasks
[7], [17], [11], [8] with the added benefit of producing readable production system
rules. In this respect XCS would seem an appropriate technique by which to support
designers/decision-makers in the identification of interesting regions of a solution
space whilst generating meaningful rules relating to the variables and objectives
describing that space. In this paper we consider the use of a simple supervised
learning algorithm in XCS to speed learning and thereby replace the incremental
Widrow-Hoff updating scheme. That is, data mining need not be treated as a
reinforcement learning task. Rather, in this paper, the utility of a given classification
is assigned to a newly created rule as indicated by the first training exemplar it
experiences. Using versions of the real-numbered multiplexer problem [20] it is
shown that the new learning scheme is able to learn near perfect descriptions of the
underlying problem space more rapidly than the traditional unsupervised approach;
with a reduced amount of training data the supervised learning scheme gives superior
performance. It is also shown that, depending on the type of change made, the new
scheme is able to respond as well to a change in the task as the standard approach.

The paper is arranged as follows: the next section describes the experimental setup;
section 3 presents results from its use on the task; section 4 considers performance in
non-stationary versions of the multiplexer task; and finally, all findings are discussed.

2 sXCS

Many real-world problems, such as those in design, contain multiple variables, each
of which may be a real number. Wilson [20] has presented a version of XCS for such
problems – XCSR. Here conditions consist of interval predicates of the form {{c1,s1},
….. {cn,sn}}, where c is the condition’s range centre and s is the “spread” from that
centre over which the variable is matched by the rule. When a centre with added
spread goes outside the defined range it is truncated. All other XCS processing
remains as described in [6] except that mutation is done via a random step (range –0.1
< x < 0.1), cover produces rules centred on the input value with a range of s0 and
subsumption considers the variable ranges.

Wilson [20] tested XCSR on a real-numbered version of the well-known Boolean
multiplexer problem. These single-step functions are traditionally defined for binary
strings of length l = k + 2k under which the first k bits index into the 2k remaining bits,
returning the indexed bit. A correct classification results in a payoff of 1000, an
incorrect classification of payoff 0. In the real-numbered version random vectors are
formed in the range [0.0, 1.0]. In the first instance, a variable value of 0.5 or less
corresponds to a binary 0 in the traditional task. A value greater than 0.5 therefore
corresponds to binary 1.

XCS uses the incremental Widrow-Hoff procedure to update expected payoff
values. In this paper we introduce a simplified update procedure whereby newly
created rules, i.e. those which have never participated in an action set since their
creation (via cover or the GA), have their expected payoff value set to that of the first
training instance they experience. This value remains constant. All other parameters



570      Larry Bull, David Wyatt, and Ian Parmee

are initialized and updated as in traditional XCS. With the real-numbered represen-
tation scheme this system is here termed sXCSR.

   
                              (a)                                                                 (b)

Fig. 1. XCSR and sXCSR on the 11-variable multiplexer task

We now examine the comparative performance of sXCSR with that of XCSR on
versions of the 11-variable multiplexer problem. All parameters are as used in [4] in
their investigations of binary versions of the task without payoff landscaping: β=0.2,
α=0.1, ε0=10, ν=5, θGA=12, χ=0.8, µ=0.04, θdel=20, δ=0.1, θsub=20, pI=10, εI=0,
FI=0.01, θmna=2, plus m=0.1 and s0=1 as defined in [20] and an experimentally
determined population size of N=5000.  Results presented are the average of ten runs.

3 Results

Figure 1(a) shows the performance of XCSR on the 11-variable task. It can be seen
that the system achieves approximately 98% correct classification after around 50000
explore trials (running average of exploit trial performance shown in all figures as in
[20]). Similarly, the system error drops to around 100 (10%) after 40000 trials. Figure
1(b) shows the performance of sXCSR on the same task. It can be seen that whilst
final performance achieved is about the same, around 98%, it reaches this level 20000
trials before XCSR. That is, the initial rate of learning appears quicker under the
supervised learning scheme despite XCSR’s use of the MAM process [18]. The error
drops to 10% around 20000 trials, again, considerably quicker than XCSR.  That is,
the traditional unsupervised learning approach appears to provide a form of noise to
the generalization process; allowing rules to continually adjust their prediction values
slows learning.

Under the IED process described above, the ability to form near optimal
descriptions of a design space with a reduced amount of training data is beneficial.
That is, training data for the classifier may be limited due to the evolutionary



Initial Modifications to XCS for Use in Interactive Evolutionary Design      571

algorithm’s search/sampling of the given space. Hence sXCSR displays the kind of
learning we envisage as particularly suited to IED.

   
                              (a)                                                                 (b)

Fig. 2. XCSR and sXCSR without action-set subsumption

Figure 1 shows how neither system completely solves the 11-variable version of
the multiplexer problem. Wilson [20] used a 6-variable version, also finding around
98% performance. He suggests that the system may perform optimally if left to run
for longer and/or by use of a more sophisticated mutation operator. However, we have
found that optimal performance can be achieved by removing the action-set
subsumption process. Figure 2 shows how 100% performance is achieved around
70000 trials for XCSR and 50000 trials for sXCSR. Again, sXCSR shows an increase
in learning speed. Therefore, by reducing the “strong” [5] convergence pressure of
action-set subsumption, it seems the GA is better able to search the space of real-
valued genes.

..
                                  (a)                                                                  (b)

Fig. 3. The effects of altering the amount of action-set subsumption in sXCSR



572      Larry Bull, David Wyatt, and Ian Parmee

Action-set subsumption [19] was introduced primarily to encourage a maximally
general solution, i.e. to improve the readability of the resulting rule-base.  Since this is
of concern to us under the IED application we have examined the effects of varying
the rate of action-set subsumption to allow a greater time to pass before its use. Figure
3 shows how, with θsub=200, optimal performance can be obtained in sXCSR, with
similar results found in XCSR (not shown). Hence the rate of action-set subsumption
appears critical to XCS with a more complex representation scheme.

Analysis of the resulting rules shows how both forms of XCS learn to delineate the
ranges for binary 0 and 1. The 0.5 threshold and generalizations are clear to the user.

   
                              (a)                                                                  (b)

Fig. 4. XCSR and sXCSR on the first non-stationary 11-variable multiplexer task

   
                              (a)                                                                 (b)

Fig. 5. XCSR and sXCSR on the harder non-stationary task

4 Results in Non-stationary Tasks

As described above, the IED process is iterative in that the designer may alter aspects
of the problem formulation, e.g. relax a constraint, re-define a variable range and / or



Initial Modifications to XCS for Use in Interactive Evolutionary Design      573

adjust an objective weighting [13], before re-running the evolutionary search. In this
way a non-stationary data mining task is created (we assume that generally some
underlying relationships between variables remain after any change in the design
space). Hartley [9] has proposed that XCS, through its construction of a full problem
mapping, will perform better than a traditional LCS on non-stationary tasks.  Bull and
Hurst [2] have noted how the benefit of the full mapping depends upon the nature of
the change to the task. In the simple case where payoff levels change for the given
underlying generalizations, XCS needs only to adjust these values via the
reinforcement learning procedure. Conversely, a traditional LCS would probably need
to discover new rules or adjust the numerosity of existing rules in response to the
change. However, if alterations are made to the underlying generalizations, XCS has
no explicit benefit over traditional LCS as it must also discover new rules. We have
examined the performance of the supervised learning scheme under both change
scenarios using the 11-variable multiplexer problem (θsub=200).

   
                              (a)                                                                 (b)

Fig. 6. XCSR and sXCSR without action-set subsumption on the harder non-stationary task

Figure 4(a) shows how XCSR suffers a slight decrease in performance when the
payoff values are switched after 130000 trials, i.e. correct data predictions receive
payoff 0 and incorrect 1000. Figure 4(b) shows how sXCSR experiences a more
significant drop in performance at the point of change. Here sXCSR must wait until
the GA produces new rules within each niche to recover from the alteration which,
perhaps not unexpectedly, is a slower process of re-adaptation.

Figure 5 shows the performance of the two systems when the thresholding of the
real-numbered multiplexer are altered to the other form presented in [20]. Here every
even-numbered locus variable is assigned to binary 0 if it is less than or equal to 0.25
and the odd-numbered loci variables are assigned to binary 0 if they are less than or
equal to 0.75. Wilson found this problem harder to solve than the previous version,
achieving around 93% performance on a 6-variable version. Figure 5 shows how there
is no difference in the rate of recovery of either system and that both suffer far more
severely under this form of change; no benefit from the full problem mapping is seen,
as suggested in [2]. It can be noted that neither system appears to learn the new task
completely over the last 70000 trials indicating, as did Wilson’s result [20], the
increased difficulty.



574      Larry Bull, David Wyatt, and Ian Parmee

   
                              (a)                                                                (b)

Fig. 7. The effects on population size and GA-subsumption on the harder non-stationary task
for XCSR and sXCSR shown in Figure 5

Similar results were obtained without action-set subsumption (Figure 6). Butz and
Wilson [6] briefly note that action-set subsumption may be detrimental in non-
stationary tasks due to its reduction in niche diversity. However, the results in Figure
6 suggest that, for the task examined here at least, this is not a significant factor.
Analysis of runs in Figure 5 show that a drop in GA subsumption occurs which
increases diversity thereby aiding recovery (Figure 7).

   
                              (a)                                                                 (b)

Fig. 8. The effects of using self-adaptive mutation rates on XCSR and sXCSR on the harder
non-stationary task

Bull et al. [3] have used self-adaptive mutation rates within XCS. Self-adaptation
has been suggested as beneficial for evolutionary computing techniques in general for
non-stationary problem domains [1]. Figure 8 shows the performance of the two
systems when a simple form of self-adaptive mutation is added. Here an extra real-
coded gene is added to each classifier representing the probability of mutating one of



Initial Modifications to XCS for Use in Interactive Evolutionary Design      575

the other genes in the genome using the step-size mutation operator described above.
As in [3], the rate itself is mutated before the new rate is used for the remaining genes.
Rates are initially assigned randomly from the range [0.0, 1.0]. Results show that self-
adaptation provides an increase in learning speed for both XCSR and sXCSR, the
latter now recovering slightly quicker than the former after the change. Figure 9
shows how the average mutation rate in the rule base first rises slightly from 0.5 and
then decreases as a solution is found, similarly shown in [3] for multi-step tasks,
before rising again at the point of change, similarly shown in [22] for multi-step tasks.

   
                              (a)                                                                 (b)

Fig. 9. The average self-adaptive mutation rate in the rule base for both XCSR and sXCSR on
the harder non-stationary task

5 Conclusion

In terms of the introduction of a learning technique to the Interactive Evolutionary
Design concept the work described can only be considered a preliminary
investigation.  However, the results strongly indicate a significant potential in the
utilisation of learning classifier systems to support designers as part of the IED
process.  Their preliminary task relates to the identification of interesting regions of a
solution space under the IED process through the generation of meaningful rules
relating to the variables and objectives describing that space. However, their utility
could extend far beyond this initial task in terms of generating rules relating to a wide
spectrum of relevant design information.  Such rules could be utilised to support a
degree of autonomous processing in terms of appropriate succinct data presentation or
even to the partial establishment of potential refined problem spaces.   This would
contribute to one overall objective of the IED research which is to avoid cognitive
overload through a machine-based reduction in the amount of information the
designer has to deal with ([15],[16]).

Of primary interest is the ability of the presented learning classifier systems to
learn fairly accurate models quickly, due to the possibilities of relatively small
training sets, and their ability to respond to changes in the underlying problem space
as made by the designer. In this paper we have introduced a simple form of
supervised learning for XCS with the aim of improving its performance with respect



576      Larry Bull, David Wyatt, and Ian Parmee

to these two measures. Results show that improvements can be made under the new
learning scheme. Future work will examine the scheme’s sensitivity to noise in the
training data and its application to real-world design data, as well as improving XCS’s
response to significant changes.

References

1. Baeck, T. (1998) On the Behaviour of Evolutionary Algorithms in Dynamic
Environments. In Proceedings of the Fifth IEEE Conference on Evolutionary
Computation, pages 446-451. IEEE Press, Piscataway (NJ).

2. Bull, L. & Hurst, J. (2001) ZCS: Theory and Practice. UWE Learning Classifier Systems
Technical Report UWELCSG01-001.

3. Bull, L., Hurst, J. & Tomlinson, A. (2000) Self-Adaptive Mutation in Classifier System
Controllers. In J-A. Meyer, A.Berthoz, D. Floreano, H. Roitblatt & S.W. Wilson (eds)
From Animals to Animats 6 - The Sixth International Conference on the Simulation of
Adaptive Behaviour, MIT Press, Cambridge (MA).

4. Butz, M., Kovacs, T., Lanzi, P & Wilson, S. (2001) How XCS evolves accurate classifiers.
In Proceedings of the Genetic and Evolutionary Computation Conference 2001, pages
927-934. Morgan Kaufmann, San Francisco (CA).

5. Butz, M. & Pelikan, M. (2001) Analyzing the Evolutionary Pressures in XCS. In
Proceedings of the Genetic and Evolutionary Computation Conference 2001, pages 927-
934. Morgan Kaufmann, San Francisco (CA).

6. Butz, M. V. and Wilson, S. W. (2001) An algorithmic description of XCS.  In Lanzi, P. L.,
Stolzmann, W., and S. W. Wilson (Eds.), Advances in Learning Classifier Systems. Third
International Workshop (IWLCS-2000), Lecture Notes in Artificial Intelligence (LNAI-
1996). Berlin: Springer-Verlag (2001).

7. Dixon, P.W., Corne, D.W. & Oates, M.J.(2001) A Preliminary Investigation of Modified
XCS as a Generic Data Mining Tool.  In Proceedings of the 2001 Genetic and
Evolutionary Computation Conference Workshop Program, pp345-350.

8. Fu, C., Wilson S. & Davis, L. (2001) Studies of the XCSI Classifier System on a Data
Mining Problem. In Proceedings of the Genetic and Evolutionary Computation
Conference 2001, page 985. Morgan Kaufmann, San Francisco (CA).

9. Hartley, A (1999) Accuracy-based fitness allows similar performance to humans in static
and dynamic classification environments. In W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 266-273. Morgan Kaufmann,
San Francisco (CA).

10. Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In Michalski, R. S., Carbonell, J. G., &
Mitchell, T. M. (Eds.), Machine learning, an artificial intelligence approach. Los Altos,
California: Morgan Kaufmann.

11. Lanzi, P. (2001) Mining Interesting Knowledge from Data with the XCS Classifier
System. In Proceedings of the Genetic and Evolutionary Computation Conference 2001,
pages 958-965. Morgan Kaufmann, San Francisco (CA).

12. Parmee I. C., Cvetkovic C., Watson A. H., Bonham C. R. (2000): Multi-objective
Satisfaction within an Interactive Evolutionary Design Environment. Evolutionary
Computation. 8 (2), pp 197 – 222.

13. Parmee I. C., Cvetkovic C., A. H., Bonham C. R., Packham I. (2001): Introducing
Prototype Interactive Evolutionary Systems for Ill-defined Design Environments. Journal
of Advances in Engineering Software, 32 (6), Elsevier,  pp 429 – 441.



Initial Modifications to XCS for Use in Interactive Evolutionary Design      577

14. Parmee I. C., Bonham C. R. (1999) Towards the Support of  Innovative Conceptual
Design Through Interactive Designer / Evolutionary Computing Strategies.  Artificial
Intelligence for Engineering Design, Analysis and Manufacturing Journal; Cambridge
University Press, 14, pp 3 – 16.

15. Parmee I. C. (2001a), Poor Definition, Uncertainty and Human Factors – Satisfying
Multiple Objectives in Real-world Decision-making Environments.  First International
Conference on Evolutionary Multi-criterion Optimisation (EMO 2001); Lecture Notes in
Computer Science No 1993, Springer; pp 52-66.

16. Parmee I. C., (2001b), Evolutionary and Adaptive Computing in Engineering Design.
Springer-Verlag, London.

17. Saxon, S. & Barry, A. (2000) XCS and the Monk’s Problem. Lanzi, P. L., Stolzmann, W.,
and Wilson, S. W., eds. Learning Classifier Systems. From Foundations to Applications
Lecture Notes in Artificial Intelligence (LNAI-1813) Berlin: Springer-Verlag.

18. Wilson, S.W. (1995) Classifier fitness based on accuracy,. Evolutionary Computation,
3(2), 149-175.

19. Wilson, S.W. (1998) Generalization in the XCS classifier system.  In Genetic
Programming 1998: Proceedings of the Third Annual Conference (pp. 665-674),  J. Koza
et al., eds., San Francisco, CA: Morgan Kaufmann.

20. Wilson, S.W. (2000) Get real! XCS with Continuous-valued inputs.  Lanzi, P. L.,
Stolzmann, W., and Wilson, S. W., eds. Learning Classifier Systems. From Foundations to
Applications Lecture Notes in Artificial Intelligence (LNAI-1813) Berlin: Springer-
Verlag.

21. Wilson, S.W. (2001) Mining Oblique Data with XCS. In Lanzi, P. L., Stolzmann, W., and
Wilson, S. W., eds. Advances in Learning Classifier Systems.  Third International
Workshop(IWLCS-2000), (LNAI-1996) Berlin: Springer-Verlag.

22. Hurst, J. & Bull, L. (2000) Self-Adaptation in Learning Classifier Systems. UWE
Learning Classifier Systems Technical Report UWELCSG00-001.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 578–587, 2002.
© Springer-Verlag Berlin Heidelberg 2002

First Results from Experiments in Fuzzy Classifier
System Architectures for Mobile Robotics

A.G. Pipe and B. Carse

Intelligent Autonomous Systems Laboratory
Faculty of Computing, Engineering and Mathematical Sciences

University of the West of England, Bristol, United Kingdom
Anthony.Pipe@uwe.ac.uk
http://www.ias.uwe.ac.uk

Abstract. We present first results from a comparison between a Fuzzy
Classifier System operating at the level of whole rule-bases, and three variants
of one that operates at the level of individual rules. The application domain is
mobile robotics, and the problem is autonomous acquisition of an “inves-
tigative” obstacle avoidance competency. The Fuzzy Classifier Systems operate
on the rules of fuzzy controllers with pre-defined fuzzy membership functions.
Generally, all of the methods used were capable of producing fuzzy controllers
with competencies that exceeded that of a simple hand-coded fuzzy controller
that we had devised. The approach operating at the level of whole rule-bases
yielded more robust and stable convergence on high performance solutions than
any other architecture presented here. It is clear from the results that more work
needs to be done to unravel the disappointing convergence dynamics of the
algorithms operating at the level of individual rules.

1 Introduction

Evolutionary Computation and Reinforcement Learning are both powerful techniques
that can be used to create algorithms capable of autonomously acquiring useful rules
about a chosen problem domain. A well-established method that can use both
techniques together is the Classifier System [1]. The Classifier Systems approach
breaks down into two main techniques, those that operate at the level of individual
rules [1] (typified by the Michigan-approach), and those that operate on whole rule-
sets as composite entities [2,3] (typified by the Pittsburgh-approach). There are a
number of ways to facilitate the use of these systems in solving problems that require
real-valued numerical environmental interfaces [4]. Amongst these, those based on
fuzzy logic [5,6] are both flexible and powerful. Although Classifier Systems research
is in a quite mature state, for Fuzzy Classifier Systems there are still deep underlying
issues to be settled for a given class of application.

We have chosen to conduct a programme of experimental work in the area of
mobile robotics. This application area has characteristics that are complex but easy to
visualise, it is widely known, it is a domain with which the authors have previous
experience, and the results of the research could have some future use in the real
world. This is a real-valued problem domain, and we have chosen fuzzy logic to



First Results from Experiments in Fuzzy Classifier System Architectures      579

implement local-cued behavioural control of a wheeled robot, the task therefore is to
discover good fuzzy rules for implementing a particular competency in an artificial
creature, or animat [7].

For the work reported on here, we have imposed some restrictions on its scope, in
order to focus the experimental work on some specific topics. First, we allow
modification of the fuzzy-rule base only, i.e., the membership function details are
presumed already to be set by hand a priori, and are not the subject of tuning or
optimisation. Second, we have looked at “Stimulus-Response” fuzzy systems only,
i.e., there is no internal memory. Third, although environmental reinforcement is
temporally linked, it is not delayed.

2 Related Work

As early as 1991 Valenzuela-Rendon [5,6] proposed a Fuzzy Classifier System
architecture. In 1993 Bonarini had already utilised a Fuzzy Classifier System structure
for mobile robot control [8]. Since then Bonarini has gone on to use Fuzzy Classifier
systems to investigate a number of important related sub-topics, e.g., hierarchical
structures [9], behavior-coordination [10], and reinforcement learning [11]. He has
even used his techniques to help build Soccer-playing robot-teams [12]. There are a
number of books and introductory texts on the subject of using Evolutionary
Computation with fuzzy logic [13,14,15]. In our own work to date [16,17], we have
been interested in developing and comparing different Fuzzy Classifier System
paradigms in a mobile robot control context. This paper represents the next step in
that process.

3 The Application

The work described below concentrates on making investigations into the abilities of
an autonomous system to extract useful Stimulus-Response (S-R) behavior from
environmental experiences. Such a controller must encapsulate an environmentally
reactive competency. We have chosen an “investigative” obstacle avoidance
competency for these experiments. Because the behaviors are to be S-R, any linkages
between rules are made via the environment itself; there is no need to build internally
linked behavioral sequences, and therefore the optimization and/or learning tasks are
simplified. The current test harness is based heavily in real robot experimentation
carried out in our laboratory. Details of the harness are given briefly below. However,
the C source code is freely available on request to the email address above, or directly
from our laboratory’s web site.

3.1 The Simulated Robot

The following is a general description of the simulated twin-wheeled differential drive
robot and its sensorimotor apparatus. The simulated environment assumes that a low-
level control system is present, allowing control to be effected by an equivalent steering



580      A.G. Pipe and B. Carse

angle and forward velocity. The robot travels through its environment with a constant
forward speed of 0.1 m/s and a maximum continuously variable turning speed of 0.5
rad/s. The robot has an array of five distance sensors. The set of distance measuring
sensors form a five element array, set at the following angles from the “straight
ahead” position: 0o, 22.5o to the left, 45o to the left, 22.5o to the right, and 45o to the
right. The sensors have an 8-metre maximum sensing range.

3.2 The Simulated Environment

The environmental mazes are set on rectangles of any size, although for the
experiments reported on in this paper, they are square, being 10-metres on each side.
Any number of rectangular obstacles, of any dimension, may be placed in a maze.
The start position may also be anywhere inside the maze. All measurements made and
movements executed by the robot are continuous real valued, so for this simulation
there is no concept of a “grid” or discretised state space.

3.3 Using Fuzzy Logic

The fuzzy controller has five inputs,
one from each of the distance sensors
and a single output defining steering
angle.

The FLS is a “Mamdani”-style
system [18]. A conventional distri-
bution of unit-height triangular mem-
bership functions was chosen. All
functions were identical and equally
spaced, with the exception of each
function placed at the end of the range
of an input or output, as shown in
figure 1. For fuzzy AND a product of
membership function activations was
used for a given rule as opposed to the
simpler MIN operator, since it
requires little extra processing and is known to produce superior interpolation
properties. Defuzzification was performed by conventional centre of gravity
calculations. The use of 3 membership functions at each input and 33 at the output
was established during a number of preliminary experiments as being appropriate for
this type of fuzzy controller in this application and incorporated into this test harness.

Table 1. format for a fuzzy rule

0 22.5L 45L 22.5R 45R OUT

Each fuzzy rule was of the form shown in table 1. Each of the six fields is an integer
specifying a fuzzy membership function to use for that angled sensor input or the
output in forming a rule. Counting is from left to right on each graph shown in figure
1, i.e., the interval (1-3) for each input and (1-33) for the output.

1.0

0.0 2.0 4.0 6.0 8.0

1.0

-1.0 -0.5 0.0 1.0

 radians xπ

metres

 a
ct

iv
at

io
n

any
input

CLO MED FAR

-0.5

 a
ct

iv
at

io
n

output

Steer right (clockwise) Steer left (anticlockwise)

Fig. 1. Membership functions



First Results from Experiments in Fuzzy Classifier System Architectures      581

3.4 The Problem to Be Solved

It is worth stating that these experiments were not designed to test the limits of
capability for these algorithms. Rather, they were designed to test the learning and
convergence behaviour of the algorithms at only a sufficient level of complexity, so
that comparative experimental observations have some worth.

The positioning of the obstacles in the maze space was intended to represent a
“warehouse”-style environment (see figure 2). There is an area at the top-right that is
quite “closed-in”, a pair of parallel walls in the centre with two smaller openings, a
collection of larger objects at the bottom-left, and some quite large “open” spaces.
This environment was chosen for these experiments because it was found that it has
some interesting characteristics that make obstacle-avoiding rule acquisition harder
than for, say, “corridor”-style mazes. Different categories of rules are required in the
“closed-in” areas, compared with the “open” spaces. This means that the architectures
must be more efficient in storing knowledge in their rule sets, in order to have
adequate behavioral coverage within the fuzzy logic system.

We desired this competency to include a tendency to explore environments, since
we have wider aspirations for it as part of a latent learning behavior in the future. In
this context, investigation of the environment must be encouraged for such a
competency to be useful otherwise a stationary robot could be deemed highly fit for
the purpose. Therefore the fitness functions for both architectures included a measure
of the maximum “straight-line” distance traveled by the robot from the start location
during a trial in the environment. Any environmental trial was terminated under either
of two conditions, if a maximum time allocation of 200 simulated seconds was
reached, or there was an environmental collision before this time.

4 The Fuzzy Classifier Systems

A major distinction among Classifier Systems is the way that the Evolutionary Algorithm
(EA) is applied. With the so-called “Michigan” approach, the individual, as far as the EA
is concerned, is a single rule or classifier (It should be noted that, for Michigan-style
Classifier Systems the terms “classifier” and “rule”, are used interchangeably below).
An alternative approach, called the “Pittsburgh” approach, maintains a population of
rule-sets: each individual as far as the EA is concerned is a complete assembly of rules
encoded on an appropriate genotype. Clearly the role of the EA in the two approaches is
different, as are the known difficulties (see [16,17] for a discussion). Indicative works
using the Michigan approach include [1,5,6,19] and works using the Pittsburgh approach
include [3,20]. In this paper we present results from using each of these techniques, and
from using an architecture that is subtly different from both.

4.1 Pittsburgh System

In these experiments, the rule sets are evaluated for fitness by running a trial of the robot
five times through a chosen simulated environment for each rule set in the population.
When all rule sets have been evaluated in this way, a conventional Genetic Algorithm
(GA) applies its operators to produce the next generation. This continues until, either the
process is halted by the designer, or the maximum number of generations is reached. The



582      A.G. Pipe and B. Carse

rule set and population sizes were varied, as detailed below, but were initially set to 20
and 40 respectively. Crossover was single-point, with a probability of 0.9, and
respecting rule boundaries. Mutation was two-point, one in the input space, and the
other in the output space. If input space mutation was to take place, first a rule was
selected randomly, then one of the input components with equal probability, and
finally its specified membership function was modified with equal probability of
selecting any membership function including the “don’t care” #-value. Independently,
mutation in the output space was evaluated. If this was to occur then one of the output
membership functions was selected, with equal probability, to replace the existing
one. Quite low values of mutation gave good results, and 0.01 was used throughout
the experiments reported, evaluated separately for each point.

The fitness functions used for this architecture was a combination of the maximum
“straight-line” distance traveled by the robot from the start location during a trial in
the environment, combined with a measure of traveled distance over a route. These
two factors were simply combined by multiplying them together. As described above,
these values were averaged over five trials with different start locations.

4.2 The Michigan-Style Systems

In order to help alleviate the competition/co-operation problems that this type of system
can be prone to, a simple form of population “niching” was used. The rules were
divided into sub-populations, where each classifier in each sub-population has the
same antecedent (including “don’t cares”).

In a Michigan-style Classifier System each rule has to have its own fitness value,
and therefore an additional factor (to the Pittsburgh approach) related to cumulative
activation of the rule during an environmental trial was included. The rule activity
was simply accumulated over the trial and then multiplied by the same “distance
traveled” factor used as the fitness function for the other architecture.

Although the sizes of the sub-populations were varied, as detailed in following
sections, in all experiments reported on here there were 243 sub-populations, with 10
individuals in each sub-population. In these experiments we were interested in
investigating the ability of the learning algorithm to derive versatile rule-bases, rather
than its ability to tackle very large search spaces. For the problem as it is presently
formulated, 243 sub-populations (5 inputs each specifying one of 3 fuzzy membership
functions → 35 input states = 243) can cover the entire input search space. However,
this still leaves the problems of searching the output space for each rule, the issue of
generalisation across the input space, and the subtle problems, mentioned previously,
of interplay between rules. All rules in a sub-population begin with identical
antecedents, and an output membership function selected randomly from the 33
possibilities. Each rule then has each of its antecedent components potentially
modified by randomly changing it to a # “don’t care” with 1/5 (i.e. 1/number-of-
inputs) probability. The “don’t care” policy described above meant that, for these
Michigan-style approaches, identical rules could be created in different sub-populations.
However, in these experiments this was not monitored. Mutation was carried out in the
same way as that described above for the Pittsburgh approach, but with a much higher
likelihood. In all experiments reported below the mutation rate was set to 0.1, i.e., ten



First Results from Experiments in Fuzzy Classifier System Architectures      583

times that used for the Pittsburgh experiments. Thoughts on why this difference was
necessary are given later in the paper.

Of course this problem is greatly simplified by the small number of inputs (5) and
the smaller number of input membership functions used in each input (3). It is this
that allows for the input space to be completely covered by only 243 population
niches. Here are two thoughts on this arrangement. First, we must reiterate that it is
not very large problems we are interested in tackling for this work, rather, we are
interested in observing convergence dynamics and the quality of solutions found by
different approaches. Second, it is clear that, later on, the method could be broadened
to larger input spaces by utilising a clustering approach (e.g. k-means or fuzzy
clustering) to gather rules into groups. However, this is beyond the scope of the
current work.

From this common base, three different approaches were adopted for forming
fuzzy controllers from a rule-base of this type. For identification purposes, they are
referred to below as the “typeN Michigan System”, where N = {1 –3} as itemised
below.

1 The first was an off-line method. A rule was selected from each sub-population in a
deterministic manner before each environmental trial, thus making a 243-rule fuzzy
controller each time. The robot was then run through five trials of the maze
environment (from different start locations), acquiring reinforcement. This was
repeated up to the size of the sub-populations, until each rule in each sub-
population had been teamed together with an individual from another sub-
population. The next set of rules were then formed by choosing again from each
sub-population and again the robot was run through the maze. This process
continued 10 times, i.e., until all rules had been used once as part of a fuzzy
controller, and acquired some environmental feedback. The GA was then run
within each sub-population, i.e., across these fuzzy-controller rule-sets, and then
the whole process was repeated until some stopping condition was reached. This
approach is clearly not a standard Michigan Classifier System one. However,
operation of the GA and reinforcement are both still at the level of individual rules.
Rules compete within sub-populations and co-operate across sub-populations.

2 The second method was on-line. A rule was selected from each sub-population on-
line, at each time step of an environmental trial. Selection was based on a
“bidding” system between members of a sub-population. This approach is more
akin to traditional Michigan Classifier System methods. Bid strength was based on
a combination of instantaneous rule activation and the cumulative fitness level
being acquired by each rule during a trial for evolutionary selection purposes. The
relative amounts each of these factors was varied as one of the experimental
factors, but they were of roughly equal weight for all the experiments reported on
here.

3 The third method was a combination of the first two. For some pre-set number of
generations, the system would operate in the first mode, and then switch to
operation in the second mode thereafter. This third approach was adopted after
observing the convergence dynamics of the first two. The method that was more
akin to traditional Michigan Classifier System rule selection, was very erratic. The
first approach was more stable, perhaps because it deterministically gave all rules
the opportunity to acquire fitness over a complete maze evaluation. As a “training
regime” it was, therefore, quite useful.



584      A.G. Pipe and B. Carse

5 Experimental Evaluations

There is only space below to describe some
selected results from the range of
experiments that have been conducted. They
each illustrate a noteworthy strength or
weakness.

First, it should be pointed out that each
of these architectures was capable of gen-
erating best fuzzy controllers of similar
performance. To save space, we therefore
show only a single typical resulting trial of
an environment, as shown in figure 2. This
figure is actually showing a Type1 Michigan
System controller. It was derived by selec-
ting the 8th niche member from each of the
243 sub-populations at generation 16 (a
local upward “blip” in the best individual’s
fitness), i.e., after this group of rules had been through 16 maze trials (each trial
consisting of 5 tests at different start locations). The robot trajectory starts at the top
right and only stopped when the maximum trial-time was reached. Learning was
turned off for this demonstration run, and the start location, whilst similar to one of
the five used for fitness evaluation trials, was different from any that had been used
during prior learning and evolution. This controller was drawn from the same run
illustrated in figure 4 below, which gives an indication of the performance of other
controllers; one can see, even in this run, that there were better controllers created in
earlier generations.

5.1 Pittsburgh System

Figure 3 shows a typical
convergence characteristic
for this architecture. Data
has been averaged over 5 se-
parate runs of the system,
with the population initia-
lised using different random
seeds each time. For these
runs, the population size was
40 and the trial was run for
20 generations, thus result-
ing in 800 sets of fitness
evaluations for each run
(remember that each indivi-
dual fitness evaluation was
in turn averaged over 5 trials from different start locations). In subsequent gene-
rations, the population converged fully on a single solution, with only minor
disruption from the low mutation rate.

Fig. 2. A typical tuned fuzzy controller

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19

Generations

D
is

ta
n

ce
 t

ra
ve

lle
d

 (
m

et
re

s)

Best

Average

Fig. 3. A typical convergence path for the Pittsburgh System



First Results from Experiments in Fuzzy Classifier System Architectures      585

5.2 Michigan Systems

Although there were minor detailed differences in the resulting best-performing rule-
bases for given parameter values across these three architectures, there was no clear
advantage to one or another method of choosing a fuzzy controller from the sub-
populations. However, there did seem to be some advantage to using the off-line
selection technique of the Type1 or Type3 Systems in terms of convergence dynamics
(for Type3 we always switched from Type1 to Type2 at generation 15). Although we
have not yet fully quantified this observation, it certainly seemed to be the case that
these systems were more reliable in finding high performance solutions at some time
during a run of the system.
This may have been due to the
previously mentioned char-
acteristic that all rules have a
chance at full participation in
control for complete environ-
mental trials.

However, the weakness
that all these systems dis-
played, can be seen in the con-
vergence plot shown in figure
4, which was averaged across
five runs of the system. It is
clear that the population does
not have any tendency to con-
verge on a high performance solution. Figure 4 only shows results up to generation
20, but runs 10 times longer than this produced no apparent convergence behavior or
significant improvement in average fitness. In fact, in order to generate the occasional
occurrence of rule-bases with performance at the same or better level than the
Pittsburgh system, it was necessary to have a very high mutation rate of 0.2 or even
0.3. At these levels, mutation was so disruptive that average performance would
normally peak somewhere in the early generations, then genetic material would be
lost from then on. Figure 4 shows an example where the number of sub-populations
was set to 40, i.e., the total number of fitness evaluation sets was 800, as in the
similarly illustrated Pittsburgh case. The mutation rate was set to 0.1 for these runs.
Neither decreasing the sub-population size, nor increasing it, produced significantly
different results.

6 Discussion

All four approaches tested were able to produce good robust controllers of
comparable performance. Further, they were able to achieve this in comparable
numbers of fitness evaluations. However, there were other, more detailed, strengths
and weaknesses. Convergence dynamics of the Pittsburgh approach were very stable
compared to any of the three Michigan-style approaches, this could augur well for this
approach as the problem size is scaled up. Although use of the Type1 algorithm in the
Michigan family of approaches by itself, or as part of the “training regime” as in

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19

Generations

D
is

ta
n

ce
 t

ra
ve

lle
d

 (
m

et
re

s)

Best

Average

Fig. 4. Typical convergence for Type1 Michigan System



586      A.G. Pipe and B. Carse

Type3, improved performance, all three displayed erratic convergence dynamics. In
most cases there was a peak of performance, followed by no further improvement, or
even gradual loss of genetic material at the high mutation rates required to achieve
very high peak performance. Another major difference between the rule bases
operated on by the Pittsburgh and Michigan approaches, was the size of rule base
used. In the results presented above, the Pittsburgh system was operating on sets of
only 20 rules. However, the Michigan-style approaches all used a 243-rule set as the
controller. In fact, when we tried a brief experiment on the Pittsburgh system with a
rule set size of 240, convergence did seem to be reduced. We tentatively hypothesized
that fuzzy controller rule-interaction for a large rule-set like this could be detrimental
for the Michigan system. Following these thoughts, we tried an approach with the
Michigan-style group, wherein the rule set was “cropped” of its weaker rules after
learning was turned off. Indeed, cropping this down to the strongest 20 rules could
give good performance, but this was very unpredictable, often yielding a controller
with very different characteristics from its complete 243-rule “parent”. It is clear from
these first results that much more work needs to be done in this area to uncover the
deeper reasons for the somewhat disappointing behavior of the Michigan group of
algorithms. However, we have some early thoughts. It could be the case that the much
coarser level that the Pittsburgh approach operates at is less disruptive to the very
complex interactions between the rules of a fuzzy system than the Michigan-style
approaches used here. If there is any truth to this statement, this does not mean that
operating at the level of individual rules is not worthwhile, just that more work is
required to understand the nature of these interactions.

It is worthy of note that, generally, all of these methods were capable of producing
fuzzy controllers with competencies that exceeded that of a simple 13-rule hand-
coded fuzzy controller that we devised. This controller was unable to tackle the
transitions from “closed-in” to “open-spaces” in a robust manner, indicating that these
environmental transitions are one of the difficult aspects of the problem posed here.

7 Conclusions and Further Work

Although more work needs to be done in establishing a more capable hand-coded
controller, the final comments of the previous section are, we hope, a good sign for
the future of these algorithms.

The Pittsburgh approach yielded a more robust and stable convergence on high
performance fuzzy rule bases. In the immediate future, it is clear that more work
needs to be done to unravel the underlying reasons for some of the observed
convergence dynamics, especially for the Michigan-style family of methods.

In the longer term, it is important that we test these learning architectures on their
ability to extract more complex competencies, including latent learning tasks. In many
cases this will require a solution to the problem of building internally linked
behavioral sequences; i.e. a fuzzy rule-base that is able to encapsulate internal state
information in some form. For other more complex competencies, there will be a need
for a larger number of states for each rule antecedent and possibly a larger number of
inputs. This would be a worthwhile test of these learning architectures on larger
search spaces.



First Results from Experiments in Fuzzy Classifier System Architectures      587

Finally, we would like to re-focus the application problem as it is presented here,
so that it is a more suitable testing platform for a comparison between accuracy-based
fitness and strength-based fitness.

References

 1. Booker L, Goldberg D & Holland J (1989). Classifier Systems & GAs, AI 40, pp.235-282.
 2. Smith S F (1980). A learning system based on genetic adaptive algorithms. PhD thesis,
Univ. Pittsburgh.

 3. Carse B, Fogarty T C & Munro A (1996). Evolving Fuzzy Rule-based Controllers using
Genetic Algorithms. Fuzzy Sets and Systems 80(3), pp.273-293.

 4. Bonarini A (1999). Fuzzy and Crisp Representations of Real-valued Input for Learning
Classifier Systems. Procs. GECCO 99, Morgan-Kaufmann, pp.52-59.

 5. Valenzuela-Rendon M (1991). The Fuzzy Classifier System: Motivations and first results.
Parallel Problem Solving from Nature (PPSNII), Springer-Verlag, pp.330-334.

 6. Valenzuela-Rendon M (1991). The Fuzzy Classifier System: a Classifier System for
Continuously Varying Variables. Procs. 4th Int. Conf. on Genetic Algorithms, pp.346-353.

 7. Wilson S W (1987). Classifier Systems & the Animat Problem. Machine Learning 2 (3),
pp.199-228.

 8. Bonarini A (1993). ELF: Learning incomplete fuzzy rule sets for an autonomous robot. Procs.
1st European Congress on Intelligent Technologies and Soft Computing (EUFIT ’93), pp.69-75.

 9. Bonarini A (1997). Anytime learning and adaptation of hierarchical fuzzy logic behaviors.
Journal of Adaptive Behavior 5(3-4), pp.281-315.

 10. Bonarini A & Basso F (1997). Learning to coordinate fuzzy behaviors for autonomous
agents. Int. Journal of Approximate Reasoning, F. Herrera (Ed.), 17(4), pp.409-432.

 11. Bonarini A, Bonacina C & Matteucci M (2001). An approach to design of reinforcement
functions in the real world, agent based applications. IEEE Trans. SMC. In press.

 12. Nardi D, Adorni G, Chella A, Clemente G, Pagello E & Piaggio M (2000). ART – Azzuro
Robot Team. Robocup99 – Robot Soccer World Cup III, Springer-Verlag.

 13. Geyer-Schulz A (1997). Fuzzy Rule-Based Expert Systems and Genetic Machine Learning.
Series: Studies in Fuzziness & Soft Comp., vol. 3. Springer-Verlag, ISBN: 3790809640.

 14. Pedrycz W (1997). Ed: Fuzzy Evolutionary Computation. Kluwer, ISBN: 0792399420.
 15. Bonarini A (2000). An Introduction to Learning Fuzzy Classifier Systems. P.L. Lanzi, W.
Stolzmann and S.W. Wilson (Eds.), Learning Classifier Systems- from Foundations to
Applications, Lecture Notes in AI, pp.83-104. Springer Verlag Berlin Heidelberg.

 16. Pipe A G & Carse B (2000). Acquisition of Fuzzy Rules for Mobile Robot Control: 1st

Results from 2 Evolutionary Computation Approaches. GECCO00, pp.849-856.
 17. Carse B & Pipe A G, (2001). X-FCS: a fuzzy classifier systems using accuracy based
fitness – 1st results. Procs. Int. Conf. Fuzzy Logic and Technology, EUSFLAT, pp.195-198.

 18. Mamdani E H & Assilian S (1975). An experiment in linguistic synthesis with a fuzzy logic
controller. International Journal of Man-Machine Studies, vol. 7, no. 1, pp.1-13.

 19. Parodi A & Bonelli P (1993). A New approach to fuzzy classifier systems. Procs. of 5th
International Conference on Genetic Algorithms, pp.223-230.

 20. Hwang W & Thompson W (1994). Design of Fuzzy Logic Controllers using Genetic
Algorithms. Procs. of the 3rd IEEE Int. Conf. on Fuzzy Systems, pp.1383-1388.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 588–597, 2002.
© Springer-Verlag Berlin Heidelberg 2002

TCS Learning Classifier System Controller
on a Real Robot

Jacob Hurst, Larry Bull, and Chris Melhuish

Intelligent Autonomous Systems Laboratory,
University of the West of England,

Bristol BS16 1Q1, UK
jacob.hurst@uwe.ac.uk

Abstract. To date there have been few implementation of Holland’s Learning
Classifier System (LCS) on real robots. The paper introduces a Temporal
Classifier System (TCS), an LCS derived from Wilson’s ZCS. Traditional LCS
have the ability to generalise over the state action-space of a reinforcement
learning problem using evolutionary techniques. In TCS this generalisation
ability can also be used to determine the state divisions in the state space
considered by the LCS. TCS also implements components from Semi-Mark-
Decision Process (SMDP) theory to weight the influence of time on the reward
functions of the LCS. A simple light-seeking task on a real robot platform using
TCS is presented which demonstrates desirable adaptive characteristics for the
use of LCS on real robots.

1 Introduction

Learning Classifier Systems (LCS) were invented by John Holland (Holland 1976).
Traditionally an LCS is a parallel production rule system, which uses a reinforcement
learning technique (Sutton & Barto 1998) to change the fitness of the rules contained
in the system and a genetic algorithm (GA)(Holland 1975) to search the rule base for
new useful and general rules. There have been several implementations of LCS on
robotic software agents e.g. (Donnart and Myer 1996a) (Stolzmann & Butz 2000).
There have been fewer LCS implementations on real robots. Those known to the
authors are Dorigo and Colombetti’s work on behavioural shaping (Dorigio &
Colombetti 1997), Donnart and Myer’s MonaLysa algorithm (Donnart and Myer
1996b) and Katagami and Yamada’s approach with an interactive LCS (Katagami &
Yamada 2002).

An LCS can be looked upon as an algorithm that solves reinforcement learning
problems and provides generalisations over the state-action space. One of the major
problems examined in this paper is that of defining the significant states of the space.
This could easily be done by hand but in doing so the programmer is delineating and
modelling the world. This is a potential problem for truly autonomous robotic
systems. TCS provides a method to bypass this problem by exploiting and extending
the evolutionary generalising methodology of LCS to generalise over and create state
boundaries. TCS also exploits the recent advances in Semi-Markov-Decision-Process



TCS Learning Classifier System Controller on a Real Robot      589

(SMDP) theory to weigh the influence of time on the reinforcement functions of the
LCS.

The layout of the paper is as follows: description of the robotic platform,
description of the TCS algorithm, description of the robotic task, results from the TCS
algorithm. Finally all findings are discussed.

2 The Robot

For this work the robotic platform is a “Linuxbot” developed at the University of the
West of England. It consists of a three-wheeled robot, two of which are powered. It is
controlled by a 25MHz 386 processor with a 1.8 Mbyte hard drive. Communication
between the robot and the outside world is via a radio LAN. The most distinctive
characteristic of the platform is that it runs the linux operating system.  This platform
can run a web server as well as provide access via telnet sessions, while carrying out
simple robotic tasks. In the experiments described the sensory input is fairly
rudimentary consisting of three light sensitive resistors for the light detection task.
This simple sensory setup can easily be extended to include video cameras and other
more complex input.

3 The TCS Algorithm

Our approach is very firmly based on the philosophy of elegance and simplicity in
ZCS.  It differs from ZCS as it contains a different idea of action persistence and the
reinforcement-learning algorithm factors in time. Thus, to simplify nomenclature a
new name has been introduced - “Temporal Classifier System” (TCS). For a full
explanation of the underlying ZCS the reader is referred to (Wilson 1994).

One of the motivations behind basing TCS on ZCS is that ZCS “keeps much of
Holland’s original framework but simplifies it to increase understandability and
performance.” (Wilson 1994). Recent work (Bull & Hurst 2002) indicates that ZCS
can perform optimally in simple multi-step maze problems when the fitness sharing
parameters are set correctly.

Usually an LCS matches an input and then carries out a fixed length action. When
the action is finished the reinforcement and performance cycles take place. There are
two main problems with cycling the LCS on fixed actions in dynamic robot
environments. The first is that while the robot is carrying out the task it is
unresponsive to any changes in the environment. The second problem is that after
carrying out the fixed length action the robot may not be in a different state, this will
result in the algorithm trying to learn in situations when nothing significant has
occurred. However, a different approach is possible (Cliff & Ross 1995) (Booker
1990); instead of using a fixed action or a fixed time step the LCS carries out its
action until there is a significant change in sensory input between the state when the
action is first taken and the current state. For complex sensors there is therefore a
distance of significance between the current sensory values and the sensory values
representing the next event. Previous approaches using real robots, e.g. (Asada et al
1996), have broken the world up by hand defining a range of input values to represent



590      Jacob Hurst, Larry Bull, and Chris Melhuish

a certain event type. This approach can work well, but as noted before, it is a limiting
factor for truly autonomous learning systems. Further, the programmer’s model will
have to take into account the idiosyncrasies of the electronic hardware, i.e. sensors
often differ in their responses to the same stimuli. The distance of significance may
also not be constant in all situations and to a certain extent represents how dynamic
the robotic environment is. So, the model when built may be different from robot to
robot and situation to situation. One approach to this problem has concentrated on
producing mathematical techniques to automate the process of determining the extent
of the state-space (Uchibe Asada Hosoda 1997). Hence, in addition to the reinforce-
ment learning technique an event pre-processor or filter runs on top of the gener-
alisation system.

TCS works by exploiting and extending the inherent generalization mechanism of
LCS from working over a predefined state-action space to defining states in the entire
state space. That is by generalizing over the state space the LCS determines what are
and what are not critical sensory events. The next two sections examine the changes
made to ZCS to produce TCS. This extension of the generalization mechanisim has
some similarity in approach to use of Hamilton-Jacobi-Bellman equations with
function approximators (Doya 2000).

3.1 Time Needs to Be Considered in the Reinforcement Function

When using continuous actions to move from state to state time needs to be
considered in the reinforcement function. For example, this happens when more than
one action can move the robot from a given state to another state. Consider two
hypothetical states, A and B. To move from state A to state B there are two possible
actions I and II. Action I takes 5 seconds to get to state B, the other takes 1 hour.

This sort of problem is known as a Semi-Markov-Decision-Problem. It is no longer
a Markov problem where standard reinforcement learning algorithms can be applied.
The influence of time needs to be factored into the reinforcement equations. In effect
we are trying to model discrete event systems, where significant events occur at
discrete intervals, however the amount of time between each events is a real valued
number. Explanations of SMDP can be found in (Parr 1998), (Bradtke and Duff 1995)
and (Sutton, Percup & Singh 1999).

To tackle such problems Bradtke and Duff (1995) use a variable discount factor.
The factor, instead of being a discounted sum of future rewards, becomes a
discounted integral of future rewards. Parr(1998) has also presented a continuous time
version of standard Q-learning (Watkins 1989) where this integral can be removed
from the equation, as essentially the state values are constant when computed (see
(Parr 1998) for a full explanation). The equation below is from (Parr 1998), it
indicates how Q learning can be modified for SMDP.

“On a transition from state s to s’ under action a that has taken time t and received
reward r (which is assumed to be appropriately weighted sum of rewards received
during t):”

)),()()(,(),(),( 111 asQsVrasasQasQ iitiii −−− −′++← βα



TCS Learning Classifier System Controller on a Real Robot      591

β is a discount rate which varies with state and action. Parr(1998) also gives a
convergence proof for this equation.

So, a number of changes need to be made to the reinforcement learning equations in
LCS. The external reward r is discounted by the total time taken tt to reach the goal:

rer
ttσ−=                                                                                                   (1)

The discount factor γ also factors in time, but here the time transition which occurs
between events ti is considered.

itt e ηγ −=                                                                                                   (2)

σ and η are in effect different learning rates to change the emphasis placed on the
time taken to obtain the external reward and the time taken between event transitions.

The original update equation for ZCS from (Wilson 1994) is:

][][ ′+← AimmA SrS γβ                                                                             (3)

Where ][ AS is the fitness of the current action set, rimm is the immediate reward, γ is

the discount factor and  ][ ′AS  is the fitness of the previous action set.  ← β 
 can be

considered as the Widrow Hoff Learning procedure (consider the case of two scalars
x and y).

)( xyxxyx −+←≡← ββ

The new update equation for TCS incorporates Equations (1) and (2) into (3):

][][ ′
−− +← A

t
imm

t
A SereS

it ησβ   [4]

Equation 4 is the update equation for the new learning classifier system TCS.
These equations fulfil the requirement of “appropriately weighing the reward” and
“discount rate which changes with state and action” (Parr 1998).

3.2 The Action Selection Mechanism of TCS

Initially the action selection mechanism is very much like ZCS, i.e. it uses a roulette
wheel to select the action based on the fitness of the rules in the current match set.
The difference is how the decision is made to continue with the current action or try
to select a new action. First an action is selected and an action set is formed [A]. Input
is then sampled continuously from the environment while the robot is carrying out the
ordained action.

In the case where none of the current members of [A] match the most recent input
the procedure is straight forward: the current members of the action set are removed
and either obtain an external reward or are moved to the previous action set where
they receive an internal reward. A new action is then selected.

In the case where all the classifiers in [A] match the current input, the effect is
simple to continue with the current action.

In the situation where only some of the classifiers in the action set match the current
input a decision has to be made, either to continue with the action or stop. The current
action set is therefore sub-divided into two sets - those members of the action set still



592      Jacob Hurst, Larry Bull, and Chris Melhuish

matching the current input are placed in the continue set [C] and those which don’t
are placed in the drop set [D].

Roulette wheel selection is then used over the entire action set. If the rule selected
is a member of the continue set the rules making up the drop set are removed from the
current action set and do not receive any reinforcement. The action continues to be
taken.

However, if the rule selected is a member of the drop set, all members of the
continue set are removed from the action set. The remaining action set is then
reinforced with either external reward or moved to the previous action to be
reinforced internally. A new action then needs to be selected from the current match
set if the robot has not reached the goal state and the cycle continues.

The system creates appropriate generalisations by relying on the existence of a
population of varying degrees of generalisation within useful action sets. As the
population probabilistically drops out to test more specific rules, the correct less
general rules should increase in proportion to the incorrect more general rules. If these
more specific rules do not exist the usual covering mechanism compensates.

This system has some similarities to Cobb and Grefenstette’s (1991) action
persistence scheme, recently implemented in XCS, (Barry 2000).  In this setup each
action is carried out for a fixed length of time. This length of time can vary between
classifiers. A problem with this method is that it is unresponsive to changes in the
environment during that time period; this system would be unable to respond to a
dynamic environment.

In this paper the task that TCS is being required to do is to move to a goal state.
The goal state is the only event predefined by the programmer. Another further
complication to the system is that, as the actions are continuous, it could be possible
for the robot to discover a general rule forcing it to ignore all stimulus and cycle
continuously. As the robot would never drop out of this action cycle to receive
reinforcement this would continue forever. To prevent this there is a maximum time
that the action is allowed to continue before a drop out is forced. In the current set up
this is set to 15 seconds; far longer than the maximal distance the robot is required to
travel.

3.3 The Rule Representation for TCS

Representation in LCS traditionally takes the form of ternary strings. This is by no
means the only representation open to LCS, a number of other options have been
explored; real numbers e.g. (Wilson 2000), S-expressions (Ahluwalia & Bull 1999)
(Lanzi 1999), neural networks (Bull & O’Hara 2001), piece-wise linear approxi-
mations (Wilson 2001), and fuzzy logic (Valenzuela-Rendon, 1991). The problem
that TCS is being asked to solve involves three light sensors each providing real
number input to the LCS.  The matching part of each classifier therefore consists of
six real numbers, each pair of numbers representing a range between which the
classifier recognises input for each respective sensor. To cope with this representation
the discovery mechanism of TCS has to be altered slightly. When a covering classifier
needs to be created ranges are generated randomly to match the environmental
conditions. Within the GA the crossover operator is unchanged, and the mutation rate
changes to a step-wise creep mutation on the ranges, selected from a random
distribution between +/- [0, 0.1]. The action part of the classifier’s representation is an



TCS Learning Classifier System Controller on a Real Robot      593

integer which can be of three values 0,1,2 , representing the actions move forward
continuously, and move right and move left continuously.

The parameter settings used in TCS in this paper are as follows: N= 500, β=0.5,
r=10000,χ=0.05, µ=0.05, φ=0.5, p=0.25, So=25.0, τ=0.1, σ=0.2, η=0.5.  

4 The Robotic Task

The task used here to test TCS is a simple one: move from a start state towards the
light until the centre sensor reads a specific value. Three light sensitive resistors are
placed on top of the robot. Halogen lights are placed at one end of a 2.6m x 1.8m
arena. The start state for each experiment is directly in front of the lamps at a distance
of 2.4m with random orientation.

The experimental procedure is as follows: the robot is allowed to move about until
it reaches the reward state or hits the arena wall. If it hits the arena wall it is returned
to the start state. When in the start space, the robot is turned left or right. The extent of
this turn is determined randomly between 0 and 800. The random turn is limited as
much over 800 risks starting the robot in a situation where its frontal sensors have no
readings. TCS, like ZCS, does not have any mechanism to cope with these sort of
non-Markov environments. After the random turn the TCS controller takes over
operations.

The reward state occurs when the centre sensor on the robot reads 0.85. This reward
state occurs in an area that extends approximately 45 cm around the two-halogen
lamps. When it reaches the reward state that run of the experiment is over and the
robot is returned to the start state.

Hence there are two principle objectives. The robot must get to the light source as
quickly as possible and take as few decisions as possible. Only two actions are needed
to solve this problem optimally, a turn to the left or right to correct the random turn at
the start (the turn must stop so that the robot is facing straight towards the light)
where the next action is to move straight ahead ignoring all changes in sensory input
until the robot reaches the reward state. That is, the correcting turn involves
recognising a slight change in input as important and the moving ahead action
involves ignoring large-scale changes in input.

The time taken on average for the robot to reach the light if the actions are selected
optimally should be around 6.5 seconds.

5 Results

The results presented are the averages of five runs. Each run involved recording 150
successful trips from the start position to the reward area close to the light. The data
presented is the “raw” values, i.e. unlike most LCS maze experiments a running
average is not used. The motivation behind this choice is to clearly indicate the online
performance of the system. These runs took around 90 minutes.



594      Jacob Hurst, Larry Bull, and Chris Melhuish

Fig. 1. Showing the ratio of failures to success

Figure 1 displays the ratio of failures to success. At the start of the run there is a large
proportion of failure for every success. For each successful trial there are around 4.25
failures where the robot hits the arena wall. As the run proceeds this ratio becomes
close to zero. It does not absolutely reach zero as TCS uses a probabilistic action
selection mechanism both in the initial selection of an action and in the drop decision
as detailed earlier.

        Fig. 2. Time taken to reach reward         Fig. 3. Number of events taken to reach reward

Figure 2 indicates the time taken for each successful trip to the light. During the
course of the run there is a downward trend. At the start of the run there is greater use
of more time consuming routes to the reward, towards the end of the run the more
efficient routes become more dominant.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150
Successful Trials

R
at

io
 o

f 
Fa

ilu
re

 t
o

 S
u

cc
e

s
s

0

5

10

15

20

25

0 50 100 150

Successful Trials

N
u

m
b

e
r 

o
f 

Ev
e

n
ts

0

2

4

6

8

10

12

14

16

0 50 100 150

Number of Successful Trials

T
im

e
 t

ak
e

n
 t

o
 r

e
ac

h
 li

g
h

t



TCS Learning Classifier System Controller on a Real Robot      595

Figure 3 shows the number of events needed to move the robot to the reward. At
the start of the run there is large amount of variation in the number of events but this
variation reduces over time.

The learning in the robot appears to move through three phases. At first the robot
learns the corrective actions immediately around the reward area, where the robot first
gets to these reward areas by near random action selection. The next step is to learn
the rules to reach these areas. This is mainly the move forward rule that is later to be
applied further and further from the reward area. When this rule is established the
corrective turns at the start can be learnt. At the end of the run, when only a small
number of events are occurring, the robot responds to its random turn with a
corrective turn to face towards the light. To obtain this precise angle takes at first
several corrective turns after which the robot moves directly to the light. Eventually
this is reduced to around two events per run, slightly more than optimal since when
facing the light the robot actually needs only to move forward. It must be noted that a
stochastic action selection policy is used throughout as this is suggested as more
appropriate for real autonomous entities (Bull & Hurst 2002). Examination of the
resulting rule bases shows optimal knowledge exists.

The normal situation when displaying LCS performance results in simulated mazes
is to run the experiment for several thousand trials (e.g. (Wilson (1994)). Hence the
results displayed here do not completely converge on balanced solutions (fitness
sharing) as described in (Bull & Hurst 2002). The time taken to do these tests makes
runs in the thousands an impractical proposition.

There are numerous parameters controlling TCS and all LCS in general. The
settings of these parameters are essential to getting ZCS to work optimally (Bull &
Hurst 2002). These settings are problem specific and there are no heuristics to guide
practitioners. The authors have had some limited success with the use of a self-
adaptive mutation rate (Bull et al 2000) but this has not occurred with the
reinforcement learning parameters (Hurst & Bull 2001). Experimentation with
different parameter settings is difficult in a robotic environment and future work will
consider the use of simulation in conjunction with the real robots. Two new
parameters controlling the emphasis placed on time have been introduced, their
precise role and interaction is also a new area for investigation.

Another critical factor is the manner in which over-general rules are coped with by
TCS. Consider the situation where an action set contains a number of rules which no
longer match the input condition so form the drop set and an over general rule that
still matches the current input. If the decision is made to continue with the action the
incorrect over-general rule and the correct specific rule receive a similar level of
penalty. That is, all members of the action set have paid out β to the bucket. The
members of the drop set will receive no further reward, while the over general rule
may receive a small level of reward from any subsequent actions. Therefore, the
incorrect over general rule may receive a payoff while the correct specific rules only
pay a penalty. These issues in TCS are currently under investigation. More complex
tasks are also being carried out using TCS and the robotic platform.



596      Jacob Hurst, Larry Bull, and Chris Melhuish

6 Conclusion

The introduction and description of the TCS algorithm provides several points of
interest. It is the first LCS that has been inspired from current ideas of semi-markov
decisions processes that are emerging from current reinforcement learning theory and
attempts to cope with time in a systematic way are made. Further it is event driven
where this determination of significant events (changes in state) is obtained by
utilising the standard evolutionary computing-based generalisation mechanisms of
LCS. The results in the robotic environment are promising: the robot first learns to
find the light source before it learns to minimise the time taken and the number of
states that need to be considered. This implementation is the first robotic
implementation using a real numbered classifier representation. It is also the first
robotic implementation of an LCS where external reward is presented only at the goal
state, so removing the need for a reward function to provide external reward at each
“step”. The results presented here demonstrate an LCS robot controller operating at a
very low level of problem representation. Not only does the input to the robot consist
of floating point numbers, but with the exception of problem start and end states no
further state definition is carried out by the programmer. Clearly many questions
remain open about the use of TCS including the exact manner in which time is
weighted, as has been touched upon earlier. Perhaps of more concern is the time taken
for TCS to converge to a solution, which is currently long. Another question of more
theoretical interest is how TCS fits in with reinforcement learning’s option theory
(Sutton, Percup & Singh 1999). These and other questions, and considerations of
more complex tasks, are becoming a focus for our endeavours.

References

Ahluwalia,M & Bull,L (1999) A Genetic Programming Based Classifier System. In
W.Banzhaf, J.Daida, A.E.Eihen, M.H.Garzon, V.Honavar, M.Jakiela & R.E.Smith (eds)
Proceedings of the Genetic and Evolution Computation Conference –GECCO-99. Morgan
Kaufmann, pp11-18.

Asada,M, Noda,S, Tawaratsumida,S Hosoda,K (1996) Purposive Behavior Acquisition for a
Real Robot by a Vision Based Reinforcement Learning. Machine Learning Vol23 pp279-
303.

Barry, A (2000) Specifying Action Persistence within XCS. In D. Whitley, D.Goldberg,
E.Cantu-Paz,L. Spector, I.Parmee & H-G Beyer (eds) Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufmann, pp50-57

Booker,L (1990) Instinct as an inductive bias for learning behavioral Sequences In Meyer,J,A
and Wilson (eds) From animals to animats-The first International Conference on Simulation
of Adaptive Behavior, MIT Press

Bull, L., Hurst, J. & Tomlinson, A. (2000) Self-Adaptive Mutation in Classifier System
Controllers. In J-A. Meyer, A. Berthoz, D.Floreano, H. Roitblatt & S.W. Wilson (eds) From

Animals to Animats 6 - The Sixth International Conference on the Simulation of Adaptive
Behaviour, MIT Press.

Bull L & Hurst. J (2002) ZCS Redux EvolutionaryComputation In Press
Bradtke, S.J & Duff, M.O (1995) Reinforcement Learning Models for continuous-time Markov

decision problems, Advances in Neural information Processing Systems 7 MIT Press pp393-
400



TCS Learning Classifier System Controller on a Real Robot      597

Cobb,H & Grefenstette,J  (1991)Learning the Persistance of Actions in Reactive Control Rules
Proceedings of the 8th International Machine Learning Workshop. Morgan Kaufmann
pp293-297

Cliff,D & Ross,S (1995) Adding Temporary Memory to ZCS Adaptive Behavior 3(2) 101-150
Dorigo, M , Colombetti,M  (1997) Robot Shaping, MIT Press
Donnart, J.Y. Meyer, J.A. (1996b). Learning Reactive and Planning Rules in a Motivationally

Autonomous Animat. IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics. 26(3), 381-395.

Donnart, J.Y et Meyer, J.A. (1996a)Spatial exploration, map learning, and self-positioning with
MonaLysa. In Maes, P., Mataric, M., Meyer, J.A., Pollack, J. et Wilson, S. (Eds.). From
animals to animats 4. Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior. The MIT Press.

Doya,K (2000) Reinforcement learning in continuous time and space Neural Computation
12(1) 219-245

Holland,J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Hurst,J ,Bull,L (2001) A Self-Adaptive Classifier System.  In P-L Lanzi, W. Stolzmann & S.
Wilson (eds) Proceedings of the Third International Workshop on Learning Classifier
Systems.

Katagami,D, Yamada,S, (2002) Interactive Evolutionary Computation for Real Robot from a
view point of observation. In Proceedings of the The 7th International Conference on
Intelligent Autonomous Systems (IAS7)

Lanzi, P.L (1999) Extending the representation of Classifier Conditions from Messy Coding to
S-Expressions. In W.Banzhaf, J.Daida, A.E.Eihen, M.H.Garzon, V.Honavar, M.Jakiela &
R.E.Smith (eds) Proceedings of the Genetic and Evolution Computation Conference –
GECCO-99. Morgan Kaufmann, pp345-352.

Nolfi,S ,Floreano,D (2000) Evolutionary robotics, MIT Press
Parr R (1998) Hierarchical Control and Learning for Markov Decision Processes, Ph.D.

Thesis, University of California, Berkeley.
Santamaria,J Suton,R and Ram,A (1998) Experiments with reinforcement learning in problems

with continuous state and action spaces. Adaptive Behavior Vol 6 No 2 pp163-217
Stolzmann, Butz.M (2000) Latent learning and action planning in robots with anticipatory

classifier systems In P-L. Lanzi, W.Stolzmann & “.W.Wilson (eds) Learning Classifier
Systems: From Foundations to Applications. Springer.

Sutton, R & Barto,A (1998) Reinforcement Learning An Introduction, MIT Press
Sutton,R, Precup,D and Singh,S (1999) Between MDPs and semi-MDPs: A Framework for

temporal abstraction in reinforcement learning. Artificial Intelligence 112 pp181-211
Uchibi, Eiji, Asada,M and Hosoda,K (1997) Vision Based State Space Construction for

Learning Mobile Robots in Multi-Agent Environments. Proceedings of Sixth European
Workshop on Learning Robots (EWLR-6) pp33-41

Valenzuela-Rendon, M (1991) The Fuzzy Classifier System: a Classifier System for
Continuously Varying Variables. Im L.Booker & R.Belew (eds) Proceedings of the Fourth
International Conference on genetic Algorithms. Morgan Kaufmann pp346-353

Watkins, C (1989). Learning From Delayed Rewards. Phd.  Cambridge University
Wilson, S.W (1994) ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1):1-

18
Wilson, S.W (2000) Get Real! XCS with Continuous Valued Inputs. In P-L. Lanzi,

W.Stolzmann & “.W.Wilson (eds) Learning Classifier Systems: From Foundations to
Applications. Springer, pp209-222.

Wilson, S.W (2001) Function Approximation with a Classifier System. In L. Spector, M. Gen,
S. Sen, M.Dorigo, S,Pezeshk, M.Garzon & E.Burke (eds) Proceedings of the Genetic and
Evolutionary Computation Conference- GECCO 2001. Morgan Kaufmann, pp974-984.



Comparing Synchronous and Asynchronous
Cellular Genetic Algorithms

Enrique Alba1, Mario Giacobini2, Marco Tomassini2, and Sergio Romero

1 Department of Lenguajes y CC.CC., University of Málaga, Málaga, Spain
eat@lcc.uma.es

2 Computer Science Institute, University of Lausanne, Lausanne, Switzerland
Mario.Giacobini/Marco.Tomassini@iis.unil.ch

Abstract. This paper presents a comparative study of several asyn-
chronous policies for updating the population in a cellular genetic al-
gorithm (cGA). Cellular GA’s are regular GA’s with the important ex-
ception that individuals are placed in a given geographical distribution
(usually a 2-d grid). Operators are applied locally on a set made of
each individual and the surrounding neighbors, thus promoting intra-
neighborhood exploitation and inter-neighborhood exploration of the
search space. Here, we analyze the respective advantages and draw-
backs of dealing with this decentralized population in the traditional
synchronous manner or in several possible asynchronous update policies.
Asynchronous behavior has proven to be better in many domains such
as cellular automata and distributed GA’s, which, in turn, is also the
main conclusion of this work. We will undergo a structured analysis on
a set of problems with different features in order to get well grounded
conclusions.

1 Introduction

Cellular evolutionary algorithms (cEA) models, also called diffusion or fine-
grained models, are based on a spatially distributed population in which genetic
interactions may only take place in a small neighborhood of each individual.
Individuals are usually disposed on a regular grid of dimensions d = 1, 2 or
3. Cellular evolutionary algorithms were popularized by early work of Gorges-
Schleuter [5], and by Manderick and Spiessen [9]. However, we here want to stress
the difference between the model and its implementation, and this is why we call
them cellular and not fine-grained EA’s. Cellular EA’s are just a new kind of
algorithm, and not a parallel implementation on massively parallel machines.

Although fundamental theory is still an open research line for cEA’s, they
have been empirically reported as being useful in maintaining diversity and pro-
moting slow diffusion of solutions through the grid. Part of their behavior is due
to a lower selection pressure compared to that of panmictic EA’s. The influence
of the neighborhood, grid topology, and grid size/shape on the induced selection
pressure has been investigated in detail in [1,6,11,12] (and tested on different
applications such as combinatorial and numerical optimization).

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 601–610, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



602 Enrique Alba et al.

Let us analyze a typical cGA, an important kind of cEA. The cGA iteratively
considers groups of individuals belonging to the same neighborhood to work with.
In a North-East-West-South (NEWS or Von Newmann) neighborhood type, the
central individual plus its 4 neighbors make up a small pool to apply operators
on. The cGA iterates through the population in various generations. In each
generation, it considers as a central string every individual in the population.
Since a string belongs to several neighborhoods, a change in its contents affects
its neighbors in a smooth manner, representing a good tradeoff between slow
convergence and good exploration of the search space. In a synchronous cGA,
we compute the full new generation incrementally onto a temporary population,
and them replace the full old population with the new one.

Synchronous Cellular Genetic Algorithm (cGA)

proc Reproductive_Cycle (ga):
for s=1 to MAX_STEPS do

for x=1 to WIDTH do
for y=1 to HEIGHT do

n_list = Calculate_neigbors (ga, position (x,y) );
parent1 = Select (n_list);
parent2 = Select (n_list);
Crossover(ga.Pc, n_list[parent1], n_list[parent2], ind_aux.chrom);
Mutate(ga.Pm, ind_aux.chrom);
ind_aux.fitness = ga.Evaluate ( Decode ( ind_aux.chrom) ) ;
Insert_New_Ind(position(x,y),ind_aux,[if better | always], ga, pop_aux);

end_for;
end_for;
ga.pop=pop_aux;
Collect_Statistics (ga);

end_for;
end_proc Reproductive_Cycle;

Cellular EA’s can also be seen as stochastic cellular automata (CA’s) [15,16]
where the cardinality of the set of states is equal to the number of points in the
search space. CA’s, as well as cEA’s, usually assume a synchronous or parallel
update policy, in which all the cells are formally updated simultaneously. How-
ever, this is not the only option available. Indeed, several works on asynchronous
CA’s have shown that sequential update policies have a marked effect on their
dynamics (see e.g. [7,13,14]). While asynchronous updating is physically more
realistic for CA’s due to their finite signal propagation speed, this is not an issue
for cEA, unless they are implemented on an actual massively parallel cellular
machine, which is seldom the case in practice. However, it would be interest-
ing to investigate asynchronous cEA’s and their problem solving capabilities. To
our knowledge, the present paper is the first step in that direction. We will thus
present a few asynchronous update policies for a cEA, and compare them with
the customary synchronous updating on a set of test functions.

The paper is structured as follows. The next section contains some back-
ground on asynchronous cEA’s and explains the techniques we are considering.
Section 3 describes the test problems used, while section 4 gives details on the
cEA parameters employed in the simulations, the performance measures, and
the statistics used. Section 5 contains a discussion of the experimental results,
and section 6 offers our conclusions, as well as some comments on the future
work.



Comparing Synchronous and Asynchronous Cellular Genetic Algorithms 603

2 Asynchronous Cellular Evolutionary Algorithms

There are many ways for sequentially updating the cells of a cEA with a popu-
lation on a 2-d grid (see an excellent discussion of asynchronous CA’s in [13]).
The most general one is independent random ordering of updates in time, which
consists in randomly choosing the cell to be updated next, with replacement.
This corresponds to a binomial distribution for the update probability. The li-
miting case of such distribution for large n is the Poisson distribution (where n
is the number of cells, or individuals, in the grid). This update policy will be
called uniform choice (UC) in the following.

For comparison purposes we also consider three other update methods: fixed
line sweep, fixed random sweep and random new sweep (we employ the same
terms as in [13]).

– In fixed line sweep (LS), the simplest method, grid cells are updated sequen-
tially (1, 2 . . . n), line by line of the 2-d grid.

– In the fixed random sweep update (FRS), the next cell to be updated is
chosen with uniform probability without replacement; this will produce a
certain update sequence (cj1, c

k
2 , . . . , c

m
n ), where cpq means that cell number p

is updated at time q and (j, k, . . . ,m) is a permutation of the n cells. The
same permutation is then used for the following update cycles.

– The new random sweep method (NRS) works like FRS, except that a random
new cell permutation is chosen anew for each sweep through the array.

A time step is defined to be the action of updating n times, which corresponds
to updating all the n cells in the grid for LS, FRS and NRS, and possibly
less than n different cells in the uniform choice method, since some cells might
be updated more than once. It should be noted that, with the exception of
fixed line sweep, the other asynchronous updating policies are non-deterministic,
representing an additional source of non-determinism besides that of the genetic
operators. An asynchronous parallel implementation could be easily derived for
these algorithms, although we do not explore physical parallelism in this work.

3 Description of the Test Problems

To test the differences between the synchronous and the four asynchronous up-
date models we have decided to use problems representing three large classes of
difficulty with interest in evolutionary computation, namely: deception, multi-
modality, and epistasis. Similarly to the work of Alba and Troya [1], the choice
has been driven to the Massive Multimodal Deceptive Problem (MMDP), the
Frequency Modulation Sounds Problem (FMS), and the P-PEAKS multimodal
generator.

The MMDP has been specifically designed by Goldberg et al. [4] to be dif-
ficult for an EA. It is made up of k subproblems of 6 bits each (see equation
1). The optimum has a value of k and is attained when the unitation of each
subproblem, i.e. the number of ones of its 6-bits defining string, is 0 or 6. Thus



604 Enrique Alba et al.

every subproblem xi =< xi1 , ..., xi6 > (i = 1, ..., k) contributes to the fitness of
a possible solution −→x =< x1...xk > according to its unitation:

fMMDP (−→x ) =
k∑
i=1

g(unitation(xi)), (1)

where g is such that g(0) = g(6) = 1, g(1) = g(5) = 0, g(2) = g(4) = 0.36,
g(3) = 0.64. Such function has a quite large number of local optima (22k), while
only 2k are global solutions, and therefore its degree of multimodality is defined
by k. Here we set k = 40, obtaining a considerably large degree of multimodality.

Proposed by Tsutsui et al. [10], the Frequency Modulation Sounds parameter
identification problem (FMS) consists in adjusting a general model y(t) (equation
2) to a basic sound function y0(t) (equation 3). The problem is to evolve a
solution −→x consisting in 6 real parameters (−→x =< a1, w1, a2, w2, a3, w3 >) each
one encoded with 32 bits in the range [−6.4, 6.35], in order y(t) to fit the target
function y0(t).

y(t) = a1 sin(w1tθ + a2 sin(w2tθ + a3 sin(w3tθ))), (2)

y0(t) = 1.0 sin(5.0tθ + 1.5 sin(4.8tθ + 2.0 sin(4.9tθ))). (3)

The goal is, therefore, to minimize the sum of square errors (equation 4):

fFMS(−→x ) =
100∑
t=0

(y(t)− y0(t))2. (4)

The resulting problem is a complex multimodal function having strong epista-
sis with minimum value in −→z , where f(−→z ) = 0. For our calculations, we consider
the algorithm having found an optimum when the error falls below 10−2.

The last optimization task solved in this paper is a problem generator pro-
posed by De Jong et al. [8]. This problem generator is an easily parameterizable
task which has a tunable degree of epistasis, thus allowing to derive instances
with growing difficulty at will. With a problem generator we evaluate our al-
gorithms on a high number of random problem instances, thus increasing the
predictive power of the results for the problem class as a whole. Such a char-
acteristic allows a larger fairness when comparing algorithms, since it implicitly
removes the opportunity to hand-tune algorithms to a particular problem. In
this paper we use the multimodal generator called P-PEAKS (see equation 5).

fP−PEAKS(−→x ) =
1
N
maxpi=1{N −HammingD(−→x , Peaki)} (5)

The idea is to generate P strings, each of N random bits, that represent
the location of the global optima in the search space. The fitness of a possible
solution (a bit string of length N) is the number of bits it has in common with
the nearest peak in the Hamming space, divided by the length N of the strings.
Problems with a small/large number of peaks are weakly/strongly epistatic. The
instance we use has P = 100 peaks of N = 100 bits each, which represents a
medium-high epistasis level.



Comparing Synchronous and Asynchronous Cellular Genetic Algorithms 605

Table 1. Success rate for the Massive Multimodal Deceptive Problem of the syn-
chronous and the four asynchronous update methods (horizontally) with different grid
dimensions (vertically).

MMDP Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

20× 20 0% 0% 0% 0% 0%
32× 32 74% 32% 38% 44% 56%
40× 40 98% 86% 92% 84% 94%
50× 50 100% 98% 100% 100% 100%

Table 2. Success rate for the Frequency Modulation Sounds problem of the syn-
chronous and the four asynchronous update methods (horizontally) with different grid
dimensions (vertically).

FMS Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

20× 20 0% 0% 0% 2% 0%
32× 32 4% 0% 2% 0% 2%
40× 40 8% 8% 6% 8% 6%
50× 50 24% 22% 12% 12% 12%

Table 3. Success rate for the P-PEAKS problem of the synchronous and the four
asynchronous update methods (horizontally) with different grid dimensions (vertically).

P-PEAKS Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

20× 20 52% 26% 36% 34% 36%
32× 32 100% 100% 100% 100% 100%
40× 40 100% 100% 100% 100% 100%
50× 50 100% 100% 100% 100% 100%

4 Parameters and Statistics Used

As we said in the introduction, many authors have already investigated the
influence of the neighborhood, grid topology and grid dimensions on the induced
selection pressure [1,6,11,12]. Reduced grid dimensions of 20×20 have been used
to design efficient cGA’s [1], but, most of the time, larger grids are preferred for
the analysis. For the three problems described in section 3 we have investigated
four different grid sizes, so as to choose the dimension that, for all the problems,
guarantees significant success rate of the five update methods. Each grid size has
been tested 50 times for each update method.

All the results are summarized in tables 1, 2 and 3 and were obtained with
the same internal parameters. For the parent’s selection we have used a roulette
wheel operator among the five individuals in the von Neumann neighborhood
(the central plus the four neighbors in the North, East, West and South posi-
tions). A two point crossover is applied to the two selected parents with prob-
ability 1.0, thus producing an offspring individual (the one with the largest
proportion of the best parent). Such a new solution is then mutated with dif-
ferent mutation probabilities pm for the three problems. The obtained offspring



606 Enrique Alba et al.

Table 4. Mean number of evaluations for the three problems (vertically) and the five
update methods (horizontally).

Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

MMDP 277950 201887 216300 217850 238850
FMS 560760 543928 427291 480500 534772

P-PEAKS 243300 189550 191700 201400 203350

will replace the considered individual only if it has a better fitness. We stop
the algorithm when a global optimum is found, and we analyze the cost of a
successful run of a cEA by measuring the number of evaluations done. In the
MMDP, an individual is encoded by a 40× 6 = 240 bit string, in the FMS prob-
lem by a 6 × 32 = 192 binary chromosome, and in the P-PEAKS problem by
a binary vector of length 100. The problems’ differences and the different chro-
mosomal lengths determine three mutation probabilities: for the MMDP and
the P-PEAKS problem we set pm to 1/L, having respectively pm = 0.0042 and
pm = 0.01, while for the FMS problem pm is set to 10/L, i.e. pm = 0.052.

Capcarrère et al. defined a number of statistical measures that are useful for
understanding the dynamical behavior of cellular evolutionary algorithms. Two
kinds of statistics were used: genotypic and phenotypic. Genotypic measures em-
body aspects related to the genotypes of individuals in a population. Phenotypic
statistics concern properties of individual performance, essentially fitness (see [3]
for the exact definitions). Here, we use the variance and the mean fitness as phe-
notypic statistics, and the entropy as a statistics pertaining to the genotype (a
phenotypic diversity index based on fitness entropy can also be defined but it
will not be used here). Differently from the paper of Capcarrère et al., we calcu-
late the entropy in the interval [0, 1], instead of in the interval [0, log(N)] (where
N is the population size). Such a result is obtained setting the multiplicative
constant in the entropy formula to 1/ log(N) instead of using 1.

5 Experimental Results

In order to have comparable results for all the three problems, we have decided
to set the population to the 50× 50 grid size (non-square grids analyzed in [1]).
The results, for all the runs, are summarized in table 4: for each update method
the average number of evaluations needed to solve the three problems is shown.

For the MMDP and the P-PEAKS problem, where success rate is 100%,
we can see that the synchronous update method is more expensive than every
asynchronous method. We can therefore deduce that for multimodal, deceptive
(MMDP) and highly epistatic (P-PEAKS) problems it should be more efficient
to implement an asynchronous update method rather than a synchronous one.
The behavior of these two problems is slightly different for each asynchronous
updating policy. For MMDP and P-PEAKS the Line Sweep method is the fastest
policy, and the New Random Sweep is faster than Uniform Choice. The Fixed
Random Sweep policy has a convergence speed similar to the Line Sweep for the
highly epistatic problem, and to the New Random Sweep for the multimodal



Comparing Synchronous and Asynchronous Cellular Genetic Algorithms 607

0 100 200 300
20

25

30

35

40
(a) MMDP

evaluations (x103)

fit
ne

ss SYN
LS 
FRS
NRS
UC 

0 100 200 300
0.7

0.75

0.8

0.85

0.9

0.95

1
(b) P−PEAKS

evaluations (x103)

fit
ne

ss SYN
LS 
FRS
NRS
UC 

Fig. 1. A sample run of each update method for the MMDP (a), and for the P-PEAKS
problem (b).

and deceptive problems. Such a different speed can be seen in figure 1, where
a sample curve is drawn for each update method, both for MMDP (a) and for
P-PEAKS (b).

This difference in the speed of convergence is followed by a consistent beha-
vior of the entropy curves (see figure 2): the faster the convergence speed is, the
lower the entropy is. Such a result confirms the intuitive idea that the genotypic
diversity decreases proportionally to the convergence speed, i.e. the faster a cEA
is, the bigger the upward thrust of the populations is. The variance and the
standard deviation values are consistent with the described behaviors.

For the FMS problem the comparison between the convergence speeds of the
different update methods must be coupled with their different success rates. In
fact, as it can be seen comparing tables 2 and 4, the synchronous and the Line
Sweep methods are slower than the Fixed Random Sweep, the New Random
Sweep and the Uniform Choice methods (see also figure 3), but their success
rate are twice the percentage of the other three asynchronous update methods.
So, Line Sweep seems a good tradeoff between speed and accuracy, at least for
problems similar to FMS. FMS showed to be the most difficult problem on which
our cEA’s have been tested in this study, due to its huge and complex search
space. The entropy at the end (not shown here) is always very high, in the
interval [0.9, 0.92] for every algorithm.

We have seen that, contrary to the behavior of cellular automata (CA’s), the
simple Line Sweep policy performs better than the rest in cEA’s. Such a result
can be explained by the fact that, in cEA’s, we don’t have a propagation of signals
like in CA’s, having instead a propagation of information on the solution of the
problem. It is true that Line Sweep fixes a preferred direction of propagation in
the axes of the grid, but such an order speeds the propagation of information
in the population. In fact, if we take our 50× 50 toroidal population grids with
the chosen von Neumann neighborhood, in synchronous cEA’s the information
of an individual will take at least 50 time steps (i.e. 125000 evaluations) to
reach the farthest individual in the grid, while in a cEA with asynchronous Line



608 Enrique Alba et al.

0 100 200 300
0.4

0.5

0.6

0.7

0.8

0.9

1
(a) MMDP

evaluations (x103)

po
pu

la
tio

n 
en

tr
op

y

SYN
LS 
FRS
NRS
UC 

0 100 200 300
0.4

0.5

0.6

0.7

0.8

0.9

1
(b) P−PEAKS

evaluations (x103)

po
pu

la
tio

n 
en

tr
op

y

SYN
LS 
FRS
NRS
UC 

Fig. 2. A sample curve of the entropy of each update method for the MMDP (a) and
for the P-PEAKS problem (b).

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30
FMS

evaluations (x103)

fit
ne

ss

synchronous
Line Sweep
Fixed Random Sweep
New Random Sweep
Uniform Choice

Fig. 3. A sample run of each update method for the FMS problem.

Sweep update method, it can take a small value such as 1 time step (i.e. 2500
evaluations).

6 Conclusions

In this paper we have analyzed the behavior of three alternative policies for
asynchronously updating the population of a decentralized cellular GA. We have
initiated this research line because we had some preliminary expectations relating
asynchronous policies in the field of cellular automata [14] and distributed GA’s
[2]. We have tackled this study by considering three representative problems:
deceptive (MMDP), epistatic (P-PEAKS) and hard (FMS) problems. Our first



Comparing Synchronous and Asynchronous Cellular Genetic Algorithms 609

conclusion is that, for any size of the search grid, the synchronous update policy
is the best in terms of percentage of hits, because it always provides an equal or
larger success rate with respect to any of the asynchronous policies.

However, if we consider the number of evaluations needed to locate the op-
timum (efficiency) we got the opposite conclusion: asynchronous methods are
faster (sometimes much faster) than the synchronous one. A simple asynchronous
policy such that Line Sweep (LS) provides the faster convergence for two of the
problems (MMDP and P-PEAKS), while it shows a high and desirable success
rate (similar to that of the synchronous update). In the hard FMS problem,
Fixed Random Sweep got a considerably faster solution, and can be pointed out
as a good approach.

Globally stated, fast convergence means local optima in evolutionary algo-
rithms, but cellular GA’s in general, and the Line Sweep policy in particular,
offers a good tradeoff solution to this problem without bothering researchers
with a large number of parameters to be tuned (maybe only the ratio between
the size of the grid and the neighborhood being used [1]).

As a future work, we will enlarge the set of considered problems, include a
study of the influence of the shape of the 2-d grid containing the population,
and try to better characterize the relationship between the performance measures
and the kind of problems.

References

1. E. Alba and J. M. Troya. Cellular evolutionary algorithms: Evaluating the in-
fluence of ratio. In M. Schoenauer et al., editor, Parallel Problem Solving from
Nature, PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages 29–
38. Springer-Verlag, 2000.

2. E. Alba and J. M. Troya. Analyzing synchronous and asynchronous parallel dis-
tributed genetic algorithms. Future Generation Computer Systems, 17:451–465,
January 2001.

3. M. Capcarrère, M. Tomassini, A. Tettamanzi, and M. Sipper. A statistical study
of a class of cellular evolutionary algorithms. Evolutionary Computation, 7(3):255–
274, 1999.

4. K. Deb D.E. Goldberg and J. Horn. Massively multimodality, deception and genetic
algorithms. In R. Männer and B. Manderick, editors, Proceedings of the PPSN II,
pages 37–46. North-Holland, 1992.

5. M. Gorges-Schleuter. ASPARAGOS an asynchronous parallel genetic optimisation
strategy. In J. D. Schaffer, editor, Proceedings of the Third International Confer-
ence on Genetic Algorithms, pages 422–427. Morgan Kaufmann, 1989.

6. M. Gorges-Schleuter. An analysis of local selection in evolution strategies. In
Genetic and evolutionary conference, GECCO99, volume 1, pages 847–854. Morgan
Kaufmann, San Francisco, CA, 1999.

7. T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular automata.
Physica D, 10:59–68, 1984.

8. K.A. De Jong, M.A. Potter, and W.M. Spears. Using problem generators to explore
the effects of epistasis. In T. Bäck, editor, Proceedings of the Seventh ICGA, pages
338–345. Morgan Kaufmann, 1997.



610 Enrique Alba et al.

9. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D.
Schaffer, editor, Proceedings of the Third International Conference on Genetic Al-
gorithms, pages 428–433. Morgan Kaufmann, 1989.

10. D. Corne S. Tsutsui, A. Ghosh and Y. Fujimoto. A real coded genetic algorithm
with an explorer and an exploiter populations. In T. Bäck, editor, Proceedings of
the Seventh ICGA, pages 238–245. Morgan Kaufmann, 1997.

11. J. Sarma and K. A. De Jong. An analysis of the effect of the neighborhood size and
shape on local selection algorithms. In H. M. Voigt, W. Ebeling, I. Rechenberg,
and H. P. Schwefel, editors, Parallel Problem Solving from Nature (PPSN IV), vol-
ume 1141 of Lecture Notes in Computer Science, pages 236–244. Springer-Verlag,
Heidelberg, 1996.

12. J. Sarma and K. A. De Jong. An analysis of local selection algorithms in a spa-
tially structured evolutionary algorithm. In T. Bäck, editor, Proceedings of the
Seventh International Conference on Genetic Algorithms, pages 181–186. Morgan
Kaufmann, 1997.

13. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in cellular
automata. BioSystems, 51:123–143, 1999.

14. M. Sipper, M. Tomassini, and M. S. Capcarrere. Evolving asynchronous and scal-
able non-uniform cellular automata. In G. D. Smith, N. C. Steele, and R. F.
Albrecht, editors, Proceedings of International Conference on Artificial Neural Net-
works and Genetic Algorithms (ICANNGA97), pages 67–71. Springer-Verlag, Vi-
enna, 1997.

15. M. Tomassini. The parallel genetic cellular automata: Application to global func-
tion optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors,
Proceedings of the International Conference on Artificial Neural Networks and Ge-
netic Algorithms, pages 385–391. Springer-Verlag, 1993.

16. D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms, page 658. Morgan Kauf-
mann Publishers, San Mateo, California, 1993.



Satellite Range Scheduling: A Comparison
of Genetic, Heuristic and Local Search

L. Barbulescu, A.E. Howe, J.P. Watson, and L.D. Whitley

Computer Science Department
Colorado State University

Fort Collins, CO 80523 USA
{laura,howe,watsonj,whitley}@cs.colostate.edu

Abstract. Three algorithms are tested on the satellite range scheduling
problem, using data from the U.S. Air Force Satellite Control Network;
a simple heuristic, as well as local search methods, are compared against
a genetic algorithm on old benchmark problems as well as problems pro-
duced by a generator we recently developed. The simple heuristic works
well on the old benchmark, but fails to scale to larger, more complex
problems produced by our generator. The genetic algorithm yields the
best overall performance on larger, more difficult problems.

1 Problem Description

The U.S. Air Force Satellite Control Network (AFSCN) is responsible for coor-
dinating communications between users and satellites in space. A key mission of
the AFSCN is satellite range scheduling (SRS), which involves scheduling com-
munications between users on the ground and more than 100 satellites in space.
All communications are performed via nine ground stations located around the
globe, with an aggregate of sixteen antennas. The AFSCN scheduling center
typically receives over 500 user requests for a single day.

Each user request specifies at a minimum an antenna at a particular ground
station, a required duration, and a time window within which the duration must
be allocated. Requests are classified as either low or high-altitude, corresponding
to the orbit of the target satellite. The durations of low-altitude requests are
typically equal to the visibility windows, leaving little scheduling flexibility. In
contrast, high-altitude satellites are visible to more ground stations for longer
periods of time. Consequently, high-altitude requests often specify alternative
antennas and/or visibility windows. The objective of the SRS problem is to
minimize the number of unsatisfied requests.

The SRS problem is NP-complete1: a reduction of the SRS problem to one
resource can be shown to be equivalent to a well known NP-complete problem in
the scheduling literature, denoted 1|rj |

∑
Uj in the three-field notation widely

used by the scheduling community. The SRS problem is also over-subscribed in
the sense that all requests can rarely be scheduled; to satisfy all user requests,
1 We are currently working on a paper which presents an NP-completeness proof.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 611–620, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



612 L. Barbulescu et al.

some form of arbitration process is required. Several algorithms for related over-
subscribed scheduling problems have been reported in the literature (e.g., see
[6] [11] [13]), but none directly address the peculiarities of the satellite range
scheduling problem, including alternative resources and/or time-windows.

Researchers at the Air Force Institute of Technology (AFIT) have developed
a number of algorithms for the SRS problem. Gooley and Schalck introduced
an algorithm based on a combination of mixed integer programming (MIP) and
insertion heuristics [4] [8], which scheduled between 91% and 95% of user re-
quests for small problem instances. Later, Parish used a genetic algorithm called
Genitor to solve the SRS problem [5]. Genitor out-performed the MIP approach,
nominally scheduling 96% of user requests.

Both the MIP algorithm and the Genitor genetic algorithm were evaluated
using the same set of seven real-world problem instances collected in 1992; we
refer to this collection of instances as the “AFIT benchmark”. In 1992 approx-
imately 300 requests needed to be scheduled for a single day, compared to 500
requests per day in recent years. The need to schedule more requests has a clear
impact on problem difficulty. In this paper we investigate whether the problems
in the AFIT benchmarks are representative of the kinds of Range Scheduling
problems that are solved in the present by AFSCN to determine whether the
old results should generalize.

Currently, there is no accepted state-of-the-art algorithm for satellite range
scheduling. Because it is an extremely important application, we have been en-
gaged in a study of various algorithms for this problem. In this paper, we replicate
the results reported by Parish [5] using Genitor to solve the AFIT benchmark
problems, and investigate reasons for Genitor’s strong relative performance. We
identify a simple heuristic that can solve all of the problems in the AFIT bench-
mark. Finally, we generate new problems by modeling features currently en-
countered by AFSCN and explore conditions where the heuristic fails. Genitor
continues to display good results for new problems.

2 Algorithms for Satellite Range Scheduling

In this section, we document the various algorithms considered in this study. We
first discuss the method of encoding solutions, and the procedure for decoding
solutions into actual schedules. Next, we define the three algorithms used in our
analysis: random sampling, local search under a shift neighborhood, and the
Genitor genetic algorithm. We then conclude by briefly discussing our decision
to omit two well-known families of scheduling algorithms in our analysis.

2.1 Solution Representation and Decoding

Each of the algorithms we consider represents solutions as permutations of the
integers 1 through N , where N is the total number of requests to be scheduled. A
permutation represents the order in which requests are given access to particular
resources. A greedy heuristic is then used to generate a schedule from a permu-
tation, by attempting to schedule the requests in the order in which they appear



Satellite Range Scheduling 613

in the permutation. Each request is assigned to the first available resource (from
its list of alternatives), and at the earliest possible starting time. If the request
cannot be scheduled on any of the alternative resources, it is dropped from the
schedule (i.e., bumped). The “fitness” of a schedule is then defined as the total
number of requests bumped from the schedule.

2.2 Random Sampling

Random sampling produces schedules by generating random permutations of
length N . By randomly sampling a large number of schedules, we can character-
ize the distribution of solutions in the search space. Further, the performance of
random sampling provides a baseline measure of problem difficulty.

2.3 Local Search under the Shift Neighborhood

A key component of any local search algorithm is the move operator. Because
problem-specific knowledge for the SRS problem is lacking, we selected the
“shift” move operator. The shift operator has been successfully applied to a
number of well-known scheduling problems, such as the permutation flow-shop
scheduling problem [10]. The neighborhood under the shift operator is defined
by considering all (N − 1)2 pairs (x, y) of positions in a current solution π, sub-
ject to the restriction that y �= x − 1. The neighbor π

′
corresponding to the

position pair (x, y) is produced by shifting the job at position x into the po-
sition y, while leaving all other relative job orders unchanged. If x < y, then
π′ = (π(1), ..., π(x− 1), π(x+ 1), ..., π(y), π(x), π(y + 1), ..., π(n)). If x > y, then
π′ = (π(1), ..., π(y − 1), π(x), π(y), ..., π(x− 1), π(x+ 1), ..., π(n)).

Given the relatively large neighborhood size, we use the shift operator in
conjunction with next-descent search. The neighbors of the current solution
are examined in a random order, and the first neighbor with either a lower
or equal fitness (i.e., number of bumps) is accepted. Search terminates when a
pre-specified number of evaluations is exceeded.

2.4 The Genitor Genetic Algorithm

Genitor [12] is a “steady-state” genetic algorithm [2]. Previous studies of the SRS
problem at AFIT [5] report good results when using Genitor in conjunction with
permutation encoding of solutions. In each step of Genitor, a pair of solutions
is selected and used to generate a single child, which then replaces the worst
solution in the current population.

In Genitor, the parent solutions are selected based on the rank of their fitness,
relative to other solutions in the population. A linear bias is used such that
individuals that are above the median fitness have a rank-fitness greater than
one and those below the median fitness have a rank-fitness of less than one.

The typical genetic algorithm encodes solutions as bit strings, enabling the
use of standard crossover operators such as one-point and two-point crossover [3].



614 L. Barbulescu et al.

Because we encode solutions as permutations, a special crossover operator is
required to ensure that the recombination of two parent permutations results in
a child inheriting relevant characteristics of the two parents. We use Syswerda’s
(relative) order crossover operator [9], which preserves the relative order of the
elements in the parents when constructing the child. Syswerda’s operator has
been successfully applied in a variety of scheduling applications.

2.5 Other Scheduling Algorithms

We also considered straightforward implementations of Tabu search for the SRS
problem, but the performance of these algorithms was not competitive. With 500
requests, the number of neighbors under shift or swap-based move operators is
roughly 5002; consequently, Tabu search and other local search algorithms based
on steepest descent are simply not practical. We briefly explored methods for
reducing the neighborhood size, but in all cases the reduction in neighborhood
size severely impacted algorithm performance.

Additionally, we developed constructive search algorithms based on texture-
based [1] and slack-based [7] constraint-based scheduling heuristics that select
the maximal subset of tasks that can be feasibly scheduled. We found that
texture-based heuristics are highly effective when the size of the problem is small
(e.g., less than 100 requests) and when alternative or backup requests are not
considered. However, on larger problems, the consideration of alternative times
makes the straightforward use of constraint-based methods ineffective.

3 The AFIT Benchmark

The AFIT benchmark problems2 were derived using the ASTRO system, a com-
puter application developed to aid human schedulers. These problems represent
the user requests and visibilities for seven days, from October 12 to October 18,
1992. The low-altitude requests in these problems can be scheduled only at one
ground station (by assigning it to one of the antennas present at that ground
station). The number of requests to be scheduled for the seven problems are
322, 302, 300, 316, 305, 298, and 297 respectively. We note that since 1992, the
number of requests received during a typical day has increased substantially.

In our experimental setup we replicated the conditions and the reported re-
sults from Parish’s study [5]. We ran Genitor on each of the seven problems in
the benchmark, using the same parameters: population size 200, selective pres-
sure 1.5, order-based crossover, and 8000 evaluations3 for each run. We also ran
random sampling and local search on each AFIT problem, with a limit of 8000
evaluations per run. For each algorithm, we performed a total of 30 independent
2 We thank Dr. James T. Moore, Associate Professor of Operations Research at the

Department of Operational Sciences, Graduate School of Engineering and Manage-
ment, Air Force Institute of Technology for providing the data.

3 An increase in the number of evaluations to 50k and of the population size to 400
did not improve the best solutions found for each problem.



Satellite Range Scheduling 615

Table 1. Performance of Genitor, local search, and random sampling on the AFIT
benchmark problems, in terms of the best and mean number of bumped requests. All
statistics are taken over 30 independent runs. The last column reports the performance
of Schalck’s Mixed-Integer Programming algorithm [8].

Genitor Local Search Random Sampling MIP
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev

1 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 10
2 4 4 0 6 10.96 2.04 11 13.83 1.08 6
3 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 7
4 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 7
5 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 6
6 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 7
7 6 6 0 10 14.1 2.53 16 16.96 0.66 6

runs on each problem. The results are summarized in Table 1. Included in the
table are the results obtained by Schalck using Mixed Integer Programming [8].
As previously reported, Genitor yields the best overall performance.

To exploit the differences in scheduling slack and number of alternatives
between low and high-altitude requests, we designed a simple greedy heuristic
(which we call the “split heuristic”) that first schedules all the low-altitude re-
quests (in the order given by the permutation), followed by the high-altitude
requests. We show that: (1) for more than 80% of the best known schedules
found by Genitor, the split heuristic does not increase the number of conflicts
in the schedule, and (2) the split heuristic typically produces good (and often
best-known) schedules.

We hypothesized that Genitor may be learning to schedule the low-altitude
requests before the high-altitude requests, leading to the strong overall per-
formance. If true, the evaluation of high-quality schedules should, on average,
remain unchanged when the split heuristic is applied. To test this hypothesis, we
ran 1000 trials of Genitor on each AFIT problem. The results are summarized
in Table 2. The second column (labeled “Total Number of Best Known Found”)
records the number of schedules (out of 1000) with an evaluation equal to the
best found by Genitor in any run. We then applied the split heuristic to each
such schedule. The schedules resulting from the split heuristic fall into three cat-
egories. First, the conflicts are identical to those found by Genitor; the number of
schedules in this category is given in the third column (“Same Evaluation Same
Conflicts”). Second, the evaluation is the same but the conflicts are different;
the number of schedules in this category is given in column “Same Evaluation
Different Conflicts”. Third, the evaluation is different; the last column reports
the number of schedules in this category. By separating the requests from the
schedules produced by Genitor into low and high-altitude requests, the evalu-
ation of more than 80% of the schedules remains unchanged. The numbers in
the last column of the table also warn that when using the split heuristic only
a subspace of the permutations is considered (the permutations that are sep-
arated into low and high-altitude requests); this subspace does not contain all



616 L. Barbulescu et al.

Table 2. The effect of applying the split heuristic when evaluating best known sched-
ules produced by Genitor.

Day Total Number of Same Evaluation Same Evaluation Worse
Best Known Found Same Conflicts Different Conflicts Evaluation

1 420 38 373 9
2 1000 726 106 168
3 996 825 115 56
4 937 733 50 154
5 862 800 12 50
6 967 843 56 68
7 1000 588 408 4

Genitor Genitor−S LS LS−S RS RS−S
94

95

96

97

98

99

100

P
er

ce
nt

ag
e 

of
 R

eq
ue

st
s 

S
ch

ed
ul

ed

Genitor Genitor−S LS LS−S RS RS−S
0

50

100

150

200

250

300

350

C
P

U
 ti

m
e

Fig. 1. Algorithm performance for the seven AFIT benchmark problems.

the best-known solutions, and, in fact, for different instances of the problem this
subspace could be suboptimal.

Our second hypothesis is that using the split heuristic results in solutions
with a small number of conflicts. Figure 1 presents a summary of the results
obtained when using the Genitor, Local Search and Random Sampling without
the split heuristic (30 experiments, 8000 evaluations per experiment), as well as
the split versions denoted by Genitor-S, Local Search-S and Random Sampling-
S. The split versions of the three algorithms were run in 30 experiments with 100
evaluations per experiment. The minimum number of bumps in 30 experiments
is recorded for each problem as the percent of requests scheduled. The left half
of Figure 1 presents the average percentage of requests scheduled for the seven
problems by each algorithm. The corresponding average CPU times (in seconds)
appear in the right half of the figure.

For all the problems, Random Sampling-S finds the best known solutions, as
illustrated in Table 3. Since the best known solutions were obtained by randomly
sampling a small number of permutations, solving the problems in the AFIT
benchmark is easy using the split heuristic.



Satellite Range Scheduling 617

Table 3. Results of running random sampling in 30 experiments, by generating 100
random permutations per experiment. A problem-specific heuristic is used in the eval-
uation function, where the low-altitude requests are evaluated first.

Best Random Sampling-S
Day Known Min Mean Stdev

1 8 8 8.2 0.41
2 4 4 4 0
3 3 3 3.3 0.46
4 2 2 2.43 0.51
5 4 4 4.66 0.48
6 6 6 6.5 0.51
7 6 6 6 0

0 4 128

R1

R2

R3

R4

Ground Station 1
0 4 128

R3

R4

Ground Station 2

R8

R5 R6 R7

Fig. 2. Problem for which the split heuristic can not result in an optimal solution.
Each ground station has two antennas; the only high-altitude requests are R3 and R4.

However, we can build a simple problem instance for which the optimal solu-
tion cannot be found using the split heuristic. Consider the problem represented
in Figure 2. There are only two ground stations, and each ground station has
two antennas (meaning that at each ground station at most two requests can be
scheduled at the same time). There are two high-altitude requests, R3 and R4,
with durations 3 and 7 respectively. R3 can be scheduled between start time 4
and end time 13; R4 can be scheduled between 0 and 9. Both R3 and R4 can
be scheduled at either of the two ground stations. The rest of the requests are
low-altitude requests. R1 and R2 request the first ground station, while R5, R6,
R7, and R8 request the second ground station. This problem fits the description
of the SRS problems in the AFIT benchmark: the low-altitude requests can be
scheduled only at a specific ground station, with a fixed start and end time,
while the high-altitude requests have alternative resources and a time window
specified. For all the permutation schedules, if the split heuristic is used, R3 and
R4 cannot be scheduled. However, it is possible to find schedules where both R3
and R4 get scheduled, and only one request (R1, R2, or R8) gets bumped. The
subspace containing the permutations with all the low-altitude requests before



618 L. Barbulescu et al.

the high-altitude requests is suboptimal - the global optimum is not necessar-
ily contained in this subspace. The example shows the potential for failure to
generate optimal solutions using the split heuristic.

4 Generalizing the AFIT Problems

Does the algorithm performance obtained for the AFIT benchmark transfer to
larger sets of similar problems? To explore this question, we built a problem
generator which produces problems similar to the AFIT benchmark but also
including features encountered in the present-day real-world problems. Then we
compare the results of running Genitor, local search and random sampling on
problems produced by the problem generator to the results reported for the
AFIT problems. We show that: (1) Genitor consistently results in the smallest
number of unscheduled requests, and (2) the performance of the split heuristic
on the seven AFIT problems does not transfer to the problems produced by our
generator.

Two main features characterize our problem generator. First, it models differ-
ent types of requests encountered in the real-world satellite scheduling problem,
such as downloading data from a satellite, transmitting information or com-
mands from a ground station to a satellite, checking the health and status of a
satellite. Second, the problem generator uses models for customer behavior. The
generator produces a predefined number of requests for each customer and each
request type. With a 0.5 probability we determine if a request is a low-altitude or
high-altitude one. For low-altitude requests, we decided to preserve the AFIT def-
inition by assigning the duration equal to the size of the time window. However,
we define alternative ground stations for both low and high-altitude requests.

To generate alternatives for a request, we collected data on the Web about the
visibilities of various satellites4 from the locations of the nine ground stations.

We repeat the experiments described for the AFIT problems by running Gen-
itor, local search and random sampling for problems produced by our generator.
To compare our results to the ones reported for the AFIT problems, but also to
generate realistic problems, we ran the experiments for problem sizes 300, 350,
400, 450, and 500. For each size, we generated 30 problem instances.

We again ran Genitor, local search and random sampling, with and without
the split heuristic, performing 30 runs with 8000 evaluations per run for each
problem. An increase in the number of evaluations to 50k and of the population
size to 400 did not improve the best solutions found for each problem. We record
the number of unscheduled requests for each run. Figure 3 shows that Genitor
on average outperforms Genitor-S and both versions of local search and random
sampling. In fact Genitor (without the split heuristic) always outperforms all the
other algorithms. In Table 4 we first subtract the minimum number of bumped
requests for each problem from the minimum number of bumped requests re-
ported by each of the algorithms (with or without the split heuristic) for that
4 See: http://earthobservatory.nasa.gov/MissionControl/overpass.html for visibilities;

thanks to Ester Gubbrud for helping us to compile the databases.



Satellite Range Scheduling 619

96.5

97

97.5

98

98.5

99

99.5

100

300 350 400 450 500

P
er

ce
nt

 o
f R

eq
ue

st
s 

S
ch

ed
ul

ed

Requests

Genitor
Genitor-S

LS
LS-S

RS
RS-S

Fig. 3. Average percent of requests scheduled by the no-split and split versions of each
of the algorithms.

Table 4. The difference between the minimum number of bumps reported by an algo-
rithm and the minimum number of bumps found by any of the six algorithms (with or
without the split heuristic) is averaged over the 30 instances for each problem size.

Genitor Local Search Random Sampling
Size Mean Stdev Mean Stdev Mean Stdev
300 0.000 0.000 0.000 0.000 0.167 0.213
350 0.000 0.000 0.333 0.368 1.067 1.099
400 0.000 0.000 1.233 1.702 2.833 3.523
450 0.000 0.000 3.667 3.678 5.967 6.240
500 0.000 0.000 8.300 3.941 11.767 7.840

Genitor-S Local Search-S Random Sampling-S
Size Mean Stdev Mean Stdev Mean Stdev
300 0.767 0.737 0.767 0.737 0.867 0.671
350 0.667 0.851 0.967 1.551 1.367 2.033
400 1.100 1.128 2.167 2.626 2.933 3.168
450 1.467 1.223 3.967 4.309 5.200 6.717
500 2.200 2.097 8.700 8.907 10.667 10.161

problem in 30 runs. Then we average these differences over the 30 instances gen-
erated for each size. From both Figure 3 and Table 4, it is clear that the split
heuristic always results in an average decrease in performance.

5 Conclusions

Satellite Range Scheduling is an important real world problem that impacts
the use of expensive and limited resources. We first considered a version of the



620 L. Barbulescu et al.

problem studied at AFIT. For planning and experimental control purposes, we
also built a problem generator that introduces new realistic features, currently
encountered by the AFSCN. We show that the seven problems in the AFIT
benchmark are trivial to solve when a simple heuristic is used. But, when applied
to more realistic problems, the split heuristic results in poor-quality solutions.
Finally, our results indicate that a genetic algorithm, Genitor, using a permuta-
tion representation yields the best overall performance and does so in a modest
amount of time. The results also reinforce the notion that benchmarks need to
be constructed or chosen to be representative for actual target applications.

References

1. J. C. Beck, A. J. Davenport, E. M. Sitarski, and M. S. Fox.: Texture-based heuristic
for scheduling revisited. Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), Providence, RI (1997) 241–248

2. Lawrence Davis: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York (1991)

3. David Goldberg: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

4. T.D. Gooley: Automating the satellite range scheduling process. Master’s thesis,
Air Force Institute of Technology (1993)

5. D.A. Parish. A genetic algorithm approach to automating satellite range schedul-
ing. Master’s thesis, Air Force Institute of Technology (1994)

6. J.C. Pemberton: Toward scheduling over-constrained remote-sensing satellites.
Proceedings of the Second NASA International Workshop on Planning and
Scheduling for Space, San Francisco, CA (2000)

7. Steve Smith and C.C. Cheng: Slack-based heuristics for constraint satisfaction
problems. Proceedings of the Eleventh National Conference on Artificial Intelli-
gence (AAAI-93), Washington, DC (1993) 139–144

8. S.M. Schalck: Automating satellite range scheduling. Master’s thesis, Air Force
Institute of Technology (1993)

9. Gilbert Syswerda: Schedule Optimization Using Genetic Algorithms. In Lawrence
Davis, editor, Handbook of Genetic Algorithms, chapter 21. Van Nostrand Rein-
hold, New York (1991)

10. E. Taillard: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operations Research 47 (1990) 65–74

11. Gérard Verfaillie, Michel Lemaitre, and Thomas Schiex: Russian doll search for
solving constraint optimization problems. Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), Portland, OR (1996) 181–187

12. L. Darrell Whitley: The Genitor Algorithm and Selective Pressure: Why Rank
Based Allocation of Reproductive Trials is Best. J. D. Schaffer, editor, Proc. of the
3rd Int’l. Conf. on GAs, 116–121. Morgan Kaufmann (1989)

13. William J. Wolfe and Stephen E. Sorensen: Three scheduling algorithms applied to
the earth observing systems domain. Management Science 46(1) (2000) 148–166



The LifeCycle Model: Combining Particle
Swarm Optimisation, Genetic Algorithms

and HillClimbers

Thiemo Krink and Morten Løvbjerg

EVALife Group, Department of Computer Science
Ny Munkegade, Bldg. 540, University of Aarhus

DK-8000 Aarhus C, Denmark
{krink,lovbjerg}@daimi.au.dk

http://www.evalife.dk

Abstract. Adaptive search heuristics are known to be valuable in ap-
proximating solutions to hard search problems. However, these tech-
niques are problem dependent. Inspired by the idea of life cycle stages
found in nature, we introduce a hybrid approach called the LifeCycle
model that simultaneously applies genetic algorithms (GAs), particle
swarm optimisation (PSOs), and stochastic hill climbing to create a gen-
erally well-performing search heuristics. In the LifeCycle model, we con-
sider candidate solutions and their fitness as individuals, which, based on
their recent search progress, can decide to become either a GA individ-
ual, a particle of a PSO, or a single stochastic hill climber. First results
from a comparison of our new approach with the single search algorithms
indicate a generally good performance in numerical optimization.

1 Introduction

In biology, the term life cycle refers to the various phases an individual passes
through from birth to maturity and reproduction [1]. This process often leads
to drastic transformations of the individual with stage specific adaptations to
a particular environment. This phenomenon is particularly amazing considering
that the genome remains the same within each cell and life stage, whereas the
morphology and behaviour of the phenotype can change drastically in accordance
to the requirements of the life stage niche. Some life cycle changes in nature are
one-time events such as sexual maturity. Other changes are re-occurring, such
as mating seasons. These stages are genetically determined and the individuals
have little or no influence on the change of the life cycle stage. The transition
between life cycle changes are often triggered by environmental factors. Environ-
mental changes often determine transitions from one life cycle stage to another.
Some animals are able to sense and predict these changes and can actively de-
cide to alter their life cycle stage. A particularly interesting animal that has
this capability is the microscopically small Symbion pandora, which lives as a
symbiont on its much larger host - the Norway lobster. The host provides food,

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 621–630, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



622 Thiemo Krink and Morten Løvbjerg

substrate, and transportation for the symbionts which only inhabit the mouth
parts of the host. This rich and diverse environment poses a great challenge to
the symbiont because the individual need to evacuate and recolonize the lobster
with each lobster moulting. The life stages of Symbion pandora include feeding
and non-feeding, sedentary and free swimming, as well as sexual and asexual
reproduction stages [2].

The ability of an individual to actively decide about its kind of life form
in response to its success in its current environment inspired us to the study
presented in this paper. The idea behind our LifeCycle model is to create a
self-adaptive search heuristic in which each individual (containing the candidate
solution) can decide whether it would prefer to belong to a population of a genetic
algorithm (GA), a particle swarm optimization (PSO), or become a solitary
stochastic hill climber (HC). The decision of the individual depends on its success
in searching the fitness landscape. Our motivation for this hybrid approach was
that each of these search techniques on its own has its specific problem dependent
strengths and weaknesses.

GAs, for instance, are widely applicable, and particularly powerful when do-
main knowledge can be incorporated in the operator design (see e.g. [3]). How-
ever, particle swarm optimisation (PSO) [4] can achieve clearly superior results
in many instances of numerical optimization, but there is no general superiority
compared to GAs (e.g. [5,6,7,8,9]). Hill climbers, in contrast, are good for lo-
cal search with a high probability of finding the closest optimum. However, for
multimodal functions, their performance is highly dependent on their starting
position and hill-climbing techniques often convergence prematurely at local op-
tima. Their main weakness compared to population based approaches, such as
GAs and PSOs, is that candidate solutions neither compete nor cooperate [10].

The goal of our LifeCycle model is to make a self-adaptive approach towards
a problem invariant search technique that can further take advantage of the
changing search requirements during the optimization, such as initial exploration
and local fine-tuning towards the end of the run.

2 The LifeCycle Model

The LifeCycle model consists of individuals starting out as PSO particles, which
can turn into GA individuals, then hill climbers, then back to particles and
so on. The structure of the LifeCycle model is illustrated in fig. 1. In all these
heuristics, we use one fitness evaluation per individual per iteration. A LifeCycle
individual switches its stage when it has made no fitness improvement for more
than 50 iterations.

2.1 The PSO Model

The PSO model used in the LifeCycle model is similar to the traditional PSO
model described in [4]. The model consists of a number of particles moving
around in the search space, where the position of each particle represents a



The LifeCycle Model 623

program LifeCycle Model
begin

initialise
while (not terminate-condition) do

begin
for (all individuals)

evaluate fitness
switch LifeCycle stage if no recent improvement

for (PSO particles)
calculate new velocity vectors
move

for (GA individuals)
select new population
recombine population
mutate population

for (HillClimbers)
find possible new neighbouring solution
evaluate fitness for the new solution
shift to new solution with probability p

end
end

Fig. 1. Structure of the LifeCycle model.

candidate solution to a numerical problem. Each particle has a position vector xi,
a velocity vector vi and the position of the best candidate solution encountered
by the particle pi. The PSO also stores the overall best found point pg. The
memorized positions are used to attract particles to search space areas with
known good solutions.

In each iteration the velocity of each particle is updated in the following way

vi = χ(wvi +ϕ1i(pi − xi) +ϕ2i(pg − xi))

where χ is known as the constriction coefficient described in [11] and w is the
inertia weight described in [6]. ϕ1 and ϕ2 are random values, which are different
for each particle and for each dimension. The velocity vi of each particle is
limited by an upper threshold vmax. The position of each particle is updated in
each iteration by adding the velocity vector to the position vector, such that,
xi = xi + vi. The particles have no neighbourhood restrictions, meaning that
each particle can affect all other particles. This neighbourhood is of type star
(fully connected network), which has been shown to be a good topology ([5]).

2.2 The GA Model

A classic genetic algorithm consists of a population of individuals refining their
candidate solutions through interaction and adaptation. Each individual rep-
resents a candidate solution to the given problem. After initialisation the GA
enters a loop, in which the population is evaluated, a new population is selected



624 Thiemo Krink and Morten Løvbjerg

and this new population is altered (p. 151 [10]). The LifeCycle GA model uses
binary tournament selection (p. 61 [12]) to generate a new population and elitism
to ensure the survival of the individual with the best fitness. The LifeCycle GA
model alters the population by crossover and mutation. The crossover opera-
tor used in the LifeCycle GA model is the so-called arithmetic crossover. This
operator replaces two parent individuals selected for crossover with two child
individuals as follows:

xchild1 = w ∗ xparent1 + (1− w) ∗ xparent2
xchild2 = w ∗ xparent2 + (1− w) ∗ xparent1

where w is a random value between zero and one. The crossover probability
PC determines the probability of an individual to be selected for crossover.
For each dimension the probability of mutation PM determines whether or not
to mutate. The mutation scheme used in the LifeCycle GA model is the non-
uniform mutation described on page 103 in [12]. Entry j of an individual is
mutated according to:

∆xj =

{
+(Max− xj)(1− r(1−t/T )b)
−(xj −Min)(1− r(1−t/T )b)

with a 50% chance each. Max is the search space maximum, Min is the min-
imum, r is a random number in [0..1], t is the current iteration, T is the total
number of iterations and b is a parameter determining the degree of iteration
number dependency. Hence, the effect of mutation decreases over the course of
the iterations with this scheme.

2.3 The HillClimber

HillClimbers are individuals that refine their candidate solution independently
of other individuals by examining the local neighbourhood. The hill-climbing
method used in the LifeCycle model is a stochastic hill-climber as described in
[10] pp. 118-120. Each HillClimber consists of a solution xc. For each iteration,
a new candidate solution xn is selected within the neighbourhood of xc. xc is
replaced by xn with probability p given by

p = 1/(1 + exp(
eval(xn)− eval(xc)

T
)) (minimisation)

where T is a parameter determining the influence of the relative merit (differ-
ence in fitness performance). In this paper, we experimented with a constant
T=10, which is different from simulated annealing. The better the fitness of the
neighbouring point, the higher the chance of replacement.

3 Experimental Settings

In our experiments, we compared the performance of the standard PSO, the
standard GA, HillClimbers and the LifeCycle model on five numerical benchmark



The LifeCycle Model 625

Table 1. Test functions.

Sphere f1(x) =
∑n

i=1 x
2
i

Rosenbrock f2(x) =
∑n−1

i=1 (100(xi+1 − x2
i )

2 + (xi − 1)2)

Griewank f3(x) = 1
4000

∑n

i=1(xi − 100)2 −∏n

i=1 cos(
xi−100√

i
) + 1

Rastrigin f4(x) =
∑n

i=1(x2
i − 10cos(2πxi) + 10)

Ackley f5(x) = 20 + e− 20e−0.2
√

1
n

∑n

i=1
x2
i − e 1

n

∑n

i=1
cos(2πxi)

Table 2. Search space and Initialisation ranges.

Function Search space Initialisation range
f1 Sphere −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100
f2 Rosenbrock −100 ≤ xi ≤ 100 15 ≤ xi ≤ 30
f3 Griewank −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600
f4 Rastrigin −10 ≤ xi ≤ 10 2.56 ≤ xi ≤ 5.12
f5 Ackley −32.768 ≤ xi ≤ 32.768 16.384 ≤ xi ≤ 32.768

problems (all minimisation) (see table 1). The first two are unimodal while the
latter three are multimodal with many local minima.

The initial population of GAs and PSOs is usually uniformly distributed over
the entire search space. According to Angeline [8], this can give false indications
of relative performance, especially if the search space is symmetric around the
origin where many test functions have their global optimum such as in the classic
benchmarks that we used in this paper. In order to prevent this, we used the
asymmetric initialisation method by Angeline [8] for all experiments. Search
space and initialisation ranges for the experiments are shown in table 2.

In all experiments the population of the LifeCycle model was fixed at 150
individuals. These were all initialised as PSO particles.

3.1 Settings for the PSO

In the PSO model the upper limits for ϕ1 and ϕ2 were set to 2.0. The inertia
weight w was linearly decreased from 0.7 to 0.4 and the constriction coefficient
χ was set to 1. The maximum velocity vmax of each particle was set to half the
length of the search space for each dimension (e.g. vmax = 100 for f1 and f2).
Previous research by Shi [6] regarding scalability of the standard PSO showed
that the performance of the standard PSO is not sensitive to the population size.
This is also our experience from earlier work ([9,13]). In all PSO experiments,
we used a fixed population size of 20 particles.

3.2 Settings for the GA

For the GA, we used the crossover and mutation probabilities shown in table 3.
Neither selection nor crossover were performed for population sizes smaller than
three. Moreover, we set the mutation loop dependency b to 5 and used a fixed
population size of 100 individuals.



626 Thiemo Krink and Morten Løvbjerg

Table 3. Crossover and mutation probability used in the GA.

Function f1 Sphere f2 Rosenbrock f3 Griewank f4 Rastrigin f5 Ackley

Crossover prob. 0.60 0.50 0.50 0.20 0.50
Mutation prob. 0.30 0.30 0.40 0.02 0.30

Table 4. Experimental results.

Function PSO GA HC LC
f1 Sphere 1.7401E − 106 7.3762E − 3 249.5553 4.9468E − 8
f2 Rosenbrock 62.4291 99.9857 13908.6493 94.7642
f3 Griewank 1.0003E − 2 175.1830 269.9571 5.0235E − 3
f4 Rastrigin 154.4770 0.5387 725.8330 83.4788
f5 Ackley 19.8617 1.3563E − 2 21.2318 2.0350E − 11

LC 150P

GA 100P

HC 25P

PSO 20P

0

100

200

300

400

500

0 500000 1e+06 1.5e+06 2e+06

Fi
tn

es
s

Evaluations

Sphere 100

HillClimbers

PSO particles

GA individuals

0

20

40

60

80

100

120

140

0 500000 1e+06 1.5e+06 2e+06

N
um

be
r o

f i
nd

iv
id

ua
ls

Evaluations

Sphere 100

(a) (b)

Fig. 2. Sphere function: (a) Performance of the standard GA with population size 100,
the standard PSO with population size 20, 25 HillClimbers and the LifeCycle model
with population size 150. (b) Composition of LifeCycle individuals.

3.3 Settings for the HillClimbers

In our HillClimber experiments, we used a constant temperature parameter T
= 10. The size of the search neighbourhood linearly decreased from 1 to 0.001
percent of the search space for each dimension to allow fine-tuning towards
the end of the run. In all HillClimbing experiments we used 25 HillClimbers
simultaneously and indepedently from each other.

4 Experimental Results

The test functions that we used in our experiments were all 100 dimensional. All
experiments were running for 2.500.000 evaluations. Table 4 and fig. 2 to 6 show
the fitness vs. the number of evaluations regarding the five benchmark problems.
The graphs illustrate the mean values of 50 repetitions for each experiment.



The LifeCycle Model 627

GA 100P

LC 150P

HC 25P

PSO 20P

0

50000

100000

150000

200000

250000

0 500000 1e+06 1.5e+06 2e+06

Fi
tn

es
s

Evaluations

Rosenbrock 100

PSO particles

GA individuals
HillClimbers

0

20

40

60

80

100

120

140

0 500000 1e+06 1.5e+06 2e+06

N
um

be
r o

f i
nd

iv
id

ua
ls

Evaluations

Rosenbrock 100

(a) (b)

Fig. 3. Rosenbrock function: (a) Performance. (b) Composition of LifeCycle individu-
als.

HC 25P

GA 100P

PSO 20P

LC 150P

0

100

200

300

400

500

0 500000 1e+06 1.5e+06 2e+06

Fi
tn

es
s

Evaluations

Griewank 100

PSO partilces

GA individuals

HillClimbers

0

20

40

60

80

100

120

140

0 500000 1e+06 1.5e+06 2e+06

N
um

be
r o

f i
nd

iv
id

ua
ls

Evaluations

Griewank 100

(a) (b)

Fig. 4. Griewank function: (a) Performance. (b) Composition of LifeCycle individuals.

4.1 Performance

Figure 2(a) to 6(a) show the performance of the LifeCycle (LC) model compared
to the standard PSO (PSO), the standard GA (GA) and the HillClimbing (HC)
algorithm described in section 2.

For the Sphere (fig. 2(a)) and Rosenbrock (fig. 3(a)) function the standard
PSO turned out to have the best performance. In both cases HillClimbers yielded
the fastest fitness improvements, but failed to find an exact solution. Both the
LifeCycle and GA models converged slower than the PSO. The LifeCycle model
converged faster and to a better value than the standard GA. Regarding the
Griewank function (fig. 4(a)) the standard PSO outperformed the standard GA
and the HillClimbing algorithm by far. Here, the search improvements of the
LifeCycle model were a bit slower but eventually better compared to the standard
PSO. For the Rastrigin function (fig. 5(a)) the standard GA found the best
solution, but required more time than the LifeCycle model and the PSO. Here,



628 Thiemo Krink and Morten Løvbjerg

HC 25P

LC 150P

GA 100P

PSO 20P

0

200

400

600

800

1000

0 500000 1e+06 1.5e+06 2e+06

Fi
tn

es
s

Evaluations

Rastrigin 100

HillClimbers

GA individuals

PSO particles

0

20

40

60

80

100

120

0 500000 1e+06 1.5e+06 2e+06

N
um

be
r o

f i
nd

iv
id

ua
ls

Evaluations

Rastrigin 100

(a) (b)

Fig. 5. Rastrigin function: (a) Performance. (b) Composition of LifeCycle individuals.

HC 25P

PSO 20P

LC 150P

GA 100P

0

5

10

15

20

0 500000 1e+06 1.5e+06 2e+06

Fi
tn

es
s

Evaluations

Ackley 100

PSO particles

HillClimbers

GA individuals

0

20

40

60

80

100

120

0 500000 1e+06 1.5e+06 2e+06

N
um

be
r o

f i
nd

iv
id

ua
ls

Evaluations

Ackley 100

(a) (b)

Fig. 6. Ackley function: (a) Performance. (b) Composition of LifeCycle individuals.

the PSO achieved the fastest initial search improvements, but was eventually
outperformed by the LifeCycle model towards the end of the run. HillClimbers
turned out to be ineffective. Finally, regarding the Ackley function (fig. 6(a)), we
found that the PSO and the HillClimbing algorithms were clearly outperformed
by the standard GA and the LifeCycle model, where the latter outperformed all
other heuristics significantly.

4.2 Composition of the LifeCycle Individuals

Figures 2(b) to 6(b) show the frequency of the life cycle stages over time. All
LifeCycle individuals were set to start out as PSO particles. For the Sphere
(fig. 2(b)) and Rosenbrock (fig. 3(b)) functions all individuals prefered to be-
come HillClimbers in the beginning of the run. After approximately 50% of the
evaluations, a majority of the individuals turned into GA individuals. Moreover,
the frequency of the PSO individuals increased towards the end of the run. Re-



The LifeCycle Model 629

garding the Griewank (fig. 4(b)) and Rastrigin (fig. 5(b)) functions, we found
a similar self-adaptation pattern with a high frequency of HillClimbers in the
beginning of the run. However, in contrast to the other two test functions, most
HillClimbers turned into PSO particles during the run. At the end of the run, we
found that GA individuals increasingly took the place of the PSO particles. In
case of the Ackley function (fig. 6(b)), we found that the LifeCycle population
consisted of a majority of PSO particles, which further increased over time.

5 Discussion and Future Work

Our approach of combining three standard adaptive optimisation algorithms into
one self-adaptive hybrid approach turned out to be an improvement over the in-
dividual algorithms. Our results show that the LifeCycle heuristic has a generally
good performance on all benchmark problems that we used in this study in con-
trast to the single adaptive algorithms, which have a highly problem dependent
performance. For the Sphere (fig. 2) and Rosenbrock (fig. 3) functions, our results
suggest that the best strategy is to start with a large number of HillClimbers,
which are later turned into PSO particles. On first sight this seems to be counter-
intuitive, because of the fine-tuning abilities of the HillClimbers. However, the
Stochastic HillClimber has the problem that the acceptance probability of a new
candidate solution approaches 0.5 in case of very small fitness differences between
neighboured candidate solutions. Furthermore, the neighbourhood step size in
continuous optimization has a strong impact on the quality of the results. A too
low step size slows down the hill climber unnecessarily whereas a too large step
size can result in missing the global optimum. Judging from our experimental
results the LifeCycle model helps the standard models to achieve superior results
for multimodal testfunctions. This can be seen in figures 4 to 6 for the Griewank,
Rastrigin and Ackley functions. For all these three functions the LifeCycle model
works best with many PSO particles. However, the pure PSO model is clearly
outperformed, especially for the Ackley function (fig. 6(a)). In the present study
we focused on the most simple and classic versions of GAs, PSOs, and Hill-
Climbers. An interesting future extension would be to use the life cycle heuristic
based on more advanced heuristics, such as spatially extended PSOs [13], SOC
EAs [14], and simulated annealing [12]. Another idea would be to introduce tabu
search as a fourth search heuristic to the LifeCycle model. Other future work
could be to investigate other transition schemes. Furthermore, one could try to
exchange one PSO particle with several GA individuals and vice versa, since
GAs work better with much larger population sizes than PSOs.

Acknowledgments

The authors would like to thank EVALife colleagues Peter Funch and Matthias
Obst of the Dept. of Zoology, Univ. of Aarhus, for the biological inspiration and
Rasmus K. Ursem, EVALife, Dept. of Computer Science, Univ. of Aarhus, for
reviewing the manuscript. This research was supported by the Danish Natural
Science Research Council.



630 Thiemo Krink and Morten Løvbjerg

References

1. Lawrence, E. (ed.): Henderson’s Dictionary of Biological Terms. Longman (1996).
2. Funch, P., Kristensen, R. M.: Cycliophora is a new phylum with affinities to

entoprocta and ectoprocta. In: Nature 378. (1995) 711–714.
3. Filipič, B., Štrancar, J.: Genetic optimization of the EPR spectral parameters:

Algorithm implementation and preliminary results. In: Schoenauer, M., Deb, K.,
Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., Schwefel, H.-P. (eds.): Parallel
Problem Solving from Nature – PPSN VI. Springer, Berlin (2000) 693–701.

4. Kennedy, J., Eberhart, R. C.: Particle swarm optimization. In: Proceedings of the
1995 IEEE International Conference on Neural Networks, Vol. 4. (1995) 1942–1948.

5. Kennedy, J.: Small worlds and mega-minds: Effects of neighborhood topology on
particle swarm performance. In: Angeline, P. J., Michalewicz, Z., Schoenauer, M.,
Yao, X., Zalzala, A. (eds.): Proceedings of the Congress of Evolutionary Compu-
tation, Vol. 3. IEEE Press (1999) 1931–1938.

6. Shi, Y., Eberhart, R. C.: Parameter selection in particle swarm optimization. In:
Porto, V. W., Saravanan, N., Waagen, D., Eiben, A. E. (eds.): Evolutionary Pro-
gramming VII. Lecture Notes in Computer Science 1447. Springer, Berlin (1998)
591–600.

7. Suganthan, P.: Particle swarm optimiser with neighbourhood operator. In: An-
geline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.): Pro-
ceedings of the Congress of Evolutionary Computation, Vol. 3. IEEE Press (1999)
1958–1962.

8. Angeline, P. J.: Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences. In: Porto, V. W., Saravanan, N., Waagen,
D., Eiben, A. E. (eds.): Evolutionary Programming VII. Lecture Notes in Computer
Science, Vol. 1447. Springer, Berlin (1998) 601–610.

9. Løvbjerg, M., Rasmussen, T. K., Krink, T.: Hybrid particle swarm optimiser with
breeding and subpopulations. In: Spector, L., Goodman, E. D., Wu, A., Langdon,
W., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., Burke,
E. (eds.): Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001). Morgan Kaufmann (2001) 469–476.

10. Michalewicz, Z., Fogel, D. B.: How to Solve It: Modern Heuristics. Springer, Berlin
(2000).

11. Clerc, M.: The swarm and the queen: Towards a deterministic and adaptive particle
swarm optimization. In: Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao,
X., Zalzala, A. (eds.): Proceedings of the Congress of Evolutionary Computation,
Vol. 3. IEEE Press (1999) 1951–1957.

12. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Berlin (1992).

13. Krink, T., Vesterstrøm, J. S., Riget, J.: Particle Swarm Optimisation with Spatial
Particle Extension. In: Fogel, D. B., Yao, X., Greenwood, G., Iba, H., Marrow,
P., Shackleton, M. (eds.): Proceedings of the Fourth Congress on Evolutionary
Computation (CEC-2002). (2002).

14. Krink, T., Thomsen, R., Rickers, P.: Applying Self-Organised Criticality to Evo-
lutionary Algorithms. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton,
E., Merelo, J. J., Schwefel, H.-P. (eds.): Parallel Problem Solving from Nature –
PPSN VI. Springer, Berlin (2000) 375–384.



Metaheuristics for Group Shop Scheduling

Michael Sampels1, Christian Blum1,
Monaldo Mastrolilli2, and Olivia Rossi-Doria3

1 IRIDIA, Université Libre de Bruxelles, CP 194/6
Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium

{msampels,cblum}@ulb.ac.be
2 IDSIA, Galleria 2, 6928 Manno, Switzerland

monaldo@idsia.ch
3 School of Computing, Napier University

10 Colinton Road, Edinburgh, EH10 5DT, Scotland
o.rossi-doria@napier.ac.uk

Abstract. The Group Shop Scheduling Problem (GSP) is a generaliza-
tion of the classical Job Shop and Open Shop Scheduling Problems. In
the GSP there are m machines and n jobs. Each job consists of a set
of operations, which must be processed on specified machines without
preemption. The operations of each job are partitioned into groups on
which a total precedence order is given. The problem is to order the
operations on the machines and on the groups such that the maximal
completion time (makespan) of all operations is minimized. The main
goal of this paper is to provide a fair comparison of five metaheuristic
approaches (i.e., Ant Colony Optimization, Evolutionary Algorithm, It-
erated Local Search, Simulated Annealing, and Tabu Search) to tackle
the GSP. We guarantee a fair comparison by a common definition of
neighborhood in the search space, by using the same data structure,
programming language and compiler, and by running the algorithms on
the same hardware.

1 Introduction to the Group Shop Scheduling Problem

A general scheduling problem can be formalized as follows: We consider a finite
set of operations O, partitioned into m subsets 〈M1, . . . ,Mm〉 =:M (

⋃̇m
i=1Mi =

O) and into n subsets 〈J1, . . . , Jn〉 =: J (
⋃̇n
k=1Jk = O), together with a partial

order � ⊆ O×O such that � ∩ Ji×Jj = ∅ for i �= j, and a function p : O → N.
A feasible solution is a refined partial order �∗ ⊇ � for which the restrictions
�∗ ∩ Mi ×Mi and �∗ ∩ Jk × Jk are total ∀ i, k. The cost of a feasible solution
is defined by

Cmax(�∗) := max{
∑
o∈C

p(o) | C is a chain in (O,�∗)} .

We aim at a feasible solution which minimizes Cmax.
Mi is the set of operations that have to be processed on machine i. Jk is

the set of operations that belong to job k. Each machine can process at most

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 631–640, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



632 Michael Sampels et al.

2 3

654

7 8

1 2 3

654

7 8

1 2 3

654

7 8

1

(a) (b) (c)

Fig. 1. (a) An example for a GSP instance on 8 operations: O = {1, . . . , 8}, J =
{J1 = {1, 2, 3}, J2 = {4, 5, 6}, J3 = {7, 8}}, M = {M1 = {1, 5, 7},M2 = {2, 4},M3 =
{3, 6, 8}}, G = {G1 = {1, 2}, G2 = {3}, G3 = {4}, G4 = {5, 6}, G5 = {7}, G6 = {8}},
G1 ≺ G2, G3 ≺ G4, G5 ≺ G6, p(1) = · · · = p(4) = 1, p(5) = · · · = p(8) = 2; (b) a valid
solution with Cmax = 8 on the chain 2 �∗ 1 �∗ 5 �∗ 7 �∗ 8; (c) an optimal solution
with Cmax = 6 on the chain 7 �∗ 5 �∗ 6

one operation at a time. Operations must be processed without preemption.
Operations belonging to the same job must be processed sequentially. This is
expressed in the constraints for �∗. Cmax is the makespan of the schedule defined
by �∗ .

This brief problem formulation covers well known scheduling problems: The
restriction � ∩ Ji × Ji is total in the Job Shop Scheduling Problem (JSP),
trivial (= {(o, o) | o ∈ Ji}) in the Open Shop Scheduling Problem (OSP), and
either total or trivial for each i in the Mixed Shop Problem.

In this paper, we consider a weaker restriction on � which includes the above
scheduling problems by looking at a refinement of the partition J to a partition
into groups 〈G1, . . . , Gg〉 =: G. We demand that � ∩ Gi ×Gi has to be trivial
and that for o, o′ ∈ J (J ∈ J ) with o ∈ Gi and o′ ∈ Gj (i �= j) either o � o′ or
o � o′ holds. We call this problem Group Shop Scheduling Problem (GSP).Note
that the coarsest refinement G = J (groups sizes are equal to job sizes) is
equivalent to the OSP and the finest refinement G = {{o} | o ∈ O} (group sizes
of 1) is equivalent to the JSP. In the following, for G ∈ G we denote o ∈ G by
g(o) = G; for M ∈ M we denote o ∈ M by m(o) = M . An example for a GSP
instance is given in Fig. 1.

2 Common Neighborhood and Local Search

For a feasible solution �∗ a chain C is called critical path iff
∑
o∈C p(o) =

Cmax(�∗). M induces on a critical path o1 �∗ · · · �∗ oq a subdivision into
machine blocks of consecutive operations belonging to the same machine, as well
as G induces a subdivision into group blocks of consecutive operations belonging
to the same group. Brucker et al. [6] proved for the JSP that if there is a feasible
solution �∗′ with Cmax(�∗′) < Cmax(�∗), then there is a machine block BiM =
oi1 �∗ · · · �∗ oimi on a critical path C of �∗ such that ∃ o ∈ BiM , o �= oi1 with
oi1 �∗′ o or ∃ o ∈ BiM , o �= oimi with oimi �∗′ o. For the GSP, we generalize the
above result.



Metaheuristics for Group Shop Scheduling 633

Theorem 1. Let �∗ be a feasible solution to a GSP instance. If there is a
solution �∗′ with Cmax(�∗′) < Cmax(�∗), then there is a machine or a group
block Bi = oi1 �∗ · · · �∗ oini in C such that ∃ o ∈ Bi, o �= oi1 with oi1 �∗′ o or
∃ o ∈ B, o �= oini ∈ B with oni �∗′ o.

For the proof we refer to an extended version of this paper [14]. By this
theorem it is reasonable to define the neighborhood of a feasible solution �∗ as
follows: A feasible solution �∗′ is a neighbor of �∗ (∈ N(�∗)) if in a critical path
C of �∗ for exactly one machine block or exactly one group block B = o1 �∗
o2 �∗ · · · �∗ onk−1 �∗ onk on C the order of o1 and o2 or the order of onk−1 and
onk is swapped in �∗′. This is an extension of the neighborhood which Nowicki
and Smutnicki [13] used in their tabu search for the JSP.

A local search procedure can be defined recursively on the neighborhood
structure as follows:

ls(�∗) =
{�∗ if Cmax(�∗′) ≥ Cmax(�∗) ∀ �∗′∈ N(�∗),
ls(�∗′′) with Cmax(�∗′′) ≤ Cmax(�∗′) ∀ �∗′∈ N(�∗) otherwise.

3 Metaheuristic Approaches

The OSP is an NP-hard problem (Gonzalez and Sahni [11]). The JSP is an
NP-hard problem as well, as was first shown by Lenstra et al. [12]. As the GSP
contains both problems, it is NP-hard, too. Metaheuristics have shown to be
very successful in constructing good solutions to scheduling problems. B�lażewicz
et al. [2] gave a survey on exact and approximation algorithms for the JSP. Fang
et al. presented a genetic algorithm for the OSP, and Taillard [16] published a
Tabu Search approach.

In the following, we describe five metaheuristics for the GSP, and we an-
alyze how they compare to each other. We study their behavior on the range
of GSP instances from the JSP to the OSP and focus on the influence of the
group size on the quality of the algorithms. We aim at a fair comparison of the
metaheuristic concepts. Therefore we use a joint implementation of the problem
representation and of the neighborhood structure. We explicitly don’t aim at the
use of sophisticated methods to tune the algorithms.

3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo
et al. in [8]. The basic ingredient of ACO is the use of a probabilistic solution
construction mechanism. The best known technique to construct solutions to
scheduling problems is the list scheduler algorithm. To construct a solution, this
list scheduler algorithm builds a sequence s of all operations from left to right. In
every one of the |O| construction steps, the algorithm probabilistically chooses
an operation from a set St (where t = 1, ..., |O|) of admissible operations.

We use the pheromone model called PHrel (proposed by Blum and Sampels
in [5]) where pheromone values are assigned to pairs of related operations. Two



634 Michael Sampels et al.

operations oi, oj ∈ O are called related if they belong to the same group, or if
they have to be processed on the same machine. Formally, a pheromone value
τoi,oj exists, iff g(oi) = g(oj) or m(oi) = m(oj). The meaning of a pheromone
value τoi,oj is that if τoi,oj is high then operation oi should be scheduled before
operation oj . The choice of the next operations to schedule is handled as follows.
If there is an operation oi ∈ St with no related and unscheduled operation left, it
is chosen. Otherwise we choose among the operations of set St with the following
probabilities:

p(s[t] = o | st−1,|O|, τ) =




min
or∈Srelo

τo,or∑
ok∈St

min
or∈Srelok

τok,or
: if o ∈ St

0 : otherwise

where Srelo = {o′ ∈ O | m(o′) = m(o) ∨ g(o′) = g(o), o′ not scheduled yet}.
We also use the earliest starting time of operations with respect to the partial
solution st−1,|O| as heuristic information to bias these probabilities.
We implemented our algorithm in the Hyper-Cube Framework [4]. The Hyper-
Cube Framework is characterized by a normalization of the contribution of every
solution used for updating the pheromone values. Our algorithm is also imple-
mented as a MAX -MIN Ant System using an aggressive pheromone update
and additional intensification and diversification strategies. To improve the solu-
tions constructed by the ants we apply the local search defined in Sect. 2 and to
the iteration best solution we apply a short Tabu Search of length |O|/2 based on
the same neighborhood. A more detailed description of the this ACO algorithm
can be found in [3].

3.2 Evolutionary Algorithm

The evolutionary algorithm (EA) implemented for the GSP is characterized by
a steady-state evolution process and a Lamarckian use of local search. We use a
best improvement local search on the neighborhood defined in Sect. 2. Tourna-
ment selection is used to choose which individuals reproduce at each generation
and a “replace if better policy” is used to decide whether or not to accept the
offspring for the new population.

The initial population is built using the non-delay version of the list scheduler
algorithm introduced in Sect. 3.1. It builds non-delay schedules, i.e. schedules
with no unnecessary idle time: No operation can be finished earlier without de-
laying any other one, and no machine is ever idle when there is an operation that
can be started on it. The population size is set to 50. A solution is represented
by a list (total order on O), which induces a total order on each M ∈ M and
each G ∈ G.

The crossover is a kind of uniform order based crossover respecting group
precedence relations. It generates a child from two parents as follows:

1. Produce a partial child list where each position is either filled with the content of
the first parent or left free, with equal probability.



Metaheuristics for Group Shop Scheduling 635

2. Insert the missing operations in the partial list in the order in which they appear
in the second parent.

3. Put the current operation in the first free position between the last operation of
the previous group (first position in the list if the group is the first on the job) and
the first of the next ones (last position in the list if the group is the last on the
job), if there is any.

4. Otherwise, if there is a free position before the last operation of the previous group,
shift backward all operations to fill the first free position and insert the current
operation just before the first operation of the next groups.

5. Otherwise put the current operation in the position of the first operation of the
next groups shifting forward the following operations until the next free position
is filled.

As mutation operator we implemented a variable neighborhood search (VNS)
based on the local search described in Sect. 2 for Nk, k = 1, . . . , 10, where
Nk(�∗) = N(N(· · ·N︸ ︷︷ ︸

k

(�∗))). That means that a random solution in N1 is chosen

first, then the local search is applied, and if no improvement is found, a random
solution in N2 is chosen followed by local search, then a random solution in N3
and so on until a better solution is found. The mutation rate is set to be 0.5.

3.3 Iterated Local Search

Iterated local search (ILS), in spite of its simplicity, is a powerful metaheuristic
that applies a local search algorithm iteratively to modifications of the current
solution. A detailed description of ILS algorithms can be found in [15]. It works
as follows. First an initial locally optimal solution, with respect to the given local
search, has to be built. A good starting point can be important, if high-quality
solutions are to be reached quickly. Then, more importantly, a perturbation has
to be defined, that is a way to modify the current solution to an intermedi-
ate state to which the local search can be applied next. Finally, an acceptance
criterion is used to decide from which solution to continue the search process.

The implementation described here for the GSP works with the local search
described in Sect. 2. The initial solution is generated using the same non-delay
algorithm as in Sect. 3.1. The idea used for the perturbation is to modify slightly
the definition of the problem instance data and apply the local search for this
modified instance to the current solution regarded as a solution in the new
instance; the result is the perturbed solution in the original problem instance.
In the GSP the processing times of the operations, unlike group or machine
data, can be easily modified so that a solution to one problem instance can
be regarded as a solution to the other. For a percentage α of operations the
processing time is therefore increased or decreased, with the same probability,
by a certain percentage β of its value; then the local search within the modified
problem instance is run for the current solution and finally the resulting locally
optimal solution to the modified instance, regarded as a solution to the original
instance, is the perturbed solution. Note that it is not necessarily a local optimum



636 Michael Sampels et al.

for the original instance. Now the local search can be applied to the intermediate
perturbed solution to reach a locally optimal solution.

Finally the acceptance criterion tells us whether to continue the search from
the new local optimum or from our previous solution. Random walk, better,
and simulated annealing type acceptance criteria have been tested along with
different values for α and β. The random walk acceptance criterion with α = 40
and β = 40 has been selected as it gives the best performance.

3.4 Simulated Annealing

Simulated annealing (SA) is a metaheuristic based on the idea of annealing in
physics [1]. This technique can be used to solve combinatorial optimization prob-
lems, especially to avoid local minima that cause problems when using simpler
local search methods. The algorithm starts out with some initial solution and
moves from neighbor to neighbor. If the proposed new solution is equal to or
better than the current solution, it is accepted. If the proposed new solution
is worse than the current solution, it is even then accepted with some positive
probability. For the GSP the latter probability is

Paccept = exp(−∆
T

) = exp(− (Cmax(�∗′)− Cmax(�∗))/Cmax(�∗)
T

),

where �∗ denotes the current solution, �∗′ denotes the the proposed next solu-
tion, ∆ is the percent cost change, and the temperature T is simply a control
parameter. Ideally, when local optimization is trapped in a poor local optimum,
simulated annealing can “climb” out of the poor local optimum. In the begin-
ning the value of T is relatively large so that many cost-increasing moves are
accepted in addition to cost-decreasing moves. During the optimization process
the temperature is decreased gradually so that fewer and fewer cost-increasing
moves are accepted.

The selection of the temperature is done as follows. We set the initial tem-
perature such that the probability to accept a move with ∆ = δ = 0.01 is
Pstart = 0.9. Moreover, at the end of the optimization process, we would like
that the probability to accept a move with ∆ = δ = 0.01 is Pend = 0.1. With this
requirements, we constraint the temperature at time x to be T = rxτmax, where
τmax = −δ/ lnPstart, r = tmax

√
δ/(ln(1/Pend) · τmax), and where tmax denotes

the maximum time allowed for computation.

3.5 Tabu Search

Tabu search (TS) is a local search metaheuristic which relies on specialized
memory structures to avoid entrapment in local minima and achieve an effective
balance of intensification and diversification. TS has proved remarkably power-
ful in finding high-quality solutions to computationally difficult combinatorial
optimization problems drawn from a wide variety of applications [1,10]. More
precisely, TS allows the search to explore solutions that do not decrease the



Metaheuristics for Group Shop Scheduling 637

objective function value only in those cases where these solutions are not forbid-
den. This is usually obtained by keeping track of the last solutions in term of the
move used to transform one solution to the next. When a move is performed it
is considered tabu for the next T iterations, where T is the tabu status length.
A solution is forbidden if it is obtained by applying a tabu move to the current
solution.

According to the neighborhood defined in Sect. 2, a move for the GSP is
defined by the exchange of certain adjacent critical operation pairs. We forbid
the reversal of the exchange of a critical operation pair by recording the iteration
number on which the exchange was performed and requiring that this number
plus the current length T be strictly less than the current iteration number.

The tabu status length T is crucial to the success of the TS procedure, and we
propose a self-tuning procedure based on empirical evidence. T is dynamically
defined for each solution. It is equal to the number c of operations of the current
critical path divided by a suitable constant d (we set d = 5). We choose this
empirical formula since it summarizes, to some extent, the features of the given
problem instance and those of the current solution. For instance, there is a
certain relationship between c and the instance size, between c and the quality
of the current solution. In order to diversify the search it may be unprofitable to
repeat the same move often if the number of candidate moves is “large” or the
solution quality is low, in some sense, when c is a “large” number.

With the aim of decreasing the probability of generating cycles, we consider
a variable neighborhood set: every non tabu move is a neighbor with probability
0.8. Moreover, in order to explore the search space in a more efficient way,
TS is usually augmented with some aspiration criteria. The latter are used to
accept a move even if it has been marked tabu. We consider a tabu move as a
neighbor with probability 0.3, and perform it only if it improves the best known
solution. To summarize, the proposed TS considers a variable set of neighbors
and performs the best move that improves the best known solution, otherwise
performs the best non tabu move chosen among those belonging to the current
variable neighborhood set.

4 Problem Instances

We tested the proposed metaheuristics on the whizzkids97 instance. This is a
GSP instance that was subject to a mathematics competition in The Netherlands
in 1997 [18]. It consists of 197 operations on 15 machines and 20 jobs which are
subpartitioned into 124 groups. As this is the only established GSP instance, we
derived further problem instances from JSP instances.

The most prominent problem instance for the JSP is a problem with 10
machines and 10 jobs which was introduced by Fisher and Thompson [9] in 1963.
It had been open for more than twenty years before the optimality of one solution
was proved by Carlier and Pinson [7]. Another famous series of 80 problem
instances for the JSP and 60 OSP instances was generated by Taillard [16]. We
used the Fisher-Thompson-instance ft10 and Taillard’s first JSP instance tai1



638 Michael Sampels et al.

on 15 jobs and 15 machines to generate 10 resp. 15 new benchmark instances for
the GSP. For both problems, we refined the job partition into a group partition
by subdividing each Ji = oi1 � · · · � oiji into b groups of fixed length g = 1, . . . , 10
resp. = 1, . . . , 15 (and possibly one last group of shorter length):

{oi1, . . . , oig}, {oig+1, . . . , o
i
2g}, . . . , {oi(b−1)g+1, . . . , o

i
ji} (b = �ji/g�) .

5 Evaluation and Conclusion

We tested the five developed metaheuristics on a PC with an AMD Athlon 1100
Mhz CPU under Linux using the GNU C++ compiler gcc version 2.95.3 1. For
the whizzkids97, we tested each metaheuristic for 30 trials of 18000 seconds
each (see Fig. 2). TS, although not finding the best solutions found by SA and
ILS, showed the best overall performance, followed by ILS, SA, ACO, and EC.
We tested the statistical significance of the differences between the algorithms
by a pairwise Wilcoxon rank test, which was adjusted by Holm’s method [17]
for 5 samples. They are significant at a p-value of less than 0.01.

We further tested our metaheuristics on the 10 GSP instances derived from
ft10 for a time limit of 60 seconds per try (see Fig. 3). TS showed the best result
for most group sizes, and ACO was on the second rank. EC performed well for
small and large group sizes, but was worse than SA for groups of medium size.

We observed a similar behavior for the 15 instances derived from tai1, which
we tested for running times of 600 and 1800 seconds per try. ACO is for nearly
all group sizes quite close to the performance of TS. However, the TS is the
only algorithm that finds (even within 600 seconds) the optimal solution for the
original JSP version of tai1. EC again performs rather poorly on medium group
sizes and performs well on small and big group sizes.

We noticed that the SA in general compared well to the other algorithms.
This indicates the power of the neighborhood structure defined in Sect. 2. Al-
though the TS approach yielded the overall best performance, for some group
sizes other metaheuristics showed advantages. Our fair comparison showed that
depending on the position of the problem instance between the JSP and the
OSP different heuristic techniques are helpful. The GSP might best be tackled
by a hybrid metaheuristic approach that combines the elements of the algorithms
described in this work according to the results of our analysis.

Acknowledgements

We would like to thank Anthony Liekens and Huub ten Eikelder for the im-
plementation of the problem representation and the local search. Our work was
supported by the Metaheuristics Network, a Research Training Network funded
by the Improving Human Potential Programme of the CEC, grant HPRN-CT-
1999-00106, and by Swiss National Science Foundation project 20-63733.00/1,
1 All algorithms, the test instances and a detailed evaluation of the generated results

can be found on http://iridia.ulb.ac.be/˜msampels/gsp.data .



Metaheuristics for Group Shop Scheduling 639

A
C

O E
A

IL
S

S
A

T
S

470

480

490

500

510

Solutions

Metaheuristic

S
ol

ut
io

n 
Q

ua
lit

y

A
C

O E
A

IL
S

S
A

T
S

0

10

20

30

40

50

Ranks

Metaheuristic
R

an
k

Fig. 2. The absolute values of the solutions to the whizzkids97 problem instance
generated by the five metaheuristics (left) and their relative rank in the comparison
among each other (right) are depicted in two boxplots. A box shows the range between
the 25 % and the 75 % quantile of the data. The median of the data is indicated by a
bar. The whiskers extend to the most extreme data point which is no more than 1.5
times the interquantile range from the box. Extreme points are indicated as circles

0 10 20 30 40 50 60

2
4

6
8

10

Problem Instance: ft10, 60 seconds

Mean Rank

S
iz

e 
of

 G
ro

up
s

ACO
EA
ILS
SA
TS

0 10 20 30 40 50 60

2
4

6
8

10
12

14

Problem Instance: tai1, 1800 seconds

Mean Rank

S
iz

e 
of

 G
ro

up
s

ACO
EA
ILS
SA
TS

Fig. 3. Mean ranks of the solutions generated by ACO, EA, ILS, SA, and TS to
instances derived from ft10 and tai1. For ft10 (left) the group size was varied from
1 to 10, and for tai1 (right) it was varied from 1 to 15. For the ft10 instances we ran
the algorithms for 60 seconds, for the tai1 instances for 1800 seconds



640 Michael Sampels et al.

Resource Allocation and Scheduling in Flexible Manufacturing Systems. The in-
formation provided is the sole responsibility of the authors and does not reflect
the Community’s opinion. The Community is not responsible for any use that
might be made of data appearing in this publication.

References

1. E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Opti-
mization. John Wiley & Sons, Chichester, 1997.

2. J. B�lażewicz, W. Domschke, and E. Pesch. The job shop scheduling problem: Con-
ventional and new solution techniques. European Journal of Operational Research,
93:1–33, 1996.

3. C. Blum. ACO applied to Group Shop Scheduling: A case study on Intensification
and Diversification. In Proceedings of the 3rd International Workshop on Ant
Algorithms (ANTS 2002) (to appear), 2002. Also available as technical report
TR/IRIDIA/2002-08, IRIDIA, Université Libre de Bruxelles.

4. C. Blum, A. Roli, and M. Dorigo. HC-ACO: The hyper-cube framework for Ant
Colony Optimization. In Proceedings of the 4th Meta-heuristics International Con-
ference (MIC 2001), volume 2, pages 399–403, 2001.

5. C. Blum and M. Sampels. Ant colony optimization for FOP shop scheduling: A
case study on different pheromone representations. In Proceedings of the 2002
Congress on Evolutionary Computation (CEC 2002), volume 2, pages 1558–1563,
2002.

6. P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the
job-shop scheduling problem. Discrete Applied Mathematics, 49:107–127, 1994.

7. J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Man-
agement Science, pages 164–176, 1989.

8. M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw-
Hill, 1999.

9. H. Fisher and G. L. Thompson. Probabilistic learning combinations of local job-
shop scheduling rules. In J. F. Muth and G. L. Thompson, editors, Industrial
Scheduling. Prentice-Hall, Englewood Cliffs, NJ, 1963.

10. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston et
al., 1998.

11. T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time. Journal
of the ACM, 23(4):665–679, Oct. 1976.

12. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

13. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop
problem. Management Science, 42(6):797–813, June 1996.

14. M. Sampels, C. Blum, M. Mastrolilli, and O. Rossi-Doria. Metaheuristics for Group
Shop scheduling. Technical Report TR/IRIDIA/2002-07, IRIDIA, Université Libre
de Bruxelles, 2002.

15. T. Stützle. Local Search Algorithms for Combinatorial Problems – Analysis, Im-
provements, and New Applications. PhD thesis, TU Darmstadt, Germany, 1998.

16. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Op-
erational Research, 64:278–285, 1993.

17. S. P. Wright. Adjusted p-values and simultaneous inference. Biometrics, 48:1005–
1013, 1992.

18. http://www.win.tue.nl/whizzkids/1997 .



Experimental Investigation of Three Distributed
Genetic Programming Models

Marco Tomassini1, Leonardo Vanneschi1,
Francisco Fernández2, and Germán Galeano2

1 Computer Science Institute, University of Lausanne
1015 Lausanne, Switzerland

2 Computer Science Department, University of Extremadura
C/ Calvario, s/n. 06800 Merida, Spain

Abstract. Three models of distributed Genetic Programming are pre-
sented comprising synchronous and asynchronous communication. These
three models are compared with each other and with the standard pan-
mictic model on three well known Genetic Programming benchmarks.
The measures used are the computational effort, the phenotypic entropy
of the populations, and the execution time. We find that all the dis-
tributed models are better than the sequential one in terms of effort
and time. The differences among the distributed models themselves are
rather small in terms of effort but one of the asynchronous models turns
out to be significantly faster. The entropy confirms that migration helps
in conserving some phenotypic diversity in the populations.

1 Introduction

Parallelism is implicit in nature, where all individuals compete simultaneously
for survival. Evolutionary computation has taken inspiration from this obser-
vation and several models have been proposed. Some of the first efforts made
to investigate the usefulness of parallelism were done in Genetic Algorithms
(GAs). Among others, Cantú-Paz [4] modeled the main features of parallel GAs
and compared this technique with its sequential counterpart. For reviews of the
field see for instance [1,12]. Parallelism in Genetic Programming (GP) is newer
and has been less investigated: only a few studies have appeared to date [3,5,10],
and, to our knowledge, no theoretical study has been performed in Parallel and
Distributed Genetic Programming (PADGP). Given this situation, we think that
an extensive empirical study of several representative test cases is needed in or-
der to attempt to clarify the issues. Although our empirical results are only of a
qualitative nature, we believe that such systematic studies are a necessary pre-
requisite to any efficient use of distributed GP in applications and should pave
the way for a better theoretical understanding of co-evolving populations of GP
individuals. In this paper we present three original PADGP models and we em-
pirically compare them by means of some experiments of different nature. No
investigation of these GP models have to our knowledge already been done. The
models have been implemented using the Message Passing Interface standard

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 641–650, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



642 Marco Tomassini et al.

(MPI) [8]. Implementation details can be found in [7]. The article is structured
as follows: in section 2 we describe our PADGP models, section 3 gives an ac-
count of the benchmarks and the GP parameters used in our experiments, in
section 4 we describe the measures used to compare our models and section 5
presents the experimental results. Finally, section 6 offers our conclusions.

2 Description of Distributed Models Used

The first two PADGP models we present in this paper are based on the Mas-
ter/Slave paradigm. In the first one (that we could define fully synchronized
model), each island runs a standard generational GP and individuals are ex-
changed from each subpopulation (slave) to the master with synchronous com-
munications at fixed synchronization points between generations. In the second
one, asynchronous receive operations are used by the subpopulation processes.
In the third one, subpopulations communicate using asynchronous receive oper-
ations with no centralized master. In the following paragraphs, the three models
are described in more detail.

2.1 Synchronous Communication with Master

In this model, each population executes the following steps:

– Create a random population of programs;
– While termination condition not reached do
• Assign a fitness value to each individual;
• Select a set of individuals for reproduction;
• Recombine and mutate the new population;
• If communication has to take place at this iteration then
∗ Select the best n individuals (with n ≥ 0), pack them and send them to

the master (with one MPI Send operation);
∗ Receive a set of n new individuals from the master (with one MPI Recv

operation), unpack them and replace the n worst individuals in the pop-
ulation;

EndIf
EndWhile

And the master executes the following steps:

– For each iteration in which communication has to take place do
• For each population p do
∗ Receive a set of n individuals from p (MPI Recv);
∗ Send them to another population according to the chosen topology

(MPI Send);
EndFor

EndFor

The most used termination criterions are: a satisfactory solution has been found,
a maximum computing time is reached or a maximum number of generations
have been executed.



Experimental Investigation 643

2.2 Asynchronous Communication with Master

The behaviour of the populations can be described by the following algorithm:

– Create a random population of programs;
– While termination condition not reached do
• Assign a fitness value to each individual;
• Select a set of individuals for reproduction;
• Recombine and mutate the new population;
• If communication has to take place at this iteration then
∗ Select the best n individuals (with n ≥ 0), pack them and send them to

the master (with one MPI Send operation);
∗ Receive a set of n new individuals from the master (with one non-blocking

MPI Irecv operation)
EndIf

• Test the completion of all the pending receives;
• For all the terminated receives
∗ replace the n worst individuals in the population with the n received in-

dividuals
EndFor

EndWhile

while the master executes exactly the same steps as in the synchronous model.

2.3 Asynchronous Communication without Master

In this model each population executes the following steps:

– Create a random population of programs;
– While termination condition not reached do
• Assign a fitness value to each individual;
• Select a set of individuals for reproduction;
• Recombine and mutate the new population;
• If communication has to take place at this iteration then
∗ Select the best n individuals (with n ≥ 0), pack them and send them to

another process according to the chosen topology (using one MPI Send
operation);

∗ Receive a set of n new individuals from another process according to the
chosen topology (with one non-blocking MPI Irecv operation)

EndIf
• Test the completion of all the pending receives;
• For all the terminated receives
∗ replace the n worst individuals in the population with the n received in-

dividuals
EndFor

EndWhile



644 Marco Tomassini et al.

3 Test Functions and GP Parameters

In the absence of theoretical guidance it is difficult to decide which problems
should be considered. If only GP theory had the same degree of maturity as GA
theory, one could choose a mix of synthetic benchmarks, standard test problems
and provably difficult problems. But unfortunately this is not the case yet. Thus,
we decided to address a set of problems that have been classically used for
testing GP. Obviously, the set is far from complete or even representative of a
wide range of typical GP problems. However, these experimental studies are very
time consuming and we decided that this would at least represent a useful first
step. The following section briefly describes the test problems on which more
detailed explanations can be found in [9].

Even Parity 5 Problem. The boolean Even Parity k function of k Boolean ar-
guments returns true if an even number of its boolean arguments evaluates to
true, otherwise it returns false. If k = 5, then 32 fitness cases must be checked
to evaluate the fitness of an individual. The fitness can be computed as 32 mi-
nus the number of hits over the 32 cases. Thus a perfect individual has fitness
0, while a bad individual has fitness 32. the set of functions we employed for
GP individuals is the following: F = {NAND,NOR}. The terminal set in this
problem is composed of 5 different boolean variables T = {a, b, c, d, e}.
Artificial Ant Problem on the Santa Fe Trail. In this problem, an artificial ant
is placed on a toroidal grid. Some of the cells from the grid contain food pellets.
The goal is to drive the ant on the path to make it eat all the food. We use the
same set of functions and terminals as in [9]. As fitness function, we use the total
number of food pellets lying on the trail (70) minus the amount of food eaten
by the ant during his path.

Symbolic Regression Problem. The problem aims to find a program which
matches a given equation. We employ the classic polynomial equation f(x) =
x4 + x3 + x2 + x, and the input set is composed of the values 1 to 1000. For
this problem, the set of functions is the following: F={*,//,+,-}, where // is like
/ but returns 0 instead of error when the divisor is equal to 0, thus allowing
syntactic closure. We define the fitness as the sum of the square errors at each
test point.

GP Parameters. In all the experiments performed, we used the same set of GP
parameters: generational GP, crossover rate 95%, mutation rate 0.1%, tourna-
ment selection of size 10, ramped half and half initialization, maximum depth of
individuals for the creation phase 6, maximum depth of individuals for crossover
17, no elitism, 1500 individuals (respectively 200 for Symbolic Regression, to
avoid the fast convergence typical of this problem) divided in 1, 5 or 10 sub-
populations. The subpopulations were connected using a ring topology, and a
number of individuals equal to the 10% of the subpopulations size were ex-
changed between demes at each 10 generations (These last values were found to
be suitable in previous work [5,6]).



Experimental Investigation 645

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Effort (x 106)

Fi
tn

es
s

sy with
asy with
asy without
seq

0 2 4 6 8 10
0

1

2

3

4

5

Effort (x 106)

De
via

tio
n

sy with
asy with
asy without
seq

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Effort (x 106)

Fi
tn

es
s

sy with
asy with
asy without
seq

0 2 4 6 8 10
0

1

2

3

4

5

Effort (x 106)

De
via

tio
n

sy with
asy with
asy without
seq

Fig. 1. Fitness and its standard deviation against effort for the Even Parity problem.
Upper graphics: 5 populations of 300 individuals, lower graphics: 10 populations of 150
individuals. Sequential version (a panmictic population of 1500 individuals) shown in
black.

4 Computational Effort and Population Entropy

In our experiments data are analyzed by means of the Computational Effort
which has been defined as the total number of nodes evaluated for a given number
of generations. To calculate this measure, we must firstly compute the average
number of nodes at generation g, taking into account all the populations that are
simultaneously working (we will indicate it as avg lengthg) and then compute
the partial effort at that generation defined as: PEg = i × p × avg lengthg,
where p is the number of populations and i is the number of individuals per
population. Finally, we calculate the effort of computation Eg, at generation g,
as Eg = PEg + PEg−1 + PEg−2 + ... + PE0. This measure is problem-specific
but it is useful for comparing different solutions of the same problem.

The measure we used to compute phenotipic diversity in a population P , is
the Population Entropy, defined as [11]: H(P ) = −∑N

j=1 fj log(fj), where fj is
the number of individuals in the population P having a certain fitness and N is
the total number of individuals in P .

5 Experimental Results

Fitness vs Computational Effort. Due to the stochastic nature of the evolution-
ary process, all the results presented in this paper were obtained by averaging
60 independent runs of the same experiments. In order to assess statistical sig-
nificance of the results, graphics of the Standard Deviation of fitness between
the different runs are also presented. Figures 1, 2 and 3 show the graphics of



646 Marco Tomassini et al.

0 2 4 6 8
0

10

20

30

40

50

60

Effort (x 106)

Fi
tn

es
s

sy with
asy with
asy without
seq

0 2 4 6 8

6

8

10

12

14

Effort (x 106)

De
via

tio
n

sy with
asy with
asy without
seq

0 2 4 6 8
0

10

20

30

40

50

Effort (x 106)

Fi
tn

es
s

sy with
asy with
asy without
seq

0 2 4 6 8

6

8

10

12

14

Effort (x 106)

De
via

tio
n

sy with
asy with
asy without
seq

Fig. 2. Fitness and its standard deviation against effort for the Ant problem. Upper
graphics: 5 populations of 300 individuals, lower graphics: 10 populations of 150 in-
dividuals. Sequential version (a panmictic population of 1500 individuals) shown in
black.

fitness and standard deviation against computational effort respectively for the
Even Parity 5 problem, the Artificial Ant problem and the Symbolic Regression
problem. From these figures, we observe that the distances between the curves
of the parallel models and the ones of the sequential versions are always larger
than standard deviations, while this is not the case if we compare the curves of
parallel models between themselves. This allow us to conclude that, for all the
cases presented, the parallel models have a faster convergence than the sequen-
tial one, while the speeds of convergence of the parallel models can be considered
statistically equivalent.

Population Entropy. Results presented in the following are obtained by aver-
aging 60 independent runs of the same experiments. Curves relative to parallel
models are obtained by averaging the entropy of all the subpopulations at each
iteration. Figures 4, 5 and 6 show the population entropy against the generation
number respectively for the Even Parity 5 problem, the Artificial Ant problem
and the Symbolic Regression problem. These figures show that the sequential
model has a fast entropy increase in the first few generations and a slow de-
crease in the rest of the execution. The synchronous with master model shows
a sudden decrease of the entropy each time the generation number is a multiple
of 10 (messages are synchronously sent each 10 generations), and a sudden in-
crease in the immediately following few generations. This behavior is reasonable
since we are sending the best individuals. Thus, it is highly probable that all
the individuals sent have similar fitness and, initially, the phenotypic diversity
injected in the receiving population is lower. But it is possible that the individu-



Experimental Investigation 647

5 10 15 20
0

2

4

6

8

10

12

Effort (x 104)

Fi
tn

es
s (

x 1
09 )

sy with
asy with
asy without
seq

5 10 15 20
0

2

4

6

8

10

12

14

Effort (x 104)

De
via

tio
n 

(x
 1

06 )

sy with
asy with
asy without
seq

5 10 15 20
0

2

4

6

8

10

12

Effort (x 104)

Fi
tn

es
s (

x 1
09 )

sy with
asy with
asy without
seq

5 10 15 20
0

2

4

6

8

10

12

14

Effort (x 104)

De
via

tio
n 

(x
 1

06 )

sy with
asy with
asy without
seq

Fig. 3. Fitness and its standard deviation against effort for the Symbolic regression
problem. Upper graphics: 5 populations of 40 individuals, lower graphics: 10 popula-
tions of 20 individuals. Sequential version (a panmictic population of 200 individuals)
shown in black. Note the difference in the scale between fitness curves and standard
deviation.

Fig. 4. Graphics of population entropy against generation number for the Even Parity
5 problem (5 populations of 300 individuals each). Curves of the sequential version (a
panmictic population of 1500 individuals) are shown too.

als sent have a different syntactic structure from the individuals already present
in the receiving population. So, the application of genetic operators in the few
successive generations will foster the creation of new individuals with different
characteristics (and thus, probably, with different fitness) from the preexisting
ones, which leads to a growth of the phenotypic entropy. The asynchronous mod-
els show a more irregular behavior, due to the fact that messages are received
whenever they arrive, and not at fixed times. In all cases, migrating individuals
seems to help in alleviating stagnation in the populations, thus confirming the
intuition that is at the basis of distributed evolutionary algorithms.



648 Marco Tomassini et al.

Fig. 5. Graphics of population entropy against generation number for the Artificial
Ant problem (5 populations of 300 individuals each). Curves of the sequential version
(a panmictic population of 1500 individuals) are shown too.

Fig. 6. Graphics of population entropy against generation number for the Symbolic
Regression problem (5 populations of 40 individuals each). Curves of the sequential
version (a panmictic population of 200 individuals) are shown too.

Execution Time. Results reported in figure 7 are averages over 60 runs, executed
starting with a fixed population. All the runs have been executed on a cluster
of eleven PCs Intel Pentium III-500 with 128M RAM and an Ethernet 10MB
interconnection network. All the runs have been stopped after 100 generations.
Since we are not interested in convergence in these experiments, we considered a
total number of 1500 individuals for Symbolic Regression too. These tables show
that all the parallel models are faster than the sequential version. Moreover,
the slower populations for all the parallel models show approximately the same
completion times, while there is a larger difference in convergence time among
the subpopulations in the asynchronous without master model, which was to be
expected due to the characteristics of the model.

6 Conclusions

We have presented four GP models: the standard sequential version and three
original parallel and distributed versions (synchronous with master, asyn-
chronous with master and asynchronous without master) and we have compared
them from different points of view: computational effort, phenotypic entropy of



Experimental Investigation 649

Even Parity 5
5 Populations 10 Populations

Slower Pop. Faster Pop. Slower Pop. Faster Pop.

Sync. with master

Async. with mast.

Asy. without mast.

Sequential

402.75 402.2 191.23 190.72

435.21 371.4 207.7 178.47

440.66 101.01 208.66 41.68

1688.27

Artificial Ant
5 Populations 10 Populations

Slower Pop. Faster Pop. Slower Pop. Faster Pop.

Sync. with master

Async. with mast.

Asy. without mast.

Sequential

325.35 323.59 129.42 124.19

341.81 275.63 138.61 113.3

343.42 117.25 140.97 52.75

657.02

Symbolic Reg.
5 Populations 10 Populations

Slower Pop. Faster Pop. Slower Pop. Faster Pop.

Sync. with master

Async. with mast.

Asy. without mast.

Sequential

446.82 440.13 170.72 157.78

455.71 321.46 175.77 146.36

458.16 173.64 178.02 91.05

1299.81

Fig. 7. Completion times (in seconds) for the faster and slower population in the case
of 5 and 10 subpopulations (respectively of 300 and 150 individuals each) for Even
Parity 5, Artificial Ant and Symbolic Regression problems. Completion times of the
sequential version (a panmictic population of 1500 individuals) is shown too.

the populations, and the execution time. No similar studies have to our knowl-
edge already been done. The effort experiments showed a faster convergence of
the parallel models compared to the sequential one and a substantial equiva-
lence of the three parallel models among themselves. The entropy experiments
confirmed that migration can help in promoting diversity, especially towards the
end of the evolution, when it is most useful. The execution time experiments
pointed out that the asynchronous models are faster when they find the solu-
tion, and they show a greater spread of island completion times with respect
to synchronous islands. All the results presented appear to be independent from
the benchmark used and they qualitatively agree with results presented in [2] for
distributed genetic algorithms. This work is part of a longer term project whose
aim is a better understanding of the dynamics of multi-population GP by way
of experiment and by theoretical modelling. In the future, we plan to extend
the study of synchronous and asynchronous models for GP to other classes of
functions, and to extend the capabilities of our systems towards geographically
enlarged metacomputing frameworks.

References

1. E. Alba and J. M. Troya. A survey of parallel distributed genetic algorithms.
Complexity, 4(4):31–52, 1999.

2. E. Alba and J. M. Troya. Analyzing synchronous and asynchronous parallel dis-
tributed genetic algorithms. Future Generation Computer Systems, 17:451–465,
January 2001.

3. D. Andre and J. R. Koza. Parallel genetic programming: A scalable implementation
using the transputer network architecture. In P. Angeline and K. Kinnear, editors,
Advances in Genetic Programming 2, pages 317–337, Cambridge, MA, 1996. The
MIT Press.

4. E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Press, 2000.



650 Marco Tomassini et al.

5. F. Fernández, M. Tomassini, W. F. Punch III, and J. M. Sánchez. Experimental
study of multipopulation parallel genetic programming. In Riccardo Poli, Wolfgang
Banzhaf, William B. Langdon, Julian F. Miller, Peter Nordin, and Terence C.
Fogarty, editors, Genetic Programming, Proceedings of EuroGP’2000, volume 1802
of LNCS, pages 283–293. Springer-Verlag, 2000.

6. F. Fernández, M. Tomassini, and L. Vanneschi. Studying the influence of commu-
nication topology and migration on distributed genetic programming. In J. Miller,
M. Tomassini, P. L. Lanzi, C. Ryan, A. Tettamanzi, and W. Langdon, editors,
Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, pages
51–63. Springer-Verlag, 2001.

7. F. Fernández, M. Tomassini, L. Vanneschi, and L. Bucher. A distributed computing
environment for genetic programming using MPI. In J. Dongarra, P. Kaksuk, and
N. Podhorszki, editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, volume 1908 of Lecture Notes in Computer Science, pages 322–
329. Springer-Verlag, Heidelberg, 2000.

8. Message Passing Interface Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications, 8(3-4):165–414, 1994.

9. J. R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts,
1992.

10. W. Punch. How effective are multiple populations in genetic programming. In
J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. Gar-
zon, D. Goldberg, H. Iba, and R. L. Riolo, editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 308–313, San Francisco, CA,
1998. Morgan Kaufmann.

11. Justinian P. Rosca. Entropy-driven adaptive representation. In Justinian P. Rosca,
editor, Proceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications, pages 23–32, Tahoe City, California, USA, 1995.

12. M. Tomassini. Parallel and distributed evolutionary algorithms: a review. In
K. Miettinen, M. äkelä, P. Neittanmäki, and J. Périaux, editors, Evolutionary
Algorithms in Engineering and Computer Science, pages 113–133. J. Wiley, New
York, 1999.



Model-Based Search for Combinatorial
Optimization: A Comparative Study

Mark Zlochin1,� and Marco Dorigo2

1 Dept. of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel
zmark@cs.technion.ac.il

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
mdorigo@ulb.ac.be

Abstract In this paper we introduce model-based search as a unifying
framework accommodating some recently proposed heuristics for com-
binatorial optimization such as ant colony optimization, stochastic gra-
dient ascent, cross-entropy and estimation of distribution methods. We
discuss similarities as well as distinctive features of each method, propose
some extensions and present a comparative experimental study of these
algorithms.

1 Introduction

The necessity to solve NP-hard problems, for which the existence of efficient
exact algorithms is highly unlikely, has led to a wide range of heuristic algo-
rithms that implement some sort of search in the solution space. These heuristic
algorithms can be classified, similarly to what is done in the machine learning
field [15] , as being either instance-based or model-based. Most of the classical
search methods may be considered instance-based, since they generate new can-
didate solutions using solely the current solution or the current “population”
of solutions. Typical representatives of this class are genetic algorithms or local
search and its variants, such as, for example, simulated annealing and iterated
local search.On the other hand, in the last decade several new methods, which
may be classified as model-based search (MBS) algorithms, have been proposed.
In MBS algorithms, candidate solutions are generated using a parameterized
probabilistic model that is updated using the previously seen solutions in such
a way that the search will concentrate in the regions containing high quality
solutions.

In [20], several MBS approaches, such as ant colony optimization (ACO)
metaheuristic [6], stochastic gradient ascent (SGA) [16, 12], cross-entropy (CE)
method [18] and estimation of distribution algorithms (EDAs) [11], were consid-
ered within a common framework, and analysis of their similarities as well as
their distinctive features was provided.

� This work was carried out while the author was at IRIDIA, Université Libre de
Bruxelles, Belgium.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 651–661, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



652 Mark Zlochin and Marco Dorigo

In this paper we provide a detailed comparative analysis of these algorithms,
in the context of unconstrained binary coded problems. In addition to the an-
alytical comparison, we also present an experimental comparison of the MBS
methods discussed in this paper using the MAXSAT problem as a test bed.

2 Model-Based Search

Let us consider a minimization problem(S, f), where S is the set of feasible
solutions, f is the objective function, which assigns to each solution s ∈ S a cost
value f(s). The goal of the minimization problem is to find a feasible solution of
minimal cost.

At a very general level, the model-based search approach attempts to solve
this minimization problem by repeating the following two steps:

– Candidate solutions are constructed using some parameterized probabilistic
model, that is, a parameterized probability distribution over the solution
space.

– The candidate solutions are used to modify the model in a way that is deemed
to bias future sampling toward high quality solutions.

For any algorithm belonging to this general scheme, two components, corre-
sponding to the two steps above, need to be instantiated:

– A probabilistic model that allows an efficient generation of the candidate
solutions.

– A rule for updating the model’s parameters.

In this paper we restrict our attention to those problems whose solutions can
be coded as unconstrained binary strings, although ACO, SGA and CE can be
applied in a more general context as well. A more general discussion about these
methods and the relations between them is given in [20]. All of the methods
described in this paper employ the following probabilistic model for generating
candidate solutions:

– Every bit position, 1 ≤ i ≤ n, has an associated parameter τi.
– The bits, si, are generated independently, with P (si = 1) = F (τi)1.

The parameter vector and the resulting probability distribution over the solution
space are denoted by T and PT (·) correspondingly. The parameters are typically
initialized in such a way that the initial distribution is a uniform one.

It should be noted that several algorithms that fall within the MBS frame-
work and that allow for dependencies between the bit positions have been de-
scribed in the literature (e.g., MIMIC [3], BOA [14] or variants of ACO [17]).
Some of these algorithms were reported to yield certain improvement over the
simpler algorithms, which generate bits for different positions independently.
1 In fact, all the algorithms considered in this paper, except for SGA, use simply
F (τi) = τi.



Model-Based Search for Combinatorial Optimization 653

However, these comparisons were performed on a basis of equal number of iter-
ations, rather than equal computational time. On the other hand, our personal
experience, as well as some results in the literature (e.g., [17]), suggest that the
considerable computational overhead imposed by using a more complex model
renders the “dependencies learning” algorithms uncompetitive. Consequently,
these algorithms are not considered in this paper.

3 The Algorithms

In this section we give a brief description of several existing MBS algorithms
and discuss the relationships among them. The reader is referred to [20] and
references therein for a more detailed discussion. It should be emphasized that
the probabilistic model employed by all these algorithms is the same, hence the
only difference among them is in the way the parameters are interpreted and
modified.

3.1 Ant Colony Optimization

One well-established approach that belongs to the MBS framework is the ant
colony optimization (ACO) metaheuristic. In ACO algorithms, solutions are gen-
erated using stochastic procedures, called artificial ants, which construct them
by iteratively adding solution components. The components are chosen with a
probability which is a function of so called pheromone values associated to com-
ponents. After constructing the solutions, the pheromone values associated with
the components belonging to good solutions are increased. This metaheuristic
has been successfully applied to the solution of numerous NP-hard problems
[6] as well as to time-varying stochastic optimization problems [4]. A particu-
lar variant of this metaheuristic, called Hyper-Cube (HC) ACO [2], has been
recently proposed in the context of combinatorial problems with binary coded
solutions. In HC-ACO the pheromones are bounded between zero and one and
the pheromone update rule can be described by the following general scheme:

HC ACO Update

τi ← (1− ρ)τi + ρ

∑
s∈St Qf (s)si∑
s∈St Qf (s)

. (1)

where St is the sample in the t-th iteration, ρ, 0 ≤ ρ < 1, is the learning rate
and Qf (s|S1, . . . , St) is some “quality function”, which is typically required to be
non-increasing with respect to f and is defined over the “reference set” Ŝt.

In the considered case of unconstrained problems, the pheromones are equal
to the marginal probabilities of the corresponding positions, with the bits at
different positions being assigned independently2.
2 In a preliminary study, we have also considered using heuristic information, similarly

to [17]. However, the improvement in performance was negligible, when compared to
the improvement obtained with local search. Therefore, it was decided to limit our
discussion in this paper to the simpler version of HC-ACO.



654 Mark Zlochin and Marco Dorigo

Different ACO algorithms may use different quality functions and reference
sets. For example, in the very first ACO algorithm — Ant System [5]— the
quality function was 1/f(s) and the reference set Ŝt = St. In a more recently
proposed scheme, called iteration best update [7], the reference set was a single-
ton containing the best solution within St (if there were several iteration-best
solutions, one of them was chosen randomly). In the global-best update [7, 19],
the reference set contained the best among all the iteration-best solutions (and
if there was more than one global-best solution, the earliest one was chosen).

InMAX–MIN Ant System [19], maximum and minimum pheromone trail
limits were introduced. With this modification the probability to generate any
particular solution is kept above some positive threshold, which helps prevent-
ing search stagnation and premature convergence to suboptimal solutions. For
HC-ACO, this approach translates into the requirement that the marginal prob-
abilities are kept within the range [ε, 1 − ε], where ε ≥ 0 is the parameter that
controls the amount of exploration.

It is worth noting that, as shown in [8], for learning rate ρ = 1 and for
a particular choice of the quality function, the HC-ACO is equivalent to the
cross-entropy method [18].

3.2 The Stochastic Gradient Ascent Method

While all the updates described above are of a somewhat heuristic nature, the
SGA method allows to derive the parameters update rule in a more principled
manner [12].

The SGA method replaces the original optimization problem with the fol-
lowing equivalent continuous maximization problem:

T ∗ = argmax
T

E(T ), (2)

where E(T ) = ETQf (s) and ET denotes expectation with respect to PT . This
maximization problem is, in turn, tackled using stochastic gradient ascent [16]:

T t+1 = T t + αt
∑
s∈St

Qf (s)∇ lnPT t(s), (3)

where St is the sample at iteration t.
In [8] it was demonstrated how the required gradient ∇ lnPT t(s) can be

calculated for a general class of probabilistic models. For the model we consider
in this paper, namely binary variables without dependencies between different
positions, it can be verified that the resulting parameter update rule is:

SGA Update

τi ← τi + αt
∑
s∈St

Qf (s)
F ′(τi)

si · F (τi)− (1− si) · (1− F (τi))
(4)

In order to guarantee the stability of the resulting algorithm, it is desirable to
have a bounded gradient ∇ lnPT (s). For this reason, the use of the “natural”



Model-Based Search for Combinatorial Optimization 655

representation F (τi) = τi is inappropriate. Instead, we suggest using the logistic

function F (τi) =
1

1 + exp(−τi) . It can be shown that in this case the update

rule becomes:

τi ← τi − αt
∑
s∈St

Qf (s)F (τi) + αt
∑
s∈St

Qf (s)si, (5)

hence the gradient is indeed bounded.
While the SGA method was originally formulated for iteration-independent

quality functions, in [8] it was demonstrated that an alternative derivation of
the SGA update through the CE method justifies the use of iteration-dependent
quality functions as well. For example, one may use the indicator function
Qf (s) = I(f(s) < θt), where θt is a threshold value set to some percentile (say,
lower 10%, for minimization problems) of the cost distribution at the last itera-
tion. For this quality function, the expectation ETQf (s) equals the probability
of generating solutions, whose cost is below the threshold θt, and the threshold
is modified adaptively. The update based on this function is henceforth referred
to as “top-quality” update.

Similarly to HC-ACO, we may choose to bound the marginal probabilities in
order to increase the amount of exploration. In order to keep the marginal prob-
abilities between ε and 1− ε, with the logistic function representation described
above, the pheromones should be kept in the range [ln( ε

1−ε ), ln(1−ε
ε )].

3.3 Estimation of Distribution Algorithms

As already mentioned in Section 1, the classical genetic algorithms can be con-
sidered an example of the instance-based approach, in which the search is carried
out by evolving the population of candidate solutions using selection, crossover
and mutation operators. Recently, several new algorithms, which generate new
solutions using probabilistic models instead of crossover and mutation, have been
proposed within the evolutionary computation community.

In the population-based incremental learning (PBIL) algorithm [1], the pop-
ulation is replaced by a probability vector p̄, with all pi’s initially set to 0.5. At
every iteration a sample S is generated using the probability vector and then
the probability vector is updated as follows:

PBIL Update
– Stop ← a fixed number of lowest cost solutions from S,
– for every s ∈ Stop

– pi ← (1− ρ)pi + ρsi,
where ρ is the learning rate.

As it can be easily seen, this update is virtually identical (up to rescaling of the
learning rate) to the HC-ACO with top-quality update. In particular, in case only
the best solution is used for the update, HC-ACO with iteration-best update is
obtained. In [1] two additional updates were suggested. The first was intended
to make use of “negative” examples, shifting the probability vector towards the
best solution in the positions where it differs from the worst solution:



656 Mark Zlochin and Marco Dorigo

– if sbesti �= sworsti then
pi ← (1− ρnl)pi + ρnls

best
i ,

where sbest, sworst are respectively the best and the worst solutions in S and ρnl
is the so-called “negative learning rate”. In the second update, the probability
vector was randomly perturbed, with an effect similar to that of mutation in
standard GA:

– For every i, modify pi ← (1− ρmut)pi + ρmutdi, with probability pmut.

where ρmut is the “mutation shift”, and, for every i, the mutation direction di
is 0 or 1, with probability 1/2 each. Both updates were performed in addition
to the basic PBIL update described above.

The compact genetic algorithm (cGA) [9] was proposed as a modification of
PBIL, intended to represent more faithfully the dynamics of the real GA algo-
rithm. At every iteration, two solutions, a and b, are generated using a probability
vector, and then the probability vector is updated as follows (assuming, without
loss of generality, that a has lower cost):

cGA Update

– if ai �= bi then
if ai = 1 then pi ← pi + 1/n,

else pi ← pi − 1/n,
where n is a parameter, equivalent to the population size in the classical GA.

This basic scheme can be extended to larger samples. Two variants were proposed
in [9]. In the first variant, intended to simulate a tournament of sizem, a sample S
of size m is generated and the basic update above is used for every pair in the set
{(sbest, b)|b ∈ S, b �= sbest}. In the second variant, a “round-robin tournament”
is simulated, that is, the basic update is used for every pair of solutions from the
sample.

It can be shown that the update for “tournament of size m” cGA can be
written as:

pi ← pi + ρ
∑
s∈S

Q(s)si − ρ

m

∑
s∈S

si, (6)

where ρ = m
n and

Q(s) =
{

1 , s = sbest

0 , otherwise. (7)

For the “round-robin tournament” cGA, it can be shown that the update can
also be described by (6), with ρ = m(m+1)

n and Q(s) = 2·rank(s)
m(m+1) (the highest

rank, m, is assigned to sbest). It can be easily verified that these two updates
are virtually identical to the HC-ACO iteration-best and rank-based updates
respectively. The only difference between cGA and HC-ACO is in the form of
the evaporation factor. In cGA it is equal to ρ

m

∑
s∈S si, whereas in HC-ACO it

is equal to ρpi, which is simply the expected value of the former.



Model-Based Search for Combinatorial Optimization 657

4 Empirical Comparison

In this section we describe the results of the empirical comparison between the
MBS algorithms described above, using MAXSAT as a test bed. MAXSAT is
the optimization variant of SAT, the first problem which was shown to be NP-
complete. The weighted MAXSAT problem can be formulated as follows. Given k
clauses C1, . . . , Ck over n binary variables x1, . . . , xn, and the weights w1, . . . , wk,
find an assignment which maximizes the sum of the weights of the satisfied
clauses.

4.1 Comparison Setting

The comparison was carried out using randomly generated weighted MAXSAT
instances from the SATLIB MAXSAT Benchmark Collection [10]. The bench-
mark set contains three groups of problems, with 100, 500 and 1000 variables
and 500, 5000 and 10000 clauses respectively. Each group contains 10 instances.

The algorithms were evaluated using three different running times. For every
problem size, three stopping times, T1, T2 and T3, were chosen as the time that it
takes for HC-ACO with population size 10 to perform 50, 200 and 1000 iterations
respectively3.

All of the algorithms described above have one or more parameters, whose
choice can clearly affect the performance of the algorithm. Moreover, the optimal
parameter setting may depend on the available computational time (e.g., with
shorter times a higher learning rate and smaller samples should be more appro-
priate) and the problem size. Since to-date there are no established methods for
the automatic tuning of metaheuristics’ parameters, it was decided to use one
problem out of every group for tuning the algorithms, and the other 9 for the
testing. Specifically, each algorithm was run with a variety of parameter settings
(described below), 10 times for each setting, and for every algorithm/problem-
size/running-time combination, the configuration with the best average perfor-
mance was chosen. This automatic tuning procedure insures that the compari-
son is not biased in favor of one of the algorithms. The separation between the
training problem and the test problems guarantees the statistical validity of the
performance estimates4.

For all the algorithms, we considered learning rate ρ ∈ {0.03, 0.1, 0.3, 1}, and
sample sizes |S| ∈ {10, 50, 200}. In HC-ACO and SGA we considered pheromone
bounds with ε ∈ {0, 0.01, 0.1}. For PBIL, the additional parameters were: “neg-
ative learning rate” ρnl ∈ {0, ρ/10, ρ}, mutation probability pmut ∈ {0, 0.01, 0.1}
and mutation shift ρmut ∈ {0.01, 0.1}.
3 It should be noted that, due to extensive code reuse in the algorithms’ implementa-

tion, the running times for all the algorithms (without the local search) were virtually
the same.

4 If, for example, we chose the best performing configuration for every problem indi-
vidually, the resulting average performance would no longer be an unbiased estimate
of the actual expected performance.



658 Mark Zlochin and Marco Dorigo

For HC-ACO, SGA and PBIL we have tested both the iteration-best and
the top-quality updates. We have also tested separately the basic CE method,
which corresponds to the top-quality HC-ACO algorithm with learning rate 1
and no bounds on probabilities. Finally, both “ single tournament” (cGAst) and
“round-robin tournament” (cGArr) versions of the cGA method were tested.

Furthermore, for every algorithm described above, we have also considered
a hybrid version, in which the update was based on the population of the elite
solutions, that is the highest quality solutions found so far, rather than on the last
sample. Finally, all the algorithms (including the hybrid versions) were tested
both with and without the use of the local search5.

4.2 Comparison Results

Every algorithm was run 30 times on every problem with the parameter setting
determined using the tuning procedure described in the previous section. Since
the optimal solution costs for the benchmark problems used in this study are
not known, the cost of the best solution found by any of the algorithms in all
the test runs were used as estimates. The performance of a single run of the
algorithm was evaluated as:

f̃ =
fbest − fopt
E{f} − fopt , (8)

where fbest is the cost of the best solution found during the run, fopt is the
estimate of the optimal solution cost and E{f} is the expected cost of the solu-
tion generated from a uniform distribution6. Note that, for a random solution,
E{f̃} = 1, hence the results coming from different problems are put on a same
scale, which allows meaningful averaging over several problems. The results of
the comparison are summarized in Tables 1 and 2. Every column corresponds
to a comparison with a particular problem size and stopping time. The aver-
age score of the empirically best algorithm is printed in bold typeface and the
results, which are worse than the best one with 95% confidence7, are shown in
italic. Since the use of the local search leads to a drastic improvement of perfor-
mance, the results in Table 2 are multiplied by 100 for clarity of presentation.
The superscript “h” denotes the hybrid versions of the algorithms, augmented
with population, and “n” denotes the problem size, measured by the number of
variables.

When local search is not used, in most cases the “round-robin” tournament
cGA produces significantly better results. Still, even the performance of cGA
5 Although using local search is not a common practice in the EDA research field, the

results reported next indicate that it certainly should be considered in the future.
6 Since, for any clause C with d variables, the proportion of non-satisfying assignments

is 1/2d, it can be verified that, for the 3-MAXSAT problems used in the benchmarks,
E{f} = 7

8

∑k
j=1 wj .

7 The statistical analysis was performed using Tukey-Kramer test, which is a modifi-
cation of the t-test, adapted for the multiple comparisons.



Model-Based Search for Combinatorial Optimization 659

Table 1. Average performance of the algorithm without the local search.

n=100 n=500 n=1000
T1 T2 T3 T1 T2 T3 T1 T2 T3

CE 0.2561 0.1294 0.1033 0.5567 0.4870 0.2026 0.6642 0.5795 0.2585
CEh 0.2541 0.1497 0.1021 0.5646 0.4854 0.1993 0.6676 0.5784 0.2586
HC-ACOtop 0.2039 0.1230 0.0778 0.5567 0.2979 0.1547 0.6439 0.4251 0.2234
HC-ACOhtop 0.1843 0.1050 0.0714 0.5138 0.3094 0.1554 0.6301 0.4288 0.2387
HC-ACObest 0.2098 0.1336 0.0762 0.5676 0.3358 0.1670 0.6695 0.4636 0.2503
HC-ACOhbest 0.1980 0.1292 0.1063 0.5558 0.3433 0.1840 0.6719 0.5020 0.3625
SGAtop 0.2613 0.1370 0.0879 0.5398 0.3160 0.1588 0.6417 0.4184 0.2153
SGAhtop 0.2349 0.1330 0.0773 0.5397 0.3139 0.1476 0.6475 0.4268 0.2101
SGAbest 0.2692 0.1437 0.0808 0.5804 0.3473 0.1625 0.6854 0.4556 0.2242
SGAhbest 0.2709 0.1409 0.1065 0.6005 0.3694 0.1640 0.7049 0.4973 0.2350
PBILtop 0.2311 0.1545 0.0464 0.5058 0.4015 0.1549 0.6063 0.4816 0.2266
PBILhtop 0.2868 0.1790 0.1038 0.6613 0.3991 0.2133 0.7300 0.4731 0.2491
PBILbest 0.2837 0.1206 0.0504 0.5658 0.3072 0.1415 0.6948 0.4380 0.2554
PBILhbest 0.3214 0.1925 0.1094 0.7399 0.4458 0.1576 0.7900 0.5169 0.2635
cGArr 0.1949 0.0979 0.0746 0.41680.26060.1086 0.53950.39470.1528
cGAhrr 0.4625 0.2244 0.1339 0.7500 0.6292 0.4225 0.8163 0.7252 0.5229
cGAst 0.3007 0.1455 0.0814 0.5891 0.3391 0.1535 0.6816 0.4561 0.2498
cGAhst 0.4627 0.3715 0.3307 0.7687 0.7070 0.6485 0.8351 0.7862 0.7311

is relatively poor (recall that the expected performance score of a randomly
generated solution is 1). The use of local search leads to an improvement of
almost two orders of magnitude and there seems to be almost no significant
differences between the algorithms in this case (note, however, that cGA is often
significantly worse than the others). We hypothesize that the differences among
the algorithms with the local search could be just an artifact of the particular
tuning procedure which we use, rather than an evidence of the advantage of one
of the methods. This is the topic of ongoing research.

5 Conclusions

During the last decade a new approach for solving combinatorial optimization
problems has been emerging, as already observed in [13]. This approach, which
we refer to as model-based search (MBS), tackles the combinatorial optimiza-
tion problem by sampling the solution space using a probabilistic model, which
is adaptively modified as the search proceeds. In this paper we presented a
comparative analysis of several existing MBS methods, which construct binary
coded solutions by generating every bit independently. Our theoretical analysis
revealed considerable structural similarity among these algorithms, and the em-
pirical comparison showed that also the actual performance of the algorithms is
quite similar (especially, when the algorithms are hybridized with local search).
In the future we hope to extend our analysis to a more general class of MBS
algorithms and to compare these algorithms on different types of combinatorial
optimization problems.



660 Mark Zlochin and Marco Dorigo

Table 2. Average performance (multiplied by 100) of the algorithm with the local
search.

n=100 n=500 n=1000
T1 T2 T3 T1 T2 T3 T1 T2 T3

CE 0.1816 0.0300 0.0000 0.4199 0.2416 0.1173 0.8352 0.4494 0.2125
CEh 0.2296 0.0216 0.0000 0.4264 0.2029 0.1460 0.7944 0.4586 0.1536
HC-ACOtop 0.1809 0.0057 0.0016 0.4810 0.2055 0.0817 0.8352 0.3266 0.1203
HC-ACOhtop 0.2331 0.0079 0.0023 0.5066 0.2124 0.0895 0.8440 0.4586 0.0857
HC-ACObest 0.1303 0.0078 0.0023 0.4846 0.2207 0.0728 0.9838 0.3876 0.1811
HC-ACOhbest 0.1536 0.0096 0.0070 0.4951 0.2160 0.0713 0.9884 0.4991 0.1324
SGAtop 0.1233 0.0067 0.0000 0.4324 0.2094 0.0823 0.8354 0.3491 0.1247
SGAhtop 0.1934 0.0048 0.0000 0.4298 0.15480.0485 0.8230 0.3433 0.1194
SGAbest 0.1573 0.0039 0.0054 0.6292 0.2404 0.0634 0.8929 0.5087 0.1416
SGAhbest 0.2104 0.0189 0.0031 0.6242 0.2194 0.1015 0.9078 0.3883 0.1425
PBILtop 0.1586 0.0017 0.0024 0.4844 0.1899 0.1107 0.8353 0.2925 0.1113
PBILhtop 0.1729 0.0054 0.0008 0.4472 0.1973 0.1203 0.7821 0.3026 0.1124
PBILbest 0.1606 0.0110 0.0066 0.4292 0.1771 0.0673 0.9078 0.4275 0.1288
PBILhbest 0.1392 0.0192 0.0023 0.4734 0.2313 0.1249 0.9074 0.4095 0.1537
cGArr 0.1737 0.0137 0.0000 0.6502 0.2937 0.0792 1.3845 0.5153 0.1508
cGAhrr 0.1580 0.0086 0.0000 0.6792 0.2269 0.0503 1.4152 0.6443 0.1931
cGAst 0.1600 0.0257 0.0047 0.6212 0.2673 0.1198 0.9264 0.4903 0.2114
cGAhst 0.1568 0.0248 0.0031 0.6713 0.2953 0.1368 0.9054 0.6220 0.2843

Acknowledgments

Mark Zlochin is supported through a Training Site fellowship funded by the Im-
proving Human Potential (IHP) programme of the Commission of the European
Community (CEC), grant HPRN-CT-2000-00032. Marco Dorigo acknowledges
support from the Belgian FNRS, of which he is a Senior Research Associate.
More generally, this work was partially supported by the “Metaheuristics Net-
work”, a Research Training Network funded by the Improving Human Potential
programme of the CEC, grant HPRN-CT-1999-00106. The information provided
in this paper is the sole responsibility of the authors and does not reflect the
Community’s opinion. The Community is not responsible for any use that might
be made of data appearing in this publication.

References

1. S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. In Proceedings of ICML’95, pages 38–46. Morgan Kaufmann Publishers,
Palo Alto, CA, 1995.

2. C. Blum, A. Roli, and M. Dorigo. HC–ACO: The hyper-cube framework for Ant
Colony Optimization. In Proceedings of MIC’2001, volume 2, pages 399–403, Porto,
Portugal, 2001.

3. J. S. de Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimat-
ing probability densities. In Proceedings of NIPS’97, pages 424–431. MIT Press,
Cambridge, MA, 1997.



Model-Based Search for Combinatorial Optimization 661

4. G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for commu-
nications networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

5. M. Dorigo. Ottimizzazione, Apprendimento Automatico ed Algoritmi Basati su
Metafora Naturale. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano,
Milan, Italy, 1992.

6. M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
11–32. McGraw Hill, London, UK, 1999.

7. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Trans. on Evol. Comp., 1(1):53–
66, 1997.

8. M. Dorigo, M. Zlochin, N. Meuleau, and M. Birattari. Updating ACO pheromones
using Stochastic Gradient Ascent and Cross-Entropy methods. In Proceedings of
EvoWorkshops 2002, pages 21–30. Springer Verlag, Berlin, Germany, 2002.

9. G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm.
IEEE Trans. on Evol. Comp., 3(4):287–297, 1999.

10. H. H. Hoos and T. Stützle. Randomly generated benchmark problems for
MAXSAT. Technical Note, Department of Computer Science, University of British
Columbia, March 2001.

11. P. Larrañaga and J.A. Lozano. Estimation of Distribution Algorithms. A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, 2001.

12. N. Meuleau and M. Dorigo. Ant colony optimization and stochastic gradient de-
scent. Artificial Life, 8(2):103–121, 2002.

13. N. Monmarché, E. Ramat, G. Dromel, M. Slimane, and G. Venturini. On the
similarities between AS, BSC and PBIL: toward the birth of a new meta-heuristic.
Technical Report 215, Laboratoire d’Informatique, Université de Tours, 1999.

14. M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimiza-
tion algorithm. In Proceedings of GECCO’99, volume I, pages 525–532. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

15. J. Quinlan. Combining instance-based and model-based learning. In Proceedings
of the Twelfth International Conference on Machine Learning (ML-93), pages 236–
243. Morgan Kaufmann Publishers, San Mateo, CA, 1993.

16. H. Robbins and S. Monro. A stochastic approximation method. Annals of Math-
ematical Statistics, 22:400–407, 1951.

17. A. Roli, C. Blum, and M. Dorigo. ACO for maximal constraint satisfaction prob-
lems. In Proceedings of MIC’2001, volume 1, pages 187–191, Porto – Portugal,
2001.

18. R. Y. Rubinstein. The cross-entropy method for combinatorial and continuous
optimization. Methodology and Computing in Applied Probability, 1(2):127–190,
1999.

19. T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation Com-
puter Systems, 16(8):889–914, 2000.

20. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for
combinatorial optimization. Technical Report TR/IRIDIA/2001-15, IRIDIA, Uni-
versité Libre de Bruxelles, 2001.



A Framework
for Distributed Evolutionary Algorithms�

M.G. Arenas3, Pierre Collet2, A.E. Eiben1, Márk Jelasity1, J.J. Merelo3,
Ben Paechter4, Mike Preuß5, and Marc Schoenauer2,��

1 Free University of Amsterdam, Amsterdam, The Netherlands
2 Ecole Polytechnique, Palaiseau, France

3 Universidad de Granada, Granada, Spain
4 Napier University, Edinburgh, Scotland

5 University of Dortmund, Dortmund, Germany

Abstract. This paper describes the recently released DREAM (Dis-
tributed Resource Evolutionary Algorithm Machine) framework for the
automatic distribution of evolutionary algorithm (EA) processing
through a virtual machine built from large numbers of individual ma-
chines linked by standard Internet protocols. The framework allows five
different user entry points which depend on the knowledge and require-
ments of the user. At the highest level, users may specify and run dis-
tributed EAs simply by manipulating graphical displays. At the lowest
level the framework turns becomes a P2P (Peer to Peer) mobile agent
system, that may be used for the automatic distribution of a class of
processes including, but not limited to, EAs.

1 Introduction

The Distributed Resource Evolutionary Algorithm Machine (DREAM) [1] was
first described in [12]. It provides a framework for the production of evolutionary
algorithm systems and systems of evolving agents which use the Internet to allow
distributed processing in a peer-to-peer scalable fashion. The system also allows
the secure sharing of the spare CPU resources of a large number of computers.
The scalability of the system will allow new types of problems to be studied
which require either very large amount of processing power, or vast numbers of
evolving agents competing and co-operating to find a solution to some problem
together. The first public release of the software has recently been made, and
this paper describes the architecture and functionality of that system.

� This work is funded as part of the European Commission Information Society Tech-
nologies Program (Future and Emerging Technologies). The authors have sole re-
sponsibility for this work, it does not represent the opinion of the European Com-
munity, and the European Community is not responsible for any use that may be
made of the data appearing herein.

�� The authors are listed in alphabetical order.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 665–675, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



666 M.G. Arenas et al.

DRM

EASEA

GUIDE

JEO

CONSOLE

User B

User A

User C

User E

User D

EA

Fig. 1. The DREAM architecture and its user entry points.

2 System Architecture

The system architecture is split into five modules, and each provides a user in-
terface at a different level interaction and abstraction. The architecture is shown
in Fig. 1 along with the user entry points. The entry points give a variety of
interfaces, with different levels of ease-of-use and power. The upper levels are
easier to use, but flexibility is more limited, the lower levels require greater ex-
pertise, but give the user greater control over the system. Some of the modules
or groups of modules can be used independently of the others, providing addi-
tional functionality outside the context of the integrated DREAM system. The
five types of user can be categorised as follows:

– User A does not wish to use the DREAM for conducting experiments, but
simply wishes to donate their spare CPU time or monitor the experiments
of others. This type of user, interacts with the DREAM only through the
Console, other types of user use the console and (normally) one other user
entry point.

– User B is either not an experienced programmer or wishes to rapidly proto-
type a system without the need for textual programming. This type of user
interacts with the GUIDE layer which allows distributed evolutionary algo-
rithms to be defined using a fully graphical interface. The GUIDE interfaces
with the EASEA layer through the use of the EASEA language. This user
should have a knowledge of the workings of evolutionary algorithms.



A Framework for Distributed Evolutionary Algorithms 667

– User C programs the system through the EASEA layer, which provides a
high level textual language in which to program distributed evolutionary
algorithms. This layer produces Java code through a compiler. The code
it produces uses the objects and methods of the JEO (Java Evolutionary
Object) library.

– User D programs directly in Java and makes use of the JEO library. The
library not only provides useful objects and methods for evolutionary com-
puting, but also provides an API (Application Programming Interface) to
the DRM (Distributed Resource Machine) core layer. This layer is intended
for users with a knowledge of evolutionary algorithms and the Java language.

– User E is an expert user, who programs using the DRM API directly. This
level of user can use the DRM for many useful distributed processing pur-
poses beyond evolutionary computing, but is not fully protected from the
complexities of this type of programming.

The following sections describe each of the architecture layers in turn.

3 GUIDE Layer

The Graphic User Interface for DREAM Experiments is the entry point at the
highest possible level of interaction and abstraction. The idea is that even a
non-expert programmer should be able to use the DREAM through GUIDE,
specifying the algorithm by means of point-and-click in a number of panels re-
ferring to different parts of the evolutionary algorithm.

An Evolutionary Algorithm is made of two parts that are almost completely
orthogonal: on the one hand are the problem dependent components, includ-
ing the genotype structure, its initialization, the variation operators (crossover,
mutation and the like) that will be applied on the genotypes and of course the
evaluation (computation of the fitness value). On the other hand, the evolution
engine implements the artificial Darwinism part of the algorithm and should be
able to handle any population of objects that have a fitness, regardless of the ac-
tual genotype. Evolution engines are made up of two steps, the selection of some
parents to become actual genitors and generate offspring, and the replacement
of some individuals by some offspring to build up the next generation.

The structure of GUIDE reflects this point of view, and offers four panels
to the user: the Problem Specification panel to define the problem dependent
components, the Evolution Engine panel for the Darwinian components, the Dis-
tribution Control panel to define the way the different islands will communicate
(see section 5) and the Experiment Monitor panel, from where the user can run
his experiment and view the temporary and final results.

3.1 Evolution Engine Specification

As far as the ultimate end user is concerned, writing the evolution engine part
has nothing to do with the problem being solved – and this is where GUIDE can
handle the work completely.



668 M.G. Arenas et al.

Fig. 2. The Evolution Engine panel of the GUIDE.

Any decent book about EAs describes the main evolutionary engines, namely
Generational or Steady-State GA, Plus or Comma Evolution Strategy selection,
. . . . It should be possible for a user to say “I want to solve my problem with
Generational GA evolution, using 100 generations of 50 infohabitants, initially
evenly distributed in 5 different islands, with such and such parameters.”

This is part of the functionality offered by the GUIDE. However, restricting
the choice to the five mainstream paradigms cited above would have been very
restrictive: experience shows that most real-world EAs in fact deviate one way
or another from the strict historical paradigms.

The Evolutionary Engine panel of GUIDE (Figure 2) therefore offers a generic
set of primitives from which the user can define a huge variety of implementation
artificial Darwinism implementations. The already-mentioned “classical” evolu-
tion engines are simple instantiations of GUIDE parameters. The pedagogic
interest is immense, as one can see the parameters changing when selecting any
of the predefined engines. Alternatively, thousands of unexplored engines can be
tested, simply by arranging the parameters in an original way.

3.2 Problem-Dependent Components

When using the DREAM, the user refers to a specific problem to be solved. This
means that the notion of programming cannot, unfortunately, be completely
removed from the description of experiments – at least the computation of the
fitness of infohabitants has to be typed in textually. At the moment, this is also
true in GUIDE for all problem-dependent parts.

GUIDE therefore provides a panel that allows the user to type in the speci-
ficities of his problem in terms of genome structure, genome initialiser, genome
recombinator, genome mutator and genome evaluator. This is done thanks to a
very high level language with a C/C++/Java like syntax that completely hides



A Framework for Distributed Evolutionary Algorithms 669

the very complex notion of classes/objects that is required to handle populations
of genomes. The user can hence concentrate on his problem, not on making the
whole thing work in some complex library.

4 EAsy Specification of Evolutionary Algorithms

GUIDE turns mouse driven diagrams representing some complex evolutionary
algorithm into runnable code using the genome structure, genetic operators and
evaluator specified by the user thanks to a powerful intermediate language as-
sociated with a compiler.

The fact that at some point, some representation must be used to, at least,
save and reload user experiments, implies that this same representation should
be capable of describing virtually any kind of evolutionary algorithm. Rather
than designing some obscure internal representation, specific to the DREAM,
the decision was taken to create a fully independent human-readable language
that could have an existence of its own.

Among other advantages, this meant that EASEA [5,11] could be developed
completely independently from the evolutionary library specific to the DREAM
project, simply by using already existing off the shelf evolutionary libraries.

As a result, an evolutionary algorithm specified in the EASEA language (or
specified and saved by GUIDE with an EASEA syntax) can be compiled in a
C++ source file using the GALib evolutionary library[13], or the EO [2,10] fully
templatised object oriented library; or of course in Java source files using the
JEO library of the DREAM.

As a matter of fact, the EASEA language compatible with GALib or EO has
been downloaded more than one thousand times in the last 12 months, with the
result that even before the DREAM was released, many users around the world
have been unknowingly developing potential DREAM applications, that would
only need a fully working DREAM system to exploit the distributed resources
of the Internet.

The genome structure, as well as its initialiser, recombinator, mutator, and
evaluator described in the GUIDE are compiled by the EASEA compiler into a
pure Java classes meeting the JEO requirements. The resulting files are ready
for compilation by the JAVA compiler. Compiling as well as launching the ex-
periment can be carried out from within the GUIDE Experiment Monitor panel
as well as from the command line, depending on the type of user (B or C).

5 JEO Layer

This section explains the Evolutionary Computation layer in DREAM. This layer
is called Java Evolutionary Objects, JEO for short.

5.1 JEO from the User’s Point of View

JEO is a framework for building evolutionary computation experiments, which
sits on top of the DRM layer, but can be used independently from it if no parallel



670 M.G. Arenas et al.

execution is required. It provides a DREAM entry point to User D so it is flexible,
powerful and extensible enough to allow the users to design, develop and control
their experiments in the easiest way. JEO output is an experiment specification
that can be run in distributed fashion using the DRM module (see section 6).
JEO can also act as the bridge between the EASEA and DRM modules. It hides
the physical DRM details, like communication protocols or threads, letting the
user concentrate on evolutionary computation concepts.

User D must be familiar with EC concepts. This type of user prefers to work
with Java classes to have direct control over the experiment. The procedure to
build an experiment is simple. The user implements a Java class to create the
objects that will be placed in each Island. The set of Islands that constitutes the
experiment will be launched in DRM to distribute the experiment.

For each task to be performed on an island, the user must create one specific
object. The requirement on those objects is to meet the corresponding JEO
interface, e.g. an operator must implement the operators interface, an individual
the individuals interface. . . Moreover, JEO provides several classes that actually
implement each interface and can be used as examples. However, JEO provides
no implementation for the evaluator interface, as it is totally problem-dependent.

5.2 Islands and Island Components

JEO provides a general Island class: an island holds one or more environments.
An environment groups one population and the objects that will be used to
evolve that population (i.e. a complete evolutionary algorithm). The different
environments possibly interact through the assessor objects, that perform the
evaluation of all environments simultaneously.

First of all, all populations of the island are initialised using the corresponding
initialisers. The following cycle is the run:

1. Stopping test and statistics calculation are carried out by Terminators: dif-
ferent stopping criteria are available, as well as different on-line or cumulated
statistics. These values are sent to the DRM console, passed to GUIDE Ex-
periment Monitor panel, or simply displayed on the screen in the case of
JEO being used stand-alone.

2. Each island population then undergoes a single step of evolution through the
corresponding Breeder. This includes (fitness-based) selection and variation
operators.

3. The assessor is then called upon all environments (i.e. all populations). This
step can be a simple evaluation in the case of evolutionary optimisation
experiment, or can correspond to a few life steps in the case of artificial
life simulations. Nevertheless, at the end of this step, all infohabitants are
Rewarded . This reward mechanism leaves room for forthcoming large-scale
simulation of sociological and economical evolution, where every operation
(from mating and mutating to being evaluated) will have a cost, and in-
fohabitants will simply fight for survival, without explicit fitness function
being defined.



A Framework for Distributed Evolutionary Algorithms 671

4. Migration is then performed by two objects, Immigrator and Emigrator. Im-
migrator reads from the input immigrant’s buffer the recently arrived indi-
viduals from some neighbouring island and decides how to include them into
the Island populations. Emigrator selects the individuals that will emigrate,
and selects the neighbour target island.

5. Clean is the method that eliminates the “poorest” infohabitants (in term
of the rewards mentioned above), the remaining infohabitants becoming the
initial population of the next generation.

The experiment can be submitted to the DRM module using the DREAM
Console or DRM command line and subsequently the DRM module distributes
the experiment through the DREAM machine. The distribution mechanism is
completely transparent to the user. The user identifies the experiment using an
experiment name and identifies each island using the island name set into the
experiment specification.

Parallel evolution is performed asynchronously; every island writes to another
island’s buffer at any time it is required to; every island reads from its own
buffer. There is a thread that receives immigrants and places them in a buffer,
from where the thread that runs the evolutionary algorithm can read them.

5.3 JEO as Java Tool

JEO is developed using jdk 1.3, like the rest of the DREAM project. JEO
classes and interfaces are organized into packages [4,3]. The main one is the
dream.evolution which includes the main classes and interfaces as Island
class or operators interface. Other important packages are for example
dream.evolution.genomes, including interfaces and classes to build genomes
as linear, tree or graph structures, and dream.evolution.operators, that in-
cludes variation operators and selectors.

All classes have javadoc comments to help the user to understand all vari-
ables and methods. Moreover each package includes a package.html file where
package elements are described.

JEO today includes some basic evolutionary algorithms examples, that solve
easy toy problems (e.g. OneMax and Symbolic Regression).

6 DRM Layer

The distributed resource machine (DRM) is composed of (a possibly very large
number of) machines all over the Internet forming an environment for distributed
applications. At this level of abstraction it is no longer assumed that the applica-
tion is from the field of evolutionary computation. This section summarizes the
basic concepts and the algorithms which implement these concepts. For a more
detailed description of the different aspects of the DRM please refer to [8,9].



672 M.G. Arenas et al.

6.1 Application Model

In a traditional single-machine environment, an application is composed of one
or more threads which are run by an operating system (OS). The OS controls
the threads, it assigns resources and takes care of different security aspects.
When adapting this approach to very large scale distributed environments, not
all aspects can be implemented in exactly the same way due to the relatively
high costs of information exchange.

A key feature of our model is that we think of an application as a set of
cooperating autonomous agents. For instance, an evolutionary algorithm is im-
plemented in this framework by a set of agents which all host an island. An
agent is analogous to a thread in an OS: running an application is done through
launching one or more agents that can communicate with each other, can make
decisions based on the state of the system as a whole (e.g. available computa-
tional resources) or based on the state of each other. The agents can also launch
new agents themselves. The DRM controls the agents, the resources they have
access to, security, etc.

However these agents have much more freedom: they are also mobile, they
can change their physical location while performing computations. On the new
location they can continue their task.

Despite the similarities, the applications we have in mind are rather special.
Usual things like quickly accessible shared memory are a luxury in the world
of large distributed systems. Another problem is the unreliable nature of both
the communication channels between the nodes of the environment and the
unreliability of the nodes themselves. This restricts the application area to tasks
that are robust (not sensitive to loosing a subset of the agents they are composed
of) and massively parallel (i.e. only little communication is necessary between
the agents). Fortunately evolutionary computation fulfills these requirements
and there are additional possible applications as well.

6.2 Implementation

An important implementation decision was that we do not use central servers
at all. This is to maximize scalability and robustness. With this restriction even
maintaining the connectivity of the network becomes a major challenge. This
problem and also the problem of information distribution through the DRM is
solved using epidemic protocols [6,7].

In our system this protocol works as follows: each node in the DRM has an
incomplete database which contains entries on other nodes. These entries contain
information over the available resources and the agents there are running on the
node. Each node chooses a random node from its database regularly to exchange
information. If the size of the database exceeds a given limit, randomly chosen
entries are removed to keep the communication costs affordable.

Theoretical and practical results show [7,8,9] that this protocol is a very effec-
tive and scalable way of distributing information over the network. For example
if the database of each node contains only 100 random entries then a network of
1033 such nodes is partitioned only with a probability of at most 10−10.



A Framework for Distributed Evolutionary Algorithms 673

Fig. 3. The Console View.

The question of mobility and security was solved by choosing the Java envi-
ronment to implement the DRM. This environment offers a natural solution for
moving executable code as well as data between hosts and it offers a rich set of
security features.

7 DREAM Console

The DREAM console is the primary tool for managing a computer connected
to a DRM. It utilises the metaphor of a file manager view onto the DRM to
present its known components and the output they produce (see Figure 3) .
The list of components is mainly retrieved from the incomplete database kept
by the underlying DRM layer (see section 6.2), so that the console usually only
listens to the ongoing communication rather than inducing network traffic of its
own. Different component types include nodes, experiments, users, islands and
agents. Although the console is designed to help the user during execution of
an experiment, it does not completely hide DRM layer information. As stated
before, agents are analogous to threads in an operating system and islands are
always implemented as agents (see section 6.1). However, there are agents per-
forming operating system tasks like shutting down experiments or searching for
a piece of information specified by the user. These are visually separated from
the island agents.

7.1 Supported User Tasks

User actions supported by the console include, but are not limited to, component
inspection and search; experiment startup and control; and visualization and
analysis of experiment results. Regardless of the way an experiment has been
constructed1, it can be started using the console. Thereafter, the user may watch
creation and evolution of the islands belonging to the new experiment. Actual
status or output of a known component can be retrieved by simply clicking on
1 The procedure of experiment construction is different for users of types B-E, de-

pending on the tools and libraries they chose.



674 M.G. Arenas et al.

it. If an island is able to change its behaviour during runtime, the experimenter
may use the console to send new setup information, for example parameter
changes. Finally, it is also possible to shutdown one or multiple components via
the console. There are issues relating to the access rights policy for different
users, but these are beyond the scope of this paper.

7.2 Interfaces to User/DRM Code

For component information retrieval or messaging, the console uses interfaces
defined by the DRM layer that are implemented by the experiment code. De-
pending on the user entry point, this implementation is done with varying degrees
of automation.

8 Conclusion

We have described a system for the easy specification and implementation of
highly distributed evolutionary algorithms. This system has already been imple-
mented and the first version released. It includes several independent modules
which can be used in an integrated fashion or as stand-alone units. The system
allows for the sharing of CPU resources in a secure and scalable fashion. Fu-
ture work will concentrate on developing algorithms and applications that work
particularly well with this architecture. This will not only include applications
that require vast amounts of CPU time, but is expected to include solutions to
problems that can more easily be partitioned in some way (for example some
data mining or scheduling problems). Systems which involve the co-operating
and competing of evolving agents, either to solve real world problems, or to
model aspects of society, will also be studied.

Acknowledgments

The authors would like to thank the other members of the DREAM project for
fruitful discussions, the early pioneers [12] as well as Hans-Paul Schwefel, Emin
Aydin and Daniele Denaro.

References

1. http://www.dcs.napier.ac.uk/ benp/dream/dream.htm
2. http://eodev.sourceforge.net.
3. M. Arenas, L. Foucart, J. Merelo, and P. A. Castillo. Jeo: a framework for evolving

objects in java. In Actas Jornadas de Paralelismo. Universidad Politécnica de
Valencia, 2001.

4. M. Arenas, L. Foucart, M. Schoenauer, and J. Merelo. Computacin evolutiva en
java: Jeo. pages 46–53. Universidad de Extremadura, Febrero 2002.

5. P. Collet, E. L. M. Schoenauer, and J. Louchet. Take it easea. In Parallel Problem
Solving from Nature VI, pages 891–901. Springer Verlag, LNCS 1917, 2000.



A Framework for Distributed Evolutionary Algorithms 675

6. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database manage-
ment. In Proc. 6th Annual ACM Symposium on Principles of Distributed Comput-
ing (PODC’87), pages 1–12, Vancouver, Aug. 1987. ACM.

7. P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermarrec, and
P. Kouznetsov. Lightweight probablistic broadcast. In Proc. International Confer-
ence on Dependable Systems and Networks (DSN 2001), Göteborg, Sweden, 2001.

8. M. Jelasity, M. Preuß, and B. Paechter. A scalable and robust framework for
distributed applications. In CEC2002, pages 1540–1545. IEEE, IEEE Press, 2002.

9. M. Jelasity, M. Preuß, M. van Steen, and B. Paechter. Maintaining connectivity in
a scalable and robust distributed environment. In H.E. Bal et al., eds, Proc. 2nd
IEEE Intl Symposium on Cluster Computing and the Grid (CCGrid2002), Berlin,
Germany, pages 389–394, 2002.

10. M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolving objects: a
general purpose evolutionary computation library. In P. Collet et al., eds, Artificial
Evolution’01. pages 229–241, Springer Verlag, LNCS 2310, 2002.

11. E. Lutton, P. Collet, and J. Louchet. Easea comparisons on test functions : Galib
versus eo. In P. Collet et al., eds, Artificial Evolution’01. pages 217–228, Springer
Verlag, LNCS 2310, 2002.

12. B. Paechter, T. Bäck, M. Schoenauer, M. Sebag, A. E. Eiben, J. J. Merelo, and
T. C. Fogarty. A distributed resoucre evolutionary algorithm machine (DREAM).
In CEC2000, pages 951–958. IEEE, IEEE Press, 2000.

13. M. Wall. http://lancet.mit.edu/ga/.



Optimisation of Multilayer Perceptrons Using a
Distributed Evolutionary Algorithm with SOAP

P.A. Castillo1, M.G. Arenas1, J.G. Castellano1,
J.J. Merelo1, V.M. Rivas2, and G. Romero1

1 Department of Architecture and Computer Technology
University of Granada. Campus de Fuentenueva. E. 18071 Granada (Spain)

2 Department of Computer Science
University of Jaén. Avda. Madrid, 35. E. 23071 Jaén (Spain)

pedro@atc.ugr.es

Abstract. SOAP (simple object access protocol) is a protocol that al-
lows the access to remote objects independently of the computer archi-
tecture and the language. A client using SOAP can send or receive ob-
jects, or access remote object methods. Unlike other remote procedure
call methods, like XML-RPC or RMI, SOAP can use many different
transport types (for instance, it could be called as a CGI or as sockets).
In this paper an approach to evolutionary distributed optimisation of
multilayer perceptrons (MLP) using SOAP and language Perl has been
done.
Obtained results show that the parallel version of the developed programs
obtains similar or better results using much less time than the sequential
version, obtaining a good speedup. Also it can be shown that obtained
results are better than those obtained by other authors using different
methods.

1 Introduction

SOAP is a standard protocol proposed by the W3C ([36], [4]) that extends the
remote procedure call, to allow the remote access to objects [9]. SOAP is the
evolution of XML-RPC protocol that allows remote procedure call using XML
using HTTP as transport protocol. A SOAP client can access remote services
using the interface of resident objects in remote servers, using any programming
language. At the moment complete implementations of SOAP are available in
Perl, Java, Python, C++ and other languages [31]. Opposed to other remote
procedure call methods, such as RMI (remote method invocation, used by the
Java language) and XML-RPC, SOAP has two main advantages: it can be used
with any programming language, and it can use any type of transport (HTTP,
SHTTP, TCP, SMTP, POP and other protocols).

SOAP sends and receives messages using XML [27,16,6], wrapped HTTP-
like headings. SOAP services specify the method interfaces that can be accessed
using language WSDL (Web Services Description Language) [30,33]. WSDL is
an interface description language that specifies those calls that can be made to
the SOAP server and the response it should return.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 676–685, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Optimisation of Multilayer Perceptrons 677

Using a WSDL file, it can be specified a service for different languages, so
that a Java client can access a Perl server. In some cases, if the client and the
server are written using the same language, a WSDL specification is not needed,

SOAP main advantages are:

– it is a lightweight protocol
– it is simple and extensible
– it is used for application communications
– it is designed to use HTTP as transport protocol
– it is not bound to any components technology
– it is not bound to any programming language
– it is based on XML and coordinated by the W3C
– it is the core of the Microsoft’s .NET technology

One of the main interests in the knowledge and use of this protocol is its
relation with the Microsoft’s initiative .NET [5], that bases most of its software
supplies in remote services, using the SOAP protocol to carry out the commu-
nications (although it is Microsoft’s version, incompatible in some cases with
the standard). This must probably means that in the near future there will be
many clients and servers offering services and using them, sharing SOAP and
the .NET specification as common protocol.

The use of SOAP for distributed computation has not been proposed yet,
except in some exceptions [20]. Nevertheless, SOAP is a high level protocol, which
makes easy the task of distributing objects between different servers, without
having to worry about the message formats, nor the explicit call to remote
servers.

In this work we propose using SOAP for distributed computation, and we
demonstrate how it could be used for evolutionary computation.

A future in which different remote computers offer services to the scientific
community can be imagined: by example, all the services available at the moment
by means of HTML forms could be implemented easily as SOAP services.

SOAP could be also used for distributed P2P (Peer to Peer) optimisation,
where all the computers act as clients and servers to each other, interchanging
population elements.

In this paper we intend to explore these abilities, implementing a distributed
evolutionary algorithm (EA) using Perl and SOAP, to tune learning parameters
and to set the initial weights and hidden layer size of a MLP, based on an EA
and Quick Propagation [11] (QP). This paper continues the research on evolu-
tionary optimisation of MLP (G-Prop method) presented in [25,8]. This method
leverages the capabilities of two classes of algorithms: the ability of EA to find a
solution close to the global optimum, and the ability of the back-propagation al-
gorithm (BP) to tune a solution and reach the nearest local minimum by means of
local search from the solution found by the EA. Instead of using a pre-established
topology, the population is initialised with different hidden layer sizes, with some
specific operators designed to change them (mutation, multi-point crossover, ad-
dition and elimination of hidden units, and QP training applied as operator).



678 P.A. Castillo et al.

The EA searches and optimises the architecture (number of hidden units), the
initial weight setting for that architecture and the learning rate for that net.

The remainder of this paper is structured as follows: in section 2 it is ex-
plained how to implement an EA using SOAP and Perl. Section 3 describes
the experiments, and section 4 presents the results obtained, followed by a brief
conclusion in Section 5.

2 Distributed Evolutionary Algorithms Implementation
Using SOAP and Perl

There are many implementations of distributed genetic algorithms [13], usually
using PVM or MPI [17], thus this paper does not intend to innovate in that
sense, but in the implementation.

There are many ways to implement a distributed genetic algorithm, one of
which is the global paralelization (Farming), in which, as Fogarty and Huang
propose [12], Abramson and Abela [2], or Hauser and Männer [26], individual
evaluation and/or genetic operator application are parallelized. A master pro-
cessor supervises the population and select individuals to mate; then slave pro-
cessors receive the individuals to evaluate them and to apply genetic operators.

Another way to implement paralelization is the migration: the population is
divided into small subpopulations of the same size assigned to different proces-
sors. From time to time each processor selects the best individuals in its sub-
population and it sends them to his nearer processors, receiving as well copies
of the best individuals of his neighbours (migration of individuals). All proces-
sors replace the worst individuals of their populations. This kind of algorithms
is also known as distributed evolutionary algorithms (Tanese [32], Pettey et al.
[14], Cantú-Paz and Goldberg [7]). .

An ideal client-server implementation of a distributed evolutionary algorithm
could be a server process with several threads. Each thread would include a pop-
ulation, and would communicate with other threads through the shared code
among them. Each thread would use an own tail of individuals to send to other
threads. Each thread would evaluate its individuals in different remote comput-
ers, carrying out the communication using a SOAP server.

As we cannot use a threaded version of Perl, our implementation is based
on a ring topology, with N populations (computers) sending individuals to the
next population. The parallel algorithm code has been split in two processes: the
evolutionary algorithm and the code that shares individuals (migrator) between
populations (islands). The system uses asynchronous communications, that, be-
tween EA process and migrator process within an island (as well as between
migrators within different islands) are carried out using SOAP on HTTP trans-
port protocol (migrators act as web servers).

Implementation was carried out using the SOAP::Lite module [19] for the
Perl programming language, for its stability and the familiarity of the authors
with this language. In addition, servers are easy to implement using the computer
infrastructure that exists in our department.



Optimisation of Multilayer Perceptrons 679

Fig. 1. Architecture: each computer runs two processes, one of them contains the pop-
ulation (represented as a group of people) and the other (Migrator) acts as transporter,
being used to write elements of the population; thus, elements of the population are
received from other computers; readings and writings are done by the Migrator object,
that abstracts the physical architecture of the application.

SOAP was included from the beginning in the OPEAL EC library, and so
far, several distributed evolutionary algorithms configurations have been tested
on EC benchmark problems such as MaxOnes and tide [23,18].

2.1 Evolutionary Optimisation of MLP

The evolutionary algorithm has been implemented using the OPEAL library
[22], available at http://opeal.sourceforge.net under GPL license.

G-Prop method has been fully described and analysed out in previous papers
(see [25,8]), thus we refer to these papers for a full description. In most cases,
evolved MLP should be coded into chromosomes to be handled by the genetic
operators, however, G-Prop uses no binary codification, instead, the initial pa-
rameters of the network are evolved using specific variation operators such as
mutation, multi-point crossover, addition and elimination of hidden units, and
QP training applied as operator to the individuals of the population. The EA
optimises the classification ability of the MLP, and at the same time it searches
for the number of hidden units (architecture), the initial weight setting and the
learning rate for that net.

Although evolved MLP are not coded as bit strings nor other kind of cod-
ification (they are made evolve directly) when they are sent from an island to
another one, they must be coded as an XML document to be sent using SOAP.

The migration policy is as follows: each n generations the algorithm sends
to the migrator e individuals, and takes i individuals. Usually, e >= i, in order
that always are available individuals so that other islands can take them.

A steady state algorithm was used because it was empirically found to be
faster at obtaining solutions than other selection algorithms [35]. For each gen-
eration, the best 30% individuals of the population are selected to mate using
the genetic operators. After 5 generations, several individuals are taken from



680 P.A. Castillo et al.

the migrator, and they are put together with the new offspring that replace the
worst individual in the population.

Only “default” parameters listed above have been used. Genetic operators
were applied using the same application rate. No parameter tuning has been
done, because our aim is to prove how speedup improves as the number of
islands grows.

3 Experiments

The tests used to assess the accuracy of a method must be chosen carefully,
because some of them (toy problems) are not suitable for certain capacities of
the BP algorithm, such as generalization [10]. Our opinion, along with Prechelt
[24], is that, in order to test an algorithm, real world problems should be used.

3.1 Glass

This problem consists of the classification of glass types, and is also taken from
[24]. The results of a chemical analysis of glass splinters (percent content of 8
different elements) plus the refractive index are used to classify the sample to be
either float processed or non float processed building windows, vehicle windows,
containers, tableware, or head lamps. This task is motivated by forensic needs
in criminal investigation. This dataset was created based on the glass problem
dataset from the UCI repository of machine learning databases. The data set
contains 214 instances. Each sample has 9 attributes plus the class attribute:
refractive index, sodium, magnesium, aluminium, silicon, potassium, calcium,
barium, iron, and the class attribute (type of glass).

The main data set was divided into three disjoint parts, for training, vali-
dating and testing. In order to obtain the fitness of an individual, the MLP is
trained with the training set and its fitness is established from the classification
error with the validating set. Once the EA is finished (when it reaches the limit
of generations), the classification error with the testing set is calculated: this is
the result shown.

Up to six computers have been used to run the algorithm and to obtain
results both in sequential and parallel versions of the program. Computer speeds
range from 400 Mhz to 800 Mhz and are connected using the 10Mbits Ethernet
network of the University (with a high communication latency). No experiments
using homogeneous computer network have been done, because our aim is to
demonstrate potential of distributed asynchronous EA using web services.

The problem has been studied in the sequential and parallel case using a ring
migration scheme: sending some individuals to the next island (computer), and
getting the best individuals from the previous island.

Each single-computer EA was executed using the parameters shown in Ta-
ble 1.

Each generation 30 new individual are generated (100 generations), thus 3100
individuals are generated each run. Taking into account that 2 up to 6 computers



Optimisation of Multilayer Perceptrons 681

Table 1. List of parameters used to execute the EA that runs in a computer (island).

Parameter Value
number of generations 100

individuals in the population 100
% of the population replaced 30%

hidden units ranging from 2 to 90
BP epochs to calculate fitness 300

Table 2. Equivalence between number of computers in parallel runs and number of
generations in sequential runs (to generate the same number of individuals).

Number of Total number Number of generations
islands of individuals (sequential version)

1 3100 100
2 6200 200
3 9300 300
4 12400 400
5 15500 500
6 18600 600

have been used, then 3100 to 18600 individual are created and evaluated each
run (depending on the number of computers used).

To compare with the sequential version of the method, the sequential EAs
have been executed using the number of generations shown in Table 2, so that
the number of individuals generated in each run is equivalent to the number of
individuals generated using the parallel version:

4 Results

Time was measured using the Unix time command. Sequential version of the
program was run in the faster machine; and in parallel runs, time spent by
the faster machine too was taken and used in results shown. With sequential
version, 10 simulations were run, and 5 runs with 2, 3, 4, 5 and 6 machines. Each
simulation was carried out adding a new computer from the set of computers
used previously.

Results obtained using the sequential version can be shown in Table 3:
Results obtained using the parallel version can be shown in Table 4. As can

be seen, better results in time and classification error are obtained dividing the
problem between several computers.

Figure 2 shows that speedup does not equals the number of computers used;
however, simulation time is improved using several computers. Moreover, up to
6 computers in the ring, the speedup grows, and as can be seen in Figure 2 it
could continue growing for a higher number of computers.

Results could be better if a dedicated communication network was used,
however, the University Ethernet network is overloaded and that implies a high
latency in communications between processes.



682 P.A. Castillo et al.

Table 3. Results (error % and time) obtained using the sequential version of the
method.

Generations Error (%) Time (seconds)
100 35 ± 1 20 ± 2
200 35 ± 1 30 ± 5
300 33 ± 2 44 ± 8
400 32 ± 2 70 ± 9
500 32 ± 2 91 ± 4
600 30 ± 3 104± 2

Table 4. Results (error % and time) obtained using the parallel version of the method,
and the speedup for each experiment.

Islands Error (%) Time (seconds) Speedup
1 35 ± 1 20 ± 2 1
2 33 ± 2 18 ± 1 1.6
3 33 ± 1 20 ± 1 2.2
4 32 ± 1 20 ± 2 3.5
5 31 ± 2 22 ± 3 4.1
6 30 ± 1 19 ± 2 5.5

1

2

3

4

5

6

1 2 3 4 5 6

sp
ee

du
p

Number of computers

Fig. 2. Plot of the speedup (solid line) and f(x) = x function (dashed line). Although
speedup is not lineal, it can be seen that simulation time is improved using several
computers. Moreover, up to 6 computers in the ring, the speedup grows, and it could
continue growing for a higher number of computers.

Although it is not the aim of this paper to compare the G-Prop method with
those of other authors, we do so in order to prove the capacity of both versions
of G-Prop (parallel and sequential) to solve pattern classification problems, and
how it outperforms other methods. Thus, obtained results (% of error in test) are
better than those presented by Prechelt [24] using RPROP [28] (32.08), Grönroos
[15] using a hybrid algorithm (32 ± 5), and Castillo et al. [25] using a previous
version of the G-Prop method (31 ± 2).



Optimisation of Multilayer Perceptrons 683

5 Conclusions and Work in Progress

This paper presents a new research line on parallel-distributed computation us-
ing SOAP that shows the useful this new protocol can be in the field of the
evolutionary computation.

To implement and use communications using SOAP it is not necessary run-
ning virtual machines (as in Java programming), nor daemons, just only to install
several libraries available for almost any programming language. More over, if a
ring topology is used, an arbitrary number of computers (islands) can be added
to the network, making the system more efficient.

In these experiments, we have demonstrated that SOAP can be used as com-
munication protocol for distributed evolutionary programming, obtaining a good
speedup using a ring topology and adding new computers to the ring. Up to 6
computers in the ring, the speedup grows, and as can be seen in Figure 2 it could
continue growing for a higher number of computers. Results could improve us-
ing a dedicated communication network instead of the overloaded network of the
University.

Although PVM or MPI communications add fewer overheads than SOAP
communications since they are done at a lower level, SOAP provides a common
interface that can be called from almost any programming language. Thus pro-
grams can be written in any language and can share data without the need of
worrying about the message formats or communication protocols.

At the same time, as it is a P2P system, it does not overload too much the
network. Other distributed systems, such as Jini [34,21], network traffic is so
high that when a high number of computers are used, communication becomes
impossible.

As future research, it is very important adding support for SOAP to ex-
isting distributed evolutionary algorithm libraries, such as JEO [3], EO [29],
and libraries in other languages, in order to allow the implementation of multi-
language evolutionary algorithms. It would also be of interest to use data struc-
ture description protocols, such as WSDL, to describe data to be evolved, in
order to allow using them by any program that understands XML, and be able
to send them easily using SOAP.

Another possibility is to test true P2P architectures, where each computer
communicates only with one or two computers in the network. It would be very
interesting to test asynchronous evolutionary algorithms using random topolo-
gies, in such a way that a “servent” (server/client) can enter or leave the network
at any moment.

Acknowledgements

This work has been supported in part by projects CICYT TIC-1999-0550,
INTAS-9730950 and IST-1999-12679.



684 P.A. Castillo et al.

References

1. Actas XII Jornadas de Paralelismo. Universidad Politécnica de Valencia, 2001.
2. Abramson; Abela J. A. Parallel genetic algorithm for solving the school timetabling

problem. In Proceedings of the Fifteenth Australian Computer Science Conference
(ACSC-15), vol. 14, p.1-11, 1992.

3. M.G. Arenas, L. Foucart, J.J. Merelo, and P. A. Castillo. Jeo: a framework for
evolving objects in java. In Actas Jornadas de Paralelismo [1].

4. Paco Ávila. SOAP: revoluci=n en la red. Linux actual, (19):55–59, 2001.
5. K. Ballinger, J. Hawkins, and P. Kumar. SOAP in the microsoft .NET framework

and visual Studio.NET. Available from http://msdn.microsoft.com/library/-
techart/Hawksoap.htm.

6. D. Box. Inside SOAP. Available from http://www.xml.com/pub/a/2000/02/09/-
feature/index.html.

7. E. Cantú-Paz and D. E. Goldberg. Modeling idealized bounding cases of parallel
genetic algorithms. In Koza J., Deb K., Dorigo M., Fogel D., Garz0n M., Iba
H., Riolo R. Eds. Genetic Programming 1997: Proceedings of the Second Annual
Conference, Morgan Kaufmann (San Francisco. CA), 1997.

8. P. A. Castillo, J. J. Merelo, V. Rivas, G. Romero, and A. Prieto. G-Prop: Global
Optimization of Multilayer Perceptrons using GAs. Neurocomputing, Vol.35/1-4,
pp.149-163, 2000.

9. DevelopMentor. SOAP Frequently Asked Questions. Available from
http://www.develop.com/soap/soapfaq.htm.

10. S. Fahlman. An empirical study of learning speed in back-propagation networks.
Technical report, Carnegie Mellon University, 1988.

11. S.E. Fahlman. Faster-Learning Variations on Back-Propagation: An Empirical
Study. Proceedings of the 1988 Connectionist Models Summer School, Morgan
Kaufmann, 1988.

12. T. Fogarty and R. Huang. Implementing the genetic algorithm on transputer based
parallel processing systems. Parallel Problem Solving From Nature,p.145-149, 1991.

13. David E. Goldberg. Genetic Algorithms in search, optimization and machine learn-
ing. Addison Wesley, 1989.

14. C. B. Pettey; M. R. Leuze; J. J. Grefenstette. A parallel genetic algorithm. In J. J.
Grefenstette (Ed.), Proceedings of the Second International Conference on Genetic
Algorithms, Lawrence Erlbaum Associates, pp. 155-162, 1987.

15. M.A. Grönroos. Evolutionary Design of Neural Networks. Master of Science Thesis
in Computer Science. Dept. of Mathematical Sciences. University of Turku, 1998.

16. Elliotte Rusty Harold. XML Bible. IDG Books worldwide, 1991.
17. J.G.Castellano, M.Garćıa-Arenas, P.A.Castillo, J.Carpio, M.Cillero, J.J.Merelo,

A.Prieto, V.Rivas, and G.Romero. Objetos evolutivos paralelos. In Universidad
de Granada Dept. ATC, editor, XI Jornadas de Paralelismo, pages 247–252, 2000.

18. J.J.Merelo, J.G.Castellano, and P.A.Castillo. Algoritmos evolutivos P2P usando
SOAP. pages 31–37. Universidad de Extremadura, Febrero 2002.

19. P. Kuchenko. SOAP::Lite. Available from http://www.soaplite.com.
20. D. Marcato. Distributed computing with soap. Available from

http://www.devx.com/upload/free/features/vcdj/2000/04apr00/dm0400/-
dm0400.asp.

21. J. Atienza; M. Garćıa; J. González; J. J. Merelo. Jenetic: a distributed, fine-
grained, asynchronous evolutionary algorithm using jini. pages 1087–1089, 2000.
ISBN: 0-9643456-9-2.



Optimisation of Multilayer Perceptrons 685

22. J. J. Merelo. OPEAL, una libreŕıa de algoritmos evolutivos. Actas del Primer
Congreso Español de Algoritmos Evolutivos y Bioinspirados. ISBN:84-607-3913-9.
pp.54-59. Mérida, Spain, febrero, 2002.

23. J. J. Merelo, J.G. Castellano, P.A. Castillo, and G. Romero. Algoritmos gen ticos
distribuidos usando soap. In Actas Jornadas de Paralelismo [1].

24. Lutz Prechelt. PROBEN1 — A set of benchmarks and benchmarking rules
for neural network training algorithms. Technical Report 21/94, Fakultät
für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany. (Also in:
http://wwwipd.ira.uka.de/˜prechelt/), 1994.

25. P.A. Castillo; J. Carpio; J. J. Merelo; V. Rivas; G. Romero; A. Prieto. Evolving
multilayer perceptrons. Neural Processing Letters, 12:115–127, October 2000.

26. Hauser R.; Männer R. Implementation of standard genetic algorithm on mimd
machines. In Davidor Y., Schwefel H. P., Männer R., Eds., Parallel Problem
Solving from Nature, PPSN III, p. 504-513, Springer-Verlag (Berlin), 1994.

27. Erik T. Ray. Learning XML: creating self-describing data. O´Reilly, January 2001.
28. M. Riedmiller and H. Braun. A Direct Adaptive Method for Faster Backpropaga-

tion Learning: The RPROP Algorithm. In Ruspini, H., (Ed.) Proc. of the ICNN93,
San Francisco, pp. 586-591, 1993.

29. M. Keijzer; J. J. Merelo; G. Romero; and M. Schoenauer. Evolving objects: a
general purpose evolutionary computation library. Springer-Verlag, October 2001.

30. A. Ryman. Understanding web services. Available from
http://www7.software.ibm.com/vad.nsf/Data/-
Document4362?OpenDocument&p=1&BCT=1&Footer=1.

31. soaprpc.com. SOAP software. Available from http://www.soaprpc.com/software.
32. R. Tanese. Parallel genetic algorithms for a hypercube. In J. J. Grefenstette

(Ed.), Proceedings of the second International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates, pp. 177-184, 1987.

33. V. Vasudevan. A web services primer. Available from
http://www.xml.com/pub/a/2001/04/04/webservices/index.html.

34. Bill Venners. Jini FAQ (frequently asked questions). Available from
http://www.artima.com/jini/faq.html.

35. D. Whitley. The GENITOR Algorithm and Selection Presure: Why rank-based
allocation of reproductive trials is best. in J.D. Schaffer (Ed.), Proceedings of
The Third International Conference on Genetic Algorithms, Morgan Kauffmann,
Publishers, 116-121, 1989.

36. D. Box; D. Ehnebuske; G. Kakivaya; A. Layman; N. Mendelsohn; H.F. Nielsen; S.
Thatte; D. Winer. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May
2000. Available from http://www.w3.org/TR/SOAP.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 689–699, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Off-Line Evolution of Behaviour for Autonomous Agents
in Real-Time Computer Games

Eike Falk Anderson

The National Centre for Computer Animation
Bournemouth University

Talbot Campus, Fern Barrow, Poole
Dorset BH12 5BB, UK

Abstract. This paper describes and analyses a series of experiments intended to
evolve a player for a variation of the classic arcade game Asteroids™ using
steady state genetic programming.  The player's behaviour is defined using a
LISP like scripting language.  While the game interprets scripts in real-time,
such scripts are evolved off-line by a second program which simulates the real-
time application.  This method is used, as on-line evolution of the players
would be too time consuming.  A successful player needs to satisfy multiple
conflicting objectives.  This problem is addressed by the use of an automati-
cally defined function (ADF) for each of these objectives in combination with
task specific fitness functions.  The overall fitness of evolved scripts is evalu-
ated by a conventional fitness function.  In addition to that, each of the ADFs is
evaluated with a separate fitness function, tailored specifically to the objective
that needs to be satisfied by that ADF.

1 Introduction

In recent years the level of realism in computer games has risen dramatically.  While
the quality of real-time graphics - mainly due to advances in computer graphics
hardware - certainly played the major part in this development, one should not forget
that artificial intelligence is another important factor for the attainment of realism in
games.  The playability of computer games is often measured by the quality of the
behaviour of intelligent agents in the game environment.  If this behaviour appears
natural and human-like, the agent seems to be more life-like and real.  There is an
obvious solution to satisfy the need for the creation of autonomous agents which
seem alive. Genetic programming (GP) produces algorithms by using a process that
parallels evolution through natural selection, i.e. a simulation of life.  GP has so far
been applied to a number of different computer game scenarios.  Among these are
classic videogames like Pac Man® ([Koza 1994]) or Tetris® ([Siegel and Chaffee
1996]).  These experiments evolved game playing behaviour in a modified game
environment.  Most of these game versions are round-based, i.e. the computation of
an action in the game is performed while the game is paused.  Gameplay resumes
only after those computations have finished, and only until the calculated actions



690      Eike Falk Anderson

have been executed.  This is in contrast to real-time games in which all actions have
to be calculated "on the fly".  One of the few attempts to apply GP to a real-time
game (RoboCup Soccer) is documented in [Luke et al 1997] and [Luke 1998].  The
methods employed for that experiment bear some similarities to the experiments
described here.  The players are evolved in a modified environment, and not on-line
in the game itself.  Only the evolved players are used in the real-time application.
They also used different algorithm trees for different player objectives, which is
similar to the experiments using syntactic constraint to achieve the generation of a
separate gene pool for each of the player's objectives as described by [Reynolds
1994].  This approach again resembles the concept of Automatically Defined Func-
tions as described by [Koza 1992].  The experiments described in this paper merge
some of these techniques and extend the use of ADFs by calculating a fitness for each
of the ADFs in addition to the fitness value calculated for the performance of each
individual of the population.  The classic arcade game Asteroids is used here as a test
case.  Asteroids is based on attack and evasion which is a concept that is common to
most action oriented video games.  The evolution of a successful player could there-
fore be seen as a proof of concept.  It should be possible to transfer a solution of the
Asteroids problem to more complex game scenarios by adapting the player's interface
with the game to that of another computer game.

In the Asteroids game a "space ship" (the player) has to avoid colliding with a
number of "asteroids" to prevent its destruction.  At the same time it has to destroy
the "asteroids" to win and progress to the next level of the game. For practical reasons
a number of modifications to the original game have been made for the version used
in the experiments that are described here (Figure 1).

Fig. 1. Screenshots of the Asteroids implementation.  The left screenshot shows the player's
spacecraft avoiding collision by raising its shields.  The right screenshot shows the player's
sensor information consisting of asteroid proximity and the player's field of view

In the original arcade version of the Asteroids game the player's spacecraft flies
through a two-dimensional field of moving asteroids.  The player has a pre-defined
number of lives.  A collision with an asteroid destroys the spacecraft.  The player can
shoot at asteroids.  If hit, a large asteroid will break up into two medium asteroids
which in turn can each be split into two small asteroids. Shooting down an asteroid
increases the player's score.  The player's only means of defence is to jump into "hy-



Off-Line Evolution of Behaviour for Autonomous Agents      691

perspace", which removes the player's spacecraft from its current location and ran-
domly repositions it on the screen.  The game ends when the player has lost all of his
lives.  The aim of the game is to stay alive as long as possible and to gain the highest
score during that period.

In the implementation used here, the player only has one life to limit the execution
time of the game.  In addition to that the "hyperspace" escape function has been re-
placed by a "protective shield", as the results of this feature are unpredictable, i.e. the
player's spacecraft could be saved, but just as well be destroyed when using a "hyper-
space" jump.  The defence "shield" however has a predictable result:  it protects the
player from destruction during collisions with asteroids by granting invulnerability
while it is active.  The player is given an initial level of energy.  Using shields or
firing the gun will drain the player's energy which is replenished over time.  The
player is therefore encouraged not to waste energy by unnecessary usage of the
shields and the gun.  Finally a more complex scoring system which gives a more
precise reflection of the player's performance is used in this version of the game.

2 Implementation of the Off-Line Game Environment

The environment in which the game is played is a two-dimensional field of 80 x 60
units which continually wraps around.  The player starts in the centre.  Asteroids are
positioned randomly around the player.  As a single game of Asteroids can take a few
minutes to complete, it is self-evident that trying to evolve the players on-line would
take far too long.  The obvious solution is to remove the code generation from the
real-time application and to evolve the player scripts off-line in a second application
which simulates the real-time game.  The real-time game itself only interprets and
executes the programs that have been evolved by the off-line game simulation.  The
simulation program contains the GP system that evolves the player scripts.  It also
contains a copy of the game code that has been stripped of all graphics functions,
which is used for evaluating the evolved players' fitness.  Without displaying any-
thing on screen, the simulation can run at much greater speed and players evolve
much quicker than would be possible in a real-time environment.  Whereas it would
take several minutes for a single individual of the player population to play a single
game in an on-line evolution, using this dual approach, a series of games can be
played in a matter of seconds.

To evolve successful players for the game, the code generation program needs to
simulate the real-time application as closely as possible.  Discrepancies in the frame-
rate of the real-time application result in a variable animation step-size for the objects
(player, asteroids and bullets).  This is simulated in the code generation program by
combining the average frame-rate of the real-time game with a random value.

The player interfaces with the game through a LISP like scripting language which
implements a number of sensors and controls.  In this problem the controls, which are
identical to a human player's controls for the space ship, are used as output of the
evolved program.  The sensors, which reflect the current state of the game, are used



692      Eike Falk Anderson

as input to the evolved program.  The script which controls the autonomous agent is
created through evolution, based on the agent's proficiency at playing the game.

3 GP Architecture

The variation of GP used in this project is "strongly typed" GP as introduced by
[Montana 1995], which allows for the use of different datatypes.  There are two
datatypes, one for Boolean values which can be either TRUE or FALSE, and a void
datatype which is used for procedures that do not return any data.  Three constants
(two Boolean: TRUE, FALSE and one void: void) are defined for use in the control
structures.  The player's sensors and controls make up the terminal set of the GP
functions while the control structures are the non-terminal set of functions.

Table 1.

Function Returns Description
(targetAhead) Boolean TRUE if an asteroid is within the player's field of

view, else FALSE
(targetLocked) Boolean TRUE if an asteroid is in the player's direct line of

fire, else FALSE
(proximityAlert) Boolean TRUE if an asteroid is in the player's proximity

(within 12 units from the player), else FALSE
(impactAlert) Boolean TRUE if the player is about to collide with an aster-

oid (asteroid is within 3 units from the player), else
FALSE

(hasEnergy) Boolean TRUE if the player has energy left, else FALSE
(plentyEnergy) Boolean TRUE if the player has enough energy for firing

more than four shots, else FALSE
(hasShields) Boolean TRUE if the player's shields are raised, else FALSE
(lookingAhead) Boolean TRUE if the player's direction of movement is iden-

tical to the player's heading, else FALSE
(isMoving) Boolean TRUE if the player is moving, else FALSE
(accelerating) Boolean TRUE if the player has active thrusters, else FALSE
(isTurning) Boolean TRUE if the player is turning, else FALSE

3.1 GP Function Set

The sensors of the player's space ship are implemented as a set of Boolean functions.
The available sensor information consists of:
• The level of the player's energy.
• The state of the player's movement.
• Approximate positions of targets (asteroids) in relation to the player's position.

The controls for the space ship are implemented as a set of procedures which en-
able the player to switch its current states.  The available instructions are:



Off-Line Evolution of Behaviour for Autonomous Agents      693

• Turning (left, right, not).
• Acceleration (on, off), deceleration (automatically reset for each frame).
• Shields (on, off).
• Firing a single bullet.
A more detailed description of the syntax of these functions and procedures can be
seen in Table 1 and Table 2.

Table 2.

Function Returns Description
(setThrust) void activates the player's thrusters
(noThrust) void deactivates the player's thrusters
(decelerate) void reduces the player's speed
(setShields) void raises the player's shields
(noShields) void lowers the player's shields
(rightTurn)/(leftTurn) void sets the player to turn clockwise/anti-clockwise
(noTurn) void sets the player to stop turning
(fire) void fires a single bullet

Player scripts that use this interface are generated using simple Boolean operators
(AND, OR, XOR and NOT) which are implemented as non-terminal functions and a
small set of control structures which consists of:
• Dyadic selection.
• Comparison.
• Sequence.
See Table 3 for a detailed description of the control structure syntax.

Table 3.

Function Returns Description
(if_true  b  v1  v2) void if the Boolean function b returns TRUE the

void procedure v1 is executed else if b returns
FALSE the void procedure v2 is executed

(if_equal  b1  b2  v) void if the return values of the Boolean functions
b1 and b2 are identical the void procedure v is
executed

(sequence  v1  v2) void executes the two void functions v1 and v2 one
after the other

The goal of the game Asteroids is to maximise the player's score.  In this imple-
mentation of the game the best way to achieve this is to destroy all asteroids as
quickly as possible.  A precondition for the destruction of all asteroids is the player's
survival.  This leads to the identification of three distinctive behaviours:
• Aggression - Destroying a target which is in the player's range and line of fire.
• Target Acquisition - Seeking out and finding targets in the shortest possible time.
• Defence - Avoiding collisions with asteroids.



694      Eike Falk Anderson

The use of segregated branches of the parse tree for achieving multiple objectives
as described in [Reynolds 1994] was the inspiration for the use of ADFs to find a
solution that successfully completes the three conflicting objectives of the Asteroids
game.  This is done by associating each of the objectives with a different ADF.  To
ensure that each of these three ADFs specialises in satisfying a different objective, the
fitness evaluation of individual players is distributed using task specific fitness func-
tions.  The GP system uses a separate fitness function for each ADF which evaluates
the fitness of that ADF for a specific task.  Each of these fitness functions runs a
subset of the game simulation which ignores all factors that are not deemed necessary
for accomplishing that particular ADF's objective.  The error values that are returned
by these fitness functions are accumulated and added to the error value of the overall
fitness function which evaluates the performance of the player.  All ADFs are termi-
nal functions that return void and take no parameters.

The ADFs can contain all of the available functions, procedures and control struc-
tures.  In the result-producing branch (RPB) which contains the main program how-
ever only the control structures (see Table 3) and the three ADFs (Aggression, De-
fence, Target Acquisition) are available.  It was necessary to impose this syntactic
constraint, as early experiments showed that otherwise there was a chance of func-
tions and procedures in the RPB cancelling out the results generated by the ADFs.

3.2 Fitness Evaluation

In the main fitness function which evaluates the RPB of each player, the player's
fitness is determined using a progressive fitness measure which is similar to the one
described by [Siegel and Chaffee 1996]. In that approach successful individuals of a
population were re-evaluated in further test cases. Here however the progression is
applied from within the fitness function itself.  In the fitness function the player's
performance is measured in a series of four games of increasing difficulty.  Only
successful players may proceed to the following game.  The games are time limited to
prevent infinite loops from occurring.  The fitness cases for each game are "Survival",
"Speed", "Marksmanship" (2 levels), "Aggression" (2 levels) and "Score".

After a series of games has been played further fitness cases are tested.   These are
"Success", "ADF Usage" (3 cases), "Execution Speed" (4 cases) and "Vitality" (7
cases).

The fitness function for the Defence ADF evaluates a special version of the game
that runs over a set time and in which destroyed asteroids are constantly regenerated,
so that the game never runs out of asteroids.  The fitness cases for this ADF are "En-
ergy Conservation" (2 cases), "Evasive Manoeuvres" (2 cases), "Distance Checks" (2
cases) and "Survival".

The fitness function for the Aggression ADF evaluates a special version of the
game which runs over a set time. Destroyed asteroids are constantly regenerated, so
that the game never runs out of asteroids.  The player is automatically moved across
the playing area, so it can concentrate on its shooting skills and collisions between the
player and asteroids are disabled.  The fitness cases for this ADF are "Energy Con-



Off-Line Evolution of Behaviour for Autonomous Agents      695

servation" (3 cases), "Marksmanship" (4 cases), "Use of Guns" (2 cases) and "Kill
Rate".

The fitness function for the Target Acquisition ADF evaluates a special version of
the game in which the player automatically fights and defends against asteroids.  The
fitness cases for this ADF are "Use of Sensors" (3 cases), "Steering" (4 cases) and
"Movement" (2 cases).

0

200

400

600

800

1000

1200

1400

1600

1800

1 11 21 31 41

hits

in
d

iv
id

u
al

s

run B

run C

run D

Fig. 2. Conditions that have been satisfied (hits) for the individuals of runs B, C and D

4 Experiments and Results

In the experiments performed, a large number of evolution runs were carried out,
many of which were only used to verify the effectiveness of refinements of the fitness
functions.  Six of the runs are of particular interest and are discussed below in some
detail.  However it has to be said that the experiments are still continuing, so this
project is still very much work in progress.  One of the earlier experiments evolved a
population of 5000 individuals over 2 generations, using higher level primitives in-
stead of ADFs (run A).  In four of the experiments described here a population of
5000 individuals was evolved over 10 generations (runs B, C, D and E).  A single
control run with slightly relaxed fitness conditions was performed with a population
of 1500 individuals over 10 generations (run F).  All experiments used the same ran-
dom seed for the generation of the initial population and the possibility of a 6% mu-
tation was introduced to counteract a possible loss of diversity in the player's gene
pool.

4.1 Early Experiments without ADFs

The earliest test runs of the code generation program did not use ADFs but were
instead set to produce programs that consisted of a single tree.  The fitness function



696      Eike Falk Anderson

used for these experiments was almost identical to the one used for later experiments,
except for the fact that it also contained fitness cases that were later moved into the
task-specific fitness functions for the ADFs.  The player scripts produced by these
early experiments were weak and hardly ever survived against more than a single
asteroid.  To find out if the reason for these poor results was that the function set for
the player interface was too small, a set of three higher level  primitives (seek, auto-
protect, fireAtWill), reflecting the three different objectives of the game and designed
to automatically play the game were created as terminal functions.  These higher level
primitives themselves were just groups of some of the lower level primitives.  A
hand-coded player script was created by just combining these three higher level
primitives with each other using the "sequence" non-terminal function (Table 3).
This script proved to be a successful player which never lost a game.  If the higher
level primitives are used in the code generation program, scripts evolve which are
very similar to this initial player script.  The following script containing the higher
level primitives was generated in run A after two generations (unedited except for
addition of comments):

(sequence

   seek ; move until target is in range, then stop

   (sequence

     (sequence

       fireAtWill ; if a target is in the line of fire, shoot

       autoprotect) ; if collision is immanent raise shields

     autoprotect)) ; if collision is immanent raise shields

=

Although possibly not the optimal player, this evolved player employs similar strate-
gies to those used by many human players:
• It keeps turning in one direction until a target is in its line of fire, then stops.
• If a target is in its line of fire, it shoots at the target.
• If no target is in range, it moves forward until a target is in range.
To test if these results could be replicated by just using the low-level primitives, a
hand-coded program was created which used three ADFs, each of which emulated
one of the higher level primitives.

4.2 Experiments Using ADFs with Separate Fitness Functions

When confronted with the problem of trying to achieve a result that equals the suc-
cess of the hand-coded program, the question arose how to force the ADFs to each
tackle a different objective.  The approach that was adopted was to create a separate
fitness function for each of the three ADFs.  Figure 2 shows the fitness distribution
within the populations after each of the runs for this experiment.  Although only ob-
served over a series of three runs of ten generations each (runs B, C and D), a con-
vergence of the gene pools of the ADFs, reflecting the make-up of each respective



Off-Line Evolution of Behaviour for Autonomous Agents      697

fitness function, becomes apparent.  Resulting player scripts show the use of a similar
strategy to that of the hand-coded player discussed earlier.  It should be noted how-
ever that there seems to be a larger loss of diversity in the player's gene pool when
this method is used, than can be observed in evolution runs in which the ADFs are
not evaluated by separate fitness functions.  This might be a serious problem that
needs to be addressed in future experiments.

0

200

400

600

800

1000

1200

1400

1600

1 11 21 31 41

hits

in
d

iv
id

u
al

s

Fig. 3. Conditions that have been satisfied (hits) for the individuals of control run E

4.3 Control Runs

A single control run E, using the same parameters and fitness function, however
without the additional fitness functions for the ADFs resulted in a player with a simi-
lar behaviour and capability to the players evolved using separate fitness functions for
the ADFs in runs B, C and D.  The overall performance of individuals of run E after
ten generations was better than that for players evolved in runs B and C.  The fitness
distribution in the population of this run is shown in Figure 3.  The players in run E
needed more generations to evolve to a stage where their performance matched that
of the players generated by the earlier runs with separate ADF fitness functions.
Although the best individual of this control run displayed a similar behaviour to the
best individuals of the earlier runs and completed the same objectives,  there is no
visible task specialisation in the ADFs.

In another control run F the functions for checking the level of energy, as well as
all energy consumption by the players were removed from the program.  If energy
management is disabled, the resulting players seem to be more successful and are
much more likely to survive.  A single run over ten generations with a population of
1500 individuals evolved two different kinds of successful player.  However the
evolved strategies appear a lot less intelligent than those observed in the other runs:



698      Eike Falk Anderson

One of the players in run F continuously spun its space ship around while firing its
gun.  This is an obvious solution, as with unlimited ammunition, there is no pressure
regarding accuracy, and if the gun continuously fires in all directions, the chance of
any asteroid getting close enough to the player to destroy it without being destroyed
itself is minute. The strategy adopted by the other player was less obvious but simi-
larly effective.  It raised its shields and flew in a straight line, continuously firing its
gun, creating some sort of impenetrable barrier in front of the space ship which de-
stroyed everything in its path.  This was only possible with unlimited ammunition and
shields.

This illustrates that the pressure created through the player's need for energy man-
agement aids the evolution of a more intelligent player.  It also shows, that in addition
to the three objectives that have been identified, there may be further objectives
which need to be completed by a player to succeed, that need to be addressed sepa-
rately.

5 Conclusion and Future Research

Although these experiments are still work in progress and especially considering the
fact that players evolved with ADFs without separate fitness functions do not seem to
be any less successful, than those evolved with separate fitness evaluations for each
ADF, the latter method looks promising as a possible solution to addressing problems
with multiple objectives.  The experiments show that this method at least accelerates
the evolution of reasonably successful players.  However this needs to be verified in
further experiments and test runs over more than ten generations each.  Furthermore
the problem of multiobjective optimisation as described in [Goldberg 1989] needs to
be addressed in conjunction with the use of separate fitness functions.

Using GP as a tool for the controlled evolution of autonomous agents for computer
games seems an appropriate method for the design of natural agent behaviour.  The
experiments have shown that GP can be used to evolve the behaviour of an intelligent
agent for real-time computer games.  The next step will be to improve the agents'
intelligence by refining the original problem.  Coevolution techniques as used by
[Sims 1994], [Reynolds 1994] that use competition between individuals to exert ad-
ditional evolutionary pressure are a possible solution to this problem, which needs to
be explored.  Another approach might be to only use GP to evolve the agent's in-
stincts, while other methods could be used to create a higher level intelligence.  This
might eventually lead to the generation of more complex and realistic agent behav-
iour than has been achieved so far.

Acknowledgements

The author would like to thank Anargyros Sarafopoulos for inspiration, support and
the permission to use his GP system for this work.  His ideas and suggestions con-
tributed significantly to this project.  Additional thanks go to Prof. Peter Comninos
for encouragement and help in the preparation of this paper.



Off-Line Evolution of Behaviour for Autonomous Agents      699

References

[Goldberg 1989] Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, Massachusetts

[Koza 1992] Koza, J. R. (1992), Genetic Programming: on the Programming of Computers by
Means of Natural Selection, MIT Press, Cambridge, Massachusetts

[Koza 1994] Koza, J. R. (1994), Genetic Programming II: Automatic Discovery of Reusable
Programs, MIT Press, Cambridge, Massachusetts

[Luke et al 1997] Luke, S. (1997), Hohn, C., Farris, J., Jackson, G. Hendler, J., Co-Evolving
Soccer Softbot Team Coordination with Genetic Programming, Proceedings of the Robo-
Cup-97 Workshop at the 15th International Joint Conference on Artificial Intelligence,
IJCAI

[Luke 1998] Luke, S. (1998), Genetic Programming Produced Competitive Soccer Softbot
Teams for RoboCup97, Genetic Programming 1998: Proceedings of the Third Annual Con-
ference, Morgan Kaufmann

[Montana 1995] Montana, D. J., Strongly Typed Genetic Programming, Evolutionary Compu-
tation, 3(2), 1995, pages 199-230

[Reynolds 1994] Reynolds, C. W. (1994), Competition, Coevolution and the Game of Tag,
Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Liv-
ing Systems, MIT Press, Cambridge, Massachusetts

[Siegel and Chaffee 1996] Siegel, E. V. (1996) and Chaffee, A. D., Genetically Optimizing The
Speed of Programs Evolved to Play Tetris, Advances in Genetic Programming 2, MIT Press,
Cambridge, Massachusetts

[Sims 1994] Sims, K. (1994), Evolving 3D Morphology and Behavior by Competition,  Pro-
ceedings of the Fourth International Workshop on the Synthesis and Simulation of Living
Systems, MIT Press, Cambridge, Massachusetts



A Parallel Evolutionary Algorithm for
Stochastic Natural Language Parsing

Lourdes Araujo

Dpto. Sistemas Informáticos y Programación
Universidad Complutense de Madrid

lurdes@sip.ucm.es

Abstract. This paper presents a parallel evolutionary program for nat-
ural language parsing. The implementation follows an island model, in
which, after a number of generations, demes exchange some individu-
als in a round-robin manner. The population is composed of potential
parsings for a sentence, and the fitness function evaluates the appropri-
ateness of the parsing according to a given stochastic grammar. Both
the fitness function and the genetic operators, which require that the
result of their application still corresponds to the words in the input sen-
tence, are expensive enough to make the evolutionary program appropri-
ate for a coarse grain parallel model and its distributed implementation.
The system has been implemented in a parallel machine using the PVM
(Parallel Virtual Machine) software. The paper describes the study of
the parameters in the parallel evolutionary program, such as the number
of individuals to be exchanged between demes, and the number of gener-
ations between exchanges. Different parameters of the algorithm, such as
population size, and crossover and mutation rates, have also been tested.

1 Introduction

Evolutionary algorithms are an efficient method to deal with hard optimization
problems [5,8,9]. Statistical methods allow posing different aspects of natural
language processing as optimization problems of some kind of measurements
given by the statistical model. In this way, evolutionary algorithms are a very
useful tool to deal efficiently with different problems of natural language process-
ing. Besides, working with statistical models allows an uncertainty margin on
the results that matches properly with the nature of the evolutionary algorithms
(which do not guarantee the best solution, but one reasonably good).

Natural language parsing is a search problem that requires exploring a tree
of possible parsings. The size of this tree increases exponentially with the length
of the sentence or text to be parsed. By scoring every parsing in the tree, such
a search can be thought of as an optimization problem, since we are looking
for the “best” parsing. Stochastic grammars [4,1] represent an important part
of the statistical methods in computational linguistics, which have allowed real
progress on a number of issues including disambiguation, error correction, etc.
These grammars give us an evaluation of the tree representing a possible parsing

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 700–709, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



A Parallel Evolutionary Algorithm for Stochastic Natural Language Parsing 701

of a sentence, and we will try to find one of the best parsing according to this
measurement.

This work develops a stochastic parallel parser for natural language based on
an evolutionary algorithm. The approach adopted herein is based on the evolu-
tion programming method, as has been extended by Michalewicz [7] to consider
a richer set of data structures for chromosome representation than classic genetic
algorithms. In our case individuals are possible parsings, which are evaluated in
order to give a measure of how they fit the grammar rules.

Despite the ability of genetic algorithms to find a “good” solution, though
perhaps approximate, to optimization problems, when such problems are too
hard, they require a very long time to reach the solution. This has led to dif-
ferent efforts to parallelizing these programs in order to accelerate the process.
Basically, the approaches to this parallelization can be classified in two groups
[2,6]: global parallelization, and island of coarse-grained parallelization. In the
first method there is only one population, as in the sequential model, and it is
the evaluation of individuals, and the application of genetic operators what is
parallelized. In the island model, the population is divided in subpopulation or
demes, that usually evolve isolated except for the exchange of some individu-
als or migrations after a number of generations. In this case, we can expect a
different behaviour of the parallel model, since this model implies a change in
some parameters of the algorithm (such as the population size, which is smaller
in each deme), what can result in a faster convergence. Though such a faster
convergence may, in principle, reduce the quality of the solutions, results shows
[3] that the parallel model with smaller populations but with migration among
demes can improve the quality of the sequential solutions, and that there is an
optimal number of demes which maximizes the performance. We have adopted
the island model, what has allowed us developing a portable implementation
valid for both distributed and shared memory platforms.

The rest of the paper proceeds as follows: section 2 describes the main el-
ements in the evolutionary algorithm for parsing; section 3 is devoted to the
parallel model; section 4 presents and discusses the experimental results and
section 5 draws the main conclusions of this work.

2 Evolutionary Algorithm for a Probabilistic Parsing

Discovering the meaning of a sentence or text for any application (machine trans-
lation, database interfaces, etc) requires extracting their grammatical structure,
usually represented in the form of a labeled tree, which indicates how words
relate to each other and form phrases or clauses. However, many words can play
several grammatical roles, what leads to a forest of possible parsing trees for
a sentence. Probabilistic Context Free Grammars (PCFG)[4] provide a proba-
bilistic model of the language, as well as a mechanism to select one parsing if
there is ambiguity. A PCFG is a context free grammar whose rules are assigned
a probability. In our case, the PCFG provides a measure of the fitness of the
individuals in the evolutionary algorithm.



702 Lourdes Araujo

Individuals. The chromosomes of our evolutionary algorithm represent poten-
tial parsings for an input sentence according to a given probabilistic context free
grammar (PCFG). The input sentence is given as a sequence of words. The set
of categories for each word is searched in a dictionary (lexicon). A chromosome
is represented as a data structure containing the following information:

– Fitness of the chromosome.
– A list of genes, each representing the parsing of a different set of words in

the sentence.
– The number of genes in the chromosome.
– The depth of the parsing tree.

Each gene represents the parsing of a consecutive set of words in the sentence.
If this parsing involves no-terminal symbols, the parsing of the subsequent par-
titions of the set of words is given in later genes. Accordingly, the information
contained in a gene is the following:

– The sequence of words in the sentence to be analyzed by the gene.
– The rule of the grammar used to parse the words in the gene.
– If the right hand side of the rule contains no terminal symbols, the gene

also stores the list of references to the genes in which the analysis of these
symbols proceeds.

– The depth of the node corresponding to the gene in the parsing tree. It will
be used in the evaluation function.

The data structure of Figure 1 represents one possible chromosome for the sen-
tence: “the man sings a song”.

Initial Population. In order to create the chromosomes in the initial popula-
tion, the set of words in the sentence is randomly partitioned, making sure that
there is at least one verb in the second part, which corresponds to the main V P .
The set of words corresponding to the NP is parsed by randomly generating
any of the possible NP rules. The same is done for generating the parsing of the
V P with the V P rules. The process is improved by enforcing the application
of those rules able to parse the right number of words of the gene. The process
continues until there are no terminal symbols left pending to be parsed.

2.1 Individuals Evaluation

The opportunities of an individual to survive depend on the measurements of
their adaptation or fitness. In our case, this measurement is given by a couple of
values, fcoher, which measures the ability of a chromosome to parse the objective
sentence, and fprob, which measures the probability of the rules employed in the
parsing.

fcoher is based on the relative number of coherent genes. A gene will be
considered coherent if



A Parallel Evolutionary Algorithm for Stochastic Natural Language Parsing 703

(fitness): X
(number of genes): 4
(genes):
(gene number) (rule) (gene decomposition):

(first word, number of words, gene):
(1) S → NP, V P NP:(1, 2, 2)

VP:(3, 3, 3)
(2) NP → Det,Noun Det: The

Noun: man
(3) V P → V erb,NP Verb: sings

NP:(4, 2, 4)
(4) NP → Det,Noun Det: a

Noun: song

Fig. 1. Data structure of a chromosome. The first gene tells us that the set of words in
the sentence has been partitioned by the third word, i.e., the first two words correspond
to the main NP , and the following three words to the main VP. The gene also tells us
that the parsing of the NP is given by the gene 2, and the parsing of the VP is given
by the gene 3. Since the rule in the gene 2 has only terminal symbols in its right hand
side, there is no gene decomposition. On the contrary, the rule for gene 3 presents an
NP symbol in its right hand side, whose parsing is done in gene 4.

a) it corresponds to a rule whose right hand side is only composed of terminal
symbols, and they correspond to the categories of the words to be parsed by
the rule.

b) it corresponds to a rule with non-terminal symbols in its right hand side and
each of them is parsed by a coherent gene.

Accordingly, fcoher is computed as

fcoher =
number of coherent genes−∑

i∈incoherent genes
penalization

depth(i)

total number of genes
.

The formula takes into account the relative relevance of the genes: the higher
in the parsing tree is the node corresponding to an incoherent gene, the worse
is the parsing. Thus the fitness formula introduces a penalization factor which
decreases with the depth of the gene.

fprob is computed as
n∏
i=1

Prob(gi)

where Prob(gi) is the probability of the grammatical rule of gene gi in the
chromosome.

Fitness is then computed as a linear combination of both:

Fitness = wcoherfcoher + wprobfprob



704 Lourdes Araujo

where wcoher and wprob are parameters that allow tuning the computation along
the evolution process. In the first generations wcoher is higher in order to produce
individuals corresponding to possible parsing trees, while later, wprob becomes
higher in order to select the most probable individuals.

2.2 Reproduction

Each generation finishes with the creation of new individuals that will substitute
other individuals in the population. These new individuals are created by means
of the crossover and mutation operators.

The crossover operator combines two parsings to generate a new one. The
part of one parent after a point randomly selected is exchanged with the corre-
sponding part of the other parent to produce two offsprings, under the constraint
that the genes exchanged correspond to the same type of parsing symbol (NP,
VP, etc) in order to avoid wrong references of previous genes in the chromosome.
The operator selects two parent chromosomes. Then, a word is randomly selected
from the input sentence, and the inner most gene to which the selected word
corresponds in each parent chromosome is identified. If the genes correspond to
different sets of words, the next gene in the inner most order is selected. This pro-
cess continues until the sequences of words whose parsings are to be exchanged
are the same, or until the main NP or VP are reached. If the two selected genes
parse the same sequence of words, they are exchanged. Otherwise, genes appro-
priated for the exchange are randomly generated. Mutation is applied to the
chromosome resulting of the crossover operation with a probability given by the
mutation rate, an input parameter. In this case, a new parsing is generated for a
randomly selected gene. At each generation a number of chromosomes equal to
the number of offsprings is selected to be replaced. The selection of chromosomes
to be replaced in each generation is performed with respect to the relative fitness
of the individuals: a chromosome with a worse than average fitness has higher
chances to be selected for replacement.

3 Parallel Model and Implementation

We have adopted an island model, which may be implemented in both shared or
distributed memory architectures, thus making the model portable. The design
of the parallel model is intended to reduce the communications. To this purpose,
the following options have been chosen:

– System components: The system is composed of a number of processes, called
cooperative parsers, each of which performs, by evolutionary programming, a
parsing for the same input sentence. The initial condition in each deme (ran-
dom number generation) is different in order to obtain different individuals
in different populations. There is a special process, known as main selector,
which selects the best individual among the best ones of each deme.



A Parallel Evolutionary Algorithm for Stochastic Natural Language Parsing 705

CP CPCPCPMS

Fig. 2. Migration Policy. CP stands for Cooperative parser, MS for Main Selector.

Table 1. Sentences used in the parsing experiments.

1 Jack(noun) regretted(verb) that(wh) he(pro) ate(verb) the(det) whole(adj)
thing(noun)

2 The(det) man(noun) who(wh) gave(verb) Bill(noun) the(det) money(noun)
drives(verb) a(det) big(adj) car(noun)

3 The(det) man(noun) who(wh) lives(verb) in(prep) the(det) red(adj)
house(noun) saw(verb) the(det) thieves(noun) in(prep) the(det) bank(noun)

– Migration policy: To reduce communications, migrations do not take place
from one deme to any other, but only to the next one (Figure 2). The N
cooperative parsers thus form a ring. Nevertheless, this policy has been com-
pared with an all-to-all policy so as to make sure that this choice does not
imply a significant reduction in the quality of the solutions.

– Synchronism: We have adopted an asynchronous model, in which a cooper-
ative parser, after a fixed number of generations, sends a fixed number of
individuals to the next cooperative parser and then continues the evolution,
checking in each generation the arrival of the same number of individuals
from the previous parser.

– Convergence policy: Again with the aim of reducing communications, a co-
operative parser which reaches convergence sends its best individual to the
main selector. The main selector takes this solution as the absolute best,
giving it to the user and finishing after killing all cooperative parsers. If no
parser which reaches the convergence, all of them finish after a number of
generations fixed given by the user. Then each one sends its best solution to
the selector, which chooses the best among them for the user.

– Criteria for selection of individuals to migrate: They are randomly chosen
with a probability proportional to their fitness.

– Criteria for selection of individuals to be replaced by the ‘immigrants’: They
are randomly chosen with equal probability.

4 Experiments

The algorithm has been implemented on C++ language with the software PVM
on a SGI-Cray ORIGIN 2000. In order to evaluate the performance we have
considered the parsing of the sentences appearing in Table 1. The average length
of the sentences is around 10 words. However, they present different complexities
for the parsing, mainly the length and the number of subordinate phrases.



706 Lourdes Araujo

100 300 500 700 900
Population Size

0

100

200

300

400

500

G
en

er
at

io
ns

Sentence 1
Sentence 2
Sentence 3

Fig. 3. Number of generations required to reach the correct parsing for different input
sentences, when using crossover rate of 50% and mutation rate of 20%.

Table 2. Time in seconds required to reach a correct parsing when processing sequen-
tially and in parallel.

Sequential Parallel
Sentence 2 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc.
sentence1 16.55 10.48 3.08 3.09 2.09 2.09
sentence2 50.03 19.12 15.02 10.64 3.48 3.49
sentence3 52.70 25.40 22.71 19.34 14.93 14.79

4.1 Study of the Evolutionary Algorithm Parameters

The parameters of the algorithm determine the influence of two fundamental
factors in the success of an evolutionary algorithm: population diversity and
selective pressure. The most relevant of them, population size and crossover and
mutation rates, have been studied in detail.

Figure 3 shows the number of generations required to reach a correct parsing
for each sentence versus the population size, in a sequential execution. In general,
the higher the “sentence complexity”, the larger the population size required to
reach the correct parsing in a reasonable number of steps. The sentence complex-
ity depends on its length and on the number of subordinate phrases it contains.
However, large populations lead to replication of chromosomes and slow evolu-
tions, so high percentages of genetic operators are required in order to accelerate
the process.

4.2 Evaluating the Parallel Model

Table 2 shows the improvement in performance obtained by increasing the num-
ber of processors. This experiment has been carried out with a population size
of 200 individuals (the minimum required for the sequential version to reach the
correct parsing), a crossover rate of 50%, a mutation rate of 20%, a migrating



A Parallel Evolutionary Algorithm for Stochastic Natural Language Parsing 707

2 4 6 8
Number of Cooperative Parsers

0.7

0.8

0.9

1

F
itn

es
s

%E = 30
%E = 40
%E = 50

Fig. 4. Performance of the sentence 2 for
different sizes of the migrating popula-
tion, with a population of 50 individual
per processor, a crossover rate of 40%, a
mutation rate of 20% and an interval be-
tween migrations of 10 generations.

2 4 6 8
Number of Cooperative Parsers

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

I = 5
I = 10
I = 15
I = 20

Fig. 5. Performance of the sentence 2 for
different intervals of migration, with a
population of 50 individual per processor,
a crossover rate of 40%, a mutation rate of
20% and a migrating population of 50%.

population of 40 individuals and an interval of migration of 15 generations. We
can observe that the parallel execution achieves a significant improvement even
with just 2 processors. We can also observe that saturation is reached for some
number of processors. However, this number is expected to increase with the
complexity of the sentences to be parsed.

4.3 Tuning the Parallel Model

There is a number of options that have to be fixed in order to completely spec-
ify the model: rate of the population migrated, number of generations between
migrations, parameters of each cooperative parser (size of the deme, crossover
and mutation rates, and maximum number of generations), which determine the
behaviour of each isolated parser.

Size of the Migrating Population and Migration Interval. Figure 4 shows
the results obtained for different sizes of the migrating population for the sen-
tence 2. Results show that a small population, such as that of 50 individuals
used in this experiment, requires a large size of the migrating population (50%),
in order to reach a high fitness.

The interval of migration is another parameter to fix in the parallel model,
closely connected with the size of the migrating population. Experiments have
been carried out in order to determine the best values, once the size of the
migrating population has been fixed. Figure 5 shows the results obtained for the
sentence 2. We can observe that the best results are obtained with an interval of
15 generations. On the contrary, the worst results are obtained for too frequent
exchanges (I=5) and also for too spread exchanges (I=20).



708 Lourdes Araujo

2 4 6 8
Number of Cooperative Parsers

0.8

0.85

0.9

0.95

1

F
itn

es
s

%E = 30, I = 5 (RR)
%E = 30, I = 5 (AA)
%E = 50, I = 15 (RR)
%E = 50, I = 15 (AA)

Fig. 6. Comparison of two different communication policies: round-robin (RR) and all-
to-all (AA). Results correspond to a population of 50 individual per processor, a limit
of 100 generations, a crossover rate 40% and a mutation rate of 20. In the graphics,
E stands for Exchange rate and I for migration Interval. Fitness corresponds to the
f coher value.

Round-Robin or All-to-All. We have investigated two different policies mi-
gration:

– Round-Robin policy: cooperative parsers are organized in a ring sequence,
each of them sending the migrating population to the next one in the se-
quence and receiving it from the preceding one.

– All-to-all policy: Each process sends the migrating population to all the other
processes and receives population from all of them. In this case, each process
sends a migrating population equal to the migrating population size divided
by the number of processes in the system.

Figure 6 shows the results obtained with both policies. We can observe that re-
sults obtained with both policies are comparable, the round-robin policy slightly
outperforming the all-to-all one. Therefore, the round-robin policy is more sen-
sible because with a similar performance considerably reduces communications.

5 Conclusions

The complexity of the parsing process for sentences of natural languages makes it
appropriate to use optimization methods such as evolutionary algorithms which
provide an approximate solution in a reasonable time. This work presents an
evolutionary algorithm which works with a population of potential parsings for a
given Probabilistic Context Free Grammar and an input sentence. Probabilistic
grammars allow weighting the possible parsings, thus providing a method to
evaluate individuals. In this work, the evaluation is given by a combination of
the coherence of the parsing, i.e. its ability to match every word and syntactic
tag with the grammar rules, and the probability computed from the probabilities
of the rules applied.



A Parallel Evolutionary Algorithm for Stochastic Natural Language Parsing 709

Results from a number of tests indicate that the evolutionary approach is
robust enough to deal with the parsing problem. The tests indicate that the GA
parameters need to be suitable for the input sentence complexity. The more com-
plex the sentence (length and subordination degree), the larger the population
size required to quickly reach a correct parsing.

The evolutionary algorithm has been parallelized in the form of an island
model, in which processors exchange migrating populations asynchronously and
in a round-robin sequence. Experiments on the size of the migrating population
show that it is necessary to exchange a significant rate of the population. Ex-
periments on the migration intervals show that exchanges should be neither too
frequent nor too sparse. Results obtained for these experiments exhibit a clear
improvement in the performance, thus showing that the problem has enough
granularity for the parallelization, even when applied to artificial sentences. It is
expected this improvement to be greater when applied to real sentences as those
extracted from a linguistics corpus.

References

1. L. Araujo. Evolutionary parsing for a probabilistic context free grammar. In Proc. of
the Int. Conf. on on Rough Sets and Current Trends in Computing (RSCTC-2000),
2000.

2. E. Cantú-Paz. A survey of parallel genetic algorithms. Technical report, Illinois
Genetic Algoritms Laboratory, IlliGAL Report No. 97003, 1997.

3. E. Cantú-Paz and D. E. Goldberg. Predicting speedups of idealized bounding cases
of parallel genetic algorithms. In T. Back, editor, Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms, pages pp. 113–120. CA: Morgan
Kaufmann, 1997.

4. E. Charniak. Statistical Language Learning. MIT press, 1993.
5. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesly, 1989.
6. R. Poli M. Nowostawski. Review and taxonomy of parallel genetic algorithms.

Technical report, School of Computer Science, The University of Birmingham, UK,
Technical Report CSRP-99-11, 1999.

7. Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 2nd edition, 1994.

8. A. Ruiz-Andino, L. Araujo, J. Ruz, and F. Sáenz. Parallel evolutionary optimization
with constraint propagation. In Proc. of the Int. Conf. on Parallel Problem Solving
from Nature (PPSN), volume 1498 of Lecture Notes in Computer Science, pages
270–279. Springer-Verlag, 1998.

9. A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. Ruz. A hybrid evolutionary approach
for solving constrained optimization problems over finite domains. IEEE Transac-
tions on Evolutionary Computation, 4(4):353–372, 2000.



Evolutionary Learning of Boolean Queries
by Multiobjective Genetic Programming

Oscar Cordón, Enrique Herrera-Viedma, and Maŕıa Luque

Dept. of Computer Science and A.I. E.T.S. de Ingenieŕıa Informática
University of Granada. 18071 - Granada (Spain)

{ocordon,viedma}@decsai.ugr.es, mluque@fedro.ugr.es

Abstract. The performance of an information retrieval system is usu-
ally measured in terms of two different criteria, precision and recall.
This way, the optimization of any of its components is a clear example
of a multiobjective problem. However, although evolutionary algorithms
have been widely applied in the information retrieval area, in all of these
applications both criteria have been combined in a single scalar fitness
function by means of a weighting scheme. In this paper, we will tackle
with a usual information retrieval problem, the automatic derivation of
Boolean queries, by incorporating a well known Pareto-based multiobjec-
tive evolutionary approach, MOGA, into a previous proposal of a genetic
programming technique for this task.

1 Introduction

Information retrieval (IR) may be defined, in general, as the problem of the
selection of documentary information from storage in response to search ques-
tions provided by a user [16]. Information retrieval systems (IRSs) are a kind of
information systems that deal with data bases composed of information items
—documents that may consist of textual, pictorial or vocal information— and
process user queries trying to allow the user to access to relevant information
in an appropriate time interval. Nowadays, the different world wide web search
engines such as Google constitute the main examples of IRSs.

Most of the commercial IRSs are based on the Boolean IR model [18], based
on the use of Boolean queries where the query terms are joined by the logical
operators AND and OR. This way, the user needs to have a clear knowledge on
how to connect the query terms together using the Boolean operators in order
to build a query defining his information needs and allowing him to retrieve
relevant documents.

The difficulty found by non-expert users to formulate these kinds of queries
makes necessary the design of automatic methods for this task. The paradigm of
Inductive Query by Example (IQBE) [4], where a query describing the informa-
tion contents of a set of documents provided by a user is automatically derived,
can be useful to assist the user in the query formulation process. Focusing on the
Boolean IR model, the only existing approach is that of Smith and Smith [17],
which is based on genetic programming (GP) [12]. As usual in the topic, this

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 710–719, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Evolutionary Learning of Boolean Queries 711

approach is guided by a weighted fitness function combining the two common
criteria to measure the performance of an IRS, precision and recall.

In this paper, we will propose a new IQBE algorithm to learn Boolean queries
by extending Smith and Smith approach in order to transform it into a multi-
objective evolutionary algorithm (EA) not based on a weighted fitness function
[9,5]. This way, we will work as in [15], incorporating MOGA [10] Pareto-based
evolutionary multiobjective components into GP. The experimental testbed will
be based on one of the most known IR benchmarks, the Cranfield document
collection [16,1].

With this aim, this contribution is structured as follows. Section 2 is devoted
to the preliminaries, including the basis of Boolean IRSs, the definition of both
precision and recall criteria, and the basis of IQBE techniques. Then, Smith and
Smith’s proposal is reviewed in Section 3. Section 4 presents the adaptations
made to include the Pareto-based multiobjective EA components in the latter
algorithm while the experiments developed to test the new proposal are showed
in Section 5. Finally, several concluding remarks are pointed out in Section 6.

2 Preliminaries

2.1 Boolean Information Retrieval Systems

An IRS is basically constituted of three main components: documentary data
base, query subsystem and matching or evaluation mechanism, whose composi-
tion for Boolean IRSs are introduced as follows.

The documentary data base. This component stores the documents and the
representation of their information contents. It is associated with the indexer
module, which automatically generates a representation for each document by
extracting the document contents. Textual document representation is typically
based on index terms (that can be either single terms or sequences) which are
the content identifiers of the documents.

In the Boolean retrieval model, the indexer module performs a binary index-
ing in the sense that a term in a document representation is either significant
(appears at least once in it) or not (it does not appear in it at all). Let D be
a set of documents and T be a set of unique and significant terms existing in
them. The indexer module of the Boolean IRS defines an indexing function:
F : D × T → {0, 1}, where F (d, t) takes value 1 if term t appears in document
d and 0 otherwise.

The query subsystem. It allows the users to formulate their queries and presents
the relevant documents retrieved by the system to them. To do so, it includes a
query language, that collects the rules to generate legitimate queries and proce-
dures to select the relevant documents.

Boolean queries are expressed using a query language that is based on query
terms and permits combinations of simple user requirements with logical opera-
tors AND, OR and NOT [18]. The result obtained from the processing of a query



712 Oscar Cordón, Enrique Herrera-Viedma, and Maŕıa Luque

is a set of documents that totally match with it, i.e., only two possibilities are
considered for each document: to be or not to be relevant for the user’s needs,
represented by his query.

The matching mechanism. It evaluates the degree to which the document rep-
resentations satisfy the requirements expressed in the query, the retrieval status
value (RSV), and retrieves those documents that are judged to be relevant to it.

As said, the RSV has only two values associated, 0 and 1, in Boolean IRSs.
In order to match a query, a document has to fulfill it completely, i.e., it has to
include the positive query terms specified in the search expression and not to
include those that have been specifically given in that negative way. In order to
obtain the set of relevant documents for a query, it is represented as a parse tree
and is evaluated from the leaves to the root. Each leaf is associated to the set of
documents including (or not including) the corresponding (negative) query term.
Then, the retrieved document sets in the inner nodes are computed by applying
set arithmetic (with the AND operator being the set intersection and the OR
operator standing for the set union). The final set of retrieved documents is that
associated to the root when finishing the evaluation of the tree.

2.2 Evaluation of Information Retrieval Systems

There are several ways to measure the quality of an IRS, such as the system
eficiency and effectiveness, and several subjective aspects related to the user
satisfaction (see, for example, [1], chapter 3). Traditionally, the retrieval effec-
tiveness —usually based on the document relevance with respect to the user’s
needs— is the most considered. There are different criteria to measure this as-
pect, with the precision and the recall being the most used.

Precision is the rate between the relevant documents retrieved by the IRS in
response to a query and the total number of documents retrieved, whilst recall
is the rate between the relevant documents retrieved and the total number of
relevant documents to the query existing in the data base [18]. The mathematical
expression of each of them is showed as follows:

P =
∑
d rd · fd∑
d fd

; R =
∑
d rd · fd∑
d rd

with rd ∈ {0, 1} being the relevance of document d for the user and fd ∈ {0, 1}
being the retrieval of document d in the processing of the current query. Notice
that both measures are defined in [0,1], with 1 the optimal value.

Notice that the only way to know all the relevant documents for a query
existing in a documentary base (needed to compute the recall measure) is to
evaluate them all one by one. Due to this and to the relevence subjectivity,
there are several classical documentary bases available, each of them with a set
of queries with known relevance judgments, that can be used to test the different
new proposals in the field of IR [16,1]. In this contribution, we will deal with the
well known Cranfield collection.



Evolutionary Learning of Boolean Queries 713

As said, up to our knowledge, all the previous applications of machine learn-
ing techniques to any of the IRS components trying to optimize both criteria
have considered a weighted combination of them. This is why the aim of our
contribution is to provide a first step on the application of Pareto-based multi-
objective EAs to IR in order to evolve a complete set of Pareto optimal solutions
optimizing both criteria simultaneously.

2.3 Inductive Query by Example

IQBE was proposed in [4] as “a process in which searchers provide sample docu-
ments (examples) and the algorithms induce (or learn) the key concepts in order
to find other relevants documents”. This way, IQBE is a process for assisting the
users in the query formulation process performed by machine learning methods.
It works by taking a set of relevant (and optionally, non relevant documents)
provided by a user —that can be obtained from a preliminary query or from a
browsing process in the documentary base— and applying an off-line learning
process to automatically generate a query describing the user’s needs (as repre-
sented by the document set provided by him). The obtained query can then be
run in other IRSs to obtain more relevant documents. This way, there is no need
that the user interacts with the process as in other query refinement techniques
such as relevance feedback [16].

There have been proposed IQBE proposals for the different existing IR mod-
els. As said, Smith and Smith [17] proposed the GP algorithm to derive Boolean
queries that will be considered in this paper. On the other hand, all of the ma-
chine learning methods considered in Chen et al.’s paper [4] (regression trees, ge-
netic algorithms and simulated annealing) dealt with the vector space model [16].
Moreover, there are several approaches for the derivation of weighted Boolean
queries for fuzzy IRSs [3], such as the GP algorithm of Kraft et al. [13], the
niching GA-P method [7] and the simulated annealing-GP hybrid [8]. For de-
scriptions of some of the previous techniques based on EAs refer to [6,8].

3 The Smith and Smith’s Genetic Programming-Based
Inductive Query by Example Algorithm
for Boolean Information Retrieval Systems

In [17], Smith and Smith proposed an IQBE to derive Boolean queries based on
GP. Its components are described next:

Coding Scheme: The Boolean queries are encoded in expression trees, whose
terminal nodes are query terms and whose inner nodes are the Boolean operators
AND, OR or NOT .

The different expression trees are derived from the following grammar [17]:

<QUERY >::=<TERM> |(<QUERY ><OPERATOR><QUERY >)
<OPERATOR>::= AND|OR|NOT
<TERM>::= t1| . . . |tn



714 Oscar Cordón, Enrique Herrera-Viedma, and Maŕıa Luque

Selection Scheme: Each generation is based on selecting two parents, with the
best fitted one having a greater chance to be chosen, and generating two offspring
from them. Both offspring are added to the current population1.

Genetic Operators: The usual GP crossover is considered [12], which is based on
randomly selecting one edge in each parent and exchanging both subtrees from
these edges between the both parents. No mutation operator is considered2.

Generation of the Initial Population: All the individuals in the first population
are randomly generated. A pool is created with all the terms included in the
set of relevant documents provided by the user, having those present in more
documents a higher probability of being selected.

Fitness function: The following function is maximized:

F = α · P + β ·R

where precision P and recall R are computed as showed in Section 2.2, while
α and β are the weighting factors. Moreover, when comparing two queries with
the same F value, the shorter one is preferred.

4 Incorporating Pareto-Based Multiobjective
Components to the Smith and Smith’s Algorithm

As said, the Pareto-based multiobjective EA considered to be incorporated to
the basic Smith and Smith’s GP algorithm in this first work has been Fonseca
and Fleming’s MOGA [10]. The selection scheme of MOGA is based on dividing
the population in several ranked blocks and assigning a higher probability of
selection to the blocks with a lower rank, taking into account that individuals in
the same block will be equally preferable and thus will receive the same selection
probability. The rank of an individual in the population (and consequently of
his belonging block) will depend on the number of individuals dominating it.

Therefore, the selection scheme of our multiobjective GP involves the follow-
ing four steps:

1. Each individual is assigned a rank equal to the number of individuals dom-
inating it plus one (chromosomes encoding non-dominated solutions receive
rank 1).

2. The population is increasingly sorted according to that rank.
1 Our implementation differs in this point as we consider a classical generational

scheme where the selection probabilities are assigned by the proportional scheme
and the reproduction is performed by Baker’s stochastic universal sampling [2].

2 We do use a mutation operator which changes a randomly selected term or operator
by a random one, or a randomly selected subtree by a randomly generated one.



Evolutionary Learning of Boolean Queries 715

3. Each individual is assigned a fitness value which depends on its ranking in
the population. In this contribution, we consider the following assignment:
f(Ci) = 1

rank(Ci)
.

4. The fitness assignment of each equivalence class (group of individuals with
the same rank, i.e., which are non dominated among them) is averaged among
them, so that all of them finally receive the same fitness value.

Once the final fitness values have been computed, a usual selection mech-
anism is applied. In this contribution we consider the proportional assignment
and Baker’s stochastic universal sampling [2] with an appropriate choice of the
parameter values to induce diversity.

It is known that the MOGA selection scheme can cause a large selection
pressure that might produce premature convergence. Fonseca and Fleming con-
sidered this issue and suggested to use a niching method to appropriately dis-
tribute the population in the Pareto [10]. However, as said in [5], one of the main
weaknesses of MOGA is that sharing is performed in the objective space, thus
making more difficult that two different Pareto solutions with the same objective
function values can simultaneously coexist in the population.

For example, this is not a desirable characteristic in our case, as we are
interested on obtaining as many queries with the same precision-recall values as
possible. Fortunately, as Coello also mentions, there is no specific requirement
in the MOGA algorithm to perform sharing in the objective space.

This way, in this paper we apply niching in the parameter (genotypic) space.
To do so, we have to keep in mind that we are dealing with chromosomes encoding
Boolean queries, and hence we need a metric capable of measuring distances
between expression trees. In our case, this is put into effect by the so-called edit
or Levenshtein distance [14], a text metric that computes the distance between
two strings as the number of edit (delete, insert or change) steps needed to
convert one into the other. In order to compute distances between trees with
this metric, we apply it on the strings encoding the preorder representation of
the trees.

Let a = (a1, . . . , an) and b = (b1, . . . , bm) be the two tree preorder strings.
The edit distance between them is recursively computed as follows3:

E((a1, . . . , an), (b1, . . . , bm)) =


n, if m = 0
m, if n = 0
min{E((a1, . . . , an−1), (b1, . . . , bm)) + 1,
E((a1, . . . , an), (b1, . . . , bm−1)) + 1, otherwise
E((a1, . . . , an−1), (b1, . . . , bm−1)) + d(an, bm)},

with d(x, y) = 1 if x = y, and 0 otherwise, being the character distance.
Once a valid metric for trees has been defined, it is easy to apply sharing by

using the classical Goldberg and Richardson’s sharing function [11]:
3 We should note that in this contribution we have been computed it iteratively by

the corresponding Dynamic Programming algorithm.



716 Oscar Cordón, Enrique Herrera-Viedma, and Maŕıa Luque

F (Ci) =
f(Ci)∑M

j=1 Sh(d(Ci, Cj))
; Sh(d) =

{
1− ( d

σshare
)γ , if d < σshare

0, otherwise

with σshare being the niche radius.

5 Experiments Developed and Analysis of Results

As said, the experimental study has been developed using the Cranfield collec-
tion, composed of 1400 documents about Aeronautics. The 1400 textual docu-
ments has been automatically indexed in the usual way by first extracting the
non-stop words, thus obtaining a total number of 3857 different indexing terms,
and then considering the binary indexing to generate the term weights in the
document representations. Among the 225 queries associated to the Cranfield
collection, we have selected those presenting 20 or more relevant documents.
The resulting seven queries (numbers 1, 2, 23, 73, 157, 220 and 225) have 29,
25, 33, 21, 40, 20 and 25 relevant documents associated, respectively.

Table 1. Results obtained by the basic Smith and Smith’s IQBE algorithm

Best Average
#q Run Sz P R #rr/#rt #q Sz σSz P σP R σR

1 7 11 1.0 0.1724 5/5 1 16.8 0.8221 1.0 0.0 0.1379 0.0068
2 8 17 1.0 0.2 5/5 2 17.4 0.9295 1.0 0.0 0.156 0.0068
23 1 17 1.0 0.1515 5/5 23 17.6 0.4939 1.0 0.0 0.1212 0.0060
73 2 19 1.0 0.2857 6/6 73 18.6 0.2529 1.0 0.0 0.2047 0.0135
157 1 15 1.0 0.15 6/6 157 18.0 0.4242 1.0 0.0 0.1175 0.0086
220 5 19 1.0 0.2 4/4 220 18.8 0.1897 1.0 0.0 0.17 0.0077
225 2 13 1.0 0.2 5/5 225 17.8 0.6449 1.0 0.0 0.164 0.0088

Apart from our Pareto-based Multiobjective proposal, we have also run the
basic Smith and Smith’s algorithm with a typical setting for the weights in the
fitness function ((α, β) = (1.2, 0.8)). Every algorithm have been run ten times
with different initializations during the same fixed number of fitness function
evaluations (100000) in an 1GHz Pentium III computer with 256 MB of RAM4.
The common parameter values considered are a maximum of 20 nodes for the
trees, 0.8 and 0.2 for the crossover and mutation probabilities, respectively, and
a population size of M =1600 queries. The high value for the latter parameter
is because it is well known that GP requires large population sizes to achieve
good performance. Finally, the sharing function parameter γ takes value 2 and
the niche radius σshare has been experimentally set to 4 (a 20% of the maximum
tree size).

4 The basic algorithm spends more or less 3 minutes whilst our MOGA variant ap-
proximately takes 8 minutes.



Evolutionary Learning of Boolean Queries 717

The results obtained by the basic algorithm are showed in Table 1, while
the best results are showed on the left and the average ones on the right. In
the left-hand first table, #q stands for the corresponding query number, Run
for the number of the run where this result was derived, Sz for the generated
query size, P and R for the precision and recall values, respectively, #rt for the
number of documents retrieved by the query, and #rr for the number of relevant
documents retrieved. The columns of the right-hand table stand for the same
items showing the averaged values as well as the standard deviations.

Table 2. Results obtained by the proposed multiobjective IQBE algorithm

#q #p σ#p #dp σ#dp M2 σM2 M3 σM3

1 189.7 34.9782 129.1 36.4336 90.4425 17.3184 1.2887 0.0043
2 336.0 60.3004 272.7 59.3562 163.5748 30.2425 1.2835 0.0072
23 203.8 21.6969 139.6 20.5286 97.9832 11.0473 1.3086 0.0032
73 180.1 22.1902 117.4 19.5980 85.0346 11.0898 1.2232 0.0082
157 167.6 18.2176 102.5 16.0163 79.7532 8.9551 1.3202 0.0040
220 162.7 27.0902 96.5 25.1738 75.8301 13.8823 1.2343 0.0060
225 211.9 39.4840 141.3 40.5371 101.1405 19.6761 1.2705 0.0059

Best Precision Best Recall
#q Sz σSz P σP R σR Sz σSz P σP R σR

1 19.0 0.0 1.0 0.0 0.297 0.010 19.0 0.0 0.042 0.003 1.0 0.0
2 19.0 0.0 1.0 0.0 0.32 0.017 19.0 0.0 0.032 0.003 1.0 0.0
23 19.0 0.0 1.0 0.0 0.248 0.009 19.0 0.0 0.039 0.002 1.0 0.0
73 19.0 0.0 1.0 0.0 0.433 0.022 19.0 0.0 0.070 0.007 1.0 0.0
157 19.0 0.0 1.0 0.0 0.212 0.010 19.0 0.0 0.044 0.002 1.0 0.0
220 19.0 0.0 1.0 0.0 0.42 0.014 19.0 0.0 0.056 0.004 1.0 0.0
225 19.0 0.0 1.0 0.0 0.348 0.015 19.0 0.0 0.037 0.003 1.0 0.0

On the other hand, Table 2 shows several statistics corresponding to our
multiobjective proposal. The first subtable on the top collects several data about
the composition of the ten Pareto sets generated for each query, always showing
the averaged value and its standard deviation. From left to right, the columns
collect the number of non-dominated solutions obtained (#p), the number of
different queries (trees) existing among them (#dp), and the values of two of
the usual multiobjective EA metrics M2 and M∗3 [19]. M2 ∈ [0,#p] measures
the distribution of the genotypes of the #p non-dominated solutions found5

(i.e., the diversity of the solutions found). M∗3 estimates the range to which the
Pareto front spreads out in the objective values. Besides, two queries are selected
from each Pareto set, the ones with maximum precision and maximum recall,
respectively, and their averaged results are collected in the bottom subtable.

5 The value of the neighborhood parameter σ considered in this metric has been set
to the niche radius value σshare.



718 Oscar Cordón, Enrique Herrera-Viedma, and Maŕıa Luque

In view of these results, the performance of our proposal is very significant.
On the one hand, it overcomes the basic Smith and Smith’s algorithm in all
cases as the results of the latter when considering typical values for the weighted
combination are dominated by the solutions in the Pareto front of the former. It
seems that the use of a weighting scheme and the lack of a niching scheme make
the basic algorithm not to perform appropriately. On the other hand, the main
aim of this paper have been clearly fulfilled since the Pareto fronts obtained are
very well distributed, as demonstrated by the high number of solutions included
in them and the high values in the M2 and M∗3 metrics.

6 Concluding Remarks

The automatic derivation of Boolean queries has been considered by incorporat-
ing the MOGA Pareto-based multiobjective evolutionary approach to an existing
GP-based IQBE proposal. The proposed approach has performed appropriately
in seven queries of the well known Cranfield collection in terms of absolute re-
trieval performance and of the quality of the obtained Paretos.

In our opinion, many different future works arise from this preliminary study.
On the one hand, more advanced Pareto-based multiobjective EA schemes (such
as those elitist ones considering an auxiliary population to better cover the
Pareto front [9,5]) can be incorporated to the basic GP algorithm in order to
improve the performance of the multiobjective EA proposed. On the other hand,
preference information of the user on the kind of queries to be derived can be
included in the Pareto-based selection scheme in the form of a goal vector whose
values are adapted during the evolutionary process [10]. Moreover, a training-test
validation procedure can be considered to test the real application of the pro-
posed IQBE algorithm. Finally, and more generically, Pareto-based evolutionary
multiobjective optimization can be applied either to the automatic derivation of
queries for other kinds of IR models (such as the extended Boolean ones tackled
in the EAs proposed in [7,8,13]) or to other IR problems being solved by EAs [6],
thus benefiting from the potential of these techniques in the problem solving.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, Adisson-Wesley
(1999).

2. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm, Proc. Second
International Conference on Genetic Algorithms (ICGA’87), Hillsdale, NJ, (1987)
14–21.

3. Bordogna, G., Carrara, P., Pasi, G.: Fuzzy approaches to extend Boolean informa-
tion retrieval, in: P. Bosc, J. Kacprzyk (Eds.), Fuzziness in Database Management
Systems (1995) 231–274.

4. Chen, H.: A machine learning approach to inductive query by examples: an exper-
iment using relevance feedback, ID3, genetic algorithms, and simulated annealing,
Journal of the American Society for Information Science 49:8 (1998) 693–705.



Evolutionary Learning of Boolean Queries 719

5. Coello, C.A., Van Veldhuizen, D.A., Lamant, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems, Kluwer Academic Publishers (2002).

6. Cordón, O., Moya, F., Zarco, C.: A brief study on the application of genetic algo-
rithms to information retrieval (in spanish), Proc. Fourth International Society for
Knowledge Organization (ISKO) Conference (EOCONSID’99), Granada, Spain,
(April, 1999) 179–186.

7. Cordón, O., Moya, F., Zarco, C.: A GA-P algorithm to automatically formulate
extended Boolean queries for a fuzzy information retrieval system, Mathware &
Soft Computing 7:2-3 (2000) 309–322.

8. Cordón, O., Moya, F., Zarco, C.: A new evolutionary algorithm combining simu-
lated annealing and genetic programming for relevance feedback in fuzzy informa-
tion retrieval systems, Soft Computing 6:5 (2002).

9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, Wiley
(2001).

10. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, Discussion and Generalization, Proc. Fifth International Conference
on Genetic Algorithms (ICGA’93), San Mateo, CA (July, 1993) 416–423.

11. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization, Proc. Second International Conference on Genetic Algo-
rithms (ICGA’87), Hillsdale, NJ, (1987) 41–49.

12. Koza, J.: Genetic programming. On the programming of computers by means of
natural selection, The MIT Press (1992).

13. Kraft, D.H., Petry, F.E., Buckles, B.P., Sadasivan, T.: Genetic algorithms for query
optimization in information retrieval: relevance feedback, in: E. Sanchez, T. Shi-
bata, L.A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems, World Scientific
(1997) 155–173.

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals, Sov. Phys. Dokl. 6 (1966) 705-710.

15. Rodŕıguez-Vazquez, K., Fonseca, C.M., Fleming, P.J.: Multiobjective genetic pro-
gramming: A nonlinear system identification application, Late Breaking Papers at
the Genetic Programming 1997 Conference, Stanford, CA (July, 1997) 207–212.

16. Salton, G., McGill, M.J.: Introduction to modern information retrieval, McGraw-
Hill (1989).

17. Smith, M.P., Smith, M.: The use of genetic programming to build Boolean queries
for text retrieval through relevance feedback, Journal of Information Science 23:6
(1997) 423–431.

18. van Rijsbergen, C.J.: Information Retrieval (2nd edition), Butterworth (1979).
19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-

rithms: Empirical results, Evolutionary Computations 8:2 (2000) 173–195.



Inferring Phylogenetic Trees Using
Evolutionary Algorithms

Carlos Cotta1 and Pablo Moscato2

1 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática
University of Málaga, Campus de Teatinos, 29071 - Málaga - SPAIN

ccottap@lcc.uma.es
2 Grupo de Engenharia de Computação em Sistemas Complexos

Dept. de Engenharia de Computação e Automação Industrial
Universidade Estadual de Campinas, C.P. 6101

Campinas, SP, CEP 13083-970, Brazil
moscato@dca.fee.unicamp.br

Abstract. We consider the problem of estimating the evolutionary his-
tory of a collection of organisms in terms of a phylogenetic tree. This is
a hard combinatorial optimization problem for which different EA ap-
proaches are proposed and evaluated. Using two problem instances of
different sizes, it is shown that an EA that directly encodes trees and
uses ad-hoc operators performs better than several decoder-based EAs,
but does not scale well with the problem size. A greedy-decoder EA pro-
vides the overall best results, achieving near 100%-success at a lower
computational cost than the remaining approaches.

1 Introduction

The inference of phylogenetic trees is one of the most important and challenging
tasks in Systematic Biology. Such trees are used to represent the evolutionary
history of a collection of n organisms (or taxa) from their molecular sequence
data, or from other form of dissimilarity information. An accurate estimation of
this evolutionary history is a very useful tool in many areas of Biology, such as
multiple sequence alignment [4], or molecular epidemiological studies of viruses
[11] among others.

The Phylogeny Problem can then be formulated as finding the phylogenetic
tree that best –under a certain optimality criterion– represents the evolutionary
history of a collection of taxa. Unfortunately, this constitutes a very hard com-
binatorial optimization problem for most optimality criteria. Exact techniques
such as branch-and-bound can be used, but can be computationally unafford-
able for even moderate (say, 30-40 taxa) problem instances. Hence, the use of
heuristic techniques seems appropriate.

We are concerned in this work about the utilization of evolutionary algo-
rithms (EAs) for tackling the Phylogeny Problem. In this sense, we have initially
focused on distance-based measures (Section 2 will provide details about this and
other quality measures, as well as about phylogenetic trees in general). From this

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 720–729, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Inferring Phylogenetic Trees Using Evolutionary Algorithms 721

starting point, several EA approaches –based on the use of different represen-
tations and/or reproductive operators– have been devised and compared. More
precisely, both EAs that directly conduct the search in the space of phyloge-
netic trees, and EAs that use auxiliary search spaces and decoders have been
considered. These EAs are detailed in Section 3. Subsequently, the results of a
thorough empirical comparison are reported in Section 4. We conclude by pre-
senting a summary of our conclusions, and outlining future work in Section 5.

2 A Gentle Introduction to Phylogenetic Trees

Assume we are given some molecular-sequence data for a collection S of n taxa.
A phylogenetic tree T is a tree with exactly n leaves, each one labeled by a
taxon in S. Internal nodes in this tree correspond to hypothetical ancestral
organisms, and edges in T represent ancestry-descent relationships. Taxa in S
are also termed OTUs (operational taxonomic units), while internal nodes are
termed HTU (hypothetical taxonomic units). Thus, a phylogenetic tree models
the evolutionary history of the OTUs, back to their common ancestor (the root
of the tree1). In the following, we will denote OTUs and HTUs with lowercase
letters, and trees with uppercase letters. A LISP-like notation will be used to
represent trees, e.g., (hTU) represents the tree rooted at h, with T and U as
subtrees2, and (o) represents a leaf labeled with o.

The goal of the Phylogeny Problem is finding the phylogenetic tree T that
best resembles the evolutionary history of OTUs in S. For this purpose, it is
clearly necessary to define an optimality criterion. Essentially, such a criterion
(and subsequently an inference method) can fall within two major categories,
sequence-based and distance-based. In sequence-based approaches, each node of
T is assigned a sequence (known for OTUs, and inferred via pairwise alignments
for HTUs). Then, the tree is evaluated using a criterion that –in most situations–
is either maximum likelihood (ML) or maximum parsimony (MP). In the former,
a stochastic model of evolution (e.g., the Jukes-Cantor model) is used in order to
assess the likelihood that the current tree generated the observed data. On the
other hand, an MP criterion specifies that the tree requiring the fewest number
of evolutionary changes to explain the data is preferred.

As to distance-based approaches, they are based on transforming the avail-
able sequence data into an n×n matrix M . This matrix is the only information
used in the subsequent inference process. More precisely, edges in T are assigned
a weight. The basic idea here is that Mij represents the evolutionary distance or
dissimilarity between OTUs i and j. Then, we have an observed distance matrix
M , and an inferred distance matrix M̂ (obtained by making M̂ij = distance from
i to j in T ). The quality of the tree can now be quantified in a variety of ways.
Firstly, it is possible to consider some “distance” measure between M and M̂ ;
1 Biologists often focus on a relaxed model based on unrooted trees as well. In this

work we will concentrate on rooted trees though. See [6,8] for heuristic approaches
to the inference of unrooted trees.

2 Non-binary trees are also possible, but they can be easily reduced to binary ones.



722 Carlos Cotta and Pablo Moscato

usual examples are the STRESS measure (normalized sum of absolute differ-
ences), the L2 metric (least-squares approximation), or the L∞ metric (minimize
maximum absolute difference). Secondly, quality can be directly measured from
T . This is typically the case when edge-weighting has been constrained so as to
have M̂ij ≥ Mij ; in this situation, minimizing the total weight of T is usually
the criterion.

Notice that by taking Mij as the minimum number of evolutionary events
needed to transform i in j, this last approach resembles MP. Actually, distance-
based methods can be generally considered as an intermediate strategy between
ML and MP, exhibiting good performance in practice as well [5]. For these rea-
sons, we have focused in distance-based approaches in this work. To be precise,
we have considered the constraint mentioned above, regarding inferred dissimi-
larities to be greater or equal than observed ones. This is done by forcing M̂ to
be ultrametric (see [14] for details about ultrametricity); very popular when the
molecular-clock hypothesis was in vogue, this condition provides a very good
approximation to the optimal solution under more relaxed assumptions (e.g.,
mere additivity). Furthermore, it has allowed us using exact techniques in order
to estimate the absolute quality of the solutions achieved by the different EAs.

3 Evolutionary Approaches to the Phylogeny Problem

In essence, two main approaches can be considered for tackling the Phylogeny
Problem with EAs. The first one is the direct approach, in which the EA conducts
the search in the space SPh of all possible phylogenetic trees. The second one is
the indirect approach, in which an auxiliary Saux space is used by the EA. In this
latter case, a decoder [7] must be utilized in order to perform the Saux −→ SPh
mapping. Either of these approaches requires defining adequate reproductive
operators and/or representation schemes. These are described below.

3.1 Direct Search in the Phylogenetic-Tree Space

As mentioned above, a direct approach is characterized by performing the search
in the space of all possible phylogenetic trees. Thus, each individual in the EA
population directly represents a feasible tree. For this purpose, any of the en-
coding techniques commonly used in genetic programming (GP) –e.g., LISP-like
expressions, preorder traversals, etc.– can be used. Subsequently, appropriate
operators must be designed to manipulate this representation.

First of all, consider the recombination operator. This operator must take
information pieces from both parents, and combine them to create some off-
spring. Since individuals directly encode trees in this case, these information
pieces naturally emerge in the form of subtrees. Thus, recombination can be ex-
pressed in terms of pruning and grafting subtrees, much like it is typically done
in GP. However, unlike the most classical GP scenario, subtrees cannot be ran-
domly shuffled, since phylogenetic trees are constrained to have n leaves, each
one representing a different OTU. Hence, a slightly different approach must be
considered. To be precise, the recombination operator must take care of remov-



Inferring Phylogenetic Trees Using Evolutionary Algorithms 723

Fig. 1. Functioning of the PDG recombination. A subtree is selected in one of the
parents, and inserted at a random point of the other parent, right after having deleted
duplicates nodes. The root of the tree is marked with a thick node.

ing duplicates elements before attempting to regraft the selected subtree. Let T1
and T2 be the trees being recombined; the whole process would be as follows:

Prune-Delete-Graft Recombination (T1, T2)
1. Select a subtree T from T2.
2. for each OTU o ∈ T do

(a) Find subtree U from T1 such that U = (h(o)U ′) or U = (hU ′(o)).
(b) Replace U by U ′ in T1.

3. Select a random subtree V from T1.
4. Replace V by V ′ = (h′TV ), where h′ is a new HTU.

Figure 1 illustrates the process. This PDG operator has been used by Moila-
nen [10] in the context of a sequence-based parsimony measure.

As to mutation operators, several options are possible. The following ones
have been considered:
– SWAP: two OTUs are selected at random, and their positions are swapped.
– NNI: consider the sequence of leaves L[T ] defined as follows:

L[(hUV )] = L[U ] : L[V ]; L[(o)] = 〈o〉; (1)

where : is the sequence-concatenation operator. Then, this operator swaps
two neighboring leaves in this sequence.

– SCRAMBLE: first, a subtree T ′ is randomly selected from T . Then, its
topology is rearranged at random.



724 Carlos Cotta and Pablo Moscato

All these mutation operators fulfill the previously-mentioned constraint re-
garding the presence of exactly n leaves/OTUs in the tree. Notice also that NNI
can be seen as a particular case of SWAP. The basic idea here is that a small
reordering or nearby leaves (corresponding to closely related species) is more
likely to result in an improvement than a larger reordering (this is the case for
SWAP, that can be considered somewhat disruptive in this sense). In addition to
this, the version of NNI considered in this work checks whether the interchange
provides a better –according to the fitness function– tree-structure, and reverts
the interchange if this were not the case.

3.2 Decoder-Based EAs for the Phylogeny Problem

As an alternative to directly conducting the search in the solution space, a
combination of an auxiliary search space Saux and a decoder D can be used. This
approach is very rich in possibilities, and has several advantages. On one hand, it
usually allows utilizing simpler evolutionary operators, due to the fact that Saux
is often an unconstrained search space (unlike SPh). On the other hand, problem
knowledge can be introduced by means of D. Among the potential drawbacks of
this approach, one can cite the difficulty in some situations for exploring Saux
in a parsimonious way; the use of a decoder can hinder finding an acceptable
notion of locality within Saux.

Basic Setting. The first decoder approach considered resembles in some sense
the ordinal (stack-based) representation of the TSP [9]. In this case, OTUs are as-
sumed to be ordered in some sense. Let S = 〈o1, · · · , on〉 be the ordered sequence
of OTUs3. The auxiliary search space Saux is defined as Saux =

∏n−2
i=1 N2i, where

Nk = {1, · · · , k}. The decoding process of an individual s ∈ Saux is as follows:

Ordinal Decoder(s)
1. Let T = (h(o1)(o2))
2. for each i ∈ [1 : n− 2] do

(a) Let the branches of T be numbered from 1 to 2i. Let branch si join
node h and subtree U .

(b) Replace U by V = (h′(oi+2)U) in T , where h′ is a new HTU.

As it can be seen, in a phylogenetic tree with k leaves, there exist 2k − 1
nodes, and hence 2k− 2 branches. Each element in s indicates in which of these
branches the next OTU in the sequence must be inserted. Thus, the ith element
of s ranges from 1 to 2i. One of the nicest properties of this ordinal representation
is its orthogonality [12]. Plainly, this means that any s is feasible as long as each
si is in its corresponding range. Hence, any positional recombination operator
such as single-point crossover (SPX), or uniform crossover (UX) will produce a
feasible child when applied to feasible parents.
3 In this work, a maxmin sequence [14] has been considered: the two first elements are

those whose distance in M is maximal; each subsequent element oi (i > 2) is the
one for which d(oi) = min{Moi,oj | j < i} is maximal.



Inferring Phylogenetic Trees Using Evolutionary Algorithms 725

One of the weak points of the ordinal decoder presented above can be found
in the use of a fixed sequence: it may be harder to construct good solutions for a
certain problem instance using sequence A than using sequence B. This admits
two possible solutions. First, a smart method for constructing an appropriate
OTU sequence given a certain problem instance could be devised. Alternatively,
the EA can make this sequence evolve, along with the ordinal insertion points.
In this latter case, the search space is S ′aux = Saux×Pn, where Saux is the space
of ordinal sequences described above, and Pn is the space of n-element permuta-
tions. The decoding process would be identical as indicated above, with the sole
difference that the OTU sequence would be taken from s as well. The same con-
siderations regarding the use of standard positional operators are applicable in
this case too. Additionally, it must be noted that recombination can also be done
on the permutation segment of individuals, using any standard permutational
operator for this purpose (e.g., OX, UCX [3], etc.)4.

Using Guidance. The above decoders are essentially blind, i.e., they do not
use any phenotypic information in order to guide the construction process; they
take all the information they need from the decoder input s. It is reasonable
to consider the use of some kind of guidance information though. Two main
possibilities are considered here: using this guidance during the decoding stage,
or when recombining.

Starting with this latter one, note that recombination is given two individuals
s1 and s2; rather than simply mixing information from these two individuals in
order to create the child, it might be useful to get some assessment on the quality
of the partially constructed solution in order to guide the process. A simple way
of doing this is following a greedy approach:

Greedy-Insertion XOver(s1, s2)
1. Let T = (h(o1)(o2))
2. for each i ∈ [1 : n− 2] do

(a) Let the branches of T be numbered from 1 to 2i. Let branch s1
i (resp.

s2
i ) join node h1 and subtree U1 (resp. h2 and U2).

(b) Let T1, T2 = T . Replace U1 by V = (h′(oi+2)U1) in T1. Act analo-
gously with U2 in T2.

(c) Let T=best(T1, T2).

In the above description, the OTU sequence is not necessarily fixed. Actually,
it can be taken from either of the parents, or constructed by recombining (us-
ing a standard operator) the parental sequences. Notice also that a symmetric
approach can be defined, i.e., assuming a certain insertion sequence, and taking
greedy decisions on the structure of the OTU sequence. In this case, the basic
units upon which decisions are taken cannot be single OTUs, since the positional
representation of permutations is not orthogonal. On the contrary, blocks5 must
be considered. Then,
4 The notation O1/O2 will be used to denote that one of {O1,O2} is applied on an

individual, while O1+O2 will denote that both operators are sequentially applied.
5 A block is a compact subsequence of elements such that both parents have the same

elements in this segment, although in a possibly-different order (see [3]).



726 Carlos Cotta and Pablo Moscato

Greedy-Order XOver(o1, o2)
1. Identify block structure in o1, o2. Let B1|2

1 , · · · , B1|2
m be the blocks.

2. Let T1 = (h(o1
1)(o1

2)). Add remaining OTUs in B1
1 (do the same with T2

and B2
1).

3. Let T=best(T1, T2).
4. for each j ∈ [2 : m] do

(a) Let T1 = T ; for each OTU o1
k ∈ B1

j do
• Insert OTU o1

k in branch sk.
(b) Act analogously with T2 and B2

j .
(c) Let T=best(T1, T2).

This version of the recombination operator has the advantage that requires
fewer assessments of partial solutions, since OTUs are inserted in blocks rather
than one at a time. Again, the insertion sequence can be fixed, taken from one
of the parents, or obtained by recombination.

Finally, consider a similar approach to those above, but focused on the de-
coder stage rather than on recombination. In this case, the OTU sequence is
given, but the insertion sequence is not; the decoder is responsible for finding
adequate insertion points for each OTU. The process could be as follows:

Permutational Decoder(〈o1, · · · , on〉)
1. Let T = (h(o1)(o2))
2. for each j ∈ [1 : n− 2] do

(a) for each insertion point i ∈ N2i do
• Let Ti = T . Insert OTU oj+2 in branch i.

(b) Let T=best(T1, · · · , T2i).

Next section will be devoted to provide empirical evidence regarding the
potential usefulness of this and all previous approaches.

4 Empirical Results

The experiments have been done with an elitist generational EA (popsize =
100, pc = .9, pm = 0.01) using linear ranking selection (η = 2.0). No fine
tuning of these standard parameters was attempted. A maximum number of 106

evaluations has been enforced. In order to provide a fair comparison, the internal
assessments of partial solutions performed by some operators and decoders have
been accounted as well.

Two problem instances with 20 and 34 OTUs respectively have been consid-
ered [1,13]. These instances have been obtained by using conditional Kolmogorov
complexity to calculate inter-OTU distances6 [2] from mtDNA sequences. A
branch-and-bound algorithm following [14] has been implemented, so as to know
the exact optimal solutions. While the 20-OTU instance could be solved rather
efficiently (a couple of seconds on a DIGITAL Alpha 400), the 34-OTU instance
revealed itself as much harder to solve; it took about six hours and a half on the
same machine, and more than half a billion subproblems were evaluated.



Inferring Phylogenetic Trees Using Evolutionary Algorithms 727

Table 1. Results for the 20-OTU instance (averaged for 50 runs).

Algorithm best mean ± std.dev. %success #evals
SWAP 8.290368 8.290368 ± 0.000000 100% 246,092

PDG NNI 8.290368 8.290368 ± 0.000000 100% 85,435
SCRAMBLE 8.290368 8.290374 ± 0.000042 98% 146,162
SPX 8.337564 8.497876 ± 0.096093 0% –

Ordinal DPX 8.325214 8.466251 ± 0.081407 0% –
UX 8.345291 8.471477 ± 0.085760 0% –
SPX / OX 8.310436 8.417089 ± 0.066013 0% –
SPX / UCX 8.303018 8.400509 ± 0.047586 0% –
SPX + OX 8.294011 8.413814 ± 0.067423 0% –
SPX + UCX 8.304323 8.409855 ± 0.071146 0% –
DPX / OX 8.305980 8.395530 ± 0.064806 0% –

Adaptive DPX / UCX 8.302258 8.415585 ± 0.072114 0% –
ordinal DPX + OX 8.295929 8.417998 ± 0.064371 0% –

DPX + UCX 8.331137 8.416023 ± 0.061231 0% –
UX / OX 8.295403 8.409900 ± 0.077820 0% –
UX / UCX 8.294327 8.394244 ± 0.059192 0% –
UX + OX 8.305803 8.409900 ± 0.077820 0% –
UX + UCX 8.290684 8.397843 ± 0.057408 0% –
insertion 8.341772 8.481938 ± 0.072921 0% –

Greedy order 8.299083 8.453090 ± 0.088807 0% –
Xover UCX+insertion 8.350527 8.460593 ± 0.078182 0% –

UX+order 8.320109 8.407623 ± 0.052265 0% –
Permutational Decoder 8.290368 8.290368 ± 0.000000 100% 23,370

The results for the 20-OTU instance are shown in Table 1. The %-success col-
umn indicates the number of times the optimal solution is found, and #evals is
the mean number of evaluations required in these successful runs. Notice firstly
the good results provided by the PDG operator; near 100%-success rates are
achieved in combination with any of the mutation operators discussed. While
the absolute goodness of these results can be due to the low difficulty of this
instance, its relative superiority over most decoder-based approaches is still in-
formative. As it can be seen, the ordinal representation does not manage to
find the optimal solution either with SPX, DPX (double-point crossover) or UX.
When the OTU sequence is evolved along with the insertion points, performance
is clearly improved, although no optimal solution is found. The results for the
guided crossover are not satisfactory either. The reason may lie in the high
cost of evaluating partial solutions. Actually, the greedy-order crossover yields
slightly better results, due to the fact that fewer internal evaluations are needed.
Finally, the results for the permutational decoder (using UCX) are the overall
best. Unlike the plain decoding of the previous EAs, the greedy decoding is less
sensitive to the disruptive effect that genotypic recombination can have on the
phenotype. Hence, it manages to find the optimal solution in 100% of the runs,

6 Mij = 1− K(i)−K(i|j)
K(ij)



728 Carlos Cotta and Pablo Moscato

Table 2. Results for the 34-OTU instance (averaged for 50 runs).

Algorithm best mean ± std.dev. %success #evals
SWAP 14.855763 14.860250 ± 0.002611 2% 933,639

PDG NNI 14.855763 14.857864 ± 0.001827 18% 427,468
SCRAMBLE 14.855763 14.858426 ± 0.002104 10% 722,502
SPX 14.959411 15.100436 ± 0.079702 0% –

Ordinal DPX 14.932403 15.141366 ± 0.093397 0% –
UX 14.939449 15.112828 ± 0.089895 0% –
SPX / OX 14.904175 15.032073 ± 0.060582 0% –
SPX / UCX 14.920124 15.034428 ± 0.066467 0% –
SPX + OX 14.930042 15.042107 ± 0.074107 0% –
SPX + UCX 14.905937 15.031634 ± 0.071966 0% –
DPX / OX 14.920697 15.048883 ± 0.080941 0% –

Adaptive DPX / UCX 14.898218 15.042495 ± 0.097559 0% –
ordinal DPX + OX 14.897718 15.016650 ± 0.073133 0% –

DPX + UCX 14.924216 15.043213 ± 0.074294 0% –
UX / OX 14.924170 15.050490 ± 0.072886 0% –
UX / UCX 14.896434 15.044002 ± 0.071149 0% –
UX + OX 14.915946 15.043606 ± 0.077418 0% –
UX + UCX 14.923092 15.035905 ± 0.077034 0% –
insertion 14.954607 15.127468 ± 0.092056 0% –

Greedy order 14.951596 15.080942 ± 0.072010 0% –
XOver UCX+insertion 14.957719 15.107558 ± 0.092509 0% –

UX+order 14.918159 15.031375 ± 0.067859 0% –
Permutational Decoder 14.855763 14.855772 ± 0.000049 96% 397,512

using a lower number of evaluations (including internal calculations) than PDG
with SWAP, NNI, or SCRAMBLE.

The results for the 34-OTU instance (Table 2) are completely consistent with
this analysis. Again, PDG-based EAs perform better than EAs using ordinal de-
coders or greedy crossover. However, their success rate is notably lower here, due
to the higher difficulty of the instance. The performance of the permutational-
decoder EA is only marginally affected though. Optimal solutions are found on a
regular basis (96%-success) at a lower computational cost than EAs using PDG.

5 Conclusions

A number of EAs for solving the Phylogeny Problem have been developed and
compared. An empirical evaluation of these EAs using distance-based measures
has shown that directly evolving phylogenetic trees yields better results than in-
direct approaches using decoders. A notable exception to this rule is provided by
the greedy permutational decoder. This approach consistently provides optimal
solutions at a lower cost than PDG-based EAs. Moreover, these latter EAs suffer
from a scalability problem, exhibiting a clear performance drop when the num-
ber of OTUs increases. This does not seem to be the case for the permutational
greedy decoder, at least for the instance sizes considered in this work.



Inferring Phylogenetic Trees Using Evolutionary Algorithms 729

Future work will try to confirm these results on larger problem instances.
Optimal solutions will not be available in this case, but qualitative assessments
will still be possible. Work is in progress here. The use of different evaluation
measures is also an interesting line for future developments. In this sense, we
plan to test alternative distance-based criteria, as well as maximum-likelihood
approaches.

Acknowledgements
The first author is partially supported by Spanish CICYT under grant TIC1999-
0754-C03. The second author is supported by Brazilian CNPq under Proj.
52.1100/01-1.

References

1. Y. Cao, N. Okada, and M. Hasegawa. Phylogenetic position of guinea pigs revisited.
Molecular Biology and Evolution, 14(4):461–464, 1997.

2. X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and
its application in genome comparisons. Genome Informatics, 10:51–61, 1999.

3. C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop
problems. Evolutionary Computation, 6(1):25–44, 1998.

4. J. Hein. A new method that simultaneously aligns and reconstructs ancestral
sequences for any number of homologous sequences, when the phylogeny is given.
Molecular Biology and Evolution, 6:649–668, 1989.

5. S. Holmes. Phylogenies: An overview. In Halloran and Geisser, editors, Statistics
and Genetics, pages 81–119. Springer-Verlag, New York NY, 1999.

6. D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast converging method for
phylogenetic tree reconstruction. Journal of Computational Biology, 6(3):369–386,
1999.

7. S Koziel and Z. Michalewicz. A decoder-based evolutionary algorithm for con-
strained parameter optimization problems. In T. Bäeck, A.E. Eiben, M. Schoe-
nauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature V – LNCS
1498, pages 231–240. Springer-Verlag, Berlin Heidelberg, 1998.

8. H. Matsuda. Protein phylogenetic inference using maximum likelihood with a
genetic algorithm. In Proceedings of the Pacific Symposium on Biocomputing,
pages 512–523. World Scientific, 1996.

9. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, 1992.

10. A. Moilanen. Searching for the most parsimonious trees with simulated evolution.
Cladistics, 15:39–50, 1999.

11. C.-K. Ong, S. Nee, A. Rambaut, H.-U. Bernard, and P.H. Harvey. Elucidating the
population histories and transmission dynamics of papillomaviruses using phylo-
genetic trees. Journal of Molecular Evolution, 44:199–206, 1997.

12. N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5:183–205, 1991.

13. A. Reyes, C. Gissi, G. Pesole, F.M. Catzeflis, and C. Saccone. Where do rodents
fit? Evidence from the complete genome of Sciurus vulgaris. Molecular Biology and
Evolution, 17(6):979–983, 2000.

14. Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Approximation and exact
algorithms for constructing minimum ultrametric trees from distance matrices.
Journal of Combinatorial Optimization, 3(2):199–211, 1999.



Towards a More Efficient Evolutionary Induction
of Bayesian Networks

Carlos Cotta1 and Jorge Muruzábal2

1 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain

ccottap@lcc.uma.es
2 Grupo de Estad́ıstica y Ciencias de la Decisión, ESCET

University Rey Juan Carlos, 28933 - Móstoles, Spain
j.muruzabal@escet.urjc.es

Abstract. Bayesian networks (BNs) constitute a useful tool to model
the joint distribution of a set of random variables of interest. This paper
is concerned with the network induction problem. We propose a number
of hybrid recombination operators for extracting BNs from data. These
hybrid operators make use of phenotypic information in order to guide
the processing of information during recombination. The performance of
these new operators is analyzed with respect to that of their genotypic
counterparts. It is shown that these hybrid operators provide notably
improved and rather robust results. Some remarks on the future of the
area are also laid out.

1 Introduction

A Bayesian Network (BN) is a graphical model postulating a joint distribution
for a target set of random variables. One of the main advantageous features of
this model is the fact that it provides a neat separation between qualitative and
quantitative aspects of this distribution. On one hand, the qualitative aspects are
given by the underlying graphical structure, a Directed Acyclic Graph (DAG) G.
On the other hand, quantitative aspects are provided by the set of probabilities
attached to this DAG, say θ = θ(G).

Two well-defined problems can be identified within this context: the net-
work induction problem (learning an appropriate BN model), and the inference
problem (determining the predictive conditional distribution at some variable
of interest given a BN model and the values taken by certain other variables).
While the latter arises when a BN has already been identified and is to be de-
ployed in a given application, the former appears as a previous step. The focus
of this work is precisely on this induction problem.

The main issue in the induction problem is learning the structure or DAG G
(a variety of methods can be used to learn the probabilities θ). This turns out
to be NP -hard [5], and hence the use of heuristic algorithms is in order [12]. In
this sense, evolutionary algorithms [2] (EAs) emerge as interesting candidates
for this task. Here we concentrate on the use of EAs for BN induction. More
precisely, we explore in detail the role of recombination for this purpose.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 730–739, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Towards a More Efficient Evolutionary Induction of Bayesian Networks 731

The organization of the paper is as follows. Section 2 presents details of the
BN framework and lays out the basic learning problem addressed later. Section
3 introduces the new operators and Section 4 reviews the empirical evidence.
Finally, Section 5 closes with some discussion and prospects for future research.

2 Background

This section provides basic ideas and notational details about both BNs and some
scoring metrics used for evaluation purposes. A brief overview of EA approaches
for evolving DAGs is provided too.

2.1 Bayesian Networks

As mentioned above, a BN is a tuple (G,θ), where G is a DAG and θ = θ(G)
is a set of probability distributions attached to nodes in G. The DAG specifies
a number of links or arcs among variables or nodes. If we denote the whole
set of variables as X = {X1, X2, ..., Xn}, each variable Xj has a set of parents
denoted by Πj = {Xi ∈ X | {Xi → Xj} ∈ G}. Then, the DAG G represents the
(skeleton) joint distribution P (X) =

∏n
i=1 P (Xi | Πi). Note that at least one of

the Πi is empty; we talk of root nodes in this case.
A standard BN model arises when data are assumed to follow independent

Multinomial distributions, that is, P (Xi = k | Πi = j) = θijk, where j = 1, ..., qi;
k = 1, ..., ri; ri is the number of distinct values that Xi can assume and qi is
the number of different configurations that Πi can present. Hence, θ = {θijk}
collects all parameters in G and we have

∑
k θijk = 1 for all i and j.

Given a DAG G and a data matrix D with n columns and an arbitrary
number of exchangeable rows (N), the likelihood of the network probabilities
θ is given by the double product of the above Multinomials: P (D|G,θ) =∏n
i=1
∏qi
j=1

∏ri
k=1 θ

Nijk
ijk , where Nijk is the absolute frequency of value k in Xi

when its parent configuration Πi assumes state j. Given maximum likelihood
estimators (MLE) θ̂ = θ̂(G,D) of θ, P (D|G, θ̂) can serve as a rudimentary
scoring metric. We nevertheless focus on an alternative Bayesian measure. Con-
sider the marginal likelihood

P (D|G) =
∫
P (D|G,θ)π(θ|G)dθ, (1)

where π(θ|G) is a prior distribution on θ. If this measure is combined with a
prior distribution on DAG structures π(G), the log-posterior

F (G) = log π(G|D) = log π(G) + logP (D|G) (2)

is obtained. We will be using this Bayesian measure F for some particular choices
of π(G) and π(θ|G). To be precise, the former is chosen as π(G) ∝ N−g/2,
where g =

∑n
i=1(ri− 1)qi is the number of free θ parameters in the model. This

choice penalizes complex (i.e., highly dense) DAGs, and is closely related to the



732 Carlos Cotta and Jorge Muruzábal

asymptotic Bayesian Information Criterion [10] or BIC 1. As to the π(θ|G), it
is taken to be the product of independent (conjugate) Dirichlet distributions. In
the case of no missing data and noninformative Dirichlet hyperparameters α, it is
then possible to perform in closed form the integration leading to P (D|G) above.
This key result adds to the computational tractability of the approach and will
be considered here too. The hyperparameters α can be interpreted in terms of
equivalent sample size [12]. The noninformative choice αi = 1

ri
is usually adopted

following theoretical considerations related to likelihood equivalence [11].

2.2 Evolutionary Induction of DAGs

Typically, the EA approach for designing BNs evolves DAG structures which
–when submitted for fitness calculation– are augmented with θ̂ parameters and
fed into a scoring function. The internal representation of DAGs turns out to be
a crucial issue here. In essence, choices regarding this aspect can be classified
within two main categories: direct and indirect.

Direct approaches are those in which the search is conducted over the space of
all possible DAGs, say SDAG. An obvious potential problem in these approaches
is the generation of infeasible solutions (i.e., digraphs with cycles). This can be
avoided in two different ways. On one hand, a precedence order among variables
can be assumed; then, it suffices to evolve the upper triangular portion of the
adjacency matrix of the graph to obtain feasible DAGs (alternatively, closed
operators in SDAG can be defined; we will return to this point below). On the
other hand, a repair function can be used to remove cycles before evaluation.
See [14] for a comparison of both approaches.

As regards indirect approaches, these use an auxiliary space Saux to conduct
the search. Elements from Saux are then fed to a suitable (decoder) algorithm to
obtain the actual BNs they represent. Consider, for example, the search in the
space of n−element permutations [13]; the construction heuristic K2 [7] is subse-
quently used to build the actual BN. This approach has the advantage of filter-
ing out infeasible solutions while it also introduces problem-specific knowledge.
There are some drawbacks though. For example, it may be difficult to design par-
simonious operators for exploring Saux in some situations (the Saux −→ SDAG
mapping can hinder the design of such operators). Also, some good regions of
SDAG may be unreachable by certain decoders.

Direct approaches do not face these hurdles as long as reproductive operators
manipulate meaningful information units, that is, the main idea is to depart from
the classical (purely syntactic) crossover in order to achieve semantically-sound
recombination. This goal can be seen as an upgrading process, and hence the
identification of syntactically-correct information units is still required. In this
sense, a generic analysis of the syntax of these units has been done in [8]. These
authors show that minimal transmission units2 have the following structure:
1 BIC = logP (D|G, θ̂)− g

2 logN
2 Transmission units can be seen as minimal –not necessarily elementary– pieces of

information that have to transmitted as a whole from parents to offspring so as to
ensure feasibility of the latter.



Towards a More Efficient Evolutionary Induction of Bayesian Networks 733

T (Xi � Xj , Φ) = {Xi � Xj}
T (Xi → Xj , Φ) = {Xi → Xj} ∪ {Xr � Xs | C⊕sr = 1} (3)

where Φ is the partially-defined descendant DAG at any intermediate step of
recombination, Xi → Xj (resp. Xi � Xj) represents the decision of including in
(resp. excluding from) Φ the arc from Xi to Xj , C⊕ = C∞Φ XOR C∞Φ∪{Xi→Xj},
and C∞Ψ is the transitive closure of a graph Ψ . The next section shows how the
units in Eq. (3) can be endowed with semantic information.

3 Bayesian Network Recombination

Semantically-aware operators are defined in terms of phenotypic information.
This implies that recombination no longer takes place at the DAG level, but at
the BN level. Two hybrid-operator templates (and phenotypic measures to be
used therein) are discussed below.

3.1 Genetic vs. Allelic Recombination

Any DAG G can be viewed as the composition of a number of basic units ηxij ,
where i, j are nodes and x ∈ {1, 0} indicates whether the corresponding directed
arc is present in G or not. Informally speaking, each ηij is a gene, whereas each
ηxij is an allele for that gene. Two recombination approaches are thus possible.

A first possibility is to focus on individual genes. A recombination operator
following this criterion must process all genes (in any suitable –not necessarily
fixed– order) to construct a valid solution. For each gene, a decision must be
made on whether to use the allele from either the father G or the mother H 3.
While a genotypic operator would make these decisions at random, the use of
phenotypic information is proposed here. More precisely, a Boolean function
β –taking the two parent BNs (G and H) and the partially-built child (Ξ)
as input– determines the value of each gene. The pseudocode of this generic
operator (termed PheGT for ‘phenotypic gene transmission’) is as follows:

1. for i ∈ {1..n} do ΠΞ
i ← ∅

2. for i ∈ {1..n} do Υi ← (ΠG
i ∪ΠH

i )
3. while ∃Υj �= ∅ do

(a) Pick Xi ∈ Υj
(b) Υj ← Υj \ {Xi}
(c) if β(ηij ,G,H, Ξ) then

i. ΠΞ
j ← ΠΞ

j ∪ {Xi}
ii. for [Xk � Xs] ∈ T (Xi → Xj , Ξ) do Υs ←− Υs \ {Xk}

3 Extensions to multiparent recombination are straightforward.



734 Carlos Cotta and Jorge Muruzábal

A different template arises when the emphasis is put on individual alleles. In
this case, all η1

ij alleles taken from either parent are put on a common bag. Then,
the operator iteratively decides which alleles are extracted and injected (together
with the corresponding transmission unit) into the child. The operator may
decide to terminate transmission at any point along the process; all unspecified
genes are given the default value η0

ij in this case. Phenotypic information can be
used here for both deciding the order in which alleles are picked (using a selection
function σ), and for determining when to stop (using a Boolean function τ). The
corresponding template of this operator (termed PheAT for ‘phenotypic allele
transmission’) is as follows:

1. for i ∈ {1..n} do ΠΞ
i ← ∅

2. Υ ←− 〈η1
ij | Xi ∈ ΠG

j ∪ΠH
j 〉

3. while ¬τ(Υ,Ξ) do
(a) η1

ij ← σ(Υ,Ξ)
(b) Υ ← Υ \ {η1

ij}
(c) ΠΞ

j ← ΠΞ
j ∪ {Xi}

(d) for [Xk � Xs] ∈ T (Xi → Xj , Ξ) do Υ ← Υ \ {η1
ks}

Some possible instantiations of the above templates (β for PheGT; σ and τ
for PheAT) are discussed next.

3.2 Phenotypic Measures

The mutual information MI(Xj , Xi) criterion has often been the choice for mea-
suring the merit of single alleles η1

ij [16]. However, this measure is known to have
some limitations due to its myopic nature [9]. The updated MI measure, namely
the Conditional Mutual Information measure [9]

CMI(Xj , Xi || Πj \ {Xi}) =
∑

P (Πj \ {Xi})
∑

P (Xj , Xi | Πj \ {Xi})

log
P (Xj , Xi | Πj \ {Xi})

P (Xj | Πj \ {Xi})P (Xi | Πj \ {Xi}) (4)

reflects the strength of the association between Xj and Xi once the effect of
Πj \ {Xi} is taken into account. While this CMI measure deserves further
attention, in this work we have decided to explore a somewhat simpler but
nonetheless interesting variant thereof. Specifically, given that Xi ∈ Πj in either
parent, we consider the grand average

µij =
ri
rjqj

∑
V ar(Xi, y, w), (5)

where the sum ranges across both the qj
ri

different values w that Πj \ {Xi} can
take and the rj different values y that Xj can take. The inner term V ar(Xi, y, w)
is defined as the variance of the probabilities P (Xj = y | Xi = z,Πj \{Xi} = w)
across the ri different values z that Xi can take. These probabilities are of course
nothing but P (Xj = y | Πj = (z, w)) = θj(z,w)y with our earlier notation. As



Towards a More Efficient Evolutionary Induction of Bayesian Networks 735

usual, these theoretical µij are replaced in practice by their MLE µ̂ij based on
θ̂. If for some (y, w) the estimate of V ar(Xi, y, w) is close to 0, we conclude that
any Xi = z adds nothing new to what w already tells us about y. It is easy
to see that Eq. (4) is also close to 0 in this case. Conversely, if V ar(Xi, y, w) is
relatively large, then it does matter what Xi has to say in that situation, so we
would tend to use both Xi and Πj \{Xi} when predicting Xj (in this particular
DAG and in general – recall that there is no explicit conservation law for the
Π ′js from parents to children).

This µ measure can be used within the operator templates presented earlier.
We begin with β (central in PheGT). According to Eq. (5), µij is always in [0,
0.25]. Thus, a first option is to use µ′ij = 4µij as our transmission probability:
β(ηij , ·) ≡ URand(0, 1) < µ′ij . Since this can be a rather demanding criterion
for arc transmission, we also consider the more relaxed µ′′ij = 2√µij .

As regards PheAT, an allele-selection function σ is required. This admits a
direct instantiation since we can always pick the allele with the highest µij value
(no rescaling required here). A simple (genotypic) criterion has been chosen in
turn for the termination function τ . Specifically, a random number is first drawn
from a Binomial(ν,φ) distribution, where φ = 1/2 and ν/2 approximates the
parents’ mean number of arcs, and arc transmission is terminated as soon as the
child reaches the desired number of arcs (or no transmittable arc remains). With
this choice, we can compare PheAT to a pure genotypic version (picking alleles
at random).

4 Experimental Results

We have tested a steady-state EA (popsize = 100, maxevals = 15000, crossover
rate pX = .9, mutation rate pm = 1/n2), using tournament selection (tourna-
ment size = 3). No fine tuning of these parameters was attempted. The initial
population is obtained by generating DAGs at random4. The goal is to minimize
the fitness function −F (G) = − logP (D|G) + g

2 logN , see Eq. (2) above.
Two networks have been chosen to benchmark the proposed approach: the

ALARM network, a 37-variable network for monitoring patients in the intensive
care unit [3], and the INSURANCE network, a 27-variable BN for evaluating
car insurance risks [4]. However, due to space constraints, we concentrate here
on the former (similar qualitative results have been obtained with the latter).
Training sets of N = 2, 000 examples were simulated from the ALARM network.

We have tried both the phenotypic (PheGT and PheAT) as well as the geno-
typic (GT and AT) operators. Two variants of each operator have been consid-
ered in turn: respectful and non-respectful. The property of respect [15] refers
in this case to the initial transmission of all arcs shared by the parent DAGs.
Since acyclicity is enforced at all times, inclusion of (some of) these arcs may
be impossible later5. Hence, this initial transmission introduces an important
4 The size of the sets Πj is limited by qj < 211.
5 For example consider DAGs G and H such that {Xi → Xj , Xj → Xk} ∈ G, and
{Xk → Xi, Xi → Xj} ∈ H. If arcs {Xj → Xk, Xk → Xi} are transmitted to the
child, it will be impossible to transmit the common arc Xi → Xj as well.



736 Carlos Cotta and Jorge Muruzábal

Table 1. Results of the different crossover operators on the ALARM network (averaged
for 10 runs).

−F ∗ − logP (D|G)
Operator best mean ± std.dev best mean ± std.dev.

GT 28718.18 29888.03 ± 584.18 26931.97 28045.57 ± 631.24
AT 29470.42 29901.69 ± 311.24 27338.98 28085.83 ± 382.90

PheGT 29314.62 30038.57 ± 528.11 27646.22 28614.16 ± 567.53
PheAT 25596.55 26115.35 ± 469.76 24106.94 24726.66 ± 534.44
GTR 24290.02 24807.84 ± 328.75 22617.82 23111.70 ± 285.17
ATR 24490.63 24896.07 ± 269.84 22806.67 23139.50 ± 224.46

PheGTR 23929.07 24493.83 ± 317.99 22291.76 22891.72 ± 368.90
PheATR 23861.68 24430.92 ± 379.92 22216.06 22729.01 ± 299.41
PheGTR2 23944.63 24245.57 ± 149.02 22422.18 22671.80 ± 170.73

HC 24528.41 24732.48 ± 168.53 22907.42 23000.66 ± 86.04
ALARM 24922.33 22987.90

Table 2. Structural properties of the networks evolved by the different crossover op-
erators for the ALARM benchmark (averaged for 10 runs).

#parameters BIC
Operator min mean ± std.dev. max best mean ± std.dev.

GT 415 484.8 ± 65.29 659 28613.96 29779.14 ± 583.73
AT 375 477.8 ± 81.59 629 29372.47 29795.73 ± 308.49

PheGT 266 374.8 ± 62.55 488 29210.28 29946.81 ± 530.89
PheAT 307 365.4 ± 58.89 507 25511.70 26032.53 ± 466.78
GTR 376 446.3 ± 38.17 505 24194.88 24708.69 ± 324.30
ATR 425 462.2 ± 30.74 536 24396.27 24796.51 ± 266.89

PheGTR 386 429.2 ± 27.65 483 23842.55 24433.58 ± 329.83
PheATR 387 451.2 ± 44.28 514 23730.24 24350.72 ± 418.22
PheGTR2 381 414.1 ± 20.78 441 23859.39 24155.89 ± 147.98

HC 403 455.7 ± 37.12 518 24434.77 24635.45 ± 164.56
ALARM 509 24049.43

qualitative change in behavior. As regards the µ′ij vs. µ′′ij choice in PheGT, we
consider only the respectful variant and mark the latter option with a subscript.
For comparative purposes, a hill climbing (HC) algorithm has also been tested.
This HC performs single-arc insertions and deletions and has been run for the
same number of evaluations as the EAs (re-start was performed each time stag-
nation was reached). Table 1 shows the results.

A quick inspection of these results leads to several conclusions of interest.
Note first that the introduction of respect yields a substantial improvement in all
performance measures. It can also be seen that the phenotypic operators clearly
outperform6 their genotypic counterparts (thus confirming the usefulness of the
phenotypic approach), whereas the HC algorithm lies somewhere in between.

6 Significantly, using a standard (two-sample) t-test. The same holds when using a
test set different from the training set, so as to evaluate overfitting.



Towards a More Efficient Evolutionary Induction of Bayesian Networks 737

Additionally, the networks provided by PheAT and PheGT are definitely better
(in terms of the selected measures) than the original network. This feature is due
to the small size of the training set and indicates that our best operators achieve
some refinement in the BNs they produce. Finally, the non-linear mapping lead-
ing to µ′′ij in PheGTR2 provides the best overall results. Clearly, this option boosts
the ability of PheGT for exploring and finding improved structures.

The structural properties of the evolved BNs are consistent with the analysis
above. Table 2 shows the total number of θ parameters (g) as well as the BIC
measure discussed earlier. It can be seen that the networks provided by AT and
PheAT are slightly more complex on average than those produced by GT and
PheGT, whereas all of them tend to be simpler than the true network. Note
also that the phenotypic crossover operators manage to produce networks of
similar BIC than the original ALARM network; moreover, in some cases they
interestingly provide even lower values.

5 Summary and the Likely Future

We have described and evaluated several new recombination operators for evolv-
ing BNs. These operators are based on phenotypic information and thus depart
from previously proposed genotypic crossover and phenotypic mutation. It has
been shown that our phenotypic variants produce satisfactory results in problems
of moderate complexity. In this sense, the observance of the property of respect
has revealed itself as a crucial factor for the performance of these operators.

Perhaps the most challenging line of research in the wider BN induction
problem refers to the possibility of performing the search over the space of
BN equivalence classes, say SEq (rather than SDAG as above). Two BNs are
(Markov) equivalent if they encode the same statistical model, that is, the same
set of independence and conditional independence statements. Let [G] denote
the equivalence class of a DAG G. Given training data generated by G, many
DAG-based algorithms use scoring measures that indeed score equally all mem-
bers of [G]. Hence, all that can be reasonably asked in this case is to reach some
DAG in [G]: these algorithms can not be expected to reconstruct G exactly.
Note that the marginal likelihood P (D|G) in Eq. (1) is one of such metrics, yet
our fitness measure F (G) –dependent also on g– is not. It is still interesting to
imagine how such an alternative search process could be carried out by an EA
similar to the above. For one thing, search strategies that spend most of their
time within the same equivalence class would seem rather inefficient (since they
inadvertedly keep proposing the same model). We conclude by briefly providing
some preliminary insights on this matter.

It turns out that equivalence classes can be compactly represented by (cer-
tain class of) partially directed acyclic graphs or PDAGs [1,6]. PDAGs include
directed as well as undirected arcs. Chickering [6] provides an algorithm that
takes a given DAG G and outputs the PDAG Ḡ that uniquely represents its
equivalence class [G]. Since Ḡ and G have the same connectivity pattern (ig-
noring directionality), all undirected arcs in Ḡ correspond to reversible arcs in



738 Carlos Cotta and Jorge Muruzábal

LVFAILURE

HISTORYLVEDVOLUME STROKEVOLUME

HYPOVOLEMIA

CVPPCWP CO

ERRLOWOUTPUT

HRBP

INTUBATION

VENTLUNG

VENTALV

SHUNT

MINVOL

PRESS

KINKEDTUBE

DISCONNECT

VENTTUBE

MINVOLSET

VENTMACH

EXPCO2

ARTCO2PVSAT

CATECHOL

INSUFFANESTH

FIO2

SAO2

PULMEMBOLUS

PAP

ANAPHYLAXIS

TPR

BP

HR

HREKGHRSAT

ERRCAUTER

Fig. 1. The ALARM network. The reversible arcs are: MINVOLSET→VENTMACH,
PULMEMBOLUS→PAP, ANAPHYLAXIS→TPR and LVFAILURE→HISTORY. We
can visualize the key PDAG representing [ALARM] by making these arcs undirected.

G, whereas all directed arcs in Ḡ are compelled : they show up throughtout [G].
A reasonable assessment of BN quality would require correct directionality for
compelled arcs but just connectivity for reversible arcs. In the ALARM network,
for example, we find 4 reversible and 42 compelled arcs, see Figure 1.

To conclude, consider now potential mutation and crossover operators for
some parent PDAGs Ḡ and H̄. A first issue refers to PDAG validity : not all
PDAGs represent equivalence classes. Chickering [6] presents various operators
designed to modify a given Ḡ so that the resulting PDAG effectively represents
a different equivalence class. For example, both directed and undirected arcs
can be added or deleted (compelled arcs can sometimes be reversed also). The
familiar mutation operators found in the evolutionary DAG arena (e.g., [16]) can
thus be extended along this way.

As regards crossover, an obvious approach would randomly instantiate Ḡ
and H̄ so as to obtain DAGs G and H from which phenotypic measures could
be derived as above. The main challenge remains about how to meaningfully
incorporate this DAG-based information when defining the offspring K̄ derived
from Ḡ and H̄. We are currently exploring some ideas in this direction.

Acknowledgement

The authors are partially supported by grants TIC99-0754-C03-03 and TIC2001-
0175-C03-03 from the Spanish CICYT agency. We appreciate the assistance of
David Chickering in running his LABEL-EDGES algorithm.



Towards a More Efficient Evolutionary Induction of Bayesian Networks 739

References

1. S.A. Andersson, D. Madigan, and M.D. Perlman. A characterization of markov
equivalence classes for acyclic digraphs. Annals of Statistics, 25:505–541, 1997.

2. Th. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation.
Oxford University Press, New York NY, 1997.

3. I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARM
monitoring system: A case study with two probabilistic inference techniques for
belief networks. In J. Hunter, J. Cookson, and J. Wyatt, editors, Proceedings
of the Second European Conference on Artificial Intelligence and Medicine, pages
247–256, Berlin, 1989. Springer-Verlag.

4. J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29:213–244, 1997.

5. D.M. Chickering, D. Geiger, and D. Heckermann. Learning bayesian networks is
NP-complete. In D. Fisher and H.-J. Lenz, editors, Learning from data: AI and
Statistics V, pages 121–130, New York NY, 1996. Springer-Verlag.

6. D.M. Chickering. Learning equivalence classes of bayesian-network structures. Sub-
mitted manuscript, 2001.

7. G. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347, 1992.

8. C. Cotta and J.M. Troya. Analyzing directed acyclic graph recombination. In
B. Reusch, editor, Computational Intelligence: Theory and Applications, volume
2206 of Lecture Notes in Computer Science, pages 739–748. Springer-Verlag, Berlin
Heidelberg, 2001.

9. N. Friedman, I. Nachman, and D. Pe’er. Learning bayesian network structures from
massive datasets: The sparse candidate algorithm. In H. Dubios and K. Laskey,
editors, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intel-
ligence, pages 206–215, San Francisco CA, 1999. Morgan Kaufmann.

10. D. Geiger, D. Heckerman, and C. Meek. Asymptotic model selection for directed
networks with hidden variables. In E. Horvitz and F.V. Jensen, editors, Proceedings
of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence, pages
283–290, San Francisco CA, 1996. Morgan Kaufmann.

11. D. Heckerman, D. Geiger, and D.M. Chickering. Learning bayesian networks: the
combination of knowledge and statistical data. Machine Learning, 20(3):197–243,
1995.

12. D. Heckerman. A tutorial on learning with bayesian networks. In M.I. Jordan,
editor, Learning in Graphical Models, pages 301–354. Kluwer, Dordrecht, 1998.

13. P. Larrañaga, C.M.H. Kuijpers, R.H. Murga, and Y. Yurramendi. Learning
bayesian network structures by searching for the best ordering with genetic al-
gorithms. IEEE Transactions on Systems, Man and Cybernetics, 26(4):487–493,
1996.

14. P. Larrañaga, M. Poza, Y. Yurramendi, R.H. Murga, and C.M. H. Kuijpers. Struc-
ture learning of bayesian networks by genetic algorithms: A performance analysis
of control parameters. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 10(9):912–926, 1996.

15. N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5:183–205, 1991.

16. M.L. Wong, W. Lam, and K.S. Leung. Using evolutionary programming and min-
imum description length principle for data mining of bayesian networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(2):174–178, 1999.



Robust Multiscale Affine 2D-Image Registration
through Evolutionary Strategies

Héctor Fernando Gómez Garćıa1, Arturo González Vega1,
Arturo Hernández Aguirre1, José Luis Marroqúın Zaleta1,

and Carlos Coello Coello2

1 Center for Research in Mathematics, Department of Computer Science
Guanajuato, Gto. 36240, Mexico

{hector,gonzart,artha,jlm}@cimat.mx
2 CINVESTAV-IPN Sección de Computación, México, D.F. 07300, Mexico

ccoello@cs.cinvestav.mx

Abstract. We propose a robust methodology based on multiscale anal-
ysis, affine transforms, and evolutionary strategies for solving the image
registration problem. The approach is found robust for the affine regis-
tration of medical images.

1 Introduction

The goal of image registration is to find the best correspondence between images
of the same scene. The intuitive approach to this problem is to find “relevant
features” on the images that can be used to bring them into correspondence.
As noted in [5], finding relevant features is one of three main components of
any image registration problem; the second is similarity metric, and the third is
search space and strategy. Our approach to image registration can be described
around these components as follows: 1) feature space is not created, nor induced
or searched; images are sampled and a few points are used for matching. 2) It uses
a metric based on pixel intensity to measure image correspondence, and 3) the
search space is kept small by subsampling the images whereas the optimization
mechanism is implemented through evolutionary strategies.

2 The Image Registration Problem

For the sake of sufficiency of the article we describe the registration problem
(defined elsewhere in the literature). Assume two images I1(x, y) and I2(x, y) are
available from the same object but the object changes position from one to other.
The images are 2-dimensional arrays with some intensity value at every pixel
position (x, y). The image registration problem is to find the mapping between
two images I1 and I2 that gives the best correspondence. Equation 1

I2(x, y) = I1(f(x, y)) (1)

is the formal registration model where function f : I1(x, y)→ I2(x, y) performs
the mapping between images. Approximations to f can be constructed by some

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 740–748, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Robust Multiscale Affine 2D-Image Registration 741

transformations: affine and projective amongst several. No transform applies to
all problems thus in choosing a suitable transform it is advisable to consider the
sources of misregistration. They are generally due to sensor noise, sensor type,
and changes in scene conditions [8]. This paper describes an image-to-image
registration technique without use of any knowledge about the sensors. Images
are taken with the same instrument but (simulated) from different positions, thus
the only source of misregistration is related to changes in scene conditions. Note
that the image registration problem is clearly a function approximation one. That
is, f is unknown but it will be approximated through affine transformations.

2.1 Affine Transforms

An affine transform is a linear transform composed of the following geometric
transformations: translation, rotation, scaling, stretching, and shearing [7]. As
noted affine transforms are sound basis for our mapping function approximation
problem since the source of misregistration can be tackled as follows: distortions
due to different sensor orientation are corrected by translation and rotation,
changes in altitude are corrected by scaling, and stretching and shearing correct
distortions due to changes in the viewing angle [5]. A useful subset of affine
transform that combines rotation and translation is called rigid-body transform.
In Equation 2, (x2, y2) is the transformed coordinate (x1, y1) after translations
(tx, ty), rotation by angle θ, and scaling by factor s (an affine transform is only
linear when translation is zero [5]).[

x2
y2

]
=
[
tx
ty

]
+ s

[
cos θ −sin θ
sin θ cos θ

] [
x1
y1

]
(2)

The general 2D affine transformation (the basis of our approach) is expressed

as shown in Equation 3. The matrix
[
a1,1 a1,2
a2,1 a2,2

]
accounts for rotation, scaling,

stretching, and shearing.[
x2
y2

]
=
[
a1,3
a2,3

]
+
[
a1,1 a1,2
a2,1 a2,2

] [
x1
y1

]
(3)

Hence we should understand the affine registration problem as the problem of
finding the parameter set {a1,1, a1,2, a1,3, a2,1, a2,2, a2,3} for the affine transform
that best mimics the function f : I1(x, y)→ I2(x, y). Provided function approx-
imation is sound we still need to address the question of how well two images
match. The similarity measure used affects the matching quality. One popular
similarity measures is normalized cross-correlation [14]; since its computation is
expensive in this paper we use a simpler and reliable well known approach: the
sum of absolute difference of pixel intensities.

3 Related Work

Image registration has been approached from a large variety of techniques, we
should only mention in this section those articles closely related to this arti-
cle. The work of Fitzpatrick and Grefenstette [6] is one of the first works on



742 Héctor Fernando Gómez Garćıa et al.

256x256

64x64

32x32

16x16

Filter and Subsample

Filter and Subsample

Filter and Subsample

Filter and Subsample

128x128

Registration

registration
from previous
uses Population
Next registration

Sequence

Initial Popultation

Fig. 1. Multiscale Gaussian pyramid for Image registration

registration of medical images based on Genetic Algorithms. Brown [5] noted
that probabilistic methods are more suitable for registration and segmentation
of medical images, thus less than 7% of the methods (95) accounted by Maintz
[11] use a form of evolutionary algorithm as optimization tool. Ankenbrandt and
Buckles [1] use genetic algorithms for scene recognition, Bhanu and Sungkee
[4] describe several methods based on evolutionary techniques for image seg-
mentation. Roberts and Howard [12] use genetic programming for orientation
detection, Ross et. al. [13] also use genetic programming but for edge detection;
Bhandarkar [3] recently compared several techniques for image segmentation us-
ing evolutionary computation. Louchet [10] applied evolutionary strategies to
stereovision.

4 Multiscale Representation

A multiscale representation, also called Gaussian pyramid, is a set of images
generated by the successive application of smoothing and subsampling operations
over a source image of dimensionality d. At each step the new image contains
only 1

2d pixels of the previous image [9]. A typical multiscale pyramid is shown in
Figure 1. The successive application of smoothing and subsampling operations
helps to eliminate unnecessary details while keeping important features. These
features are very important for the first iteration of our method at the lowest
level of resolution (bottom of pyramid). Inherent to multiscaling is the reduction
in the size of the image, a property that reduced processing time without altering
precision.

5 The Multiscale Affine Image Registration Method

Our approach to image registration is based on a multiscale representation. The
sequential application of smoothing and subsampling operations is performed



Robust Multiscale Affine 2D-Image Registration 743

in a top-down fashion. Then registration is performed bottom-up. The whole
registration process is as follows and it is shown in Figure 1

– Top-Down step. Apply a smoothing and subsampling procedure K times
to both images I1 and I2. A set of K subsampled images is computed and
stored (K of each image). The smoothing procedure (to prevent alising) is
a low-pass filter implemented by image convolution with a Gaussian kernel
(σ = 0.5).

– Bottom-Up step. Register the images at the bottom of the pyramid (lowest
resolution). Initial population is seeded with individuals mutated out of the
identity transform, that is, individuals are mutations of the identity matrix,
and the zero translation vector. Once the (µ + λ)-ES algorithm reaches a
nominal fitness value or number of iterations, the registration process is
repeated but this time using the images at the immediate level above. For
seeding the next initial population the object variables of the best individual
of the previous registration step are mutated. Control variables are generated
anew. At any registration level no more than 256 sampled pixels are used to
compute the fitness value. Notice in Figure 1 the image at the bottom has
only 256 pixels, but the immediate above must be sampled because it has
1024 pixels (although the image itself was derived by the sampling procedure
of the top-down step, it is again sampled to compute the fitness function).

A (µ + λ) Evolutionary Strategy is used for searching and optimization of the
six real variables that control the general affine transform. Crossover operation
for control and object variables is generalized intermediate, mutation is uncor-
related (no rotation angles), in accordance with that version of the algorithm as
described by Bäck [2]. Population size does not change during the process. No
knowledge (landmarks) from the image has to be derived or located during the
process, our method uses only 256 sample points equally spaced and distributed
over the image. Thus, about 0.4 of image pixels are used for registration in our
experiments.

Fitness function is based on the similarity measure “absolute difference of
intensities”, as follows:

fitness =
1

1 + 1
N

∑
{x,y}∈Ω |I1(f(x, y))− I2(x, y)| (4)

Where Ω is the set of sample points, N is the cardinality of Ω (256), and f(x, y)
the required transformation. The fitness function takes values in [0, 1] to repre-
sent [nomatch→ perfectmatch]. Another strategy to create the set Ω is to take
random samples with uniform probability distribution. The set can be generated
anew between 3 and 5 times per level, improving the registration ability of the
algorithm over noisy images. Since an affine transformation AT maps pixel’s in-
teger coordinates of image I2 into real coordinates on image I1, a cubic spline
interpolation procedure IP is used to calculate the proper intensity value of each
transformed coordinate.
An important issue related to the fitness function is the quality of the registra-
tion implied by the fitness value (Equation 4). In Table 1 we show the value of



744 Héctor Fernando Gómez Garćıa et al.

Table 1. Relation fitness function - summation of intensity error

Fitness Value Σ term (256 pixels)
1.0 0.0
.99 2.58
.98 5.22
.97 7.91
.96 10.6
.95 13.4
.94 16.3

the summation term for several fitness function values that are used in our ex-
periments. It is clear that a change of .01 in the fitness value implies a change of
2.58 in the summation term. Since the summation term accounts for 256 pixels
and each pixel intensity lies in the interval [0, 255], a high value of fitness implies
high image matching. Yet, moderate values of fitness also imply good matching.

6 Experiments

After some trials we found that a (100 + 150)-ES finds solutions with aver-
age approximation error no greater than 10−4 (on each objective variable), in
average time of 200 seconds. A (250 + 50)-ES finds solutions with average ap-
proximation error no greater than 10−2, in average time of 30 seconds. For all
experiments reported in the following sections, the population parameters are:
µ = 250, and λ = 50. Since to each objective variable corresponds one control
parameter, an individual is composed by six control variables (Equation 3), and
six objective variables. Control parameters (variance) for matrix coefficients are
σ1,1 = σ1,2 = σ2,1 = σ2,2 ≥ 0.1, and for translation coefficients σ1,3 = σ2,3 ≥ 1.0
Every σ < 5.0 We used a PC computer with Xeon processor running at 1.7
Ghertz with 1 Gbyte of memory; all algorithms are programmed in C++. In the
sequel we describe three experiments.
The goal of the first experiment is to verify the ability of the method to consis-
tently reach the optimum and to measure the error. In the second experiment
we contrast overall convergence. Two of the three test images are known to be
hard to register: a slice of MRI of the human brain, and an angiogram.

6.1 Robustness and Consistency of the Method

This experiment is designed to measure the approximation error on each of
the six parameters. Therefore, a fixed set of affine transformation coefficients
(see Equation 3) is randomly generated and used in all 70 runs. The matrix
coefficients (that imply rotation, scaling and shearing) are: 0.819684, 0.089627,
0.16434, 0.40437 The coefficients denoting translations over the axes are:
25.532335, and 39.6115 For these experiments we used a MRI image of the
brain, as shown in Figure 2.



Robust Multiscale Affine 2D-Image Registration 745

Fig. 2. MRI of brain used in experiment 1

Table 2. Error in transformation parameters by interval

Interval Measure 0.8196 0.0896 0.1643 0.4043 21.5323 39.6115
0.99-1.0 Avg. 0.8194 0.0904 0.1649 0.4049 21.4508 39.4623
0.99-1.0 Std.Dev. 0.0031 0.0041 0.0025 0.0010 0.9496 0.3939
0.98-1.0 Avg. 0.8190 0.0884 0.1660 0.4050 21.7839 36.6115
0.98-1.0 Std.Dev. .0031 .0064 .0038 .0010 1.2821 0.5188
0.97-1.0 Avg. 0.8171 0.0830 0.1694 0.4052 22.9012 38.9512
0.97-1.0 Std.Dev. 0.0045 0.0113 0.0072 0.0010 2.3640 0.8696
0.96-1.0 Avg. 0.8164 0.0825 0.1701 0.4050 23.1073 38.8960
0.96-1.0 Std.Dev. 0.0056 0.0126 0.0079 0.0022 2.7110 0.9956
0.95-1.0 Avg. 0.8154 0.0869 0.1703 0.4038 22.4673 39.1022
0.95-1.0 Std.Dev. 0.0063 0.0261 0.0093 0.0057 4.3408 1.5174
0.94-1.0 Avg. 0.7792 0.0803 0.1886 0.4032 27.9592 37.1533
0.94-1.0 Std.Dev. 0.1547 0.0495 0.0491 0.0167 15.1011 4.6558

In Table 2 we resume the robustness and consistency ability of the method
to reach the highest fitness value (1.0). Out of 70 runs:

– 24 runs reached fitness ≥ 0.99
– 29 runs reached fitness ≥ 0.98
– 44 runs reached fitness ≥ 0.97
– 47 runs reached fitness ≥ 0.96
– 52 runs reached fitness ≥ 0.95
– 63 runs reached fitness ≥ 0.94



746 Héctor Fernando Gómez Garćıa et al.

Table 3. Convergence in 20 random experiments for two techniques

Test image Multiscale Evolutionary Gauss-Newton
MRI-Brain 19/20 11/20
Angiogram 20/20 6/20

Diana 17/20 1/20

Fig. 3. Evolutionary multiscale registration of an angiogram

The rest of the experiments (7) had fitness < 0.94 Information in Table 2 shows
that for fitness value of 0.94 the coefficients begin to deteriorate. To the human
eye this level of error is not apparent, yet the data for that row indicates that the
translation coefficients differ in six pixels (average). Thus, for the experiments
of the next section we take a fitness value of up to 0.95 as the minimum required
to indicate “good registration”.

6.2 Overall Convergence Experiments

In this set of experiments we ran 20 random registrations with each one of the
test images: MRI-brain (Figure 2), Diana (Figure 4), and angiogram (Figure
3), and checked for convergence. As explained before, if fitness reaches 0.95 the
registration is counted as good. The same problems were also registered using
the Gauss-Newton optimization algorithm. In this gradient descent technique we
also used the same procedure and fitness function. Table 3 shows the number of
successful runs (convergence) of each algorithm for every image.



Robust Multiscale Affine 2D-Image Registration 747

Fig. 4. Evolutionary multiscale registration of “Diana”

7 Discussion and Conclusions

From the first set of experiments we have shown our method consistently finds
the solutions with good accuracy. The second set of experiments is a clear proof
of the robustness of the method. The Gauss-Newton based method, as any other
based on gradient descent, is prone to fall in local minima. The evolutionary
approach is a strategy that shares global knowledge among the individuals of
the population, thus convergence to the solution occurs with high probability.

In general our approach contradicts several authors [5] who have found weak
properties in evolutionary methods for image registration.

Future Work. A fitness function based on normalized cross-correlation (and
other approaches) will be studied. Other problem worth of studying is the reg-
istration of images with noise. The combination of non-linear transforms with
evolutionary techniques is a promising approach to image registration.

Acknowledgments

The first two authors acknowledge support from CONACyT through a scholar-
ship to complete the Master in Science program at CIMAT. The third author
acknowledges partial support from CONCyTEG project No. 01-02-202-111 and
CONACyT No. I-39324-A. The fourth author acknowledges partial support from
CONACyT project No. 34575-A. The last author acknowledges support from
CONACyT project No. NSF-CONACyT 32999-A.



748 Héctor Fernando Gómez Garćıa et al.

References

1. C.A. Ankenbrandt, B.P. Buckles, and F.E. Petry. Scene recognition using genetic
algorithms with semantic nets. Pattern Recognition Letters, 11:285–293, 1990.

2. Thomas Back. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

3. S.M. Bhandarkar and H. Zhang. Image segmentation using evolutionary compu-
tation. IEEE Transactions on Evolutionary Computation, 3(1):1–21, April 1999.

4. B. Bhanu and Sungkee Lee. Genetic Learning for Adaptive Image Segmentation.
Kluwer Academic Publishers, Massachusetts, 1994.

5. Lisa G. Brown. A survey of image registration techniques. ACM Computing
Surveys, 24(4):325–376, December 1992.

6. J.M. Fitzpatrick, J.J. Grefenstette, and D. Van Gucht. Image registration by
genetic search. Proceedings of IEEE Southeastern Conference, pages 460–464, 1984.

7. B. Jahne. Digital Image Processing: Concepts, Algorithms, and Scientific Applica-
tions. Springer Verlag, Berlin, 1997.

8. Shang-Hong Lai and B. C. Vemuri. Reliable and efficient computation of optical
flow. International Journal of Computer Vision, 29(2):87–105, 1998.

9. T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Pub-
lishers, Netherlands, 1994.

10. J. Louchet. Using an individual evolution strategy for stereovision. Genetic Pro-
gramming and Evolvable Machines, 2(2):101–109, March 2001.

11. J. Maintz and M. Viergever. A survey of medical image registration. Journal of
Medical Image Analysis, 2(1):1–36, 1998.

12. S.C. Roberts and D. Howard. Genetic programming for image analysis: Orientation
detection. Proceedings of the GECCO Conference 2000, pages 651–657, 2000.

13. B.J. Ross, F. Fueten, and D.Y. Yashkir. Edge detection of petrographic images
using genetic programming. Proceedings of the GECCO Conference 2000, pages
658–665, 2000.

14. J. C. Tilton. Comparison of registration techniques for GOES visible imagery data.
Proceedings of IRW, NASA GSFC, pages 133–136, 1997.



Synthesizing Graphical Models
Employing Explaining Away

Ralf Garionis

University of Dortmund, Department of Computer Science XI
44221 Dortmund, Germany

ralf.garionis@uni-dortmund.de

Abstract Graphical models form a successful probabilistic modeling ap-
proach: They encode relationships among a set of random variables and
provide a representation for the joint probability distribution over these
variables. The advantages of the graphical formalism are its origins in
probability theory and graph theory, the structural modularity favoring
parallel computations, and its visual appeal. In this paper, we discuss a
method for constructing a particular instance of graphical models (the
Helmholtz machine) by using an evolutionary approach. Particularly, we
focus on the explaining away phenomenon difficult to address but poten-
tially improving a graphical model qualitatively. Additionally, we provide
initial simulation results for a case study.

1 Introduction

Analysis and understanding of data typically requires the construction or se-
lection of suitable models explaining the data. In both cases, we have to ask
how to search for a model, and, whether or not a model found is a good model.
When there is a satisfying amount of theory available covering the field the data
is rooted in, answering these questions should not be difficult – this is not the
case we are interested in. Instead, we target on creating graphical models that
provide an explanation of the input data by means of (neural) representations
learned.

For doing so, we will use a neural network architecture, the Helmholtz ma-
chine [1], gaining its probabilistic interpretation from the two graphical models it
is build upon (see section 2). We will address the task of qualitatively specifying
the Helmholtz machine’s graphical models by using an evolutionary approach
tailored to our needs laid out in section 3. Though we are interested in finding
architectures of graphical models explaining our input data, we do not target
on identifying a certain layered graph. Instead, we are especially interested in
less symmetric graphical models involving a phenomenon known as explaining
away [2] (cf. section 1.1). Explaining away has the potential of improving the
quality of probabilistic models at the cost of being difficult to access by means
of explicit modeling. Our novel approach addresses the automatic integration of
explaining away for improving the quality of a graphical model in the context
of unsupervised learning focusing on representational learning, ie transforming

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 749–758, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



750 Ralf Garionis

A B

P(C | A, B)

W

S R

x

y y

y
_

1 2

Fig. 1. Connection structures of graphical models. Left: Standard structure: A and B
are marginally independent, while they are conditionally dependent. Middle: Explain-
ing away – S and R are marginally dependent and conditionally independent. Right:
An implementation of explaining away for the Helmholtz machine by using a dangling
unit ȳ [3] (recognition connections are shown solid, generative connections dashed):
When ȳ learns to use the generative weights of y1 and y2 (since it does not have its
own) it will likely create non-identical connection strengths’ (weights) towards y1 and
y2.

data into neural representations. In section 3.3, we will address how unsuper-
vised learning can find qualitatively and quantitatively good graphical models
in terms of representations learned.

1.1 Graphical Models

Graphical models are based on graphs integrating probabilistic variables as nodes
with the graph’s edges encoding dependencies among these variables [2,4,5,6]
(we will focus on directed acyclic graphs here). This permits graphical models
representing the joint probability distribution over a set of random variables in
a way easily accessible to theoretic concepts as well as to visual imagination.
Well known synonyms for graphical model are, eg, Bayesian networks and belief
networks.

By permitting a solidly founded probabilistic interpretation, graphical mod-
els provide a framework for understanding and designing learning algorithms,
as, for example, the Helmholtz machine’s wake-sleep algorithm [7]. While the
local wake-sleep update-rules appear desirable since they permit a parallel im-
plementation and enjoy as neural learning rules neurobiological plausibility, local
semantics are not mandatory for graphical models – though they emphasize the
models’ character of modularity. They share the aspect of creating complex sys-
tems by combining simple units with neural architectures. The goal of graphical
models trained by unsupervised learning is to build some useful representations
of the input data patterns, targeting to finding the hidden causes of the data or
to model the data density, eg. In case of the Helmholtz machine considered here,
we are interested in finding compact representations, ie representations that are
associated with low coding costs in the sense of the minimum description length
(MDL) framework [8]. Then, useful may address possible applications like data
compression or classification, or studying theories of human perception. Fig-
ure 1 explains the essential tool that probabilistic reasoning in the presence of
uncertainty comes with: inference.



Synthesizing Graphical Models Employing Explaining Away 751

x

y y

R G

x^

Fig. 2. The Helmholtz machine’s two in-
dependent graphical models: The bottom-
up directed graph is part of the recognition
model R, the top-down graph constitutes
the generative modelG.

1.2 Explaining Away

Explaining away [2] refers to a phenomenon emerging when inferring in graphical
models. It allows an explanation of a particular observed event having a low
posterior probability if another explanation for the same observation is preferred
by the observation – ie, the causes compete to explain the observations. For
example, when recognizing the event that the grass is wet (W), this may have
two possible causes: the sprinkler is on (S) or it is raining (R) [9] (fig. 1). Now,
the confirmation of one cause decreases the need to bring up an alternative
explanation, eg, knowing that it rains reduces the posterior probability that the
sprinkler is on. (Note that the cause confirmed first “wins”.)

In case of the coupled graphical models for the recognition and the gener-
ative model of the Helmholtz machine, we can implement this inhibitory effect
by omitting connections within the generative model among units that remain
connected by the recognition model [3] (figure 1, right).

The inhibition between two nodes having the same parent node is an im-
portant effect for graphical models structured as directed acyclic graph, since
they do not permit lateral connections, that is, connections among child nodes
connected to a particular node.

2 The Helmholtz Machine

Designed to form hierarchical representations, the Helmholtz machine [1] is com-
posed of two separate graphical models realizing a forward directed recognition
model and a backward directed generative model (though figure 1 shows only
one hidden layer y; successive units may be added). While learning, each model
is adjusted to improve the likelihood of the observations produced by the other
model. Which, for the case of binary stochastic neurons considered here, is per-
formed for both models in alternate succession by the wake-sleep algorithm [7].

For the simple case of a single layered Helmholtz machine, the generative
model is parameterized by the weights G while the units inside a specific layer
are always assumed to be independent and therefore implement a factorial prob-
ability distribution P

P (y;G) =
∏
i

P (yi;G) =
∏
i

pyii (1− pi)1−yi (1)

P (x|y;G) =
∏
j

P (xj |y;G) =
∏
j

p
xj
j (1− pj)1−xj (2)

with



752 Ralf Garionis

pi = σ(g0
i ) =

1
1 + eg

0
i

; pj = σ(g0
j + gTj · y) (3)

using the standard logistic function σ(·) and naming the bias of neuron i as
g0
i . The generative model synthesizes samples x̂ from the distribution P (x;G)

approximating the true distribution P (x). Since the units of a layer are mutually
independent and only conditionally depend on the preceding layer’s activations
(equation 2), the generative model can be run by traversing the layers in top-
down order starting with the bias neurons and finishing with the input neurons
then fantasizing a sample x̂.

Directed bottom-up, the recognition model takes an input pattern x and cre-
ates a representational vector y exhibiting possible causes that could be respon-
sible for creating x. The recognition model comes with its own set of parameters
R forming another factorial probability distribution Q

Q(y|x;R) =
∏
j

Q(yj |x;R) =
∏
j

q
yj
j (1− qj)1−yj (4)

with qj = σ(r0
j + rTj · x)

assuming mutually independent units within a layer. Though independence of
the yi is a valid assumption here, the generative model does not rely on this as
it permits the use of any vector y (eq. 2). Therefore, Q approximates P .

Focusing on maximum likelihood density estimation, the wake-sleep learning
algorithm attempts to maximize the log probability of the data observed under
the generative model [3]:

logP (x;G) =
∑
y

P (x|y;G) logP (x|y;G) +H
(
P (x|y;G)

)
(5)

=
∑
y

Q(y|x;R) logP (y|x;R) +H
[
Q(y|x;R)

]
+D

[
Q(y|x;R)||P (x|y;G)

]
(6)

with
D(Q||R) = Q log

Q

P
(7)

naming the Kullback Leibler distance measuring the discrepancy between two
distributions and H(·) being the Shannon entropy. According to equation (6), Q
approximates P and becomes identical to the original recognition distribution
for vanishing D(Q||P ).

A maximization of logP (x;G) with respect to G can be achieved by keeping
R fixed and running the recognition model starting with an input pattern x
producing a sample y. Then changing G proportionally to ∆g

∆gij ∝ ∂

∂Gij
logP (x|y;G) = (xj − pj)yi (8)



Synthesizing Graphical Models Employing Explaining Away 753

achieves stochastic gradient ascent in the log probability. This is called the wake
phase. During the sleep phase the generative model predicts activities of the
input units for subsequently adapting R according to

∆rij ∝ ∂

∂Rij
logQ(y|x;G) = (yj − qj)xi (9)

Instead of maximizing the Kullback Leibler distance in equation (6), this pro-
cedure optimizes D(P ||Q) for tractability of computations. This is an approxi-
mation due to the lack of the Kullback Leibler distance’s symmetry D(P ||Q) �=
D(Q||P ) for the benefit of resulting in symmetric learning rules for both models.

Now, wake-sleep learning uses the output of the recognition model as target
for adapting the generative model and the output of the generative model as
reference for the recognition model.

3 Evolving Graphical Models with Explaining Away

The evolution of neural architectures is addressed by a vast amount of literature:
The extensive overview of Yao [10] cites more than 80 references in this area.
Typically, these approaches deal with feedforward networks or recurrent struc-
tures and do not support coupled asymmetric constructions like the Helmholtz
machine with explaining away connections. An adaptation of the various meth-
ods developed to our constraints is mostly not possible in a straightforward way.

Our design limitation is the derivation of the generative model from the recog-
nition model, ie, both connection matrices are symmetric with the generative ma-
trix having particular connections removed being present in the forward-directed
recognition network. Therefore it is more helpful to use a genotype encoding
scheme permitting a direct mapping of the recognition model’s connections into
the generative connection matrix. This makes parametric representations finding
their origins in the work of Harp et al [11] appearing less useful. An evolutionary
algorithm manipulating the genotype representation of the Helmholtz machine
has to learn the relationship between the Helmholtz machine’s two connection
matrices, ie how the the generative connection matrix is derived from the recog-
nition model. A complex mapping between these matrices weakening causality
would take more time for the evolution to discover. Our work presented here is
based on the evolution of context-free grammars introduced by Kitano [12]. The
advantages of Kitano’s suggestions are the compact genotype representation and
the flexible semantics of the connectivity matrix evolved.

3.1 Evolving Structural Semantics of Explaining Away

Kitano coupled a matrix rewriting scheme based on context-free grammars with
a genetic algorithm [14] (GA): While the connectivity matrix of a graph is de-
veloped by the matrix rewriting grammar, the genetic algorithm uses the binary
description of the grammar as chromosomes to evolve. Formally, the matrix
rewriting scheme is closely related to standard context-free grammars: Let the



754 Ralf Garionis

S =
[
B B
A B

]
PN−→



B A B A
A B A B
A B B A
A A A B


 PΣ−→




0 0 1 0 0 0 1 0
1 0 0 1 1 0 0 1
1 0 0 0 1 0 0 0
0 1 1 0 0 1 1 0
1 0 0 0 0 0 1 0
0 1 1 0 1 0 0 1
1 0 1 0 1 0 0 0
0 1 0 1 0 1 1 0




1 2 3

4
5

6

7

8

Fig. 3. Rewriting of the matrix grammar defined by equation (10) and (11). Left:
The start symbol S is rewritten once by PN and then by PΣ for termination. Right:
Helmholtz machine created by the connection matrix shown left – connections with
two arrows are present in recognition and generative model (see text for details).

tuple G = (N,Σ, PN , ΣN , S) define a context-free grammar G, where N is a
finite set (the nonterminal symbols), Σ is the set of terminal symbols {0, 1}4
disjoint from N , PN is a finite subset of N × N4 (the productions), ΣN is the
set of N ×Σ, and S ∈ N4 is the starts symbol.

Obviously, this differs from a classical context-free grammar: For each indi-
vidual of the GA population, the PN are used for a constant number of rewriting
operations creating a string that is rewritten once by the rules from PΣ . Addi-
tionally, the productions define mappings from symbols to 2 × 2 matrices, For
example, suppose the grammar G = (N,Σ, PN , ΣN , S) is defined by:

N = {A,B}, Σ =
{[

1 0
0 1

]
,
[
0 0
1 0

]}
, S =

[
B B
A B

]
(10)

PN =
{
A→

[
A B
A A

]
, B →

[
B A
A B

]}
PΣ =

{
A→

[
1 0
0 1

]
, B →

[
0 0
1 0

]}
(11)

Then, one rewriting of S by PN and a successive rewriting operation per-
formed by PΣ results in the matrix shown in figure 3. Clearly, we have to choose
the number of subsequent applications of PN in advance to get connection ma-
trices of limited size.

For converting the binary matrix gained by the context-free grammar into the
Helmholtz machine’s architecture permitting the implementation of explaining
away, we have used the following approach: The upper triangular matrix of
the connectivity matrix C (created by matrix rewriting) defines the recognition
model, ie each row assigns connections to a particular unit. The input units
correspond to the first m rows of the recognition matrix when considering input
data m bits wide. The generative model’s connections G are initialized with the
transposed recognition matrix. By using elements Cji from the lower triangular
matrix of C we remove connections from G if a connection Cij is present in the
upper triangular matrix:



Synthesizing Graphical Models Employing Explaining Away 755

Gij =

{
0 if Cij = 1 and Cji = 0,
1 otherwise.

(12)

Figure 3 shows an example architecture gained by the matrix on the left side
by applying the semantics described above. Our construction scheme does not
require the specification of output units since these are defined as the Helmholtz
machine’s units without outgoing connections.

3.2 Encoding of Chromosomes

We evolve the context-free grammar as binary representation of the set of non-
terminal symbols PN : each right hand side symbol of a production from PN is
encoded by four integer values. Kitano (as quoted by [15]) originally permitted
the evolution of the left hand side of the productions as well, at the cost of
requiring a repair mechanism when invalid rules were created.

The size of the set PN may be chosen arbitrary, but for avoiding the GA to
generate chromosomes not mappable to phenotypes, we recommend a bijective
mapping between genotypes and phenotypes resulting in alphabet sizes being a
multiple of the number 24 of binary 2× 2 matrices. Contrary to the symbols of
PN , the set of productions PΣ mapping the non-terminals into a maximum of
24 terminals is pre-encoded and not changed during evolution.

3.3 Good Models

In section 3 we described how we search for a good model of data. Still remains
the task of deciding whether or not a model found is good.

The Helmholtz machine’s coding costs (this is the difference of Helmholtz
free energy of the recognition model and the entropy of the generative model),
as minimized by the wake-sleep learning algorithm, is an indicator for a proper
model. A low Helmholtz energy describes the coding complexity of the data in
the sense of the minimum description length framework – given the model struc-
ture used. But the recognition and generative models could encode everything
but relevant aspects of the input data resulting in a low energy measure. As
by definition of the wake-sleep algorithm, a valid recognition model is accom-
panied by a generative model being able to reproduce patterns from the world
of the training data. Therefore, while using the wake-sleep learning algorithm,
we measure its success by the closeness of the patterns the generative model
has dreamed to the original data (note that the Helmholtz machine’s generative
model is activated by the bias and not by some test pattern). But the repro-
duction of patterns similar to those from the world of training patterns is not a
sufficient criteria for a valid model: The generative network may reproduce only
a single pattern. Therefore we compare the distribution of the dreamt patterns
to the distribution of input patterns by calculating the Kullback Leibler distance
D(i||d) =

∑
x∈X d(x) log i(x)

d(x̂) between the distribution of input patterns i(x) and
the distribution of dreamt patterns d(x̂). x̂ indicates a generated pattern having
minimum Hamming distance to pattern x.



756 Ralf Garionis

Fig. 4. Examples from the binary bars training set. Matrices are produces by first
randomly choosing an orientation (horizontal or vertical) with equal probability. Then,
bars of the chosen orientation are randomly created with probability 0.5.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 10 20 30 40 50 60 70 80

Fig. 5. Left: Best evolved individual (Helmholtz machine). Connections that are shared
by recognition and generative models are shown solid, explaining away connections
are drawn dashed. Right: The fitness values used for assessing the evolved Helmholtz
machines are in fact products composed of three factors: a) the coding costs, b) fraction
of patterns created by the generative model having Hamming distance 0 or 1 to one of
the original input patterns, and c) Kullback Leibler distance between input patterns
and patterns fantasized by the generative model.

4 Simulations

Along the framework laid out in the preceding sections, our case study aimed at
finding good (according to section 3.3) Helmholtz machines for learning compact
representations of patterns rooted in a structured world: The training data was
composed of binary input vectors of length 16 [7]. Each vector represents a 4×4
matrix where elements were ”switched on” (ie, set to ”1”) in groups constituting
a bar (see figure 4).

The training was performed by presenting 1000 patterns randomly chosen
from a set of 30 unique patterns (created as described above) and updating the
recognition and generative weights by the wake-sleep algorithm afterwards (using
a learning rate of 0.1 for all units of the network). Learning was completed past
ten weight updates (it is possible to improve training results by increasing the
number of training cycles). For each Helmholtz machine evolved, we checked the
modeling of input data by running the generative model 1000 times activating the
input units creating fantasized patterns. When the trained Helmholtz machine
has captured (ie, successfully learned) the essential structure of the input data,



Synthesizing Graphical Models Employing Explaining Away 757

these fantasized patterns are identical with the original training patterns (fig. 4)
or very similar to these in their structure. We measured the similarity of pattern
sets by the Kullback-Leibler distance (see section 3.3 and figure 5).

The Helmholtz machine’s graphical models were evolved by using a genetic
algorithm employing a binary representation of the context-free grammar (see
section 3.1) having 16 productions PN and PΣ . Each symbol N was represented
by a binary vector {0, 1}4 such that a production PN performing a mapping of
symbols into 2 × 2 matrices of symbols can be encoded by 16 bits resulting in
a total of 256 (16 × 16) bits needed to encode PN . Therefore, our GA used a
“flat” binary vector representation permitting the use of standard crossover and
mutation operators.

The GA’s population size was 15 individuals creating 100 offsprings. Similar
to the (+) selection scheme of a (µ + λ) evolution strategy [16], the sets of
parents (µ individuals) and children (λ individuals) were merged, for then placing
the µ best individuals (according to their fitness values) of the joint set in the
parent population of the next generation. The fitness values for judging about
the quality of an evolved Helmholtz machine were products composed of three
factors (see figure 5). We used a mutation rate of 0.1 while the results did not
depend significantly on the crossover type used (one-point, two-point, uniform).

5 Discussion

In this paper, we have developed a scheme for determining the structure of cou-
pled graphical models by modifying an approach known to support standard
feedforward network architectures. In contrast to this, our scheme permits ex-
plicit addressing of explaining away connections and asymmetric bidirectional
connection structures as used by the Helmholtz machine. While it is simple to
evaluate supervised trained network structures in terms of their quality, this is
much more difficult for networks trained in unsupervised fashion. Here, we have
provided measures for assessing the quality of graphical models that were sub-
ject to unsupervised training, resulting in fitness values permitting us to drive
an evolutionary optimization process.

First experiments revealed that the evolutionary search for models qualified
as “good” according to section 3.3 stabilizes fast (fig. 5, there was no improve-
ment beyond generation 80). The coding costs of 5.1 bits of the models found
are close to the optimum of the log2 30 = 4.9 bits required to encode the 30
training patterns. The best Helmholtz machine as shown in fig. 5 uses 16 con-
nections of the recognition model that are not matched by connections of the
generative model. These are connections needed by explaining away. It is diffi-
cult to judge about the impact of these connections due to the high connectivity
of many network units. We will have to carry out further simulations favoring
more sparsely connected structures for recognizing the influence of explaining
away. Verification of the importance of particular recognition connections could
be performed by matching them by additional generative connections – when
the fitness decreases, the explaining away connections are important. However,



758 Ralf Garionis

the results show, that our scheme successfully creates coupled graphical models
(Helmholtz machines) with asymmetric connection structure and good coding
complexity – further simulations have to show, whether this is the result of the
presence of explaining away.

Acknowledgments

We are grateful to René Hoferichter for software support. The author is with the
Collaborative Research Center “Computational Intelligence” (SFB 531) funded
by the Deutsche Forschungsgemeinschaft (DFG).

References

1. Dayan, P., Hinton, G.E., Zemel, R.S.: The Helmholtz machine. Neural Computa-
tion 7 (1995) 889–904

2. Pearl, J.: Probabilistic Reasining in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA (1988)

3. Dayan, P., Hinton, G.E.: Varieties of Helmholtz machines. Neural Networks 9
(1996) 1385–1403

4. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, Chich-
ester (1990)

5. Lauritzen, S.L.: Graphical Models. Clarendon Press, Oxford (1996)
6. Jordan, M.I., ed.: Learning in Graphical Models. MIT Press, Cambridge, MA

(1999)
7. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for

unsupervised neural networks. Science (1995) 1158–1161
8. Rissanen, J.: Stochastic Complexity in Statistical Inquiry. Volume 15 of Computer

Science. World Scientific, Singapore (1989)
9. Pearl, J.: Embracing causality in default reasoning. Artificial Intelligence 35 (1988)

259–271
10. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87 (1999) 1423–1447
11. Harp, S.A., Samad, T., Guha, A.: Towards the genetic synthesis of neural networks.

In Shaffer, J.D., ed.: Proceedings of the Third International Conference on Genetic
Algorithms (ICGA), San Mateo, CA, Morgan Kaufmann (1989) 360–369

12. Kitano, H.: Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems 4 (1990) 461–476

13. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, MI (1975)

14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading, MA (1989)

15. Siddiqi, A., Lucas, S.: A comparison of matrix rewriting versus direct encoding for
evolving neural networks. In Fogel, D.B., Schwefel, H.P., Bäck, T., Yao, X., eds.:
Proc. Second IEEE World Congress on Computational Intelligence (WCCI’98)
with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC’98), Piscataway,
NJ, IEEE Press (1998) 392–397

16. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1 (1993) 1–23



Constructive Geometric Constraint Solving:
A New Application of Genetic Algorithms

R. Joan-Arinyo1, M.V. Luzón2, and A. Soto1

1 Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Av. Diagonal 647, 8a, E-08028 Barcelona

{robert,tonis}@lsi.upc.es
2 Escuela Superior de Ingenieŕıa Informática

Universidad de Vigo, Av. As Lagoas s/n, E-32004 Ourense
{vluzon@ei.uvigo.es}

Abstract. Geometric problems defined by constraints have an expo-
nential number of solution instances in the number of geometric ele-
ments involved. Generally, the user is only interested in one instance
such that besides fulfilling the geometric constraints, exhibits some ad-
dicional properties. Selecting a solution instance amounts to selecting a
given root everytime the geometric constraint solver needs to compute
the zeros of a multivaluated function. The problem of selecting a given
root is known as the Root Identification Problem.
In this paper we present a new technique to solve the root identification
problem based on an automatic search in the space of solutions performed
by a genetic algorithm. The user specifies the solution of interest by
defining a set of additional constraints on the geometric elements which
drive the search of the genetic algorithm. Some examples illustrate the
performance of the method.

1 Introduction

Geometric problems defined by constraints have an exponential number of so-
lution instances in the number of geometric elements involved. Generally, the
user is only interested in one instance such that besides fulfilling the geometric
constraints, exhibits some additional properties.

Selecting a solution instance amounts to selecting one among a number of
different roots of a nonlinear equation or system of equations. The problem of
selecting a given root was christianized in [4] as the Root Identification Problem.

Several approaches to solve the root identification problem have been re-
ported in the literature. Examples are: selectively moving the geometric elements,
conducting a dialogue with the constraint solver that identifies interactively the
intended solution, and preserving the topology of the sketch input by the user.
For a discussion of these approaches see, for example, references [4,15] and the
references therein.

Adding extra constraints to narrow down the number of possible solutions
of geometric problems seems to be a simple approach. However, this approach

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 759–768, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



760 R. Joan-Arinyo, M.V. Luzón, and A. Soto

P3

P1

P4

P5

d2

d1 P2

r

a1

distance(P2, P3) = d2

distance(P1, P2) = d1

angle(segment(P2, P3), segment(P1, P2)) = a1

on(P3, circle(P4, r))

tangent(segment(P2, P3), circle(P4, r)

tangent(segment(P1, P5), circle(P4, r))

on(P5, circle(P4, r))

Fig. 1. Geometric problem defined by constraints.

has been carefully avoided by the field because the resulting over constrained
problem is NP hard. Moreover, the set of constraints may be contradictory, [4].

Genetic algorithms have been already applied to a number of global opti-
mization problems. See for example [20] and [6] and references therein. In this
paper, for the first time, we apply a genetic algorithm in a new field: Geometric
constraint solving. The goal is to solve the root identification problem which
can be seen as a constrained optimization problem. The technique is based on
an automatic search in the space of solutions performed by a genetic algorithm.
The user specifies the intended solution instance by defining a set of additional
constraints or predicates on the geometric elements which drive the search of
the genetic algorithm. The approach has been implemented and the results are
satisfactory, [15].

The outline of the paper is as follows. In Section 2 we briefly review the
basic concepts of constructive geometric constraint solving. Section 3 is devoted
to the genetic algorithm. As a proof of concept, we present in Section 4 some
experimental results. Finally, Section 5 offers a summary and open questions for
future work.

2 Constructive Geometric Constraint Solving

In two-dimensional constraint-based geometric design, the designer creates a
rough sketch of an object made out of simple geometric elements like points,
lines, circles and arcs of circle. Then the intended exact shape is specified by
annotating the sketch with constraints like distance between two points, distance
from a point to a line, angle between two lines, line-circle tangency and so on. A
geometric constraint solver then checks whether the set of geometric constraints
coherently defines the object and, if so, determines the position of the geometric
elements.

If geometric elements and constraints are like those above, a constraint-based
design can be represented by a set of points along with a set of constraints drawn
from distance between two points, distance from a point to a line, and angle
between two lines, [16]. Figure 1 shows an sketch example of a constraint-based
design.

Many techniques have been reported in the literature that provide powerful
and efficient methods for solving systems of geometric constraints. For example,



Constructive Geometric Constraint Solving 761

analyzer

constraints
sketch and

construction
plan

instance
solution

constructor
values

parameters

constraints
sketch and

constraints
exrtra

values
parameters

selector
genetic

analyzer

Index

constructor

instance
solution

plan
construction

success

failu

Fig. 2. Left) Basic architecture of constructive geometric constraint solvers. Right)
Integrating the genetic algorithm into the solver.

see [5] and references therein for an extensive analysis of work on constraint solv-
ing. Among all the geometric constraint solving techniques, our interest focuses
on the one known as constructive.

Constructive solvers have two major components: the analyzer and the con-
structor. The analyzer symbolically determines whether a geometric problem
defined by constraints is solvable. If the problem is solvable, the output of the
analyzer is a sequence of construction steps, known as the construction plan,
that places each geometric element in such a way that all constraints are satis-
fied. After assigning specific values to the parameters, the constructor interprets
the construction plan and builds an object instance, provided that no numer-
ical incompatibilities arise. Figure 2 left illustrates the main components in a
constructive geometric constraint solver.

The specific construction plan generated by an analyzer depends on the un-
derlying constructive technique and how it is implemented. For example, the
ruler-and-compass constructive approach is a well-known technique based on
the fact that most useful geometric problems are solvable by ruler, compass
and protractor. Figure 3 shows a construction plan for the object of Figure 1,
generated by the ruler-and-compass geometric constraint solver reported in [13].

Function names are self explanatory. For example function adif denotes sub-
tracting the second angle from the first one and asum denotes the addition of



762 R. Joan-Arinyo, M.V. Luzón, and A. Soto

1. P1 = point(0, 0)

2. P2 = point(d1, 0)

3. α1 = direction(P1, P2)

4. α2 = adif(α1, a1)

5. P3 = rc(line(P2, α2), circle(P2, d2), i1)

6. α3 = direction(P2, P3)

7. α4 = asum(α3, π/2)

8. Q1 = rc(line(P2, α4), circle(P2, r), i2)

9. P4 = rc(line(Q1, α3), circle(P3, r), i3)

10. Q2 = midpoint(P1, P4)

11. r1 = distance(P1, Q2)

12. P5 = cc(circle(P4, r), circle(Q2, r1), i4)

Fig. 3. Construction plan for the object in Figure 1.

d1

P1

Q

d2

P2

Q’

Fig. 4. Possible placements of a point.

two angles while rc and cc stand for the intersection of a straight line and a
circle, and the intersection of two circles respectively.

In general, a well constrained geometric constraint problem, [8,12,14], has an
exponential number of solutions. For example, consider a geometric constraint
problem that properly places n points with respect to each other. Assume that
the points can be placed serially, each time determining the next point by two
distances from two known points. In general, each point can be placed in two
different locations corresponding to the intersection points of two circles. See
Figure 4. For n points, therefore, we could have up to 2n−2 solutions.

Possible different locations of geometric elements corresponding to different
roots of systems of nonlinear algebraic equations can be distinguished by enu-
merating the roots with an integer index. For a more formal definition see [7,15].

In what follows, we assume that the set of geometric constraints coherently
defines the object under design, that is, the object is generically well constrained
and that a ruler-and-compass constructive geometric constraint solver like that
reported in [13] is available.

In this solver, intersection operations where circles are involved, rc and cc,
may lead to up to two different intersection points, depending on whether the
second degree equation to be solved has no solution, one or two different solutions
in the real domain. With each rc and cc operation, the solver associates an integer
parameter, ik ∈ {−1, 0, 1}, which identifies whether there is no solution, one or
two different solutions. For details on how to compute ik, the reader is referred
to [11] and [17].

3 Root Identification

First we define the model used to represent solution instances of the geomet-
ric constraint problem. Then we present the genetic algorithm and the genetic
selector.



Constructive Geometric Constraint Solving 763

Procedure GeneticAlgorithm
INPUT
F : Functions in the construction plan.
C : Values actually assigned to the constraints.
R : Set of extra constraints.
ng : Maximum number of generations allowed.

OUTPUT
I : Index selected.

InitializeAtRandom (P)
Evaluate(P, F, C, R)
I = SelectCurrentBestFitting (P)

while not EndCondition (ng, I, R) do
Selection (P)
Crossover (P)
Mutation (P)
ApplyElitism (P, I)
Evaluate(P, F, C, R)
I = SelectCurrentBestFitting (P)
ng = ng − 1

endwhile
return I

EndProcedure

Fig. 5. Genetic algorithm.

3.1 The Solution Instance Genetic Model

We are interested only in solution instances that actually are feasible, that is,
solution instances where no numerical incompatibilities arise in the constructor.
Therefore, we only need to consider integer parameter values ik in {0, 1}, where 0
stands for both one solution or two equal solutions, and 1 stands for two different
solutions.

Let ij denote the integer parameter associated by the solver with the j-
th intersection operation, either rc or cc, occurring in the construction plan.
We define the index associated with the construction plan as the ordered set
I = {i1, . . . , ij , . . . , in}, where n is the total number of rc plus cc intersection
operations in the plan.

A solution instance to the geometric constraint problem is an index I for
which the construction plan is feasible. An intended solution instance to the
geometric constraint problem is a solution instance for which all the extra con-
straints hold.

We shall consider populations consisting of a fixed, given number of indexes.
Note that the representation of the individuals is binary and that not necessarily
each individual is a solution to the geometric constraint problem.

To select the intended solution instance, the type of extra constraint currently
available to the user is PointOnSide(P, line(Pi, Pj), side) which specifies that
point P must be placed on one of the two open half spaces defined by the straight
line through points Pi, Pj , oriented from Pi to Pj . Parameter side takes values
in {right, left}.

3.2 The Genetic Algorithm

The genetic algorithm we have implemented is given in Figure 5. P is the pop-
ulation of indexes at the current generation.

To evaluate the fitness of an index I with respect to the intended solution
instance, we have used the function

f(I) =



∑|R|
i=1 δ(Ri(I)) if I is a solution instace

MIN otherwise



764 R. Joan-Arinyo, M.V. Luzón, and A. Soto

where δ(Ri(I)) = 1 if the solution instance associated with index I fulfills the
extra constraint Ri and δ(Ri(I)) = 0 otherwise. MIN is the smallest fitness
value in the pervious generation. That is, to evaluate an index fitness amounts
to counting how many extra constraints its associated solution instance fulfills.

Selection was performed applying linear ranking, [10], and stochastic univer-
sal sampling, [2]. Indexes I in the current population including N individuals
were sorted according to increasing fitness values, f(I). The rank, rank(I), of
the most fit was defined to be 1 and the least fit was defined to be N . The
selection probability for an index I was computed by

ps(I) =
1
N

(
µmax − (µmax − µmin)(rank(I)− 1)

N − 1

)

where µmin ∈ [0, 1] is the expected number of offspring to be allocated to the
worst index and µmax = 2 − µmin is the expected number of offspring to be
allocated to the best index in the current generation. This procedure guarantees
that the number of copies of any index in the next generation is bounded by the
floor and ceiling of the expected number of copies. With the aim of preserving
indexes corresponding to good solutions, elitism has also been used, [9,18].

A simple one-point crossover and uniform mutation operations for binary
coded populations have been used, [3], Mutation was computed following a sim-
ple uniform mutation scheme, [1]. The integer parameter to undergo a mutation,
let us say ij , is selected randomly. Then it mutates into i′j = 0 if ij = 1 and
into i′j = 1 otherwise. The algorithm stops when either the current best fitting
index corresponds to a solution instance that fulfills all the extra constraints or
the number of generations reaches a given maximum number.

3.3 The Genetic Selector

The genetic algorithm is integrated into the constructive solver showed in Fig-
ure 2 left through a genetic selector as illustrated in Figure 2 right.

As required by the genetic algorithm, the input to the genetic selector in-
cludes the construction plan, the set of parameters’ values and the set of extra
constraints.

The genetic algorithm always returns an index corresponding to the individ-
ual in the population showing the best fitness. Three different outputs from the
genetic selector need to be distinguished. One output can be an index for which
the construction plan is feasible and all the extra constraints hold. In this case
an intended solution instance has been found. Notice however that this intended
solution is not necessarily unique.

Another output can be an index for which the construction plan is feasible
but only a subset of the extra constraints hold. In this case, a message along
with the actual solution instance is passed to the user interface interface.

Finally when the index does not correspond to a feasible solution, we allow
the selector to fail. This information is passed to the user interface.



Constructive Geometric Constraint Solving 765

d16
d17

d1 d5 d9 d13

d14
d3 d7 d11

a15

d2

a2
a4a3

a5 a6

a7

d6

d8

d10

a12
a13a9

d18

d15

d4

a8
a10

a11

d12
a14a1

Fig. 6. Geometric problem defined by constraints. Case study A.

4 Experimental Results

To asses the performance of the technique introduced, it has been implemented
and thoroughly tested. See [15]. To illustrate this performance, we present a case
study and briefly discuss the experimental results.

4.1 Case Study

We consider the geometric constraint problem shown in Figure 6. It consists
of 18 straight segments 18 point-point distances and 15 angles. The potential
number of solution instances is bounded by 218 = 65,536. The intended solution
instance was defined by a set including 27 extra constraints.

An exhaustive evaluation of the set of extra constraints with respect to each
solution instance shows that only two solution instances fulfill the set of extra
constraints. The construction plan has 16 operations where a root has to be
chosen. Therefore each index included 16 binary units. The genetic algorithm
was fed with populations consisting of 25, 30, 35 and 40 indexes.

Figure 7 Left shows the number of extra constraints fulfilled by the solution
instance selected by the genetic algorithm versus the number of generations. The
number of extra constraints fulfilled follows an exponential law and the final value
is reached for 30 generations. When the population has 30 individuals or more
the selected solution fulfills all the extra constraints.

4.2 Discussion

According to Mühlenbein, [19], at least five parameters are required to describe
the initial state and the evolution of an artificial population of a genetic algo-
rithm: Population size, length of the string representing individuals, initial con-
figuration of values in the strings, mutation rate and selection law. Investigating



766 R. Joan-Arinyo, M.V. Luzón, and A. Soto

�

�

��

��

��

��

��

� �� �� �� �� �� ��

�	
�

�

�����

������

�	���� �� �����������

�� �����	�
�

�

�

� � � � � � �

� � � � � � � �

�
�� �����	�
�

�

��� �� ��
�

�� � � � � � �

�

Fig. 7. Extra constraints fulfilled by the selected solution.

n N # Extra # Solution # Indexes %
Constr. instances evaluated

7 12 6 27 61 50
16 40 27 216 561 2
18 40 39 218 534 0.3

Fig. 8. Performance of the genetic algorithm.

the behaviour of the genetic algorithm with all five parameters variable would
be hard to accomplish. Therefore we have investigated a simpler model where
only the population size is variable, where the number of members increases
with the number of multiple valuated operations in the geometric constraint
problem. The expected number of offspring to be allocated to the worst index
was µmin = 0.75. The crossover and mutation probabilities were always 0.6 and
0.2, respectively, [10].

The table in Figure 8 summarizes the results from three different significative
experiments reported by Luzón in [15]. The first column shows the number of
multi valuated functions in the construction plan. The second column is the num-
ber of indexes included in the population. The third column gives the number of
extra constraints defined to select the intended solution. The fourth column is
the number of indexes in the search space. The fifth column shows the number
of indexes actually evaluated. The last column is the ratio between the figures
in the fifth and fourth columns.

Results in Figure 8 show that in all cases the number of show that in all
cases the number of indexes actually evaluated is a small fraction of the whole
search space. Moreover, the performance of the genetic algorithm significantly
improves with the problem complexity.



Constructive Geometric Constraint Solving 767

The number of extra constraints fulfilled after six generations was always
higher than 66%. As expected in a behaviour that models a natural process,
in all cases the number of extra constraints fulfilled by indexes in the current
population increased exponentially until reaching an stationary state. The case
in the first raw in Figure 8 reached the stationary state after six generations
while in the other cases was reached after 30 generations.

Whenever the number of indexes in the population was equal or larger than
the number of multi valuated functions in the construction plan, the index se-
lected at the stationary state fulfilled all the extra constraints.

5 Summary and Future Work

In this paper, we have presented a new method to solve the root identification
problem in two-dimensional constructive geometric constraint solving problems.
The technique is based on a genetic algorithm which searches in a potentially
exponential large space of solution instances. The user defines the properties
of the intended solution by adding a set of extra constraints which are used to
drive the genetic algorithm in the search through the space of solution instances.
The approach has been implemented on top of an already developed ruler-and-
compass geometric constraint solver and has been applied to a number of case
studies. The results show that the technique performance is outstanding.

The selection operators used in the algorithm have been linear ranking with
universal estochastic samplig. In order to ellucidate the selection behaviour of
the algorithm, we will conduct experiments using as selector operators first lin-
ear ranking along with stochastic sampling with replacement, then proportional
selection with stochastic universal sampling.

Applying genetic algorithms to solve the root identification problem in con-
structive geometric constraint solving has shown a promising potential. Among
others, we plan to explore in the near future the applicability of genetic algo-
rithms to the following issues: Including new types of extra constraints, com-
puting decomposition trees of constraint graphs, fast isolation of minimal over-
constrained subgraphs, and automatic addition of extra constraints to under-
constrained graphs.

Acknowledgements

This research has been supported by CICYT under the project TIC2001-2099-
C03-01. Helpful discussions with S. Vila and J. Vilaplana enriched this work.
Comments of anonymous referees improved the paper.

References

1. T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Com-
putation. Institute of Physics Publishing Ltd and Oxford University Press, 1997.

2. J. E. Baker. Reducing bias and inefficiency in the selection algorithm. Proc. Second
International Conference on Genetic Algorithms (ICGA’87), pages 14–21, 1987.



768 R. Joan-Arinyo, M.V. Luzón, and A. Soto

3. L.B. Booker, D.B. Fogel, D. Whitley, and P.J. Angeline. Recombination. In
T. Bäck, D.B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Com-
putation, chapter C3.3, pages C3.3:1–C3.3:10. Institute of Physics Publishing Ltd
and Oxford University Press, 1997.

4. W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. Geometric constraint
solver. Computer Aided Design, 27(6):487–501, June 1995.

5. C. Durand. Symbolic and Numerical Techniques for Constraint Solving. PhD
thesis, Computer Science, Purdue University, December 1998.

6. A. Eiben, P.-E. Raué, and Zs. Ruttkay. GA-easy and GA-hard constraint satis-
faction problems. In M. Meyer, editor, Constraint Processing, LNCS Series 923,
pages 267–284. Springer-Verlag, Heidelberg, 1995.

7. C. Essert-Villard, P. Schreck, and J.-F. Dufourd. Skecth-based pruning of a solution
space within a formal geometric constraint solver. Artificial Intelligence, 124:139–
159, 2000.

8. I. Fudos and C.M. Hoffmann. A graph-constructive approach to solving systems of
geometric constraints. ACM Transactions on Graphics, 16(2):179–216, April 1997.

9. D.E. Goldberg. Genetic Algorithms in Search, Optimization Machine Learning.
Addison Wesley, 1989.

10. J.J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics, SMC-16(1):122–128, 1986.

11. R. Joan-Arinyo and N. Mata. A data structure for solving geomegtric cosntraint
problems with interval parameters. Technical Report LSI-00-24-R, Department
LiSI, Universitat Politècnica de Catalunya, 2000.

12. R. Joan-Arinyo and A. Soto. A correct rule-based geometric constraint solver.
Computer & Graphics, 21(5):599–609, 1997.

13. R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational geo-
metric constraint solving techniques. ACM Transactions on Graphics, 18(1):35–55,
January 1999.

14. G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engi-
neering Mathematics, 4(4):331–340, October 1970.

15. M.V. Luzón. Resolución de Restricciones Geométricas. Selección de la Solución
Deseada. PhD thesis, Dept. Informática, Universidad de Vigo, December 2001.
Written in Spanish.

16. N. Mata. Solving incidence and tangency constraints in 2D. Technical Report
LSI-97-3R, Department LiSI, Universitat Politècnica de Catalunya, 1997.

17. N. Mata. Constructible Geometric Problems with Interval Parameters. PhD thesis,
Dept. LiSI, Universitat Politècnica de Catalunya, 2000.

18. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 1996.

19. H. Mühlenbein and M. Georges-Schleuter nad O. Krämer. Evolution algorithm in
combinatorial optimization. Parallel Computing, 7:65–85, 1988.

20. V. Petridis, S. Kazarlis, and A. Bakirtzis. Varying quality functions in genetic algo-
rithm constrained optimization: The cutting stock and unit commitment problems.
IEEE Transactions on Systems, Man and Cybernetics, 28, Part B(5), 1998.



Multimeme Algorithms
for Protein Structure Prediction

N. Krasnogor, B.P. Blackburne, E.K. Burke, and J.D. Hirst

Automated Scheduling, Optimization and Planning Group
and Computational Biophysics and Chemistry Group

University of Nottingham, Nottingham, United Kingdom
http://dirac.chem.nott.ac.uk/˜natk/Public/index.html

Abstract. Despite intensive studies during the last 30 years researchers
are yet far from the “holy grail” of blind structure prediction of the three
dimensional native state of a protein from its sequence of amino acids.
We introduce here a Multimeme Algorithm which is robust across a range
of protein structure models and instances. New benchmark sequences for
the triangular lattice in the HP model and Functional Model Proteins
in two and three dimensions are included here with their known optima.
As there is no favourite protein model nor exact energy potentials to
describe proteins, robustness accross a range of models must be present
in any putative structure prediction algorithm. We demonstrate in this
paper that while our algorithm present this feature it remains, in terms
of cost, competitive with other techniques.

1 Introduction

A protein’s structure determines its biological function. This is the reason why
a central component in proteomics is the prediction of a protein’s native struc-
ture from its sequence. This task is called Protein Structure Prediction (PSP).
“All-atom” simulations are extremely expensive so researchers often resort to
simplified models of the PSP, but even the simplified problem still remains com-
putationally intractable in the worst case [2].

The particular simplified models we are concerned with in this paper are the
HP model [5] and Functional Model Proteins [10][3] in two and three dimensional
lattices. The HP model (and its variants) abstracts the hydrophobic interaction
process in protein folding by reducing a protein to a heteropolymer of non-
polar or hydrophobic (H) and polar (P) or hydrophilic amino acids. A protein
sequence s is represented by a string in a binary alphabet: s ∈ {H,P}. Simplified
models restrict the space of conformations to self-avoiding paths on a lattice
in which vertices are labeled by the amino acids. These lattices may be two-
dimensional, e.g. square or triangular, or three dimensional, e.g. diamond. The
energy potential in the HP model reflects the fact that hydrophobic amino acids
have a propensity to form a hydrophobic core. To capture this feature of protein
structures, the HP model adds a value ε for every pair of hydrophobes that
form a topological contact; a topological contact is formed by a pair of amino

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 769–778, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



770 N. Krasnogor et al.

Fig. 1. HP protein embedded in the square lattice (a) and triangular lattice(b). Func-
tional Model protein embedded in the square lattice(c) and diamond (3D) lattice(d). In
(c) and (d) native structures are not maximally compact as they must have a “binding
pocket”.

Table 1. Interaction energy matrix for the standard HP model(a) and Interaction
energy matrix for a shifted HP model (b).

(a) H P (b) H P
H 1 0 H -2 1
P 0 0 P 1 1

acids that are adjacent on the lattice and not consecutive in the sequence. The
value of ε is typically taken to be −1. Figure 1 shows sequences embedded in
the square and the triangular lattices, with hydrophobic-hydrophobic contacts
(HH contacts) highlighted with dotted lines. The conformation in Figure 1 has
an energy of -4 in the square lattice embedding and -6 in the triangular lattice
embedding. A typical interaction matrix for the HP model is given in table 1(a).
The energy interaction in Functional Model Proteins [10],[3] (which introduces
repulsive forces) between residues that are in contact is given by table 1(b).
Native protein structures in this model are required to have a binding pocket in
their native structure (e.g. a hole in their conformation), an energy gap between
the minimum energy conformation and the next excited state and to have a
unique optimal conformation. Figure 1(c) shows a two dimensional embedding
of a Functional Model Protein and 1(d) shows a diamond lattice embbeding.

The construction of effective algorithms for solving structure prediction on
simplified models (e.g. the HP model and Functional Model Proteins) is a key
stepping-stone towards the structure prediction of real life proteins that cannot
be solved by homology or threading methods. Several successful methodologies
from the last two Critical Assessment of Structure Prediction [21], CASP3 and



Multimeme Algorithms for Protein Structure Prediction 771

CASP4, employed simplified models for sampling and optimising structures em-
bedded in different lattices [20],[7],[12].

In this paper we will present a novel metaheuristic, called a Multimeme
Algorithm, to PSP for four different models: HP model in the square lattice, HP
modelin the triangular lattice, Functional Model Proteins in the square lattice
and the diamond lattice. To evaluate our algorithm in the first model we will
use instances from the public domain that were used by other researchers to test
their methods. In the case of the last three models new instances, with their
respective optima, will be presented and used as test beds.

2 Evolutionary Algorithms Approaches
to Protein Structure Prediction

Several evolutionary algorithms precede the application of Multimeme Algo-
rithms in PSP An early application of Genetic Algorithms (GAs) to PSP due to
Unger and Moult [19] is a widely used benchmark. Patton et al. [6] described a
standard GA employing, as Unger and Moult did, an internal coordinate repre-
sentation. They used a penalty method to enforce the self-avoiding constraints.
Khimasia and Coveney [11] considered the performance of Goldberg’s Simple
GA. The objective function was a hybrid between the Random Energy Model [4]
and the HP model. Colosimo et al. [18] applied a standard GA to predict the min-
imum conformational energy of two small real proteins: crambin and ferredoxin.
They used the HP model in various 3D cubic grids, where each one increased
the spatial resolution. One of us [15][14] explored which kind of encodings, op-
erators, constraint management and energy formulation is more suitable for an
evolutionary algorithm designed to tackle minimalist models of PSP and Pro-
tein Structure Comparisons. Greenwood et.al. [8] surveyed recent evolutionary
approaches to the PSP. More recently Liang and Wong [17] published encour-
aging results on a hybrid between Monte Carlo optimization and GAs for the
square HP model.

3 Multimeme Algorithms
for Protein Structure Prediction

Memetic algorithms are evolutionary algorithms that include, as part of the
“standard” evolutionary cycle of crossover-mutation-selection, a local search
stage. They have been extensively studied and used on a wide range of prob-
lems. Multimeme evolutionary algorithms were introduced by Krasnogor and
Smith [16] and applied to two bioinformatic problems [14]. The distinction be-
tween Memetic and Multimeme Algorithms is that the former uses only one
(usually complex) local search while the later employs a set of local searchers.
Multimeme algorithms self-adaptively select from this set which heuristic to use
for different instances, stages of the search or individuals in the population. This
kind of algorithm exploits features from Evolutionary Algorithms and Variable
Neighborhood Search (by virtue of its multi-operator local search).



772 N. Krasnogor et al.

In a Multimeme Algorithm an individual is composed of its genetic material
and its memetic material. The mechanisms of genetic exchange and variation are
the usual crossover and mutation operators but tailored to the specific problem
one wants to solve. Memetic transmission is effected using the so called Simple
Inheritance Mechanism (SIM) [16]. SIM can be formalized by:

Lt,i=



Lt−1,j if ∀k, j∈Parents(i), k �= j, Lt−1,j == Lt−1,k

Lt−1,j if F (It−1
j ) > F (It−1

k )∀k, j∈Parents(i), k �= j

Lt−1,kfor any k ∈ |Parents(i)| otherwise
(1)

where a meme (local searcher) L, at time t−1 that is carried by parent j (or k),
will be transmitted to the offspring i if that meme is shared by all the parents. If
they have different memes, L is associated to the fittest parent. Otherwise, when
fitnesses(F (·)) are comparable and memes different, a random selection is made.
The rationale is to propagate local searchers (i.e. memes) that are associated with
fit individuals, as those individuals were probably improved by their respective
memes. During mutation, the meme of an individual can also be overridden and
a local searcher assigned at random (uniformly from the set of all available local
searchers) based on the value of the innovation rate parameter. This is done to
introduce novelty in the local search phase of the MMA.

3.1 Tailoring the Multimeme Algorithm
for Protein Structure Prediction

The basic evolutionary parameters and settings for the Multimeme Algorithm
are now described. Tournament sizes of two and four, a crossover probability of
0.8 and a mutation probability of 0.3 were used. The runs were executed based on
a (50,200),(100,400) and (500,1000) replacement strategies. Each generation of
the Multimeme Algorithm consisted of a mating stage (two-point crossover with
tournament selection), mutation (one and two-point mutation), local search and
replacement. Every individual in the population went through an optimization
period. The latter was governed by the meme held by the individual. Local
search itself was restricted to three iterations in a randomized first improvement
fashion, and consequently it was unconverged. For all the experiments reported
in this paper the parameters were set according to the criteria described in [14]
and [15] and the innovation rate was 0.2.

The memes available to the Multimeme Algorithm can be categorized as fol-
lows: pivot (rigid rotation) moves, stretching of a substructure (unfolding), ran-
dom macro-mutation of a substructure, reflection of a substructure, non-local
k-opt and local k-opt. These six local searchers types give rise to several differ-
ent neighborhoods with which the Multimeme Algorithm will perform its search
and were chosen based on previous analysis [14][15]. The Evolutionary Monte
Carlo algorithm [17], which represents one of the state of the art systems for two
dimensional HP lattice models, employs similar moves as mutation operators
(except for the stretch and k-opt operators). Space limitations preclude further



Multimeme Algorithms for Protein Structure Prediction 773

description of the local searchers. More details are given elsewhere [14][15]. With
the basic ingredients described above, the Multimeme Algorithm performed well
on the standard HP model (in two and three dimensional lattices). However,
it was not able to reach optimal configurations in the Functional Model Pro-
teins. This was solved by the introduction of a contact map memory of current
solutions in the mating strategy of the Multimeme Algorithm. With the new
mating strategy we were able to solve to optimality instances of both the HP
and Functional Model Proteins in two and three dimensional lattices.

3.2 A New Mating Strategy

As mentioned above, a contact map memory was included into the Multimeme
Algorithm. During the reproduction phase of the algorithm, each generated off-
spring was evaluated for compatibility with the contact map memory. An off-
spring was compatible with the memory if at least φ1 of the contacts defined by
its structure were themselves compatible. In turn, a contact was compatible if
not more than φ2 of the individuals already in the population shared that con-
tact. This method involves the determination of the fractions φ1 and φ2 which
was done by ad hoc experimentation. In this paper φ1 = 25%, φ2 = 66%. The
inclusion of a memory of the contact maps of already visited solutions has as an
advantage (over simply storing fitness evaluations or having an archive of geno-
types, i.e. solutions ) that the contact maps abstract the geometric details of the
structures and keep only the essential topological features of a two dimensional
or three dimensional shape. Rotations and symmetries are filtered out and need
not be explicitly considered. Given that a contact map can be realized by several
different structures, the additional requisite of only accepting offspring that are
compatible with the contact map memory pushes the search toward a more ex-
ploratory regime, thereby increasing diversity in the population. By holding the
information of just a few contact maps in the memory the new mating strategy
is actually storing information of a wide area of the whole search space. With
this simple strategy we were able to improve on results previously obtained with
Multimeme Algorithms [14] on the standard HP model, but more importantly,
we were able to solve to optimality instances of the Functional Model Proteins
that our previous algorithms were not capable of solving.

4 Results

In this section we will present results obtained with the Multimeme Algorithm
using the new mating strategy based on the contact map memory. Functional
Model Proteins were introduced in [10]. The optima for the sequences of the
Functional Model Protein were obtained by an exhaustive parallel enumeration
algorithm. The diamond Functional Model Protein instances and their optima
are first published here. Functional Model Proteins are a challenging set of in-
stances, as each one has a unique native state (this is not the case for other well
known minimalistic models) which is surrounded by several first excited states.



774 N. Krasnogor et al.

Moreover, there is an energetic barrier of at least two bonds between the first
excited state and the native structure. The Functional Model Proteins presented
here are a subset of the available instances with known optima. We computed
the native state and first excited states for all of the 223 sequences for the square
lattice and the diamond lattice in this model. These can be obtained from [13].
The optima for the triangular lattice instances where obtained by construction
in the design process of the sequences. The standard HP lattice sequences were
taken from [19],[17],[9] and other references. In all experiments five runs were
executed per instance. If the optimum value was not achieved by any of the five
runs then we report the best sub-optimum found in bold face. The sequences and
results for the Square Lattice in the Standard HP Model are shown in table 2.
Two Dimensional Triangular Lattice in the Standard HP Model instances and
results are displayed in table 3 below. The sequences and results for the Square
Lattice in the Functional Model Proteins can be found in table 4. The number
of energy evaluations required to achieve those optimal values is reported. The
sequences and results for the Diamond Lattice in the Functional Model Proteins
can be found in table 4(indexed with letters). To the best of our knowledge, the
best algorithm for reduced models is PERM [1]. The results presented here use
some of the instances and models tested in [1] and for these cases our results, the
positive and the negative ones (e.g. failure to solve instance 4 of the standard,
square 2D, HP model), are equivalent. Another point to note is that PERM
makes assumptions about “compactness” of the native structure of a protein,
which clearly do not apply to the Functional Model Proteins. Indeed, for some
instances the optimal structure has one or more binding pockets. Hence, al-
though they do not use the mentioned model, we speculate that their algorithm
will not be robust in this domain. Furthermore, it is not possible to compare
our algorithm directly with PERM, as our method, like the Evolutionary Monte
Carlo method [17], performs a blind search, whereas PERM utilizes information
of the sequence being folded. Consequently, we compare our results with other
blind methods and assess the robustness of the Multimeme Algorithms across a
range of models and instances. Table 5 shows a representative example of the
increased robustness of a Multimeme Algorithm when it is compared against a
GA and a Memetic Algorithm (that uses only one type of local searcher). In the
table, results for instance 15 of table 3 are displayed. The Multimeme approach
achieves the optimum solution more frequently than the other approaches and
also faster (the GA was given an equivalent number of energy evaluations).

Table 6 shows a comparison of the number of energy evaluations employed
by our algorithm and other two well known methods (the GA and Monte Carlo
reported in [19]) to solve the square lattice HP instances. Although the Evolu-
tionary Monte Carlo method [17] finds optimum solutions for very challenging
instances of the square lattice in the HP model a direct comparison with our
algorithm is not possible. Liang and Wong report the number of feasible confor-
mations scanned before reaching an optimal structure. However, their algorithm
generates thousands of non-feasible structures during the run and this num-



Multimeme Algorithms for Protein Structure Prediction 775

Table 2. Two dimensional square lattice Standard HP instances

# Sequence Size Opt. MMA
1 HPHPPHHPHPPHPHHPPHPH 20 -9 -9
2 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 36 -14 -14
3 H2(PH)4H3PHP 3HP 3HP 4HP 3HP 3HPH4(PH)4H 50 -21 -21
4 H12(PH)2(P 2H2)2(PPH)2(HP 2H)2(P 2H2)2P 2(HP )2H12 64 -42 -39
5 HPHPPHHPHPPHPHHPPHPH 20 -9 -9
6 PPHPPHHPPPPHHPPPPHHPPPPHH 25 -8 -8
7 (P 2H)2HP 2H2P 5H10P 6(H2P 2)2HP 2H5 48 -22 -22
8 PHPPHPHHHPHHPH5 18 -9 -9
9 HPHPHHHPPPHHHHPPHH 18 -8 -8
10 HHPPPPPHHPPPHPPPHP 18 -4 -4
11 HHHPPHPHPHPPHPHPHPPH 20 -10 -10

Table 3. Two dimensional triangular lattice Standard HP instances

# Sequence Size Opt. MMA
1 HHPPHPHPHPHPHP 14 -11 -11
2 HHPPHPPHPHPHPH 14 -11 -11
3 HHPHPPHPPHPPHPPH 16 -11 -11
4 HHPPHPPHPHPHPPHP 16 -11 -11
5 HHPPHPPHPPHPPHPPH 17 -11 -11
6 HHPHPHPHPHPHPHPHH 17 -17 -17
7 HHPPHPPHPHPHPPHPHPHH 20 -17 -17
8 HHPHPHPHPHPPHPPHPPHH 20 -17 -17
9 HHPPHPPHPHPPHPHPPHPHH 21 -17 -17
10 HHPHPPHPPHPHPHPPHPPHH 21 -17 -17
11 HHPPHPHPHPPHPHPPHPPHH 21 -17 -17
12 HHPPHPPHPHPHPPHPPHPPHH 22 -17 -17
13 HHHPHPHPHPHPHPHPHPHPHHH 23 -25 -25
14 HHPPHPPHPPHPPHPPHPPHPPHH 24 -17 -16
15 HHHPHPHPPHPHPHPHPHPHPHHH 24 -25 -25
16 HHHPHPHPHPPHPHPHPHPHPHHH 24 -25 -25
17 HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 -25 -24
18 HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 -25 -24
19 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH 37 -29 -26

ber is not provided in their paper1. Nevertheless, their algorithm does solve to
optimality all the instances in table 6 and a few longer ones.

Across all the models investigated, our algorithm identifies optimal struc-
tures, regardless of considerations of compactness or the size of the protein in-
volved. There are few cases of mis-folding, that is, only a local optimum was
found. Unfortunately we were not able to detect any pattern of failure so an
improvement cannot be suggested at this time. When comparing the number of
energy evaluations of the Monte Carlo and our algorithm we can clearly see the
benefits of the Multimeme Algorithm. If we turn to the GA then we find that
for one protein (instance 7 in table 6) our approach needed considerably more
evaluations.

5 Conclusions and Future Work

The main feature of our algorithm is that it is robust finding optimal structures,
across a range of models and difficulty. This is an essential feature needed of
1 The authors confirmed this with us in a private communication



776 N. Krasnogor et al.

Table 4. Two dimensional square lattice Functional Model instances (indexed by num-
bers) and Three dimensional diamond lattice Functional Model instances (indexed by
letters) and the number of energy evaluations required by the best run to achieved the
optimum or a sub-optimum (in bold face).

# Sequence Opt. MMA #Evaluations
1 PHPPHPPHHHHPPHPPHPHPPHH -20 -20 15170
2 PHPPHPPHHHHHPPPPHPPHPPH -17 -17 61940
3 HPHPHPHHHPPHPPPHPHHPPHH -16 -16 132898
4 HHHPHHHPPHHPPPHPHPPHHHH -20 -20 66774
5 PHPPPPPPHPHHPHPHHHHPHPH -17 -17 53600
6 HHPHPPHPPPPHPPPPHPPPHHH -13 -13 32619
7 PHPHHPHHHHHHPPHHHPHHHHH -26 -26 114930
8 HPHPPPHHHHPHPPPPHPHPHHH -16 -16 28425
9 PHPHHPHHPHHPHPHPHPPPPPH -15 -15 25545
10 HPHPHPPPPPHHPPPHPHPHPHH -14 -14 111046
11 PHPPHHHPHPPHPHHPHPPPPPH -15 -15 52005
A PHPHPHPHPPPPHPPPPPHPPPH -11 -11 123979
B PHPHPHPHPPPPHPPPPPHPPHH -11 -11 301205
C PHPHPHPPHHHHHHPHPPHPHPH -14 -12 12618
D PHPHPHPPHHHHHHHPHPPPHPH -14 -14 1334661
E PHPHPHPHPPHHPPHPHPHHHHH -14 -14 482259
F HPHHPHPHHPPPPPHHPHPHHHH -15 -15 332842
G PHPHPHPPHHHHHHPHHHHHHHH -16 -14 11132
H HPPHPPHHPHPHHHPHPHHPHHH -18 -18 261027
I HPPHPPHHPHPHHHPHPHHHHPH -18 -18 550121

Table 5. Number of times and mean first hitting time (in generations) to achieve an
optimal solution to instance 15 in table 3. Different algorithms are compared based on
10 independent runs.

Static Memes Num Optima / Num Runs Mean First Hitting Time
GA (no memes) 0/10 -

MA with Macro Mutation (r=4) 2/10 27.5
MA with Macro Mutation (r=8) 3/10 53.3

MA with Macro Mutation (r=16) 2/10 43.0
MA with Reflect (r=4) 3/10 20.6
MA with Reflect (r=8) 1/10 79.0

MA with Reflect (r=16) 1/10 45.0
MA with Stretch (r=4) 0/10 -
MA with Stretch (r=8) 0/10 -

MA with Stretch (r=16) 0/10 -
MA with Pivot 5/10 27.0

MultiMeme (all local searchers) 8/10 16.87

Table 6. Energy evaluations used by the Genetic Algorithm and a Monte Carlo ap-
proach as quoted from [19] and our MMA for sequences in the HP square lattice.

# Sequence GA MC MMA
1 HPHPPHHPHPPHPHHPPHPH 30492 292443 14621
2 P (PPHH)2PPPPPH7PPHHP 4HHPPHPP 301339 6557189 (-13) 208233
3 H2(PH)4H3PHP 3HP 3HP 4HP 3HP 3HPH4(PH)4H 592887 15151203 336763
6 PPHPPHHPPPPHHPPPPHHPPPPHH 20400 2694572 18736
7 (P 2H)2HP 2H2P 5H10P 6(H2P 2)2HP 2H5 126547 9201755 (-20) 1155656

any search method for PSP, as the precise energy formulation that must be op-
timized is not known. Moreover, the development of energy potentials is a very
active area of research and one should expect the frequent publication of new
models. A robust search mechanism, such as our Multimeme Algorithm, allows



Multimeme Algorithms for Protein Structure Prediction 777

one to change the energy potential without altering too much the algorithmic
infrastructure and to investigate folding prediction under the new model. The
robustness of our algorithm arises from the evolutionary, population oriented,
nature of the search it performs and the amalgamation of several neighborhoods
to further improve solutions kept in the population. All of these must be com-
plemented with a suitable “evolutionary memory”, that in the work reported
here takes the form of a contact map memory.

More experimentation will be undertaken to try to determine the reasons
behind the failure to obtain optimum structures in certain sequences. Other
models of the PSP will be investigated and the behaviour of our algorithm
assessed there.

References

1. U. Bastolla, H. Frauenkron, E. Gerstner, P. Grassberger, and W. Nadler. Testing
a new monte carlo algorithm for protein folding. Proteins: Structure, Function and
Genetics, 32,52, 1998.

2. B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. In Proceedings of The Second Annual International Con-
ference on Computational Molecular Biology, RECOMB 98, 1998.

3. B.P. Blackburne and J.D. Hirst. Evolution of functional model proteins. Journal
of Chemical Physics, 115(4):1935–1942, 2001.

4. B. Derrida. Random energy model: Limit of a family of disordered models. Physical
Review Letters, 45, 1980.

5. Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24:1501, 1985.

6. A.L. Patton et al. A standard ga approach to native protein conformation predic-
tion. In Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 574–581. Morgan Kauffman, 1995.

7. M. Feig and C.L. Brooks III. Multiscale modeling protocol for ab initio structure
prediction. In press, 2000.

8. G.W. Greenwood, B. Lee, J. Shin, and G.B. Fogel. A survey of recent work on
evolutionary approaches to the protein folding problem. In Proceedings of the
Congress of Evolutionary Computation (CEC), pages 488–495. IEEE, 1999.

9. W.E. Hart. Hp instances. In http://www.cs.sandia.gov/tech reports/compbio/
tortilla-hp-benchmarks.html.

10. J.D. Hirst. The evolutionary landscape of functional model proteins. Protein
Engineering, 12:721–726, 1999.

11. M. Khimasia and P. Coveney. Protein structure prediction as a hard optimization
problem: The genetic algorithm approach. In Molecular Simulation, volume 19,
pages 205–226, 1997.

12. A. Kolinski, M.R. Betancourt, D. Kihara, P. Rotkiewicz, and J. Skolnick. Gener-
alized comparative modeling (genecomp): A combination of sequence comparison,
threading, and lattice modeling for protein structure prediction and refinement.
PROTEINS: Structure, Function, and Genetics, 44:133–149, 2001.

13. N. Krasnogor. Standard hp and functional model proteins instances.
http://dirac.chem.nott.ac.uk/˜natk/Public/index.html, 2001.



778 N. Krasnogor et al.

14. N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms.
Ph.D. Thesis, Faculty of Computing, Mathematics and Engineering, University of
the West of England, Bristol, United Kingdom, 2002.

15. N. Krasnogor, W.E. Hart, J. Smith, and D.A. Pelta. Protein structure prediction
with evolutionary algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon,
V. Honavar, M. Jakaiela, and R.E. Smith, editors, GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference. Morgan Kaufman, 1999.

16. N. Krasnogor and J.E. Smith. Emergence of profitable search strategies based on
a simple inheritance mechanism. In Proceedings of the 2001 Genetic and Evolu-
tionary Computation Conference. Morgan Kaufmann, 2001.

17. F. Liang and W.H. Wong. Evolutionary monte carlo for protein folding simulations.
Journal of Chemical Physics, 115(7):3374–3380, 2001.

18. P. Montanari, A. Colosimo, and P.Sirabella. The application of a genetic algorithm
to the protein folding problem. In Proceedings of Engineering of Intelligent Systems
(EIS 98), 1998.

19. R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Journal
of Molecular Biology, 231(1):75–81, 1993.

20. Y. Xia, E.S. Huang, M. Levitt, and R. Samudrala. Ab initio construction of protein
tertiary structures using a hierarchical approach. Journal of Molecular Biology,
300:171–185, 2000.

21. A. Zemla, C. Venclovas, J. Moult, and K. Fidelis. Processing and analysis of
casp3 protein structure predictions. PROTEINS: Structure, Function, and Genet-
ics Suppl, 3:22–29, 1999.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 779–788, 2002.
© Springer-Verlag Berlin Heidelberg 2002

A Dynamic Traffic Model for Frequency Assignment

Hakim Mabed1, Alexandre Caminada1, Jin-Kao Hao2, and Denis Renaud1

1 FTR&D, 6 Ave des Usines, BP 382, 90007 Belfort, France
{hakim.mabed,alexandre.caminada,denis.renaud}@francetelecom.com

2 Université d'Angers, 2 Bd Lavoisier, 49045 Angers Cedex, France
Jin-Kao.Hao@univ-angers.fr

Abstract. We are interested in improving the quality of frequency assignment
via a more accurate modeling of the traffic over the network. For this purpose,
we propose here an original model for FAP, which takes into account both
spatial and temporal variation of the traffic. The proposed model is assessed
with a hybrid genetic algorithm and compared against a classical model.
Experimental results on both artificial and real data show significant
improvements of the quality of frequency plan in terms of traffic capacity and
robustness of the network.

1 Introduction

In radio mobile networks, the communication is ensured by a radio link. The mobile
network operators dispose of a very limited number of frequencies to cover all the
network area (limited to 62 frequencies in France). For this reason, the frequency
reuse [12] is indispensable to increase the capacity of a network.

A GSM network is composed of a set of sites, each supporting one to three stations
[11]. Each station covers an area called cell representing all the points served by this
station. According to the quantity of the communications, i.e. the traffic, which may
occur in the cell, each station requires a fixed number of frequencies. The frequency
assignment problem (FAP) consists in finding an assignment of the available
frequency spectrum to the stations of the network, which maximizes the traffic
capacity and minimizes interference. Interference is caused by the presence of
overlapping areas between cells where several signals of good quality are received. In
these areas, traffic satisfaction is highly conditioned by used frequencies. Therefore,
traffic modeling constitutes one key aspect of the FAP.

The first works on the FAP are based on a reusing matrix [5, 6, 8, 10] indicating
channel separation required between frequencies to completely eliminate the
interference. In such a model, interference surface and concerned traffic are ignored.
More realistic models were recently proposed, which are based on the quantification
of interference risks [3, 4, 9]. This quantification is made on the basis of traffic
statistics. More precisely, on each station, traffic intensity recorded at the second busy
hour of day (2BH) is considered as traffic reference in interference modeling. We will
call this modeling "classical modeling" or "2BH modeling".

In this paper, we discuss about disadvantages of 2BH dimensioning and we
propose a dynamic traffic modeling for FAP, which takes into account spatial and



780      Hakim Mabed et al.

temporal variation of traffic, in order to improve the traffic capacity modeling and
robustness of the network. The dynamic traffic model is tested on both artificial and
realistic data, and compared with the classical modeling. To perform those tests a new
heuristic based on a hybridization of genetic algorithms and tabu search is elaborated.
Experimental results show significant improvements of frequency plan quality both in
terms of robustness and traffic capacity.

2 Traffic Modeling in Frequency Assignment Problem

2.1 Traffic Engineering

Traffic evolution can be observed in both spatial and temporal scale [1, 2]. Spatial
variation of traffic refers to client mobility and concentration. Time variation of traffic
is due to behavioral aspects of clients. Hence, traffic evolution analysis can be carried
out either by observing time variation of the traffic over each cell, or by observing the
traffic distribution over the network at each time point. Fig 1 shows time variation of
traffic over two cells where the traffic (expressed in Erlang) is indicated for each
hour. Note that the second busy hour is not the same for the two cells.

Fig. 1. Time variation of traffic over two cells

2.2 Classical Traffic Modeling for Frequency Assignment

A GSM network is composed of a set of sites, each supporting one to three stations
[11, 12]. Each station delimits an area called cell representing all the points served by
this station. For each station Si ∈ {S1, …, SN}, we know the number of frequencies
required, MAi. Frequency assignment to stations is submitted to constraints of
different nature and priority. Those constraints are divided into three classes:
- Co-station constraint (call it C1 hereafter): frequencies assigned to the same

station must be spaced by at least 3 channels.
- Co-site constraint (call it C2 hereafter): frequencies assigned to stations located on

the same site must be spaced by at least 2 channels.
- Inter-site constraint: frequencies assigned to stations belonging to different sites

are spaced according to their mutual interference.

Second busy hour Second busy hour



A Dynamic Traffic Model for Frequency Assignment      781

The satisfaction of co-station and co-site constraints is indispensable for a
frequency plan to be applicable, while satisfying inter-site constraints is generally
impossible. The objective of FAP is then to minimize the potential interference
generated by the violation of inter-site constraints.

Inter-site constraints may be modeled by an undirected graph (call it interference
graph hereafter) whose nodes correspond to stations and edges represent interference
risks. Each edge, connecting two stations Si and Sj, is weighted by a pair of values
(βi,j,0, βi,j,1). Where βi,j,d measures the importance of interference between Si and Sj,
generated by a pair of frequencies spaced by d channels (interference is considered
negligible if d>1).

The impact of traffic on interference is twofold. As jamming station, traffic
intensity describes the rate of use of frequencies assigned to the station and hence
impacts on the quantity of the generated interference. As interfered station, traffic
intensity reflects the importance of the area covered by the station and consequently
the interest of interference reduction on this area. Therefore, we can roughly consider
βi,j,d as a returned value of a function, I, having as arguments the traffic intensity on the
two stations and considered inter-channel distance as described by equation (1)

, , ( , , , , )i j d i jI i j t t dβ = (1)

where ti and tj correspond to traffic intensity on stations Si and Sj.
In classical traffic modeling, βi,j,d values are calculated on the basis of traffic data

recorded at the second busy hour (2BH) of the day over each cell. Let  2BH
it  be the

traffic intensity at the second busy hour over the station Si. The weights of the
interference graph are then calculated using the following expression.

2 2 2
, , ( , , , , )BH BH BH

i j d i jI i j t t dβ = (2)

2BH dimensioning suffers from two disadvantages. Firstly, traffic repartition
2 2
1( ,..., )BH BH

Nt t corresponds neither to real traffic cartography nor to a good aggrega-

tion of traffic evolution. In others words, 2BH dimensioning causes an alteration in
preferential order between interference weights (βi,j,d) and hence an inaccuracy in
traffic capacity measurement. Secondly, 2BH dimensioning ignores time variation of
traffic, which is indispensable for elaborating robustness criteria.

3 Dynamic Traffic Modeling for Frequency Assignment Problem

In order to overcome the difficulties encountered with the classical 2BH modeling, we
introduce here the notion of dynamic traffic modeling for FAP. To that end, we

dispose of data on traffic evolution during np periods. Let h
it be the traffic intensity

on station Si at period h and let , ,
h
i j dβ be the weights of the interference graph

calculated from traffic data at period h. FAP is then defined by np constraint graphs,
one per period, such as:



782      Hakim Mabed et al.

, , ( , , , , )h h h
i j d i jI i j t t dβ = (3)

According to those graphs, the quality of a frequency plan will be measured at both
a global and local level. The global quality of the frequency plan refers to the sum
over times of interference recorded on the network. The local quality measures the
performance stability of the frequency plan over the time period where the quality is
the lowest. Two criteria are to be retained then: Total interference, and frequency plan
robustness. These criteria can be stated more formally as follows.

• Total interference, or global quality of the frequency plan.

[ ]

, , , ,
, ,
1..
1..

1
1 ( , ) ( , )

i j f fi k j p
i j i k j p

k MAi
p MAj

np
h

h S S f f

F
−

∈
 ∈ 

=

= β∑ ∑ ∑
(4)

where fi,k represents the kth frequency assigned to station Si.
• Temporal interference distribution or robustness of the frequency plan through a

time period. It aims to minimize the worst performance of the frequency plan
over the time.

[ ]

, , , ,
, ,
1..
1..

2
1

( , ) ( , )
i j f fi k j p

i j i k j p
k MAi
p MAj

np
h

h
S S f f

F MAX
−

∈
 ∈ 

=
= β∑ ∑

(5)

According to this dynamic model, the objective of the frequency assignment
problem is to find fi,k values which satisfy co-station and co-site constraints and
minimize F1 and F2.

We turn now to the presentation of a hybrid algorithm for finding frequency plans.
This hybrid algorithm combines genetic search and a tabu algorithm and uses the
above quality functions (F1 and F2) as part of its evaluation function.

4 A Genetic Tabu Search Algorithm for FAP

The following notations will be used in the presentation: nf the number of available
frequencies, C1 and C2 two binary functions representing the co-station and co-site
constraints:

, ,1 if 3
1( , , )

0 else

i k i pf f
C i k p

 − <= 


(6)

, ,1 if 2
2( , , , )

0 else

i k j pf f
C i j k p

 − <= 


(7)



A Dynamic Traffic Model for Frequency Assignment      783

4.1 Individual Representation and Fitness Evaluation

A frequency plan is coded by a vector <
1,1f ,…, 

11,MAf ,
2,1f , …,

22,MAf , … ,
,1Nf ,

…, , NN MAf >, representing frequencies assigned to each station. The search space of a

problem corresponds therefore to all such configurations where fi,k ∈[1..nf].
Constraints C1 and C2 are handled using a penalty-based approach. They, together

with the criteria F1 and F2, are linearly combined in a single evaluation (fitness)
function. To stress their importance relative to the quality criteria, co-station and co-
site constraints are weighted by a large value ω.

1 1

1 2
1 1 1 1 1 1 1

,  same site

minimize 1( , , ) 2( , , , )
ji i i MAMA MA MAN N N

DO
i k p k i j i k p

i j

F C i k p C i j k p F Fω
− −

= = = + = = + = =
∈

 
 = + + +   
∑ ∑ ∑ ∑ ∑ ∑∑ (8)

4.2 Selection and Replacement Operators

At each iteration, two frequency plans are selected from current population. To favor
the selection of good solutions, the population individuals are ordered according to
their fitness so that the best solution has the rank 0. Let ri be the rank of the individual
i, the selection probability of i is then calculated following the expression 9.

( )_ 2

_ ( _ 1)
i

i

Pop size r
SP

Pop size Pop size

− ×
=

× +
(9)

After reproduction, new individuals are directly inserted in the population in place
of other solutions. Replacement operator favors the elimination of bad frequency
plans. Equation 10 represents the replacement probability of the individual i.

2

_ ( _ 1)
i

i

r
RP

Pop size Pop size

×=
−

(10)

Let us notice that the best frequency plan is never replaced.

4.3 Crossover and Mutation

The so-called geographic crossover described in [13] is used to generate new
frequency plans. This specific crossover operator for the frequency assignment
problem works as follow. Given two frequency plans, the first step of the crossover
consists in taking randomly a reference station Si. Let V(Si) be the set of co-site
stations and interfering stations of Si (Sj interferes with Si if βi,j,d ≠ 0). Then the
frequencies corresponding to stations Si∪V(Si) are exchanged between the two parents
generating two new frequency plans (fig 2).



784      Hakim Mabed et al.

Fig. 2. Crossover operator

For mutation, we use a local search operator based on Tabu search (TS). This
operator is basically inspired by the Tabu algorithm described in [7]. The main
difference remains at the level of assessing the fitness of frequency assignments.

For a given assignment, a violation score is defined for each frequency of the plan.
This score measures the contribution of this frequency to the recorded interference. At
each iteration of the TS algorithm, one gene is selected according to its violation score
and a new frequency value is affected to it. The pair (gene, old-frequency-value) is
then added to the tabu list. Equation 11 and 12 describe respectively the way of
calculating the violation scores and gene selection probability of the kth frequency
assigned to station Si.

, ,

1..

,
1 1 1 1 1

,  same site

1( , , ) 2( , , , )
j j

i j f fik jp
jp

j i p MAj

MA MA npN N
h

i k
p j p h j f
p k j i

i j

SCORE C i k p C i j k pω β
−

≠  ∈ 

= = = = =
≠ ≠

∈

 
 
 = × + +
 
  

∑ ∑ ∑ ∑∑ ∑ (11)

, , ,
1 1

jMAN

i k i k j p
j p

GSP SCORE SCORE
= =

 
=  

 
∑∑ (12)

Finally, we give here the main loop of our genetic tabu search algorithm

P:=RandomInitPopulation(Pop_size)
For g:=1 to nb_of_generation

(p1,p2):=SelectParents(P)
with a Pc probability do
(f1,f2):=Crossover(p1,p2)

otherwise f1:=p1; f2:=p2
f1:=TabuSearch(f1); f2:=TabuSearch(f2);
(v1,v2):=SelectVictims(P)
ReplaceBy(v1,f1); ReplaceBy(v2,f2);

5 Experimentation and Results

This section is dedicated to the presentation of experimental results of the proposed
dynamic model using the hybrid genetic tabu algorithm. Tests are carried out on both



A Dynamic Traffic Model for Frequency Assignment      785

fictive and real problems. The results of dynamic traffic model are compared with the
classical model based on 2BH dimensioning. The hybrid algorithm uses respectively
Equation 8 (dynamic modeling) and Equation 13 (2BH modeling) as its fitness
function.

[ ][ ]

, , , ,
, ,

1.. 1..
1..

1 1

2
1 1 1 1 1 1 1

,  same site

2

( , ) ( , )

1( , , ) 2( , , , )
ji i i

i j f fi k j p
i j i k j p

i j N k MAi
p MAj

MAMA MA MAN N N

H C
i k p k i j i k p

i j

BH

S S f f

F C i k p C i j k pω

β
−

< ∈ ∈
 ∈ 

− −

= = = + = = + = =
∈

 
 = + +   
∑ ∑ ∑ ∑ ∑ ∑∑

∑ ∑
(13)

5.1 Fictive FAP Instances

The two fictive FAP instances used in our experimentation represent 63 stations
extracted from a real network B. The word "fictive" refers only to the data of traffic
evolution. The two instances have the following characteristics: 225 frequencies to
assign, traffic data over 6 periods and around 1100 inter-site constraints.

Each instance presents a different class of traffic evolution that allows us to study
the performance of dynamic traffic modeling on different traffic evolution scenarios.
The first network, B_63_1, presents synchronous and proportional rises and falls of
traffic on the entire network. The second instance, B_63_2, stresses the mobility
aspect of clients and presents two distinct areas. The rise of traffic on one area is
accompanied by a fall of traffic intensity on the other. Table 1 and 2 summarize the
traffic evolution for the two instances.



786      Hakim Mabed et al.

5.2 Real FAP Instance

The proposed traffic model is also tested on a real traffic evolution data (Network D).
This network is characterized by: 639 stations, 1411 frequencies to assign, around
30000 inter-site constraints and traffic data over 13 hours (7:00-20:00).

5.3 Performance Criteria

Comparison between dynamic traffic modeling and classical modeling for FAP is
made on the basis of lost traffic, measured in Erlang. One Erlang corresponds to one
hour of communication. We use quality evaluator of PARCELL 1 to measure the lost
traffic produced by a given frequency plan. More precisely, given the stations
parameters, geographical database, traffic data and a frequency plan, the quality
evaluator calculates the lost traffic quantity on each station. Loss in traffic is
measured in term of FER (Frame Erasure Rate). The communication is considered
bad if this rate exceeds a given threshold. According to required radio quality, we
distinguish 3 kinds of thresholds: 2%, 4% and 7%.

5.4 Experimental Results

Tables 3-6 below show experimental results of classical and dynamic traffic modeling
on the three FAP instances described above. For each instance, we generate two
frequency plans. The first is built on the basis of classical traffic modeling (Equation
13). The second is built on the basis of our dynamic traffic modeling (Equation 8).
The performance of each frequency plan, in term of lost traffic, is estimated for each
period. We present also at the lower part of the tables, the total lost traffic (global
quality criteria), maximal lost traffic on the given time period (robustness criteria) and
the gain in Erlang between the two models. Information is given for each of the three
quality thresholds (2%, 4% and 7%).

Tests were made using the same parameters of the hybrid algorithm: 100000
iterations for a population of 10 solutions with a crossover rate of 0.3 and tabu search
iteration number of 30.

From those three tables, we notice that the dynamic model gives better frequency
plans both in terms of global traffic capacity and robustness. Important gains are
observed for different traffic evolution scenarios.

Table 6 shows the fitness of the two frequency plans analyzed in table 5. We notice
that even if solution generated by classical model is better according to F2BH it is still
worse than dynamic model according to F1 and F2. This result confirms that classical
traffic modeling doesn't allow the production of well-adapted frequency plan for
traffic in evolution.

                                                          
1 Engineering tool for design of mobile radio network, ORANGE society all rights reserved.



A Dynamic Traffic Model for Frequency Assignment      787



788      Hakim Mabed et al.

Table 6. Fitness of the two frequency plans generated for D_639_1

Classical solution Dynamic solution
F1: 970932,916
F2: 115887,751
FH2C: 128749,617

F1: 936139,360
F2: 115588,483
FH2C: 130377,944

6 Conclusion and Future Works

We have proposed in this paper a finer and more accurate traffic model for the
frequency assignment problem of mobile radio networks. Both spatial and temporal
aspects of traffic are taken into account, leading to improvements of the traffic
capacity and robustness of the frequency plan. We have also presented a hybrid
genetic tabu search algorithm for finding frequency plans. Comparisons between the
proposed dynamic traffic model and classical 2BH-based traffic model showed
significant improvements of the quality of frequency plans both in terms of global
traffic capacity and network robustness.

New criteria of robustness are to be studied in the future especially with regard to
spatial distribution of interference. It will be also interesting to conceive a multi-
objective algorithm to solve the problem. The model might be enriched to give more
importance to certain periods (e.g. to favor professional communications).

References

1. Baier, K. Bandelow "Traffic engineering and realistic network capacity in cellular radio
networks with inhomogeneous traffic distribution" IEEE VTC 46: 780-784, 1997.

2. P. Darwood, I. Oppermann, S. Jakas, W. Linton "Mobile Network Traffic Forecasting"
IEEE VTC 50: 2000.

3. Eisenblatter, M. Grotschel, A. Koster "Frequency planning and ramifications of coloring"
ZIB-Repport 00-47: December 2000.

4. M. Fischetti, C. Lepschy, G. Minerva, G. Romanin-Jacur, E. Toto "Frequency assignment
in mobile radio systems using branch-and-cut techniques" European Journal of
Operational Research 123: 241-255, 2000.

5. Gamst "A resource allocation technique for FDMA systems" Alfa Frequenza 57(2): 89-96,
1988.

6. W.K. Hale "Frequency assignment: theory and application" Proceedings of IEEE, 68(12):
1498-1573, 1980.

7. J.K. Hao, R. Dorne, P. Galinier "Tabu search for frequency assignment in mobile radio
networks" Journal of Heuristics 4: 47-62, 1998.

8. M. Hellebrabdt, F. Lambrecht, R. Mathar, T. Niessen, R. Starke "Frequency allocation and
linear programming" IEEE VTC 48:  617-621, 1999.

9. S. Hurley, R.M. Whitaker, D.H. Smith "Channel assignment in Cellular Networks without
Channel Separation Constraints" IEEE VTC 50: 1714-1718, 2000.

10. F. Jaimes-Romero, D. Munoz-Rodreguez "Channel assignment in cellular systems using
genetic algorithms" IEEE VTC 45: 741-745, 1996.

11. W. Lee, "Mobile Communications Design Fundamentals" Wiley Series in
Telecommunications: 1992.

12. V. Mac Donald "Advanced Mobile Phone Service: The Cellular Concept" The BELL
System Technical Journal: 15-41, January 1979.    

13. D. Renaud, A. Caminada "Evolutionary methods and operators for frequency assignment
Problem" SpeedUp Journal 11(2): 27-32, 1997.



A Parameter-Free Genetic Algorithm
for a Fixed Channel Assignment Problem

with Limited Bandwidth

Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

Communication & Information Research Laboratory (CIRL)
Central Research Institute of Electric Power Industry (CRIEPI)

2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511, Japan
{matsui,isamu,tokoro}@criepi.denken.or.jp

Abstract. Increasing the channel re-usability is necessary for reducing
the call-blocking rate in any cellular systems with limited bandwidth and
a large number of subscribers. To increase the re-usability, we need an
efficient channel assignment algorithm that minimizes the sum of block-
ing cost and interference cost. We propose a new genetic algorithm for
the problem based on the parameter-free GA. The proposed GA finds
a good sequence of codes for a virtual machine that produces channel
assignment. Results are given which show that our GA, without tedious
parameter tuning, produces far better solutions to several practical prob-
lems than the existing GAs.

1 Introduction

The channel assignment problem (CAP), or the frequency assignment problem
(FAP), is a very important problem today, but is a difficult, NP-hard problem.
The radio spectrum is a limited natural resource used in a variety of private and
public services, the best-known example would be found in cellular mobile phone
systems, or personal communication services (PCS). To facilitate this expansion
the radio spectrum allocated to a particular service provider needs to be assigned
as efficiently and effectively as possible.

Because the CAP is a very important problem in the real world and an
NP-hard problem, a number of heuristic algorithms have been proposed (e.g.,
[3]), and genetic algorithms (GAs) are applied to minimum span frequency as-
signment problem (MSFAP) (e.g., [2,3,6,8,9,10,13,14]). To achieve the optimal
solution of fixed channel assignment problems, most proposed algorithms try
to minimize the amount of necessary channels under satisfying a set of given
constraint(e.g., [2,3,6,8,9,10,13,14]).

However, the total number of available channels, or bandwidth of frequen-
cies, are given and fixed in many situations. Minimizing the bandwidth becomes
meaningless for such applications. To address the problem, Jin et al. proposed
a new cost model [5] in which the available number of channels are given and
fixed and the electro-magnetic compatibility constraints and demand constraint

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 789–799, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



790 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

are relaxed. They also proposed genetic algorithms to solve the problems [4,5].
But their algorithms use näıve chromosome representation, therefore the search
space is too large in scale, thus the results obtained by these algorithms are not
good enough.

We propose a new algorithm for the problem based on the parameter-free
genetic algorithm (PfGA) proposed by Sawai et al. [7,12]. The proposed GA is
tested using a set of practical benchmark problems, and the performance is far
better than the existing GAs. The proposed GA can obtain better solutions than
the existing GAs without time-consuming parameter tuning.

2 Fixed Channel Assignment with Limited Bandwidth

We formulate the problem in this section. This section is a brief summary of the
paper by Horng et al. [4].

The total amount of blocked calls and interference between cells are the
two major considerations of channel assignment. Both blocking and interference
brings a certain degree of damage to the system. Thus, an ideal assignment
should be a solution that guarantees a low blocking rate and a low degree of
interference.

2.1 Notation

Let us consider a cellular system that consists of N cells, and each cell is num-
bered from 1 toN . A compatibility matrix is a symmetricN×N matrix C = (cij)
with nonnegative integer elements. The value cij prescribes the minimum fre-
quency separation required between frequencies assigned to cell i and cell j, i.e.,
if fki and f lj are the frequencies assigned to cell i and j respectively, then the
following condition |fki − f lj | ≥ cij should be satisfied for all i and j.

Radio frequencies are assumed to be evenly spaced, therefore they can be
identified with the positive integers. Let Xi,j be the variable that takes 1 when
the j-th mobile that stays in cell i wishes to own a frequency, and ni be the
number of mobiles that stay in cell i, and let T be the number of channels that
each frequency provides under TDMA (Time Division Multiple Access). And let

Xi =
ni∑
j=1

Xi,j be the random variable of required channels in cell i, and let µi

and σi be the expected number and the standard deviation of Xi (no matter
the request is failed or success). In general, the load of each cell is maintained
by system, therefore µi and σi could be estimated from the long-term history of
base stations’ load data.

2.2 Damage of Blocked Calls

Call attempts may fail at a busy station because there are no available channels,
and failed calls are called blocked calls. The more blocked calls, the more damage



A Parameter-Free Genetic Algorithm 791

caused to the system. Thus, an ideal channel assignment should guarantee that
the total amount of blocked calls of all cells be as low as possible.

Let Hi be the number of assigned channels to cell i, then the expected number

of blocked calls in cell i is
ni∑

j=Hi+1

P (Xi = j)(j − Hi). The objective here is to

minimize the cost
N∑
i=1

ni∑
j=Hi+1

P (Xi = j)(j − Hi). As Horng et al. showed, we

can assume the random variable Xi (1 ≤ i ≤ N) is close to the normal random
variable with parameters µi and σi [4]. Therefore, as an approximation of

ni∑
j=x+1

P (Xi = j)(j − x),

we can use

IE(x) =
1√

2πσi

∫ ∞
x

(y − x) exp

{
−1

2

(
y − µi
σi

)2
}
dy

=
1√
2π
σi exp

{
−1

2

(
x− µi
σi

)2
}

+
1
2

(µi − x)
{

1− erf
(
x− µi√

2σi

)}

=
1√
2π
σi exp

{
−1

2

(
x− µi
σi

)2
}

+
1
2

(µi − x)erfc
(
x− µi√

2σi

)
,

where erf(x) and erfc(x) are the error and complementary error function defined
as

erf(x) =
2√
π

∫ x

0
exp(−t2)dt, erfc(x) = 1− erf(x) =

2√
π

∫ ∞
x

exp(−t2)dt.

2.3 Damage from Interference

Interference can occur between a pair of transmitters if the strength of the in-
terfering signal is sufficiently high. Whether a transmitter pair has the potential
to interfere depends on many factors, e.g., distance, terrain, power, or antenna
design. The higher the potential for interference between a transmitter pair is,
the larger the frequency separation required. For example, if two transmitters
are sufficiently geographically separated then a frequency can be re-used, i.e.,
the same frequency can be assigned. At the other extreme if two transmitters are
located at the same site then they may require, say, a five-frequency separation.

Violating frequency separation constraint, or EMC (Electro-Magnetic Com-
patibility) constraint, would bring some degree of disadvantage to the mobiles
that experience interference. And the disadvantage should be in proportion to
the degree of interference that depends on the frequency distance (i.e., how many
Hz between them) and the power it suffered. The degree of damage is defined as
follows. Let p be the assigned frequency to cell i, and q be the one to cell j, then



792 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

the damage caused by interference from this assignment f(i, j, p, q) is defined as
follows.

f(i, j, p, q) =




0 if |p− q| ≥ cij ,
fi,pfj,qIC(cij − |p− q|) if |p− q| < cij and i = j,
fi,pfj,qIA(cij − |p− q|) otherwise.

where

fi,p =
{

1 if frequency p is assigned to cell i
0 otherwise,

and IC and IA are two strictly increasing functions.

2.4 Objective Function

The objective of the problem is to minimize the total damage, to minimize the
sum of the cost of blocked calls and the cost of interference, therefore the problem
is defined as follows.

Min O =
N∑
i=1

N∑
j=1

Z∑
p=1

Z∑
q=1

f(i, j, p, q) + α

N∑
i=1

IE(TFi),

subject to fi,p = 0 or 1 for 1 ≤ i ≤ N and 1 ≤ p ≤ Z where Fi =
Z∑
p=1

fi,p for

1 ≤ i ≤ N , Z is the allowable number of frequencies, and α is the relative weight
of the damage of blocked calls to the damage from interference.

2.5 Related Works

Because CAP (FAP) is an important and very difficult problem to solve exactly,
GA based algorithms for the minimum span frequency assignment problem (MS-
FAP) have been proposed (e.g., [2,3,6,8,9,10,13,14]).

The performance of the GAs for MSFAP that represent possible assignment
directly as a bit-string or a sequence of integers is not good enough, and the
permutation based GAs are reported to show good performance [8,9,14]. In these
GAs, an assignment order of transmitters is represented by a permutation and an
assignment is carried out using a sequential algorithm. The scheme has overcome
the weakness of the previous two schemes and the performance has improved
[8,9,14], and a GA with an adaptive mutation rate and a new initialization
method was developed and showed very good performance [9]. The performance
of the permutation based GAs are high for MSFAP, but they are designed to
find an assignment without violating compatibility constraints. Therefore, they
cannot be used for the problem shown in this section.

The formulation shown above, which is quite different from MSFAP, is first
proposed and a GA for solving the problem was developed by Jin et al. [5], and
an improved version was proposed by Horng et al. [4]. However they use näıve



A Parameter-Free Genetic Algorithm 793

representation of N × Z matrix that is a bad coding and they use simple GA.
Rothlauf et al. [11] showed that we should use well-designed GA in the case of
bad codings, therefore the performance of previously proposed GAs is not good
enough.

3 The Proposed Algorithm

We propose a new genetic algorithm for the FAP formulated in the previous
section. The main idea of the proposed GA is to encode a sequence of codes of
a virtual machine that performs assignment as a chromosome, and for the GA
to search a good sequence of codes that minimizes the total damage cost.

As the genetic algorithm, we use the parameter-free genetic algorithm (PfGA)
proposed by Sawai et al. [7,12] that is outlined in the appendix. The PfGA is
not only simple and robust, but also does not need to set almost any genetic
parameters in advance that need to be set in other GAs. The performance of
PfGA is high for functional optimization problems of 5- or 10-dimensions [7,12].

3.1 How Many Frequencies Are Necessary for a Cell?

The second term of the objective function decreases as we increase the number
of assigned frequencies (Fi), but the first term, interference cost, would increase.
Let us consider the cost function

Ci(Fi) =
Z∑
p=1

Z∑
q=1

f(i, i, p, q) + αIE(TFi),

which consists of the blocking cost and the interference cost within a cell i when
just considering the co-site compatibility only.

We can find a good candidate of Fi using the Ci(Fi). The frequency sepa-
ration in a cell decreases as we increase Fi, and the interference cost increases,
whereas the IE(TFi) decreases. Therefore we can find Fi that minimizes Ci(Fi)
by evaluating Ci(Fi) for Fi = 1, 2, · · · , F̄i, i.e., the optimal F ∗i can be defined as

F ∗i = argmin
Fi∈{1,2,···,F̄i}

Ci(Fi).

Because IE(x) rapidly decreases and becomes close to zero when x ≥ µi + 5σi,
therefore we can set F̄i = �µi + 5σi�. The minimal frequency separation Smi of
each cell i, which minimizes Ci(Fi), is calculated by

Smi = min{�(Z − 1)/(F ∗i − 1)�, cii}.

We can also use LB =
N∑
i=1

Ci(F ∗i ) as a (very loose) lower bound of the total

cost.



794 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

Table 1. Action specification

Action Aassigning frequency f
0 frequency with separation of Smi
1 frequency with separation of Smi + 1
2 minimum usable frequency

3.2 Virtual Machine

Let us consider a virtual machine that assigns frequencies one by one to cells
according to a given sequence of codes. The cost function Ci(F ∗i ) is minimized by
assigning all frequencies with the separation of Smi when (Z−1)mod(F ∗i −1) = 0.
When (Z − 1)mod(F ∗i − 1) �= 0, some frequencies must be assigned with the
separation Smi +1. Because Ci(Fi) does not consider the compatibility constraint
between cell i and j, the assignment with the above rule does not minimize the
total cost, therefore some assignments should be with the separation that does
not violate the inter-cell constraints.

With these observations, the virtual machine must have at least the three
actions/ operations that are shown in Table 1. And the assignment order to cells
is also crucial, therefore an instruction of the virtual machine is defined as a pair
of integers, namely (cell number, action).

The virtual machine assigns a frequency f that is determined by the Table 1
to a cell cell number when 1 ≤ f ≤ Z, and does nothing in other cases. After
the frequency f is assigned to the cell i, the set of usable frequencies of all cells
is updated according to the compatibility matrix C. In this step, we use Smi
instead of cii.

3.3 Chromosome Representation

An instruction (p, a) assigns a frequency to a cell p, therefore the length of

the sequence becomes L =
N∑
i

F ∗i . Thus a valid sequence of codes is expressed

as a sequence S = {(p1, a1), (p2, a2), · · · , (pL, aL)}. The cell number part in S
must be a permutation of cell numbers where a cell number occurs multiple
times, therefore we use the random keys representation [1]. The random keys
representation encodes a permutation with random numbers. These values are
used as the sort key to decode a permutation. An example is shown below. Let
us consider the sequence of numbers

(1, 4, 0, 3, 2)

From this sequence, by sorting in ascending order, we get the permutation,

3→ 1→ 5→ 4→ 2.

Because any ordered set of random keys can be interpreted as a permutation,
any crossover and/or any mutation produce valid permutation.



A Parameter-Free Genetic Algorithm 795

The chromosome of the GA is a sequence of genes that consists of a pair of
integers, one for random keys1 and the other is for action, namely (r, a) where
0 ≤ r ≤ L− 1, and a ∈ {0, 1, 2}.

3.4 Mutation

The original PfGA uses the bit flip mutation. Because the chromosome of our
GA uses a pair of integers as a gene, the mutation is done as follows.

The randomly chosen portion of a chromosome is mutated by the following
method. Let p and q be the starting and the ending position of genes in a
chromosome. The value of random keys part of gene gi(p ≤ i ≤ q) is replaced
by a randomly chosen integer in the range of [0, L− 1]. The value of the action
part of a randomly chosen gene gi is replaced by a randomly chosen integer in
the range of [0, 2]. This mutation is done randomly, i.e., the probability that a
gene gi is mutated or not is 50% for all genes gi(p ≤ i ≤ q).

The mutation operator does not generate an invalid chromosome, i.e., a gen-
erated offspring is always decoded into a valid sequence of codes for the virtual
machine.

3.5 Local Search

After the assignment by the virtual machine, we could improve the assignment
by a local search. If a cell has a frequency fp that violates the interference
constraints, and there is a usable frequency fq, then we can replace fp by fq,
and the replacement always decreases the total cost. After this local search, the
chromosome is modified to reflect the modification.

This modification algorithm changes the order of instructions and the action
part according to the result of the local search. The basic ideas are as follows;

– If the frequency fq is generated by the local search, the corresponding in-
struction is moved towards the tail to delay the assignment.

– The action that assigns the minimum usable frequency should be kept un-
changed.

The modification algorithm is shown in Figure 1. The algorithm returns a
modified sequence of codes, therefore the random keys part of a chromosome is
modified according to the sequence of codes. The random keys parts are replaced
by the orders in the sequence of codes.

4 Experiments and Results
4.1 Benchmark Problems

We tested the algorithm using the problem proposed by Hong et al. [4]. The
eight benchmark problems were examined in the experiments. Three compati-
bility matrices C3, C4, C5 and three communication load tables D1, D2, D3 were
1 We use integers as random keys instead of real numbers to reduce search space. If

we fix the sorting algorithm for decoding, ties of keys cause no problem.



796 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

Procedure Modification
BEGIN
Initialize:
(1) Let two sequences of S1 and S2 be empty.
(2) Sort assigned frequency in ascending order for each cell, and let the result be

(fi,1, fi,2, · · · , fi,Fi). And also let fi,0 ← 1− Smi .
Scan genes from head to tail:
LOOP
(1) Let i be the cell number, and a be the action of current gene that corresponds

to th k-th assignment to cell i.
(2) Calculate frequency separations s← fi,k − fi,(k−1)

(3) If (s > Smi + 1) or (s < 0) then t← 2 else t← s− Smi
(4) If t = 2 then

If fi,k is generated by the local search then append instruction (i, t) to S2.
else append instruction (i, t) to S1.

else
If a = 2 then append instruction (i, a) to S1.
else append instruction (i, t) to S1.

UNTIL all genes are scanned.
Return the concatenation of S1 and S2.

END

Fig. 1. Modification algorithm

combined to make the eight problems shown in Table 2 [4]2. In Table 2, N
denotes the number of cells, Z denotes the number of available frequencies, C
denotes the compatibility matrix, and D denotes the communication load table.

The interference cost functions used were IC(x) = 5x−1 and IA(x) = 52x−1,
the weight of blocking cost α = 1000, and the value of T (number of channels
that each frequency provides under TDMA) was set to 8. The fitness of the
individual was defined as the inverse of the objective function, i.e., 1/O.

4.2 Results

We tested the performance of the GA by running it 100 times for each problem.
The results are shown in Table 3. Comparisons with the results by Horng et al.
[4] are also given. The column LB denotes the lower bound that is defined in
subsection 3.1. For all the experiments, the maximum number of fitness eval-
uation was set to the same number of the experiment by Horng et al. [4], i.e.,
Z × 1000.

Table 3 shows that our GA performs very well. It outperforms the previous
GA [4] in all cases, and the costs obtained by our GA are very small compared
to the ones by Horng et al. [4]. Our GA can find very good assignment that has
the same cost of the lower bound for P1 and P2, and the cost is very close to
the lower bound for P3 and P4.
2 According to private communications with an author of the paper [4], there are typos

in their paper. The typos are the communication load table of Problem 1, and the
weight α. And there is no description of the value of T . We used the correct data
that were provided by the author, and they are shown in this paper.



A Parameter-Free Genetic Algorithm 797

Table 2. Problem specifica-
tion

P N Z C D

P1 21 60 C3 D1

P2 21 60 C4 D1

P3 21 60 C5 D1

P4 21 60 C4 D2

P5 21 60 C5 D2

P6 21 40 C5 D1

P7 21 40 C5 D2

P8 21 64 C5 D3

Table 3. Solutions to the problems

GA by Horng et al.[4] Proposed GA
P LB Best Average Best Average
P1 3.7e-4 203.4 302.6 3.7e-04 3.7e-04
P2 4.1 271.4 342.5 4.1 4.1
P3 4.1 1957.4 2864.1 7.2 21.8
P4 231 906.3 1002.4 243.8 247.9
P5 231 4302.3 4585.4 695.9 982.3
P6 190 4835.4 5076.2 820.8 1210.0
P7 2232 20854.3 21968.4 3891.7 5275.3
P8 22518 53151.7 60715.4 34286.5 38605.9

The GA can obtain assignments without any violation of the EMC con-
straints for the problems P1, P2, and P3. The performance improvement is sig-
nificant for all problems. And it should be noted that the results were obtained
without any parameter tuning. The GA has only one parameter, the maximum
number of fitness evaluation, which can be easily determined from the allowable
computation time.

5 Conclusions

We have presented here a novel genetic algorithm for a fixed channel assign-
ment problems with limited bandwidth constraint based on the parameter-free
genetic algorithm (PfGA). The algorithm uses the GA to find a good sequence
of codes for a virtual machine that executes assignment tasks. The proposed GA
is tested using a set of benchmark problems, and the performance is superior
to the existing GAs without tedious parameter tuning. The proposed GA can
obtain very good solutions that were unable to be found using the existing GAs.
We can also conclude that the performance of PfGA for the fixed channel as-
signment problem with limited bandwidth constraint, which is a combinatorial
optimization problem, is as good as for functional optimization problems.

Acknowledgments

The authors are grateful to Mr. Ming-Hui Jin of National Central University,
Chungli, Taiwan for providing us the data of the experiment.

References

1. Bean, J.C.: Genetics and random keys for sequencing and optimization, ORSA
Journal of Computing, vol.6, no.2, pp.154–160 (1994).

2. Crompton, W., Hurley, S., and Stephens, N.M.: Applying genetic algorithms to
frequency assignment problems, Proc. SPIE Conf. Neural and Stochastic Methods
in Image and Signal Processing, vol.2304, pp.76–84 (1994).



798 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

3. Hurley, S., Smith,D.H., and Thiel, S.U.: FASoft: a system for discrete channel
frequency assignment, Radio Science, vol.32, no.5, pp.1921–1939 (1997).

4. Horng, J.T., Jin, M.H., and Kao, C.Y.: Solving fixed channel assignment problems
by an evolutionary approach, Proc. of GECCO-2001, pp.351–358 (2001).

5. Jin, M.H., Wu, H.K., Horng, J.Z., and Tsai, C.H.: An evolutionary approach to
fixed channel assignment problems with limited bandwidth constraint, Proc. of
IEEE ICC 2001, vol.7, pp.2100–2104 (2001).

6. Kim, J.-S., Park, S.H., Dowd, P.W., and Nasrabadi, N.M.: Comparison of two
optimization techniques for channel assignment in cellular radio network, Proc. of
IEEE Int. Conf. Commun., vol.3, pp.850–1854 (1995).

7. Kizu, S., Sawai, H., and Endo, H.: Parameter-free genetic algorithm: GA without
setting genetic parameters, Proc. of 1997 International Symposium on Nonlinear
Theory and its Application, vol.2 of 2, pp.1273–1276 (1997).

8. Matsui, S. and Tokoro, K.: A new genetic algorithm for minimum span frequency
assignment using permutation and clique, Proc. of GECCO-2000, pp.682–689
(2000).

9. Matsui, S. and Tokoro, K.: Improving the performance of a genetic algorithm for
minimum span frequency assignment problem with an adaptive mutation rate and
a new initialization method, Proc. of GECCO-2001, pp.1359–1366 (2001).

10. Ngo, C.Y. and Li, V.O.K.: Fixed channel assignment in cellular radio networks us-
ing a modified genetic algorithm, IEEE Trans. Veh. Technol., vol.47, no.1, pp.163–
172 (1998).

11. Rothlauf, F., Goldberg, D.E., and Heinzl, A.: Bad coding and the utility of well-
designed genetic algorithms, Proc. of GECCO-2000, pp.355–362 (2000).

12. Sawai, H., Kizu, S.: Parameter-free genetic algorithm inspired by “disparity theory
of evolution,” Proc. of PPSN-V, pp.702–711 (1998).

13. Smith, D.H., Hurley, S., and Thiel, S.U.: Improving heuristics for the frequency
assignment problem, Eur. J. Oper. Res., vol.107, no.1, pp.76–86 (1998).

14. Valenzuela, C., Hurley, S., and Smith, D.: A permutation based algorithm for
minimum span frequency assignment, Proc. of PPSN-V, pp.907–916 (1998).

Appendix: Overview of Parameter-Free
Genetic Algorithm (PfGA)

The Parameter-free Genetic Algorithm (PfGA) was proposed by Sawai et al.
[7,12]. The PfGA is a very compact and fast adaptive search algorithm based on
the variable-size of population taking a dynamic but delicate balance between
exploration, i.e., global search, and exploitation, i.e., local search. The PfGA
is not only simple and robust, but also does not need to set almost all genetic
parameters in advance that need to be set up in other GAs. The outline of PfGA
procedure is shown below [7,12].
Step 0: Let S be the whole population, and S′ be the subpopulation.
Step 1: Select one individual randomly from S, and add it to S′.
Step 2: Select one individual randomly from S, and add it to S′.
Step 3: Select two individuals P1, P2 randomly from S′ and perform multiple-

point crossover to generate two children C1, C2. In the crossover n crossover
points (n is a random integer 0 < n < L, where L is the length of chromo-
some) are randomly selected.



A Parameter-Free Genetic Algorithm 799

Step 4: For one randomly selected child, perform mutation. In the mutation,
a randomly chosen portion of chromosome is inverted, i.e., bit-flipped, at
random.

Step 5: Select one to three individuals among P1, P2, C1, C2 depending on the
cases (described later), and feed them back to S′.

Step 6: If the terminating condition is satisfied, then terminate. As the termi-
nating condition, we use the maximum number of fitness evaluation. The
algorithm terminates when the number of fitness evaluation reaches the pre-
scribed maximum.

Step 7: If |S′| > 1 then go to Step 3, otherwise go to Step 2.
For the selection operation in Step 5, the fitness values f of P1, P2, C1, C2

are compared, and selection is done according to the following rules.
Case 1: If the fitness values of children f(C1) and f(C2) are better than those

of the parents, then C1 and C2 and argmax
Pi

(f(P1), f(P2) are left in S′.

Case 2: If the fitness values of children f(C1) and f(C2) are worse than those
of parents, then only argmax

Pi

(f(P1), f(P2) is left in S′.

Case 3: If the fitness values of either f(P1) or f(P2) is better than those of
children, then argmax

Pi

(f(P1), f(P2) and argmax
Ci

(f(C1), f(C2) are left in S′.

Case 4: In all other situations, argmax
Ci

(f(C1), f(C2) is preserved and then one

individual randomly chosen from S is added to S′.



Real-Coded Parameter-Free Genetic Algorithm
for Job-Shop Scheduling Problems

Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

Communication & Information Research Laboratory (CIRL)
Central Research Institute of Electric Power Industry (CRIEPI)

2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511, Japan
{matsui,isamu,tokoro}@criepi.denken.or.jp

Abstract. We propose a new genetic algorithm (GA) for job-shop
scheduling problems (JSSP) based on the parameter-free GA (PfGA)
and parallel distributed PfGA proposed by Sawai et al. The PfGA is not
only simple and robust, but also does not need to set almost any genetic
parameters in advance that need to be set in other GAs. The perfor-
mance of PfGA is high for functional optimization problems of 5- or
10-dimensions, but its performance for combinatorial optimization prob-
lems, which search space is larger than the functional optimization, has
not been investigated. We propose a new algorithm for JSSP based on an
extended PfGA, extended to real-coded version. The GA uses random
keys for representing permutation of jobs. Simulation results show that
the proposed GA can attain high quality solutions for typical benchmark
problems without parameter tuning.

1 Introduction

The Genetic Algorithm (GA) is an evolutionary computation paradigm, and
has been successfully applied to many practical problems such as functional
optimization, combinatorial optimization, and so on [8]. However, the tuning of
genetic parameters has to be performed by trial and error, making optimization
by GA ad hoc.

There have been many research projects for self-adaptive GA because such
adaptation can tune the parameters while solving a given problem. Nevertheless,
it is a very time-consuming task to design an optimal GA in an adaptive way
because we have to perform computation many times by trial and error. To
address this problem, Sawai et al. have proposed the Parameter-free Genetic
Algorithm (PfGA), for which no control parameters for genetic operation need
to be set in advance [10,14,15]. The performance of the PfGA has been reported
to be high compared with other GAs [10,14,15]. But as far as the authors know,
these papers only show the performance for functional optimization problems,
and the performance for combinatorial optimization problems is unknown.

This paper reports the result of empirical evaluation of applicability of PfGA
to a combinatorial optimization problem, the job-shop scheduling problem

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 800–810, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Real-Coded Parameter-Free Genetic Algorithm 801

(JSSP). The proposed GA keeps the basic framework of PfGA, but the chromo-
some is extended from bit-string to real numbers. The proposed GA uses random
keys to represent the permutation of operations, and uses the hybrid-scheduling
method to decode permutation into schedule. Simulation results show that the
proposed GA can attain high quality solutions for typical benchmark problems
without tedious parameter tuning.

2 Job-Shop Scheduling Problem

In the Job-Shop Scheduling Problem (JSSP), n jobs have to be processed on m
different machines. Each job Ji consists of a sequence of tasks Ti,1, · · · , Ti,m that
have to be completed during an uninterrupted time period of length pi,j ∈ IN
on a given machine (M(Ti,j) ∈ {1, · · · ,m}). A schedule is an allocation of tasks
to time intervals on machines. The goal in the job-shop scheduling problem is
to find the sequence of n jobs to be completed on m machines such that the
makespan (finish time of the last operation) is minimized.

The job-shop scheduling problem is well known as one of the most difficult
NP-hard combinatorial optimization problems. Several approaches have been
reported to the JSSP for a few decades. Among them work on GAs for solving
the JSSP has a history of only one decade, but they perform well compared with
other approaches.

Davis [6] was the first to use Genetic Algorithms to solve JSSP, and many
GAs have been proposed and analyzed (e.g., [3,11,12,13,17,19,20]). Other heuris-
tics such as Simulated Annealing (SA) and Tabu Search (TS), and exact tech-
niques as branch and bound have also been developed for solving JSSP. Jain and
Meeran provide a good description of these techniques [9].

2.1 Chromosome Representation

There are two ways of representing a schedule: indirect and direct. In indirect rep-
resentation, the chromosome contains an encoded schedule. A schedule builder
is used to transform the chromosome into a feasible schedule. The indirect repre-
sentations range from traditional binary representations [12] to domain-specific
knowledge representation [1].

In direct representation, the chromosome directly represents the production
schedule. Bruns [5] shows many ways to deal with direct representations. Di-
rect representation performs efficiently on production scheduling, incorporates
domain-specific operations easily, but also requires domain-specific recombina-
tion operators.

2.2 Types of Feasible Schedules

There are four types of feasible schedules in JSSP as follows

inadmissible: Inadmissible schedules contain excess idle time, and they can be
improved by forward-shifting operations until no excess idle time exists.



802 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

semi-active: Semi-active schedules contain no excess idle time, but they can be
improved by shifting some operations to the front without delaying others.

active: Active schedules contain no idle time and no operation can be finished
earlier without delaying other operations. The optimal schedule is guaranteed
to be an active schedule.

non-delay: Non-delay schedules are active schedules, in which operations are
placed into the schedule such that the machine idle time is minimized. No
machine is kept idle if some operation can be processed.

3 Parameter-Free Genetic Algorithm (PfGA)

3.1 Parameter-Free Genetic Algorithm

The Parameter-free Genetic Algorithm (PfGA) proposed by Sawai et al. [10,14,15]
is a novel GA inspired by the “disparity theory of evolution.” The idea of the
theory is based on different mutation rate in double strands of DNA. The PfGA
is a very compact and fast adaptive search algorithm based on the variable-size
of population taking a dynamic but delicate balance between exploration, i.e.,
global search, and exploitation, i.e., local search. The PfGA is not only simple
and robust, but also does not need to set almost all genetic parameters in ad-
vance that need to be set up in other GAs. The performance of PfGA to function
optimization problems are reported to be very high [10,14,15].

The PfGA procedure is as follows[14].

Step 0: Let S be the whole population, and S′ be the subpopulation.
Step 1: Select one individual randomly from S, and add it to S′.
Step 2: Select one individual randomly from S, and add it to S′.
Step 3: Select two individuals P1, P2 randomly from S′ and perform multiple-

point crossover to generate two children C1, C2. In the crossover n crossover
points (n is a random integer 0 < n < L, where L is the length of chromo-
some) are randomly selected.

Step 4: For one randomly selected child, perform mutation. In the mutation,
a randomly chosen portion of chromosome is inverted, i.e., bit-flipped, at
random.

Step 5: Select one to three individuals among P1, P2, C1, C2 depending on the
cases (described later), and feed them back to S′.

Step 6: If the terminating condition is satisfied, then terminate.
Step 7: If |S′| > 1 then go to Step 3, otherwise go to Step 2.

For the selection operation in Step 5, the fitness values f of P1, P2, C1, C2
are compared, and the selection is done according to the following rules.

Case 1: If the fitness values of children f(C1) and f(C2) are better than those
of the parents, then C1 and C2 and argmax

Pi

(f(P1), f(P2) are left in S′.

Case 2: If the fitness values of children f(C1) and f(C2) are worse than those
of parents, then only argmax

Pi

(f(P1), f(P2) is left in S′.



Real-Coded Parameter-Free Genetic Algorithm 803

Case 3: If the fitness values of either f(P1) or f(P2) is better than those of
children, then argmax

Pi

(f(P1), f(P2) and argmax
Ci

(f(C1), f(C2) are left in S′.

Case 4: In all other situations, argmax
Ci

(f(C1), f(C2) is preserved and then one

individual randomly chosen from S is added to S′.

3.2 Distributed Parallel PfGA

Generally speaking, parallel processing in GA aims at reaching better solutions
faster than sequential processing by extending the search space. The distributed
parallel processing of PfGA is as follows [14].

Let us assume that there are N subpopulations S′i(i = 1, 2, · · · , N), and each
subpopulation evolves as shown in the previous section. Migration among the
subpopulations occurs when a better individual is produced in some subpopula-
tions. One possible migration method is as follows;

If case 1 or 4 happens in some subpopulation, the individual Ci that is
the best child is copied to other subpopulations as an emigrant. When other
subpopulations receive the immigrant, they add it as an individual and eliminate
the worst individual among all individuals in the subpopulation. Sawai et al.
proposed many migration methods, master-slave types and uniform-distributed
types. In this paper we mainly tested the UD1 where the best child is copied to
a randomly chosen other subpopulation, because the UD1 performed best in the
preliminary experiments.

4 The Proposed GA

This section describes the proposed GA. The proposed GA uses the random
keys for permutation representation, and hybrid scheduling for decoding the
permutation.

4.1 Random Keys for Job-Shop Scheduling

The random keys representation [2,13] encodes a solution with random numbers.
These values are used as the sort keys to decode the solution. An example of the
random keys encoding for the context of job-shop scheduling is shown below.
As a simple example, consider the single machine sequencing problem. When
a sequence of random numbers is passed to the fitness evaluation routine, sort
them and sequence the jobs in ascending order of the sort. For a five job single
machine problem, let us consider the chromosome

(0.29, 0.96, 0.17, 0.84, 0.48)

From this chromosome, we get the sequence,

3→ 1→ 5→ 4→ 2.

Because any ordered set of random keys can be interpreted as a job sequence,
any crossover and any mutation produce feasible sequence, i.e., all offspring are
feasible solutions.



804 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

��������

����	�
����
�
����

�	����� �������

Fig. 1. Relationship of schedule properties [4]

4.2 Real-Coded PfGA (Rc-PfGA)

We extend the PfGA to a real coded version. A gene of the original PfGA takes
the value of 0 or 1, i.e., a chromosome is a bit-string. The real coded PfGA is
an extension where a chromosome is a string of real numbers. We abbreviate it
to Rc-PfGA.

The mutation operator of Rc-PfGA replaces the value of a gene by a random
number uniformly distributed in the predefined range.

The random keys representation of permutation can be expressed naturally
with the proposed Rc-PfGA.

4.3 Permutation Decoding

Permutations can be decoded into semi-active, active, or non-delay schedules
[4]. µi(k) = j (1 ≤ k ≤ mi) specifies that Mj is the machine that processes the
k-th operation of job Ji, where mi is the number of operations of Ji. The k-th
operation of job Ji processed on machine Mµi(k) is denoted as oik. The required
processing time of oik is denoted by pik. Let tik be the starting time of operation
oik, then

tik = max(ti,k−1 + pi,k−1, thl + phl) (1)

Semi-active Schedule: Schedules are built by successively scheduling the oper-
ations by assigning the earliest possible starting time according to Equation (1).
The permutation to be decoded serves as a look-up array for the procedure
shown below.

An operation oik found in the permutation is only schedulable if its pre-
decessor operation oi,k−1 has been scheduled already. Therefore in a feasible
permutation oi,k−1 occurs to the left of oik.

Step 1: Build the set of all beginning operations A := {oi1 | 1 ≤ i ≤ n}.
Step 2: Select operation o∗ik from A which occurs leftmost in the permutation

and delete it from A.
Step 3: Append operation o∗ik to the schedule and calculate its starting time.
Step 4: If o∗ik has successor o∗i,k+1, insert it into A.
Step 5: If A is empty, terminate. Otherwise, go to Step 2.



Real-Coded Parameter-Free Genetic Algorithm 805

Active Schedule: Active schedules are produced by modification of Step 2
in the above procedure which leads to the well-known algorithm of Giffler and
Thompson [7].

Step 2.A1: Find an operation o′ from A with the earliest possible completion
time.

Step 2.A2: Determine the machine M ′ of o′ and build the set B from all op-
erations in A which are processed on M ′.

Step 2.A3: Delete operations in B which do not start before the completion of
o′.

Step 2.A4: Select operation o∗ik from B which occurs leftmost in the permuta-
tion and delete it from A.

This algorithm produces schedules in which no operation could be started
earlier without delaying some other operation or breaking an order constraint.
Active schedules are also semi-active schedules.

Non-delay Schedule: Non-delay schedule means that no machine is kept idle
when it could start processing some operation. Non-delay schedules are neces-
sarily active and hence also necessarily semi-active.

Schedules are produced similarly as active by using a more rigid criterion for
picking an operation from B by the modified step 2.

Step 2.N1: Find an operation o′ from A with the earliest possible starting time.
Step 2.N2: Determine the machine M ′ of o′ and build the set B from all op-

erations in A which are processed on M ′.
Step 2.N3: Delete operations in B which start later then operation o′.
Step 2.N4: Select operation o∗ik from B which occurs leftmost in the permuta-

tion and delete it from A.

Hybrid Schedule [4]: Hybrid schedules can be produced in a flexible way by
introducing a parameter δ ∈ [0, 1]. The setting of δ can be thought of as defining
a bound on the length of time a machine is allowed to remain idle.

Step 2.H1: Find an operation o′ from A with the earliest completion time
t′ + p′.

Step 2.H2: Determine the machine M ′ of o′ and build the set B from all op-
erations in A which are processed on M ′.

Step 2.H3: Find an operation o′′ from B with the earliest possible starting
time t′′.

Step 2.H4: Delete operations in B in accordance with parameter δ such that
B := {oik ∈ B | tik < t′′ + δ((t′ + p′)− t′′)}.

Step 2.H5: Select operation o∗ik from B which occurs leftmost in the permuta-
tion and delete it from A.



806 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

Move Search [13]: The move search schedule proposed by Norman and Bean
[13] constructs a schedule by using a parameter, delay factor DF , that is asso-
ciated with each operation. The move search schedule is produced as follows.

Step 1: Build the set A of schedulable operation, initially, the first operation
of each job is schedulable.

Step 2: Selection.

Step 2-D1: Sorting the random keys of operation in the set A, find the
candidate operation o∗ik with the smallest key.

Step 2-D2: Build the set K of operations that requires the same machine
as the candidate operation. Order K based on the random key values of
the operations.

Step 2-D3: If |K| = 0 go to Step 3, otherwise set a = 1.
Step 2-D4: Let oij be the operation associated with element a of K, ka.
Step 2-D5: If tij +DFij × pij < t∗ik, then oij becomes the candidate oper-

ation. Update t∗ik.
Step 2-D6: If a < |K|, let a = a+ 1 and return to Step 2-D4.

Step 3: Append operation o∗ik to the schedule and calculate its starting time.
Step 4: If o∗ik has successor o∗i,k+1, insert it into A.
Step 5: If A is empty, terminate. Otherwise go to Step 2.

4.4 Chromosome

The chromosome of the proposed GA is a sequence of real numbers, and its
length is 2 × n × m. The chromosome is divided into two parts, the first part
represents the random keys, and the second part represents the δs of the hybrid
schedule. Bierwirth and Mattfeld [4] used single δ for their GA, and showed that
the performance of GA depends on δ by numerical experiments. They showed
that the value of δ to be most suitable is 0.4 for “hard”, 0.5 for “moderate”,
and 0.7 for “easy” problem instances. But it is very hard to classify the given
problem instance in advance, therefore we designed our GA to search suitable
δs also by the GA.

Bierwirth and Mattfeld used single δ, but we found that the performance of
the GA with multiple δ is better than that with single δ by extensible experi-
ments, therefore our GA has n×m δs, i.e., the hybrid scheduler uses different δ
for each operation.

5 Computational Results

The proposed RcPfGA is tested by the benchmark problems from ORLib [18].
As the problem instances, we used the same set that was used by Norman and
Bean [13] because their GA and our GA use the same representation, random
keys. Our GA uses the hybrid schedule, and the GA by Norman and Bean,
RKGA, uses the move search schedule.



Real-Coded Parameter-Free Genetic Algorithm 807

Table 1. Simulation results

Opt. RKGA[13] Our GA
Prob. Size [9] Mean (%) Best (%) Mean (%) Best (%)
FT10 10×10 930 945 (1.61) 937 (0.75) 941.85 (1.27) 930 (0.00)
FT20 20×5 1165 1176 (0.94) 1165 (0.00) 1177.7 (1.09) 1173 (0.69)
LA02 10×5 655 661 (0.92) 655 (0.00) 655.46 (0.07) 655 (0.00)
LA03 10×5 597 599 (0.34) 597 (0.00) 597.84 (0.14) 597 (0.00)
LA04 10×5 590 592 (0.34) 590 (0.00) 590.00 (0.00) 590 (0.00)
LA16 10×10 945 958 (1.38) 945 (0.00) 945.52 (0.06) 945 (0.00)
LA18 10×10 848 850 (0.24) 848 (0.00) 848.00 (0.00) 848 (0.00)
LA19 10×10 842 853 (1.31) 851 (1.07) 852.30 (1.22) 842 (0.00)
LA20 10×10 902 908 (0.67) 907 (0.55) 906.80 (0.53) 902 (0.00)
LA21 15×10 1046 1062 (1.53) 1055 (0.86) 1071.82 (2.47) 1053 (0.67)
LA22 15×10 927 936 (0.97) 933 (0.65) 943.76 (1.81) 932 (0.53)
LA24 15×10 935 977 (4.49) 966 (3.32) 959.78 (2.65) 938 (0.32)
LA25 15×10 977 995 (1.84) 987 (1.02) 996.80 (2.03) 978 (0.10)
LA26 20×10 1218 1218 (0.00) 1218 (0.00) 1220.96 (0.24) 1218 (0.00)
LA27 20×10 1235 1269 (2.75) 1256 (1.70) 1273.74 (3.14) 1260 (2.02)
LA28 20×10 1216 1241 (2.06) 1241 (2.06) 1244.84 (2.37) 1226 (0.82)
LA29 20×10 1152 1188 (3.13) 1179 (2.34) 1207.64 (4.83) 1184 (2.78)
LA36 15×15 1268 1300 (2.52) 1287 (1.50) 1301.92 (2.68) 1279 (0.87)
LA37 15×15 1397 1432 (2.51) 1418 (1.50) 1440.24 (3.10) 1412 (1.07)
LA38 15×15 1196 1232 (3.01) 1217 (1.76) 1260.92 (5.43) 1208 (1.00)
LA39 15×15 1233 1260 (2.19) 1258 (2.03) 1263.64 (2.48) 1250 (1.38)
LA40 15×15 1222 1256 (2.78) 1234 (0.98) 1258.50 (2.99) 1240 (1.47)

5.1 Results by PfGA

The proposed GA was run using 50 different random seeds where the maximum
number of fitness evaluation was set to 1,000,000. The average over 50 and the
best solution over 50 seeds are shown in Table 1. The results of Norman and Bean
[13] are also shown in the table. Note that their results are from 10 runs, the
average are over 10 seeds, and the best is from the first five runs. The numbers
in parentheses are the relative error of the makespan, and numbers in bold face
means that they are the optimal value.

The GA was tested for the problems FT10, FT20, and LA00–LA40, but the
results of problems where average and best makespan are equal to the optimal
in both GAs are omitted in the table due to limitations of space. In Table 1,
Prob. denotes the name of the problem, Size denotes the size of the problem,
Opt. denotes the optimal makespan, Mean denotes the average makespan over
50 runs, and Best denotes the best makespan over 50 runs.

Table 1 shows the following.

– The performance of the proposed GA is better than that of RKGA for small-
sized problems, namely FT10, LA02–LA20, but it is worse than that of
RKGA for some larger problems, namely LA27, LA29, LA40.



808 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

Table 2. Simulation results of distributed parallel PfGA

N = 1 N = 2 N = 4 N = 8
Prob. Best Mean σ Best Mean σ Best Mean σ Best Mean σ

FT10 930 942.2 11.21 930 941.1 9.37 930 939.2 8.72 930 934.0 6.49
FT20 1173 1178.4 1.84 1165 1177.6 2.87 1165 1177.4 3.90 1165 1177.0 3.22
LA02 655 655.5 1.99 655 655.0 0.00 655 655.0 0.00 655 655.0 0.00
LA03 597 597.8 2.08 597 597.1 0.84 597 597.0 0.00 597 597.0 0.00
LA04 590 590.0 0.00 590 590.0 0.00 590 590.0 0.00 590 590.0 0.00
LA16 945 945.5 0.50 945 945.5 0.50 945 945.3 0.44 945 945.1 0.32
LA18 848 848.0 0.00 848 848.0 0.00 848 848.0 0.00 848 848.0 0.00
LA19 842 852.3 5.86 842 852.0 5.04 842 847.8 2.77 842 846.6 3.57
LA20 902 906.8 0.98 902 906.5 1.50 902 906.8 0.98 902 906.1 1.92
LA21 1053 1071.8 11.80 1047 1070.2 11.31 1047 1066.5 9.79 1050 1062.2 7.72
LA22 932 943.8 8.14 927 939.5 5.73 927 938.3 6.54 927 934.5 4.90
LA24 938 959.8 12.57 939 957.1 10.28 938 954.1 10.56 941 951.9 8.44
LA25 978 996.8 10.13 977 991.4 7.93 977 988.0 7.24 977 986.0 6.66
LA26 1218 1221.0 4.69 1218 1219.5 4.30 1218 1218.8 2.24 1218 1218.5 2.05
LA27 1260 1273.7 9.53 1255 1267.8 5.45 1250 1265.2 6.88 1250 1263.5 6.32
LA28 1226 1244.8 9.54 1222 1242.8 8.58 1219 1236.2 8.83 1216 1232.3 7.88
LA29 1184 1207.6 12.50 1171 1203.5 12.64 1175 1199.8 13.51 1167 1191.0 9.88
LA36 1279 1301.9 6.53 1283 1298.4 6.81 1271 1296.6 6.90 1276 1292.7 5.98
LA37 1412 1440.2 14.39 1407 1432.1 15.51 1407 1427.6 10.64 1400 1422.7 11.63
LA38 1208 1260.9 20.98 1219 1251.3 16.43 1203 1244.1 14.96 1216 1237.7 14.17
LA39 1250 1263.6 11.62 1248 1260.6 11.64 1249 1255.1 7.81 1248 1252.4 4.02
LA40 1240 1258.5 9.21 1228 1254.9 11.27 1228 1249.7 9.03 1231 1245.8 8.03

– The proposed GA can always find the optimal solutions for the problem
LA04 and LA18, for which the RKGA sometimes failed to find the optimal.
On the other hand, the proposed GA sometimes cannot find the optimal for
the problem LA26 for which the RKGA can always find the optimal.

– For the larger size problems, the proposed GA can find better solutions than
RKGA, but the average makespans are larger.

5.2 Results by Distributed Parallel PfGA

The distributed parallel version was coded using MPI [16]. It was run using 50
different random seeds where the maximum number of fitness evaluation was set
to 1,000,000 for each subpopulation. The number of subpopulations (N) was set
to N = {2, 4, 8}. The average over 50 and the best solution over 50 seeds are
shown in Table 2. In Table 2, σ represents the standard deviation of makespan,
and other columns have the same meaning as Table 1. The GA was tested for
the same problems of serial version and only the results of the problems that are
shown in Table 1 are listed due to limitations of space.

Table 2 shows the following.

– As we increase the number of subpopulations, the average makespan de-
creases, and also the standard deviation of makespan decreases. Therefore,
we could easily improve solutions if we could use multiple processors.



Real-Coded Parameter-Free Genetic Algorithm 809

– The GA can find the optimal solution as we increase the number of sub-
populations. When we set the number of subpopulation to 2, the optimal
makespan can be found for FT20, LA22, LA25, which are unable to be found
by the single population. The optimal makespan of LA28 can be found when
we increase the number of subpopulation to 8.

The number of migration was very small for all problems, it was below 0.01%
of the total number of fitness evaluation. Therefore, the overhead of communi-
cation by MPI among subpopulations was negligible, and the computation time
was almost equal to that of the serial version. The average computation time of
the serial version per run, for example, was 42 (sec) for LA02 (10×5), 121 (sec)
for FT20 (20×5), 237 (sec) for LA29 (20×10), 225 (sec) for LA40 (15×15) on a
PC with an AMD Athlon MP 1800+ (1.53GHz).

6 Conclusion and Future Work

We have proposed a real-coded parameter-free genetic algorithm for JSSP. Nu-
merical experiments showed that the proposed algorithm can attain high quality
solutions for typical benchmark problems without tedious parameter tuning. The
distributed parallel version can attain better results as we increase the number of
subpopulations. The proposed GA is only tested for limited instances of bench-
mark problems, so we will test it for a wider class of the problems.

The proposed GA searches good permutations, therefore the framework of
the proposed GA can be applicable to combinatorial optimization problems that
can be formulated as searching good permutations. We will also investigate the
applicability to other combinatorial optimization problems.

References

1. Bagchi S., Uckun,S., Miyabe, Y., Kawarnura, K.: Exploring Problem-Specific Re-
combination Operators for Job Shop Scheduling, International Conf. Genetic Al-
gorithms (ICGA-91), pp.10–17, 1991.

2. Bean, J.C.: Genetics and random keys for sequencing and optimization, ORSA
Journal of Computing, vol.6, no.2, pp.154–160, 1994.

3. Bierwirth, C., Mattfeld, D., and Kopfer, H.: On permutation representations for
scheduling problems, Proc. of PPSN IV, pp.310–318, 1996.

4. Bierwirth, C. and Mattfeld, D.C.: Production scheduling and rescheduling with
generic algorithms, Evolutionary Computation, vol.7, no.1, pp.1–17, 1999.

5. Bruns, R.: Direct chromosome representation and advanced genetic operations
for production scheduling, International Conf. Genetic Algorithms (ICGA-93),
pp.352–359, 1993.

6. Davis, L.: Job shop scheduling with genetic algorithms, International Conf. Genetic
Algorithms (ICGA-85), pp.136–140, 1985.

7. Giffler, B. and Thompson, G., Algorithms for solving production scheduling prob-
lems, Operations Research, vol.8, pp.487–503, 1960.

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison Wesley, 1989.



810 Shouichi Matsui, Isamu Watanabe, and Ken-ichi Tokoro

9. Jain, A.S., and Meeran, S.: Deterministic job-shop scheduling: past, present and
future, European Journal of Operational Research, vol.113, pp.390–434, 1999.

10. Kizu, S., Sawai, H., and Endo, H.: Parameter-free genetic algorithm: GA with-
out setting genetic parameters, Proc. 1997 International Symposium on Nonlinear
Theory and its Application, vol.2 of 2, pp.1273–1276, 1997.

11. Kobayashi, S., Ono, I., and Yamamura, M.: An efficient genetic algorithm for
job shop scheduling problems, Proc. Sixth International Conference on Genetic
Algorithms, pp.506-511, 1995.

12. Nakano, R. and Yamada, T.: Conventional genetic algorithm for job shop schedul-
ing, Proc. 3rd International Conference on Genetic Algorithms, pp.474–479, 1991.

13. Norman, B. and Bean, J.C.: Random keys genetic algorithm for job shop schedul-
ing, Engineering Design & Automation, vol.3, no.2, pp.145–156, 1997.

14. Sawai, H., Kizu, S.: Parameter-free genetic algorithm inspired by “disparity theory
of evolution”, Proc. of PPSN V, pp.702–711, 1998.

15. Sawai, H., Kizu., S., and Endo, T.: Parameter-free genetic algorithm (PfGA),
Trans. IEICE, Japan, vol.J81-D-II, no.2, pp.450–452, 1998 (in Japanese).

16. M. Snir, S.W. Otto, S Huss-Lederman, D.W. Walker, J. Dongarra: MPI: The Com-
plete Reference, The MIT Press (1997)

17. Storer, R., Wu, S., and Vaccari, R.: New search spaces for sequencing problems
with application to job shop scheduling, Management Science, vol.38, pp.1495–
1509, 1992.

18. Vaessens, R.J.M.: Operations Research Library of Problems, Management School,
Imperial College London, ftp://mscmga.ms.ic.ac.uk/pub/jobshop1.txt, 1996.

19. Vázquez, M. and Whitley, D.: A comparison of genetic algorithms for the static
job shop scheduling problem, Proc. of PPSN VI, pp.303–312, 2000.

20. Yamada, T. and Nakano, R.: A genetic algorithm applicable to large-scale job-shop
problems, Proc. PPSN II, pp.281–290, 1992.



Clustering Gene Expression Profiles
with Memetic Algorithms

Peter Merz and Andreas Zell

University of Tübingen
Department of Computer Science - WSI-RA

Sand 1, D-72076 Tübingen, Germany
peter.merz@ieee.org

Abstract. Microarrays have become a key technology in experimental
molecular biology. They allow a monitoring of gene expression for more
than ten thousand genes in parallel producing huge amounts of data.
In the exploration of transcriptional regulatory networks, an important
task is to cluster gene expression data for identifying groups of genes
with similar patterns.
In this paper, memetic algorithms (MAs) – genetic algorithms incorpo-
rating local search – are proposed for minimum sum-of-squares cluster-
ing. Two new mutation and recombination operators are studied within
the memetic framework for clustering gene expression data. The memetic
algorithms using a sophisticated recombination operator are shown to
converge very quickly to (near-)optimum solutions. Furthermore, the
MAs are shown to be superior to multi-start k-means clustering algo-
rithms in both computation time and solution quality.

1 Introduction

In the field of bioinformatics, clustering algorithms have received new atten-
tion due to the breakthrough of microarrays. This technology allows monitoring
simultaneously the expression patterns of thousands of genes with enormous
promise to help genetics to understand the genome [1,2]. Since a huge amount of
data is produced during microarray experiments, clustering techniques are used
to extract the fundamental patterns of gene expression inherent in the data.
Several clustering algorithms have been proposed for gene expression profile
analysis: Eisen et al. [3] applied a hierarchical average link clustering algorithm
to identify groups of co-regulated genes in the yeast cell cycle. Ben-Dor et al.
[4] developed the CAST algorithm for this purpose. Tamayo et al. [5] used self-
organizing maps (SOMs) to identify clusters in yeast and human hematopoietic
differentiation data. In [6], the k-means algorithm was used for clustering yeast
data and in [7], a comparison of several approaches was made including k-means
with average link initialization, which performed well for all tested data sets. In
general, these approaches cannot be compared directly, since there is no unique
measure of quality. For example, in hierarchical clustering, the clusters are de-
termined by visual inspection using biological knowledge [3], and the number of
neurons in the SOM approach [5] is also chosen by visual inspection.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 811–820, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



812 Peter Merz and Andreas Zell

Clustering can be considered as an optimization problem in which an assign-
ment of data vectors to clusters is desired, such that the sum of squared distances
of the vectors to their cluster mean (centroid) is minimal. Let PK denote the set
of all partitions of X with X = {x1, . . . , xN} denoting the data set of vectors
with xi ∈ IRm and Ci denoting the i-th cluster with mean x̂i. Thus, the objective
is

min
PK∈PK

K∑
i=1

∑
xj∈Ci

d2(xj , x̂i), with x̂i =
1
|Ci|

∑
xj∈Ci

xj (1)

where d(·, ·) is the Euclidean distance in IRm. This problem is called the minimum
sum-of-squares clustering (MSSC) problem and is known to be NP-hard [8].

The k-means algorithm is a heuristic which minimizes the sum-of-squares
criterion provided an initial assignment/choice of centroids. The number k of
clusters is fixed during its run. The k-means heuristic can in fact be regarded as
a local search heuristic for this hard combinatorial optimization problem.

Since memetic algorithms are known to be highly effective for several com-
binatorial optimization problems, including graph bi-partitioning [9], traveling
salesman problem [10], or the quadratic assignment problem [11], the application
of MAs to the MSSC appears to be promising.

In this paper, memetic algorithms for clustering gene expression profiles us-
ing k-means local search are proposed. It is shown that instead of repeatedly
starting k-means to find better local optima, the memetic framework is much
more effective in finding near optimum solutions quickly.

The paper is organized as follows. The general memetic algorithm framework
is described in section 2. In section 3, the new recombination and mutation oper-
ator are introduced. In section 4, comparisons of the memetic variation operators
are performed on gene expression data and randomly generated data. Further-
more, the MAs are compared with multi-start k-means local search. Section 5
concludes the paper and outlines areas for future research.

2 Memetic Algorithms

Memetic algorithms (MA) [12,13] are population-based heuristic search approaches
for combinatorial optimization problems based on cultural evolution. In some
respects, they are similar to genetic algorithms which simulate the process of
biological evolution. MAs are inspired by Dawkins’ notion of a meme [14] de-
fined as a unit of information that reproduces itself while people exchange ideas.
In contrast to genes, memes are typically adapted by the people who transmit
them before they are passed on to the next generation.

According to Moscato and Norman [13], ‘memetic evolution’ can be mim-
icked by combining genetic algorithms with local refinement strategies such as
local neighborhood search or simulated annealing. Thus, the genetic local search
approach proposed in [15] is a special case of a memetic algorithm, which has
been shown to be very effective for several combinatorial optimization prob-
lems, including the traveling salesman problem (TSP), the graph bi-partitioning
problem (GBP), NK-Landscapes, and binary quadratic programming [16].



Clustering Gene Expression Profiles with Memetic Algorithms 813

3
x10

1

2

3

4

5

6

7

x10
3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ds_5000_16_25.fdc-plot

Distance to optimum

F
i
t
n
e
s
s

Fig. 1. Fitness-distance scatter plot of the DS-5000 data set. The correlation of fitness
and distance to the optimum is shown for 2500 local optima produced with a k-means
heuristic for the MSSC.

In contrast to hybrid evolutionary algorithms that use local refinement tech-
niques as additional operators, MAs are designed for searching in the space of
locally optimal solutions instead of searching in the space of all candidate so-
lutions. This is achieved by applying local search after each of the evolutionary
variation operators. Thus, in every generation, the population of individuals
consists solely of local optima.

MAs are known to exploit the correlation structure of the fitness landscape
of combinatorial optimization problems [10,16]: As shown in Fig. 1, many fitness
landscapes exhibit a correlation of the fitness of local optima and their distance
to the optimum solution. In memetic algorithms, this property can be used in
the design of variation operators to achieve a highly effective search approach.
However, the balance between disruption and information preservation is impor-
tant for recombination and mutation: On the one hand, the escape of the local
optima must be guaranteed, but on the other hand, disrupting too much may
cause the loss of important information gained from previous search.

In a preliminary analysis, we found that the k-means local search heuristic
for MSSC produces solutions with a high correlation of fitness and phenotypic
distance to the optimum as shown in Fig. 1. Because of the high correlation, the
application of memetic algorithms appears to be a promising approach.

3 MAs for Clustering Gene Expression Data

The memetic algorithms described in this contribution are based on a concep-
tual framework, which is rather simple compared to ASPARAGOS [17] and AS-
PARAGOS´96 [18], since it uses a single, unstructured population rather than a



814 Peter Merz and Andreas Zell

spatial population structure. In the main loop of the algorithm, either recombi-
nation or mutation are applied followed by local search to assure local optimality
of the individuals in the population.

3.1 Representation and Fitness Function

The representation used in the MA algorithms is straightforward. The K mean
vectors x̂i ∈ IRm in equation (1) constitute a solution to the clustering problem.
Given the mean vectors, the cluster memberships can be calculated and therefore
have not to be stored in the individuals (genomes). Thus, an individual is simply
a k-tuple a = (a1, . . . , aK) of vectors ai ∈ IRm. The fitness function used in the
MA is the MSSC error provided in equation (1).

3.2 Selection

Selection can be divided into selection for variation and selection for survival.
In the recombination and mutation loops, individuals are selected for variation
which is done randomly without favoring fitter individuals. Selection for survival
is performed on the offspring and parents of the current generation to determine
the parents for the next generation. This selection strategy is similar to the se-
lection in the (µ + λ)-ES (Evolution Strategy): The new population is derived
by selecting the best individuals out of the pool of parents and children. Dupli-
cates are eliminated such that a solution is contained no more than once in the
population.

3.3 Initialization and Local Search

In all the MAs, local search is performed using the k-means heuristic [19,20]:
Given k centroid vectors aj , for each input vector xi ∈ X the nearest centroid
sj is determined and the vector xi is associated with the corresponding cluster.
Afterwards, all centroid vectors are recalculated by calculating the mean of the
vectors in each cluster. This procedure is repeated until the partition does no
longer change, and thus a local optimum is reached.

The initial populations of the MAs are produced by applying the k-means
algorithm multiple times to randomly generated starting solutions in which the
centroids are selected randomly from all input vectors.

3.4 The Mutation Operators

Two mutation operators are used in the MAs. The first is denoted MM and
simply assigns a randomly chosen input vector xi (1 ≤ i ≤ N) to a randomly
chosen mean vector aj (1 ≤ j ≤ K). The second operator works by randomly
selecting two clusters Ci and Cj . Then, the vector xmax ∈ Ci with the maximum
distance to ai (mean of cluster Ci) is determined and aj is replaced by xmax.
This mutation operator is referred to as FM in the following.



Clustering Gene Expression Profiles with Memetic Algorithms 815

a
1

a
1 a

2
a

2 a
3

a
3 a

4
a

4 a
5

a
5 a

6
a

6 a
7

a
7 a

8
a

8 a
9

a
9 a

10
a

10
Parent a:

b
1

b
1 b

2
b

2 b
3

b
3 b

4
b

4 b
5

b
5 b

6
b

6 b
7

b
7 b

8
b

8 b
9

b
9 b

10
b

10
Parent b:

Discard List:

a
2

a
2 a

5
a

5 a
7

a
7 a

10
a

10

Split List:

a
3

a
3 a

6
a

6 a
8

a
8

a
1

a
1 b

4
b

4 a
3

a
3 a

4
a

4 b
6

b
6 a

6
a

6 b
3

b
3 a

8
a

8 a
9

a
9 a

10
a

10
Offspring:

Chosen Pairs:

(a3,a2) (a8,a5) (a6,a7)

Fig. 2. RX Recombination Operator.

3.5 The Recombination Operators

Two recombination operators are proposed for the MSSC problem. The first one
is a uniform crossover and is therefore denoted UX. Like in the uniform crossover
for binary strings [21], the offspring is generated by copying the mean vectors
ai or bi from the parents. Each mean vector is copied with probability 0.5 from
parent a or parent b.

The second recombination operator is more sophisticated. It replaces the
mean vectors in parent a with mean vectors of parent b according to their distri-
bution in the input space X. Consider the example shown in Fig. 2. First, for all
mean vectors bi in parent b the nearest mean vector in parent a is determined.
In the example, the nearest mean vector to b1 is mean vector a3 = nearest(b1)
(indicated by the arrow from b1 to a3). For each vector aj , a list of assigned
vectors A(aj) is maintained. If aj = nearest(bi), bi will be inserted into A(aj).
Then, all vectors in parent a with no assignment, i. e. for which the assignment
list A is empty, are stored in a discard list. Next, all vectors of parent a which
have more than one assignment are stored in a split list. Afterwards, vectors
are chosen in random order from the both split and discard lists. In each step,
a pair of split and discard vectors is considered: The discard vector is replaced
by a mean vector from parent b by choosing a random element from the assign-
ment list of the split vector. This procedure is repeated until the discard list
or the split list is empty. In the first step of the example above, a3 and a2 are
chosen from the split list and the discard list, respectively. Vector a2 is then
replaced by b4 which was randomly selected from A(a3) = {b1, b4}. In the sec-
ond step, a8 and a5 are chosen and a5 is replaced by b6 ∈ A(a8) = {b6, b9, b10}.
Analogously, the pair (a6, a7) is selected in the third step, and a7 is replaced
by b3 ∈ A(a6) = {b3, b7}. The resulting offspring produced by the replacement
recombination operator (RX) is displayed in Fig. 2.



816 Peter Merz and Andreas Zell

4 Computational Experiments

We compared the memetic algorithms utilizing the variation operators described
above with a multi-start k-means local search (MLS). In the MLS, a predefined
number of times a start configuration is randomly generated and the k-means
algorithm is applied. The best solution found is reported.

All algorithms were implemented in Java 1.3. Instead of comparing absolute
running times, we provide the number of k-means iterations performed by the
algorithms to have a measure independent of programming language or code
optimizations.

4.1 The Gene Expression Data Sets

The first data set denoted as HL-60 is taken from [5] and contains data from
macrophage differentiation experiments. The data consists of 7229 genes and
expression levels at 4 time points. We applied a variation filter which discarded
all genes with an absolute change in expression level less than or equal to 5. The
number of genes which passed the filter was 3230. The vectors were normalized
afterwards to have mean 0 and variance 1, as described in [6].

The second data set denoted as HD-4CL is also taken from [5] and contains
data from hematopoietic differentiation experiments across 4 cell lines. The data
consists of 7229 genes, 17 samples each. We applied the same variation filter as
above which discarded all genes with an absolute change in expression level
less than or equal to 5. The number of genes which passed the filter was 2046.
Afterwards, the vectors were normalized to have mean 0 and variance 1.

The third data set is denoted as Cho-Yeast and is described in [22]. It contains
the expression levels of 6565 yeast genes measured at 17 time points over two
complete cell cycles. As in [6], we discarded the time points at 90 and 100 min,
leading to a 15 dimensional space. A variation filter was used which discarded
all genes with an absolute change in expression level less than or equal to 50 and
an expression level of max/min < 2.0. The resulting number of genes was 2931.
Again, the vectors were normalized afterwards to have mean 0 and variance 1.

To study the capability of the MAs to find globally optimum solutions, the
fourth and fifth data set were randomly generated with 5000 and 6000 vectors,
denoted DS-5000 and DS-6000, respectively. The main vectors were generated
by AR(1) autoregressive processes with 16 time points (xi+1 = xi + εi, where εi
is a normally distributed random number). No variation filter was applied and
the vectors were normalized as described above.

For number of clusters for the clustering were taken from [6] for Cho-Yeast,
and from [5] for the data sets HL-60, HD-4CL. For the data sets DS-5000 and
DS-6000, k was set to the known number of clusters in the experiments.

4.2 Computational Results

In the experiments, all memetic algorithms were run with a population size
of P = 40. The MAs were terminated before the 100th generation or upon



Clustering Gene Expression Profiles with Memetic Algorithms 817

Table 1. Comparison of MAs and Multi-Start Local Search.

Data Set Algorithm Gens No. LS Iter LS Best Avg. Obj. Error

MLS 2000.0 95896.7 1749.86 1749.90 0.00%
MA-UX 100 2000.0 64394.6 1749.82 1749.86 0.00%

HL-60 MA-RX 19 403.0 2977.1 1749.92 1750.43 0.03%
MA-FM 100 2000.0 66717.6 1749.86 1749.87 0.00%
MA-MM 100 2000.0 69126.8 1749.85 1749.86 0.00%
MLS 2000.0 61435.9 12476.92 12493.51 0.47%
MA-UX 100 2000.0 38403.0 12436.92 12450.93 0.13%

HD-4CL MA-RX 83 1684.0 8352.9 12435.85 12444.14 0.07%
MA-FM 100 2000.0 31033.9 12441.25 12453.87 0.15%
MA-MM 100 2000.0 32463.3 12435.12 12444.60 0.08%
MLS 2000.0 74632.5 16966.78 16984.32 0.46%
MA-UX 100 2000.0 51371.7 16908.32 16933.44 0.16%

Cho-Yeast MA-RX 98 1979.0 12475.9 16907.06 16916.60 0.06%
MA-FM 100 2000.0 34405.5 16912.61 16924.54 0.10%
MA-MM 100 2000.0 35784.3 16909.09 16919.03 0.07%
MLS 2000.0 35954.7 3192.35 3497.14 9.55%
MA-UX 100 2000.0 26215.0 3192.35 3272.12 2.50%

DS-5000 MA-RX 52 1064.0 3586.1 3192.35 3192.35 0.00%
MA-FM 100 2000.0 15492.1 3192.35 3192.35 0.00%
MA-MM 100 2000.0 24476.5 3192.35 3192.35 0.00%
MLS 2000.0 40929.9 5868.59 6314.74 8.65%
MA-UX 100 2000.0 27502.6 5811.82 5947.68 2.34%

DS-6000 MA-RX 55 1110.0 4232.5 5811.82 5833.34 0.37%
MA-FM 100 2000.0 12886.6 5811.82 5823.11 0.19%
MA-MM 100 2000.0 25782.8 5811.82 5811.82 0.00%

convergence. The number of mutations or recombinations was set to 20. Since
either mutation or recombination is used in the MAs, the number of offspring
generated per generation is 20 for all MA runs. Thus, the parameters were chosen
to have an identical number of k-means runs in the MLS and the MAs.

In Table 1, the results are displayed for the described data sets. For each
algorithm (MLS or MA), the average number of generations (Gens), the average
number of k-means local searches (No. LS), the average number of iterations
of the k-means local searches (Iter LS), the best objective value found in 20
runs (Best), the average value found in 20 runs (Avg. Obj), and the average
percentage excess (Error) are provided.

To give an idea of the computation times required: A run of MA-RX an MLS
on the data set Cho-Yeast took 2.6 minutes and 17 minutes, respectively, on a PC
with an AMD Athlon CPU (1.2 GHz) compiled with the GNU gcj java compiler
(all optimizations enabled).



818 Peter Merz and Andreas Zell

-2
-1

0

1

2

0 5 10

Cluster 14 (n=88)

-2
-1

0

1

0 5 10

Cluster 15 (n=90)

Fig. 3. Two clusters of different partitions of the Cho-Yeast data set. The mean and
standard deviation of the expression levels over time are displayed. Left: Cluster 14
of best solution found by MA-RX. Right: cluster 15 of a solution found by the MLS
k-means.

All algorithms show similar performance on the first data set (HL-60), all
algorithms find solutions with similar fitness, so we believe the best solutions
found by the algorithms are optimal. It appears that this data set is easy for
k-means based search. Data set HD-4CL and Cho-Yeast show similar properties:
the k-means MLS solutions are very close to the best solutions found by the
MAs in terms of objective values. However, the MAs are more efficient. Re-
garding computation times, the MAs MA-RX, MA-FM and MA-MM are much
faster. The number of k-means iterations is reduced by a factor of 2 and more
compared to MLS. In case of MA-RX, the factors are 7.35 and 5.98 due to the
fast convergence of the algorithm (as also indicated by the shorter number of
generations compared to the other MAs).

For the larger data sets DS-5000 and DS-6000, the differences of the algo-
rithms become more apparent. MLS finds solutions more than 8.5% above the
optimum, while the MAs are capable of finding the optimum solutions. The
MA using UX recombination perform consistently worse than the other MAs.
MA-RX, MA-FM and MA-MM find the optimum solution in all 20 runs for DS-
5000. MA-RX required only 3586.1 iterations of the k-means algorithm which is
more than 4.3 times faster than the second best MA. For the largest data set
(DS-6000), MA-RX converges still very quickly, providing a good computation
time/solution quality trade-off. However, the MAs based on mutation are capa-
ble of finding the optimum more often, especially MA-MM: the algorithm finds
the optimum in all runs.

From the biologists point of view, it is important how the cluster memberships
of the genes change if a MA is used instead of a multi-start k-means. We observed
that the clusters produced by the two algorithms differ significantly. Although
the solutions have similar fitness values, many genes are assigned to different
clusters leading to a surprisingly high phenotypic distance. To illustrate this
fact, Two clusters of different solutions of the Cho-Yeast data set are shown in
Fig. 3. In each plot, mean and standard deviation (indicated by the error bars)
of the expression levels at 15 time points are displayed. On the left, the cluster
no. 14 of the best solution found by MA-RX (fitness: 16907) is shown, which



Clustering Gene Expression Profiles with Memetic Algorithms 819

consists of 88 genes. In a solution with fitness 16972 produced by multi-start
k-means, these genes are distributed over 5 different clusters. For example, 36
of the 88 genes are found in cluster 15, which is displayed on the right side of
Fig. 3.

5 Conclusions

In this contribution, memetic algorithms (MAs) for clustering gene expression
profiles are proposed. Four problem specific variation operators for minimum
sum-of-squares clustering are introduced to be used in a memetic framework
using the k-means heuristic as local search. We conducted a comparison study
of the MAs and a multi-start k-means clustering algorithm by applying the
algorithm to biological data sets as well as to self-generated benchmarking data
sets. The results show the superiority of the MA compared to the multi-start
k-means. The MA with the newly proposed replacement recombination operator
(RX) is shown to produce (near-)optimum solutions and converges very quickly
compared to the other MAs. The simple uniform crossover operator frequently
used in the evolutionary computation community performed worst. The results
indicate that for large data sets (≥ 5000 elements) and a high dimensionality
of the input vectors, the MAs perform considerably better than multi-started
k-means in terms of objective values. However, for smaller data sets the number
of k-means iterations in the MAs is drastically smaller (up to a factor of 7.35
in our experiments). Although the objective values of the solutions lie close
together, the cluster memberships change drastically which is very important in
the analysis of gene expression data. Hence, the MAs proposed in this paper are
shown to be highly efficient and effective for clustering gene expression profiles
and thus preferable to (multi-start) k-means clustering.

References

1. Zhang, M.: Large-scale Gene Expression Data Analysis: A New Challenge to Com-
putational Biologists. Genome Research 9 (1999) 681–688

2. Brazma, A., Vilo, J.: Gene Expression Data Analysis. FEBS Letters 480 (2000)
17–24

3. Eisen, M., Spellman, P., Botstein, D., Brown, P.: Cluster Analysis and Display of
Genome-wide Expression Patterns. In: Proceedings of the National Academy of
Sciences, USA. Volume 95. (1998) 14863–14867

4. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Jour-
nal of Computational Biology 6 (1999) 281–297

5. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E.,
Lander, E.S., Golub, T.R.: Interpreting Patterns of Gene Expression with Self-
organizing Maps: Methods and Application to Hematopoietic Differentiation. In:
Proceedings of the National Academy of Sciences, USA. Volume 96. (1999) 2907–
2912

6. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic
Determination of Genetic Network Architecture. Nature Genetics 22 (1999) 281–
285



820 Peter Merz and Andreas Zell

7. Yeung, K., Haynor, D., Ruzzo, W.: Validating Clustering for Gene Expression
Data. Bioinformatics 17 (2001) 309–318

8. Brucker, P.: On the Complexity of Clustering Problems. Lecture Notes in Eco-
nomics and Mathematical Systems 157 (1978) 45–54

9. Merz, P., Freisleben, B.: Fitness Landscapes, Memetic Algorithms and Greedy
Operators for Graph Bi-Partitioning. Evolutionary Computation 8 (2000) 61–91

10. Merz, P., Freisleben, B.: Fitness Landscapes and Memetic Algorithm Design. In
Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw–Hill,
London (1999) 245–260

11. Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for
the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Compu-
tation 4 (2000) 337–352

12. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report C3P Report 826, Caltech
Concurrent Computation Program, California Institue of Technology (1989)

13. Moscato, P., Norman, M.G.: A Memetic Approach for the Traveling Salesman
Problem Implementation of a Computational Ecology for Combinatorial Optimiza-
tion on Message-Passing Systems. In Valero, M., Onate, E., Jane, M., Larriba, J.L.,
Suarez, B., eds.: Parallel Computing and Transputer Applications, Amsterdam,
IOS Press (1992) 177–186

14. Dawkins, R.: The Selfish Gene. Oxford University Press (1976)
15. Freisleben, B., Merz, P.: New Genetic Local Search Operators for the Traveling

Salesman Problem. In Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P.,
eds.: Proceedings of the 4th International Conference on Parallel Problem Solving
from Nature - PPSN IV. Volume 1141 of Lecture Notes in Computer Science.,
Berlin, Springer (1996) 890–900

16. Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems: Fitness
Landscapes and Effective Search Strategies. PhD thesis, Department of Electrical
Engineering and Computer Science, University of Siegen, Germany (2000)

17. Gorges-Schleuter, M.: ASPARAGOS: An Asynchronous Parallel Genetic Opti-
mization Strategy. In Schaffer, J.D., ed.: Proceedings of the Third International
Conference on Genetic Algorithms, Morgan Kaufmann (1989) 422–427

18. Gorges-Schleuter, M.: Asparagos96 and the Traveling Salesman Problem. In: Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,
IEEE Press (1997) 171–174

19. Forgy, E.W.: Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability
of Classifications. Biometrics 21 (1965) 768–769

20. MacQueen, J.: Some Methods of Classification and Analysis of Multivariate Obser-
vations. In: Proceedings of the Fifth Berkeley Symposium on Mathemtical Statis-
tics and Probability. (1967) 281–297

21. Syswerda, G.: Uniform Crossover in Genetic Algorithms. In Schaffer, J.D., ed.:
Proceedings of the 3rd International Conference on Genetic Algorithms, Morgan
Kaufmann (1989) 2–9

22. Cho, R.J., Campbell, M.J., Winzeler, E.A., Conway, S., Wodicka, L., Wolfsberg,
T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A Genome-
wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell 2 (1998)
65–73



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 821–830, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Cellular Automata and Genetic Algorithms
for Parallel Problem Solving in Human Genetics

Jason H. Moore and Lance W. Hahn

Program in Human Genetics, Department of Molecular Physiology and Biophysics,
519 Light Hall, Vanderbilt University, Nashville, TN, USA 37232-0700

{Moore,Hahn}@phg.mc.Vanderbilt.edu

Abstract. An important goal of human genetics is to identify variations in
genes that are associated with risk of disease.  This goal is complicated by the
fact that, for common multifactorial diseases such as hypertension, interactions
between genetic variations are likely to be more important than the independent
effects of any single genetic variation.  Attribute interaction is a well-known
problem in data mining and is a complicating factor in genetic data analysis.
We have previously addressed this problem by developing a parallel approach
to problem solving that utilizes one-dimensional cellular automata (CA) for
knowledge representation and genetic algorithms (GA) for optimization.  In this
study, we evaluate the power of this parallel CA approach by simulating gene-
gene interactions and adding noise from several common real-world sources.
These simulation studies document the strengths of the CA approach and
document a weakness that needs to be addressed.

1 Introduction

The identification of DNA sequence variations (i.e. polymorphisms) in genes that
increase susceptibility to common complex diseases such as essential hypertension
remains a difficult challenge in human genetics [1].  This is because the effects of any
given gene on risk of disease is likely to be dependent on interactions with other
genetic and environmental factors [2,3].  Thus, for any one genetic variation to be
identified, it must be considered in the context of the other factors.  Traditional para-
metric statistical methods such as logistic regression are limited in their ability to deal
with interactions among factors because of data sparseness.  This is because the data
are spread thinly across combinations of factor levels (i.e. the curse of high-
dimensionality).  The result is a reduced power to identify interactions in relatively
small sample sizes.  This is a well-known problem in data mining [4] and is becoming
increasingly recognized as a problem in human genetics [1].

We have previously addressed this problem by developing a parallel approach to
problem solving that utilizes one-dimensional cellular automata (CA) for knowledge
representation and genetic algorithms (GA) for optimization [5].  This approach is
based on the idea that CA can perform emergent computation as was illustrated in the
density estimation problem [6].  It was clear from this example that local interactions



822      Jason H. Moore and Lance W. Hahn

among spatially and temporally distributed cells can lead to a pattern of cells that
contains global information for the problem at hand.  We adapted a CA to accept an
array of genetic variations as input and produce an output that is predictive of
whether that individual is affected with the disease or unaffected.  The goal of the
present study was to use simulation studies to evaluate the power of this CA approach
for identifying gene-gene interactions in the presence of sources of noise that are
commonly encountered in genetic studies of human disease.

2 Cellular Automata for Parallel Problem Solving 
in Human Genetics

Cellular automata (CA) are discrete dynamic systems that consist of an array of cells,
each with a finite number of states [7].  The state of each cell changes in time ac-
cording to the local neighborhood of cells and their states as defined by a rule table.
The simplest CA consist of one-dimensional arrays, although some, such as the Game
of Life [8], are implemented in two or more dimensions.  In this section, we review
how CA can be used to perform computations and then how we have exploited this
feature to identify complex patterns of genetic variations that are associated with
disease.

An intriguing feature of CA is their ability to perform emergent computation [6,9].
That is, the local interactions among spatially distributed cells over time can lead to
an output array that contains global information for the problem at hand.  For exam-
ple, Mitchell et al. [6] have used CA to perform density estimation.  In that applica-
tion, a one-dimensional, two-state (1 or 0) CA is given an initial array of states.  The
goal is to identify a CA rule set such that the CA converges to an array of all 1's if the
density of 1's is greater than 0.5 and to an array of all 0's if the density of 1's is less
than 0.5.  Mitchell et al. found that the CA is able to perform this computation
through a series of spatially and temporally extended local computations.  This emer-
gent computation feature of CA forms the basis of our method for identifying patterns
of genotype variations associated with common complex multifactorial diseases [5].

We have previously developed a CA approach to identifying patterns of genetic
variations associated with disease [5].  The general approach is to identify a set of CA
operating features that is able to take an array of genotypes (i.e. combinations of
DNA sequence variations or alleles inherited from the mother and father) as input and
produce an output array that can be utilized to classify and predict whether subjects
are affected or unaffected.  In this initial study, we fixed the number of cells in the
CA to five.  Thus, the CA is presented with a maximum of five unique and/or redun-
dant genotypes.  We also allowed ‘don’t care’ or wildcard cells to be included.  This
permits less than five genotypes to be evaluated.  Wildcard cells all have the same
state and do not contribute any information for discriminating affected from unaf-
fected sib pairs.  Assuming each genetic locus has only three possible genotypes, we
used a binary encoding with ‘01’ for the first genotype, ‘10’ for the second genotype,
‘11’ for the third genotype, and ‘00’ for the wildcard.  Thus, each array presented to



Cellular Automata and Genetic Algorithms for Parallel Problem Solving      823

the CA consisted of 10 bits with two bits encoding the state of each of the five cells.
We used a simple nearest-neighbor rule table that is implemented by looking at the
state of the cell in question and the adjacent cell states.  With three cells forming a
rule and four different states per cell, there are 43 or 64 possible rule inputs with four
possible output states for each.  An important feature of CA is the number of time
steps or iterations.  This will govern the amount of spatial and temporal information
processing or knowledge representation that can be performed.  In this study, we
allowed a maximum of 128 iterations for each CA.  This maximum number of itera-
tions was selected to allow enough time for parallel processing of all the information
in an input array without an excessive number of iterations that might complicate
interpretation.  Thus, there are three essential components to the CA model.  First, the
correct combination of genetic variations must be selected for initiating the CA cell
states.  Second, the appropriate rule table that specifies the information processing
must be selected.  Finally, the number of time steps or iterations for the CA must be
selected.  We used parallel GAs to optimize selection of these three model compo-
nents (described below).

How is the output array of the CA used to perform classification and prediction?
We first count the number of 1s in the binary encoded output array of the CA run on
each set of genotypes for each affected and each unaffected sib in the sample.  A
classifier is formed by using a frequency histogram of the number of 1s among af-
fected sibs and unaffected sibs.  Each histogram bin is labeled affected or unaffected
depending on whether the number of 1s represented by that bin were more frequently
observed among affected or unaffected individuals.  For example, consider the case
where 100 affected and 100 unaffected individuals were evaluated.  Suppose the
number of CA output arrays that contained three 1s was 20 for affecteds and 10 for
unaffecteds.  This bin would be labeled affected and thus the 10 unaffected individu-
als would be misclassified.  This would contribute 0.05 to the overall misclassifica-
tion rate.  This is performed for each bin and a total classification error is estimated
by summing together the individual rates for each bin.

3 Cellular Automata Optimization Using Genetic Algorithms

3.1 Overview of Genetic Algorithms

Genetic algorithms (GAs), neural networks, case-based learning, rule induction, and
analytic learning are some of the more popular paradigms in optimization and ma-
chine learning [10].  Genetic algorithms perform a beam or parallel search of the
solution space that is analogous to the problem solving abilities of biological popula-
tions undergoing evolution by natural selection [11,12].  With this procedure, a ran-
domly generated ‘population’ of solutions to a particular problem are generated and
then evaluated for their ‘fitness’ or ability to solve the problem.  The highest fit indi-
viduals or models in the population are selected and then undergo exchanges of ran-
dom model pieces, a process that is also referred to as recombination.  Recombination



824      Jason H. Moore and Lance W. Hahn

generates variability among the solutions and is the key to the success of the GA
search, just as it is a key part of evolution by natural selection.  Following recombi-
nation, the models are reevaluated and the cycle of selection, recombination, and
evaluation continues until an optimal solution is identified.

As with any machine learning approach [10], GAs are not immune to stalling on
local optima [13].  Thus, distributed approaches to GAs have been implemented [14].
Here, the GA population is divided into sub-populations or demes.  At regular inter-
vals, the best solution obtained by each sub-population is migrated to all other sub-
populations.  This prevents individual sub-populations from converging on a locally
optimum peak because new individuals are periodically arriving to increase the diver-
sity.  In biology, it is believed that evolution progresses faster in semi-isolated demes
than in a single population of equal size [15].  Indeed, there is some evidence that
parallel GAs actually converge to a solution much faster than serial or single-
population GAs because of additional selection pressure from choosing migrants
based on fitness [14].

3.2 Solution Representation and Fitness Determination

The first step in implementing a GA is to represent the model to be optimized as a
one-dimensional binary array.  For the CA, we needed to encode five genetic varia-
tions and/or wildcards, the CA rule table, and the number of CA iterations.  Each of
the genetic variations and the number of CA iterations were represented using a total
of six 32-bit integers with a modulo operation used to constrain the integer to the
desired range (0-9 for the genetic variations and 0-127 for the iterations.)  Each CA
cell has four possible states and each rule depends on the state of three cells.  Encod-
ing this set of 64 rules, with each rule producing one of four two-bit states as output,
requires four 32-bit integers.  In total, the GA manipulated 10 32-bit integers for a
total chromosome length of 320 bits (see Figure 1).  Fitness of a particular CA model
is defined as the ability of that model to classify subjects as affected or unaffected.
Thus, the goal of the GA is to identify a CA model that minimizes the misclassifica-
tion error. Implementation using cross validation is described below.

Fig. 1. Encoding of the GA chromosome.  The first five 32-bit segments encode genetic varia-
tions and/or wild cards while the sixth 32-bit segment encodes the number of iterations.  The
last four 32-bit segments encode the CA rule table



Cellular Automata and Genetic Algorithms for Parallel Problem Solving      825

3.3 Parallel Genetic Algorithm Software and Parameters

The parallel GA used was a modification of the Parallel Virtual Machine (PVM)
version of the Genetic ALgorithm Optimized for Portability and Parallelism System
(GALLOPS) package for UNIX [16].  This package was implemented in parallel
using message passing on a 110-processor Beowulf-style parallel computer cluster
running the Linux operating system.  Two processors were used for each separate
run.

We implemented a parallel GA with two sub-populations or demes undergoing pe-
riodic migration.  Each GA was run for a total of 200 iterations or generations with
migration of the best solutions to each of the other sub-populations every 25 itera-
tions.  For recombination, we used a two-point crossover with a DeJong-style
crowding factor of three and an incest reduction of three.  Selection was carried using
stochastic universal sampling.  The mutation frequency specifies the probability of a
32-bit field being mutated rather than a single bit.  We used a recombination fre-
quency of 0.6 and a mutation frequency 0.02.

3.4 Implementation

The goal of the GA is to minimize the classification error of the CA model.  How-
ever, from a genetics perspective, the goal is to identify the correct functional genetic
variations.  That is, from a pool of many candidate genes, the goal is to find those that
play a role in influencing risk of disease.  We used a 10-fold cross-validation strategy
[17] to identify optimal combinations of genetic variations.  Cross-validation has
been a successful strategy for evaluating genetic models in other studies of common
complex diseases [18].  Here, we ran the GA on each 9/10 of the data and retained the
CA models that minimized the misclassification rate.  Across the 10 retained models,
we selected the combination of genetic variations that was observed most frequently.
The reasoning is that the functional set of genetic variations should be identified con-
sistently across different subsets of the data [18].  We also estimated the general pre-
diction error of the best set of retained models using each of the independent 1/10 of
the data.

4 Data Simulation and Analysis

The goal of the simulation study was to generate a series of datasets where the prob-
ability of a subject being affected is dependent solely on interactions among two
genetic variations.  We then added varying degrees of noise to these datasets from
several common real-world sources.  Table 1 illustrates the first model (Model 1) that
relates two genetic variations, each with two alleles and three genotypes, to the prob-
ability of disease.  Here, risk of disease is increased by inheriting exactly two high-
risk alleles (e.g. a and b are defined as high risk).  Thus, aa/BB, Aa/Bb, and AA/bb are
the high-risk genotype combinations.  This model was first described by Frankel and
Schork [19] and later by Moore et al. [28].  The second model (Model 2) is illustrated
in Table 2.  This model uses an XOR function and was first described by Li and



826      Jason H. Moore and Lance W. Hahn

Reich [20] and later by Moore et al. [28].  Here, probability of disease is increased if
Aa or Bb is inherited but not both.

Table 1. Probability of disease given different combinations of genetic variations (Model 1)

Two-genotype probabilities Single-genotype
probabilities

AA Aa aa
BB 0 0 .1 .25
Bb 0 .05 0 .25
bb .1 0 0 .25

Single-genotype
probabilities

.25 .25 .25

Table 2. Probability of disease given different combinations of genetic variations (Model 2)

Two-genotype probabilities Single-genotype
probabilities

AA Aa aa
BB 0 .1 0 .25
Bb .1 0 .1 .25
bb 0 .1 0 .25

Single-genotype
probabilities

.25 .25 .25

We simulated 100 total datasets using each of these models.  Each dataset included
the two functional genetic variations and eight non-functional or false-positive ge-
netic variations with 200 affected individuals (cases) and 200 unaffected individuals
(controls).  A sample size of 200 cases and 200 controls is relatively small in epide-
miological studies and is thus a good test of power.  Additional sets of data were
generated by adding 5% genotyping error (i.e. laboratory measurement error), 5% or
20% phenocopy (i.e. disease risk is due to a random environmental factor and not a
genetic factor), or 50% genetic heterogeneity (i.e. subjects generated from two mod-
els).  These datasets allow the evaluation of the power of the CA approach for identi-
fying gene-gene interactions such as those defined in Table 1 and 2 in the presence of
common real-world sources of noise.

We applied the CA approach as described above and by Moore and Hahn [5] to
each of the sets of data.  The power of the CA approach was estimated as the number
of datasets out of 100 in which the correct functional genetic variations were identi-
fied.

5 Results

Table 3 summarizes the power of the CA approach for identifying the correct two (A
and B) or the correct four (A, B, C, and D) interacting genetic variations in the pres-



Cellular Automata and Genetic Algorithms for Parallel Problem Solving      827

ence of common sources of noise.  In the case of no error, 5% genotyping error, 5%
phenocopy, or 20% phenocopy, the CA approach had 100% power to identify each
functional genetic variation individually and collectively.  However, the power was
much lower when 50% genetic heterogeneity was present.  In fact, the power of the
CA to identify all four genetic variations simultaneously was only 11-12%.

Table 3. Power (%) of the CA approach for identifying each set of interacting genetic varia-
tions in the presence of common sources of noise

Power
Source of Noise Model A B C D AB CD ABCD

None 1 100 100 100
None 2 100 100 100

5% Genotyping 1 100 100 100
5% Genotyping 2 100 100 100
5% Phenocopy 1 100 100 100
5% Phenocopy 2 100 100 100
20% Phenocopy 1 100 100 100
20% Phenocopy 2 100 100 100

50% Genetic Het. 1 55 55 63 65 51 58 11
50% Genetic Het. 2 64 61 60 67 54 56 12

Fig. 2. Example CA models of a control and a case generated by Model 1 with no error.  In the
first time step, each cell represents a color-encoded genotype for a particular genetic variation.
The cells in the subsequent time steps are the result of the computation using the rule table (not
shown).  The information in cells from the final time step is used as the discriminant score for
classification

Figure 2 illustrates example CA models for a control (unaffected subject) and a
case (affected subject) generated using Model 1.  Since there are only two unique
genetic variations in each model, they are repeated to fill the five total inputs.  The
CA model for the control subject has low-risk input genotypes of Aa and bb (prob-
ability of disease given Aa/bb is 0) while the CA model for the case subject has high-
risk input genotypes of aa and BB (probability of disease given aa/BB is 0.1).



828      Jason H. Moore and Lance W. Hahn

6 Discussion and Conclusions

The identification and characterization of genes that confer an increased susceptibility
to common complex diseases is limited by a lack of statistical and computational
approaches that are able to model attribute interactions.  To address this issue, we
have previously developed a parallel problem solving approach that utilizes one-
dimensional CA for knowledge representation and GAs for search and optimization
[5].  The main conclusion that can be drawn from the present study is that the CA
approach has very good power for identifying gene-gene interactions even in the
presence of real-world sources of noise such as genotyping error and phenocopy.
However, our simulation studies have indicated that this approach seems to be limited
in its ability to model a mixture of genetic effects, genetic heterogeneity.  Genetic
heterogeneity is a well-known complicating factor in genetic studies of common
diseases such as type 2 diabetes [21].

An obvious next step in the development of the CA approach will be to improve
the power to identify genes in the presence of genetic heterogeneity.  One goal of
future studies will be to increase the flexibility of the CA approach in an effort to
model genetic heterogeneity.  There are several ways the flexibility can be increased.
First, we will explore the use of more complex rule sets.  In this study and our previ-
ous studies [5], we used a simple nearest neighbor rule set.  That is, the transition of
cell state through time is dependent only on that cell state and the states of that cell’s
immediate neighbors.  It is possible that extending the rule set beyond just the nearest
neighbors will increase the flexibility.  A potential disadvantage of increasing the size
of the rule set is increased computational requirements.  With just the nearest neigh-
bors, there are 64 possible rules.  With the nearest four neighbors, there are 576 pos-
sible rules.  This greatly increases the size of the GA chromosome needed to encode
the rule set and thus greatly increases the size of the search space.  We will evaluate
whether any increased flexibility is worth the decreased computational efficiency.

Another potential way to increase flexibility is through non-uniform CA that use a
different rule set for every cell [22].  The current parameterization of the CA includes
a fixed one-dimensional CA lattice in which the same rule set is applied to all cells.  It
is possible that using the same rule set for all cells may prevent the CA from explor-
ing a richer set of emergent behavior.  We will evaluate whether the use of non-
uniform CA improves the power to deal with genetic heterogeneity.

A third way to improve flexibility might be to allow more genetic variations to
enter the model.  In the genetic heterogeneity part of this study, there were two func-
tional genetic variations from each model for a total of four functional variations.  We
allowed a maximum of five to enter the CA model.  It is possible that allowing only
five genetic variations into the model was not enough to develop the appropriate
knowledge representation for modeling the genetic heterogeneity.  Essentially, the
CA needed to model a complex OR function (i.e. one set of two genetic variations
OR the other set of genetic variations is responsible for disease risk).

A fourth way to improve the power to identify gene-gene interactions in the pres-
ence of genetic heterogeneity is to derive more homogeneous subgroups of the data.
The use of cluster analysis in case-control studies to identify genetic heterogeneity



Cellular Automata and Genetic Algorithms for Parallel Problem Solving      829

has been suggested by Schork et al. [29].  Further, Shannon et al. [30] have explored
the use of recursive partitioning tree-based methods for identifying homogeneous
subgroups.  These methods should be explored as a data processing step for the CA.

Human genetics is undergoing an information explosion and a comprehension im-
plosion.  In fact, our ability to measure genetic information, and biological informa-
tion in general, is far outpacing our ability to interpret it.  As demonstrated in this
study, parallel problem solving strategies such as CA and GAs hold promise for
dealing with genetic data that is high-dimensional and complex.  The present study is
not the first to apply nature-inspired algorithms to a human genetics problem.  For
example, evolutionary algorithms have been used to optimize data analysis and
simulation approaches in genetic epidemiology studies [5, 23-25, 28] and gene ex-
pression studies [26, 27].  We anticipate an increase in applications of parallel prob-
lem solving algorithms in the field of human genetics as more investigations begin to
focus on the challenge of analyzing complex, high-dimensional genetic data.

Acknowledgements

This work was supported by National Institutes of Health grants HL65234, HL65962,
GM31304, AG19085, AG20135

References

 1. Moore, J.H., Williams, S.M.:  New strategies for identifying gene-gene interac-
tions in hypertension.  Annals of Medicine 34 (2002) 88-95

 2. Templeton, A.R.:  Epistasis and complex traits.  In: Wade, M., Brodie III, B.,
Wolf, J. (eds.): Epistasis and Evolutionary Process. Oxford University Press, New
York (2000)

 3. Schlichting, C.D., Pigliucci, M.:  Phenotypic Evolution: A Reaction Norm Per-
spective.  Sinauer Assocuiates, Inc., Sunderland (1998)

 4. Freitas, A.A.: Understanding the crucial role of attribute interaction in data min-
ing.  Artificial Intelligence Reviews 16 (2001) 177-199

 5. Moore, J.H., Hahn, L.W.: A cellular automata approach to detecting interactions
among single-nucleotide polymorphisms in complex multifactorial diseases.  Pa-
cific Symposium on Biocomputing 2002 (2002) 53-64

 6. Mitchell, M., Crutchfield, J.P., Hraber, P.T.:  Evolving cellular automata to perform com-
putations:  Mechanisms and impediments.  Physica D 75 (1994) 361-391

 7. Wolfram, S.:  Cellular automata as models of complexity.  Nature 311 (1984) 419-424
 8. Gardner, M.:  The fantastic combinations of John Conway’s new solitaire game “Life”.
Scientific American 223 (1970) 120-123

 9. Sipper, M.:  Evolution of Parallel Cellular Machines. Springer, New York (1997)
 10. Langley, P.: Elements of Machine Learning.  Morgan Kaufmann Publishers, Inc., San
Francisco (1996)

 11. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

 12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)



830      Jason H. Moore and Lance W. Hahn

 13. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduc-
tion.  Morgan Kaufmann Publishers, San Francisco (1998)

 14. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Pub-
lishers, Boston (2000)

 15. Wright, S.: Isolation by distance. Genetics 28 (1943) 114-138
 16. http://garage.cps.msu.edu
 17. Ripley, B.D.:  Pattern Recognition and Neural Networks.  Cambridge University Press,
Cambridge (1996)

 18. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Plummer, W.D., Parl,
F.F. and Moore, J.H.:  Multifactor dimensionality reduction reveals high-order interactions
among estrogen metabolism genes in sporadic breast cancer.  American Journal of Human
Genetics 69 (2001) 138-147

 19. Frankel, W.N., Schork, N.J.:  Who’s afraid of epistasis?  Nature Genetics 14 (1996) 371-
373

 20. Li, W., Reich, J.:  A complete enumeration and classification of two-locus disease models.
Human Heredity 50 (2000) 334-349

 21. Busch, C.P., Hegele, R.A.:  Genetic determinants of type 2 diabetes mellitus. Clinical Ge-
netics 60 (2001) 243-54

 22. Sipper, M.: Co-evolving non-uniform cellular automata to perform computations.  Physica
D 92 (1996) 193-208

 23. Carlborg, O., Andersson, L., Kinghorn, B.:  The use of a genetic algorithm for simultaneous
mapping of multiple interacting quantitative trait loci.  Genetics 155 (2000) 2003-10

 24. Congdon, C.B., Sing, C.F., Reilly, S.L.:  Genetic algorithms for identifying combinations of
genes and other risk factors associated with coronary artery disease.  In: Proceedings of the
Workshop on Artificial Intelligence and the Genome. Chambery (1993)

 25. Tapadar, P., Ghosh, S., Majumder, P.P.:  Haplotyping in pedigrees via a genetic algorithm.
Human Heredity 50 (2000) 43-56

 26. Moore, J.H., Parker, J.S., Hahn, L.W.:  Symbolic discriminant analysis for mining gene ex-
pression patterns.  In: De Raedt, L., Flach, P. (eds): Lecture Notes in Artificial Intelligence
2167. Springer-Verlag, Berlin (2001).

 27. Moore, J.H., Parker, J.S.:  Evolutionary computation in microarray data analysis. In: Lin, S.
and Johnson, K. (eds): Methods of Microarray Data Analysis. Kluwer Academic Publish-
ers, Boston (2001)

 28. Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A., White, B.C:  Application of ge-
netic algorithms to the discovery of complex genetic models for simulation studies in hu-
man genetics.  In: W.B.Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K.
Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F.
Miller, E. Burke, and N. Jonoska (eds): Proceedings of the Genetic and Evolutionary Com-
putation Conference, Morgan Kaufmann Publishers, San Francisco (2002)

 29. Schork, N.J., Fallin, D., Thiel, B., Xu, X., Broeckel, U., Jacob, H.J., Cohen, D: The future
of genetic case-control studies. Advances in Genetics 42 (2001) 191-212

 30. Shannon, W.D., Province, M.A., Rao, D.C: Tree-based recursive partitioning methods for
subdividing sibpairs into relatively more homogeneous subgroups. Genetic Epidemiology
20 (2001) 293-306



Evolutionary Graph Generation System
and Its Application to Bit-Serial Arithmetic

Circuit Synthesis

Makoto Motegi, Naofumi Homma, Takafumi Aoki, and Tatsuo Higuchi

Graduate School of Information Sciences, Tohoku University
Aoba-yama 05, Sendai 980-8579, Japan

Abstract. This paper presents an efficient graph-based evolutionary
optimization technique called Evolutionary Graph Generation (EGG),
and its application to the design of bit-serial arithmetic circuits, which
frequently appear in real-time DSP architectures. The potential of the
proposed approach is examined through experimental synthesis of bit-
serial constant-coefficient multipliers. A new version of the EGG system
can generate the optimal bit-serial multipliers of 8-bit coefficients with
a 100% success rate in 15 minutes on an average.

1 Introduction

Arithmetic circuits are of major importance in today’s computing and signal
processing systems. Most of the arithmetic circuits are designed by experienced
designers who have specific knowledge of the basic arithmetic algorithms. Even
the state-of-the-art logic synthesis tools can provide only limited capability to
create structural details of arithmetic circuits.

Addressing this problem, we have proposed an approach to designing arith-
metic circuits using a new evolutionary optimization technique called Evolu-
tionary Graph Generation (EGG) [1]–[4]. There are already some approaches
to evolutionary design of hardware structures [5]–[8]. The key idea of the pro-
posed EGG system is to employ general graph structures as individuals and
introduce new evolutionary operations to manipulate graph structures directly
without encoding them into other indirect representations, such as bit strings
(used in GA) and trees (used in GP). The potential of EGG has already been
investigated through the design of combinational arithmetic circuits, such as
high-performance parallel multipliers [1]–[3] and high-radix redundant adders
[4].

This paper presents an application of EGG to the design of bit-serial data-
parallel arithmetic circuits, which frequently appear in real-time DSP architec-
tures [9]. The potential capability of the proposed approach is examined through
experimental synthesis of bit-serial data-parallel constant-coefficient multipliers.
A new version of the EGG system can generate the optimal bit-serial multipli-
ers of 8-bit coefficients with a 100% success rate in 15 minutes on an average.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 831–840, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



832 Makoto Motegi et al.

: Node

: Input terminal

: Output terminal

: Directed edge

Fig. 1. Example of a circuit graph.

The proposed approach can also be applied to other design specifications includ-
ing constant-coefficient multiply-adders as demonstrated at the last part of this
paper.

2 EGG System

2.1 Basic Model

The Evolutionary Graph Generation (EGG) system employs circuit graphs to
represent circuit structures. A circuit graph (Fig. 1) consists of nodes and di-
rected edges. Nodes are of two types: functional nodes and input/output nodes.
Every node has its own name, the function type and input/output terminals.
We assume that every directed edge must connect one output terminal (of a
node) and one input terminal (of another node), and that each terminal has
one edge connection at most. A circuit graph is said to be complete if all the
terminals have an edge connection. The EGG system generates only complete
circuit graphs in order to avoid needless search for incorrect circuit structures.

More precisely, a circuit graph G is defined as G = (NG, TGO, T
G
I , ν

G
O, ν

G
I , ε

G),
where

NG : the set of nodes,
TGO : the set of output terminals,
TGI : the set of input terminals,
νGO : mapping from TGO to NG;

n = νGO(u) means that the output terminal u (∈ TGO) belongs to the
node n (∈ NG),

νGI : mapping from TGI to NG;
n = νGI (v) means that the input terminal v (∈ TGI ) belongs to the
node n (∈ NG),

εG : bijection from SGO to SGI , where SGO ⊆ TGO, SGI ⊆ TGI and |SGO| = |SGI |;
v = εG(u) means that the output terminal u (∈ SGO) and the input
terminal v (∈ SGI ) have a directed edge connection.

Note here that SGO (or SGI ) is the set of output (or input) terminals having edge
connections. The circuit graph G is said to be complete if and only if SGO = TGO
and SGI = TGI .

Fig. 2 shows the overall procedure of the EGG system. All the circuit graphs
generated newly in evolution process are evaluated by a symbolic model checking



Evolutionary Graph Generation System 833

program EGG System Flow
begin
t := 0; { t: number of generations }
initialize(P (t)); { P (t): population }
evaluate(P (t));
while t ≤ Max. num. of generations do

begin
C(t) := crossover(P (t)); { C(t): offsprings generated by crossover }
M(t) := mutation(P (t)); { M(t): offsprings generated by mutation}
evaluate(C(t) ∪M(t));
P (t+ 1) := select(C(t) ∪M(t) ∪ P (t));
t := t + 1

end
end.

Fig. 2. EGG system flow.

technique [2]. Then, the circuit graphs having higher scores are selected to per-
form evolutionary operations, crossover and mutation to produce offsprings for
the next generation. Both operations transform the structure of circuit graphs
preserving the completeness property, that is, if the parents are complete graphs,
the transformed graphs are also complete.

The crossover operation recombines two parent graphs into two new graphs.
When a pair of parent graphs Gp1 and Gp2 is selected from the population, the
crossover operation determines a pair of subgraphs G′p1 and G′p2 to be exchanged
between the parents, and generates offsprings by replacing the subgraph of one
parent by that of the other parent as illustrated in Fig. 3(a). In this process, the
system selects a subgraph randomly from the mother circuit graph, and selects
a compatible subgraph from the father circuit graph, where “compatible” means
that the cut sets for these subgraphs contain the same number of edges for both
negative and positive directions. This ensures the completeness of the generated
offsprings. The mutation operation, on the other hand, partially reconstructs the
given circuit graph. This operation selects the subgraph randomly and replaces
it with a randomly generated subgraph that is compatible with the original
subgraph. Fig. 3(b) depicts an example of the mutation operation. This operation
also ensures the completeness property of the generated circuit graph.

2.2 EGG System Implementation

We have newly designed a generic object-oriented framework for the EGG sys-
tem, which is called “EGG framework”, and have developed its application to
bit-serial arithmetic circuit synthesis. Fig. 4 illustrates the class diagram of the
EGG framework, where each rectangular box represents a class template (or a
class) and each dashed rectangle shows template arguments. These framework
class templates (and a class) contain fundamental components for the EGG sys-
tem.



834 Makoto Motegi et al.

Gp1

Gc1
Gc2

G'p1

G'p2 G'p1

Gp2

G'p2

(a) (b)

Gp

G'p

G'c

Gc

Fig. 3. Examples of evolutionary operations: (a) crossover, (b) mutation.

The overall work-flow is controlled by the Control class template, which is as-
sociated with Population, Mutation, Crossover, Selection and Evaluation
class templates. The Population class template contains the basic individual
model defined by the Graph class template. The class templates Mutation,
Crossover, Selection and Evaluation define basic operators for Population
objects.

The Graph class template has Node, SubGraph and Fitness, where Node and
SubGraph inherit from the AbstractNode class template. The AbstractNode has
the Terminal class template. The connecting edge at the Terminal class tem-
plate indicates an “association”, i.e., one Terminal object calls another Terminal
object to define the network topology. For performing evolutionary operations
quickly, the data structure for each Graph object is designed to hold a list of
data items for a specific number of SubGraph objects that are selected from
the Graph object randomly. In the crossover operation, for example, the system
first selects a SubGraph object randomly from a list of SubGraph objects of the
mother Graph object, then selects a compatible SubGraph object from the father
Graph object by scanning father’s SubGraph list.

In order to synthesize bit-serial arithmetic circuits, we have created 6 new
classes inheriting from Control, Evaluation, Graph, Fitness, Terminal and
Node, respectively. The EGG system can be systematically modified for different
design problems by inheriting the framework class templates. We have found that
the use of the EGG framework accelerates the development of new applications
by providing high-level abstractions of EGG optimization techniques.

3 Synthesis of Bit-Serial Constant-Coefficient Multipliers

We demonstrate the capability of the new EGG system in the synthesis of bit-
serial constant-coefficient multipliers. We first summarize some techniques for
designing the bit-serial multipliers with constant coefficients. One of the most
important techniques in constant-coefficient multiplier design is to encode the
target coefficient by the Canonic Signed-Digit (CSD) number representation [10].
The CSD number representation is defined as a special binary Signed-Digit (SD)
number representation that contains the least number of non-zero digits. This



Evolutionary Graph Generation System 835

Evaluation

POPULATION

Control

POPULATION

Population

GRAPH

Graph

SUBGRAPH, FITNESS

SubGraph

NODE

Node

TERMINAL

Fitness

Selection

POPULATION

Terminal

NODE

Crossover

POPULATION

Mutation

POPULATION

AbstractNode

TERMINAL

connects
0..1

0..1

*

0..1

0..1
1.. *

*

1

ElitistSel

POPULATION

RouletteSel

POPULATION

1

1

1

: Generalization
: Aggregation
: Association
: 0 or more
: 1 or more
: 0 or 1

*

0..1

1.. *

1.. *

1.. *

1.. *

Fig. 4. Class diagram of the EGG framework.

encoding technique makes possible to reduce the number of transistors, which
is roughly proportional to the number of non-zero digits. Thus, the known best
possible approach to the design of bit-serial constant-coefficient multipliers is to
use a one-dimensional systolic array of m processing elements (i.e., full adders),
where m is the number of non-zero digits in the given CSD coefficients. In this
experiment, the EGG system synthesizes the multiplier structure without using
the knowledge of the above techniques.

In our experiments, we have selected a set of nodes shown in Table 1 for
synthesizing various bit-serial data-parallel constant-coefficient multipliers and
constant-coefficient multiply-adders, which frequently appear in signal process-
ing applications. The circuit graphs generated by the EGG system are evaluated
by a combination of two different evaluation metrics, functionality and perfor-
mance. The functionality measure F evaluates the validity of the logical function
compared with the target function. The performance (i.e., efficiency) measure
P , on the other hand, is assumed to be the product of circuit delay D and the
number of transistors A.

First, we describe the functionality measure F in detail. In the following
discussion, we assume the use of LSB-first bit-serial arithmetic based on two’s
complement binary number system, where the first bit has the weight 20, the
second has 21, the third has 22, and so on. Given a specific circuit graph, the
mathematical representation of its function can be derived by symbolic execution
using functional definitions given in Table 1.

The function of an n-input 1-output bit-serial arithmetic circuit consisting
of the nodes shown in Table 1 can be represented in general as

Y =
n∑
i=1

K̂iXi + f(X1, · · · , Xn), (1)

where Xi (i = 1, · · · , n) represent bit-serial inputs, Y represents the bit-serial
output, K̂i (i = 1, · · · , n) are integer coefficients, and f(X1, · · · , Xn) is a non-
linear function of input operands. The term f consists of intermediate variables
Wj (j = 1, 2, 3, · · ·) which can not be eliminated in the process of the symbolic
verification.



836 Makoto Motegi et al.

Table 1. Nodes used in the experiment.

Name Symbol Mathematical representation Area Delay

Input
IN+ Y = X 0 0
IN− Y = −X 2 τ

Output OUT Y = X 33 4τ
Full adder FA 2C + S = X1 +X2 +X3 28 4τ

R Y = 2X 5
1-bit register 2-R Y = 4X 10 —

4-R Y = 16X 15

We assume that the target function is given by

Y =
n∑
i=1

KiXi, (2)

where Ki (i = 1, · · · , n) are integer coefficients. The functionality measure F is
calculated by evaluating the similarity between the coefficients K̂i (in (1)) and
the target coefficients Ki. Assume that K̂i and Ki are written as follows:

K̂i = k̂i,020 + k̂i,121 + · · ·+ k̂i,j2j + · · ·+ k̂
i, ˆ‖Ki‖−12

ˆ‖Ki‖−1,

Ki = ki,020 + ki,121 + · · ·+ ki,j2j + · · ·+ ki,‖Ki‖−12‖Ki‖−1,

where ˆ‖Ki‖ and ||Ki|| denote the string lengths of the coefficients and k̂i,j , ki,j ∈
{−1, 0, 1}. The similarity of these coefficient strings is evaluated by computing
their correlation. The correlation MK̂i,Ki

(s) of the two coefficient strings with
the shift amount s is defined by

MK̂i,Ki
(s) =




1
ˆ‖Ki‖

ˆ‖Ki‖−1∑
l=0

δ
(
k̂i,l − ki,l−s

)
if ˆ‖Ki‖ ≥ ‖Ki‖ ,

1
‖Ki‖

‖Ki‖−1∑
l=0

δ
(
k̂i,l−s − ki,l

)
if ˆ‖Ki‖ < ‖Ki‖ ,

(3)

where δ(x) is defined as δ(x) = 1 if x = 0 and δ(x) = 0 if x �= 0. In the above
calculation, we assume the values of the undefined digit position to be 0 for both
coefficient strings. Using this correlation function, the similarity F ′ between (1)
and (2) is defined as

F ′ =
1
n

n∑
i=1

[
max

0≤s≤d

{
100MK̂i,Ki

(s)− C1s
}]

, (4)

where d =
∣∣∣ ˆ‖Ki‖ − ‖Ki‖

∣∣∣ and C1 = 10 in this experiment. The term C1s rep-
resents the adverse effect due to the shift amount s. Using this similarity, we
define the functionality measure F as



Evolutionary Graph Generation System 837

Table 2. DA product of multipliers: (a) the multipliers generated by the EGG system,
(b) the CSD multipliers.

Coefficient DA Coefficient DA Coefficient DA
K1 (a) (b) (a)/(b) K1 (a) (b) (a)/(b) K1 (a) (b) (a)/(b)

−123 1088 1088 1.00 −35 1024 1024 1.00 55 1197 1197 1.00
−115 1352 1368 0.99 −34 475 475 1.00 58 544 655 0.83
−111 1088 1088 1.00 −29 1008 1152 0.88 66 384 384 1.00
−105 1530 1557 0.98 −26 504 640 0.79 70 516 655 0.79
−101 1530 1557 0.98 −25 1125 1152 0.98 73 1032 1032 1.00
−91 1328 1352 0.98 −23 984 1008 0.98 77 1296 1312 0.99
−87 1328 1352 0.98 −13 968 1107 0.87 84 516 516 1.00
−82 675 675 1.00 −10 425 425 1.00 99 1296 1539 0.84
−79 1064 1064 1.00 −4 180 180 1.00 103 1476 1539 0.96
−78 552 665 0.83 13 912 968 0.94 104 516 680 0.76
−77 1328 1512 0.88 26 476 630 0.76 105 1296 1352 0.96
−58 524 665 0.79 27 1152 1152 1.00 108 592 690 0.86
−54 524 524 1.00 31 837 837 1.00 114 564 680 0.83
−47 1024 1048 0.98 35 992 1134 0.87 120 432 515 0.84
−44 524 524 1.00 43 1256 1512 0.83 123 1242 1242 1.00
−40 400 475 0.84 50 496 655 0.76 127 927 927 1.00
−38 532 640 0.83 52 496 655 0.76

F = F ′ − C2q, (5)

where q is the number of delay-free loops in the evolved circuit, and C2 = 5 in
this experiment.

On the other hand, the performance measure P is defined as

P =
C3

DA
, (6)

where D is the maximum register-to-register delay estimated with an inverter
gate as a unit delay element τ , and A is the total number of transistors [11]. We
use F + P as a total fitness function, where the ratio Pmax/Fmax is adjusted
about 5/100 by tuning the constant C3.

4 Experimental Results

Table 2 shows the result of a set of evolutionary runs, in which the EGG system
generates bit-serial multipliers with 8-bit integer coefficients. We employ the
target function of equation (2) with n = 1. In this experiment, we assume that
the population size is 300, the number of generations is 10000, the maximum
number of nodes is 100, the crossover rate is 0.7, and the mutation rate is 0.1.
The parameter values are optimized through a set of experiments.

Total 50 coefficients are selected randomly in the range of −128 to 127. We
have performed 10 distinct evolutionary runs for each coefficient. As an example,



838 Makoto Motegi et al.

65

70

75

80

85

90

95

100

105

0 500 1000 1500 2000 2500

F
itn

es
s

Number of generations

Best individual fitness (10 runs)

Average for 10 runs

Target function:  Y = -105X1  

Population size: 300

Num. of generations: 10000

Crossover rate: 0.7

Mutation rate: 0.1 

Max. num. of node: 100

Fig. 5. Transition of the best individual fitness for the case of Y = −105X1.

IN -
OUT

R

FAFA

IN -

R R

R

R R

R

IN - IN -

FAR
R

S

C

S

C

S

C

(a)

R Y
R FA

S

C

R

R R FA
S

C

R

R R FA
S

C

R

FA
S

C

R

Bias
: Inverter

R : Register

FA : Full Adder

X1

(b)

Fig. 6. Example solution for the case of Y = −105X1: (a) the circuit graph generated
by the EGG system, (b) the multiplier structure corresponding to graph (a).

Fig. 5 shows the transition of the best individual fitness for the case of Y =
−105X1. We can see the staircase improvements of the best individual fitness
for every trial. We have obtained the solutions achieving 100% functionality with
a 100% success rate in 10 trials. The calculation time for each evolutionary run
is about 15 minutes on a Linux PC with 1 GHz Pentium III and 1 GB memory.
Percent distribution of the calculation time is approximately as follows: selection-
37%, evolutionary operations-30%, evaluation-28%, others-5%.

In Table 2, we show the DA product (the maximum register-to-register de-
lay × the total number of transistors) of the multipliers generated by the EGG
system (a) and that of the corresponding CSD multipliers (b). From this table,
we can confirm that the EGG system can generate efficient multiplier struc-
tures whose performances are comparable or sometimes superior to those of
systolic CSD multipliers. Fig. 6 shows an example of the solution for the case
of Y = −105X1. Note here that the EGG system can synthesize efficient multi-
plier structure without using the knowledge of arithmetic algorithms. The EGG
system can also generate the structural Hardware Description Language (HDL)



Evolutionary Graph Generation System 839

X1

X2

X1

X2

X2
X1

X2
IN -

IN -

OUT

R

IN -

IN
+

R

2-R

R

R

R
FA

R

FA

IN
+

R

FA

2-RR FA

IN -

FA R

IN
+

R

FA

R

(a)

R
X1

X2 Y

FA
S

C

R

R FA
S

C

R

R R R

FA
S

C
R

R R

R R R FA
S

C FA
S

C

R

R
FA

S

C FA
S

C

RBias

: InverterR : RegisterFA : Full Adder

(b)

Fig. 7. Example solution for the case of Y = −123X1 − 105X2: (a) the circuit graph
generated by EGG system, (b) the multiply-addition structure corresponding to graph
(a).

code for the evolved multipliers, and this may provide a good initial description
for state-of-the-art logic synthesis tools in some applications.

The proposed approach can be applied not only to the synthesis of constant-
coefficient multipliers but also to other design problems by changing the target
function. For example, if we employ the target function (2) with parameters
n = 2, K1 = −123, and K2 = −105, we can synthesize the constant-coefficient
multiply-adder defined by Y = −123X1 − 105X2. Fig. 7 shows the best solu-
tion obtained in the 10000th generation. This clearly demonstrates the potential
capability of the EGG system for handling generic synthesis tasks in bit-serial
arithmetic.

5 Conclusion

In this paper, we have presented an application of the EGG system to the design
of bit-serial constant-coefficient multipliers. The experimental result suggests
that the EGG system can solve design problems of serial-pipelined arithmetic
circuits without the knowledge of arithmetic algorithms. The research project
is now being conducted to apply the proposed EGG system to the hierarchical
synthesis of larger-scale arithmetic circuits. The EGG framework used in this
paper is open to the public at http://www.higuchi.ecei.tohoku.ac.jp/egg/.



840 Makoto Motegi et al.

References

1. T. Aoki, N. Homma, and T. Higuchi,“Evolutionary design of arithmetic circuits,”
IEICE Trans. Fundamentals, Vol. E82-A, No. 5, pp. 798–806, May 1999.

2. N. Homma, T. Aoki, and T. Higuchi,“Evolutionary graph generation system
with symbolic verification for arithmetic circuit design,” IEE Electronics Letters,
Vol. 36, No. 11, pp. 937–939, May 2000.

3. N. Homma, T. Aoki, and T. Higuchi,“Evolutionary synthesis of fast constant-
coefficient multipliers,” IEICE Trans. Fundamentals, Vol. E83-A, No. 9, pp. 1767–
1777, September 2000.

4. M. Natsui, T. Aoki, and T. Higuchi,“Evolutionary graph generation with terminal-
color constraint for heterogeneous circuit synthesis,” Electronics Letters, Vol. 37,
No. 13, pp. 808–810, June 2001.

5. F. J. Miller, P. Thomson, and T. Fogarty,“Designing electronic circuits using evo-
lutionary algorithms. arithmetic circuits: A case study,” Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science, pp. 105 – 131, Septem-
ber 1997.

6. R. J. Koza, H. F. III, Bennett, D. Andre, A. M. Keane, and F. Dunlap,“Automated
synthesis of analog electrical circuits by means of genetic programming,” IEEE
Trans. Evolutionary Computation, Vol. 1, No. 2, pp. 109 – 128, July 1997.

7. T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani,
E. Takahashi, K. Toda, M. Salami, N. Kajihara, and N. Otsu,“Real-world ap-
plications of analog and digital evolvable hardware,” IEEE Trans. Evolutionary
Computation, Vol. 3, No. 3, pp. 220 – 235, September 1999.

8. D. J. Lohn and P. S. Colombano,“A circuit representation technique for automated
circuit design,” IEEE Trans. Evolutionary Computation, Vol. 3, No. 3, pp. 205 –
219, September 1999.

9. S. A. White,“Application of distributed arithmetic to digital signal processing: a
tutorial review,” IEEE ASSP Magazine, pp. 4 – 19, July 1989.

10. K. Hwang, Computer arithmetic: principles, architecture, and design, John Wiley
& Sons, 1979.

11. R. Zimmermann and W. Fichtner,“Low-power logic styles: CMOS versus pass-
trasistor logic,” IEEE J. Solid-State Circuits, Vol. 32, No. 7, pp. 1079 – 1090, July
1997.



Evaluating Multi-criteria Evolutionary
Algorithms for Airfoil Optimisation

Boris Naujoks1, Lars Willmes2, Thomas Bäck2,4, and Werner Haase3

1 Chair for Systems Analysis, Computer Science Dept. XI, University of Dortmund
44221 Dortmund, Germany

naujoks@LS11.cs.uni-dortmund.de
2 NuTech Solutions GmbH

Martin-Schmeißer-Weg 15, 44227 Dortmund, Germany
{willmes,baeck}@nutechsolutions.de

3 EADS Military Aircraft, Dept. MT63 / Build. 70.N
81663 Munich, Germany
werner.haase@m.eads.net

4 Leiden Institute of Advanced Computer Science (LIACS), Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. A new approach for multi criteria design optimisation is pre-
sented in the paper. The problem tackled with this approach is the 2-
dimensional design of an aircraft wing. To carry the derandomized step
size control also to the multi criteria applications, four different selection
schemes are proposed. Furthermore, we present a new method for aver-
aging results of multi objective evolutionary algorithms. This method is
then used to compare the results achieved with the proposed algorithms.

1 Introduction

Comparing results from different multi objective optimisation techniques is a
difficult task. Different qualities of the results achieved have to be considered
as well as the computational effort that was necessary to achieve these results.
But these results are needed to compare optimisation techniques and to decide
which one is the best for a certain kind of problem.

Using stochastic optimisation techniques like evolutionary algorithms (EAs)
makes the task more complicated. Different runs of stochastic optimisation tech-
niques yield different results due to the influence of random numbers. One often
used way is to average the results and to compare the averaged results.

Concerning multi objective optimisation, the results are often presented in
Pareto fronts. The current paper describes a new method to average Pareto
fronts. This new comparison technique is tried on an aviation test case consid-
ering different multi objective evolutionary algorithms.

Aviation in general is one of the most important fields in industry and there-
fore also in science. Due to the many potential savings that are possible in this
area many researchers work here on production cost minimization, flight behav-
ior improvement, etc.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 841–850, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



842 Boris Naujoks et al.

One of the most referenced applications from aviation is aircraft wing design.
Due to the development of computational fluid dynamics (CFD) methods, wing
design is nowadays mostly done using computers, which provide a scaleable
preciseness for different design tasks.

Different methods from optimisation have been carried out on the current de-
sign problem, which is presented in detail in section 2. On a simplified problem
considering only one flow condition resulting in a single objective optimisation
problem, Evolutionary Algorithms (EAs) [1] have been applied very success-
fully. Especially the derandomized step size control mechanism [2] for evolution
strategies (ESs) [3] yielded the best results here. To carry this operator to multi
objective tasks and, moreover, use step size adaptation in multi objective appli-
cations, four approaches are tackled in section 3.1.

Next to these MOEAs an evolution strategy implementation of NSGA-II
(Non-dominated Sorting Genetic algorithm; [4]) is presented for comparison pur-
poses in section 3.1. This new implementation also considers derandomised step
size control [2]. The new approach on averaging Pareto-fronts is introduced in
section 3.2. First results can be found in section 4, first conclusions are drawn
in section 5.

2 Airfoil Design Test Case

In the current investigation a two-objective airfoil design problem for viscous flow
is considered. The problem described is one of the test cases from the European
research project AEROSHAPE. Here, all modeling issues concerning CFD, e.g.
mesh size, mesh generation, used models, pressure calculation, etc. have been
fixed and two regimes of flow conditions have been chosen. These regimes vary
in the flow parameter settings and a suitable airfoil as a compromise for both
conditions is to be designed.

In contrast to the airfoil design problem using only one regime of flow con-
ditions (single point), the current task requires the application of multi criteria
decision making methods. Therefore, genetic algorithms as well as evolution
strategies have been used in conjunction with Pareto optimisation techniques.
In contrast to results already presented on the current test case [5,6], the pa-
rameterization of the airfoil using Bezier points for determining the design has
been improved. Here, some x-components of these points have been involved in
the optimisation process in addition to the y-components of all points.

The software and technical support for the objective function calculation was
provided by the European Aeronautic Defence and Space Company – Military
Aircraft (EADS-M), one of the partners in the AEROSHAPE project. The two
flow conditions are calculated using different models, namely the Johnson-King
model for the subsonic flow (high-lift test case) and the Johnson-Coakley model
for the transsonic flow (low-drag test case).

The parameter settings describing the flow conditions in use are given in
table 1.

For the objective function calculation two target airfoil designs are given, one
for each flow condition. The objective function reads as follows:



Evaluating Multi-criteria Evolutionary Algorithms for Airfoil Optimisation 843

Table 1. Summarized design conditions (c=chord length)

Case high lift low drag
Property
M∞ [−] 0.20 0.77
Rec [−] 5 · 106 107

Xtransition (upper / lower) [c] 3% / 3% 3% / 3%
α [0] 10.8 1.0

F (α1, α2, x(s), y(s)) =
2∑

n=1

[
Wn

∫ 1

0
(Cp(s)− Cnp,target(s))2ds

]
(1)

with s being the airfoil arc-length measured around the airfoil and Wn weighting
factors. Cp is the pressure coefficient distribution of the current and Cnp,target the
pressure coefficient distribution of the target airfoils, respectively.

Due to the large calculation times for the Navier-Stokes simulations, only the
restricted number of 1000 objective function evaluations, being already a lot, is
allowed.

3 Multi-objective Evolutionary Algorithms

Evolutionary Algorithms are nowadays a widely spread stochastic optimisation
method. They have proven their practicability and efficiency in many optimisa-
tion tasks. Nevertheless detailed knowledge about parameterizing these methods
accordingly is essential.

Due to their population-based approach, EAs are very promising methods
if more than one value to describe the quality of an individual is required. The
first overview on multi criteria decision making using EAs was given by Fonseca
and Fleming in 1995 [7]. In the following text, their definitions concerning dom-
inance, Pareto-optimality, Pareto-sets, and -fronts are used. The term Pareto-
front is additionally defined as the set of non-dominated individuals of a given
population.

3.1 Multi-objective Derandomized ES (MODES)

Since the single criteria version of the DES approach has been successfully ap-
plied to the single point airfoil design problem, a transformation using this ap-
proach for multi-criteria design seemed quite natural. Although it is common
believe that the main strength of Evolutionary Algorithms in multicriteria opti-
misation comes from the simultanious optimisation of several parent individuals
one parent strategies as e.g. the PAES algorithm [8] proved competitive on a
number of problems. So the extensions to the DES are twofold: on the one hand,
a multimembered (µ, λ) DES was developed to incorporate the advantages of
this approach in MCDM. On the other hand the task of keeping diversity whilst
approaching the pareto set had to be added to the (1, λ)-DES as well.



844 Boris Naujoks et al.

Selecting one individual from a set of individuals each having more than
one objective function value is in the end only a special case of selecting a new
population in MOEAs. The first step in the selection scheme is almost clear,
if the Pareto concepts are applied. If there is one and only one non-dominated
individual, select this one for becoming the parent of the next generation.

Due to hard restrictions concerning the allowed number of objective function
evaluations, the elitist (1+10)-DES and (20+20)-DES are used. Combined with
the choice of this selection scheme is the hope, that it performs better than
the comma strategy, because only improvements with respect to the selection
mechanism in use are possible.

In the current investigation, the following selection schemes have been com-
pared:

MODES I: If more than one non-dominated individual is in the population,
the number of individuals dominated is taken into account. If there is one
individual with a maximum number of dominated individuals, this one is
chosen to become the parent of the next generation. If there are more than
one with the same maximum number of individuals dominated, the distance
to the origin of the objective function space is taken into account. In this
special case, the individual with the smallest distance to the origin, which
is the global optimum due to objective function formulation, is selected to
become the parent of the next generation.

MODES II: This selection scheme is similar to MODES I presented above, but
instead of the distance to the origin, the distance to other individuals from
the population has been taken into account. More precisely, the individuals
with the same number of dominated individuals are compared to each other.
Therefore the distance of one individual to the other ones is calculated and
added. The one with the greatest sum, thus the one with the greatest sum
of distances to the other individuals, is selected and becomes the parent of
the next generation.

MODES III: In the third selection scheme investigated here, the second cri-
teria from MODES II, the number of individuals dominated, is omitted.
If more than one non-dominated individual is in the population, the one
with the greatest distance among all non-dominated solutions is selected
to become the parent of the next generation. Therefore the distance of one
non-dominated individual to the other non-dominated ones is calculated and
added similarly to selection MODES II.

MODES IV: The fourth selection scheme is inspired by the NSGA-II [4] and
is used in a multimembered (µ, λ)-DES: First the parent and offspring pop-
ulation are combined to form R = P ∪ Q. After a nondominated sorting of
R the pareto fronts Fi of R are identified. The new parent population P ′

is filled frontwise with individuals from F 1, F 2, ..., until |P ′| + F i > µ. If
the sizes of the first i − 1 pareto fronts sum up to µ, the resulting P ′ con-
tains the correct number of new parent individuals and new offspring can
be generated. Otherwise µ− |P ′| individuals must be selected from the i-th
pareto front to fill the remaning slots of P ′. This task is accomplished by



Evaluating Multi-criteria Evolutionary Algorithms for Airfoil Optimisation 845

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Individuals in fitness function space

All points generated
Pareto Set

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Individuals in fitness function space

All points generated
Pareto Set

Fig. 1. Pareto-front, MODES I

NSGA-II’s crowding sort procedure: Each individual Ik in F i is assigned a
distance value dI = 0. Then for each objective function fm, m = 1, . . . ,M
the Pareto-front F i is sorted in ascending order so that fm(Ik) < fm(Ik+1)
and the distance values for the k = 1...|F i| individuals are computed as

dIk = dIk +
fm(Ik+1)− fm(Ik−1)

fmaxm − fminm

The boundary solutions get a value of I1 = I|Fi| = ∞. The missing slots of
P ′ are filled with the most widley spread individuals of F i which are found
by sorting F i in ascending order of the distance values and selecting the
first µ− |P ′| members of F i. A new offspring population Q′ is generated by
discrete recombination of the design variables and the strategy parameters
and mutation with the derandomized mutation operator.

For each of the presented selection schemes, different optimisation runs have
been performed. Most important for the comparison of results is the obtained
Pareto-front showing the most obvious and remarkable results.

A typical Pareto-front obtained by MODES I is presented in figure 1. Here,
the search focusses on the path to the origin of the fitness function space.

This behavior changes not until the second selection step, selection consider-
ing the number of dominated solutions, is omitted from the selection procedure.
Pareto-fronts obtained incorporating MODES II show a compareable behavior
like the ones from MODES I and are therfore excluded from further investiga-
tions at this point.

Figure 2 presents typical Pareto-front from runs using MODES III. The
Pareto-front is covered satisfactorily, showing a wide range of different alter-
native solutions. This gives the user the possibility to compare many alternative
solutions featuring different design aspects.

Furthermore, even the extreme specifications of the fitness function space are
explored, where the solutions focus on only one objective. This behavior may be
of special interest, if one objective plays an accentuated role among the others.



846 Boris Naujoks et al.

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Individuals in fitness function space

All points generated
Pareto Set

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Individuals in fitness function space

All points generated
Pareto Set

Fig. 2. Pareto-fronts, MODES III

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Individuals in fitness function space

All points generated
Pareto Set

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Individuals in fitness function space

All points generated
Pareto Set

Fig. 3. Pareto-fronts, MODES IV

The same holds for the results obtained using MODES IV presented in figure
3. The results look comparable to the ones received using MODES III and this
clarifies the need of a technical instrument to compare the results.

3.2 New Approach Averaging and Comparing MOEA Results

The new approach for averaging Pareto-fronts has to be seen in conjunction with
the considered test case. It was developed for this special case and modifications
may be necessary for transferring it to other applications. Nevertheless, applied
to the test case under investigation it performs very well.

The present method is inspired by the attainment surfaces proposed by Fon-
seca and Fleming [9] and is intended to supply a method to derive an averaged
pareto front from several runs of the same optimisation algorithm. It allows
comparing different optimisation algorithms by visually comparing their aver-
aged pareto fronts. In contrast to the Fonseca and Fleming method the present
method is based on bisecting lines and parallels to it. First, the interval [a, b]
under investigation has to be determined by looking at the objective function
values of the Pareto optimal solutions. Afterwards, the number of intersections
i through this interval has to be determined by the user.



Evaluating Multi-criteria Evolutionary Algorithms for Airfoil Optimisation 847

0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06 0.08 0.1

hi
gh

-li
ft

low-drag

Pareto sets in fitness function space

Points  10860
Points  1449

Points  16243
Points  19105
Points  23525
Averaged set

Fig. 4. Point from MODES III considered for the averaging process and the resulting
averaged points in a part of the investigated quadrant

In the present case the interval [0, 0.22] which is cut by i = 5 intersections
is investigated. Furthermore there are corresponding intersections through the
interval [−0.22, 0] and the origin. This results in a band of parallel intersections
ys equally distributed around the origin in the quadrant of the search space
under investigation:

ys = x+ (−b+ s · b− a
i

)

with s = {−i, . . . , i} = {−5, . . . , 5} in the current investigation.
Now the Pareto optimal solutions next to these intersections from each opti-

misation run are determined. This cloud of points according to each intersection
is used to calculate an averaged point corresponding to this intersection. This is
done by calculating the centroid of this cloud of points. Figure 4 shows the clouds
of points corresponding to each intersection from the different optimisation runs
in a part of the investigated quadrant.

Figure 5 presents the quadrant under investigation with all defined intersec-
tions, the Pareto-fronts obtained using MODES III and the resulting averaged
Pareto-front.

4 Results

The averaged fronts of MODES I, MODES III and MODES IV are plotted in
figure 6. From this figure it can be seen that the multimembered strategy of
MODES IV does not provide an obvious advantage over the single parent ap-
proach of MODES III. The overall length of both algorithms’ average attainment



848 Boris Naujoks et al.

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Pareto sets in fitness function space

Pareto Set 10860
Pareto Set  1449
Pareto Set 16243
Pareto Set 19105
Pareto Set 23252

Averaged set
Averaged set

Fig. 5. Pareto-fronts from MODES III and the averaged Pareto-front (thick line)

surface is quite comparable while MODES III has advantages on ”high lift” and
MODES IV has its stronger part on ”low drag”. Although the (20+20) strategy
of MODES IV is only a first shot on the airfoil optimisation problem, a more
visible advantage of its multimembered nature might have been expected.

The ”closest distance to the origin” selection criteria of MODES I might be of
little value in a number of real world applications, but it can be seen from figure
6 that the incorporation of further selective pressure by this restriction increases
the algorithm’s performance: MODES I gives the best results of all algorithms
in the [0, 0.05] × [0, 0.05] subspace which is closest to the middle intersection.
The drawback lies in MODES I’s low performance in the bordering regions close
to the single criteria optima which results in the shortest average attainment
surface of the three algorithms compared.

5 Conclusions

As can be seen in figure 6 the new averaging method provides a reasonable
way to compare pareto fronts generated by different algorithms. In contrast to
the Fonseca/Flemming approach it does not rely on ”virtual” points when the
attainment surface is intersected in between two ”real” points of the underlieing
pareto front but averages ”real” points found by the optimisation algorithm.
The average attainment surfaces can easily be compared to estimate the quality
of different algorithms.

For the airfoil optimisation problem the tested algorithms with the deran-
domized mutation operator showed a good performance both as one- and mul-
tiparent strategies. Especially for the (µ + λ) ES good values for µ and λ are



Evaluating Multi-criteria Evolutionary Algorithms for Airfoil Optimisation 849

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

hi
gh

-li
ft

low-drag

Pareto sets in fitness function space

Averaged set MODES 1
Averaged set MODES 1
Averaged set MODES 3
Averaged set MODES 3
Averaged set MODES 4
Averaged set MODES 4

Fig. 6. Averaged Pareto-fronts achieved using MODES I, MODES III, and MODES IV

subject to further research, just as the investigation of selfadaptation in multi-
criteria evolutionary optimisation is still at the beginning.

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft as part of
the collaborative research center “Computational Intelligence” (531).

The AEROSHAPE project (Multi-Point Aerodynamic Shape Optimisation)
is a collaboration between Aerospatiale Matra Airbus, Alenia Aeronautica (Coor-
dinator), Daimler Chrysler Airbus, EADS-M, Dassault Aviation, SAAB,
SENER, SYNAPS, CIRA, DERA, DLR, FFA, INRIA, HCSA, NLR, ONERA,
and NuTech Solutions. The project is funded by the European Commision, DG
Research, under the GROWTH initiative (Project Ref: GRD1-1999-10752).

References

1. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of
Evolutionary Computation. Oxford University Press, New York, and Institute of
Physics Publishing, Bristol, 1997.

2. Andreas Ostermeier, Andreas Gawelczyk, and Nikolaus Hansen. Step-size adapta-
tion based on non-local use of selection information. In Y. Davidor, H.-P. Schwefel,
and R. Männer, editors, Parallel Problem Solving from Nature — PPSN III Inter-
national Conference on Evolutionary Computation, volume 866 of Lecture Notes in
Computer Science, pages 189–198. Springer, Berlin, 1994.

3. Hans-Paul Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. Wiley, New York, 1995.



850 Boris Naujoks et al.

4. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Eli-
tist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Eve-
lyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors, Proceedings of the
Parallel Problem Solving from Nature VI Conference, pages 849–858, Paris, France,
2000. Springer. Lecture Notes in Computer Science No. 1917.

5. Boris Naujoks, Lars Willmes, Werner Haase, Thomas Bäck, and Martin Schütz.
Multi-point airfoil optimization using evolution strategies. In Proc. European
Congress on Computational Methods in Applied Sciences and Engineering (EC-
COMAS’00) (CD-Rom and Book of Abstracts), page 948 (Book of Abstracts),
Barcelona, Spanien, September 11–14 2000. Center for Numerical Methods in En-
gineering (CIMNE).

6. Thomas Bäck, Werner Haase, Boris Naujoks, Luca Onesti, and Alessio Turchet. Evo-
lutionary algorithms applied to academic and industrial test cases. In K. Miettinen,
M. M. Mäkelä, P. Neittaanmäki, and J. Périaux, editors, Evolutionary Algorithms
in Engineering and Computer Science, pages 383–397. Wiley, Chichester, 1999.

7. Carlos M. Fonseca and Peter J. Fleming. An Overview of Evolutionary Algorithms
in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, Spring 1995.

8. Joshua D. Knowles and David W. Corne. Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–
172, 2000.

9. Carlos M. Fonseca and Peter J. Fleming. On the Performance Assessment and Com-
parison of Stochastic Multiobjective Optimizers. In Hans-Michael Voigt, Werner
Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solv-
ing from Nature—PPSN IV, Lecture Notes in Computer Science, pages 584–593,
Berlin, Germany, September 1996. Springer-Verlag.



Hyperheuristics: A Robust Optimisation
Method Applied to Nurse Scheduling

Peter Cowling2, Graham Kendall1, and Eric Soubeiga1,�

1 ASAP Research Group, School of Computer Science and IT
University of Nottingham, Nottingham NG8 1BB, UK

{gxk,exs}@cs.nott.ac.uk
2 MOSAIC Research Group, Department of Computing, University of Bradford

Bradford BD7 1DP, UK
Peter.Cowling@scm.brad.ac.uk

Abstract. A hyperheuristic is a high-level heuristic which adaptively
chooses between several low-level knowledge-poor heuristics so that while
using only cheap, easy-to-implement low-level heuristics, we may achieve
solution quality approaching that of an expensive knowledge-rich ap-
proach, in a reasonable amount of CPU time. For certain classes of prob-
lems, this generic method has been shown to yield high-quality prac-
tical solutions in a much shorter development time than that of other
approaches such as tabu search and genetic algorithms, and using rel-
atively little domain-knowledge. Hyperheuristics have previously been
successfully applied by the authors to two real-world problems of per-
sonnel scheduling. In this paper, a hyperheuristic approach is used to
solve 52 instances of an NP-hard nurse scheduling problem occuring at a
major UK hospital. Compared with tabu-search and genetic algorithms,
which have previously been used to solve the same problem, the hyper-
heuristic proves to be as robust as the former and more reliable than
the latter in terms of solution feasibility. The hyperheuristic also com-
pares favourably with both methods in terms of ease-of-implementation
of both the approach and the low-level heuristics used.

Keywords: Hyperheuristic, Heuristic, Personnel Scheduling, Nurse
Scheduling.

1 Introduction

Personnel scheduling deals with the allocation of timeslots and possibly locations
and other resources to people. This problem has been extensively addressed in
the literature over the past 30 years with a survey in almost every decade [3,11,4].
Very often the problem is solved using heuristics. For instance Schaerf [10] tack-
led a high school timetabling problem formulated as a mathematical programme.
He defined two types of neighbourhood moves, the atomic move which swaps two
classes of the same lecturer which are scheduled in two different timeslots, and
� Corresponding author

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 851–860, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



852 Peter Cowling, Graham Kendall, and Eric Soubeiga

the double move as a pair of atomic moves. The former is associated with a
tabu search and the latter with a randomised nonascendent search (RNA). Both
methods are then used alternately. The algorithm produced timetables better
than the manual ones for various types of schools. Levine [9] used a hybrid
genetic algorithm (GA) to solve an airline crew scheduling problem. The GA
was hybridised with a local search heuristic which tries to repair infeasibili-
ties in the solution. Computational experiments compared the hybrid GA with
branch-and-cut and branch-and-bound algorithms. Both these latter algorithms
produced better solutions than the hybrid GA. Often heuristic methods used
to solve personnel scheduling problems make use of sophisticated metaheuristic
techniques and problem-specific information to arrive at a good solution. This
is the case in [8] and [2] which respectively report the use of tabu search and a
genetic algorithm for nurse scheduling.

It is precisely in this context that we proposed a hyperheuristic approach [5]
as a heuristic that operates at a higher level of abstraction than current meta-
heuristic approaches. A hyperheuristic controls a set of simple, knowledge-poor,
low-level heuristics (for example change, swap, add and drop moves). At each
decision point the hyperheuristic must choose which low-level heuristic to apply,
without recourse to domain knowledge. Hence we may use hyperheuristics in
cases where little domain-knowledge is available (e.g. when dealing with a new,
poorly understood or unusual problem) or when a solution must be produced
quickly (e.g for prototyping). A hyperheuristic could be regarded as an ‘off-the-
peg’ method as opposed to a ‘made-to-measure’ bespoke metaheuristic. It is a
generic and fast method, which should produce solutions of at least acceptable
quality, based on a set of cheap and easy-to-implement low-level heuristics. In
order to apply a hyperheuristic to a given problem, we need only a set of low-level
heuristics and one or more measures for evaluating solution quality. In [5,6] and
[7] respectively a choice function hyperheuristic of the same type as in section 4
was successfully applied to a real world problem of scheduling business meetings,
and to a problem of scheduling undergraduate students’ project presentations at
a UK academic institution. In this paper, we use our hyperheuristic technique
to solve another real-world problem, that of scheduling nurses at a major UK
hospital. The problem has been previously solved using tabu search [8] and ge-
netic algorithms [2]. It is our aim to demonstrate that hyperheuristics are not
only readily applicable to a wide range of scheduling and other combinatorial
optimisation problems, but also can provide very good-quality solutions com-
parable to those of knowledge-rich sophisticated metaheuristics, while using less
development time and simple, easy-to-implement low-level heuristics. In sections
2, 3, 4 and 5 we present respectively the nurse scheduling problem, the solution
methods used, experimental results, and conclusions.

2 The Nurse Scheduling Problem

The problem is to create weekly schedules for wards containing up to 30 nurses
at a major UK hospital. These schedules must respect working contracts and



Hyperheuristics: A Robust Optimisation Method 853

meet the demands (i.e number of nurses of different grades required) for each
day-shift and night-shift of the week, whilst being perceived as fair by the nurses
themselves. Nurses work either day-shifts, divided into ‘earlies’ and ‘lates’, or
night-shifts in a given week. A full week’s work typically includes more days than
nights1. As mentioned in [8], the problem can be decomposed into 3 independent
stages. Stage 1 uses a knapsack model to check if there are enough nurses to meet
demands. Additional nurses are needed for Stage 2 otherwise. This latter stage
is the most difficult and is concerned with the actual allocation of the weekly
shift-pattern schedules to each nurse. Then stage 3 uses a network flow model
to assign those on day-shifts to ‘earlies’ and ‘lates’. As in [8] and [2] we limit
ourselves to the highly constrained problem in stage 2, as stages 1 and 3 can
be solved quickly using standard knapsack and network flow algorithms. The
stage 2 problem is described as follows. Each possible weekly shift-pattern for a
given nurse can be represented as a 0-1 vector of 14 elements (7 day-shifts and 7
night-shifts). A ‘1’/‘0’ in the vector represents a day or night ‘on’/‘off’. For each
nurse there is a limited number of shift-patterns corresponding to the number
of combinations of the number of days s/he is contracted to work in a week2.
There are typically between 20 and 30 nurses per ward, 3 grade-bands, and 411
different (F/T and P/T) shift-patterns. Based upon the nurses’ preferences, the
recent history of patterns worked, and the overall attractiveness of the pattern,
a penalty cost is associated to each assignment nurse-shift pattern, values of
which were set after agreement with the hospital, ranging from 0 (ideal) to 100
(undesirable) -See [8] for further details. Our decision variables are denoted by
xij assuming 1 if nurse i works shift-pattern j and 0 otherwise. Let parameters
g, n, s be the number of grades, nurses and possible shift-patterns respectively.
ajk is 1 if shift-pattern j covers shift k, 0 otherwise. bir is 1 if nurse i is of grade
r or higher, 0 otherwise. pij = penalty cost of nurse i working shift-pattern j;
Skr = demand of nurses of grade r or above on day/night (i.e shift) k; and F (i)
= set of feasible shift-patterns for nurse i. We may then formulate the problem
as follows:

Min PC =
n∑
i=1

s∑
j=1

pijxij (1)

s.t. ∑
j∈F(i)

xij = 1, ∀i (2)

s∑
j=1

n∑
i=1

birajkxij ≥ Skr,∀k, r (3)

xij ∈ {0, 1},∀i, j (4)
1 e.g. a full-time nurse works 5 days or 4 nights, whereas a part-time nurse works 4

days or 3 nights, 3 days or 3 nights, and 3 days or 2 nights.
2 For example a F/T nurse contracted to work either 5 days or 4 nights has a total of
C5

7 = 21 feasible day shift-patterns and C4
7 = 35 feasible night shift-patterns.



854 Peter Cowling, Graham Kendall, and Eric Soubeiga

Equations (1), (2) and (3) express respectively the objective of minimising
the overall penalty cost associated with the nurses’ desirability for the shift-
patterns, the constraint that each nurse should work exactly one shift-pattern,
and the demand constraints. It should be noted that bir is defined in such a
way that higher-grade nurses can substitute for those at lower grades if needed.
The problem is NP-hard [2] and instances typically involve between 1000 and
2000 variables and up to 70 constraints. As noted in [2], the difficulty of a given
instance depends upon the shape of the solution space, which in turn depends
on the distribution of the penalty cost (pij) and their relationship with the set
of feasible solutions. In this paper we consider 52 data instances, based on three
wards and corresponding to each week of the year. These 52 instances, as a
whole, feature a wide variety of solution landscapes ranging from easy problems
with many low-cost global optima scattered througout the solution space, to very
hard ones with few global optima and in some cases with relatively sparse feasible
solutions [2]. Optimal solutions are known for each instance as the problem was
solved using a standard IP package. However some instances remained unsolved
after 15 hours of (Pentium II 200 Mhz PC) run-time. Further experiments with
a number of descent methods using different neighbourhoods, and a standard
simulated annealing were conducted unsuccessfully, failing to obtain feasibility
[2]. The most successful approach which works within the low CPU time available
so far is a tabu search which uses chain-moves whose design and implementation
were highly problem and instance specific as these moves relied on the way the
different factors affecting the quality of a schedule were combined in the pij
as noted in [2]. In [2] a GA which did not make use of chain-moves was also
used to solve the problem. Failure to obtain good solutions led to the use of a
co-evolutionary strategy which decomposed the main population into several co-
operative sub-populations. Problem structure was incorporated in both the way
the sub-populations were built, and the way partial solutions were recombined to
form complete ones. As a result, the applicability of the co-evolutionary strategy
is, likewise, limited to problems with a similar structure.

Here we propose to solve the nurse scheduling problem using a high-level hy-
perheuristic approach which has been successfully applied to two rather different
real-world problems of personnel scheduling. The evaluation function3 used by
the hyperheuristic distinguishes between ‘balanced’ and ‘unbalanced’ solutions
[8,2]. Effectively, since nurses work either days or nights it appears that in order
for a given solution to be feasible, (i.e enough nurses covering all 14 shifts at
each grade) the solution must have sufficient nurses in both days and nights sep-
arately. Formally, a solution is balanced in days (or nights) at a given grade r if
there are both under-covered and over-covered shifts in the set of days (or nights)
at grade r such that the nurse surplus in the over-covered day (or night) shifts
suffices to compensate for the nurse shortage of the under-covered day (or night)
shifts. In fact, a solution cannot be made feasible until it is balanced [8,2]. We de-
fine Infeas =

∑g
r=1(ρ×Balr+1)

∑14
k=1max

([
Skr −

∑n
i=1
∑s
j=1 birajkxij

]
, 0
)

,

3 known as fitness function in the GA literature



Hyperheuristics: A Robust Optimisation Method 855

where Balr is 2 if both day and night are unbalanced at grade r, 1 if ei-
ther day or night is unbalanced at grade r, and 0 otherwise; ρ is a param-
eter set to 5, so that a balanced solution with more nurse-shortages is pre-
ferred to an unbalanced one with fewer nurse-shortages, as the latter is more
difficult to make feasible than the former. Based on this, we define the eval-
uation function E = PC + CdemandInFeas with Cdemand a weight associ-
ated to InFeas as in [2]. The definition of Cdemand is based on the num-
ber, q, of nurse-shortages in the best least-infeasible solution so far, i.e. q =∑14
k=1

∑g
r=1max

([
Skr −

∑n
i=1
∑s
j=1 birajkxij

]
, 0
)

. Coefficient Cdemand of
InFeas in E is then given by Cdemand = γ × q if q > 0, and Cdemand = v
otherwise; where γ is a preset severity parameter, and v is a suitably small
value. The idea is that the weight Cdemand depends on the degree of infeasibility
in the best least-infeasible solution encountered so far, after which it remains at
v. We use γ = 8 and v = 5 as given in [2]4. It is interesting to note that while in
[8] unbalanced solutions are repaired, in [2] they are instead avoided through the
use of incentives/disincentives to reward/penalise balanced/unbalanced individ-
uals in the population. Here we opt for the former approach and use the same
‘balance-restoring’ low-level heuristic used in tabu search of [8]. As described in
section 4, this low-level heuristic uses a ‘change’ and a ‘swap’ type of move. We
next describe our hyperheuristic method.

3 A Choice-Function Hyperheuristic Technique

Our hyperheuristic is based upon a Choice-Function which adaptively ranks
the low-level heuristics. Originally [5], the choice function is determined based
on information with regards to individual performance of each low-level heuris-
tic (f1), joint performance of pairs of heuristics (f2), and the amount of time
elapsed since the low-level heuristic was last called (f3). Thus we have f1(Nj) =∑
n α

n−1( In(Nj)
Tn(Nj)

) and f2(Nj , Nk) =
∑
n β

n−1( In(Nj ,Nk)
Tn(Nj ,Nk) ) where In(Nj)/

In(Nj , Nk) (respectively Tn(Nj)/Tn(Nj , Nk)) is the change in the objective func-
tion (respectively the number of CPU seconds) the nth last time heuristic Nj
was called/called immediately after heuristic Nk. Both α and β are parameters
between 0 and 1, reflecting the greater importance attached to recent perfor-
mance. f1 and f2 aim at intensifying the search. The idea behind the expressions
of f1 and f2 is analogous to the exponential smoothing forecast of their perfor-
mance [12]. f3 provides an element of diversification, by favouring those low-level
heuristics that have not been called recently. Then we have f3(Nj) = τ(Nj)
where τ(Nj) is the number of CPU seconds which have elapsed since low-level
heuristic Nj was last called. If the low-level heuristic just called is Nj then for
any low-level heuristic Nk, the choice function f of Nk is defined as f(Nk) =
αf1(Nk)+βf2(Nj , Nk)+δf3(Nk). In this expression, the choice function attempts
to predict the overall performance of each low-level heuristic. In [6], we presented
a different choice function which separately predicts the performance of each low-
4 See [2] for an interesting discussion on the choice of evaluation functions.



856 Peter Cowling, Graham Kendall, and Eric Soubeiga

level heuristic with respect to each criterion of the evaluation function instead
(PC and Infeas in the model above). The choice function f is then decomposed
into f(Nk) =

∑
l∈L fl(Nk) =

∑
l∈L

[
αlf1l(Nk) + βlf2l(Nj , Nk) + δ

|L|f3(Nk)
]

where L = {PC, Infeas} is the set of the evaluation function criteria, and
f1l(Nk) (respectively f2l(Nj , Nk)) is obtained by replacing In(Nk) (respectively
In(Nj , Nk)) with Iln(Nk) (respectively Iln(Nj , Nk)) in the expression of f1(Nj)
(respectively f2(Nj , Nk)) above. Iln(Nk) (respectively Iln(Nj , Nk)) is the first
(respectively second) order improvement with respect to criterion l ∈ L. Param-
eter values for α, β and δ are changed adaptively using the procedure in [6]. We
will give results for the second approach which works as follows

Do
Choose a search criterion l
- Select the low-level heuristic that maximises fl and apply it.
- Update choice function fl’s parameters using the adaptive procedure

Until Stopping condition is met.

The probability of choice of criteria PC and InFeas is given by p1 =
1

1+Cdemand
and p2 = Cdemand

1+Cdemand
respectively as defined in [6]. We would like to

emphasize the fact that the implementation of the hyperheuristic technique was
quite fast. In effect the hyperheuristic presented here is a ‘standard’ approach
which was successfully applied to two different real-world problems [5,6,7]. The
hyperheuristic approach only requires a set of low-level heuristics to be added
to the hyperheuristic black box, and a formal means of evaluating solution qual-
ity. The way the hyperheuristic works is independent of both the nature of the
low-level heuristics and the problem at hand. Hence important savings in de-
velopment time are made possible by the use of the hyperheuristic framework.
Development of the framework itself took over eighteen months. For example
in [7] high-quality solutions were initially developed in just over two weeks af-
ter meeting with the problem owner. Solution development time for the current
problem was one-and-a-half months, due to the larger number of instances to be
handled and the development of low-level heuristics for this challenging highly-
constrained real-world problem. We show in the next section that, despite such a
relatively short development time, the hyperheuristic - even when dealing with a
very difficult problem - is capable of finding solutions of good quality comparable
to those of bespoke metaheuristics within a reasonable amount of time.

4 Experiments

Both our hyperheuristic and its low-level heuristics were coded in Micosoft Visual
C++ version 6 and all experiments were run on a PC Pentium III 1000MHz
with 128MB RAM running under Microsoft Windows 2000 version 5. In order
to compare our results with those of tabu search (TS) and genetic algorithms
(GA), our hyperheuristic starts with a solution generated randomly by assigning
a random feasible shift-pattern to each nurse as in [8]. All results were averaged
over 20 runs. The TS algorithm of [8] used the following 11 low-level heuristics:



Hyperheuristics: A Robust Optimisation Method 857

[h1] Change the shift-pattern of a random nurse; [h2] Same as [h1] but 1st
improving InFeas; [h3] Same as [h1] but 1st improving InFeas, no worsening of
PC; [h4] Same as [h1] but 1st improving PC; [h5] Same as [h1] but 1st improving
PC, no worsening of InFeas; [h6] Change the shift-pattern type (i.e day/night)
of a random nurse, if solution unbalanced; [h7] Same as [h6] but aim is to restore
balance5; [h8] (shift-chain1): This heuristic considers chains of moves aiming at
decreasing both the nurse-shortage in one (under-covered) shift and the nurse-
surplus in one (over-covered shift), and leaving the remaining shift unchanged;
[h9] (nurse-chain1): Considers chains of moves which move the first nurse in
the chain to cover an under-covered shift and move the subsequent nurses to the
shift-pattern just vacated by their predecessor in the chain.6; [h10] (shift-chain2):
Considers a shift-chain of moves aiming at decreasing the penalty cost when the
solution is already feasible; [h11] (nurse-chain2): Considers nurse-chains of moves
aiming at decreasing the penalty cost when the solution is already feasible7.

Instead, our hyperheuristic uses 9 low-level heuristics including the first 7 low-
level heuristics above and the following: [H8] (Change-and-keep1): This heuristic
changes the shift-pattern of a nurse and assigns the removed shift-pattern to
another nurse (1st improving PC); [H9] (Change-and-keep2): Same as [H8], but
1st improving PC and no worsening of InFeas.

The chain-moves are highly effective moves which were responsible for both
feasibility (using shift-chain1 and nurse-chain1) and optimality (using shift-
chain2 and nurse-chain2) of the solution in most cases (see [8] for further details).
TS can only yield good solutions when equipped with such moves [1,2]. However,
as noted in [1,2] these moves are highly problem-dependent and, in fact, instance-
type dependent. Unlike in TS, the low-level heuristics used by the hyperheuristic
are fewer and much simpler than the chain-moves. They are all based around
changing, or swapping one or two shift-patterns, thus reflecting what users usu-
ally do in practice [5]. In Table 1, we present the results of our hyperheuristic,
along with those of both the direct and indirect GA [1,2] as well as TS [8] and
the IP optimal solution [1] for each of the 52 weeks (problem instances) of the
year. The stopping condition of the hyperheuristic is 6000 iterations, which cor-
responds to a CPU time between 44 and 60 seconds on a Pentium II 1000Mhz8.
We see that for all instances the hyperheuristic is able to find feasible solutions
in each of 20 runs. It appears that the hyperheuristic is more reliable than both
the direct and the indirect GA in terms of producing practical solutions for the
hospital. To confirm the reliability of the hyperheuristic, we ran it on instance
50 (which is a difficult instance for both GA’s and appeared to be the most dif-
ficult for the hyperheuristic) 100 times and feasibility was again achieved always
5 i.e from day to night if night is unbalanced and vice-versa. If both days and nights

are unbalanced a swap of shift-pattern type for a pair of nurses, one working days
and the other working night is considered. The nurse working day is assigned a night
shift-pattern and the nurse working night is assigned a day shift-pattern.

6 Both [h8] and [h9] chain-moves are defined as paths in a graph. The move is only
attempted if the solution is already balanced but not yet feasible.

7 This time both [h10] and [h11] chains are represented as cycles in a graph.
8 The TS stopping condition was 1000 moves without overall improvement.



858 Peter Cowling, Graham Kendall, and Eric Soubeiga

Table 1. Hyperheuristic and metaheuristic performances on the nurse scheduling prob-
lem. Results are averaged over 20 runs. Format is proportion of feasible solutions in 20
runs/average penalty cost.

Instances Hyperheuristic Direct GA Indirect GA Tabu seach IP cost
Week 1 1/8 1/0 1/0 0 0
Week 2 1/52.8 1/12 1/12 11 11
Week 3 1/50 1/18 1/18 18 18
Week 4 1/17 1/0 1/0 0 0
Week 5 1/11 1/0 1/0 0 0
Week 6 1/ 2 1/1 1/1 1 1
Week 7 1/13.55 0.5/13 1/11 11 11
Week 8 1/14.95 1/11 1/11 11 11
Week 9 1/3.6 0.95/3 1/3 3 3
Week 10 1/5.05 1/1 1/2 1 1
Week 11 1/2 1/1 1/1 1 1
Week 12 1/2 1/0 1/0 0 0
Week 13 1/2 1/1 1/1 1 1
Week 14 1/3.15 1/3 1/3 3 3
Week 15 1/3.05 1/0 1/0 0 0
Week 16 1/40.1 0.95/25 1/25 24 24
Week 17 1/17.6 1/4 1/4 4 4
Week 18 1/20.85 1/7 1/6 7 6
Week 19 1/1.6 1/1 1/1 1 1
Week 20 1/15.45 0.95/5 1/4 4 4
Week 21 1/0 1/0 1/0 0 0
Week 22 1/25.5 1/1 1/1 1 1
Week 23 1/0 0.95/0 1/0 0 0
Week 24 1/1 0.75/1 1/1 1 1
Week 25 1/0.4 1/0 1/0 0 0
Week 26 1/48 0.1/0 1/0 0 0
Week 27 1/3.65 1/2 1/3 2 2
Week 28 1/65.8 1/1 0.95/1 1 1
Week 29 1/15 0.35/3 1/1 2 1
Week 30 1/39.4 1/33 1/33 33 33
Week 31 1/66.9 0.8/66 1/36 33 33
Week 32 1/41.6 1/21 1/21 20 20
Week 33 1/10.6 1/12 1/10 10 10
Week 34 1/42.9 1/17 1/16 15 15
Week 35 1/38.8 1/9 1/11 9 9
Week 36 1/34.85 1/7 1/6 6 6
Week 37 1/8.05 1/3 1/3 3 3
Week 38 1/13.3 1/3 1/0 0 0
Week 39 1/5.1 1/1 1/1 1 1
Week 40 1/9.35 1/5 1/ 4 4 4
Week 41 1/61.3 0.95/27 1/27 27 27
Week 42 1/47.55 1/5 1/8 5 5
Week 43 1/27.35 0.9/8 1/6 6 6
Week 44 1/31.75 0.9/45 1/17 16 16
Week 45 1/5.35 1/0 1/0 0 0
Week 46 1/9.4 0.7/6 1/4 3 3
Week 47 1/3.3 1/3 1/3 3 3
Week 48 1/6.05 1/4 1/4 4 4
Week 49 1/30.4 1/26 0.7/25 24 24
Week 50 1/109.25 0.35/38 0.8/36 35 35
Week 51 1/74.3 0.45/46 1/45 45 45
Week 52 1/62.2 0.75/63 1/46 46 46
Average 1/23.5 0.91/10.8 0.99/9.0 1/8.8 8.7
Run time < 60 sec 15 sec 10 sec 30 sec up to hours



Hyperheuristics: A Robust Optimisation Method 859

within 6000 iterations (less than a minute of CPU time). From this point of view,
the hyperheuristic appears to be as robust as TS which, too, always found fea-
sible solutions. The hyperheuristic however has the highest average cost of 23.5,
though more than 50% of the instances (27 instances) were solved to within
10% of the optimal solution, including 3 instances (weeks 21, 23 and 24) where
optimality is reached on each of 20 runs. Also in 9 instances (Weeks 7, 9, 14, 19,
25, 27, 33, 47 and 48) the optimal solution is hit up to 19 times out of 20 runs,
corresponding to a probability of optimality of 0.95. This shows that optimal
solutions are indeed, within the reach of the hyperheuristic in spite of its sim-
plicity and that of its low-level heuristics, when compared with the problem and
instance-specific information used by the TS (chain-moves) and GA (population
decomposition and recombination using problem structure) implementations. In
terms of cost, we noted that the hyperheuristic performed well for instances with
slack demand-constraints and poorly for those with tight constraints (e.g Weeks
26, 28, 42, 50).

Observations of the frequency of call of the low-level heuristics showed that
[h2] is called most often (e.g 37% on average for Week 49), followed by [h6] (e.g
10% on Week 49) and all other heuristics are called between 5% and 9%. It ap-
pears that each low-level heuristic has a part to play in the search. Observations
of Infeas and PC showed that immediately upon finding a feasible solution (i.e
InFeas = 0) there was a sudden increase in PC. Similar observations mere made
in [8]. Regarding choice-function parameters, the hyperheuristic search used a
very high δ and a low α and β, thus confirming the need to diversify the search
quite frequently, due to the sparse spread of good solutions in the landscape [2].
This was in total agreement with the graph of the variation of InFeas overtime
which featured sudden low peaks of Infeas = 0, similar to the ‘comb’ shape
graph of the same function in [8]. Typically values of InFeas = 0 never lasted
more than 41 heuristic calls (compared to a total of 10000 heuristic calls overall)
after they were obtained. Values for αInFeas and βInFeas were relatively higher
than those of αPC and βPC clearly showing the greater importance attached to
feasibility over lowering PC.

5 Conclusions

We have applied a hyperheuristic to an NP-hard highly-constrained problem of
scheduling nurses at a major UK hospital. The problem had previously been
solved using tabu search and two genetic algorithms. In terms of solution feasi-
bility, our hyperheuristic proved more reliable than both the direct and indirect
genetic algorithms and proved to be as robust as tabu search. In terms of cost,
over half of the instances were solved within 10% of optimality. In a few instances
the hyperheuristic obtained optimal solutions with probability of up to 1, thus
proving that optimality is indeed within the reach of the hyperheuristic, in spite
of its simplicity and that of its low-level heuristics when compared to the highly
problem-specific information used by both TS and the GA’s. Because of their
problem-specific considerations, both TS and GA implementations for this prob-



860 Peter Cowling, Graham Kendall, and Eric Soubeiga

lem are limited in their applicability to other problems as opposed to the hyper-
heuristic which has been successfully applied to two other personnel-scheduling
problems [5,6,7]. Moreover, the hyperheuristic does not need any parameter tun-
ing. Hyperheuristics are easy-to-implement and require less domain knowledge
than most other heuristic approaches, yet still are able to arrive at good-quality
solutions even for very difficult problems within a reasonable amount of CPU
and implementation time. It appears that hyperheuristics can be robust and re-
liable for solving real-world problems of scheduling and optimisation. Ongoing
research will investigate other types of hyperheuristics applied to a wider range
of real-world problems.

Acknowledgements

We express our gratitude to both Dr Kath Dowsland and Dr Uwe Aickelin for
providing us with data and for their valuable support.

References

1. U. Aickelin. Genetic algorithms for multiple-choice optimisation problems. PhD
Thesis, the University of Wales Swansea, 1999.

2. U. Aickelin and K. A. Dowsland. Exploiting problem structure in a genetic algo-
rithm approach to a nurse rostering problem. Journal of Scheduling, 3:139–153,
2000.

3. K. Baker. Workforce allocation in cyclical scheduling problems: A survey. Opera-
tional Research Quarterly, 27(1):155–167, 1976.

4. D. J. Bradley and J. B. Martin. Continuous personnel scheduling algorithms: a
literature review. Journal Of The Society For Health Systems, 2(2):8–23, 1990.

5. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling
a sales summit. In E. Burke and W. Erben, editors, Selected Papers of the Third
International Conference on the Practice And Theory of Automated Timetabling
PATAT’2000, Springer Lecture Notes in Computer Science, 176-190, 2001.

6. P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for
scheduling a sales summit. Proceedings of the 4th Metaheuristic International
Conference, MIC 2001, 127-131.

7. P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid proto-
typing in scheduling and optimisation. Proceedings of the 2nd European Confer-
ence on EVOlutionary COmPutation, EvoCop 2002. To appear.

8. K. A. Dowsland. Nurse scheduling with tabu search and strategic oscillation.
European Journal of Operational Research, 106:393–407, 1998.

9. D. Levine. Application of a hybrid genetic algorithm to airline crew scheduling.
Computers and operations research, 23(6):547–558, 1996.

10. A. Schaerf. Local search techniques for large high school timetabling problems.
IEEE Transactions on Systems, Man and Cybernetics Part A:systems and Human,
29(4):368–377, 1999.

11. J. M. Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM Review,
24(3):275–287, July 1982.

12. S. C. Wheelwright and S. Makridakis. Forecasting methods for management. John
Wiley & Sons Inc, 1973.



Evolving the Topology of Hidden Markov
Models Using Evolutionary Algorithms

René Thomsen

EVALife Group, Dept. of Computer Science, University of Aarhus, Bldg. 540
Ny Munkegade, DK-8000 Aarhus C, Denmark

thomsen@daimi.au.dk

Abstract. Hidden Markov models (HMM) are widely used for speech
recognition and have recently gained a lot of attention in the bioin-
formatics community, because of their ability to capture the informa-
tion buried in biological sequences. Usually, heuristic algorithms such
as Baum-Welch are used to estimate the model parameters. However,
Baum-Welch has a tendency to stagnate on local optima. Furthermore,
designing an optimal HMM topology usually requires a priori knowl-
edge from a field expert and is usually found by trial-and-error. In this
study, we present an evolutionary algorithm capable of evolving both the
topology and the model parameters of HMMs. The applicability of the
method is exemplified on a secondary structure prediction problem.

1 Introduction

Hidden Markov models (HMM) are probabilistic models useful for modelling
stochastic sequences with an underlying finite state structure. The basic theory of
HMMs was developed in the 1960’s and has successfully been applied to various
speech recognition problems [1]. Recently, HMMs gained significant attention in
the bioinformatics community, and have been a preferred choice of method when
solving problems, such as protein secondary structure prediction, gene finding,
and protein family classification.

Given an initial HMM, the model is trained with known data samples max-
imising the likelihood of the HMM to accept and generate the samples with high
probability. The most popular training method is the Baum-Welch (BW) gra-
dient search, which iteratively estimates new model parameters (transition and
emission probabilities) using maximum likelihood estimation. However, as with
gradient search in general, BW is sensitive to the initial parameter settings, and
often converges to a local optimum.

Standard HMM estimation techniques, such as BW, assume knowledge of
the model size and topology. However, for most modelling applications it is not
feasible to specify HMMs by hand and it is not always possible to infer the
HMM topology from the problem description. Furthermore, as the complexity
(many states and transitions) of the HMM increases, designing HMMs manually
becomes difficult and often unmanageable. Several authors have suggested to
use evolutionary algorithms (EAs) to evolve the model parameters of the HMM

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 861–870, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



862 René Thomsen

(e.g. [2] and [3]). EAs and similar stochastic methods can be used to efficiently
search large parameter spaces. Furthermore, they are less likely to converge to
local optima because they work simultaneously on multiple solutions.

Regarding the problem of designing HMM topologies, a few heuristic meth-
ods have been introduced. State splitting [4] and model merging [5]) learn the
topologies in either a constructive or a pruning manner, i.e. adding new states
to the model, or merging similar states together. However, these techniques are
prone to stagnate in structural local optima. Further, the search is usually re-
stricted to subsets of the complete class of HMM topologies.

Recently, EAs have also been applied to evolve HMM topologies. Yada et al.
[6] evolved both the topology and the initial model parameters (transition and
emission probabilities), which were used as initial guesses in the BW estimation
process. The variation operators were insertion and deletion of transitions and
states, and two-point crossover to recombine the solutions. Furthermore, the
used fitness function was based on the Akaike Information Criterion allowing
the EA to balance between prediction accuracy and model complexity. Likewise,
Kwong et al. [7] applied an EA to evolve the topologies of left-right HMMs us-
ing similar variation operators, although they used the average log likelihood
score as fitness function, and thus not penalising or avoiding solutions with high
complexity. However, the EA methods introduced so far have either constrained
their topologies (e.g. left-right models) or used variation operators that were not
tailored to the specific problem. Furthermore, they often use fairly small pop-
ulation sizes (30-50 individuals) and low mutation and crossover probabilities,
thereby not taking full advantage of the performance potential of EAs. In this
study, we present a HMM EA, which evolves both the topology and the model
parameters of HMMs. The HMM EA is used to evolve HMMs for secondary
structure prediction as a benchmark to test the applicability of the introduced
method.

2 Hidden Markov Models

2.1 General Introduction

A HMM λ is a set of n states, s0, s1, . . . , sn−1, connected by m state-transitions.
The matrix A contains the transition probabilities, where aij is the probability
for changing from state si to sj . The sum of all transition probabilities leaving
a state is 1.0. The first state s0 is typically used as a begin state, with transition
probabilities a0j indicating the probability of starting the generation of symbols
in state sj . Further, each state si emits a symbol from a finite discrete output
alphabet Σ when the state is passed. The matrix E is the emission matrix,
where eik is the probability of emitting a symbol k in state si. The sum of
all emission probabilities in each state is 1.0. A HMM is often depicted as a
directed graph with a node for each state, and an edge between two nodes if
a transition exists between the two states. An example of a simple HMM for
secondary structure prediction is shown in figure 1. The begin state s0 and its
a0i transition probabilities are not shown. For simplicity, the emission symbols



Evolving the Topology of Hidden Markov Models 863

A

0.909411
B

0.000492465

C
0.0900965

0.00500018

0.807312

0.187688

0.0575875

0.0861618
0.856251

Fig. 1. Example of a simple HMM with three states.

(in this case the amino acid alphabet) and their corresponding probabilities are
omitted. A, B, and C represent α-helix, β-sheet, and coil respectively, which are
different types of local structures found in proteins (further explained in section
2.2).

HMMs generate observables (strings of symbols) over the output alphabet
by non-deterministic walks starting in the begin state and randomly going from
state to state according to the transitions between the states. The generation
of observables terminates after a specified number of steps (some HMMs have
a specific end-state indicating termination). Hence, a single run of the HMM
follows a Markovian path π = (π0, π1, ..., πn−1) of visited states and generates a
string of symbols, which is the concatenation of the emitted symbols along the
path. Only the symbols emitted by the HMM are observable, not the underlying
path generating the symbols, hence the term hidden Markov model.

In most applications, the objective is to find the path π from a given sequence
of symbols. Given an observable o and a HMM λ, efficient algorithms like forward
and Viterbi [1] can be used to determine the probability of generating o given
λ and derive the path π of maximal probability generating o. The objective in
training HMMs is therefore: Given a set of l observables o0, o1, . . . , ol−1 ∈ O,
estimate the model parameters (transition aij and emission probabilities eik) of
the specified HMM λ that maximises the probability P (O|λ) of generating O
with λ. This task is usually done using the BW technique.

2.2 HMMs for Secondary Structure Prediction

Secondary structure prediction of proteins is an essential problem of Molecular
Biology. The goal is to determine the local secondary structures (e.g. α-helix and
β-sheet) of a protein given its primary structure (sequence of amino acids).

Asai et al. introduced the idea of using HMMs to predict the secondary struc-
tures of protein sequences [8]. A HMM predicting secondary structures contains
a number of states representing the different structural categories (e.g. α-helix,
β-sheet, and coil). For simplicity, we only modelled α-helix (α), β-sheet (β), and
coil. The other known categories such as bend, hydrogen bonded turn, 310 helix,
residue in isolated beta bridge and π-helix were set to coil.

Further, the alphabet used in this type of HMM is composed of the letters
representing the 20 amino acids, i.e. each state can emit any of the 20 amino
acids with a certain probability. After training the model with protein sequences
annotated with known secondary structures, new protein sequences with un-
known secondary structures can be predicted using the Viterbi algorithm [1].



864 René Thomsen

Viterbi derives the most probable path of states visited when generating the
new sequence by the HMM. The returned path π corresponds to the prediction
of the secondary structure made by the HMM. The HMM shown in figure 1
illustrates a simple three-state HMM capable of predicting secondary structures
of protein sequences.

More complex HMMs with several states of each structural type (α, β, coil)
would likely improve on capturing the underlying structural properties compared
to the simple HMM. The purpose of this study is to use an EA to derive the
most suitable HMM topology among the vast number of possible candidates.

3 Methods

3.1 Representation

The HMMs were represented by a n×(n−1) transition matrix A (no transitions
to the begin state are allowed) and an (n− 1)× k emission matrix E (the begin
state does not emit symbols), where n is the number of states in the model and
k is number of emission symbols (in our study k = 20, representing the 20 amino
acids). The dimensionality of the matrices is variable, since the number of states
can vary. However, a lower limit of three states and the constraint that the HMM
should contain at least one α, β, and coil state is imposed to ensure that both
α-helix, β-sheet, and coil can be represented and predicted by the HMM.

3.2 Population Initialisation

The population of initial parent HMMs was generated as follows: i) The initial
number of states in the HMM was randomly chosen (between three and ten),
and at least one state of both α, β, and coil was represented. ii) The entries in
the transition matrix A and the emission matrix E were randomly initialised
(between 0.0 and 1.0) and each column was normalised so the sum of all entries
in a column was 1.0.

3.3 Variation Operators

During the evolutionary process the individuals were exposed to different varia-
tion operators in order to alter the candidate topologies and model parameters
of the HMMs. Below is a brief description of the various operators used:

The addState operator adds a new state to the HMM (either α, β, or coil)
and randomly assigns new transition probabilities to and from the state. All
columns in the transition matrix are normalised.

The deleteState operator randomly chooses a state and deletes it. However,
the type of selected state (α, β, coil) has to occur more than once to ensure a
valid HMM. All transitions going to and from the deleted state are rewired and
all the columns in the transition matrix are normalised.



Evolving the Topology of Hidden Markov Models 865

The modifyStateType operator randomly chooses a state and changes its type
to either α, β, or coil. Again, the modification is only allowed if the HMM is
valid afterwards, i.e. the HMM has to contain both α, β, and coil states.

The addTransition operator chooses a random column in the transition ma-
trix and looks for entries with values of 0.0. If any exist, one is chosen randomly
and replaced with a new random number (between 0.0 and 1.0). The entire
matrix is then normalised, and the solution is accepted if it is valid.

The deleteTransition operator randomly chooses a column in the transition
matrix and looks for entries with nonzero values. If any exist, one is chosen
randomly and set to 0.0. The entire matrix is then normalised, and the solution
is accepted if it is valid.

The swapEntry exchanges two randomly chosen entries in a column of either
the transition or emission matrix.

The modifyEntry operator modifies a randomly chosen entry in the transition
or emission matrix using standard Gaussian mutation with annealed variance,
i.e. variance = 1/(generation+ 1). The affected column is then normalised.

The recombination operators used are the standard uniform crossover, arith-
metic crossover, 1-point crossover, and 2-point crossover, which take two parent
HMMs and create an offspring. In this study the recombination operators were
only applied to the emission matrices.

3.4 Fitness Evaluation

The fitness value of a candidate solution is computed with the forward algorithm
[1]. Given a HMM λ specified by the individual and a set of l observations O
the forward algorithm computes the probability P (O|λ). The objective is to
maximise this probability, i.e. find HMMs with high prediction accuracy while
keeping the complexity of the model low. In this study, we used the Bayesian
Information Criterion (similar to the Akaike Information Criterion) [9] in the
fitness function to balance between these two objectives. The fitness of individual
i is thus calculated as:

fitnessi =
l−1∑
j=0

log(P (oj |λ)) + ω · log(l + 1)
2

· pi . (1)

where ω is a balancing parameter determining the weight of the penalty for
model complexity, and pi is the number of free parameters in the model induced
by individual i (here: the total number of entries in the transition and emission
matrices).

3.5 The HMM EA

In this study we used a HMM EA as shown in figure 2. The HMM EA works
as follows: First, all individuals are initialised and evaluated according to the
fitness function (described in section 3.2 and 3.4). Afterwards, the following
process is executed as long as the termination condition current #generations <



866 René Thomsen

procedure HMM EA
begin

initialise population
evaluate
while (not termination-condition) do

begin
recombine individuals
mutate individuals
evaluate
selection

end
apply Baum-Welch on final solution

end

Fig. 2. Pseudo-code of the HMM EA.

max #generations allowed is not fulfilled: Each individual has a probability of
being altered, i.e. being exposed to either recombination or mutation (or both).
Recombination is applied with probability pc using one of the four mentioned
recombination operators (the choice is made randomly with equal probability for
all four operators). Afterwards, mutation is applied with probability pm using one
of the six available mutation operators (the choice is made randomly with equal
probability for all six operators). However, an offspring only replaced the parent
if it was fitter. Further, individuals that were altered due to recombination or
mutation are reevaluated using the fitness function. Finally, tournament selection
with a tournament size of two is applied to weed out the least fit individuals. The
final solution obtained after max #generations is refined using BW (running
for five iterations).

4 Experiments

In order to evaluate the quality of our HMM EA method and determine whether
it was able to construct useful HMM topologies, the models were trained with
650 protein sequences and validated using 150 protein sequences (see next section
for a more detailed description of the data sets used). To evaluate the outcome
of these experiments we used Matthew’s correlation coefficient (CC) combining
standard sensitivity and specificity measures. The CC value is defined in the
interval [−1 : 1], the extreme value −1 represents poor prediction accuracy
(random) and 1 represents a good prediction accuracy (perfect).

4.1 Sequence Data

The protein sequences used for the training set were taken from the Protein Data
Bank (PDB) [10], release 82. This data set, containing 5762 proteins, was further
reduced to ensure that all the sequences were not homologous, i.e. entries were
excluded if they were too similar. The reduction was performed by the RedHom



Evolving the Topology of Hidden Markov Models 867

Table 1. Results obtained from the experiment.

Training Set Validation Set
Alpha Beta Coil Alpha Beta Coil

True Freq. 0.311561 0.211730 0.476709 0.306837 0.228422 0.464741
Pred. Freq. 0.332781 0.047971 0.619248 0.420303 0.049044 0.530653

CC 0.337795 0.211950 0.275760 0.175357 0.224460 0.175844

-520000

-510000

-500000

-490000

-480000

-470000

-460000

-450000

-440000

-430000

-420000

0 5 10 15 20 25 30 35 40 45

F
itn

es
s

Generation

Fig. 3. Mean fitness curve of the experiments with the 650 protein sequences.

program [11], resulting in a final training set containing 650 sequences (see [11]
for a more detailed description of the pruning process).

As an independent test, we used protein sequences from the CASP3 and
CASP4 targets obtained from the CASP website (http://predictioncenter.llnl.gov/)
to construct a validation set. These targets do not have sequence similarity with
the training set described above. Some of the targets were excluded from the fi-
nal validation set if they were to similar (using the RedHom program) resulting
in a total of 150 sequences.

Both the training and the validation set contained annotated secondary struc-
tures for each of the amino acids. Furthermore, since we only focus on predicting
α-helix, β-sheet, and coil, the rest of the annotations (bend (S), hydrogen bonded
turn (T), 310 helix (G), residue in isolated beta bridge (B) and π-helix (I)) were
set to coil.

The PDB entries of the training and validation sets are public available on
the world wide web page: http://www.daimi.au.dk/˜thomsen/hmmea/

4.2 Experimental Setup and Data Sampling

We used the following parameters in the HMM EA: population size = 100, muta-
tion probability pm = 0.8, recombination probability pc = 0.5, balancing factor
ω = 0.9. The termination criteria of the HMM EA was set to 50 generations.
Further, elitism of size one was used to preserve the overall best found HMM
topology. The experiments were repeated 25 times, and the average fitness of
the best individual throughout the evolutionary process was recorded.

http://predictioncenter.llnl.gov/
http://www.daimi.au.dk/~thomsen/hmmea/


868 René Thomsen

Begin

C

1

0.563907

B

0.0360426

A

0.0997719

C

0.250874

C

0.04940480.335608

0.495648

A

0.00894091

B

0.159803

0.245978

0.00134451

0.178406

0.574272

0.533143

0.466857

0.600149

0.22931

A

0.170542

0.202316

0.174347

0.623337

0.584097

0.415903

0.612891

0.387109

Fig. 4. Best HMM topology found.

5 Results

Table 1 shows the results of the experiments using the training and validation
data sets. The True Freq. and Pred. Freq. rows show the true and the predicted
frequency of α-helix, β-sheet, and coil in the data sets respectively. The CC
row represents the mean of the correlation coefficient value of 25 runs after 50
generations.

In all the runs, we observed similar performance of the HMM EA. Typically,
the HMM EA made rapid improvements during the first 15-20 generations. Fur-
ther improvements occurred throughout the entire optimisation process although
the EA slowly settled on a good solution and only improved the topology once
in a while. Finally, BW usually fine-tuned the final solution. Figure 3 shows the
fitness of the best individual over the number of generations used (averaged over
25 runs), which illustrates these characteristics.

Figure 4 shows an example of the best HMM topology obtained from one of
the 25 runs. The begin state (Begin) has only one transition to a coil state (C),
since all the protein sequences in the training set begin in a coil structure.

6 Discussion

In this paper we have introduced the HMM EA evolving both the topology
and the model parameters of HMMs. Further, several new mutation operators
specialised for modifying HMM topologies were introduced.



Evolving the Topology of Hidden Markov Models 869

The results of our experiments show that a simple EA is capable of deriving
HMMs with good topologies tailored to the task of predicting secondary struc-
tures of proteins. The best found HMM obtained a prediction accuracy of 56.8%
on the training set and 49% on the validation set using the Q3 measure1, which is
better than the 46% and 40% obtained from the simple three-state HMM shown
in figure 1 (optimised using BW). Further, the True Freq., Pred. Freq. and CC
values shown in table 1 indicate that the derived HMM is capable of predicting
alpha helices and coil reasonably well. However, the model overestimates coil
and thus fails to correctly identify beta sheets.

The performance of the obtained HMM for secondary structure prediction
is not competitive to state-of-the-art artificial neural networks (ANNs) having
prediction accuracies near 80% [12]. However, these methods usually combine
several ANNs and heuristics to weed out wrong predictions substantially im-
proving the overall performance.

The simple HMM approach introduced in this study could be further im-
proved. First, using higher-order HMMs taking previously observed symbols into
account would increase the performance even further (Asai et al. obtained accu-
racies about 58% using a second-order HMM [8]). Second, the variation operators
of the EA could be refined to get a better optimisation performance. Finally, the
EA parameters used in the experiments introduced in this study were based on
a few preliminary runs. Further investigations could lead to additional improve-
ments in performance.

Although one run of the HMM EA typically takes four hours on a 800 MHz
Pentium-III PC it is still a viable alternative since the training of the HMMs is
usually done offline. Furthermore, exploring just a subset of the possible HMM
topologies in a trial-and-error fashion using BW is often infeasible even with a
HMM topology of moderate size.

The results confirm that EAs are useful for obtaining improved HMM topolo-
gies, which could be advantageous in the context of HMM applications found in
bioinformatics.

This study only covers preliminary investigations on the evolution of HMM
topologies and model parameters. Future work will include a comparison to other
heuristic methods such as model merging [5] and state splitting [4] to access the
performance of the proposed method. Finally, it would be interesting to try
out other evolutionary algorithms focusing on multi-objective optimisation to
balance the trade-off between prediction accuracy and model complexity.

Acknowledgements

The author would like to thank Tejs Scharling for inspiring discussions regard-
ing HMMs and help on the implementation of the HMM framework, and Jan
Gorodkin for providing the data sets. This work was supported by the Danish
Natural Science Research Council.

1 Q3 = true positives/(true positives+true negatives)



870 René Thomsen

References

1. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. In: Proceedings of the IEEE, Vol. 77, No. 2. (1989) 257–285

2. Kwong, S. and Chau, C.: Analysis of Parallel Genetic Algorithms on HMM Based
Speech Recognition System. In: Proceedings of ICASSP (1997) 1229–1233

3. Slimane, M., Venturini, G., de Beauville, J.A., Brouard, T., and Brandeau, A.: Op-
timizing Hidden Markov Models with a Genetic Algorithm. In: Artificial Evolution
(1995) 140–144

4. Tanaka, H., Onizuka, K., and Asai, K.: Classification of Proteins via Successive
State Splitting of Hidden Markov Network. In: 13th International Joint Conference
on Artificial Intelligence (IJCAI93) (1993) 140–144

5. Stolcke, A. and Omohundro, S.: Hidden Markov Model Induction by Bayesian
Model Merging. In: Hanson, S.J., Cowan, J.D., and Giles, C.L. (eds.): Advances
in Neural Information Processing Systems, Vol. 5. Morgan Kaufmann, San Mateo,
CA (1993) 11–18

6. Yada, T., Ishikawa, M., Tanaka, H., and Asai, K.: Extraction of Hidden Markov
Model Representations of Signal Patterns in DNA Sequences. In: Proceedings of
the First Pacific Symposium on Biocomputing (1996) 686–696

7. Kwong, S., Chau, C., Man, K., and Tang, K.: Optimisation of HMM Topology
and its Model Parameters by Genetic Algorithms. Pattern Recognition, Vol. 34.
(2001) 509–522

8. Asai, K., Hayamizu, S., and Handa, K.: Prediction of Protein Secondary Struc-
ture by the Hidden Markov Model. Computer Applications in the Biosciences
(CABIOS), Vol. 9, No. 2. (1993) 141–146

9. Murphy, K. and Mian, S.: Modelling Gene Expression Data using Dynamic
Bayesian Networks. Technical report, Computer Science Division, University of
California, Berkeley, CA (1999)

10. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalov, I.N., and Bourne, P.: The Protein Data Bank. Nucleic Acids Re-
search, Vol. 28, No. 1. (2000) 235–242

11. Lund, O., Frimand, K., Gorodkin, J., Bohr, H., Bohr, J., Hansen, J., and Brunak,
S.: Protein Distance Constraints Predicted by Neural Networks and Probability
Density Functions. Prot. Eng., Vol. 10. (1997) 1241–1248

12. Petersen, T.N., Lundegaard, C., Nielsen, M., Bohr, H., Bohr, J., and Brunak,
S.: Prediction of Protein Secondary Structure at 80% Accuracy. PROTEINS:
Structure, Function, and Genetics, Vol. 41. (2000) 17–20



Solving a Real World Routing Problem
Using Multiple Evolutionary Agents

Neil Urquhart, Peter Ross, Ben Paechter, and Ken Chisholm

Napier University, School of Computing
10 Colinton Rd, Edinburgh, Scotland

n.urquhart@napier.ac.uk

Abstract. This paper investigates the solving of a real world routing
problem using evolutionary algorithms embedded within a Multi-agent
system (MAS). An architecture for the MAS is proposed and mechanisms
for controlling the interactions of agents are investigated. The control
mechanism used in the final solution is based on the concept of agents
submitting bids to receive work. The agents are also allowed to alter
their bidding strategies as the solution improves. The MAS solves the
test problem is solved, which previously could not be solved within the
hard constraints.

1 Introduction

1.1 The Problem

Each year in the month of December, the Edinburgh Area of the Scout Associ-
ation undertakes the collection and delivery of Christmas cards within the City
of Edinburgh. The delivery task is then undertaken by Scout Groups across the
city. In 2001 a total of 465,000 cards were delivered during a 2 week period.
Each group undertakes to deliver everything within a particular geographical
area; a group may deliver up to several hundred streets depending on the size of
the group. The group must divide up its delivery area into a number of delivery
rounds each of which should attempt to satisfy the following constraints:

1. The maximum walking distance for each delivery round should not exceed a
set limit, typically 3km.

2. The maximum number of households requiring a delivery per round should
not exceed a predefined limit, typically 250.

3. The number of delivery rounds should be minimised.
4. Entire named streets should be allocated to a single round, if possible. Within

each round a street may be split if required when constructing the round.
Each time a street is split across two or more rounds, this incurs an extra
sorting operation.

5. Deliveries that require entry to a building e.g. blocks of flats may not be given
to children under 16. It is desirable to group as many of these deliveries into
as few rounds as possible.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 871–880, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



872 Neil Urquhart et al.

Fig. 1. The Scout Post Test Area

Note that constraints 1 and 2 may be deemed hard constraints and the rest
soft constraints. An area of 1572 deliveries located in the southern suburbs of
Edinburgh currently undertaken by the 75th Blackford Scout Group has been
identified to use as a trial area. This area is currently problematic as it combines
a mixture of tower blocks (with over 100 dwellings per building), semi-detached
villas and a street network that has a largely random topology. It has previously
been difficult coordinate deliveries to this area and a large number of sorting
errors occur (see Fig. 1). The remainder of this paper will examine the use of
GAs and Agents in the construction of delivery networks suitable for the solving
of the Scoutpost problem.

1.2 Previous Work

Postal delivery based problems have previously been tackled using Street based
routing (SBR) in [8] and [7]. SBR employs a representation that is derived from
the geographical layout of the houses and streets concerned. Houses are grouped
into street sections, each street section being a section of street running between
two junctions. The sections may be considered either as single sides, serviced
at different times within the round or they mat be both serviced in one single
operation. The EA produces a permutation of street sections; to build the final
round each street section has a delivery heuristic applied, specifying the order in
which the houses contained within the section should be serviced. This method



Solving a Real World Routing Problem 873

may be contrasted with arc routing based methods as used in [5], [1] and [4].
Some research was undertaken by [2] into the use of a GA for routing garbage
collection, this being a related problem, but only covering the construction of
single rounds. The arc routing methods use representations based on graphs that
do not take account of street and house layouts. The arc routing methods are not
flexible enough to take account of situations where it is not necessary to traverse
the entire length of an arc. In some instances the optimal delivery pattern will
involve starting and finishing at the same end of the street.

The construction of delivery networks consisting of more than one round was
discussed in [7]. That paper proposed the use of a method known as Group and
Build. Thus consisted of two stages, initially a grouping EA is used to divide up
the street sections requiring delivery into adjacent groups (stage 1), and then a
round is constructed for each grouping (stage 2) using the SBR EA.

Multi Agent Systems (as discussed in section 3) have been previously applied
to flow problems [6]. The system developed by [6] uses agents to represent the
transport links, the customers and the goods to be transported. The agents “ne-
gotiate” to allocate capacity within the transport links to customers allowing
the goods to be transported. Much research on market-based control has been
carried out by the authors of [3]. The problems investigated by [3] are mostly
based on agents trading a commodity for which the supply and demand charac-
teristics develop dynamically. In the problem being examined in this paper the
entire trading stock (i.e. the street sections) is a known quantity from the start.

2 Initial Attempts to Solve the Problem
Using Group and Build

The initial attempts to solve the test problem utilised the group and build
method [7]. For the purposes of solving the test problem the fitness function
of the grouping algorithm was modified to take account of the additional soft
constraints of the Scout Association problem (described in section 1.1).

The initial population of the grouping EA is seeded by randomly allocating
each street to a group. For instance the street sections HighSt1, HighSt2 and
HighSt3 would all be allocated to the same group to satisfy constraint 1. Within
each generational cycle 50 child individuals are created by recombining two par-
ents chosen by a tournament of size 2, each child then has a single mutation
applied to it. Three different types of mutation are employed, they are selected
randomly with a probability p:

p = 0.25 A single street section may be selected at random and re-allocated
to another delivery round.
p = 0.25 A whole street is selected at random and all the sections that make
up that street section are re-allocated to a randomly selected delivery round.
p = 0.49 Two street sections are selected at random and exchanged between
their respective delivery rounds.
p = 0.01 A new delivery round is created, initially three complete streets are
selected randomly and allocated to it.



874 Neil Urquhart et al.

Table 1. Summary of Initial Results

Run Average Round No of Extra Sorts No of rounds not
Dist in meters. rounds Needed suitable for children

1 1464.7 8 2 4
2 1421.8 9 3 4
3 1638.1 8 0 4
4 1529.7 8 2 4
5 1469.9 8 1 5
6 1517.5 8 1 5
7 1563.5 10 2 4
8 1552.3 8 4 6
9 1497.0 8 2 4
10 1463.0 8 2 4
11 1513.2 8 2 3
12 1529.3 8 2 4
13 1496.2 8 1 4
14 1400.5 9 2 4
15 1476.7 8 3 4
16 1498.7 8 3 4
17 1540.0 8 4 4
18 1477.0 8 2 4
19 1503.2 8 5 4
20 1440.4 9 2 4

Average 1499.6 8.25 2.25 4.15

The child individuals are placed in the main population, replacing the loser
of a tournament between two randomly selected individuals.

The modified fitness function utilises penalties that are allocated for the
following reasons:

– Each round that has more than the maximum allowed deliveries.
– The standard deviation of deliveries for each round (to attempt to balance

the workloads).
– The number of different rounds converging at a single junction.
– The average distance between streets within a round.
– The number of times a complete street is split between rounds.
– The number of rounds that may not be undertaken by children.
– The number of rounds over and above the minimum required (the minimum

being total deliveries / maximum deliveries allowed pen round).

These are each suitably weighted according to their perceived significance.
The choice of such weights is a difficult art and this is one reason why this
method is not ideal. We do not give the weights in this paper. This group-
and-build approach is used for comparison with the main approach described
in section 3, and also to provide an initial starting-point solution for the main
approach.

The group and build algorithm was applied to the test area, being run 20
times, results may be seen in Table 1. The maximum length value was set at



Solving a Real World Routing Problem 875

Table 2. The Distribution of Round Lengths Produced by the Group and Build Al-
gorithm

Length L (in m) No of rounds % of total
L > 3000 12 7.3

3000 ≥ L > 2500 35 21.2
2500 ≥ L > 2000 24 14.5

L <= 2000 94 57.0
Total 165

3km. The maximum number of deliveries was set to 250 households. It may be
noted that in each case the average distance was less than 3km. In all cases the
number of deliveries was less than 250. Within the 20 runs 165 delivery rounds
were constructed giving an average of 8 rounds per solution, although the average
length of each round was less than 3km, Table 2 shows the distribution of lengths.
Note that 7 % (12 rounds) were breaking the hard 3km constraint. It may be
seen from the distribution that if this constraint was lowered the number of
rounds breaking the constraint would increase. The Group and Build approach
cannot solve the problem beacuse it cannot determine at the grouping stage
what the actual distance of the delivery routes will be. Incorporating the SBR
algorithm into fitness function so as to determine round length when individual
is evaluated was considered impractical by the authors because of the CPU time
required to evolve the rounds. The Group and Build Approach can only provide
a solution where the density of the housing is such that most groups of houses
not exceeding the maximum deliveries constraint are tightly clustered so that
the delivery round required to service them is less than the maximum length
constraint.

3 The Marketplace Algorithm

3.1 Initial MAS Experiments

The two-stage Group and Build (GAB) approach is unable to exercise any effec-
tive control over the length of the delivery rounds produced. Some control over
the length may be exercised by altering the maximum deliveries constraint. To
overcome this problem the second stage may be re-implemented as a multi-agent
system, with each delivery round being constructed by an agent that incorpo-
rates a separate copy of the SBR algorithm. Each agent may then evolve its own
round separately, to facilitate evolution of the delivery network the agents may
exchange work. The exchanging of work is carried out via a coordinator agent
to ensure that all street sections are allocated to one agent and one agent only.
Each agent also has access to a central data store containing information about
the size and layout of the street sections that make up the problem. The street
sections that are the basis of the SBR representation are a good unit of exchange
when swapping work between agents, rather than exchanging individual delivery
points.



876 Neil Urquhart et al.

Promising results were obtained by allowing the agents who could not evolve a
round within the problem constraints to pass a street section to the coordinator,
which then selects another agent whose round passes closest to the street section.
To allow a more meaningful exchange of work, a flexible control mechanism is
required to regulate how the SBR agents and the coordinator communicate.

3.2 Artificial Currency

The use of an artificial “currency” was initially investigated by us as a possible
control mechanism. The currency is an abstract entity that is not directly con-
nected with the original problem and is represented by a balance value held by
each agent. Street sections may be bought and sold between agents and payments
made by currency. Agents may receive a regular payment based on the number
of households served and incur operating charges based on the length of round.
Agents breaking hard constraints are fined. If an agents balance is negative the
agent has to surrender a street section to the coordinator. When the coordinator
receives the street section, each agent is invited to submit a “bid”, this being a
numerical value representing the degree to which the agent wants the work. The
agent submitting the highest bid is then allocated the section, and pays the bid
by having it deducted from it’s balance.

The bids are calculated as follows:

MAXDELS the maximum deliveries constraint
MAXLEN maximum length constraint
owner(st) returns the ID of the agent that st was previously allocated to
balance returns the agents balance
cLen the length of the agents current round
cDels the no of deliveries in the agents current round
me returns the id of the current agent
avgD(st) returns the average distance between each street section allocated

to the agent and st

let st = street section under offer
bid = (MAXLEN - cLen) + avgD(st)
if cDels + dels(st) > MAXDELS then
bid = bid /2

if owner(st) = me then
bid = bid /2

if balance < 0 then
bid = -1

In practice, the value of the balance variable has been found to reflect the
past performance of the agent rather than its current state. Because agents are
identical and are not allowed to modify their bidding strategy or parameters,
there is no reason to record this past performance. For instance, if an agent
lowers the length of its round, its balance will increase, the agent may then bid



Solving a Real World Routing Problem 877

for the street section allowing it to exceed the round length constraint. Because
of its high balance the agent will not be forced to give up any street sections
until the fines imposed on it have decreased the balance to less than 0. As long
as its balance is greater then 0 then an agent may continue to bid and acquire
street sections whether or not it can undertake the deliveries involved without
breaking any constraints. Although unsuccessful, elements of this method have
been used in the final algorithm discussed in section 3.3.

3.3 The Market Algorithm

The bidding mechanism used as part of artificial currency mechanism was found
to be an effective method of deciding which agent to allocate a surplus street
section to. The bidding mechanism may be modified and incorporated in a new
control system known as the Market Algorithm. The system is initialised as
previously (using the output from the grouping-EA ). Each agent may now
construct a delivery round based on this initial allocation. Each agent may then
evolve a delivery round based on the street sections currently allocated to it.
The co-ordinator now requests that the agent with the greatest violation of the
hard constraints surrenders a single street section back to the co-ordinator for
re-allocation to another agent. Using the bidding process agents may now submit
bids for the surplus section. The agent submitting the lowest bid has the section
allocated to it.

Assume those functions and variables defined in the currency bidding logic
still hold, then bidding logic is as follows:

leastDist(st) returns the distance to the closest street to st within the current
agent

dels(st) returns the number of deliveries to st
oldR(st) returns the id of the previous agent that st was allocated to
rdLength(st) returns the length of street (st)

Let st = street to bid for.
theBid = avgD(st);
del = cDels;
newDels = (del + dels(st));
if (newDels > MAXDELS) then
theBid = theBid + (newDels*2);

if (oldR(st) = me) then
theBid = -1;

if (cLen > MAXLEN) then
theBid = -1;

least = (leastDist + rdLength(st))*2;
if ((cLen + least) > MAXLEN) then thebid = -1;
bid = theBid;
end;



878 Neil Urquhart et al.

Fig. 2. The Artificial Small Test Data Set

The logic submits a bid of -1 (a -1 bid is never acceptable) if the agent
estimates that the addition of the street section will violate any of the hard
constraints. When a situation arises where no agent is bidding for a street, a new
agent is allowed into the Marketplace. The new agent is formed by taking the
agent with the longest round and randomly transferring half its street sections
to the new agent.

The method used by an agent to select street sections to be returned to the
coordinator was found to have an effect on performance. Several methods were
evaluated, the final method chosen removes the street section that has the highest
average distance from each of the other street sections allocated to that agent.
When street sections have been removed and re-allocated in his manner the
two agents affected then evolve updated rounds based on the changes that have
taken place. In the results presented here, this cycle of transactions continues
for a maximum of 100 transactions.

3.4 2-Stage Bidding

The agent bidding logic described in Section 3.3 may be described as “cautious”
as it produces a bid of -1 if the agent estimates that it may break a hard con-
straint by accepting the street section on offer. In addition to the Scout Post
data set, the system was first tested on a small and artificial data set (see Fig. 2).
This data set divides into 4 logical areas radiating from a central hub. The total
length of streets in each section is 45 units, with 54 households. The maximum
deliveries constraint was set to 70, and the Marketplace algorithm was run with
maximum length values of 50-90. The results obtained are shown in Fig. 2. Note
that the number of delivery rounds required would appear to be excessively high.
This data set should be easily split into 4 rounds, especially when the maximum
length constraint is as high as 90 units.

An examination of the results shown in Fig. 2 suggests that the market-
place algorithm does not cope well with a constrained problem such as this.
If all agents are breaking hard constraints then no exchange of street sections



Solving a Real World Routing Problem 879

Table 3. Results Obtained with Market 1 and Market 2, on the Map in Fig. 2

MAX LEN 90 80 70 60 50
Market1 Avg. length 68.3 60.3 49.0 37.0 28.1

Avg. % Rounds over 0 0 0 0 0
Avg. No Rounds 5.7 6.3 7.7 9.0 10.7

Market2 Avg. length 76.6 68.9 56.6 46.3 32.3
Avg. % Rounds over 0 0 0 0 0.3
Avg. No Rounds 4.2 4.2 5 6 8.3

Table 4. Results for the Test Area, with Version 1 and Version 2 of the Marketplace
Algorithm

Market 1 Market 2
Maximum Length Constraint 2K 2.5K 3K 2K 2.5K 3K

Average round Length 1583.2 1980.4 2175.0 1553.6 1955.9 2149.7
Over-length Rounds 0 0 0 0 0 0

Average No of extra sorts 7.1 7.0 4.4 8.4 6.8 4.0
Average No of Supervised Rounds 4.6 4.5 4.4 4.7 4.8 4.3

Average No of Rounds 12.2 9.9 9.1 12.5 10.2 9.1

would be possible without creating a new routing agent, even if the existing
agents could cope with the workload simply by exchanging street sections. If
the bidding logic is altered to always submit a bid, regardless of whether a hard
constraint is broken, then the street sections are divided amongst the initial set
of agents regardless of whether the agents are breaking any hard constraints.
Using this “relaxed” strategy the system stabilises with adjacent street sections
being allocated to the same agent. Finally system reaches an equilibrium with
the same street section being exchanged between the same agents. Once this
stage has been reached the bidding strategy of agents may then be set back to
the original cautious strategy. This allows the rejection of surplus work to cre-
ate one or more new agents, and reduce each agent’s workload to an acceptable
level. This change in strategy is facilitated by allowing each agent to keep a list
of those street sections last surrendered by the agent. This list is of length 3
and initially empty, but when it contains 3 identical items, the agent realising
that it no longer engaged in productive transactions and changes to a cautious
strategy. Using the cautious strategy no work should be accepted until some
work has been surrendered allowing the agents hard constraints to be fulfilled.
The effect of this two stage bidding may be seen in Table 3 under “Market 2”.

4 Results and Conclusions

The results for the Scout Post test area (see Fig. 1) may be seen in Table
4, results are shown for the initial Marketplace algorithm (Market1) and the
two stage algorithm (Market2). Both versions of the Marketplace Algorithm are
capable of solving the ScoutPost problem without breaking any hard constraints.



880 Neil Urquhart et al.

Although the hard constraints are satisfied, note the increase in average round
length and the increased number of extra sorts present in the final solution, the
relaxing of the soft constraints being the price that must be paid for the solving
of the hard constraints. The results demonstrate that we can solve the Scoutpost
problem with the initial 3km limit, and we can also produce solutions for more
constrained versions of this problem with 2.5 and 2km limits.

The small contrived dataset (figure 2) shows that for a constrained area,
where little surplus capacity exists, relaxing the constraints (by using “relaxed”
bidding) allows us to construct an interim solution, which is then modified into a
final solution, by the altering of the bidding strategy to “cautious”. The success
of the Marketplace algorithm is based on the bidding strategy logic and to a
lesser extent the logic used by an agent to select items for surrender to the
coordinator agent.

Acknowledgements

The authors wish to thank Jonathan Tait and Mark Elliot of the 75th Blackford
Scout Troup, Edinburgh for their assistance in this work.

References

1. Jeyakesavan V A Balaji R. A 3/2- approximation algorithm for the mixed postman
problem. SIAM Journal on Discrete Mathematics, 12(4), 1999.

2. T. Bousonville. Local search and evolutionary computation for arc routing in
garbage collection. In et al Spector L, editor, Proceedings of the Genetic and Evo-
lutionary Computation Conference 2001. Morgan Kaufman Publishers, 2001.

3. Bruten J Cliff D. Simple bargaining agents for decentralised market-based con-
trol. Technical Report HPL-98-17, Hewlet Packard Laboritories., Bristol. United
Kingdom., 1998.

4. Han C. Kang M. Solving the rural postman problem using a genetic algorithm with
a graph transformation. In Proceedings of the 1998 ACM Symposium on Applied
Computing. ACM Press, 1998.

5. Ramdane-Cherif W A Lacomme P, Prins C. A genetic algorithm for the capacitated
arc routing problem. In Boers E J W et al., editor, Real World Applications of
Evolutionary Computing. Springer-Verlag, 2001.

6. Wellman M P. A market orientated programming environment and its application
to distributed multi-commodity flow problems. Journal of Artificial Intelligence
Research. Morgan Kaufmann Publishers, 1, 1993.

7. Chisholm K Urquhart N, Paechter B. Street based routing using an evolutionary
algorithm. In Boers E J W et al., editor, Real World Applications of Evolutionary
Computing. Proceedings of EvoWorkshops 2001. Springer-Verlag, 2001.

8. Paechter B Chisholm K Urquhart N, Ross P. Improving street based routing using
building block mutations. In To Appear in: Applications of Evolutionary Computing.
Proceedings of EvoWorkshops 2002. Springer-Verlag, 2002.



An Ant Colony Optimization Approach
to the Probabilistic Traveling Salesman Problem

Leonora Bianchi1, Luca Maria Gambardella1, and Marco Dorigo2

1 IDSIA, Strada Cantonale Galleria 2, CH-6928 Manno, Switzerland
{leonora,luca}@idsia.ch
http://www.idsia.ch

2 Université Libre de Bruxelles, IRIDIA
Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brusselles, Belgium

mdorigo@ulb.ac.be
http://iridia.ulb.ac.be/∼mdorigo/

Abstract. The Probabilistic Traveling Salesman Problem (PTSP) is a
TSP problem where each customer has a given probability of requiring a
visit. The goal is to find an a priori tour of minimal expected length over
all customers, with the strategy of visiting a random subset of customers
in the same order as they appear in the a priori tour.
We address the question of whether and in which context an a priori
tour found by a TSP heuristic can also be a good solution for the PTSP.
We answer this question by testing the relative performance of two ant
colony optimization algorithms, Ant Colony System (ACS) introduced
by Dorigo and Gambardella for the TSP, and a variant of it (pACS)
which aims to minimize the PTSP objective function.
We show in which probability configuration of customers pACS and ACS
are promising algorithms for the PTSP.

1 Introduction

Consider a routing problem through a set V of n customers. On any given
instance of the problem each customer i has a known position and a probability
pi of actually requiring a visit, independently of the other customers. Finding
a solution for this problem implies having a strategy to determine a tour for
each random subset S ⊆ V , in such a way as to minimize the expected tour
length. The most studied strategy is the a priori one. An a priori strategy has
two components: the a priori tour and the updating method. The a priori tour is
a tour visiting the complete set V of n customers; the updating method modifies
the a priori tour in order to have a particular tour for each subset of customers
S ⊆ V . A very simple example of updating method is the following: for every
subset of customers, visit them in the same order as they appear in the a priori
tour, skipping the customers that do not belong to the subset. The strategy
related to this method is called the ‘skipping strategy’. The problem of finding
an a priori tour of minimum expected length under the skipping strategy is
defined as the Probabilistic Traveling Salesman Problem (PTSP). This is an
NP-hard problem [1,2], and was introduced in Jaillet’s PhD thesis [3].

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 883–892, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



884 Leonora Bianchi, Luca Maria Gambardella, and Marco Dorigo

The PTSP approach models applications in a delivery context where a set of
customers has to be visited on a regular (e.g., daily) basis, but all customers do
not always require a visit, and where re-optimizing vehicle routes from scratch
every day is unfeasible. In this context the delivery man would follow a standard
route (i.e., an a priori tour), leaving out customers that on that day do not
require a visit. The standard route of least expected length corresponds to the
optimal PTSP solution.

In the literature there are a number of algorithmic and heuristic approaches
used to find suboptimal solutions for the PTSP. Heuristics using a nearest neigh-
bor criterion or savings criterion were implemented and tested by Jézéquel [4] and
by Rossi-Gavioli [5]. Later, Bertsimas-Jaillet-Odoni [1] and Bertsimas-Howell [6]
have further investigated some of the properties of the PTSP and have proposed
some heuristics for the PTSP. These include tour construction heuristics (space
filling curves and radial sort), and tour improvement heuristics (probabilistic
2-opt edge interchange local search and probabilistic 1-shift local search). Most
of the heuristics proposed are an adaptation of a TSP heuristic to the PTSP, or
even the TSP heuristic itself, which in some cases gives good PTSP solutions.
More recently, Laporte-Louveaux-Mercure [7] have applied an integer L-shaped
method to the PTSP and have solved to optimality instances involving up to 50
vertices.

No application of nature-inspired algorithms such as ant colony optimization
(ACO) [8] or genetic algorithms has been done yet. This paper investigates the
potentialities of ACO algorithms for the PTSP. In the remainder of the paper we
first introduce the PTSP objective function and notations (section 2), then we
describe the ACO algorithms which we tested (section 3), and finally we show
the experimental results obtained (section 4).

2 The PTSP Objective Function

Let us consider an instance of the PTSP. We have a completely connected graph
whose nodes form a set V = {i = 1, 2, ..., n} of customers. Each customer has
a probability pi of requiring a visit, independently from the others. A solution
for this instance is a tour λ over all nodes in V (an ‘a priori tour’), to which is
associated the expected length objective function

E[Lλ] =
∑
S⊆V

p(S)Lλ(S) . (1)

In the above expression, S is a subset of the set of nodes V , Lλ(S) is the distance
required to visit the subset of customers S (in the same order as they appear in
the a priori tour), and p(S) is the probability for the subset of customers S to
require a visit:

p(S) =
∏
i∈S

pi
∏

i∈V−S
(1− pi) . (2)

Jaillet [3] showed that the evaluation of the PTSP objective function (eq.(1))
can be done in O(n2). In fact, let us consider (without loss of generality) an a
priori tour λ = (1, 2, . . . , n); then its expected length is



An Ant Colony Optimization Approach 885

p p

(1)

p

(2)λλ(0) λ

Fig. 1. The lengths of these sets of (sub)tours, λ(0)
p , λ(1)

p and λ
(2)
p , constitute the first

three terms of the expected length for the homogeneous PTSP. From left to right, the
total length of each set of (sub)tours gives the terms L(0)

λ , L(1)
λ and L

(2)
λ of equation

(4).

E[Lλ] =
n∑
i=1

n∑
j=i+1

dijpipj

j−1∏
k=i+1

(1− pk)+

n∑
i=1

i−1∑
j=1

dijpipj

n∏
k=i+1

(1− pk)
j−1∏
l=1

(1− pl) . (3)

This expression is derived by looking at the probability for each arc of the com-
plete graph to be used, that is, when the a priori tour is adapted by skip-
ping a set of customers which do not require a visit. For instance, an arc (i, j)
is actually used only when customers i and j do require a visit , while cus-
tomers i+ 1, i+ 2, ..., j do not require a visit. This event occurs with probability
pipj

∏j−1
k=i+1(1− pk) (when j ≤ n). In the special class of PTSP instances where

pi = p for all customers i ∈ V (the homogeneous PTSP), equation (3) becomes

E[Lλ] = p2
n−2∑
r=0

(1− p)rL(r)
λ (4)

where L(r)
λ ≡ ∑n

j=1 d(j, (j + 1 + r) mod n). The L(r)
λ ’s have the combinatorial

interpretation of being the lengths of a collection of gcd(n,r + 1) sub-tours1

λ
(r)
p , obtained from tour λ by visiting one customer and skipping the next r

customers. As an example, Fig. 1 shows λ(0)
p (i.e., the a priori tour), λ(1)

p and
λ

(2)
p for a PTSP with 8 customers.

3 Ant Colony Optimization

In ACO algorithms a colony of artificial ants iteratively constructs solutions for
the problem under consideration using artificial pheromone trails and heuristic
information. The pheromone trails are modified by ants during the algorithm
execution in order to store information about ‘good’ solutions. Most ACO algo-
rithms follow the algorithmic scheme given in Fig. 2.
1 The term ‘gcd’ stays for ‘greatest common divisor’.



886 Leonora Bianchi, Luca Maria Gambardella, and Marco Dorigo

procedure ACO metaheuristic for combinatorial optimization problems
Set parameters, initialize pheromone trails
while (termination condition not met)

ConstructSolutions
(ApplyLocalSearch)
UpdateTrails

end while

Fig. 2. High level pseudocode for the ACO metaheuristic.

ACO are solution construction algorithms, which, in contrast to local search
algorithms, may not find a locally optimal solution. Many of the best performing
ACO algorithms improve their solutions by applying a local search algorithm
after the solution construction phase. Our primary goal in this work is to analyze
the PTSP tour construction capabilities of ACO, hence in this first investigation
we do not use local search.

We apply to the PTSP Ant Colony System (ACS) [9,10], a particular ACO
algorithm which was successfully applied to the TSP. We also consider a modi-
fication of ACS which explicitly takes into account the PTSP objective function
(we call this algorithm probabilistic ACS, that is, pACS). In the following, we
describe how ACS and pACS build a solution and how they update pheromone
trails.

3.1 Solution Construction in ACS and pACS

A feasible solution for an n-city PTSP is an a priori tour which visits all cus-
tomers. Initially m ants are positioned on their starting cities chosen according to
some initialization rule (e.g., randomly). Then, the solution construction phase
starts (procedure ConstructSolutions in Fig. 2). Each ant progressively builds a
tour by choosing the next customer to move to on the basis of two types of in-
formation, the pheromone τ and the heuristic information η. To each arc joining
two customers i, j it is associated a varying quantity of pheromone τij , and the
heuristic value ηij = 1/dij , which is the inverse of the distance between i and j.
When an ant k is on city i, the next city is chosen as follows.

– With probability q0, a city j that maximizes τij · ηβij is chosen in the set
Jk(i) of the cities not yet visited by ant k. Here, β is a parameter which
determines the relative influence of the heuristic information.

– With probability 1− q0, a city j is chosen randomly with a probability given
by

pk(i, j) =




τij ·ηβij∑
r∈Jk(i) τir·ηβir

, if j ∈ Jk(i)

0, otherwise.
(5)

Hence, with probability q0 the ant chooses the best city according to the
pheromone trail and to the distance between cities, while with probability 1−q0
it explores the search space in a biased way.



An Ant Colony Optimization Approach 887

3.2 Pheromone Trails Update in ACS and pACS

Pheromone trails are updated in two stages. In the first stage, each ant, after it
has chosen the next city to move to, applies the following local update rule:

τij ← (1− ρ) · τij + ρ · τ0, (6)

where ρ, 0 < ρ ≤ 1, and τ0, are two parameters. The effect of the local updating
rule is to make less desirable an arc which has already been chosen by an ant,
so that the exploration of different tours is favored during one iteration of the
algorithm.

The second stage of pheromone update occurs when all ants have terminated
their tour. Pheromone is modified on those arcs belonging to the best tour since
the beginning of the trial (best-so-far tour), by the following global updating
rule

τij ← (1− α) · τij + α ·∆τij , (7)

where
∆τij = ObjectiveFunc−1

best (8)

with 0 < α ≤ 1 being the pheromone decay parameter, and ObjectiveFuncbest is
the value of the objective function of the best-so-far tour. In ACS the objective
function is the a priori tour length, while in pACS the objective function is the
PTSP expected length of the a priori tour. In the next section we discuss in
more detail the differences between ACS and pACS.

3.3 Discussion of Differences between ACS and pACS

Differences between ACS and pACS are due to the fact that the two algorithms
exploit different objective functions in the pheromone updating phase. The global
updating rule of equations (7) and (8) implies two differences in the way ACS and
pACS explore the search space. The first and most important difference is the
set of arcs on which pheromone is globally increased, which is in general different
in ACS and pACS. In fact, the ‘best tour’ in eq. (8) is relative to the objective
function. Therefore in ACS the search will be biased toward the shortest tour,
while in pACS it will be biased toward the tour of minimum expected length.
The second difference between ACS and pACS is in the quantity ∆τij by which
pheromone is increased on the selected arcs. This aspect is less important than
the first, because ACO in general is more sensitive to the difference of pheromone
among arcs than to its absolute value.

The length of an a priori tour (ACS objective function) may be considered as
an O(n) approximation to the O(n2) expected length (pACS objective function).
In general, the worse the approximation, the worse will be the solution quality
of ACS versus pACS. The quality of the approximation depends on the set of
customer probabilities pi. In the homogeneous PTSP, where customer probability
is p for all customers, it is easy to see the relation between the two objective
functions. For a given a priori tour Lλ we have



888 Leonora Bianchi, Luca Maria Gambardella, and Marco Dorigo

∆ = Lλ − E[Lλ] = (1− p2)Lλ −
n−2∑
r=1

(1− p)rL(r)
λ , (9)

which implies
∆ ∼ O(q · Lλ) (10)

for (1 − p) = q → 0. Therefore the higher the probability, the better is the a
priori tour length Lλ as an approximation for the expected tour length E[Lλ].

In the heterogeneous PTSP, it is not easy to see the relation between the
two objective functions, since each arc of the a priori tour Lλ is multiplied by a
different probabilistic weight (see eq.(3)), and a term with Lλ cannot be isolated
in the expression of E[Lλ], as in the homogeneous case.

ACS and pACS also differ in time complexity. In both algorithms one iter-
ation (i.e., one cycle through the while condition of Fig. 2) is O(n2) [11], but
the constant of proportionality is bigger in pACS than in ACS. To see this one
should consider the procedure UpdateTrail of Fig. 2, where the best-so-far tour
must be evaluated in order to choose the arcs on which pheromone is to be
updated. The evaluation of the best-so-far tour requires O(n) time in ACS and
O(n2) time in pACS. ACS is thus faster and always performs more iterations
than pACS for a fixed CPU time.

4 Experimental Tests

4.1 Homogeneous PTSP Instances

Homogeneous PTSP instances were generated starting from TSP instances and
assigning to each customer a probability p of requiring a visit. TSP instances were
taken from two benchmarks. The first is the TSPLIB at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/tsp/. From this benchmark
we considered instances with a number of city between 50 and 200. The second
benchmark is a group of instances where customers are randomly distributed on
the square [0, 106]. Both uniform and clustered distributions where considered
in this case, and the number of cities varied between 50 and 350. For generating
random instances we used the Instance Generator Code of the 8th DIMACS Im-
plementation Challenge at http://research.att.com/dsj/chtsp/download.html.

4.2 Computational Environment and ACS Parameters

Experiments were run on a Pentium Xeon, 1GB of RAM, 1.7 GHz processor. In
order to asses the relative performance of ACS versus pACS independently from
the details of the settings, the two algorithms were run with the same parameters.
We chose the same settings which yielded good performance in earlier studies
with ACS on the TSP [10]: m = 10, β = 2, q0 = 0.98, α = ρ = 0.1 and
τ0 = 1/(n ·Obj ), where n is the number of customers and Obj is the value of the
objective function evaluated with the nearest neighbor heuristic [10].



An Ant Colony Optimization Approach 889

-0.15

-0.1

-0.05

0

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(<
E

_p
ac

s>
 -

 <
E

_a
cs

>)
 / 

<E
_p

ac
s>

p

Fig. 3. Relative performance of pACS versus ACS for the homogeneous PTSP. The
vertical axis represents (E[Lλ(pACS)]−E[Lλ(ACS)])/E[Lλ(pACS)]. On the horizon-
tal axis there is the customer probability p. Each point of the graph is an average over
21 symmetric homogeneous PTSP instances. Error bars represent average deviation,
defined as

∑n
i=1 |xi− <x> |/n, with n = 21. Note that for p = 1 ACS outperforms

pACS, since for a fixed CPU stopping time ACS makes more iterations.

The stopping criterion used in both algorithms is CPU time in seconds,
chosen according to the relation stoptime = k · n2, with k = 0.01. This value
of k lets ACS perform at least 17 · 103 iterations on problems with up to 100
customers, and at least 15 · 103 iterations on problems with more than 100
customers. For each instance of the PTSP, we ran 5 independent runs of the
algorithms.

4.3 Results

For each TSP instance tested, nine experiments were done varying the value of
the customer probability p from 0.1 to 0.9 with a 0.1 interval. Fig. 3 summarizes
results obtained on 21 symmetric PTSP instances, one third of the instances
were taken from the TSPLIB, the others were random instances (half of them
uniform and half clustered). The figure shows the relative performance of pACS
versus ACS, averaged over the tested instances. A typical result for a single
instance is reported in Fig. 4.

As it was reasonable to expect, for small enough probabilities pACS outper-
forms ACS. In all problems we tested though, there is a range of probabilities
[p0, 1] for which ACS outperforms pACS. The critical probability p0 at which
this happens depends on the problem.

The reason why pACS does not always perform better than ACS is clear
if we consider two aspects: the complexity (speed) of ACS versus pACS, and



890 Leonora Bianchi, Luca Maria Gambardella, and Marco Dorigo

-0.15

-0.1

-0.05

0

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(<
E

_p
ac

s>
 -

 <
E

_a
cs

>)
 / 

<E
_p

ac
s>

p

eil76.tsp

Fig. 4. Relative performance of pACS versus ACS for the eil76.tsp instance of the
TSPLIB. Error bars represent the average deviation of the result over 5 independent
runs of the algorithms.

the goodness of the PTSP objective function approximation as p approaches 1.
When p is near to 1, a good solution to the TSP is also a good solution to the
PTSP; therefore, ACS, which performs more iterations than pACS, has a better
chance to find a good solution.

4.4 Absolute Performance

For the PTSP instances we tested, the optimal solution is not known. Therefore,
an absolute performance evaluation of the pACS heuristic can only be done
against a theoretical lower bound, when this is available and tight enough. A
lower bound to the optimal solution would give us an upper bound to the error
performed by the pACS heuristic. In fact, if LB is the lower bound and E[Lλ∗ ]
is the optimal solution, then by definition we have

E[Lλ∗ ] ≥ LB . (11)

If the solution value of pACS is E[Lλ], then the following inequality holds for
the relative error

E[Lλ]− E[Lλ∗ ]
E[Lλ∗ ]

≤ E[Lλ]− LB
LB

. (12)

For the homogeneous PTSP and for instances where the optimal length LTSP of
the corresponding TSP is known, it is possible to use the following lower bound
to the optimal expected length [6]

LB = pLTSP (1− (1− p)n−1) . (13)



An Ant Colony Optimization Approach 891

0

5

10

15

20

25

30

35

40

45

50

0.6 0.7 0.8 0.9 1

 u
pp

er
 b

ou
nd

 o
f r

el
at

iv
e 

%
 e

rr
or

 

p

eil51.tsp
eil76.tsp

kroA100.tsp
ch150.tsp
d198.tsp

Fig. 5. Upper bound of relative percent error of pACS for 5 TSPLIB instances. The
horizontal axis represents the customer probability.

If we put this lower bound into the right side of equation (12), we obtain an upper
bound of the relative error of pACS. Fig. 5 shows the absolute performance of
pACS, evaluated with this method, for a few TSPLIB instances. From the figure
we see that, for instance, pACS finds a solution within 15% of the optimum for
a homogeneous PTSP with customers probability 0.9.

5 Conclusions and Future Work

In this paper we investigated the potentialities of ACO algorithms for the PTSP.
In particular, we have shown that the pACS algorithm is a promising heuristic
for homogeneous TSP instances. Moreover, for customers probabilities close to
1, the ACS heuristic is a better alternative than pACS.

At present we are investigating the heterogeneous PTSP, for different prob-
ability configurations of customers. This is an interesting direction of research,
since it is closer to a real-world problem than the homogeneous PTSP. We are
also trying to improve pACS performance by inserting in the ants’ tour con-
struction criterion information about the customers probabilities. Work which
will follow this paper also comprehends a comparison of pACS with respect to
other PTSP algorithms. Moreover, pACS should be improved by adding to the
tour construction phase a local search algorithm. The best choice and design of
such a local search is also an interesting issue for the PTSP.

Acknowledgments

This research has been partially supported by the Swiss National Science Foun-
dation project titled “On-line fleet management”, grant 16R10FM, and by the



892 Leonora Bianchi, Luca Maria Gambardella, and Marco Dorigo

“Metaheuristics Network”, a Research Training Network funded by the Improv-
ing Human Potential programme of the CEC, grant HPRN-CT-1999-00106. The
information provided in this paper is the sole responsibility of the authors and
does not reflect the Community’s opinion. The Community is not responsible
for any use that might be made of data appearing in this publication. Marco
Dorigo acknowledges support from the Belgian FNRS, of which he is a Senior
Research Associate.

References

1. D. J. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization. Operations
Research, 38:1019–1033, 1990.

2. D. J. Bertsimas. Probabilistic Combinatorial Optimization Problems. PhD thesis,
MIT, Cambridge, MA, 1988.

3. P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, MIT, Cambridge,
MA, 1985.

4. A. Jézéquel. Probabilistic Vehicle Routing Problems. Master’s thesis, MIT, Cam-
bridge, MA, 1985.

5. F. A. Rossi and I. Gavioli. Aspects of Heuristic Methods in the Probabilistic Trav-
eling Salesman Problem, pages 214–227. World Scientific, Singapore, 1987.

6. D. J. Bertsimas and L. Howell. Further results on the probabilistic traveling sales-
man problem. European Journal of Operational Research, 65:68–95, 1993.

7. G. Laporte, F. Louveaux, and H. Mercure. An exact solution for the a priori
optimization of the probabilistic traveling salesman problem. Operations Research,
42:543–549, 1994.

8. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137–172, 1999.

9. L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs
by ant colonies. In Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation (ICEC’96), pages 622–627. IEEE Press, Piscataway,
NJ, 1996.

10. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

11. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cyber-
netics – Part B, 26(1):29–41, 1996.



When Model Bias Is Stronger
than Selection Pressure

Christian Blum and Michael Sampels

IRIDIA, Université Libre de Bruxelles, CP 194/6
Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium

{cblum,msampels}@ulb.ac.be

Abstract. We investigate the influence of model bias in model-based
search. As an example we choose Ant Colony Optimization as a well-
known model-based search algorithm. We present the effect of two dif-
ferent pheromone models for an Ant Colony Optimization algorithm to
tackle a general scheduling problem. The results show that a pheromone
model can introduce a strong bias toward certain regions of the search
space, stronger than the selection pressure introduced by the updating
rule for the model. This potentially leads to an algorithm where over
time the probability to produce good quality solutions decreases.

1 Introduction

Model-based search (MBS) [7] algorithms are increasingly popular methods
for solving combinatorial optimization problems. In MBS algorithms such as
Ant Colony Optimization (ACO) [5] or Estimation of Distribution Algorithms
(EDAs) [9,10], candidate solutions are generated using a parametrized proba-
bilistic model that is updated depending on previously seen solutions. The up-
date aims to concentrate the search in regions of the search space containing
high quality solutions. In particular, the reinforcement of solution components
depending on the solution quality is an important factor in the development
of heuristics to tackle hard combinatorial optimization problems. It is assumed
that good solutions don’t occur sporadically, but consist of good solution com-
ponents. To learn which components contribute to good solutions can help to
assemble them to better solutions. In general, a model-based search approach
attempts to solve an optimization problem by repeating the following two steps:
1) Candidate solutions are constructed using some parametrized probabilistic
model, that is, a parametrized probability distribution over the solution space.
2) The candidate solutions are used to modify the model parameters in a way
that is deemed to bias future sampling toward high quality solutions.
Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo
et al. [5] for solving combinatorial optimization problems. The inspiring source
of ACO is the foraging behavior of real ants. In ACO, the probabilistic model
is called pheromone model and the pheromone values are the model parame-
ters. Often it is implicitly assumed that the average performance of model-based

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 893–902, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



894 Christian Blum and Michael Sampels

algorithms such as ACO is increasing over time. However, during empirical in-
vestigations of an ACO algorithm for the Group Shop Scheduling problem1 in
[2], we observed that for some of the pheromone models chosen the performance
of the system was decreasing over time. This triggered us to find out the reasons
for this phenomenon.
The outline of the paper is as follows. In Section 2 we present the Group Shop
Scheduling problem. In Section 3 we briefly outline the ACO algorithm to tackle
the Group Shop scheduling problem together with two different pheromone mod-
els. In Section 4 we analyse one of the pheromone models on a small example
problem instance and we show the existence of a strong model bias. In Section 5
we investigate the interactions between model bias and selection pressure. We
show that even increasing the selection pressure might be not enough to eradi-
cate model bias. In Section 6 we finally give some conclusions and an outlook to
the future.

2 A General Scheduling Problem

A general scheduling problem can be formalized as follows: We consider a finite
set of operations O which is partitioned into subsets M = {M1, . . . ,Mm} (ma-
chines) and into subsets J = {J1, . . . , Jn} (jobs), together with a partial order
� ⊆ O × O such that � ∩ Ji × Jj = ∅ for i �= j, and a function p : O → N
assigning processing times to operations. A feasible solution is a refined partial
order �∗ ⊇ � for which the restrictions �∗ ∩ Ji × Ji and �∗ ∩ Mk ×Mk are
total ∀ i, k. The cost of a feasible solution is defined by

Cmax(�∗) = max{
∑
o∈C

p(o) | C is a chain in (O,�∗)}

where Cmax is called the makespan of a solution. We aim at a feasible solution
which minimizes Cmax.
Mk is the set of operations which have to be processed on machine k. Further, Ji
is the set of operations which belong to job i. Each machine can process at most
one operation at a time. Operations must be processed without preemption.
Operations belonging to the same job must be processed sequentially. This brief
problem formulation covers well known scheduling problems: The restriction
� ∩ Ji × Ji is total in the Job Shop scheduling problem (JSP), trivial (=
{(o, o) | o ∈ Ji}) in the Open Shop scheduling problem (OSP), and either total
or trivial for each i in the Mixed Shop scheduling problem (MSP) [3,11].
For the Group Shop scheduling problem (GSP), we consider a weaker restriction
on � which includes the above scheduling problems by looking at a refinement
of the partition J to a partition into groups G = {G1, . . . , Gg}. We demand that
� ∩ Gi × Gi has to be trivial and that for o, o′ ∈ J (J ∈ J ) with o ∈ Gi and
o′ ∈ Gj (i �= j) either o � o′ or o 
 o′ holds. Note that the coarsest refinement
1 For historical reasons, this problem was called FOP Shop scheduling in [2]. However,

the name Group Shop Scheduling fits better to the structure of the problem.



When Model Bias Is Stronger than Selection Pressure 895

0 1 2

3 4 5 6

7 8 9

b)

0 1 2

3 4 5 6

7 8 9

a)

Fig. 1. a) The disjunctive graph representation [8] of a simple instance of the GSP
consisting of 10 operations partitioned into 3 jobs, 6 groups and 4 machines (processing
times are omitted in this example). In order to obtain a solution, the dashed and
dotted links have to be directed without creating any cycles. The directed arcs between
operations of successive groups are simplified as inter-group connections. b) A solution
to the problem (the arcs undirected in a) are directed such that the resulting graph
does not contain any cycles).

G = J (groups sizes are equal to job sizes) is equivalent to the OSP and the
finest refinement G = {{o} | o ∈ O} (group sizes of 1) is equivalent to the JSP.
In the following j(o) will denote the job, g(o) the group and m(o) the machine
of an operation o ∈ O. See Figure 1 for an example of the GSP.

3 An ACO Algorithm for the GSP

We consider the ACO algorithm already outlined in [2]. The framework of this
algorithm is shown in Algorithm 1. The most important features of this algo-
rithm are explained in the following. In Algorithm 1, τ = {τ1, ..., τl} is a set of
pheromone values, k is the number of ants, and sj is a solution to the problem
(sequences containing all operations), constructed by ant j, where j = 1, ..., k.

Algorithm 1 ACO for the GSP
InitializePheromoneValues(τ)
while termination conditions not met do

for j = 1 to k do
sj ← ConstructSolution(τ)

end for
ApplyOnlineDelayedPheromoneUpdate(τ ,s1,...,sk)

end while

InitializePheromoneValues(τ): In every version of our algorithm we initialize all
the pheromone values to the same positive constant value.

ConstructSolution(τ): An important part of an ACO algorithm is the constructive
mechanism used to probabilistically construct solutions. We use the well-known



896 Christian Blum and Michael Sampels

list scheduler algorithm proposed by Giffler and Thompson [8] adapted to the
GSP. To construct a schedule, this list scheduler algorithm builds a sequence s
of all operations from left to right. In every one of the |O| construction steps, the
algorithm chooses an operation from a set St (where t = 1, ..., |O|) of admissible
operations. In the list scheduler algorithm this choice is made by using priority
rules. In contrast, our ACO algorithm picks an operations from St probabilisti-
cally (for a more detailed description see [2]). The probabilities for the operations
in St (called transition probabilities) to be chosen, depend on the pheromone
model. In the following we present two different pheromone models, the first one
from the literature, the second one is a new development.

Learning of a predecessor relation in s: Pheromone model PHsuc was intro-
duced by Colorni et al. [4] for an Ant System to tackle the JSP. In the following
a simple extension of this model to the GSP is outlined. In this model we have
a pheromone value τoi,oj on every ordered pair of operations oi, oj ∈ O. Addi-
tionally we have pheromone values τoi ∀oi ∈ O. The probability to choose an
operation o ∈ St in the t-th construction step is the following one:

p(s[t] = o | st−1,|O|, τ) =




τo∑
ok∈St

τok
: if o ∈ St and t = 1,

τoi,o∑
ok∈St

τoi,ok
: if o ∈ St, t > 1, s[t− 1] = oi,

0 : otherwise,

where s[t] denotes the position t in sequence s, and st−1,|O| denotes a partial
sequence of current length t− 1 and final length |O|. In this pheromone model,
the choice of the next operation to be scheduled is dependent on the operation
scheduled in the previous step.

Learning of relations among operations: In this new pheromone model –
which we called PHrel – we assign pheromone values to pairs of related operations.
We call two operations oi, oj ∈ O related if they belong to the same group, or
if they have to be processed on the same machine. Formally, a pheromone value
τoi,oj exists, iff g(oi) = g(oj) or m(oi) = m(oj). The meaning of a pheromone
value τoi,oj is that if τoi,oj is high then operation oi should be scheduled before
operation oj . The choice of the next operations to be scheduled is handled as
follows. If there is an operation oi ∈ St with no related and unscheduled opera-
tion left, it is chosen. Otherwise we choose among the operations of set St with
the following probabilities:

p(s[t] = o | st−1,|O|, τ) =




min
or∈Srelo

τo,or∑
ok∈St

min
or∈Srelok

τok,or
: if o ∈ St

0 : otherwise

where Srelo = {o′ ∈ O | m(o′) = m(o) ∨ g(o′) = g(o), o′ not scheduled yet}. The
meaning of this rule to compute the transition probabilities is the following: If
at least one of the pheromone values between an operation oi ∈ St and a related
operation or (not scheduled yet) is low, then the operation oi probably should
not be scheduled now. By using this pheromone model the algorithm tries to



When Model Bias Is Stronger than Selection Pressure 897

learn relations between operations. The absolute position of an operation in the
sequence s is not important anymore. Importance is given to the relative position
of an operation with respect to the related operations.

ApplyOnlineDelayedPheromoneUpdate(τ ,s1,...,sk):We implemented our algorithm
in the Hyper-Cube Framework [1], one of the ways of implementing an ACO al-
gorithm. The Hyper-Cube Framework is characterized by a normalization of the
contribution of every solution used for updating the pheromone values. This
leads to a scaling of the objective function values and the pheromone values
are implicitly limited to the interval [0, 1] (see [1] for a more detailed descrip-
tion). For PHrel, the Ant System [6] updating rule in the Hyper-Cube Framework
(henceforth HC-AS) is the following.

τoi,oj ← (1− ρ) · τoi,oj + ρ ·
k∑
l=1

∆slτoi,oj (1)

where

∆slτoi,oj =

{
f(sl)∑k

r=1
f(sr)

if oi before oj in sl,

0 otherwise,
(2)

where f(s) = 1/Cmax(s) for all possible solutions s. For PHsuc the pheromone
updating rule is the same, just that for the update of pheromone values τoi the
notation is different. So, a pheromone value τoi,oj receives update (as shown
in equation (2)), if there exists an t ∈ {1, ..., |O| − 1} such that sl[t] = oi and
sl[t+1] = oj (if oi and oj are immediate successors in sequence sl). Accordingly,
a pheromone value τoi receives update, if sl[1] = oi.

4 Investigating PHsuc on a Small Example Instance

In [2] we observed that the performance2 of the algorithm described in this
paper using PHsuc was strongly decreasing over time for all problem instances
tested. At first sight, this seems odd, as the pheromone update rule described
in the previous section rewards solution components (successor relationships)
that occur in good quality solutions more than it rewards solution components
found in worse solutions. To explain the decreasing performance, we consider the
small problem instance shown in Figure 2. For the three solutions to the problem
(shown in Figure 2b) it holds: Cmax(s1) = 60, Cmax(s2) = 40 and Cmax(s3) = 60.
This means that s2 is the optimal solution to the problem instance. In the
following we examine the average update received by any pheromone value τoi,oj
of pheromone model PHsuc. The decisive pheromone values are τ1,2 and τ3,4. The
algorithm starts with equal pheromone values. τ1,2 receives update by the three
sequences 1−2−3−4 (with value 60), 3−4−1−2 (with value 60) and 3−1−2−4
(with value 40). In contrast, pheromone value τ1,3 receives update by the two
2 We measured the performance of the system by the average quality of the solutions

found by the ants in every iteration. This way of measuring the performance of an
algorithm is widely accepted in the field of Evolutionary Computation.



898 Christian Blum and Michael Sampels

� �

� �

��

��� � �
� �� � �� �

��� � �
� �� � �� �

��� � �
� �� � �� �

	�

� 
 � 
 � 
 � �� ��

� 
 � 
 � 
 � �� ��

� 
 � 
 � 
 � �� ��

� 
 � 
 � 
 � �� ��

� 
 � 
 � 
 � �� ��

� 
 � 
 � 
 � �� ��

��

Fig. 2. a) A small example problem instance: O = {1, 2, 3, 4}, J = {J1 = {1, 2}, J2 =
{3, 4}}, G = {G1 = {1}, G2 = {2}, G3 = {3}, G4 = {4}}, M = {M1 = {1, 4},M2 =
{2, 3}}, G1 ≺ G2, G3 ≺ G4, p(1) = 10, p(2) = 20, p(3) = 20, p(4) = 10. b) The three
solutions to this problem instance characterized by their machine orders. c) 6 possible
sequences that might be generated by the ACO algorithm and the correspondence to
the three solutions shown in b).

sequences 1− 3− 2− 4 (with value 40) and 1− 3− 4− 2 (with value 40). This
means, that according to the update rule in equation (2), the average update for
τ1,2 is higher than the average update for τ1,3 although the partial sequence 1−3
is only to be found in sequences corresponding to the optimal solution and 1− 2
is mostly to be found in sequences corresponding to sub-optimal solutions. For
symmetry reasons, the same holds for pheromone value τ3,4 (corresponding to
τ1,2) and τ3,1 (corresponding to τ1,3). The probability for the algorithm to start
a sequence with operation 1 or operation 2 remains for symmetry reasons on
average the same during the run-time of the algorithm. Therefore, after starting
a sequence with operation 1, the probability to schedule 2 immediately afterward
(4 immediately after 3, respectively) grows during the course of the algorithm.
This leads to a decrease in system performance while the probability to construct
the two sub-optimal solutions s1 and s3 increases from iteration to iteration.
We conclude that the problem constraints (e.g., the partial sequence 1− 2− ...
can only be completed in one possible way, 3 − 4 − ..., respectively) together
with the pheromone model introduce a strong bias, which is stronger than the
“drive” toward good solutions introduced by the pheromone updating rule. The
first force we henceforth call model bias and for the second force we borrow an
expression from Evolutionary Computation and call it selection pressure. In the
following section we study the interactions of model bias and selection pressure
for problem instances in the space between Open Shop and Job Shop Scheduling.

5 Model Bias and Selection Pressure

In order to examine the phenomenon of model bias, we generated a problem
instance 3x3 with 9 operations, 3 jobs and 3 machines having the same principal
structure as the problem instance in Figure 2a. We generated all possible GSP
instances in the range between JSP and OSP. Then we applied Algorithm 1 to
all instances using pheromone models PHsuc and PHrel with k = 100 ants per
iteration and evaporation rate ρ = 0.1. The results indicate that the model bias



When Model Bias Is Stronger than Selection Pressure 899

80

90

100

110

120

130

140

150

160

170

0 200 400 600 800 1000 1200 1400 1600

av
er

ag
e 

so
lu

tio
n 

qu
al

ity

iteration

JSP version of 3x3

PH_suc
PH_rel

112

114

116

118

120

122

124

0 200 400 600 800 1000 1200 1400 1600

av
er

ag
e 

so
lu

tio
n 

qu
al

ity

iteration

OSP version of 3x3

PH_suc
PH_rel

Fig. 3. The graphs show results of the ACO algorithm using different pheromone
models on two versions of the problem instance 3x3. The data for this problem in-
stance is as follows (omitting group data): O = {1, ..., 9}, J = {J1 = {1, 2, 3}, J2 =
{4, 5, 6}, J3 = {7, 8, 9}}, M = {M1 = {1, 5, 9},M2 = {2, 6, 7},M3 = {3, 4, 8}},
p(1) = p(5) = p(9) = 10, p(2) = p(6) = p(7) = 20, p(3) = p(4) = p(8) = 30. The
graph on the left shows the results for the JSP version and the graph on the right for
the OSP version. Every line shows the average performance of the algorithm averaged
over 100 runs (k = 100 ants per iteration, evaporation rate ρ = 0.1, 1500 iterations).

decreases from having a big influence for JSP to having practically no influence
for OSP (in Figure 3 we show the results for the JSP and the OSP version
of 3x3). This confirms that the problem constraints and the chosen pheromone
model constitute together the strength of a possible model bias.

In order to show that the analysis performed in the last section not only
holds for small example instances, we ran experiments on 3 further problem
instances. The whizzkids97 problem instance is a difficult GSP instance with 197
operations which was subject of a competition held in 1997 organized by the TU
Eindhoven, The Netherlands. We conducted experiments on the OSP version
(henceforth whizzkids97 osp), on the original version (whizzkids gsp) and on the
JSP version (whizzkids jsp) of this problem. In addition to the pheromone update
rule HC-AS, we applied the pheromone updating rule that is only using the best
solution found in an iteration to update the pheromone values (henceforth HC-
IB). This update rule puts considerably more selection pressure than HC-AS on
the system. The results are shown in the three graphs on the left hand side of
Figure 4. For PHsuc in conjunction with HC-AS we notice a strong decrease in
performance in the first couple of hundred iterations. Then the system takes a
sharp turn and the performance is slowly increasing. This effect is weakening
from the JSP version whizzkids97 jsp, where the effect is strongest, over the
original version whizzkids97 gsp, to the OSP version whizzkids97 osp, where this
effect doesn’t occur at all. It is very interesting to see that when using pheromone
update rule HC-IB instead of HC-AS the overall performance of the system can
be considerably improved. Still there is a slowed-down decrease in performance
for approximately the first 700 iterations. This means that although a stronger
selection pressure can improve the algorithm, it can’t eradicate the effect of a



900 Christian Blum and Michael Sampels

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e 

so
lu

tio
n 

qu
al

ity

iteration

whizzkids97_jsp

HC-AS, PH_suc
HC-IB, PH_suc
HC-AS, PH_rel
HC-IB, PH_rel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lin
e 

sc
he

du
lin

g 
fa

ct
or

iteration

whizzkids97_jsp

HC-AS, PH_suc
HC-IB, PH_suc
HC-AS, PH_rel
HC-IB, PH_rel

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e 

so
lu

tio
n 

qu
al

ity

iteration

whizzkids97_gsp

HC-AS, PH_suc
HC-IB, PH_suc
HC-AS, PH_rel
HC-IB, PH_rel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lin
e 

sc
he

du
lin

g 
fa

ct
or

iteration

whizzkids97_gsp

HC-AS, PH_suc
HC-IB, PH_suc
HC-AS, PH_rel
HC-IB, PH_rel

450

500

550

600

650

700

750

800

850

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e 

so
lu

tio
n 

qu
al

ity

iteration

whizzkids97_osp

HC-AS, PH_suc
HC-IB, PH_suc
HC-AS, PH_rel
HC-IB, PH_rel

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lin
e 

sc
he

du
lin

g 
fa

ct
or

iteration

whizzkids97_osp

HC-AS, PH_suc
HC-IB, PH_suc
HC-AS, PH_rel
HC-IB, PH_rel

Fig. 4. The three graphs on the left hand side show average solution quality per iter-
ation (averaged over 10 runs) on three different instances (top down: whizzkids97 jsp,
whizzkids97 gsp and whizzkids97 osp) for two different pheromone models PHsuc and
PHrel and two different pheromone update rules HC-AS and HC-IB. For all experiments
we used k = 10 ants per iteration and the best evaporation rate from a range of tested
evaporation rates. The three graphs on the right hand side show the mean values of
the “line scheduling factor” for the experiments on the left hand side.

strong model bias. The performance curves for PHrel show for all three problem
instances a clear advantage over the performance curves for PHsuc.

Next we explore the reasons for the sharp turn from strongly decreasing
performance to slowly increasing performance for PHsuc. The analysis in the
previous section indicates that the problem constraints together with the phe-
romone model introduce a strong bias toward producing sequences (solutions)
where the operations of the jobs are scheduled in line (operations of the same



When Model Bias Is Stronger than Selection Pressure 901

jobs are clustered in the sequences produced). To measure the extend of this
clustering in a sequence s, we defined the following measure, which we called
line scheduling factor :

fls : s →
∑|O|−1
t=1 δ(s, t)∑
J∈J |J | − 1

, (3)

where δ(s, t) = 1 if j(s[t]) = j(s[t + 1]) and δ(s, t) = 0 otherwise. We measured
the value of fls(s) for the experiments on the three whizzkids97 instances. In the
three graphs on the right hand side of Figure 4 the mean values of fls(sib) for the
iteration best solutions sib are shown. It is interesting to see that for pheromone
model PHrel, these values are staying nearly constant, whereas for pheromone
model PHsuc these values are strongly increasing. For the whizzkids97 jsp – when
using pheromone update rule HC-AS – it is even reaching its maximum of 1.0
and keeping this value until the algorithm stops. On top of that, the point
when the line scheduling factor reaches a stable point coincides with the point
when the system takes a sharp turn from decreasing performance to increasing
performance. This indicates that there exists a kind of “stable area” in the search
space where the strong model bias is leading the system to at the beginning of
the search process. Once the system has reached this stable area – which is
characterized by a clustering of the operations belonging to the same job in the
sequences produced by the algorithm – the model bias is diminishing and the
selection pressure – now being the strongest force – is leading the system to find
good solutions in the stable area.

6 Conclusions and Outlook

We have shown the possible existence of strong model bias in model-based search
algorithms such as Ant Colony Optimization. Model bias is generated by the
model in conjunction with the constraints of the problem. We have shown that
the model bias introduced by pheromone model PHsuc used by an ACO algorithm
to tackle the Group Shop scheduling problem (GSP) is strongest for JSP and
diminishes for OSP (both JSP and OSP are extreme cases of GSP). Furthermore
we have shown that it is possible to reduce the effect of model bias by using
a model parameter update rule characterized by a strong selection pressure.
Nevertheless, even with a strong selection pressure the model bias leads the
system initially to a stable area in the search space where the model bias is low
and where the selection pressure takes over to guide the system. In this stable
area the selection pressure then causes the system to find good solutions with
respect to the quality of the solutions in this area. This means that when using
a model-based algorithm, the choice of the model is crucial and has a strong
influence on the success of the algorithm. In the future we plan a search space
analysis for the GSP to further understand the interactions between model bias
and selection pressure.



902 Christian Blum and Michael Sampels

Acknowledgments

This work was supported by the “Metaheuristics Network”, a Research Training
Network funded by the Improving Human Potential program of the CEC, grant
HPRN-CT-1999-00106. The information provided is the sole responsibility of the
authors and does not reflect the Community’s opinion. The Community is not
responsible for any use that might be made of data appearing in this publication.

References

1. C. Blum, A. Roli, and M. Dorigo. HC-ACO: The hyper-cube framework for Ant
Colony Optimization. In Proceedings of MIC’2001 – Meta-heuristics International
Conference, volume 2, pages 399–403, Porto, Portugal, 2001.

2. C. Blum and M. Sampels. Ant Colony Optimization for FOP Shop scheduling:
A case study on different pheromone representations. In Proceedings of the 2002
Congress on Evolutionary Computation, CEC’02, volume 2, pages 1558–1563, 2002.

3. P. Brucker. Scheduling algorithms. Springer, Berlin, 1998.
4. A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for Job-shop

scheduling. Belgian Journal of Operations Research, Statistics and Computer Sci-
ence, 34(1):39–54, 1993.

5. M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
11–32. McGraw-Hill, 1999.

6. M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics–Part
B, 26(1):29–41, 1996.

7. M. Dorigo, M. Zlochin, N. Meuleau, and M. Birattari. Updating ACO pheromones
using Stochastic Gradient Ascent and Cross-Entropy methods. In Proceedings of
the EvoWorkshops 2002, LNCS 2279, pages 21–30. Springer, 2002.

8. B. Giffler and G.L. Thompson. Algorithms for solving production scheduling prob-
lems. Operations Research, 8:487–503, 1960.

9. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of
distributions. In H.-M. Voigt et al., editor, Proceedings of the 4th Conference on
Parallel Problem Solving from Nature, PPSN IV, volume 1411 of LNCS, pages
178–187, Berlin, 1996. Springer.

10. M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by building
and using probabilistic models. Technical Report No. 99018, IlliGAL, University
of Illinois, 1999.

11. M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Engle-
wood Cliffs, 1995.



Evolution of Asynchronous Cellular Automata

Mathieu S. Capcarrere

Logic Systems Laboratory
School of Computer anc Communication Sciences
Swiss Federal Institute of Technology, Lausanne

CH-1015 Lausanne, Switzerland
mathieu.capcarrere@epfl.ch

Abstract. One of the prominent features of the Cellular Automata
(CA) model is its synchronous mode of operation, meaning that all cells
are updated simultaneously. But this feature is far from being realistic
from a biological point of view as well as from a computational point of
view. Past research has mainly concentrated on studying Asynchronous
CAs in themselves, trying to determine what behaviors were an “arti-
fact” of the global clock. In this paper, I propose to evolve Asynchronous
CAs that compute successfully one of the well-studied task for regular
CAs: The synchronization task. As I will show evolved solutions are both
unexpected and best for certain criteria.

1 Introduction

Though life was an awe-inspiring model for the first Cellular Automata designers,
simplification was a prime constraint in all these studies, not only for obvious
practical reasons, but also as a guide to extract the quintessential ideas behind
self-replication. Nevertheless, I believe that an ever present quality in natural
systems was omitted more for the former reasons rather than the latter choice:
robustness. Robustness to faults and robustness to asynchronous dynamics. This
paper will concentrate on the second question, that of asynchronous cellular
automata.

One of the prominent features of the Cellular Automata (CA) model is its
synchronous mode of operation, meaning that all cells are updated simultane-
ously. But this feature is far from being realistic from a biological point of view
as well as from a computational point of view. As for the former, it is quite
evident that there is no accurate global synchronization in nature. As for the
latter, it turns out to be impossible to maintain a large network of automata
globally synchronous in practice.

In this paper, I propose to co-evolve asynchronous cellular automata. While
in the past the research on asynchronous CA concentrated either on studying
the phenomena in itself, i.e., see how asynchrony affected the behavior of syn-
chronous CAs or on the theoretical aspects, e.g., what kind of traces do such CA
accept, in this study we propose to evolve asynchronous CAs that solve compu-
tational problem. More precisely, I will concentrate on a well studied task for

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 903–912, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



904 Mathieu S. Capcarrere

the synchronous case: The synchronization task. This may seem paradoxical, but
as we will see with this illustration, it turns out that evolution gives excellent
results given the use of spurious states.

In a first section, we will quickly overview the question of asynchronous cellu-
lar automata in the past literature and present the model of asynchrony studied
hereafter. I will then ,in section 3, expose shortly the evolutionary algorithm
used and the task for which the solution were sought. In section 4 we will give
the result one may obtain with a straightforward approach, using two-state CAs.
The lack of result in that case demonstrates the need for the different approach.
I will thus argue in section 5 the necessity for redundant CAs. This will lead
us naturally in section 6 to evolve redundant CAs, which give rise to strikingly
efficient and unexpected solutions. Finally we conclude in section 7.

2 Asynchronous Cellular Automata

A preliminary study of asynchronous CAs, where one cell is updated at each
time step, was carried out by Ingerson and Buwel, [11]. In that paper, the differ-
ent dynamical behaviors of synchronous and asynchronous CAs were compared
and they concluded that some of the apparent self-organization of CAs is, in
fact, an artifact of the synchronization of the clocks. Wolfram, [20], also noted
that asynchronous updating makes it more difficult for information to propagate
through the CA and that, furthermore, such CAs may be harder to analyze.
Asynchronous CAs have then been discussed from a problem-solving and/or Ar-
tificial Life standpoint in many papers, among them [14,1,16,12,9,19]. All these
works devoted to asynchronous cellular automata only concentrated on the study
of the effects but not on correcting asynchrony or dealing with it. From a the-
oretical computer science perspective, Zielonka [21, 22] introduced the concept
of asynchronous cellular automata. Though the question attracted quite some
interest [13, 15, 5], the essential idea behind them was to prove that they were
“equivalent” to synchronous CA in the sense that, for instance, they recognize
the same trace languages or could decide emptiness. From these two fields, we
thus know that asynchronous CA are potentially as powerful as synchronous CA,
computationally speaking, and, nevertheless, that most of the effects observed
in the synchronous case are “artifacts” of the global clock. In this paper, we thus
propose to develop asynchronous CA exhibiting the same computational behav-
ior as synchronous CA through evolution. As Gacs [7,8] reminded us, asynchrony
may be considered as a special case of fault-tolerance. However, if this consider-
ation is nice in its generalization (i.e. a fault-tolerant CA is also asynchronous),
it eschews a lot of potential optimization. There is an evident cost in terms of
the complexity of the automata or its reliability1.

There are many ways to model asynchrony. Sipper et al [18] have already
considered the evolution of asynchronous CAs to solve the density task2 and
1 There exists perfect asynchronous CAs while it is impossible to make perfectly fault-

tolerant CAs.
2 In its fixed point form.



Evolution of Asynchronous Cellular Automata 905

the synchronization task. However, they limited themselves to a partial form of
asynchrony where full blocks of cell were guaranteed to be synchronized. If the
hypothesis was not completely unreasonable from a practical point of view, its
main motivation lied surely in the difficulty to evolve binary asynchronous CA.
However, in this paper, I am considering a more general model, described below
and show that given a certain number of considerations it is possible evolve good
solutions for that model.
The model: I use a most general fully asynchronous model. Each cell has the
same probability pf of not updating its state at each step. In this case the cell
state remains unchanged. Otherwise the uniform or non uniform CA is perfectly
classic. Hence, the probability of a CA of size N of working synchronously for t
time steps is (1 − pf )Nt. Obviously for low values of pf , the standpoint is that
of a synchronous CA where faults may occur, while high values of pf model a
fully asynchronous CA.

3 The Co-evolutionary Framework
of Non-uniform Cellular Automata

In this paper I investigate the evolution of non-uniform cellular automata. Such
automata function in the same way as uniform ones, the only difference being in
the cellular rules that need not be identical for all cells. Our focus here is on the
evolution of non-uniform CAs to perform computational tasks using the cellu-
lar programming approach. In this section, I explain the cellular programming
algorithm which is used herein and is detailed by Sipper in [17].

I study q-state, non-uniform CAs, in which each cell may contain a different
rule. A cell’s rule table is encoded as a string of the alphabet q (the “genome”),
containing the next-state (output) for all possible neighborhood configurations.
Rather than employ a population of evolving, uniform CAs, as with standard
genetic algorithm approaches, the algorithm involves a single, non-uniform CA
of size n, where the population of cell rules is initialized at random. Initial
configurations are then generated at random, in accordance with the task at
hand, and for each one the CA is run for M time steps. Each cell’s fitness is
accumulated over C = 300 initial configurations. After every C configurations
evolution of rules occurs by applying crossover and mutation. This evolutionary
process is performed in a completely local manner, where genetic operators are
applied only between directly connected cells. It is driven by nfi(c), the number
of fitter neighbors of cell i after c configurations. If nfi(c) = 0 then the rule of
cell i is left unchanged. If it is equal to 1 then it is replaced by the rule of the
cell that is fitter. In all other cases, the rule of cell i is then set to the result
of the cross-over between two of the fitter cells. Crossover between two rules is
performed by selecting at random (with uniform probability) a single crossover
point and creating a new rule by combining the first rule’s string before the
crossover point with the second rule’s string from this point onward. Mutation
is applied to one position of the string of a rule with probability 0.001 per bit.

Let’s now describe the synchronization task for which solutions are evolved
for.



906 Mathieu S. Capcarrere

The task: The one-dimensional synchronization task was introduced by Das et
al. [6] and studied among others by Hordijk [10]. Sipper [17] proposed using non-
uniform CAs. In this task the CA, given any initial configuration, must reach
a final configuration, within M time steps, that oscillates between all 0s and
all 1s on successive time steps. As with the density task3, synchronization also
comprises a non-trivial computation for a small-radius CA. In the case of uniform
synchronous CA, there is a perfect r = 3 CA, in the non-uniform synchronous
case, many perfect r = 1 CAs do exist.

The fitness used for this task will be described in the forthcoming section
when appropriate.

Obviously, in the synchronous non-uniform case there is an immediate solu-
tion consisting of a unique ‘master’ rule, alternating between ‘0’ and ‘1’, whatever
the neighborhood, and all other rules being its ‘slave’ and alternating according
to its right neighbor state only. However, as I have shown elsewhere, study-
ing numerous evolution of synchronous non-uniform CA for the synchronization
task, it appeared that this “basic” solution was never found by evolution. In
fact, the “master” or “blind” rule 10101010, rule 170, was never part of the
evolved solutions. This is simply due to the fact that this rule has to be unique
for the solution to be perfect. There cannot be two of these rules in a perfect
solution. This latter observation is contradictory to the natural tendency of the
evolutionary algorithm used to create blocks of rule. See [2], chapter five for
details.

4 Co-evolution of Two-State Cellular Automata

If the evolution of asynchronous binary CA to do synchronization was tried out
in [18], there were two major differences in the model used then that lead us to
test again this kind of evolution, the results of which I am going to present now.
The first difference was that, as said before, the asynchrony was considered by
block: blocks of adjacent cells were synchronized internally but the blocks were
working asynchronously one with another. The second difference was that blocks
were almost forcedly working asynchronously, i.e., the possibility of two blocks
updating synchronously was very very low.

The evolution of binary asynchronous CA presented now was done using the
model of asynchrony presented at the end of section 2 and the evolutionary
algorithm presented above. We concentrated on r = 1, two-state non-uniform
CA, thus each cell rule is encode as an 8 bit strings. The fitness used is the classic
one for this type of evolution. After N time steps, the state in which the majority
of cells are is chosen as the goal (e.g., 1), and one point of fitness to every cell
in this state. Then the CA is updated once, and each cell in the opposite state
(e.g., 0) gets an additional point of fitness. This last step is repeated three times,
thus each cell can get a maximum of four. This is repeated on C different initial
configurations. During the evolution the value of pf was fixed. Values of 0.001,
0.005, and 0.01 were tried out for evolution. Of about 100 runs two kind of
strategies were found that are illustrated in figure 1:
3 See [4] and [3] for a rather complete computational overview of the density task.



Evolution of Asynchronous Cellular Automata 907

(a) (b)

Fig. 1. Examples of two typical strands of evolution of asynchronous two-state CAs
for the synchronization task. The CAs sizes are 159. Time is flowing down. pf is 2

159 .
While in (a) t=0 is at the top, in (b) t=312 is at the top. It demonstrates in (a) the
first type of evolutionary run encountered where the errors are corrected almost like the
starting configuration, through time, while in (b) one may see the second kind. There
the errors are corrected instantly but this always lead to the configuration ...11011...
and ...00100... leading to a fix point and degrading though time.

The two kind of strategies found by the evolutionary runs are imperfect. Ei-
ther it dealt with error through a “slow” or “instant” recovery. In the “slow”
kind errors are shifted until they are dealt with by an appropriate block. In some
way it deals with errors exactly as with any configuration converging eventually
to the perfect synchronizing cycle. However that method presents the disadvan-
tage that when pf gets a little bit higher than about 5

159 then error cumulates
themselves, thereby either creating complete chaos or to the least a huge propor-
tion of unsynchronized cell. This type is illustrated in figure 1.(a). The second
strand of evolutionary run, the “instant” kind acts totally differently. After hav-
ing reached the alternating cycle all 1s, all 0s, it corrects error instantly or in two
or three time steps at most. This behavior, that appears to be the perfect behav-
ior sought, seems to be necessitating a fatal misbehavior. If a combination of two
or three faults occur in succession in surrounding cells (the precise fatal error
depends on the evolutionary runs) it creates local fixed points ...1111010111...
or ...000101000.... which never resolves. Unfortunately this leads eventually to
complete destruction of the synchronization, as any fault occurring on the neigh-
boring cells of this zone are then never corrected. It always lead, after enough
time steps, to the global fixed point 010101010101... This actually shows that
the CAs of this kind found through evolution, though synchronizing globally
almost on all input configurations perfectly when working in the synchronous
mode, are not perfect synchronizing CAs.

It thus appears that asynchronous synchronization seems impossible to ob-
tain with binary CAs.



908 Mathieu S. Capcarrere

5 The Advantages of Redundant Cellular Automata

The relatively weak capability of binary CAs to cope with even limited asyn-
chrony called for the use of redundant CA to deal with full asynchrony. I call
redundant CA, a CA which uses more states in the asynchronous mode than
is necessary in the synchronous mode to solve the same task. The idea behind
redundancy is that the information in a CA configuration is not only the cur-
rent state and the topology, but also the timing. For instance, in a synchronous
uniform CA with rule 1844, that classifies perfectly density, a task that requires
absolutely no loss of information as shown in [3], if a block of two or more 1’s
is present at position i after t steps, it means that there are no block of white
cells between the positions i, i + t, or more exactly that the density has been
calculated for the cells i−t...i+t. Hence the information that this block carries is
not just 111 but rather a 3-tuple (111, i, t). Therefore, to deal with asynchrony, I
add redundancy to store, partially, that timing information explicitly in the state
rather than implicitly in the global synchronization as is the case in synchronous
CA. As I have shown in [2], it is possible to design, for any q-state synchronous
CA, a 3*q2-state asynchronous CA that conserves completely this information.
Thus there exists a perfect solution to asynchrony. However, this turns out to be
costly and, though it conserves perfectly the information, it does not maintain
the visual appearance of the CA.

However the task considered in this paper, the synchronization task, seems to
be the perfect example of a lossy task, i.e., there is no need to maintain absolutely
the full information present in the synchronous case to solve the problem in
the asynchronous case. The idea in evolving asynchronous redundant CA for
synchronization is thus to find a good compromise between an acceptable loss
of information and the resolution of the task, i.e, between q and 3 ∗ q2 states.

6 Co-evolution of Redundant Synchronizing Cellular
Automata

As we saw in section 4, the evolution of binary CAs does not produce very good
results on real asynchrony. Hence the question to find the good compromise on
the number of states needed, i.e., between the 2 states necessary in the syn-
chronous case, and the 3 ∗ 22 = 12 states we know to be sufficient to simulate
the synchronous CA in the asynchronous mode. I thus propose here to try to
evolve 4-state CAs.

The evolutionary algorithm used is the cellular programming algorithm pre-
sented earlier. The crossover used is the standard one-point crossover, thereby
the number of states makes no difference in that respect. The 4-state non-uniform
CA was evolved in the faulty environment. Asynchrony is then just one of the
constraints like the radius or the number of states. Each string of genomes is
tested on 100 configurations for 3 probability-of-fault values, pf = 0.001, 0.002,
4 in Wolfram’s notation



Evolution of Asynchronous Cellular Automata 909

and 1
159 . The fitness is the “same” as the one for the binary case. After 1.5 ∗N

time steps, for four steps, each cell gets a point of fitness if it alternates correctly
between 1mod2 and 0mod2. Thus I do not constrain the cycle to be all 0s and all
1s it may also be between all 2s and all 3s or any combinationon. The first state
to be in is determined by which state the majority of cells is in.

Globally the evolutionary runs are very successful, and if we consider a fitness
of 0.98 as equivalent to a fitness of 1.0 in the synchronous case5, the success rate
is equivalent to the evolution of binary CAs in the synchronous case. Figure 2
presents two successfully evolved CAs.

                        

(a) (b)

Fig. 2. Two examples of 4 state non-uniform redundant CAs found through evolution
that successfully cope with an asynchronous environment. The probability of synchrony
faults here is pf = 0.002 in the two figures. The size of the CAs is 159 and there are
400 time steps shown here. The different strategies in (a), (b) are discussed in the text.
In (a) we see a CA that settles in the cycle 0-1 while (b) shows a CA that settles in
the cycle 2-3.

It is interesting to look at the strategies found by evolution to cope with
asynchrony. As shown in Figure 2, it appears that either the CA settles into the
cycle 0,1 or the cycle 2,3 but none of the CA evolved exploited the possibility
of falling into the cycle 0,1,2,3 or anything more complex. Thus for most of the
working the CA is not really using the extra states. Nevertheless, in the two cases
above, the two unused states in the synchronized cycle are used to go from the
initial random configuration to the desired unified state. But, more importantly
from our viewpoint, each fault of synchrony, produces one or two unused states
in the next time step. This, somehow, allows the CA to “detect” the anomaly
and correct it very briefly, in the next 1,2 or 3 time steps. In the worst cases,
either a “tumor” develops briefly but is resorbed relatively quickly as in figure
2.a or the error drifts until it reaches a rule, or a group of rules able to absorb
it, (figure 2.b). It is important to note that neither the cell, nor the neighbor
5 The faults introduce necessarily some cells in the wrong state.



910 Mathieu S. Capcarrere

knows it suffered from a fault. Hence, this detection is only done through the
wrong state of the cell concerned. Tested in the synchronous mode these CAs
perfectly synchronized on “all” configurations (106 configurations tested).

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

St
N

pf

Synchronization efficiency

unmodified �

�
�
�

�

�

�
� �

designed lossy +

+++
+

+

+
+

+

designed perfect �

�

�
�

�

�
�

�
�

best evolved ×

××××

×

×

×
×

Fig. 3. The experiments were run on the same 10 random initial configurations for
10000 time steps. The CA size N is 159. The “unmodified” version is the binary non-
uniform CA that was the base used both for the “perfect” and the “lossy” method.
The “best evolved” is the one shown in Figure 2.b.

Actually if we test the best solution found by evolution (2.b), it turns out
better than the designed solutions, both the perfect and an imperfect one6, in
terms of the percentage of cells synchronized for low values of pf ’s. The test
realized was to measure the proportion of cells synchronized in the same state,
in an alternating cycle, for different values of pf ’s. This test was realized for two
reasons. First, this percentage of cell synchronized is what we are really trying to
optimize for this task. Besides an asynchronous CA with high percentages will
vissually appear similar to synchronous CAs. Interestingly, all evolved solutions
fared better for a probability of faults less than or equal to 1/N than the deigned
solution. Howver for higher pf s the perfect solution fared the best. The fact that
it does not lose information explains this fact. We can note also that the designed
lossy method, not presented here, achieves its goal of being very good for low
values of pf , however in the middle range it is worse than the evolved solution but
maintains performance better in the long run. Finally, as a control, the solution
evolved in a non faulty environment were tested. Obviously when the number of
faults is very low, by its nature, it correctly resynchronizes. Nevertheless it falls
quickly to low values as pf increases to settle down close to 0.55. We should not

6 A simple 4-state asynchronous solution to the synchronization task was designed
in [2]. It is not presented here but to put simply it was imperfect but corrected
the errors instantly, taking advantage of the knowledge about the alternating cycle
sought.



Evolution of Asynchronous Cellular Automata 911

be fooled by the lower score of the evolved 4-state solution for high pf ’s . The
unmodified version can take only 2 states and thus would fare 0.5 as the lowest
possible score, while the evolved solution can take 4 states and thus could settle
to percentages as low as 0.25. Figure 3 illustrates these results.

7 Concluding Remarks

CA asynchrony was often studied in itself in the past literature and it was often
concluded that the global behavior from a CA, the emergent behavior, was an
artifact of the global clock. This conclusion was not wrong in itself but rather
reflected a wrong standpoint on a reality. Time is part of the visual information
contained in a CA. Now if we tackle the asynchrony problem with this idea of
restoring all the information, then as said, we can design a totally asynchronous
CA that simulates exactly, with no loss of information, any synchronous CA.
However this presents two main problems. The first one is that the required
number of states is quite higher than the original number of states. The second
problem is that it is visually different from the original CA. The visual efficiency
of the original CA, the number of cell synchronised in this case, is lost.

Evolution may thus be used to limit both this problem. As presented, the
cellular programming algorithm was very successful at finding 4-state solutions
that was both economic and still leaved an acceptable visual impression. Actu-
ally, it’s all a question of the possible compromise between the information loss
and the necessity to maintain that information. The synchronization task is a
good example of a task not requiring a perfect integrity.

References

1. Hugues Bersini and Vincent Detours. Asynchrony induces stability in cellular
automata based models. In R.A. Brooks and P. Maes, editors, Proceedings of the
Artificial Life IV conference, pages 382–387, Cambridge, MA, 1994. MIT Press.

2. Mathieu S. Capcarrere. Cellular Automata and Other Cellular Systems: Design &
Evolution. Phd Thesis No 2541, Swiss Federal Institute of Technology, Lausanne,
2002.

3. Mathieu S. Capcarrere and Moshe Sipper. Necessary conditions for density clas-
sification by cellular automata. Physical Review E, 64(3):036113/1–4, December
2001.

4. Mathieu S. Capcarrere, Moshe Sipper, and Marco Tomassini. Two-state, r=1
cellular automaton that classifies density. Physical Review Letters, 77(24):4969–
4971, December 1996.

5. Robert Cori, Yves Métivier, and Wieslaw Zielonka. Asynchronous mappings and
asynchronous cellular automata. Information and Computation, 106:159–202, 1993.

6. Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson. Evolv-
ing globally synchronized cellular automata. In L. J. Eshelman, editor, Proceedings
of the Sixth International Conference on Genetic Algorithms, pages 336–343, San
Francisco, CA, 1995. Morgan Kaufmann.



912 Mathieu S. Capcarrere

7. Peter Gács. Self-correcting two-dimensionnal arrays. In Silvio Micali, editor, Ran-
domness in computation, volume 5 of Advances in Computing Research, pages
223–326, Greenwich, Conn, 1989. JAI Press.

8. Peter Gács. Reliable cellular automata with self-organization. In Proceedings of
the 38th IEEE Symposium on the Foundation of Computer Science, pages 90–99,
1997.

9. H. Hartman and Gérard Y. Vichniac. Inhomogeneous cellular automata (inca).
In E. Bienenstock et al., editor, Disordered Systems and Biological Organization,
volume F 20, pages 53–57. Springer-Verlag, Berlin, 1986.

10. Wim Hordijk. The structure of the synchonizing-ca landscape. Technical Report
96-10-078, Santa Fe Institute, Santa Fe, NM (USA), 1996.

11. T. E. Ingerson and R. L. Buvel. Structures in asynchronous cellular automata.
Physica D, 10:59–68, 1984.

12. Yasusi Kanada. Asynchronous 1d cellular automata and the effects of fluctuation
and randomness. In R.A. Brooks and P. Maes, editors, A-Life IV: Proceedings of
the Fourth Conference on Artificial Life, page Poster, Cambridge, MA, 1994. MIT
Press.

13. Dietrich Kuske. Emptiness is decidable for asynchronous cellular machines. In
C. Palamidessi, editor, CONCUR 2000, Lecture Notes in Computer Science, LNCS
1877, pages 536–551, Berlin, 2000.

14. Martin A. Nowak, Sebastian Bonhoeffer, and Robert M. May. Spatial games and
the maintenance of cooperation. Proceedings of the National Academic of Sciences
USA, 91:4877–4881, May 1994.

15. Giovanni Pighizzini. Asynchronous automata versus asynchronous cellular au-
tomata. Theoretical Computer Science, 132:179–207, 1994.

16. Birgitt Schönfisch and André de Roos. Synchronous and asynchronous updating
in cellular automata. BioSystems, 51:123–143, 1999.

17. Moshe Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming
Approach. Springer-Verlag, Heidelberg, 1997.

18. Moshe Sipper, Marco Tomassini, and Mathieu S. Capcarrere. Evolving asyn-
chronous and scalable non-uniform cellular automata. In Icannga 1997: Proceedings
of the Third Bi-Annual Conference, pages 66–70, Wien, Austria, 1998. Springer-
Verlag.

19. W. Richard Stark. Dynamics for fundamental problem of biological information
processing. International Journal of Artificial Intelligence Tools, 4(4):471–488,
1995.

20. Stephen Wolfram. Approaches to complexity engineering. Physica D, 22:385–399,
1986.

21. Wieslaw Zielonka. Notes on finite asynchronous automata. Informatique théorique
et Applications/Theoretical Infomatics and Applications, 21(2):99–135, 1987.

22. Wieslaw Zielonka. Safe executions of recognizable trace languages by asynchronous
automata. In Albert R. Meyer and Michael A. Taitslin, editors, Logic at Botik’89,
Lecture Notes in Computer Science, LNCS 363, pages 278–289, Berlin, 1989.
Springer-Verlag.



Improved Ant-Based Clustering and Sorting
in a Document Retrieval Interface

Julia Handl1 and Bernd Meyer2

1 FB Informatik, Universität Erlangen-Nürnberg
Julia.Handl@gmx.de

2 School of Computer Science, Monash University, Australia
3 bernd.meyer@acm.org

Abstract. Sorting and clustering methods inspired by the behavior of
real ants are among the earliest methods in ant-based meta-heuristics.
We revisit these methods in the context of a concrete application and in-
troduce some modifications that yield significant improvements in terms
of both quality and efficiency. Firstly, we re-examine their capability to si-
multaneously perform a combination of clustering and multi-dimensional
scaling. In contrast to the assumptions made in earlier literature, our re-
sults suggest that these algorithms perform scaling only to a very limited
degree. We show how to improve on this by some modifications of the
algorithm and a hybridization with a simple pre-processing phase. Sec-
ondly, we discuss how the time-complexity of these algorithms can be
improved. The improved algorithms are used as the core mechanism in
a visual document retrieval system for world-wide web searches.

1 Introduction

Ant-based sorting and clustering algorithms, introduced in a seminal paper by
Deneubourg [Den90] and later extended by Lumer and Faieta [LF94], were
among the first meta-heuristics to be inspired by the behavior of ants. Our inter-
est in ant-based clustering is motivated from a concrete application perspective:
we employ these methods as the core of a visual document retrieval system for
world-wide web searches to classify online documents by contents-similarity.

The capability to perform a combination of clustering and multi-dimensional
scaling [CC94], i.e. to generate a distance-preserving embedding, that has been
ascribed to ant-based algorithms appears to make them particularly well-suited
for our application. However, our experiments do not support the suggestion
in the literature that “...a certain distance preserving embedding is guaran-
teed...” [KS99] (Here the goal was a distance preserving embedding of graphs
into a metric space). Instead the results show that the original algorithms per-
form effective clustering, but have only limited capability for multi-dimensional
scaling. We demonstrate how this can be improved upon with some modifica-
tions of the algorithms and a simple pre-processing stage. We also demonstrate
modifications of the algorithms that significantly improve their run-time, making
them acceptable for interactive applications, such as online searches.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 913–923, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



914 Julia Handl and Bernd Meyer

1.1 Contents-Based Document Clustering: Topic Maps

Insufficiently specific world-wide web searches often return thousands of docu-
ments. To help the user orient in such large document collections, it has proven
useful to classify documents according to contents-similarity and to visualize the
classified document collection in the form of a topic map [Fab00]. On a topic
map semantically similar documents appear in spatial proximity, whereas unre-
lated documents are clearly separated. Documents are clustered around topics
represented by mountains in the landscape. “Height” of a document corresponds
to its relevance for the topic and topic labels serve as landmarks.

Our hybrid ant-based clustering method is the core mechanism of a fully
implemented search-interface that operates as a front-end to the popular search
engines Google and HotBot. Users specify a full text query which is passed on to
the back-end search engine. Matching documents returned by the search engine
are classified based on either a full text analysis or only on the contents of the
snippets returned by the search engine and a topic map is generated to visualize
the entire collection of documents (Fig. 1). Starting from these maps, the user
can conveniently explore the query results by browsing the documents, which are
accessed through a mouse click on their map location. Due to space limitations
this paper focuses on the clustering algorithm and will not discuss details of the
interface or the pre-processing (for details of these see [Han]).

Fig. 1. Ant-generated Topic Map (1000 documents,
Query “Melbourne”, Search Engine “Google”)

Essentially there are
two central steps involved
in generating topic maps:
(1) The documents must
be given positions in a
high-dimensional concep-
tual document space that
reflects their contents ad-
equately; (2) The doc-
ument space needs to
be embedded into the 2-
dimensional visualization
space. Ideally, this em-
bedding should combine
multi-dimensional scaling
with clustering. Cluster-
ing of the document data
helps the user to iden-
tify the main structure
and to focus on the main
topics in the collection.
Multi-dimensional scaling
is necessary, as it provides meaningful inter-cluster relations. On an ideal topic
map, clusters with similar contents should be in close proximity, while differences
in subject should be reflected by spatial distance.



Improved Ant-Based Clustering and Sorting 915

The idea of a map metaphor for document retrieval as such is not new and
quite a few interfaces that use this visualization have been proposed (see Sec-
tion 4). However, these systems have only dealt with comparatively small sets of
documents or with precompiled (offline) data. Systems that have performed fast
document classification online “on the fly”, such as [CD00,ZE99], had to resort
to simpler forms of document classification. To our knowledge, our system is the
first to generate large topic maps dynamically for online-queries.

2 Clustering versus Multi-dimensional Scaling

Let us first make precise the embedding task that the application poses. A set of
n relevant keyword terms is selected to classify the documents. Each document
is positioned in the resulting n-dimensional document space according to its use
of keywords. The k-th component of the characteristic vector for document i is
computed using normalized IDF weighting [Sal88]:

dik =
tf ik × log(ND/nk)√∑N
j=1(tf ij × log(ND/nj))2

where ND is the size of the entire document collection; ni is the number of
documents containing the specific term i; and the term frequency tf ik is tf ik =
log(fik)+1 or tf ik = 0 if fik = 0. Here fik is the frequency of word k in document
i. To reduce the dimensionality of the document space we apply Latent Semantic
Indexing [DDL+90] as a post-process. In the resulting document space, Euclidean
distance is an adequate measure of the contents-similarity of two documents.

The second step in generating a topic map is to find a distance-preserving
clustering of the high-dimensional document space into the 2-dimensional display
space. Ant-based sorting-and-clustering seems a prime candidate to compute
this kind of embedding. Let us briefly recall the original algorithm. The ants
act on a two-dimensional torus grid on which documents are initially assigned
random positions. Each grid cell can at any time only be occupied by a single
document. Ants perform two probabilistic actions. (a) Picking : if an unloaded
ant steps on a field occupied by a document, it may pick up this element; (b)
Dropping : an ant carrying a document can, at any stage, drop this element on a
free cell. At each iteration of the algorithm an ant performs a picking or dropping
action or neither according to the probabilistic decision and subsequently steps
on a randomly chosen immediately neighboring grid cell. The probability of
picking or dropping is influenced by the ant’s local perception of its environment:

pdrop(i) =
(

f(i)
kd+f(i)

)2
; ppick(i) =

(
kp

kp+f(i)

)2
where kd and kp are adjustable

parameters (kd = kp ∈ [0.01, 0.1] in our experiments) and

f(i) = max


0,

1
|S|

∑
{cij∈S|dij �=nil}

(
1− d(k, dij)

α µ

)



916 Julia Handl and Bernd Meyer

Fig. 2. Inter-cluster correlations (left) and entropy (right) (mean values for 50 runs).

where dij is the index of the document in cell cij and S is the neighborhood
around the ant’s current position (5 × 5 in our experiments). d(k, dij) is the
similarity (distance) between the document with index dij and the document
k currently carried or considered by the ant. N is the number of documents in
the collection and the scaling factor is µ = 2

N(N−1)

∑N
k=1

∑k−1
l=1 (d(k, l)). The

parameter α ∈ [0, 1] permits further adjustment of the resulting values. It will
later play a crucial role in our modifications of the algorithms.

As discussed above, the embedding to generate a proper topic map requires
(a) adequate clustering and (b) that the distances in the visualization space
strongly correlate with the distances in the document space. Do ants really gen-
erate a distance preserving embedding? In [LF94] the original algorithm was
mainly evaluated using visual observation and by measuring spatial entropy.
The quality of sorting was measured by the global fit and a dissimilarity mea-
sure. As these do not reflect the global correlation well enough, [KSL98] used
the overall Pearson Correlation (the degree of linear relationship between two
variables) as an additional performance measure. Here, correlations of up to 0.65
were reported but not analyzed further.

Importantly, it must be noted that the method is very sensitive to the choice
of α and correlations like 0.65 are only achieved with the proper choice of α.
This problem was already noted in [KSL98], but no method was suggested how
the proper α value could be found without resorting to manual experimentation.
As we will discuss later, the proper choice of α depends on the structure of the
data and the solution is to introduce an adaptive strategy.

To further analyze the performance, we measure Pearson correlation on sev-
eral levels: (1) Overall correlation of all elements; (2) Inter-cluster correlations,
where the weighted average of all cluster elements is used as cluster center;
(3) Intra-cluster correlations, which are observed by computing the correlations
for the clusters individually. In our experiments we have additionally measured
Spearman rank correlation, which is better suited to track non-linear relation-
ships. However, as the experimental results generally confirm the observations
made for the Pearson correlation, we do not report them in this paper.



Improved Ant-Based Clustering and Sorting 917

Fig. 3. Overall correlation and inter/intra cluster
correlation (original algorithm, single run, 800 el-
ement set).

In the original studies in
[LF94] good results were re-
ported for an artificial test data
set based on visual inspection.
Initially, these findings were
confirmed by the correlations
measured in our experiments.
However, more extensive exper-
iments reveal that these results
are mostly due to the simplicity
of the test data. The test data
is composed of only four nor-
mal distributed clusters (100 el-
ements each) around the centers
(0,0); (0,8); (8,0); (8,8) with an
identical standard deviation of
2 and sorted on a grid of size of
52×52. Due to this limited grid

size, the limited number of elements and the relatively good spatial separation
of the clusters, the algorithm can recover the cluster structure too easily.

In further experiments with larger grid sizes and more complex test data the
entropy is still reduced, but the data leaves very serious doubts about the quality
of the obtained embedding. The modified test data consists of four clusters of
200 elements each on a grid of size 100×100. Cluster centers are now irregularly
distributed at (0,0); (0,80); (8,0) and (30,30).

Figure 2 shows the development of overall correlation and entropy on the
modified test data set for the original algorithm and the algorithm with speed
and memory improvements (see Section 3) averaged over 50 runs. It is clearly
visible that the correlation remains very low. When analyzing the different cor-
relation types further we can see that intra-cluster correlation and overall corre-
lation both stay low. Even more interestingly, in individual runs the inter-cluster
correlation is not stabilizing but oscillates (Fig. 3). This effect is also visible in
a standard deviation of about 0.4 for the inter-cluster correlation data.

We conclude that the demands of multi-dimensional scaling for generating
topic maps cannot sufficiently be met by the original algorithms, as the distances
between individual clusters are not represented correctly. We also have to face
the problem that a suitable fixed α-value cannot be determined in advance.

3 Algorithm Modifications

We now discuss our modifications to these algorithms that improve both perfor-
mance and run-time. Lumer and Faieta already suggested two modifications to
the algorithm to improve the quality of the results: (1) Each ant keeps a short-
term memory of its most recent drop locations. This allows to bias the ant’s
movement after a pick-up in the direction of the “closest match” among the last



918 Julia Handl and Bernd Meyer

n drop locations. In [LF94] it was suggested (through visual inspection of the
results) that this modification has a significant influence on time and quality. As
expected, this suggestion is confirmed through the measurement of correlation
values. (2) Instead of using only one type of ant, an inhomogeneous population
is used which moves at different speeds (uniformly distributed). Faster ants can
skip several grid cells in one step. Each ant’s perception is coupled to its speed v,
so that slower ants make “fussier” decisions about picking and dropping, i.e. the
perception function becomes:

f(i) = max


0,

1
|S|

∑
{cij∈S|dij �=nil}

(
1− d(k, dij)

α µ v−1
Vmax

)


When introducing inhomogeneous populations in isolation, our experiments
do not reconfirm the performance gain reported in [LF94]. It appears that the
improvements were due to introducing larger stepsizes simultaneously with in-
homogeneous populations. We adopt the idea of short-term memory and use
inhomogeneous populations with the minor but crucial modification of “jumps”.
We also introduce an adaptive scaling strategy and some further modifications
to achieve reliable results and to improve the efficiency.
Adaptive scaling: The artificial test data used in the literature provide ide-
alized conditions. Due to the choice of regularly distributed cluster centers and
identical spread, inter-document distances are limited to a small range and
smoothly distributed. When conducting experiments on more difficult test sets
with irregular inter-cluster distances and standard deviations, more clusters and,
in particular, of higher dimensionality, we found that an appropriate α value
cannot be determined without a-priori knowledge of the data’s structure. In
consequence, we introduce an adaptive strategy to determine the α value for a
given data set. The sorting process starts with α = 0.1 and increases α by 0.01
up to a maximum value of 1.0 after each sequence of 250 steps in which only few
dropping or picking actions occur.

Fig. 4. Separation of Three Clusters (left:
adaptive α → 0.32, right: non-adaptive
α = 1.0)

This means that our methods
starts with a very fine distinction
between data elements and reduces
it only if necessary. In our experi-
ments, this method reliably deter-
mined suitable alpha values. Also
note that we scale similarity values
in the interval [1− maxi,jd(i,j)

α µ , 1] in-
stead of [0, 1]. Thus, negative influ-
ence of large dissimilarities is per-
mitted which leads to improved clus-
ter separation. Visual inspection of
the sorting result for a three cluster data set with irregular inter-cluster distances
in Fig. 4 shows that the adaptive strategy manages to deal well with it, whereas
the non-adaptive strategy can only separate a single cluster.



Improved Ant-Based Clustering and Sorting 919

(a) Initial scat-
tering t = 0

(b) Original
Alg. t=30,
corr=0.01

(c) Original
Alg. t=1000,
corr=0.24

(d) Improved
Alg. t=30,
corr=0.6

Fig. 5. Results on a four cluster test set (b,c: α = 1.0, d: adaptive α→ 1.0).

Jumps: Experiments show that the use of inhomogeneous populations only leads
to significant improvements in runtime and sorting quality if used with very
large speed values (up to 50% of the grid size), as the ants’ large steps favor
the dissolution of preliminary small clusters. The interesting aspect here is that
this introduces “jumping” ants and the smooth moving of an agent through
a continuous space is transformed into a form of more global sampling with
directional bias.
Stagnation control: With complex data, early stagnation of the whole clus-
tering process can be a problem. This is caused by outliers in the data sets.
Due to their high dissimilarity to all other data elements, agents do not man-
age to dispose of these items once they had been picked. This results in blocked
ants performing random walks on the grid without contributing to the sorting
process. Similar to [MSV99], we therefore use a failure counter for each ant. Af-
ter 100 unsuccessful dropping attempts an ant drops its load regardless of the
neighborhood’s similarity.
Eager ants: In the original algorithm, ants often spend large amounts of time
searching for new documents to pick up. To prevent this time-consuming search
we couple each ant with a new document immediately after it drops its load. As
soon as this happens, the ant randomly chooses a document from the index of
all non-carried documents, moves to its position and tries to pick it up. Failure
results in the random choice of another document.

3.1 Evaluation

A comparison of the improved algorithm with the original version shows a sig-
nificant improvement of both sorting quality and time. As shown in Figure 5,
both algorithms start at t = 0 with a random disorder of data elements on the
grid. The slow clustering progress for the original algorithm can be observed in
Figure 5b and Figure 5c. Only little clustering has been obtained after 30 itera-
tions (one iteration consists of 10000 individual actions) and even for t = 1000
the four clusters within the data have not been correctly identified. The modified
version, in contrast, reliably determines the four main clusters within the first
30 iterations. The corresponding spatial ordering of the test data can be seen in
Figure 5d.



920 Julia Handl and Bernd Meyer

Fig. 6. Performance gain for all improvements (top left) and using only memory and
inhomogeneous populations (bottom left). Overall correlation for both algorithms (top
right) and individual correlations types for improved algorithm (bottom right). Mean
values for 50 runs.

Fig. 7. Overall correlation for four versions of algo-
rithms on 4× 200 test data (mean of 50 runs).

These differences in per-
formance are reflected by the
analytical performance mea-
surements. While the mod-
ified ant-algorithm improves
the overall correlation signifi-
cantly and is soon close to con-
vergence, the plots for the orig-
inal algorithm show only little
improvement in the same run-
time (Fig. 7).

A comparison of differ-
ent versions of the algorithm
further isolates the effect of
our newly introduced modifi-

cations from that of memory and inhomogeneous populations alone (Fig. 6).
Overall correlation and cluster identification are clearly improved for the full



Improved Ant-Based Clustering and Sorting 921

version. Unfortunately, it has to be noted that the achievable inter-cluster cor-
relations are not superior.

Fig. 8. Dense data: correlation=0.60 (α→
0.7, t = 100)

The quality of sorting if there
are no distinct clusters in the data
deserves individual assessment. For
better visual observation we use a
test set merely consisting of one
cluster with uniformly distributed
elements (Fig. 8). Nine different re-
gions within the distribution are col-
ored (left) so that the reconstruction
of the order within the cluster can be
observed (right). A visual inspection
indicates that the algorithm is relatively successful in reproducing the approxi-
mate color ordering within the data. Exact measurement shows that the correla-
tion for this test data rarely exceeds 0.7, but given that the goal of our algorithms
is to generate embeddings for visual inspection only, it can be argued that this
correlation is sufficient. This experiment suggests that it could be possible to
achieve better intra-cluster correlations by adding a second stage of sorting in
which ants with small step sizes are confined to move within each cluster.

3.2 Pre-processing

From above we see that the modified algorithm achieves reasonable overall cor-
relations, but that the inter-cluster correlations are not sufficient for the purpose
of topic-map generation. To obtain proper inter-cluster distances, we can exploit
the fact that document positions are comparatively stable in regard to their ini-
tial positions. This allows us to initialize the clustering algorithm with an approx-
imate (unclustered) embedding. While computing an optimal multi-dimensional
scaling is a computationally hard problem, it is relatively easy to compute an
approximate scaling that is sufficient for visual inspection. We do this with a
straight-forward algorithm adopted from [NL01] which iteratively minimizes the
sum-squared error between the distances dij in document space and the dis-
tances d′ij in the two-dimensional map space updating the positions pj via the

gradient descent rule: pjk ← pjk− lr(dmj−d′mj)
d′
mj

abs(pjk− pmk)sign(pjk− pmk) for

each dimension (k = 1, 2) independently. lr is the learning rate (typically 0.05).
The minimization stops when the increase of the Pearson correlation between dij
and d′ij falls under a pre-defined threshold. Clustering starts from the approx-
imate scaling, which results in significantly improved correlation values of the
final embedding. For the four-cluster test set an average inter-cluster correlation
of almost 0.9 is obtained, improving the overall correlation to about 0.7.



922 Julia Handl and Bernd Meyer

4 Related Work

The first ant-based sorting algorithm was presented by Deneuborg [Den90] and
was designed for collaborative robotics. In this work, only binary classification
was addressed. Lumer and Faeita [LF94] later extended these ideas to clustering
more complex data sets based on continuous similarity functions. Modified ver-
sions of this algorithm have later been applied to graph clustering, focusing in
particular on applications in VLSI [KS94,KLS97,KS99,KSL98]. For an extensive
survey of different ant-based meta-heuristics which are based on pheromone-trail
communication, the interested reader is invited to refer to [CDG99].

The idea of using a map metaphor for visualizing contents similarity has
some tradition and a full survey is beyond the scope of this paper. The idea
was originally introduced by Chalmers [Cha93] and later picked up in other
projects, among them the commercial systems Cartia (www.aurigin.com), Spire
(showcase.pnl.gov) and Kartoo (www.kartoo.com), Lighthouse [LA00] and
others. A recent HCI study clearly shows that a landscape metaphor can help to
significantly enhance user performance in search tasks [Fab00]. A significant pro-
portion of systems that generate such visualization has relied on self-organizing
maps. Since generating topic maps with self-organizing maps requires compu-
tation times that are prohibitive in an interactive setting [Lag00], we decided
to investigate ant-based sorting/clustering as an alternative. To the best of our
knowledge, this is the first system to generate large topic maps for several thou-
sand documents in an interactive setting. Ant-based clustering for a map of 4200
documents, for example, takes 29 seconds on a 997MHz Pentium-III running
JDK 1.4.1 and would be considerably faster in an optimized C implementation.

5 Conclusions

We have re-examined ant-based sorting and clustering methods in the context
of a real-life application and demonstrated modifications of the algorithms that
yield significant improvements in terms of quality and speed.

It is obvious that we have sacrificed most of the original methods’ biological
plausibility for the performance improvements. However, this should not concern
us, as we are not trying to analyze the behavior of real insects, rather we use
their behavior as inspiration for the design of an efficient meta-heuristics. In fact,
lifting the restrictions imposed by real physical systems (and therefore sacrificing
the biological plausibility) leads to some interesting insights: for example, an
intuitive explanation of why ant-based sorting works well may assume that the
coherence of the space in which the ants operate is crucial to the function of the
algorithms. As it turns out with the introduction of jumps, this is not the case.

The use of a stochastic algorithm in a query system poses challenging ques-
tions concerning query refinement (incrementallity) and query repetition (stabil-
ity) which we are planning to investigate. Our evaluation of the algorithm was
mainly based on measurements for artificial test data and on visual observation
for real query data. Clearly, a thorough evaluation for real test data as well as
user studies are important question to be addressed in the future.



Improved Ant-Based Clustering and Sorting 923

References

CC94. T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman & Hall,
1994.

CD00. Hao Chen and Susan Dumais. Bringing order to the web. In ACM CHI,
The Hague, April 2000.

CDG99. D. Corne, M. Dorigo, and F. Glover, editors. New Ideas in Optimization,
chapter 2: The Ant Colony Optimization Meta-Heuristic, pages 379–387.
McGraw-Hill International (UK) Limited, 1999.

Cha93. M. Chalmers. Using a landscape metaphor to represent a corpus of docu-
ments. In A. Frank and I. Campari, editors, Spatial Information Theory: A
Theoretical Basis for GIS, pages 377–390. Springer-Verlag, September 1993.

DDL+90. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

Den90. J. L. Deneuborg. The dynamics of collective sorting. robot-like ants and
ant-like robots. In 1st International Conference on Simulation of Adaptive
Behaviour: From animals to animats 1, pages 356–363. MIT Press, Mai
1990.

Fab00. S. I. Fabrikant. Spatial Metaphors for Browsing Large Data Archives. PhD
thesis, Department of Geography, University of Colorado, 2000.

Han. J. Handl. Visualising internet-queries using ant-based heuristics. Honours
Thesis. Dept. of Computer Science, Monash University, Australia. 2001.

KLS97. P. Kuntz, P. Layzell, and D. Snyers. A colony of ant-like agents for parti-
tioning in VLSI technology. In 4th European Conference on Artificial Life.
MIT Press, July 1997.

KS94. P Kuntz and D. Snyers. Emergent colonization and graph partitioning. In
3rd International Conference on Simulation of Adaptive Behaviour: From
Animals to Animats 3. MIT Press, April 1994.

KS99. P. Kuntz and D. Snyers. New results on an ant-based heuristic for high-
lighting the organization of large graphs. In 99 Congress on Evolutionary
Computation, pages 1451–1458. IEEE Press, July 1999.

KSL98. P. Kuntz, D. Snyers, and P. Layzell. A stochastic heuristic for visualising
graph clusters in a bi-dimensional space prior to partitioning. Journal of
Heuristics, 1998.

LA00. A. Leuski and J. Allan. Lighthouse: Showing the way to relevant informa-
tion. In IEEE Information Vizualization, Salt Lake City, October 2000.

Lag00. K. Lagus. Text Mining with the WEBSOM. PhD thesis, Department of
Computer Science and Engineering, Helsinki University of Technology, 2000.

LF94. E. Lumer and B. Faieta. Diversity and adaption in populations of clustering
ants. In 3rd International Conference on Simulation of Adaptive Behaviour:
From Animals to Animats 3. MIT Press, July 1994.

MSV99. N. Monmarche, M. Slimane, and G. Venturini. On improving clustering
in numerical databases with artificial ants. In Advances in Artificial Life
(ECAL’99), LNAI 1674. Springer-Verlag, 1999.

NL01. D. J. Navarro and M. D. Lee. Spatial visualisation of document similarity.
In Defence Human Factors Special Interest Group Meeting, August 2001.

Sal88. G. Salton. Automatic Text Processing. Addison-Wesley, New York, 1988.
ZE99. O. Zamir and O. Etzioni. Grouper: A dynamic clustering interface to web

search results. In 8th World Wide Web Conference, Toronto, May 1999.



J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 924–933, 2002.
© Springer-Verlag Berlin Heidelberg 2002

An Adaptive Flocking Algorithm for Spatial Clustering

Gianluigi Folino and Giandomenico Spezzano

ICAR-CNR
Via Pietro Bucci cubo 41C

 c/o DEIS, Università della Calabria, 87036 Rende (CS), Italy
{folino,spezzano}@isi.cs.cnr.it

Abstract. This paper presents a parallel spatial clustering algorithm based on
the use of new Swarm Intelligence (SI) techniques. SI is an emerging new area
of research into Artificial Life, where a problem can be solved using a set of
biologically inspired (unintelligent) agents exhibiting a collective intelligent
behaviour. The algorithm, called SPARROW, combines a smart exploratory
strategy based on a flock of birds with a density-based cluster algorithm to
discover clusters of arbitrary shape and size in spatial data. Agents use modified
rules of the standard flock algorithm to transform an agent into a hunter
foraging for clusters in spatial data. We have applied this algorithm to two
synthetic data sets and we have measured, through computer simulation, the
impact of the flocking search strategy on performance. Moreover, we have
evaluated the accuracy of SPARROW compared to the DBSCAN algorithm.

1 Introduction

Clustering spatial data is the process of grouping similar objects according to their
distance, connectivity, or their relative density in space [1]. Spatial clustering has
been an active area of research into data mining, with many effective and scalable
clustering methods developed. These methods can be classified into partitioning
methods [2], hierarchical methods [3,4], density-based methods [5], and grid-based
methods [6]. Han, Kamber, and Tung’s paper [7] is a good introduction to this
subject.

Recently, other algorithms based on biological models have been proposed to solve
the clustering problem. These algorithms are characterized by the interaction of a
large number of simple agents sensing and changing their environment locally. They
exhibit complex, emergent behaviour that is robust compared to the failure of
individual agents. Ants colonies, flocks of  birds, termites, swarms of bees etc. are
agent-based insect models that exhibit a collective intelligent behaviour (swarm
intelligence) [8] and may be used to define new algorithms of clustering.

In one of the first studies related to this domain, due to Deneubourg et al. [9], a
population of ant-like agents randomly moving onto a 2D grid are allowed to move
basic objects so as to classify them. This method was further developed by Lumer and
Faietta [10] with simple objects that represent records in a numerical data set, and by
Kuntz and Snyers [11] who analyzed a real clustering problem in order to efficiently
resolve an optimization problem. Monmarchè et al. [12] exploit this existing work
from the knowledge discovery point of view with the aim of solving real world



An Adaptive Flocking Algorithm for Spatial Clustering      925

problems.  They introduce a more robust heuristics based on stochastic principles of
an ant colony in conjunction with the deterministic principles of the Kmeans
algorithm. A flocking algorithm has been proposed by Macgill and S. Openshaw
[13,14] as a form of effective search  strategy to perform an exploratory geographical
analysis. The method takes advantage of the parallel search mechanism a flock
implies, by which if a member of a flock finds an area of interest the mechanics of the
flock will drive other members to scan that area in more detail.

In this paper, we present a parallel spatial clustering algorithm SPARROW
(SPAtial ClusteRing AlgoRithm thrOugh SWarm Intelligence), which is based on an
adaptive flocking algorithm combined with a density-based cluster algorithm, to
discover clusters of arbitrary shape and size in spatial data. SPARROW uses the
stochastic and exploratory principles of a flock of birds for detecting clusters in
parallel according to the density-based principles of the DBSCAN algorithm, and a
parallel iterative procedure to merge the clusters discovered.

SPARROW is a multi-agent algorithm where agents use modified rules of
Reynolds’ standard flock algorithm [15] to transform an agent into a hunter foraging
for clusters in spatial data. Each agent searches the clusters in parallel and, by
changing colour, signals the presence or the lack of significant patterns in the data to
other flock members. The entire flock then moves towards the agents (attractors) that
have discovered interesting regions, in order to help them, avoiding the uninteresting
areas that are instead marked as obstacles. Moreover, each agent has a variable speed,
though sharing a common minimum and maximum with the others. An agent will
speed up in order to leave an empty or uninteresting region, whereas it will slow
down in order to investigate an interesting region more carefully. The variable speed
introduces an adaptive behaviour in the algorithm. In fact, the agents adapt their
movement by changing their behaviour (speed) according to their previous experience
represented by the agents which have stopped to signal an interesting region or an
empty one.

We have built a Starlogo [16] simulation of SPARROW to investigate the
interaction of the parameters that characterize the algorithm. The first experiments
showed encouraging results and a better performance of SPARROW in comparison
with the standard flock search and the linear randomised search.

The remainder of this paper is organized as follows: section 2 briefly presents the
heuristics of the DBSCAN algorithm used for discovering clusters in spatial data,
section 3 introduces the classical flocking algorithm and presents the SPARROW
algorithm; section 4 discusses the obtained results while section 5 draws some
conclusions and refers to future work.

2 The DBSCAN Algorithm

One of the most popular spatial clustering algorithms is DBSCAN, which is a
density-based spatial clustering algorithm. A complete description of the algorithm
and its theoretical basis is presented in the paper by Ester et al. [17]. In the following
we briefly present the main principles of DBSCAN. The algorithm is based on the
idea that all points of a data set can be regrouped into two classes: clusters and noise.
Clusters are defined as a set of dense connected regions with a given radius (Eps) and
containing at least a minimum number (MinPts) of points. Data are regarded as noise



926      Gianluigi Folino and Giandomenico Spezzano

if  the number of points contained in a region falls below a specified threshold. The
two parameters, Eps and MinPts, must be specified by the user and allow to control
the density of the cluster  that must be retrieved. The algorithm defines two different
kinds of points in a clustering: core points and non-core points. A core point is a point
with at least MinPts number of points in an Eps-neighborhood of the point. The non-
core points in turn are either border points if are not core points but are density-
reachable from another core point or noise points if they are not core points and are
not density-reachable from other points. To find the clusters in a data set, DBSCAN
starts from an arbitrary point and retrieves all points with the same density reachable
from that point using Eps and MinPts as controlling parameters. A point p is density
reachable from a point q if the two points are connected by a chain of points such that
each point has a minimal number of data points, including the next point in the chain,
within a fixed radius. If the point is a core point, then the procedure yields a cluster. If
the point is on the border, then DBSCAN goes on to the next point in the database and
the point is assigned to the noise. DBSCAN builds clusters in sequence (that is, one at
a time), in the order in which they are encountered during space traversal. The
retrieval of the density of a cluster is performed by successive spatial queries. Such
queries are supported efficiently by spatial access methods such as R*-trees.

3 A Multi-agent Spatial Clustering Algorithm

In this section, we will present the SPARROW algorithm which combines the
stochastic search of an adaptive flocking with the DBSCAN heuristics for discovering
clusters in parallel. SPARROW replaces the DBSCAN serial procedure for clusters
identification with a multi-agent stochastic search that has the advantage of being
easily  implementable on parallel computers and is robust compared to the failure of
individual agents.

We will first introduce Reynolds’ flock of birds model to describe the movement
rules of the agents from which SPARROW takes inspiration. Then we will illustrate
the details of the behavioral rules of the agents that move through the spatial data
looking for clusters and communicating their findings to each other.

3.1 The Flock Algorithm

The flock algorithm was originally devised as a method for mimicking the flocking
behavior of birds on a computer both for animation and as a way to study emergent
behavior. Flocking is an example of emergent collective behavior: there is no leader,
i.e., no global control. Flocking behavior emerges from the local interactions. In the
flock algorithm each agent has direct access to the geometric description of the whole
scene, but reacts only to flock mates within a certain small radius. The basic flocking
model consists of three simple steering behaviours:

Separation. gives an agent the ability to maintain a certain distance from others
nearby. This prevents agents from crowding too closely together, allowing them to
scan a wider area.



An Adaptive Flocking Algorithm for Spatial Clustering      927

Cohesion. gives an agent the ability to cohere (approach and form a group) with other
nearby agents. Steering for cohesion can be computed by finding all agents in the
local neighbourhood and computing the average position of the nearby agents. The
steering force is then applied in the direction of that average position.

Alignment. gives an agent the ability to align with other nearby characters. Steering
for alignment can be computed by finding all agents in the local neighbourhood and
averaging together the ‘heading’ vectors of the nearby agents.

3.2 SPARROW: A Flocking Algorithm for Spatial Clustering

SPARROW is a multi-agent adaptive algorithm able to discover clusters in parallel. It
uses a modified version of standard flocking algorithm that incorporates the capacity
for learning that can find in many social insects. In our algorithm, the agents are
transformed into hunters with a foraging behavior that allow them to explore the
spatial data while searching for clusters.

SPARROW starts with a fixed number of agents that occupy a randomly generated
position. Each agent moves around the spatial data testing the neighborhood of each
location in order to verify if the point can be  identified as a core point. In case it can,
all points of the neighborhood of a core point are given a temporary label. These
labels are updated as multiple clusters take shape concurrently. Contiguous points
belonging  to the same cluster take the label corresponding to the smallest label in the
group of contiguous points.

Each agent follows the rules of movement described in Reynolds’ model. In
addition, our model considers four different kinds of agents, classified on the basis of
the density of data in their neighborhood. These different kinds are characterized by a
different color: red, revealing a high density of interesting patterns in the data, green,
a medium one, yellow, a low one, and white, indicating a total absence of patterns.
The main idea behind our approach is to take advantage of the colored agent in order
to explore more accurately the most interesting regions (signaled by the red agents)
and avoid the ones without clusters (signaled by the white agents).  Red and white
agents stop moving in order to signal this type of regions to the others, while green
and yellow ones fly to find more dense clusters. Indeed, each flying agent computes
its heading by taking the weighted average of alignment, separation and cohesion.

The following are the main features which make our model different from Reynolds’:

 Alignment and cohesion do not consider yellow boids, since they move in a not
very attractive zone.

 Cohesion is the resultant of the heading towards the average position of the green
flockmates (centroid), of the attraction towards reds, and of the repulsion from
whites, as illustrated in figure 1.

 A separation distance is maintained from all the boids, apart from their color.

In the following we use the Starlogo language to describe our algorithm and to
perform the simulations. SPARROW consists of a setup phase and a running phase
shown in Figure 2. During the setup phase agents are created, data are loaded, some
general settings are made and the turtles choose their color. In the running phase four



928      Gianluigi Folino and Giandomenico Spezzano

distinct procedures are repeated by each turtle for a fixed number of times
(MaxNumberOfGenerations). In fact, ask-turtles is a StarLogo instruction that makes
all the turtles execute a procedure in parallel and waits for the completion of the
operation before continuing.

Fig. 1. Cohesion.

The choiceColor procedure chooses the color and the speed of the boid with regard
to the local density of the clusters in the data. It is based on the same parameters used
in the DBSCAN algorithm: MinPts, the minimum number of points to form a cluster
and Eps, the maximum distance that the agents can look at. In practice, the agent
computes the density (localdensity) in a circular neighborhood (with a radius
determined by its limited sight) and then executes the following instructions:

if  localdensity > MinPts [set color red set speed 0]
if  MinPts/4 < localdensity < MinPts [set color green set speed 1]
if  0 < localdensity < MinPts/4 [set color yellow set speed 2]
if  localdensity = 0 [set color white set speed 0]

Thus, red and white boids will stop indicating interesting and desert regions to the
others, while greens will move more slowly than yellows since they will explore
denser zones of clusters.  In the running phase, the yellow and green agents will
compute their heading, according to the rules previously described, and will move
following this direction and with the speed corresponding to their color. Afterwards,
they will compute their new color, deriving from the movement. According to
whether they have become red or white, a new boid will be generated in order to
maintain a constant number of turtles exploring the data. In case the turtle falls in the
same position of an older it will die.

At this point red boids will run the mergeColor procedure, which will merge the
neighboring clusters. The merging phase considers two different cases: when we have
never visited points in the circular neighborhood and when we have points belonging
to different clusters. In the first case, the points will be labeled and will constitute a
new cluster; in the second case, all the points will be merged into the same cluster, i.e.
they will get the label of the cluster discovered first.

centroid

resultant

ignore it
White

Yellow

Green

Red



An Adaptive Flocking Algorithm for Spatial Clustering      929

Fig. 2. Starlogo code of the setup and run procedure of Sparrow.

Fig. 3. The cage effect.

The last part of code invoked by ask-turtles was added to the original algorithm to
avoid a ‘cage effect’ (see figure 3), which occurred during the first simulations; in
fact, some boids could remain trapped inside regions surrounded by red or white
boids and would have no way to go out, wasting useful resources for the exploration.
So, a limit was imposed on their life; hence, when their age exceeded a determined
value (maxLife) they were made to die and were regenerated in a new randomly
chosen position of the space.

  
    To setup 
   import-data;  
 load  the data and the clusters; 
      create-turtles number ; 
     create turtles in random positions 
      . . . . . . 
      ask-turtles [choiceColor]  
      . . . . . . . 
  end 

To run 
   repeat MaxNumberofGenerations [ 
    
    ask-turtles[if color = green or color = yellow [computeDir] 
 
    ask-turtles[if color = green or color = yellow  

 [move choiceColor 
  if color = red or color = white 
   [generateNewBoid  
 if count-turtles-here > 1 [die]]] 

ask-turtles [if color = red [mergeCluster]] 
     
    ask-turtles[if color = green or color = yellow  
         [set age age + 1 
       if age > maxLife [ generateNewBoid die ]]] 
          
      ] ;end repeat 
 
  end ; run procedure



930      Gianluigi Folino and Giandomenico Spezzano

4 Experimental Results

We evaluated the accuracy of the solution supplied by SPARROW in comparison
with the one of DBSCAN and the performance of the search strategy of SPARROW
in comparison with the standard flocking search strategy and with the linear
randomized search. Furthermore, we evaluated the impact of the number of agents on
foraging for clusters performance. To this purpose, we implemented the three
different search strategies in Starlogo and compared their performance with a publicly
available version of DBSCAN. For the experiments we used two synthetic data sets.
The structure of these data sets is shown in figure 4(a) and 4(b). The first data set,
called GEORGE, consists of  5463 points. The second data set, called DS4, contains
8843 points. Each point of the two data sets has two attributes that define the x and y
coordinates. Furthermore, both data sets have a considerable quantity of noise.

     

(b) DS4: 8000 points  (a) GEORGE: 5463 points  

Fig. 4. The two data sets used in our experiments.

Although DBSCAN and SPARROW produce the same results if we examine all
points of the data set, our experiments show that SPARROW can obtain, with an
accuracy greater than 95%, the same number of clusters with a slightly smaller
number of points for each cluster using a smaller number of spatial queries. The same
results cannot be obtained by DBSCAN because of the different strategy of attribution
of the points to the clusters. In fact, if we stop DBSCAN before which it has
performed the spatial queries on all the points, we should obtain a correct number of
points for the clusters already individuated and probably a smaller number of points
for the cluster that we were building but of course we will not discover all the
clusters. Table 1 and table 2 show, for the two data sets, the number of clusters and
the number of points for each cluster found by DBSCAN and SPARROW and the
relative error associated with each cluster. In particular, for the GEORGE data set
each cluster found in SPARROW has a number of points that is about 2 percent lower
than that discovered by DBSCAN and for the DS4 data set about the 3 percent.

The spatial queries performed by SPARROW, with 200 time steps, are for the
GEORGE data set  about the 27 percent of those performed by DBSCAN and for the
DS4 dataset about the 45 percent.



An Adaptive Flocking Algorithm for Spatial Clustering      931

Table 1. Number of clusters and number of points for clusters for GEORGE data set.

Table 2. Number of clusters and number of points for clusters for DS4 data set.

Number
of clusters

Number of
points for cluster

(SPARROW)

Number of
points for

cluster
(DBSCAN)

Relative
error

(percent)

1 844 876 -3.65%
2 920 928 -0.86%
3 216 220 -1.82%
4 1866 1924 -3.01%
5 522 534 -2.25%
6 491 502 -2.19%
7 278 291 -4.47%
8 2308 2406 -4.07%
9 272 280 -2.86%

To verify the effectiveness of the search strategy we have compared SPARROW
with the random-walk search (RWS) strategy of the standard flock algorithm and with
the linear randomized search (LRS) strategy. Figure 5 gives the number of clusters
found through the three different strategies in 250 time steps for the DS4 data set.
Figure 5 reveals that the number of clusters discovered at time step 65 from RWS and
LRS strategy is slightly higher than that of SPARROW. From time step 66 to 110 the
behavior of  SPARROW is better than that of RWS but worse than LRS. SPARROW
presents a superior behavior on both the search strategies after the 110 time step
because of the adaptive behavior of the algorithm that allows agents to learn on their
previous experience. A similar behaviour is also present in the GEORGE data set.
Finally, we present the impact of the number of agents on the foraging for clusters
performance. Figure 6 gives, for the DS4 data set, the number of clusters found in 250
time steps for 25, 50 and 100 agents. A comparative analysis reveals that a 100-agents
population discovers a larger number of clusters than the other two populations with a
smaller number of agents.

This scalable behaviour of the algorithm determines a faster completion  time
because a smaller number of iterations  are necessary to produce the solution.

Number
of clusters

Number of
points for cluster

(SPARROW)

Number of
points for

cluster
(DBSCAN)

Relative
error

(percent)

1 832 848 -1.89%
2 690 706 -2.27%
3 778 800 -2.75%
4 782 815 -4.05%
5 814 818 -049%
6 712 718 -0.84%



932      Gianluigi Folino and Giandomenico Spezzano

Fig. 5. Number of clusters found for  the DS4 dataset.

Fig. 6.  The impact of the number of agents on foraging for clusters strategy.

5 Conclusions

In this paper, we have described the parallel clustering algorithm SPARROW, which
is based on the use of swarm intelligence techniques. The algorithm combines a smart
exploratory strategy based on a flock of birds with a density-based cluster algorithm
to discover clusters of arbitrary shape and size in spatial data. The algorithm has been
implemented in STARLOGO and compared with DBSCAN using two synthetic data
sets. Measures of accuracy of the results show that SPARROW exhibits the same
behaviour of DBSCAN although it needs a smaller number of spatial queries.
Moreover, the adaptive search strategy of SPARROW is more efficient than those of
the random-walk search (RWS) strategy of the standard flock algorithm and of the
linear randomized search (LRS).

References

1. Han J., Kamber M., Data Mining: Concepts and Techniques, Morgan Kaufmann  2000.
2. Kaufman L., Rousseeuw P. J., Finding Groups in Data: An Introduction to Cluster

Analysis, John Wiley & Sons, 1990.
3. Karypis G., Han E., Kumar V.,: CHAMELEON: A Hierarchical Clustering Algorithm

Using Dynamic Modeling, IEEE Computer, vol. 32, pp.68-75, 1999.



An Adaptive Flocking Algorithm for Spatial Clustering      933

4. Zhang T., Ramakrishnan R., Livny M.: Birch: A New Data Clustering Algorithm and its
Applications, in: Data Mining and Knowledge Discovery, vol. 1, n.2, pp. 141-182, 1997.

5. Sander J., Ester M., Kriegel H.-P., Xu X.: Density-Based Clustering in Spatial Databases:
The Algorithm GDBSCAN and its Applications, in: Data Mining and Knowledge
Discovery, vol. 2, n. 2, pp. 169-194, 1998.

6. Wang W., Yang J., Muntz R., STING: A Statistical Information Grid Approach to Spatial
Data Mining, Proc. of Int. Conf. Very Large Data Bases (VLDB’97), pp. 186-195, 1997.

7. Han J., Kamber M., Tung A.K.H., Spatial Clustering Methods in Data Mining: A Survey,
H. Miller and J. Han (eds.), Geographic Data Mining and Knowledge Discovery, Taylor
and Francis, 2001.

8. Bonabeau E., Dorigo M., Theraulaz G., Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press, 1999.

9. Deneubourg J. L., Goss S., Franks, N., Sendova-Franks A., Detrain C., and Chretien L.,
The Dynamic of Collective Sorting Robot-like Ants and Ant-like Robots, Proc. of the first
Conf. on Simulation of Adaptive Behavior, J.A. Meyer et S.W. Wilson (Eds), MIT
Press/Bradford Books, pp. 356-363, 1990.

10. Lumer E. D., Faieta B., Diversity and Adaptation in Populations of Clustering Ants, Proc.
of the third Int. Conf. on Simulation of Adaptive Behavior: From Animals to Animats
(SAB94), D. Cliff, P. Husbands, J.A. Meyer, S.W. Wilson (Eds), MIT-Press, pp. 501-508,
1994.

11. Kuntz P. Snyers D., Emergent Colonization and Graph Partitioning, Proc. of the third Int.
Conf. on Simulation of Adaptive Behavior: From Animals to Animats (SAB94), D. Cliff, P.
Husbands, J.A. Meyer, S.W. Wilson (Eds), MIT-Press, pp. 494-500, 1994.

12. N. Monmarché, M. Slimane, and G. Venturini, “On improving clustering in numerical
databases with artificial ants”, in Advances in Artificial Life: 5th European Conference,
ECAL 99, LNCS 1674, Springer, Berlin, pp. 626-635, 1999.

13. Macgill, J., Openshaw, S., The use of Flocks to drive a Geographic Analysis Machine, in
Proc. of the 3rd Inter. Conf. on GeoComputation, University of Bristol, UK, 1998.

14. James Macgill, Using Flocks to Drive a Geographical Analysis Engine, Artificial Life VII:
Proceedings of the Seventh International Conference on Artificial Life, MIT Press, Reed
College, Portland, Oregon,  pp. 1-6, 2000.

15. Reynolds C. W., Flocks, Herds, and Schools: A Distributed Behavioral Model, Computer
Graphics vol. 21, n. 4, , (SIGGRAPH 87), pp. 25-34, 1987.

16. V. S. Colella, E. Klopfer, M.  Resnick, Adventures in Modeling: Exploring Complex,
Dynamic Systems with StarLogo, Teachers College Press, 2001.

17. Ester M., Kriegel H.-P., Sander J., Xu X., A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining (KDD-96), Portland, OR, 1996, pp. 226-231, 1996.



Evolution of Asynchronous Cellular Automata
for the Density Task

Marco Tomassini and Mattias Venzi

Computer Science Institute, University of Lausanne
1015 Lausanne, Switzerland

Abstract. The evolution of asynchronous automata for the density task
is presented and compared with the evolution of synchronous automata.
We describe the influence of various asynchronous update policies on the
computational strategy. We also investigate how synchronous and asyn-
chronous cellular automata behave when the update policy is gradually
changed, showing that asynchronous cellular automata are more robust.

1 Introduction

Cellular automata(CAs) are discrete dynamical systems that have been studied
theoretically for years due to their architectural simplicity and wide spectrum of
behaviors [12]. In this work we concentrate on the commonly assumed hypothesis
of simultaneous updating of the CA cells that is, the synchronicity of the CA.
This update mode is interesting because of its conceptual simplicity and because
it is easier to deal with in mathematical terms. However, perfect synchronicity is
only an abstraction: if CAs are to model physical or biological situations or are to
be considered physically embodied computing machines then the synchronicity
assumption is untenable. For the latter case, in any spatially extended system
signals cannot travel faster than light. Hence, it is impossible for a signal emitted
by a global clock to reach any two computing elements at exactly the same
time. In this study we relax the synchronicity constraint and work with various
kinds of asynchronous CA updating modes on a well-known problem: density
classification by a CA. The few existing studies on asynchronous CAs have shown
that asynchronous update often gives rise to completely different time evolutions
for the CA. For instance, cyclic attractors are no longer possible and generally
there is a loss of the rich structures commonly found in synchronous CAs (see
e.g. [2,6,4]).

The paper is organized as follows. The following section 2 summarizes def-
initions and facts about standard CAs and their asynchronous counterparts.
Section 3 deals with the artificial evolution of asynchronous CAs for the density
task and compares their behavior and solution strategies with those of known
synchronous CAs. Section 4 presents the results of studying the behavior of
synchronous CAs when the environment becomes gradually asynchronous and,
respectively, of asynchronous CAs that become progressively more synchronous.
Section 5 presents our conclusions and hints to further work and to open ques-
tions.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 934–943, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Evolution of Asynchronous Cellular Automata for the Density Task 935

2 Synchronous and Asynchronous Cellular Automata

Cellular automata are dynamical systems in which space and time are discrete. A
standard cellular automaton consists of an array of cells, each of which can be in
one of a finite number of possible states, updated synchronously in discrete time
steps, according to a local, identical interaction rule. Here we will only consider
Boolean automata for which the cellular state s ∈ {0, 1}. The state of a cell at the
next time step is determined by the current states of a surrounding neighborhood
of cells. The regular cellular array (grid) is d-dimensional, where d = 1, 2, 3 is
used in practice; in this paper we shall concentrate on d = 1 i.e., one-dimensional
grids. The identical rule contained in each cell is usually specified in the form
of a rule table with an entry for every possible neighborhood configuration of
states. For one-dimensional CA, a cell is connected to r local neighbors (cells) on
either side; each cell thus has 2r + 1 neighbors. When considering a finite-sized
grid, spatially periodic boundary conditions are frequently applied, resulting in
a circular grid for the one-dimensional case. The term configuration refers to an
assignment of ones and zeros at a given time step

There are many ways for sequentially updating the cells of a CA (for an
excellent discussion, see [10]). The most general one is independent random or-
dering of updates in time, which consists in randomly choosing the cell to be
updated next, with replacement. This corresponds to a binomial distribution
for the update probability, the limiting case of which for large n is the Poisson
distribution (n is the number of cells in the grid).

For comparison purposes we also employ two other update methods: fixed
random sweep and random new sweep (we employ the same terms as in [10]).
In the fixed random sweep update, each cell to be updated next is chosen with
uniform probability without replacement; this will produce a certain update
sequence (cj1, c

k
2 , . . . , c

m
n ), where cpq means that cell number p is updated at time

q and (j, k, . . . ,m) is a permutation of the n cells. The same permutation is
then used for the following update cycles. The random new sweep method is
the same except that each new sweep through the array is done by picking a
different random permutation of the cells. A sweep means updating n times,
which corresponds to updating all the n cells in the grid for fixed random sweep
and random new sweep, and possibly less than n cells in the binomial method,
since some cells might be updated more than once.

It should be noted that our chosen asynchronous updating being non-de-
terministic, the same CA may reach a different configuration after n time steps
on the same initial distribution of states, which is not the case for synchronous
CAs, since there is a single possible sequence of configurations for a synchronous
CA for a given initial configuration of states.

3 Evolving 1-D Asynchronous CAs for the Density Task

In this section we define the density task and we describe how asynchronous
CAs for performing this task can be evolved by genetic algorithms (GA). We



936 Marco Tomassini and Mattias Venzi

also deal with the features of the evolutionary process and compare the evolved
CA strategies with those observed in the synchronous case.

3.1 The Density Task

The density task is a prototypical computational task for CAs that has been
much studied due to its simplicity and richness of behavior. For one-dimensional
finite CA of size n (with n odd for convenience) it is defined as follows: the CA
must relax to a fixed-point pattern of all 1s if the initial configuration of states
contains more 1s than 0s and, conversely, it must relax to a fixed-point pattern
of all 0s otherwise, after a number of time steps of the order of the grid size.
This computation is trivial for a computer having a central control. However,
the density task is non-trivial for a small radius 1-D CA since such a CA can
only transfer information at finite speed relying on local information exclusively,
while density is a global property of states configuration [9]. It has been shown
that the density task cannot be solved perfectly by a uniform, two-state CA with
finite radius [7], although a slightly modified version of the task can be shown
to enjoy perfect solution by such an automaton [3]. In general, given a desired
global behavior for a CA, it is extremely difficult to infer the local CA rule
that will give rise to the emergence of the computation sought because of the
possible non-linearities and large-scale collective effects that cannot be predicted
from the sole local CA updating rule. Since exhaustive evaluation of all possible
rules is out of the question except for elementary (d = 1, r = 1) automata,
one possible solution of the problem consists in using evolutionary algorithms,
as proposed by Mitchell et al. [9,8] for uniform and synchronous CAs and by
Sipper for non-uniform (the rules need not be all the same) ones [11].

3.2 Artificial Evolution of Cellular Automata

In this paper we use a genetic algorithm similar to the one described in [9] for
synchronous CAs, with the aim of evolving asynchronous CAs for the density
task. Each individual in the population represents a candidate rule and is repre-
sented simply by the output bits of the rule table in lexicographic order of the
neighborhood (see section 2). Here r = 3 has been used, which gives a chromo-
some length of 22r+1 = 128 and a search space of size 2128, far too large to be
searched exhaustively. The population size is 100 individuals, each represented
by a 128-bit string, initially randomly generated from a uniform density distri-
bution over the interval [0, 1]. The fitness of a rule in the population has been
calculated by randomly choosing 100 out of the 2n possible initial configurations
(IC) with uniform density in the same manner as for the initial population and
then iterating the rule on each IC for M = 2n time steps, where n = 149 is the
grid size. The rule’s fitness is the fraction of ICs for which the rule produced
the correct fixed point, given the known IC density. At each generation a differ-
ent set of ICs is generated for each rule. After ranking the rules in the current
population according to their fitness, the 20% top rules are copied in the next
population without change. The remaining 80 rules are generated by crossover



Evolution of Asynchronous Cellular Automata for the Density Task 937

and mutation. Crossover is single-point and is performed between two individu-
als randomly chosen from the top 20 rules with replacement and is followed by
single-bit mutation of the two offspring. The best 80 rules after the application
of the genetic operators enter the new population.

The performance of the best rules found at the end of the evolution is eval-
uated on a larger sample of ICs and it is defined as the fraction of correct clas-
sifications over 104 randomly chosen initial configurations. Moreover, the ICs
are sampled according to a binomial distribution (i.e., each bit is independently
drawn with probability 1/2 of being 0). Clearly, this distribution is strongly
peaked around ρ0 = 1/2 and thus it makes a much more difficult case for the
CA (ρ0 is the density of 0s in the initial configuration).

Due to the high computational cost, we have performed 15 runs, each lasting
for 100 generations, for each of the asynchronous update policies. This is not
enough to reach very good results, but it is sufficient for studying the emergence
of well-defined computational strategies, which has been our main objective here.

3.3 Evolutionary Dynamics and Results: Synchronous CAs

Mitchell and co-workers performed a number of studies on the emergence of syn-
chronous CA strategies for the density task during evolution (see e.g. [8,9], where
more details can be found). In summary, these findings can be subdivided into
those pertaining to the evolutionary history and those that are part of “final”
evolved automata. For the former, they essentially observed that, in successful
evolution experiments, the fitness of the best rules increase in time according to
rapid jumps, giving rise to what they call “epochs” in the evolutionary process.
Each epoch corresponds roughly to a new, increasingly sophisticated solution
strategy. Concerning the final CA produced by evolution, it was noted that,
in most runs, the GA found non-sophisticated strategies that consisted in ex-
panding sufficiently large blocks of adjacent 1s or 0s. This “block-expanding”
strategy is unsophisticated in that it mainly uses local information to reach a
conclusion. As a consequence, only those IC that have low or high density are
classified correctly since they are more likely to have extended blocks of 1s or 0s.
In fact, these CAs have a performance around 0.6. However, some of the runs
gave solutions that presented novel, more sophisticated features that yielded bet-
ter performance (around 0.77) on a wide distribution of IC. These new strategies
rely on travelling signals that transfer spatial and temporal information about
the density in local regions through the lattice. An example of such a strategy
is given in figure 1, where the behavior of the so-called GKL rule is depicted [9].
The GKL rule is a hand-coded one but its behavior is similar to that of the best
solutions found by evolution. In spite of the relative success of the genetic al-
gorithm, there exist hand-coded CAs that have better performance, besides the
GKL rule itself. On the other hand, Andre et al. [1] have been able to artificially
evolve a CA that is as good as the best manually designed CA by using genetic
programming. Although they used a great deal more computational resources
than Mitchell and coworkers, this nevertheless shows that artificial evolution is
a viable solution in this case.



938 Marco Tomassini and Mattias Venzi

(a) (b)

Fig. 1. Space-time diagram for the GKL rule. CA cells are depicted horizontally, while
time goes downward. The 0 state is depicted in white; 1 in black. The density of zeros
ρ0 is 0.476 in a) and ρ0 = 0.536 in b).

Table 1. Performance of the best evolved asynchronous rules calculated over 104 bi-
nomially distributed initial configurations. Rule numbers are in hexadecimal.

Update Mode Rule Performance
IndependentRandom 00024501006115AF5FFFBFFDE9EFF95F 67.2
FixedRandomSweep 114004060202414150577E771F55FFFF 67.7
RandomNewSweep 00520140006013264B7DFCDF4F6DC7DF 65.5

Crutchfield and co-workers have developed sophisticated methodologies for
studying the transfer of long-range signals and the emergence of computation
in evolved CAs. This framework is known as “computational mechanics” and it
describes the intrinsic CA computation in terms of regular domains, particles
and particle interactions. Details can be found, e.g., in [5].

3.4 Evolutionary Dynamics and Results: Asynchronous CAs

For the evolution of asynchronous CAs we have used GA parameters as described
in section 3.2. As expected, the evolved asynchronous CAs find it more difficult
to solve the density task due to their stochastic nature. In fact, a given CA
could classify the same initial configuration in a different way depending on
the update sequence, and indeed, although synchronous CAs are delocalized
systems, because of the presence of a global clock, a kind of central control is
still present, which is not the case for asynchronous CAs. Nevertheless, for all
the asynchronous update methods CAs with fair capabilities were evolved. In the
following table we list the best rules found by the GA for the three update modes.
We note that the performance of the solutions are lower than the corresponding
figures for synchronous CAs.



Evolution of Asynchronous Cellular Automata for the Density Task 939

(a) (b)

Fig. 2. Space-time diagrams for an epoch 2 rule. a) ρ0 = 0.194, b) ρ0 = 0.879. The
rule only classifies low or high densities.

The behavior of CAs evolved with the independent random ordering i.e.,
binomial cell update mode and random new sweep are very similar, while fixed
random sweep gave poorer results. We thus describe the independent random
ordering mode here. During most evolutionary runs we observed the presence of
periods in the evolution in which the fitness of the best rules increase in rapid
jumps. These “epochs” were observed in the synchronous case too (see section
3.3) and correspond to distinct computational innovations i.e., to mayor changes
in the strategies that the CA uses for solving the task.

In epoch 1 the evolution only discovers local naive strategies that only work
on “extreme” densities (i.e., low or high) but most often not on both at the same
time. Fitness is only slightly over 0.5. In the following epoch 2, rules specialize
on low or high densities as well and use unsophisticated strategies, but now they
give correct results on both low and high densities. This can be seen, for instance,
in figure 2.

In epoch 3, with fitness values comprised between 0.80 and 0.90, one sees the
emergence of block-expanding strategies, as in the synchronous case, but more
noisy. Moreover, narrow vertical strips make their appearance (see figure 3).

The following, and last, epoch 4 sees the refinement of the vertical strips
strategy with fitness above 0.9 and steadily increasing. The propagating patterns
become less noisy and the strategy is little affected by the intrinsic stochasticity
of the update rule. Figure 4 illustrates the best solution found by evolution at
the end of epoch 4. The “zebra-like” moving patterns, which represent the most
efficient strategies for evolved asynchronous automata, are different from those
found in the synchronous case. In fact, the asynchronous updating modes have
the effect of destroying or delaying the propagation of the long-range transversal
signals that carry information in the synchronous case (see figure 1). Thus, the
CA expands 1∗ and 0∗ blocks which enter in collision and annihilate and small-
block propagate in time, which gives the characteristic zebra-like patterns. These
strips are stable and propagate further to the right or to the left.



940 Marco Tomassini and Mattias Venzi

(a) (b)

Fig. 3. Space-time diagrams for an epoch 3 rule. a) ρ0 = 0.489, b) ρ0 = 0.510. Block-
expanding and vertical strips make their appearance.

(a) (b)

Fig. 4. Space-time diagrams for the best asynchronous rule found. The density ρ0 =
0.55 in both a) and b) and the initial state configuration is the same. The different
time evolution points out the stochasticity of the updating policy.

4 Merging the Synchronous and Asynchronous Worlds

We have seen that evolved synchronous CAs for the density task have a rather
better performance than asynchronous ones, as it was expected if one takes into
account their deterministic nature. Now, although parallel update is unfeasible,
one could obtain a more realistic approximation by subdividing the whole grid
into blocks of c ≤ n cells that are updated synchronously within the block,
while the blocks themselves are updated asynchronously. Thus, if the number of
blocks varies from 1 to n the system will go from complete synchrony to complete
asynchrony (n=180 here). Let us start with synchronous CA rules becoming pro-
gressively asynchronous (random new sweep). Both the best evolved rule as well
as the GKL rule gave very poor results. They are extremely sensitive to pertur-



Evolution of Asynchronous Cellular Automata for the Density Task 941

Fig. 5. Percent of correct classifications as a function of the number of blocks in the
grid for two choices of initial configurations for the GKL rule.

(a) (b)

Fig. 6. Asynchronous behavior of the GKL rule with a) two and b) 10 blocks respec-
tively.

bations since even a small amount of noise destroys the strict synchronization
carried by the propagating transversal signals (see section 3.3). This can be seen
in figure 5, where the performance of the GKL rule is shown against number
of blocks for two distributions of initial configurations. Performance remains ac-
ceptable for ICs chosen uniformly between 0 and 1 but it totally degrades for a
binomial distribution, the more difficult and interesting case.

Figure 6 depicts the space-time diagram of the GKL rule with 2 and 10
asynchronous blocks respectively. One sees clearly that, with two blocks already,
signals are prevented from travelling and from combining at the block bound-
aries, as it would be the case if all the cells were updated in parallel (see figure
1 for comparison), which explains why the CA is incapable to perform the task.

Starting now from the other end of the spectrum, we consider the best asyn-
chronous CA rule going progressively more synchronous (i.e., from right to left
in figure 7). In this case we see that performances are progressively lower but
the loss is gradual and only for the extreme cases of a few large blocks does per-



942 Marco Tomassini and Mattias Venzi

Fig. 7. Percent of correct classifications as a function of the number of blocks in the
grid for two choices of initial configurations for the best asynchronous rule.

(a) (b)

Fig. 8. Synchronous behavior of the best asynchronous rule with a) 90 and b) 60 blocks
respectively. The density ρ0 = 0.444 in both a) and b).

formance approach 0.5. This was to be expected, since the rule has been evolved
in a completely asynchronous environment.

Figure 8 depicts the case of 90 and 60 blocks and shows that the strategy of
solution is not perturbed in these cases.

We can thus conclude that, although synchronous and asynchronous rules
have been evolved, respectively, in synchronous and asynchronous environments,
asynchronous rules adapt better to changes, i.e., they are more robust.

5 Conclusions

In this work we have shown that physically more realistic asynchronous CAs of
various kinds can be effectively evolved for the density task using genetic algo-
rithms, although their performance is lower than that obtained by evolved syn-
chronous CAs. We have also shown that the computational strategies discovered
by the GA in the asynchronous case are different from those of synchronous CAs



Evolution of Asynchronous Cellular Automata for the Density Task 943

due to the presence of a stochastic component in the update. This very reason
makes them more resistant to changes in the environment and thus potentially
more interesting as computational devices in the presence of noise. Other impor-
tant aspects that we are studying, but are not included here, are the scalability
properties of evolved CAs and further investigations into their fault-tolerance
aspects.

References

1. D. Andre, F. H Bennett III, and J. R. Koza. Discovery by genetic programming
of a cellular automata rule that is better than any known rule for the majority
classification problem. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 3–11, Cambridge, MA, 1996. The MIT Press.

2. H. Bersini and V. Detour. Asynchrony induces stability in cellular automata based
models. In R. A. Brooks and P. Maes, editors, Artificial Life IV, pages 382–387,
Cambridge, Massachusetts, 1994. The MIT Press.

3. M. S. Capcarrere, M. Sipper, and M. Tomassini. Two-state, r=1 cellular automaton
that classifies density. Physical Review Letters, 77(24):4969–4971, December 1996.

4. I. Harvey and T. Bossomaier. Time out of joint: attractors in asynchronous random
boolean networks. In P. Husbands and I. Harvey, editors, Proceedings of the Fourth
European Conference on Artificial Life, pages 67–75, Cambridge, MA, 1997. The
MIT Press.

5. W. Hordijk, J. P. Crutchfield, and M. Mitchell. Mechanisms of emergent computa-
tion in cellular automata. In A. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature- PPSN V, volume 1498 of Lecture
Notes in Computer Science, pages 613–622, Heidelberg, 1998. Springer-Verlag.

6. T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular automata.
Physica D, 10:59–68, 1984.

7. M. Land and R. K. Belew. No perfect two-state cellular automata for density
classification exists. Physical Review Letters, 74(25):5148–5150, June 1995.

8. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata
to perform computations: Mechanisms and impediments. Physica D, 75:361–391,
1994.

9. M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos:
Evolving cellular automata to perform computations. Complex Systems, 7:89–130,
1993.

10. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in cellular
automata. BioSystems, 51:123–143, 1999.

11. M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming
Approach. Springer-Verlag, Heidelberg, 1997.

12. S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, Reading, MA,
1994.



Author Index

Adamidis, Panagiotis 321
Aguirre, Hernán E. 111
Alba, Enrique 601
Anderson, Eike Falk 689
Aoki, Takafumi 831
Araujo, Lourdes 700
Arenas, M.G. 142, 442, 665, 676
Arnold, Dirk V. 3

Bäck, Thomas 23, 361, 841
Barbulescu, L. 611
Belanche Muñoz, Llúıs A. 475
Beyer, Hans-Georg 3
Bianchi, Leonora 883
Blackburne, B.P. 769
Blum, Christian 631, 893
Bosman, Peter A.N. 331
Büche, Dirk 122
Bull, Larry 549, 558, 568, 588
Burke, Edmund K. 341, 769

Caminada, Alexandre 779
Capcarrere, Mathieu S. 903
Carse, B. 578
Castellano, J.G. 442, 676
Castillo, P.A. 442, 505, 676
Chaiyaratana, Nachol 288
Chen, Ying-ping 351
Chisholm, Ken 871
Coello Coello, Carlos 740
Collet, Pierre 665
Cordón, Oscar 710
Corne, David W. 132
Cotta, Carlos 720, 730
Cowling, Peter 851

Deb, Kalyanmoy 44
Dolin, Brad 142
Dorado, Julian 485
Dorigo, Marco 651, 883

Eckert, Christoph 77
Eiben, A.E. 172, 665
Emmerich, Michael 361
Eriksson, Roger 13

Fernández, Francisco 641
Folino, Gianluigi 924

Galeano, Germán 641
Gambardella, Luca Maria 883
Garćıa-Pedrajas, N. 153, 184
Garionis, Ralf 749
Giacobini, Mario 371, 601
Giannakoglou, Kyriakos 361
Giotis, Alexios 361
Goldberg, David E. 351
Gómez Garćıa, Héctor Fernando 740
González, Jesús 517
González Vega, Arturo 740
Gottlieb, Jens 77
Guidati, Gianfranco 122
Gustafson, Steven 341

Haase, Werner 841
Hahn, Lance W. 821
Handl, Julia 913
Hansen, Nikolaus 422
Hao, Jin-Kao 779
Hemert, Jano I. van 23
Hernández Aguirre, Arturo 740
Herrera-Viedma, Enrique 710
Hervás-Mart́ınez, C. 153, 184
Higuchi, Tatsuo 831
Hirst, J.D. 769
Homma, Naofumi 831
Horn, Jeffrey 381
Howe, A.E. 611
Huhse, Jutta 391
Hurst, Jacob 588

Ikeda, Kokolo 162
Iorio, Antony 247

Jakob, Wilfried 527
Jansen, Thomas 33
Jelasity, Márk 172, 665
Joan-Arinyo, R. 759
Jong, Kenneth A. De 257
Jozefowiez, Nicolas 271
Julstrom, Bryant A. 204



946 Author Index

Kanazaki, Masahiro 281
Keerativuttitumrong, Nattavut 288
Kell, Douglas B. 132
Kendall, Graham 341, 851
Knowles, Joshua D. 88
Kobayashi, Shigenobu 162
Kodydek, Gabriele 204
Koumoutsakos, Petros 122, 422
Krasnogor, Natalio 341, 769
Krink, Thiemo 214, 621

Lau, Francis 401
Laumanns, Marco 44, 298
Lewis, Michael J. 401
Li, Xiaodong 247
Liles, William C. 257
Liu, Pu 401
Liu, Yong 495
Løvbjerg, Morten 621
Luke, Sean 411
Luque, Maŕıa 710
Luzón, M.V. 759

Mabed, Hakim 779
Marroqúın Zaleta, José Luis 740
Mastrolilli, Monaldo 631
Matsui, Shouichi 789, 800
Melhuish, Chris 588
Merelo, J.J. 142, 442, 505, 665, 676
Merz, Peter 391, 811
Meyer, Bernd 913
Moore, Jason H. 821
Morikaw, Masashi 281
Moscato, Pablo 720
Motegi, Makoto 831
Müller, Sibylle D. 422
Munteanu, Cristian 432
Muruzábal, Jorge 730

Nakahashi, Kazuhiro 281
Naujoks, Boris 841

Oates, Martin J. 132
Obayashi, Shigeru 281
Ocenasek, Jiri 298
Olsson, Björn 13
Ortiz-Boyer, D. 153, 184
Özdemir, Mutlu 361

Paechter, Ben 665, 871

Panait, Liviu 411
Parmee, Ian 568
Pazos, Alejandro 485
Petridis, Vasilios 321
Pipe, A.G. 578
Pomares, Héctor 517
Preuß, Mike 172, 665

Rabuñal, Juan R. 485
Raidl, Günther R. 204
Renaud, Denis 779
Richter, Hendrik 308
Rivas, V.M. 505, 676
Rivero, Daniel 485
Rojas, Ignacio 517
Romero, G. 442, 676
Romero, Sergio 601
Rosa, Agostinho 432
Ross, Peter 871
Rossi-Doria, Olivia 631
Rothlauf, Franz 99
Roy, Rajkumar 452
Runarsson, Thomas Philip 194

Sampels, Michael 631, 893
Santos, Antonino 485
Scharnow, Jens 54
Schoenauer, Marc 665
Semet, Frédéric 271
Smith, Jim 537
Soto, A. 759
Soubeiga, Eric 851
Spezzano, Giandomenico 924
Stoll, Peter 122
Studley, Matt 549

Talbi, El-Ghazali 271
Tanaka, Kiyoshi 111
Thiele, Lothar 44
Thierens, Dirk 331
Thomsen, René 214, 861
Tinnefeld, Karsten 54
Tiwari, Ashutosh 452
Tokoro, Ken-ichi 789, 800
Tomassini, Marco 371, 601, 641, 934
Tsutsui, Shigeyoshi 224

Urquhart, Neil 871
Ursem, Rasmus K. 462

Vanneschi, Leonardo 371, 641



Author Index 947

Varavithya, Vara 288
Venzi, Mattias 934
Villmann, Thomas 391

Wang, Cho-li 401
Watanabe, Isamu 789, 800
Watson, J.P. 611
Watson, Richard A. 88
Wegener, Ingo 54
Weicker, Karsten 64
Welzl, Emo 44

Whitley, L.D. 611
Wiegand, R. Paul 257
Wiesmann, Dirk 234
Willmes, Lars 841
Wyatt, David 568

Yao, Xin 495

Zell, Andreas 391, 811
Zitzler, Eckart 44
Zlochin, Mark 651


	Parallel Problem Solving from Nature – PPSNVII
	Preface
	PPSN VII Conference Committee
	PPSN VII Steering Committee
	PPSN VII Program Committee
	Table of Contents
	Random Dynamics Optimum Trackingwith Evolution Strategies
	1 Introduction
	2 Preliminaries
	3 Dynamic Sphere
	4 Cumulative Mutation Strength Adaptation
	5 Conclusions
	References

	On the Behavior of Evolutionary Global-Local Hybrids with Dynamic Fitness Functions
	1 Introduction
	2 Experimental Setup
	2.1 Fitness Functions
	2.2 Evolutionary Algorithms

	3 Experiments and Results
	3.1 Plain Evolution
	3.2 Baldwinian Evolution
	3.3 Lamarckian Evolution

	4 Discussion and Conclusions
	References

	Measuring the Searched Space to Guide Efficiency: The Principle and Evidence on Constraint Satisfaction
	1 Introduction
	2 The Searched Space
	3 Mutation $k/l$
	4 A Simple Model
	5 Verifying the Simple Model
	6 Practical Evidence with CSPs
	7 Conclusions
	References

	On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms
	1 Introduction
	2 Performance Analysis of EAs
	3 Algorithmic Framework
	4 Example Functions
	5 Analysis Without Restarts
	6 Comparison of Dynamic Restart Strategies
	7 Conclusions
	References

	Running Time Analysis of Multi-objective Evolutionary Algorithms on a Simple Discrete Optimization Problem
	1 Introduction
	2 The Model Problem
	2.1 How Difficult Is It to Find the Whole Pareto Set?

	3 A Simple Evolutionary Multi-objective Optimizer (SEMO)
	3.1 Running Time Analysis of SEMO Applied to sc Lotz

	4 The Fair Evolutionary Multi-objective Optimizer (FEMO)
	4.1 Running Time Analysis of FEMO Applied to sc Lotz

	5 Concluding Remarks
	References

	Fitness Landscapes Based on Sorting and Shortest Paths Problems
	1 Introduction
	2 Fitness Landscapes Based on Sorting Problems
	3 The Analysis of the $(1+1)$EA on the Fitness Landscapes Based on Sorting Problems
	4 Fitness Landscapes Based on Shortest Paths Problems
	5 Conclusion
	References

	Performance Measures for Dynamic Environments
	1 Introduction
	2 A Classification of Dynamic Problems
	3 Goals of Dynamic Optimization
	4 Performance Measures
	4.1 Measures for Optimization Accuracy
	4.2 Measures for Stability and Reactivity

	5 Empirical Results
	5.1 Experimental Setup
	5.2 Statistical Examination of the Measures
	5.3 Discussion of the Results

	6 Conclusions
	References

	Direct Representation and Variation Operators for the Fixed Charge Transportation Problem
	1 Introduction
	2 Representations for the FCTP
	2.1 The Permutation Representation
	2.2 The Prüfer Number Representation
	2.3 The Matrix Representation
	2.4 A New Direct Representation

	3 Locality Analysis
	3.1 Phenotypic and Genotypic Distance Metrics
	3.2 Mutation Innovation
	3.3 Crossover Innovation and Crossover Loss

	4 Results
	4.1 Comparison of the Representations
	4.2 Comparison with Tabu Search

	5 Conclusions
	References

	On the Utility of Redundant Encodings in Mutation-Based Evolutionary Search
	1 Introduction
	2 Against Arbitrary Neutral Networks
	3 Experimental Method
	3.1 Encodings
	3.2 Aims
	3.3 The RBN Encoding
	3.4 Mutation Rates
	3.5 Problems
	3.6 The EAs: Hill Climber and Genetic Algorithm

	4 Simulation Results
	5 Conclusion
	References

	Binary Representations of Integers and the Performance of Selectorecombinative Genetic Algorithms
	1 Introduction
	2 Binary Representations for Integer Optimization Problems
	2.1 Separating Representations from Optimization Problems
	2.2 An Integer Optimization Problem
	2.3 Binary Representations of Integers

	3 Performance of Crossover-Based GAs Using Binary Representations
	3.1 Counting the Number of Binary Representations of Integers
	3.2 Experimental Results

	4 Performance of Binary and Gray Encoding
	4.1 Experimental Results
	4.2 Schemata Analysis for Binary and Gray Encoding

	5 Conclusions
	References

	Parallel Varying Mutation in Deterministic and Self-adaptive GAs
	1 Introduction
	2 A GA with Serial Varying Mutation
	3 A GA with Parallel Varying Mutation
	3.1 Parallel Genetic Operators
	3.2 Extinctive Selection
	3.3 Mutation Rate Control in SRM

	4 Experimental Setup
	5 Deterministic Varying Mutation
	6 Self-adaptive Varying Mutation
	7 Convergence Reliability
	8 Conclusions
	References

	Self-organizing Maps for Pareto Optimization of Airfoils
	1 Introduction
	2 Multi-objective Evolutionary Algorithms
	2.1 Self-organizing Maps
	2.2 Self-organizing Maps for Multi-objective Evolutionary Algorithms
	2.3 Experimental Results

	3 Automated Design of Aerodynamic Profiles
	3.1 Objective Functions
	3.2 Optimization Results

	4 Conclusions
	References

	On Fitness Distributions and Expected Fitness Gain of Mutation Rates in Parallel Evolutionary Algorithms
	1 Introduction
	1.1 Notes on Relevance and Applicability
	1.2 A Note on Related Work

	2 Fitness Distributions and Expected Fitness Gain
	2.1 Exploiting Parallelism Leads to Improved Fitness Distributions
	2.2 Adapting Rates in Parallel EAs Based on Expected Fitness Gain

	3 Experiments
	4 Concluding Discussion
	References

	Opposites Attract: Complementary Phenotype Selection for Crossover in Genetic Programming
	1 Introduction
	2 Related Work
	3 Complementary Phenotype Selection Algorithm
	4 Experiments
	4.1 Boolean 6-Multiplexer
	4.2 Intertwined Spirals Classification
	4.3 Sunspot Prediction

	5 Analysis and Conclusions
	6 Future Work
	References

	Theoretical Analysis of the Confidence Interval Based Crossover for Real-Coded Genetic Algorithms
	1 Introduction
	2 Confidence Interval Based Crossover
	2.1 Crossover Operator Method

	3 Analysis of CIXL2 Crossover
	4 Optimization of Functions by Means  of a Real-Coded GA
	4.1 Experimental Results

	5 Conclusions
	References

	Deterministic Multi-step Crossover Fusion: A Handy Crossover Composition for GAs
	1 Introduction
	2 About MSXF, and the Proposal of dMSXF
	3 Analysis on 1max Problem
	3.1 The Case of Conventional Crossovers
	3.2 dMSXF for 1max Problem

	4 An Application for Traveling Salesman Problem
	4.1 About the Edge Assembly Crossover
	4.2 dMSXF Applied for TSP

	5 Conclusion and Future Work
	References

	Operator Learning for a Problem Class in a Distributed Peer-to-Peer Environment
	1 Introduction
	2 Methodology
	2.1 An Example Problem Class
	2.2 An Example Algorithm Space

	3 A Suitable Tool: DRM
	3.1 DRM Structure
	3.2 Experiment Structure
	3.3 Experimental Results

	4 Conclusions and Future Perspectives
	References

	Crossover Operator Effect in Function Optimization with Constraints
	1 Introduction
	2 Nonlinear Programming Problem
	2.1 Maintaining the Population in the Feasible Region
	2.2 Penalty Functions

	3 Crossover Operators
	3.1 Discrete Crossover
	3.2 Aritmetic Crossover
	3.3 BLX-$alpha$ Crossover
	3.4 Logic Crossover
	3.5 Extended Fuzzy Crossover
	3.6 Crossover Based on Confidence Intervals

	4 Experimental Setup
	4.1 Problems with Linear Constraints
	4.2 Problems with Non-linear Constraints
	4.3 Setup of the RCGA

	5 Results
	6 Conclusions
	References

	Reducing Random Fluctuations in Mutative Self-adaptation
	1 Introduction
	2 Mutative Step-Size Self-adaptation
	3 Reducing Random Fluctuations
	4 Experimental Studies
	4.1 Noiseless Sphere Model
	4.2 Noisy Sphere Model

	5 Discussion and Conclusion
	References

	On Weight-Biased Mutation for Graph Problems
	1 Introduction
	2 Distribution of Edges in Optimal Solutions
	3 Optimal Edge-Selection Probabilities
	3.1 $mathit {EX}(e^*)$ for Three Edge-Selection Strategies
	3.2 Approximately Optimal Edge-Selection Probabilities

	4 Biasing Mutation for the $d$-MSTP
	5 Experiments on the $d$-MSTP
	6 Biased Mutation for the TSP
	7 Conclusions
	References

	Self-adaptive Operator Scheduling Using the Religion-Based EA
	1 Introduction
	2 The Operator Scheduling Religion-Based EA
	3 Mutation Operators
	4 Experiments
	4.1 SOCEA Settings
	4.2 SOCRBEA and OSRBEA Settings
	4.3 Benchmark Problems

	5 Results
	6 Discussion
	References

	Probabilistic Model-Building Genetic Algorithms in Permutation Representation Domain Using Edge Histogram
	1 Introduction
	2 A Brief Overview of PMBGAs
	3 Edge Histogram Based Sampling Algorithm (EHBSA)
	3.1 The Basic Description of the Algorithm
	3.2 Developing Edge Histogram Matrix
	3.3 Sampling Methods
	3.3.1 Edge histogram based sampling algorithm without template (EHBSA/WO)
	3.3.2 Edge histogram based sampling algorithm with template (EHBSA/WT)


	4 Empirical Study
	4.1 Experimental Methodology
	4.1.1 Evolutionary models
	4.1.2 Test suit and Performance Measures
	4.1.3 Blind Search

	4.2 Empirical Analysis of Results

	5 Conclusions
	References

	From Syntactical to Semantical Mutation Operators for Structure Optimization
	1 Introduction
	2 Deterministic Automata
	3 Evolutionary Programming
	4 Fitness Function and Distance of DFAs
	5 Proposals for EP Mutation Operators
	5.1 Weighted Mutation
	5.2 Metric Based Mutation

	6 Experiments
	7 Problems
	8 Conclusion
	References

	Parameter Control within a Co-operative Co-evolutionary Genetic Algorithm
	1 Introduction
	2 The Co-operative Co-evolutionary Algorithm with Adaptation
	2.1 The CCGA-1 Model
	2.2 Self-adaptive Mutation, Crossover, and the Selection Process
	2.3 Adaptive Sub-population Size

	3 Experimental Design
	4 Results
	5 Conclusion
	References

	The Effects of Representational Bias on Collaboration Methods in Cooperative Coevolution
	1 Introduction
	2 Cooperative Coevolution
	2.1 Existing Analysis of Coevolutionary Algorithms
	2.2 Collaboration in CCEAs
	2.3 Representation in CCEAs

	3 Research Methodology
	3.1 Decomposability
	3.2 Epistasis
	3.3 Experimental Framework

	4 The Effects of Decompositional Bias on Collaboration
	4.1 Controlling Decompositional Bias Experimentally
	4.2 Effects of Collaboration Methods

	5 The Effects of Linkage Bias on Collaboration
	5.1 Controlling Linkage Bias Experimentally
	5.2 Effects of Collaboration Methods

	6 Conclusions
	References

	Parallel and Hybrid Models for Multi-objective Optimization:Application to the Vehicle Routing Problem
	1 What is to Solve a Multi-objective Problem?
	2 A Parallel MOEA
	3 A Hybrid Model
	4 Application to a Bi-objective VRP
	4.1 A Bi-objective VRP
	4.2 A Parallel Pareto Genetic Algorithm
	4.3 A Parallel Pareto Tabu Search for the VRP

	5 Evaluation
	6 Conclusion
	References

	Multiobjective Design Optimization of Merging Configuration for an Exhaust Manifold of a Car Engine
	1 Introduction
	2 Formulation of the Optimization Problem
	2.1 Objective Functions
	2.2 Divided Range Multiobjective Genetic Algorithm
	2.3 Geometry Definition

	3 Design Optimization of an Exhaust Manifold
	3.1 Design Problems
	3.2 Comparison of Solution Evolutions
	3.3 Comparison of Designed Shapes of Selected Pareto Solutions

	4 Concluding Remarks
	References

	Multi-objective Co-operative Co-evolutionary Genetic Algorithm
	1 Introduction
	2 Multi-objective Genetic Algorithm and Co-operative Co-evolutionary Genetic Algorithm
	2.1 Multi-objective Genetic Algorithm
	2.2 Co-operative Co-evolutionary Genetic Algorithm

	3 MOCCGA and Test Problems
	4 Benchmarking Results and Discussions
	5 Parallel Implementation of MOCCGA
	6 Conclusions
	References

	Bayesian Optimization Algorithms for Multi-objective Optimization
	1 Introduction
	2 Bayesian Optimization Algorithm (BOA)
	2.1 Structure of Bayesian Network
	2.2 Binary Decision Trees Based BOA

	3 Multi-objective BOA
	3.1 A New Selection Operator
	3.2 The $(mu +lambda , epsilon )$-BMOA

	4 Experimental Results
	4.1 Results of $(mu +lambda, epsilon)$-BMOA
	4.2 Comparison with Other MOEAs

	5 Conclusion
	References

	An Evolutionary Algorithm for Controlling Chaos: The Use of Multi–objective Fitness Functions
	1 Introduction
	2 Summary of Local Control of Chaos
	3 The Evolutionary Algorithm
	3.1 The Multi--objective Fitness Function
	3.2 Algorithmic Structure
	3.3 Representation and Operators

	4 Numerical Results
	5 Conclusion
	References

	On Modelling Evolutionary Algorithm Implementations through Co-operating Populations
	1 Introduction
	2 Definition of “Co-operating Populations”
	3 Initial level of Co-operating Populations $mathit (CoP^0)$
	4 Co-operating Populations at Level 1 $mathit (CoP^1)$
	5 Implementation Issues of Coarse-Grained PEAs and CoPDEB
	5.1 Reproduction Tuples

	6 Optimization Problems – Experimental Results
	Discussion – Conclusions
	References

	Permutation Optimization by Iterated Estimation of Random Keys Marginal Product Factorizations
	1 Introduction
	2 Random Keys and Permutation Optimization Problems
	3 ID${@mathbb E}$As and $@mathbb {I}$C$@mathbb {E}$
	4 Estimating Random Keys Marginal Product Factorized Probability Distributions from Data
	5 Experiments
	6 Discussion and Conclusions
	References

	Advanced Population Diversity Measures in Genetic Programming
	1 Introduction
	2 Diversity Measures
	2.1 Population Measures
	2.2 Promoting Diversity

	3 Experiment Design
	4 Results
	5 Conclusions
	6 Future Work
	References

	Introducing Start Expression Genes to the Linkage Learning Genetic Algorithm
	1 Introduction
	2 Brief Review of the LLGA
	2.1 Chromosome Representation
	2.2 The Exchange Crossover Operator
	2.3 The Mechanisms Making the LLGA Work

	3 A Critique of the Original LLGA
	3.1 What Is the LLGA Supposed to Do?
	3.2 How Does the LLGA Fail?
	3.3 Separation Inadequacy: Key Deficiency of the Original LLGA

	4 Start Expression to Improve Nucleation Potential
	4.1 How Do Start Expression Genes Work?
	4.2 The Modified Exchange Crossover Operator
	4.3 The Effect of the Modifications

	5 Conclusions
	References

	Metamodel–Assisted Evolution Strategies
	1 Introduction
	2 Kriging and Local Error Estimation
	3 Metamodel Assisted Evolution Strategies
	4 Studies on Artificial Landscapes
	5 Airfoil Shape Optimisation
	6 Conclusions
	References

	Limiting the Number of Fitness Cases in Genetic Programming Using Statistics
	1 Introduction
	2 Statistics
	2.1 Interval Estimates Applied to GP Fitness Evaluation

	3 Entropy
	3.1 Entropy and Function Reconstruction

	4 Experimental Setting
	5 Experimental Results
	5.1 Boolean Function
	5.2 Step Function

	6 Conclusions and Future Work
	References

	Resource-Based Fitness Sharing
	1 Introduction
	2 Background
	2.1 Fitness Sharing
	2.2 Resource Sharing
	2.3 Shape Nesting

	3 A Real Test of Niching
	3.1 Fitness Sharing on a Hat Function
	3.2 Resource Sharing (in One Dimension)
	3.3 Resource-Based Fitness Sharing (in One Dimension)
	3.4 Resource-Based Fitness Sharing in Two Dimensions

	4 Discussion
	References

	Evolution Strategy with Neighborhood Attraction Using a Neural Gas Approach
	1 Introduction
	2 Neural Maps
	3 Evolution Strategies with Neighborhood Attraction
	3.1 SOM-Neighborhood Attraction EN
	3.2 Neural Gas Attraction EN

	4 Test Functions
	5 Test Series
	6 Conclusions
	References

	A New Asynchronous Parallel Evolutionary Algorithm for Function Optimization
	1 Introduction
	2 Asynchronous Parallel Evolutionary Algorithm
	2.1 Background
	2.2 The New Algorithm
	2.3 Related Work

	3 Numeric Experiments
	3.1 The BUMP Problem
	3.2 Benchmark Problems Solved by APEA Using MPI

	4 Conclusion
	References

	Fighting Bloat with Nonparametric Parsimony Pressure
	1 Introduction
	2 Previous Bloat Control Techniques
	3 Two New Parsimony Pressure Techniques
	4 Experiments
	4.1 First Experiment
	4.2 Second Experiment

	5 Conclusions and Future Work
	References

	Increasing the Serial and the Parallel Performance of the CMA-Evolution Strategy with Large Populations
	1 Introduction
	2 Algorithm of the CMA-ES
	3 Modified Algorithm
	4 Discussion of the Results
	5 Conclusions
	References

	Adaptive Reservoir Genetic Algorithm with On-Line Decision Making
	1 Introduction
	2 Algorithm Presentation
	2.1 ARGA's Basic Architecture
	2.2 Reservoir Adjustment in ARGAII

	3 Test Problem and Experimental Results
	3.1 Escaping Trap Local Optima
	3.2 Highly Multimodal and Multidimensional Landscapes
	3.3 Discussion of Results

	4 Conclusions
	References

	Genetic Algorithm Visualization Using Self-organizing Maps
	1 Intorduction
	2 Visualization Techniques
	2.1 Vizualizing phenotypes
	2.2 Visualizing genotypes
	2.3 Visualizing the state of the evolution
	2.4 Visualizing the xourse of the evolution

	3 Multidimensional Visualization
	4 The Onemax Problem
	5 The Rastrigin Problem
	6 Conclusions and Future Work
	References

	Generalised Regression GA for Handling Inseparable Function Interaction: Algorithm and Applications
	1 Introduction
	2 Types of Variable Interaction
	3 Challenges Posed by Inseparable Function Interaction
	4 Techniques for Handling Inseparable Function Interaction
	5 Generalised Regression GA (GRGA)
	6 Test Problem
	7 Design of a Welded Beam
	8 Design of a Machine Tool Spindle
	9 Future Research Activities and Conclusions
	References

	Diversity-Guided Evolutionary Algorithms
	1 Introduction
	2 The Diversity-Guided EA
	3 Experiments and Results
	3.1 Traditional Optimization
	3.2 Investigations on Diversity

	4 Conclusions
	References

	Evolutionary Optimization of Heterogeneous Problems
	1 Introduction
	2 The Breeder Genetic Algorithm
	2.1 Recombination
	2.2 Mutation

	3 Extension of the BGA to Heterogeneous Problems
	4 A Case Study in Neural Network Training
	4.1 The BGA as a Neural Network Trainer
	4.2 Heterogeneous Neural Networks

	5 An Experimental Study
	References

	Automatic Recurrent and Feed-Forward ANN Rule and Expression Extraction with Genetic Programming
	1 Introduction
	2 State of the Art
	2.1 Genetic Programming
	2.2 ANN Rule Extraction

	3 Fundamentals
	4 Description of the System
	5 Results
	5.1 Classification Problems
	5.2 Forecast of Time Series

	6 Conclusions
	7 Future Works
	References

	Learning and Evolution by Minimization of Mutual Information
	1 Introduction
	2 Minimizing Mutual Information by Negative Correlation Learning
	2.1 Minimization of Mutual Information
	2.2 Negative Correlation Learning

	3 Simulation Results
	3.1 Simulation Setup
	3.2 Measurement of Mutual Information
	3.3 Experimental Results

	4 Evolving Neural Network Ensembles
	5 Experimental Studies
	5.1 Experimental Results

	6 Conclusions
	References

	Evolved RBF Networks for Time-Series Forecasting and Function Approximation
	1 Introduction
	2 State of the Art
	3 EvRBF
	3.1 Binary Operators
	3.2 Unary Operators
	3.3 The Breeder

	4 Experiments and Results
	4.1 Determination of the Parameters
	4.2 EvRBF Applied to Time-Series Forecasting and Function Approximation

	5 Conclusions
	References

	Evolutive Identification of Fuzzy Systems for Time-Series Prediction
	1 Introduction
	2 Description of the Fuzzy System
	3 Development of a New Evolutive Algorithm
	3.1 Incorporation of Specific Knowledge
	3.1.1 Representation of the Solutions.
	3.1.2 Removing Fuzzy Rules.
	3.1.3 Division of Fuzzy Rules.
	3.1.4 Mutation of Fuzzy Systems.
	3.1.5 Crossover of Fuzzy Systems.

	3.2 Multiobjective Optimization
	3.2.1 Evaluation Function.
	3.2.2 Assignation of Pseudo-aptitude.
	3.2.3 Sharing of Pseudo-aptitudes.


	4 Results
	5 Conclusions
	References

	HyGLEAM - An Approach to Generally Applicable Hybridization of Evolutionary Algorithms
	1 Motivation
	2 Methods of Hybridization
	3 Basic Algorithms Used for Hybridization
	4 Controlling the Basic Algorithms
	4.1 Distance Measures for Chromosomes
	4.2 Control Criteria for the Basic Algorithms

	5 Experimental Results
	5.1 Results of the Test Cases
	5.2 Comparison of the Different Kinds of Hybridization

	Conclusions
	References

	Co-evolving Memetic Algorithms: Initial Investigations
	1 Introduction
	2 Rule-Based Adaptation of Move Operators
	3 Related Work
	4 The Test Suite and Experimental Set-Up
	5 Comparison Results
	6 Discussion and Analysis
	7 Conclusions
	References

	Consideration of Multiple Objectives in Neural Learning Classifier Systems
	1 Introduction
	2 A Neural Learning Classifier System
	2.1 ZCS
	2.2 A Neural Rule Representation

	3 A Simple Multiobjective Task
	4 Towards Robotics: Dynamic Internal State
	5 Conclusions
	References

	On Using Constructivism in Neural Classifier Systems
	1 Introduction
	2 NCS: A Simple Neural Learning Classifier System
	3 A Simple Maze Task
	3.1 Woods 1
	3.2 Continuous Inputs and Actions: Less Restricted Behavioural Repertoires

	4 Neural Constructivism in NCS
	4.1 A Simple Process of Constructivism
	4.2 Results

	5 Conclusions
	References

	Initial Modifications to XCS for Use in Interactive Evolutionary Design
	1 Introduction
	2 sXCS
	3 Results
	4 Results in Non-stationary Tasks
	5 Conclusion
	References

	First Results from Experiments in Fuzzy Classifier System Architectures for Mobile Robotics
	1 Introduction
	2 Related Work
	3 The Application
	3.1 The Simulated Robot
	3.2 The Simulated Environment
	3.3 Using Fuzzy Logic
	3.4 The Problem to Be Solved

	4 The Fuzzy Classifier Systems
	4.1 Pittsburgh System
	4.2 The Michigan-Style Systems

	5 Experimental Evaluations
	5.1 Pittsburgh System
	5.2 Michigan Systems

	6 Discussion
	7 Conclusions and Further Work
	References

	TCS Learning Classifier System Controller on a Real Robot
	1 Introduction
	2 The Robot
	3 The TCS Algorithm
	3.1 Time Needs to Be Considered in the Reinforcement Function
	3.2 The Action Selection Mechanism of TCS
	3.3 The Rule Representation for TCS

	4 The Robotic Task
	5 Results
	6 Conclusion
	References

	Comparing Synchronous and Asynchronous Cellular Genetic Algorithms
	1 Introduction
	2 Asynchronous Cellular Evolutionary Algorithms
	3 Description of the Test Problems
	4 Parameters and Statistics Used
	5 Experimental Results
	6 Conclusions
	References

	Satellite Range Scheduling: A Comparison of Genetic, Heuristic and Local Search
	1 Problem Description
	2 Algorithms for Satellite Range Scheduling
	2.1 Solution Representation and Decoding
	2.2 Random Sampling
	2.3 Local Search under the Shift Neighborhood
	2.4 The $mathit {Genitor}$ Genetic Algorithm
	2.5 Other Scheduling Algorithms

	3 The AFIT Benchmark
	4 Generalizing the AFIT Problems
	5 Conclusions
	References

	The LifeCycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and HillClimbers
	1 Introduction
	2 The LifeCycle Model
	2.1 The PSO Model
	2.2 The GA Model
	2.3 The HillClimber

	3 Experimental Settings
	3.1 Settings for the PSO
	3.2 Settings for the GA
	3.3 Settings for the HillClimbers

	4 Experimental Results
	4.1 Performance
	4.2 Composition of the LifeCycle Individuals

	5 Discussion and Future Work
	References

	Metaheuristics for Group Shop Scheduling
	1 Introduction to the Group Shop Scheduling Problem
	2 Common Neighborhood and Local Search
	3 Metaheuristic Approaches
	3.1 Ant Colony Optimization
	3.2 Evolutionary Algorithm
	3.3 Iterated Local Search
	3.4 Simulated Annealing
	3.5 Tabu Search

	4 Problem Instances
	5 Evaluation and Conclusion
	References

	Experimental Investigation of Three Distributed Genetic Programming Models
	1 Introduction
	2 Description of Distributed Models Used
	2.1 Synchronous Communication with Master
	2.2 Asynchronous Communication with Master
	2.3 Asynchronous Communication without Master

	3 Test Functions and GP Parameters
	4 Computational Effort and Population Entropy
	5 Experimental Results
	6 Conclusions
	References

	Model-Based Search for Combinatorial Optimization: A Comparative Study
	1 Introduction
	2 Model-Based Search
	3 The Algorithms
	3.1 Ant Colony Optimization
	3.2 The Stochastic Gradient Ascent Method
	3.3 Estimation of Distribution Algorithms

	4 Empirical Comparison
	4.1 Comparison Setting
	4.2 Comparison Results

	5 Conclusions
	References

	A Framework for Distributed Evolutionary Algorithms
	1 Introduction
	2 System Architecture
	3 GUIDE Layer
	3.1 Evolution Engine Specification
	3.2 Problem-Dependent Components

	4 EAsy Specification of Evolutionary Algorithms
	5 JEO Layer
	5.1 JEO from the User's Point of View
	5.2 Islands and Island Components
	5.3 JEO as Java Tool

	6 DRM Layer
	6.1 Application Model
	6.2 Implementation

	7 DREAM Console
	7.1 Supported User Tasks
	7.2 Interfaces to User/DRM Code

	8 Conclusion
	References

	Optimisation of Multilayer Perceptrons Using a Distributed Evolutionary Algorithm with SOAP
	1 Introduction
	2 Distributed Evolutionary Algorithms Implementation Using SOAP and Perl
	2.1 Evolutionary Optimisation of MLP

	3 Experiments
	3.1 Glass

	4 Results
	5 Conclusions and Work in Progress
	References

	Off-Line Evolution of Behaviour for Autonomous Agents in Real-Time Computer Games
	1 Introduction
	2 Implementation of the Off-Line Game Environment
	3 GP Architecture
	3.1 GP Function Set
	3.2 Fitness Evaluation

	4 Experiments and Results
	4.1 Early Experiments without ADFs
	4.2 Experiments Using ADFs with Separate Fitness Functions
	4.3 Control Runs

	5 Conclusion and Future Research
	References

	A Parallel Evolutionary Algorithm for Stochastic Natural Language Parsing
	1 Introduction
	2 Evolutionary Algorithm for a Probabilistic Parsing
	2.1 Individuals Evaluation
	2.2 Reproduction

	3 Parallel Model and Implementation
	4 Experiments
	4.1 Study of the Evolutionary Algorithm Parameters
	4.2 Evaluating the Parallel Model
	4.3 Tuning the Parallel Model

	5 Conclusions
	References

	Evolutionary Learning of Boolean Queries by Multiobjective Genetic Programming
	1 Introduction
	2 Preliminaries
	2.1 Boolean Information Retrieval Systems
	2.2 Evaluation of Information Retrieval Systems
	2.3 Inductive Query by Example

	3 The Smith and Smith's Genetic Programming-Based Inductive Query by Example Algorithm for Boolean Information Retrieval Systems
	4 Incorporating Pareto-Based Multiobjective Components to the Smith and Smith's Algorithm
	5 Experiments Developed and Analysis of Results
	6 Concluding Remarks
	References

	Inferring Phylogenetic Trees Using Evolutionary Algorithms
	1 Introduction
	2 A Gentle Introduction to Phylogenetic Trees
	3 Evolutionary Approaches to the Phylogeny Problem
	3.1 Direct Search in the Phylogenetic-Tree Space
	3.2 Decoder-Based EAs for the Phylogeny Problem

	4 Empirical Results
	5 Conclusions
	References

	Towards a More Efficient Evolutionary Induction of Bayesian Networks
	1 Introduction
	2 Background
	2.1 Bayesian Networks
	2.2 Evolutionary Induction of DAGs

	3 Bayesian Network Recombination
	3.1 Genetic vs. Allelic Recombination
	3.2 Phenotypic Measures

	4 Experimental Results
	5 Summary and the Likely Future
	References

	Robust Multiscale Affine 2D-Image Registration through Evolutionary Strategies
	1 Introduction
	2 The Image Registration Problem
	2.1 Affine Transforms

	3 Related Work
	4 Multiscale Representation
	5 The Multiscale Affine Image Registration Method
	6 Experiments
	6.1 Robustness and Consistency of the Method
	6.2 Overall Convergence Experiments

	7 Discussion and Conclusions
	References

	Synthesizing Graphical Models Employing Explaining Away
	1 Introduction
	1.1 Graphical Models
	1.2 Explaining Away

	2 The Helmholtz Machine
	3 Evolving Graphical Models with Explaining Away
	3.1 Evolving Structural Semantics of Explaining Away
	3.2 Encoding of Chromosomes
	3.3 Good Models

	4 Simulations
	5 Discussion
	References

	Constructive Geometric Constraint Solving: A New Application of Genetic Algorithms
	1 Introduction
	2 Constructive Geometric Constraint Solving
	3 Root Identification
	3.1 The Solution Instance Genetic Model
	3.2 The Genetic Algorithm
	3.3 The Genetic Selector

	4 Experimental Results
	4.1 Case Study
	4.2 Discussion

	5 Summary and Future Work
	References

	Multimeme Algorithms for Protein Structure Prediction
	1 Introduction
	2 Evolutionary Algorithms Approaches to Protein Structure Prediction
	3 Multimeme Algorithms for Protein Structure Prediction
	3.1 Tailoring the Multimeme Algorithm for Protein Structure Prediction
	3.2 A New Mating Strategy

	4 Results
	5 Conclusions and Future Work
	References

	A Dynamic Traffic Model for Frequency Assignment
	1 Introduction
	2 Traffic Modeling in Frequency Assignment Problem
	2.1 Traffic Engineering
	2.2 Classical Traffic Modeling for Frequency Assignment

	3 Dynamic Traffic Modeling for Frequency Assignment Problem
	4 A Genetic Tabu Search Algorithm for FAP
	4.1 Individual Representation and Fitness Evaluation
	4.2 Selection and Replacement Operators
	4.3 Crossover and Mutation

	5 Experimentation and Results
	5.1 Fictive FAP Instances
	5.2 Real FAP Instance
	5.3 Performance Criteria
	5.4 Experimental Results

	6 Conclusion and Future Works
	References

	A Parameter-Free Genetic Algorithm for a Fixed Channel Assignment Problem with Limited Bandwidth
	1 Introduction
	2 Fixed Channel Assignment with Limited Bandwidth
	2.1 Notation
	2.2 Damage of Blocked Calls
	2.3 Damage from Interference
	2.4 Objective Function
	2.5 Related Works

	3 The Proposed Algorithm
	3.1 How Many Frequencies Are Necessary for a Cell?
	3.2 Virtual Machine
	3.3 Chromosome Representation
	3.4 Mutation
	3.5 Local Search

	4 Experiments and Results
	4.1 Benchmark Problems
	4.2 Results

	5 Conclusions
	References

	Real-Coded Parameter-Free Genetic Algorithm for Job-Shop Scheduling Problems
	1 Introduction
	2 Job-Shop Scheduling Problem
	2.1 Chromosome Representation
	2.2 Types of Feasible Schedules

	3 Parameter-Free Genetic Algorithm (PfGA)
	3.1 Parameter-Free Genetic Algorithm
	3.2 Distributed Parallel PfGA

	4 The Proposed GA
	4.1 Random Keys for Job-Shop Scheduling
	4.2 Real-Coded PfGA (Rc-PfGA)
	4.3 Permutation Decoding
	4.4 Chromosome

	5 Computational Results
	5.1 Results by PfGA
	5.2 Results by Distributed Parallel PfGA

	6 Conclusion and Future Work
	References

	Clustering Gene Expression Profiles with Memetic Algorithms
	1 Introduction
	2 Memetic Algorithms
	3 MAs for Clustering Gene Expression Data
	3.1 Representation and Fitness Function
	3.2 Selection
	3.3 Initialization and Local Search
	3.4 The Mutation Operators
	3.5 The Recombination Operators

	4 Computational Experiments
	4.1 The Gene Expression Data Sets
	4.2 Computational Results

	5 Conclusions
	References

	Cellular Automata and Genetic Algorithms for Parallel Problem Solving in Human Genetics
	1 Introduction
	2 Cellular Automata for Parallel Problem Solving in Human Genetics
	3 Cellular Automata Optimization Using Genetic Algorithms
	3.1 Overview of Genetic Algorithms
	3.2 Solution Representation and Fitness Determination
	3.3 Parallel Genetic Algorithm Software and Parameters
	3.4 Implementation

	4 Data Simulation and Analysis
	5 Results
	6 Discussion and Conclusions
	References

	Evolutionary Graph Generation System and Its Application to Bit-Serial Arithmetic Circuit Synthesis
	1 Introduction
	2 EGG System
	2.1 Basic Model
	2.2 EGG System Implementation

	3 Synthesis of Bit-Serial Constant-Coe.cient Multipliers
	4 Experimental Results
	5 Conclusion
	References

	Evaluating Multi-criteria Evolutionary Algorithms for Airfoil Optimisation
	1 Introduction
	2 Airfoil Design Test Case
	3 Multi-objective Evolutionary Algorithms
	3.1 Multi-objective Derandomized ES (MODES)
	3.2 New Approach Averaging and Comparing MOEA Results

	4 Results
	5 Conclusions
	References

	Hyperheuristics: A Robust Optimisation Method Applied to Nurse Scheduling
	1 Introduction
	2 The Nurse Scheduling Problem
	3 A Choice-Function Hyperheuristic Technique
	4 Experiments
	5 Conclusions
	References

	Evolving the Topology of Hidden Markov Models Using Evolutionary Algorithms
	1 Introduction
	2 Hidden Markov Models
	2.1 General Introduction
	2.2 HMMs for Secondary Structure Prediction

	3 Methods
	3.1 Representation
	3.2 Population Initialisation
	3.3 Variation Operators
	3.4 Fitness Evaluation
	3.5 The HMM EA

	4 Experiments
	4.1 Sequence Data
	4.2 Experimental Setup and Data Sampling

	5 Results
	6 Discussion
	References

	Solving a Real World Routing Problem Using Multiple Evolutionary Agents
	1 Introduction
	1.1 The Problem
	1.2 Previous Work

	2 Initial Attempts to Solve the Problem Using Group and Build
	3 The Marketplace Algorithm
	3.1 Initial MAS Experiments
	3.2 Artificial Currency
	3.3 The Market Algorithm
	3.4 2-Stage Bidding

	4 Results and Conclusions
	References

	An Ant Colony Optimization Approach to the Probabilistic Traveling Salesman Problem
	1 Introduction
	2 The PTSP Objective Function
	3 Ant Colony Optimization
	3.1 Solution Construction in ACS and pACS
	3.2 Pheromone Trails Update in ACS and pACS
	3.3 Discussion of Differences between ACS and pACS

	4 Experimental Tests
	4.1 Homogeneous PTSP Instances
	4.2 Computational Environment and ACS Parameters
	4.3 Results
	4.4 Absolute Performance

	5 Conclusions and Future Work
	References

	When Model Bias Is Stronger than Selection Pressure
	1 Introduction
	2 A General Scheduling Problem
	3 An ACO Algorithm for the GSP
	4 Investigating ${sf PH_{suc}}$ on a Small Example Instance
	5 Model Bias and Selection Pressure
	6 Conclusions and Outlook
	References

	Evolution of Asynchronous Cellular Automata
	1 Introduction
	2 Asynchronous Cellular Automata
	3 The Co-evolutionary Framework of Non-uniform Cellular Automata
	4 Co-evolution of Two-State Cellular Automata
	5 The Advantages of Redundant Cellular Automata
	6 Co-evolution of Redundant Synchronizing Cellular Automata
	7 Concluding Remarks
	References

	Improved Ant-Based Clustering and Sorting in a Document Retrieval Interface
	1 Introduction
	1.1 Contents-Based Document Clustering: Topic Maps

	2 Clustering versus Multi-dimensional Scaling
	3 Algorithm Modifications
	3.1 Evaluation
	3.2 Pre-processing

	4 Related Work
	5 Conclusions
	References

	An Adaptive Flocking Algorithm for Spatial Clustering
	1 Introduction
	2 The DBSCAN Algorithm
	3 A Multi-agent Spatial Clustering Algorithm
	3.1 The Flock Algorithm
	3.2 SPARROW: A Flocking Algorithm for Spatial Clustering

	4 Experimental Results
	5 Conclusions
	References

	Evolution of Asynchronous Cellular Automata for the Density Task
	1 Introduction
	2 Synchronous and Asynchronous Cellular Automata
	3 Evolving 1-D Asynchronous CAs for the Density Task
	3.1 The Density Task
	3.2 Artificial Evolution of Cellular Automata
	3.3 Evolutionary Dynamics and Results: Synchronous CAs
	3.4 Evolutionary Dynamics and Results: Asynchronous CAs

	4 Merging the Synchronous and Asynchronous Worlds
	5 Conclusions
	References

	Author Index



