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Foreword

Traditionally, models and methods for the analysis of the functional correctness
of reactive systems, and those for the analysis of their performance (and de-
pendability) aspects, have been studied by different research communities. This
has resulted in the development of successful, but distinct and largely unrelated
modeling and analysis techniques for both domains. In many modern systems,
however, the difference between their functional features and their performance
properties has become blurred, as relevant functionalities become inextricably
linked to performance aspects, e.g. isochronous data transfer for live video trans-
mission.

During the last decade, this trend has motivated an increased interest in com-
bining insights and results from the field of formal methods — traditionally fo-
cused on functionality — with techniques for performance modeling and analysis.
Prominent examples of this cross-fertilization are extensions of process algebra
and Petri nets that allow for the automatic generation of performance models,
the use of formal proof techniques to assess the correctness of randomized al-
gorithms, and extensions of model checking techniques to analyze performance
requirements automatically. We believe that these developments mark the be-
ginning of a new paradigm for the modeling and analysis of systems in which
qualitative and quantitative aspects are studied from an integrated perspective.
We are convinced that the further work towards the realization of this goal will
be a growing source of inspiration and progress for both communities.

The aim of the EEF summerschool on Formal Methods and Performance
Analysis (FMPA) was to report on the state-of-the-art research and tool devel-
opment for the integrated modeling and analysis of functional and performance
aspects of reactive systems. To provide the necessary background it also in-
cluded lectures on basic models and techniques of both performance evaluation
and formal methods for reactive systems. The lectures were given by interna-
tionally recognized experts from the formal methods and performance analysis
communities. These invited lecturers were: Christel Baier (Model checking prob-
abilistic and Markovian models), Gianfranco Balbo (Petri nets and stochastic
Petri nets), Ed Brinksma (Process algebra), Christos Cassandras (Discrete event
simulation), Gianfranco Ciardo (Structured and distributed analysis), Reinhard
German (Non-Markovian analysis), Boudewijn Haverkort (Markov chain mod-
els and analysis), Holger Hermanns (Markovian process algebra), Ulrich Herzog
(Formal methods for performance analysis), Jane Hillston (Compositional and
decompositional analysis), Joost-Pieter Katoen (Non-Markovian process alge-
bra), William Sanders (Stochastic activity networks and their analysis), Roberto
Segala (Verification of probabilistic distributed algorithms) and Pierre Wolper
(Model checking).

This LNCS volume contains a series of articles by lecturers at the summer-
school, which survey most of the topics covered at the school, as well as some
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additional, related material. We believe that this volume will be of considerable
interest to researchers from both the formal methods and performance analysis
communities, and that it should prove an excellent starting point for those who
wish to get acquainted with the research at the crossroads of these fields.

FMPA was organized as the first school on Trends in Computer Science by
the European Educational Forum (established in 1996), a European research
training initiative focusing on basic research in Computer Science and its appli-
cations. EEF has partner organizations from 7 countries (Denmark, The Nether-
lands, Finland, United Kingdom, Italy, Germany, France) which together involve
34 universities. The primary aim of the EEF is the training of Ph.D. students
and young researchers. The training activities include workshops, schools, highly
focused conferences, as well as conferences that provide a forum for a vari-
ety of topics of current interest. For more information, see the EEF web page:
http://www.tucs.abo.fi/EEF/.

FMPA was held at Hotel Val Monte in Berg en Dal, a beautiful village close
to Nijmegen. The school was very well attended with 80 participants from all
over the world, with 36 attendees who were sponsored through the High-Level
Scientific Conference Programme of the European Commission. Other sponsors
were the Dutch National Graduate School IPA (Institute for Programming re-
search and Algorithmics), the Netherlands Organization for Scientific Research
(NWO), the Royal Dutch Academy of Sciences (KNAW), and the Center for
Tele-Informatics and Information Technology (CTIT).

We would like to thank all lecturers for their excellent lectures and their high-
level contributions to these lecture notes. We thank Jos Baeten, Tijn Borghuis,
and Grzegorz Rozenberg for inviting us to organize FMPA as part of the EEF
summerschool series and for their assistance in maintaining the proper contacts
with the EC and Springer-Verlag. On the local level, we thank Pedro D’Argenio
and in particular Joke Lammerink for their assistance with the organization of
the school.

May 2001 Ed Brinksma, Holger Hermanns, Joost-Pieter Katoen
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Formal Methods for Performance Evaluation

Ulrich Herzog

Universitat Erlangen-Niirnberg, Institut fiir Informatik 7, Rechnernetze und
Kommunikationssysteme, Martensstr. 3,
D-91058 Erlangen, Germany
herzog@informatik.uni-erlangen.de

Abstract. The main goal of this contribution is to advocate the in-
creased use of formal methods (FM) in the field of performance evalua-
tion (PE). Moreover, we try to reduce the mutual reservations between
both areas, formal specification techniques and performance evaluation
since both can profit from such an integration: FMs may find their way
into a new and very attractive area of applications and some fundamental
problems of PE may be overcome.

The first part summarizes the evolution of PE, its methodology and
the basic concepts of performance modeling and analysis, elaborated in
specific contributions of this book.

Classical modeling and analysis techniques have a high standard and have
been quite successful. However, there are important problem classes still
open, and there are some fundamental deficiencies: Task interdependen-
cies and synchronization, interfacing in modeling hierarchies, methods
and tools for automating the performance engineering process are typi-
cal examples.

We therefore advocate the integration of FMs and PE and survey three
advanced approaches, again, treated in detail in specific contributions:
Stochastic Petri-Nets, Stochastic Activity Networks and Stochastic Pro-
cess Algebras.

We try to summarize our own experience with these techniques and con-
clude with a list of challenging topics and current research directions.

1 Introduction

Performance Evaluation (PE) means to investigate and optimize the dynamic
time-varying behavior within and between the individual components of trans-
portation and processing systems. This includes the measurement and modeling
of real system behavior, the definition and determination of characteristic per-
formance measures, and the development of design rules which guarantee an
adequate quality of service.

PE has a long tradition when designing, dimensioning and operating telecom-
munication systems. Traffic engineering teams are vital for all large companies
in telecom-industry: They ensure the economic use of transmission and switch-
ing facilities, they are needed to assure the desired quality of service. Table [
shows in the upper part some pioneers of this field (however, this list is incom-
plete and should contain a hundred or more names). During World War II, a

E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.): FMPA 2000, LNCS 2090, pp. 1-B7] 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Ulrich Herzog

second field of activities, operations research, emerged: The allocation of scarce
resources to the various military operations was extremely important and teams
of researchers were appointed to investigate these problems, many of them re-
lated to PE - cf. middle part of table 1. The results were greatly appreciated
and are today standard in business management and production. In the sixties,
people from industry and universities, cf. also table[I] bottom, tried to establish
PE techniques in the world of computers and computer communication systems.
Many fundamental results and methods were found. Unfortunately, however,
they are not common knowledge: Computer scientists are completely focused on
the functional behavior of computers, system software and application programs,
the “insularity of PE” [17] is still the normal situation. “Computer scientists do
not have a feeling for time” is a common saying getting to the heart of the
problem. And we have to work hard to change this.

Table 1. Some Pioneers in PE.

Erlang 1908/18 telephone traffic fundamental delay- and loss formulas
Palm 1943 telephone traffic long-term variations
Jacobaeus 1950 switching networks  congestion in link systems
Clos 1953 switching networks  nonblocking system
Wilkinson 1955 toll traffic engineering alternate routing systems
Cobham 1954 operations research  priority assignment
Jackson 1957 operations research  queuing in networks
Conway 1958/67 operations research  scheduling

Scherr 1965 time-sharing systems measurement and modeling
Kleinrock 1964/74 ARPA (-> Internet) performance and reliability
Buzen 1971 computers central server model

Bux 1981 token ring network  performance simulation
Bellcore mid 80ies internet traffic long-range dependency

There are many success stories of PE documented or informally reported
coming from all three areas mentioned above [67/42/35/36]:

1. The economic dimensioning of national and international telecommunication
networks,

2. the control and optimization of the Polaris missile development program, or

3. the efficient design of processor architectures and memory hierarchies in both
industry and academia.

However, since systems consist of hardware and software, it is also common to
fully design, implement and functionally test them before an attempt is made to
determine their performance characteristics. The redesign of both software and
hardware is costly and may cause late system delivery. Dramatic examples with
enormous financial consequences are known. Figure [[lillustrates the impact of
such design faults on the system life cycle: Steadily, the functional properties will
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be detailed and added to the design until the implementation is operational (solid
curve). Often, however, the first test shows that - although functionality has been
checked - the overall behavior is completely unsatisfactory and a major redesign
is necessary; the figure also shows a second loop back until the ideal line (dotted)
is approached. Main cause is obviously and mostly that the system dynamics
were neglected: Temporal analysis and assurance were performed but not until
things had gone wrong! Figure [l makes clear that the early and systematic
integration of PE into the design process should be obligatory.

Problem Id. | Conceptual Detailed Implementation Installation, Test
Req. Analysis Design Design and Test and Operation
e
A Functional -
Specification
3 and Assurance -
— 7/
g 7 Temporal
= , Analysis
=
I Vi and Assurance
% , / (Today)
.é Redesign , /
=
g s
~ s
7
-
0 =4
Evolution of System

Fig. 1. System Life Cycle and Quality Assurance.

The first Euro Summer School On Trends In Computer Science was dedicated
to this goal. This contribution tries to survey the basic concepts and techniques
leading to the various contributions of this volume.

2 Methodological Steps

As we have seen in section [T}, the objectives of PE are the modeling, the analysis
and the synthesis of optimal system structures and dynamics. We measure and
model the temporal behavior of real systems, define and determine characteristic
performance measures, and develop design rules, which guarantee an adequate
quality of service. A general scenario is shown in Figure 2t The environment
generates requests, the so called workload, to the system:

1. The workload represents the sum of all needed and desired activities and
services.

2. The system consists of one or more components trying to satisfy these re-
quests.
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Environment

Required QoS

Y o
/ A

Constraints

Workload: Quality of Service (QoS):
Sum of all needed or desired activities Fitness for use. Achieved correspondence
and services with user-requirements concerning
— Type of activities — Qualitative parameters: logical se-
— Sequential ordering quencing, liveness, priorities, ...
— Time of requests — Quantitative parameters: through-
— Frequency, ... put, response time, ...

Constraints: Economic, functional, HW/SW-Technology, geographical,
morphological, ...

Fig. 2. The System with its Environment, Requirements and Constraints.

3. An optimal system structure and operating mode is reached if the system
fulfills all requirements concerning QoS as well as all technical and economic
constraints.

To assure an appropriate performance today’s PE-methodology includes the
following steps, cf. Figure Bt Workload characterization and system parameter
specification are the first sensitive steps. Determining these values needs care and
knowledge about both the application and the technical system components.
Next, the design methodology distinguishes between two totally different but
complementary approaches: experiments on the real system (measurements) and
modeling.

Both are followed by analysis steps using methods of statistics, stochastic
processes and simulation. The validation of experimental and modeling results
follows next and is very important [ Finally, system structures and operating
modes are synthesized; systematic parameter variation (in case of experimenta-
tion and simulation) and mathematical optimization techniques (in combination
with stochastic models) guarantee good or even optimal system design consid-
ering costs and/or performance and a variety of optimization constraints.

! We crosscheck measurements by modeling results and vice versa. Plausibility con-
siderations and the study of limits are also very helpful
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Problem -Idendification and
Requirements Analysis

Y

Characterisation
—————
(Workload/System Parameters)

Experiments Modeling
(Monitoring of Real Systems)| [(Workload/System Behavior

Y Y

Analysis of Analysis by Mathematical
Measured Values Methods or Simulation
] Validation Validation I

o

Synthesis of Optimized Structures
Sensitivity Analysis

Fig. 3. Overview of Performance Evaluation Methodology.

By following all steps of the PE-methodology, considerable success in improv-
real system behavior, is possible. Some highlights from our own experience

We fully generated a TCP/IP protocol stack from a high-level specification
written in SDL. This resulted in a extremely slow communication between
two SUN-WS. Carefully performed measurements in several refinement steps
showed the SDL-specification to be incomplete, and the timers not optimally
tuned; but the main bottleneck came from the runtime-system. Removing all
three problems was time consuming but allowed to increase the throughput
by more than two orders of magnitude [49].

. The dynamic timing behavior of an industrial pick-and-place robot with

parallel work and computer control was measured, modeled and carefully
analyzed and optimized. Considering the load profile, correlation between
tasks and function schedule, the throughput could be improved by about
25% [T1J70)], cf. also [30].

. The efficiency of an industrial broadband-ISDN prototype station could be

more than doubled [66].

. The data granularity of landscape contour lines processed by a multiproces-

sor could be varied leading to an optimal speed-up [47].

These are just four impressive examples reflecting our own experiences. Many

more examples can be found in original papers and books.

Performance measurements and experiments on real systems are vital for

both industry and academia. They show what a system really does, evaluate its
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overall usefulness and give insight into its detailed behavior; measurements also
stimulate PE-modeling directions and allow to assess our own theoretical doing.
In this article we focus on modeling and analysis due to the goal of the summer
school; note, however, that the picture is complete only if one considers both
sides of the PE-methodology [20/43]45]. We also have to skip the synthesis part,
i.e. the combination of analysis and optimization, since this would be, again,
beyond our scope.

3 Resource-Sharing Systems vs. Real Time Systems

The manifold of transportation and processing systems may be split into two
categories, real-time and resource-sharing systems. Examples, their main pur-
pose, properties and process models are summarized in table 2l However, note
that depending on the level of abstraction, the same technical system may be
viewed in one case as a real-time system, in another as a resource sharing sys-
tem. This is particularly true for communication networks. They have to solve
real-time problems but they share most resources due to economic reasons. Of
major importance for us is -depending on the considered features- the completely
different timing model of both classes:

1. Real-time systems need deterministic timing models because actions take
place at distinct time instants or within fixed time intervals. Typical models
are (time) extended finite state machines, timed automata, timed Petri nets,
timed process algebras, and the like.

2. Resource-sharing systems need stochastic timing models due to contention,
faults, mass phenomena, random service strategies etc. Randomly varying
time instants and time intervals are captured by queuing models and stochas-
tic versions of Petri nets, automata, graphs or process algebras.

We focus on resource-sharing systems and their modeling due to the goal of
the summer school, being aware, however, that real-time system models include
quite some potential also for the modeling of resource-sharing systems.

4 Classical Modeling of Workload and Systems

4.1 Why Stochastic Modeling?

Due to economic and technical reasons many systems are resource-sharing sys-
tems: Ticket counters, taxi services, telephone networks, mainframe computers
etc. However, sharing of resources often leads to conflicts because customers try
to access them simultaneously or with some overlap. Moreover, varying service
times, error situations, background work, etc. add to such congestion processes.

The complexity of the situations, influences and conditions makes it impossi-
ble to describe such phenomena by deterministic models. Complicated interrela-
tions, the lack of detailed information and some basic indeterminacy in the phys-
ical world make such processes to appear random. Nevertheless, measurements
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Table 2. Characterization of Different Transportation and Processing Systems

‘ Transportation and Processing System ‘

‘ Real-Time System ‘ ‘ Resource-Sharing System ‘
Examples
— Process Control — Time Sharing Computers, Main-
— Manufacturing Systems frames
— Robots — Client-Server Architectures
— Avionic Computer Systems,... — Telephone-/Data Comm/Systems

— Production Lines with Work-Over,...

Main objectives
— Correctness of Process-Interaction — Economic Use of Resources
— Fault Tolerance — Fault Tolerance

Properties of Interest

— Safety — Throughput, Utilization
— Liveness — Loss-Probability, Delay
Deterministic Timing Probabilistic Timing
— Actions take place at distinct time in-  — Contention, Faults and Mass-
stants or within fixed time intervals Phenomenon lead to randomly

varying time instants and intervals

Process Models

— Extended Finite State Machine — Queuing-Networks, Stochastic Petri-
(EFSM), Timed Petri Net, Real- Net (SPN), Stochastic Process Alge-
Time Process Algebra, Timed bra (SPA)

Automata

show that, although individual behaviors and different events are unpredictable,
many statistical regularities can be observed and modeled by means of stochastic
processes. Theoretical considerations of limiting behavior support these obser-
vations. Figure Hl summarizes some typical examples of values which vary un-
predictably. Figure [l shows some famous early experiments and performance
predictions using stochastic models and assuring their results by measurements.

4.2 Basic Concepts

The dynamic behavior of resource sharing systems can be modeled by some
fundamental concepts of statistics and probability theory. We briefly define and
interprete the most important terms: random variables, distribution functions
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Time-Sharing Systems: Communication Networks:

\ —] (s) —
~_ | s

\
System 1 Server
e —— AR
- I
Execution times are data dependent — Transfer times are data dependent,
depend also on the selected route

Think times of experimenter depend — Retransmission because of transmis-
on system response sion faults or buffer overflow

Communication delay varies depen- — Varying delays because of packet-
dent on the actual traffic buffering and control overload in

switching centers (SC)

Time and storage allocation depend — Response variation due to server con-
on other users tention

Fig. 4. Typical Examples for Randomness in Time-Sharing Systems and Com-
munication Networks.

and stochastic processes. The uncertain outcome of an experiment or observa-
tion is captured by a random variable. Random variables are characterized and
distinguished by their distribution function. Furthermore, a stochastic process
allows one to describe a sequence of related experiments. The class of Markov
processes is of special interest to us. All these concepts are summarized next, for
more details cf. e.g. [46].

Definition 1. (Random Variable)

A random variable is a variable whose value depends upon the outcome of a ran-
dom experiment. The axiomatic definition assumes a probability space [S, A, P],
that is, a sample space S, a o-algebra A of subsets of S, and a probability as-
signment P to the events of the sample space. Then a function X : S — R is
called a random variable because it assigns to each sample point s € S a real
number X (s). O

We distinguish discrete and continuous random variables dependent on their
range, which may be countable or non-denumerable. Some examples are shown
in tableB] cf. also Figure Hl The set of possible values (or states) that the random
variable may take is called its state space F.

Definition 2. (Distribution Function)
The distribution function (or more precisely the probability distribution func-
tion, d.f. for short) Fx of a random variable X is defined to be the function

Fx(z) = P(X < z). (1)
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EXPERIMENTS WITH 4,5 AND 6 TRUNKS.

&0 — .
X A Sl
B ]
5 ~ f
0 ‘_-‘_n_ ] r H //

-
1

TN
]\‘
\

\ N

7{7
_BA -t
,4'/

A0 = " .
L L -
J' —l___‘--- |t€+—--ﬁ-
0 o 30 3% LY 45 5D A% &0

y

— Projected

. Measured

Response time

Online users

Fig. 5. Comparison of Measured and Predicted Performance Values. Early Re-
sults for Telephone Networks [I6] (B probability of Loss, Y traffic) and Time-
Sharing Systems [62].
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Table 3. Some Examples for Random Variables (RV)
Continuous RV Discrete RV
- Interarrival times of jobs - Number of buffered jobs
- Activity times - Idle/busy/overflow-states
- Waiting times - Arrivals in a fixed interval
Fr(t) M/M/1-waiting time exponential
H P ""*\ fT((‘t))
- o | 2 Pt}
. . | \Erlang-2 ™ MMA-waiting time
/ ! | 17‘. N
! / | ¥ T
08y / f ‘ I
i o
! i [
! ’ 3 0.8 | exponential | %/Eflang-ﬁo
067/ ’ ! \ b
; i ] P
‘5’ | discrete 06] | i '
i I [ i discrete
0.4 e ‘
| / 0.47]
i
027 ;’\ 024/
/ Erlang-80 ; y
/ // ; . - e
0 T2 3 a5 e 7 st O 1 23 T4 5 e 7 8t

Fig. 6. Typical Examples for Distribution Functions Fr(t) and their Related
Density Functions fr(t) or Discrete State Probabilities pr(t): Exponential d.f.,
Erlangian d.f. of low or high order, discrete time d.f. and a typical d.f. for waiting
times (here from a M/M/1-queuing station).

In case of a discrete random variable we have

Fx(wn) =Y P(X =) (2)
i=0

where P(X = x;) is the probability that X will have value x;. In case of contin-

uous random variables we get

Fy(z) = / F(t)t 3)
0

where the function f(z), the derivative of Fx(x), is called the probability density
function (or simply the density function) for the random variable X. a

Some typical examples for distribution functions and related probabilities or
density functions are shown in Figure [6l

Definition 3. (Stochastic Process)

A stochastic process is a family {X (¢)} of random variables indexed by a param-
eter t € I and taking values of some state space E. Usually, ¢ has the meaning
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of time, I is some time interval, and the state space denotes the set of possible
values (or states) of X (¢). O

The classification of stochastic processes considers both the type of random
variables and the time instants at which state changes may take place. Some
examples are shown in Figure [l Note that discrete state processes are often
called stochastic chains.

X
Continuous

N a)

b)

Continuous progress in time t
X
Discrete <)
d)

Discrete or continuous time t

Fig.7. Stochastic Process Examples: Mean packet delay in the Internet (a),
duration of a telephone call (b), counting process (¢), number of busy channels
in an ATM-network (d).

The complete probabilistic description of an arbitrary stochastic process is
not feasible. However, based on binomial trials there are two important limiting
processes, Gaussian and Markovian processes. While the well known Gaussian
process allows to accurately model many natural phenomena exposed to a large
number of random influences, the Markovian processes are often well suited for
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our purpose i.e. the modeling of resource sharing system dynamics (a refined
classification can be found in Figure [[3).

Definition 4. (Markov Process)

A stochastic process is called Markov process if its future evolution depends
only upon its current state and not upon any previous values. More formally,
the conditional probabilities are given by the following relation:

P(X(t) = (E|X(t1) = (El,X(tg) = T2,... ,X(tn) = fn) =
P(X(t) = z[X(tn) = 2n) (4)

for arbitrary n € IN;t1,to, ..., tyh,t € I with t;1 < ... <t, <t and z,z1,...,2,
included in some state spacdi. Markov processes with discrete state space are
called Markov chains (MC). Dependent on their timing behavior we talk about
CTMC (Continuous Time MC; changes in state may occur anywhere within a
(set of) finite or infinite intervals in the time axis) or DTMC (Discrete Time MC;
changes in state may take place at time instants which are finite or countable).

O

Markovian processes

— posses per definition an outstanding mathematical property, the memoryless
or Markov property

— have a solid mathematical foundation laid by researchers like Einstein (1905),
Markov (1907), Erlang (1909/18) and Kolmorgoroff (1931),

— are very well investigated and many analytic results as well as efficient nu-
meric analysis techniques are known, and

— often approximate measured system dynamics in nature and society very
well.

4.3 The Family of Exponential Distribution Functions

From books on statistics and probability, various distribution functions for ran-
dom variables are well known, e.g. Gauss-, Gamma-, geometric- and the Weibull
distribution. Some of them are well suited to precisely describe system dynamics
such as interarrival and service times; however, to systematically derive perfor-
mance characteristics is extremely difficult or impossible. To avoid these eval-
uation problems a special family of distribution functions is mostly used: It is
based on the exponential d.f., the only continuous d.f. which fulfills the mem-
oryless property of Markovian processes and allows one - as we will see - a
systematic and relatively simple analysis of models, i.e. performance values may
be derived with relative ease. Moreover, an arbitrarily close approximation of any
non-negative random variable is possible by the superposition of exponentials.

We briefly characterize the exponential d.f. as a prerequisite for the next
section on Markov chain analysis. Some remarks on the family and examples
conclude this section.

2 If the permitted times at which changes in state may take place are finite or countable
we often write X; rather than X (¢).
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Definition 5. (Exponential Distribution)
The distribution and density functions as well as the expected value and the
variance of the exponential distribution are given by the following relations

Fx(z)=P(X<z)=1-¢* ; 2>0 (5)
Fx(@) = - Fx(r) = A (©
BIX) = [t a0t = 5 @
0
VARIX] = [ (¢ = BLX)? - fx(t)dt = 5 (8)
0
O

As mentioned before, it is the only continuous d.f. for which the memoryless
property holds, it has a constant transition rate A irrespective of the past be-
havior and its residual sojourn time is a random variable with the same density
function as the whole sojourn time

fx(z+dlz = d) = fx(x) 9)

A proof of these unique features can be found in the standard literature, e.g.
n [46]. The density function fx(z) is shown in Figure Rl beside other functions.

Definition 6. (Family of Exponentials)

A family of exponential distribution functions is defined by the serial superposi-
tion of exponential distribution functions and by the probabilistic selection out
of different branches of exponentials or series of exponentials. |

This superposition of phases can be described, interpreted and analyzed as a
multidimensional Markov process.

Figure Bl shows the density functions for some members out of this family.
Numerous experiments and measurements show that the exponential d.f. often
allows one to accurately model real situations in road traflic, in telephone and
data networks or time-sharing and mainframe computer systems. Using superpo-
sition of exponentials even a much wider class of real situations can be modeled;
then, however, we often are faced with the so called state-space explosion prob-
lem, i.e. the state-space grows dramatically and compute times for the numerical
evaluations may explode. This problem will be mentioned later on, again.

4.4 Representation of Continuous Time Markov Chains

Recall that a Continuous Time Markov Chain (CTMC) is given by discrete
states and exponential residence time in each of them, cf. Definition Bl and
The standard representation of such Markov chains is given by state transition
diagrams, suited for graphical representation, or by a generator matrix, suited for
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Fig. 8. Density Function Examples for Different Markov Processes: Exponential-,
Erlang-k- and General Erlangian Distribution Function

computations. State transition diagrams show the set of possible states and the
transition rates between them. The generator matrix is the corresponding matrix
representation; for an efficient evaluation it stores, however, in the diagonals the
negative row sum () of transition probabilities. Figure [ shows some simple
examples.

State transition diagram

cor:nagl‘?te k : k : j
(Q): AT A
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Generator matrix
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Fig. 9. Some Examples for the Standard Representation of Markov Chains, cf.
Text.

The uniqueness of processes with Markovian behavior is captured by the so
called Chapman-Kolmogoroff system of equations for the transition probabilities.
Since we are mainly interested in the unconditioned state probabilities P;(z)
some transformations allow one to derive a system of differential equations
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dlzljt(t) — ;Pi(t) G () = Pi(t) - q.(t)  JEE (10)

where the transition rates ¢; ;(¢) are usually independent of ¢, and ¢;, (¢) rep-
resents the negative row sum — Z]—. The interpretation of these equations is
straightforward: The differential change of the state probability P;(t) corre-
sponds to the difference between its probability of emergence from other states
and its probability of disappearance to neighboring states at time ¢.

The transient solution is very meaningful when the system under investiga-
tion needs to be evaluated with respect to its short term behavior. Considering
it for the long run, however, it can be shown that the state probabilities often
converge to constant values. These steady-state- or equilibrium equations can be
readily derived from the above system of equations. One gets

Py qik =Y Pr-an; (11)
k k

ki ki

This system of equations expresses that the disappearance of a state j to
other states and its emergence from there are in a statistical equilibrium.

Markov processes have the invaluable advantage that we always know - at
least in principle - how to investigate them. The standard solution technique
includes the following steps:

1. Define all states j of the state space E and determine the corresponding
transition rates g;

2. Determine the Chapman-Kolmogoroff differential equations system or, for

stationarity, the linear equilibrium equations system.

Compute the state probabilities in either case analytically or numerically.

4. Derive standard performance measures - throughput, waiting times, etc. -
from the state probabilities P;.

©w

More details and literature can be found in section

4.5 Remarks on System Modeling

Up to now, we assumed that the state-transition diagram, representing all states
and possible state transitions, is given. However, its structure and parameters
heavily depend on the system under investigation; moreover there is not a unique
system representation and skillful modeling and state-definitions may ease the
evaluation process.

Here, we only show some basic system models which can be used in many
different situations and sketch the idea of modeling of complex systems.

Basic System Models The single-server-queue is one of the most exciting
models allowing one to describe and investigate many different situations. Fig-
ure[[0 shows a self-explaining scene, different interpretations in technical systems
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and the usual symbolic representation. Note that the model is very abstract with
many implicit assumptions (scheduling strategy, priorities, type of arrival /service
processes etc.). The lower part shows the corresponding state-transition diagram
if we assume both exponential arrivals and service times.

Arriving Customers Queue Service Station Serviced Customers
[ Customers Service Station QoS
Request from a HOST-computer Response-time

TS-system user
Arriving packets Switching node Total nodal delay

Sequence of Central processor Throughput
instructions
Symbolic Representation:

Input queue Server

Arrival Output
—
process process

State Transition Diagram:

H H 143 H
OO
. O, ®
A A

A A A

Fig.10. The Single-Server System. (Abbreviations: TS-time sharing, QoS-
quality of service)

Many performance results have been derived, evaluated, tabulated or pro-
grammed in tools for the single server system. E.g. the pioneer J. Cohen (who
passed away only recently) investigated this fundamental model carefully on
more than six hundred pages [14].

Another example for an important class of queuing model is the central server
model with a constant number of customers. A simple instance of such a model
is shown in Figure [[11 Buzen [I1] developed this class of models to analyze the
performance of computer systems with a single processor - the central server -
and various I/0 devices; the limited number of customers reflects the fact of a
limited (fixed) degree of multiprogramming.
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1/01

102

Central
Server

Fig. 11. A Central Server System. Closed Model with two I/O-stations as well as
state-transition diagram in case of two customers (K = 2) exponential service
(service rates (u;,¢ = 1,2,3) and transition probabilities p;; from queue ¢ to
queue j.

Hierarchical Modeling Suppose we have to investigate the performance of
some host-to-host communication in a national or international network with
virtual connections. Trying to model such a complex scenario with a single model
is impossible: it either does not represent the detailed system structure and
dynamics accurately or it is too unwieldy for performance evaluation and result
validation.

A very successful approach in such situations is the hierarchical modeling
technique. Its basic idea is the stepwise refinement of complex scenario models.
Parts of the macro-level model are detailed by intermediate-level models which
may be again refined into micro-level models, etc. The modeling steps and the
corresponding modeling hierarchy for our initial host-to-host communication sce-
nario are shown in Figure [T2

At first, we have to study the fundamental sequence of events in the real
system: connection request, successful and unsuccessful establishment of a virtual
connection, in case of success data transmission. The corresponding queuing
model is shown next: a single-server with two phases of service and a feedback
loop; t1 represents the time of trying to establish a connection, ¢ is the probability
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for an unsuccessful trial while ¢ describes the transmission time. At least, ¢; and
q are unknown, often all three parameters. In each case, intermediate models -
representing the signaling procedure as well as switching and transmission in the
network - have to be built.

These intermediate models may be refined, again, modeling congestion in the
control units and blocking in the switching units individually for each node of
the network. [l. In analyzing this model hierarchy, these micro-level parameters
are fed into the intermediate-level models allowing one to determine the three
unknown parameters of the macro-level model. Finally, the macro-level model
enables us to estimate the wanted overall-delay dependent on cross traffic, rout-
ing strategies, network topology etc.

This procedure of top down modeling and bottom up analysis has been of-
ten and very successfully used since the 1970ies [48] in modeling computer and
communication systems. Layered queuing networks for example are a popular
technique supported by elaborate tools [T2/58/4T]. However, in general, the de-
composition strategy, the selection of models and especially the interfacing of
various models is an art mastered only by very experienced specialists. Beside
the basic idea - stepwise refinement - there are usually no rules, no guidelines
supporting the modeling and evaluation procedure. However, in section [6 on
advanced modeling techniques we will see some first steps for a systematic and
general solution.

5 Analysis of System Dynamics

5.1 General Remarks

Up to now, we have given a justification for stochastic modeling, we have sur-
veyed its theoretical foundation and we have seen some typical examples for
classical models. The question is now how to analyze the time-dependent dy-
namic system behavior and how to determine characteristic QoS values? There
are various performance measures we may be interested in. Dependent on our
role or view we may need qualitative statements representing a system’s useful-
ness for customers or its economical value for the operating authority. Typical
examples are

— User view: Waiting time, response (sojourn) time, total delay (in all cases
mean values, variance and distribution function).

— System view: Utilization and throughput of different resources, number of
waiting customers at various locations, probability of overflow in case of
alternate or adaptive routing, etc.

Independent of the qualitative statements in which we are interested, we can
distinguish three classes of evaluation techniques:

3 Technical details on these submodels may be found in [27] and the standard literature



Formal Methods for Performance Evaluation

1. Study the Basic Sequence of Events
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Fig. 12. The Process of Hierarchical Modeling, a Case Study [27].
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— Analytic/Algebraic Methods
— Numerical Analysis, and
— Simulation

They are characterized and outlined in the following three sections. These sum-

maries also point to relevant literature and contributions in this book.

5.2 Analytic/Algebraic Methods

When we speak of analytic/algebraic models we usually mean a solution tech-
nique that allows us to write a functional relation between system parameters
and a chosen performance criterion in terms of equations that are analyti-
cally/algebraically solvable [48]. The theory of service systems and particularly
queuing theory provides a mathematical framework for formulating and solving

such problems.

Stochastic Process

|

Independent Pr. Markov Pr.
Simpliest random Future evolvement
sequences in which depends only upon
{X,} forms a set of the current state and
independent r.v. not upon the history

(Exp/Bernoulli distr.)

Poisson-Process
Birth & Death Process
Batch Processes

Discrete state processes (Chains)

- Discrete time Markov Chain DTMC

- Continuous time Markov Chain CTMC
Continuous state process (General MP)

Semi-Markov Pr.

Arbitrary remaining

stay time; at instance
of state transition like
Markovian processes

Generalized SMP

SMP driven by a
stochastic timed auto-
mation equipped with

a stochastic clock and
score updating mechanism

Continuous state process
(General MP)

—

Random Walk

Next position in state-space

is equal to the previous

position plus a r.v. drawn
independently from an arbitrary d.f.

Renewal Pr.(RP’

Chain {N(t)} whose
purpose is to connect
state transitions, i.e.

the number of events int.

SMP

MP
Birth-Death

L

SR
Random Walk

Fig. 13. Classification of Stochastic Processes.

There is a variety of methods dependent on the type of stochastic behavior by
which the system can be described with. Figure [[3] classifies stochastic processes

and relates them to each other.

The Chapman-Kolmogoroff system of equations and the steady-state equa-
tions, cf. section [£4] are often the base of performance analysis; event sequence
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State-Based Approaches
Principle:
Use Chapman-Kolmogorov or
Steady-State Equations
Examples:

— Standard Approaches (MP)

— Phase Concept and Matrix Analytic
Method
Embedded Renewal Processes
— Supplementary Variables
— Diffusion-Approximation, ...

Bounding Techniques
Principle:
Consider the process under special
conditions
Examples:
— Asymptotic Bounds
— Balanced System Bounds, ...

Transformation Techniques
Principle:
Change the form of an equation to one
which is easier to investigate
Examples:
— Laplace-Transform
— Generating Functions
— Discrete Fourier-Transform
— Complex Cepstrum, ...

Event Sequence Approach

Principle:
Explore special sequences of events

Examples:
— Lindley’s Integral Equations
— Method of Moments
— Convolution of Exponentials
— Piecewise Exponential Functions
— (Max,+)-Algebra, ...

Fundamental Laws
Examples:
— Little’s Law
— Flow Equivalence Law
— Work Conservation Law, ...

Special Network Algorithms
Principle:
Utilize the special structure and system
parameters
Examples:
— Jackson’s State Probabilities
— Buzen’s Convolution Algorithm
— Mean-Value-Analysis of Lavenberg
and Reiser, ...

Fig. 14. Elements of Analytic/Algebraic Solution Techniques

analysis is another general principle and many different solution techniques have
been proposed. Both principles and other successful elements of analytic/algebra-
ic solution techniques are summarized in Figure[Td. Books like [59/46/4R869/22/68]
survey the various techniques and lead to original papers. Some very sophisti-
cated techniques are also presented in this book, e.g. by German [2I] and Ciardo

[13].

5.3 Numerical Analysis

Closed form analytic or efficient recursive solutions are possible only for a few
classes of models. For the general case, however, such direct techniques are not
available. Nevertheless, a wide variety of standard and customized numeric tech-
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niques are at hand. Stewart [64]65] proposes the following three step methodol-
ogy:

1. Describe the system to be analyzed as a Markov chain.
2. Determine a matrix of transition rates and transition probabilities.
3. Numerically compute performance measures of interest.

Figure summarizes the different numerical methods. For more details see
[64] or [6] and Haverkort’s [26] and Ciardo’s [13] contribution in this book.

Direct Methods Iterative Methods
Principle: Principle:
Operate and modify matrix Preservation of matrix sparsity, succes-
— Fill-in effect of matrix entries sive consequence to the solution
— Accumulation of round-off errors — Convergence not always guaranteed
Examples: — Sensitive to the parameter values
— Gaussian elimination and the initial estimate
— Grassmann, Taksar, Heyman variant Examples:
Reliable and accurate for small models — Power method
with some hundred or thousand states — Jacobi, Gauss-Seidel, SOR
Other Methods
— Projection (create vector subspace)
— Recursive (stability problem)
— Matrix geometric (certain Markov chains)
— Uniformization (randomization, Jensen, transient)

Fig. 15. Successful Methods for Numerical Analysis

5.4 Simulation

Kobayashi [48] describes the role of analytic models and simulation to the point:
“An analytic model should be sought wherever possible, since it can evaluate
the performance with minimal efforts and cost over a wide range of choices in
the system parameters and configurations. Even with simplifying assumptions
and decompositions, however, the resultant analytic model is often not mathe-
matically tractable. Then the only alternative for predicting the performance of
a non existing system is a simulation.”

In simulation, objects, their properties and relations are described by some
data structure whereas their specific behavior, interactions and evolution in time
is formulated by a program. There are several disadvantages of simulation, sum-
marized in the following list:

— Complicated programs that execute a large number of trials. Not easy to
debug.
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— Very expensive to run for reliable computer experiments (e.g. the simulation
of one second real-time of an ATM-ring configuration took us four hours of
simulation time on a SPARC).

— Real optimization at reasonable expense is almost impossible.

But simulation is necessary and advantageous in many situations:

— A detailed and flexible modeling and evaluation of arbitrary system dynamics
including sophisticated interdependencies is possible .

— First estimates for new types of problems may be obtained readily.

— Comfortable simulation tools are available, easy to understand and therefore
highly accepted for performance assurance.

The pros and cons are detailed in standard books, e.g. [54[43] and in Cas-
sandras’ book [T2]. But from the above we already can see that simulation and
analytic methods complement each other.

6 Advanced Integrated Approaches

6.1 Deficiencies of Classical Modeling and Analysis Technique

Classical modeling and analysis techniques have a high standard, are very elabo-
rate and many fundamental results as well as efficient PE-tools are available. In
many situations, even for complex hard- and software structures, they allow to
accurately predict system performance. This is particularly true when engineers
and performance specialists work closely together.

However, this is not the normal situation especially when software-engineers
are involved as set out in section one. Moreover, classical workload assumptions
take for granted that (except for simulation)

— processes occurring at the same time are independent of each other (e.g.
simultaneous telephone calls or competing user programs), and

— processes being dependent on each other take a sequential turn (e.g. the se-
quences connection— data— acknowledgment or input— processing— output).

Today, however, modern multiprocessor-systems, workstations organized as
a cluster or distributed systems work differently in general. This means that they

— take advantage of the parallelism inherent in many control and application
tasks, i.e.

— tasks are decomposed into well-defined cooperating subtasks, competing for
the same resources, and serviced in parallel or with some overlap.

In all these situations, we have to be aware of the simultaneity and extreme
interdependency. A simple example with two tasks arriving simultaneously and
processed by two servers is shown in Figure

— If the tasks are independent of each other the expected response time is 1.4
seconds and the shape of the overall d.f. is the same as for the individual
tasks, i.e. the d.f. does not change.
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Two Independent Tasks:
0,6
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Expected response time: E[T] =E[T;] =0,6+1+04.2=14s

Two Synchronizing Tasks:
\ / 0,6
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Expected response (maximum)

E[T]=0,36+1+0,64+2=165 0.6
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Shape changes drastically!

Fig. 16. Response Time in Case of Task Synchronization.

— If we have synchronizing tasks, i.e. service is completed if and only if both
tasks are processed, the expected response time amounts to 1.64 seconds;
but even more important is that the shape of the d.f. changes drastically.

Again, this is only a very simple example. There are extensions of classical
models (”synchronizing queuing models”) taking into account this effect, but
only for very simple dependency structures and not for the general case.

Working in the area of multiprocessor-performance modeling we started al-
ready in the 1980ies to extend classical queuing models but the expressiveness is
very limited. From our experience and point of view, only integrated approaches,
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i.e. approaches considering at the same time functional and temporal aspects,
offer a general, flexible solution.

Such integrated approaches allow one to capture the above mentioned effects
in a unified system description. And very important, such descriptions might
allow us to enable the areas of SW and HW development to enjoy the benefits
of PE in a more or less automatic fashion. All kind of scenarios are imaginable
and under investigation with the common goal of avoiding typical performance
bottlenecks in system design: There is research from

— the open specification and analysis technique showing both the functional
and temporal behavior and QoS-parameters of a system, e.g. [31], over

— the automatic instrumentation and measurement of an implemented proto-
type [49], up to

— the specification and implementation technique which completely hides per-
formance details, but gets performance parameters out of a library, and
composes hardware- and software components in an optimal way [63] [19].

In the following, we briefly survey three integrated approaches which are
promising and described in more detail by separate contributions of Balbo [3]
and Sanders [61] or Brinksma and Hermanns [[7] and Katoen [44]: Stochastic Petri
nets, stochastic activity networks and stochastic process algebras. The length of
these summaries reflects our own experience and involvement in these advanced
integrated modeling techniques.

6.2 Stochastic Petri Nets

Petri nets (PN) are an early and effective modeling tool for the description and
analysis of concurrency and synchronization in parallel systems exhibiting the
cooperative actions of different entities [I]. They were introduced by C.A. Petri
[56], thoroughly investigated during the last thirty years and extended to capture
also performance issues [53[1].

The structure of a standard PN is a bipartite graph consisting of two types of
nodes N, places P and transitions T - and a set of directed arcs A between them.
In a graphical representation of PNs, places are drawn as circles and transitions
as bars, cf. Figure [7l The dynamic behavior of a PN is modeled by tokens
marking activated places and firing rules:

— the transitions are enabled when all input places contain at least one token,
and

— enabled transitions can fire, i.e. remove one token from each input place and
put one token to each output place.

Thus, the state of a marked PN is defined by the number of tokens contained
in each place. The modeling of a queuing situation where customers arrive, may
wait in the queue @ for the server S to be free, then being serviced and departing
from the system by means of a PN is illustrated in Figure 7
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Fig.17. A Queuing Situation and its Functionally Detailed PN-Representation.

Functional properties, such as deadlock situations or safety may be analyzed
by the so called reachability analysis. If we associate with each or some transi-
tions in a PN an exponentially distributed r.v. that expresses the delay from the
enabling to the firing of the transition we obtain a SPN - Stochastic Petri Net -
or GSPN - Generalized SPN - | respectively.

In these cases firing rates need to be specified, which can be marking depen-
dent. Now, both functional and all kind of temporal properties can be analyzed.
Standard text books, e.g. [186] as well as Balbo’s [3] contribution carefully in-
troduce Stochastic PN and survey the state-of-the-art. From our point of view,
we summarize the pros and cons of SPN as follows

Advantage
— Mature in both theoretical exploration and tool development
— Performance bounds derivable already from PN-structure, detailed per-
formance analysis by mapping the marked PN onto a Markov chain
— Successfully applied in many situations where synchronization has a de-
termining influence, also in industrial studies

Disadvantage
— Expenditure for the specification and representation of large systems
very high (Gorrieri: exponential compared to linear in case of process
algebras [25])
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— Parallelism inherent in the marked PN is not reflected in the underlying
Markov chain.

6.3 Stochastic Activity Networks

Stochastic Activity networks (SAN) are a particular class of Stochastic Petri
Nets. In order to support an efficient modeling of systems they provide the
following building blocks:

— Places

— Activities (exponential, constant or instantaneous transitions),

— Input Gates, controlling the enabling of activities dependent on some input
places (Boolean enabling predicate and input gate function)

— Case Probabilities (possible outcomes of an activity, dependent on the net-
work marking)

— Output Gates, defining the marking changes of a single output.

— The operations “Join” and “Replicate” for constructing modular models.

With the help of these building blocks, SANs allow one to describe a system’s
structure and dynamic behavior in a very compact way. This compactness, of
course, comes at the price that understanding a model is sometimes not so easy.

Figure[I8 shows the SAN model of a faulty microprocessor. SANs are tailored
for the modeling and evaluation of large-scale systems with many symmetric
subcomponents. Taking into consideration such symmetries, enormous state-
space-reductions are possible. QoS-Parameters can be derived using the concept
of impulse rewards. From our point of view, the main advantage of SANs is their
ability to construct models in a modular fashion with the help of the “Join” and
“ Replicate” operators, and that in the presence of “Replicate” an automatic
reduction of the state space is carried out. More details and a state-of-the-art
summary can be found in the contribution of Sanders [61].

<l
capacity
G AN
ni ) ua A. IE one fail . I
arrival :M‘,,,uama'-o ‘check_done
O

ready
Initial Marking = 1

Fig. 18. SAN Model of a Faulty Microprocessor [60].
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6.4 Stochastic Process Algebra

Being confronted with all kinds of synchronization and cooperation problems
of an experimental, hierarchical multiprocessor [I8] we started already in the
late eighties to study process algebras and to embed stochastic processes. The
following is a excerpt from some recent publications and summarizes the main
features, and the current state-of-the-art of process algebras [31,29/30/41].

The Concept  Classical process algebras, among them CCS [52],
CSP [40], or LOTOS [], have been designed as formal description techniques for
concurrent systems. Therefore, they are well suited to describe the functionality
of reactive systems, like operating systems, automation systems, hierarchies of
communication protocols, etc.

From the very beginning, the basic idea of process algebras was to system-
atically construct complex systems from smaller building blocks and to check
formally whether systems behave equivalently or not.

The behavior of each building block - whether hardware, software or a com-
bination of both - is described as a process which may communicate with other
processes. Standard operators allow various kinds of process composition, syn-
chronization and communication. Therefore, software processes can be mapped
onto other, more elementary software processes - this may be done repeatedly
- and finally mapped and executed on computer- or communication hardware.
Such systems can be combined again to build a network, etc. Since such network
systems are very complex, another important operator allows one to abstract
from internal details at any level of system description.

A process algebra can be seen as a progressive extension of classical au-
tomata theory enhanced by the above sketched features. However, instead of
describing the state transition system directly a two step methodology is used

(cf. Figure [9):

— The system is described with the help of a high-level language which is quite
user-friendly and design-oriented (our input language is an enhanced version
of BASIC LOTOS-Language of Temporal Ordering Specification-, the core
language of ISO-standard 8807).

— A rule system called formal semantics allows one to automatically translate
the language expressions into states and transitions of the labeled transition
system (semantic model).

Two systems or system components are considered equivalent if the transi-
tion systems show the same (functional) behavior. There are several possibilities
to define this formally: Trace equivalence means that all possible sequences of
actions are identical. Popular is also bisimulation, meaning that both systems
(or components) simulate each other in any situation. Having defined equivalent
behavior, equational laws - deduced by axiomatization - reflect these equiva-
lences on the system description level; therefore, comparison of two systems or
system components is possible on both levels and therefore, one speaks of process
algebras.
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Fig.19. Basic Concept of Process Algebras. In the case of stochastic process
algebras, temporal information is added at each level and analysis includes per-
formance measures as well as mixed properties (cf. section [6.4]).

Classical process algebras dealt exclusively with the functional aspects while
features of performance evaluation have been added during the last decade, cf.
[23132511[10].

Stochastic Process Algebra The main motivation behind the development of
stochastic process algebras has been to accurately describe and investigate the
behavior of resource-sharing systems and to benefit from their unique properties
also in case of performance modeling. To achieve this goal, temporal information
has been attached to process descriptions in the form of (continuous) time ran-
dom variables. These random variables allow one to represent time instants as
well as durations of activities. Then, the concept of stochastic process algebras
follows the lines of classical process algebras:

As before - cf. Figure[[9]- the main ingredients are a formal mapping from the
system description to a transition system and substantive notions of equivalence.
Equational laws reflect these equivalence on the system description level. Rather
than considering only the functional behavior we add stochastic timing informa-
tion. This additional information in the semantic model allows the evaluation of
various system aspects:

— functional behavior (e.g. liveness or deadlocks)
— temporal behavior (e.g. throughput, waiting times, reliability)



30 Ulrich Herzog

— combined properties (e.g. probability of timeout, duration of certain event
sequences)

The stochastic process associated with every specification is the source for
the derivation of performance results. Its characteristics clearly depend on the
class of random distributions that are incorporated in the system description.
Several attempts have been made to incorporate generally distributed random
variables in the model [2328/57]9]. However, the general approach suffers from
the problem of efficient analysis techniques as well as general algebraic laws
(except [1544]). Therefore, usually exponential or phase-type distributions are
embedded into the basic functional system description. Some simple examples of
such process algebra descriptions with embedded exponential phases are shown
next. (We directly relate the temporal behavior to individual activities as usually
done; Hermanns showed (c.f. [7]) the advantage of an orthogonal approach).

— The sequential arrival of three different jobs is specified by a process Job-
stream, describing explicitely each arrival point before halting:

Jobstream = (jobi, A1).(joba, A2).(jobs, A3).Stop

— Consequently, a Poisson-arrival process is defined by an infinite sequence of
incoming requests (in, A).(in, A).(in, A) ..., which can be formulated recur-
sively:

Poisson := (in, \).Poisson

— A service process consisting of an Erlangian distribution of order two is given
by:

Eri2 := (endy, p).(endg, p).Stop

— Both a precise and concise description of many service or arrival processes is
possible; this is illustrated by a so-called train-process, which is important
for the modeling of file transfers in local area networks. Thereby, the overlap
and interleaving of different ‘trains’ is captured by the parallel operator (]||):

Train = (lok, \).((wagi, p).(waga, )....(wagy, p).Stop)|||Train

Mapping of software components onto other software modules or hardware
is a very important modeling step. Let us consider a very simple example:

— There is a software job consisting of two independent tasks; their different
functionality is expressed by different exponential times:

Job := start.(tasky, \1).Stop|||start.(tasks, A2).Stop

where ||| indicates again the parallel operator without synchronization. We
also assume off-the-shelf processors the first of which (Procy) works at unit
speed while processor Proc, is z-times as fast:

Proc,, = start.(task;, x).Proc,
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— Mapping the job onto a specific processor is given by the parallel composition
of both, taking into consideration that they have to synchronize on the events
“start” and “task;” (|(..)|-operator). Since we are not interested to ”see”
the timeless start signal we may hide it. Then the behavior of the complete
hardware/software system is given by

System, := hide start in (Job|(start, task;)|Proc,)

where the behavior of the Job and Proc, is given by the above descriptions.

These examples show how precise and concise such descriptions are. Of
course,very general task and processor behaviors can be modeled and some de-
manding examples are mentioned when we talk about experiences.

From such a modular system description we automatically generate the la-
beled transition system; it contains all functional and temporal information. By
hiding its functional information we directly derive the underlying CTMC.

The state-space explosion problem associated with the CTMC can be reduced
significantly by compositional model generation and reduction. This is a very
important feature treated in more detail by Hillston [33]. Another promising
approach uses functionally correct and temporally approximate decomposition
and reduction techniques; this permits the analysis of specific system models
with a very large number of states [37155].

Tool Support At the moment, there are three tools available, the PEPA Work-
bench [24], Two Towers [3] and our TIPPtool [38/34]. The TIPPtool is a pro-
totype modeling tool which contains most of the specification and evaluation
features of today’s stochastic process algebras. Its main characteristics are:

— LOTOS oriented input language;

— Implementation of the structured operational semantics;

Investigation of functional properties by reachability analysis;

— Analysis of temporal properties with various numerical solution modules for
the transient as well as stationary analysis of continuous time Markov chains;
User guided exploitation of symmetries and exact or approximate composi-
tional reduction techniques; and,

— Computation of standard performance and reliability measures.

The tool is implemented in Standard ML and C and has an elaborate graph-
ical interface. Medium size problems up to 100K states can be solved easily; very
complex application problems with a certain structure may be solved by the ap-
proximate decomposition techniques [37)55] or via a transformation to stochastic
graphs [28[50]. We also use our tool in combination with mature tools for purely
functional specification, analysis and code generation.

Experiences There are about fifteen research groups dealing with stochastic
process algebras. A complete theory and tools are available for models with
Markovian assumptions including immediate transitions (actions consuming no
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time compared to the others). Many small and medium size examples have
shown the practicability of the stochastic process algebras concept. Recently,
researchers began to solve large non-trivial problems, e.g.

adaptive mechanism for packetized audio over the Internet
— a Manhattan style mobile communication system

the Erlangen Hospital Communication System

a plain-old telephone system (POTS)

While the first two examples model systems with generally or constant dis-
tributed time intervals and evaluate them by simulation [5], [2] the others embed
exponential and phase type distributions and use the PEPA-Workbench [24] or
the compositional model construction and analytic techniques of the TIPPtool
[38129].

The main disadvantage of SPA is that they are not yet completely developed;
acceptance is also still low because of their unconventional theoretical founda-
tion. But SPA introduce unique features into PE: The abstraction process for
complex system modeling is supported and the state-space can be reduced au-
tomatically using algorithms checking for equivalence. Moreover, stepwise com-
position including state-space reductions allows further state-space savings.

Most SPA deal with systems assuming exponential or phase type distri-
butions. Compact state-space representations (using binary decision diagrams
[B9] and efficient evaluation procedures are important topics of current research.
Stochastic Model Checking, i.e. the systematic validation of SPA system model
properties using temporal logic formulations is also on its way [34]. There is fur-
thermore a clear trend to investigate systems with general distribution functions;
when these investigations are successful, the dream of systematic hierarchical
modeling with exact interface representation is reachable.

7 Conclusions

Performance evaluation has a long tradition. There are many success stories.
However, since systems consist of both, hardware and software, performance is
the major cause for project failure.

We surveyed in this contribution the standard elements and techniques of
classical PE-methods. We showed their merits and the state-of-the-art. But we
advocate more formal methods for PE since systems are getting more complex
and more sophisticated in structure, operation and use.

Although the state-of-the-art is quite mature for integrated approaches, there
are still many challenging problems;

— The Largeness Problem:
e Research on Compositional Modeling and Analysis has to be extended.
e Hierarchical Modeling with Exact Interfaces, not only at state-probabil-
ity level, is an important goal.
e Symmetry Exploitation has to be done efficiently.
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— General Traffic Models:
e Non-Markovian Distributions are required in many situations.
e Discrete-Time Processes do occur e.g. in ATM-networks.
e Long-Range Dependency of Processes appears in the Internet.
— QoS-Guarantees:
e Functional, Temporal an Mixed Properties have to be determined.
e Equivalences and Preorders for QoS-measures should be considered in
combining system components.
e Efficient bounding techniques are not yet available.
e Verification and Model Checking is today possible only for small systems.
— Advancement in Design-Productivity:
e Strict Formalization for Automation is necessary to improve the design
cycle.
e Development of complete Design-Tool-Chains is vital in modern indus-
tries.
— User Friendliness:
e Design of Graphical and Textual Languages with the Same Meaning,
and
e Visualization of System Dynamics and QoS-Values are necessary precon-
ditions for the acceptance by design engineers.

This list is by no means complete. But it clearly shows the variety of open
problem classes offering exciting research topics for the future. All kind of inno-
vative ideas are necessary to approach the ideal, a methodology which is theo-
retically well founded, automizable and accepted by the system designers.
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Abstract. Markovian models have been used for about a century now
for the evaluation of the performance and dependability of computer
and communication systems. In this paper, we give a concise overview
of the most widely used classes of Markovian models, their solution and
application.

After a brief introduction to performance and dependability evaluation
in general, we introduce discrete-time Markov chains, continuous-time
Markov chains and semi-Markov chains. Stepwisely, we develop the main
equations that govern the steady-state and the transient behaviour of
such Markov chains. We thereby emphasise on intuitively appealing ex-
planations rather than on mathematical rigor. The relation between the
various Markov chain types is explained in detail. Then, we discuss means
to numerically solve the systems of linear equations (both direct and it-
erative ones) and the systems of differential equations that arise when
solving for the steady-state and transient behaviour of Markovian mod-
els.

1 Introduction

Markovian models have inherited their name form the pioneering work by the
Russian mathematician A.A. Markov around the turn of the twentieth century
(see Figure [I). He introduced finite-state Markov chains in [49]; a translation
of another important article of his hand appears in Appendix B of [37]. In fact,
his work launched the area of stochastic processes. In the first two decades of
the twentieth century, the Danish mathematician A.K. Erlang (see Figure B
applied Markovian techniques (then not yet named as such) to solve capacity
planning problems for the Copenhagen Telephone Company [20]. His models
were soon adapted by others, among others by the Britisch Post Office; one of
his first models will be presented later in this paper. The Russian mathematician
A.N. Kolmogorov (see Figure [3) developed the theory for Markov chains with
infinite (denumerable and continuous) state spaces in the 1930’s [46].
Throughout the twentieth century the work of these pioneers became better
understood and more wide-spread. These days, Markov chains and stochastic
processes form the basis for model-based system evaluations in many areas of
science and engineering. For instance, in biology to model growth and decay of
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© Springer-Verlag Berlin Heidelberg 2001
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Fig. 1. Andrei Andreevich Markov (* June 14, 1856; 1 July 20, 1922)

Fig. 2. Agner Krarup Erlang (* January 1, 1878; 7 February 3, 1929)
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Fig. 3. Andrey Nikolaevich Kolmogorov (* April 25, 1903;  October 20, 1987)

populations, in physics to model interactions between elementary particles, in
chemical engineering to model (chain) reactions between molecules or to model
mixing processes, in management science to model the flow of commodities in
logistic or flexible manufacturing systems or to model the availability of pro-
duction lines and, most notably, in computer and communication science and
engineering to model system performance and dependability in a wide variety of
settings. In this paper, we focus on the use of Markovian models for the perfor-
mance and dependability evaluation of computer and communication systems.
But let us first take one step back, and address the question what perfor-
mance or dependability evaluation really is. Performance or dependability eval-
uation is the craft that tries to answer questions related to the performance or
dependability of systems. Typical questions take the following form:

(i) how many clients can this server adequately support?
(ii) what is the typical response time to load a WWW page from MIT?
(iii) how large should the buffer space in this IP router be to guarantee a packet
loss ratio of less than 10767
(iv) how many jobs can be processed before a system failure occurs?
(vi) how long does it take before this system crashes?

The above questions can only be answered when they are made more exact,
i.e., when some of the informally stated requirements or aims are made concrete.
For instance, we will have to define what “adequately” really means in question
(i), or what “typical” means in question (ii). More precisely, we have to define
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clearly what the measure of interest is, in order to express the performance or
dependability criterion we are interested in, in the best possible way. Before we
will come to this issue, we will restrict the class of evaluation techniques con-
siderably. In this paper, we will only address so-called model-based evaluation
techniques, meaning that we are not addressing measurement-based techniques
such as benchmarking. Even though measurement-based evaluation techniques
are very important and accurate (they address the real system, or at least a
prototype) these methods are also very costly, and sometimes even inappropri-
ate, for instance when the interest is in very rare events; a measurement-based
approach then takes too long to be practically feasible. Hence, we restrict our-
selves to model-based evaluation techniques, meaning that we have to develop
models, in order to evaluate the system under study. According to [36], a model
is a “small-scale reproduction or representation of something” and modelling is
“the art of making models”. The latter definition states an important aspect
of model-based performance and dependability evaluation: the construction of
appropriate models is a challenging task for which, as of yet, no general recipe
is available.

Let us now come back to the measures of interest in a performance or depend-
ability evaluation. The choice of measure strongly depends on the standpoint of
the model user (the person using the results of the model evaluation). System en-
gineers are most often interested in system-oriented measures like queue lengths,
component utilisations or the number of operational components. For system
users, seeing the system as a service-providing black box, these measures are not
that interesting; for them what counts is how fast or how many service invoca-
tions can be performed per unit of time. Examples of such user-oriented measures
are waiting times, throughput and downtime minutes per year. On top of this
classification comes the question how detailed the measure of interest should
be evaluated: does a mean value suffice, or is knowledge of higher moments or
even of the complete distribution necessary? Furthermore, is the measure to be
evaluated for a particular time instance in the operation of the system, that is,
is there an interest in so-called transient measures, or is the interest more in
long-term average values, that is, in so-called steady-state measures.

With the class of Markovian models we will address in the rest of this paper,
we have available a versatile modelling formalism, allowing us (i) to model system
performance and dependability at various levels of detail, (ii) to study a wide
variety of user- and system-oriented measures, at (iii) either in steady-state or
at some time instance ¢.

It should be noted that by the availability of good software tools for perfor-
mance and dependability evaluation, the actual Markov chains being used and
solved often remain hidden from the end-user. That is, users specify their per-
formance or dependability model using some high-level modelling language, for
instance based on queueing networks, stochastic Petri nets or stochastic process
algebras of some sort, from which the underlying Markov chain can automati-
cally be generated and analysed. The analysis results are then presented such
that they can be interpreted correctly in the context of the high-level model,
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so that, in fact, the translations to and from the Markov chain level remain
transparant. High-level specification techniques for Markov chains are an active
area of research, but are not addressed in more detail in this paper; the inter-
ested reader is referred to a number of surveys addressing these issues [31//30/29]
as well as to three other papers in this volume [6/10/60].

A final point of notice is the following. Model-based performance and de-
pendability evaluation necessarily have to be based on abstractions of the real
system. In that sense, it is intrinsically approximate. This is both a strength, as
it can be applied always (albeit more or less accurate), and a weakness, as its
accuracy is not known in advance. In any case, the results from an evaluation
should be interpreted with care; the results are never more accurate than the
numerical parameters used in the models! Furthermore, note that even though
model-based performance and dependability evaluation provides us with num-
bers, the insight gained in the (functional) operation of the system under study
is often even more important. As Alan Scherr, IBM’s time-sharing pioneer, puts
it in an interview with Commaunications of the ACM [22]: “model-based perfor-
mance evaluation is about finding those 10% of the system that explains 90% of
its behaviour”.

After this more general introduction, the rest of this paper completely fo-
cusses on Markov chains. In Section 2l we introduce discrete-time Markov chains,
followed by the introduction of semi-Markov chains and continuous-time Markov
chains in Section [B] and Section [l respectively. We then address techniques to
solve these Markov chains with respect to their steady-state and their transient-
state probabilities in Section[Bland Section[6] respectively. A variety of important
issues not addressed in this paper is presented in Section [[] The paper ends with
Section [

2 Discrete-Time Markov Chains

We define discrete-time Markov chains in Section 2] followed by a derivation
of the steady-state and transient state probabilities in Section 2.2 We comment
on the state residence time distribution in Section [2.3] and discuss convergence
properties in Section [2:4]

2.1 Definition

Discrete-time Markov chains (DTMCs) are a class of stochastic processes. A
stochastic process can be regarded as a family of random variables {X;,t € T},
of which each instance X; is characterisedby a distribution function. The index
set 7 is mostly associated with the passing of time. In DTMCs, time passes in
discrete steps, so that the subsequent time instances are denumerable and can be
seen as elements of IV, hence, one typically denotes a DTMC as {X,,,n € IN}.
The continuous counterpart to DTMCs, that is, continuous-time Markov chains,
will be discussed in Section [l
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The set of values the random variables X,, can assume is denoted the state
space I of the DTMC. In performance and dependability evaluation, most often
the state space of a DTMC is denumerable. We do restrict ourselves to that case
here. Given a denumerable set 7, it can either be finite or infinitely large. We
will only address the finite case here; a few remarks with respect to denumerable
infinite state space will be given in the examples in Section [4]

The fact that we deal with a finite-state discrete-time stochastic process does
not directly imply that we are dealing with a DTMC. The distinctive property
of a DTMC is that the Markov property has to hold for it. This means that
given the current state of the DTMC, the future evolution of the DTMC is
totally described by the current state, and is independent of past states. This
property is intuitively so appealing, that one sometimes tends to forget that it is
a very special property. Mathematically, the Markov property can be described
as follows. Assuming 7 = {0,1,2,--} and Z = {4, 1, - -} we have

Pr{Xn+1 = Z.n+1|)(0 = iOa Ty Xn = Zn} = Pr{Xn+1 = Z.n+1|)(n = Zn}

From this equation we see that the future (at time instance n + 1) only depends
on the current state (at time instance n) and is independent of states assumed
in the past (time instances 0 through n — 1). At this point, we also note that
the DTMCs we study are time-homogeneous, which means that the actual time
instances are not important, only their relative differences, that is:

Pr{X,+1 =i|X,, = j} = Pr{X+1 = i|X,, =5}, foralln,m e IN,

with ¢, j € Z. This means that in a time-homogeneous DTMC the state-transition
behaviour itself does not change over time.

We now define the conditional probability p; x(m,n) = Pr{X,, = k|X,, = j},
for allm = 0, - - -, n, i.e., the probability of going from state j € 7 at time m € IV
to state k € Z at time n € IN. Since we deal with time-homogeneous Markov
chains, these transition probabilities only depend on the time difference [ = n—m.
We can therefore denote them as p;i(l) = Pr{Xm,4; = k|X,, = j}, the so-
called [-step transition probabilities. The 1-step transition probabilities are simple
denoted p; ; (the parameter 1 is omitted). The 0-step probabilities are defined
as pj,(0) = 1, whenever j = k, and 0 elsewhere. The initial distribution 7(0) of
the DTMC is defined as (0) = (70(0), - - -, m7/(0)). By iteratively applying the
rule for conditional probabilities, it can easily be seen that

Pr{Xo=1i0, X1 =191, -, Xn =in} = Tig(0) - Pigir " Din_1,in- (1)

This implies that the DTMC is totally described by the initial probabilities
and the 1-step probabilities p; ;. The 1-step probabilities are summarised in the
state-transition probability matric P = (p; ;). The matrix P is a stochastic matriz
because all its entries p; ; satisfy 0 < p;; <1, and Zj pi; = 1, for all i.

A DTMC can be visualised as a labeled directed graph with the elements
of T as vertices. A directed edge with label p; ; exists between vertices ¢ and
J whenever p; ; > 0. Such representations of Markov chains are called state
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transition diagrams. Notice the similarity with the usual graphical notation for
finite-state machines (FSMs). In fact, a DTMC can be viewed as an FSM in
which the successor function is specified in a probabilistic manner, that is, given
state 7, the next state will be state j with probability p; ;.

Ezample 1. Graphical representation of a DTMC. In Figure @l we show the state
transition diagram for the DTMC with state-transition probability matrix

(622
P=_—(181]. (2)
604

Fig. 4. State transition diagram for the example DTMC (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. (© John Wiley & Sons
Limited. Reproduced with Permission.)

2.2 Transient and Steady-State Probabilities

We can now proceed to calculate the 2-step probabilities of a DTMC with state-
transition probability matrix P. We have

pij(2) = Pr{Xy = j|Xo =i} = Y _Pr{Xy = j, X1 = k| X, = i}, (3)
kel

since in going from state ¢ to state j in two steps, any state k € Z can be visited
as intermediate state. Now, due to the rule of conditional probability as well as
the Markov property, we can write

Ppij(2) =Y Pr{Xs = j, X1 = k|Xo = i}

kel

=3 Pr{Xy = k[Xo = i} Pr{Xs = j|X1 = k, X = i}
kel

=Y Pr{X; = k|Xo =i} Pr{Xp = j|X; =k}
kel

= Zpi,kpk,j- (4)

kel
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In the last summation we recognise the matrix product. Thus, the 2-step prob-
abilities p; ;(2) are elements of the matrix P2. The above derivation can be
applied iteratively, yielding the n-step probabilities p; ;j(n) as elements of the
matrix P". For the 0-step probabilities we find the matrix I = P?. The equation
that establishes a relation between the (m + n)-step probabilities and the m-
and n-step probabilities, that is,

prin — prpn, (5)

is known as the Chapman-Kolmogorov equation.
The probability of residence in state j after n steps, that is m;(n), can be
obtained by conditioning;:

mi(n) = Pr{X, = j} = > Pr{X, =i} Pr{X, = j|Xo = i}
i€z

=Y m(0)pi;(n). (6)

i€l

Writing this in matrix-vector notation, with z(n) = (m(n), m1(n), - - ), we arrive
at
x(n) = z(0)P". (7)

Since the index n in (@) can be interpreted as the step-count in the DTMC, this
equation expresses the time-dependent or transient behaviour of the DTMC.

Ezample 2. Transient behaviour of a DTMC. Let us compute ©(n) = x(0)P"
for n =1,2,3,--- with P as given in (), and x(0) = (1,0,0). Clearly, x(1) =
z(0)P = (0.6,0.2,0.2). Then, x(2) = x(0)P2? = z(1)P = (0.50,0.28,0.22). We
proceed with 7(3) = z(2)P = (0.460,0.324,0.216). We observe that the succes-
sive values for m(n) seem to converge somehow, and that the elements of all the
vectors 7(n) always sum to 1.

For many DTMCs (but not all; we will discuss conditions in Section [Z4)) all
the rows in P™ converge to a common limit when n — oo. For the time being,
we assume that such a limit indeed exists. Defining v = (---,v;,---) as

v; = lim 7j(n) = HILH;O Pr{X, =j} = nlLH;O Zm(O)pm(n). (8)
ieT
Writing this in matrix-vector notation, we obtain

v= lim m(n) = lim =(0)P". 9)

n— oo n—oo
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Hence, whenever the limiting probabilities v exist, they can be obtained by
solving the system of linear equations

v=vP = oI-P)=0, (11)

with, since v is a probability vector, > . v; =1, and 0 < v; < 1. The equivalent
form on the right, i.e.,u(I — P) = 0, will be discussed in Section Hlin relation to
CTMCs.

The vector v is called the stationary or steady-state probability vector of the
DTMC, which, for the DTMCs we will encounter, will most often uniquely exist.
Furthermore, in most of the practical cases we will encounter, this steady-state
probability vector will be independent of the initial state probabilities 7(0).

Ezxample 3. Steady-state probability vector calculation. Let us compute v = vP
with P as in (@) and compare it to the partially converged result obtained there.
Denoting v = (vg,v1,v2) we derive from the system of three linear equations
that vg = v and vy = vg/2. Using the fact that vy +v1 +v2 = 1 (normalisation)
then gives us v = (-5, &, 2).

The steady-state probabilities can be interpreted in two ways. One way is
to see them as the long-run proportion of time the DTMC “spends” in the
respective states. The other way is to regard them as the probabilities that the
DTMC would be in a particular state if one would take a snapshot after a very
long time. It is important to note that for large values of n state changes do still
take place!

2.3 State-Residence Time Distribution

The matrix P describes the 1-step state transition probabilities. If, at some
time instance n, the state of the DTMC is 4, then, at time instance n + 1,
the state will still be ¢ with probability p;;, and will be j # ¢ with probability
1—pii=3, i Pig- For time instance n+ 1, a similar reasoning holds, so that the
probability of still residing in state ¢ at time instance n+2 (given residence there
at time instance n and n + 1) equals pii. Taking this further, the probability to
reside in state i for exactly m consecutive epochs equals (1 — piyi)pﬁ_l, that is,
there are m — 1 steps in which the possibility (staying in 4) with probability p; ;
is taken, and one final step with probability 1 — p; ; where indeed a step towards
another state j # ¢ is taken. Interpreting leaving state i as a success and staying
in state 7 as a failure, i.e., a failure to leave, we see that the state residence times
in a DTMC obey a geometric distribution. The expected number of epochs in
state ¢ then equals 1/(1 —p; ;) and the variance of the number of epochs in state
i then equals p; /(1 — pi ;)%

The fact that the state residence times in a DTMC are geometrical distribu-
tions need not be a surprise. From the Markov property, we know that only the
actual state, at any time instance, is of importance in determining the future,
irrespective of the residence time in that state. The geometric distribution is the
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only discrete distribution exhibiting this memoryless property, that is, when a
random variable M is geometrically distributed the following holds:

Pr{M =n+m|M >n} =Pr{M =m}, m>1L1

2.4 Convergence Properties

Previously, we stated that the steady-state probability distribution of a DTMCs
can be determined when the DTMC fulfills certain conditions. In this section
we discuss concisely a number of properties of DTMCs that help us in deciding
whether a DTMC has a unique steady-state probability distribution or not.

Let us start with a classification of the states in a DTMC. A state j € 7 is
said to be reachable from state ¢ € Z if, for some value n, p; j(n) > 0, which
means that there is a step number for which there is a nonzero probability of
going from state i to j. For such a pair of states, we write i — j. If i — j
and j — ¢, then ¢ and j are said to be communicating states, denoted i ~ j.
Clearly, the communicating relation (~) is (i) transitive: if ¢ ~ j and j ~ k
then ¢ ~ k, (i) symmetric: by its definition in terms of —, i ~ j is equivalent
to j ~ i, and (iii) reflexive: for n = 0, we have p;;(0) = 1, so that i — 4 and
therefore ¢ ~ i. Consequently, ~ is an equivalence relation which partitions the
state space in communicating classes. If all the states of a DTMC belong to
the same communicating class, the DTMC is said to be irreducible. If not, the
DTMC is reducible.

The period d; € IN of state 7 is defined as the greatest common divisor of those
values n for which p;;(n) > 0. When d; = 1, state ¢ is said to be aperiodic, in
which case, at every time step there is a non-zero probability of residing in state
1. It has been proven that within a communicating class all states have the same
period. Therefore, one can also speak of periodic and aperiodic communicating
classes, or, in case of an irreducible DTMC, of an aperiodic or periodic DTMC.

A state 7 is said to be absorbing when lim,,_. . p; ;(n) = 1. Recall that for an
absorbing state ¢ we have ) j2iPij =0 When there is only a single absorbing
state, the DTMC will, with certainty, reach that state for some value of n.

A state is said to be transient or non-recurrent if there is a nonzero probability
that that state is not visited again at some point in the future. If this is not the
case, the state is said to be recurrent. For recurrent states, we can address the
time between successive visits. Let f; ;(n) denote the probability that exactly
n steps after leaving state i, state j is visited for the first time. Consequently,
fi,i(n) is the probability that exactly n steps are taken between two successive
visits to state 7. Defining f;; = >, fii(n), it follows that if f; ; = 1, then state
i is recurrent. If state ¢ is nonrecurrent then f;; < 1. In the case f;; = 1 we
can make a further classification based upon the mean recurrence time m; of
state 7, defined as m; =Y .- nfi(n). A recurrent state i is said to be positive
recurrent (or recurrent non-null) if the mean recurrence time m; is finite. If m;
is infinite, state 4 is said to be null recurrent.

Having defined the above properties, the following theorem expresses when
a DTMC has a (unique) steady-state probability distribution.
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Theorem 1. Steady-state probability distributions in a DTMC. In an
irreducible and aperiodic DTMC with positive recurrent states:

— for all j, the limiting probability v; = limy,_,oo mj(n) = limy, 00 ps;(n) does
exrist;

— v is independent of the initial probability distribution m(0);

— v is the unique steady-state probability distribution.

In typical performance and dependability models, the Markov chains will be
irreducible and aperiodic. When dealing with continuous-time Markov chains,
similar conditions apply as for DTMC.

3 Semi-Markov Chains

We define semi-Markov chains in Section B.1] and give an alternative interpreta-
tion of their dynamics in Section

3.1 SMCs as Generalisation of DTMCs

We can leave the discrete-time domain and move to the continuous-time domain
by associating with every state in a DTMC a positive residence time distribution
F;(t) and density f;(¢). In doing so, we end up with a semi-Markov chain (SMC),
which is fully described by the matrix with 1-step probabilities P (as known from
DTMCs), the initial probability vector m(0) and the vector of state residence
distributions F'(t) = (F1(t),---, Fjz|(t)). A simple interpretation of an SMC is
the following. At epochs when the state changes take place (transition epochs),
the SMC behaves as a DTMC in the sense that the state changes are completely
governed by the state transition probability matrix P, and are independent of
the past. When state i is entered, a random amount of time has to be passed,
distributed according to F;(t), before the next state transition takes place.

To obtain the steady-state probabilities of an SMC, we first solve the steady-
state probabilities for the so-called embedded DTMCs characterisedby P. Since
the SMC behaviour at transition epochs is the same as for this DTMC, we can
compute the steady-state probabilities v for the embedded DTMC in the usual
way. Now, we have to compute the average state residence times h; for all states
i in the SMC. We do this directly from the state residence time distributions:

hy = /O L (bt

We then obtain the steady-state probabilities in the SMC by taking these resi-
dence times into account, as follows:

’Uihi
> vihy

Note that for the steady-state probabilities of the SMC only the mean state
residence times h; are of importance. Hence, in many applications, these mean

= for all 1.
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values are given directly, so that the explicit integration above does not need to
be performed.

The computation of transient state probabilities for an SMC is far more com-
plex than for DTMCs (and for CTMCs). A derivation of the relevant equations
as well as their solution go beyond the scope of this paper, but can be found in
[43].

3.2 Alternative View on SMCs

We can also view an SMCs in a slightly different, but equivalent, way. Consider
a DTMC in which the transition probabilities are dependent on the time already
spent in (current) state 7 since the last entrance there, but not on states visited
before entering state ¢ nor on any previous residence times. Thus, we deal with a
time-dependent probability matrix K(¢) known as the kernel of the SMC, where
an entry k; ;(t) provides the probability that, after having entered state i, it
takes at most ¢ time units to switch to state j, given that no transition to any
other state takes place.

From K(t), we can derive two well-known other quantities. First of all, the
limit p; ; = lims—oo ki j(t) expresses the probability that once state ¢ has been
entered, the next state will be j. The thus resulting probabilities indeed coincide
with the entries of P for the embedded DTMC in Section Bl Furthermore, the
state residence time distribution Fj(t) can be written as Fy(t) = >, ki ;(¢).

Hence, once K(t) is known, both P and F(t) can be derived and the solution
procedure of Section [3.1] can be applied.

4 Continuous-Time Markov Chains

In this section, we focus on continuous-time Markov chains (CTMCs). We first
present how CTMOCs can be seen as generalisations of DTMCs, by enhancing
them with negative exponential state residence time distributions in Section 11
We then present the evaluation of the steady-state and transient behaviour of
CTMCs in Section 42

4.1 From DTMC to CTMC

In DTMCs time progresses in abstract steps. With CTMCs, as for SMCs, we
associate positive state-residence time distributions with each state; hence we
address Markov chains in continuous-time. In SMCs, we associated general resi-
dence time distributions with states. As a result, the state transition probability
matrix K(¢) became time dependent, so that the complete state of an SMC is
given by the current state number ¢ and the time already spent in that state
(denoted in the sequel as treg).

With CTMCs, we strive for a considerably more simple notion of state. We
will chose the state residence time distribution such that the current state index
1 describes the state of the chain completely. This can only be achieved when
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the chosen state residence time distribution is memoryless, so that it does not
matter what the actual value of treg is. In doing so, the Markov property is valid,
and reads for the case at hand, for all non-negative tyg < t; < -+ < t,41 and
2o, L1,y Tn+1:

PI‘{X(tn+1) = $n+1|X(to) =T, """ ,X(tn) = Jin} ( )
= 12
PY{X(tn+l) = Tpy1| X (tn) = fn}7

hence, the probability distribution for the (n + 1)-th state residence time only
depends on the current (n-th) state and neither on the time passed in the current
state, nor on states visited previously.

The only memoryless continuous-time distribution is the exponential distri-
bution. Thus, we have to associate with every state ¢ in a CTMC a parameter p;
describing the rate of an exponential distribution; the residence time distribution
in state ¢ then equals

Fi(t)=1—e "' t>0. (13)

The vector p = (- -, u;, - - ) thus describes the state residence time distributions
in the CTMC. To be precise, this vector describes the rates of these distribu-
tions, but these rates fully characterise the distribution. We can still use the
state transition probability matrix P to describe the state transition behaviour.
The initial probabilities remain 7(0). The dynamics of the CTMC can now be
interpreted as follows. When state 4 is entered, this state will remain for a ran-
dom amount of time, distributed according to the state residence distribution
F;(t). After this delay, a state change to state j will take place with probability
pi,;. To ease understanding at this point, assume that p; ; = 0 for all ¢; we come
back to this issue below.

Instead of associating with every state just one negative exponentially dis-
tributed delay, it is also possible to associate as many delays with a state as there
are transition possibilities. We therefore define the matrix Q with ¢; ; = pip 5,
in case ¢ # j, and ¢;; = — Ej# gi,j = —W;- Since p;; = 0, we have ¢;; = — ;.
Using this notation allows for the following interpretation. When entering state
i, for those states j that can be reached from ¢, i.e.,for those with ¢; ; > 0, a
random variable is thought to be drawn, according to the (negative exponential)
distributions F;_,;(t) = 1—e~%*. These distributions model the delay perceived
in state ¢ when going to j. One of the “drawn” delays will be the smallest, mean-
ing that the transition corresponding to that delay will actually occur before any
of the others (race condition: the faster one wins). This interpretation is correct
due to the special properties of the negative exponential distribution. Let us
first address the state residence times. In state ¢, the time it takes to reach
state j is exponentially distributed with rate g; ;. When there is more than one
possible successor state, the next state will be such that the residence time in
state 4 is minimised (race condition). However, the minimum value of a set of
of exponentially distributed random variables with rates g; ; (j # ¢) is again an
exponentially distributed random variable, with as rate the sum i Qi of the
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original rates. This sum is, however, exactly equal to the rate p; of the residence
time in state i.

A second point to verify is whether the state-transition behaviour is still the
same. In general, if we have n negative exponentially distributed random vari-
ables X}, (with rates lj), then X; will be the minimum of them with probability
li/ > - In our case, we have a number of competing delays when starting from
state 4, which are all negative exponentially distributed random variables (with
rates ¢; ;). The shortest one will then lead to state j with probability

qi,j _ Di,j i
Zk# di.k i

= Dij, (14)

so that also the state-transition behaviour is as required.

Let us now discuss the case where p; ; > 0, that is, the case where, after having
resided in state ¢ for an exponentially distributed period of time (with rate p;),
there is a positive probability of staying in ¢ for another period. In particular,
we have seen in Section ] that the state residence distributions in a DTMC
obey a geometric distribution (measured in “visits”), with mean 1/(1 — p; ;) for
state i. Hence, if we decide that the expected state residence time in the CTMC
constructed from the DTMC is 1/u;, the time spent in state i per visit should on
average be (1 —p;;)/p;. Hence, the rate of the negative exponential distribution
associated with that state should equal p; /(1 —p; ;). Using this rate in the above
procedure, we find that we have to assign the following transition rates for j # i:

HiDi 5 _— Dij
1—pi;

qij = - = p; Pr{jump i — jlleave i}, j # 1, (15)

1- Dii
that is, we have renormalised the probabilities p; ; (j # ¢) such that they make up
a proper distribution. To conclude, if we want to associate a negative exponential
residence time with rate p; to state ¢, we can do so by just normalising the
probabilities p; ; (j # ) appropriately.

4.2 Evaluating the Steady-State and Transient Behaviour

CTMCs can be depicted conveniently using state-transition diagrams. i.e., as
labelled directed graphs, with the states of the CTMC represented by the vertices
and an edge between vertices ¢ and j (i # j) whenever ¢; ; > 0. The edges in
the graph are labelled with the corresponding rates.

Formally, a CTMC can be described by an (infinitesimal) generator matrix
Q = (g:,;) and initial state probability vector x(0). Denoting the system state
at time ¢t € T as X (t), we have, for h — 0:

Pr{X(t+h) = j|X(t) = i} = Pr{X(h) = j|X(0) = i} = gijh + o(h), i#j,
(16)
where o(h) is a term that goes to zero faster than h. This result follows because
the CTMC is time-homogeneous and the fact that the state residence times
are negative exponentially distributed; in fact, (I6) represents the first-order
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Taylor/MacLaurin series expansion of 1 —e~%3" around 0. The value ¢i,; (i #J)
is the rate at which the current state ¢ changes to state j. Denote with 7;(t) the
probability that the state at time ¢ equals 4: m;(¢t) = Pr{X (¢t) = i}. Given m;(¢),
we can compute the evolution of the Markov chain in the period [t,t + h) as
follows:

. o do not depart from ¢ go from j to 4
mi(t +h) = m(t) Pr { during [t,t + h) } ; mj(t { during [¢,t + h)
JF1

= Fi(t) 1-— quh + Zﬂ'j(t)qﬂ h+0(h) (17)

J#i J#i
Now, using the earlier defined notation ¢; ; = — Z#i qi,j, we have
mi(t+h) =m(t Zﬂ] ¢i | h+o(h). (18)
JET

Rearranging terms, dividing by h and taking the limit h — 0, we obtain

L 7rz(t—|—h — it
wi(t) = i TEXD 2T 5 (19)
=

which in matrix-vector notation has the following form:

o'(t) = z(t)Q, given m(0). (20)

We thus find that the time-dependent or transient state probabilities in a CTMC
are described by a system of linear differential equations.

In many cases, however, the transient behaviour m(t) of the Markov chain
is more than we really need. For performance evaluation purposes we are often
already satisfied when we are able to compute the long-term or steady-state
probabilities m; = lim;_, o m;(t). When we assume that a steady-state distribution
exists, this implies that the above limit exists, and thus that lim; . 7}(¢) = 0.
Consequently, for obtaining the steady-state probabilities we only need to solve
the system of linear equations:

> mi=1 (21)

ieT

The right part (normalisation) is added to ensure that the obtained solution is
indeed a probability vector; the left part alone has infinitely many solutions,
which upon normalisation all yield the same probability vector.

Note that the equation 71Q = 0 is of the same form as the equation v = vP we
have seen for DTMCs. Since this latter equation can be rewritten as v(P—1I) = 0,
the matrix (P — I), as already encountered in (IIl), can be interpreted as a
generator matrix.

Note that we can also solve the steady-state probabilities of a CTMC by
seeing it as a special case of an SMC, with embedded DTMC described by the
probabilities p; ; = ¢; j/|g:,i| and mean state residence times h; = |g; ;|7
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I

Fig.5. A simple 2-state CTMC (B.R. Haverkort, Performance of Computer
Communication Systems, 1998. (© John Wiley & Sons Limited. Reproduced
with Permission.)

Example 4. Evaluation of a 2-state CTMC. Consider a component that is either
operational or not. The time it is operational is exponentially distributed with
mean 1/\. The time it is not operational is also exponentially distributed, with
mean 1/u. Signifying the operational state as state “1”, and the down state as
state “0”, we can model this system as a 2-state CTMC with generator matrix

Q as follows:
Y Ry A
a-(54)

Furthermore, it is assumed that the system is initially fully operational so that
x(0) = (0,1). In Figure [ we show the corresponding state-transition diagram.
Solving (21)) yields the following steady-state probability vector:

A P
= - = . 22
. <A+MA+M) (22)

This probability vector can also be computed from the embedded DTMC which

is given as:
01
P=(10):

Solving for v yields us v = (%7 %), indicating that both states are visited equally
often. However, these visits are not equally long. Incorporating the mean state
residence times, being respectively 1/p and 1/, yields

: 3 — (2 K 23
+4) 4 (1 +14) _</\+u’/\+u>’ (23)

which is the solution we have seen before.

For the transient behaviour of the CTMC we have to solve the corresponding
system of linear differential equations. Although this is difficult in general, for
this specific example we can obtain the solution explicitly. We obtain (see also
Section [):

(t) = m(0)e?, (24)
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from which we can derive

A A

=2 __= — (M)t

mo(t) A p )\—HLe ’

Iz A O
)=t 4 2 O, 25
m1(t) /\+u+>\+'ue (25)

Notice that mo(t) + m1(t) = 1 (for all ¢) and that the limit of the transient
solutions for ¢ — oo indeed equals the steady-state probability vectors derived
before. In Figure [@ we show the transient and steady-state behaviour of the
2-state CTMC for 3A = p = 1.

mo(t) —
m(t) — |

0.6 - T o—

02 - ///ﬁ—/—Ff

Fig.6. Steady-state and transient behaviour of a 2-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. (© John
Wiley & Sons Limited. Reproduced with Permission.)

Example 5. Availability evaluation of a fault-tolerant system. Consider a fault-
tolerant computer system consisting of three computing nodes and a single voting
node. The three computing nodes generate results after which the voter decides
upon the correct value (by selecting the answer that is given by at least two
computing nodes). Such a fault-tolerant computing system is also known as a
triple-modular redundant system (TMR). The failure rate of a computing node
is A and of the voter v failures per hour (fph). The expected repair time of a
computing node is 1/u and of the voter is 1/6 hours. If the voter fails, the whole
system is supposed to have failed and after a repair (with rate ¢) the system is
assumed to start “as new”. The system is assumed to be operational when at
least two computing nodes and the voter are functioning correctly.

To model the availability of this system as a CTMC, we first have to define the
state space: T = {(3,1),(2,1),(1,1),(0,1), (0,0)}, where state (7, j) specifies that



Markovian Models for Performance and Dependability Evaluation 55

1 computing nodes are operational as well as j voters. Note that the circumstance
of the computing nodes does not play a role any more as soon as the voter goes
down; after a repair in this down state the whole system will be fully operational,
irrespective of the past state. Using the above description, the state-transition
diagram can be drawn easily, as given in Figure [{l The corresponding generator
matrix is given as:

—(BA+v) 3A 0 0 v
5 —(p+2X+v) 2\ 0 v
Q= 0 1 —(n+A+v) A v (26)
0 0 7 —(u+v) v
) 0 0 0 =

We assume that the system is fully operational at ¢ = 0. The following numerical
parameters are given: A = 0.01 fph, v = 0.001 fph, x = 1.0 repairs per hour (rph)
and § = 0.2 rph.

Fig. 7. CTMC for the TMR system (B.R. Haverkort, Performance of Computer
Communication Systems, 1998. (© John Wiley & Sons Limited. Reproduced with
Permission.)

We can now compute the steady-state probabilities by solving the linear
system 7Q = 0 under the condition that ), m; =1 (see Section[H) which yields
the following values (note that we use the tuple (i, j) as state index here):

GjHl GH | @y | @y | Oy | (0,0
7(i,j)|9-6551 x 1071]2.8936 x 10~2]5.7813 x 10~ %]5.7755 x 10~ °|4.9751 x 103

The probability that the system is operational can thus be computed as 0.99444.
Although this number looks very good (it is very close to 100%) for a non-stop
transaction processing facility, it would still mean an expected down-time of 48.7
hours a year ((1 —0.99444) x 24 x 365).

The transient behaviour of this small CTMC can be obtained by numerically
solving the differential equation for x(¢) with a technique known as uniformisa-
tion (see Section[@)). In Figure 8 we show the probability s 1)(t) for the first 10
hours of system operation. As can be observed, the transient probability reaches
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the steady-state probability relatively fast. A similar observation can be made
for the other transient probabilities in Figure [ (note the logarithmic scale of
the vertical axis).
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Fig. 8. Transient probability 7(3 1) for the TMR system (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. © John Wiley & Sons
Limited. Reproduced with Permission.)

Example 6. A finite-buffer queueing station. Consider a single server that accepts
requests to be processed in first-come first-served order. The processing time is
assumed to be exponentially distributed with mean 1/p and the interarrival
times are exponentially distributed with mean 1/\. An arrival process in which
the interarrival times are independent and negative exponentially distributed is
called a Poisson process. The number of arrivals taking place over a finite time
interval [0, ¢) in a Poisson process with rate A follows a Poisson distribution with
mean At; Pr{n arrivalsin [0,¢)} = e’”%, n € IN, named after Professor
Siméon Denis Poisson, who lived in France from 1781 through 1840. Being an
excellent mathematician, he published largely over 300 articles, devoted to a
wide variety of topics. His name is attached to a wide area of concepts, e.g., as
in the probability-related examples above, but also in the Poisson integral, the
Poisson equation for potential energy and Poisson’s constant in electricity.

The state of the server is, due to the involved memoryless distributions,
completely given by the number of requests in the server. If we assume that the
server can hold at most K requests, (including the one actually being processed)
the state of the server is governed by a CTMC, as given in Figure [[0 In fact,
we are dealing here with the CTMC underlying the so-called M|M|1|K queue,
in which both the interarrival and service times are memoryless (explaining the
two “M”s), hence negative exponentially distributed, there is 1 server and there
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Fig. 9. Transient probabilities 7(; ;) for the TMR system (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. (© John Wiley & Sons
Limited. Reproduced with Permission.)

are K buffer spots (including the server itself). The notation employed here to
denote the particular queueing system is due to D.G. Kendall [43] (professor
emeritus of Oxford University since 1989).

By the fact that the CTMC has a structure in which only left and right
“neighbouring” states can be reached, this type of CTMC is called a birth-death
process. The (K +1) x (K+1) generator matrix for the CTMC is given as follows:

Y A 0 -« ---

po—A+p) A0

0 0 0 p —p

The special tridiagonal structure of Q is typical for birth-death processes. Ex-
ploiting the birth-death structure of the CTMC, we can solve the equation
7Q = 0 explicitly to reveal that m; = mo - p, ¢ = 1,---, K. Here, p = \/p is
the ratio of the arrival rate and the service rate, which is also called the traf-
fic intensity or the wtilisation. We observe that all steady-state probabilities

are related to the probability that the server is empty (7). The normalisation
>, ™ = 1 then yields 7o, in the following way:

T b= o = T e
i=1

where the latter equality follows from the geometric series: Zfio at = (1 -
a®*1) /(1 —a) (with a > 0,a # 1). Note at this point that only the steady-state
probabilities can be obtained explicitly; the transient probabilities can only be
obtained numerically.
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Fig. 10. CTMC underlying the M|M|1|K queue

Example 7. An infinite-buffer queueing station. We can extend the previous ex-
ample by making the buffering capacity of the server unbounded. Surprisingly, a
closed-form solution for the steady-state probabilities then still exists. The state
space of the corresponding CTMC then equals IN and we still have m; = myp.
Furthermore, if we require A < p, i.e., the average number of requests arriv-
ing per unit of time is smaller than the average number of jobs that can be
handled per unit of time, we have p < 1, so that m; becomes smaller for increas-
ing i. Moreover, the sum Y ;o p' = (1 — p)~ !, so that we find for all i € IN:
m; = (1 — p)p® (which is a geometric distribution). Furthermore, we can simply
obtain a closed-form solution for the mean number of requests in the server:

EN] =Y im =Y i(1-p)p = ﬁ, 0<p<L
=0 =0

This example shows that, provided a regular structure exists in the Markov
chain, steady-state probabilities can still be obtained explicitly, even if the state
space is infinitely large. For more information on this topic, refer for instance to
[27167].

Example 8. Erlang’s loss model. As stated in the introduction, Erlang studied
Markovian models of telephone exchanges. In Kendall’s notation, his model can
now be described as an M|M|K|K queueing model, in which calls arrive according
to a Poisson process with rate A and take an exponentially distributed time with
length 1/p. Furthermore, the telephone switch considered can accommodate K
simultaneous calls (“there are K lines”) and cannot put calls on hold. Clearly,
when all K lines are busy, an arriving call will be lost; the caller will hear a
busy tone. The problem to be solved then, is to compute the required number
of lines K so that, given traffic characteristics in terms of A and u, the call loss
probability remains under some threshold.

Erlang’s model describes a birth-death process, as illustrated in Figure [T
where the state number denotes the number of calls in progress. The call rate
A is constant for all states. The service rate linearly depends on the number of
calls underway. For this birth-death process, the matrix Q has again a tridiag-
onal structure and we can easily solve the steady-state probabilities explicitly.
Defining p = A/, we find:



Markovian Models for Performance and Dependability Evaluation 59
-1
p' X
m,=m9—, t=0,---,K, with my = Z—
7! — 4!
j=

where the expression for 7 follows from the normalisation equation. The prob-
ability that an arriving call is lost, is now given by the probability for state K,

that is:
p" /K

ZiK:O p'/il .
This result is also known as Erlang’s loss formula B(K, p). As part of his studies,

Erlang published large tables with these loss probabilities, which were used to
dimension telephone switches.

Pr{arriving call lost; K, p} =

20
Iz 2 3 Ku

Fig.11. CTMC underlying the M|M|K|K queue

5 Solution Methods for Steady-State Probabilities

As has become clear from the previous sections, in order to obtain the steady-
state probabilities of finite DTMCs and CTMCs (with N states; numbered 1
through N) we need to solve a system of N linear equations which takes the
following form (here given for a CTMC, but similar in the DTMC case):

N
Q=0 Y m=1, (27)
=1

We assume here that the Markov chain is irreducible and aperiodic such that =
does exist and is independent from 7(0). Notice that the left part of ([27) in fact
does not uniquely define the steady-state probabilities; however, together with
the normalisation equation a unique solution is found. For the explanations that
follow, we will transpose the matrix Q and denote it as A. Hence, we basically
have to solve the following system of linear equations:

Ar” =b, with A=Q7 and b=0". (28)

Starting from this system of equations, two solution approaches can be chosen:
direct methods or iterative methods. These methods will be discussed in Section
BETland B2 respectively.
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5.1 Direct Methods

The main characteristic of a so-called direct method is that it aims at rewriting
the system of equations in such a form that explicit expressions for the steady-
state probabilities are obtained. The rewriting procedure costs an a priori known
number of operations, given the number of states V.

Gaussian Elimination Perhaps the best-known direct solution technique is
Gaussian elimination, named after the famous German mathematician Johann
Carl Friedrich Gauss (1777-1855). The Gaussian elimination procedure consists
of two phases: a reduction phase and a substitution phase.

In the reduction phase repetitive subtractions of equations from one another
are used to make the system of equations upper-triangular (see also Figure [I2)).
To do so, let the i-th equation be Zj a; ;p; = 0 (this equals Zj pjq;,: = 0 in the
non-transposed system). We now vary ¢ from 1 to N. The j-th equation, with
j=1+1,---,N, is now changed by subtracting the i-th equation m;; times
from it, where m;; = a;;/a;;, that is, we reassign the a;; values as follows:

Ak 1= Q5 — My 05k, 7 k > .

Clearly, a;; := a;; — mj;a;; = 0, for all j > 7. To avoid round-off errors, it is
important to set a;, to zero. By repeating this procedure for increasing ¢, the
linear system of equations is transformed, in N — 1 steps, to an upper-triangular
system of equations. The element a;; that acts as a divisor is called the pivot.
If a pivot is encountered that equals 0, an attempt to divide by 0 results, which
indicates that the system of equations does not have a solution. Since Q is a
generator matrix of an irreducible ergodic CTMC, this problem will not occur.
Moreover, since A is weakly diagonal dominant (a;; is as large as the sum of
all the values a;; (j # i) in the same column) we have that m;; < 1 so that
overflow problems are unlikely to occur.

At the end of the reduction phase, the N-th equation will always reduce to
a trivial one (0 = 0). This is no surprise, since the system of equations without
normalisation is not of full rank. We might even completely ignore the last
equation. Since the right-hand side of the linear system of equations equals 0,
nothing changes there either. When the right-hand side is a non-zero vector b,
we would have to set b; := b; —my; ;b;, for all j > 4 in each step in the reduction
process.

After the reduction has been performed, the substitution phase can start. The
equation for 7w does not help us any further; we therefore assume a value a > 0
for mn, which can be substituted in the first N — 1 equations, thus yielding
a system of equations with one unknown less. We implement this by setting
bj := b; — a; nmn. Now, the (N — 1)-th equation will have only one unknown
left which we can directly compute as my_1 = by_1/an—1,n—1. This new value
can be substituted in the N — 2 remaining equations, after which the (IV — 2)-
th equation has only one unknown. This procedure can be repeated until all
probabilities have been computed explicitly in terms of 7 (or a). We then use
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Fig.12. Schematic representation of the i-th reduction step in the Gaussian
elimination procedure (B.R. Haverkort, Performance of Computer Communica-
tion Systems, 1998. © John Wiley & Sons Limited. Reproduced with Permis-
sion.)

the normalisation equation to compute a to obtain the true probability vector,
. N .
that is, we compute o = ) ._ ; m; and set m; := m; /0, for all 7.

Instead of assuming the value « for my, we can also directly include the
normalisation equation in the Gaussian elimination procedure. The best way to
go then, is to replace the N-th equation with the equation ), 7; = 1. In doing
s0, the last equation will directly give us 7w . The substitution phase can proceed
as before.

Complexity Considerations for Gaussian Elimination The computational
complexity for Gaussian elimination is O(N?3). By a more careful study of the
algorithm, one will find that about N3/3 + N2/2 multiplications and additions
have to be performed, as well as N(N +1)/2 divisions. Clearly, these numbers in-
crease rapidly with increasing N. The main problem with Gaussian elimination,
however, lies in its storage requirements. Although A will initially be sparse for
most models, the reduction procedure normally increases the number of non-
zeros in A. At the end of the reduction phase, most entries of the upper half
of A will be non-zero. The non-zero elements generated during this phase are
called fill-ins. They can only be inserted efficiently when direct storage structures
(arrays) are used. To store the upper-triangular matrix A, N?/2 floats have to
be stored, each taking at least 8 bytes, plus 2 to 4 bytes for the correspond-
ing indices. For moderately sized models, generated from some high-level model
specification, N can easily be as large as 10° or even 10°. This then precludes the
use of Gaussian elimination. Fortunately, there are methods to compute = that
do not change A and that are very fast as well. We will discuss these methods
after we have discussed one alternative direct method.
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LU Decomposition A method known as LU decomposition is advantageous to
use when multiple systems of equations have to be solved, all of the form Az = b,
for different values of b. This occurs, for instance when one tries to invert A by
solving Az, = e;, where the vectors ¢; have as single nonzero element a 1 at the
i-th position; the matrix A~! = (2,2, ).

The LU method starts by decomposing A such that it can be written as the
product of two matrices L and U, where the former is lower-triangular, and the
latter is upper-triangular. We have:

Az=0 = LUz =b. (29)
—

After the decomposition has taken place, we solve Lz = b, after which we solve
Uz = z. Since the last two systems of equations are triangular, their solution
can be found by a simple forward- and back-substitution.

The main question then lies in the computation of suitable matrices L and
U. Since A is the product of these two matrices, we know that

N

aij = ligukj, 4,j=1,---,N. (30)
k=1

Given the fact that L and U are lower- and upper-triangular, we have to find
N? + N unknowns:

liyj, i=1,---,N, k=1,---,1,

{ukyj,k:1,---,N7j:k7...7N_ (31)

Since (BQ) only consists of N? equations, we have to assume N values to de-
termine a unique solution. Two well-known schemes for this are [66]: (i) the
Doolittle decomposition where one assumes [;; = 1,4 =1,---, N; (ii) the Crout
decomposition where one assumes u;; =1,4=1,---,N.

Let us consider the Doolittle variant. First notice that in (B0) many of the
terms in the summation are zero, since one of the multiplicants is zero. In fact,
we can rewrite (30) in a more convenient form as follows:

. . i—1
{Z <Gy =iyt Xy ik, (32)
. . j—1
0> aig = 1iug 3ty bk

From this system of equations, we can now iteratively compute the entries of L
and U as follows:

{i < UG = Qi — E;;ll likur,j, (33)

. . 1 Jj—1
1> iy =g (aiyj = k=1 li,kukyj) )

by increasing i from 1 until V is reached.
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Example 9. LU decomposition after Doolittle. Suppose we want to decompose

32 5
A=|-61 8],
72 -3

using a Doolittle LU decomposition. We then know that

100 -
L= -10 and U=1{0 --
-1 00-
We start to compute u; 1 = a11 = 3. We then compute ly1 = ag1/ui1 = —2
and w12 = a12 = 2. From this, we find up s = a2 — lo1u1,2 = 5. We then
compute l31 = —% and find I3 = %. Via u1,3 = a1,3 = 5 and ug 3 = 18 we find
Uz 3 =dasgs — Ei:l I3 pug,s = —%6. We thus have:
1 00 32 5
A =LU with L= -2 10 and U=|05 18
—21 131 00-15%

To solve Az = 1, we first solve for z in Lz = 1. A simple substitution procedure
yields z = (1,3, —2). We now continue to solve Uz = z; also here a substitution
procedure suffices to find z = 3=(—4,51,5).
Ezxample 10. LU decomposition for a CTMC. We reconsider the CTMC for
which the matrix Q is given by

>~

Q=

S NN
S~ N

1—
6

We form A = QT and directly include the normalisation equation. To find the
steady-state probabilities we thus have to solve:

—4 16 ™ 0
2-20|-[m]|=(0]. (34)
1 11 3 1

We now decompose A using the Doolittle decomposition as follows:

1 00 -4 16
A=LU= —% 10 0-323 (35)
—1-121 0 05

The solution of Lz = (0,0,1)” now reveals, via a simple substitution, that
z = (0,0,1). We now have to find  from Ur = z, from which we, again via a

substitution procedure, find & = (%, %, %), as we have seen before.
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In the above example, we took a specific way to deal with the normalisa-
tion equation: we replaced one equation from the “normal” system with the
normalisation equation. In doing so, the vector b changes to b = (0,0,1) and
after the solution of Lz = b, we found z = (0,0,1)”. This is not only true for
the above example; if we replace the last equation, the vector z always has this
value, so that we do not really have to solve the system Lz = (0,0,1)7. Hence,
after the LU decomposition has been performed, we can directly solve & from
Ur = (0,---,0,1)7.

Opposed to the above variant, we can also postpone the normalisation. We
then decompose A = QT = LU, for which we will find that the last row of U
contains only 0’s. The solution of Lz = 0 will then always yield z = 0, so that we
can immediately solve Uz = 0. This triangular system of equations can easily be
solved via a back-substitution procedure; however, we have to assume mny = «
and compute the rest of & relative to @ as well. A final normalisation will then
yield the ultimate steady-state probability vector .

Postponing the normalisation is preferred in most cases for at least two rea-
sons: (i) it provides an implicit numerical accuracy test in that the last row of U
should equal 0; and (ii) it requires less computations than the implicit normali-
sation since the number of non-zeros in the matrices that need to be handled is
smaller. Of course, these advantages will become more apparent for larger values
of N.

Complexity Considerations for LU Decomposition The LU decomposi-
tion solution method has the same computational complexity of O(N?) as the
Gaussian elimination procedure. The decomposition can be performed with only
one data structure (typically an array). Initially, the matrix A is stored in it, but
during the decomposition the elements of L (except for the diagonal elements
from L, but these are equal to 1 anyway) and the elements of U replace the
original values.

Under- and Overflow We finally comment on the occurrence of over- and
underflow during the computations. Underflow can be dealt with by setting in-
termediate values smaller than some threshold, say 10724, equal to 0. Overflow
is unlikely to occur during the reduction phase in the Gaussian elimination since
the pivots are the largest (absolute) quantities in every column. If in other parts
of the algorithms overflow tends to occur, which can be observed if some of the
values grow above a certain threshold, e.g., 10'°, then an intermediate normal-
isation of the solution vector is required. A final normalisation then completes
the procedures.

5.2 Iterative Methods

Although direct methods are suitable to solve the system of equations (28], for
reasons of computational and memory efficiency they cannot be used when the
number of states N grows beyond about a thousand. Instead, we use iterative
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methods in these cases. With iterative methods, the involved matrices do not
change (fill-in is avoided), so that they can be stored efficiently using sparse
matrix methods. Moreover, these methods can be implemented such that in the
matrix-multiplications only the multiplications involving two non-zero operands
are taken into account.

Iterative procedures do not result in an explicit solution of the system of
equations. A key characteristic of iterative methods is that it is not possible
to state a priori how many computational steps are required. Instead, a simple
numerical procedure (the iteration step) is performed repeatedly until a desired
level of accuracy is reached.

The Power Method We have already seen the simplest iterative method to
solve for the steady-state probabilities of a DTMC in Section & the Power
method. The Power method performs successive multiplication of the steady-
state probability vector v with P until convergence is reached. The Power method
can also be applied to CTMCs. Given a CTMC with generator matrix Q, we can
compute the DTMC transition matrix P = I+ Q/A. If we take A > max;{|q; |},
the matrix P is a stochastic matrix and describes the evolution of the CTMC in
time-steps of mean length 1/ (see Section[d for a more precise formulation). Us-
ing P and setting 7(?) = 7(0) as initial estimate for the steady-state probability
vector, we can compute D) = (AP and find that 7 = limg_, oo 7).

In practice, the Power method is not very efficient. Since more efficient meth-
ods do exist, we do not discuss the Power method any further.

The Jacobi Method Two of the best-known (and simple) iterative methods
are the Jacobi and the Gauss-Seidel iterative methods. For these methods, one
first rewrites the i-th equation of the linear system (28) in the following way:

ol 1
E am»wj:O :>7Ti:_a" E a5 + E T
i,

Jj=1 j<i j>i

We clearly need a;; # 0; when the linear system is used to solve for the steady-
state probabilities of an irreducible aperiodic Markov chain, this is guaranteed.

The iterative procedures now proceed with assuming a first guess for m,
denoted 7(?). If one does know an approximate solution for z, it can be used
as initial guess. In other cases, the uniform distribution is a reasonable choice,
© =1 /N. The next estimate for x is then computed as follows:

i

ie.,

k1 1 k
LI b SO (36)
Qi \ <
J#i
This is the Jacobi iteration scheme. We continue to iterate until two successive

estimates for 7 differ less than some e from one another, i.e., when |[z(**1) —
7M|| < e (difference criterion). Notice that when this difference is very small,
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this does not always imply that the solution vector has been found. Indeed,
it might be the case that the convergence towards the solution is very slow.
Therefore, it is good to check whether [|[Az(®)|| < € (residual criterion). Since
this way of checking convergence is more expensive, often a combination of these
two methods is used: use the difference criterion normally; once it is satisfied use
the residual criterion. If the convergence is really slow, two successive iterates
might be very close to one another, although the actual value for 7 is still
“far away”. To avoid the difference criterion to stop the iteration process too
soon, one might instead check on the difference between non-successive iterates,
ie,||z®) —x=D| <€ with d € INT (and d < k).

The Gauss-Seidel Method The Jacobi method requires the storage of both
7®) and 7*+1) during an iteration step. If, instead, the computation is struc-
tured such that the (k + 1)-th estimates are used as soon as they have been
computed, we obtain the Gauss-Seidel scheme:

k+1 1 k+1 k
! ):—a ZWJ( )ai7j+ZW§)ai,j ) (37)

o\ j<i §>i

where we assume that the order of computation is from wgkﬂ) to WJ(\],CH). This
scheme then requires only one probability vector to be stored, since the (k+ 1)-
th estimate for m; immediately replaces the k-th estimate in the single stored
vector.

The SOR Method The last method we mention is the successive over-relazation
method (SOR). SOR is an extension of the Gauss-Seidel method, in which the
vector 71 is computed as the weighted average of the vector #(*) and the
vector m**1) that would have been used in the (pure) Gauss-Seidel iteration.
That is, we have, fori =1,---, N:

k+1 k w k+1 k
wf ) :(1—w)7rl( ) _ Zw]( )ai7j—|—Z7TJ(- )ai)j ,

Qi \ < —

7<1t j>i
where w € (0,2) is the relaxation factor. When w = 1, this method reduces to
the Gauss-Seidel iteration scheme; however, when we take w > 1 (or w < 1)
we speak over over-relaxation (under-relaxation). With a proper choice of w,
the iterative solution process can be accelerated significantly. Unfortunately, the
optimal choice of w cannot be determined a priori. We can, however, estimate w

during the solution process itself; for details, refer to Stewart [66] or Hageman
and Young [26].

Ezxample 11. Comparing the Power, the Jacobi and the Gauss-Seidel method. We
reconsider the CTMC for which the matrix Q is given by
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As starting vector for the iterations we take (%, %, %) In the Jacobi and Gauss-
Seidel method we renormalised the probability vector after every iteration. In
Table [[l we show the first ten iteration vectors for these methods. As can be seen,
the Power method convergest slowest, followed by the Jacobi and the Gauss-

Seidel method.

# Power Jacobi Gauss-Seidel

1 ( 0.5000, 0.3333, 0.1667 ) ( 0.5385, 0.3077, 0.1538 ) ( 0.5833, 0.5833, 0.2917 )
2 (0.3889, 0.3889, 0.2222 ) ( 0.4902, 0.3137, 0.1961 ) ( 0.4000, 0.4000, 0.2000 )
3 (10.4167, 0.3889, 0.1944 ) ( 0.3796, 0.4213, 0.1991 ) ( 0.4000, 0.4000, 0.2000 )
4 (0.3981, 0.3981, 0.2037 ) ( 0.3979, 0.4023, 0.1998 ) :

5 (10.4028, 0.3981, 0.1991 ) ( 0.4001, 0.3999, 0.2000 )

6 (0.3997, 0.3997, 0.2006 ) ( 0.4000, 0.4000, 0.2000 )

7 (0.4005, 0.3997, 0.1998 ) ( 0.4000, 0.4000, 0.2000 )

8 (10.3999, 0.3999, 0.2001 ) ( 0.4000, 0.4000, 0.2000 )

9 (0.4001, 0.3999, 0.2000 ) :

10 ( 0.4000, 0.4000, 0.2000 )

Table 1. The first few iteration vectors for three iterative solution methods
(B.R. Haverkort, Performance of Computer Communication Systems, 1998. ©
John Wiley & Sons Limited. Reproduced with Permission.)

Complexity Considerations Iterative methods can be used to solve the lin-
ear systems arising in the solution of the steady-state probabilities for Markov
chains, with or without the normalisation equation. Quite generally we can state
that it is better not to include the normalisation equation; if the normalisation
equation is included, the second largest eigenvalue of the coefficient matrix A
generally increases (the largest one is 1) which normally reduces the speed of
convergence.

All iterative methods require the storage of the matrix A. For larger mod-
elling problems, A has to be stored sparsely; it is then important that the sparse
storage structure is structured such that row-wise access is very efficient since
all methods require the product of a row of A with the (column) iteration vec-
tor 7). The Power and the Jacobi method require two iteration vectors to be
stored, each of length N. The Gauss-Seidel and the SOR method only require
one such vector. In all the iteration schemes the divisions by —a;; (and for SOR
the multiplication with w) need to be done only once, either before the actual
iteration process starts or during the first iteration step, by changing the ma-
trix A accordingly. This saves N divisions (and N multiplications for SOR) per
iteration. A single iteration can then be interpreted as a single matrix-vector
multiplication (MVM). In a non-sparse implementation, a single MVM costs
O(N?) multiplications and additions. However, in a suitably chosen sparse stor-
age structure only O(n) multiplications and additions are required, where 7 is
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the number of non-zero elements in A. Typically, the number of nonzero ele-
ments per column in A is limited to a few dozen. For example, if the CTMC is
derived from a high-level model specification, the number of nonzero elements
per row in Q equals the number of enabled activities in a particular state. This
number is normally much smaller than N. Hence, it is reasonable to assume that
one iteration step only takes O(N) operations.

An important difference between iterative methods is the number of required
iterations. Typically, the Power method converges slowest, and the Gauss-Seidel
method typically outperforms the Jacobi method. With the SOR method, a
proper choice of the relaxation factor w accelerates the iteration process, so that
it often is the fastest method. In practical modelling problems, the required
number of iterations can range from just a few to a few thousands.

There do exist more advanced methods to solve linear systems of equations
which often convergence in less iteration steps. This then mostly comes at the
cost of either more complex iteration steps (more computation time required per
step) or iteration steps requiring much more intermediate solution vectors, or
both. A fast method, for instance, requiring 7 iteration vectors is CGS (conju-
gate gradient squared), an example of a so-called Krylov subspace method [66]
Chapter 4]. It goes beyond the scope of the current paper to go in more detail
here.

6 Solution Methods for Transient-State Probabilities

In this section, we discuss the solution of the time-dependent behaviour of
Markov chains. As we have seen in Section P] the time-dependent behaviour
of a DTMC is simply obtained by successive matrix-vector multiplications and
is therefore not further considered here. The time-dependent behaviour of an
SMC is much more complex; it goes beyond the scope of this paper. Hence, we
focus on the transient behaviour of CTMCs in this section.

In Section [Tl we explain why transient behaviour is of interest and which
equations we need to solve for that purpose. We discuss “traditional” methods to
solve these equations in Section and continue with the use of uniformisation
in Section Finally, in Section [6.4] we comment on the use of uniformisation
to compute so-called cumulative measures.

6.1 Introduction

Steady-state measures (probabilities) do suffice for the evaluation of the perfor-
mance of most systems. There are, however, exceptions to this rule, for instance

— when the system life-time is so short that steady-state is not reached;

— when the period towards the steady-state situation itself is of interest;

— when temporary overload periods, for which no steady-state solution exists,
are of interest;
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— when reliability and availability properties are taken into account in the
model, e.g., non-repairable systems that are failure-prone are of no interest
in steady-state, since then they will have completely failed.

The time-dependent state probabilities of a CTMC are specified by a linear
system of differential equations (as already given in (20)):

m'(t) = x(t)Q, given x(0). (38)

Measures that are specified in terms of 7(t) are called instant-of-time measures.
If we associate a reward r; with every state, the expected reward at time ¢ can
be computed as

N
AﬂXUH=§:mm@> (39)

The rewards express the amount of gain (or costs) that is accumulated per unit
of time in state i; E[X (¢)] then expresses the speed of gain accumulation (per
time-unit).

In many modelling applications, not only the values of the state probabilities
at a time instance ¢ are of importance, but also the total time spent in any state
up to some time t, as expressed in so-called cumulative measures. We define the
cumulative state vector [(t) as

szég@@ (40)

Notice that the entries of I(t) are no longer probabilities; [;(¢) denotes the overall
time spent in state ¢ during the interval [0, ). Integrating (B8], we obtain

[ was= [ a)as (a1)

which can be rewritten as

n(t) —x(0) = L(1)Q, (42)
which can, after having substituted ' (t) = z(¢), be written as
U'(t) =1(t)Q +z(0). (43)

hence, [(t) follows from the solution of a linear non-homogeneous system of
differential equations. If r; is the reward obtained per time-unit in state ¢, then

N
Y () = 3 rilft (44)

expresses the total amount of reward gained over the period [0,t). The distribu-
tion Fy (y,t) = Pr{Y (¢) < y} has been defined by Meyer as the performability
distribution [BOI5I]; it expresses the probability that a reward of at most y is
gained in the period [0, t). Meyer developed his performability measure in order
to express the effectiveness of use of computer systems in failure prone environ-
ments.
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Example 12. Measure interpretation. Consider a three-state CTMC with gener-
ator matrix

—2f 2f 0
Q={ r ~(f+n f
0 T —r

This CTMC models the availability of a computer system with two processors.
In state 1 both processors are operational but can fail with rate 2f. In state
2 only one processor is operational (and can fail with rate f); the other one is
repaired with rate r. In state 3 both processors have failed; one of them is being
repaired. Note that we assume that both the processor life-times and the repair
times are negative exponentially distributed. Since in state 1 both processors
operate, we assign a reward 2pu to state 1, where p is the effective processing
rate of a single processor. Similarly, we assign ro = p and r3 = 0. We assume
that the system is initially fully operational, i.e.,w(0) = (1,0,0). The following
measures can now be computed:

— Steady-state reward rate Zl r;7;: the expected processing rate of the system
in steady-state, i.e., the long-term average processing rate of the system,;

— Expected instant reward rate ), 7;m;(t): the expected processing rate at a
particular time instance ¢;

— Expected accumulated reward ), 7;l;(t): the expected number of jobs (of
length 1) processed in the interval [0, t);

— Accumulated reward distribution Fy (y,t): the probability that at most y
jobs (of length 1) have been processed during [0, t).

2f f
3 r ? r
r=2u ro =l rg =0

Fig. 13. A three-state CTMC (B.R. Haverkort, Performance of Computer Com-
munication Systems, 1998. (© John Wiley & Sons Limited. Reproduced with
Permission.)

6.2 Runge-Kutta Methods

The numerical solution of systems of differential equations of type ([B8) and
(E3) has since long been an important topic in numerical mathematics. Many
numerical procedures have been developed for this purpose, all with specific
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strengths and weaknesses. Below, we will present one such method in a concise
way, thereby focusing on the computation of z(t); for details, see [66].

With Runge-Kutta methods (RK-methods) the continuous vector function
x(t) that follows from the differential equation #’(t) = =(¢)Q, given m(0), is
approximated by a discrete function 7, (i € IN), where &, = x(ih), i.e.,h is
the fixed step-size in the discretisation; the smaller h, the better (but more
expensive) the solution.

With RK-methods, the last computed value for any point 7, is used to com-
pute 7;,,. The values 7, through @, ; are not used to compute 7, ,. For
this reason, RK-methods are called single-step methods. They are always sta-
ble, provided the step-size h is taken sufficiently small. Unlike Euler-methods,
RK-methods do not require the computation of derivatives of the function of
interest, which keeps them fairly efficient. RK-methods are distinguished on the
basis of their order: a RK-method is of order k if the exact Taylor series for
xm(t + h) and the solution of the RK-scheme for time instance ¢ + h coincide as
far as the terms up to h* are concerned.

One of the most widely used RK-methods is the 4th-order RK-method (nor-
mally denoted as “RK4”). For a vector-differential equation 7' (t) = 7(¢)Q, given
x(0), successive estimates for 7, are computed as follows:

- - h
Ty =T; + 6(&1 + 2ky + 2k5 + ky), (45)
with
El - izQ7
E2 = (i + ﬁEl)(ga
" 46
ks = (7; + éﬁz)Qa (46)
ky = (&; + hk3)Q.

Since the RK4 method provides an explicit solution to 7, it is called an explicit
4th-order method. Per iteration step of length h, it requires 4 matrix-vector
multiplications, 7 vector-vector additions and 4 scalar-vector multiplications.
Furthermore, apart from Q and 7 also storage for at least two intermediate
probability vectors is required.

In contrast, implicit RK-methods yield a system of linear equations in which
the vector &, appears implicitly. Such methods are normally more expensive to
employ and can therefore only be justified in special situations, e.g., when the
CTMC under study is stiff, meaning that the ratio of the largest and smallest
rate appearing in Q is very large, say of the order of 10 or higher.

6.3 Uniformisation for Transient Measures

Consider the scalar differential equation p’(t) = p(t)Q, given p(0) and scalar con-
stant (). From elementary analysis we know that the solution to this differential
equation is p(t) = p(0)e?*. When dealing with CTMCs, the transient behaviour
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is defined by the linear system of differential equations (20); the transient be-
haviour then can still be computed as an exponential, however, now in terms of
vectors and matrices, that is,

x(t) = m(0)e?. (47)

Direct computation of this matrix exponential, e.g., via a Taylor/MacLaurin se-
ries expansion as >~ (Qt)"/i!, is in general not a good idea [52]: (i) the infinite
summation that appears in the Taylor series cannot be truncated efficiently; (ii)
severe round-off errors usually will occur due to the fact that Q contains posi-
tive as well as negative entries; and (iii) the matrices (Qt)? become non-sparse,
thus requiring too much storage capacity for practically relevant applications. To
avoid these problems, a method known as uniformisation, also known as Jensen’s
method or randomisation, is regarded as the method of choice [24/25]/39]. To use
uniformisation, we define the matrix

P:I—&—% = Q=XAP-1I). (48)
If X is chosen such that A > max;{|¢; |}, then the entries in P are all between 0
and 1, whereas the rows of P sum to 1. In other words, P is a stochastic matrix
and describes a DTMC. The value of X is called uniformisation rate.

Example 13. Uniformising a CTMC. Consider the CTMC given by
-4 2 2
Q= 1-2 1. (49)
6 0-6

and initial probability vector m(0) = (1,0, 0). For the uniformisation rate we find
by inspection: A = 6, so that the corresponding DTMC is given by:

L (222
P=-|141]. (50)
600

The CTMC and the DTMC are given in Figure [[4]

The process of uniformising a CTMC can be understood as follows. In the
CTMC, the state residence times are exponentially distributed. The state with
the shortest residence times provides us with the uniformisation rate A. For
that state, one epoch in the DTMC corresponds to one negative exponentially
distributed delay with rate A, after which one of the successor states is selected
probabilistically. For the states in the CTMC that have total outgoing rate A,
the corresponding states in the DTMC will have no self-loops. For states in the
CTMC having a state residence time distribution with a rate smaller than A
(these states have on average a longer state residence time), one epoch in the
DTMC might not be long enough; hence, in the next epoch these states might
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Fig.14. A small CTMC (left) and the corresponding DTMC (right) after uni-
formisation (B.R. Haverkort, Performance of Computer Communication Sys-
tems, 1998. (© John Wiley & Sons Limited. Reproduced with Permission.)

be revisited. This is made possible by the definition of P, in which these states
have self-loops, i.e.,p;; > 0. Using (BX) we can write

ﬂ(t) _ E(O)th _ E(O)e)\(P—I)t _ E(O)e—)\lte)\Pt _ E(O)B_)\te)\Pt. (51)

We now employ a Taylor-series expansion for the matrix exponential as follows:

n(t) = x(0)e M WL# =m(0) Y (At;n)P", (52)
n=0 : n=0
where N
(M n) = e M (/\;Zl) , meN, (53)

are Poisson probabilities, i.e.,9(At;n) is the probability of n events occurring
in [0,¢) in a Poisson process with rate A. Of course, we still deal with a Taylor
series approach here, however, the involved P-matrix is a probabilistic matrix
with all its entries between 0 and 1, as are the Poisson probabilities. Hence, this
Taylor series “behaves nicely”, as we will discuss below.

Equation (B2) can be understood as follows. At time ¢, the probability mass
of the CTMC, initially distributed according to m(0) has been redistributed
according to the DTMC with state-transition matrix P. During the time interval
[0,t), with probability ¢ (At;n) exactly n jumps have taken place. The effect of
these n jumps on the initial distribution m(0) is described by the vector-matrix
product 7(0)P". Weighting this vector with the associated Poisson probability
¥(At;n), and summing over all possible numbers of jumps in [0,t), we obtain,
by the law of total probability, the probability vector z(t).

Uniformisation allows for an iterative solution without matrix-matrix multi-
plications, so that matrix fill-in do not occur. Instead of directly computing the
n-th Power of P as suggested by (52) one considers the following sum of vectors:

x(t) =Y w(Atn) (@O)P") = Y (M n)i(n), (54)
n=0 n=0

where 7, is the state probability distribution vector after n epochs in the DTMC
with transition matrix P, which can be derived recursively as

#(0) =x(0) and #(n)=z(n—1)P, ne NT. (55)
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Clearly, the infinite sum in (B4) has to be truncated, say after k. epochs in the
DTMC. The actually computed state probability vector 7 (¢) then equals:

ke

a(t) = Y vOn)E(n). (56)

n=0

The number of terms that has to be added to reach a prespecified accuracy e
can now be computed a priori as follows. It can be shown that the difference
between the computed and the exact value of the transient probability vector is
bounded as follows:

W?” . (57)

n

ke
lz(t) — 2@ <1-> e
n=0

Thus, we have to find that value of k. such that 1 — 37 e (\t)"/n! < e.
Stated differently, we need the smallest value of k. that satisfies

k
< (A)™ 1—c¢
> ( n,) > 5 = (1= (58)
n=0 '

For reasons that will become clear below, k. is called the right truncation point.

Ezample 1. How large should we take k.? In Table Bl we show the number of
required steps ke as a function of € and the product At in the uniformisation
procedure. As can be observed, k. increases sharply with increasing A\t and de-
creasing e.

If the product At is large, ke tends to be of order O(At). On the other hand, if \¢
is large, the DTMC described by P might have reached steady-state along the
way, so that the last matrix-vector multiplications do not need to be performed
any more. Such a steady-state detection can be integrated in the computational
procedure (see [57] and the example below).

At
€ 010212 4 8 16
0.0005 {2 3 6 8 121931
0.00005 | 3 3 7101421 34
0.000005| 3 4 81116 23 37

Table 2. The number of required steps k. as a function of € and the product At
(B.R. Haverkort, Performance of Computer Communication Systems, 1998. ©
John Wiley & Sons Limited. Reproduced with Permission.)
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Example 15. Transient solution of a three-state CTMC. We consider the tran-
sient solution of the CTMC given in Figure [4} we already performed the uni-
formisation to form the matrix P with uniformisation rate A = 6.
We first establish how many steps we have to take into account for increasing

t. This number can be computed by checking the inequality (B8) and taking
e =10"%. We find:

¢0.1]0.2/0.5] 1| 5 10| 20 | 50 |100

k€| 5 | 7 |11|17|52|91|163|367|693

We then continue to compute 7(t) according to (56) to find the curves for m;(t)
as indicated in Figure As can be observed, for ¢t > 2 steady-state is reached.
Although for larger values of ¢ we require very many steps to be taken, the
successive vectors 7(n) do not change any more. Denote with kg < k. the value
after which 7, does not change any more. Instead of explicitly computing the
sum (B6) for all values of m, the last part of it can then be computed more
efficiently as follows:

ke kss ke
i(t) =Y dAn)i(n) = Y (M n)i(n) + < > ww;n)) (kss),  (59)

n=0 n=0 n=~kgs+1

1725;5:50 P(At;n)

thus saving the computation intensive matrix-vector multiplications in the last
part of the sum. The point kg is called the steady-state truncation point.

If the product At is very large, the first group of Poisson probabilities is very
small, often so small that the corresponding vectors & (n) do not really matter.
We can exploit this by only starting to add the weighted vectors @ (n) after the
Poisson weighting factors become reasonably large. Of course, we still have to
compute the matrix-vector products (55). The point where we start to add the
probability vectors is called the left truncation point.

Finally, we note that the Poisson probabilities ¢)(At;n),n = 0,---, N, can be
computed efficiently when taking into account the following recursive relations:

Y(M;0) = e M, and (M n 4+ 1) = (X n)n)\—_il, n € IN. (60)

When At is large, say larger than 25, overflow might easily occur. However, for
these cases, the normal distribution can be used as an approximation. Fox and
Glynn report on a stable algorithm to compute Poisson probabilities [21].

To use uniformisation, the sparse matrix P has to be stored, as well as two
probability vectors. Given an N-state Markov chain, two probability vectors of
length N have to be stored. Given that the matrix P is sparse, which typically is
the case, the cost to store it is of order N. Hence, the overall storage complexity
is O(N).

The main computational complexity lies in the min{kss, k.} matrix-vector
multiplications that need to be performed (plus the subsequent multiplication
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Fig. 15. First two seconds in the evolution of the three-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. (© John
Wiley & Sons Limited. Reproduced with Permission.)

of these vectors with the precomputed Poisson probabilities). As we have seen
above, for large At, k. is of order O(At). A single matrix-vector multiplication
costs, in case of a sparse matrix P only O(N), and in case of a non-sparse
matrix O(N?). Taking the sparse case, we arrive at an overall time complexity
of O(MN).

To increase the efficiency of uniformisation in specific situations, various vari-
ants have been developed. A good overview can be found in [53/55/54].

6.4 TUniformisation for Cumulative Measures

Let us now address a uniformisation-based efficient procedure for computing the
expected accumulated reward over [0,t), that is:

N
E[Y(t)=E lz rili(t)] . (61)

We first note that in the interval [0, t), that is, an interval of length ¢, the expected
time between two jumps, when k jumps have taken place according to a Poisson
process with rate A equals ¢t/(k + 1). Interpreting A as the uniformisation rate,
the expected accumulated reward until time ¢, given k jumps, in the uniformised
chain equals

" N k
PP

This expression can be explained as follows. The right-most sum expresses the
sum of the probabilities to reside in state ¢ over the k + 1 intervals addressed;
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multiplied with the mean interval length (left-most factor), this gives the ex-
pected time spent in state i. The first summation weights these times with the
corresponding reward and adds over all states.

We can now sum the above expression over all possible number of jumps that
might occur during the interval [0,¢) and weight them with the usual Poisson
probabilities, to arrive at:

N k
= (A B Z” > #i(m). (62)
Based on this expression, efficient numerical procedures can be devised as follows
(see also [63/64]). First define

Y Angntl
k41 (k+1)0

(M k) = Y(AE; k)

which can be computed recursively in a similar way as ¥ (At; k). When we define
the diagonal matrix R = diag(r), i.e., R is a matrix with on the diagonal the
rewards r;, we can rewrite (62) by transforming the summation over all states
in a matrix-vector multiplication as follows:

0o k
=1 <Z (k) Y 7 (m ) (63)

k=0 m=0

where ¢ is computed recursively and 7(m) = &(m — 1)P, with P the transition
matrix for the uniformised DTMC. By defining the vector C(k), which denotes
the cumulative probability over k steps to reside at each of the states, in the
following way: C'(0) = #(0) and C(k) = C(k — 1) + &(k), we finally arrive at

1 (i e k)g(k)) R. (64)
k=0

As for the transient measures, a truncation criterion for the infinite summation
can be easily developed. Similar storage and computational complexity consid-
erations apply as in Section [6.3]

We finally comment on the solution of the performability distribution Fy (y, t),
i.e., the probability distribution Pr{Y(¢) < y} [50J51]. Also here, uniformisation
can be employed; however, a direct summation over all states does not suffice any
more. Instead, we have to sum the accumulated reward over all paths of length
[ (given a starting state) that can be taken through the DTMC, after which
we have to compute a weighted sum over all these paths and their occurrence
probabilities; for details we refer to [63/64/59].

7 Other Issues

In this section, a number of important issues not covered in detail in this chapter
will be addressed briefly; pointers to relevant literature will be provided.
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Phase-Type Distributions In this paper, we did not further address ab-
sorbing Markov chains, even though their applicability is substantial. Given a
CTMC with a single absorbing state, the time from the initial state to absorp-
tion in that absorbing state has a so-called phase-type distribution, a distribution
that can be seen as the sum of a possibly infinite number of exponential phases.
Many well-known distributions are indeed of this type, e.g.,the Erlang or an
hyperexponential distribution. Moreover, almost any other distribution can be
approximated very well with phase-type distributions. The birth-death processes
we encountered in the examples, can be extended such that instead of exponen-
tial distributions, phase-type distributions are used. The thus resulting Markov
chains are of so-called quasi-birth-death type and can still be solved efficiently
using matriz-geometric methods, even when the state spece is infinitely large.
For details, we refer to [58], [66, Chapter 5] or [27, Chapter 8].

Product-Form Solutions There is a large class of Markov chains that exhibits
a so-called product-form solution. Most often such Markov chains arise when
modelling systems not directly at the Markov chain level by identifying states
and state-transitions, but when modelling systems as networks of queues. The
structure of the Markov chain underlying the queueing network then results in
an overall steady-state probability vector that can be written as the product
of steady-state probabilities over smaller parts of the model. The book by Van
Dijk on queueing networks and product-forms [18] is an excellent source on
this topic. Also the more general books on performance evaluation mentioned
above address product-form models. Hillston addresses product-form results for
stochastic process algebras [35].

Distributed Solution of Markovian Models Especially when Markov chains
are automatically generated from high-level specifications, these Markov chains
tend to become very large. To cope with Markov chains with several millions (or
more) states, specialised data structures have to be employed that are efficient
both from a memory and a computational point of view. Recent advances in
the use of tensor algebra and binary decision diagrams (and variants) should
be mentioned here [15JI3]. Furthermore, recently also the use of parallel and
distributed computer systems has been advocated for both the generation of large
Markov chains from high-level model specifications, as well as their numerical
solution. Early work in this area can be found in [1T|14]. With the PARSECS
prototype tool, the generation and solution of Markov chains with more than
750 million states has recently been reported [7128].

Tools for Markovian Modelling The practical application of Markovian
modelling techniques has become widespread since the beginning of the 1980’s.
At that time, powerful workstations with larger memories became available for
daily use. Since then, a large number of software tools has been built that sup-
port, in one way or another, the generation and solution of Markovian models.
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Typically, the Markovian models are constructed using either general-purpose
high-level modelling formalisms such as queueing networks (¢f. QNAP2 [6§],
NUMAS [B6] and MACOM [47]), stochastic Petri nets (¢f. GreatSPN [12] and
SPNP [16]), the “balls and buckets” formalism (¢f. MARCA [65] and [66, Chap-
ter 10.2-3]) stochastic activity networks (c¢f. UltraSAN [61l62]) or stochastic
process algebras (c¢f. the PEPA workbench [34], TIPPtool [32] or TwoTowers
[8]) or are more application-specific formalisms (¢f. SAVE [23] for availability
evaluation). It goes beyond the scope of the current paper to give an overview
of all these tools; the interested reader is referred to a number of surveys: [31[30]
and [29, Chapter 10].

Model Checking Markovian Models Recently, there has been an increased
interest in the merging of Markovian modelling and evaluation techniques (as de-
scribed in this paper) and techniques for formal system verification, in particular
model checking [T9/17/41]. Where previously timing aspects were not addressed
in model checking, this becomes a necessity when model checking systems and
protocols for real-time systems. By adding time in a specific stochastic manner
to a finite-state machine, it can be interpreted as a Markov chain. By extend-
ing the logic to express time-related properties over the finite-state machine,
as has been done with the logic CSL, a stochastically timed extension of CTL,
such properties can be checked efficiently using evaluation techniques for Markov
chains. Seminal work in this direction has been reported by Aziz et al. [2/1]; more
recent developments can be found in [5J4333].

8 Concluding Remarks

In the preceding sections we have addressed in a nutshell a large number of
aspects of the use and solution of Markovian models. However, the amount
of literature on Markovian models, their solution and application is vast. To
conclude, let me refer to a number of well-known textbooks in the field. An
absolute “must-read” on the numerical solution of Markov chains is Stewart’s
textbook [66]. Very readable is the two-volume work by Howard [3738] as is the
book by Kemeny and Snell [42]. A variety of books on performance evaluation
in general address Markov chains in more or less detail, most often providing
numerous examples [Q27[40J44A5]67).
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Abstract. Stochastic Petri Nets are a modelling formalism that can be
conveniently used for the analysis of complex models of Discrete Event
Dynami Systems (DEDS) and for their performance and reliability eval-
uation. The automatic construction of the probabilistic models that un-
derly the dynamic behaviours of these nets rely on a set of results that
derive from the theory of untimed Petri nets. The paper introduces the
basic motivations for modelling DEDS and briefly overviews the basic
results of net theory that are useful for the definition of Stochastic Petri
Nets and Generalized Stochastic Petri Nets. The different approaches
that have been used for introducing the concept of time in these models
are discussed in order to provide the basis for the definition of SPNs
and GSPNs as well. Details on the solution techniques and on ntheir
computational aspects are provided. A brief overview of more advanced
material is included at the end of the paper to highlight the state of the
art in this field and to give pointers to relevant results published in the
literature.

1 Introduction

Petri nets [60JIJ59/63] are a powerful tool for the description and the analysis
of systems that exhibit concurrency, synchronization and conflicts. Timed Petri
nets [7J54] in which the basic model is augmented with time specifications are
commonly used to evaluate the performance and reliability of complex systems.

The pioneering work in the area of timed Petri nets was performed by Merlin
and Faber [50], and by Noe and Nutt [58]. In this early work, timed Petri nets
were viewed as a formalism for the description of the global behaviour of complex
structures. The nets were used to tell all the possible stories that systems could
experience based on their temporal specifications and analysis was conducted on
the basis of observations made on these stories.

Following these initial ideas, several proposals for incorporating timing infor-
mation into Petri net models appeared in the literature. Interpreting Petri nets
as state/event models, time is naturally associated with activities that induce
state changes, and hence with the delays incurred before firing transitions.

Stochastic Petri Nets (SPNs) were introduced in 1980 [68/56]53] as a for-
malism for the description of Discrete Event Dynamic Systems (DEDS) whose
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dynamic behaviour could be represented by means of continuous-time homoge-
neous Markov chains. The original SPN proposal assumed atomic firings, expo-
nentially distributed firing times, and a race execution policy; i.e., when multiple
transitions are simultaneously enabled, the race policy selects the transition with
the statistically minimum delay to fire.

With the aim of extending the modelling power of stochastic Petri nets, Gen-
eralized Stochastic Petri Nets (GSPNs) were proposed in [4]. GSPNs include
two classes of transitions: exponentially distributed timed transitions, which are
used to model the random delays associated with the execution of activities,
and immediate transitions, which are devoted to the representation of logical ac-
tions that do not consume time. Immediate transitions permit the introduction
of branching probabilities that are independent of timing specifications. When
timed and immediate transitions are enabled in the same marking, immediate
transitions always fire first. In GSPNs the reachability set is also partitioned
in two sets. Tangible markings are those in which only timed transitions are
enabled whereas vanishing markings are those in which at least one immediate
transition is enabled. The time spent by a GSPN in a tangible state is exponen-
tially distributed with the parameter depending on the timed transitions that are
enabled in that marking; the time spent by a GSPN in a vanishing marking is in-
stead zero. Other generalizations of the basic SPN formalism that are related to
GSPNs, are the Extended Stochastic Petri Nets [35] and the Stochastic Activity
Networks [51]. GSPNs are among the SPN formalisms that are most commonly
used for the analysis of important problems and a considerable effort has been
devoted to their improvement since the time of their original introduction.

In this paper, we discuss the relevance of this modelling formalism by provid-
ing first a broad view of its application field and by introducing the basic results
that set the ground for the derivation of the stochastic processes corresponding
to these models and for the study of their solution methods. The balance of the
paper is the following. Section 2 briefly discusses the relevance of modelling to
support the analysis and the design of complex systems. Section 3 introduces the
characteristics of Discrete Event Dynamic Systems and discusses the role that
models play in the analysis and the design of applications that can be repre-
sented within this framework. Section 4 describes the relevance of Petri nets for
modelling Discrete Event Dynamic Systems and introduces the basic classical
properties of the formalism that are needed later in the paper. Section 5 briefly
surveys the impact that a global priority structure has on the properties and the
behaviours of Petri nets. Section 6 presents the different possibilities that exist
for introducing the concept of time in Petri net models. Section 7 introduces the
definition of Stochastic Petri nets and provides the details for the construction
of their underlying stochastic process. Section 8 discusses the characteristics of
Generalized Stochastic Petri Nets and provides details on some of the compu-
tational issues that are relevant for the application of this modeling formalism.
Section 9 concludes the paper with a few pointers to more advanced material.
and with some general remarks on net modelling.
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The paper has been written in the attempt of providing a uniform and self-
contained introduction to the problem of modelling Discrete Event Dynamic
Systems with Stochastic Petri Nets. The discussion introduces the basic termi-
nology and operational rules of Petri nets for which a comprehensive reference
can be found in [55] where the reader will be able to find a clear explanation of
all the concepts that are only marginally addressed in this work.

2 Models

Understanding the behaviour of real systems is always difficult due to the com-
plexity of their organization and to the intricacy of the interactions among their
components.

Designing and managing real systems often require that relationships be-
tween organizational choices and attained results be identified in order to decide
on possible improvements of the system architecture and of the operational en-
vironment for achieving better performance.

In all these cases, reasoning on the behaviour of systems can become more
reliable if proper descriptions are available that help in clarifying the relation-
ships among system components. The best way of obtaining such descriptions is
that of constructing a model that highlights the important features of the system
organization and provides ways of quantifying its properties neglecting all those
details that are relevant for the actual implementation, but that are marginal
for the objective of the study.

Models can be developed for a variety of reasons that include understanding
and learning about the behaviour of the system, improving its performance and
making decisions about its design or its operation. Models are useful for explain-
ing why and how certain features of the system actually occur. The model helps
in developing insights on the operation of the system and in understanding the
directions of the influence that certain input parameters may have on the results.

The mathematical formulation of a model provides ways for formal reasoning
about the behaviour of a real system in a manner that is safe (although difficult
in same cases) and that is amenable for automatization.

The possibility of computing results from the analysis of a model is the key
for closing a loop that starts from the abstraction of the relevant features of the
system during modelling construction and that ends with the interpretation of
the results provided by the model and reflected on the real system.

3 Discrete Event Dynamic Systems

A system is often defined as a collection of objects together with their relations.
Objects are characterized by attributes some of which are fixed, while others are
variable. The value assumed by a variable attribute contributes to the definition
of the state of the object (local state). The state of the system (global state) results
from the composition of the states of the individual objects (components). The
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relations among objects represent the constraints that drive the change of states.
Abstracting from the particular event that may cause the change of state, we
call transitions such change of state patterns. We can say that state variables
are passive elements, while transitions are active.

Discrete Event Dynamic Systems (DEDS) are systems with a discrete state
space (i.e., they have a countable - possibly infinite - number of states) and
whose evolution is not directly due to the passage of time, but to the occurrence
of events. Depending on whether events happen at arbitrary points in time or
only at precise instants, DEDS are called asynchronous or synchronous

3.1 DEDS as a View

Many real systems can be viewed as DEDS not because of their intrinsic charac-
teristics, but because of the aspects of their behaviour that we want to emphasize.
For instance, a water reservoir that contains a continuously varying quantity of
water, can be viewed as a DEDS if we restrict our attention to the fact that
the water exceeds or not a predefined safety level. In this case the reservoir can
assume only two states (safe and un-safe) and the events that may cause the
change of state can be identified in the occurrence of thunderstorms and in the
openings of the dam.

We thus always speak of DEDS systems referring either to DEDS view of a
real system or to a system that can be viewed in this way.

DEDS systems can be identified within quite different application domains.
In Flexible Manufacturing, the state of the system may be represented by the
number of parts present in front of the different machine-tools and the events may
correspond to the completions of the activities performed by different machine-
tools, to the production of a good, or to the arrival of new raw parts

In Computing, the state of the system may corresponds to the number of
tasks currently in process as well as to those waiting for the completion of some
I/O actions; examples of events are in this case the CPU quantum expiration,
the interrupts coming from the I/O devices and the traps due to system call
executions. In Telecommunication, the state may corresponds to the number of
packets stored in the different buffers and the events to message submissions
as well as to protocol actions. Finally, in Traffic the state of the system may
corresponds to the number of cars waiting in a parking lot, or at a crossroad, or
using a section of road while events may correspond to arrival and departures of
cars as well as to changes of semaphore colours.

In all these cases, independently of the actual meaning of the different com-
ponents, understanding the behaviour of these system is usually hard because of
the intrinsic complexity of the problem (e.g., the number of machine tools and of
parts of Flexible Manufacturing System may give rise to millions of states that
may be difficult to envision and to keep under control), because of the subtle
interference among components (e.g., in Traffic systems the existence of bottle-
necks, temporarily hidden by the presence of other congestion points that gener-
ate huge traffic-jams, may defeat the expected improvements coming from the -
often costly - removal of such delay causes), and of the paradoxical relationship
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among the operations of certain components (e.g., in Time Sharing Computing
System increasing the multiprogramming level to keep the CPU busy may yield
an actual reduction of the CPU utilization because of the consequent increasing
of the page fault rate - thrashing effect). Reasoning about the behaviour of such
systems is difficult without the support of proper models.

Formal models are thus the basis for a better understanding of existent sys-
tems and for the effective and efficient design of new solutions.

3.2 Performance Evaluation of Discrete Event Dynamic Systems

One of the reasons for modeling DEDS is that of constructing a formal represen-
tation that can be used to drive design decisions toward efficient solutions and
to optimize system operation to obtain the best results at the minimum cost.

As real systems may undergo failures, DEDS models must be capable of rep-
resenting such failure/repair cycles in order to design real systems that perform
well also in presence of temporary failures. Performance and Dependability Eval-
uation is the discipline that uses mathematical and simulation models for the
computation of time-related performance indices such as resource utilization,
system productivity and system response time accounting for system failures.

To compute these results the modelling formalism must include the possi-
bility for time specifications (usually expressed in terms of the delay needed for
performing a given action) and for routing/selection information.

The great diversity of real systems is commonly reflected at the level of time
and selection specifications by means of random variables, thus leading to the
construction and the solution of probabilistic models. Performance indices are
evaluated for DEDS in these cases through the computation of the probability
of finding the DEDS in each of its states.

4 Petri Net Models of DEDS

Petri nets (PNs) are abstract formal models that have been developed in search
for natural, simple, and powerful methods for describing and analyzing the flow
of information and control in systems. Petri nets have been originally proposed
for the description and the analysis of systems in which concurrency and conflicts
play a special role. In Petri nets, the state of the system derives from the combi-
nation of local state variables that allow a direct representation of concurrency,
causality, and independence. Petri nets are graphically represented as collections
of places and transitions connected by directed arcs so to form bi-partite graphs.
The connections of transitions with places by means of input and output arcs
represents the pre- and post-conditions, respectively, for the transitions to be
enabled to fire. These conditions can be captured by the incidence matrix of the
model that is the basis for the computation of a large set of structural results
that represent the real advantage of using these type of models. The graphical
aspect of these models are very attractive for practical modelling since they help
in understanding how features of the real system are conveyed in the model.
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In order to keep the PN models of DEDS concise, high level PN have been
introduced that provide a form of abbreviation when repetition of similar sub-
nets would make the model large and difficult to understand. Always to make
models easier to understand, several extensions have been introduced in the
basic PN formalism, often with the disadvantage of reducing the analyzability of
the model (e.g., inhibitor arcs give to the Petri net formalism the computation
power of Turing Machines, but their effect is, in general, neglected during the
structural analysis of the net).

The behaviour of PNs is independent of time and environment and is char-
acterized by the non-deterministic firing of transitions that are simultaneously
enabled in a given marking. The connection of the formalism with reality is
provided in this case by interpretations that incorporate in the model external
constraints such as time considerations. Different extensions and different inter-
pretations yield different PN based formalisms sharing some basic principles.

Petri nets are models consisting of two parts:

1. A net structure - an inscribed bipartite directed graph, that represents the
static part of the system. The two types of nodes are called places and
transitions and are represented as circles and boxes (or bars), respectively.
Places correspond to state variables of the system and transitions to ac-
tions that induce changes of states. Arcs connecting places to transitions are
called input arcs; output arcs connect instead transitions to places. Different
types of inscriptions lead to various families of nets. When the inscriptions
are natural numbers associated with arcs, named weights or multiplicities,
Place/Transition (P/T) nets are obtained.

2. A marking - an assignment of tokens to places. The marking of a place
represents its state value.

The specification of a PN model is completed by the definition of an initial
marking. The dynamics of a system (i.e., its behaviour) is given by the evolu-
tion of the marking that is driven by few simple rules. The basic rule allows the
occurrence of a transition when the input state values fulfill some conditions ex-
pressed by the arc inscriptions. The occurrence of a transition changes the values
of its adjacent state variables (markings of input and output places) according
to arc inscriptions again. This separation allows to reason on net based models
at two different levels: structural and behavioural. From the former we may de-
rive "fast” conclusions on the possible behaviours of the modelled system. Pure
behavioural reasonings can be more conclusive, but they may require substantial
computations, which in certain cases may not even be feasible. Structural rea-
soning may be regarded as an abstraction of the behavioural one: for instance,
instead of studying whether a given system has a finite state space, we might
address the problem of whether the state space is finite for every possible initial
state; similarly, we could investigate whether there exists an initial marking that
guarantees infinite activity, rather than verifying if this is the case for a given
initial state.



90 Gianfranco Balbo

A marked Petri net is formally defined by the following tuple

PN = (P3T7F7Wm0)

where

P = (p1, p2, ..., pp) is the set of places,

T = (ti1, t2, ..., tr) is the set of transitions,
F C (PxT)U(T x P) is the set of arcs,

W : F — INis a weight function,
my = (me1, Moz, ..., Mop) is the initial marking.

As we have said, a marking m is an assignment of tokens to places and can
thus be represented by a vector with as many components as there are places
in the net: the i — th component of such a vector represents the number of
tokens assigned to place p;. When nets are large, a more convenient notation for
markings is that of expressing the assignment of tokens by means of a formal
sum in which we explicitly represent the name of a marked place multiplied by
the number of tokens assigned to it. A marking that has h tokens in place i
and k tokens in place j (only) will be denoted as m = hp; + kp; (a formal sum
denoting the multiset on P defined by the marking).

The dot notation is used for pre- and post-sets of nodes: *v = {u| < u,v >€
F} and v* = {u| < v,u >€ F}. A pair comprising a place p and a transition
t is called a self-loop if p is both input and output of ¢t (p € *t A p € t* - see
Figure [T]).

1 — P2

= (3 t4 . P4
P1
2 — P3

Fig. 1. Self-loops

A net is said to be pure if it has no self-loops. Pure nets are completely
characterised by a single matrix C' that is called the incidence matriz of the net
and that combines the information provided by the flow relations and by the
weight function.
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transitions

C —

WO

with ¢ = ¢ +¢p = w(t,p) — w(p,t)

4.1 System Dynamics

The graph and matrix characterizations that we have described in the previous
section represent the static component of a PN model. The dynamic evolution of
the PN marking is governed by transition occurrences (firings) which consume
and create tokens.

“Enabling” and “firing” rules are associated with transitions. The enabling
rule states the conditions under which transitions are allowed to fire. The firing
rule defines the marking modification induced by the occurrence of a transition.
Informally, we can say that the enabling rule defines the conditions that allow
a transition to fire, and the firing rule specifies the change of state produced by
the transition.

Both the enabling and the firing rules are specified in terms of arc charac-
teristics. In particular, the enabling rule involves (most of the time) input arcs
only, while the firing rule depends on input and output arcs. Note that input
arcs play a double role, since they are involved both in enabling and in firing.

A transition t is enabled if and only if each input place contains a number
of tokens greater or equal than given thresholds defined by the multiplicities of
arcs. Formally, this condition is expressed by the following definition:

Definition 1 (Enabling). Transition t is enabled in marking m if and
only if

— Vpe *t,m(p) = O(t,p)
that, in matriz notation is equivalent to
_T
-m > c(.,t)

The set of transitions enabled in marking m is indicated with F(m); the number
of simultaneous enablings of a transition ¢; in a given marking m is called its
enabling degree, and is denoted by e;(m).

When transition ¢ fires, it deletes from each place in its input set *t as many
tokens as the multiplicity of the arc connecting that place to ¢, and adds to each
place in its output set t* as many tokens as the multiplicity of the arc connecting
t to that place.
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Definition 2 (Firing). The firing of transition t, enabled in marking
m, produces marking m' such that

-m = m + O — I(t)
again, this same relation is expressed in matriz notation as follows
—m =m — c(,t)"" + e, )"

This statement is usually indicated in a compact way as m[tym/, and we say
that m/ is directly reachable from m.

The natural extension of the concept of transition firing, is the firing of a tran-
sition sequence (or execution sequence). A transition sequencd] o = Ty, s bk
can fire starting from marking m if and only if there exists a sequence of mark-
ings m = M), Mkr1) = m’ such that Vi = (1,--- k), m;) [t(i)>m(i+1). We
denote by m[o)m’ the firing of a transition sequence, and we say that m/' is
reachable from m.

An important final consideration is that the enabling and firing rules for a
generic transition ¢ are “local”: indeed, only the numbers of tokens in the input
of ¢, and the weights of the arcs connected to ¢ need to be considered to establish
whether ¢ can fire and to compute the change of marking induced by the firing of
t. This justifies the assertion that the PN marking is intrinsically “distributed”.

A common way of describing the behaviour of a P/T system is by means
of its sequential observation. A hypothetical observer is supposed to ”see” only
single events occurring at any point in time. The interleaving semantics of a net
system is given by all possible sequences of individual transition firings that could
be observed from the initial marking. If two transitions ¢; and ¢y are enabled
simultaneously, and the occurrence of one does not disable the other, in principle
they could occur at the same time, but the sequential observer will see either
t1 followed by to or viceversa. The name interleaving semantics comes from this
way of seing simultaneous occurrences.

Starting from the initial marking it is possible to compute the set of all
markings reachable from it (the state space of the PN) and all the paths that
the system may follow to move from state to state

Definition 3. The Reachability Set of a PN with initial marking mg
is denoted RS(my), and is defined as the smallest set of markings such
that

— mg € RS(my)
— my € RS(mO) ANdteT: ml[t>m2 = My € RS(mO)

L We write t) rather than t; because we want to indicate the first transition in the
sequence, that may not be the one named ¢;.

2 Obviously this computation is feasible only in the case of models with finite state
spaces. In the rest of this paper, we assume that our models satisfy this condition,
except when it is sted differently. Proper generalisations are possible to deal with
infinite state spaces introducing the notion of ”covering tree” [55].
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When there is no possibility of confusion we indicate with RS the set RS(my).
We also indicate with RS(m) the set of markings reachable from a generic
marking m.

The RS contains no information about the transition sequences fired to reach
each marking. This information is contained in the reachability graph, where
each node represents a reachable state, and there is an arc from my to meo if
the marking my is directly reachable from my. If mi[t)ma, the arc is labelled
with ¢. Note that more than one arc can connect two nodes (it is indeed possible
for two transitions to be enabled in the same marking and to produce the same
state change), so that the reachability graph is actually a multigraph.

Definition 4. Given a PN system, and its reachability set RS, we call
Reachability Graph RG(my) the labelled directed multigraph whose set
of nodes is RS, and whose set of arcs A is defined as follows:

oA CRSXRSXT
o(m;,m;,t) € A= m;t)ym;

(1)

myg is taken as the initial node of the graph.

Multiple events may happen at any given time. A step S is a multi-set of
transitions that are enabled to concurrently fire in the same marking. Firing a
step amounts to withdraw the tokens from all the input places of the transitions
of the step and to deposit tokens in all their output places. If a set of transitions
can be fired in a step, this makes explicit the fact that they need not occurring in

a precise order. The occurrence of a step can be denoted by m Som/ ,orm ——
m/, if o is an arbitrary sequentialisation of S. In fact, every sequentialisation of
the step is fireable so that, in practice, the reachable markings can be computed
considering individual transition occurrences only.

The dynamic behaviour of Petri net models is characterized by three basic
phenomena that account for the fact that actions may occur simultaneously
(concurrency), some actions require that others occur first (causal dependency),
and actions may occur only in alternative (conflicts).

Concurrency - Two transitions are concurrent in a given marking if they can
occur in a step.

Definition 5. Transitions t; and t; are in a concurrency relation in

, t
marking m, denoted by < t;,t; >€ CO(m), if m Lomd, m m”,
ej(m’) >0, and e;(m”) > 0.

in other words, < t;,t; > CO(m), if m > e, t)" + c(.,tj)T. Notice that
steps allow to express true concurrency. In the case of interleaving semantics,
as we mentioned before, concurrency of two (or more) actions ¢; and ¢ is rep-
resented by the possibility of performing them in any order, first ¢; and then
ta, or viceversa. Nevertheless, the presence of all possible sequentialisations of
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the actions does not imply that they are "truly” concurrent, as the example in
Figure [ illustrates: t; and ¢ can occur in any order, but they cannot occur
simultaneously, and in fact the step ¢; + t5 is not enabled. The distinction is
especially important if transitions ¢; and ¢ were to be refined, i.e., if they were
to be replaced by subnets.

ool

Fig. 2. Shared place

Causal Dependence - Informally, causal dependencies are represented by the
partial ordering of actions induced by the flow relation. They correspond to
situations in which the firing of a given transition can happen only after the
occurrence of others in whatever order.
Definition 6. Transitions t; is in direct causality relation with t; in
marking m, denoted by < t;,t; >€ DC(m), if m Loom/, and e;j(m’) >
ej(m).
The very basic net construct used to model causal dependences is a place con-
necting two transitions. Transitions connected through a place are said to be in
structural causal connection relation < t;,t; >€ SCC(m), if t? A °t; # 0.

Conflicts - Informally, we have a situation of conflict when, being several tran-
sitions enabled in the same marking, we have to chose which one to fire and, by
so doing, we affect the enabling conditions of the others. We can thus say that
a transition ¢, is in conflict with transition ¢ in marking m iff t,.,t; € FE(m),
m - m! ,and t, ¢ E(m). Things are more complex when we consider concur-
rent systems where the fact that two transitions are enabled in a given marking
does not necessarily means that we have to choose which one to fire even if they
share some input places. Formally, we have a situation of conflict when the set
of transitions enabled in a given marking is not a step.

Definition 7. Transition t; is said to be in effective conflict relation
with transition t; in marking m, denoted by < t;,t; > EFC(m), if

m 5 m!, and e;(m’) < e;(m).
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This relation is antisymmetric as we can see from the second example of Figure
Bl where t} is in effective conflict with ¢}, but not the other way around, since
the firing of ¢} does not decrease the enabling degree of t.

Pl -

tl 2 t'1 2

Fig. 3. Effective conflicts

The very basic net construct used to model conflicts is a place with more
than one output transition. The output transitions of a place of this type are
said to be in structural conflict relation (< t;,t; > SC,if t§ A °t; # 0.

This relation is reflexive and symmetric, but not transitive. Its transitive
closure is named coupled conflict relation and partitions the transitions of a net
into coupled conflict sets. CCS(t) denotes the coupled conflict set containing ¢.
In Figure[d], transitions ¢; and ¢y are in structural conflict, while transitions t3
and t5 are not in structural conflict, but they are in coupled conflict relation,
through t4.

P1 P2 P3

Fig. 4. Structural conflicts

It is important to remark the difference between structural conflicts and
effective conflicts which depends on the marking of the net. A structural conflict
makes possible the existence of an effective conflict, but does not guarantee it,
except in the case of equal conflicts where all the transitions have the same input
set.
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Definition 8. Transitions t; and t; are said to be in equal conflict re-
lation, denoted by < t;,t; >€ EQ, if *t; = °t;

Figure [ shows an equal conflict set.

Fig. 5. Equal conflict

When structural conflicts are not equal, it may happen that transitions ini-
tially in conflict may subsequently become elements of a step or, viceversa, when
the interleaved firing of a step yields to conflict situations. The cases depicted
in Figure [0l show situations of this type.

P2 Pl -

G — — tk G — — k

Fig. 6. Non equal conflicts

An intriguing situation arises when different interleaved firings of the mem-
bers of a step may either yield conflict situations or not. This phenomenon is
known as confusion and is again depicted by the conflicts of Figure Bl where we
can recognize that t; and ¢y are a step such that, when ¢ fires no effects are felt
by transition ¢;, while the same is not true in the other case.

Properties of Petri Nets - Properties of Petri net models are characteristics
that allow to assess the quality of a given system in an objective manner. The
following are among the most useful properties that can be defined for Petri net
models.
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Reachability and reversibility — As defined in the previous sections, a marking
m/ is reachable from m if there exists a sequence o such that m[o)m’.
Reachability can be used to answer questions concerning the possibility for
the modelled system of being in a given marking m. An important reachability
property is reversibility: a marked Petri net is said to be reversible if and only
if from any state reachable from my, it is possible to come back to my itself.
More formally, a Petri net with initial marking myg is reversible if and only if
Ym € RS(my), mg € RS(m). Reversibility expresses the possibility for a PN
to come back infinitely often to its initial marking. In general, we say that m €
RS(myg) is a home state for the PN if and only if Ym/' € RS(my), m € RS(m/').

A marking my, is called a home-state iff
vYm € RS(my), m;, € RS(m)

The set of the home-states of a Petri net is called its home-space
A Petri net is reversible whenever its initial marking mg is a home-state

Liveness — A transition ¢ is said to be [live if and only if, for each marking
m reachable from my, there exists a marking m/, reachable from m, such that
t € E(m/). Formally, transition ¢, is live iff

vm € RS(my), Im' : (m > m'/\tr € E(m'))

A Petri net is said to be live iff V¢, € T : t, is live. Liveness is a property
that depends on the initial marking. A transition that is not live is said to be
dead. For each dead transition ¢, it is possible to find a marking m such that
none of the markings in RS(m) enables ¢.

A very important consequence of liveness is that, if at least one transition
is live, then the Petri net cannot deadlock.ﬁ Moreover, if all transitions are
live, then the corresponding Petri net contains no livelock /l Liveness defines the
possibility for a transition to be enabled (and to fire) infinitely often.

Boundedness — A place p of a Petri net is said to be k-bounded if and only if,
for each reachable marking m, the number of tokens in that place is less than
or equal to k. Formally, we have that a place p; is bounded (k-bounded) iff

Ym € RS(my), Fk : m;< k

A Petri net is said to be k-bounded if and only if all places p € P are k-bounded.
Petri nets that are 1-bounded are said to be safe. A very important consequence
of boundedness is that it implies the finiteness of the state space. In particular,
if a Petri net comprising N places is k-bounded, the number of states cannot
exceed (k + 1)V,

3 A Petri net contains a deadlock if it can reach a state in which no transition can
be fired.

4 A system is in a livelock condition when it enters a subset of its activities from which
it has no possibility of exiting.
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It is interesting to note that boundedness, liveness and reversibility are (good)
independent properties of a Petri net [55].
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Fig. 7. Examples of two nets that are BLR and BLR, respectively.
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Fig. 8. Examples of two nets that are BLR and BLR, respectively.

Mutual exclusion — Two mutual exclusion properties are of interest: one among
places and one among transitions. Two places p and ¢ are mutually exclusive in
a Petri net if their token counts cannot be both positive in the same marking,
ie,Vm e RS m(p)-m(q) = 0. Two transitions in a PN are mutually exclusive
if they cannot be both enabled in any marking.

Analysis Techniques - Depending on the techniques used for deriving these
properties, they can be classified in the following way:

— Structural properties of Petri nets are obtained from the incidence matrix and
from the graph structure of the model, independently of the initial marking.
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— Behavioural properties of Petri nets depend on the initial marking and are
obtained from the reachability graph (finite case) of the net or from the
coverability tree (infinite case)d.

Structural properties are quite interesting since they are proved directly from
the structure of the model and are thus valid for every possible initial marking.

Linear Algebraic Techniques - Linear algebraic techniques, derive some basic
properties of the net from the incidence matrix C.

The relevance of the incidence matrix is due to the fact that it allows the net
dynamics to be expressed by means of linear algebraic equations. In particular,
we can observe that for any marking m, the firing of a transition ¢ enabled in
m produces the new marking

m' =m+c(.,t)T (2)

where m and m/’ are row vectors, and ¢(.,t) is the column vector of C corre-
sponding to transition t.

A similar relation holds for transition sequences. Given a transition sequence
o = tay, +,tmx), we define the transition count vector v, whose i — th entry
indicates how many times transition ¢; appears in the sequence o. v, is a |T|-
component column vector. The marking m~ obtained by firing the transition
sequence ¢ from marking m (m[o)m’) can be obtained using the following
equation:

m’ =m+ [Cv,|T (3)

Observe that only the number of times a transition fires is important: the
order in which transitions appear in ¢ is irrelevant. The order is important for
the definition of the transition sequence, and for checking whether the sequence
can be fired, but it plays no role in the computation of the marking reached
by that sequence. This remark leads to important consequences related to the
definition of invariant relations for PN models.

P-semiflows and P-invariant relations — A Petri net is strictly conservative (or
strictly invariant) iff

P P
Z mp = Z Mop,  Ym € RS(my)
p=1 p=1

Let us define a |P|-component weight column vector y = [yl,y27~--,y|p‘]T,
whose entries are natural numbers. Consider the scalar product between the row

5 The coverability tree provides a finite representation for infinite reachability graphs
based on partial information. Details on this structure and on the algorithms for its
construction can be found in [59].
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vector representing an arbitrary marking m’, and y (denoted m/ - y). A Petri
net is conservative (or P invariant) iff

Jy = (y1, y2, -, yp) > 0 such that

P P
Z YpMmyp = Z ypmop  Vm € RS(my)
p=1 p=1

If m[t)m’, then using (@) we can rewrite m’ -y as:
o T
m-y=m-y+c(,t)" -y (4)

Obviously, if ¢(., t)T -y = 0, the weighted token count in the Petri net (using the
entries of y as weights) is the same for m and m/’. This means that the weighted
token count is inwvariant with respect to the firing of t. More generally, if

CT -y=0 (5)
i.e., vector y is an integer solution of the set of linear equations
vteT: e(,t)fy=0 (6)

then, no matter what sequence of transitions fires, the weighted token count
does not change, and remains the same for any marking reachable from any
given initial marking m. The positive vectors y that satisfy Equation (@) are
called the P-semiflows of the Petri net. Note that P-semiflows are computed from
the incidence matrix, and are thus independent of any notion of initial marking.
Markings are only instrumental for the interpretation of P-semiflows.

If y is an arbitrary vector of natural numbers, it can be visualized as a bag
of places in which p; appears with multiplicity y;. This leads to the expression

VteT: > Cpit)-yi=0 (7)

p;EP

which identifies an invariant relation, stating that the sum of tokens in all places,
weighted by vy, is constant for any reachable marking, and equal to m - y, for
any choice of the initial marking myg. This invariant relation is called a place
invariant, or simply P-invariant.

As a consequence, if in a PN model all places are covered by P—semiﬂowsﬁ,
then for any reachable marking (and independently of the initial marking), the
maximum number of tokens in any place is finite (since the initial marking is
finite) and the net is said to be structurally bounded.

All P-semiflows of a PN can be obtained as linear combinations of the P-
semiflows that are elements of a minimal set P.S. See [45J49/910] for P-semiflows
computation algorithms.

5 A place p is covered by a P-semiflow if there is at least one vector y with a non null
entry for p.
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T-semiflows and T-invariant relations — As observed in Equation (B), if v, is
a firing count vector of a transition sequence o, then

m =m + [C’UU]T (8)

Obviously, if [CUU]T = 0, we obtain that m’ = m and we can observe that
the firing sequence o brings the PN back to the same marking m. The vectors
x, that are integer solutions of the matrix equation

C-x=0 9)

are called T-semiflows of the net. This matrix equation is equivalent to the set
of linear equations

VpeP: c(p,.)-x=0 (10)

In general, the invariant relation (called transition invariant or T-invariant)
produced by a T-semiflow is the following:

VpeP: ZC’(p,t)-:c(t) =0 (11)

teT

This invariant relation states that, by firing from marking m any transition
sequence o whose transition count vector is a T-semiflow, the marking obtained
at the end of the transition sequence is equal to the starting one, provided that
o can actually be fired from marking m (m[o)m). A net covered by T semiflows
may have home states. A net with home states is covered by T-semiflows.

Note again that the T-semiflows computation is independent of any notion
of marking, so that T-semiflows are identical for all PN models with the same
structure and different initial markings.

Observe the intrinsic difference between P- and T-semiflows. The fact that
all places in a Petri net are covered by P-semiflows is a sufficient condition for
boundedness, whereas the existence of T-semiflows is only a necessary condition
for a PN model to be able to return to a starting state, because there is no
guarantee that a transition sequence with transition count vector equal to the
T-semiflow can actually be fired.

Like P-semiflows, all T-semiflows can be obtained as linear combinations of
the elements of a minimal set T'S.

5 Petri Nets with Priority

A marked Petri net with transition priorities, arc multiplicities, and inhibitor
arcs can be formally defined by the following tuple:

PN = (P, T, II(.), I(.), O(), H(.), m)
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— P is a set of places,

— T is a set of transitions,

— my is an initial marking,

II(.), I(.), O(.), H(.) are four functions defined on T'.

The priority function I7(.) maps transitions into non-negative natural num-
bers representing their priority level. The input, output, and inhibition functions
I(.), O(.), and H(.) map transitions on “bags” of places. The former two are rep-
resented as directed arcs from places to transitions and viceversa; the inhibition
function is represented by circle-headed arcs. When greater than one, the mul-
tiplicity is written as a number next to the corresponding arc.

The priority definition that we assume in this paper is global: the enabled
transitions with a given priority & always fire before any other enabled transition
with priorityﬂ 7 <k

This kind of priority definition can be used for two different modelling pur-
poses: (1) it allows the partition of the transition set into classes representing
actions at different logical levels, e.g. actions that take time versus actions corre-
sponding to logical choices that occur instantaneously; (2) it gives the possibility
of specifying a deterministic conflict resolution criterion.

Enabling and firing — The firing rule in Petri nets with priority requires the
following new definitions:

— a transition ¢; is said to have concession in marking m if the numbers of
tokens in its input and inhibitor places verify the usual enabling conditions
for PN models without priority (m > I(t)) A(m < H(t));

— a transition ¢; is said to be enabled in marking m if it has concession in the
same marking, and if no transition ¢; € T of priority 7, > 7; exists that has
concession in m. As a consequence, two transitions may be simultaneously
enabled in a given marking only if they have the same priority level;

— a transition t; can fire only if it is enabled. The effect of transition firing is
identical to the case of PN models without priority.

Note that the presence of priority only restricts the set of enabled transitions
(and therefore the possibilities of firing) with respect to the same PN model
without priority. This implies that some properties are not influenced by the
addition of a priority structure, while others are changed in a well-determined
way, as we shall see in a while.

5.1 Conflicts, Confusion, and Priority

The notions of conflict and confusion are modified when a priority structure is
associated with transitions. It is thus very important to be able to clearly identify
by inspection of the net structure the sets of potentially conflicting transitions.

7 Without loss of generality, we also assume that all lower priority levels are not empty,
ie.:
Vt]'ET, 7T]'>0:>E|tk€Tt7Tk:7T]‘—1
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Conflict — The notion of conflict is drastically influenced by the introduction
of a priority structure in PN models. The definition of effective conflict has to
be modified with respect to the new notion of concession. Instead, the definition
of enabling degree given in Section ] remains unchanged for PN models with
priority. Observe that this implies that both, transitions that have concession and
enabled transitions, have enabling degree greater than zero. Conflict resolution
causes the enabling degree of some transition to be reduced, and this may happen
both for transitions with concession and for enabled ones. Hence the definition
of the effective conflict relation is modified as follows.

Definition 9. Transition t; is in effective conflict relation with transi-

tion t; in marking m, (t; EC(m) t;) iff t; has concession in m, t; is

enabled in m, and the enabling degree of t; decreases after the firing of

t;.
Observe that a necessary condition for the EC relation to hold is that m; > =,
otherwise ¢; would not be enabled in m.

The definition of different priority levels for transitions introduces a further
complication, since it destroys the locality of conflicts typical of PN models
without priority. This observation leads to the possibility of indirect conflicts.

tl

h
@lol‘olok
Pl pp T2 p3 T2 P4

ik
Ps I—Ow

Fig. 9. An example of indirect conflict

Let us consider the net in Fig. [@ Transitions ¢; and ¢; are both enabled in
the marking represented in the figure (since they both have concession, and no
higher priority transition has concession), and apparently they are not in conflict,
since they do not share input or inhibition places. According to the definition
of concurrent transitions given in Section [£1], one might conclude that ¢; and tj
are concurrent. However, the firing of ¢; enables a sequence of transitions ¢, t;,
and t; which have higher priority than ¢, so that:

1. transition t; becomes disabled while keeping its concession;

2. transition tj, is certainly the next transition to fire;

3. the firing of ¢; removes the token from place ps, thus taking concession away
from transition t.
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This sequence of events is not interruptible after the firing of ¢;, due to the
priority structure, and eventually results in the disabling of ¢; through the firing
of higher priority transitions. We call this situation indirect effective conflict
between t; and .

Definition 10. For any priority PN model M, Vt;,t; € T such that
t; #t;, Vm : P — IN, transition t; is in indirect effective conflict with
t; in marking m (denoted t; IEC(m) t;) iff

— t; has concession in m

- 1; € E(m)

— do =tguy,...,tw) such that
1. m[t¢>m(1)[t(1)> C Mgy [t(k)>m’, and
2. V1< h < k,mpy >mj, and
3. t(k)EC(m(k))tj,

Confusion and priority — In Section[T], the concept of confusion was discussed
in the framework of PN models without priority. In this section we shall see how
the introduction of a priority structure can avoid confusion.

Confusion is an important notion because it highlights the fact that, in terms
of event ordering, the system behaviour is not completely defined: this under-
specification could be due either to a precise modelling choice (the chosen ab-
straction level does not include any information on the ordering of events, hence
the model analysis must investigate the effect of pursuing any possible ordering)
or to a modelling error. The introduction of a priority structure may force a
deterministic ordering of conflict resolutions that removes confusion.

For instance, let us consider again the example depicted in Fig. [9] assuming
first that transitions ¢; and t; have the same priority level of the others. A
confusion situation arises due to the fact that both sequences o = ty, 1, th,¢;
and o’ = t;,1y,t;, ) are fireable in marking m = p; + ps, and that they involve
different conflict resolutions. By making the priority level of transitions ¢y, t;,
and ¢; higher than that of ¢; and ¢;, we have removed the confusion situation since
any conflict between ¢; and ¢ is always solved in favour of ¢;; as a consequence
the sequence o’ = t;, 5, t;,t; is not fireable in ™ and confusion is avoided.

A structural necessary condition for indirect conflict is the presence of a non
free-choice conflict comprising at least two transitions ¢; and t; at the same
priority level and a third transition ¢; causally connected to either ¢; or ¢; and
such that m, = m; = ;.

Structural conflict — For PN models without priority, we defined the notion
of structural conflict relation (SC) to identify potentially conflicting pairs of
transitions by inspection of the net structure. Intuitively, two transitions ¢; and
t; are in structural conflict if they share at least one input place or if the output
set of t; is not disjoint from the inhibition set of ¢;. This definition does not
change for Petri nets with priority.

In this case we can also define the indirect structural conflict (ISC) relation
that gives a necessary condition for two transitions to be in indirect effective
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conflict relation in some marking. Intuitively, we have first to find a pair of
transitions ¢; and ¢ such that m; > 7 and t;SC4%; then we have to follow the
net arcs backwards starting from transition ¢; until we find a new transition ¢,
such that m; < ;. All the transitions on the path (including ¢;) with priority
greater than or equal to 7, are in indirect structural conflict relation with ¢.
Indeed, any transition on the path can trigger a firing sequence of transitions with
priority higher than my, that may eventually enable transition ¢; whose firing
would decrease the enabling degree of transition t;. Notice that the transitions
on the path are in causal connection relation. A formal recursive definition for
the ISC relation follows:

Definition 11. Given a priority PN model, two transitions t; and ty,
are in indirect structural conflict relation (denoted t; I1SC' ty) iff

- T > TS
— Htj : (7Tj > 7Tk) A (tkSCCtj) AN ((thCtk) V (thSCtk))

where SCC s the structural causal connection relation defined in the
Previous sectionﬁ

Let us consider the model of Fig. @lagain; since transition ¢; is in SC relation
with transition ¢y, m; > m, and {§;,SCCt;, it is possible to conclude that t;1SCt.

Given the definition of structural conflict, it is possible to introduce the
notion of conflict set and extended conflict set whose motivations will become
apparent in the following sections.

We define the symmetric structural conflict as follows:

Definition 12. Transition t; is in symmetric structural conflict with t;

(denoted t; SSC t;) iff

— Ty =Ty and

— tiSCtj V thCti V tiISCtj V thSCti,

The conflict set associated with a given transition ¢; is the set of transitions
that might be in conflict with ¢; in some marking.

Definition 13. The conflict set associated with a given transition t; is
defined as
OS(tl) = {tj : (tlSSC’t])}

The transitive closure of the SSC relation is an equivalence relation that
allows the partition of the set T" into equivalence classes called extended conflict
sets.

Definition 14. ECS(tl) = {tj i t; SSC* tiN ~ (ti SME tj)}.
8 If the PN allows the presence of inhibitor arcs, the SCC relation must also account

for the fact that t; is causally connected with ¢; also in case its firing decreases the
marking of some of the places that are part of the (non-empty) inhibitor set of ¢;.
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In any marking that enables transitions of the same ECS, a choice that may
have effect on the future evolution of the net must be made in order to decide
which, among these transitions, has to be fired next

Two simultaneously enabled transitions ¢; and t; that belong to different
ECS can be fired in any order.

5.2 Properties of Petri Nets with Priority

In order to briefly discuss the impact that priorities have on the properties of PN
models, we must first divide them into two broad classes. Properties that hold for
all states in the state space are called safety or invariant properties; properties
that instead hold only for some state in the state space are called eventuality
or progress properties). Examples of invariant properties are boundedness, and
mutual exclusion. Examples of eventuality properties are reachability (a given
marking will be eventually reached) and liveness (a transition will eventually
become enabled).

Let M, be a PN model with priority and let M be the underlying PN
model without priority. Since the introduction of priority can only reduce the
state space, all the safety properties that can be shown to be true for M, surely
hold also for M. Eventuality properties instead are not preserved in general by
the introduction of a priority structure.

It is interesting to observe that P and T-invariants describe properties that
continue to hold after the addition of a priority structure. The reason is that they
are computed only by taking into account the state change caused by transition
firing, without any assumption on the possibility for a transition of ever becoming
enabled. Boundedness is preserved by the introduction of a priority structure in
the sense that a bounded PN model remains bounded after the introduction of
a priority specification. This implies that the use of P-semiflows to study the
boundedness of a PN model can be applied to the model without priority M
associated with a priority PN model M, and if the former model is shown to
be structurally bounded, the conclusion can be extended to the latter model.
Observe, however, that an unbounded PN model may become bounded after the
specification of an appropriate priority structure.

On the other hand, since enabling is more restricted than in the correspond-
ing PN model without priority, reachability is not preserved in general by the
addition of a priority structure. However, a marking m/’ is reachable from a mark-
ing m in a PN model with priority only if it is reachable in the corresponding
PN model without priority.

Liveness is intimately related to the enabling and firing rules, hence it is
greatly influenced by a change in the priority specification: a live PN model may
become not live after the introduction of an inappropriate priority structure and,
viceversa, a PN model that is not live, may become live after the addition of an
appropriate priority structure.

Expressive Power - According to their definition, P/T nets do not allow
modelling zero tests, i.e., transitions that are enabled only if some place is empty.
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The introduction of priorities and inhibitor arcs yields such a feature, making
the extended model less amenable for analysis as we have just seen during the
discussion of the properties of Petri nets with priorities. On the other hand, with
the addition of inhibitor arcs and priorities, Petri nets increase their modelling
power, actually leading to Turing machines [59].

It is possible to implement a system with inhibitor arcs using priorities and
viceversa, even in the unbounded case, while preserving concurrent semantics,
so both extensions can be interchanged except for modelling convenience (the
transformations are rather cumbersome [23]). Inhibitor arcs have the advantage
that they are graphically represented in the net structure, while the influence of
a priority definition on the enabling of some transition is not so clearly reflected
and is not so local. On the other hand, priorities arise naturally when a timing
interpretation is considered. Therefore, despite their formal equivalence, both
extensions are allowed on equal footing, because they have been introduced to
cope with different situations. Figure[Illshows an example in which the repeated
firing of ¢; accumulates tokens in P; until the operation mode switches and all
the accumulated tokens are consumed (repeated firing of ¢5). When P; becomes
empty t3 fires and the system goes back in the initial state. The representations
with inhibitor arcs and priorities yield exactly the same behaviour.

P’3

Fig. 10. Equivalence between inhibitor arcs and priority specifications

Inhibitor arcs deriving from bounded places can be implemented with the
use of multiplicity and complementary places (preserving the interleaving se-
mantics), as shown in the example of Fig. [T}, which is equivalent to that of Fig.
[[0] assuming that place P; cannot contain more than 10 tokens. This simple
transformation does not work so well, however, when concurrent semantics is
considered (see [12] for details).

6 Time in Petri Nets

In this section we discuss the issues related to the introduction of temporal con-
cepts into PN models. Particular attention will be given to the temporal seman-
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Fig. 11. Representations of inhibitor arcs with complementary places

tics that is peculiar to stochastic PNs (SPNs) and generalized SPNs (GSPNs).
For this reason we shall always assume that timed transitions are associated
with temporal specifications such that the simultaneous firing of two or more

timed transitions can be neglected (this event has probability zero in SPNs and
GSPNs).

6.1 The Motivations for Timing

The PN models that were considered in the previous sections included no notion
of time. The concept of time was intentionally avoided in the original work by
C.A.Petri [60], because of the effect that timing may have on the behaviour of
PNs. In fact, the association of timing constraints with the activities represented
in PN models may prevent certain transitions from firing, thus destroying the im-
portant assumption that all possible behaviours of a real system are represented
by the structure of the PN.

In [59], the first book on PNs that dealt extensively with applications, the
only remark about timed PNs was the following: “The addition of timing infor-
mation might provide a powerful new feature for PNs, but may not be possible
in a manner consistent with the basic philosophy of PNs’. This attitude towards
timing in PN models is due to the fact that PNs were originally considered
as formal automata and investigated in their theoretical properties. Most of the
early questions raised by researchers thus looked into the fundamental properties
of PN models, into their analysis techniques and the associated computational
complexity, and into the equivalence between PNs and other models of parallel
computation. When dealing with these problems, timing is indeed not relevant.

Very soon PNs were however recognized as possible models of real concurrent
systems, capable of coping with all aspects of parallelism and conflict in asyn-
chronous activities with multiple actors. In this case, timing is not important
when considering only the logical relationships between the entities that are part
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of the real system. The concept of time becomes instead of paramount impor-
tance when the interest is driven by real applications whose efficiency is always
a relevant design problem. Indeed, in areas like hardware and computer archi-
tecture design, communication protocols, and software system analysis, timing
is crucial even to define the logical aspects of the dynamic operations.

Time is introduced in Petri nets to model the interaction among several
activities considering their starting and completion instants The introduction
of time specifications corresponds to an interpretation of the model by means
of the observation of the autonomous (untimed) model and the definition of a
non-autonomous model.

The pioneering works in the area of timed PNs were performed by P.M.Merlin
and D.J.Farber [50], and by J.D.Noe and G.J.Nutt [58]. In both cases, PNs were
not viewed as a formalism to statically model the logical relationships among
the various entities that form a real system, but as a tool for the description of
the global behaviour of complex structures. PNs were used to tell all the possible
stories that the system can experience, and the temporal specifications were an
essential part of the picture.

When introducing time into PN models, it would be extremely useful not to
modify the basic behaviour of the underlying untimed model. By so doing, it is
possible to study the timed PNs exploiting the properties of the basic model as
well as the available theoretical results. The addition of temporal specifications
therefore must not modify the unique and original way of expressing synchro-
nization and parallelism that is peculiar to PNs. This requirement obviously
conflicts with the user’s wishes for extensions of the basic PN formalism to allow
a direct and easy representation of specific phenomena of interest. Time speci-
fications are also used to provide ways of reducing the non-determinism of the
model by means of rules based on time considerations. Finally, time extensions
must provide methods for the computation of performance indices.

Different ways of incorporating timing information into PN models have been
proposed by many researchers during the last two decades; the different proposals
are strongly influenced by the specific application fields and can be summarized
as follows:

Timed places - time may be associated with places:
e tokens generated in an output place become available to fire a transition
only after a delay has elapsed; the delay is an attribute of the place.
— Timed tokens- time may be associated with tokens:
e tokens carry a time-stamp that indicates when they are available to fire a
transition; this time-stamp can be incremented at each transition firing.
Timed arcs - time may be associated with arcs:
e a travelling delay is associated with each arc; tokens are available for
firing only when they reach a transition.
Timed transitions - time may be associated with transitions:
e activity start corresponds to transition enabling,
e activity end corresponds to transition firing.
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Fig.s[M2 M3 M4, and 5 depicts in a compact manner these different possibil-
ities with the purpose of helping the reader in grasping the differences between
the various extensions that are sometimes subtle and difficult to identify at first
glance. The reader interested in understanding better the implications of the
different proposals is referred to the original papers [62/7114416T/50/65/32/70].

6.2 Timed Transitions

Timed transitions represent the most common extension used by the authors to
add time to PN models. The firing of a transition in a PN model corresponds
to the event that changes the state of the real system. This change of state can
be due to one of two reasons: it may either result from the verification of some
logical condition in the system, or be induced by the completion of some activity.
Considering the second case, we note that transitions can be used to model
activities, so that transition enabling periods correspond to activity executions
and transition firings correspond to activity completions. Hence, time can be
naturally associated with transitions.

Different firing policies may be assumed: the three-phase firing assumes that
tokens are consumed from input places when the transition is enabled, then
the delay elapses, finally tokens are generated in output places; atomic firing
assumes instead that tokens remain in input places during the whole transition
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delay; they are consumed from input places and generated in output places when
the transition fires.

P

P3

7,7

%3

Timed transition Petri nets (TTPN) with atomic firing can preserve the basic
behaviour of the underlying untimed model. It is thus possible to qualitatively
study TTPN with atomic firing exploiting the theory developed for untimed
(autonomous) PN (reachability set, invariants, etc.). Timing specifications may
affect the qualitative behaviour of the PN only when they describe constant and
interval firing delays.

We can explain the behaviour of a timed transition (whose graphical repre-
sentation is usually a box or a thick bar and whose name usually starts with
T') by assuming that it incorporates a timer. When the transition is enabled, its
local clock is set to an initial value. The timer is then decremented at constant
speed, and the transition fires when the timer reaches the value zero. The timer
associated with the transition can thus be used to model the duration of an
activity whose completion induces the state change that is represented by the
change of marking produced by the firing of T'. The type of activity associated
with the transition, whose duration is measured by the timer, depends on the
DEDS that we are modelling: it may correspond to the execution of a task by a
processor, or to the transmission of a message in a communication network, or
to the work performed on a part by a machine tool in a manufacturing system.
It is important to note that the activity is assumed to be in progress while the
transition is enabled. This means that in the evolution of more complex nets, an
interruption of the activity may take place if the transition loses its enabling con-
dition before it can actually fire. The activity may be resumed later on, during
the evolution of the net in the case of a new enabling of the associated transi-
tion. This may happen several times until the timer goes down to zero and the
transition finally fires.

It is possible to define a timed transition sequence or timed execution of a
timed PN system as a transition sequence (as defined in Section[Z1]) augmented
with a set of nondecreasing real values describing the epochs of firing of each
transition. Such a timed transition sequence is denoted as follows:

(), T(ay)s ==+ 5 (1), T3 )i+ ]

The time intervals [7(;), 7(;41)) between consecutive epochs represent the periods
during which the PN sojourns in marking ;). This sojourn time corresponds
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to a period in which the execution of one or more activities is in progress and
the state of the system does not change.

6.3 Immediate Transitions

As we noted before, not all the events that occur in a DEDS model correspond
to the end of time-consuming activities (or to activities that are considered time-
consuming at the level of detail at which the model is developed). For instance,
a model of a multiprocessor system described at a high level of abstraction often
neglects the durations of task switchings, since these operations require a very
small amount of time, compared with the durations of task executions. The
same can be true for bus arbitration compared with bus use. In other cases,
the state change induced by a specific event may be quite complex, and thus
difficult to obtain with the firing of a single transition. Moreover, the state
change can depend on the present state in a complex manner. As a result, the
correct evolution of the timed PN model can often be conveniently described
with subnets of transitions that consume no time and describe the logics or the
algorithm of state evolution induced by the complex event.

To cope with both these situations in timed PN models, it is convenient to
introduce a second type of transition called immediate. Immediate transitions
fire as soon as they become enabled (with a null delay), thus acquiring a sort
of precedence over timed transitions. In this paper, immediate transitions are
depicted as thin bars whereas timed transitions are depicted as boxes or thick
bars.

6.4 Parallelism and Conflict

The introduction of temporal specifications in PN models must not reduce the
modelling capabilities with respect to the untimed case. Let us verify this con-
dition as far as parallelism and conflict resolution are considered.

Pure parallelism can be modelled by two transitions that are independently
enabled in the same marking. The evolution of the two activities is measured
by the decrement of the clocks associated with the two transitions. When one of
the timers reaches zero, the transition fires and a new marking is produced. In
the new marking, the other transition is still enabled and its timer can either be
reset or not depending on the different ways of managing this timer that will be
discussed in the next section.

Consider now transitions 77 and 75 in Fig. In this case, the two transi-
tions are in free-choice conflict. In unti