Lecture Notes in

Computer Science

Gilles Gauthier Claude Frasson
Kurt VanLehn (Eds.)

Intelligent
Tutoring Systems

5th International Conference, ITS 2000
Montréal, Canada, June 2000
Proceedings

© Springer

Lecture Notes in Computer Science 1839
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Gilles Gauthier Claude Frasson
Kurt VanLehn (Eds.)

Intelligent
Tutoring Systems

5th International Conference, ITS 2000
Montréal, Canada, June 19-23, 2000
Proceedings

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Gilles Gauthier

Université du Québec a Montréal, Département d’informatique
C.P. 8888, succ. Centre-Ville, Montréal QC, Canada H3C 3P8
E-mail: gauthier.gilles@uqam.ca

Claude Frasson

Université de Montréal, Département d’informatique et de recherche opérationnelle
C.P. 6128, succ. Centre-Ville, Montréal QC, Canada H3C 3J7

E-mail: frasson @iro.umontreal.ca

Kurt VanLehn

University of Pittsburgh, Learning Research and Development Center
Pittsburgh, PA 15260, USA

E-mail: vanlehn @cs.pitt.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Intelligent tutoring systems : 5th international conference ;
proceedings / ITS 2000, Montréal, Canada, June 19 - 23, 2000. Gilles
Gauthier . .. (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000
(Lecture notes in computer science ; Vol. 1839)
ISBN 3-540-67655-4

CR Subject Classification (1998): K.3,1.2, D.2, H.5, J.1

ISSN 0302-9743
ISBN 3-540-67655-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN: 10722036 06/3142 543210

Preface

ITS 2000 is the fifth international conference on Intelligent Tutoring Systems. The
preceding conferences were organized in Montreal in 1988, 1992, and 1996. These
conferences were so strongly supported by the international community that it was
decided to hold them every two years. ITS’98 was organized by Carol Redfield and
Valerie Shute and held in San Antonio, Texas.

The program committee included members from 13 countries. They received 140
papers (110 full papers and 30 young researchers papers) from 21 countries. As with
any international conference whose proceedings serve as a reference for the field, the
program committee faced the demanding task of selecting papers from a particularly
high quality set of submissions.

This proceedings volume contains 61 papers selected by the program committee from
the 110 papers submitted. They were presented at the conference, along with six
invited lectures from well-known speakers. The papers cover a wide range of
subjects including architectures for ITS, teaching and learning strategies, authoring
systems, learning environments, instructional designs, cognitive approaches, student
modeling, distributed learning environments, evaluation of instructional systems,
cooperative systems, Web-based training systems, intelligent agents, agent-based
tutoring systems, intelligent multimedia and hypermedia systems, interface design,
and intelligent distance learning. The conference itself was preceded by seven
workshops on modeling human teaching tactics and strategies, adaptive and
intelligent Web-based education systems, applying machine learning to ITS/design
construction, collaborative discovery learning in the context of simulations, case-
based reasoning in intelligent training systems, learning algebra with the computer (a
transdisciplinary workshop), and advanced instructional design for complex safety
critical and emergency training. Three tutorials highlighted important domains in
ITS: ontological engineering and its implication for AIED research, adaptive Web-
based educational systems, and animated pedagogical agents.. Finally, 25 papers
from the Young Researcher Track were selected, and 22 posters.

We would like to thank all the members of the program committee who reviewed
conscientiously all the papers which were sent so as to obtain a distributed and
equilibrated point of view. We also thank the external reviewers who added their
effort to complement the evaluations. A subset of the program committee met in
February in Montreal to set up the final list of accepted papers.

The conference was scientifically supported by several prestigious associations. This
represents an acknowledgment of the high level of the conference which is now well
established. We thank the American Association for Artificial Intelligence (AAAI),
the Association for Computing Machinery (ACM), and the special interest groups
SIGART, SIGCUE, and SIGCHI, the IFIP TC3 Committee, the International
Artificial Intelligence in Education (AIED) Society, and the Learning Technology
Task Force (LTTF) from IEEE Computer Society. They ensured a wide
distribution of information regarding the announcement of the conference.

VI

We would like to thank the Université de Montréal and the Université du Québec a
Montréal for their support in the organization of the conference. We thank all those
many people who gave their time and effort to make the conference a success, all the
members of the organizing committee, a fantastic team who regularly spent numerous
hours on all the details of the conference, and all the students of the HERON
laboratory in Montreal who helped with the practical organization of the conference.
Finally, we appreciate the cooperation received from Springer-Verlag during the
publication of this volume.

June 2000 Claude Frasson
Gilles Gauthier
Kurt VanLehn

VII

Conference Chair
Claude Frasson (Université de Montréal, Canada)

Program Committee Chair
Kurt VanLehn (Learning Research and Development Center, Pittsburgh, USA)

Program Committee

Marie Michele Boulet (Université Laval, Canada)

Joost Breuker (University of Amsterdam, The Netherlands)
Peter Brusilovsky (CTE & HCII, Carnegie Mellon University, USA)
Stefano Cerri (Université de Montpellier, France)

Tak Wai Chan (National Central University, Taiwan, R.O.C.)
William Clancey (IHMC, University of West Florida, USA)
Alain Dericke (Université des sciences et techniques de Lille, France)
Pierre Dillenbourg (Université de Geneve, Switzerland)

Ben du Boulay (University of Sussex, England)

Isabel Fernandez de Castro (UPV/EHU, Spain)

Carl Fredericksen (McGill University, Canada)

Sylvain Giroux (CRS4, Italy)

Guy Gouarderes (Université de Pau, France)

Art Graesser (University of Memphis, USA)

Monique Grandbastien (Université de Nancy, France)

Jim Greer (University of Saskatchewan, Canada)

Denise Gurer (3-Com Corporation, USA)

Danielle Hérin Aimé (Université de Montpellier, France)
Kojih Itoh (University of Tokyo, Japan)

Michelle Joab (Université Pierre et Marie Curie, France)
Lewis Johnson (University of Southern California, USA)
Judith Kay (University of Sydney, Australia)

Ken Koedinger (Carnegie Mellon University, USA)

Susanne Lajoie (McGill University, Canada)

Ruddy Lelouche (Université Laval, Canada)

Alan Lesgold (Learning Research and Development Center, Pittsburgh, USA)
James Lester (North Carolina State University, USA)
Chee-Kit Looi (Kent Ridge Digital Labs, Singapore)

Sandra Marshall (San Diego State University, USA)
Hermann Maurer (University of Graz, Austria)

Gordon McCalla (University of Saskatchewan, Canada)
Riichiro Mizoguchi (Osaka University, Japan)

Claus Moebus (University of Oldenburg, Germany)

Toshio Okamoto (University of Electro-communications, Japan)
Carol Redfield (St. Mary's University, San Antonio, USA)
Jeff Rickel (University of Southern California, USA)

John Self (University of Leeds, England)

Elliot Soloway (University of Michigan, USA)

Daniel Suthers (University of Hawaii, USA)

George Tecuci (George Mason University, USA)

Gerhard Weber (University of Trier, Germany)

Beverly Woolf (University of Massachusets, USA)

VIII

ITS Steering Committee

Stefano Cerri (Université de Montpellier, France)

Claude Frasson (Université de Montréal, Canada)

Gilles Gauthier (Université du Québec a Montréal, Canada)
Guy Gouarderes (Université de Pau, France)

Marc Kaltenbach (Bishop's University, Canada)

Judith Kay (University of Sydney, Australia)

Alan Lesgold (Learning Research and Development Center, USA)
Vimla Patel (McGill University, Canada)

Elliot Soloway (University of Michigan, USA)

Daniel Suthers (University of Hawaii, USA)

Beverly Woolf (University of Massachusetts, USA)

Organizing Committee Chair
Gilles Gauthier (Université du Québec a Montréal, Canada)

Special Student Track and Poster Session Chair
Roger Nkambou (Université de Sherbrooke, Canada)

Workshops Chair

Esma Aimeur (Université de Montréal, Canada)

Panels Chair

Stefano Cerri (Université de Montpellier, France)

Publicity Chair
Denise Gurer (3-Com Corporation, USA)

Local Arrangements Chair
Bernard Lefebvre (Université du Québec a Montréal, Canada)

Conference Treasurer & Registration Chair
Michelle Martin (Université de Montréal, Canada)

External Reviewers
Esma Aimeur
Joseph Beck
Jacqueline Bourdeau
Alexandra Cristea
Aude Dufresne
Claude Frasson
Gilles Gauthier
Gilles Imbeau

Marc Kaltenbach
Tarik Khan

Bernard Lefebvre
André Mayers

Jean-Francois Nicaud
Roger Nkambou

Submitted Papers Repartition

Algeria 1
Austria 2
Brazil 2
Canada 11
Estonia 1
Finland 1
France 10
Germany 6
Greece 3
Hong Kong

Japan 13
Korea 1
Mexico 3
The Netherlands 4
New Zealand 3
Portugal 2
Spain 6
UK 10
Ukraine 1
USA 25

Yugoslavia 2

Table of Contents

Invited Presentations

Adaptive Hypermedia: From Intelligent Tutoring Systems to Web-Based
Education
P. Brusilovsky

Infrastructure for Future Network Learning
T.-W. Chan (Abstract)

Can We Learn from ITSs?
B. du Boulay

Uncertainty, Utility, and Understanding
E. Horvitz (Abstract)

Stereotypes, Student Models and Scrutability
J. Kay

Life and Learning in the Electronic Village: The Importance of Localization
for the Design of Environments to Support Learning
G. McCalla

Agent-Based Tutoring Systems

Tutoring Diagnostic Problem Solving
R. Ganeshan, W.L. Johnson, E. Shaw, B.P. Wood

LAHYSTOTRAIN Integration of Virtual Environments and ITS

to Surgery Training

J.L. Los Arcos, W. Muller, O. Fuente, L. Orae, E. Arroyo, I. Leaznibarrutia,
J. Santander

Active Learner Modelling
G. McCalla, J. Vassileva, J. Greer, S. Bull

Training Teams with Collaborative Agents
M.S. Miller, J. Yin, R.A. Volz, T.R. loerger, J. Yen

18

19

31

33

43

53

63

XII

Evaluating an Animated Pedagogical Agent
A. Mitrovic, P. Suraweera

Multi-agent Negotiation to Support an Economy for Online Help and Tutoring

C. Mudgal, J. Vassileva

The Collaborative System with Situated Agents for Activating
Observation Learning
T. Okamoto, T. Kasai

Should I Teach My Computer Peer? Some Issues in Teaching
a Learning Companion
J.A. Ramirez Uresti

WHITE RABBIT Matchmaking of User Profiles Based on Discussion
Analysis Using Intelligent Agents
M.-A. Thibodeau, S. BAanger, C. Frasson

Architectures for ITS

Applying Patterns to ITS Architectures
V. Devedzic

Andes: A Coached Problem Solving Environment for Physics
A.S. Gertner, K. VanLehn

A Collection of Pedagogical Agents for Intelligent Educational Systems
R. Lelouche

DT Tutor: A Decision-Theoretic, Dynamic Approach for Optimal
Selection of Tutorial Actions
R.C. Murray, K. VanLehn

Experimenting Features from Distinct Software Components on
a Single Platform
M. Rosselle, M. Grandbastien

Using Student Task and Learning Goals to Drive the Construction
of an Authoring Tool for Educational Simulations
B. Towle

73

83

93

103

113

123

133

143

153

163

173

Authoring Systems

Using an ITS Authoring Tool to Explore Educators’ Use
of Instructional Strategies
S. Ainsworth, J. Underwood, S. Grimshaw

Is What You Write What You Get?: An Operational Model
of Training Scenario

Y. Hayashi, M. Ikeda, K. Seta, O. Kakusho, R. Mizoguchi

Designing for Collaborative Discovery Learning
W.R. van Joolingen

Cognitive Approaches

An Analysis of Multiple Tutoring Protocols
B.-1. Cho, J.A. Michael, A.A. Rovick, M.W. Evens

Understandable Learner Models for a Sensorimotor Control Task
R. Morales, H. Pain, T. Conlon

Using Meta-cognitive Conflicts to Support Group Problem Solving

P. Azevedo Tedesco, J. Self

Cooperative Systems

LeCS: A Collaborative Case Study System
M.C. Rosatelli, J.A. Self, M. Thiry

"Today’s Talking Typewriter" Supporting Early Literacy
in a Classroom Environment
F. Tewissen, A. Lingnau, H.U. Hoppe

An Adaptive, Collaborative Environment to Develop Good
Habits in Programming
A. Vizealno, J. Contreras, J. Favela, M. Prieto

Distributed Learning Environments

A Reflective CSCL Environment with Foundations Based on the
Activity Theory
G. Bourguin, A. Derycke

XIII

182

192

202

212

222

232

242

252

262

272

XIv

How Can We Form Effective Collaborative Learning Groups?
A. Inaba, T. Supnithi, M. lkeda, R. Mizoguchi, J. Toyoda

Evaluation of Instructional Systems

Limitations of Student Control: Do Students Know When They Need Help?
V. Aleven, K.R. Koedinger

Further Results from the Evaluation of an Intelligent Computer
Tutor to Coach Self-Explanation
C. Conati, K. VanLehn

Analyzing and Generating Mathematical Models: An Algebra Il
Cognitive Tutor Design Study
A. Corbett, M. McLaughlin, K.C. Scarpinatto, W. Hadley

Intelligent Distance Learning

A Coached Collaborative Learning Environment for Entity-Relationship
Modeling
M. de los Angeles Constantino-GonzAbez, D.D. Suthers

Model of an Adaptive Support Interface for Distance Learning
A. Dufresne

Agent’s Contribution for an Asynchronous Virtual Classroom
K. Matsuura, H. Ogata, Y. Yano

Intelligent Multimedia and Hypermedia Systems

Theoretical and Practical Considerations for Web-Based
Intelligent Language Tutoring Systems
T. Heift, D. Nicholson

Adaptive Multimedia Interface for Users with Intellectual and
Cognitive Handicaps
L. Moreno, C.S. GonzAes, R.M. Aguilar, J. Est@ez, J. SAichez , C. Barroso

Evaluating the Need for Intelligence in an Adaptive Hypermedia System
T. Murray, J. Piemonte , S. Khan , T. Shen, C. Condit

282

292

304

314

324

334

344

354

363

373

Instructional Design

Tailoring Feedback by Correcting Student Answers
B. Martin, A. Mitrovic

Design Principles for a System to Teach Problem Solving by Modelling

G. Tisseau, H. Giroire, F. Le Calvez, M. Urtasun, J. Duma

Evolution of the Hypotheses Testing Approach in Intelligent
Problem Solving Environments
J. Willms, C. MU bus

Learning Environments

The Impact of Representation on Coaching Argument Analysis
V. Cavalli-Sforza

Bringing Scrutability to Adaptive Hypertext Teaching
M. Czarkowski, J. Kay

ITS Tools for Natural Language Dialogue: A Domain-Independent
Parser and Planner
R. Freedman, C. Penstein Ros() M.A. Ringenberg, K. VanLehn

Cooperative Agents to Track Learner’s Cognitive Gap
G. Gouardtres, A. Minko, L. Richard

Agent-Mediated Language-Learning Environment Based on
Communicative Gaps
H. Ogata, Y. Liu, Y. Ochi, Y. Yano

TEATRIX: Virtual Environment for Story Creation
R. Prada, 1. Machado, A. Paiva

Fading and Deepening: The Next Steps for Andes and other
Model-Tracing Tutors

K. VanLehn, R. Freedman, P. Jordan, C. Murray, R. Osan, M. Ringenberg,
C. Ros() K. Schulze, R. Shelby, D. Treacy, A. Weinstein, M. Wintersgill

An Intelligent Learning Environment for Novice Users of a GUI
M. Virvou, K. Kabassi

A System for Concerned Teaching of Musical Aural Skills
G.A. Wiggins, S. Trewin

XV

383

393

403

413

423

433

443

454

464

474

484

494

XVI

Student Modeling

Broader Bandwidth in Student Modeling: What if ITS were "Eye"TS?
K.A. Gluck, J.R. Anderson, S.A. Douglass

Accretion Representation for Scrutable Student Modelling
J. Kay

Using a Probabilistic Student Model to Control Problem Difficulty
M. Mayo, A. Mitrovic

Adaptive Bayesian Networks for Multilevel Student Modelling
E. MillAn, J.L. P(rez-de-la-Cruz, E. Sudiez

Inspecting and Visualizing Distributed Bayesian Student Models
J.-D. Zapata-Rivera, J.E. Greer

The Explanation Agent
A. Zouag, C. Frasson, K. Rouane

Teaching and Learning Strategies

The Conceptual Helper: An Intelligent Tutoring System for Teaching
Fundamental Physics Concepts
P.L. Albacete, K. VanLehn

Macroadapting Animalwatch to Gender and Cognitive Differences
with Respect to Hint Interactivity and Symbolism
I. Arroyo, J.E. Beck, B. Park Woolf, C.R. Beal, K. Schultz

High-Level Student Modeling with Machine Learning
J.E. Beck, B. Park Woolf

Individualized Recommendations for Learning Strategy Use
S. Bull

An Empirical Approach to On-Line Learning in SIETTE
R. Conejo, E. Mill4, J.-L. P(rez-de-la-Cruz, M. Trella

Cooperative Problem-Seeking Dialogues in Learning
J. Cook

504

514

524

534

544

554

564

574

584

594

604

615

Web-Based Training Systems

Course Sequencing for Static Courses? Applying ITS Techniques
in Large-Scale Web-Based Education
P. Brusilovsky

Modelling the Instructor in a Web-Based Authoring Tool
for Algebra-Related ITSs
M. Virvou, M. Moundridou

Poster Papers

Improving Story Choice in a Reading Tutor that Listens
G. Aist, J. Mostow

Using Computer Algebra for Rapid Development of ITS Components
in Engineering
B. Alpers

Supporting Discovery Learning in Building Neural Network Models
S. Belkada, T. Okamoto, A. Cristea

A Cognitive Model for Automatic Narrative Summarization in
a Self-Educational System
L. Capus, N. Tourigny

Didactic Situations as Multifaceted Theoretical Objects
M. Chambreuil, P. Bussapapach, J. Fynn

The Use of Constraint Logic Programming in the Development of
Adaptive Tests
S. Chua Abdullah, R.E. Cooley

An Ontological Approach for Design and Evaluation of Tutoring Systems
S. Crozat, P. Trigano

Training Scenarios Generation Tools for an ITS to Control Center Operators
L. Faria, Z. Vale, C. Ramos, A. Silva, A. Marques

Multiple Paradigms for a Generic Diagnostic Proposal
B. Ferrero, I. Fernandez-Castro, M. Urretavizcaya

A Description Formalism for Complex Questionnaires
F. Issac, O. Hf

XVII

625

635

645

646

647

648

649

650

651

652

653

654

XVIII

Assisting Planning in Computer-Mediated Explorative Problem-Solving
K. Itoh, M. Itami, M. Fujihira, T. Kawamura, K. Kawakami

Annotating Exploration History and Knowledge Mapping for
Learning with Web-Based Resources
A. Kashihara, S. Hasegawa, J. Toyoda

Collaborative Learning Environment which Enforces Students to Induce Ideas

T. Kojiri, T. Watanabe

Adaptive Support for Brain Deficits in Special Education
J. Kurhila, L. Paasu, E. Sutinen

Student Modelling and Interface Design in STAL
A. Martinez, M.A. Simll n, J.A. Maestro, M. Ll pez, C. Alonso

A Reification of a Strategy for Geometry Theorem Proving
N. Matsuda, K. VanLehn

VLab: An Environment for Teaching Behavioral Modeling
E.S. Tzafestas, P.A. Prokopiou

Workshops

W1 - Modeling Human Teaching Tactics and Strategies
B. du Boulay

W2 - Adaptive and Intelligent Web-Based Education Systems
C. Peylo

W3 Applying Machine Learning to ITS Design/Construction
J. Beck

W4 Collaborative Discovery Learning in the Context of Simulations
W. van Joolingen

W5 Case-Based Reasoning in Intelligent Training Systems
E. Almeur

W6 Learning Algebra with the Computer, a Transdisciplinary Workshop
J.-F. Nicaud

W7 Advanced Instructional Design for Complex Safety
Critical & Emergency Training
M. Dobson, M. Spector

655

656

657

658

659

660

661

662

663

664

665

666

667

668

XIX

Young Researchers Track 669

Author Index 673

Adaptive Hypermedia: From Intelligent Tutoring
Systems to Web-Based Education

Peter Brusilovsky

Carnegie Technology Education and
HCI Institute, Carnegie Mellon University
4615 Forbes Avenue, Pittsburgh, PA 15213, USA
plb@cs.cmu.edu|

Abstract. Adaptive hypermedia is a new area of research at the crossroads of
hypermedia and adaptive systems and. Education is the largest application area
of adaptive hypermedia systems. The goals of this paper are to provide a brief
introduction into adaptive hypermedia and supply the reader with an organized
reading on adaptive educational hypermedia. Unlike some other papers that are
centered around the current state of the field, this paper attempts, from one side,
to trace the history adaptive educational hypermedia in connection with
intelligent tutoring systems research and, from another side, draft its future in
connection with Web-based education.

1 Introduction

Adaptive hypermedia is a relatively new direction of research on the crossroads of
hypermedia and user modeling. One limitation of traditional "static" hypermedia
applications is that they provide the same page content and the same set of links to all
users. If the user population is relatively diverse, a traditional system will “suffer from
an inability to be all things to all people”. For example, a traditional educational
hypermedia system will present the same static explanation and suggest the same next
page to students with widely differing educational goals and knowledge of the
subject. Similarly, a static electronic encyclopedia will present the same information
and same set of links to related articles to readers with different knowledge and
interests. Finally, a static virtual museum will offer the same “guided tour” and the
same narration to visitors with very different goals and background knowledge.

Adaptive hypermedia is an alternative to the traditional “one-size-fits-all” approach
in the development of hypermedia systems. Adaptive hypermedia systems build a
model of the goals, preferences and knowledge of each individual user, and use this
model throughout the interaction with the user, in order to adapt the hypertext to the
needs of that user. For example, a student in an adaptive educational hypermedia
system will be given a presentation which is adapted specifically to his or her
knowledge of the subject [10], and a suggested set of most relevant links to proceed
further [4]. An adaptive electronic encyclopedia will personalise the content of an
article to augment the user's existing knowledge and interests [26]. A virtual museum
will adapt the presentation of every visited object to the user's individual path through
the museum [30].

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 1-7, 2000.
Springer-Verlag Berlin Heidelberg 2000

mailto:plb@cs.cmu.edu

2 Peter Brusilovsky

2 What Can Be Adapted in Adaptive Hypermedia

A typical hyperdocument consists of a set of nodes or "pages" connected by links.

Each page contains some local information and a number of links to related pages.

Hypermedia systems can also include special navigation tools such as table of

contents, index, and map that could be used to navigate to all accessible pages. What

can be adapted here are the page (content-level adaptation) and the appearance and
behavior of the links (link-level adaptation). In adaptive hypermedia literature they
are referred respectively as adaptive presentation and adaptive navigation support.

The goal of the adaptive presentation is to adapt the content of a hypermedia page
to the user's goals, knowledge and other information stored in the user model. There
could be multiple reasons to use adaptive presentation. Two typical cases in the area
of education are comparative explanations and explanation variants. The idea of
comparative explanations is to connect new content to the existing knowledge of the
student. A page can have one or more hidden comparative explanation fragments that
comparing some aspects of new topic with relevant aspects of other topic [15]. For
example, "while" loop in C++ language could be compared with the same construct in
Pascal. Only students with relevant previous knowledge will (knowledge of Pascal
loops in our example) will see the comparison. The idea of explanation variants is to
use essentially different variants of explanations for users with different level of
knowledge of the topic. A system can store several variants for some parts of the page
content. For example, a variant prepared for a medical experts can use extensive Latin
terminology, while a variant prepared for novices can use everyday names for
illnesses and body parts [2; 17; 34].

The goal of adaptive navigation support is to help users to find their paths in
hyperspace by adapting link presentation and functionality to the goals, knowledge,
and other characteristics of an individual user. It is typically done by one of the
following ways:

e Direct guidance: The system outlines visually one of the links on the page showing
that this is the best link to follow or generates an additional dynamic link (usually
called "next") which is connected to the "next best" page.

e Link sorting: The system sorts all the links of a particular page according to the
user model and to some user-valuable criteria: the closer to the top, the more
relevant the link is.

e Link annotation: The system augments the links with some form of comments,
which can tell the user more about the nodes behind the annotated links. These
annotations are usually provided in the form of visual cues. Typical visual cues
include icons [7; 12], font colors [5; 10], sizes [20], and types [7].

e Link hiding, disabling, and removal: The system tries to prevent the user from
following links that are not relevant for him or her at the moment. There are
several ways to achieve it. A link can be hidden by turning a usually underlined
hotword into a normal word. It can be disabled so that clicking on the hotword will
produce no effect [10]. For a non-contextual link the very anchor (hotword or
hotspot) can be removed [5].

A number of interesting forms and applications of adaptive presentation and adaptive

navigation support were developed since 1990. A more comprehensive review can be

found in [3].

Adaptive Hypermedia: From Intelligent Tutoring Systems to Web-Based Education 3

3 From Intelligent Tutoring Systems to Adaptive Hypermedia

Education was always the most popular application area for adaptive hypermedia
systems. A number of interesting methods and techniques of adaptive hypermedia
were originally developed for in various adaptive educational hypermedia systems. In
turn, most of the early research on adaptive educational hypermedia was inspired by
the area of intelligent tutoring systems [2; 7; 15; 17; 20; 22; 31] and were born in a
trial to combine an intelligent tutoring system (ITS) and an educational hypermedia.

In the early times of ITS, most of these systems provide little or no learning
material. The most important duty of an ITS was to support a student in the process of
problem solving. It was assumed that the required knowledge is acquired outside of
the system, for example, by attending a lecture or reading a textbook. Along with the
growth of computer capabilities more and more ITS developers found it reasonable to
provide an ITS and a learning material in electronic form in one package. Very soon it
became clear that hypertext or hypermedia provides the best option for organizing on-
line learning material. A combination of an ITS and a learning material organized as
hypermedia was a natural starting point for the research on adaptive educational
hypermedia. A number of research groups has independently realized that a
hypermedia system coupled with an ITS can offer more functionality than a
traditional static educational hypermedia.

Adaptive presentation came first. Adaptive presentation was the natural and the
simplest way to make the hypermedia component of the system to use some
knowledge about individual students represented in a student model of ITS. A number
of adaptive presentation methods and techniques were explored in early projects. In
particular, comparative explanations method was used in Lisp-Critic [15] and
explanation variants method was used in Lisp-Critic [15], Anatom-Tutor [2], and
SYPROS [17].

In our ITS for programming domain ITEM/IP [6] we have explored several
adaptive presentation methods including explanation variants. Our goal was to
achieve a gradual transformation of the learning material from an explanation-rich
textbook to a concise manual. We have developed a simple but powerful technique
known as "conditional text". With this technique, all information about that could be
presented on a page is divided into several chunks of texts. Each chunk is associated
with a condition on the state of user knowledge stored in the user model. When
assembling a page for presentation the system selects only the chunks with true
condition. This technique is a low-level technique (it requires some "programming"
work from the author to set all the required conditions) but it is also very flexible. By
choosing appropriate conditions on the knowledge level of the current concept and
related concepts represented in the user model we were able to implement several
adaptive presentation methods. A simple example is hiding chunks that contain
additional explanations if the user's knowledge of the current concept is good enough,
or turning on a chunk with comparative explanations if the corresponding related
concept is already known. This conditional text technique was later independently
developed by Kay and Kummerfeld [21] and De Bra [10] and became quite popular in
Web-based adaptive systems.

The work on adaptive navigation support in educational hypermedia was
influenced by research on curriculum sequencing. Curriculum sequencing is one of
the oldest ITS technologies. The goal of the curriculum sequencing is to provide the

4 Peter Brusilovsky

student with the most suitable individually planned sequence of knowledge units to
learn and sequence of learning tasks (examples, questions, problems, etc.) to work
with. In other words, it helps the student to find an "optimal path" through the
learning material. Early ITS with curriculum sequencing were able to sequence only
one kind of learning tasks - problems to for the student to solve [1; 25]. More recent
ITS such as ITEM/IP [8], TOBIE [38] and ECAL [14] were able to deal with more
rich educational material. The early work on adaptive navigation support in
educational hypermedia was simply a trial to apply the ideas of sequencing in a
hypermedia context. From the first sight, a dynamic linear sequence of learning tasks
produced by a sequencing-based ITS and a static network of educational hypermedia
pages looks like two contradictory approaches to organizing access to the learning
material. However, these approaches are really complementary. The key is that a
typical sequencing engine can do more than just selecting the "next best" task. On the
way to the "best", such an engine can usually classify all available tasks into non-
relevant and relevant candidates. For example, a task can be considered non-relevant
if it was already completed in the past or if it is not ready to be learned due to the lack
of prerequisite knowledge and experience. After excluding non-relevant tasks a
sequencing engine use some approach to pick up the best of relevant tasks. In a
hyperspace of learning material where each learning task is represented by a separate
page an ability to distinguish "ready", "not-ready", or "best" tasks is a direct
precondition for adaptive navigation support.

In our systems ITEM/PG [6] and ISIS-Tutor [5] we explored several ways of
adaptive navigation support. We have used direct guidance in the form of "teach me"
button to provide a one-click access to the next best task. We have used adaptive
annotation to color-code the links to "ready"”, "not-ready", and "already learned" tasks.
In one of the versions of ISIS-Tutor we have applied adaptive link removal to remove
all links to not-ready tasks. From our point of view a sequencing-based adaptive
navigation support in educational hypermedia is "best of both worlds". Choosing next
task in an ITS with sequencing is based on machine intelligence. Choosing next task
in a traditional hypermedia is based on human intelligence. Adaptive navigation
support is an interface that can integrate the power of machine and human
intelligence: a user is free to make a choice while still seeing an opinion of an
intelligent system. From this point of view we can speculate that adaptive navigation
support is a natural way to add some intelligence to adaptive hypermedia system. It is
not surprising that several research groups have independently developed major
adaptive navigation support techniques such as direct guidance [42], hiding [10; 31],
and annotation [12].

4 Adaptive Hypermedia for Web-Based Education

The year of 1996 could be considered a turning point in adaptive hypermedia
research. The key factor here is the rapid increase in the use of the Word Wide Web.
The Web, with its clear demand for adaptivity, served to boost adaptive hypermedia
research, providing both a challenge and an attractive platform.

We know only four Web-based adaptive educational hypermedia systems
developed by 1996: ELM-ART [7], InterBook [4], PT [21], and 2L670 [11]. These
“classic” systems have influenced a number of more recent systems. The Web

Adaptive Hypermedia: From Intelligent Tutoring Systems to Web-Based Education 5

platform enabled these systems to live much longer than similar pre-Web systems and
influence a number of more recent systems. In particular, ELM-ART gave a start to a
whole tree of systems including InterBook, AST, ADI, ART-WEB, and ACE. It is not
surprising that all adaptive educational hypermedia systems developed since 1996 are
Web-based systems. Examples are: Medtech [13], AST [36], ADI [33], HysM: [23],
AHM [32], MetaLinks [27], CHEOPS [28], RATH [19], TANGOW [9], Arthur [16],
CAMELEON [24], KBS-Hyperbook [18], AHA! [10], SKILL [29], Multibook [37],
ACE [35], ART-Web [41].

The introduction of the Web has impacted not only on the number of adaptive
educational hypermedia systems, but also on the type of systems being developed. All
the early systems were essentially lab systems, built to explore some new methods,
which used adaptivity in an educational context. In contrast, a number more recent
systems provide complete frameworks and even authoring tools for developing Web-
based courses. The appearance of a number of authoring tools is not only indicative of
the maturity of adaptive educational hypermedia, but also a response to a Web-
provoked demand for user-adaptive distance education courses.

Existing adaptive hypermedia frameworks such as InterBook, ART-Web, ACE,
AHA!, SKILL, MetaLinks or Multibook are getting strikingly close to commercial
tools for developing Web-based courses such as WebCT [40] or TopClass [39].
Developers of adaptive hypermedia frameworks are clearly interested in making their
systems suitable for handling real Web courses. From another side, developers of
commercial course management systems are becoming interested in adaptive and
personalized systems. In this situation we could hope that adaptive hypermedia
technology that was originally developed inside the area of ITS will soon be used in
commercial-strength Web-based systems to deliver thousands of real world courses to
students all over the world.

References

1. Barr, A., Beard, M., and Atkinson, R. C.: The computer as tutorial laboratory: the Stanford
BIP project. International Journal on the Man-Machine Studies 8, 5 (1976) 567-596

2. Beaumont, I.: User modeling in the interactive anatomy tutoring system ANATOM-
TUTOR. User Modeling and User-Adapted Interaction 4, 1 (1994) 21-45

3. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction 6, 2-3 (1996) 87-129

4. Brusilovsky, P., Eklund, J., and Schwarz, E.: Web-based education for all: A tool for
developing adaptive courseware. Computer Networks and ISDN Systems. 30, 1-7 (1998)
291-300

5. Brusilovsky, P. and Pesin, L.: An intelligent learning environment for CDS/ISIS users. In:
Levonen, J. J. and Tukianinen, M. T. (eds.) Proc. of The interdisciplinary workshop on
complex learning in computer environments (CLCE94), Joensuu, Finland, EIC (1994) 29-
33, available online at http://cs.joensuu.fi/~mtuki/www_clce.270296/Brusilov.html

6. Brusilovsky, P., Pesin, L., and Zyryanov, M.: Towards an adaptive hypermedia component
for an intelligent learning environment. In: Bass, L. J., Gornostaev, J. and Unger, C. (eds.)
Human-Computer Interaction. Lecture Notes in Computer Science, Vol. 753. Springer-
Verlag, Berlin (1993) 348-358

7. Brusilovsky, P., Schwarz, E., and Weber, G.: ELM-ART: An intelligent tutoring system on
World Wide Web. In: Frasson, C., Gauthier, G. and Lesgold, A. (eds.) Intelligent Tutoring

6 Peter Brusilovsky

Systems. Lecture Notes in Computer Science, Vol. 1086. Springer Verlag, Berlin (1996)
261-269

8. Brusilovsky, P. L.: A framework for intelligent knowledge sequencing and task sequencing.
In: Frasson, C., Gauthier, G. and McCalla, G. 1. (eds.) Intelligent Tutoring Systems.
Springer-Verlag, Berlin (1992) 499-506

9. Carro, R. M., Pulido, E., and Rodrigues, P.. TANGOW: Task-based Adaptive learNer
Guidance on the WWW. Computer Science Report, Eindhoven University of Technology,
Eindhoven (1999) 49-57

10.De Bra, P. and Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. The New
Review of Hypermedia and Multimedia 4 (1998) 115-139

11.De Bra, P. M. E.: Teaching Hypertext and Hypermedia through the Web. Journal of
Universal Computer Science 2, 12 (1996) 797-804, available online at
http://www.iicm.edu/jucs_2_12/teaching_hypertext_and_hypermedia

12.de La Passardiere, B. and Dufresne, A.: Adaptive navigational tools for educational
hypermedia. In: Tomek, I. (ed.) Computer Assisted Learning. Springer-Verlag, Berlin
(1992) 555-567

13.Eliot, C., Neiman, D., and Lamar, M.: Medtec: A Web-based intelligent tutor for basic
anatomy. In: Lobodzinski, S. and Tomek, 1. (eds.) Proc. of WebNet'97, World Conference
of the WWW, Internet and Intranet, Toronto, Canada, AACE (1997) 161-165

14.Elsom-Cook, M. T. and O'Malley, C.: ECAL: Bridging the gap between CAL and intelligent
tutoring systems. Computers and Education 15, 1 (1990) 69-81

15.Fischer, G., Mastaglio, T., Reeves, B., and Rieman, J.: Minimalist explanations in
knowledge-based systems. In: Proc. of 23-th Annual Hawaii International Conference on
System Sciences, Kailua-Kona, HI, IEEE (1990) 309-317

16.Gilbert, J. E. and Han, C. Y.: Arthur: Adapting Instruction to Accommodate Learning Style.
In: Bra, P. D. and Leggett, J. (eds.) Proc. of WebNet'99, World Conference of the WWW
and Internet, Honolulu, HI, AACE (1999) 433-438

17.Gonschorek, M. and Herzog, C.: Using hypertext for an adaptive helpsystem in an
intelligent tutoring system. In: Greer, J. (ed.) Proc. of AI-ED'95, 7th World Conference on
Artificial Intelligence in Education, Washington, DC, AACE (1995) 274-281

18.Henze, N., Naceur, K., Nejdl, W., and Wolpers, M.: Adaptive hyperbooks for constructivist
teaching. Kiinstliche Intelligenz , 4 (1999) 26-31

19.Hockemeyer, C., Held, T., and Albert, D.: RATH - A relational adaptive tutoring hypertext
WWW-environment based on knowledge space theory. In: Alvegard, C. (ed.) Proc. of
CALISCE'98, 4th International conference on Computer Aided Learning and Instruction in
Science and Engineering, Goteborg, Sweden (1998) 417-423

20.Hohl, H., Bocker, H.-D., and Gunzenhiuser, R.: Hypadapter: An adaptive hypertext system
for exploratory learning and programming. User Modeling and User-Adapted Interaction 6,
2-3 (1996) 131-156

21.Kay, J. and Kummerfeld, B.: User models for customized hypertext. In: Nicholas, C. and
Mayfield, J. (eds.): Intelligent hypertext: Advanced techniques for the World Wide Web.
Lecture Notes in Computer Science, Vol. 1326. Springer-Verlag, Berlin (1997)

22.Kay, J. and Kummerfeld, R. J.: An individualised course for the C programming language.
In: Proc. of Second International WWW Conference, Chicago, IL (1994), available online at
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Educ/kummerfeld/kummerfeld.html

23.Kayama, M. and Okamoto, T.: A mechanism for knowledge-navigation in hyperspace with
neural networks to support exploring activities. In: Ayala, G. (ed.) Proc. of Workshop
"Current Trends and Applications of Artificial Intelligence in Education" at the 4th World
Congress on Expert Systems, Mexico City, Mexico, ITESM (1998) 41-48

24 Laroussi, M. and Benahmed, M.: Providing an adaptive learning through the Web case of
CAMELEON: Computer Aided MEdium for LEarning on Networks. In: Alvegérd, C. (ed.)
Proc. of CALISCE'98, 4th International conference on Computer Aided Learning and
Instruction in Science and Engineering, Goteborg, Sweden (1998) 411-416

Adaptive Hypermedia: From Intelligent Tutoring Systems to Web-Based Education 7

25.McArthur, D., et al.: Skill-oriented task sequencing in an intelligent tutor for basic algebra.
Instructional Science 17, 4 (1988) 281-307

26.Milosavljevic, M.: Augmenting the user's knowledge via comparison. In: Jameson, A., Paris,
C. and Tasso, C. (eds.) User Modeling. Springer-Verlag, Wien (1997) 119-130

27 Murray, T., Condit, C., and Haugsjaa, E.: MetaLinks: A preliminary framework for concept-
based adaptive hypermedia. In: Proc. of Workshop "WWW-Based Tutoring" at 4th
International Conference on Intelligent Tutoring Systems, San Antonio, TX (1998),
available online at http://www-aml.cs.umass.edu/~stern/webits/itsworkshop/murray.html

28.Negro, A., Scarano, V., and Simari, R.: User adaptivity on WWW through CHEOPS.
Computing Science Reports, Eindhoven University of Technology (1998) 57-62

29.Neumann, G. and Zirvas, J.: SKILL - A scallable internet-based teaching and learning
system. In: Maurer, H. and Olson, R. G. (eds.) Proc. of WebNet'98, World Conference of the
WWW, Internet, and Intranet, Orlando, FL, AACE (1998) 688-693, available online at
http://nestroy.wi-inf.uni-essen.de/Forschung/Publikationen/skill-webnet98.ps

30.0Oberlander, J., O'Donell, M., Mellish, C., and Knott, A.: Conversation in the museum:
experiments in dynamic hypermedia with the intelligent labeling explorer. The New Review
of Multimedia and Hypermedia 4 (1998) 11-32

31.Pérez, T., Gutiérrez, J., and Lopistéguy, P.: An adaptive hypermedia system. In: Greer, J.
(ed.) Proc. of AI-ED'95, 7th World Conference on Artificial Intelligence in Education,
Washington, DC, AACE (1995) 351-358

32.Pilar da Silva, D., Durm, R. V., Duval, E., and Olivié¢, H.: Concepts and documents for
adaptive educational hypermedia: a model and a prototype. Computing Science Reports,
Eindhoven University of Technology, Eindhoven (1998) 35-43

33.Schoch, V., Specht, M., and Weber, G.: "ADI" - an empirical evaluation of a tutorial agent.
In: Ottmann, T. and Tomek, I. (eds.) Proc. of ED-MEDIA/ED-TELECOM'98 - 10th World
Conference on Educational Multimedia and Hypermedia and World Conference on
Educational Telecommunications, Freiburg, Germany, AACE (1998) 1242-1247

34.Specht, M. and Kobsa, A.: Interaction of domain expertise and interface design in adaptive
educational hypermedia. Computer Science Report, Eindhoven University of Technology,
Eindhoven (1999) 89-93

35.Specht, M. and Oppermann, R.: ACE - Adaptive Courseware Environment. The New
Review of Hypermedia and Multimedia 4 (1998) 141-161

36.Specht, M., Weber, G., Heitmeyer, S., and Schoch, V.: AST: Adaptive WWW-Courseware
for Statistics. In: Brusilovsky, P., Fink, J. and Kay, J. (eds.) Proc. of Workshop "Adaptive
Systems and User Modeling on the World Wide Web" at 6th International Conference on
User Modeling, UM97, Chia Laguna, Sardinia, Italy, (1997) 91-95, available online at
http://www.contrib.andrew.cmu.edu/~plb/UM97_workshop/Specht.html

37.Steinacker, A., Seeberg, C., Rechenberger, K., Fischer, S., and Steinmetz, R.: Dynamically
generated tables of contents as guided tours in adaptive hypermedia systems. In: Proc. of
ED-MEDIA/ED-TELECOM'99 - 11th World Conference on Educational Multimedia and
Hypermedia and World Conference on Educational Telecommunications, Seattle, WA,
AACE (1998)

38.Vassileva, J.: Dynamic CAL-courseware generation within an ITS-shell architecture. In:
Tomek, I. (ed.) Computer Assisted Learning. Springer-Verlag, Berlin (1992) 581-591

39.WBT Systems: TopClass, Dublin, Ireland, WBT Systems (1999) available online at
http://www.wbtsystems.com/

40.WebCT: World Wide Web Course Tools, Vancouver, Canada,
WebCT Educational Technologies (1999) available online at http://www.webct.com

41.Weber, G.: ART-WEB, Trier, University of Trier (1999) available online at

42 Zeiliger, R.: Adaptive testing: contribution of the SHIVA model. In: Leclercq, D. and
Bruno, J. (eds.): Item banking: Interactive testing and self-assessment. NATO ASI Serie F,
Vol. 112. Springer-Verlag, Berlin (1993) 54-65

Infrastructure for Future Network Learning

Tak-Wai Chan

Dept. of Computer Science and Information Engineering
National Central University, Chungli, Taiwan
kchan@src.ncu.edu. tw]

Information and communication technology is going to change how, what, who,
when, where and why we learn. Unfortunately, we are still uncertain the details how
these impacts will bring to future education. Only one thing we are certain: there will
be numerous network learning models emerging in the near future. This talk discuss
some main ideas of a Grand Project for Excellence: “Learning technology: social
learning and its application, from Taiwan to the World”, recently launched in
Taiwan. Around forty professors across Taiwan are involved in the project. The
project actually induces an infrastructure of future network learning from several
perspectives: concept, theory, learning model design, and system architecture. This
infrastructure provides us an integrated view of how seemingly diversified
technologies or concepts converge. For example, within this infrastructure, the roles
and implications of terms such as handheld computers, wireless and mobile
communication, broadband network, project-based learning, intelligent educational
agents in the future network learning can be more intelligible.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, p. 8, 2000.
Springer-Verlag Berlin Heidelberg 2000

mailto:chan@src.ncu.edu.tw

Can We Learn from ITSs?

Benedict du Boulay

School of Cognitive and Computing Sciences
University of Sussex
Brighton, BN1 9QH,
UK.

bend@cogs.susx.ac.uk

Abstract. With the rise of VR, the internet, and mobile technologies
and the shifts in educational focus from teaching to learning and from
solitary to collaborative work, it’s easy (but mistaken) to regard Artificial
Intelligence in Education, in general, and Intelligent Tutoring Systems, in
particular, as a technology that has had its day — an old solution looking
for a new problem. The issues of modeling the student, the domain or
the interaction are still very much to the fore, and we can learn much
from the development of ITSs.

Despite the changes in technology and in educational focus there is still
an ongoing desire for educational and training systems to tailor their in-
teractions to suit the individual learner or group of learners: for example,
by being able to deal appropriately with a wider range of background
knowledge and abilities; by helpfully limiting the scope for the learner
to tailor the system; by being better able to help learners reflect produc-
tively on the experience they have had or are about to have; by being
able to select and operate effectively over a wider range of problems
within the domain of interest; by being able to monitor collaborative
interchanges and intervene where necessary; or, most tellingly, by being
able to react sensibly to learners when the task they are engaged on
is inherently complex and involves many coordinated steps or stages at
different levels of granularity. Individualising instruction in an effective
manner is the Holy Grail of ITS work and it is taken as an article of
faith that this is a sensible educational goal.

This paper explores the question of how much educational difference the
“AI” in an ITS system makes compared either to conventional classroom
teaching or to conventional CAI methods. One criterion of educational
effectiveness might be the amount of time it takes students to reach a
particular level of achievement. Another might be an improvement in
achievement levels, given the same time on task. So the paper surveys
the recent past for ITS systems that have been evaluated against unintel-
ligent versions or against traditional classroom practice and finds cause
for optimism in that some of the techniques and solutions found can be
applied in the present and the future.

! This paper is an edited version of [6].

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 9-[I7] 2000.
© Springer-Verlag Berlin Heidelberg 2000

10 Benedict du Boulay

1 Introduction

In many ways Artillcial Intelligence in Education is in a state of ux. People
sometimes talk of one of its sublelds, Intelligent Tutoring Systems, as an out-
moded technology that has, in some sense, “failed” [5]. The emphasis today has
shifted to exploring the possibilities of newer technologies such as virtual reality
and the Internet, and is particularly concerned with learning environments and
collaboration. However most of the traditional hard problems still remain — ad-
justing the environment to meet the needs of the learner(s), determining what
to say to learners and when to say it, and so on.

One aspect of the issue of teaching wvs learning crystalised into the issue of
whether the educational system should attempt to model the student [10]. Mod-
elling the student allows, at least in principle, the system to adjust its behaviour
or to react to that student as an individual, or at least as a representative of a
class of individuals (see [I7]). The argument for not modelling the student arises
because it is hard — indeed some regard it as inherently impossible — or because
it is thought unnecessary. The argument goes that if a learning environment is
well-designed and operated by the students within a supportive educational en-
vironment, we can rely on the students themselves to manage their own learning
without having the system individualise its reactions in any way.

In some ways the heat has gone out of the debate between the modellers
and the non-modellers. Although both camps have coexisted throughout the
history of Artillcial Intelligence in Education, there is a stronger realisation that
both approaches have something useful to oller. Indeed both approaches are now
sometimes to be found inside a single system, where an ITS of a traditional archi-
tecture may be but a single component of a more general, possibly distributed,
system ollering the learner a variety of learning experiences from which they can
choose [14].

This paper examines what has been shown to be of value in ITS work by
brielly exploring the question of how much educational dillerence ITSs make
compared either to conventional classroom teaching or to conventional CAI
methods (for more detailed reviews see, e.g. [I5J16]). One criterion of educational
ellectiveness might be the amount of time it takes students to reach a particular
level of achievement. Another might be an improvement in achievement levels,
given the same time on task.

A problem for computers and education in general is that it gets hijacked
from time to time by particular technologies claiming to produce wonderful
educational results simply by virtue of that technology — examples include
LOGO, hypertext, and now we have the World Wide Web, hypermedia and
virtual reality. It is important to separate reasonable from unreasonable claims
and expectations.

To the sceptical eye the evidence for the value of ITSs is not yet overwhelm-
ing, though the positive trends are clearly visible. The extra individualisation
enabled by an intelligent system does indeed produce educational benellts either
through faster learning or through better learning.

Can We Learn from ITSs? 11

This paper starts by exploring the issue of the dillerence between an intelli-
gently designed system and an intelligent system. It goes on to review criteria
by which the educational success of an intelligent educational system could be
measured. The paper then examines a number of evaluations of actual systems.
Finally it brielly surveys some of the educational issues with which ITS research

is grappling.

2 Educational Value

It is important to acknowledge that non-intelligent but well-designed systems
can be educationally excellent. For example, Dugdale [7] ollers a telling account
of how quite simple programs can generate authentic mathematical activity, dis-
cussion and insight, in particular getting students to rellect on strategy and
plans rather than simply following procedures. Her examples have simple in-
terfaces and are not internally complex. They essentially invite users to engage
in a problem-solving process that involves only a single step at a time and the
systems are able to react to the success or failure of that step immediately. For
example, Green Globs, displays coordinate axes and a number of points where
the task for the student is to provide a function which intersects and then “ex-
plodes” as many of the points as possible. In each case the programs provide
visual feedback of success or failure and can adjust, within limited parameters,
the dill culty of the tasks that they present, e.g. the Green Globs program can
choose locations for the points that can be intersected by simple formulae. How-
ever the degree of possible individualisation is slight and one would not regard
the programs as “intelligent” no matter how educationally successful they are.
It is worth stressing that quite small changes in the way problems are presented
and represented can make a big dillerence in the studentslsuccess rates, see e.g.
[1]. Such Ondings suggest that intelligent design on its own is inlikely to get it
right for all the students in a target population, and that ideally the system itself
needs to have some way of adjusting to the background knowledge and learning
preferences of the particular student under instruction.

2.1 Criteria for Success

Bloom and his colleagues investigated how various factors, such as cues and
explanations, reinforcement and feedback, allect student learning taking con-
ventional classroom teaching as the baseline [2]. They found that highly individ-
ualised expert teaching, shifts the distribution of achievement scores of students
by about two standard deviations compared to the more usual situation where
one teacher deals with a classroom of students. They also found that the range
of individual dillerences reduced.

This two standard deviation improvement, or Two Sigma shift, has become
a goal at which designers of ITSs aim. A standard method of evaluation of such
a system is to compare it with conventional non-computer-based teaching on the
same topic, though there have been some comparisons of “smart” and “dumb”
versions of the same software.

12 Benedict du Boulay

2.2 Reducing Time on Task

Smithtown is a discovery environment with which students can explore problem-
solving and inductive learning in the domain of microeconomics [20]. The goals
of the system are to help students grasp specillc economics concepts, such as the
notion of “market equilibrium”, as well as more general problem-solving skills
such as adjusting only one variable at a time when undertaking an experiment.

Shute and Glaser [20] undertook two kinds of evaluation of the system. One
was a comparison with a non-computer-based exploration of the same material;
the other was an examination of the particular cognitive and learning-style fac-
tors that lead to success with this kind of discovery environment. The comparison
study was quite small (N = 30) but found that the group using Smithtown im-
proved their pre/post-test scores as much as the classroom based group despite
spending about half the time on the material (5 hours vs. 11 hours).

Over a number of years Anderson and his colleagues have produced a variety
of tutoring systems for programming and for mathematics in the heart of the ITS
tradition (for an overview, see [4]). Their systems attempt to model the student
in detail as s/he undertakes complex problem solving so as to be in a position
to oller assistance focussed on the point of dill culty and at the most helpful
level of generality (“model tracing”), as well as being able to select problems
for the student to solve that move him or her optimally through the curriculum
(“knowledge tracing”).

One such tutor (LISPITS) taught LISP and has been extensively evaluated
in terms of its specillc educational interaction methodology (e.g. immediate or
delayed feedback) as well as in terms of its overall ellect on learning gains.
For example, novice programmers using LISPITS were compared to a group
working on their own with a textbook and to a group working with a teacher in
a conventional classroom manner. While all three groups did equivalently well on
the post-test, the group who worked with the human teacher Onished in about
12 hours, the group who worked with LISPITS [Onished in 15 hours and the
group who worked with the textbook took 28 hours. The authors argue that
the intelligent computer-based system was able to produce similar results to a
human teacher and achieved this with in only slightly greater time. In another
study with slightly more experienced students, there were two groups both of
whom took a conventional LISP course. The control group did the exercises with
a textbook and a LISP system whereas the experimental group used LISPITS
to do the exercises. As before the LISPITS group Onished faster, and this time
did better on the post-test compared to the non LISPITS group.

2.3 Improving Achievement Scores

One of Andersonlk more recent evaluations concerns a system designed to be
used in Pittsburgh High Schools [8]. The Practical Algebra Tutor (PAT) is de-
signed to teach a novel applications-orientated mathematics curriculum (PUMP
— Pittsburgh Urban Mathematics Project) through a series of realistic problems.
The system provides support for problem-solving and for the use of a number of
tools such as a spreadsheet, grapher and symbolic calculator.

Can We Learn from ITSs? 13

The intelligence of the system is deployed in several ways. Model Tracing,
based on representing knowledge of how to do the task in terms of production-
rules, is used to keep close track of all the studentls actions as the problem is
solved and [ag errors as they occur, such as misplotting a point or entering a
value in an incorrect cell in the spreadsheet. It also adjusts the help feedback
according to the specillc problem-solving context in which it is requested. Knowl-
edge Tracing is used to choose the next appropriate problem so as to move the
students in a timely but ellective manner through the curriculum.

Of special note is the way that attention was paid to the use of the Tutor
within the classroom. The system was used not on a one-to-one basis but by
teams of students who were also expected to carry out activities related to the
use of PAT, but not involving PAT, such as making presentations to their peers.

An evaluation was carried out in three Pittsburgh Public High Schools (N >
100). We should note that the evaluation was of the tutor plus the new curricu-
lum against a more traditional curriculum delivered in the traditional manner.
Two standardised and two specially prepared tests were used.

The experimental group performed signillcantly better than the control group
on all four tests but did not achieve Bloomlk [2] criterion of improving outcomes
by two sigma above normal classroom instruction. However they did perform 1.2
standard deviations better than the control on the specially written Representa-
tions Test which was designed “to assess studentslabilities to translate between
representations of algebraic content including verbal descriptions, graphs and
symbolic equations”.

Table 1. Comparison of PUMP curriculum plus PAT tutor with traditional curriculum
and no tutor. Each cell in the first and second columns contains proportion of the post-
test correct (standard deviation) and N. The F values in the third column are derived
from a between-subjects ANOVA.

Control |Experimental|F value sigma,
Group |Group and significance
Towa 46 (17)[.52 (.19) F(2,398) = 17.0[0.3
Algebra Aptitude (|80 287 p < .0001
Math SAT Subset ||.27 (.14)].32 (.16) F(2,205) = 5.1 |0.3
44 127 p< .01
Problem Situation||.22 (.22)[.39 (.33) F(2,186) = 5.3 [0.7
Test 42 127 p < .01
Representations ||.15 (.18)].37 (.32) F(2,183) = 13.4(1.2
Test 44 124 p < .0001

(adapted from [8], page 40).

Lesgold, Lajoie and their colleagues have taken a slightly dillerent approach
to individualisation in their work on SHERLOCK 1, a tutor designed to teach
to airforce technicians the electronic debugging skills needed to operate a com-

14 Benedict du Boulay

plex piece of testgear. In their system all users worked through the same set
of problems but the help and other feedback was adjusted to the expertise of
user. Various evaluations of this system are cited by Lajoie [9]. For example,
the Air Force evaluation was that “technicians who spent 20-25 hours working
with Sherlock 1 were as prolcient in troubleshooting the test station as techni-
cians who had 4 more years of job experience”. In another evaluation a pre/post
comparison was made between a group using the tutor and a control group who
carried out their normal troubleshooting duties using the real testgear over a
twelve day period. The experimental group solved signillcantly more problems
in the post-test than the control group and the quality of their problem-solving
methods was more like those of experts.

3 Smart vs. Dumb

Several studies have compared the ellectiveness of intelligent and non-intelligent
versions of the same program. For instance, Mark and Greer [T13] compared the
ellects of four versions of the same tutor designed to teach the operation of a
simulated Video Recorder. The least intelligent version gave simple prompting
and allowed the user only a single way of carrying out a task, such as setting
the simulated VCR to record for a particular period at a particular time on a
particular channel. The most intelligent, and the one providing the most “knowl-
edgeable” teaching ollered conceptual as well as procedural feedback, undertook
model-tracing to allow Oexible ways of carrying out tasks and could recognise and
tutor for certain misconceptions. In a comparative evaluation (N = 76), Mark
and Greer [I3] found that increasing the knowledgeability of the tutor produced
a decreasing number of steps, decreasing number of errors and a decreasing time
needed for students to complete the post-test. They also found that these gains
were not the result of greater time on task in the case of the most knowledgeable
tutor.

Shute [17] evaluated a particular method of student modelling (SMART)
which forms the individualising component of a tutor named Stat Lady de-
signed to teach elementary statistics, such as data organisation and plotting.
Two versions of the tutor were produced. The non-intelligent version worked
through the same curriculum for all learners, with Oxed thresholds for progress
through areas of increasing dill culty and a Oxed regime of increasingly specillc
feedback when repeated mistakes were made. The intelligent version had a more
detailed symbolic, procedural and conceptual knowledge representation which
enabled it to provide much more focussed remediation as well as to individualise
the sequence of problems for the learner to solve by a more careful analysis of
the studentsldegree of mastery of individual elements of the curriculum.

As with Smithtown described above, Shute [I7] was interested not just in
the comparative performance of the system but also in aptitude-treatment in-
teractions. The unintelligent version of Stat Lady improved studentslscores (N
= 103) by more than two standard deviations compared to their pre-test scores.
Other studies with the unintelligent version did not produce such high learning

Can We Learn from ITSs? 15

gains, but did produce as good outcomes as an experienced lecturer [19] or a
workbook [18], though Stat Lady subjects showed a signillcant gain in declar-
ative knowledge compared to workbook subjects. In another study (N = 168)
Shute and her colleagues [19] compared the unintelligent version of Stat Lady
to a traditional lecture approach. Stat Lady improved pre-post test score diller-
ences by about the same margin as the traditional lecture approach (i.e. about
one standard deviation) and over the same time on task (about 3 hours). In a
similar study (N = 311) Stat Lady was compared with use of a workbook on the
same material [I8]. Learning gains were generally similar though Stat Lady sub-
jects showed a signillcant gain in declarative knowledge compared to workbook
studies.

A further study [I7] was conducted (N = 100) using the intelligent version of
Stat Lady. Pre-post test gains were signillcantly greater than for the unintelligent
version, which themselves were high. However there was a cost in that students
spent quite a lot more time working with the intelligent version of the system
(mean = 7.6 hours) compared the the unintelligent (mean = 4.4 hours). In
general high aptitude subjects gained more from Stat Lady than low aptitude
subjects.

In a somewhat similar but smaller (N = 26) study, Luckin compared learning
outcomes for versions of a tutor for simple ecology covering topics such as food
chains and webs [IT12]. An unintelligent version (NIS) of her system ECOLAB
provided a range of activities, perspectives on the domain, traversal through the
curriculum and levels of help wholly under the control of the pupils themselves.
The intelligent version (VIS) made decisions in all four of these areas for the
pupils based on a student model. As with Stat Lady, the intelligent version
produced higher pre-post gains than the unintelligent version, with high ability
students gaining more than those of low ability. Time on task was the same for
both groups; the gains for both groups were maintained at a delayed (10 week)
post-test.

4 Conclusions

ITSs have been designed to individualise the educational experience of students
according to their level of knowledge and skill. This paper has described brielly
some of the evaluations that have been conducted into the educational benellts
of this investment in the capability to individualise. Although the evidence is
not dellnitive, there are indications that the extra individualisation enabled by
an intelligent system does indeed produce educational benellts either through
faster learning or through better learning. There are also indications that high
ability subjects are better suited to this kind of treatment. By contrast, it really
would be a surprising Onding if attempting to match teaching to the learners
capability produced poorer results than not so matching. However what has not
been discussed is whether, in practical terms, the ellort needed to produce these
intelligent systems is sull ciently paid back through their superior performance.

16

Benedict du Boulay

Acknowledgements

I thank Rosemary Luckin for commenting on a draft of this paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

S. Ainsworth, D. Wood, and P. Bibby. Co-ordinating multiple representations in
computer based learning environments. In Brna et al. [3], pages 336-342.

B. S. Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Fducational Researcher, 13(6):4-16, 1984.

P. Brna, A. Paiva, and J. Self, editors. Euroaied: European Conference on Artificial
Intelligence in Education, Lisbon, 1996. Edicoes Colibri.

A. T. Corbett and J. R. Anderson. LISP intelligent tutoring system: Research in
skill acquisition. In J. H. Larkin and R. W. Chabay, editors, Computer-Assisted
Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary
Approaches, pages 73-109. Lawrence Erlbaum, 1992.

F. M. de Oliveira and R. M. Viccari. Are learning systems distributed or social
systems? In Brna et al. [3], pages 247-253.

B. du Boulay. What does the AI in AIED buy? In Colloquium on Artificial
Intelligence in Educational Software, pages 3/1-3/4. IEE Digest No: 98/313, 1998.
S. Dugdale. The design of computer-based mathematics education. In J. H. Larkin
and R. W. Chabay, editors, Computer-Assisted Instruction and Intelligent Tutoring
Systems: Shared Goals and Complementary Approaches, pages 11-45. Lawrence
Erlbaum, 1992.

K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent tu-
toring goes to school in the big city. International Journal of Artificial Intelligence
in Education, 8(1):30-43, 1997.

S. P. Lajoie. Computer environments as cognitive tools for enhancing learning. In
S. P. Lajoie and S. J. Derry, editors, Computers as Cognitive Tools, pages 261-288.
Lawrence Erlbaum, 1993.

S. P. Lajoie and S. J. Derry, editors. Computers as Cognitive Tools. Lawrence
Erlbaum, Hillsdale, New Jersey, 1993.

R. Luckin. ‘ECOLAB’: Explorations in the zone of proximal development. Tech-
nical Report CSRP 386, School of Cognitive and Computing Sciences Research
Paper, University of Sussex, 1998.

R. Luckin and B. du Boulay. Ecolab: The development and evaluation of a vygot-
skian design framework. International Journal of Artificial Intelligence in Educa-
tion, 10(2):198-220, 1999.

M. A. Mark and J. E. Greer. The VCR tutor: Effective instruction for device
operation. Journal of the Learning Sciences, 4(2):209-246, 1995.

J. Mitchell, J. Liddle, K. Brown, and R. Leitch. Integrating simulations into intel-
ligent tutoring systems. In Brna et al. [3], pages 80-86.

J. Self. Special issue on evaluation. Journal of Artificial Intelligence in Education,
4(2/3), 1993.

V. J. Shute. Rose garden promises of intelligent tutoring systems: Blossom or
thorn? In Space Operations, Applications and Research (SOAR) Symposium, Al-
buquerque, New Mexico, 1990.

V. J. Shute. SMART: Student modelling approach for responsive tutoring. User
Modelling and User-Adapted Interaction, 5(1):1-44, 1995.

18.

19.

20.

Can We Learn from ITSs? 17

V. J. Shute and L. A. Gawlick-Grendell. What does the computer contribute to
learning? Computers and Education, 23(3):177-186, 1994.

V. J. Shute, L. A. Gawlick-Grendell, R. K. Young, and C. A. Burnham. An
experiential system for learning probability: Stat Lady description and evaluation.
Instructional Science, 24(1):25-46, 1996.

V. J. Shute and R. Glaser. A large-scale evaluation of an intelligent discovery
world: Smithtown. Interactive Learning Environments, 1(1):51-77, 1990.

Uncertainty, Utility, and Understanding

Eric Horvitz

Microsoft Research, USA
horvitzemicrosoft.com

Uncertainty abounds in pedagogy. As such, the effectiveness of intelligent tutoring
systems hinges on identifying appropriate actions under uncertainty. I will discuss
challenges and opportunities with the use of probabilistic user models in intelligent
tutoring systems, drawing key concepts from the broader arena of probabilistic and
decision-theoretic user modeling.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, p. 18, 2000.
Springer-Verlag Berlin Heidelberg 2000

mailto:horvitz@microsoft.com

Stereotypes, Student Models and Scrutability

Judy Kay

Basser Dept of Computer Science
Madsen F09
University of Sydney
AUSTRALIA 2006
judy@cs.usyd.edu.au

Abstract. Stereotypes are widely used in both Intelligent Teaching Sys-
tems and in a range of other teaching and advisory software. Yet the
notion of stereotype is very loose. This paper gives a working definition
of stereotypes for student modelling. The paper shows the role of stereo-
types in classic approaches to student modelling via overlay, differential
and buggy models.

A scrutable student model enables learners to scrutinise their models to
determine what the system believes about them and how it determined
those beliefs. The paper explores the ways that scrutable stereotypes
can provide a foundation for learners to tune their student models and
explore the impact of the student model. Linking this to existing work,
the paper notes how scrutable stereotypes might support reflection and
metacognition as well as efficient, learner-controlled student modelling.

1 Introduction

Stereotype-based reasoning takes an initial impression of the student and uses
this to build a detailed student model based on default assumptions. This paper
explores stereotypes because they constitute a powerful mechanism for build-
ing student models and because this form of inference seems to be particularly
important for student and user modelling.

We see some rudimentary forms of stereotypic reasoning within a large range
of customisable software. For example, many systems oller help which can be
customised at one of two levels: beginner or advanced. This usually operates
very simply as follows. Users are assumed to be at the beginner level unless they
alter the prollle settings for help. This means that the default is to assume the
user is a beginner.

The form of help ollered to a beginner is based on a raft of assumptions
about the knowledge and needs of the typical beginner. Similarly, the advanced
help is based upon assumptions about typical advanced users. Most systems do
not explicitly represent these assumptions. Typically, they reside in the head of
the author of the help.

This paper explores the role of stereotypic student models that are explicit
and awvailable to the student.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 19-30, 2000.
© Springer-Verlag Berlin Heidelberg 2000

20 Judy Kay

2 Stereotypes

The use of stereotypes in user modelling began with GRUNDY [26] [27] [28].
Rich dellned stereotypes thus:

A stereotype represents a collection of attributes that often co-occur in
people. ... they enable the system to make a large number of plausible
inferences on the basis of a substantially smaller number of observations.
These inferences must, however, be treated as defaults, which can be
overridden by specillc observations. [28]:35.

In GRUNDY, the user would give several words of self-description. For example,
a user might say they are athletic. GRUNDY used this as a trigger for a large
number of stereotypic inferences about the user. In the case of the athletic person,
GRUNDY might infer they were likely to be motivated by excitement, have
personal attributes like strength and perseverance, and are interested in sports.
FEach of these inferences had a rating indicating its strength. From this collection
of inferences about the user, GRUNDY recommended books that matched these
motivations and attributes. After making recommendations and allowing the
user to respond to them, GRUNDY rellned the student model by adjusting the
rating on each component of the model.

Stereotypes have been explicitly employed in several teaching systems, for
example [1] [2] [11] [23]. And the double stereotype was critical to KNOMEL
construction of user models for the Unix consultant [7] [8]. KNOME reasoned
from the userlk actions to a classillcation of their expertise. So, for example, if
the user appeared to make competent uses of sophisticated aspects, they were as-
sumed to be expert. In addition, once a user was classilled as an expert, KNOME
inferred they knew aspects of Unix an expert is likely to know.

Suppose a stereotype M is part of the student modelling in a system which
represents a set of components {c; }, each of which represents some aspect of the
user. For example, one component might represent whether the student knows
about loops in the programming language, Python.

The stereotype has a set of trigger conditions, {tM;}, where each tM; is a
boolean expression based upon components of the student model. Any ¢M; may
be a single component c; of the user model or a function of several components,
f({ex}). For example, consider a stereotype intended to capture inferences about
an expert C+-+ programmerll knowledge of concepts in Python. One trigger
condition might be based on a component which models whether the student is
an expert C++ programmer.

The primary action of the stereotype is:

if 34, tM; = true — active(M) (1)

meaning that when any trigger tM; becomes true, the stereotype M becomes
active.

There is a set of retraction conditions, {rM;}. Consider an example of a
retraction condition for the C++ programmer stereotype. Suppose, for example,

Stereotypes, Student Models and Scrutability 21

we determine that the student knows neither Pythonls while-loop nor the if. Since
these constructs are essentially the same in both Python and C++4, this condition
(that the student does not know Python-while and does not know Python-if) is
a retraction condition for the stereotype M.

A stereotype is deactivated when any of the retraction conditions, rM;, be-
comes true:

3 j, rM; =true — not active(M) (2)

and Onally, the ellect of a stereotype activation is that a collection of stereotype
inferences {sM}} can be made:

active(M), — {sMy} (3)
Some triggers may be essential:
Je, (tM, e {tM.}) and (not tM, € {rMe}) (4)

meaning that like any trigger, tM, can activate a stereotype. In addition, if t M,
is known to be false, the stereotype is deactivated.

A natural way to think about the stereotype can be based on an agent model.
Initially, each stereotype is inactive but waiting for one of its activation con-
ditions to become true. Once it is active, it waits for one of its deactivation
conditions to become true.

An important characteristic of stereotypes is that the size of the set of com-
ponents involved in each trigger function is usually far smaller than that of the
inference set.

Rich suggested that another characteristic of stereotypes is that they serve
only as default assumptions. These apply only until other, presumably more
reliable evidence becomes available. We prefer to generalise this, to allow the
possibility of even less reliable sources of evidence. For example, when we ran
coaching experiments [18], the student model kept track of cases where the coach
had sent advice to a student. We considered this to be a very weak form of
evidence for the student knowing aspects coached. It would have been quite
reasonable to consider it as weaker evidence than a stereotypic inference.

A student modelling system might operate as follows when it needs to know
the value of a particular component c;:

— ask all active stereotypes for information about c;;

seek other sources of information about c;;

if there is more than one piece of information about ¢;, resolve any conlicts
about the value of c¢; by making assessments of the relative reliability of the
information available.

An important characteristic of stereotypic inference is that it is intended to
be statistically valid. For a population of users who belong to a stereotype M,

Vi, sM; e {sM;}, p(sM;) > pum (5)

22 Judy Kay

where py; is some probability value that is accepted as the threshold for including
an inference in the stereotype. This value py; is an important dellning charac-
teristic of a stereotype. It establishes the standards applied by the designer of
the stereotype in deciding which inferences to allow.

Of course, the statistical character of the stereotype means that py; can
give no guarantees for an individual. This means that for an individual, if the
stereotype M is active, some of the inferences in {sM;} may well be incorrect. In
fact, we would expect that, for a typically large stereotype with many inferences,
some of those inferences in {sM;} would probably be incorrect. The whole point
of stereotypic inference is that it gives a set of useful default assumptions which
are generally useful for a population of users. A good set of stereotypes should
enable a system to be more ellective for most students, even if it may be quite
inellective for a small proportion of students.

This statistical character of stereotypes should be distinguished from many
other sources of uncertainty in knowledge-based reasoning. For example, we
might have an inference:

knows(A) — knows(B) (6)

meaning that a system can infer from the fact that the student knows A to
conclude that they know B. An instance of such an inference might be:

knows(loops) — knows(variables) (7)

meaning that if a student knows the concept of loops in C++, we infer that
they know the concept wvariables since it is a prerequisite. Suppose that we are
uncertain whether the student knows loops, perhaps assigning a probability pioops
to the truth of the assertion that the student knows loops. In that case, the
inference about wariables would also have an associated probability related to
DPioops-

We can contrast this form of uncertainty from that due to stereotypic in-
ferences (which may also have associated probabilities with each inference). For
example, one inference might be

active(M) — knows(localscope) (8)

which may be the inference that average C++ programmers will understand
the notion of local scope. We may have written this stereotype after studying
the knowledge of many C++ programmers: we may have found that 87% of
average C++ programmers understood local scope. We might then associated
a probability .87 with this stereotypic inference. This means that we would
expect to Ind 13% of people who are average C++ programmers and for whom
this inference does not hold. The complete stereotype M will have many such
inferences.

3 Stereotyped Student Models

The stereotypes described above may seem quite unlike the student modelling in
most systems. Indeed, aside from the small number of systems mentioned earlier,

Stereotypes, Student Models and Scrutability 23

most systems ostensibly seem to operate quite dillerently. This section shows the
use of stereotypes in most student modelling. This will serve as a foundation for
the next sectionls description of the important role of scrutable stereotypes.

An appealing property of the stereotype is that it should enable a system to
get started quickly on its customised interaction with the student. That quick
start is often based upon a brief initial interaction with the user or, less com-
monly, a short period observing the user. For example, a system might ask the
user just a few questions. Equally, it might set the student an initial task which
is used to assess their level. From this small base of information, the system
infers the values of a large number of components of the student model.

Consider the case of a system which teaches Python. If it knows nothing
about the student, it would logically have a default initial student model for
the typical person and this might reasonably set all components of the student
model to indicate the student knows no Python concepts. This is the implicit
stereotype of the typical beginnerlk programming book. Equally, it is the implicit
stereotype for a classic CAI system.

By contrast, an ITS adapts its teaching to the individual student. So it
may begin the interaction with some attempt to construct an initial student
model. For example, it might begin by asking the student to indicate their level
of knowledge of various programming languages. Suppose the student assesses
themself as an expert in C++ but having no knowledge of Python. This can
activate a stereotype which assigns the value known for the components which
model the studentll knowledge of the many concepts which are essentially the
same in C++ and Python. This represents the intuitive reasoning that a person
who is expert in C++ can be expected to know its core concepts and, where
these are common to Python, that person should have a conceptual level of
knowledge for those concepts in Python. There may be a hundred or more such
concepts. For example, these include understanding such notions as loops, while
loops, booleans to control loops and nested loops. So the single question about
C++ expertise can have a fanout inference of more than a hundred student
model components. If a single question about C++ expertise can be used to
infer so much information, a system might quickly begin its customised, highly
ellective teaching of Python.

A second stereotype can be triggered by the the users claim of no knowledge
of Python. This could assign the value unknown for components representing
the studentl knowledge of the detailed syntax and idiom of Python.

Yet another stereotype inference could assign the value unknown to those
Python concepts which are quite dillerent from anything in C++. It could also
set as unknown, those Python concepts which clash with knowledge of C++,
because there are similar elements but important dillerences. An example of this
is the for loop which is a looping construct in both languages but it operates
dillerently in each. The trigger for this stereotype is the userll claimed expertise
in C4++ combined with their claimed ignorance of Python.

24 Judy Kay

3.1 Novices, Intermediates, Experts and Others

We now review some major approaches to representing student models: the over-
lay, dillerential and buggy models. We identify the stereotypic inference that
occurs in all of these.

The commonest form of student model is the overlay which represents the
learnerls knowledge as a subset of the total domain knowledge modelled. This
may be the expertls knowledge. Of course, the notion of an expert domain model
is stereotyped: in practice, dillerent experts disagree on some aspects of their
domain of expertise.

The dillerential model is a form of overlay model which represent a subset
of domain knowledge. This student model deals only with the aspects that the
system intends the student to learn. We might call this plausibly ideal student: a
stereotype of the sort of student knowledge and skills we might reasonably expect
to be achieved after learning with the system. This dillers from the overlay on
an expert model because it distinguishes those aspects of the expert model the
student is expected learn from others. In a sense, it represents aspects of the
domain that are within the scope of the teaching system. It captures the system
designerll view of knowledge that will have been acquired by the student who
learns all the aspects taught by the system.

In contrast to overlay models, buggy student models represent incorrect be-
liefs that learners may hold. The classic systems in this group were BUGGY
[4] and PROUST [20], both of which developed a body of very interesting work
on learnerll misconceptions and errors. This work can be seen as involving con-
struction of a stereotype model of student errors: it represented a number of the
mostly commonly observed errors. Essentially, the buggy student model captures
the statistically most common misconceptions. It is not expected that any one
learner would have all of them. Indeed, each may be quite uncommon: a rela-
tively common misconception might only be held by 30% of beginners. However,
the system represents them because there is an underlying assumption that the
system may be better able to understand some of the learnerly actions by in-
terpreting them in light of the buggy model. Where a misconception is held by
30% of all beginners, it may be much more common among beginners who are
observed to make certain classes of errors.

There is a large literature on dillerences between novices versus experts, such
as [6]. This provides a foundation for constructing stereotypes of beginners and
experts in particular domains.

3.2 Building Stereotypic Student Models

Building stereotypes involves dellning: the triggers {tM;}; the retraction con-
ditions {rM,}; the stereotype inferences {sM;}; and the threshold probability,
P, for inferences in the M population.

Hand-Crafted Stereotypes. This is a very obvious approach. Nonetheless,
it deserves mention because it seems to be so widespread in teaching systems.

Stereotypes, Student Models and Scrutability 25

Essentially, the designer of the system makes assumptions about the stereo-
type groups. For example, there may be stereotypes for the beginner and the
advanced student. Although this approach may often be ad-hoc, its value and
importance should not be underrated. For example, an expert teacher may have
built up invaluable stereotypes of typical student knowledge at various stages
of their learning. Capturing and encoding this experience in stereotypes could
be an important contribution to the body of knowledge of about how to teach
electively.

Another important potential role for handcrafted stereotypes arises in local
customisation of systems. for example, an experienced teacher can observe their
own students. In addition, that teacher knows the context of the learning ac-
tivities. So, that teacher is ideally placed to dellne stereotypes of the individual
knowledge, learning goals and common problems for their own students. This is
likely to be an important role for stereotypes as I'TSs are deployed.

Empirically-Based Stereotypes. These approaches do not rely on elicitation
of an expert teacherls knowledge of students. Instead, we collect data about
students and use this to construct stereotypes. This has considerable appeal
where a student works with an online tool such as a spreadsheet. In such cases,
it is straightforward to monitor their actions.

For example, we might run empirical studies where users are asked to attempt
a task. We then monitor user actions as they attempt the task. If we repeat this
experiment over many tasks, we can construct a stereotype which maps from
sequences of user actions to the likely task the user was attempting to do. This
constitutes a set of stereotypes whose triggers are user actions and each inference
set infers both the tasks the user was attempting and the lack of knowledge
associated with Jawed approaches to tasks. This approach has been applied in
Lumiere [16] which can be viewed as a teaching system which gives just-in-time
advice, at the time the user needs to learn in order to achieve a task.

More broadly, there is an important role of machine learning in acquir-
ing stereotypes [29] [33] as well as careful study of empirical data to identify
stereotypes [32]. There are important potential links between this task and the
construction of similar stereotypes for information retrieval and Oltering. This
goes under various names including community, collaborative, clique-based ap-
proaches [24].

Stereotypes Inference. Collection of information for triggering stereotypes
comes from three main sources:

— directly elicit information from the student;
— observe the user interacting with the system;
— diagnostic tasks.

The Orst is very simple and we have already given examples of the student being
asked to assess their expertise in a programming language.

26 Judy Kay

The other two are closely linked to each other. For example, in the context
of a system which teaches about an operating system, it might be feasible to
monitor the studentll use of that system. Then, as in the Unix Consultant, use
of sophisticated commands might be used to infer expertise. The third method
is more common in I'TSs. It might ask the student to do set tasks. If the student
can do dill cult tasks, making ellective use of sophisticated commands, this can
be used to infer expertise.

4 Stereotypes and Scrutability

Scrutability of stereotypes should mean that a student can scrutinise the system
to Ond answers to questions like the following.

— Am I a beginner?

— What are the implications of being a beginner?

— What would be dillerent if I were an expert?

How can I let the system model me as a beginner, but have it recognise some
of the more advanced things I know?

There seems to be the potential for considerable benellt if learners can explore
such issues. Some relate to the possibility of encouraging rellection. This has been
described by Goodman, Soller and Linton [13]:

Rellective activities encourage students to analyse their performance,
contrast their actions to those of others, abstract the actions they used
in similar situations and compare their actions to those of novices and
experts.

Others have discussed and explored this notion of the variously described
open, accessible or transparent student models and systems. See, for example,
[3] [9] [10] [11] [12] [15]) [22] [25] [30]. They identify benellts of such approaches
in terms of:

— potential learning benellts if access to the model can nurture rellection and
metacognition;

— the enhanced learner control over the personal information typically held in
a student model;

— the possibility of improving the quality of the student model as learners are
able to correct errors in it.

We can expect that the particular case of stereotype-based student modelling
would be likely to share these potential advantages.

5 Discussion

We now consider the special relevance of scrutability in association with stereo-
types for student modelling.

Stereotypes, Student Models and Scrutability 27

5.1 Corrections to Stereotype Models

The nature of stereotypes makes them especially important as targets for user
access and correction. This is because stereotypes are constructed in terms of
their accuracy and utility for a population of users. Equally, there is a corre-
sponding expectation that some inferences sMj, will be incorrect for some users.
There are two levels of control associated with stereotypes.

— The whole stereotype: The student can decide that an active stereotype
should be deactivated, or vice-versa. So, for example, the student can decide
to deactivate the beginner stereotype and possibly choose to activate some
other.

— Individual inference level: The student can alter the value any single infer-
ence sMj. For example, the student may be content to have the beginner
stereotype active. They might check several of beginner inferences and be
happy with these. However, they may see that it makes some incorrect in-
ferences. The student should be able to correct these in their own model.

The Orst of these could be achieved if we extend the notion of stereotypes as
follows: every stereotype has a built-in retraction condition which can be set by
the student.

The second can be achieved by regarding the student input as a more reliable
source of student modelling information. Then, the set of information about a
component c¢; could potentially include the inference from the stereotype and the
information volunteered by the student. So long as the student modelling system
treats the latter as more reliable, we have a simple mechanism for retaining the
active stereotype but allowing the student to One-tune the details.

5.2 Stereotypes, Teaching and Learning Agendas

Typically, a student model represents just those aspects the system needs. Some
parts of the student model drive the adaptation of the teaching. Some may assist
the system in its interpretation of the studentlk actions. Yet others represents
the core learning goals for the system. We now focus on these.

The student model will typically track the learnerls progress: hopefully, the
student model will rellect the studently ongoing progress as they learn each
of these. Stereotypes can be useful for initialising these aspects of the student
model. For example, a few carefully chosen questions or diagnostic tasks might
be used to classify the student as intermediate-level and then to infer the initial
model, with some of the teaching goals set as known. This initialises the systeml[k
teaching agenda.

Another important potential role for stereotypes relates to the studentls own
learning agenda. In theory this could be modelled separately from the teaching
goals. This would mean representing both the studently knowledge and whether
they want to learn each aspect. The default stereotype assumption might set all
unlearnt teaching goals as learning goals. Scrutability of and control over this
stereotype would enable the student to tune the learning goals.

28 Judy Kay

One important sources of problems for learners can occur when there is a
mismatch between the teacherls goals and the learnerls appreciation of the overall
and, particularly, the current goals [10]. Scrutability of the student model ollers
the potential to reduce the ellect of such problems. As Self notes, [31] student
models capture a precise dellnition of essential state in a teaching system. This
is a foundation for individualisation and for shared understanding between the
learner and the system, with the learner being able to better understand what
drives the system.

5.3 Buggy Stereotype as Learning Objects

If a student modelling system makes use of buggy stereotypes, these encode
a potentially useful set of information for learners and teachers. Consider the
following scenario. A student is classilled as a beginner in the domain of Python
programming. Suppose they are trying to write a Orst Python program and they
have problems. A clever ITS might diagnose the dill culty. Equally, if there is
a good presentation of stereotypic errors by beginners in this task, the student
might read this and work out what their problem is. Yet another possibility is
that a human teacher might be better able to help the student, aided by this list
of stereotypic errors. Just this use was intended for the IDEBUGGY extension
of work on BUGGY.

5.4 Individual or Stereotype — Is There a Conflict?

At rst glance, one might think that individual and stereotypic student modelling
are at odds. In practice, stereotypes can support highly individual student models
in two ways. First, a rich collection of stereotypes can ensure that each student
will have many active stereotypes at once. The possibility of many combinations
of stereotypes leads to a correspondingly large collection of dillerent models, all
based purely on stereotypes. Beyond this, if the stereotypes are used as initial
default inferences which are rellned over time, we can expect each studentlk
model to become more individualised as more data becomes available to rellne
it.

6 Conclusion

We have dellned a stereotype M as:

— triggers, {tM;}, which activate a stereotype

— retraction conditions, {rM;}, some of which may correspond to the nega-
tion of essential triggers, and learner control requires a built-in retraction
condition which can be set by the student

— stereotypic inferences, {sM;}

— threshold probability for inferences, pa;, which captures the minimum prob-
ability of each inference for a population of users matching this stereotype.

Stereotypes, Student Models and Scrutability 29

The action of a stereotype is to make large numbers of inferences when a

trigger becomes true. Many student models can be regarded as using stereotypic
inferences, although they are often implicitly coded.

Scrutability of student models seems to oller potential benelts in terms of im-

provements in learning and in the accuracy of the student model. Where student
models are based on stereotypic inference, there are even stronger arguments for
scrutability since the inferences are only valid in a statistical sense. The ele-
ments listed above indicate the aspects which the student might scrutinise to
understand the stereotypic reasoning applied in their own student model.

References

1.

10.

11.

12.

13.

14.

15.

Boyle, C.: User modeling in the interactive anatomy tutoring system ANATOM-
TUTOR. User Modeling and User-Adapted Interaction. 4:1 (1994) 21-45

Boyle, C., Encarnacion, A.O.: Metadoc: An adaptive hypertext reading system.
User Modeling and User-Adapted Interaction. 4:1 (1994) 1-19

Bull, S., Brna, P., Pain, H.: Extending the scope of the student model. User Mod-
eling and User-Adapted Interaction. 5:1 (1995) 44-65

Burton, R.R.: Diagnosing bugs in a simple procedural skill. In: Sleeman, D.,
Brown, J.S. Intelligent Tutoring Systems. Academic Press, London (1982) 157—
184

Chan, T.W.: Learning companion systems, social learning systems, and the global
social learning club. International Journal of Artificial Intelligence in Education. 7
(1996) 125-159

Chi, M.T.H., Feltovich, P., Glaser, R.: Categorization and Representation of
Physics Problems by Experts and Novices. Cognitive Science. 5:2 (1981) *** pages
Chin, D.N.: User Modelling in UC, the UNIX Consultant Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems. In: Mantei, M.
(ed.): ACM Press (1986) 24-28

Chin, D.N.: KNOME: modeling what the user knows in UC. In: Kobsa, A.,
Wabhlster, W. (eds.): User models in dialog systems. (1989) 74-107.

Corbett, A.T., Anderson, J.: Knowledge tracing: modeling the acquisition of proce-
dural knowledge. User Modeling and User-Adapted Interaction. 4 (1995) 253-278
Crawford, K., Kay, J.: Metacognitive processes and learning with intelligent ed-
ucational systems. In: Slezak, P., Caelli, T., Clark, R., Perspectives on Cognitive
Science, Ablex (1993) 63-77

Dimitrova M., Self J.: The interactive maintenance of open learner models. In:
Lajoie, S., Vivet, M. (eds.): Artificial Intelligence in Education. (1999) 405-412
Fischer, G., Ackerman, D.: The importance of models in making complex sys-
tems comprehensible. In: Tauber, M. (ed.): Mental models and Human-computer
Interaction 2. Elsevier (1991) 22-33

Goodman, B., Soller, A., Linton, F., Gaimari, R.: Encouraging student reflection
and articulation using a learning companion. International Journal of Artificial
Intelligence in Education. 9 (1998) 237-255

Hietala, P., Niemirepo, T.: The Competence of Learning Companion Agents. In-
ternational Journal of Artificial Intelligence in Education. 9 (1998) 178-192.
Hook, K., Karlgren, J., Waern, A., Dahlbeck, N.; Jansson, C.G., Lemaire, B.: A
glass box approach to adaptive hypermedia. User Modeling and User-Adapted
Interaction 6:2-3 Kluwer (1996) 157184

30

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Judy Kay

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.,: The Lumiere
Project: Bayesian User Modeling for Inferring the Goals and Needs of Software
Users. Proceedings of the Fourteenth Conference on Uncertainty in Artificial In-
telligence. Morgan Kaufmann, San Francisco (1998) 256-265

Huang, X., McCalla, G., Greer, J., Neufeld, E.: Revising deductive knowledge
and stereotypical knowledge in a student model. User Modeling and User-Adapted
Interaction. Kluwer, 1:1 (1991) 87-116

Kay, J., Thomas, R.C.: Studying long term system use. Communications of the
ACM. 38:2 (1995) 131-154

Kay, J.: The um toolkit for cooperative user modelling. User Modeling and User-
Adapted Interaction. 4:3 Kluwer (1995) 149-196

Johnson, W.L.: Understanding and debugging novice programs. Artificial Intelli-
gence. 42:1 (1990) 51-97

Kono, Y. Ikeda, M. Mizoguchi, R.: To contradict is human: student modelling of
inconsistency. In: Frasson, C., Gauthier, G., McCalla, G. (eds.): Intelligent tutoring
systems. Springer-Verlag (1992) 451-458

Morales, R.: Proceedings of the Workshop on Open, Interactive, and other Overt
Approaches to Learner Modelling. 9th International Conference on Artificial Intel-
ligence in Education. (1999)

Murphy, M., McTear, M.: Learner modelling for intelligent CALL. In: A. Jame-
son, A., Paris, C., Tasso, C. (Eds.), User modeling: Proceedings of the Sixth In-
ternational Conference, UM97. Springer Wien Vienna, New York (1997) 301-312
Oard, D.W.: The state of the art in text filtering. User Modeling and User-Adapted
Interaction. 7:3 (1997) 141-178

Paiva, A., Self, J., Hartley, R.: Externalising learner models. Proceedings of World
Conference on Artificial Intelligence in Education. AACE, Washington (1995) 509—
516

Rich, E.: User modeling via stereotypes. Cognitive Science. 3 (1979) 355-66
Rich, E.: Users are individuals: individualizing user models. International Journal
of Man-Machine Studies. 18 (1983) 199-214

Rich, E.: Stereotypes and user modeling. In: Kobsa, A., Wahlster, W.: User models
in dialog systems. Springer-Verlag, Berlin (1989) 35-51

Self, J.: In: Lawler, R.W., Yazdani, M.: Artificial Intelligence and Education. 1
(1987) 267280

Self, J.: Bypassing the Intractable Problem of Student Modelling: Invited paper.
Proceedings of the 1st International Conference on Intelligent Tutoring Systems.
Montreal (1988) 18-24

Self, J.: The defining characteristics of intelligent tutoring systems research: ITSs
care, precisely. International Journal of Artificial Intelligence in Education. (2000)
to appear.

Winter, M., McCalla, G.: The emergence of student models from an analysis of eth-
ical decision making in scenario-based learning environment. In: Kay, J. (ed.): User
Modeling: Proceedings of the Seventh International Conference, UM99. Springer
Wien, New York (1999) 265-274

Woolf, B., Murray, T.: A framework for representing tutorial discourse. Proceedings
of the International Joint Conference on Artificial Intelligence. (1987)

Life and Learning in the Electronic Village:
The Importance of Localization for the Design of
Environments to Support Learning]]

Gordon McCalla

ARIES Laboratory, Department of Computer Science, University of Saskatchewan
Saskatoon, Saskatchewan S7TN 5A9, CANADA
mccalla@cs.usask.ca

Extended Abstract

It has been claimed that the world is moving inexorably towards a single global vil-
lage, spurred by the dominance of television on our lives. Surely it is obvious that
globalization can only be accelerated by the rapid spread of information and commu-
nications technology (ICT). After all, are we not all neighbours on the internet? Au
contraire! It is my thesis that far from being a further stimulus for globalization, ICT
will inevitably be mainly a force for localization. The very fact that everybody is a
neighbour to everybody else on the internet will mandate that each person must re-
strict their interactions with almost everybody (or be overwhelmed). The very fact
that an immense amount of information is readily accessible will mean that each per-
son must be very selective in the information they actually access (or be inundated).
The consequence will be that each of us will shield ourselves with largely impenetra-
ble barriers to outside interaction, allowing access only to those people and that in-
formation that we choose, that synchronizes with our world view. In short there will
be no universal global village. Instead, we will each live in our own personal elec-
tronic villages, each village different from every other village.

How will people learn in such a village? Ensconced as they are in their own local
perspectives, people will be unaware of much that is relevant and useful to them.
Each person will, however, maintain contact with other people, who in turn will
maintain contact with still other people. These contact networks will form virtual
communities [1], both explicit and implicit. Knowledge will impact a person only
when it becomes known within a community in which they participate. While tech-
nology will facilitate the spread of this knowledge, fundamentally people will truly
learn this knowledge mainly through interaction with other people within a commu-
nity, who can help ground the knowledge in the context of their shared interests.
Thus, the flow of knowledge through society will be relatively slow, moving from
community to community, and spreading gradually within communities, as people
learn from one another, helped by appropriate technology.

! This talk draws on ideas from many research projects carried out in the ARIES Laboratory
over the years. I would like to thank my many graduate students and colleagues for their in-
sights and the Canadian TeleLearning Networks of Centres of Excellence and the Natural
Sciences and Engineering Research Council of Canada for their funding.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 31-32, 2000.
Springer-Verlag Berlin Heidelberg 2000

32 Gordon McCalla

Understanding the interlocking localized notions of personal electronic village and
virtual community will be crucial in building environments for learning that are con-
sistent with learning and teaching in cyberspace. In this talk I will look at some of the
implications of such localization for learning technology research. I will draw on
ideas from my issues paper, appearing in the IJAIEd special issue on "AIEd in 2010"
[2], as well as concepts explored in other research projects in the AIEd field, includ-
ing our own recent work exploring an agent-based peer help environment [3].

References

1. Rheingold, H. (1998). The Virtual Community: Homesteading on the Electronic Frontier.

accessible atlhttg://www.rheingold.com/vc/bool§4

2. McCalla, G. (2000). The Fragmentation of Culture, Learning, Teaching, and Technology:
Implications for the Artificial Intelligence in Education Research Agenda in 2010, Int. J. of
Artificial Intelligence in Education, 11.

3. Vassileva, J., J. Greer, G. McCalla, R. Deters, D. Zapata, C. Mudgal, S. Grant (1999). A
Multi-Agent Approach to the Design of Peer-Help Environments, in S. Lajoie and M. Vivet
(eds.), Artificial Intelligence in Education, IOS Press, Amsterdam, 38-45.

http://www.rheingold.com/vc/book/

Tutoring Diagnostic Problem Solving

Rajaram Ganeshan', W. Lewis Johnson', Erin Shaw' and Beverly P. Wood’

'Center for Advanced Research in Technology for Education
Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292-6695 USA
{rajaram, johnson, shaw}@isi.edu,

http://www.1s1.edu/isd/carte/|
*Professor of Radiology, Pediatrics, Medical Education
Division of Medical Education
Keck School of Medicine, University of Southern California
KAM 211, 1975 Zonal Ave., Los Angeles CA 90089-9024
bwood@hsc.usc.edu

Keywords: agent-based tutoring systems, intelligent agents, learning

environments, student modelling, teaching and learning strategies.

Abstract. This paper presents an approach to intelligent tutoring for diagnostic
problem solving that uses knowledge about causal relationships between
symptoms and disease states to conduct a pedagogically useful dialogue with
the student. An animated pedagogical agent, Adele, uses the causal
knowledge, represented as a Bayesian network, to dynamically generate a
diagnostic process that is consistent with the best practice approach to medical
diagnosis. Using a combination of hints and other interactions based on
multiple choice questions, Adele guides the student through a reasoning process
that exposes her to the underlying knowledge, i.e., the patho-physiological
processes, while being sensitive to the problem solving state and the student’s
current level of knowledge. Although the main focus of this paper is on
tutoring medical diagnosis, the methods described here are applicable to

tutoring diagnostic skills in any domain with uncertain knowledge.

1 Introduction

The motivation for the work described in this paper comes from Adele, an
animated pedagogical agent [10] designed to be used for medical education [19].
Adele is being applied to a number of health science curricula, of which
In a case-based
diagnostic exercise, students are presented with a simulated clinical problem.
Students are able to examine the simulated patient, ask questions about medical
history, perform a physical examination, order and interpret diagnostic tests, and
make diagnoses. Adele monitors the student’s actions and provides feedback
accordingly. Students can ask Adele for a hint or action rationale via a graphical user

undergraduate case-based clinical instruction is a major focus.

interface.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 33-42, 2000.
Springer-Verlag Berlin Heidelberg 2000

http://www.isi.edu/isd/carte/

34 Rajaram Ganeshan et al.

Adele’s primary emphasis is on the procedural representation of the best practice
approach to diagnosis and management. Information about the causal relationships
between the clinical findings (e.g., an x-ray shows specific lesions) and the
hypotheses (i.e., the final and differential diagnoses) is incorporated into the
explicitly-authored textual hints and rationales associated with steps in the procedural
representation. The rigid distinction between rationales and hints can lead Adele to
tell the student what to do instead of guiding them through the problem solving
process. Evaluations by students have shown this to be the case [19]. Adele cannot
effectively guide the student in reasoning about hypotheses because the relationships
between hypotheses and findings are not maintained explicitly in her knowledge
representation.

This paper presents a different approach to intelligent tutoring for diagnostic
problem solving that addresses the problems outlined in the earlier paragraph. In this
approach, information about the causal relationships between the clinical findings
and the hypotheses is explicitly represented using a Bayesian network. Adele uses the
representation to dynamically generate a diagnostic process that is consistent with the
best practice approach to medical diagnosis. The paper is organized into two main
sections. The first section describes the representation of domain knowledge and the
student model necessary for tutoring. The second section describes how Adele uses
the representation to conduct a dialogue with the student, thus maximizing learning.

2 Representation of Domain Knowledge

2.1 Issues and Related Work

The representation of domain knowledge must support a plausible or correct diagnosis
and be teachable. In any diagnostic reasoning process, the main challenges are how to
generate and rank the hypotheses based on the evidence and how to select the next
best (optimal) evidence-gathering step. The SOPHIE systems [1] for teaching
trouble-shooting electronic circuits were the earliest diagnostic intelligent tutoring
systems (ITS). SOPHIE III used mathematical constraint based models to represent
the behavior of circuit components to do model-based diagnosis [8]. Models are
difficult to develop for medical domains because physiological structure and behavior
are poorly understood. ~Medical diagnostic programs operate on heuristic causal
relationships between findings (evidence) and abnormal disease states (hypotheses).
The causal relationships are captured by rules with certainty factors as in Mycin [20]
and Neomycin[3], or causal models[11], or probabilistic causal models [5, 9,16]. A
type of probabilistic causal model, the Bayes network, has been used to build
commercially viable diagnostic systems in medical domains [9,16]. Our work uses a
Bayes network to capture the causal relationships between findings and hypotheses.
Ideally, the selection of the next best evidence-gathering step should ensure that
the "value of information" exceeds the cost of gathering evidence [9]. In practice,
performing this computation for all possible sequences of observations can be very
expensive and hence simplifying assumptions are often made. While such approaches
work well for an automated diagnosis program, they are difficult to explain. Clancey

Tutoring Diagnostic Problem Solving 35

[2] has done extensive protocol analysis of medical experts which indicate that
physicians follow an intuitive approach while exploring hypotheses that does not
consider costs.

2.2 Representing Relations Between Findings and Hypotheses

Our work uses a Bayesian network representation for the causal relationships between
hypotheses and findings. Figure 1 shows a portion of the belief network model for the
clinical case (called the "Cough Case") we have developed. Each node in the network

cengenital O smo;ing

recurrent_viral_infections

lung_can

Q fa%?y_history_of_asthma
alpha_1_antitrypsin_deficiency Q
Q papilloma
chlo

ride_jon_transport_preblem air_pollution i
chronic_bronchitis allergies tuberculoslsp'Qmonia I mggnan
fag;lpy_history_of_cystic_ﬁbrosis EQ‘H
chronic_bronchial_inflammation ingv?tion tumors_in_bronchi

cygg:_ﬁbrosis O cough Q
pulionary_edema

chronic_air_passage_obstruction
;e

bl@_stool engpgysematscarrmg

ute_bronchial_inflammation
Q . . abnerma
acute_air_passage_obstruction

renal_disease
peor_weight_gain chronic_shortness_of_breath other_causes{connective_tis
excess_C02

inadequate_o2

plg:n?onary_hypenension
0 n

other_causes_for_pulmonary_hypertension

congestive_heart_failun
O erythrecytesis

Fig. 1. A portion of a Bayes net for the Cough case

LC_ratio respiratory_acidosis

is a random variable that represents some hypothesis (final or intermediate disease
state) or possible finding. Each node can take on one or more values. For example,
the possible values for the "cough" node are: true or false indicating the presence or
absence of cough. A finding can be determined by executing the procedural step
associated with it (e.g., ask a patient a question). Steps have costs associated with
them which may be monetary, or it may refer to an intangible cost such as time and
discomfort to the patient. Causal links connect nodes. A conditional probability table
(CPT) associated with the node specifies probability of values for the random variable
based on the values of each of its parents. Acquiring these probabilities can be a
challenging problem for large networks. However, depending on the particular
learning objectives of a case, only a portion of the network might be relevant.
Irrelevant portions can be avoided by using an "other miscellaneous causes" node [18]
(see Fig. 1). We are losing some diagnostic accuracy but it may be acceptable for
pedagogical purposes, since we have the freedom to author the case in such a way that
the other causes will be improbable.

36 Rajaram Ganeshan et al.

2.3 Selecting the Next Evidence-Gathering Step

The Bayes network is used to compute the posterior probability distribution for a set
of query variables, given the values of evidence variables. In our case, the query
variables are the possible final diagnoses. Whenever new evidence is obtained, the
probabilities of the query variables in the network are updated. The current
implementation uses the JavaBayes engine [4] to perform these updates. Any routine
step not already performed that "addresses" a "likely" hypothesis is a valid next step.
A hypothesis is "likely" if its current probability >= 0.5. A step "addresses" a
hypothesis when there is a directed causal path between the hypothesis and any
finding resulting from the step and at least one of the nodes on this path can affect the
probability of the hypothesis given the current evidence. The set of nodes affecting a
query can be determined using algorithms to identify independencies in such networks
[6]. Non-routine or expensive steps must meet a higher probability threshold for the
hypothesis they address before they can be recommended as a valid next step. For
example, a sweat test provides evidence for or against cystic fibrosis but should be
considered only if there is already some evidence for cystic fibrosis (e.g., current
probability > 0.6). It is possible that there are no steps available that address likely
hypotheses. In this case, steps addressing unlikely hypotheses will be considered. In
suggesting steps to the student, Adele will suggest lower cost steps before more
expensive ones from the set of next valid steps. Unlike decision-theoretic methods,
the approach described here does not guarantee an efficient diagnostic process.
However as explained earlier, decision-theoretic methods can be computationally
expensive and difficult to explain.

2.4 Modeling the Student’s Knowledge

Ideally, the student model should capture all of the knowledge the student is expected
to bring to bear on the diagnostic process including the steps (e.g. sweat test) and their
associated properties (e.g., cost), the findings associated with the steps (e.g., positive
sweat test), the hypotheses (e.g., cystic fibrosis), the hierarchical relationships
between hypotheses (disease hierarchy), the causal relationships between the findings
and hypotheses, and the strengths associated with these relationships (e.g., a negative
sweat test is strong evidence against cystic fibrosis). However, the current
implementation focuses mainly on the causal relationships because the instructional
objectives are concerned mainly with the causal mechanisms. A student's knowledge
of each relationship is updated during the tutoring process when the tutor tells the
student about it (e.g., as part of a hint) or when the student confirms her knowledge of
the relationship by taking a correct action or correctly responding to the tutor's
questions. Note that we use the Bayesian network only to represent the domain
knowledge and do not use the Bayesian network for modelling the student as in
Gertner et al. [7].

Tutoring Diagnostic Problem Solving 37

3 The Student-Tutor Dialogue

A tutor can convey knowledge to students via an effectively structured dialogue [14,
12, 15, 21]. When the student makes mistakes the tutor can ask questions that will
reveal a student’s underlying misconceptions, allowing the student to discover her
own mistake [15]. Such an approach promotes learning by inducing “cognitive
conflict” in the learner [13]. To conduct a coherent dialogue, the tutor needs to
maintain a dialogue state, mainly the focus of attention and history of utterances made
so far [17]. Clancey [2] notes that people focus on a hypothesis, which guides their
actions in the diagnostic process. In this work, the focus of attention is a node in the
belief network, which could be a finding or hypothesis. The diagnosis process will be
initialized with some initial set of findings - the patient’s presenting complaint.
Adele’s focus is initialized to the most promising finding, i.e., the one that provides
the strongest evidence for a hypothesis, and this focus is presented to the student as
part of the introduction to the case. The focus of attention is updated as the student
and tutor perform actions or make utterances as described in the following sections.
This section describes how we have extended Adele’s tutoring dialogue by exploiting
the causal representation of the Bayesian network to support a detailed probing of a
student's actions within the limitations of the interface.

3.1 Hint

Given the current evidence, Adele can determine valid next evidence-gathering steps
using the procedures described in the earlier section. When the student asks for a hint,
instead of providing the answer directly, Adele can use the opportunity to guide the
student through a reasoning process that exposes the student to the underlying
physiological processes. For example, at the start of the session the primary finding
and current focus is cough. To generate a hint, the agent identifies a path from the
current focus to a valid next step (shown by the enclosed box in Fig. 2). Successive
hints are generated by traversing this causal path. For example,

Student: Hint.

Adele: Chronic air passage obstruction can cause cough.

Student: Hint.

Adele: Chronic bronchial inflammation can cause chronic air
passage obstruction.

The dialogue state and the student model are both updated after the hint is
provided. Hints are generated with respect to what the student knows. For example,
if the student model indicates that the student knows that chronic air passage
obstruction can cause cough, then the first hint would not be given.

38 Rajaram Ganeshan et al.

pneumonia
" @

/ Tumors_in_bronchi
asthma infection .

recurrent_viral _infections

. acute_bronchial_inflammation

Chronic_bronchial_inflammagion /

. acute_air_passage_obstruction

Focus of attention

Fig. 2. Hint generation based on focus of attention

3.2 Correct Action

When a student takes a correct action, that is, one that the agent considers a valid
next step, the agent can initiate a dialogue to verify the student's reasoning. This
dialogue is initiated only if one or more of the relationships involved are
"instructionally significant"[l and if the student has not already been told about the
causal relationships involved. For example, assume that the current focus is "chronic
air passage obstruction” and the student now takes correct action and asks if the
patient smokes. Adele can ask the student about the causal mechanism that leads
from smoking to chronic air passage obstruction.

Adele: Yes. Can you identify the mechanism by which smoking
leads to air passage obstruction? Select one from list.

The possible options (e.g., bronchial inflammation, tumors, infection) are provided to
the user in a multiple-choice list dialog box. Adele uses gaze and pointing gestures
coordinated with speech to direct the student's attention to objects on the screen such
as dialog boxes [19]. If the student correctly identifies the mechanism then the agent
utters praise and updates the student model. Otherwise, the agent will point out that
the student is wrong and explain the correct mechanism to the student. If the
reasoning chain is very long and at least one other link is marked instructionally
significant, then this dialogue may be repeated in a recursive fashion.

A correct action can generate evidence that significantly alters the probability of
some hypotheses. The probabilistic reasoning process that leads to the change in the
probability of a hypothesis in the Bayes net can be quite complicated. Instead of
trying to generate an explanation for this reasoning process, we provide a summary
that relies on the probability of seeing the evidence assuming that the hypothesis is
true. It would be pedagogically beneficial for the agent to intervene and bring this to

! Certain causal links in the Bayesian network are more pertinent to the instructional objectives
of the current case. Links relating to these objectives are marked by the author as being
"instructionally significant."

Tutoring Diagnostic Problem Solving 39

the attention of the student when the student model indicates that the student does not
know the relationship between the evidence and hypothesis. For example:

Adele: Note that the patient experiences significant shortness of
breath. This provides strong evidence for chronic bronchitis or
asthma.

If the new evidence causes the probability of the hypothesis in focus to become
unlikely, Adele needs to guide the student by shifting the focus to a different node in
the network.

Adele: Notice that a negative sweat test provides strong evidence
against cystic fibrosis. Cystic fibrosis is unlikely. You could
consider other possibilities. Cough can also be caused by <new
focus>.

A correct action could also cause a shift in the focus because we have exhausted
all low cost steps related to the current focus. We need to shift the focus to another
branch to pursue other low cost steps. For example, if we finish asking all possible
questions leading from “chronic_bronchial_inflammation,” we need to shift the focus
to “acute_bronchial_inflammation.” The assumption here is that the student should be
encouraged to ask all relevant questions before proceeding with more expensive steps.

3.3 Incorrect Action

There are three ways in which an action can be incorrect: (1) it can be irrelevant to the
current case; that is, the action contributes no useful evidence for the current case; (2)
it can be a high cost step whose probability thresholds are not met; that is, the
probability of the hypothesis given the current state of evidence does not support the
expensive action -- there are cheaper actions that could have been taken to gather
more evidence; or, (3) it can be a low probability error; that is, the action provides
evidence only for an unlikely hypothesis (probability < 0.5) when there exist more
promising hypotheses.

If an action is irrelevant, there is not much the agent can do since it has no way of
relating the action to the network. If an action has a high cost or a low probability, it
can be related to the network, and there are two possible responses depending on
whether or not the action can be related to the current focus.

The “RV_TLC_Ratio”, or “lung performance” test in Fig. 3 (bottom node) is an
action with a high associated cost. Given the current focus, there are two appropriate
next steps that a student might take: she might ask the patient if he smokes, or she
might order a lung performance test. Suppose the student orders the lung
performance test. Since ordering a test is more expensive than asking a question, the
agent points out that there are cheaper actions that will provide evidence for the

40 Rajaram Ganeshan et al.

recurrent_viral_infections

smoking
.\ asthma
Chronic_bronchitis /
Chronic_bronchial_inflammation

Chronic_air_passage_obstruction

«— Focus of attention

cough .

RV_TLC_Ratio
(lung performance)

Fig. 3. Incorrect action causally related to focus.

current focus. Our medical collaborators feel that the agent should not intervene too
frequently to point out mistakes, so the student is allowed to make a few errors before
Adele intervenes. The mistakes are recorded and can be reviewed with the student
later.

To illustrate an example of the second case (Figure 4), suppose the student orders a
“bronchoscopy.”

recurrent_viral_infections

. _cancer
smoking

. asthma Student’s
\ . Focus of attenti
Chronic_bronchitis /
Chronic_bronchial_inflammation Agent’s
ocus of attention,

cough ‘/

Fig. 4. The student's focus of attention is different from the agent's.

Malignancy
(test: bronchoscopy)

ors_in_bronchi

ute_bronchial_inflammation

Chronic_air_passage_obstruction
te_air_passage_obstruction

In general, there are two possibilities: (1) the student is under the misconception that
the action is somehow related to the current focus (i.e., a bronchoscopy provides
evidence for chronic_air_passage_obstruction); or (2) the student has a different focus
in mind than the agent — ignoring the agent’s hints. The two cases can be
distinguished by explicitly asking the student to identify what hypothesis is being
pursued. For example:

Adele: I was not expecting you to do this. What hypothesis are you gathering
evidence for?

If the student selects the wrong hypothesis to justify the action, the agent will
clarify the student’s misconception that the action is related to the hypothesis in focus
(i.e., that a bronchoscopy does not provide evidence for chronic air passage

Tutoring Diagnostic Problem Solving 41

obstmction)ﬂ If the student’s focus of attention has shifted to some node along the
branch enclosed by the rectangular box then either the hypothesis the student is
focussing on is of low probability, or the cost of the action is high. The latter case has
already been discussed. If the differing hypothesis is of low probability, the agent
will initiate a dialogue to correct the student’s misconception about the likelihood of
the hypothesis given the current evidence. The agent can ascertain if the student has
incorrectly deduced the probability of the hypothesis by asking the student to rank the
hypothesis in question with respect to other hypotheses. Once the agent has
established the student’s misconception about the hypothesis ranking, she can attempt
to correct it by asking the student to justify her rationale for the ranking, i.e., identify
findings that the student thinks support her misconception. Based on the student’s
response, the misconception is corrected.

4 Conclusion

By using a Bayesian network to explicitly represent and reason about the causal
relationships between findings and hypotheses, Adele can be more effective in
tutoring diagnostic problem solving while keeping consistent with a best practice
approach. Using a combination of hints and other interactions based on multiple
choice questions, Adele guides the student through a reasoning process that exposes
her to the underlying knowledge, i.e., the patho-physiological processes, while being
sensitive to the problem solving state and the student’s current state of knowledge.
Effective rationales are generated automatically, although extensions to Adele's
language generation capability will be required to make them sound more natural.
We have built a complete case focusing on pulmonary diseases in patients who
present with a cough as their chief complaint and have conducted informal
evaluations of this case with faculty from the medical school at USC. We are
planning a more detailed evaluation with students and hope to report on the results of
these evaluations at the conference. Although the main focus of this paper is on
tutoring medical diagnosis, the methods described here are applicable to tutoring
diagnosis in any domain with uncertain knowledge.

Acknowledgements

We would like to thank Jeff Rickel for his insightful comments. Kate LaBore,
Andrew Marshal, Ami Adler, Anna Romero, and Chon Yi have all contributed to the
development of Adele. This work was supported by an internal research and
development grant from the USC Information Sciences Institute.

2 Even if a hypothesis is causally related to a finding, it may not provide any useful evidence if
the corresponding variables in the Bayes net are conditionally independent given the current
evidence [6].

42

Rajaram Ganeshan et al.

References

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

Brown, J.S., Burton, R.R., and DeKleer, J.: Pedagogical, natural language and knowledge
engineering techniques in SOPHIE I, II and III, in Intelligent Tutoring Systems edited by
D. Sleeman and J.S. Brown, Academic Press 1982.

Clancey, W. J.: Acquiring, Representing and Evaluating a Competence Model of
Diagnostic Strategy, STAN-CS-85-1067, August 1985, Stanford University.

Clancey, W. J. & R. Letsinger.. NEOMYCIN: Reconfiguring a Rule-Based Expert System
for Application to Teaching, In W.J. Clancey & E. H. Shortliffe (Eds.), Readings in
Medical Artificial Intelligence: The First Decade. Reading, MA, Addison-Wesley 1984.
Cozman, F.: JavaBayes. jttp://www.cs.cmu.edu/~javabayes/|

Gorry, G. and Barnett G.: Experience with a sequential model of diagnosis, Computers
and Biomedical Research, 1:490-507 1968.

Geiger, D., Verma, T., and Pearl, J.: Identifying Independence in Bayesian Networks,
Networks, Vol. 20 507-534, 1990.

Gertner, A.S., Conati, C. and VanLehn, K.: Procedural Help in Andes: Generating hints
using a Bayesian network student model, AAAI 1998.

Hamscher, W. C., Console, L., and DeKleer, J.: Readings in Model-based Diagnosis,
Morgan Kaufman Publishers, 1992.

Heckerman, D., Horvitz, E. and Nathwani, B.: Towards Normative Expert Systems: The
Pathfinder Project, KSL-91-44, Department of Computer Science, Stanford University,
1991.

Johnson, W.L., Rickel, J., and Lester, J.: Animated Pedagogical Agents: Face-to-Face
Interaction in Interactive Learning Environments, International Journal of Artificial
Intelligence in Education, (2000), 11, to appear.

Patil, R.: Causal Understanding of Patient Illness in Medical Diagnosis, IJCAI, 1981.
Pearce, C.: The Mulligan Report, Internal Document, USC/ISI, 1999.

Piaget, J.: The Equilibrium of Cognitive Structures: The Central Problem in Cognitive
Development. Chicago, Illinois: University of Chicago Press, 1985.

Pilkington,R.: Analysing Educational Dialogue Interaction: Towards Models that Support
Learning, Proceedings of Workshop at AI-Ed '99 9th International Conference on
Artificial Intelligence in Education, Le Mans, France 18th-19th July, 1999.
Pomsta-Porayska, K, Pain, H. & Mellish, C.: Why do teachers ask questions? A
preliminary investigation, in Proceedings of Workshop at AI-Ed '99 9th International
Conference on Artificial Intelligence in Education, Le Mans, France 18th-19th July, 1999.
Pradhan, M. Provan, G. M., Middleton, B., and Henrion, M.: Knowledge engineering for
large belief networks, Proceedings of Uncertainity in Al, Seattle, WA. Morgan Kaufman,
1994.

Rickel, J. and Johnson, W.L.: Animated agents for procedural training in virtual reality:
perception, cognition, and motor control, Applied Artificial Intelligence Journal, Vol. 13,
343-382, 1999.

Russell, S., and Norvig, P. : Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, 1995.

Shaw, E., Ganeshan, R., Johnson, W. L., and Millar, D.: Building a Case for Agent-
Assisted Learning as a Catalyst for Curriculum Reform in Medical Education, Proceedings
of AIED '99, Le Mans, France 18th-19th July, 1999.

Shortliffe, E. H.: MYCIN: A Rule-Based Computer Program for Advising Physicians
Regarding Antimicrobial Therapy Selection. Ph.D Diss., Stanford University, 1976.
Stevens, A., Collins, A. and Goldin, S. E.: Misconceptions in students understanding, in
Intelligent Tutoring Systems, Sleeman & Brown, 1982.

http://www.cs.cmu.edu/~javabayes/

LAHYSTOTRAIN: Integration of Virtual
Environments and ITS for Surgery Training

José Luis Los Arcos', Wolfgang Muller’, Oscar Fuente', Leire Orte', Eder
Arroyo', Igor Leaznibarrutia', Judit Santander'

' LABEIN. Technological Research Centre. Parque Tecnolégico. Ed. 101
48170 Zamudio, Spain
{j osel,oscarf,leire, arroyo, igor, j santander}@labein .es
*Fraunhofer-Institut fiir Graphische Datenverarbeitung. RundeturmstraBe 6
D-64283 Darmstadt, Germany
huellerweigd.fhg.de|

Abstract. Minimally invasive surgery has revolutionised the surgeon’s
approach by using optical systems to inspect cavities of the human body and by
using small instruments to perform surgical procedures. This paper presents the
LAHYSTOTRAINH demonstrator a training system for laparoscopy and
hysteroscopy, two types of minimally invasive surgery techniques, combining a
Virtual Reality Simulator (VRS), which contains virtual anatomical structures
and simulates endoscope surgical instruments, a Basic Training System (BTS),
that provides web based theoretical training, and an agent-based tutoring
system, the Advanced Training System (ATS), oriented to supervise the
execution of the practical exercises providing proactive and reactive
explanations and emulating the behaviour of some persons involved in the
operating theatre like the nurse, assistant surgeon and anaesthetist.

1 Problem Description

The current world-wide used surgical education process on laparoscopy and
hysteroscopy generally includes hands-on clinical experience and training on
anaesthetised animals, cadavers or plastic models. The traditional model for learning
procedural skills follows the rule ’see one, do one, teach one”. Because of learning by
doing operations need a lot of more time, at least 20-25%, this means for the patient a
longer time in anaesthesia and so the burden of the patient will be much higher to get

' LAHYSTOTRAIN (Integration of Virtual Environments and Intelligent Training Systems for
Laparoscopy/Hysteroscopy Surgery Training) UE Educational Multimedia (TAP and LdV)
project MM 1037 partly supported by the EC is a 30 months lasting project started on
September 1998. The partners of the consortium are Fraunhofer IGD (G), Labein (S),
Osakidetza (S), Instituto de Engenharia Biomédica (P), Hospital Sao Joao (P), Storz (G) and
University Hospital Frankfurt (G). The authors wish to acknowledge the contribution of all
members of the project team to the ideas presented in this paper whilst taking full
responsibility for the way they are expressed.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 43-52, 2000.
Springer-Verlag Berlin Heidelberg 2000

mailto:muellerw@igd.fhg.de

44 José Luis Los Arcos et al.

complications. On-the-job training proved to be insufficient due to the high risk.
Moreover, dissatisfaction with plastic models and the ethical discussion associated
with animal experiments led to consideration of alternatives. This is true specially for
rehearsing hysteroscopic procedures where it doesn’t exists world-wide appropriate
training environment at that time. An advanced training system combining virtual
reality, web-based learning and agent-based tutoring techniques has the potential to
enhance the current education and certification processes by increasing the safety,
flexibility and cost-effectiveness. Aim of this paper is to report on the whole
experience we have made in the development of LAHYSTOTRAIN demonstrator. In
section 2 we describe the application scope and functionalities. Section 3 presents the
architecture of the advanced training system. Then we describe the virtual reality
simulator (section 4). Finally, section 5 summarises the lessons learned and the
conclusions concerning the real applicability of the system.

2 Application Scope and Functionality

The LAHYSTOTRAIN training system is addressed to an heterogeneous collective
composed of expert and novice surgeons, resident and medical students. It admits two
types of users: surgeons, called trainees, and medical instructors. Trainees use the
system to train and recycle in the execution of Laparoscopy and Hysteroscopy
procedures/pathologies. Depending on the background and skills of the trainees, they
are grouped in four categories: Expert Surgeons, Novice Surgeons, Residents and
Medical Students. Medical Instructors are in charge of controlling and supervising the
trainees evolution. They are able to set-up new exercises and consulting information
related with the domain (such as initial patient conditions, list of phases, tasks and
actions which make up each procedure, and pre-defined patient complications) and
with the trainee data base (like user profile, didactic paths and last sessions evolution).
Training in LAHYSTOTRAIN is carried out in two temporal consecutive phases:

e Acquisition of theoretical knowledge related to pathologies, complications,
instruments and equipments. This training phase implemented in the BTS [1] can
be completed remotely (for those people don’t having access to a training centre
or a hospital in which the ATS is installed) or locally in the opposite case. The
basic training course is intended to give novice surgeons, by means of a web-
based multimedia environment, the basic knowledge on laparoscopic and
hysteroscopic procedures before proceeding with the VR advanced training. The
LAHYSTOTRAIN Web based training can make a strong contribution to the
existing training efforts because the target audience is geographical and timely
scattered. Additionally, since surgery is a field of constant evolution, it is easier to
update the didactic contents in this environment rather than on a printed support.

e Acquisition of practical skills previous to real interventions. During this phase the
trainee interacts with the ATS (see figure 1). He has to execute correctly at the VR
simulator the interventions proposed by the Tutor. During the execution of each
exercise he is guided by the Assistant (pedagogical agent) who provides proactive
and reactive explanations. Proactive assistance consists in the generation of
explanations about different aspects of the procedures the surgeons have to carry
on. These explanations are only provided when the user request for them to get

LAHYSTOTRAIN: Integration of Virtual Environments and ITS 45

specific information. The list of actions which compose an intervention, the
consequences of execution an action at the simulator, the safest path to an organ or
an expert demonstration are some examples of pro-active explanations. Reactive
assistance consists in the generation of explanations whenever the user makes a
mistake, or something anomalous is happening at the VR simulator. The aim of
these explanations is, depending on the expertise level of the trainee, to provide
hints and information not only about the mistake or the anomalous situation, but
also about its possible causes and remedy strategies. Reactive explanations
suppose an interruption in the trainee execution of the session, which could disturb
his/her training process. To avoid this situation, LAHYSTOTRAIN allows the
trainee to select the intrusion level (low, medium, high) of the system. For
instance, in low intrusion level, instead of interrupting the trainee operation, it
stores all the session events in order to build a final debriefing at the end of the
session. This final debriefing includes information like session success or not,
trainee incorrect actions, violations, complications detected, description of the
trainee misconceptions, and recommended actions. The Tufor, another
pedagogical agent, is in charge of managing the whole training process: rostering
and registering student information, acquiring trainee performance data and
generating and executing the session Instructional Plan proposing different
training lessons and exercises according to the user’s expertise. This plan is
constructed based on the information about the current trainee stored in the User
Model. The Tutor modifies dynamically this plan adapting it to the trainee’s
performance during a training session. Finally, three behavioural agents, Assistant
Surgeon, Nurse and Anaesthetist, reproduce and emulate the behaviour of some
persons involved on the operating theatre. Surgeons must learn their individual
role in the team as well as how to co-ordinate their actions with their team-mates.

~

&2 SHe
é;f{éé H Surgeon/s

Pro. Expl. Req. \

Tutor requests
Agent commands

Actions
Simulation Control
(stop, backtrack, ..) Surgical explanations
Tutor Assistance
Agent Messages

Actions
Patient States

Expert Actions
Simulation Control

VR SIMULATOR Complications ATS
ASSISTANT + TUTOR + AGENTS

LAHYSTOTRAIN DEMONSTRATOR

Fig. 1. LAHYSTOTRAIN Advanced Training System

The domain scope (pathologies and complications) covers in the BTS all subjects
considered by the ESHRE (European Society of Human Reproduction and
Embryology) laparoscopy and hysteroscopy competence levels. The ATS, in addition
to the theoretical exercises, contains a set 12 practical exercises with the more
frequent and complicated pathologies. Surgical procedures have been broken down

46 José Luis Los Arcos et al.

into a number of self-contained steps, tasks and phases [2]. Some of these need to be
performed in order while for others this is not essential. A complete set of event
graphs, showing the required actions ordering and used to monitor user progress
through the operative procedure and to provide accurate feedback, have been created.
The ATS system is designed to allow the human instructor to edit new exercises
selecting the pathology, the virtual patients and the introduction of pre-programmed
complications. The main innovative approaches of the system are the following ones:

e VR simulator Patient and instruments models. LAHYSTOTRAIN uses MRI
images to generate 3D patients models. A semi-automatic process to generate the
models and assigning textures is being investigated within the project.

e VR Simulator using force feedback sensor devices. Force feedback at surgical
instruments in an essential element to recreate a realistic training environment.
LAHYSTOTOTRAIN allows the simultaneous use of 2 surgical instruments with
force feedback as well as a positioning device for the optics.

e ATS Team Training covering all phases of the intervention. The correct execution
of laparoscopy and hysteroscopy interventions implies working in collaboration
with other people in the operation theatre (assistant surgeon, nurse and
anaesthetist). In LAHYSTOTRAIN some exercises are performed by two
surgeons at the same time (one with the instruments and the other with the
camera). During the intervention they have to communicate with the nurse (for
surgical instruments) and the anaesthetist for controlling the patient state. In
addition to that, LAHYSTOTRAIN also trains in the initial intervention phases
(patient setting up, equipment connection, etc.) that are also very important for
successful conclusion of it.

e ATS Pedagogical and Behavioural Agents. LAHYSTOTRAIN uses Pedagogical
Agents with physical appearance to guide the trainee during the training session
execution. Two specialised Pedagogical Agents have been created: Tutor, expert
in curriculum planning and supervision, and the Assistant, expert in the
pathologies considered in the demonstrator.

3 Architecture of the Advanced Training System

The architectural design of the LAHYSTOTRAIN ATS demonstrator is shown in
figure 2. It is composed of two systems the VR simulator and the ATS. The ATS
system contains six subsystems represented as rectangles: Assistant, Tutor, Assistant
Surgeon, Nurse , Anaesthetist , Student and User Interface and one data base, the
Session Log, represented as a cylinder. Two of the subsystems are pedagogical
agents, that is, agents whose aim is to teach something related to the considered
pathologies (Assistant Agent) or to control the training process (Tutor Agent). The
other three agents are behavioural agents emulating the behaviour of some of the
personnel involved in the operating theatre. The Assistant is in charge of controlling
the evolution of the training exercise.

LAHYSTOTRAIN: Integration of Virtual Environments and ITS 47

Student g ATS
/e
b Assistant Surgeon

|

[

|

!

1

. o - T
| LS
|

[

!

VR SIMULATOR

—0

Session Log

‘o % «:‘- /.1__;?
AGENT AGENT AGENT ?I B AGENT | Il !

Assistant Tutor Nurse Anaesthetist

Fig. 2. Architecture of the Advanced Training System

This means that, on the one hand, it has to receive from the VR Simulator all
relevant information (trainee actions, patient states) about the trainee operation, and
on the other hand, the Assistant has to send to the VR Simulator commands to
manage its evolution (stop, continue, backtrack, etc.), expert operations and the
introduction of complications. This implies a fully integration of the ATS (Assistant)
with the VR Simulator as it is shown in figure 1. The Student and Instructor Interface
provide some functionalities to allow the communication with the demonstrator end-
users. The Student Interface allows to ask for different types of explanations related to
the current exercise as well as to call the Assistant or Tutor when needed. It also
allows to establish communication with the behavioural agents. The Instructor
Interface has icons to edit/create new exercises, to manage the trainees data-base, to
analyse the last training sessions and to a assign an instructional plan to a user or
group of users. The communication among subsystems is implemented by means of
sockets.

The User Model it is divided into two folders: static (not updated during the
training session) and a dynamic one. The static folder contains informations about his
preferences (i.e. tutor intrusion level, preferred media to present explanations),
personal details (name, age, hospital, identification code), experience level and
previous theoretical background, etc. The dynamic folder includes the trainee
performance, exercises carried out, errors made and pathology and instrument
knowledge. At the end of each exercise the demonstrator updates the user model
using the information stored during the training session. Finally, the Session Log
stores all relevant events during the execution of an exercise (detected discrepancies,
trainee errors, explanations requested generated by the system, user actions) as well as
information related to the general development of the training session. The Assistant
pedagogical agent contains the modules represented in figure 3. The Simulator
Interface receives messages related to the actions performed by the surgeon at the VR
Simulator as well as the variables describing the patient state and possible
complications.

48 José Luis Los Arcos et al.

INTERFACE SUBSYSTEM

il |

‘ STUDENT & INSTRUCTOR

ASSITANT SUBSYSTEM

ANIMATED
PERSONA

|

EXPLANOR

DOMAIN
KB

SIMULATOR
INTERFAC

E—
==

VR SIMULATOR
TUTOR SUBSYSTEM

‘ MONITOR HDIAGNOSI’.R‘
PEDAGOGICAL AGENT

Fig. 3. Assistant Pedagogical Agent

These simulation data are passed to the Monitor which is in charge of recognising
the actions performed by the surgeon and detecting discrepancies with respect to the
expected behaviour. The Monitor loads the procedural model from Domain module
represented by event graphs containing the optimal sequence of phases, tasks and
actions and the possible correct alternative ways of performing each intervention. For
monitoring a normal procedure we follow the so-called situated plan attribution
approach [3]. The primary functions performed by the Monitor are to recognise the
actions executed by the surgeon, generate the expected actions and goals with respect
to the current patient state, match the interpreted surgeon actions against the expected
procedure, determine achievement of operational goals, detect discrepancies when
comparing trainee actions with expected actions and goals and classify detected
discrepancies (superficial errors). The Diagnoser subsystem receives the superficial
errors detected by the Monitor and tries to infer their causes (deep errors). It has been
implemented as a rule-based system with two different phases: hypothesis generation
and validation.

The Explanor is the main Assistant module charge not only of generating the
content and structure of an explanation, but also of managing a dialogue with the end-
users (trainees). Explanations are composed by on-line and off-line information, and
adapted to the user necessities. They use different types of medias (animated persona,
texts, graphs, sounds, videos, etc.) to present the information in the most suitable way
and can interrupted by the user in order to request for additional information,
clarifications, or examples. An explanation is composed by a set of interactions:
Response, Demonstration, Warning, Notification, Information, Remedy and
Restoration. Depending on the type of user, his expertise and preferences and the
cause and type of error detected, The Explanor selects the set of interactions which
composes the explanation. Examples of types of explanation provided by
LAHYSTOTRAIN are: “Where is an organ?”’, “What is that?” while pointing at an
anatomical structure, “Where am I”, “Show me how to get an organ”, “Next
action/phase/task”, “Operation objective”, “How to use a surgeon instrument”, “When
to use it”, etc. Finally, the Animated Persona [4], when selected by the Explanor,
presents in a human-like (see figure 4) the explanations requested by the trainee. For
example, he can demonstrate actions, use gaze and gestures to direct the student’s
attention, show how to use a surgical instrument, guide the trainee in the execution of

LAHYSTOTRAIN: Integration of Virtual Environments and ITS ~ 49

an intervention and communicate through spoken dialogue by sending a messages to
the person’s text-to-speech module.

Fig. 4. Tutor and Assistant Animated Personas

The structure of the Tufor pedagogical agent can be seen in figure 5. Its main
function is to supervise and manage the trainee sessions.

INTERFACE SUBSYSTEM

— —
BTS ANIMATED
ASSIGNABLE PERSONA
URLLS \ / \

TRAINING
SUPERVISOR &
ROUTER

< USER “ >
MODEL

’ STUDENT & INSTRUCTOR

SUBSYSTE

.‘ INSTRUCTOR
MANAGER

r

PEDAGOGICAL
PLANNER

ASSISTANT
Al

PEDAGOGICAL AGENT

Fig. 5. Tutor Pedagogical Agent

The main module is the Training Supervisor which analyses the trainee’s
behaviour and performance during a session evaluating its errors and performance in
the execution of Assignable Units (AU) and replanning the training session if
necessary (surgeon serious errors, changes in its expected performance, trainee
request or changes in the time period assigned to the session). The Pedagogical
Planner establishes at the beginning of each training session or when requested by the
Training Supervisor the Instructional Plan (IP) for the student. It defines the IP taking
into account the pedagogical knowledge and the information contained in the User
Model, the available time selected by the student for the training session and the
estimation of the time necessary to complete each AU. The IP is structured in three
levels. The first level corresponds to the Instructional Objectives -skills an cognitive
capabilities that the Tutor wants to transmit to the student-. The second level contains
Instructional Strategies -types of student activities assigned by the Tutor to reach a
fixed Instructional Objective-. The last level corresponds to the Tutor Objectives (TO)
which are detailed assignments the trainee has to carry during a training session-. The
Behavioural Agents (Assistant Surgeon, Nurse and Anaesthetisf) are implemented as
reactive agents [5]. They are composed (see figure 6) of five main modules: Agents

50 José Luis Los Arcos et al.

Manager which obtains the simulation variables from the VR Simulator and allows to
perform actions in the virtual environment, the Perception Module that monitors
messages from the other software components, identifies relevant events and
maintains a snapshot of the state of the patient. Input messages to this module can be
of two types: VR Simulator Actions and Communication messages addressed through
the User Interface or the Animated Persona (oral commands). The Reasoning Engine
purpose is to interpret the input received from the Perception module, process this
information and generate the appropriate interventions. To do that, it contains a task
representation specifying the actions to be carried out in the intervention. Finally, the
Action Control module decomposes the interventions selected by Reasoning Engine
into a sequence of lower-level actions (VR Simulator actions or communication
messages to the trainee) that are sent to the other software modules.

BDI

S

VR SIMULATOR

AGENTS
MANAGER PERCEPTION G ACTION
ENGINE CONTROL

(Beliery G

BDI

VOICE
RECOGNIZER
TRAINEE
INTERFACE

INTERFACE

Fig. 6. Behavioural Agents

The Animated Persona uses a very simple behaviour space [4] consisting of a
reduced set of animation sequences and utterances (happy, clap, passing instruments,
boring, etc.) created with Poser and Microsoft Agent SDK. The physical aspect of the
behavioural agents it shown in figure 7.

Fig. 7. Behavioural Agents: Nurse, Anaesthetist and Assistant Surgeon

The next figure presents two states of the Student Interface, during the intervention
and when he requests a “Next Step” explanation. On the interface left side we can see
the pedagogical agents Assistant and Tutor. The Assistant can explain orally the next
step to perform showing at the same time a video from a real intervention or an
animation taken from the VR Simulator. At the bottom side are located some buttons
that provide additional explanations like: “Next Action” of the current procedure,
“Why?” to carry on that action and “What For?”.

LAHYSTOTRAIN: Integration of Virtual Environments and ITS 51

Left ovarian
cystectomy

Dissect the cyst from
tha surrsunding
ovarion by spreading
tha blodes of tha
sciszom

Fig. 8. Student Interface

4 Virtual Reality Simulator

The Virtual Reality (VR) simulator [6] provides the realistic surgical environment in
which training on the various hysteroscopical and laparoscopical interventions is
possible. Similar to a real hysteroscopy/laparoscopy the trainee is able to use surgical
instruments interacting on the anatomical region of interest -the virtual situs-. The VR
simulator consists of a graphics workstation, two tracking/haptic devices needed for
the simulation of two surgical instruments and a tracking device for the simulation of
a virtual endoscope. The virtual environment (VE) provides virtual instruments
(endoscope/surgical instruments) and the virtual situs.

o Virtual instruments (endoscope/surgical instruments): Not using a real endoscope
and other surgical instruments the instrumentation has to be simulated. An
intuitive handling of surgical instruments is provided in which its 3-D geometry is
generated with input data available from 2-D construction plans provided by Storz.
These representations have been integrated in the VR Simulator preserving shape
and function of the instruments.

e Virtual Situs: The VE requires a realistic 3-D representation of the abdominal
region. Input data for the generation of the virtual situs are Computer Tomography
(CT) or Magnetic Resonance (MR) scans as well as video sequences of
laparoscopic/hysteroscopic procedures. The data is collected at the hospitals
involved in the project. Based on this image data a virtual situs has been
reconstructed suitable for real-time simulation.

Finally, the different aspects of the simulation require data models with several
levels of detail. Within LAHYSTOTRAIN have been generated three models:
visualization model, collision detection model and deformation model.

52 José Luis Los Arcos et al.

5 Conclusions

This paper has presented the LAHYSTOTRAIN prototype oriented to train surgeons
performing Laparoscopy and Hysteroscopy procedures. We have described its
functionalities and architecture. The potential value of surgical simulation is its cost to
benefit ratio and its ability to impact the morbidity and mortality rates of practising
and future surgeons. At present the development costs for inmersive simulation are
too high and there is few experimental data available proving the transfer of training
knowledge into a surgical environment. We plan to evaluate the efficiency of the
training system by means of three pilot experiences that will be carried out at the
hospitals involved in the project (Hospital Sao Joao, University Hospital Frankfurt,
Osakidetza) with different user groups: experienced and novice surgeons, residents
and medical students. It is expected that LAHSYOTRAIN will overcome some of the
current drawbacks of traditional training methods providing a safe, flexible and cost
effective environment for teaching, maintaining and assessing endoscopic skills.

Acknowledgements

The work described in this paper has been undertaken with the support of the EC
Educational Multimedia Joint Call project MM 1037 and Comision Interministerial de
Ciencia y Tecnologia (CICYT) project reference TIC98-1730-CE

References

1. Barros, A., Marques, R., Monteiro, M.P.,Marques de S4, J.P., Padilha, A., Bernardes, J.:
Web Training in Laparoscopy and Hysteroscopy. Proc. of European Medical and Biological
Conference EMBEC °99. Vienna. Published by the International Federation for Medical &
Biological Engineering. Volume 37, Supplement 2, Part I. (1999) 696-697.

2. Billinghurst, M.; Savage, J.; Oppenheimer, P.; Edmond, C.: The Expert Surgical Assistant.
In: Sieburg, H., Weghorst, S., Morgan, K. (eds.). Health Care in the Information Age, I0S
Press and Ohmsha, (1996) 590-607.

3. Hill, R. W., Johnson, W. L. Situated Plan Attribution: Journal of Artificial Intelligence in
Education, vol. (6) 1. (1995) 35-66.

4. Johnson, W. L. and Rickel, J.W.: Animated Pedagogical Agents: Face-To-Face interaction
in Interactive Learning Environments. International Journal of Artificial Intelligence in
Education 11 (2000), to appear.

5. Rickel, J. and Johnson, W. L.: Virtual Humans for Team Training in Virtual Reality. Proc.
of the Ninth Wolrd Conference on Al in Education. IOS Press. (1999)

6. Voss G., Bockholt U., Los Arcos J.L., Muller W., Oppelt P., Stihler J.: LAHYSTOTRAIN
Intelligent Training System for Laparoscopy and Hysteroscopy. Westwood J.D, Hoffman
H.M., Mogel G.T. (eds): Proceedings of Medicine Meets Virtual Reality. IOS Press,
Amsterdam (2000) 359-364.

Active Learner Modelling

Gordon McCalla, Julita Vassileva, Jim Greer and Susan Bull

ARIES Laboratory, Dept. of Computer Science, University of Saskatchewan,
Saskatoon, Saskatchewan S7TN 5A9, Canade{l
{mccalla, jiv, greer, bull} @cs.usask.ca

Abstract. It is common to think of a "learner model" as a global de-
scription of a student's understanding of domain content. We propose a
notion of learner model where the emphasis is on the modelling process
rather than the global description. In this re-formulation there is no one
single learner model in the traditional sense, but a virtual infinity of
potential models, computed "just in time" about one or more individuals
by a particular computational agent to the breadth and depth needed for
a specific purpose. Learner models are thus fragmented, relativized, lo-
cal, and often shallow. Moreover, social aspects of the learner are per-
haps as important as content knowledge. We explore the implications of
fragmented learner models, drawing examples from two collaborative
learning systems. The main argument is that in distributed support envi-
ronments that will be characteristic of tomorrow's ITSs, it will be liter-
ally impossible to speak of a learner model as a single distinct entity.
Rather "learner model" will be considered in its verb sense to be an ac-
tion that is computed as needed during learning.

1. Introduction

It is still common parlance in intelligent tutoring systems (ITS) to speak of a "learner
model", meaning a single global description of a student to be used by an ITS to judge
understanding of deep domain content. In this paper we propose an alternative notion
of learner model where the emphasis is on the activity and context of modelling,
rather than on the global description. Focusing on the activity of learner modelling,
we show how the model can be a function used to compute relevant information about
one or more learners as needed depending on the purpose, learners involved and
available resources. This approach lends itself to the kind of learner modelling often
needed in systems coordinating many learners who communicate with one another,
who form pairs or groups for learning activities, and who form opinions about one
another, thus participating in some form of peer assessment. In such a setting there is

‘This research has been partially funded by the Telelearning Network of Centers of Excellence
under Project 6.28.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 53-62, 2000.
Springer-Verlag Berlin Heidelberg 2000

54 Gordon McCalla et al.

no one monolithic learner model associated with each learner. Rather the knowledge
about a learner is distributed among agents who interact with that learner (teachers,
other learners, software applications, web-based software agents, etc.) In future, as
borders of learning environments disappear and learning environments span the web,
many applications and people will hold learner model information about a learner.

Thus learner modelling is the process of assembling and summarizing fragmented
learner information from potentially diverse sources. This information can be raw
data recorded by a web application, partially computed learner models inferred by an
ITS, opinions about the learner recorded by a teacher or peers, or a history of learner
actions. The key to making sense of this widely distributed information is the ability
to interpret multi-modal information from multiple heterogeneous relevant sources
and integrate this just-in-time into a learner model of appropriate granularity. Integra-
tion introduces many new requirements for the learner modelling process. In this
paper we discuss the implications of this sort of learner modelling.

2. Examples: I-Help and S/UM

We have chosen to illustrate our approach in two systems: I-Help and S/UM.

2.1 I-Help

I-Help provides a student with a matchmaking service to find an online peer to help
with a problem [1]. The most recent implementation is based on the Multi AGent
Architecture for Adaptive Learning Environment (MAGALE) [2], which uses a de-
centralized approach in system design and an economic infrastructure to trade knowl-
edge resources. The MAGALE architecture comprises individual personal agents
representing each user, and manages a variety of learner models. These models are
created and updated by a variety of diagnostic agents. A diagnostic agent can be con-
tacted by another agent to request knowledge about some particular learner. This
happens either periodically, or when information from this model is needed. In addi-
tion, each personal agent creates models of peers, whose agents the agent has en-
countered through a help interaction (see Figure 1).

o — JE—— ~ Student Models
~Models of other users ™.~ Models of other users ;/ — f - L) f—)
aels of other \ viodels o N [e

Negotiation P’S i
B —

[’T;j;; U1 peer interaction()

[ﬁ; \ “/4—» o L (PR _/ N
< \4 > ul Match- ~ Model
O t/// p . . maker . Gatherer
N Help session VAN
Jal P D) }‘/ - N

UserModels
Fig. 1. I-Help: each personal agent maintains Fig. 2. S/UM: each user maintains their user

a model of its own learner and others model, and contributes to student models
encountered of numerous peers

Active Learner Modelling 55

2.2 S/UM

S/UM [3] also offers a matchmaking service to students, but its focus differs from I-
Help. S/UM is concerned with matching learners who may offer or wish to receive
feedback on some aspect of their work, or who may want to collaborate or cooperate
in their learning. The aim is to arrange partnerships to promote reflection through peer
interaction and peer modelling. A major goal is that the feedback givers should also
benefit, by reflecting while evaluating a peer. The additional relationship of coopera-
tion in S/UM concerns a double feedback/help situation: X helps Y on A; Y helps X
on B. Collaboration takes its usual sense of two learners working together on a com-
mon problem or task. Peer interactions may take place either on-line or off-line.

The S/UM architecture focuses on student and user models used by a 'model gath-
erer' and the matchmaker. The single modeller-modellee relationship does not hold:
representations are constructed from self-evaluation by the model's owner—i.e. the
modeller is also the modellee [4]; and by contributions from peer modellers after peer
interaction [3]. The model gatherer organises these model fragments, generating an
appropriate synopsis of model contents from the multiple information sources (e.g.
more weight to recent entries and assessments from competent peers). This synopsis
may be of interest to the model's owner for reflection; to the matchmaker for finding
suitable partners; to peers who may browse information about potential partners. A
single student model may comprise many entries from different peer sources, and a
single learner may contribute to any number of peer models (see figure 2).

3. Integration in Learner Modelling

As illustrated in the above systems and many others, it is often inconvenient, unpro-
ductive, or computationally difficult to maintain a single consistent global model
about each learner. In I-Help learner models are derived as needed according to the
person or people being modelled, the agent who is modelling, and the end use or
purpose of the model [5]. In S/UM learner models are aggregated for presentation to
peer viewers. We believe this emerging trend of deriving learner models from distrib-
uted model fragments will increase as learners interact with more widely distributed
learning resources and applications on the Web. Continuous contact between learners
and technology will allow for fine-grained tracking of learners' activities under differ-
ent circumstances and by different modelling agents. The problem for learner model-
ling will be making sense out of too much knowledge, rather than trying to make do
with too little [6]. Thus the need for integrating learner model fragments will grow,
and the ideal of maintaining a single monolithic learner model for each learner will be
seen as less desirable (and likely intractable).
We believe the fragmented, distributed learner model will have a significant impact

on learner modelling research. The main question is how to manage the information:

e how to find the agent who has a relevant model depending on the context

and the purpose for which the model is needed;
e how to make sense of possibly inconsistent or even contradictory data;
e in general how to interpret models created by other agents.

56 Gordon McCalla et al.

The focus is shifted from the model itself to the process of modelling, i.e. the learner
model is thus not so much a noun as a verb. The learner model is computed "just in
time" [7] and only makes sense in the context of who is being modelled and for what.

For clarification we introduce a simple notation. We can think of a learner model
as a function: learnerModel (a, L, p, r), where:

a is the agent doing the modelling,
L is the set of learners participating in the modelling activity,
p represents the purpose of the model, and
r corresponds to the computational resources (time, space, etc.) which are avail-
able at the time the model is being created.
It may also be useful to think of learnerModel as a method of the agent doing the
modelling. From this viewpoint, the notation might be: a.learnerModel(L, p, r).

It is important to note that this notation has no ambition of broad generality, nor do
we intend to make a contribution to computational mathetics [8]. There is some over-
lap of our approach and the notion of runnable learner models. Indeed our learner
model function implies that the learner model is a computation. The distinction is that
our approach permits the computation to work on partially computed learner models
drawn from diverse sources in addition to just-in-time computation with raw data.

4. The Different Purposes of Learner Modelling

Learner models can have a variety of purposes. They form a set of partially computed
models describing fragments of knowledge about learners. The aggregate of all such
fragmented models, if such a thing could be computed, would be the complete and
definitive model of all learners associated with a system. We not only believe this
aggregate could be very hard to compute, but we also believe it is not necessary for
most purposes. We now investigate the various purposes of learner modelling.

4.1 Reflection

learnerModel(a: learner's personal agent; L: learner and other relevant learners;
p: to find out how the learner is viewed; r: might not need real time response)

Making the contents of learner models accessible to students can be used to pro-
mote reflection on the target domain [9-11]. With the broader information in frag-
mented models in multi-user systems, such reflection may concern not only domain
content, but may also be focused on other issues, e.g. "how do other learners view
me?"

"How do other learners view me?" may refer to social issues such as helpfulness in
I-Help, perhaps to assist someone in rethinking their attitude to the group; or for
learners to compare their performance with their peers in S/UM. They may wish to
see how well they are doing compared to the average student, or they may wish to
view possibilities attainable by high achievers [12]. Students may also reflect on re-
actions of others who have viewed their work, leading to better understanding of
difficulties. Finally, helpers may also benefit by reflecting on their own knowledge or
the helpee's knowledge, when giving feedback.

Active Learner Modelling 57

4.2 Validation

learnerModel(a: modelling agent; L: the learner whose model is validated, the
agents whose models are used for comparison; p: to confirm some of the be-
liefs in the initial model created about the learner, to leverage others, to add
new beliefs; r: will probably take place off line, so lots of time and resources)
Learners can make use of various learner model viewpoints to confirm or deny
opinions/knowledge. This could be used to confirm domain knowledge, and also to
find out other people's opinions about a person's social characteristics. Validation is
probably a special kind of reflection, distinguished by the learner starting with an
opinion, rather than with a blank request. In I-Help validation would take place by
direct agent interactions; in S/UM, it occurs through learner requests for feedback.
With so many distributed user models, questions of validity and consistency arise.
Ensuring global consistency seems impossible and unnecessary. However, if each
person, component or agent maintains its own models and is indifferent to how other
agents model the same users, there is no advantage to multiple models. If an agent can
communicate with other agents about its models, it can benefit from their experience,
extend and validate its model (see also [13]). This is easier when agents are validating
models created for the same purpose, with a similar modelling function. It is harder
with data collected by an agent for a different reason, with a different function.

4.3 Matchmakers

learnerModel(a: matchmaking agent; L: learner and potential partners; p: to find
appropriate peer; r: must complete in "real time" (I-Help) / need not complete
in "real time" (S/UM))

In both I-Help and S/UM the system finds a ready, willing and able partner for a
particular learner and learning need. Locating a suitable partner is handled by an
agent we call the matchmaking agent.

Depending on the matchmaking agent a and the purpose p, the modelling function
learnerModel may differ and different features L of the learner and potential peer
helpers may be relevant for matching. For example, matching with the purpose of
finding a peer helper may use the models of the potential helpers' knowledge and
social characteristics (helpfulness, class ranking, eagerness) only, or it could also use
the helper's and helpee's preferences. Matching with the purpose of finding partners in
a collaborative project (p,) may be done by another agent, a, which uses the same user
characteristics L, but a different modelling function, learnerModel,, which searches
for knowledge and social characteristics which complement each other.

The modelling function learnerModel may depend on the agent who does the mod-
elling, a, as will usually be the case, since it is easier to design smaller matchmaking
agents specialized for one modelling function and purpose only. However, in the
general case, there can be also more complex agents, able to create models of other
agents for different purposes and with various alternative modelling functions.

58 Gordon McCalla et al.

4.4 Negotiation

learnerModel(a,: helpee’s personal agent; L: learners known by the agent; p: to
obtain a fair price for help; r: must complete in "real time")

learnerModel(a,: helper’s personal agent; L: learner associated with the help re-
quest; p: to obtain a fair price for help; 7: must complete in "real time")

In I-Help two personal agents can interact and negotiate for various reasons. This
can be part of the matchmaking process [14], but can also occur between agents for
other reasons, such as knowledge sharing where agents can acquire information di-
rectly from other agents so that one or both can work "better".

In this case we have 2 agents performing the modelling. They are personal agents
involved in negotiation, let's say a, and a,. a, develops a model of user L, and a, de-
velops a model of user L,. The purposes p, and p, of modelling may be identical (in
the case of MAGALE, to better predict the reaction of the opponent in negotiation), or
may differ. The same applies to the modelling functions. However, in a more general
and complex case, when for example two agents are negotiating about the models of
their users, the purposes / functions may be completely different.

Various versions of I-Help have been deployed to experiment with reflection, vali-
dation, matchmaking and negotiation. To achieve real time response we have com-
puted minimal and partial models, with both content and social dimensions. Other
"proof of concept" experiments in negotiation [14], supporting the helper [15] and
visualizing models [16] have shed more light on these functions in use. S/UM empha-
sizes reflection and larger scale models of content. We aim to integrate the S/UM and
I-Help approaches in a distributed environment, to further illuminate these issues.
Other "classical" purposes of learner modelling e.g. diagnosis, assessment, context
adaptation are also consistent with this active, procedural view of modelling.

5. What Processes and Techniques are Needed to Learner Model?

With this perspective of learner modelling as distillation and integration of fragments
of data and models, the important activity changes from model building to model
management. The focus expands from diagnosis of behaviour and representation of
learner information to retrieval of appropriate model fragments and their integration
to suit the purpose. Thus learner modelling consists of several processes, including:

e retrieval - gathering suitable data, processes, learner model fragments from
various sources that would be relevant to the learners and purposes of the
learner modelling process.

e integration - aggregating and abstracting learner model fragments (and pos-
sibly additional raw data) into coarser-grained, higher-level learner model
fragments. Integration across all possible information about a learner might
result in a single monolithic learner model. However, computational re-
sources would likely preclude such comprehensive integration, and the pur-
pose of the modelling would rarely require a monolithic learner model.

e interpretation - using the result of learner modelling for some purpose. The
result of the learner modelling/integration process is a knowledge structure

Active Learner Modelling 59

that is to be interpreted by applications requiring learner model information.
These processes will necessarily be idiosyncratic to the purpose required.
We will focus on retrieval and integration in this section. Many of the interpretation
issues have already been covered in the discussion of purposes in section 4.

5.1 Retrieval

Since there are multiple models of various aspects of every learner, developed by
different agents with different purposes under different resource constraints, it would
be helpful to make use of all this information when a learner modelling need arises.
How can one retrieve an appropriate model or collection of models? If several candi-
date models are available, which should be chosen? What should be done if candi-
dates have contradictory contents? Two criteria will likely be most relevant in re-
trieving models: who created the model (a) and for what purpose (p). E.g. if an agent
a, (of learner L)) wants to learn the qualities of learner L, with respect to programming
in C++, it will ask other agents that a, trusts and that know something about L,. From
these it will select agents who have models developed with the same purpose, i.e.
evaluation of L,'s knowledge in C++. This means only users who have interacted with
L, in the context of C++ will be queried. Another criterion, which can be considered
as supplementary to the first, and will probably be more difficult to implement, is to
look for agents with a similar modelling function (a.learnerModel). In this way an
agent may seek models developed by trusted agents, or agents with similar evaluation
functions. Finally, the time resources under which the model was created could regu-
late retrieval. A model created in a rush might be less adequate than one developed
over a longer period of time and with more computational resources.

5.2 Integration

We use the term "integration" in a broad sense, more like "mediation" introduced in
information systems [17], to denote the integration of diverse and heterogeneous
information sources, achieved by abstracting away representational differences and
integrating individual views into a common model. This integration captures the re-
quirement for combining learner model fragments into coherent explanations. In its
most complete sense, this process is complex, domain dependent, and resource inten-
sive. Fortunately it is often only necessary to get an approximation of a learner's cog-
nitive or social state derived from a few bits of raw data. Sometimes all that is needed
is to confirm that a new bit of evidence is consistent with prior inferences.

Integration involves aggregation and abstraction of data and partial models. It de-
mands that a domain ontology has been chosen and model elements are tagged ac-
cording to that ontology. Integration of information is even more difficult than re-
trieval, as it requires interpretation and summarization of data retrieved from the
model fragments to be integrated. This interpretation depends on the agents that cre-
ated the model fragments, and moreover on the models of these agents created by the
agent performing the integration, on their modelling functions and on the purposes of
modelling. Suppose agents a,, a, and a, had each created a model of L s eagerness,
and L, wants to aggregate this information. L,'s agent (a,) will interpret information
from each of the three agents depending on its model of L, and L,and L,'s evaluation

60 Gordon McCalla et al.

functions (i.e. how capable are they of accurately judging L,s eagerness). Figure 3
shows how this integration might occur.

To achieve aggregation we must be able to represent and reason about a modeller's
objectivity and priorities (expressed in the modelling function learnerModel). We
must also be able to represent circumstances under which modelling is done. This is
different from p (the purpose for which the model was created). Here we are more
interested in the interpersonal relationship between modeller and modellee at the
moment the model was created: whether they were in a cooperative or adverse rela-
tionship, close or distant, whether the modeller was observer or collaborator, whether
they had common or different goals, as well as the general result of the situation
(positive or negative, success or failure). This implies that complex reasoning may
happen during integration. The good news is that global integration will rarely (if at
all) be required. Integrating learner models will be done mostly by various agents (a)
with a certain purpose (p), for a small subset of partial goal-related models (L), and
under certain time constraints (r). In a narrow context this can be feasible.

As distiled modelof C

|] |
AsmodelofC
Nl

smodelof B

L
B
.

Bsmodelof C

Fig. 3. Integration in A’s model of C

Many Al techniques can possibly enter into the retrieval and integration processes:

e belief revision, to be able to incorporate new evidence into models personal
agents keep about their learner. This belief revision is entirely local to the
personal agent doing it, however, and will be done in the context of end use.
The big issue will be whether to just add information without interpretation,
and then put it together when there is an end use, or to have a separate belief
revision process run occasionally like a garbage collection algorithm.

e knowledge representation, to capture both social and content knowledge. For
many purposes knowledge will only need to be fairly shallow, so perhaps
many of the deep KR problems can be avoided. Semantics will necessarily
have to be procedural, in the sense that final meaning is totally relative to the
procedures using the knowledge. A consistent ontology would simplify the
representation process. Unfortunately, the likelihood of fine-grained ontolo-
gies remaining consistent across the diversity of applications and knowledge
sources we envision would be small. The ability to merge, abstract and rea-
son about ontologies will thus become important issues.

e information retrieval and information filtering, that is getting knowledge
from the environment when needed, often very quickly.

e knowledge externalization, that is putting knowledge into a form that can be
easily understood by the learner(s) or end users. This may vary from learner
to learner and from one end use to another. Techniques for knowledge visu-
alization will be useful here [16].

Active Learner Modelling 61

e data mining techniques to find patterns within and between agents' models
and raw data.

e group modelling techniques, to find characteristics shared among many per-
sonal agents [18]. This will need to be retrieved by means of agent-agent ne-
gotiations, and will support collaborative styles of learning.

e Bayesian belief networks [19], useful for integrating multi-modal, multi-
source evidence and propagating beliefs using a well-defined process.

Despite the daunting list of techniques and apparent complexity of learner modelling,
we believe learner model computation to be tractable in many circumstances.

6. Conclusion

This paper argued for a revised view of "learner model" as a computation (the verb
sense of "model"), rather than a data structure. We argued that in the new distributed
computational architectures such a view will not only be useful, but necessary.
Learner modelling will be a fragmented activity, performed on demand as a function
of the people being modelled, purpose of modelling, and resources available. Learner
modelling will occur for many reasons, extended from the traditionally narrower
focus on diagnosis and assessment. For many purposes learner modelling computa-
tions will compute social as well as content aspects of learners. This should be easier
than in the past given the vast amount of information that will be available about
learner interaction in the emerging information technology intensive world.

These revised ideas about learner modelling will shift the learner modelling re-
search agenda. Techniques such as retrieval, integration, and interpretation will be
much more important. Many interesting research issues surrounding these techniques
will have to be explored. In a fragmented, distributed, and universally accessible
technological environment, learner modelling will increasingly be viewed as essential
to building an effective system, but will also increasingly be seen to be tractable as
new techniques emerge. Nevertheless, as our experiments have already shown, it will
not be necessary to resolve all of these issues in order to usefully learner model.

References

1. Greer, J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A. and Vassileva, J. (1998)
The Intelligent HelpDesk: Supporting Peer Help in a University Course, Proceedings
ITS'98, San Antonio, Texas, LNCS No1452, Springer Verlag: Berlin pp.494-503.

2. Vassileva J., J. Greer, G. McCalla, R. Deters, D. Zapata, C. Mudgal, S. Grant (1999) A
Multi-Agent Approach to the Design of Peer-Help Environments, in S. Lajoie and M. Vivet
(eds.) Artificial Intelligence and Education, IOS Press: Amsterdam, 38-45.

3. Bull, S. (1997) A Multiple Student and User Modelling System for Peer Interaction, in R.
Schifer & M. Bauer (eds) ABIS-97: 5 GI-Workshop, Adaptivitit und Benutzermodellierung
in interaktiven Softwaresystemen, Universitét des Saarlandes, Saarbriicken, 61-71.

4. Bull, S. (1998) Do It Yourself' Student Models for Collaborative Student Modelling and
Peer Interaction, in B.P. Goettl, H.M. Halff, C.L. Redfield & V.J. Shute (eds) Intelligent
Tutoring Systems-ITS98, Springer-Verlag, Berlin Heidelberg, 176-185.

62 Gordon McCalla et al.

5. Vassileva, J.I., Greer, J.E., McCalla, G.I. (1999) Openness and Disclosure in Multi-agent
Learner Models, in Proceedings of Workshop on Open, Interactive, and Other Overt Ap-
proaches to Learner Modelling, International Conference on AIED, Le Mans, France.

6. McCalla, G.I. (2000) The fragmentation of culture, learning, teaching and technology:
implications for artificial intelligence in education research agenda in 2010. Int Jnl of AIED.

7. Kay, J. (1999). A Scrutable User Modelling Shell for User-Adapted Interaction. Ph.D. The-

sis, Basser Department of Computer Science, University of Sydney, Sydney, Australia.

. Self, J. (1990) Theoretical foundations for intelligent tutoring systems, Int Jnl of AIED 1(4).

9. Bull, S. & Pain, H. (1995) "Did I say what I think I said, and do you agree with me?": In-
specting and Questioning the Student Model, in J. Greer (ed), Proceedings of World Confer-
ence on Al in Education, AACE, 501-508.

10.Dimitrova, V., Self, J. & Brna, P. (1999) The Interactive Maintenance of Open Learner
Models, in S.P. Lajoie & M. Vivet (eds), Artificial Intelligence in Education, IOS Press.

11.Paiva, A., Self. J. & Hartley, R. (1995) Externalising Learner Models, in J. Greer (ed),
Proceedings of World Conference on Al in Education, AACE, 509-516.

12.Kay, J. (1997) Learner Know Thyself: Student Models to give Learner Control and Respon-
sibility, in Z. Halim, T. Ottmann & Z. Razak (eds), Proceedings of International Conference
on Computers in Education 1997, AACE, 18-26.

13.Maes, P. (1994) Agents that Reduce Work and Information Overload, Communications of
the ACM 37(7), 31-40.

14.Mudgal, C., Vassileva, J. (to appear) An Influence Diagram Model for Multi-Agent Nego-
tiation, Proceedings of International Conference on Multi-Agent Systems, Boston.

15.Kumar, V., McCalla, G., Greer J. (1999) Helping the Peer Helper. S. Lajoie and M. Vivet
(eds.) Artificial Intelligence and Education, I0S Press, Amsterdam, 325-332.

16.Zapata-Rivera, J.D. & Greer, J., (this volume), Inspecting and Visualizing Distributed Baye-
sian Student Models.

17.Wiederhold, G. & Genesereth, M. (1997) The Conceptual Basis for Mediation Services,
IEEE Expert.

18.Hoppe, H.-U. (1995) The use of multiple student modelling to parameterise group learning,
in J. Greer (ed), Proceedings of World Conference on Al in Education, AACE, 234-241.

19.Reye, J. (1999) Student Modelling based on Belief Networks. Int Jnl of Al in Education, 11.

e}

Training Teams with Collaborative Agents

Michael S. Miller, Jianwen Yin, Richard A. Volz, Thomas R. Ioerger, John Yen

MS 3112
Department of Computer Science
Texas A&M University
College Station, Texas 77843-3112
{mmiller, jianweny, volz, ioerger, yen}@cs.tamu.edu

Abstract. Training teams is an activity that is expensive, time-consuming,
hazardous in some cases, and can be limited by availability of equipment and
personnel. In team training, the focus is on optimizing interactions, such as
efficiency of communication, conflict resolution and prioritization, group
situation awareness, resource distribution and load balancing, etc. This paper
presents an agent-based approach to designing intelligent team training systems.
We envision a computer-based training system in which teams are trained by
putting them through scenarios, which allow them to practice their team skills.
There are two important roles that intelligent agents can play; these are as
virtual team members and as coach. To carry out these functions, these agents
must be equipped with an understanding of the task domain, the team structure,
the selected decision-making process and their belief about other team
members’ mental states.

1 Introduction

An integral element of large complex systems is that a team of humans is needed to
manage them. Teams demand that the members be competent not only in their
individual skills, but also in anticipating the needs of the team as if it were an entity
by cooperating with other team members to act effectively. Teams can induce a large
amount of stress on members that can lead to tragic consequences such as the
shooting down of an Iranian airliner by the USS Vincennes. Stressors such as sensor
overload, fatigue, time pressure, and ambiguity contributed to this accident [1]. In
order to better manage these factors teams train together to be able to perform
together effectively.

In heterogeneous teams, that is teams that require specialists in order to function,
team members must not only be able to perform their own unique functions, but they
must also be able to act as a cohesive part of the team. A team member may or may
not be familiar with the functions of other team members but is competent within his
own domain. In order for the team to become competent, the team members must
practice together [2]. Team training is normally done using simulations of the system
or the actual system with all of the human team members participating. When an
intelligent tutoring system is added, it is typically in the role of training an individual
to be able to understand his individual tasks before taking part in the team. In order to

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 63-72, 2000.
Springer-Verlag Berlin Heidelberg 2000

64 Michael S. Miller et al.

train teams it would be useful to expand an ITS so that it can support team activities.
In our approach, partial teams can be simulated using computed-based agents to
represent team members and thus teach a trainee necessary team skills such as
situational awareness, group decision-making, and communications efficiency
without having to involve the entire human team for all training sessions.

By building computer-based simulation environments, trainees can be run through
simulated scenarios, providing a type of hands-on experience. Intelligent agents
serving as virtual team members can provide significant cost-savings through partial
team training. However, significant challenges exist in developing such intelligent
team training systems (ITTS). First, for agents to participate in the simulation (and
provide believable interactions) as virtual team members, they must have an
understanding of the team structure and the collaboration process, requiring multi-
agent belief reasoning. Second, in order to diagnose problems with teams and provide
dynamic feedback (e.g. coaching), things such as distributed plan recognition and
interpreting individual's action in terms of their beliefs about their teammates must be
done.

We envision a computer-based training system in which teams are trained by
putting them through scenarios, which allow them to practice their team skills. Our
proposed approach to training teams is to use an intelligent multi-agent based system
that has a knowledge-based foundation. This ITTS allows the human trainee to build
an understanding of his role within the team. The trainee is able to learn which other
team members the trainee must monitor and when or where the trainee can provide
support to the other team members without interrupting them in the performance of
their duties. This also called a shared mental model, which is thought to be a key to
effective teamwork [3]. Mistakes that the trainee makes can be caught by a coaching
agent that can either use other virtual team agents to correct the trainee or directly
interact with the trainee as a tutor within the system.

2 Teamwork

Our definition of a team is a group of entities (humans or agents) that are working
together to achieve a goal that could not be accomplished as effectively (or at all) by
any one of them alone [4]. Team members play unique roles, which may require
unique skills and resources. Our focus is on teams that are hierarchical, with a clear
chain-of-command and leadership or authority roles. Teams are also heterogeneous
in that individual team members have different roles and responsibilities within the
team. All teams have to deal in one way or another with sharing information and
distributed decision-making (also called cooperation or collaboration) [5].

3 Team Training

In team training, the focus is not on each individual's skills (which are typically
learned beforehand), but on optimizing interactions, such as situational awareness,
communications efficiency, and the effectiveness of team decision-making [6].
Intelligent agents can help extend these methods to build Intelligent Team-Training

Training Teams with Collaborative Agents 65

Systems. There are two important functions that intelligent agents can play in such
systems. First, we can have agents that can substitute for other team members. This
allows for partial team training, which could provide huge cost savings, and allows
for either individuals or sub-teams to train without the need for the rest of the team.
A second major role is for a knowledge-based agent to play the role of coach [7]. This
eases the burden of a human instructor from having to monitor both the trainee and
the other virtual team members in the simulation. To carry out their roles, these agents
must be equipped with an understanding of the task domain, the team structure, the
selected decision-making processes and their belief about other team members’
mental states.

4 Other Agent Based Teams

The agent-based teams that exist in the literature are focused on allowing rational
agents to work together on a common goal. Such agents have a shared mental model
of what each agent is able to contribute to the team. This shared mental model is a
simplified model of the mental states of all the other members on the team. Agents
must be able to query and establish team goals that the agents collaborate upon in
order to achieve a shared goal that they would otherwise be unable to achieve.

A teamwork model must provide support for reasoning about team goals, plans,
and states. It must also represent the roles and responsibilities of individual team
members as this relates to other team members. Information needs of team members
need to be fulfilled by the team by finding out who best can answer those needs. In
the approaches listed below such information needs are not yet examined.

In the SharedPlans approach each agent maintains individual plans and shared
plans [5]. Individual agents accomplish plans that require cooperation between such
agents by building shared plans. Other team-based agents build on this foundation to
construct general models of teamwork. COLLAGEN [8] uses a plan recognition
algorithm in order to reduce communications during collaboration between a human
and an agent. Using attention, partial plans, and clarification enables COLLAGEN-
based agents to interact with humans in an intelligent fashion. COLLAGEN is an
implementation of the SharedPlans theory.

The approach that STEAM uses is to find joint intentions between agents and
create a hierarchy of joint intentions so that the agents can monitor other agents’
accomplishments or failures in achieving these shared intentions [9]. Both systems
provide a model of teamwork into which domain specific knowledge and agents can
be added. STEAM is designed to be domain independent in its reasoning about
teamwork. It is based on the joint intentions framework by Levesque [10]. STEAM
also provides for capabilities to monitor and repair team plans.

PuppetMaster addresses the issue of reporting on student interactions within a team
for use by an instructor [11]. A top-down approach is used to reduce unnecessary
details and be able to recognize actions at the team level. The focus of PuppetMaster
is not on the individual student’s behavior but as an aid to an instructor to recognize
team failures.

66 Michael S. Miller et al.
5 CAST - Collaborative Agents for Simulating Teamwork

We describe a computational system for implementing an ITTS called CAST, for
Collaborative Agent architecture for Simulating Teamwork. We focus on humans as a
part of the virtual team. We wish to model the individual’s beliefs and actions within
the context of the team. We also wish to automate the training process and allow
individuals to practice alone without needing a large support staff to setup and
monitor the exercise. We assume that a good description can be provided of the
actions that a team and its members will be able to perform. Therefore, we assume
that the team has a plan of what needs to be accomplished in the performance of the
team mission, and we know who are the team members and what their roles will be.

We want to enable an individual new to the team to become a part of the team by
increasing his situational awareness, showing him who or what to monitor, and how
best to respond to the actions and requests of his fellow team members. The team
exists in a domain in which each team member plays a specific role and responses
need to be well rehearsed in order to overcome any difficulties that the team may
encounter. We can best illustrate what such a team looks like with the following brief
example.

6 An Example Team Domain

The NASA Mission Control Center consists of a team that is arranged in a
hierarchical manner with clearly delineated roles for each team member. The Flight
Director (FD) oversees 10 disciplines which each monitor functions on the Space
Shuttle. These stations are manned continually during a Space Shuttle mission, which
typically lasts less than 10 days. During scheduled events all relevant disciplines are
fully staffed. During down times, such as when the astronauts are sleeping, only
lighter staffing needs are required.

To examine the operation more closely, consider the PROP (Propulsion Systems
Officer). The PROP is responsible for the operation of the Space Shuttle Orbital
Maneuvering System (OMS) and Reaction Control System (RCS). These secondary
engines are used for orbital corrections, docking operations, and the De-orbit burn.
The PROP is assisted by the OMS/RCS Engineering Officer (OREO) and the
Consumables Officer (CONS) as a sub-team [12]. The PROP knows the functions and
duties of his sub-team members but instead typically focuses on interacting with the
other disciplines. The PROP uses his sub-team to fulfill his requirements for
information and allows them to manage their respective sub-systems.

The PROP officer is also in a vertical chain of command leading up to the Flight
Director. The Flight Control Room (FCR) provides each FCR team member a headset
with separate channels dedicated to different disciplines and needs. The sub-team
members such as the OREO and CONS officers sit on consoles in a separate room
from the FCR called the Multipurpose Support Room (MPSR).

As an example scenario during the launch stage, the FD asks the PROP officer for
a status check to see if the discipline is ready for launch. The PROP officer checks
with his sub-team. Each sub-team member checks his own console and reports to the
PROP officer. The PROP officer reports back to the FD that they are ready for launch.
This is a simple example but shows the need for monitoring the needs of the team and

Training Teams with Collaborative Agents 67

having a situational awareness as to what functions each individual should be
performing. Individuals are aware of what the team goals are and what their
responsibilities and needs are in order to fulfill the team goals.

In order for the MCC team to be able to train as a team, the resources of the MCC
at Johnson Space Center must be dedicated to running a training simulation. This can
involve not only the MCC team members, but also astronauts in the Space Shuttle
Trainer (which is located in a different building), building and computer support
personnel, and the resources of the actual FCR. When such a training task is in
progress no other work can be done with the facilities. Such team training is not done
when a space shuttle is in flight. This will become a problem when resources must
also be used for monitoring the International Space Station.

FO
MASA,
Mz
Team
Anent
Coach PROP

Other Disciplines

Agent Tralnee / \

Agent
OREO CONE
% % -
Agent Agent

Fig. 1. A subset of the NASA MCC Team

7 The CAST Architecture

The approach we take in CAST is to model the team interactions of team members
using Petri Nets. We propose to use a model of teamwork and reasoning agents with
beliefs about the team and themselves in order to construct the ITTS. The virtual team
agents must also be able to interact with human trainees and communicate with a
human counterpart. The explicit representation of goal hierarchies and intentions will
be important for diagnosing problems with team behavior and providing useful
feedback for coaching and evaluation.

68 Michael S. Miller et al.

7.1 Challenges in Developing an ITTS

An agent-based, team-centered ITS for training teams has certain challenges to
overcome in order to be an effective training tool. First, the virtual team members
have to generate reasonable interactions for human team members. Humans must be
incorporated in the ITTS initially as one or more trainees, and eventually as other
team members in order to allow sub-teams to practice among themselves. Second, the
coaching agent should be “non-intrusive” by passively monitoring and interpreting all
actions and interactions of the trainee instead of announcing itself as a coaching agent
and asking the trainee about his intentions and reasons. And last, understanding the
actions of an individual on a team is more complicated because their decision-making
explicitly involves reasoning about the other members of the team (e.g. their beliefs,
roles, etc.), and their actions may be implicitly in support of a team goal or another
agent.

7.2 Components of CAST

The ITTS will have four major components. Intelligent agents are used to represent
individual team members. The individual team members incorporate a model of
teamwork in order to help identify points of communications and shared goals. The
state of a simulated world within which the training will occur must be maintained.
To be useful the simulation should also be able to interface into an existing
simulation, or integrate into an actual system. This last approach is the one planned
for use with the MCC NASA domain. A coaching agent also maintains a user model
of the trainee and acts when appropriate to tutor the trainee on understanding his role
as a team member.

7.3 Elements of a Knowledge-Based Model of Teamwork

An ITTS agent must reason not only about its goals and capabilities, but also about
the goals of the team and other team members and about commitments or shared
responsibilities. This requires what is known as belief reasoning, which we simulate
in CAST.

First, we use the team-description language MALLET [13] to provide a framework
for modeling teamwork. Second, we encode this model of actions and interactions of
a team into a representational structure using Petri Nets. Third, we use an Inter-Agent
Rule Generator (IARG) to determine the interactions that will take place among the
agents. Fourth, we incorporate a coaching agent to be able to detect when the trainee
fails to act as a member of the team and provide feedback to the trainee to enable him
to act appropriately.

7.4 MALLET: A Multi-Agent Logic Language for Encoding Teamwork

The ontology underlying our framework is based on the BDI model [14] (Belief
represents the knowledge of the agent, Desire represents the general goals of the
agent, and Intention represents the selected plans of the agent). The purpose of using

Training Teams with Collaborative Agents 69

an ontology is to identify the general concepts and relationships that occur in
teamwork across multiple domains, and give them formal definitions that can be used
as the basis of a team-description language with predicates with well-specified
meanings. MALLET is a language based on predicate logic that allows the encoding
of teamwork. Being a logic-based language, MALLET provides a number of pre-
defined terms that can be used to express how a team is supposed to work in each
domain such as Role (x), Responsibility (x), Capability (x), Stage (x), etc.

7.5 Petri Net Representation of MALLET

The actions and interactions of a team can be encoded in Petri Nets, which are a
natural representation for actions, synchronization, parallelism, etc. Petri Nets have
previously been suggested as an appropriate implementation for both intelligent
agents and teamwork [15]. Petri Nets are particularly good at representing actions in a
symbolic/discrete framework. They can represent the dependence of actions on pre-
conditions in a very natural way, i.e. via input places to a transition. The effects of the
chosen action simply become output places in the Petri Net. We use an algorithm to
transform descriptions of roles in MALLET into Petri Nets, including beliefs,
operators, and goals, etc. We use a Petri Net for each role on the team, with beliefs
specific to that agent.

7.6 TARG algorithm

The IARG (Inter-Agent Rule Generator) algorithm is used to detect information flow
and generate team interactions. IARG uses both offline and online components. An
agent analyzes the Petri Nets of all the other agents using the IARG algorithm in order
to derive information flow and identify propositions that other agents need to know.
We can define information flow as a 3-tuple: <Proposition, Providers, Needers>.
Proposition is a truth-valued piece of information. Providers is the set of roles that
can provide the information (i.e. perhaps has the responsibility of achieving and/or
maintaining it). Needers is the set of roles that need this information. An agent is said
to need a piece of information in the sense that the proposition maps onto an input
place of a transition in the Petri Net corresponding to an action that that agent can
execute to carry out one of its responsibilities. We believe that using a belief
representation for handling communications can serve as the shared mental model that
a team maintains. This can then reduce the explicit communications needed between
team members by instead promoting implicit coordination among team members. The
information flow computed by the IARG algorithm can be used to generate
communications for information exchange.

8 Development of a Coaching Agent

An advantage of our approach in CAST is that a coaching agent can use the model of
teamwork within CAST to facilitate user modeling and the detection of errors
between team members. User models [16] exist in single-user training systems in

70 Michael S. Miller et al.

order to detect [17] and correct errors [18] in the trainee’s domain knowledge. In a
traditional ITS, an overlay approach is often used, in which the user’s actions are
compared to those that would be generated by an expert, to identify discrepancies
between the student's (user) model, and the expert model (typically involving trigger
or production rules for deciding what to do). However, understanding the actions of
an individual on a team is more complicated because their decision-making explicitly
involves reasoning about the other members of the team (e.g. their beliefs, roles, etc.),
and their actions may be implicitly in support of a team goal or another agent.

Our approach in CAST is to model team members as maintaining simplified
models of the mental states of all the other members on the team. To avoid issues of
computational complexity with belief reasoning (e.g. via modal logics), we use Petri
Nets as an approximate representation of these mental states. Then when a team
member needs to decide what to do, they can not only reason about what actions
would achieve their own goals, but they can reason about the state and needs of
others. In particular, we focus on two effects: by making teamwork efficient through
anticipating the actions and expectations of others (e.g. by knowing others roles,
commitments, and capabilities), and by information exchange (knowing who to ask
for information, or providing proactively just when it is needed by someone else to
accomplish their task).

The coaching agent focuses on observing an individual’s activities within the
context of the team goals. Actions that each virtual team member takes depend on
beliefs those agents hold regarding the goals and state of the other agents. Actions that
a trainee takes also depend on his beliefs as to what needs to be done at that time in
order to achieve the team goals. But beyond these actions, we can attempt to detect
and properly classify whether a trainee has failed to act because of either inaction on
the trainee’s part, or an assumption by the trainee that it was another’s responsibility,
or a failure to properly monitor another team member. We also use the individual’s
model of teamwork to support the user model. We can infer the state of the team
mode for the trainee based on observed actions, and we can map incorrect actions to
problems with the trainee’s representation of the other team members in the trainee’s
model of the team that would explain them, and from there back to the team/domain
knowledge. Finally, the coaching agent will provide corrective feedback based on an
appropriate pedagogical model (e.g. dynamically through hints during the scenario,
and/or through after-action reviews).

9 Conclusions

The CAST system is currently being implemented as a distributed system in JAVA
and RMI. We are using the domain of the NASA MCC to demonstrate this approach.
We believe that this system can be a useful complement to traditional approaches in
training teams. The agent-based teamwork model can not only be used to implement
virtual team members in an intelligent team training system, it can also serve as the
“expert teamwork model” for a coaching agent to assess the actions and the
performance of a team being trained.

An ITTS cannot replace an actual human team. But it can reduce the time and
overall cost of training individuals in a team staff for domains such as control centers
and other team-centered applications. An eventual goal is to run the ITTS system in

Training Teams with Collaborative Agents 71

parallel with real-time operations in order to allow agent-based virtual team members
to follow, monitor, and advise the actual human team members as they perform their
duties.

Acknowledgements

This research was partially supported by GANN fellowship grant P200A80305 and
seed funds from the Texas Engineering Experiment Station for the Training System
Sciences and Technology Initiative.

References

10.

11.

12.

13.

14.

Cannon-Bowers, J. A., Salas, E.: Making Decisions Under Stress: Implications for
Individual and Team Training. American Psychological Association, Washington, DC
(1998)

Van Berlo, M. P. W.: Systematic Development of Team Training: A Review of the
Literature. Tech. Rep. TM-96-B010, TNO Human Factors Research Institute, Soesterberg,
The Netherlands (1996)

Blickensderfer, E., Cannon-Bowers, J. A., Salas, E.:Theoretical Bases for Team Self-
correction: Fostering Shared Mental Models. In: Beyerlein, M., Johnson, D., Beyerlein, S.,
(eds.): Advances in Interdisciplinary Studies of Work Teams. JAI Press, Greenwich, CT
(1997) 249-279

Cohen, P. R., Levesque, H. J.: Teamwork. Nous, vol. 25, no. 4 (1991) 487-512

Grosz, B., Kraus, S.: Collaborative Plans for Complex Group Action. Artificial
Intelligence, vol. 86, no. 2 (1996) 269-357

Salas, E., Driskell, J. E., Huges, S.:Introduction: The Study of Stress and Human
Performance. In: Driskell, J. E., Salas, E., (eds.): Stress and Human Performance.
Lawrence Erlbaum Associates, Inc., Mahwah, NJ (1996) 1-46

Mengelle, T., DeLean, C., Frasson, C.: Teaching and Learning with Intelligent Agents:
Actors. In Intelligent Tutoring Systems '98, San Antonio, Texas (1998) 284-293

Lesh, N., Rich, C., Sidner, C. L.: Using Plan Recognition in Human-Computer
Collaboration. In Seventh Int. Conf. on User Modeling, Banff, Canada (1999) 23-32
Tambe, M.: Towards Flexible Teamwork. Journal of Artificial Intelligence Research, vol.
7,no. 1 (1997) 83-124

Levesque, H., Cohen, P., Nunes, J.: On Acting Together. In American Association for
Artificial Intelligence (AAAI '90), Boston, MA (1990) 94-99

Marsella, S. C., Johnson, W. L.: An Instructor's Assistant for Team-Training in Dynamic
Multi-Agent Virtual Worlds. In Intelligent Tutoring Systems '98, San Antonio, Texas
(1998) 465-473

Schmitt, L. J.:Prop Position. In: (eds.): Shuttle Prop, JSC-17238. NASA, Houston, Texas
(1998) I.1.1-1 - 1.1.1-13

Yin, J., Miller, M. S., loerger, T. R., Yen, J., Volz, R. A.: A Knowledge-Based Approach
for Designing Intelligent Team Training Systems. In Proceedings of the Fourth
International Conference on Autonomous Agents, Barcelona, Spain (2000)

Rao, A. S., Georgeff, M. P.: Modeling rational agents within a BDI Architecture. In 2nd
International Conference on Principles of Knowledge Representation and Reasoning,
Cambridge, MA (1991) 473-484

72

15.

16.

17.

Michael S. Miller et al.

Coovert, M. D., McNelis, K.:Team Decision Making and Performance: A Review and
Proposed Modeling Approach Employing Petri Nets. In: W.Swezey, R., Salas, E., (eds.):
Teams: Their Training and Performance. Ablex Pub Corp, (1992)

Wenger, E.: Artificial Intelligence and Tutoring Systems. Morgan Kaufmann Publishers,
Inc., Los Altos, California (1987)

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumiere Project:
Bayesian User Modeling for Inferring the Goals and Needs of Software Users. In 14th
Annual Conference on Uncertainty in Artificial Intelligence, Madison, WI (1998) 256-265
Baffes, P. T., Mooney, R. J.: Using Theory Revision to Model Students and Acquire
Stereotypical Errors. In 14th Annual Conference of the Cognitive Science Society,
Bloomington, IN (1992) 617-622

Evaluating an Animated Pedagogical Agent

Antonija Mitrovic and Pramuditha Suraweera

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury
Private Bag 4800, Christchurch, New Zealand
Eanjaecosc.canterbury.ac.nz} psule@student.canterbury.ac.nz|

Abstract. The paper presents SmartEgg, an animated pedagogical agent
developed for SQLT-Web, an intelligent SQL tutor on the Web. It has been
shown in previous studies that pedagogical agents have a significant
motivational impact on students. Our hypothesis was that even a very simple
and constrained agent, like SmartEgg, would enhance learning. We report on an
evaluation study that confirmed our hypothesis.

1 Introduction

Computers and Internet access are available in most schools today and offer a wealth
of information to students. However, the access to computers does not guarantee
effective learning, as many students lack the abilities to find their way through a vast
amount of accessible knowledge. Students need guidance, either from human or
computerized tutors. Recently, there have been several research projects that
concentrate on the development of animated pedagogical agents, lifelike creatures that
inhabit learning environments. Experiments have shown that such agents significantly
increase student motivation and perception of their learning. Here we present
SmartEgg, an animated pedagogical agent for SQLT-Web, and the initial evaluation
of it.

We have developed SQL-Tutor, a standalone system for the SQL database
language [9,10]. The system has been used by senior computer science students and
has been found easy to use, effective and enjoyable [11]. Recently, SQL-Tutor was
extended into a Web-enabled system, named SQLT-Web, and our initial experiences
show that students find it equally enjoyable and useful [12]. SQLT-Web has been
used only by local students. We plan to have SQLT-Web widely accessible soon, in
which case students outside our university may find some aspects of the system more
difficult to grasp. Therefore, we have started exploring possibilities of providing more
feedback, and providing it in a manner that would motivate students.

We discuss animated pedagogical agents in section 2. Section 3 introduces SQL-
Tutor and the Web-enabled version of it. We present SmartEgg in section 4, focusing
on its implementation, behaviour space and communication with SQLT-Web. Section
5 presents the results of the initial evaluation, followed by discussion and conclusions.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 73-82, 2000.
Springer-Verlag Berlin Heidelberg 2000

mailto:tanja@cosc.canterbury.ac.nz
mailto:psu16@student.canterbury.ac.nz

74 Antonija Mitrovic and Pramuditha Suraweera

2 Animated Pedagogical Agents

Animated pedagogical agents are animated characters that support student learning.
They broaden the communication channel by using emotive facial expressions and
body movements, which are very appealing to students. Pedagogical agents are
extremely important for student motivation, as they provide advice and
encouragement, empathize with students, and increase the credibility and utility of a
system. Several studies have investigated the affective impact of agents on student
learning and revealed the persona effect, “which is that the presence of a lifelike
character in an interactive learning environment - even one that is not expressive - can
have a strong positive effect on student's perception of their learning experience” [6].
Experiments have shown that students are much more motivated when the agent is
present, tend to interact more frequently and find agents very helpful, credible and
entertaining.

Animated pedagogical agents may be presented as cartoon-style drawings, real
video or 3D models. Most agents are fully bodied, and use facial expressions and
body movements to communicate emotions. An agent may exist within the learning
environment, i.e. be immersed into the learning environment, move through it and
manipulate objects within. It is also possible for an agent to exist in a separate
window. Agents may adhere to the laws of physics, or may be stylised to emphasize
emotions. Agents’ behaviour may be specified off-line, manually. Ideally, behaviour
should be generated online, dynamically, so as to correspond to the changes in the
learning environment.

Herman the Bug [7] is an animated pedagogical agent for the Design-A-Plant
learning environment, in which children learn about plant anatomy and physiology by
designing plants for specific environments. Herman is a 3D model, immersed into the
learning environment, capable of performing engaging actions, such as diving into
plant roots, bungee jumping, shrinking and expanding.

Adele (Agent for Distance Education — Light Edition) [5] is an autonomous agent
that facilitates distance learning. The agent is used with a simulated environment in
which students solve problems. Adele consists of three components: a reasoning
engine, which monitors student’s actions and generates appropriate pedagogical
responses to them, an animated persona that runs in a separate window, and a session
manager, which enables multiple students to use the system concurrently.

Steve (Soar Training Expert for Virtual Environments) [4] is a human-like
animated agent that cohabits a virtual reality environment and helps students learn to
perform procedures. Being a 3D model immersed in a simulation, Steve can perform
not only the pedagogical functions common in intelligent educational systems, but
also can demonstrate actions by manipulating objects in the simulated environment.
Multiple Steve agents can inhabit the environment, thus giving a possibility to teach
team tasks.

PPP Persona [3] guides the learner through Web-based material by pointing to
important elements of Web pages, and providing additional auditory comments. There
are five different characters, three of which are video-based, and the remaining two
are cartoon characters. AlgeBrain [1] is a Web-based intelligent tutoring system that
teaches students how to solve algebraic equations. The pedagogical agent used is a
cartoon-like drawing that appears in a separate window.

Evaluating an Animated Pedagogical Agent 75

Three architectures have emerged for online generation of agent behaviour [4]. The
behaviour sequencing approach is based on a behaviour space, which is a library of
predefined primitives (actions, speech elements etc). In an instructional session, the
behaviour of an agent is assembled on-line from the primitives, by a behaviour
sequencing engine. The behaviour space of Herman the Bug consists of 30 animated
segments of the agent performing various actions, and of 160 audio clips and songs
[6]. These actions are combined at runtime by the emotive-kinaesthetic behaviour
sequencing engine [7].

The second architecture is the layered generative approach, where animations are
generated in real time. This is the architecture Steve is based on, and it is especially
suitable for immersive environments, but it requires a much higher rendering
computation load. Finally, the state machine compilation approach composes
behaviour out of primitives, but generates a state machine, so that the behaviour of an
agent can adapt at run time to student actions. Andre, Rist and Muller [2] describe a
presentation planner, which develops a navigation graph from given goals. A
navigation graph contains all presentation units with associated durations and
transitional information.

3 An Intelligent SQL Tutor

SQL-Tutor is an Intelligent Teaching System (ITS) that helps students to learn SQL
[9,10]. It is designed as a problem-solving environment and as such is not intended to
replace classroom instruction, but to complement it. We assume that students are
already familiar with the database theory and fundamentals of SQL. Students work on
their own as much as possible and the system intervenes when the student is stuck or
asks for help.

The standalone version of the system consists of an interface, a pedagogical
module that determines the timing and content of pedagogical actions, and a student
modeller that analyses student answers. There is no domain module, as usual in ITSs,
which can solve the problem being posed to a student. The system contains
definitions of several databases, implemented on the RDBMS used in the lab. SQL-
Tutor also contains a set of problems for specified databases and the ideal solutions to
them. In order to be able to check the correctness of the student's solution, SQL-Tutor
uses domain knowledge represented in form of constraints, as described in [11].
Student solutions are compared to the ideal solutions and the domain knowledge.

At the beginning of a session, SQL-Tutor selects a problem for the student to work
on. When the student enters the solution, the pedagogical module (PM) sends it to the
student modeller, which analyses the solution, identifies mistakes (if there are any)
and updates the student model appropriately. On the basis of the student model, PM
generates an appropriate pedagogical action (i.e. feedback). When the current problem
is solved, or the student requires a new problem to work on, the pedagogical module
selects an appropriate problem on the basis of the student model.

SQL-Tutor uses Constraint-Based Modelling (CBM) [13] to form models of its
students. CBM is a computationally efficient student modelling approach, which
reduces the complex task of inducing student models to simple pattern matching. The
strength of CBM lies in domain knowledge, represented in the form of state
constraints, which contain the basic principles of a domain.

76 Antonija Mitrovic and Pramuditha Suraweera

We have recently developed SQLT-Web, a Web-enabled version of SQL-Tutor
[12]. The basic philosophy remains the same, but SQLT-Web is capable of dealing
with multiple students. It has been developed in a programmable CL-HTTP Web
server [8]. All pedagogical functions (student modelling, generation of feedback and
selection of problems) are performed on the server side. The system communicates to
the student's Web browser by generating HTML pages dynamically. The server stores
all student models at the same place, thus allowing a student to access the system
from any machine.

4 SmartEgg: an Animated Pedagogical Agent for SQLT-Web

SmartEgg is an animated pedagogical agent developed by our group for SQLT-Web.
It is a cartoon-like character that gives feedback on student actions. As the agent was
developed for a fully functional ITS, it was possible to have SQLT-Web to generate
student models and appropriate feedback. Therefore, our agent has to perform much
simpler tasks in comparison to agents discussed in the previous section.
The agent explains system's functions, provides feedback on student's actions and
informs students about additional ways of getting help or background information.
The project is still in its initial phases,
= and so far the agent presents all
information in textual form. In the later
phases, we plan to broaden the types of
available feedback, including audio,
and to extend agent’s functionality.
SmartEgg is implemented as a Java
applet, by using the animation toolkit
of Adele [5]. An appropriate character
was developed (illustrated in figure 1),
and thirty-eight frames were sketched
to define the gestures. The animation
toolkit swaps frames and uses

[will 100k atvour solution and tell you how = | techmques . Suc_h as morphmg to
good itis. | am prety good at guessing how perform animations. Currently, there
much detail you need, but you may also ask are 14 gestures that SmartEgg can

for a specific type of message directly. .. .
perform, requiring two to five frames

each. The library of gestures consists of
presentation gestures (e.g. pointing),
reactive gestures (used to present
feedback) and idle-time gestures (e.g.
=l waiting for a solution).

The required behaviours were
developed next. Behaviour is a
sequence of several gestures. The

Fig. 1: Introduction to SmartEgg behaviours of our agent are pre-

specified, and not dynamically
generated. The SmartEggs’s behaviour space consists of three main categories of
behaviours: introductory, explanatory and congratulatory. Introductory behaviours

= == (Sl &8 a2 | 4

Evaluating an Animated Pedagogical Agent 77

accompany initial interactions, introducing the system’s functions and describing
levels of feedback to new users. Feedback messages from SQLT-Web are delivered to
students using explanatory behaviours. For each type of feedback, there is a set of
behaviours the pedagogical agent can perform. Congratulatory behaviours are an
attempt to motivate users. SmartEgg congratulates the student when a correct answer
is submitted and displays disappointment after an incorrect submission.

SmartEgg follows a predefined set of rules when selecting an appropriate
behaviour from its behaviour space. This procedure is based on the student’s
interactions with SQLT-Web. Each distinct state (e.g. login, solving a problem,
logout) is assigned three different behaviours to ensure variation in the agent’s
appearance.

SQLT-Web
(CL HTTP server)

S

Socket Communicator

/

.4 -
SQLT-Web Pedagogical
user agent (applet)
interface
page
User’s Web browser

Fig. 2: Architecture of SQLT-Web with pedagogical agent

Finally, the applet persona was incorporated with SQLT-Web. The pedagogical
agent’s Java applet and the server are required to exchange messages in order for the
agent to receive the feedback text and know the actions performed by the user. This
was achieved by implementing a Java socket connection between the server and the
applet. The agent consists of a dedicated thread of execution that waits to receive
messages from the server. For each received message, the agent selects an appropriate
behaviour by using the behaviour selection rules, which is then carried out by the
animated persona. Figure 2 illustrates the architecture of SQLT-Web and the
pedagogical agent.

S Evaluation of SmartEgg

Our goal when developing SmartEgg was to increase the motivation of students by
presenting feedback in an engaging way. We started with a hypothesis that the
existence of a simple animated pedagogical agent would enhance students’ perception
of the system (as reflected in the students’ subjective ratings of the system), and

78 Antonija Mitrovic and Pramuditha Suraweera

would support learning, resulting in better understanding and application of the
underlying knowledge. Both gains would come from the motivational impact of the
agent. Earlier studies [1,3,4,7] have shown that pedagogical agents have such effects
on students; however, in these cases, the agents were much more sophisticated than
SmartEgg. Here we set to determine whether even a very simple and constrained
agent would enhance learning.

5.1 Experimental Setting

In October 1999 we performed an evaluation study, which involved second year
students enrolled in an introductory database course. The students used the system in
a 2-hour lab session and were randomly assigned to a version of the system with and
without the agent (the agent and the control group respectively). SQLT-Web and
SmartEgg conveyed exactly the same information to the students, as we wanted to
determine the impact of the agent’s existence on students’ learning.

The study started with a pre-test, consisting of three multi-choice questions. After
that, students interacted with the system. The problems and the order in which they
were presented were not identical, as students were allowed to select problems by
themselves, or let the system to select appropriate problems based on their student
models. After working with the system, students completed a post-test consisting of
three multi-choice questions of the same difficulty as the ones in the pre-test. They
also filled a user questionnaire, the purpose of which was to evaluate the students'
perception of SmartEgg and SQLT-Web.

5.2 System/Agent Assessment

The questionnaire consisted of 16 questions based on the Likert scale with five
responses ranging from very good (5) to very poor (1). Students were also allowed to
put free-form responses. Out of 26 students who participated in the study, 22
completed questionnaires.

The analysis of the responses revealed that the students liked SmartEgg. When
asked to rate how much they enjoyed the system, the average rating for the agent
group was 4.5 and for the control group 3.83 . The majority (60%) of the
agent group students chose option 5, compared to only 33% of the control group. The
difference is significant (t=1.79, p=.03).

Both groups were equally comfortable with the interface, in the terms of how much
time it took to learn it, and the ease of using the interface. The students were also
asked to rate the amount learnt from the system. Both groups chose similar values, the
means being 3.8 for the agent group and 3.92 for the control group. This result was
expected as both groups received identical feedback.

However, when asked to rate the usefulness of feedback, the mean for the agent
group was 4.8 and for the control group was 4.09. The majority (80%) of the students
who used the agent rated the system as very useful (option 5), and only 42% of the
control group chose the same option. As both versions of the system presented the
same problem-based messages, it is clear from the findings that the students who used
the agent found it easier to comprehend the feedback from the system. The difference

Evaluating an Animated Pedagogical Agent 79

in rating the usefulness of feedback is significant (t=2.15, p=.015). The written
comments were also very positive.

Mean Standard deviation
Agent Control Agent Control
group group group group
Enjoyment rating 4.50 3.83 0.71 1.03
Time to learn interface (min) 11.00 10.83 10.22 9.25
Ease of using the interface 410 3.73 0.74 1.01
Amount learnt 3.80 3.92 0.79 0.67
Usefulness of feedback 4.80 4.09 0.42 1.04

Table 1: Mean responses for system/agent assessment

5.3 Learning Efficiency and Effectiveness

All actions students performed in the study were logged, and later used to analyse the
effect of the agent on learning (Table 2). The students in the agent group spent 55.9
minutes interacting with the system, and the control group subjects averaged 49.6
minutes. As the agent group spent more time with the system, they attempted and
solved more problems.

The agent group took fewer attempts to solve problems (30.9 compared to 32.56
attempt needed by the control group). In order to establish whether the knowledge
level of the students may have affected this, we looked at the proportion of problems
that were solved in the first attempt and found them to be similar for both the groups
(5.1 for the agent group and 4.56 for the control group). This finding was consistent
with our expectations, as the students did not get any direct help from the system
before submitting initial solutions. Therefore, the students in both groups have
comparable knowledge of SQL (this is also justified by the pre-test performance,
discussed in section 5.4). Furthermore, students in both groups required a similar
number of attempts to solve problems that could not be solved in the first attempt
(when problem-specific hints were provided). The number of problems successfully
solved per unit of time was similar for both groups. Students who used the agent
recorded on average (.27 correct answers per minute and the control group managed
0.22.

80 Antonija Mitrovic and Pramuditha Suraweera

Mean Standard dev.
Agent Control |[Agent Control

Total interaction time (mins) 55.90 49.63 17.30 26.70
No. of attempted problems 14.00 11.56 5.27 6.49
No. of solved problems 11.60 10.94 4.35 6.36
Total no. of attempts to solve the problems 30.90 32.56 14.13 23.97
Problems solved in the first attempt 5.10 4.56 2.60 2.73
Problems solved per time (problem/min) 0.22 0.27 0.07 0.21

Attempts to solve problems that could not be 2.90 2.91 1.61 1.34
solved in the first attempt (attempts/problem)

Table 2: Means of interaction analyses

The average number of attempts taken to solve problems that were not solved in
the first attempt was very similar: the agent group required 2.90 and the control group
2.91 attempts. As both versions of the system offered the same feedback, students
from both groups required the same number of attempts.

In order to establish the effect of the agent on the student’s learning over time, we
plotted the average number of attempts taken to solve the i" problem for each group.
To reduce individual bias, the problems solved by less than 50% of the participating
population were discarded (Fig. 3). Although no substantial trends can be seen, the
agent group required 0.2 fewer attempts to solve each problem than the control group.

8

Agent
group

Agent

group
mean

Attempts
»~

------ Control
group

Control

group
mean

nth Problem

Fig. 3: The mean number of attempts taken to solve the i"" problem

Evaluating an Animated Pedagogical Agent 81

5.4 Pre- and Post-Tests

Pre- and post-tests consisted of three multi-choice questions each, of comparable
complexity. The marks allocated to questions were 1, 5 and 1 respectively. Nine out
of ten students in the agent group and fourteen out of sixteen in the control group
submitted valid pre-tests, the results of which are given in Table 3. The mean scores
in the pre-test for the two groups are very close, suggesting that the two groups
contained students of comparable knowledge.

Although participation in the pre-test was high, only four students from both
groups sat the post-tes{] Three of these students had used the agent, and a definite
increase in their performance and confidence can be seen from the results of the post-
test (4.33 and 2 for the agent and control group respectively). However, as the
numbers involved are small, unbiased comparisons on the mean performances cannot
be made.

Question Agent group Control group
1 0.33 0.14
2 2.56 2.50
3 0.67 0.71
Total 3.56 3.36

Table 3. Means for the pre-test

6 Discussion and Future Work

This paper presented SmartEgg, an animated pedagogical agent for SQLT-Web, an
intelligent SQL tutor on the Web. Previous works on pedagogical agents have shown
that they significantly increase motivation, resulting in longer interaction times and
higher quality of learning.

In contrast to other discussed pedagogical agents, which required large teams of
animators, pedagogues and programmers, SmartEgg was developed by a team of two
people in a short period of time. Our initial hypothesis was that even a very simple
agent would reveal the persona effect. In order to test the hypothesis, we performed
an initial evaluation study in which two groups of students interacted with SQLT-
Web and SmartEgg in a two-hour session. The students sat pre- and post-tests; all
their actions were logged and finally the students filled a user questionnaire. Various
analyses of the data collected in the evaluation study were performed, which showed
a significant increase of motivation in the agent group. The students who interacted
with the agent spent more time with the system, and solved more problems in fewer
attempts than the students in the control group. We acknowledge the low number of
students involved in the study, and will perform a much wider study to confirm the
results from this initial evaluation.

! Some students did not log off properly, and have not even seen the post-test, which was
administered on a separate Web page.

82 Antonija Mitrovic and Pramuditha Suraweera

At the moment, SmartEgg provides textual information only. We plan to add
verbal comments in the next phase, as it has been shown that more expressive agents
are perceived to have greater utility and clarity [6]. Also, we plan to develop dynamic
generation of behaviours. The behaviours would depend on the context of the
feedback message, thus enabling SmartEgg to make a higher impact on students.
Another future plan includes using the agent to provide support for self-explanation.
This support would be in terms of dialogues with a student, where the agent prompts
questions to guide the student.

Acknowledgements

This work was supported partly by the University of Canterbury research grant U6242. We are
grateful to the Centre for Advanced Research in Technology for Education (CARTE) for
providing the source code for the animation toolkit of Adele. We appreciated the stimulating
environment in ICTG and the comments of its members. Our thanks go to Nenad Govedarovic
for the initial drawing of SmartEgg, and the COSC205 students for their time and suggestions.

References

1. Alpert, S., Singley, M., Fairweather, P. Deploying Intelligent Tutors on the Web: an
Architecture and an Example. Int. J. Al in Education, 10 (1999) 183-197.

2. Andre, E., Rist, T., Muller, J. WebPersona: a Life-Like Presentation Agent for Educational
Applications on the WWW (1997). P. Brusilovsky, K. Nakabayashi, S. Ritter (eds)
Proceedings of workshop on Intelligent Educational Systems on the WWW, AI-ED’97.

3. Andre, E., Rist, T., Muller, J. WebPersona: a Life-Like Presentation Agent for the World-
Wide Web. (1998). Knowledge-based Systems, 11(1) (1998), 25-36.

4. Johnson, W.L. Pedagogical Agents. Invited paper, ICCE’99 (1999).

5. Johnson, W.L., Shaw, E., Ganeshan, R. Pedagogical Agents on the Web. Workshop on
WWW-based Tutoring, ITS’98 (1998).

6. Lester, J., Converse, S., Kahler, S., Barlow, S., Stone, B., Bhogal, R. The persona effect:
Affective Impact of Animated Pedagogical Agents, Proc. CHI'97 (1997) 359-366.

7. Lester, J., Towns, S., FitzGerald, P. Achieving Affective Impact: Visual Emotive
Communication in Lifelike Pedagogical Agents (1999). Int. J. Al in Education. 10 (1999).

8. Mallery, J.C. A Common LISP Hypermedia Server. Proc. Ist Int. Conf. On the World
Wide Web (1994).

9. Mitrovic, A. A Knowledge-Based Teaching System for SQL. Proc. ED-MEDIA'98, T.
Ottmann, I. Tomek (eds.) (1998) 1027-1032.

10. Mitrovic, A. Experiences in Implementing Constraint-Based Modeling in SQL-Tutor.
Proc. ITS'98 (1998) 414-423.

11. Mitrovic, A., Ohlsson, S. Evaluation of a constraint-based tutor for a database language,
Int. J. Artificial Intelligence in Education, 10 (3-4) (1999).

12. Mitrovic, A., Hausler, K. An Intelligent SQL Tutor on the Web. Tech. Report TR-COSC
04/99, Computer Science Department, University of Canterbury (1999).

13. Ohlsson, S.: Constraint--based Student Modeling. In: Greer, J.E., McCalla, G.I. (eds.):
Student Modeling: the Key to Individualized Knowledge--based Instruction. NATO ASI
Series, Vol. 125. Springer-Verlag, (1994) 167-189.

Multi-agent Negotiation to Support an Economy
for Online Help and Tutoring

Chhaya Mudgal and Julita Vassileva

University of Saskatchewan, Computer Science Department,
Saskatoon, Saskatchewan S7TN 5A9, Canada
{chm906, jiv}@cs.usask.ca

Abstract. We have designed a computational architecture for a "learning
economy" based on personal software agents who represent users in a virtual
society and assist them in finding learning resources and peer help. In order to
motivate users to participate, to share their experience, offer help and create on-
line learning resources, payment is involved in virtual currency and the agents
negotiate for services and prices, as in a free market. We model negotiation
among personal agents by means of an influence diagram, a decision theoretic
tool. In addition, agents create models of their opponentsﬂ during negotiation to
predict opponent actions. Simulations and an experiment have been carried out
to test the effectiveness of the negotiation mechanism and learning economy.

1. Introduction

The Internet provides a variety of options for on-line training, tutoring and help, from
access to FAQs and multi-media teaching materials, to more interactive forms like
discussion forums, on-line tutoring, collaboration or peer-help sessions. The creation
of high quality teaching materials is associated with significant costs, which usually
have to be paid by those who benefit directly from them, i.e. the learners. There is a
potential for a rapidly growing market of on-line training and there has been a
significant increase in the number of commercial vendors in this area. A number of
universities are already offering on-line degrees, and charge significant fees (still,
somewhat lower than the costs of traditional university education).

However, still the most on-line training materials appear informally; collaboration
and help happen spontaneously. University lecturers post their course outlines, lecture
notes and course readings / materials on-line as an additional source of information
for their students. People facing problems in a certain area search for a newsgroup
related to the area and send their question there, hoping for someone competent to
answer it. People ask their colleagues, personal acquaintances and friends for help.
This is a huge pool of knowledge and expertise, which is not formally valued in
organizational or commercial form and which is used only randomly, occasionally
and scarcely. Our goal is to provide an infrastructure that motivates the usage of this

! We will use the word "opponent" to denote the other agent in negotiation, though we don't
imply necessarily an adversary or strongly competitive negotiation

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 83-92, 2000.
Springer-Verlag Berlin Heidelberg 2000

84 Chhaya Mudgal and Julita Vassileva

knowledge. We hope to achieve this by creating a marketplace for learning resources,
i.e. an e-commerce environment for trading with intangible goods (advice, help,
teaching or tutoring). This economy encompasses information exchange, which
happens both asynchronously and asynchronously. For example, the use of on-line
resources like web-pages, FAQ entries, or the use of e-mail to ask a question and
provide advice can be viewed as asynchronous information exchange, since they don't
imply that both sides (the learner and the helper/ tutor are present and involved in
interaction in the same time). Synchronous information exchange involves both sides
in a real-time, live contact -- for example, in an on-line help session via some chat
tool, telephone, or collaboration environment.

The basic assumption in the design of a learning economy model is that resources
like effort and time spent to provide help or to create teaching material have inherent
costs. To take them into account, these resources should be made tradable. Thus
paying the helper/tutor may motivate a user to get online and help another user. In this
paper we focus on a synchronous information exchange since it is related with more
immediate motivational need. However, the approach encompasses asynchronous
information exchange too.

Maes et al. [6] proposed to help consumers in e-commerce applications in the
search of goods, price comparison, negotiation or bidding by providing them with
personal agents / assistants. We believe that this is even more important in trading
with knowledge resources, since users have to be able to concentrate on their work or
learning rather than thinking about how to get a better deal. The free market
infrastructure for learning resources that we propose is based on personal agents
representing individual users in a distributed (web-based) learning environment. The
personal agents form an economic society designed to motivate the students who are
knowledgeable to help their fellow students by receiving payment in a cyber pseudo
currency.

2. Multi-agent Based Learning Economy

I-Help provides a student of a university course with a matchmaking service to find a

peer-student online who can help with a given question/problem [3,4]. The most
recent implementation of I-Help is based on Multi AGent Architecture for Adaptive
Learning Environment (MAGALEEI), described in [12], which ensures an economic
infrastructure for trading with help. MAGALE is a society of agents trading with
knowledge-resources. The users who possess knowledge resources become sellers
and the users who seek for help or advice, tutoring or teaching materials on a specific
topic become buyers. The buyer is ready to pay some amount of virtual (or real)
currency in order to achieve the goal of getting knowledge while the seller of the
resources is ready to give advice in exchange for money, thus achieving the goal of
accumulating currency. Like any market system, in MAGALE (and respectively in its
implementation, I-Help) the price of a good depends on the demand and the
importance of that good to the buyer. A detailed description about the requirements
for the economic model in MAGALE can be found in [5].

2 The name MAGALE is introduced to distinguish the more general architecture from I-Help,
which is an application

Multi-agent Negotiation to Support an Economy for Online Help and Tutoring 85

Various pricing models have been incorporated in e-commerce systems. The most
common are "post and charge", "pay-per-use" and "auction". "Post and charge" is
applied in I-Help for paying for asynchronous resources, such as web materials, FAQ
items, or answers in a discussion forum. One can post an answer to a question in I-
Help's discussion forum and people who read it would be charged to pay a certain
price. A similar model is implemented in the Marketplace for Java Technology
Support [10], a community where people buy and sell technical support (the forum is
operated by HotDispatch, Inc).

The "pay-per-use” model implies paying a certain rate for a unit of usage time of
the resource, for example paying for a telephone call. This can be an appropriate
mechanism when the duration of the service is connected with costs and it can not be
fixed or agreed upon in advance. This is an appropriate model of payment for the
various forms of synchronous knowledge transfer that are supported in I-Help (chat,
phone-communication or collaboration). The duration of a help session implies costs
to the helper, who is asked to interrupt some current task. It is hard to say in advance
what duration will be required since it depends on the question, on the ability of the
helper to explain, and on the helpee's ability to understand. Therefore, it is appropriate
to deploy this payment method in synchronous help allowing both sides to interrupt
the session when they feel that it doesn't make sense for them to continue.

The "auction" model, where several agents are bidding for goods [6] is appropriate
when there is a big demand and short supply. It allows the resource to be allocated to
a consumer who values it most. This could be an appropriate model in the case where
synchronous information exchange (e.g. help request) is required by many users and
there are few knowledgeable users on-line to provide help. This model has not been
applied in I-Help yet, but it could be.

The auction model is, in fact, a way of collective negotiation of the price for a
resource, where the main factors that determine the price are the demand and the
supply. The other two models don't imply per se a mechanism for determining the
price - they assume that there is a price that is agreed upon in advance. The price can
be established centrally by a component that analyses the state of the market at the
moment or it can be negotiated between the agents who participate in the deal [13].
The advantage of negotiation is that it allows for including multiple factors
(preferences, priorities) in the price calculation depending on the specific buyer and
seller, i.e. the agents can compromise some of their preferences and settle on the most
suitable price for both parties.

The price of a learning resource depends on many factors. Of course, the supply
and demand (e.g. how many competent helpers are currently on line and how many
people are requesting help) play a major role. However, many other factors can play a
role, for example, whether the help is urgently needed or not, whether the potential
helper minds being interrupted, whether the helper and the person asking for help (the
helpee) are already involved in a social relationship. For example, the helper might
not want to be interrupted in principle, but would make an exception for a friend.
Therefore, a negotiation mechanism is appropriate as a way to dynamically determine
the price, especially for synchronous information exchange.

We have proposed a negotiation mechanism for the personal agents in MAGALE
that determines the price for synchronous information exchange (e.g. on-line peer
help in I-Help) using the "pay per use" payment model. This mechanism mimics the
process of human negotiation in a buyer-seller situation, by representing it as an
iterative decision making process. It also allows the negotiator to anticipate the

86 Chhaya Mudgal and Julita Vassileva

opposing party’s actions and takes into account the personal risk attitude towards
money of the user represented by the agent. The purpose of negotiation is to find the
best deal for the user independently on whether the user requires help or is playing the
role of a helper.

3. Negotiation Mechanism

The MAGALE architecture underlying I-Help consists of personal agents
representing the users/ students. The agents maintain user models containing
information about the user's goals, knowledge and preferences [3]. When the students
in the class need help their agents contact a centralized matchmaker who knows
which users (i.e. personal agents) are online. These agents negotiate with each other
about the price (the payment rate per unit of help time) and when a deal is made they
inform their user. If the user agrees to help, a chat window opens for both sides and
the help session starts. The agents make decisions on behalf of their users about the
price to offer to strike a better deal. During negotiation each agent decides how to
increase or decrease the price depending on the user's preferences, such as the
urgency of the user's current work, importance of money to the user and the user's risk
behavior.

3.1 Decision Theoretic Approach to Negotiation

We have developed a novel negotiation approach, using influence diagrams, which is
based on decision theory and on modelling the opponent agent. Negotiation in a
buyer-seller context can be viewed an iterative process in which the agents make
offers and counteroffers based on their preferences. Modelling negotiation as iterative
decision making supports the dynamics of the situation, e.g. it allows the negotiating
agents to change their preferences and their beliefs about the likelihood of
uncertainties.

In open multi-agent systems (i.e. the systems in which new agents dynamically
enter or leave) there is a high degree of uncertainty about the current state of the
market (i.e. the demand/supply ratio), or the preferences of the opponent. An
influence diagram is a graphical structure for modelling uncertain variables and
decisions. It explicitly shows probabilistic dependence and flow of information [8].

An influence diagram is a directed acyclic graph with three different kinds of
nodes: decision nodes, chance nodes and a value node. These nodes are represented as
squares, circles, and diamonds respectively. The decision nodes represent choices
available to the user, the chance nodes carry probabilistic information corresponding
to the uncertainty about the environment and the opponent, and the value node
represents the utility, which the agent wants to maximize. Arcs into random variables
indicate probabilistic dependence and the arcs into a decision node specify the
information available at the time of making decision. Evaluating the diagram gives an
optimal solution for the problem. Influence diagrams provide a means to capture the
nature of the problem, identify important objectives, and generate alternative courses
of action. A decision model based on an influence diagram can deal with multiple
objectives and allows tradeoffs of benefits in one area against costs in another. A

Multi-agent Negotiation to Support an Economy for Online Help and Tutoring 87

good introduction to influence diagrams and methods to evaluate them can be found
in [8,9].

The negotiation protocol is based on decision theory and is a straightforward
iterative process of making offers and counteroffers. So, during negotiation the agent
can be repeatedly in state Offer or Counter-offer. The final state will be Accept or
Reject. Similar to [13], we use "negotiation strategy" to denote the actions an agent
takes in every iteration depending on its preference model. In our model once the
agent is in a final state, it cannot retreat back from it. The negotiation mechanism
takes into account the preferences of the user, which usually depend in the domain of
the negotiation context. The preferences include:

o the maximum price of the buyer (i.e. how much the helpee is willing to pay),

e the urgency of the current goal (to get help for the buyer, or the seller's current
task, which she has to interrupt in order to help),

e the importance that either agent attaches to money, and

o the user's risk behavior (a risk-averse or a risk-seeking person).

We have incorporated utility to model the way in which the decision-maker values
different outcomes and objectives. Each agent in I-Help can be a buyer or seller of
help. The utility for the buyer (helpee) and the seller (helper) for the actions accept,
reject and counter-propose vary according to their risk behavior.

Utility
Risk-

averse

Risk- AN
seeking

D = (Offer — Preferred Price)

Fig. 1. Variation of U_accept for a buyer

It is important to note that money importance and risk-behavior are two different
entities and they are set by the user in the user preference model. The risk behavior of
the user instructs the personal agent about the increase or decrease in the price offers
to be made. A risk-seeking person will try to counter-propose an offer rather than
accepting. A risk-averse person will accept whatever minimum price he/she is offered
and will refrain from counter proposing in fear of losing. The agent calculates the
utility values of the action alternatives that it has at any time during negotiation. The
utility of actions depends upon the money that the seller gets and the buyer has to pay.
It also varies with the specified risk behavior of the user. For instance, as shown in the
Figure 1 the utility of accepting an offer for a risk-averse buyer increases much
slower as the difference between the offered price and the preferred price decreases.
That means that as long as the offer price of the seller comes closer to the preferred
price of the agent (buyer), it will be more willing to accept the offer, since there is not
significant growth in utility if it continues to counter-propose. For a risk-seeking
agent, the utility continues to grow fast in this case, since it is willing to take the risk
of counter-proposing, hoping to get a price even lower than the preferred price.

88 Chhaya Mudgal and Julita Vassileva

Risk behavior also affects the increment and the decrement of the buyer and the seller.
For a risk-averse buyer, if the urgency of the current task is very high and the
importance of money is also high, it will start by offering a price, which is near to the
maximum price it is willing to pay. A risk-seeking buyer will start from a very low
price and will try to get the lowest price possible. For a risk-seeking seller the utility
of accepting an offer increases if it gets more money than its minimum price. The
functions the agents use to increase or decrease their offers and counteroffers as a
buyer and as a seller are defined as follows:

For Buyers For Sellers
If max_price > std_price then If min_price > std_price then
Offered price := std_price — Offered price := min_price +
Else Else
Offered price := max_price — Offered price := std_price +

where std_price is the market price provided by the matchmaker. It is calculated
based on the current situation of the market of help on this topic and on the difficulty
of the topic, thus providing some measure for the actual worth of the resource. For
both the buyer and the seller the values of should not exceed their preferred prices,
R. is determined as follows (x is the offered price):

For Buyers For Sellers

If urgency = very urgent then If urgency = very urgent then

If risk_behavior = risk seeking then If risk_behavior = risk seeking then
=1-¢ R x >R := min_price

If risk_behavior = risk averse then If risk_behavior == risk averse then
=1-e R x<R := log (min_price)

We use an influence diagram that has a conditional node representing the uncertainty
about the other party (see Figure 2). The outcomes of this node are the probabilities
that an opponent can be in any of the states accept, reject and counter-offer, because
at every step the agents have to choose between these three actions. They do so by
calculating the maximum expected utility for the actions, which are represented as the
possible choices for the decision node in the influence diagram. In any practical
application of negotiation there are multiple objectives involved and there is a
tradeoff between one over the other. Before the decision is made the factors that are
already known to affect the decision (deterministic nodes) are taken into account as
they affect the actions to be made. The node corresponding to the opponent’s action
can be considered conditional since nothing is known about the opponent at the
beginning of the negotiation. We can either treat the outcomes of the opponent node
as equally likely or replace the equal likelihood of the opponent’s actions with the
outcome of a model of the opponent using a probabilistic influence diagram.

Money Importance Risk attitude
Decision Opponent's action

v

Fig. 2. Influence Diagram for the decision model

Multi-agent Negotiation to Support an Economy for Online Help and Tutoring 89

3.2. Modeling the Opponent

One of the basic ingredients of a negotiation process is the correct anticipation of the
other side’s actions. In a dynamic environment e.g. in a market place where the
situation is changing all the time and new buyers and sellers keep on entering and
leaving the system, it is very costly for agents to create and maintain models of the
other participants in the environment. In the I-Help system the environment is
dynamic and since the agents represent real users, it is hard to predict the actions of
the opponent agent on the basis of its past behavior (since the user's preferences
which participate in the agent's negotiation strategy can change in the meantime). It is
unlikely that the user will be willing to share preferences with other users (or their
agents) before or during the negotiation process. However, it is useful for an agent to
model the opponent's behavior during the negotiation session, since this can help
predict the opponent's reaction. It is important to note that we are not doing recursive
or nested agent modeling. Agents initially have no knowledge about each other. After
the first round of offers made the agent starts using the opponent’s response to infer a
model of the opponent's preferences and to predict the possible reaction of the
opponent to the counteroffer that the agent is about to make.

Opponent's Action Money Importance

Fig. 3. Probabilistic influence diagram representing the opponent's model

An appropriate tool for this purpose is a probabilistic influence diagram. Figure 3
shows the model of the opponent represented as a probabilistic influence diagram.
The oval nodes are conditional and the double-circled node is deterministic. The
conditional probability distribution of the conditional nodes over the outcomes is
assessed on the basis of the first offer. The probability distribution for the
"Opponent’s action" node can be calculated by performing reductions over the nodes.
For instance, performing arc reversal from the "Money Importance" node to the
"Opponent’s Action" node makes "Money Importance" a barren node. Hence, it can
be removed from the diagram and a new conditional probability distribution is
calculated. Conditional predecessors of the nodes (if any) are inherited. In a similar
way the diagram can again be simplified by using arc reversal and barren node
removal, which finally gives the probability distribution for the Opponent’s Action
node. If the next move of the opponent does not match with the predicted action,
Bayes’ update rule is used to update the probability distributions. More information
about probabilistic influence diagrams can be found in [9].

4. Evaluation

First we evaluated the proposed negotiation mechanism in an environment, where
agents represented only themselves, i.e. no real users were involved. In this way we
were free to vary the negotiation parameters and generate a lot of experimental data.

90 Chhaya Mudgal and Julita Vassileva

The purpose was to evaluate the results of the negotiation method only. The results
[7] showed that the proposed negotiation approach achieves a better deal for the agent
that uses it compared to other negotiation approaches, for example, one based on step-
wise decreasing (for seller) / increasing (for buyer) of the offered price. We carried
out a further experiment, which showed that if the agents are bluffing, i.e. offering
help at much higher price than their preferred price, the acceptance percentage of their
negotiation is low. Agents who are more reasonable get a good deal maximum
number of times.

In order to evaluate the principal usefulness of an economic model to motivate
users a version of I-Help was developed, using the simple rate increment / decrement
negotiation method that was the basis for comparison in the simulation-based
evaluation. This system was applied in a 3rd year undergraduate computer science
class at the University of Saskatchewan. In the end we "cashed" the accumulated
virtual currency in small souvenirs, i.e. the people who have helped most received
rewards. Initially there seemed to be an enthusiasm among the students about the
system, however, consequently there turned out to be very little usage, which didn't
allow us to draw any conclusions about the efficiency of the economy or the planned
control measures. There were several different reasons for this failure, which can be
grouped in two classes: social and technical. Perhaps one of the "social" reasons was
the inadequacy of the reward (maybe students are more motivated by marks?).
Another reason might have been the quality of help received from peers. Along with
the personal agent-based peer help system, the class was using a discussion forum, in
which students participated much more actively. Informal interviews showed that
students preferred to look in the forum since the instructor was monitoring it and was
replying to the more important / interesting questions. Presumably the quality of
answers / hints received from the instructor was higher than those provided by peers.
A third reason is that good students seemed to be more motivated to post answers on
the publicly visible place. In this way they could impress their classmates and the
instructor (which could potentially help them get a better mark in the end). Obviously,
an ongoing social recognition is an important factor, which has to be taken into
account.

There were also technical reasons: the most important one was the slow response
time of the system, especially off campus, due to slow network connections during
this period. It must be pointed out that the slow response was completely due to
reasons independent on the implementation of the system or the negotiation
mechanism. A second reason might have been an inappropriate interface design,
which made interaction with the personal agent somewhat cumbersome. A third
reason might have been fact that the 3" year students knew each other very well, had
established multiple ways of interacting with one another in class and in the labs and
hence they did not find any need to login to the system to get help. The reasons for us
choosing this class were purely pragmatic: the implementation required the least
adaptation effort, because the domain representation and student modelling
components were already developed.

Generally, the experiment gave some answers and opened many new questions to
investigate. Our inability to obtain strong (whether positive or negative) evaluation
results taught us a good lesson: that introducing such advanced mechanisms makes
sense only when the basic technology works reliably (with respect to network speed,
response time and user interface design). Another lesson we learned is that the right
user group and social situation should be selected very carefully before trying to test

Multi-agent Negotiation to Support an Economy for Online Help and Tutoring 91

and evaluate such system. We hope that if the proposed market economy model is
utilized in distance learning or a very large first year class where students don't know
each other and have no other incentives to be helpful to each other, it will prove to be
successful. Currently we are testing an improved version of the system in a large
introductory computer science class; the data available so far shows that the system is
being used vigorously.

This experiment also shows that there are sometimes unexpected difficulties in
testing such complex distributed multi-agent systems, due to very basic "low-level"
problems, completely unrelated to the proposed technology. It seems that new
evaluation methodologies are needed which would allow evaluation without the need
of developing of stable nearly ready for marketing system.

5. Related Work and Discussion

To our best knowledge, there is currently no other work in the area of market
economy based distributed systems that support human learning. A learning economy
has been proposed by Boyd [1], but it was based on the barter (exchange) model and
has not been implemented. IBM has proposed an economy for trading information
resources [2], however this proposal assumes that the resources are ready documents
and it focuses mainly on pricing models that are appropriate for them. The most
closely related work to ours is in the field of multi-agent negotiation in e-commerce
[13]. In [13] negotiation and modelling the opponent is realized by using a Bayesian
network where the agents have store the relevant information about each other, while
in our approach negotiation is modelled as an influence diagram i.e. as a decision
process. In addition, our agents do not share information about each other's priorities
and model each other to predict the actions of the opponents and thus to optimize their
decisions.

Our approach opens some interesting research avenues in student / user modelling
to be pursued further. There are multiple models about each user in the system. They
are created by different agents, contain different (but also sometimes overlapping)
information, are created under different circumstances. More research on these issues
will help to find the benefits and pitfalls of distributed user-modelling [11].

More research is needed on analyzing the global behavior of a system based on
individual negotiations between agents, like ours. Especially in an educational system,
it is very important to predict and be able to control the overall behaviour that
emerges as a result of interaction of personal agents and users. We have proposed an
economic model [5], which provides a variety of options to control the economy from
outside to ensure desirable distribution of learning resources. However, it will be hard
to design an experiment to test the benefit of these measures, since the system is very
complex - so many factors come to play, that it is hard to attribute success or failure
even to a group of factors. New methods, possibly borrowed from sociology, will be
needed to evaluate such systems.

92 Chhaya Mudgal and Julita Vassileva

6. Conclusion

We have developed an original approach for negotiation among personal agents based
on decision theory and influence diagrams. By use of probabilistic influence diagrams
agents are able to model their opponents during the negotiation process and thus to
predict better their actions. Experiments on a simulation showed the effectiveness of
the proposed negotiation mechanism [7]. An attempt has been made to evaluate the
benefits of the proposed economy as a basis for the peer help environment I-Help in a
third level university class. Our experience showed that such experiments have to be
designed very carefully to keep complexity and technical issues under control and in
the same time to be able to answer some interesting research questions. Probably new
evaluation methodologies for distributed agent based systems on the Internet will be
necessary.

Acknowledgement. This research has been partially funded by the Telelearning Network of
Centers of Excellence under Project No. 6.28.

References

1. Boyd, G. 1997. Providing Real Learning with Virtual Currency. Proceedings of the
International Conference on Distance Education, Penn State University, June 1997.

2. Greenwald A.and J.Kephart 1999. Shopbots and Pricebots. in Proceedings of IJCAI '99.
Stockholm, on line at: http://www.research.ibm.com/infoecon/researchpapers.html

3. Greer, J., McCalla, G., Cook, J., Collins, J., Kumar, V., Bishop, A. and Vassileva, J.
(1998) The Intelligent HelpDesk: Supporting Peer Help in a University Course,
Proceedings ITS'98, 494-503.

4. Greer, J. McCalla G., Collins J., Kumar V., Meagher P., Vassileva J. (1998) Supporting
Peer Help and Collaboration in Distributed Workplace Environments, International
Journal of Al and Education, 9.

5. Kostuik, K., Vassileva, J. Free Market Control for a Multi-Agent Based Peer Help
Environment. Workshop on Agents for Electronic Commerce and Managing the Internet-
Enabled Supply Chain, Seattle, Autonomous Agents' 99, Washington, May 1, 1999

6. Maes, P., Guttman, R., Moukas, G., Agents that Buy and Sell. Communications of the
ACM. March 1999- Volume 42, Number 3, 81-83.

7. Mudgal, C., Vassileva, J. (to appear) An Influence Diagram Model for Multi-Agent
Negotiation, in Proceedings of International Conference on Multi-Agent Systems,
ICMAS'2000, 7-12 July 2000, Boston, MA.

8. Shachter, R., Evaluating Influence Diagrams. Operations Research. Volume 34, No 36,
1986, 871-882.

9. Shachter, R., Probabilistic inference and influence diagrams. Operations Research.
Volume 36, No.4, 1988, 589-604.

10. Marketplace for JavaTM Technology = Support. available on-line at
http://www .hotdispatch.com/sun

11. McCalla, J, Vassileva, J., Greer, J., Bull, S. (2000) Active Learner Modelling, this volume.

12. Vassileva J., Greer J., McCalla G., Deters R., Zapata D., Mudgal C., Grant S. A Multi-
Agent Approach to the Design of Peer-Help Environments, in Proceedings of AIED'99,
1999, 38-45.

13. Zheng, D., and Sycara, K. Benefits of Learning in Negotiation in Proceedings of Fifteenth
National Conference on Artificial Intelligence, 1997. 36-41.

The Collaborative System with Situated Agents
for Activating Observation Learning

Toshio Okamoto and Toshinobu Kasai

Graduate School of Information Systems, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, JAPAN
okamoto@ai.is.uec.ac.jp

Abstract. This study focuses on modality of externalized knowledge-
acquisition on problem solving via “Learning by Observing” and “Learn-
ing by Teaching/Explaining”. Among the learning effects expected by
collaborative learning, we can suppose meta-cognition/distributed cog-
nition such as reflective thinking, self-monitoring and so on. We pro-
pose the architecture of the intelligent collaborative system with situated
agents for activating observation learning, which is a kind of virtual col-
laborative learning environment. The situated agents are embedded in
this system, who have the different roles to make a real student activate
observation learning. Each of the situated agents behaves dynamically
based on the “Student Model” which represents the understanding state
of a real student, and “Transforming Process Model” which stands for
the converting process from internal state into external state for a level
of acquired knowledge. A real student is expected to acquire any meta-
knowledge via the interaction among situated agents in the collaborative
learning environment. A facilitator agent who is a kind of a situated
agent manages these Models and controls the other situated agents’ be-
havior. Moreover, it can identifies a real student’s bugs/faults occurred
in the converting operations.

1 Introduction

Nowadays, the studies of collaborative learning environments with plural learn-
ers such as CSCL(Computer Supported Collaborative Learning) as well as group
learning are rapidly increasing, taking inlluence of the new idea, that is OLearn-
ing is caused by interactions among several learners and the outside world, and
they are inseparable.l[34]. In such a collaborative learning environment, two
kinds of learning ellects are expected. One is knowledge understanding by re-
Oection that is invoked/facilitated by giving explanation to the other learners.
Another is to modify/adapt self-knowledge and thinking ways by observing the
other learnersll behavior. This learning modality is called OLearning by Teach-
ingll and OLearning by Observingll, and a higher cognitive ability is expected as
self-monitoring/evaluation for understanding objects there. More or less, many
studies that aim to facilitate these learning ellects are being done pervasively.
The purpose of this study is to realize the situated agents system for ac-
tivating observation learning with the function for supporting an interaction
among learners, taking into consideration of a situated context in a collaborative

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 93{102] 2000.
© Springer-Verlag Berlin HeidTelberg 2000

94 Toshio Okamoto and Toshinobu Kasai

learning environment. So far, we have developed the CALE(Companion Agent
Learning Environment)based on the framework of a multi-agent architecture
in a collaborative learning environment[5]. With this CALE project (embedded
one computer companion agent), we expected the acquisition of deeper knowl-
edge with rellective thinking by observation learning[1]2]. In this study, we have
developed newly [CollaboRative sYstem with SiTuated Agents for activating
observation Learning (CRYSTAL)0. So, we introduce the theoretical mechanism
of this system here. A companion agent is also called a situated agent because
of emphasizing situated cognition in this system.

2 What Is a Situated Agent

The process of interaction includes complicated learning modality such as rellec-
tive thinking, self-monitoring and so on. Especially, the action of Hobservingll
needs sensitive awareness/interests for the other companionsllbehavior/thinking
ways as well as understanding a problem to solve/discuss along the situated con-
text. So, the collaborative learning is necessarily based on situated context and
it requires knowledge-sharing in order to achieve the common goal. In this sense,
we dellne a companion agent as a situated agent. In this study, we try to build
the interactive learning environment accompanied with three pseudo-companion
agents who play the dillerent roles in terms of the situated context, that is a
virtual group learning.

3 The Outlines of “Crystal”

Here, we describe the system conllguration of CRYSTAL Orstly. We show its
conceptual Ogure in Fig.[[l In CRYSTAL, a novice agent and an advanced agent,
co-existing as situated agents share a learning space and study collaboratively
with a real learner. The novice agent has problem-solving knowledge which is
poorer than a real learnerlk one. This agent can behave like a tutee, as a situated
one which owns the activating strategy to make a real learner acquire problem-
solving knowledge through Olearning by teachingll. Along such a strategy, this
agent tries to make a real learner notify problem-solving knowledge which has
not been acquired yet and make him explain.

The advanced agent has problem-solving knowledge which is smarter than a
real learnerll one. This agent can behave like a tutor, as a situated one which
owns the activating strategy to make a real learner acquire problem-solving
knowledge through OLearning by Observingll. Along this strategy, this agent
tries to make a real learner observe his right solving way of problem. It provides
so-called modeling process for a real learner.

These situated agents decide the action plan adaptively according to each ac-
tivating strategy based on two kinds of models. One is OStudent Modelll which
represents the understanding state of a real learner. Another is 0Transforming
Process Modelll which represents the converting process from internal state into
external state for a level of acquired knowledge. It stands for the quality of
applied rules to evaluate a certain understanding level on which a real learner

Collaborative System for Activating Observation Learning 95

“----

e Control
Learning by Explaining//\,vice Agent
4
4
" [=
Management
Student Model e
— Transforming Rules K
Facilitator Agent
.
~ Pig
Real Learner ~———— ; ___—‘
k - - -
Learning by Observing Control
~-

Advanced Agent

Fig. 1. The conceptual figure of CRYSTAL

is expected to achieve. The facilitator agent controls those situated agentslbe-
havior by managing these models. The facilitator agent has also the role of a
supervisor and a coordinator so as to make correction of a learning Jow in the
situation where each of the situated agents canll decide any action plan. Further-
more, a facilitator agent has the function to detect bugs/faults in a real learnerlk
converting rules by Transforming Process Model. Then he points out it to him.

4 How to Decide an Action Plan for Each Situated Agent

Each situated agent has the function to decide an action-plan in reference to Ove
kinds of information-sources, which consist of 1) Student Model, 2) Transforming
Process Model, 3) Learning Ellect Value of a real learner, 4) Consistency Value
of Action for each situated agent and 5) Mental Load Value of a real learner.

4.1 Representation of Learning State

Explicit Knowledge and Implicit Knowledge. We introduce both concepts
of Ezplicit Knowledge and Implicit Knowledge required to represent OStudent
Modelll and OTransforming Process Modelll.

We dellne Explicit Knowledge and Implicit Knowledge as follows. Explicit
Knowledge is DKnowledge which a real learner is aware of at presentl, and Im-
plicit Knowledge is IKnowledge that a real learner is not aware of at present,
but can be made aware of by chancell. Namely, the Orst one is a kind of meta-
knowledge which a learner can apply for solving a given problem. On the other
hand, the second one is the just observed knowledge which is expressed or ex-
plained in problem solving by another person. Therefore anyone can not warrant
whether this knowledge is useful or not for a real learner.

In Fig.[2 we show the relationship between Explicit Knowledge and Implicit
Knowledgeused in this study, which is the philosophical root of our system.

When a real learner observes any behavior of the others in a collaborative
learning environment, new knowledge is added to his/her Mental State as Im-
plicit Knowledge in this system. If he could utilize this knowledge correctly for

96 Toshio Okamoto and Toshinobu Kasai

Collaborative Learning Environment

Action Control
Action

. A3
Consciousness \‘

Set of Explicit Knowledge

Set of Implicit Knowledge

Observing
Reflectior s

&Leamer’s Knowledge
Fig. 2. Explicit Knowledge and Implicit Knowledge

solving a problem, then the system regards he could acquire FExplicit knowledge,
because he could succeed in converting from Implicit Knowledge into Explicit
Knowledge through any mental operations in his brain. However, if he could
not utilize this knowledge correctly, then the system regards he failed to acquire
Ezxplicit Knowledge. The mental converting operation with which the learner
converts Implicit Knowledge into Explicit Knowledge is called Uexternalized re-
Oectionl. If this knowledge is alive/conscious knowledge for problem-solving, the
conversion process from Implicit Knowledge into Explicit Knowledge is called
transforming of knowledge with symbolization/verbalization.

The Representation Scheme of the Student Model. We try to represent
Explicit Knowledge and Implicit Knowledge by introducing nine modal predi-
cates. Also, we try to represent a learnerly understanding state by introducing
these modal predicates. We will explain the representation scheme for each as
followings.

1. Explicit Knowledge

— (Negative) Knowledge to Explain (Neg_)ExSa(Knowledge)
This means ; an Agent A (doesnll have)/ has Knowledge : can explain
how to solve a problem.

— (Negative) Knowledge to Indicate (Neg-)ExPa(Knowledge)
This means ; an Agent A (doesnlt have)/ has Knowledge : can point
out faults/bugs.

— (Negative) Knowledge to Apply (Neg_)ExT(Knowledge)
This means ; an Agent A (doesnlk have)/ has Knowledge : can apply.

2. Implicit Knowledge

— Direct Explanation ImT4(Knowledge)
This means ; some situated learner explained Knowledge to agent A
directly.

— Explanation Observation ImS4(Knowledge)
This means ; agent A observed some situated learner who had explained
Knowledge to another agent.

— Application Observation ImK 4(Knowledge)
This means ; agent A observed that some situated learner had applied
Knowledge.

[Some situated learner means either a real learner or a situated agent.]

Collaborative System for Activating Observation Learning 97

Modal predicates in Explicit Knowledge have the following set /logical-relation.

ExS4(Knowledge) D ExPa(Knowledge) D ExTs(Knowledge)
Neg_ExT(Knowledge) D Neg_ExPj(Knowledge) D Neg_ExS 4 (Knowledge)

Transforming Process Model. 0Transforming Process Modelll which we de-
One, represents the converting process from internal state into external state for
a level of acquired knowledge. As we stated above, Ezplicit Knowledge as an
external state is knowledge which a real learner really used correctly (applied,
pointed out and/or explained). On the other hand, Implicit Knowledge as an
internal state is knowledge which a real learner observed in the collaborative
learning environment. Therefore, we can regard that the process of knowledge
acquisition in our research framework is to convert Implicit Knowledge into it Ex-
plicit Knowledge. Naturally, each real learner has his/her own conversion rules
from Implicit Knowledge into Explicit Knowledge. In this converting process,
transportable /representational thinking with verbalization (or symbolization)
and conceptualization is expected through symbolic operation among a real stu-
dent and situated agents. In this study, we regard these converting/transporting
rules as the OTransforming Process Modelll of a real learner. In short, we can
ask ourselves for fWhen should a real learner observe some kind of situation?,
OWhat kind of knowledge can he/she acquire?l under a transportable form. It is
very benellcial to model this transforming process of an individual real learner
and make a real learner observe some situation according to a transportable
form from an intelligent systemlk research point of view. So, we need to control
each situated agentls behavior in order to make a real learner experience more
meaningful situation according to a transportable form. By modeling this trans-
portable form, the system can extract a real learnerll bugs/faults occurred in
this collaborative learning environment. In the following, we explain the model-
ing method of a transportable form.

The Modeling Techniques of Transforming Process. Modeling of trans-
forming process is executed when the system regards new valid information
obtained by diagnosing a real learnerly response as Ezplicit Knowledge. That is,
modeling of transforming process is done for either of two cases below.

1. The case in which all rmative Ezplicit Knowledge is gathered
2. The case in which information on negative Explicit Knowledge is gathered

Elicitation of transportable form is done by inductive reasoning (there are a
positive example and a negative example). Here, each example is a set of Implicit
Knowledge which was acquired before and Ezplicit Knowledge which is acquired
just now. As a result of it, transportable form is modeled in the following scheme.

PiAPyA--- NP, = EXPLs(Knowledge)

Here, one of the modal predicates on Fxplicit Knowledge exists on the right
side, and there is a set of modal predicates on both of Implicit Knowledge and

98 Toshio Okamoto and Toshinobu Kasai

Explicit Knowledge on the left side. However, any modal predicate which exists
on the right side does not come to the left side.

Elicitation of transportable form applies the technique of Version Space which
represents P, P2,--- P, as nodes. The way of modeling is how the system
computes a contradiction value for each node in the version space in accordance
with the past examples, and adopts the node which has the lowest contradiction
value. The computation of a contradiction value is shown in the following.

The weight of example

W, =1.0-023—1), (i=1,23,4,5)

The contradiction value of node n on example i

Cc. W, (example i is contradictory for node n.)
" —W; (example 7 is not contradictory for node n.)

The contradiction value of node n

C, = Z Cpi (in this version, [= 5)

In the following, we give an example of transportable form which was modeled
by the above way.

ExPs(Knowledge) A ImTa(Knowledge) A ImK 4(Knowledge)
= ExSa(Knowledge)

This formula means [if agent A has already a certain knowledge to indi-
cate, then he/she can get its knowledge to explain through the experience of
explanation and application[.

4.2 The Learning Effect Value for a Real Learner

From educational point of view, we must consider a learning ellect of a real
learner in this system. Here, we discuss how to evaluate a learning ellect. A real
learner seems to understand essentials of knowledge, when he/she feels some
knowledge to be meaningful /useful to solve a problem under a certain situation.
Standing on this aspect, we set up the table of learning ellect value for a real
learner as Table [

Here, we show the learning ellect value as E f(Cond, Act). Cond is the un-
derstanding state of a real learner (located horizontally in Table[). Act means
some situation which a real learner experiences, as shown in the rows of Table [Tl
When several modal predicates exist in the same knowledge, the system adopts
the highest modal predicate. Each value in Table [[lmeans the expected values of
learning ellect for each condition by an experienced teacher. This value ranges
from 0 to 2. The larger this value is, the more learning ellectiveness is expected.
That is the strategic coordinating knowledge in order to optimize a real learnerlk
achievement /motivation.

Collaborative System for Activating Observation Learning 99
Table 1. The table of the learning effect value for a real learner

ObK : a real learner observes that a situated agent

ObK ObS ObT AcT AcP AcS applied knowledge.

ExS 0 0 0 0 0 0 ObS : a real learner observes that a situated agent

ExP 0 1 1 0 0 2 explained knowledge to another situated

ExT 0 1 1 0 2 2 agent.
Neg-EzT| 1 1 1 1 0 0 ObT : a situated agent explains knowledge to a real
Neg_-ExP| 0 1 1 2 1 0 learner.
Neg_EzS| 0 1 1 2 2 1 AcT : a real larner applies knowledge.

Nolnf 0 0 0 1 1 1 AcP : a real learner points out knowledge.

AcS : a real learner explains to a situated agent.
NolInf : there is no information in Student Model.

4.3 The Consistency Value of Action for Each Situated Agent

In this study, it is important to maintain a situated agentll action consistently.
That is, if a situated agent behaves inconsistently (e.g., a situated agent can
solve the problem in some situation, but canlt solve the same problem in another
situation), then a real learner will be compelled to suspend his thinking under
the same situation. This will lead to decrease his/her motivation of learning
and will confuse a real learner(thinking schema. So, in order to avoid such a
situation, we introduce the idea of OConsistency Value of Actionll (show in Table
[2). This value represents the degree of consistency between some actions which a
situated agent experienced in the past and some actions which he/she takes now
by applying the same knowledge. The values in brackets in Table[2 represent the
consistency of the actions which a situated agent is not allowed to do.

Table 2. The consistency value of action for Novice Agent and Advanced Agent

Novice Agent Advanced Agent
(Not)AcS (Not)AcP (Not)AcT (Not)AcS (Not)AcP (Not)AcT
EzS | (D0 (10)0 EzS | ()0 (20)0
ExzP (0) -1 (-1)0 (-1)0 EzP (-1)0 (-2) 0 (-2) 0
EzT | (0) -1 (0) -1 1o EzT | (-1)0 (1o -2) 0
ImT | (0) -2 (0) -1 (0) 0 ImT | (-1)0 (-1)0 (-2) 0
ImS | (0) -2 (0) -1 (0) -1 ImsS | (-1)0 (10 (-2) 0
ImK | (0) -2 (0) -2 (0) -1 ImK | (0)-1 (10 1) 0
Nolnf| (0)-2 (0) -2 (0) -1 Nolnf| (0)-1 (-1) 0 (-1) 0

Here, we represent this value as C's(Cond, Act). Cond means the understand-
ing state of each situated agent (located horizontally in Table). Act means the
situation which each situated agent experiences (shown on the rows in Table
). These values in Table Pl mean that some action will have any contradiction
with the previous behaviors for a small value, and are set up by the system
designer. The value ranges from -2 to 0, and -2 stand for the maximum of a
contradiction degree. By utilizing this consistency value of action, Novice Agent
will be inclined to take more often the same action such as making a real learner
explain its knowledge. It means Novice Agent is always inferior to a real learner
for its knowledge state. Therefore, this system is designed so that Novice Agent
should be inferior for the function of knowledge acquisition in order to have a
real learner teach Novice Agent how to solve. On the other hand, Advanced
Agent will decide any action which makes a real learner observe his way of prob-

100 Toshio Okamoto and Toshinobu Kasai

lem solving. It means Advanced Agent is always superior to a real learner for
its knowledge state. Therefore, our system is contrived so that Advanced Agent
should be superior for the function of knowledge acquisition in order to have this
agent teach a real learner how to solve. Moreover, we suppose to dellne implicitly
Novice Agentls characteristic as a situated learner who doesnlt have an ability
to learn smoothly, and Advanced Agentll one as a situated learner who has an
ability to learn smartly.

4.4 The Mental Load of a Real Learner

As an applied Oeld of this study, we have chosen the liner operations in liner
algebra. In consideration of the features in this domain, we can get a desired
solution by repeating some steps of applying problem-solving knowledge. For
this kind of problems, if the system controls a situated agentl action by only
both parameters of the learning ellect value and the consistency value of actions,
then some misbehaved issues seem to arise. That is, Novice Agent must ask a
real learner to explain every step of problem solving. Because the learning ellect
value of a real learner at such a situation is set up highly as shown in Table 1.
This situation will increase a real learnerls mental load up. Therefore, we try
to introduce Mental Load Value here in order to evade repetitions of such a
question. We dellne Mental Load Value load as follows;
When S steps passed from a real learnerlk last explanation,

(S—4 (5<3)
lo“d_{o (5> 3)

4.5 The Flow of Action-Selection for Each Situated Agent

We mention how each situated agent decides the next action according to the
method of evaluation stated previously. In the following, we show the decision-
Oow to lead agent A to an appropriate action, utilizing a set of problem-solving
knowledge OP = {O1,03,---,0x}.

1. Agent A enumerates a set of possible actions ACT = {Acy, Aca, -+, Acpr}
by using the dialogue model. Then it generates a set of situations COND =
{C1,C4,---,Cp} which a real learner can experience with action ACT.

2. Agent A picks out Neg_expl(Op), Op € OP from the negative knowledge in
Explicit Knowledge in Student Model and generates a set Neg EXPL. If
Neg EXPL = ¢, go to 5 with Modal = COND.

3. Agent A scans the transition states of OTransforming Process Modelll which
have all rmative Explicit Knowledge in the conclusion part. Here, we express
each the taken model as LSk, and its contradiction value as Valg, (Ex €
{EzS, ExP, ExT}). If there is no Transforming Process Model, go to 5 with
Modal = COND.

4. Agent A computes Total Contradiction Value VALg, for each LSg, and
Onds out LSE, which has the lowest value. Then, we express a set of modal
predicates existing in the conditional part of LSg, as Modal = {My, Ma, - - -,

Collaborative System for Activating Observation Learning 101

M7y }. The expression of computing Total Contradiction Value is VAL, =
Valg, - N. Here, N is the number of the negative knowledge existing at the
same level with Ex (e.g., the Neg_ExS, when Fx = ExS.) in the set of
Neg EXPL.

5. Agent A alters all modal predicates in the set of Modal from I'm#* and Exx
to Obx and Acx. Then, it computes Action Appropriate Value Appy, for each
element of Comp = {Coy,Cos,---,Cox} = Modal N COND, and adopts
the action plan Coys which has the highest value. In the following, we show
the expression of computing Action Appropriate Value.

N
Appr = > (Ef(RS;, Cog) + Cs(Ai, Acyy)) + L

i=1

Here, RS; stands for the understanding state of a real learner for the problem-
solving knowledge O;, and A; stands for the understanding state of agent A for
O;. The value of Ly, is as follows.

I, — load (Cop = ExS)
70 (Coy, # ExS)

In such a way, each situated agent can decide the most appropriate action
according to the learning state of a real learner.

5 Dialogue Example

We show the dialogue example between a real learner and situated agents in Fig.
[Bl This dialogue starts from the situation where Novice Agent gives a real learner
a certain problem. At this time, a real learner is forced to solve this problem,
and then Novice Agent and Advanced Agent try to observe his problem solving
process. A real learner can choose either mode of Dansweringll or Haskingll. In
this example, he/she chooses the mode of Danswering[l.

Concerning the above dialogue, the knowledge of (step-1) and (step-2) is ex-
plicit one, but the knowledge explained by Advanced Agent remains still implicit
one for Real Learner at this stage. After a real learner could solve the same kind
of problems by him/herself, we can regard it as explicit knowledge.

6 Conclusion

In this study, we introduced four main concepts which are 1) situated agents,
2) implicit knowledge and explicit one, 3) transportable form, 4) transforming
process model, and 5) modal predicates.

In particular, we described the modeling method for the learning state of
a real learner in details, which makes each situated agent decide/choose the
most appropriate action-plan. The modeling of a real learnerll understanding
state became feasible by introducing concepts of FEzxplicit Knowledge and Im-
plicit Knowledge, and by applying the idea of modal predicates. Also, we con-
trived theoretically the mechanism by which the system examines a real learner[k

102 Toshio Okamoto and Toshinobu Kasai

Nowvice Agent> Please, tell me how to transform the following echelon matriz!
[Matriz] 1 38 8 -9
385 2 -1
11 -8 4
Real Learner> OK, I try it
173 8 -9
0 -4 -22 26
0-2-11 13
Nowvice Agent> How did you solve it?
Real Learner> OK, I try to explain it.

(step-1) multiply -3 for each value in the first row , and add those for
each value in the second row.

(step-2) multiply -1 for each value in the first row, and add those for
each value in the third row.

Nowvice Agent> I understand how to solve it.

Real Learner> Mr. Advanced agent. Then tell me how to develop it!

Advanced Agent>OK! Let’ say! You have already swept out for the first row & the
first culum. As the mnext step, you have only to sweep out for the
second column. Now, as the value in the second row € the second
column is mot 1, you should multiply -(1/4) for all of the wvalues in
the second row.

Real Learner> OK, I see.

Fig. 3. The example of dialogue between Real Learner and Situated Agents

transportable form (for conversion process) and models it by Transforming Pro-
cess Model. In the near future, we are going to examine the learning ellectiveness
for this system from the educational point of view. Especially, we must evaluate
how each agent facilitates a real learnerls observation learning and appropriate-
ness of behavioral model (validity of the rule base) of each agent. Moreover, we
need to examine ellectiveness of observation learning for dillerent tasks. Anyhow,
this research aims to explore the mechanism for enhancing highly interactivity
based on the architecture of multi-agents. However, the psychological ellect of
observation learning, especially psychological functionality of transforming pro-
cess from implicit knowledge to explicit knowledge would not be specilled under
the practical experiment by this present system.

References

1. Aizenstein,H., Chan,T.W., Baskin,A.B., “Learning companion systems : Using a
reading companion for text-based tutoring”, Department of Veterinary Science
(1989)

2. Chan,T.W., ChungI.L., Ho,R.G., Hou,W.J.,; Lin,G.L., “Distributed Learning
Companion System WEST Revisited”, ITS’92 pp.645-650 (1992)

3. Dillenbourg,P., Self,J., “Designing Human-Computer Collaborative Learning”,
Computer Supported Collaborative Learning, NATO ASI series Vol.F-128, Berlin:
Springer-Verlag, pp.245-264(1994)

4. Inaba,A., Okamoto,T., “Negotiation Process Model for Supporting Collaborative
Learning”, IEICE, Vol.J80-D-11, No.4, pp844-854(1997)

5. Kasai,T., Okamoto,T., “Construction of an Intelligent Learning Environment em-
bedded Companion Agent: About a Function of Supporting an Enhancement of
Recognizing Ability about a Companion Agent’s State” JSISE, VOL.14, No.3,
pp38-47(1997)

Should I Teach My Computer Peer?
Some Issues in Teaching a Learning Companion

Jorge A. Ramirez Uresti

School of Cognitive and Computing Sciences, University of Sussex, Brighton
BN1 9QH, U.K. +44 (1273) 678524
jorgeru@cogs.susx.ac.uk
http://wuw.cogs.susx.ac.uk/users/jorgeru/

Abstract. This paper describes work carried out to explore the role of
a learning companion as a student of the human student. A LCS for Bi-
nary Boolean Algebra has been developed to explore the hypothesis that
a learning companion with less expertise than the human student would
be beneficial for the student in her learning. The system implemented
two companions with different expertise and two types of motivational
conditions. Results from a empirical evaluation suggested that subjects
interacting with a less capable companion (weak) have a trend of more
improvement than subjects interacting with a more capable companion
(strong). Finally, the experiment also suggested that learning compan-
ions might be confusing for students if they try to resemble human be-
haviour, i.e. if they do not perform as they are told.

1 Introduction

Recent research on Intelligent Tutoring Systems (ITSs) is exploring the bene-
Ots of having human students collaborate with computerized agents. The issues
being studied range from the external representation of such agents [14] to the
selection of their internal characteristics [§8]. Among all of these systems, Learn-
ing Companion Systems (LCSs) extend the traditional model of ITSs by adding
computerized agents whose aim is to provide a peer for the human student. This
kind of agent is called a Learning Companion [3].

In principle the learning companion (LC) could take any role that a human
peer could take. Being the student of the human student is a role which has
recently started to be explored in LCSs [5[9]. The rationale for such a selection
of role is that by teaching the LC, the student should be able to rellect on her
own knowledge and thus learn more ellectively.

This paper describes work carried out to study this role: a LC as a student
of the human student. A LCS for Binary Boolean Algebra has been developed
to explore the hypothesis that a LC with less expertise than the human student
would be benellcial for the student in her learning. The system was empirically
evaluated in a study with 32 subjects. The results of the evaluation suggested
that subjects interacting with this kind of LC have a trend of more improvement
than subjects interacting with a more capable LC.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 103-[I12] 2000.
© Springer-Verlag Berlin Heidelberg 2000

104 Jorge A. Ramirez Uresti

2 The LC as a Student

Work in LCSs has increased in the last few years but much remains to be done to
explore the full capabilities and possibilities opened up by the inclusion of a LC
in an ITS [4]. From all the issues surrounding LCSs, one of the most important
is perhaps the question of the expertise level that the LC should possess in
order to be of educational value to the student interacting with it. Most systems
developed so far have dealt with this issue in one way of another but Hietala and
Niemirepo [§] have been the only ones to design their system in order to study
explicitly the expertise of LCs.

2.1 Expertise

Students in Hietala and Niemirepols experiments faced a LCS which provided
four LCs. They classilled LCs as weak or strong based on their expertise. A
weak LC was one with minimal expertise whereas a strong LC had almost an
expert-like expertise. Their results showed that, in general, students preferred to
collaborate with strong LCs rather than with weak LCs. Hietala and Niemirepolk
interest was in studying which level of expertise would motivate students to
collaborate with these agents. In this sense, their results were successful as a LC
with a strong expertise proved to be motivating for the student. However, was
this expertise the most benellcial for the student to learn?

Subjects in Hietala and Niemirepolb experiments were, in general, more com-
fortable with a strong LC at the end of the interaction, when tasks got harder.
This was a very ellective way to complete the task on hand, by asking someone
who knows more for the answer. However, this is perhaps the main disadvantage
of having a strong LC: if it is almost an expert in the domain, it could be easily
confused with a tutor. And even worse, if the LC would answer or would do
anything the student directs it to, the student could end up by asking the LC
to do all work. There is therefore, a possibility that this use of the strong LC
may encourage in the students a passive attitude towards learning and, thus,
hamper their learning. On the other hand, subjects in Hietala and Niemirepolk
work used weak LCs mainly at the beginning of the interaction. Most probably
this was because LCs were not labelled with their expertise level and, therefore,
students had to search for the most suitable LC. Collaboration with the weak
LC was then due to a search rather than to a real desire to collaborate with it
— although, it must be said, some subjects preferred collaboration with weak
LCs. In general, the weak LCs were not perceived as good enough for serious
tasks. However, weak LCs could have potentially benellted students more than
collaborating with strong LCs. A weak LC may allow students to explain and
teach to it.

Research has found evidence to support the notion that Learning by Teaching
can be a facilitator for learning. Students who teach other students learn more
and better [7JT0]. A student who needs to teach other people will have to revise,
clarify, organize and rellect on her own knowledge in order to be able to teach,
i.e. the student will need to master the knowledge. A weak LC should in principle

Should I Teach My Computer Peer? 105

be helpful for the student to learn by teaching [12]. Work in LCSs has recently
started to explore the role of a LC as a student of the human student [5//9].
The results of this work are not encouraging as students did not benellt from
using these systems. The most probable reason for the failure of these LCSs was
that they permitted students to perceive teaching the LC as a passive activity.
However, despite the failure of those LCSs, recent work on Teachable Agents has
shown that students Ond teaching a virtual human agent interesting [1]. This
agent captured the students attention and motivated them to teach it. Teaching
it was an active enterprise as students had to research and study beforehand.
In consequence, the students in the experiments with this system showed high
learning gains. Also, recent work by Scott and Reif [T5] has found that students
who coached (taught) a computer tutor benellted as much as those subjects who
had personalized tutoring from expert teachers.

Therefore, given the work done so far, the hypothesis of the experiment
described in this paper is that a LC less capable than the student (weak) would
be helpful to the student in her learning if she can be encouraged to teach it.

2.2 Motivation

The weak LCs in the work of Hietala and Niemirepo were regarded by subjects
as disappointing, lazy and irritating. This is perhaps the main disadvantage of
weak LCs: that students would Ond them a nuisance and may decide not to use
them anymore. Besides, as reported in a study by Nichols [IT], the knowledge-
hungryl characteristic of these agents could discourage students to collaborate
with them. Subjects facing these kinds of agent found them uncomfortable to
teach. This ellect may have been in part due to the ellort needed to teach another
person or, in this case, a computerized agent. In consequence, given the negative
image that students could have of a weak LC, if teaching a LLC is an important
aim of a LCS, the student should be motivated in some way to collaborate
with it. Unfortunately, in contrast with the work of Hietala and Niemirepo, the
expertise of the LC cannot be employed as the motivational factor if the LC
is required to possess a predellned expertise level. In the work reported in this
paper, the system implemented two types of LCs: one with a weak expertise and
the other with a strong expertise. Therefore, a dillerent form of motivation had
to be found.

On the other hand, as has been discussed before, strong L.Cs have been found
to encourage students to collaborate with them but there is also a possibility that
students would direct these kind of LCs to perform all the work. Therefore, the
students interacting with strong LCs should be motivated to work by themselves
and not to take a passive attitude towards learning.

3 The System

3.1 LECOBA

A LEarning COmpanion system for binary Boolean Algebra (LECOBA) was
developed to explore the hypothesis that a less capable LC would be helpful to

106 Jorge A. Ramirez Uresti

students in their learning by encouraging them to teach it. The system imple-
mented two types of LC: one with a little less knowledge than the student (weak)
and the other with a little more expertise (strong). LECOBA also had two types
of motivational condition: Motivated and Free. The Motivated condition strongly
encouraged the student to either collaborate with the weak LC or work more by
herself. This motivation was achieved using a series of scores. In contrast, in the
Free condition, the student was mildly encouraged to interact with the LC. The
encouragement was just by reminding the student that collaborating with the
LC would be benellcial for her.

A screen dump of LECOBA is shown in Fig. [[] The Ogure shows the system
at the moment when the student and the LC are beginning to work on a problem.
The windows shown here are: 1) the tutorls window at the top left corner, 2) the
LCB window at the top middle of the screen, 3) the studently window at the top
right corner, 4) a tool for the student to solve problems (“Simplillcation Tool”)
at the bottom left corner, and 5) a window for the student to give suggestions
to the LC (“Student - Suggestion”) near the middle of the screen. Figure [also
displays the score mechanism used to motivate the student. In each one of the
tutorly, LC and studently windows there is a score whose value ranges from
0% to 100%. The scores in the LCEH and studentls windows are based on the
performance of each respective learner. Scores were designed to challenge the
student to interact more with the LC or to work more by herself. The challenge
is to obtain the maximum score in the [Total Scorell at the tutorls window.
This score is determined not only by the studentll performance, but also by the
LCI performance. The LCI performance can be improved mainly by teaching
the LC, specially for the weak LC. The studentll performance improves as a
mixture of her own work and her involvement in the problem resolution when
the LC is working. While the OTotal Scorelhas not reached its maximum value,
students will continue studying the same topic in the curriculum. A more detailed
description of the system can be found in [13].

3.2 Teaching Window

The student has the opportunity to teach to the LC via a window called the
Teaching Window (Fig.). The Teaching Window is based on the idea of in-
spectable student models [2]. It presents to the student the LCE understanding
of the domain at a specilc moment during the interaction i.e. its [btudent
modelll The objective is to let the student see exactly what the LC knows when
trying to solve a problem. In the Ogure, the LCl knowledge is represented by a
series of buttons and menus — each button with its corresponding menu. The
Orst four buttons and their menus are enabled. These represent the boolean rules
which the learners have studied so far. Rules are ordered by the priority that
the LC will try to apply them to a boolean expression. For instance, rule OROX
is labeled as 1st, this means that this rule is the Orst one which the LC will try
to use when solving a problem. Rule ANOO is the last one the LC would consider.
The order in which the LC uses rules can be changed by clicking on their cor-
responding buttons and then swapping position with another rule. The menus

Should I Teach My Computer Peer? 107

) Tutor / Blackboard rj Companion 7 rj Jorge
TotalScore: [] | . B2% Companion’sScore:[L] | 0 70% ‘¥our Score: El T 60 %
. i i Select a rule to suggest from the ones
PROBLEM Pk,\ww\lxtartso\vwngthe problem. displayed In the suggestion window.
Apply as many operations with 0 and 1 as The best rule we can use now is rule
possible to the following boolean ANTX ("1 = %) ~ToG
expression: and the variables instantiate to: o
®=a
Z=a*l+a*0 (m]
Use rules in the SAME order as they were o
taught to you (OROX, ANTX, OR11, ANOO). (m]
o
o
EL i |

Student - Suggestion

Companion, | suggest you to use rule:

| orox | anix || ort1 | anco |

‘
(=l Simplification Tool

Z=a*1+a*0

EL 3

Fig. 1. LECOBA. Students are solving a problem, the LC is solving the problem and
the user is about to give a suggestion to the LC.

allow the student to tell the LC how to use a rule. She can tell it to use rules in
a specillc mode or not to use them at all.

To teach the LC students must change its knowledge to make it more suitable
for the task. Students can enable, disable, change the order, and modify the way
in which rules are used by the LC. All of these changes are recorded while
the student is performing them in the Teaching Window. They are considered
as [bxplanationsll which the student is giving to the LC. Once the student has
taught the LC, it automatically modilles its behaviour to immediately rellect its
new understanding of the domain based on the studentl} teaching.

The Teaching Window can be seen as a rellection tool for the student. It
encourages her to rellect on her own learning before deciding what to teach to
the LC. When teaching the LC the student will need to modify its knowledge
in a way she considers to be better to solve the current problem. To select the
LCI new knowledge the student will need to understand why the LC is using
that particular combination of rules or heuristic. In order to try to understand
the LC knowledge, she will Orst need to think about her own knowledge of the
domain, i.e. what knowledge does she use to simplify expressions and why.

108 Jorge A. Ramirez Uresti

= Student - Teaching

- Help Requested:
The rule vou requested is:

151 0kox || Mormal =| | ana: an1x | Normal =]
_Mormal = | | 4th anoo | Mormal - |

R .

3rd: OR11

Girs

Cancel ‘ Done ‘

Undo ‘ Start Again

Fig. 2. The Teaching Window in LECOBA.

4 Results on Teaching a LC

LECOBA was empirically evaluated using a 2x2 factor, between-subjects de-
sign. There were two independent variables: expertise and motivation, and one
main dependent variable: learning gain. This design enabled the use of the sys-
tem under four dillerent conditions: Condition 1 (Weak/Motivated), Condition
2 (Strong/Motivated), Condition 3 (Weak/Free) and Condition 4(Strong/Free).

Thirty two (32) undergraduate engineering students in their Orst and second
years took part in the experiment. They attended two sessions of 1 hour each.
The Orst session consisted of a pre-test, a demo of LECOBA and interaction with
the system. In the second session subjects started immediately using LECOBA.
This was followed by a post-test and a questionnaire to measure the students(l
perception of LECOBA as a tool for their learning. The time for the tests was
of 15 minutes and of 30 minutes per session for using LECOBA. All the subjects
were requested to start the interaction with LECOBA from the beginning of the
curriculum. The sessions were logged by the system.

4.1 Was the Weak LC Best for Learning?

In general subjects improved their performance in the post-test after the inter-
action with LECOBA. On a scale from 0 to 100 the average improvement was of
11.79 points. The pre- and post-test scores of subjects were used as a measure-
ment to see if they had learnt from the interaction with LECOBA. A two-way
mixed-design Analysis of Variance (ANOVA) was run after determining that its

Should I Teach My Computer Peer? 109

assumptions had been met. The ellect of the expertise and of the motivational
condition were not statistically signillcant, neither their interaction. However,
there was a highly signillcant ellect of the tests (pre and post) on the subjects
(F(1,28) = 16.87,p << 0.01). In other words, there was a very marked dillerence
on the scores of the pre- and the post-tests. Unfortunately, this dillerence cannot
be only attributed to the level of the LCIk expertise or to the motivational con-
dition as they were not signillcant. Regardless of the type of condition to which
subjects were assigned, they learnt some new concepts from the interaction with
LECOBA as well as having revised existing knowledge. Although there was not
a signillcant dillerence in the learning gain between the four conditions, some
trends could be detected which allow for conclusions based on the expertise and
on the motivational condition.

Condition 1 (Weak/Motivated) could be said to have a trend of being the
most benellcial for the subjectsl learning. It had a very low dispersion of the
learning gain, i.e. learning under this condition was similar for all subjects in
the condition. And it was the condition where subjects improved most, though
not signillcantly. Besides, subjects in this condition were the ones who taught
and made suggestions to the LC signillcantly more than in any other condition
— these were their main activities. These two activities may account for some
of the improvement of the subjects in this condition given that a small positive
correlation between the learning gain and the number of teaching incidents and
suggesting incidents was found. Therefore, this trend in Condition 1 of subjects
improving consistently, more than in the other conditions, and teaching and
making suggestions to the LC gives some support to this work main hypothesis:
that a weak LC would help the student to learn by teaching it.

On the other hand, Condition 4 (Strong/Free) seems to have a trend of be-
ing the worst condition for learning. It had the most consistent learning of all
the four conditions, but it also had the worst improvement. Therefore, subjects
in Condition 4 had a consistent low improvement. Besides these results, when
the tests were analyzed for improvement in the understanding of BBA concepts,
subjects in this condition were the only ones with a trend of low benellcial ellect
on their understanding of simplillcation strategies. Some subjects even showed
a negative ellect on their learning of the strategies. They did not practice them
enough as they preferred to solve problems by themselves and not to collaborate
with the LC. Taking also into consideration the number of teaching and sug-
gesting incidents, there were very few as there was little need for these actions
given the high expertise of the strong LC. From all of these results it could be
concluded that subjects in Condition 4 were the ones who least benellted from
the interaction with LECOBA.

4.2 Reactions from the Interaction with the LC

Suggestions. A very interesting result of the experiments was the subjectsl
reactions to the LCl answer when it was given a suggestion. The LC was pro-
grammed to try to behave in a human-like way. It accepted or rejected sugges-
tions as follows: the more it knew about a simplillcation rule, the less probable

110 Jorge A. Ramirez Uresti

it would accept the suggestion (unless it was the same rule). This attempted to
model the following human behaviour: the more a person knows about a con-
cept, the less probable it is that he will accept a suggestion which contradicts
his belief in this concept.

Mainly with the strong LC, but sometimes with the weak LC as well, subjects
were confused to read that the LC was rejecting their suggestion. If the LC was
strong, they were more amazed to read that the LC was telling them that they
were wrong and that it would not follow the suggestion given. Subjects did not
like this rejection of their suggestions very much. Usually when receiving this
kind of comment from the LC they made an expression of disbelief. Some tried
to suggest the same or a dillerent rule again and some to teach it. In any case,
subjects were expecting the LC to accept the suggestion that it had been given.
They were not prepared to be rejected by a machine. Eventually they got used
to this kind of behaviour of the LC. This reaction towards the LC is a good
example of the plausibility problem [f]: users of a LCS may not be prepared to
deal with a LC who reacts as a human peer might do.

Teaching. Another interesting result, also related to the plausibility problem,
was the reaction of subjects towards the Dearningll capabilities of the LC. The
LCs in LECOBA were programmed to [hot understandlsome of what was being
taught to them depending on their expertise: the more a LC knew, the more it
would understand the studentlb teaching. This behaviour was trying to emulate
human behaviour: the more a person knows about a domain, the more probable
it is that he would understand when others are teaching this subject to him.

Subjects interacting with the weak LC were very annoyed to observe that the
LC did not Oearnlall the concepts that had been so carefully taught to it. As
the weak LC had low expertise, it would frequently hot understandd what had
been taught to it. This inability of the LC to understand may have discouraged
some subjects to interact more frequently with the weak LC. However, it is not
dill cult to imagine a human student who has weak knowledge of a domain and
that due to this low knowledge does not easily understand what is taught to her.
Subjects were just not prepared to deal with a LC that would not understand
everything that was taught to it.

Another issue arose because subjects had to teach the same thing to the weak
LC several times, as it did not understand all that was taught to it. This fact
made subjects reluctant to teach the LC. When subjects had to teach the LC
they should have taught it the complete heuristic they were learning at the cur-
rent level. The logs of interaction revealed a trend of complete teaching during
the initial problems of the interaction. However, after some teaching incidents,
students started to diminish the quality of their teaching until just the rule
needed for the current step was taught to the LC. This low quality teaching was
mostly carried out with the weak LC and mostly by those subjects in Condi-
tion 3 (Weak/Free); subjects in Condition 1 (Weak/Motivated) maintained good
quality teaching. Once students noticed that the LC was not learning quickly
they started to teach only one rule instead of the complete heuristic. This com-

Should I Teach My Computer Peer? 111

bination of teaching all the strategy and having to teach it again and again may
have been detrimental to the perception of the weak LC and of the teaching
process. It may also explain why the weak L.C was described in the post-test as
not very exciting and annoying.

5 Conclusion

The experiments with LECOBA showed that subjects who faced the weak LC
and who were strongly motivated to interact with it had a trend of most learning
gain, though the dillerences were not signillcant. On the other hand, subjects
who interacted with a strong LC and who were mildly motivated had a trend of
worst learning, though again the dillerence in learning gains were not signillcant.
So, in general, these results give some support to the conclusion that students
may benellt more from interacting with a weak LC than from interacting with
a strong LC.

LECOBA allowed a passive attitude to teaching in the Free motivation and
strongly encouraged teaching in the Motivated condition. As a result, teaching
the weak LC was performed signillcantly more often with the strong motivation
than with the mild motivation. Teaching in LECOBA was also not an action
which permitted a passive attitude. Evidence suggests that it was so demanding
when facing the weak LC that the high ellort required might have been a reason
for subjects in the Free condition to markedly decrease their teaching. But more
importantly, the results give also some support to the claim that subjects who
are strongly motivated to teach the weak LC benellt most from the teaching
interaction. The benellts related to teaching could not have occurred with the
strong LC as it does not lend itself for teaching.

Finally, the replies of the LC to the teaching and suggestions ollered by the
student were confusing for her. Subjects expected the LC to learn immediately
everything that had been taught to it and to accept without question the sug-
gestions given to it. The users of the system were not prepared to deal with a
LC which reacted as a human peer might do. Future LCSs could explore the
reaction of students and the ellect on their learning when 1) they face LCs that
behave and can be answered as if they really were human peers, and 2) when
they face LCs which behave and are treated as lumblcomputer agents perform-
ing exactly as they are told, i.e. accepting the users input without questioning
it. Judging by the work so far in LCSs, the Orst scenario is envisaged as the
one where subjects would benellt most from the interaction with a LC. But, as
demonstrated with LECOBA, the second scenario might surprisingly be more
benellcial if it is found more credible by students.

Acknowledgements

The author wishes to thank Benedict du Boulay and the reviewers for com-
menting on a draft of this paper, and Consejo Nacional de Ciencia y Tecnologia
(CONACYT) of MHxico for their Onancial support.

112 Jorge A. Ramirez Uresti
References
1. Sean Brophy, Gautam Biswas, Thomas Katzlberger, John Bransford, and Daniel

10.

11.

12.

13.

14.

15.

Schwartz. Teachable agents: Combining insights from learning theory and com-
puter science. In Susanne P. Lajoie and Martial Vivet, editors, Artificial Intelli-
gence in Education, pages 21-28. IOS Press, 1999.

Susan Bull, Helen Pain, and Paul Brna. Mr. Collins: A collaboratively constructed,
inspectable student model for intelligent computer assisted language learning. In-
structional Science, 23:65-87, 1995.

Tak-Wai Chan. Integration-Kid: A learning companion system. In J. Mylopolous
and R. Reiter, editors, Proceedings of the Twelfth International Conference on
Artificial Intelligence (IJCAI-91), volume 2, pages 1094-1099. Morgan Kaufmann
Publishers Inc., 1991.

Tak-Wai Chan. Learning companion systems, social learning systems, and the
global social learning club. Journal of Artificial Intelligence in Education, 7(2):125—
159, 1996.

Tak-Wai Chan and Chih-Yueh Chou. Exploring the design of computer supports
for reciprocal tutoring. International Journal of Artificial Intelligence in Education,
8:1-29, 1997.

Benedict du Boulay, Rosemary Luckin, and Teresa del Soldato. The plausibility
problem: Human teaching tactics in the ‘hands’ of a machine. In Susanne P. Lajoie
and Martial Vivet, editors, Artificial Intelligence in Education, pages 225-232. I0S
Press, 1999.

Sinclair Goodlad and Beverly Hirst. Peer Tutoring: A Guide to Learning by Teach-
ing. Kogan Page, London, 1989.

Pentti Hietala and Timo Niemirepo. The competence of learning companion agents.
International Journal of Artificial Intelligence in Education, 9:178-192, 1998.

Y. Jun. Linear kid: A mathematical software designed as a computer-based peer
tutoring system. In FElectronic Proceedings of the Second Asian Technology Con-
ference in Mathematics (ATCM’97), 1997.

Donald Michie, Andrew Paterson, and Jean Hayes-Michie. Learning by teaching.
In 2nd Scandinavian Conference on Artificial Intelligence 89, pages 307-331. I0S
Press, 1989.

David Nichols. Issues in designing learning by teaching systems. In P. Brusilovsky,
S. Dikareva, J. Greer, and V. Petrushin, editors, Proceedings of the FEast-West
International Conference on Computer Technologies in Education (EW-ED’94),
volume 1, pages 176-181, 1994.

Jorge Adolfo Ramirez Uresti. Teaching a learning companion. In Gerardo Ayala,
editor, Proceedings of the International Workshop “Current Trends and Applica-
tions of Artificial Intelligence in Education”. The Fourth World Congress on Ezpert
Systems, pages 83—-89, ITESM, Monterrey, México, 1998.

Jorge Adolfo Ramirez Uresti. The LECOBA learning companion system: Exper-
tise, motivation, and teaching. In Linda Baggott and Jon Nichol, editors, Intelligent
Computer and Communications Technology (PEGY99), pages 193-201. University
of Exeter, England, July 1999.

Jeff Rickel and W. Lewis Johnson. Virtual humans for team training in virtual
reality. In Susanne P. Lajoie and Martial Vivet, editors, Artificial Intelligence in
Education, pages 578-585. I0S Press, 1999.

Lisa Ann Scott and Frederick Reif. Teaching scientific thinking skills: Students and
computers coaching each other. In Susanne P. Lajoie and Martial Vivet, editors,
Artificial Intelligence in Education, pages 285—-293. I0S Press, 1999.

WHITE RABBIT - Matchmaking of User Profiles
Based on Discussion Analysis Using Intelligent Agents

Marc-André Thibodeau, Simon Bélanger, and Claude Frasson

Université de Montréal
Département d’Informatique et de Recherche Opérationnelle
C.P. 6128, succursale Centre-ville
Montréal, Canada H3C 3J7

{thibodea, belanger, frasson}@iro .umontreal.ca

Abstract. The White Rabbit system intends to enhance cooperation among a
group of people by analyzing their conversation. Each user is assisted by an
intelligent agent which establishes a profile of his or her interests. Next, with
its autonomous and mobile behavior, the agent will reach the personal agents of
other users to be introduced and presented to the ones that seem to have similar
interests. A mediator agent is used to facilitate communication among personal
agents and to perform clustering on the profiles that they have collected.
Conversation between users takes place in a chat environment adapted to the
needs of the system.

1 Introduction

In a large business or a large-scale research center, it is extremely common to see
significant problems in coordination and cooperation. The resulting mismanagement
generally leads to considerable drops in productivity. The fact is that when a large
number of people work in the same organization, everybody is not aware of all the
available resources or even of the other projects underway in the organization.
Sometimes, different groups of people will work on similar, even identical projects,
consequently reinventing the same ideas and concepts, or else develop many times the
same components instead of combining their efforts and sharing their knowledge.
Similarly, resources like experts or past realizations could be used in a profitable way
but are not, because of the ignorance of their existence.

This is the problem we are trying to solve. The approach we chose is the use of
intelligent agents to discover the similar interests held among a group of people
working in a particular domain with the intent to put them in relation and enhance
their level of cooperation. The agents analyze conversation between users through a
chat interface to build up for each of them a precise profile of their interests. Once
these profiles are built, they will be used to categorize users who will finally be
introduced to each other when they are classified in a similar category (or cluster).

First, this article presents research advances in the particular domain of intelligent
agents for matchmaking by presenting two similar systems. Next, the White Rabbit

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 113-122, 2000.
Springer-Verlag Berlin Heidelberg 2000

114 Marc-André Thibodeau , Simon Bélanger, and Claude Frasson

system’s prototype is explained in detail. It ends analyzing and discussing both the
results obtained as well as the future directions that the system may take.

2 Matchmaking Using Agents

This section compares the White Rabbit system with two similar systems developed
at the Massachusetts Institute of Technology : Yenta and Butterfly. This discussion
highlights White Rabbit’s characteristics.

2.1 Yenta vs. White Rabbit

Yenta is a matchmaking system designed to find people with similar interests and
encourage communication between them [1]. This system is composed of a set of
decentralized agents that group into categories to represent the user’s similar interests.
These categories can then be used to make presentations and enable users to exchange
messages with people that are part of the same cluster, i.e. having common interests.

Many agent systems already implemented use a centralized architecture by which
an agent serves one or many people at a time. However, such an architecture presents
notable disadvantages :

® [t is difficult to apply a centralized architecture to large-scale systems. Shardanand
and Maes [2] claim that the communication problems which arise through such a
system are generally of a quadratic order of complexity.

e A centralized server presents only one location where an accidental breakdown can
have severe consequences for a system that has to be reliable and available at all
times.

Consequently, future perspectives tend to show that agent systems will use a larger
number of agents communicating with one another. This is the approach used by
Yenta and the one that we also used for White Rabbit. However, we improved this
architecture by adding a mediator agent, which facilitates the communication between
the agents, and provides a single rally-point for clustering.

The main idea for Yenta’s clustering consists in an algorithm similar to the hill-
climbing algorithm [1]. Once clusters are built, they can be used in different ways.
The most important one consists in realizing matchmaking by doing presentations of
similar users. This way, the system helps the user to find the expert he or she needs
since the expert’s interests, if he or she is represented by an agent of the system, are
grouped in the same categories as other users. White Rabbit uses a completely
different clustering algorithm, but its use of the clusters found is similar, allowing the
user to explicitly ask to be presented to another member of the same cluster and thus
facilitating the discovery of an expert.

2.2 Butterfly vs. White Rabbit

Butterfly is another project underway at MIT which presents a lot of similarities with
White Rabbit. Butterfly is an intelligent agent system which analyzes conversation

WHITE RABBIT - Matchmaking of User Profiles 115

over IRC (Internet Relay Chat) in order to suggest to users some discussion channels
that may be of interest to them [3]. In order to do that, it samples the conversations
going on into the different discussion groups available and builds, for each user, a
profile of his interests. The analysis by agents of real-time discussion is precisely one
of White Rabbit’s functions. However, the role of these agents is different. White
Rabbit has to form clusters of users with similar interests itself, like Yenta. Instead,
Butterfly suggests to users groups that already exist and that have been explicitly
created by those users. It has consequently no clustering function to fulfill.

For White Rabbit, we chose to build our own chat system possessing the
conversation control capacities and the organization we needed, instead of using the
already existing IRC.

The user’s profile of interests used by Butterfly is simply based on a vector of
terms associated to positive and negative weights. The actual version of Butterfly
uses fixed constants to represent « low », « normal » and « high » levels of interest
(e.g. —50, 100, 200). However, more varied weights could be used if the profiles were
learned. White Rabbit uses information retrieval techniques to attribute weights to the
different concepts that are part of the profile. The way in which the agents learn the
user’s profiles in White Rabbit will be described in the next section. One important
disadvantage of Butterfly is the fact that it forces the user to explicitly declare his
interests to the system and that the profile obtained offers little flexibility. This
demands heavy participation of the user who will eventually put the system aside and
won’t use it anymore. Automated learning of the profile’s weights solves this
problem.

3 The White Rabbit System

Up to now, the project led to the development of a prototype for the discussion
analysis agent system. This section presents this prototype’s architecture and explains
how its different components work.

3.1 The System’s Architecture

First, we will present White Rabbit system’s global architecture. You can see this

architecture in figure 1. Figure 2 shows a personal agent’s architecture in its

environment.

The system is made of six principal sections.

e The chat server that organizes the flux of messages through the network;

e A user interface dedicated to both the user and administrator of the system. It
allows the user to send and receive messages and to consult and modify his profile.
It allows the administrator to observe and adjust the parameters of the clustering
process and to change the knowledge base;

e A personal agent for each user that performs the message content analysis and the
presentation service;

e The Voyager layer giving White Rabbit’s agents their mobility and autonomy;

116 Marc-André Thibodeau , Simon Bélanger, and Claude Frasson

e The PC’ knowledge base where different knowledge keywords and links between
them are located;

¢ A mediator agent attached to the server and dedicated to the clustering process and
the facilitation of communication between agents.

Object Space Voyager l
Personal
rens | (e ()
.....

Mediator Agent

Profile Base

Agents Addressef

Knowledge Base

Kohonen Map

Fig. 1. White Rabbit’s general architecture

3.2 User Profile

The whole system works around this essential component. The user profile contains
all relevant information about the user’s interests in the chosen domain which will
allow agents to discover similarities and consequently to perform an appropriate
clustering of users. So it is important that the agent traces a correct portrait of the
user it represents.

The approach we adopted for building profiles is based on the PC* knowledge
representation developed during the ALICE project, a knowledge extraction system
also underway at University of Montreal. This model consists in forming a
knowledge (or concepts) graph of keywords to which are linked users via their
publications, reports, and projects they are involved in. Concepts are linked to one
another by links that have a semantic signification. For example, two concepts can be
linked together by similarity links if they are similar or else by specialization links if
one is general and “uses” the more specific one. This way, the whole knowledge
domain is represented by a graph.

3.3 Learning Module

As we just mentioned, the learning module is the one that modifies the user profile’s
weights to make it more and more accurate and realistic. At this moment, this process
is made of two steps. We will propose one more during discussion. The first step
consists in a preliminary acquisition of information about the user through a
questionnaire. The first time he or she uses the system, the user is invited to fill it in
and by doing this to give the system keywords reflecting his interests (projects,

WHITE RABBIT - Matchmaking of User Profiles 117

realizations, expertise). This information is used by White Rabbit to constitute a basic
profile for the user. The second step is the one of analyzing discussion. It consists in
extracting domain keywords from messages the user sends and then in updating the
profile by increasing weights of associated concepts, following a sigmoid function (1)

f(0)= l,\' . 1)

1+e

where f(x) is the new weight and x is the keyword’s « importance ». The keyword’s
importance is the number of occurrences of this keyword, modified according to some
factors like the similarity degree between concepts, the declarations of interest from
the user, etc. The sigmoid function is frequently used in neural networks for
computing the values of updates for the link’s weights between units (or neurons). It
has the property to vary strictly between 0 and 1 and to have a slow increase for low
x-axis values, then a high increase for medium values and finally slow again for high
values on the x-axis.

User’s personal agent

Mediator Agent
Communication » Communication Learning module
module > module .
Clustering > User profile <lJ Keywords
module "

Initial info

/M

essages sent

Fig. 2. A personal agent architecture

Furthermore, since knowledge is represented in a PC* form, it becomes possible to
update weights of all concepts linked to the keyword discovered by following simple
heuristics. For example, all concepts similar to the one found may have their weights
modified in the same direction and following the same function, proportionally to the
similarity degrees associated to similarity links of the knowledge graph.
Consequently, following discovery of a few keywords only, the agent’s learning
module can possibly update the weights of all knowledge in the profile. As we will
see, this is very important for our clustering algorithm, Kohonen Maps [4], to work
well.

On top of discovering keywords during conversation, the personal agent performs a
verification of the profile periodically to allow the user to validate or else invalidate
one or more of his profile’s interests . When a keyword’s weight increases over a
predetermined threshold, the agent asks the user if he or she is really interested in the
associated concept. Weight is then adjusted according to the answer received. This
allows the dynamic correction of errors that may have been introduced in the profile
during analysis.

118 Marc-André Thibodeau , Simon Bélanger, and Claude Frasson

So, this second step is done in a totally automatic way, asking only for a minimal
user participation who just has to answer the agent’s periodical questions. This
constitutes an important advantage over the Butterfly system presented earlier.
Indeed, Butterfly forces the user to explicitly declare his interests and the weights
obtained are rigid, permitting the system no flexibility to adapt itself or to correct its
errors. In this case, the user must correct himself the errors made by the system by
modifying his profile explicitly during discussion. In fact, the user builds his profile
himself and Butterfly doesn’t update it in any way. White Rabbit’s discussion
interface still allows the user to accelerate learning of his profile by making such
explicit declarations, but he or she is in no obligation to do it for his profile to be
learned. In the same way, the first learning step (through a questionnaire), is only
aimed at simplifying the agent’s task of rapidly building a representative profile of its
user’s interests.

3.4 Communication Module

The communication module allows the system’s agents to talk, listen and move to
each other. It is entirely based on the ObjectSpace Voyager’s technology [5].

Two of White Rabbit’s aspects demonstrate autonomy and mobility of its agents.
First is the discussion analysis of a user by it’s personal agent. Indeed, after having
analyzed and updated its client’s profile, the agent goes to another machine connected
to the network to meet one of its colleagues. This one is the mediator agent which
must analyze the user profiles and determine in which cluster they are classified and
consequently to which group the corresponding users are assigned. The mediator
agent gives the personal agent the result of clustering, and finally, the latter returns to
its source machine and continues analyzing its client’s discussion.

The second important evidence of mobility happens when the user asks to be
presented to a second user who is a member of the same cluster, as determined by the
mediator agent. At this moment, the requesting client’s agent (A) will use its
autonomy to move to and meet the agent associated to the client to be presented (B).
Then, agent A will have the possibility to ask for more information from agent B. If
the agent B’s client accepts the request, then, agent B will give to agent A the
personal information (real name, email, project description, etc.) on his client that was
not set to « private ». A user can set any or all of his personal information to
« private » to control what others have access to, maintaining privacy. This is the
presentation step following the clustering process.

These two situations demonstrate the strength achieved by the mobility and
autonomy of our agents, which allows a considerable reduction of the number of
transmitted messages in the network. This way, risks of network overload or lack of
resources are greatly reduced, even when the number of personal agents (and
equivalently, the number of users) is high.

3.5 Clustering Module

Like we mentioned earlier, the clustering algorithm we used is the Kohonen Map [4]
and constitutes an interesting aspect of our system. Indeed, this algorithm invented in
1982 by Teuvo Kohonen, professor at University of Helsinki, Finland, proved for

WHITE RABBIT - Matchmaking of User Profiles 119

many years to be efficient, being applied to a lot of different domains like medicine
[6], physics [7] and seismology [8]. Kohonen Maps are a type of neural network that
performs an « unsupervised » learning, i.e. requiring no examples or « good answers »
in feed-back, contrary to back-propagation neural networks. Since neurons learn in a
competitive way, there is no goal to reach nor errors to minimize. So this type of
neural network is ideal when output values are not known or hard to measure, as is the
case with clustering.

Kohonen Maps are composed of two distinct layers: the input layer and the
projection layer (or Kohonen layer). Each neuron present in the input layer represents
an attribute, or a dimension of the input data. Each of the input units is connected to
all neurons in the projection layer. And finally, each of these connections has an
associated weight, generally a number between 0 and 1 so a neuron of the projection
layer possesses a vector of weights, each element of this vector corresponding to an
input data’s attribute. With this vector, each neuron has the possibility to compute its
activation level (or simply activation). The activation is defined by the Euclidean
distance given by equation (2).

" 2)
a = (weight, input,;)* -

i=0

We can see that a neuron that possesses a weight vector similar to the activation
levels vector of the input nodes will have a low activation level and vice versa. The
projection layer’s node having the lowest activation is called the “winner”. In our
case, each node of the projection layer corresponds to a cluster. The number of nodes
in the projection layer thus determines the number of different clusters in which
profiles can be classified. This number can be changed to better suit the number of
profiles in the system at a given moment.

But before being used to perform clustering, the network has to be trained. During
this training, each input data is presented to the network and activation levels are
computed as explained earlier. For each such input, the weight vectors of the winner
node and its neighbors are adjusted in a way to approach the input vector. Equation 3
is used to compute the weights variations.

w, = (weight, input,) 3)
where is the learning rate which decreases linearly during the training process and
wis a weight adjustment value.

In our system, the Kohonen Map is found in the mediator agent which receives
user profiles brought by the personal agents. When a profile is brought, it is first
added to a base containing all the profiles. These profiles are then converted one by
one into weight vectors that will then be used for activation values of the input units
of the neural network. This conversion is trivial, since a user profile makes the
correspondence between each keyword in the knowledge base and a real number (the
weight), which means that each weight value of the profile can be simply assigned to
one input unit of the neural net. The network is trained by making a few passes
through the set of profiles in the base. This training leads to the adjustment of the
weight values of connections, after which time weights are locked. A cluster is then
determined for each profile by computing activation levels and determining the

120 Marc-André Thibodeau , Simon Bélanger, and Claude Frasson

winner for each of them. Finally, the determined clusters are communicated to all
personal agents to allow them to update their user’s interface.

Consequently, persons categorized in the same cluster have profiles that are similar
and are then listed on each member’s interface (see section 3.6, figure 3, right part).
This allows them to greatly reduce the research space when searching for individuals
sharing the same interests. And one can easily imagine the time savings it represents
in a large company, with hundreds or thousands of employees.

3.6 Discussion Environment

We have developed our own discussion environment for the users of White Rabbit
instead of using an existing interface like IRC. We wanted to have a discussion
environment that allowed us to easily integrate all the discussion analysis and
clustering functions we wanted to implement. We also wanted to restrict in some
way, through the interface, the discussion in the chosen interest domain. So we have
implemented a simple chat environment allowing many people to converse and agents
to do their work in an efficient way (figure 3).

The interface allows a user to create and maintain a profile, to visualize it, to
discuss and specify, if he or she judges necessary, the type of messages he or she
sends (explicit interest declaration, restriction formulations, etc.), to adjust his agent’s
activity level, to know the list of users considered having similar interests by the
system, to ask for the presentation of one or many of them and to receive and answer
questions asked by his personal agent. To insure confidentiality, the user must choose
a pseudonym as well as a password to open an existing profile. The profiles and the
knowledge base are stored on the server machine.

4 Discussion and Results

White Rabbit is basically a system designed to answer to the needs of a small to
medium sized community like the one of a research center, an organization or a
company. Consequently, we have not focused on problems related to the system
scalability. Instead, we have emphasized the efficiency of the agents work, i.e. by
carefully choosing the knowledge representation, by implementing well-known and
well-tested learning, clustering and communication algorithms, by making the
interface graphical and user-friendly and by using state-of-the-art technologies like
the Voyager architecture and the most recent Java version. The prototype
implemented is portable on all platforms and aims at forming a solid basis for the
development of a useful application, easy to transfer to industries as well as to the
different scientific communities. It is also this practical aspect that lead us to chose
the real-time discussion analysis instead of user email analysis for example. Indeed,
this last alternative would have posed serious problems in a real working environment
in terms of accessing information and confidentiality [9].

WHITE RABBIT - Matchmaking of User Profiles 121

& white Rabbit - Marc 3 | WEEivvnite Rabbit - Marc [x]
File Edit Help File Edit Help
=g A=
DEEHBEEE DI
Discussion [Profile | Discussion | Profile |
Discussion Window Logged users
oo o Siman Iogin Maro Cluster number |7
Connexion established Marc
(Communication Protool 0K realname MarcAndre Thibodea Cluster members | Simon ~| &
Mare I interested in intelligent agents
Siman> My ast project is actually on intelligent agent !
Mare> Im trying to build an intelligent agent for e-huisiness Keyword I Level of interest
psycholagy 0.15519297 -
mobility 005
leaming 0.05
algarithm 0.05
ai 0.15519297
camputer 005
instruction 0.05
neural 0.05
education 005
intelligent 005
‘four Message Sendto BTl 0.39068377
T Er— artificial 0.05
fould you help me’ public - agenty 0.125161
network 0.15519297 =
S ‘ Agent's activty level I 7t]
Message type | normal message M| Low o

Fig. 3. White Rabbit’s discussion (left) and profile management (right) interface

Basic tests have been conducted to verify the prototype’s efficiency. The first
conclusion is the major importance of the knowledge base quality in the quality of the
user clustering results. In fact, this process’ quality depends directly on the links
between concepts of the base that allow agents to build a correct representation of the
user’s interests. If the knowledge graph is incomplete and is not representative of
reality, the agent’s learning is inefficient and consequently the clustering step loses all
sense. To facilitate the construction of the knowledge base, White Rabbit will
eventually be integrated with the ALICE system. This system is composed of a
graphical editor which easily allows a knowledge graph in PC* form to be built. We
are presently working at collecting statistical data relative to the knowledge base’s
size, to the number of users and to other different parameters having an impact on the
clustering quality and the user cooperation improvement that should result.

One more function we propose to add to our system in our future works is a third
learning step consisting in asking for a feed-back to the user about the clustering
produced. This way, the user should be able to easily correct the system by giving it
an appreciation of its work. The user would have his profile adjusted according to
this appreciation without having to determine himself the causes of his bad
classification. Possibilities would be to use a back-propagation neural network to
automatically adjust profile weights or, more simply, to use heuristics.

5 Conclusion

In brief, White Rabbit tries to evolve in a system that is applicable to real industrial
problem solving. It uses well-known and efficient artificial intelligence techniques to
reach this goal. The analysis made by its intelligent agents gives the user a maximum
of freedom by asking him as little participation as possible. White Rabbit is really an
intelligent agent system where agents are autonomous and move across the network
using the Voyager agent architecture, contrary to many existing agent systems. We

122 Marc-André Thibodeau , Simon Bélanger, and Claude Frasson

are convinced that intelligent agents have a real potential and we are confident that
their use will answer a lot of actual and future needs of industries and researchers.

References

1. Foner, L. (1997) Yenta: A Multi-Agent, Referral-Based Matchmaking System, in
Proceedings of the First International Conference on Autonomous Agents (Agents ‘97),
Marina Del Rey, CA, USA.

2. Shardanand U., Maes P. (1995) Social Information Filtering: Algorithms for Automating
Word of Mouth, in proceedings of the CHI 95 Conference.

3. Van Dyke, N.W., Lieberman, H., Maes, P. (1999) Butterfly: A Conversation-Finding
Agent for Internet Relay Chat, in Proceedings of the 1999 International Conference on
Intelligent User Interfaces.

4. Kohonen, T. (1988) Self-Organization and Associative Memory, Springer-Verlag, Berlin.

5. ObjectSpace Inc. (1999) Overview of Voyager: ObjectSpace’s Product Family
Computing.

6. Silipo N., Bortolan G., Marchesi C. (1997) Supervised and unsupervised learning for
diagnostic ECG classification, in Proceedings of the 18" Annual International Conference
of the IEEE Engineering in Medicine and Biology Society.

7. Bemudez, J.L., Piras, A., Rubinstein, M. (1996) Classification of lightning
electromagnetic waveforms with a self-organizing Kohonen map, in 13" International
Wroclaw Symposium on Electromagnetic Compatibility.

8. Musil, M., Plesinger, A. (1996) Discrimination between local micro-earthquakes and
quarry blasts by multi-layer perceptrons and Kohonen maps in Bulletin of the
Seismological Society of America.

9. Foner L. (1996) A security Architecture for Multi-Agent Matchmaking, in The Second
International Conference on Multi-Agent Systems at Keihanna Plaza, Kansai City, Japan.

Applying Patterns to ITS Architectures

Vladan Devedzic

University of Belgrade, FON - School of Business Administration, Department of Information
Systems, POB 52, Jove Ilica 154, 11000 Belgrade, Yugoslavia
devedzicegaleb.etf.bg.ac.yu

Abstract. The concept of patterns has received surprisingly little attention so
far from the designers of ITS architectures. This paper is an attempt to bring
more light on this important concept and to describe the benefits that patterns
can bring to the field of ITSs. The paper concentrates on two issues: a) how to
use well-known design patterns from the general field of software design for
development of ITSs; and b) the process of discovering patterns in existing ITS
architectures. The last part of the paper discusses the benefits of using patterns
in ITS architectures and the relation of patterns to some other important design
issues of ITSs, like using interoperable software components and ontologies.

1 Introduction

Designing the architecture of an Intelligent Tutoring System (ITS) involves a large
measure of art. This is true not only for the interface design, but also for the system's
architecture as a whole. However, relying only on the designer's artistic expression
and knowledge of instructional theories can result in fragile systems, maintenance
problems, and even chaotic design. What is needed as well is a firm and stable
engineering backbone around which the rest of the system's architecture should be
built.

That backbone is not easy to provide. To a large extent, ontological engineering of
ITSs can help build solid architecture [9], [13]. Using well-founded teaching and
learning strategies as the basis for ITS architectures is important, too (e.g., [7]), and so
is the knowledge of ITS models, both traditional and new (e.g., [1], [11]). Experience
of other ITS designers and architectures of other successful ITSs also facilitates
fundamental design decisions in developing a new system [10], [12].

One additional approach to a more systematic design of I'TS architectures is the use
of patterns. In software engineering, patterns are attempts to describe successful
solutions to common software problems [16]. Software patterns reflect common
conceptual structures of these solutions, and can be applied over and over again when
analyzing, designing, and producing applications in a particular context. Patterns exist
in several phases of software development. The software patterns community has first
discovered, described and classified a number of design patterns [8]. More recent
developments have also identified many patterns related to other phases and issues of
software development, like analysis patterns [5] and patterns for software
architectures [18].

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 123-132, 2000.
Springer-Verlag Berlin Heidelberg 2000

124 Vladan Devedzic

Knowledge of patterns and using them definitely brings more engineering flavor to
the field of ITSs. It is also important to stress that it does not mean abandoning
learning theories, teaching expertise, curriculum structuring, or instruction delivery as
the cornerstones of any ITS system. Using patterns is just taking more care about
AIED systems themselves, especially about the way we develop them.

2 Problem Statement

This paper has three main objectives:

e to show how design patterns, being an established technology in the general field
of software engineering, can be applied to ITS design and development;

e to show how patterns can be discovered in existing ITS architectures; such patterns
are implicitly present in the architectures, and most ITS designers have used them
without thinking in pattern-oriented way.

e to increase the ITS community's awareness of patterns and of benefits that patterns
can bring to ITS developers.

In short, the idea is to show what does it mean to use design patterns in ITS
development, how to use them, and why should ITS developers care about it.

3 Applying Patterns to ITS Design

Software designers have discovered dozens of patterns so far. They are all collected in
different pattern catalogues, in which each pattern is described using some previously
adopted, uniform and consistent template. For example, some well-known catalogues
of design patterns can be found in [4], [8], [17]. Within the catalogues, patterns are
classified so that it is possible to talk about families of related patterns. The
classification helps designers find their way around the catalogues and also find the
candidate patterns to be used in solving specific design problems.

3.1 Related Work

In the literature on ITS design and development, only some vague and implicit
reminiscences of using patterns can be found. Some examples include [11], [14], and
[21]. In contrast to these examples, patterns have been used explicitly in developing
software that supports GET-BITS, a previously developed framework for building
ITSs [3]. Whereas the GET-BITS framework itself has been discussed in detail
elsewhere [2], [3], this section illustrates how patterns have been applied to develop
different components of GET-BITS. Specifically, the example described below shows
how one of the most common design patterns, known under the name Composite [4],
[8], has been used in GET-BITS to represent part-whole hierarchies.

Applying Patterns to ITS Architectures 125

3.2 Using the Composite Pattern

The Composite pattern has been applied in several components of GET-BITS (see the
Known uses subsection below). For the purpose of illustrating the use of the
Composite pattern from the ITS perspective, the pattern is described here using a
modified version of the pattern-description template from [8].

Classification and intent. Composite is a structural pattern. Its intent is to compose
objects into tree structures to represent part-whole hierarchies. It lets clients treat
individual objects and compositions of objects uniformly.

Motivation. Lesson presentation planner of an ITS may decide to build an agenda of
the topics to be presented during the lesson. Complex topics can be divided into
simple elements, like concepts, text, graphics, and the like, or into a sequence of
subtopics (simpler topics). Each subtopic in turn can be further subdivided into a
lower level sequence of simple elements and other subtopics, producing an agenda
like in the following example:

1. Topic 1
Text
Graphics
Concept A
1.1. Subtopic 1.1
1.2. Subtopic 1.2
Text
Concept B
1.2.1. Subtopic 1.2.1
1.2.2. Subtopic 1.2.2
2. Topic2

A simple implementation could define classes for simple elements, such as text and
graphics, plus additional classes for subtopics as containers of simple elements. But in
that case, the code using these classes would have to treat simple and container
objects differently, which would be inefficient from the design point of view. Instead
of that, the Composite pattern shows how to use recursive composition so that clients
don't have to make this distinction. Moreover, using Composite makes it easier to
achieve any desired depth of subtopics nesting.

Structure. The key to the Composite pattern is an abstract class that represents both
primitive elements (concepts, text, and graphics) and their containers (subtopics). Fig.
1 shows the general structure of the Composite pattern, using the standard UML
notation for object-oriented design [6].

Participants and collaborations. The abstract class Component in Fig. 1 corresponds
to the contents to be presented during the lesson in our example. It is responsible for
providing common interface to all objects in the composition, both simple (concepts,
text, and graphics) and complex (topics and subtopics), like the example Add and
Remove functions in Fig. 1. It also defines the interface for accessing the child
components of a complex object (a topic or a subtopic), e.g. the functions Operation
and GerChild. The concrete classes Leaf (corresponding to simple contents of a lesson
in our example) and Composite (corresponding to topics and subtopics) are derived
from Component. The Leaf class represents leaf objects in the composition and has no

126 Vladan Devedzic

children. It defines behavior for primitive objects in the composition. The Composite
class implements child-related functions from the Component interface, stores child
components, and defines behavior for components having children. A client object
(e.g., a lesson presentation planner) interacts with any object in the composition
through the common interface provided by the Component class. The client's requests
are handled directly by Leaf recipients, and are usually forwarded to child components
by Composite recipients.

Component .

Operation()
Add (Component)
Remove (Component)
GetChild ()

[Z}]
‘ Leaf ‘ Composite <>—
| Operation() | [Operation() . Children
Add (Component) 7 —— 5
Remove (Component) forall gin C_h||dren
GetChild () g.Operation()

Fig. 1. Structure of the Composite pattern

Applicability. Typical situations in which the Composite pattern can be applied in ITS
design include representing part-whole hierarchies of objects (such as composing
topics, lessons, and curricula), and those when it should be possible to treat all objects
in the composite structure uniformly by a client (such as a lesson presentation planner
or curriculum composer).

Consequences. Using the Composite pattern lets designers define hierarchies
consisting of both primitive and composite entities, makes the client simple, also
makes it easier to add new kinds of components, but can make the design overly
general because it is hard to restrict the components in such a design.
Implementation. There are many things to consider when implementing the
Composite pattern [8]. Due to space limitations, only one of them will be mentioned
here. That one is extremely important for ITS designers. It is related to child to parent
references in a composite structure. Maintaining such references can make the design
much more efficient, since it simplifies traversal and management of the composite
structure. For example, having appropriate references from graphics objects to topics
of a lesson is essential, especially when a graphics object can be presented during
more than one topic presentation.

Known uses. The Composite pattern is used explicitly in the GET-BITS framework's
lesson presentation planner and remedial actions planner (which is a part of the
student's knowledge examination and assessment), as well as in topic representation
and curriculum composer. The GET-BITS-based FLUTE system, developed as an ITS
for teaching formal languages [2], is a concrete ITS within which such planners are
used. In the design of Eon tools [14] and SimQuest [21], there are implicit signs of the
presence of the Composite pattern, although the authors of these tools don't talk about
it directly.

Applying Patterns to ITS Architectures 127

Related patterns. Composite is often used with the patterns called Chain of
Responsibility, Iterator, and Decorator (see [8] for details of these patterns). These
patterns were also extensively used in the design of the GET-BITS framework.

4 Discovering Patterns in Existing I'TS Architectures

Nobody should invent patterns. They are rather discovered from experience in
building practical systems. I describe here how I have discovered a simple, concrete
ITS-architectural pattern and outline the pattern discovery process I have used. The
entire section is written subjectively, and that's on purpose. I don't claim that this is
the only way to discover patterns in ITS architectures, nor I can say that the process I
have used is optimal or that it guarantees success. My intents were to try discovering
some patterns, to describe them in the way patterns for software architectures are
usually described, and to see how strong is the support for them in existing ITSs and
on-going projects.

4.1 Pattern Discovery Process

In the beginning, it was a matter of intuition. I just had a feeling that different ITS
architectures hide several common principles and solutions, regardless of the ITS
models used in building specific systems. The patterns I have discovered describe
what I believe that were the guiding principles and driving forces that have led ITS
designers to develop architectures of their systems the way they did. More precisely, I
was trying to extract patterns from known examples, systems, architectures, designs,
learning and teaching styles, strategies, etc.

The issues that have been really important to me were:

e Are there common solutions in the architectures of different ITSs and their parts,
and if so - what are they?

e What has led the designers to apply such solutions in the versions of their systems
that I have considered?

In the course of answering the above questions, I have analyzed different ITS
architectures that have been described in all the conference and workshop proceedings
of ITS and AIED conferences since 1997, as well as in the IJAIED journal's volumes
8 through 11. I have also consulted the proceedings of some other relevant
conferences and workshops, and some journals other that IJAIED that publish
ITS/AIED-related papers. The relevant numbers are shown in Table 1. I am aware of
the fact that I might have missed some other important work on ITS architectures.

Table 1. Statistics about the ITS-architectural patterns discovered so far

Total number of patterns discovered 7
Total number of papers analyzed 66
Total number of papers found to support some pattern(s) that have 42

been discovered
Number of papers that support individual patterns 5-12

128 Vladan Devedzic

4.2 An Example of Discovering a Pattern in ITS Architectures

The ITS-architectural pattern considered here is very simple, but also quite sufficient
to describe the main issues of patterns and the pattern discovery process. Note that,
generally, patterns need not necessarily be something complex and very sophisticated
- on the contrary, many software patterns are quite simple (see [8], [5], [18]). What is
definitely not simple is the pattern discovery.

The pattern described here is related to layered architectures of ITSs. Fig. 2 shows
two different, layered ITS architectures. Vassileva has proposed creating application
agents associated with applications, tutors, coaches, and learning environments, Fig.
2a [22]. Such application agents would represent specific applications (e.g., learning
environments) in much the same way personal agents represent their users. Just like
personal agents have knowledge of their users' goals, plans, and resources, an
application agent should have knowledge of the corresponding application's goals,
plans, resources, and actions. This way, the application agent mediates
communication of its application with the user and other entities in the external world,
just like the personal agent does the same on behalf of its user. The application agent
appears as extracted from its application in order to perform that role. The result is
quite a symmetric situation.

Curriculum Manager

Application Application’s y 4
Goals, Plans, .
Resources, Tutoring Agent
" Actions
Application Agent User's
[} Goals, Plans, y
~ Resources
Personal Agent Tool
|
User User

(a) (b)

Fig. 2. a) Introducing the application agent [22] b) Using translator in a plug-in component
architecture [15]

The translator layer in Ritter's plug-in tutor architecture [15] has a similar role,
Fig. 2b. It mediates communication between a commercial, off-the-shelf tool (such as
Microsoft Excel) and the tutoring agent. Such a translator provides students with the
ability to work with industry-standard software, while still getting intelligent guidance
from the tutor. This is very different from tightly integrated ITSs developed with
traditional tools.

A common detail in both of the above architectures - a pattern - is an inserted layer
that provides a new or specific functionality. The abstract structure of the pattern is
shown in Fig. 3. In the literature that has been analyzed in search for ITS-architectural
patterns, 12 different architectures that use this pattern have been found. These
architectures have been developed in various ITS/AIED subject areas, such as student
modeling, pedagogical agents, ontologies, collaborative learning systems, and so on.
Some examples (other than the two mentioned above) include [1], [9], [19] and [20].
Apart from these 12 architectures, traces of this pattern can be seen in some other

Applying Patterns to ITS Architectures 129

systems as well. If similar (but different) patterns also count, then more than 20
different ITS architectures that have been analyzed support this pattern.

Lk

Fig. 3. The pattern's structure

It is important to stress that the designers of different ITS architectures have used
this pattern probably without being aware of it and without thinking in the pattern-
oriented way. They were just applying it as a natural solution of the problems like
introducing a new functionality into a layered architecture, better decoupling of two
adjacent layers, the need to bridge domain-specific and domain-independent layers,
and the like. Essentially, all of them have implicitly used the pattern from Fig. 3 in
their architectures. The following section describes the pattern and its driving forces
explicitly.

5 The Inserted Layer Pattern

One typical way of describing a pattern is specifying the context where the pattern is
useful, the problem that the pattern addresses, the forces that drive the process of
forming a solution, and the solution that resolves those forces [5]. Specifying the
solution often involves showing a diagram, and sometimes the pattern's variants are
also described and pointers to related patterns are given [8], [18]. Most of these
"parts" of a pattern are usually shown in the form of simple statements.

All patterns have names. Naming a newly discovered pattern is never easy, since
the name itself has to reflect the pattern's purpose, the way it is applied, and still be
common enough to represent generalized solution of a certain typical problem. The
name I have given the pattern from Fig. 5 is Inserted Layer. Some patterns have
alternative names. Good alternative names for the Inserted Layer pattern are Slot and
Decoupler. The pattern's description is as follows.

Context. A layered ITS architecture. The layers can be functional modules,
autonomous agents, or parts of a larger module.

Problem. Either of the following:

e a new functionality is needed in the ITS or the architecture must be adapted to a

new requirement (e.g., [1]);

e the architecture of the ITS must clearly differentiate between domain-dependent

and domain-independent layers (e.g., [9], [20]);

130 Vladan Devedzic

e translation between adjacent layers of the ITS architecture is necessary (e.g., [11],
[15], [19D);

e mediation or negotiation between the layers or the educational agents is required
(e.g., [7], [22)).

Forces. Either of the following:

e existing layers should be better decoupled (e.g., [22]);

e the knowledge and operational levels in the architecture should be clearly
distinguished (e.g., [5], [20]);

e component-based, plug-in design needs, and interoperability between ITSs (e.g.,
[11], [15D.

Solution. Insert a new layer to implement and encapsulate the new functionality.

Check the trade-offs caused by the addition of the new layer (such as satisfying the

new requirement vs. possibly increasing the overhead, and increased modularity and

reusability vs. the necessary changes of the existing functional layers).

Diagram. See Fig. 3.

Variants. Sometimes the inserted layer either only receives some input from an

adjacent layer, or it only sends some output to it, but not both. Putting the inserted

layer on top of all the other layers instead in between some of them is possible, but

that's another pattern. In some cases, the inserted layer and some of the other

functional layers can share some knowledge, data, and other resources (e.g., the

student model, a common ontology, simulation parameters, and other resources; see

[11], for an example).

Related patterns. 12 other, already known patterns have been found to resemble

Inserted Layer. Some of them (Bridge, Facade, Mediator, Adapter, and Proxy) are

described in [8].

6 Discussion and Conclusions

During the analysis of ITS architectures that has been conducted in search of patterns,
six other patterns have been discovered along with Inserted Layer. They have got the
names Top, Cascade, T-join, Cross, Multiplexer, and Store. They will be all described
in the forthcoming larger paper.

A structured collection of interrelated patterns is often called a pattern language
[16]. Pattern languages cover particular domains and disciplines, and provide
specialists with vocabularies for talking about specific problems. The seven ITS-
arhitectural patterns that have been discovered represent the core of a pattern language
for ITS architectures. Such a pattern language can help ITS developers communicate
better, especially if new patterns continue to accumulate in that language over time.

As for using well-known patterns such as general design patterns, it is of primary
importance to ITS developers to understand that patterns do not require knowledge of
specific programming tricks or languages. They only require little extra effort in order
to understand the recurring nature of solutions to specific problems, recognize
instances of such problems in building ITSs, and find a suitable way to apply already
known solutions. The pay-off is definitely much larger that the extra effort: increased
flexibility, modularity, and reuse of ITS software, reduced development time, and
efficient, elegant, and effective design solutions.

Applying Patterns to ITS Architectures 131

Discovering patterns in ITS-related issues like ITS architectures is not a kind of
search for new modeling and design solutions. It is more like compiling what we
already know. Patterns enable us to see what kind of solutions ITS/AIED researchers
and developers typically apply when faced with common problems. By discovering
useful patterns, describing them in an appropriate way, and creating pattern
catalogues, we are actually unveiling common structures of frequently arising
problems and are representing the knowledge of their contexts, solutions, driving
forces and trade-offs in the form of explicit statements. Once we have such explicitly
represented knowledge and experience, we can get a valuable feedback - we can use
the patterns intentionally and systematically in other systems and applications, i.e. for
further developments. In that sense, AIED/ITS patterns and pattern languages can be
understood as many small tools for modeling and developing ITSs, and a catalogue of
AIED/ITS patterns would be a toolkit. Knowledge of patterns lets us design our
systems better.

References

1. Abou-Jaoude, S., Frasson, C.: Integrating a Believable Layer into Traditional ITS. In:
Lajoie, S.P., Vivet, M. (eds.): Artificial Intelligece in Education. IOS Press, Amsterdam /
OHM Ohmsha, Tokyo (1999) 315-324

2. Devedzic, V., Debenham, J.: An Intelligent Tutoring System for Teaching Formal
Languages. In: Goettl, B.R., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.): Lecture Notes
in Computer Science, Vol. 1452. Springer-Verlag, NY (1998) 514-523

3. Devedzic, V., Radovic, D., Jerinic, Lj.: The GET-BITS Model of Intelligent Tutoring
Systems. Int. J. of Continuing Eng. Education and Life-Long Learning, Special Issue on
Intelligent Systems/Tools in Training and Life-Long Learning (2000) forthcoming

4. Design Patterns Home Page: http://st-www.cs.uiuc.edu/users/patterns/patterns.html (2000)

5. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, MA
(1997)

6. Fowler, M., Scott, K.: UML Distilled: Applying the Standard Object Modelling Language.
Addison-Wesley, Reading, MA (1997)

7. Frasson, C., Martin, L., Gouarderes, G., Aimeur, E.: LANCA: A Distance Learning
Architecture Based on Networked Cognitive Agents. In: Goettl, B.R., Halff, HM,,
Redfield, C.L., Shute, V.J. (eds.): Lecture Notes in Computer Science, Vol. 1452.
Springer-Verlag, NY (1998) 594-603

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA (1995)

9. Ikeda, M., Kazuhisa, S., Mizoguchi, R.: Task Ontology Makes It Easier To Use Authoring
Tools. Proceedings of The Fifteenth International Joint Conference on Artificial
Intelligence. Nagoya, Japan (1997) 193-200

10. Johnson, W.L., Rickel, J., Lester, J.C.: Animated Pedagogical Agents: Face-to-Face
Interaction in Interactive Learning Environments. Int. J. of Artificial Intelligence in
Education 11 (2000) to appear

11. Koedinger, K.R., Suthers, D.D., Forbus, K.D.: Component-Based Construction of a
Science Learning Space. Int. J. of Artificial Intelligence in Education 10 (1999) 38-56

12. Lester, J.C., Towns, S.G., Fitzgerald, P.J.: Achieving Affective Impact: Visual Emotive
Communication in Lifelike Pedagogical Agents. Int. J. of Artificial Intelligence in
Education 10 (1999) 87-102

13. Mizoguchi, R., Bourdeau, J.: Using Ontological Engineering to Overcome Common Al-
ED Problems. Int. J. of Artificial Intelligence in Education 11 (2000) to appear

132

14.

15.

16.
17.
18.

19.

20.

21.

22.

Vladan Devedzic

Murray, T.: Authoring Knowledge-Based Tutors: Tools for Content, Instructional
Strategy, Student Model, and Interface Design. The J. of the Learning Sciences 7 (1998) 5-
64

Ritter, S.: PAT Online: A Model-Tracing Tutor on the World-Wide Web. Proceedings of
the Workshop "Intelligent Educational Systems on the World Wide Web". Kobe, Japan
(1997) 11-17

Schmidt, D., Fayad, M., Johnson, R.E.: Software Patterns. Comm. of The ACM 39/10
(1996) 37-39

Schmidt, D.: Design Patterns and Pattern Languages.
http://siesta.cs.wustl.edu/~schmidt/patterns.html (2000)

Shaw, M.: Patterns for Software Architectures. In: Coplien, J., Schmidt, D. (eds): Pattern
Languages of Program Design. Addison-Wesley, Reading, MA (1995) 453-462

Shaw, E., Ganeshan, R., Johnson, W.L., Millar, D.: Building a Case for Agent-Assisted
Learning as a Catalyst for Curriculum Reform in Medical Education. Proceedings of the
Workshop "Animated and Personified Pedagogical Agents". Le Mans, France (1999) 70-
78

Tecuci, G., Keeling, H.: Developing Intelligent Educational Agents with Disciple. Int. J. of
Artificial Intelligence in Education 10 (1999) 16-35

van Joolingen, W., King, S., De Jong, T.: The SimQuest Authoring System for Simulation-
Based Discovery Learning. In: du Boulay, B., Mizoguchi, R. (eds.): Artificial Intelligence
in Education. IOS Press, Amsterdam / OHM Ohmsha, Tokyo (1997) 79-86.

Vassileva, J.: Goal-Based Autonomous Social Agents: Supporting Adaptation and
Teaching in a Distributed Environment. In: Goettl, B.R., Halff, H.M., Redfield, C.L.,
Shute, V.J. (eds.): Lecture Notes in Computer Science, Vol. 1452. Springer-Verlag, NY
(1998) 564-573

Andes: A Coached Problem Solving
Environment for Physics *

Abigail S. Gertner! and Kurt VanLehn?

! The MITRE Corporation, Bedford, MA 01730
2 LRDC, University of Pittsburgh, Pittsburgh, PA 15260

Abstract. Andes is an Intelligent Tutoring System for introductory col-
lege physics. The fundamental principles underlying the design of Andes
are: (1) encourage the student to construct new knowledge by providing
hints that require them to derive most of the solution on their own, (2)
facilitate transfer from the system by making the interface as much like a
piece of paper as possible, (3) give immediate feedback after each action
to maximize the opportunities for learning and minimize the amount of
time spent going down wrong paths, and (4) give the student flexibility
in the order in which actions are performed, and allow them to skip steps
when appropriate. This paper gives an overview of Andes, focusing on
the overall architecture and the student’s experience using the system.

1 Introduction

This paper is an overview of problem solving in Andes — an Intelligent Tutoring
System for introductory college physics. Andes interacts with students using
coached problem solving [12], a method of teaching cognitive skills in which the
tutor and the student collaborate to solve problems. In coached problem solving,
the initiative in the student-tutor interaction changes according to the progress
being made. As long as the student proceeds along a correct solution, the tutor
merely indicates agreement with each step. When the student gets stuck or makes
an error, the tutor helps the student overcome the impasse by providing hints
that lead the student back to the correct solution path.

The fundamental principles underlying the design of Andes are: (1) encourage
the student to construct new knowledge by providing hints that require them
to derive most of the solution on their own, (2) facilitate transfer from the
system by making the interface as much like a piece of paper as possible, (3) give
immediate feedback after each action to maximize the opportunities for learning
and minimize the amount of time spent going down wrong paths, and (4) give the
student Oexibility in the order in which actions are performed, and allow them to

* This research was supported by ARPA’s Computer Aided Education and Training
Initiative under grant N660001-95-C-8367, by ONR’s Cognitive Science Division un-
der grant N00014-96-1-0260, and by AFOSR’s Artificial Intelligence Division under
grant F49620-96-1-0180. The authors would like to thank the members of the Andes
group.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 133-[142] 2000.
© Springer-Verlag Berlin Heidelberg 2000

134 Abigail S. Gertner and Kurt VanLehn

Authoring Environment Student Environment

Graphical author erbench
interface Problem - |
Presentation

A

Assessor (BN)

Physics ‘ A / y
Rules \ h Action
Physics Solution »| Interpreter
Problem —>@ > Student Model
Solver
Problem
Definition

A

Help System | tutoring strategy |
Procedural Conceptual Example
help help study help

Fig. 1. The Andes System Architecture

skip steps when appropriate. This paper gives an overview of the system that we
designed following these principles, focusing on the overall architecture and the
studentlk experience using Andes. Several of the modules that Andes comprises
are described in other papers and so we will not discuss them in detail here.
In particular, we will not talk at all about the Self-Explanation coach or the
Conceptual help system, which are described in [4,[5] and [I] respectively.

The following section provides a brief summary of the Andes architecture and
implementation. Section [3] gives an example of the typical student interaction
with Andes while solving a problem. In Section [we describe the underlying
system for providing feedback and help. Finally, in Section B we present some of
the work we have done to evaluate Andes with students.

2 Andes System Overview

The Andes project began in September 1995, and is a collaboration between
the University of Pittsburgh and the US Naval Academy. Andes is implemented
in Allegro Common Lisp and Microsoft Visual C++ and runs on Pentium PCs
under Windows 95.

Andes has a modular architecture, as shown in Figure Il The left side of
Figure [shows the authoring environment for creating new problems. Prior to
run time, a problem author creates both the graphical description of the problem,
and the corresponding coded problem dellnition. Andeslproblem solver uses this
delnition to automatically generate a model of the problem solution space called
the solution graph.

The right side of the Ogure shows the run-time student environment. The
Workbench is the graphical interface with which the student studies examples

Andes: A Coached Problem Solving Environment for Physics 135

and solves physics problems. The Workbench communicates with the Action
Interpreter, which looks up the studentll entries in the solution graph and pro-
vides immediate feedback as to whether the entries are correct or incorrect. More
detailed feedback is provided by AndeslHelp System [12]. Both the Action Inter-
preter and the Help System refer to the student model to make decisions about
what kind of feedback and help to give the student. The central component of
the student model is a Bayesian network that is constructed and updated by the
Assessor, and provides probabilistic estimates of the studentls mental state [3].
The student model also contains information about what problems the student
has worked on, what interface features they have used, and what help they have
received from the system in the past.

3 Solving Problems with Andes: An Example

One of the principles underlying the design of Andes was that the interface
ought to be as much like a piece of paper as possible, so as to facilitate fading
of tutorial support as students become more familiar with the physics domain,
and the eventual transfer from solving problems with Andes to solving problems
on paper. We attempted to keep the number of structured entry Oelds to a
minimum, since every piece of structure in the interface might serve as scallolding
to the student, on which they could become dependent. As a result, the interface
initially appears quite simple, consisting of two main entry panes (Figure[2), in
which students can draw diagrams (upper left) and enter equations (lower right),
as well as the variable dellnitions pane, located above the equation pane, and
the hint window, below the diagram pane on the left.

3.1 Drawing Diagrams

When a problem is Orst opened, the diagram pane contains a statement of the
problem and a (read-only) picture of the problem situation. The lower part of the
pane is initially blank. This area is provided for the student to perform a qual-
itative analysis of the problem before they begin working out the quantitative
solution (in fact, some problems only ask for the qualitative analysis and do not
require the student to write any equations). This type of qualitative reasoning
is an important part of physics problem solving. It is used by expert physicists
both in talking about simple physics problems [2] and when discussing real-world
research results [10]. In addition, requiring qualitative reasoning in solving prob-
lems has been found to uncover studentsl misconceptions better than allowing
students to use algebraic reasoning alone [11, [§].

Students use the drawing tools to the left of the diagram pane to enter
elements of a free body diagram such as force vectors. The student can also draw
motion vectors such as velocity and acceleration. To draw a vector, the student
clicks and drags the mouse in the diagram pane, rotating the vector until it
points in the desired direction and then releasing the mouse. Other items that
can be included in a diagram include coordinate axis systems, angles between

136

Abigail S. Gertner and Kurt VanLehn

TTRANDES Physics Workbench - [P11-2-Solution. fbd]

H File Edit Diagram “ajiable “iew Help &) x|
EE e E =
. . | Vaizbles |
i A 2000-kg car in neutral at the top of a 20-degree inclined -
«b|| driveway 20 m long slips its parking brake and rolls down. Name | Definition #-Lomp | -Coy

Assume that the driveway is frictionless,

At what speed will it hit the garage door?

T0
R
I me
nf Fi

car starts roling

ar hits garage door

mass of car

magnitude of the Weight For...

Answer: I—
A

20m

e S

-

208

L]

llE@lel
3

a

Think about what you need to do in order to
have a complete free body diagram for the car.

=

s

1

Far Help, press F1

Explain further Hide

~

[[NUM S

Fig. 2. The Andes problem solving interface

vectors and axes, and the radius of a circular path. All of these are drawn with
the mouse using the tools on the left of the screen.

After the student has drawn an item in the diagram window using the mouse,
a dialog box appears in which the student must enter information dellning the
object they have just drawn. This departure from the “piece of paper” principle
is necessary so that Andes can give appropriate feedback based on not just what
the student drew (eg. a vector pointing straight up) but also what they meant
by that entry (eg. a normal force exerted by the driveway on the car).

3.2 Variable Definitions

Another signillcant way that the Andes interface dillers from a piece of paper
is in the dellnition of variables and how they are used in equations. When a
student is solving a physics problem on paper, she can start out right away by
writing down an equation, such as F = m x a without explicitly stating what F',
m, and a refer to. Andes, on the other hand, requires all quantities to be dellned
explicitly before they may be entered in equations. This enforces a systematic
approach to problem solving which can greatly reduce the number of careless
mistakes students make.

Variables may either be dellned by assigning a label to an item in the diagram,
or by using a special purpose variable dellnition menu. Certain quantities (such
as scalar quantities like speed) cannot be drawn in a diagram, so the variable
menu must be used to dellne variables for these quantities. Using the variable
menu involves choosing the type of quantity to be dellned and then [Olling in a
dialog box similar to the ones for diagram entries.

Andes: A Coached Problem Solving Environment for Physics 137

Whether a variable was dellned as a diagram entry or using the variable
menu, after it has been dellned it will appear in the variable dellnitions pane.
This pane lists all dellned variables with their dellnitions and, for vectors, the
names of their components.

3.3 Entering Equations

Equations are entered in the text delds in the lower right pane of the Workbench,
a single equation per line. There is no structured equation editor in Andes.
Students use a conventional syntax for entering equations (operators *, /, +,
and -; " for exponentiation; _ for subscripts). Students can enter anything they
want into the equation Oeld and Andes will attempt to parse it and determine
whether it corresponds to a correct equation [6]. There may be more than one
possible parse for an equation, in which case Andes will look up whether any of
the parses represents a correct equation.

Variables in equations must Orst be dellned so that they are listed in the
variable pane. If Andes [Inds tokens in the equation that can only be interpreted
as undellned variables, it displays an error message listing those tokens. If the
equation cannot be parsed for some other reason, it displays an error message
informing the student that it could not interpret the entry. Otherwise, Andes
gives simple correct/incorrect feedback on the equation entry.

4 Feedback and Help

As illustrated in Figure[] the Action Interpreter is the central module of Andes.
It is responsible for getting student input from the Workbench, recording the
input in its databases, and returning feedback to the Workbench which includes
information about whether the studentls action was correct or incorrect, as well
as hints and help messages to be displayed. The following sections describe how
the Action interpreter and related modules do their jobs.

4.1 The Student Model

Modeling a student in an ITS involves a great deal of inherent uncertainty re-
garding not only the studentls beliefs and goals, but also the level of knowledge
that she has about the domain. There is additional uncertainty in Andes since
the student is not constrained to perform actions in a particular order. This
means that even if Andes has not observed the student performing a certain ac-
tion, it cannot assume that the student doesnlt know how to perform that action
because the student may intend to perform it in the future. To address these mul-
tiple sources of uncertainty, Andesllstudent model combines information about
the current state of the problem solving process with long-term assessment of the
studentls knowledge of physics in a probabilistic representation using Bayesian
networks [3].

138 Abigail S. Gertner and Kurt VanLehn

Each physics problem is represented by a separate Bayesian network. As a
student moves from one problem to the next, Andesl assessment of her gen-
eral physics knowledge is updated and used to initialize the model for the next
problem. Thus the modeling of problem-specific knowledge about each problem
is related through the domain-general assessment of physics knowledge that the
problems have in common.

The Bayesian network for each problem is constructed from a data struc-
ture called a solution graph which represents alternative solution paths for each
problem, including some that involve “buggy” rules and thus represent typical
incorrect student solutions. AndesllBayesian networks may have anywhere from
around 100 to over 200 nodes, depending on the complexity of the problem. Us-
ing a network that represents the entire solution space for the problem means
that the student model always has estimated probability values, even for steps
that havenlt been explicitly observed. This supports the Andes design principle
of allowing the student maximum [exibility in performing solution steps in any
order and skipping steps.

Bayesian networks provide us with a principled framework for combining
all of the dillerent sources of uncertainty about the studentls problem-solving
processes. For example, if a given fact may be derived in two dillerent ways,
and a student is observed to know the fact, the Bayesian network provides a
straightforward way of sharing the credit for that knowledge between the two
alternative derivations. Furthermore, if one of the derivations is known to be less
likely than the other (e.g., because it depends on a rule that the student probably
does not know), then the credit will be apportioned accordingly — giving more
weight to the derivation that the student is likely to know.

The Action Interpreter interacts with the Bayesian network in two ways.
First, when Andes observes the student performing an action that corresponds
to a node in the Bayesian network, the value of that node is clamped to True,
and the network is updated to rellect the new evidence. Second, when Andes
needs to respond to the student in a way that depends on some aspect of her
current knowledge or mental state, the Action Interpreter queries the Bayesian
network to Ond out the current probabilities associated with the relevant nodes.
This can be used for resolving ambiguities in determining the studentll current
goal, as well as for determining the appropriate level of help to give for part of
the problem.

4.2 Immediate Feedback

When a student makes an entry in Andes, the workbench always responds with
immediate Dag feedback by changing the color of the entry — green for correct and
red for incorrect. This feedback is generated using information from the solution
graph. Here, we will describe how the feedback is generated for diagram entries
and variable dellnitions. Feedback for equation entries is more complicated, and
is described in some detail in [6].

Each student entry may rellect several dillerent pieces of information, as
represented by the multiple Oelds of the dialog boxes for dellning diagram entries.

Andes: A Coached Problem Solving Environment for Physics 139

For example, the dellnition of a force vector includes lelds for the type of force,
the object it is acting on, the agent of the force, and its direction. When the
student enters a dellnition, the Action interpreter looks at the information in the
solution graph to see if any quantity exists there with exactly the same features
as the studentls entry. If it Onds such an entry, the dialog box disappears and
the entry turns green on the screen. If no matching quantity is found, the Action
Interpreter has to determine what part of the entry is incorrect. To do this, it
attempts to determine what the student was most likely to have been trying to
enter, and then (nds the features that diller between that intended entry and
the actual entry.

Finding the most likely intended entry is done using a combination of match-
ing features and probabilities. The solution graph quantity with the most features
in common with the studentl} entry, and the highest probability in the Bayesian
network, is selected as the intended entry. This entry is then compared to the
studentls entry to Onds those features that diller between the two. Andes then
turns red only the Oelds in the dialog box corresponding to the mismatched fea-
tures. This gives the student specillc feedback on what part of their entry was
in error.

4.3 What’s Wrong with That?

As noted earlier, one of the design principles for Andes was to encourage con-
structive, as opposed to passive, learning. Therefore, Andes gives away as little
information as possible unless the student asks for it. In the case of errors, Andes
always starts by giving Oag feedback. This feedback is accompanied by a hint
or error message only in the case of simple syntactic errors. For all other errors,
the student is expected to attempt to [x the problem on her own if she can.

If the student is not able to [Ix an erroneous entry on her own, she can select
the entry and ask “whatls wrong with that?” using a menu, and Andes will
respond with a short hint intended to point the student toward the feature of
her entry that was incorrect. For example, if the entry was an acceleration vector
labeled [hlwhose direction was incorrect, the hint might say “think about the
direction of [h{l”

When a non-specillc hint is given, there will also be a link labelled “Explain
Further” in the hint window, which the student can click on to get more infor-
mation. Clicking repeatedly on “Explain Further” will eventually result in a hint
that explicitly tells the student how to 0x their entry. For example, the bottom-
out hint for the direction of the acceleration vector might be “The direction of
[hOis horizontal and to the left.”

4.4 Procedural Help

Procedural help is the part of Andeslhelp system that is responsible for generat-
ing a hint when the student gets stuck and asks for help [7]. Hints are generated
based on the state of the student model at the time the student asks for help. To
produce a hint, Andes Orst selects a node in the solution graph that will be the

140 Abigail S. Gertner and Kurt VanLehn

topic of the hint. The topic node should represent a proposition that is relevant
to what the student has been doing recently and that the student is likely to
want to address next. The hint topic node is selected by Orst identifying a goal
node in the solution graph that is likely to be the reason for the studentl most
recent action, and then following a path from that goal to Ind a node represent-
ing an action that the student has not yet done and, according to the Assessor,
probably does not know about (this procedure is described in more detail in [7]).

Once a hint topic node has been selected, the hint template belonging to the
proposition the node represents is instantiated with the contextually relevant
information from the problem to generate an English string to be displayed to
the student. As in the case of the “whatls wrong with that” hints, the initial
hint given for a particular topic node will be quite general, to encourage students
to recover from the impasse on their own. Students can then click on a link to
get successively more specillc hints until they are able to continue solving the
problem.

5 Evaluations of Andes

Andesldevelopment has been carried out in conjunction with an ongoing series
of formative evaluations, which were used to assess the usability of the interface,
suggest new features, and evaluate the ellectiveness and clarity of hints and help
messages. Prototype versions of the system have been used by students at the US
Naval Academy every semester since the Fall of 1996. Additionally, several more
in-depth user studies were carried out at the University of Pittsburgh during
that time.

At the Naval Academy, students taking the introductory physics course were
asked to use Andes to do some of their homework. To do this, each student
had to download the Andes installation Ole from the local network, install it
on their personal computer in their dorm room, and start using on their own
after just a short demonstration. Right away, this required us to implement an
easily used installation program, to make sure that the Andes interface was
simple enough that students could get up and running without much help, and
to include extensive on-line help Oles that they could access while they were
using the program.

We used several methods for getting information from students during these
formative evaluations. First, they were encouraged to enter comments in a special
dialog box as they worked with Andes. We found that students did not enter
comments very often, but when they did we were able to bring them to the
attention of the instructors who would quickly address the studentls question
or concern. Second, students Olled out a questionnaire about their experience
using the program. These questionnaires turned out to be not very informative
because students did not give much detailed information about what they would
like to see changed in the system. Third, they communicated frequently with
their instructors about problems they were having using the system. This was
extremely important as it allowed the instructors to develop a very complete

Andes: A Coached Problem Solving Environment for Physics 141

overall view of the problems people were having and what we could do to Ox
them. Finally, all student activity within Andes is recorded in log Oles which the
students were prompted to upload each time they exited the program. These
log Oles, including studentsll comments as well as a complete record of every
action performed on the interface, provided a wealth of information to guide us
in improving the system. Log Oles were also used by the instructors to get a
better sense of what a student had been doing when they came in for extra help.

At the University of Pittsburgh our approach in evaluating the system was
to record a small number of sessions with students using Andes, and to have
the students “think out loud” as they worked with the program. We could then
identify signillcant events in the session records where students failed to learn
something due to a aw in Andeslhelp, and rank them according to frequency
and importance. We used these events as targets for improving the system and
tested our changes by performing the same actions on the new version of Andes
and seeing if the help it gave had improved. In this way, we were able to Ix many
of the major problems students had both with the interface design and the help
system.

In the Fall of 1999 we performed a summative leld evaluation of Andes at the
Naval Academy. Andes was used for four weeks by 173 students in eight sections
of the Naval Academyld introductory physics course. At the end of this time, they
were given a midterm exam covering material that was taught by Andes (and
by instructors during course lectures and sections). The studentsl performance
on the midterm was compared to a control group of 162 students whose sections
did not use Andes. The results of this comparison were encouraging. Students
who used Andes performed 2.9 percent (1/3 of a letter grade) better on average
than students who did not use Andes (p < 0.033). This compares favorably with
other successfully evaluated tutoring systems. For instance, the PUMP Algebra
Tutor had an elect sizd] of 0.30 on standardized math tests [J], whereas Andes
ellect size was 0.20 on the normal exam used by the whole course. Although
the PUMP Algebra Tutor also had an ellect size of approximately 1.00 on tests
designed for its content, we did not use such tests in our evaluation of Andes.

Perhaps more interestingly, when the Andes results are broken down by the
studentsmajor, we see that the ellect of Andes for humanities majors was the
largest (7.3 percent), with the ellect for science majors next largest (3.9 percent).
In the case of the engineering students (who were also taking a course on statics
concurrently) there was actually a small (1.3 percent) negative ellect for Andes.
Thus, Andes appears to be most ellective with students who are most likely to
need help learning physics.

6 Conclusions

In this paper we have provided an overview of the Andes system, showing how
we were guided by the four design principles listed in the Introduction. We have

! Effect size is calculated as the difference between the score of the experimental group
and the score of the control group, divided by the standard deviation of the control.

142

Abigail S. Gertner and Kurt VanLehn

learned a great deal in the process of developing and deploying Andes, both
about designing an ITS to teach complex problem-solving skills and about the
integration of such a system into an existing instructional environment. Future
work on this project should continue to yield many more insights (see [13] in
this volume).

References

1]

2]

3]

P. L. Albacete and K. A. VanLehn. The conceptual helper: An intelligent tutoring
system for teaching fundamental physics concepts. In Proceedings of the Fifth
International Conference on Intelligent Tutoring Systems, 2000.

M. Chi, P. Feltovich, and R. Glaser. Categorization and representation of physics
problems by experts and novices. Cognitive Science, 5:121-152, 1981.

C. Conati, A. S. Gertner, K. VanLehn, and M. J. Druzdzel. On-line student
modeling for coached problem solving using Bayesian networks. In Proceedings
of UM-97, Sixth International Conference on User Modeling, pages 231-242, Sar-
dinia, Italy, June 1997. Springer.

C. Conati and K. VanLehn. Teaching meta-cognitive skills: implementation and
evaluation of a tutoring system to guide self-explanation while learning from ex-
amples. In In s Proceedings of AIED 99, 9th World Conference of Artificial
Intelligence and Education, Le Man, France, 1999.

C. Conati and K. A. VanLehn. Further results from the evaluation of an intelligent
computer tutor to coach self-explanation. In Proceedings of the Fifth International
Conference on Intelligent Tutoring Systems, 2000.

A. S. Gertner. Providing feedback to equation entries in an intelligent tutoring
system for physics. In Proceedings of the 4th International Conference on Intelli-
gent Tutoring Systems, San Antonio, August 1998.

A. S. Gertner, C. Conati, and K. VanLehn. Procedural help in Andes: Generating
hints using a Bayesian network student model. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, Madison, WI, 1998.

J. I. Heller and F. Reif. Prescribing effective human problem-solving processes:
Problem descriptions in physics. Cognition and Instruction, 1(2):177-216, 1984.

K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent
tutoring goes to school in the big city. In J. Greer, editor, Proceedings of the
7th World Conference on Artificial Intelligence and Education, pages 421-428,
Charlottesville, NC, 1995.

A. Van Heuvelen. Learning to think like a physicist: A review of research-based
instructional strategies. American Journal of Physics, 59(10):891-897, 1991.

A. Van Heuvelen. Overview, case study physics. American Journal of Physics,
59(10):898-907, 1991.

K. VanLehn. Conceptual and meta learning during coached problem solving.
In C. Frasson, G. Gauthier, and A. Lesgold, editors, Proceedings of the Third
International Conference on Intelligent Tutoring Systems ITS 96, pages 29-47.
Springer, 1996.

K. VanLehn, R. Freedman, P. Jordan, R. C. Murray, R. Osan, M. Ringenberg,
C. Rosé, K. Schulze, R. Shelby, D. Treacy, A. Weinstein, and M. Wintersgill.
Fading and deepening: The next steps for andes and other model-tracing tutors. In
Proceedings of the Fifth International Conference on Intelligent Tutoring Systems,
2000.

A Collection of Pedagogical Agents
for Intelligent Educational Systems

Ruddy Lelouche

Département d’informatique, Université Laval, Québec G1K 7P4 CANADA
Tel.: (418) 656 2131, ext. 2597 Fax: (418) 656 2324
Ruddy.Lelouche@ift.ulaval.ca

Abstract. This paper presents an original modelling of the tutoring knowledge
in an intelligent educational system based on a collection of interacting agents,
in particular in a problem-solving domain. After a brief description of the
knowledge modelling and a generic functioning framework for ITSs in
problem-solving domains, we introduce the tutoring knowledge modelled as
pedagogical agents. We show how these agents interact with one another and
with the student, and discuss tools which may help optimise decisions about
how an agent takes control or fulfils a given pedagogical function. To illustrate
our point of view, we then present and comment on a tutoring dialogue in
detail, using as background a problem-solving exercise. Such a interactive-
agent-oriented model should both facilitate the implementation of the tutoring
knowledge in an intelligent educational system and help improve the student’s
comprehension through better pedagogical interactions.

Introduction

For several decades, computers have been used in the development of educational
systems. In particular, IA-based systems have evolved, being successively called
intelligent computer-assisted instruction (ICAI) systems, intelligent tutoring systems
(ITSs), or more lately interactive learning environments (ILEs). In the first projects,
research has been focused more on the domain knowledge representation than on the
tutoring knowledge: in many first experimental systems, pedagogical procedures were
integrated into the domain knowledge [3]. However, interest for an explicit
representation of tutorial knowledge has been continuously growing: concepts like
student model [4], pedagogical diagnosis [14] and tutoring expertise [11] have been
widely discussed since their introductions into the ICAI world. Most Al
representation paradigms have been used: production rules, networks, frames, etc.
More recently, the multi-agent-system concept was adapted to ITSs, giving way to an
agent-based approach to represent the pedagogical knowledge and its use for tutoring
[12]. In that context, while working on a specific ITS, Lelouche and Morin also con-
ducted their reflections about how to help the system to generate simple and
meaningful pedagogical interactions and the tutoring knowledge to be as general and
portable as possible. They thus came up with the concept of know-how domains or
KH-domains, in which the student should acquire, besides domain theoretical
elements, some kind of problem-solving skills. They then applied the KH-domain
concept to ITSs [10], yielding KH-ITSs (SCHOLAR [2], although an ICAI system,
was not a KH-ITS: there was no or little problem-solving involved). The goal of this
paper is to generalise their work to other kinds of intelligent educational systems
(IESs), in particular to ILEs and computer-supported collaborative learning (CSCL),

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 143-153, 2000.
Springer-Verlag Berlin Heidelberg 2000

144 Ruddy Lelouche

and to emphasise the system—student interactions and the agent—agent interactions in
such systems.

We first recall how knowledge is defined and structured in a KH-domain and how
generic operating modes can be based on that structure (section 1). Next, we
introduce our tutoring knowledge model using the concept of pedagogical agents
(section 2), and examine some of their general characteristics (section 3). We then
give excerpts of a tutoring session in cost-engineering based on our approach,
including some examples of student-related knowledge involved in agent interactions
(section 4).

1 Knowledge Representation and Operating Modes

1.1 Domain Knowledge and Problem-Solving Knowledge

We deal here with the knowledge to be acquired by the student. In the particular
case of KH-domains, the domain to be taught clearly encompasses both domain theo-
retical elements and practical problem-solving skills. We therefore think that knowl-
edge to be taught in a KH-ITS or in a KH-ILE ought to be divided in the same way.

In a KH-domain, we restrict the name domain knowledge (DK) to that part
containing all theoretical and factual aspects of the knowledge describing the domain
to be taught. Although its structure can be varied, DK typically may include concepts,
entities, relations, possible use restrictions, objects, semantic networks, facts, rules,
etc. This is very similar to what is often called declarative knowledge (note that rules
are ambiguous in that respect). By opposition, the problem-solving knowledge (PSK),
specific to KH-domains, henceforth to KH-ITSs and KH-ILEs, contains all
computational and inferential dynamic processes used to solve a problem, i.e. a
practical situation based on DK [8]. PSK is very close to the more usual procedural
knowledge, although some declarative concepts are part of PSK (see 4.2).

1.2 Generic Operating Modes

In most educational systems, depending on what he wants to do, the student can
use it in either of two ways: either to augment or improve his knowledge, or to check
the correctness of what he thinks he has learnt. These correspond to two fundamental
pedagogical missions of the system. In the former case, the knowledge the student
wants to acquire or improve goes obviously to the student. In the latter case, the
student provides fo the tutor the knowledge that he wants to be assessed. It is worth
noting that the “tutor” role may be played either by the system (ITS or ILE with
mixed-initiative control) or by another student (collaborative learning or peer-help
context). But we contend that the basic student’s goal is fundamentally the same.

Besides, like that of a human tutor in a KH-domain, the objective of a KH-ITS or
ILE is to help the student master the knowledge in both DK and PSK. Therefore, for
whichever reason the student wants to use the system, the involved knowledge may
be either essentially factual and theoretical (DK) or essentially practical and applied
to a problem (PSK). As a result, these orthogonal considerations yield altogether four
distinct generic operating modes, briefly presented in table 1 (see details in [13]).

Certainly, these operating modes do not imply that learning involves only some
transfer of knowledge. Indeed, it takes place in an environment which is situated,
must keep the student motivated, etc. But we consider these as being modalities or

A Collection of Pedagogical Agents for Intelligent Educational Systems 145

constraints of learning rather than a learning goal per se; other examples of such
modalities are collaborative learning [15], peer help [7; 17], teacher training, taking
an exam, etc. This is why, in table 1, we deal with a tutor and a learner rather than
with a system and a student, which would be unduly restrictive: in a collaborative
environment, a human student may alternatively act as learner or as tutor. Thus, in
any operating mode, some tutoring activities have to take place, so that the selected
mode may help the student attain his goal while simultaneously coping with the
imposed modalities or constraints. In particular, to facilitate the student’s learning and
motivation, some activities may involve interactions usually associated with another
operating mode, i.e. trigger a temporary mode shift. This brings us to the tutoring
knowledge.

Learner’s goal To learn new material To assess his learning
Knowledge
destination Learner Tutor (human or system)
Main Domain-presentation mode: Domain-assessment mode:
Domain The learner asks the tutor some The tutor basically prompts the
type information about a domain element; | learner to develop a domain element;
knowl- | the tutor reacts by transferring to the |the learner thus expresses his
of edge |learner the required information or |understanding of that element.
knowledge.
knowl- | Problem Demonstration mode: Exercising mode:
edge | -solving The learner asks the tutor to solve a The tutor prompts the learer to
. . solve a practical problem; the learner
. practical problem or to show him a then solves it step by st howine his
involved | knowl- | given resolution step while he solves | -'CR SOLVES 1L SIep by step, showing hus
edge understanding of the required problem-
such a problem. . .
solving knowledge and associated
domain knowledge.

Table 1: Operating modes in a KH-ITS.

2 Tutoring Knowledge as Pedagogical Agents

2.1 Definition and Purpose of the Tutoring Knowledge

Tutoring knowledge (TK) contains all tutoring entities enclosed in the system. It is
not directly related to DK or PSK, for it is not to be learned by the student. Instead, it
is there to help the student understand, assimilate, and master more efficiently the
knowledge included in DK and PSK [5]. Because of its reusability, we expect TK to
be the same for a variety of KH-domains, for a given type of educational system.

The main system activities using TK are thus:

* ordering and formatting the topics to be presented to the student;

* monitoring a session, i.e. triggering the various tutoring processes according to the
tutoring goal and the student’s actions; such monitoring may imply giving
explanations, asking questions, changing the type of interaction, etc.;

¢ in a KH-domain, while the student is solving an exercise, monitoring the student’s
problem-solving activities as required by the student or the tutoring module;

* in a collaborative environment, monitoring the activities of the student playing the
tutor’s role at that instant, as above;

¢ continuously analysing the progress of the student(s).

146 Ruddy Lelouche

2.2 Introduction of Pedagogical Agents

Because of its dynamic nature, like PSK, TK will be made of process-like entities.
However, the tutorial processes are not predetermined, because of the need for adap-
tive reactions to the students’ actions (acting as a learner, a companion, a helper, a
tutor, etc.). Moreover, to keep their attention and cope with the various modalities and
constraints, the tutoring module must be able to use a variety of stimuli, of ways to
present a topic, and of explanations. This is why the concept of pedagogical or tutor-
ing agent, able to interact and cooperate with a student, is appropriate to model TK.

As we see it, the goal of every tutoring agent is to perform a given tutoring
function for the student’s benefit. Some of these functions are: to present or to explain
a subject element, to give an example, to answer a student’s question, to evaluate the
student’s answer to a system-asked question, to diagnose a student’s behaviour. A
tutoring function is ultimately defined by its specification, i.e. the data that it
processes or on which it operates, and the output that it provides as a result. To each
agent we may thus initially associate one tutoring function and to each tutoring
function one interaction with a student (the unique student in a standalone ITS).

Some examples of agents in a KH-domain environment may thus be the
following, named after the function they are expected to perform [13]: domain
presenter, domain assessor, problem solver, exerciser, question asker, problem
selector, topic chooser, problem step solver, or explanation provider.

3 More About Pedagogical Agents

3.1 Interactions between Pedagogical Agents: Types of Agents

As “tutoring” and “agent” suggest, the ultimate purpose of tutoring agents is to
communicate with the student(s) in order to efficiently fulfil their respective tutoring
function, as part of the system pedagogical mission. However, for software engi-
neering reasons, we shall modularise complex tutoring functions into simpler ones.

As a result, supposing that each system agent is still specialised in a particular
tutoring function, it may have to count on other agents specialised in different
functions, then used as service functions, to perform its own tutoring function and
produce its expected “pedagogical output”. An agent may thus be put forward either
by a student’s action/behaviour or by a higher level function performed by another
agent. For the same reason, the result of an agent’s action may be used either by a
student or by the higher level agent that used it.

In the case of a KH-environment, we then have three types of agents.

* Tutoring agents (TA) interact with a student and perform real tutoring functions.
Examples are the problem solver, the domain presenter, the domain assessor, and
the exerciser, each in charge of one operating mode (in a collaborative environ-
ment, the operating mode at a given time is not necessarily the same for all
students).

» Service agents perform functions on behalf of other agents; they may interact with
a student or not. The problem selector, the topic chooser and the question asker are
service agents: their sole action cannot be a student-related tutoring function.

* Finally, mixed agents may be triggered in either way depending on the
circumstances. Such are the problem step solver and the explanation provider.

A Collection of Pedagogical Agents for Intelligent Educational Systems 147

The four tutoring agents (TAs) may also help one another, in particular when mode
shifts take place (see 3.3). Our division of pedagogical agents in three categories is
very close to that used for agents in the cognition-based architecture [1].

3.2 Scope of Agents

When a pedagogical agent takes control, both the scope of the subject matter
covered and the level of the data processed by that agent must be kept under control,
at a lower level than that of the task of the relieved agent. Therefore, the function
performed by an agent may be associated to an abstraction level, defined by the level
of the entities on which it operates. This abstraction level is also that of the agent’s
output, the result of its action. Our approach is in fact close to Tambe’s [16].

We conjecture that the notion of agent scope, based on the abstraction and com-
plexity levels, will or can be used as a general foundation to circumvent the possible
problem of infinite recursive transfers of control between agents [9]. Indeed, since
each agent fulfils a lower-scope function than the previous one, control must eventu-
ally be taken by an agent which will itself do the job for which it intervened initially.

3.3 A Variety of Agents for a Variety of Stimuli

In a classroom, a teacher must keep his students’ attention and motivation to
facilitate their learning; a way to do so is to vary the stimuli. Similarly, a tutoring
system should use a sufficient variety of stimuli; a way to do so is to have
pedagogical agents create these stimuli on demand for every stimulus type of the
system. This approach will incrementally augment the system capabilities as new
agents are developed, and will allow it to run, maybe in a degraded way, even if not
all stimuli-related agents are available; this approach is thus worthwhile even for one
student.

That endeavour for variety can be more interestingly applied to the pedagogical
behaviours and tactics employed by the tutor or the environment setting (e.g. for
collaborative learning), to the explanations provided, and even to the generic
functioning modes. Indeed, when the system as a whole is to change its type of
interaction, it will use another main TA, normally associated to another operating
mode. This is the mode shift principle, discussed in detail in [13].

With such a variety, it becomes easy for a teacher, henceforth for the tutoring
module of an IES, to vary its tutoring tactics rather than giving a monotonous page-
turning-type lecture (would bore the student). For example, in the domain-assessment
mode, if the student has difficulty answering a question, the ITS may give him
various hints and clues, e.g. by showing him a solved problem, by presenting him a
paragraph of theory, or even by asking him another theoretical question, naturally
having a narrower — and expectedly easier — scope than the initial one (see 3.2). All
these possible hints or clues will then be provided by as many possible other agents.

3.4 How an Agent Takes Control

If an IES is to vary the types of its interactions with the student, it should also be
able to make wise decisions about what interaction(s) to choose and when to apply it
(them). One way to do so is to keep track of the various interactions that have
occurred during the current session. But a still better way would be building and
maintaining a student model [4] for every student involved. Building a student model
is obviously one of the deepest and longest-term means of keeping track of a

148 Ruddy Lelouche

student’s evolution: a student model is an incremental interpretation of that student’s
behaviour, of the current state of the that student’s knowledge, of his learning profile
and possibly his learning preferences. In such a way, an IES can thus use its students’
models to guide its interactions, which may become very efficient when enough
appropriate data about the students has been gathered into the student models. How
an agent “reasons” to takes control is more detailed in 4.5, following the dialogue
examples.

4 An Application Domain Example

In this section, we want to give a more concrete flavour to our work. Our
application domain is cost engineering [6], which consists of mathematical and
computational tools for the engineer to evaluate the worth of engineering projects,
and to act appropriately in order to optimise the cost-effectiveness of his decisions.

4.1 Separation between Domain Knowledge and Problem Solving Knowledge

Cost engineering is a KH-domain. It is thus modelled as two parts (see 1.1). The
domain knowledge DK is essentially modelled as concepts and relations, while PSK
is modelled as processes and subprocesses (see details in [13]).

In the domain knowledge, concepts are entities like investment, investment
duration, present and future values, compounding period, interest rate, or annuity.
They are linked by relations like kind of, part of, or numerical relations. For example,

F=P (+i" (1)
is a quaternary relation R(F, P, i, n) which, given the present value P of an
investment over n periods at rate i, expresses the future value F of that investment.
Such relations, or formul® like (1), lead to the notion of factor, a pedagogical
concept:

pFin=(1+10"=FIP Fpin =1+ =PIF
Factors like pp;, or pp;, allow us to distinguish their algebraic definition from
their possible uses in the application domain. Similarly, there exists a factor 4p; ,
to convert a periodic series of identical amounts A into a unique present value P.
The problem-solving knowledge is modelled as various domain-specific processes
and subprocesses that may be used to solve various types of cost-engineering

problems. Rather than presenting them in abstracto, let us move directly to the
problem to be solved, and we shall explain the processes used to solve that problem.

4.2 A Problem Solving Example
Let the exercise to be solved be as follows (e.g. as presented to the student):

Determine the present value of a five-year annuity of $1,000 starting at the
end of year 1, plus an extra revenue of $500 at the end of year 3, plus an
expense of $1,500 at the end of year 4. The annual interest rate is assumed to
be 10%.

The normal processes used by an engineer, a human tutor, or a good student to
solve this exercise are the following:

1. Identify and instantiate the given problem data:
— annual interest rate i = 10%;

A Collection of Pedagogical Agents for Intelligent Educational Systems 149

— (np =5)-year annuity A = 1,000;
— future value amount F, = 500 at end of year n, = 3;
— future value amount F3 =—1,500 at end of year n3 = 4.

2. Identify and instantiate the expected result: some present value P equivalent to
the sum of all above amounts.

3. Build a temporal diagram: this diagram thus shows the data identified above and
the result P sought after (bold arrow). Note that the composition of a time
diagram is declarative, although by its very nature and purpose it is part of PSK.

P
1000 1000 1000 1000 1000
L S C
Amounts i
N 1500
Years

The solving process basically consists in adding all the arrowed amounts
together to get their equivalent present value P. However, because of the interest
over time, these amounts cannot be added directly. We must thus decompose that
activity.

4. Choose a common reference date towards which all the amounts will be moved
prior to their final addition. Here, the simplest date is the present moment, year 0.

5. Deal with each element individually:
a. The annuity is a series of five annual $1,000 amounts. Using the 4p factor

above, we may compute their present value directly: Py = 1,000 4p 1095 -
b. Since the amount of $500 at the end of year 3 must be moved back three

years, its present value is P, = 500 FP.10%.3 -
c¢. Similarly, the expense of $1,500 must be moved back four years, but with an

opposite sign. Then its equivalent present value is P3 =—1,500 FP.10%.4 -

6. Add the obtained present values: P=Pi+Py,+P;3
Replace all factors by their numerical values, by computing them or from a table:
P1=1,000 4p10%s5=1000 3.79079 =$3,790.79
P, =500 FP.10%3 =500 0.75131 = $375.66
P3=1,500 FP.10%.4 =—1,500 0.68301 = —$1,024.52
P =P+ Py+ P3=3,790.79 + 375.66 — 1,024.52 = $3,141.93

and, therefore, the expected answer is $3,141.93.

4.3 Tutoring Session Excerpts Based on That Problem

We now try to illustrate the generation and development of tutorial processes by
the tutoring agents in TK. To mimic the session progress, we assume the interactions
are conducted in natural language; the corresponding dialogue is shown in italics,
with the student’s input preceded by **. To visually distinguish them from the

150 Ruddy Lelouche

dialogue, we indent our explanations; moreover, only the major intervening agents
are mentioned.

For our sample session, we assume that we have a one—student KH-ITS, that the
student, a female, has selected the exercising mode, and that the system has given her
the cost-engineering problem shown and solved in 4.2 (using the normal solving
steps). For the first excerpt, we suppose that the student has correctly identified and
named the problem data and the expected results (processes 1 and 2); she is beginning
to draw the temporal diagram (process 3). The session might then proceed as follows.

The tutoring agent A, a problem-solving assessor, is in control of the exercising
mode and monitors the student’s actions.

** Where should I put the arrows of the annuity? In columns 0 to 4 or 1 to 5? (DI)

The student does not understand how to position annuity arrows in a temporal
diagram. Among other alternatives, A elects to give her a short theoretic reminder (shift
to a domain-presentation mode interaction), provided by tutoring agent B, a domain
presenter.

Remember what you learnt about annuities. By default (like here), the arrows are
placed at the end of their respective years. Therefore, the first arrow will be placed at
the end of the first year (column 1), and so on. (D2)

** OK, I think I understand now. (D3)

The student claims she understands the pedagogical output provided by B. Control
thus returns to agent A and to the standard exercising mode.

[...] (D4)

Let us skip a few steps. For the second excerpt, suppose now that the student has
finished drawing the temporal diagram, and has correctly moved the appropriate
amounts towards year 0 (process 5). She is thus adding them together (process 6).

** We have 1000 * FAP(0.10, 5) + 500 * FFP(0.10, 3) + 1500 * FFP(0.10, 4).(D5)

The student has correctly understood how to calculate the annuity and the $500
income, but she mistakenly adds the $1,500 expense (see process 5c¢).

Almost... (D6)

This time, the student is asked a domain question (temporary shift to a domain-
assessment interaction). This is done by another agent, C, a domain assessor.

... What did you learn about the difference between incomes and expenses? (D7)
** [don’t understand where my error is. (D8)
The theoretical domain question failed. Agent A’, another problem-solving
assessor, then gives as a clue to the student a short mathematical question (of narrower
scope).
For example, if you receive $5,000 and spend $1,500, how much will you have?(D9)
The interaction produced by agent A’ is associated with the exercising mode.
** 83 500. (D10)
The student correctly answered the question of agent A’, which returns a success

acknowledgement. But agent C takes control back and elects to rephrase its own
question.

So, what is your deduction upon this clue? (D11)
The student applies it to the initial problem.
** [think I got it: + 1500 * FFP(0.10, 4) should be — 1500 * FFP(0.10, 4). (D12)

A Collection of Pedagogical Agents for Intelligent Educational Systems 151

The student has understood. But her answer is local, i.e. she has not integrated it
into the complete answer. So agent A comes back at the highest level.

You are right. Now you can formulate the complete answer. (D13)
** 1000 * FAP(0.10, 5) + 500 * FFP(0.10, 3) — 1500 * FFP(0.10, 4). (D14)
The student has given the expected complete computation layout (process 6).

Very good. (D15)

The dialogue would then proceed with the numerical computation (process 7).

4.4 Roles of Tutoring Agents in That Excerpt

There are several agents intervening in the above dialogue.

e Agent A, a problem-solving assessor, is in control of the exercising mode. It
globally drives the solution of the problem, monitors and assesses the student’s
actions. To help her, it lets other agents take some subtask in charge when needed.

* Agent B, a domain presenter, intervenes to present a domain element.

e Agent C, a domain assessor, “interrupts” A to ask the student a theoretical
question. Since she is unable to answer it, C lets agent A’ help her resolve this
impasse.

* Agent A’, another problem-solving assessor, takes over agent C to ask the student a
problem-solving question. Its small exercise is completely different from the A-
supervised problem at hand, and of much narrower scope.

Figure 1 summarises the student—agent and agent—agent interactions taking place
in the above examples. The involved agents have triggered various tutoring
processes: ask a question, answer a student question, make a decision regarding the
type of interaction to enable, temporarily change that type of interaction, all while
monitoring the whole session in order to keep track of the student’s progress and to
understand and influence its evolution throughout the problem-solving session.

STUDENT SYSTEM STUDENT SYSTEM

. = (in exercising mode)
(in exercising

D5
mode) <]% A

> D13| problem-
A DI4 g solving

pr(l)b.lem— @ assessor
solving

D1

assessor

<
® DS|
> C
DIl domain
D12 | assessor

YK 2

S A
presenter problem-
solving
assessor

D3

First excerpt Second excerpt

Figure 1: Diagram of the agent interactions.

152 Ruddy Lelouche

4.5 Student-Related Knowledge Involved in Agent Interactions

In general, a pedagogical agent (not necessarily a TA, see 3.1) may refer to
various types of contextual knowledge elements to decide to intervene and generate a
terminal student-system interaction, or to let another pedagogical agent take control.
Such are:

* the student’s current knowledge state (or the current state of the student model),

* the student’s primary goal (expressed by his choice of the leading tutoring mode),
* the session log (information on the student’s knowledge and the past interactions),
* the points where the student stumbled,

* the student’s motivation and physical state (tired, in good shape, etc.),

* possibly the learning theory advocated by the system, if there is one.

Conclusion

In this paper, we presented how tutoring knowledge can be modelled in terms of
tutoring agents. We first presented, in a KH-IES, the division of the knowledge to be
learned into DK and PSK, and the four generic operating modes defined upon this
division. We then introduced the tutoring knowledge TK, partly common to all IESs,
through an agent-based approach, and we gave some KH-domain examples. We then
gave some general rules regarding the interactions between our agents and with the
students, their respective scope in an interactive context, their variety, and how an
agent takes control to fulfil a given function. We then presented a cost—engineering
problem and its solution, which we used in a tutoring session integrating these
notions.

Since this paper is essentially Al-oriented and in the long run aimed at building
more cost-effective systems by reusing components (here agents), it does not deal
with educational problems like learning theories or assessment. But, owing to its
flexibility, our approach could be used for experimenting with and testing various
learning theories or tutoring strategies. However, on the Al side, we do think that the
various concepts regarding pedagogical agents presented should help an ITS designer
to take a systematic approach to model the knowledge to be acquired, and later to
devise a relatively easy and efficient way to model the tutoring knowledge required to
fulfil the pedagogical mission(s) of his system. Moreover, the pedagogical agent
concept might be extended to more general agents, e. g. to deal with the maintenance
of the student model, to take care of the interface management, to manage the various
modalities of learning implemented in the system; etc. Certainly, much progress still
has to be made to reach a complete model. However, we think that our approach,
being simple and systematic, is a promising one for modelling the tutoring knowledge
in an IES.

References

[11 Arcand J.-F. & S.-J. Pelletier (1996) “Cognition-based multiagent architecture”. In Intelligent
Agents II: Agent Theories, Architectures and Languages (M. Wooldridge, J. P. Miiller & M.
Tambe, eds.). Proc. IJCAI’95 Workshop (ATAL), Montreal, Canada, August 1995. LNAI 1037,
Springer (Berlin), p. 267-282.

[2] Carbonell J. R. (1970) “Al in CAIL: an artificial intelligence approach to computer-aided
instruction”. IEEE Trans. on Man—Machine Systems, vol. MMS-11, no. 4, p. 190-202.

[3] Clancey W. J. (1983) “GUIDON”. Journal of Computer-Based Instruction, vol. 10, no. 1, p. 8-14.

[4]
[5]

(6]

(71

(8]
[9]

(10]

[11]
[12]

[13]

(14]

[15]

[16]

(17]

A Collection of Pedagogical Agents for Intelligent Educational Systems 153

Fletcher J. D. (1975) “Modeling of learner in computer-based instruction”. Journal of Computer-
Based Instruction, vol.1, p. 118—126.

Gagné D. & A. Trudel (1996) “A highly flexible student-driven architecture for computer-based
instruction”. In Intelligent Tutoring Systems (C. Frasson, G. Gauthier & A. Lesgold, eds.),
Proceedings of the Third International Conference, ITS’96, Montréal, Canada, 12-14 June 1996, p.
66-74. LNCS 1086, Springer (Berlin).

Galibois A. (1997) Analyse économique pour ingénieurs, 2nd edition. Editions AGA (Sainte-Foy,
Canada).

Greer J., G. McCalla, J. Collins, V. Kumar, P. Meagher & J. Vassileva (1998) “Supporting peer
help and collaboration in distributed workplace environments”. International Journal of Artificial
Intelligence in Education, vol. 9, pp. 159-177.

Kowalski R. (1979) Logic for Problem Solving. North-Holland (Berlin).

Lelouche R. & J.-F. Morin (1997a) “Use of abstraction and complexity levels in intelligent
educational systems design”. Proc. of the 15th Internat. Joint Conf. on Artificial Intelligence
(IJCAI-97), Nagoya, Japan, 23-29 August 1997, p. 329-334.

Lelouche R. & J.-F. Morin (1997b) “Knowledge types and tutoring interactions in an ITS in a
problem-solving domain”. Proc. 10th Florida Artificial Intell. Research Symposium (FLAIRS-97)
— Spec. Track on ITSs, Daytona Beach, FL. 10-14 May 1997, p. 62—66.

Macmillan S.A. & D.H. Sleeman (1987) “An architecture for a self-improving instructional planner
for intelligent tutoring systems”. Computational Intelligence, vol. 3, no. 1.

Masthoft J. F. M. (1997) An agent-based interactive instruction system. Ph.D. thesis, University of
Technology Eindhoven (Netherlands), 222 pages, ISBN 90-386-0319-3.

Morin J.-F. (1998) Conception of an intelligent tutoring system in cost engineering: knowledge
representation, pedagogical interactions, and system operation. Master Thesis, Dép. Informatique,
Univ. Laval (Québec, Canada).

Ohlsson S. (1987) “Some principles of intelligent tutoring”. In Al and Education: Learning
Environments and Intelligent Tutoring Systems (R. Lawler & M. Yazdani, eds.). Ablex Publishing
(Norwood, NJ).

Suthers D. & D. Jones (1997) “An Architecture for Intelligent Collaborative Educational Systems”.
In Artificial Intelligence in Education, Proc. 8th World Conf., AIED 97, Kobe (Japan), 20-22
August 20-22 1997, p. 55-62. 10S Press (Amsterdam).

Tambe M. (1995) “Recursive agent and agent-group tracking in a real-time dynamic environment”.
Proc. of the First Intern. Conf. on Multiagent Systems (ICMAS 95), San Francisco, CA, June 1995.
Vassileva J., J. Greer, G. McCalla, R. Deters, D. Zapata, C. Mudgal & S. Grant (1999) “A multi-
agent design of a peer-help environment”. In Artificial Intelligence in Education, Proc. of the 9th
Intern. Conf., AIED 99, Le Mans (France), 19-23 July 1999, p. 38-45. IOS Press (Amsterdam).

DT Tutor: A Decision-Theoretic, Dynamic Approach
for Optimal Selection of Tutorial Actions

R. Charles Murray[land Kurt VanLehn

Intelligent Systems Program & Learning Research and Development Center
University of Pittsburgh, Pittsburgh, PA 15260
{rmurray,vanlehn}@pitt.edu

Abstract. DT Tutor uses a decision-theoretic approach to select tutorial actions
for coached problem solving that are optimal given the tutor’s beliefs and ob-
jectives. It employs a model of learning to predict the possible outcomes of each
action, weighs the utility of each outcome by the tutor’s belief that it will occur,
and selects the action with highest expected utility. For each tutor and student
action, an updated student model is added to a dynamic decision network to re-
flect the changing student state. The tutor considers multiple objectives, in-
cluding the student’s problem-related knowledge, focus of attention, independ-
ence, and morale, as well as action relevance and dialog coherence. Evaluation
in a calculus domain shows that DT Tutor can select rational and interesting
tutorial actions for real-world-sized problems in satisfactory response time. The
tutor does not yet have a suitable user interface, so it has not been evaluated
with human students.

1 Introduction

Tutoring systems that coach students as they solve problems often emulate the turn
taking observed in human tutorial dialog [7, 15]. Student turns usually consist of en-
tering a solution step or asking for help. The tutor’s main task can be seen as simply
deciding what action to take on its turn. Tutorial actions include a variety of action
types, including positive and negative feedback, hinting, and teaching. The tutor must
also decide the action topic, such as a specific problem step or related concept. DT
Tutor’s task is to select the optimal fype and fopic for each tutorial action.

How to select optimal tutorial actions for coached problem solving has been an
open question. A significant source of difficulty is that much of the useful information
about the student is not directly observable. This information concerns both the stu-
dent’s cognitive and emotional state. Compounding the difficulty, the student’s state
changes over the course of a tutoring session.

Another complication is that just what constitutes optimal tutoring depends upon
the tutorial objectives. A tutor’s objectives normally include various student-centered
goals and may also include dialog objectives and action type preferences. Further-
more, the tutor may have to balance multiple competing objectives.

DT Tutor uses decision-theoretic methods to select tutorial actions. The remainder
of the Introduction describes the basis of our approach, DT Tutor’s general architec-
ture, and prior work. Subsequent sections describe DT Tutor in more detail, a prelimi-
nary evaluation, future work and conclusions.

Research supported by ONR’s Cognitive Science Division, grant number N0014-98-1-046h7.

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 153-162, 2000.
Springer-Verlag Berlin HeidTelberg 2000

154 R. Charles Murray and Kurt VanLehn

1.1 Belief and Decision Networks

Probability has long been the standard for modeling uncertainty in diverse scientific
fields. Recent work with belief network (equivalently, Bayesian network) algorithms
has made modeling complex domains using probabilistic representations more feasi-
ble. Unfortunately, belief network inference is still NP-hard in the worst case. How-
ever, many stochastic sampling algorithms have an anytime property that allows an
approximate result to be obtained at any point in the computation [4].

DT Tutor represents the tutor’s beliefs about the student’s problem-related knowl-
edge using a belief network obtained directly from a problem solution graph, a hierar-
chical dependency network representing solutions to a problem [2, 11]. Nodes in the
graph represent (1) problem steps, and (2) domain rules licensing each step. Problem
steps include the givens and every goal and fact along any path towards the solution.
We currently model incorrect steps as errors. Arcs represent dependence between
nodes. For instance, knowledge of a step depends on knowledge of both its antecedent
steps and the rule required to derive it. In belief network form, the nodes represent the
tutor’s beliefs about problem-related elements of the student’s cognitive state and arcs
represent conditional dependence between the elements.

Nodes within a belief network represent variables whose values are fixed. How-
ever, a student’s mental state and the problem solution state change over the course of
a tutoring session. To represent variables that change over time, it is more accurate to
use a separate node for each time. Dynamic belief networks (DBNs) do just that. For
each time in which the values of variables may change, a new slice is created. Each
slice consists of a set of nodes representing values at a specific point in time. Rather
than fixed time intervals, slices can be chosen so that each corresponds to the student
model after a student or tutor action. Nodes may be connected to nodes within the
same or earlier slices to represent the fact that a variable's value may depend on con-
current values of other variables (synchronic influences) and on earlier values of the
same and other variables (diachronic influences). The evolution of a DBN can be rep-
resented while keeping in memory at most two slices at a time [10].

Decision theory extends probability theory to provide a normative theory of how a
rational decision-maker should behave [13]. Utilities are used to express preferences
among possible future states of the world. To decide among alternative actions, the
expected utility of each alternative is calculated by taking the sum of the utilities of all
possible future states of the world that follow from that alternative, weighted by the
probabilities of those states occurring. Decision theory holds that a rational agent
should choose the alternative with the maximum expected utility. A belief network,
which consists entirely of chance nodes, can be extended into a decision network
(equivalently, an influence diagram) by adding decision and utility nodes along with
appropriate arcs [13]. For tutoring systems, decision nodes could represent tutorial
action alternatives, chance nodes could represent possible outcomes of the actions,
and utility nodes could represent the tutor’s preferences among the possible outcomes.

A dynamic decision network (DDN) is like a DBN except that it has decision and
utility nodes in addition to chance nodes. DDNs model decisions for situations in
which decisions, variables or preferences can change over time. Just as for DBN,
simple algorithms exist to represent the evolution of a DDN while keeping in memory
at most two slices at a time [10].

DT Tutor 155

1.2 General Architecture

Our basic approach is to use a DDN to implement most of the intelligent, non-user-
interface part of DT Tutor. The DDN is formed from dynamically created decision
networks. These networks are called tutor action cycle networks (TACNs) because
they each represent a single cycle of tutorial action, where a cycle consists of

e deciding a tutorial action and carrying it out,
e observing the next student action, and
e updating the student model based on these two actions.

TACNSs consist of three slices, as illustrated in Figure 1. A TACN is used both for
deciding the tutor’s action and for updating the student model. When deciding the tu-
tor’s action, slice O represents the tutor’s beliefs about the student’s current state.

Slice 0 Slice 2

Slice 1

Student
Model 2

Student
Model 1

Tutor
Action 1

Student
Model O

Student
Action 2

Fig. 1. Tutor action cycle network, high-level overview

Slice 1 represents the tutor’s possible actions and the influence of those actions on the
tutor’s beliefs about the student. Slice 2 represents the student’s possible actions and
the influence of those actions on the tutor’s beliefs about the student. In other words,
slice O represents the current student state and the other slices represent predictions
about the student’s state after the tutor’s action and after the next student action. Slice
2 also includes the utility model since most of the outcomes in which the tutor might
be interested concern the final effects of the tutor’s current action.

The DDN update algorithm calculates the action with maximum expected utility.
The tutor executes that action and waits for the student to respond. When the tutor has
observed the student’s action, the student model update phase begins.

The tutor clamps the student’s action and updates the network. At this point, the
posterior probabilities in Student Model represent the tutor’s current beliefs about
the student. It is now time for another tutorial action selection, so another TACN is
created. Posterior probabilities from Student Model, of the old TACN are copied as
prior probabilities to Student Model, of the new TACN. The old TACN is discarded.
The tutor is now ready to begin the next phase, deciding what action to take next.

With this architecture, the tutor not only reacts to past student actions, but also an-
ticipates future student actions and their ramifications. Thus, for instance, it can act to
prevent errors and impasses before they occur, just as human tutors often do.

' For sub-network and node names, a numeric subscript refers to the slice number. A subscript
of n refers to any appropriate slice.

156 R. Charles Murray and Kurt VanLehn

1.3 Prior Work

Although probabilistic reasoning is become increasingly common in tutoring systems
and Al in general, we believe this is the first application of a DDN to tutoring. Prob-
abilistic reasoning is often used in student and user modeling. In particular, Bayesian
networks are used in the student models of Andes [2], HYDRIVE [16] and other sys-
tems [12]. However, even with a probabilistic student model, other systems select tu-
torial actions using heuristics instead of decision-theoretic methods. Reye [19] has
suggested the use of a decision-theoretic architecture for tutoring systems and the use
of dynamic belief networks to model the student’s knowledge [20, 21].

2 Detailed Solution

This section describes TACNs in more detail, along with their implementation to form
DT Tutor’s action selection engine.

2.1 Major TACN Components and Their Interrelationships

Figure 2 provides a closer look at a TACN. The student model includes components
to represent the student’s knowledge state (sub-network Knowledge Network,), the
student’s problem completion status and focus of attention (sub-network Relevance
Network,), and the student’s emotional state (nodes Morale, and Independence,). Tutor
and student actions are represented by two nodes each: one for the action topic (Tu-
tor/Student Topic,) and another for the action type (Tutor/Student Type,). Tutorial ac-
tion relevance and coherence are represented by the Relevance, and Coherence, nodes
respectively. The utility model (Utility,) represents the tutor’s preferences.

In Figure 2, the Knowledge and Relevance Networks are shown as large rounded
rectangles. Each arc into or out of these sub-networks actually represents multiple
arcs to and from various sub-network nodes. For instance, there is a diachronic arc
from each Knowledge Network, node to the corresponding Knowledge Network, node.

Student Knowledge Network. For each problem, a Knowledge Network is created
from the problem solution graph to represent the tutor’s beliefs about the student’s
problem-related knowledge.

Within the Knowledge Network, each node has possible values known and un-
known. Rule nodes represent the tutor’s belief about the student’s knowledge of the
corresponding rule. Problem step nodes represent the tutor’s belief about the student’s
potential to know the corresponding step given the student’s current rule knowledge.
At the beginning of a problem, the nodes representing the givens and the problem
goal are clamped to known, since these are given in the problem statement. The stu-
dent’s potential knowledge of the remaining problem steps depends upon the stu-
dent’s knowledge of the rules required to complete each problem step in turn.

Influences on Knowledge Network nodes include (1) synchronic influences to
model the interdependence of the student’s problem-related knowledge, and (2) dia-
chronic influences between corresponding nodes in different slices to model the sta-
bility of the student’s knowledge over time. The tutor can also influence Knowledge
Network, nodes directly, with an influence depending on the tutor action type. For in-

DT Tutor 157
Student
Slice 2 Model
Independence
2

Knowledge

Network 2

Student
Model

]
=
o

[=}

101),

Independenc

Morale_O

Morale_1

Knowledge
Network O

Knowledge
Network 1

~
)

Relevance
Network_2

Relevance
Network_1

Relevance
Network_O

f

—

Relevance 1

Tutor

Topic 1

Fig. 2. Tutor action cycle network in more detail

stance, if the tutor teaches a domain rule, there is normally a greater probability that
the rule will become known than if the tutor hints about it.

Student Relevance Network. Like the Knowledge Network, the Relevance Network
is a belief network created from the problem solution graph. It represents the tutor’s
beliefs about the student’s problem solving progress and problem-related focus of
attention. The representation of the student’s focus of attention is used to select
relevant tutorial actions and to predict the topic of the student’s next action.

Rule nodes have possible values relevant and irrelevant, where relevant means that
the rule is part of the student’s focus of attention. If the tutor addresses a rule directly,
the rule becomes relevant with a probability dependent on the tutor action type. For
instance, teaching a rule is more likely than hinting to make a rule relevant.

Problem step nodes have possible values complete, not ready, ready, and relevant.
Completed step nodes have the value complete. If a step node is not complete and if it
has any synchronic step node parents that are not complete, its value is not ready,
meaning that it is not ready to be completed until its parent steps have been completed
(but this does not preclude the student from completing it anyway — e.g., by guessing).
Otherwise, a step node has some distribution over the values ready and relevant. Such
nodes represent the frontier of the student’s work within the problem space, possible
next steps and thus potentially the focus of the student’s attention. The value ready
means that a step is ready to be completed since all of its parent steps have been com-
pleted. The value relevant means that not only is the step ready to be completed, but it
is also part of the student’s focus of attention. For instance, a step is likely to be rele-

158 R. Charles Murray and Kurt VanLehn

vant if the tutor addresses it (e.g., with a hint) or if the student makes an error on it.
Steps that are relevant at some point in time become a little less relevant with each
passing time slice. This is to model relevance aging: steps that were relevant slowly
become less relevant as the student moves on to other topics.

When there are multiple steps that could be relevant by virtue of being the next un-
completed step along a solution path, DT Tutor assumes a depth-first bias to decide
how likely the various steps are to be part of the student’s focus of attention: When
applying a rule produces multiple ready steps, students usually prefer to pick one and
complete work on it before starting work on another. Such a bias corresponds to a
depth-first traversal of the problem solution graph and is consistent with both activa-
tion-based theories of human working memory [1] and observations of human prob-
lem solvers [18]. However, a depth-first bias is not absolute. At any given step, there
is some probability that a student will not continue depth-first.

To model depth-first bias, when a step first becomes ready or relevant because the
last of its outstanding parent steps has become complete, that step becomes relevant
with high probability. This is because with a depth-first bias, having just completed
the step’s parent, the student is likely to continue working with the step itself. Rele-
vance aging helps to model another aspect of depth-first bias: preferring to continue
with more recently raised steps. When the student completes or abandons a portion of
the solution path, steps that were recently highly relevant but that are still not com-
plete have had less relevance aging than steps that were highly relevant in the more
distant past, so the more recently raised steps remain more relevant.

Student Emotional State. Human tutors consider the student’s emotional or
motivational state in deciding how to respond [5, 14]. Concern for student morale is
likely to be one reason why tutors tend to give negative feedback subtly, to play up
student successes and downplay student failures, etc., while maximizing the student’s
feeling of independence is likely to be one reason why tutors tend not to intervene
unless the student needs help, to minimize the significance of the tutor’s help, etc.
[15]. Such behaviors cannot be explained in terms of concern for the student’s
knowledge and the problem solving state alone.

The student’s emotional state is modeled with the Morale, and Independence,
nodes. Each of these nodes has possible values level 0 through level 4, with higher
levels representing greater morale or independence. Both tutor and student actions in-
fluence these nodes with an influence dependent on the action type. In addition, dia-
chronic influences model the stability of the student’s emotional state over time.

Tutor Action Nodes. The Tutor Type, alternatives include fairly fine distinctions to
model some of the subtlety that human tutors exhibit when working with students.
These alternatives include prompt, hint, teach, positive feedback, negative feedback,
do (do a step for the student), and null (no tutor action).

Tutor Topic, can be any problem-related topic, so there is an alternative for each
rule or step node in the problem solution graph. The value null is also supported to
model (1) a tutor action with a type but no topic (e.g., general positive feedback), and
(2) no tutor action at all, in which case Tutor Type,is null as well.

Student Action Nodes. First, the values of the student action nodes in slice O are
simply the values of the student action nodes in slice 2 of the previous TACN, except
for the very first TACN, in which they both have the value null.

DT Tutor 159

Student Topic, can be any step in the problem solution graph. It can also be null to
model either no student action at all (in which case Student Type, is null as well) or a
student action with a null topic (e.g., a general impasse or an error which the tutor
cannot interpret as an attempt at a particular step). Student Topic, is influenced by the
relevance of the steps that are most likely to be the topic of the student’s next action —
i.e., by Relevance Network, step nodes that are ready or relevant.

Student Type, has possible values correct, error, impasse, and null. Impasse means
that the student does not know what action to take — for instance, when the student
asks for help. Null is used to model no student action. Student Type, is influenced both
by the student action topic and by the student’s knowledge of that topic — i.e., by Stu-
dent Topic, and by the Knowledge Network, step nodes.

Utility Model. Node Utility, is actually a structured utility model consisting of several
nodes to represent tutor preferences regarding the following outcomes:

. Student rule knowledge in slice 2 (rule nodes in Knowledge Network,)

. Student problem step progress in slice 2 (step nodes in Relevance Network,)
. Student independence in slice 2 (Independence,)

Student morale in slice 2 (Morale,)

. Tutor action type in slice 1 (Tutor Type,)

. Tutor action relevance in slice 1 (Relevance,)

. Tutor action coherence in slice 1 (Coherence,)

2.2 Implementation

DT Tutor was implemented using software developed at the Decision Systems Labo-
ratory, University of Pittsburgh: GeNle, a development environment for graphical
models, and SMILE®, a platform independent library of C++ classes for reasoning
with graphical probabilistic models. From the problem solution graph structure, DT
Tutor creates a TACN with default values for node outcomes, prior probabilities, con-
ditional probabilities, and utilities. An optional file can be loaded to specify any prior
probability or utility values that differ from the default values. After creating the ini-
tial TACN, DT Tutor recommends tutorial actions, accepts inputs representing actual
tutor and student actions, updates the network, and adds new TACNSs to the DDN as
appropriate. We have not yet developed a suitable graphical interface for students, so
a simple text interface was created for evaluation.

While DT Tutor will work with most any problem solution graph, for the initial
implementation we selected the domain of calculus related rates problems for two rea-
sons. First, the number of steps per problem is non-trivial without being too large, so
results obtained should be generalizable to other real world domains. Second, Singley
[23] developed an interface for this domain with the purpose of reifying goal struc-
tures. We assume an extension to Singley’s interface that makes all problem solving
actions observable. This makes it easier to determine the student’s current location in
the problem solution space and thus to model the student’s current focus of attention
and predict the student’s next action.

160 R. Charles Murray and Kurt VanLehn

3 Evaluation

The goals for evaluation were to evaluate whether DT Tutor’s approach can be used
to select actions within reasonable space and time that are not only optimal but that
also correspond to some of the more interesting behaviors of human tutors.

3.1 Evaluate Tractability

One of the major challenges facing Bayesian models for real world domains is tracta-
bility in terms of both space and time. A number of measures were taken to reduce
space requirements [see 17] which were then considered tractable since the tutor was
able to successfully perform the tests described below.

It is important to provide real-time responses in order to keep the student engaged.
With an early version of the Andes physics tutor [2], students tolerated response times
of up to 40 seconds. However, considering both (1) the variety of domains for which
ITSs might be constructed, and (2) ever-improving computer hardware and algorithms
for evaluating probabilistic models, no exact response time requirement can be deter-
mined. Rather, it is more important to begin to evaluate how such systems will scale.

Test results are shown in Table 1. Both of the approximate algorithms using 1,000
samples returned responses for both problems well within the tolerated limit, as did
the exact algorithm for the smaller of the two problems. Response times for the ap-
proximate algorithms grew linearly in the number of samples and in the number of
nodes. The approximate algorithms using 10,000 samples and the exact algorithm on
the larger problem did not return responses quickly enough, and in any case, faster re-
sponse times are desirable. Fortunately, a number of speedups are feasible, as dis-
cussed in [17]. In addition, the anytime property of the approximate algorithms could
be used to continually improve results until a response is required. For many applica-
tions, including this one, it is sufficient to correctly rank the optimal decision alterna-
tive. When only the rank of the optimal decision alternative was considered, the ap-
proximate algorithms using 1,000 samples were correct on every trial.

Table 1. Action selection response times

Response time mean (range)

Algorithm Problem A® Problem B
Exact: Clustering [9] 108 (107-109) 11 (11-12)
Approximate:
Likelihood Sampling [22]
1,000 samples 12 (12-13) 8 (7-8)
10,000 samples 106 (104-110) 64 (62-66)
Heuristic Importance [22]
1,000 samples 12 (12-13) 8 (7-8)
10,000 samples 104 (101-106) 64 (60-66)

Note. Response time is the number of seconds required to determine the optimal tutorial action.
Mean and range are over 10 trials. All tests were performed on a 200MHz Pentium MMX PC
with 64MB of RAM. The algorithms were tested with Cooper’s [3] algorithm for decision net-
work inference using belief network algorithms.

* 10-step problem, 185-node TACN. " 5-step problem, 123-node TACN.

DT Tutor 161

3.2 Evaluate Tutorial Action Selections

DT Tutor’s decision-theoretic representation guarantees that its decisions will be op-
timal given the beliefs and objectives it embodies. Therefore, besides a sanity check
of the implementation, the purpose of this part of the evaluation was to find out
whether DT Tutor’s approach and choices about which outcomes and objectives to
model were sufficient to endow the tutor with some of the more interesting capabili-
ties of human tutors. While detailed results would be too lengthy to report here [see
17], testing showed that DT Tutor is indeed capable of selecting rational tutorial ac-
tions that correspond in interesting ways to the behavior of human tutors. Notable be-
haviors included the following:

e DT Tutor did not provide help when it believed the student did not need it. Human
tutors foster their students’ independence by letting them work autonomously [14].

e When the student was likely to need help, DT Tutor often intervened before the
student could experience failure. Human tutors often provide help proactively
rather than waiting for a student error or impasse [14, 15].

e As the student moved around the problem space, DT Tutor adapted to support the
student’s current line of reasoning, assuming a depth-first topic bias.

o All other things being equal, DT Tutor preferred to address rules rather than prob-
lem-specific steps. Effective human tutoring is correlated with teaching generali-
zations that go beyond the immediate problem-solving context [24].

e DT Tutor considered the effects of its actions on the student’s emotional state as
well as the student’s knowledge state. Human tutors consider both as well [14].

e DT Tutor prioritized its actions based on current beliefs and objectives. Likewise,
human tutors prioritize their actions based on the student’s needs and tend not to
waste time addressing topics that the student does not need to know [15].

4 Future Work and Conclusions

We still need to develop a graphical interface or embed DT Tutor’s action selection
engine within an existing ITS and evaluate it with human students. Efficiently ob-
taining more accurate probability and utility values would be beneficial as well. How-
ever, an encouraging result from prior research is that Bayesian systems are often sur-
prisingly insensitive to imprecision in specification of numerical probabilities [8] and
may be accurate enough to infer the correct decision even if some of their assump-
tions are violated [6], so that precise numbers may not always be necessary.

This research has shown that a decision-theoretic approach can indeed be used to
select tutorial actions that are optimal, given the tutor’s beliefs and objectives, for
real-world-sized problems in satisfactory response time. The DDN representation
handles uncertainty about the student in a theoretically rigorous manner, balances
tradeoffs among multiple objectives, automatically adapts to changes in beliefs or
objectives, and increases the accuracy of the information upon which the tutor’s deci-
sions are based. By modeling not only the student’s problem-related knowledge but
also the student’s focus of attention and emotional state, DT Tutor can select actions
that correspond to some of the more interesting behaviors of human tutors.

162 R. Charles Murray and Kurt VanLehn

References

17.

18.
19.

20.

21.

22.

23.

24.

Anderson, J. R. (1993). Rules of the Mind. Lawrence Erlbaum Associates.

Conati, C., Gertner, A., VanLehn, K., & Druzdzel, M. (1997). On-line student modeling for
coached problem solving using Bayesian networks. 6th International Conference on User
Modeling, pp. 231-242.

Cooper, G. F. (1988). A method for using belief networks as influence diagrams. Workshop
on Uncertainty in Artificial Intelligence, pp. 55-63.

Cousins, S. B., Chen, W., & Frisse, M. E. (1993). A tutorial introduction to stochastic
simulation algorithms for belief networks. Al in Medicine 5, pp. 315-340.

del Soldato, T., & du Boulay, B. (1995). Implementation of motivational tactics in tutoring
systems. Journal of Artificial Intelligence in Education 6(4), pp. 337-378.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29, pp. 103-130.

Graesser, A. C., Person, N. K., & Magliano, J. P. (1995). Collaborative dialogue patterns in
naturalistic one-to-one tutoring. Applied Cognitive Psychology 9, pp. 495-522.

Henrion, M., Pradhan, M., Del Favero, B., Huang, K., Provan, G., & O'Rorke, P. (1996).
Why is diagnosis in belief networks insensitive to imprecision in probabilities? Twelfth An-
nual Conference on Uncertainty in Artificial Intelligence.

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide. Inter-
national Journal of Approximate Reasoning 15, pp. 225-263.

. Huang, T., Koller, D., Malik, J., Ogasawara, G., Rao, B., Russell, S., & Weber, J. (1994).

Automated symbolic traffic scene analysis using belief networks. Twelfth National Confer-
ence on Artificial Intelligence, pp. 966-972.

. Huber, M. J., Durfee, E. H., & Wellman, M. P. (1994). The automated mapping of plans for

plan recognition. Tenth Conference on Uncertainty in Artificial Intelligence, pp. 344-350.

. Jameson, A. (1996). Numerical uncertainty management in user and student modeling: An

overview of systems and issues. User Modeling and User-Adapted Interaction 5(3-4), pp.
103-251.

. Keeney, R., & Raiffa, H. (1976). Decisions with Multiple Objectives. Wiley.
. Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J.-L. (1993). Motivational

techniques of expert human tutors: Lessons for the design of computer-based tutors. Com-
puters as Cognitive Tools (pp. 75-105). Lawrence Erlbaum Associates.

. Merrill, D. C., Reiser, B. J., Merrill, S. K., & Landes, S. (1995). Tutoring: Guided learning

by doing. Cognition and Instruction 13(3), pp. 315-372.

. Mislevy, R. J., & Gitomer, D. H. (1996). The role of probability-based inference in an in-

telligent tutoring system. User Modeling and User-Adapted Interaction 5(3-4).

Murray, R. C. (1999). A dynamic, decision-theoretic model of tutorial action selection. Un-
published MS Thesis, University of Pittsburgh. http://www.isp.pitt.edu/~chas/

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Prentice-Hall, Inc.

Reye, J. (1995). A goal-centred architecture for intelligent tutoring systems. World Confer-
ence on Artificial Intelligence in Education, pp. 307-314.

Reye, J. (1996). A belief net backbone for student modeling. Intelligent Tutoring Systems,
Third International Conference, pp. 596-604.

Reye, J. (1998). Two-phase updating of student models based on dynamic belief networks.
Fourth International Conference on Intelligent Tutoring Systems, pp. 274-283.

Shachter, R. D., & Peot, M. A. (1990). Simulation approaches to general probabilistic infer-
ence on belief networks. Uncertainty in Artificial Intelligence, pp. 221-231.

Singley, M. K. (1990). The reification of goal structures in a calculus tutor: Effects on
problem solving performance. Interactive Learning Environments 1, pp. 102-123.

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (in press). Human tu-
toring: Why do only some events cause learning? Cognition and Instruction.

163

Experimenting Features from Distinct Software
Components on a Single Platform

Marilyne Rosselle and Monique Grandbastien

Loria - UHP Nancy I University
Campus Scientifique - B. P. 239,
54506 Vandoeuvre lés Nancy CEDEX, France
Marilyne.Rosselle@loria.fr and Monique.Grandbastien@loria.fr

Abstract. This paper addresses the issue of building research scenarios
with existing or forthcoming research prototypes for educational pur-
poses. It defines an Experimentation Space allowing the cooperation of
several software components. First it presents the general architecture
and the properties which are required from each component to run on
the experimentation platform. Then a case study showing several exist-
ing prototypes in Geometry cooperating on the platform is described.
Lastly implementation problems and choices are discussed.

1 Introduction

Research in IES (Intelligent Educational Software) such as ITSs (Intelligent or
Interactive Tutoring System) and ILEs (Intelligent or Interactive Learning En-
vironments) used to develop entire systems from scratch. Time and resources
were spent on software design and implementation. Despite huge ellorts, the re-
sulting prototypes could not provide all the required features. However we have
noticed a growing interest in architectures and frameworks for inter-operable and
component-based systems ([2/310/9/11]). Moreover, several international initia-
tives have been launched to promote standards for describing, implementing and
retrieving educational components on the Web (IEEE P1484: Learning Technol-
ogy Standards Committee [, 180 /IEC JTC1 Information Technology Subcom-
mittee SC36 on Learning Technology, ARIADNE [etc.).

All categories of products would benellt from a component based approach since
all kinds of products require features that are not yet implemented in a single
existing piece of software. But for building research scenarios, i.e. experimental
settings for observing students using rich and innovative learning environments
and for conllrming or dis-conllrming research hypothesis, it is be the only allord-
able approach as the experimental setting will perhaps not be reused.

Our research aims at providing an experimental space for researchers in Cog-
nitive Sciences and Didactics. This experimental space should enable them to
build the educational environments they need by using the features of several

! http://grouper.icee.org/P1484/
2 http://ariadne.unil.ch

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 163-[I72] 2000.
© Springer-Verlag Berlin Heidelberg 2000

164 Marilyne Rosselle and Monique Grandbastien

existing educational components on a single platform. Taking such a component
based approach for building rich and innovative learning environments requires
specillc properties from the components. Two complementary approaches are
investigated. On which conditions is it possible to slightly modify existing com-
ponents in order to allow them to cooperate with others across a single platform?
Which guidelines and requirements should be observed by future designers in or-
der to avoid any change for allowing inter-operability?

In both cases, we need to answer the four following questions. (1) What prop-
erties should a piece of IES own to allow its cooperation with other prototypes?
In others words, what is necessary to add or modify in an existing prototype to
allow its cooperation with other prototypes? (2) How to share domain knowledge
between several prototypes? (3) How to manage graphic interfaces produced by
prototypes? (4) How to articulate prototypes that cooperate?

For the Orst question, Ritter and Koedinger dellned in ([I0]) the following prop-
erties for a prototype so that it could cooperate with another prototype: proto-
types should be “script-able, scrutinise-able and trace-able”. With regard to the
sharing of knowledge needed by several software, Macrelle and Desmoulins ([6])
proposed a solution using macro-dellnitions. With regard to the management of
graphic interfaces by the various prototypes, we need an additional property of
prototypes: they must be able to export their interfaces, we can then combine
them via a virtual graphic interface.

In this paper, we focus our presentation on articulating the execution of sev-
eral prototypes. We started from a case-study in the domain of geometry. This
domain was selected for several reasons. Firstly, there are several available pro-
totypes and products ([14l8]) that provide the user with some of the needed
features (i.e. drawing a Ogure, checking Ogure correctness with respect to an ex-
ercise statement, developing a proof, supporting the learner in writing a proof).
Secondly some of these prototypes were designed within our research team or in
neighbour teams, so theirs authors were available for advice in programming code
changes. Third geometry is a well formalised domain that gave birth to many
dillerent machine representations for geometrical objects and concepts; thus it
is a good [eld for experimenting translators from one representation to another
one. Last but not least, we started a partnership with researchers working on
geometry didactics who are interested in such a platform. From this case-study
we draw conclusions and begin the design of a set of guidelines and requirements
for plugging educational software components in our experimentation space.
The paper is organised as follows. We start with a global presentation of the
platform and of its service components. Then we show how a component can
be integrated into the platform and used for a scenario. Implementation choices
are described. We conclude on several further developments on which we are
currently working.

Experimenting Features from Distinct Software Components 165

2 Definition of the Experimentation Space

2.1 General Presentation

To allow prototypes to cooperate in a single environment, we propose an “Ex-
perimentation Space” (see Fig[I). xlaln Fig. [[] we have three prototypes P1, P2

xperiment
Features:
Pla P2b P3¢

Prototype P1
Feature:
A

Prototype P2
Feature:
B

Prototype P3
Feature:
AC

Researcher

Fig. 1. Experimentation Space

and P3 providing features A, B and C. The objective of the Experimentation
Space is that for the user, i.e.the researcher, everything occurs as if he had on
his machine all the features chosen in the several prototypes (here the feature
Alof P1, feature BOof P2 and feature ODCOof P3).

For example, in geometry, prototype P1 (in Fig. [[) is for drawing and moving
geometrical Ogures (CABRI [4]), prototype P2 is for Onding and writing a ge-
ometrical proof (MENTONIEZH [§]), and prototype P3 is for drawing a Ogure
and for Onding a proof (CHYPRE [I]). With these three prototypes, the re-
searcher can built up an experimentation including the drawing of a Ogure, the
search for a proof and the writing of the proof found.

2.2 Components Presentation

The Experimentation Space is a computerised environment including service
components (see Fig. [2) that handle:

— articulation of features of the various prototypes in a scenario, it is the
scenario manager. A scenario is composed of several elementary tasks. Each
task involves a given feature.

— share of knowledge that is useful to various prototypes, it is the knowledge
manager. The knowledge manager handles domain knowledge translation.

— management of graphic interfaces of the various prototypes within a virtual
graphic interface (implemented on the target machine, i.e. the machine on
which runs the experimentation) by the various prototypes, it is the (graphic)
interface manager. It handles the common interface unillcation.

166 Marilyne Rosselle and Monique Grandbastien

Interface
Manager

Scenario
Manager

Knowledge
Manager

Fig. 2. Software Components of the Experimentation Space

— management of communications between the various prototypes, scenario,
knowledge and interfaces manager.

This Experimentation Space supports the cooperation between prototypes. It
makes it possible to bring solutions to the questions previously mentioned. Inter-
face Manager and Knowledge Manager are both examples of service components
that the Experimentation Space should provide.

3 Integrating an Educational Piece of Software

If we want to give birth to the Experimentation Space we have previously dellned,
we should explain how to use it. Therefore we build up a set of properties that
future designers should take into account.

3.1 Identify Prototype Properties and Characteristics

To be integrated into the Experimentation Space, each prototype publishes the
four following informations: (1) its abilities or features that can be scripted,
(2) its pieces of knowledge that may be scrutinised or communicated, (3) its
observable-events that can be traced, (4) its graphic interface components that
can be exported.

Therefore, in order to link up with the Experimentation Space, the ideal piece
of education software needs to have the following properties: as seen in ([10])
and in our introduction, it should be: script-able, “scrutinise-able”, trace-able
(or record-able) and “interface-export-able”.

The three Orst properties were identilled (and named) by Ritter and Koedinger
in [I0]. It should be script-able i.e. it provides a mechanism (a kind of script)
that allows the Experimentation Space to launch, to stop and to undo functions,
methods or procedures and to recover the results (e.g. some Microsoft applica-
tions which can be scripted via DDE and some Macintosh applications which
can be scripted via APPLE-script). It should be scrutinise-able i.e. it allows the
Experimentation Space to read critical variables, states or registers. It should

Experimenting Features from Distinct Software Components 167

be traceable i.e. it allows the Experimentation Space to keep traces of the user
interactions with the software interface. It should be “interface-export-able” i.e.
it may be able to give his graphic interface to the Experimentation Space, so
that the Experimentation Space can operate on it.

3.2 Integration

We propose for each prototype the Ove following characteristics. (1) its features
(especially those that can be scripted) together with their launch access points,
(2) its pieces of knowledge: domain knowledge that can be scrutinised or trans-
fered to another prototype and interaction knowledge i.e. observable-events that
can be traced, (3) its graphic interface components (such as windows), (4) its
host machine, and (5) its host operating system.

Knowing that, we can initialise the Experimentation Space. Through a dialog
box we [l a form for each prototype to publish what it ollers to the Experimen-
tation Space (knowledge, features, etc.). Filling such a form for existing pieces
of intelligent educational software may require some additional work. There are
two cases of prototype integration within the Experimentation Space.

The Orst one is the ideal case i.e. the educational software is script-able, scrutinise-
able, trace-able and interface-export-able. The dellnition of the prototype char-
acteristics is easy and so is their publication in the Experimentation Space form.
Future pieces of education software should have these properties.

The second one occurs when the educational software is not script-able and/or
scrutinise-able and/or trace-able. In this case properties to ensure the script-
ability, scrutinise-ability and trace-ability should be added to the prototype be-
fore integrating the prototype. This needs slight code changes that should be
performed by the authors. In the other cases (i.e. if no such services can be
added) the prototype integration depends on several others parameters.

The Orst parameter is the granularity of features and knowledge that should be
published. It depends on the way the software is programmed. If knowledge and
features granularity is One and if the needed pieces of knowledge and features
are easily reachable, we have to add access points to the software component.
Then we publish them and make the necessary links to access knowledge or to
run features. If the granularity is large we cannot publish so many things. For
example we can only launch the whole software and wait for its result; thus there
is only one thing to be published.

The second parameter is the existence of observable-events generated by the
software. If observable-events exist, we only have to choose those that we want
to keep (parameterisation). If they do not exist, we need to build them up.

3.3 Defining an Experiment Using Prototype Features

Now that we know how to add a prototype into the Experimentation Space, we
should illustrate the design of an experimentation. We have chosen geometry
as an application domain. We [rst dellne the exercise we implement inside the
experimentation. Secondly, we dellne the scenario we use. Thirdly, we decide

168 Marilyne Rosselle and Monique Grandbastien

which Access Point we need to the dillerent features of the dillerent prototypes
involved. And Fourth, we launch the built scenario.

A Geometry Exercise

We aim the learner to perform a complete geometry exercise including Ogure
drawing, proof Onding and proof writing. To do that we selected two pieces of
educational software.

The Orst one is TALC, written in Prolog. It allows us to set an exercise statement.
It provides a graphic interface to draw a Ogure (through CABRI). It checks
the correctness of a learnerls Ogure with respect to an exercise statement. The
TALC features we would like to launch are the tree following ones: (1) Loading
the exercise statement (load_statement), (2) Running the drawing Ogure module
(drawing_lgure), (3) Running the check Ogure module (check _Ogure).

The second one is MENTONIEZH, written in Prolog. It helps the learner to solve
and justify a geometrical proof exercise, but provides no graphic interface to draw
a geometry Ogure. It Orst asks the learner to analyse the exercise statement. Then
the learner has to Ond the proof. And last he has to write out his proof. The
MENTONIEZH features we would like to launch are the four following ones:
(1) Loading an exercise statement (load_statement), (2) Running the analysing
statement module (analysing_statement), (3) Running the Onding proof module
(Onding_proof), (4) Running the writing proof module (writing_proof).
Features identilled here are used in next section to build a scenario.

Building a Scenario

In the example the scenario is designed to manage a complete single geometry
exercise. Here we only describe the parts of the Scenario Manager algorithm that
relates to TALC and MENTONIEZH.

1 choose an exercise statement

2 launch the tool for drawing and manipulating the figure

3 launch the validation of the figure

4 launch the tool for analysing the exercise statement (and
validating this analysis)

5 launch the tool for helping the learner to find a proof

6 launch the tool for validating the proof

7 launch the tool for writing out the proof text

Steps 1, 4, 5, 6, 7 are done with MENTONIEZH. Steps 2, 3 are done with TALC.
Steps 1, 3, 4, 5, 6, 7 Onish when the following step begin. Steps 2 runs until the
end of the exercise.

Choosing Feature Access Points

Here the pieces of software were not built to co-operate. As they run on the same
machine, we are not dealing with network communication problems.

As it is now, TALC is monolithic. Therefore the only thing we can launch is
TALC itself. However it is written with prolog predicates and each of the pre-
viously cited features corresponds to a prolog predicate. Therefore with little
modillcation we should be able to launch each of these predicates separately.
In the same way, MENTONIEZH is monolithic. Therefore the only thing we
can launch is MENTONIEZH itself. However it already dellnes modules. Each

Experimenting Features from Distinct Software Components 169

module is reachable. Therefore with little modillcation Dominique Py (MEN-
TONIEZH0Oauthor) should be able to launch each of these modules separately.
For this implementation we take TALC and MENTONIEZH as they are now.
TALC uses an exercise statement expressed in CDL (a predicate-based language)
and MENTONIEZH uses an exercise statement expressed in HDL (another
predicate-based language). Therefore TALC publishes the ICDL_statement at-
tribute and the DaunchOmethod, while MENTONIEZH publishes the
HDL_statementland HDL-CDL_macro-textlattributes and the DaunchOmethod.
As the features included in TALC and MENTONIEZH cannot be run indepen-
dently, we have to modify the previous algorithm in the following way: We decide
to add steps to tell the user what he has to do with each piece of software. This
solution does not allow us to check that the learner has done what he has to do,
but it allows us to test the Experimentation Space. For example step 1 of the
Scenario (described before) is modilled as follows:

Al display the instructions: Choose an exercise statement
and indicate that you are ready to continue

A2 launch Mentoniezh

A3 wait for the ‘‘ready event’’

Note that during this step, the feature choice is done within the subject (learner
or teacher) activity, because the prototype doesnlb separate features and there-
fore it does not allow to make this feature choice directly.

Executing a Scenario

During the scenario execution, steps are active the one after the other. During
one step, a prototype feature is run. Therefore the prototype is active. But when
the step is over, the question is should we stop the prototype or not? For exam-
ple, when the user has drawn a geometrical Ogure, the drawing tool may still be
running to allow the user to use it later. But when the correctness tool has given
a “success” feedback, there is no need to let it continue to run. Therefore, we
identilled at least two kinds of behaviour for a scenario Step: the prototype is
stopped at the end of the step or it is stopped at the end of the whole scenario.

3.4 Implementation Choices

We implemented our Experimentation Space in Java. The communication level
is implemented with JacORB i, a middleware that follows the CORBA [7] stan-
dard. The Experimentation Space is being tested on PC (Windows95) and Unix
(Solaris) platforms. Hereafter we describe some of our implementation choices.
Managing Graphic Interfaces

In the implementation of the current scenario the chosen prototypes are run on
the same machine. This case is simpler than the general one. The prototypes
have not been designed to export their interface. Therefore the only possible
solution in this case is to display two separate windows on the same screen one
for TALC, one for MENTONIEZH. Moreover to tell the user what he has to do

3 http://www.inf.fu-berlin.de/ brose/jacorb/

170 Marilyne Rosselle and Monique Grandbastien

with each piece of software we need a third window. We call it an instruction
window. The role of the Interface Manager here is only to activate the windows
that are useful in one step of the Scenario.

In the general case, we aim to use a virtual graphic interface that we repre-
sent here by the "including window” in which we can organise the display of
the other windows. Therefore the necessary features for our Interface Manager
are the Ove following ones: (1) to activate a window, (2) to de-activate a win-
dow, (3) to create an including window (e.g. for a piece of software), (4) to
organise the windows, (5) to assign an identiller to a window (e.g. useful to ac-
tivate it). Therefore the implemented Interface Manager contains the following
methods: Activate_window, De-activate_window, Create_including_window, Or-
ganise_windows and Assign Window_ID (identifier).

Managing Knowledge

TALC needs an exercise statement expressed in CDL (Classroom Description
Language). MENTONIEZH needs an exercise statement expressed in HDL (Hy-
pothesis Description Language).

We call them CDL_statement and HDL_statement.

To make TALC and MENTONIEZH cooperate require using the same exercise
statement. Macrelle and Desmoulins in [6)5] have shown that HDL is translatable
into CDL. Therefore we have decided to enter the exercise statement in HDL
(with MENTONIEZH), and then to translate it to CDL. To perform this trans-
lation we use the Macro-Dellnition Interpreter together with the HDL to CDL
macro-text. In this case MENTONIEZH language is the source language for the
translation. Therefore we have decided to publish the HDL to CDL macro-text
via MENTONIEZH.

For knowledge sharing, we use the Macro-dellnition interpreter as service com-
ponent. It publishes three attributes (In_statement, Out_statement and Macro-
Text) and a method (Interpret).

Implementation of the access points to prototype features

When initialising the Experimentation Space, each piece of software and service
is included in a CORBA object as servers.

When each object is started, each object initialises CORBA services and creates
an object Omplementationlis created.

For example when we start the MENTONIEZH CORBA Object and make all
the necessary initialisations, then an implementation of the MENTONIEZH
Object is created (we call it M_Impl). From this moment on, M_Impl waits
for a client request. The client in this case is Scenario Manager. When it is
started, it initialises CORBA services. Then it binds each CORBA object (e.g.
it binds MENTONIEZH CORBA Object). From this moment on, a proxy of
each bound CORBA object is created (e.g. the proxy for MENTONIEZH is cre-
ated: M_Proxy).

Here is the detail of step A2. To launch MENTONIEZH, the Scenario Manage,
written in java, uses the M_Proxy together with MENTONIEZH publication in
an IDL. Then CORBA directs the M_Proxy behaviour. It makes the request
to M_Impl. A return value is then sent back to M_Proxy that receives it. Then

Experimenting Features from Distinct Software Components 171

M_Proxy sends back the method result to Scenario Manager etc. So CORBA
technology enables us to easily implement the Scenario Manager.

4 Summary and Future Trends

The objective of this article was to dellne a platform supporting inter-operation
between pieces of software, which provides help in teaching and learning (In-
telligent Educational Software). This platform, called Experimentation Space,
was applied in the geometry domain to manage cooperation between TALC and
MENTONIEZH.

We endeavoured to make it as general and portable as possible, using ex-
isting standards where we could. Compared with [3II] our approach embeds
existing prototypes (or components) into CORBA objects. This allows us to use
the communication facilities available with CORBA object bus instead of using
a specillc communication component.

In addition we increase the list of properties that a piece of educational soft-
ware should possess to cooperate with the Experimentation Space: It should be
scripted, scrutinised, traced and interface-exported. It should be scripted i.e. it
provides a mechanism that allows us to launch, to stop and to undo functions,
methods or procedures and recover the results. It should be scrutinised i.e. it
allows us to reach critical variables, states or registers. It should be traced i.e. it
allows us to keep traces of the user interactions with software interface. It should
be interface-exported i.e. an other Software Component should catch its graphic
interface, display it, etc.

The theoretical and practical trends of this research work are the following ones:
Concerning cooperation and connectivity aspects, Orst we aim to validate the
proposals via the implementation of other prototype components. Secondly, we
aim to validate the proposals via the experimentation of the Experimentation
Space on separate machines. And thirdly we aim to evaluate the ell ciency, the
ease of use and the complexity of the applications built by using the Experimen-
tation Space. Concerning knowledge sharing aspects, we aim to implement the
aggregation of interface events to build up interaction knowledge. Concerning
interface integration aspects, we dellne the desirable characteristics of a user
interface. And Onally, concerning the dellnition of a minimal set of objects that
must be shared, we aim to dellne a taxonomy. We have yet identilled the follow-
ing elements: exercise statement and data, learnerll exercise solution, (construc-
tions, interfaces events and reasoning) history and learnerls conjecture. We need
to precise and extend this taxonomy.

This Experimentation Space constitutes a basis for future additions and de-
velopments of software components. It should be useful to exploit the comple-
mentarity of existing software as well as to increase incrementally the features
of educational software. We hope this will help ensure that the achievements
in a given domain are perennial and better evaluated and that, in turn, the
research is better validated. It should contribute to make educational software
more user-friendly for both researchers (to test and validate ideas) and end-users

172 Marilyne Rosselle and Monique Grandbastien

(i.e. teachers or learners). The joint use of complementary features would make
it possible to oller richer environments to teachers and learners.

References

1. Philippe Bernat. Conception et réalisation d’un environnement interactif d’aide
a la résolution de problémes. CHYPRE : un exemple pour la démonstration en
géométrie. PhD thesis, Université Henri Poincaré, 1994.

2. Brant A. Cheikes, Marty Geier, Rob Hyland, Frank Linton, Linda Rodi, and Hans-
Peter Schaefer. Embedded Training for Complex Information Systems. In Henry M.
Goettl, Barry P. anf Halff, Carol L. Redfield, and Valerie J. Shute, editors, 4th In-
ternational Conference, ITS’98, Intelligent Tutoring Systems, San Antonio, Texas,
USA, volume 1452 of LNCS, pages 36-45. Springer, august 1998.

3. Kenneth R. Koedinger, Daniel D. Suthers, and Kenneth D. Forbus. Component-
Based Construction of a Science Learning Space. In Henry M. Goettl, Barry P.
anf Halff, Carol L. Redfield, and Valerie J. Shute, editors, /th International Con-
ference, ITS’98, Intelligent Tutoring Systems, San Antonio, Texas, USA, volume
1452 of LNCS, pages 166—-167. Springer, august 1998.

4. Jean-Marie Laborde and Franck Bellemain. Cabri-Géometre II, logiciel et manuel
d’utilisation, 1994.

5. Marilyne Macrelle. HDL to CDL Macro-Definition Set. Technical report, LORIA-
UHP, 1998.

6. Marilyne Macrelle and Cyrille Desmoulins. Macro-Definitions, a Basic Component
for Interoperability between ILEs at the Knowledge Level : Application to Geom-
etry ILEs. In 4th International Conference ITS’98, Intelligent Tutoring Systems,
volume 1452 of LNCS, San Antonio, Texas, USA, August 1998. Springer Verlag.

7. Robert Orfali, Dan Harkey, and Jeri Edwards. Instant CORBA. Wiley Computer
Publishing, New York, 1997.

8. Dominique Py. Geometry Problem Solving with Mentoniezh. Computers in Edu-
cation, 20(1):141-146, 1993.

9. Steven Ritter, Peter Brusilovsky, and Olga Medvedeva. Creating more versatile in-
telligent learning environments with a component-bases architecture. In Henry M.
Goettl, Barry P. anf Halff, Carol L. Redfield, and Valerie J. Shute, editors, 4th In-
ternational Conference, ITS’98, Intelligent Tutoring Systems, San Antonio, Texas,
USA, volume 1452 of LNCS, pages 554-563. Springer, august 1998.

10. Steven Ritter and Kenneth R Koedinger. An Architecture for Plug-in Tutor
Agents. Journal of Artificial Intelligence in Education, 7(3/4):315-347, 1996.

11. Dan Suthers and Dan Jones. An Architecture for Intelligent Collaborative Edu-
cational Systems. In Ben Du Boulay and Riichiro Mizogushi, editors, AIED’97,
International Conference on Artificial Intelligence in Education, Kobe, Japan. I0S
Press, 1997.

Using Student Task and Learning Goals to Drive the
Construction of an Authoring Tool for Educational
Simulations

Brendon Towle

KnowledgePlanet.com
5900 Hollis Street, Suite A
Emeryville CA 94608
510-768-2433
[otowle@knowledgeplanet . com|

Abstract. Learning by doing simulations remain difficult to construct, yet are
appropriate training mechanisms in domains where the learning goals involve
learning how to make decisions in a complex evolving environment. The
learning goals that occur in such an environment are described. Using those
learning goals as a basis, an architecture which allows students to achieve those
learning goals is described, and then an authoring tool which allows non-
programmers to create simulations which address those learning goals is
presented. Finally, the results of applying this authoring tool to several domains
are discussed, and directions for future work elucidated.

1 Introduction

In many industry training and educational applications, a learning by doing simulation
is an appropriate training mechanism. These simulations allow trainees or students to
acquire the knowledge they need in an authentic context, thus situating the learning
appropriately [1], while allowing them to make the mistakes that are often necessary
for learning [9]. For example, training power plant unit operators how to transition
from a regulated to a deregulated environment requires that they learn how to analyze
the factors of a changing environment in order to make power production decisions
based on the potential profit to the company. This is a complex training problem, and
one that is likely to recur across companies and locations, thus making it an ideal
application for a training simulation.

However, accurate simulations of complex worlds are, by definition, complex, and
the development of complex software is a time and money intensive process. Further,
the people who are most able to build the simulations (programmers) are the least
likely to understand either the domain to be taught or the educational principles
involved. One possible solution to this problem is to provide an authoring tool or set
of tools that would allow domain experts without programming expertise to build the
sort of software alluded to above. Previous research in this area includes the work of
Drake [3] and Towne [13], as well as work done under the direction of Schank [7].
Additionally, Murray [8] gives a critical review of many additional projects in this

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 173-181, 2000.
Springer-Verlag Berlin Heidelberg 2000

mailto:btowle@knowledgeplanet.com

174 Brendon Towle

area. This paper describes one approach to creating such authoring tools, as well as
one tool that arose from this approach and the results of using that tool.

2 Task/Learning Goal Architectures: Easing the Authoring
Burden

One way of easing the burden of the author of an ILE is through a three-part method
of developing an authoring tool. First, define a generic task that has educational
ramifications, such as managing a complex system in the world. Second, define a set
of learning goals that are consistent with that task, such as learning how to make
decisions in that system. Finally, design an authoring environment around those
constraints.

This approach (or slight variants of it) has been the approach taken by Schank and
his students in building a set of tools for Goal-Based Scenarios (GBS) [10], and is the
approach used in the tool described in this paper. The major advantage to this
approach is that the authoring tool can allow for the creation of much more complex
software than would be otherwise possible given the available resources, because it is
optimized for a particular task and set of learning goals. The major drawback is that
the resulting tool is substantially limited in the types of simulations that can be
produced; a tool designed to produce investigation scenarios, for example, [2], cannot
then be used to produce rote performance scenarios [5]. This paper describes the
construction of an authoring tool for complex simulations, the Crisis Management
Tool (CMT), which was built using this approach.

2.1 Learning to Manage a Complex System

The CMT was built around the task of managing a complex system. This could be
anything from managing the emergency first aid at the scene of an auto accident to
controlling the financial management of a power plant. I have defined the essential
features of this task as follows:

e The simulated world is changing as time passes, in accordance with some set of
causal relationships in the world;

e The student is taking actions in the simulated world, which can have the effect of
changing the evolution of the world;

e The world can be changing both in response to student actions and independently
of them.

This task description covers an extremely wide variety of tasks, such as the ones
described above, but simultaneously excludes a wide variety of tasks, such as a wide
variety of diagnosis and recommendation tasks.

Learning Goals in Management Simulations

Given this task description, then, the next step in the approach is to define the learning
goals that will be associated with this task. In the CMT, the nature of the educational
task is to learn how to manage the environment so as to accomplish a specified set of

Using Student Task and Learning Goal to Drive the Construction of an Authoring Tool 175

goals, as opposed to simply learning the nature of the causal relationships within the
domain. While the nature of these goals in different domains is very different, all of
them fall into several general categories. Within the “how-to” category, I have
identified four main classes of learning goals:

e Learning how to solve common problems in the domain, usually by applying a
stock solution;

e [earning how to avoid common mistakes in the domain;

e Learning how to solve problems in the domain where no stock solution exists,
usually by analyzing and evaluating the choices; and

e Learning which problems in the domain must be given a high priority.

In proposing an architecture specifically aimed at handling these learning goals, it
is important to know what these goals are, exactly, so as to be able to demonstrate
how the architecture supports these authoring goals.

Naturally, these learning goals are not the only ones that can arise in the task of
managing a complex system. I have found that the learning goals which arise in this
task but do not involve “how-to” learning can be further categorized, and these
categories are:

e Understanding the causal mechanics involved in a system;
e Knowing the important vocabulary and concepts in a system; and
e Understanding the typical decisions in a domain.

An in-depth discussion of the details of each of these sets of goals, and how the
two sets of goals differ is out of the scope of this paper; see [12] for further details.

3 An Authoring Tool for How-To Simulations of Complex
Scenarios

In the previous section, I described the characteristics of the decision-making process
that students undertake in complex scenarios, and described what sorts of things are
available for the student to learn in these scenarios. Given these characteristics, it is
possible to define a tool that will allow for the construction of these how-to
simulations.

3.1 The Crisis Management Architecture

Above, I said that the essential features of the task facing the student are:

e The simulated world is changing as time passes, in accordance with some set of
causal relationships in the world;

e The student is taking actions in the simulated world, and these can have the effect
of changing the evolution of the world;

e The world can be changing both in response to student actions and independently
of them.

176 Brendon Towle

The Crisis Management Architecture is a predefined set of objects and relations
between them that allows authors to build a simulated world that satisfies these
criteria. In order to show how these objects fit together, I will first describe the
student’s interaction with a generic Crisis simulation, then I will describe the set of
objects which allow the student to take action, and finally I will describe the set of
objects that cause the world to change, both in response to student actions and
independently.

In creating simulations within the architecture, it is important to note that authors
are not given any flexibility in terms of the components of their simulation. The
architecture provides a fairly rigid definition of the objects in the world, and how
those objects interact, and those are the only options that are given to authors in
constructing their simulations.

Student Interaction With a Crisis Simulation

To illustrate the student interaction with a Crisis simulation, I will give examples from
Fire Commander, the first Crisis simulation. In Fire Commander, the student is given
the task of directing the firefighting teams at the scene of a house fire. First, the
student sees a movie designed to capture her attention and introduce the situation.
Then, she is presented with a graphical representation of the firefighting scene,
showing the firefighters, civilians, and fires. From this scene, she can choose which
one of the firefighting teams to direct. When she has chosen a team to direct (for
example, the hose team), she then sees the set of things that team can do at the current
time (for example, enter the dining room, enter the kitchen, or spray the house from
outside). When she chooses one of these actions, she will then see the action being
taken in the simulated world, and then see any consequences of that action, both by
seeing a movie of the action and consequences, and by seeing the display of the
firefighting scene change. Then, she can choose a team to direct, and the process
repeats.

At any time, she can ask questions of expert firefighters, who will give her
suggestions about how to approach the problems at hand. This questioning process
takes her into a form of hypermedia help system called an ASK system [4], which
allows her to continue asking questions on related topics until she is satisfied.

Architectural Components That Cause the World to Change

The Crisis Architecture uses four main components to represent the state of the world
and changes to that state: variables, events, effects, and world facts. Further, the
architecture supports the student in observing and inquiring about the world by the use
of media items and questions.

Variables are simply the state variables of the system under simulation, as defined
by the author. There are several types of variables supported by the architecture:
numeric, enumerated, computed, and list-valued. These different types of variables
allow authors to think about the domain in terms of the domain, instead of in terms of
the architecture.[l From the firefighting example, a variable might be the state of the
fire in the living room, or the location of the hose team.

! For example, an author in a firefighting scenario could choose to define the states of the fire as
{extinguished, small content fire, large content fire, fully involved fire, extensions fire} as
opposed to {1, 2, 3,4, 5}.

Using Student Task and Learning Goal to Drive the Construction of an Authoring Tool 177

Events are the architectural representation of what happens in the world, and are
implemented as a forward-chaining rule engine. An event has four main components:
the set of world facts that define when the event should happen, the set of effects that
take place when the event does happen, the set of media items that should be
displayed to the student when the event happens, and the set of questions that the
student should be allowed to ask after the event happens. From the firefighting
example, an event might be that the fire in the living room grows to fully engulf the
room.

World facts come in two flavors: simple and complex. Simple world facts are
simple statements about the world that can be either true or false: the value of the
variable “Living Room FlIre” is greater than medium, for example, or the student just
took the action “Send the Hose Team into the Living Room”. Complex world facts
are boolean combinations of either simple or complex world facts. This boolean
nesting allows authors to construct expressions of arbitrary complexity.

Effects are the representation of the changes to the world, and essentially represent
all of the various changes that can happen to the different types of variables. In
addition to a specification of the change that should happen, effects can also include a
media item to present to the student when that effect happens. Each type of effect has
its own representation; a typical representation would be an ordered tuple of the form
{variable, change-type, value}, such as {Living Room Fire, Add, 1}.

Media items are simply the architecture’s reference to the multimedia resources
which will be displayed to the student.

Questions are the conceptual inquiries that will be presented to the student, and
consist of three main components: the actual text of the question, the set of followup
questions that should be presented after the student asks the question, and the media
item(s) that answer the question.

Architectural Components That Allow the Student to Take Action

The primary components of the Crisis Management Architecture that allow the
student to take action in the simulated world are situations and actions. Situations are
the architectural representation of those parts of the world which the student can act
upon, and actions are the architectural representation of the things that the student can
do about any given situation.

The major components of a situation are: the text used to describe that situation to
the student, the actions that the student can take about that situation, a set of world
facts describing when the situation should be presented to the student, and a set of
questions that the student can ask in deciding what to do about that situation.

The major components of an action are: the text used to describe that action to the
student, the effects that action has on the world when it is taken, a set of world facts
which describe when that action cannot be presented to the student, and a set of
questions that the student can ask in evaluating that action.

Collectively, the components mentioned here allow for all of the actions described
in the architectural overview: students can choose between situations, take actions
about those situations, observe the results of their actions, and ask questions about
both the results and what to do next.

178 Brendon Towle

How The Architecture Supports the Learning Goals

Since this architecture was designed to support a particular set of learning goals, it is
important to demonstrate how students can achieve the learning goals within the
context of the architecture. Tthe four types of learning goals that were defined as the
primary targets of the Crisis Management Architecture were: solving common
problems, avoiding common mistakes, analyzing and evaluating decisions, and
prioritizing problems appropriately.

The first and second types of learning goal are addressed by simply giving the
student three related opportunities: the opportunity to attempt to solve the problem,
the opportunity to watch the attempted solution succeed or fail, and the opportunity to
ask questions about why the solution succeeded or failed, with answers given by
experts in the domain. By situating these opportunities in a relevant context, the CMT
gives the student a much better chance to retain this knowledge appropriately, and
gives the student a more motivating way to learn it [1].

The third learning goal is also addressed by giving students the opportunity to
solve problems, but in conjunction with the opportunity to ask questions about what to
do and how to think about the problem, with answers again given by experts in the
domain. Again, the student has been motivated to want to solve the problem (by
virtue of the structure of a Goal-Based Scenario), and again the problem solving is
situated in a real context.

The fourth learning goal is addressed in the same manner. The student is given the
opportunity to choose which problems should be addressed first. If these choices are
poor, the outcome of the simulation will be less than optimal (by definition). The
student is then given the opportunity to ask questions of experts about why things
happened the way they did, and can then discover which problems should have been
addressed first.

Finally, all of these goals are further addressed by a reflection component built into
the architecture. After a student has finished the scenario, either by choosing to exit,
or by satisfying any of the success or failure criteria defined by the author, she is
presented with the opportunity to review their actions. The system uses that as a
further opportunity to engage the student in a dialogue about what should have been
done, via the built in ASK system.

3.2 The Crisis Management Tool: Instantiating the Architecture

The essential mechanisms by which the CMT supports the creation of simulations
within the architecture are as follows:

e The CMT includes code which defines all the classes of objects in Crisis
simulations, how they relate to each other, and the processing that needs to occur to
make the simulation work.

e The CMT provides authors with a set of graphical editors, all of which work in the
same way. These graphical editors allow authors to define a population of objects
within their simulations by use of standard GUI mechanisms (drag and drop,
selection from dialog boxes, etc.).

e The CMT provides authors with a set of debugging and exploring mechanisms that
they can use to confirm that their simulation works as expected, and that the
required educational opportunities are available to the student.

Using Student Task and Learning Goal to Drive the Construction of an Authoring Tool ~ 179

The CMT also provides authors with a rich set of mechanisms to build a
customized interface to their simulation, but a complete discussion of those
mechanisms is outside the scope of this paper; again, see [12] for further details.

Object Definitions and Graphical Editors

One of the design goals of the CMT was that authors not have to write a single line of
code in order to design and build their simulations. To accomplish this goal, the CMT
defines all of the classes of objects mentioned in the architecture overview, and how
they relate to each other. For example, the CMT includes the code that defines how
world facts associated with actions cause those actions to be unavailable to the student
if the world facts are true, the code which causes situations to be available to the
student when their world facts are true, the code which maintains the list of state
variables, and so forth.

The inclusion of this code frees the author from most of the programming
requirements that would normally be associated with building a simulation. However,
the author still has the task of creating all of the situations, actions, events, and so
forth that make the simulation work.

To allow the author to do that, the CMT provides a set of graphical editors, one for
each type of object in the simulation. All of the objects in the CMT are defined as slot
and filler structures, with strong restrictions on the type of object that can be used as a
filler. Because of this, each graphical object editor can provide a GUI widget for each
slot, and that widget can produce the right editor. For example, the editor for a
situation has a standard scrolling list interface widget associated with the actions slot,
and this scrolling list has buttons to allow the author to create a new action, add an
existing action, and so forth. When the author clicks on the button to add a new
action, the CMT pops up a new action editor window, and knows that when the author
finishes that editor, it should be associated with the previous situation. Similarly,
when the author clicks on the button to add an existing action (or actions), the CMT
pops up a selectable scrolling list containing all of the existing actions. The fact that
all of the editors share the same set of basic slot editors and buttons aids in ease of
use; once an author has learned how to use one, he has learned them all.

Debugging/Exploring Mechanisms

It is an unfortunate fact of life that computer programs don’t work as expected when
first written. Because of this, the CMT includes a set of three different tools which
allow authors to explore how their simulations function, and fix them: the data
checking facility, a Simulation Analyzer, and an ASK System Analyzer. Each of
these tools allows authors to inspect their simulations in a different way.
Unfortunately, a detailed discussion of these tools is outside of the scope of this paper;
see [12] for the details.

180 Brendon Towle

4 Results: The CMT in Practice

The CMT was used by 13 different project teams to build 13 distinct simulations over
a two-year period. Each of these simulations was a complete prototype, although the
simulations were not used in classroom settings; however, some of the simulations
were used as business demonstrations. (This magnitude of use corresponds to
Murray’s category 2 of degree of use—a tool that is a completely functional
prototype, and has been used to create multiple functioning prototypes [8].)

Authors were given 1-2 hours of instruction in the use of the tool at the beginning
of their project, and then another hour or so of instruction in the use of the interface
builder at the time they began to build the interface. Very little additional instruction
was necessary to allow authors to complete their simulations.

Of the 13 different teams, 12 were able to complete their projects in the timeframe
allotted, which differed from team to team; some of the teams were given 6 weeks as
a part time project, while others were given 4 months full time. All 12 of these
projects were functional standalone software, although obviously the projects built in
4 months were more fully developed. Some of these projects were built before the
interface editor was completed, and the interface code for these was built by hand, but
the projects that were built with the interface editor were completed start to finish
without the authors needing to write a single line of code. These projects varied
widely in their interface appearance and their educational domains, showing that the
CMT does indeed provide a domain independent environment for authoring
educational simulations.

In conclusion, I have described an authoring tool for the creation of complex
management simulations. Although it is clear that the tool does work, the
effectiveness of the resulting simulations is a question in need of further research.
Additionally, it would seem that using the tool itself as a teaching mechanism,
allowing students to build simulations of a domain in order to learn about that domain,
might be a fruitful area of further research.

Acknowledgements

This paper describes work done under the direction of Roger Schank, whose vision
was a driving influence on the work. Many people aided in the construction and
design of the CMT, but the comments of Alex Kass and Michael Wolfe were
particularly helpful. Edwin Bos and Clark Quinn provided helpful comments on an
earlier draft of this paper, as did two anonymous reviewers.

References

1. Brown, J. S., Collins, A., Duguid, P.: “Situated Cognition and the Culture of Learning.”
Educational Researcher 18 (1989) 32-42

2. Dobson, D.: Authoring tools for investigate-and-decide learning environments,
Northwestern University. (1998)

3. Drake, L.: The Instructional Simulation Builder. (demo) International Conference on the
Learning Sciences, Evanston, IL, Association for the Advancement of Computing in
Education. (1996)

Using Student Task and Learning Goal to Drive the Construction of an Authoring Tool 181

8.

9.

Ferguson, W., Bareiss, R., Birnbaum, L., Osgood, R.: ASK Systems: An Approach to the
Realization of Story-Based Teachers. Institute for the Learning Sciences, Tech Report 22.
(1992)

Guralnick, D. A.: An Authoring Tool for Procedural-Task Training, Northwestern
University. (1996)

Interational Fire Services Training Association: Essentials of Firefighting, Third Edition.
Stillwater, OK, Fire Protection Publications, Oklahoma State University. (1992)

Korcuska, M., Kass, A., Jona. M.Y.: Design Choices for [earning-by-Doing Software:
When to Choose Advise. International Conference on the Learning Sciences, Evanston, IL,
Association for the Advancement of Computing in Education. (1996)

Murray, T.: “Authoring Intelligent Tutoring Systems: Analysis of the state of the art.”
International Journal of Al and Education 10(1). (1999)

Schank, R. C.:. Explanation Patterns. Hillsdale, NJ, Lawrence Erlbaum Associates. (1986)

10.Schank, R. C.: Goal-Based Scenarios, Institute for the Learning Sciences, Tech Report 36.

(1992)

11.Shlick, A. (Wauconda IL Fire Department). Personal communication with author. (1996)
12.Towle, B.: Authoring Tools for Learning How to Manage Complex Scenarios, Northwestern

University. (forthcoming)

13.Towne, D. M.: Learning and Instruction in Simulation Environments. Englewood Cliffs, NJ,

Educational Technology Publications. (1995)

Using an ITS Authoring Tool to Explore Educators'
Use of Instructional Strategies

1&2

Shaaron Ainsworth', Jean Underwood'*’, and Shirley Grimshaw'

1 ESRC Centre for Research in Development, Instruction & Training, School of Psychol-
ogy, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
2 Division of Psychology, Nottingham Trent University, Burton Street, Nottingham, NG1

4BU, UK.
Email: sea, jdu, skg@psychology.nottingham.ac.uk.

Abstract. REDEEM is an ITS authoring environment that creates simple ITSs
from existing domain material. In this paper, we report on an exploratory study
which examined how authors used the REDEEM tools to create ITSs that
matched their views on instruction. Four authors were asked to describe a class
of children learning primary mathematics and then use REDEEM tools to cre-
ate ITSs that they thought appropriate for these students. The results of the
study showed that although all the authors tended to analyze the class in the
same way, they had very different approaches to how they should be taught.
We report on the inter-author and intra-author differences in the number and
composition of teaching strategies and the application of these strategies to in-
dividual children. We conclude that the REDEEM environment can cater for
different instructional goals.

1. Introduction

REDEEM is an ITS authoring environment used to create simple ITSs from existing
domain material. The ITS tools take extant Computer Based Training (CBT) and
allow teachers or subject matter experts (SMEs) to overlay their instructional exper-
tise. The REDEEM shell uses this knowledge, together with its own default teaching
knowledge, to deliver the courseware adaptively. REDEEM ITSs are limited by the
domain content of the CBT and have a small number of tutorial actions. But, a
teacher can use REDEEM to create an ITS from CBT in substantially less time than
that reported for other ITS authoring tools [9] at around two hours per hour of in-
struction [1]. REDEEM therefore represents one solution to the problem of providing
the power of an ITS without overwhelming investment in time or expertise.
REDEEM is a relatively unusual authoring tool. Unlike other systems such as
RIDES[6], Eon [8] it does not help users to construct the domain material. Nor, does
it have the specific and indepth knowledge of the domain as systems such as Diag
[11] or Demonstr8[3] do. Instead, it aims to create simple ITSs that reflect teachers’
pedagogic goals with relatively little authoring. Given its unusual design and aim, it is

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 182-191, 2000.
Springer-Verlag Berlin Heidelberg 2000

Using an ITS Authoring Tool to Explore Educators’ Use of Instructional Strategies 183

very important to evaluate and hopefully validate this approach to ITS construction.
Evaluation of an authoring tool is complex with many different metrics required for a
complete analysis (see.[7]). Essentially however these are based upon two dimensions
— how effectively does the resulting ITS teach students and how effectively do the
tools support an author in construction of the ITS? Our current evaluations focus on
the latter of these two goals. We concentrate first upon ‘author-centered’ evaluation
because, until it has been demonstrated that REDEEM allows authors to develop the
ITSs they require, we can not sensibly evaluate the impact of those ITSs on students’
learning outcomes. In previous work we have examined the issue of usability of the
tools [1]. We now turn to a more fundamental question - Do teachers use the func-
tionality that REDEEM provides? If all teachers view courses and students in the
same way then REDEEM is redundant. Rather than provide teachers with tools to
create ITSs that reflect their own pedagogic preferences, we should instead provide
the ‘right’” ITS.

ITSs constructed and run under REDEEM vary along two key dimensions — “what
they teach” and “how they teach it”. In the former case, the ITS shell varies through
the CBT material, supplements it with additional questions and feedback, suggests
reflection points and supports integration into the classroom by the use of non-
computer based tasks. In the latter case, REDEEM varies factors including the degree
of student control, position and amount of testing, help provision and response to
student error to adapt its teaching style to students’ needs. Previously, we discussed
how authors use REDEEM to create different sequences through material for their
students [2]. Here we consider their instructional strategies. This paper reports on an
exploratory study that examines the ITSs created by four users. By so doing, we hope
to show that REDEEM can be used to produce ITSs that differ substantially from
author to author and argue that this validates the claim that authors can and will create
ITSs that reflect their (implicit or explicit) pedagogic theories.

A second and no less important goal is to consider if the design of REDEEM sup-
ports the functionality that teachers require. Most ITS authoring environments aim to
trade-off the complexity of authoring decisions with the power and flexibility of the
resulting ITS (e.g. [10]. This is particularly true of REDEEM as it is aimed at authors
with little experience in the development of computer-based learning environments.
Ideally, the way that REDEEM allows authors to describe how they prefer to teach
students will result in an ITS with many different strategies. However, if all authors
make very similar decisions about a teaching strategy, then choice in this dimension
is redundant and may become hard-coded into future systems. This should allow the
development of systems that are quicker or simpler to use or can be used to 'free up'
time to describe other authoring decisions.

2. Authoring with REDEEM.

The ITS authoring tools require users to provide descriptions of course content, stu-
dent characteristics and teaching strategies. In order to illustrate how REDEEM ITSs
created in this study varied the instructional strategies for different children, it is help-

184 Shaaron Ainsworth, Jean Underwood, and Shirley Grimshaw

ful to consider how the second and third decisions of these are authored. Fuller de-
scriptions of the complete authoring process can be found in [5]

Assuming authors have either described a course or been provided with a pre-
described course, they can customise it to their class by developing teaching strategies
for individual children or groups of children. They use three tools to do this; student
categorisation, teaching strategy development and relating student categories to
teaching strategies. The first two tasks could be performed in any order, but relating
strategies to students must come last. It is possible to revise these decisions.

4 Toolllook i - TOOLS. bk Pl E3 | 4 Tooillook 11 - TOOLS. th&

ing your student rating ing your teaching strategies

“You muy define new ratings or use the exdsting once Define new ratings -, I |s|:mwnm Practice

Da these ratings measuie = 2
which changes, o do they repreaent fised | Perlomonce @ Fard categuies Tewchery thioteur lealures }'ﬁu.:;;:mm
calsywien? : st gl |l e
Type in your students® names and rate each ane e =
Students name ...r R=2)-ots of testing I Categorical
EP_m.. Tabe this shudent i i " Tests b i e fFist at end P TrsefFalse
g Flyee
| ko - B - + s rat npociic F Multiple True
Other students — Anwnrs doducod »jel S CReR— Db chstes
| wiison 3 o e Create sirategy ...
i adyl e Lots of hints & i hirty s
n s ather siralegy ...
r:vhltg ety Leirues Lots uf feudback +} - o4 Fuedbuch ot und | i ot SUPAEHY
i =I| Al cormgnder e - o4 oo compeer fasks Delete strateqy .
Help Tiopage 4w [mp | ety | Titepane 4 [|

Fig. 1. The student characteristics tool Fig. 2. Defining teaching strategies tool

Authors begin to consider student characteristics by defining a set of categories which
will be used by the shell to determine which teaching strategy and what material a
student receives. These categories can be based upon any factors that teachers con-
sider important such as previous experience of the course, aptitude in the topic,
learning style or degree of literacy. Figure 1 provides an example of one teacher’s
decisions, where the categories chosen are based upon a combination of function
(revision or first exposure) and perceived ability. If teachers choose to select per-
formance-related categories, then the validity of student placement within categories
can be evaluated against a student's performance in the ITS shell. If this is the case,
then the shell will automatically change the category as the overall standard of the
student (as defined in the shell’s student model) changes. Teachers must create a
minimum of one category (e.g." My Class") but there is no upper limit on this num-
ber. For example, a teacher may create as many categories as children although pre-
vious studies show that this is unlikely to occur [12]. Having created the categories,
teachers then enter the names of their students and associate them with one of these
categories. It is possible to change categories and students at any time.

Different teaching strategies are created by manipulating dimensional sliders of
eight components of instruction. Teachers are free to use previously developed strate-
gies, edit them or develop new ones (Figure 2). These dimensions were developed by
a combination of interviewing teachers and the research literature on aptitude by
treatment interactions. They do not represent an end-point of design and this research
is aimed at determining which ones teachers found most and least useful. The position
and meaning of each slider can be found in table 1. The final stage in the process is to
simply relate teaching strategy to student category.

Using an ITS Authoring Tool to Explore Educators’ Use of Instructional Strategies

Table 1. Dimensions of teaching strategies in REDEEM

185

Slider Left Slider Centre Slider Right
Student choice No student choice Choice of section Choice of any
page

Lots of
teaching
Position of ?s

General to
Specific
Answers
deduced

Help Given
Summarise

Non-computer

Offer no tests

Test after each
page

Prefer general
pages first
Right answer
given when no
further answers
Help on request
Summarise after
section and ?
No non-computer

One test limit per
page

Test after each
section

Right answer
given upon sec-
ond error

Help on error
Summarise after
section
Non-computer

All tests available
Test after course
Prefer specific
pages first

Right answer

given upon error

No help
No summary

All non-computer

task tasks tasks after section tasks after page

3. Study One

Four educators were recruited, one SME and three teacher practitioners (TPs). The
SME was a teacher trainer with 20 years experience in primary mathematics. The TPs
were classroom teachers who had not previously developed computer-based material.
They were asked to create an ITS from a course 'Understanding Shapes' which is
aimed at children of 7-11 years and focuses on mathematical concepts such as verti-
ces and symmetry. The material covers around six hours of teaching and includes
text, graphics, sound, and animation. To compare the educators’ decisions, it was
necessary for them to author for the same group of learners. As there was no class of
children with which all the authors were familiar we created a simulated class of 7-
year old girls. Vignettes were developed describing each child’s performance in
mathematics over the last year. The vignettes manipulated familiarity with the course
and mathematical aptitude. The profiles were developed from records of children
unknown to the participants and vetted by a local headmaster.Each author was pro-
vided with descriptions such as these for seven children. They were then free to de-
fine student ratings and to develop as many teaching strategies as they required.

4. Results

The first issue that will be considered is how teachers saw the virtual class. Four
authors were asked to develop scales and rate the class of seven children using them.
Table 2 shows the resulting categorization. Although no author saw any of the other
authors’ ratings, each author created five categories of students. It is apparent from

186 Shaaron Ainsworth, Jean Underwood, and Shirley Grimshaw

the names they give the categories and the way they group the students that two of the
authors were mainly concerned with the students perceived ability in maths (TP2 and
SME) whereas the other two authors combined ability characteristics with familiarity
with the course to determine their student ratings (TP1 and TP3). However, it can be
seen from Table 2, that the resulting order of the student categories is very similar
across the authors.

Table 2. Students in author-defined categories

Name TP1 TP2 TP3 SME
Alison to L1 unfamiliar group 5 a very low
Susan L1 unfamiliar group 4 b low
Sally L1 unfamiliar group 4 b middle
Anne* L1 familiar group 3 revising b middle
Lucy L2 unfamiliar group 2 c high
Emma L2 unfamiliar group 1 c high
Kate* L2 familiar group 2 revising ¢ very high

Key. Students are ordered from the least to the most mathematically proficient. Those
marked with an asterisk were identified as revising the course.

Each participant authored a number of different teaching strategies: TP1 created
five and she assigned each of these to at least one group of children, TP2 authored
five strategies which she also used at least once, TP3 created six and used five of
them for this class and SME developed three and used two of them for the class.
Furthermore, it can be seen from table 3, that the authors used REDEEM to create
many different strategies. There are 8 dimensional sliders each of which can be
placed in one of three positions. In total, 20 of these 24 slider positions were used by
the authors. This is surprisingly high given that this is just one course for a single age-
group of students. The wide use to which the sliders were put suggests that we have
achieved our goal of identifying dimensions of teaching strategies that authors con-
sider important to differentiate instruction.

When we examine the content of the authors’ decisions, we can see that there are
marked differences between the authors. Individually, the number of dimensional
ratings used by each author were 19 for TP1, 13 for TP2, 17 for TP3 and 12 for SME.
The SME differs from the other authors in that she was the only author to use a single
teaching strategy for more than one group of students. Incidentally, this does not
mean that these groups of students received the same ITS because the material cov-
ered by each of these groups was different. As she only created two strategies, she is
limited to a maximum of 16 possible slider locations. The other three authors all used
five teaching strategies for the class, one for each of the five defined student groups,
so the variations between them are due more to differences in how finely they differ-
entiated their teaching strategies across the class. TP2 used just five additional dimen-
sional ratings above the minimum of eight whereas TP1 used an additional eleven.
The reasons for these differences between authors or what the effects of these differ-
ences on learning within the class might be are outside the bounds of this study.

Using an ITS Authoring Tool to Explore Educators’ Use of Instructional Strategies 187

However, such differences are interesting as they point to ways of using REDEEM as
a means of exploring different conceptions of teaching.

Table 3. Strategies created by authors given by position of dimensional sliders and
student categories 1 = Left, 2 = Middle, 3= Right

TP1 SC LT PQ GS AD H S NT Groups
Low Unfam 1 2 1 1 2 1 2 3 to L1 unfam
Mid Unfam 1 3 1 1 2 2 2 3 L1 unfam
Mid Fam 2 2 1 1 1 2 2 1 L1 fam
High Unfam 1 3 2 1 2 2 2 3 L2 unfam
High Fam 3 3 3 2 1 2 2 1 L2 fam
TP2 SC LT PQ GS AD H S NT Groups
Group 5 1 2 1 1 1 1 1 2 group 5
Group 4 1 2 1 1 1 1 1 2 group 4
Group 3 1 2 1 1 1 2 2 2 group 3
Group 2 1 2 2 1 1 2 2 2 group 2
Group 1 3 3 2 2 1 2 2 2 group 1
TP3 SC LT PQ GS AD H S NT Groups
Strategy a 1 2 1 1 3 1 2 2 a
Strategy b 2 3 2 1 2 2 2 2 b
Strategy c 3 3 2 2 1 2 2 2 c
Revising b 2 3 2 1 1 2 2 1 revising b
Revising ¢ 3 3 2 2 1 2 2 1 revising ¢
SME SC LT PQ GS AD H S NT Groups
Control 1 3 1 1 2 2 1 3 very low,

low, middle
Low control 2 3 2 1 2 1 2 3 high, v. high

Key. SC Student choice, LT Lots of teaching, PQ Position of questions, GS General to Spe-
cific, AD Answers deduced, H Help Given, S Summarization, NT Non-computer task

An alternative way of examining the data reveals a slightly different picture. In this
case, the class is taken as the unit of analysis and the number of children who receive
each position of the teaching dimensions is summed. Therefore with four authors and
seven children there is a maximum of 28 entries for each cell. This analysis allows us
to examine whether just one aspect of a dimension is used for all of the student
groups or whether there is a more even distribution where each dimensional rating is
used for at least one student group.

It can be seen from figure 3 that the teaching dimension most consistently used in
just one location is “General to specific” which is used in "Prefer general" just over
80% of the time and "Ignore this dimension" in the remaining cases. A future re-
search question is to compare this to the authoring of other courses to determine if
this result is a characteristic of the particular course used in this study or a more gen-
eral preference.

The second most consistently used dimension is "summarization". This was used
in position 2, "summarize after section" 75% of the time and in position 1, "summa-

188 Shaaron Ainsworth, Jean Underwood, and Shirley Grimshaw

rize after section and page" 25% of the time. Even in the cases where it was used in
position 1, the authors were not always happy with the decision and suggested
changing it upon review. This slider is a plausible candidate for assumption into the
REDEEM architecture - i.e. hard coding the decision to summarize after section in
the ITS shell. However, caution is warranted as again it may be a characteristic of the
course (the relative size of sections and number of questions authored) which causes
its relative lack of differentiation. Further authoring with other courses for other age
groups is underway that will help clarify this.

g 100% —
o w —— [MPos 3
o
= — | OdPos 2
o o — L -
g 50% | L EPos 1
- o
g —

O, —
= 0%

SC|LT |PQ|GS|AD| H | S INC
MPos3| 5|0 | 1]|0/[13/17| 0 |12
bOPos2 | 7 (10|14 5 |14 11|21 |12
BOPos1|16|18(13|23| 1 | 0| 7 | 4
Dimensions

Fig. 3. Use of each of the teaching dimensions collapsed across author and class

Five of the remaining dimensions were used in two positions fairly consistently
(Lots of Teaching, Position of Questions, Answers Deduced, Help Given and Non-
Computer Based Tasks). In most cases, the third dimensional rating was almost never
used. This may be due to the nature of the course and task. The Student Control di-
mension is probably the most differentiated as although it had one fairly strong home
position (All teacher control), the other two dimensions were represented fairly
equally. We now turn to consider whether these results are based on differences be-
tween the way that authors use the strategy dimensions (inter-author differences) or
whether they are based on differences within an author's use of teaching strategies for
their class (intra-author differences).

It is apparent that use of the teaching dimensions varied between authors in the
study. For example, only two of the dimensions of "Lots of Teaching" were used (this
determines how much time a student spends in questions versus exploration of new
material) position 1(10/28 times) and position 2 (18/28 times). This distribution is
very similar to "Help Given" (whether students receive no help, help on error or help
on error and request) which again was used in only two positions - position 2(11/28
times) and position 3 (17/28 times). However, these total scores hide variation in
inter-author and intra-author differences. For "Help Given", the authors apply two
facets of the dimension fairly equally (more intra-author difference), whereas for
"Lots of Teaching", each author had a strong preference for one position of the slider
but did not always agree on that position (more inter-author difference).

Using an ITS Authoring Tool to Explore Educators’ Use of Instructional Strategies 189

TP1 TP2
7 e 7
6 —+ 6 -l
5 4 mPos3 5 | D Pos 3
4] 4]
:' mPos2 3 OPos2
2l
g DPos1 1 BPos1
0 === 0
SC LT PQ GS AD H S NCT oo e
SC LT PQ GS AD H S NCT
TP3
[J—— , SME
6 — 3:_
5 mPos3 5| mPos 3
5 Ho
mPos2 31 @Pos2
2 2]
11— 14
Pos 1
0 === , BPos1 =1 ===
SC LT PQ GS AD H § NCT sC LT PQ GS AD H § NCT

Fig.4. Authors assignment of teaching dimensions to their classes

Marked inter-author differences but less intra-author differences are also observed
in use of non-computer based tasks. Two authors used only one facet of the dimen-
sion (but each selected different ones) whereas the other two authors used two posi-
tions of the slider. In this case the difference between the author strategies can be
explained on the basis of their student categories. If they took account of familiarity
when creating categories they used strategies without non-computer tasks. Student
control, which was the dimension that is most differentiated across authors is revealed
by this analysis to combine inter-author and intra-author differences. TP1 and TP2
used this slider primarily in position 1 (all teacher control), TP3 only uses position 1
once and then uses positions 2 and 3 equally, and SME uses positions 1 and 2
equally. It suggests that some educators believe that (for this age of children) there is
an appropriate level of student control whereas others believe that this decision is best
made on a case by case basis. The authors strong but differing views on the role of
student control are very interesting, particularly as the degree of student control has
often been considered as a defining feature of an ITS (e.g.[5]).

A final source of variation in the design of the ITSs is differences in how the
authors treated each of the students - there may be some types of students where there
is much higher agreement than others. To illustrate this we scored each dimension for
every child by the degree of agreement between the authors. There were four authors
so the only possibilities are complete agreement, where all authors select the same
dimensional rating (4,0,0) scored 4, or levels of partial agreement; three authors agree
(3,1,0) scored 3, two sets of authors agree with each other (2,2,0) scored 2 and the
least agreement (2,1,1) scored 1. These were then summed for each child to give a
maximum score between 8 and 32. These data can be seen in Figure 5.

It is apparent that there were variations in how the authors treated the different
children. The major source of disparity is whether authors took account of familiarity
with the course when developing strategies. Anne and Kate are the two students who
were identified as ‘revising’ in the student profiles. These students generated the least
agreement as two authors created revision strategies and two did not. Although it

190 Shaaron Ainsworth, Jean Underwood, and Shirley Grimshaw

would be unwise to over interpret this data, there also seems to be more agreement
between authors with lower performing students. This suggests more concordance
amongst teachers about how to support learning for children of lower apti-
tude/experience than children with higher aptitude/experience in that domain.

25
24
23
22

21
20

. 1]

Alison Sally Susan Anne Lucy Emma Kate

Fig. 5. Agreement on the choice of teaching strategies by four authors

5. Conclusions

This investigation forms part of our ongoing evaluation of the REDEEM authoring
environment. The analysis of the way that authors constructed teaching strategies
from the different dimensions confirms that the tools are being used nearly to their
full extent as 20/24 of the possible options were selected by authors in this study. This
is striking given the limited nature of the underlying course and the few authors who
took part in the study. Two dimensions were identified as having limited differentia-
tion, "General to Specific" and "Summarization". These are candidates for inclusion
in the REDEEM architecture if future studies find that they are rarely used. The other
dimensions were used in a more differentiated fashion with the majority being used in
two positions fairly regularly and only Student Control and to a lesser extent Non-
Computer Based Tasks having substantial use in all three. We are currently exploring
courses aimed at different populations (secondary school students and naval recruits)
and different topics (biology and electricity) to establish whether these will produce
similar pattern teaching strategies.

Another interesting outcome of this study is the difference between the authors.
Although all the educators tended to see that class similarly, they differed in how they
developed and then assigned teaching strategies. One author, the SME, used two
strategies whereas all the other authors used five strategies. These total figures hide
more subtle differences. The SME, for example, used 12 dimensional ratings in her
two strategies whereas TP2 used only one more in five different strategies. TP2 seems
more inclined to a model of ‘home’ positions on the dimensions which she tweaks for
individual students whereas the SME has more even distribution across the dimen-
sional ratings. Finally, we can see that some of the learner profiles in this study led to
more agreement about the appropriate teaching strategy than others. Revising chil-
dren caused the most disagreement with two authors developing strategies specifi-
cally for them and two not. There also appeared to be a trend for less concordance
amongst authors for children with more experience/aptitude.

Using an ITS Authoring Tool to Explore Educators’ Use of Instructional Strategies 191

These results lead us to further studies. One is to repeat this experiment using more
authors to explore the use of an ITS authoring tool for capturing views of teaching.
This research is underway with students training to be teachers of primary mathe-
matics. A second set of studies will explore whether these differences in strategies
described and developed under REDEEM impact on the learning experiences of stu-
dents. Studies of the impact of REDEEM on learning outcomes with naval trainees
are also underway and should help to answer this question.

Acknowledgements

This research was supported by the ESRC Centre for Research in Development, In-
struction and Training We would like to thank Nigel Major, Sue Cavendish, Iona
Bradley, Sue Hewes, Ruth Guy-Clarke Ben Williams and David Wood

References

1. Ainsworth, S.E., Underwood, J.D., Grimshaw, S.K: Formatively evaluating REDEEM - an
authoring environment for intelligent tutoring systems. In: Lajoie, S. Vivet, M. (eds.): A.L
in Ed.. Amsterdam: IOS Press. (1999) 93-100

2. Ainsworth, S.E., Grimshaw, S.K. Underwood, J.D: Teachers implementing pedagogy
through REDEEM. Computers and Ed. (1999) 171-181

3. Blessing, S. B:. A programming by demonstration authoring tools for model tracing tutor.
Int. Journal of A.L in Ed., 8(3-4), (1997). 233-261

4. Elsom-Cook, M: Guided discovery tutoring and bounded user modelling. In Self, J: (eds.)
A.l and Human Learning: London: Chapman and Hall. (1988) 165-178

5. Major, N., Ainsworth, S.E., Wood, D.J.: REDEEM: Exploiting symbiosis between psychol-
ogy and authoring environments, Int. Journal of A.L in Ed., 8(3-4), (1997) 317-340

6. Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M., Wogulis, J. L.:
Authoring simulation centred tutoring with RIDES Int. Journal of A.L in Ed., 8(3-4), (1997)
284-316

7. Murray, T.: Expanding the knowledge acquisition bottleneck for intelligent tutoring sys-
tems. Int. Journal of A.L in Ed., 8(3-4), (1997) 222-232

8. Murray, T. Authoring knowledge based tutors: Tools for content, instructional strategy,
student models and interface design. Journal of the Learning Sciences, 7(1), (1998) 5-64

9. Murray, T. (1999). An overview of the state of the art in ITS authoring tools In: Lajoie, S.
Vivet, M. (eds.): A.L. in Ed.. Amsterdam: IOS Press. (1999) 9

10. Sparks, R., Dooley, S., Meiskey, L. Blumenthal, R: The Leap authoring tool: Supporting
complex courseware authoring through reuse, rapid prototyping and interactive visualiza-
tions. Int. Journal of A.L in Ed., 10, (1999) 75-97

11. Towne, D. M.: Approximate reasoning techniques for intelligent diagnostic instruction. Int.
Journal of A.L. in Ed., 8(3-4), (1997) 262-283.

12. Underwood, J., Cavendish, S., Lawson, T.: The Sustainability of Learning Gains: An in-
vestigation of the Medium-Term Impact of Integrated Learning Systems on Pupil Perform-
ance. Coventry: NCET (1996)

Is What You Write What You Get?:
An Operational Model of Training Scenario

Yusuke Hayashi', Mitsuru Ikeda', Kazuhisa Seta’,
Osamu Kakusho’, and Riichiro Mizoguchi'

' The Institute of Scientific and Industrial Research, Osaka University
8-1, Mihogaoka, Ibaraki, Osaka, 5670047, Japan
{hayashi, ikeda, seta, miz}@ei.sanken.osaka-u.ac.jp
*Faculty of Economics and Information Science, Hyogo University
kakusho@humans-kc.hyogo-dai.ac.jp

Abstract. To meet the needs for large-scale, high-quality learning contents,
needless to say, we have to sharpen authoring tools. Authoring process can be
roughly divided into two phases, a composing phase and a verification phase. A
great deal of effort has been made on the support in the former phase. What
seems to be lacking, however, is that in the latter. An ontology-aware authoring
tool we have been developing has a function called “Conceptual level
simulation. ” This supports authors in the latter phase by showing the behavior
of learning contents not only as a sequence of concrete behavior but also as
structured and abstract behavior along the design intention. Ontology lays the
foundation for the function by explicating operational and conceptual semantics
of a training scenario.

1. Introduction

Contents-oriented research comes to attract considerable attention in information
engineering field. The trend has been accelerated with broad diffusion of multimedia
and internet technologies. In the research field on educational systems, the transitions
from story-board type to knowledge-based type, from individual type to collaborative
type and from tutoring type to learning environment type, are symbolic of the trend.
Large-scale, high-quality learning contents are becoming one of the critical needs of
technetronic society. To meet the needs, needless to say, we have to sharpen our tools
to produce high-quality learning contents in a large scale, because the quality of the
learning contents depends not only on the author’s ability but also on authoring tool’s
performance. In fact, many researchers address this issue from a variety of viewpoints
[6].

Authoring process can be roughly divided into two phases, a composing phase and
a verification phase. Existing authoring tools support both phases of authors’ work to
a some extent. However, compared with the support performance for the former
phase, one for the latter does not seem very helpful to the author. A typical support
function for the latter is to provide a behavior-level test bed where authors can
examine their learning contents step by step along the control structure. In general, of
course, it is helpful and absolutely necessary. However, it is not very helpful to

G. Gauthier, C. Frasson, K. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 192-201, 2000.
Springer-Verlag Berlin Heidelberg 2000

Is What You Write What You Get? 193

resolve the logical drawback of learning contents. On analogy of programming, it
could be described as “semantic-error debugging. ” Shapiro explains the hardness of
debugging [7]:

A program is a collection of assumptions, which can be arbitrarily complex; its

behavior is a consequence of these assumptions; therefore we cannot, in general,

anticipate all the possible behaviors of a give program.
This is true in case of authoring of learning contents as well. The key to lightening the
hardness of debugging is to shift the load to maintain the design assumptions from
authors to authoring tools. To realize this, new functions of an authoring tool to be
developed include

A framework for authors to describe design assumptions including design
intention of learning contents.
A function to show the behavior of learning contents not only as a sequence of

concrete behavior but also as structured and abstract behavior along the design

intention.
We call the latter as “conceptual-level simulation. ”Our idea is that the structured
information generated based on author’s design intention will lighten the author’s
major debugging load to compare what he/she thinks (design intention) with what
he/she gets (behavior). We use the term “design intention” to prevent confusion of it
with more general term ‘“design rationale”. Generally, design rationale includes
reasons behind design decisions, justification for them, other alternatives considered,
the trade-offs evaluated, and the argumentation that led to the decision [3]. Intuitively,
design intention is a part of design rationale: limited to reasons behind a design
decision and justification for it. Reasons behind concrete learning contents are
represented as a hierarchical structure of instructional goals. Justifications for the
structure are teaching strategies or pedagogical principles used for hierarchical
arrangement of the goals. The benefits of using design intention is that authors can
enjoy services to record, maintain, or access their “design intention” behind learning
contents and it can thus improve reuse and maintenance of the contents.

An ontology [5] plays an important role to embody the above idea. One of the most
important roles of ontology is to lay the theoretical foundation for educational system
development process. It maintains continuity from authors conceptual understanding
of an educational task including design intention to the computational semantics of
educational systems [1]. It provides human friendly vocabulary/concepts for authors
to describe the learning contents along with design intention. For the authoring tools,
on the other hand, it specifies the operational semantics of the learning contents. This
operationality enables the conceptual-level simulation of learning contents. Based on
this idea, we have developed an ontology-aware authoring tool SmartTrainer/AT[2,
4].

2. Ontology-Aware Authoring Tool

2.1 Composing a Model

Basically, an ontology is a set of definitions of concepts and relationships and a model
is a set of instances of them. Roughly speaking, the role of an ontology is to direct the
authors towards the correct model. Our idea is that an ontology-aware authoring tool

194 Yusuke Hayashi et al.

can help authors to reduce the problems of authoring caused by unintentional error
and to improve the quality of the product. Our research on SmartTrainer/AT is an
embodiment of this idea. We have developed a training task ontology and
incorporated it into SmartTrainer/AT as fundamental knowledge source to yield the
intelligent functions to support the authoring process.

The authors’ task is to write a “training scenario” for SmartTrainer that is a training
system engine we have developed. At the appropriate phase of authoring process, the
author is required to clarify his/her own idea from the three fundamental viewpoints
listed below.

What type of learner the scenario of the teaching material is designed for?

What educational effect the teaching material is supposed to bring about?

How to achieve it?

Design pattern for
learning contents

(D)

Input:
Learner model Result of

2 Conceptual-level simulation
Apply -
Ky o

Kinds of
learner are..

(A)

Make them
% i
Idea of
the author

collation

Output:
Learner model

hierarchy._

Teaching

@2 LS L™) action(Ta)s

)
Conceptual

- Specification
of cards _

| -y

real cards

Author

B-3)

Fig. 1. An overview of authoringprocess

Fig.1 shows how the idea (A) is embodied in the teaching material (C). The model
(B) can be regarded as a representation of design process. An ontology provides
vocabulary and concepts, axioms necessary to describe the model. Firstly, an author
describes the idea (A) clearly as a topmost, abstract and instructional goal. Then
he/she repeats the expansion of the super-goal into relatively concrete sub-goals until
a sequence of the sufficiently concrete goals (B-1) is specified. Secondly, he/she
designs a sequence of teaching actions (B-2) which are expected to attain the goals
(B-1). Thirdly, he/she embodies the actions (B-2) in a sequence of conceptual
specification of cards (B-3).

Is What You Write What You Get? 195

In (B-1) there are two kinds of instructional goals: a goal for diagnosisu(D-goal)
and a goal for teaching/learning (T/L-goal). A D-goal is to identify the state of a
learner. The structure of the D-goals behind a training scenario implies the
classification of the learners assumed by the author. By analyzing the structure, we
can know the type of the learner supposed by the author at a certain context of the
training scenario. A T/L-goal is to make educational effects on learners. Thus, the
author can clarify the last two of the three viewpoints discussed above while
describing the model (B-1) using two kinds of goals. The D-goal represents the type
of the learner to whom the teaching material is designed for and the T/L-goal
represents the educational effect the teaching material is supposed to bring about. At
the bottom two levels (B-2) and (B-3), the teaching scenario is characterized from the
third viewpoint: “how to achieve it. ” The author clarifies how to attain the goal in (B-
1) by selecting an appropriate teaching action for the goal (B-2) and specifying the
target topics and the level of learner intended for the card (B-3). When the author is
very active in referring the ontology, the rationality of the training scenario designed
is expected to be quite high. In addition, reusability and sharability of training
scenario is also expected to be high, as we have discussed, because an ontology-aware
authoring tool stores not only concrete teaching material (C) but also the design
intentions and rationale behind it as a model (B) based on the ontology.

2.2 Conceptual-Level Simulation

As we have seen in the previous section, an ontology-aware authoring tool is expected
to be able to bridge the potential conceptual gap between ideas (A), and presentations
(C), and suppress the unintended error caused by the gap. Models (B) play the
important role as a pivot between ideas (A) and presentation (C): as conceptual
representation of ideas or as the design intention behind presentation. Needless to
say, the error cannot be suppressed completely and there happen to be discrepancies
(1)..(4) during design process as shown in Fig.1. To resolve the - and be close to
perfection, it is very important to identify the location of the discrepancies that are not
realized by the author during the design process. However, everyone knows the
“debugging” is difficult to do and requires huge efforts, because of the conceptual gap
between what he/she thinks during composing phase (A) and what he/she observes
during verification phase (C). If it is possible for the authoring tool to bridge the gap,
the cost of “debugging” can be reduced considerably. As we have discussed,
ontology-aware authoring tool knows the model (B) to bridge the gap and can provide
the information about the difference between what an author writes and what he/she
gets. It can be a good cue to identify the discrepancies. The function of our ontology-
aware authoring tool is called conceptual level simulation (E) which shows the
behavior of the training scenario. Conceptual-level simulation can demonstrate the
behavior of the training scenario from various viewpoints, along the structure of the
design model and may expose the three categories of problems caused by
discrepancies (1)..(3) to the author’s eye. In the case of forth one, it is rather helpless

1 In the research area of ITSs, the term “diagnosis” implies the intelligent reasoning process to
identify the cause of a wrong answer. However, diagnosis process adopted in SmartTrainer is
rather simple. It carries out diagnosis based on simple association patterns of wrong answers
with erroneous knowledge.

196 Yusuke Hayashi et al.

to resolve the problem caused by discrepancy (4) because conceptual-level model is
too abstract to evaluate the quality of real contents. In this section, firstly, we briefly
summarize a debugging aid of conventional programming environments. Then, in
contrast with it, we will discuss the advanced feature of debug support function of our
ontology-aware authoring tool.

2.2.1 Debugger

A debugger of conventional programming environments provides the various
functions for authors to enable them to observe the complex behavior of the programs
in a systematic manner, such as tracing the process flow, displaying the change of
variable, and setting for a break-point of execution. Programmers need to interpret the
program behavior, compare it with the design intention, identify and resolve bugs if
exist.

2.2.2 Verification Support Function in an Ontology-Aware Authoring Tool

In an ontology-aware authoring tool, the design intention remains in an operational
form. This means that tools and authors can interpret the behavior of the product from
the common viewpoint and enables the tools to provide useful information for authors
to interpret it and identify the problems of design. We call the model with operational
form of design intention as a conceptual-level model. “Conceptual-level simulation”
is a function that simulates the behavior of the conceptual-level model in various
levels of abstraction.

As shown in Fig. 1(E), the conceptual-level simulation shows the behavior of a
training scenario as the change of a learner model. We call the learner model which is
turned to an input and an output of the conceptual-level simulation as a ‘pseudo-
learner.” In other words, it is a kind of personification of a stereotyped learner in
author’s mind while he/she is authoring the training scenario. Of course, it is very
different from the real learner because we assume its stable and non-autonomous
learning behavior. In addition, the pseudo-learners’ understanding does not depend on
the quality of concrete contents in teaching material. This means that a pseudo-learner
always succeed in learning what a training system teaches as long as the teaching
activities are reasonable from educational principle prescribed in training task
ontology.

Fig. 2 explains the role of the pseudo-learner in training scenario verifying. It is an
ideal situation but almost impossible for authors to be able to examine whether the
teaching material has the intended educational effect on all the real learners as shown
in Fig. 2 (A). In Fig. 2 (B), by observing the changes taken place in pseudo-learners
instead of the real learners, the author can examine whether the conceptual-level
model of the teaching material is reasonably designed or not. One might think
pseudo-learners supposed in a training scenario could be intractably numerous. It is
true if we enumerate them all at once. When verifying, however, the number of the
pseudo-learners is not necessarily large, because the author tends to concentrate at a
local context of a training scenario. For example, Fig. 3 shows an example of a
structure of D-goals, which are represented by a black diamond, and T/L-goals, which
are represented by a white rectangle. The example is small because it includes only
two steps of a diagnosis. However, training scenarios generally has a complex and
large structure of goals. Real learners taking the training would have a long history of
learning along the structure. It is intractable to trace all the possible paths in the

Is What You Write What You Get? 197

o ~ Goal for Diagnosis
~ Goal for Teaching

status
K1 Known
K2 Known

" Pseudo
| Learners

Ki Known
K2 Unknown

K1 Unknown
Kz Known

Ki Unknown
K2 Unknown

K1 Known .
i Ke Known Kinds of
Pseudo Learners

Learners

Training Scenario Model

Fig. 2. The role of the pseudo-learner in Fig. 3. Goal structure and kinds of
conceptual level simulation pseudo-learner

structure. This is a problem that large software generally has. Common way to solve
such a problem is to divide the problem into a set of tractable ones. Well-accepted
principle behind this way is called modularity. Our goal hierarchy in a model plays a
similar role to modular structure of software. Authors verify the model step by step
along the goal hierarchy. Goals that the author concentrates in each step represent the
necessary and sufficient local context and include tractable number of the pseudo-
learners.

The purpose of the conceptual-level simulation is to show “which part of the
training scenario” adds “what type of an educational effect” to “what type of a
learner” systematically. The two kinds of instructional goals play the important role to
realize the purpose: D-goals and T/L-goals mainly concerns the classification of
learners and the educational effect of the teaching activities, respectively. In the
following, we will see how the authoring tool interprets the training model and
simulates its behavior briefly.

Classification of learners. The purposes of training scenarios are to characterize a
learner in terms of understanding status, grade and ability and to teach him/her in a
way well adapted to his/her characteristics. D-goals are largely concerned with the
former. Fig.3 shows a correspondence of a structure of D-goals to the classifications
of learner. Learners are classified into four kinds of pseudo learner and four pseudo
learners L1,.., L4 represent the kinds of pseudo learners. For example, L1 are
characterized as the pseudo learners who understand both two knowledge units, K1
and K2, based on the two D-goals D1 and D2. The four different T/L-goals, T1,..T4,
are set for L1,..,L4 respectively. This enables ontology-aware authoring tools to
provide authors with basic information to verify whether the pseudo learner is
appropriately characterized by the training scenario.

Effects on learners. Goals for education is to teach knowledge to a learner or to
develop his/her skills in a way well adapted to his/her characteristics. Educational
effect of the instructional goal and the necessary conditions to achieve the goal are
specified as abstract axioms in the training task ontology. After an author specified
the goal as a component of the model, the conceptual-level simulator can simulate the
behavior of the goal. Intuitively, it adds the educational effects of the goal to pseudo-
learner’s status if the necessarily condition of the goal is satisfied. In Fig. 3, the four
education goals T1,.., T4 represented by white rectangles are defined. If the training
model is well designed, the all the pseudo-learner will understand knowledge units K1

198 Yusuke Hayashi et al.

and K2 at the end of the training scenario as shown in Fig. 3. On the other hand, if
more than one of pseudo-learners cannot understand both K1 and K2, there might be
some problems in the training scenario.

3. An Example of the Conceptual-Level Simulation

In this chapter, we will take an example to explain the conceptual-level simulation.
SmartTrainer/AT is an ontology-aware authoring tool for a substation operator
training system SmartTrainer. A training scenario in SmartTrainer consists of a
variety of grain sizes of modules. Typical ones are “backbone stream”, which is a
sequence of questions along the workflow and a “rib stream”, which is a treatment of
a learner’s erroneous answers to questions in a backbone stream. The goal of
SmartTrainer is to help learners to master all the operations in workflow implemented
in the backbone stream by giving necessary knowledge in the course of instruction in
the rib stream.

A small example of a training scenario is shown in Fig. 4. A question2 (1) of a
backbone stream is connected with a ribstream (4) by a treatment (2) based on a
diagnosis (3). Diagnosis (3) represents the diagnosis of a learner’s incorrect answer of
selecting option 1 to the question and ribstream (4) is set up as a treatment for the
diagnosis. The purpose of the ribstream is to teach a missing knowledge according to
the diagnosis and it is represented by the top goal of a goal hierarchy (4-1) as design
intention. An upper goal of the goal hierarchy is expanded into a series of subgoals. In
this case, the top goal “Improve Knowledge” is expanded into a series of subgoals
“Notice An Error”, “Acquire A Correct Knowledge” and “Grasp A Principle” and
furthermore the goal “Acquire A Correct Knowledge” is expanded into “Understand
A Correct Knowledge” and “Resume The Question”. A sequence of teaching actions
(4-2) is designed to attain those goals, for example, the teaching action “Teach-Topic”
is expected to attain the goal “Understand a correct knowledge”. Finally, the sequence
of teaching actions embodied in a sequence of card specification (4-3) where the
topics to be referred and the level of learner intended are specified.

Let us next show the conceptual level simulation with a pseudo learner who selects
an optionl to the question2. Firstly, SmartTrainer/AT specifies the status of the
pseudo learner according to a diagnosis and then applies ribstream to it. In this case, it
assumes the pseudo learner does not know about the topic “64 Relay” based on a
diagnosis (2). When the teaching action “Teach Topic” of a ribstream (4) is applied to
the pseudo learner, a status of the pseudo learner is changed by the goal “Understand
A Correct Knowledge”. The change when “Understand A Correct Knowledge” is
realized by “Teach-Topic” is shown in a conceptual level model on the right side of
Fig. 4. This model means that the status of the learner is changed from before-status
(a), where the pseudo learner does not know about the topic “64 Relay”, to after-
status (b), where it does.

Let us assume an author wants to examine the case that the pseudo learner is at the
novice level. In the following scenario, we also assume that the task ontology
prescribes that an average novice learner does not completely master a topic “Relay”
prerequisite to the topic “64 Relay”

When an author does the conceptual level simulation of the pseudo learner’s
behavior, SmartTrainer/AT shows two problems in the teaching scenario. The author

Is What You Write What You Get? 199

is expected to notice that one is caused by a lack of T/L-goal and the other is by a lack
of D-goal. The right of Fig. 4 indicates the former case with a conceptual model. In
this case, the pseudo learner (e) does not fill the condition for understanding the topic
“64 Relay” (c) because he does not master a knowledge (d) prerequisite to it. Thus,
the understanding status of the topic “64 Relay” cannot be changed by the goal. The
situation is represented as the status of the pseudo learner (f). In the latter case, the
goal “Grasp A Principle” cannot be attained by the pseudo learner because the
training task ontology prescribes that the principled knowledge is beyond the limits of
novice learner’s understandability. A proper way to resolve this problem is to add a
new D-goal to classify learners according to the levels of mastery and set the goal
“Grasp A Principle” only for advanced learners.

Our conceptual level simulator displays these results in the window as shown in
Fig. 5. The simulation monitor window (W1) consists of three panes. The left pane
(wl-c) shows a progression of a pseudo learner’s learning in the training scenario,
which consists of a backbone-stream and rib-streams with a goal structure. A node
represents a question, a goal or a teaching activity and a link represents control flow
or relation between goals. The top right pane (wl-s) shows the knowledge status of
the pseudo learner. The hierarchical classification of pseudo learners is displayed in
the bottom right pane (w1-p).

As we have mentioned before, Problems in a training scenario are caused by
discrepancies (1)..(4) shown in Fig. 1. The problems are shown to authors as either
the unachieved D-goals or T/L-goal. For example, in pane (wl-c), an author is
supposed to focus on a problem of training scenario shown as an icon (G1) “Improve
Knowledge”. The icon means that there exist some learners who are not able to

S A

o
(e){ J N%s Conceptual-Level Model

P d beforestatus|
seu 0 (OBJECTIVE)
learner Understand

A Proper-K.

°b‘ after-Status
Strategy \g@)‘\ b)

istory
process
%

Training scenario

Question1 I

Question2

(1)

In 30F panel,

@ O D € D 4
These light flush on and off. What type of fault \\
e sappoed? Process
Tmprove knowledge & wopic—p P Tp‘ whor

prerequisite

Improve Knowledge (%

Teaching strategy

d fault on a feeder b

process
% Strat
[rategy

-grand fautt on a feeder

25l
{ i d fault on a bank Notice An Error
7

—~whom

(Topic)

.
Sys-Act. ¢
(Device) Bt Level
Acquire A Proper Knowledge Relay <‘ (System-action) \ -
o= - Show.Card Novie
_StowCard _/
card
Understand A Proper Knowledge content
(4-1) Resume A Question A . Card
v target——»_ Novice
Question3 Teach- Give- -
Topic Question, Q
(4-2) e
F F >
Explain Question e
(4-3) Card Card =

i (f)

Pseudo learner
Fig. 4. An example of a training scenario

achieve the goal specified. At this situation, pseudo-learners have hierarchical
structure as shown in wl-c, where a pseudo-leaner A is expanded into three pseudo-
learners A-1, A-2, A-3. The learners who are imposed the goal are represented by a

200 Yusuke Hayashi et al.

pseudo-learner A. The gray icon of pseudo learner A means that the goal could not be
attained by some learners represented by it. The learners who cannot attain the goal
are represented by pseudo-learner A-2. Pane wl-s displays the knowledge status of
pseudo learner A-2 currently selected in wl-c. It shows a knowledge unit K1, which
is expected to be taught, is not acquired by the learner after actions are executed under
the goal (G1).

The author can reason the cause of the problem in the training scenario by means
of getting down into specifics of its behavior along the goal hierarchy from top to
bottom in the same way he/she have designed it. The problem can be resolved by
adding new goals or correcting the erroneous goals. The author may ask
SmartTrainer/AT for a further detailed information about the execution of goal (G1)
by double clicking it. Then the goal is expanded into a sequence of subgoals as shown
in w2-c. The author can observe the goal closely in W2 and find that the
unachievement of (G1) is caused by unachievement of (G2) “Understand A Proper
Knowledge” and (G3) “Grasp A Principle”. As we have mentioned before, the former
problem (G2) is caused by a lack of a T/L-goal a prerequisite topic. The author can
reason the cause from the facts that the topic “Relay” has not been taught before and
is a prerequisite to the target topic “64 Relay” of the goal (G2). Similarly, the latter
problem (G3) is caused by a lack of a D-goal to classify levels of mastery. By

The status of pseudo Learners at the goal

Rib Stream(RS)